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Chapter 1

Introduction

By p(w) we denote the power set of the set of w of natural numbers. In set
theory the infinitary combinatorics of (p(w)/fin, <fi,) has been studied, where
p(w)/ fin is the power set of natural numbers w modulo the finite sets ordered by
<in where [A] <, [B] if A\ B is finite. Here we denote by [A] the equivalence
class of a set A C w. To investigate combinatorial structures of (p(w)/fin, <fi,)
cardinal invariants of the continuum are introduced and analyzed. For example
the reaping number t is the least size of a family R of infinite subset of the
natural number such that for every 2-coloring of w there is a monochromatic
set in R.

One can easily show that the reaping number is strictly larger than w and
t is at most the cardinality ¢ of the continuum. Then it is natural to ask how
large v is. The answer of this question is that it depends on the underlying
model. Assuming Zermero-Fraenkel set theory with Axiom of Choice ZFC and
the Continuum Hypothesis CH, the answer is trivial, that is, w3 = t = ¢. Also
assuming ZFC with Martin’s Axiom MA, t is equal to ¢ and strictly larger than
w1. With the forcing method we can show that v < ¢ is consistent with ZFC.

So it doesn’t seem reasonable to ask how large cardinal invariant is in ZFC.
But there are relations which is provable in ZFC. For example, let b is the least
size of a family of w* which cannot eventually dominated by a function in w®,
then it is provable in ZFC that b is smaller than tv. Therefore it is reasonable to
ask whether relationships between cardinal invariants is provable or unprovable
in ZFC. The relationship between cardinal invariants related to the infinitary
combinatorics of (p(w)/fin, <rin) has been investigated and is displayed in van
Dowen’s diagram.

1.1 van Douwen’s Diagram
Throughout this thesis, we will assume ZFC.

By [w]¥ we denote the set of all infinite subsets of w. We denote the set of
all finite subsets of w by [w]<*. w* and w<% stand for all function from w to w

5



6 CHAPTER 1. INTRODUCTION

and all finite sequence of w respectively.

We introduce several cardinal invariants and display the interaction between
them, called van Douwen’s diagram.

For X,Y € [w]* X is almost included by Y, we write X C* Y if | X \ V]| <
Ng. For F C [w]¥ A is a pseudointersection of F if A C* F for F € F.

T = (to : @ < k) is a tower if

1. t, is an infinite subset of w for a < k,
2. tg C*ty for a < B < K and
3. there is no pseudointersection of 7.

The tower number t is the least length of a tower.

P has the strong finite intersection property if every non-empty finite sub-
family has infinite intersection. The pseudointersection number p is the least
size of a P C [w]“ which has the strong finite intersection property with no
infinite pseudointersection.

DC [w”isopenif X € D,then Y € Dfor Y C* X. D C [w]“ is dense if
for X € [w]“ there exists Y C X such that Y € C. The distributivity number (
is the least size of a open dense families with empty intersection. b

For X,Y € [w]¥ X and Y are almost disjoint if [X NY| < w. A C [w]¥ is
almost disjoint family if |A| > w and pairwise almost disjoint. The maximal
almost disjoint number a is the least size of a maximal almost disjoint family.

For X,V € [w]* X splits YV if [ XNY|=Ng and [V \ X| =Rp. S C [w]¥ is
a splitting family if for Y € [w]* there exists X € S such that X splits Y. The
splitting number s is the least size of a splitting family.

R C [w]¥ is a reaping family if for X € [w]* there exists Y € R such that X
cannot split Y ie., [ X NY| <w or Y C* X. The reaping number t is the least
number of a reaping family.

For f,g € w¥ f eventually dominates g, denotes f <* g if for all but
finitely many n € w f(n) < g(n). F C w* is a dominating family if for each
g € w¥ there exists f € F such that g <* f. The dominating number 0 is the
least size of a dominating family.

G C w¥ is an unbounded family if for each f € w® there exists g € G such
that g £* f i.e., there exists infinitely many n € w such that g(n) > f(n). The
unbounded number b is the least size of an unbounded family.

T C [w]¥ is a independence family if for any finite subsets A, B C Z with
ANB =0 NANN{w\ B : B € B} is infinite. The independence number i is
the least size of a maximal independence family.

F is a filter on w if

1. if XY € F,then X NY € F.
2.if XeF,thenY e Ffor X CY.

3.0¢F.



1.1. VAN DOUWEN'’S DIAGRAM 7

We will consider only the filters which contains all cofinite subset of w. U is a
ultrafilter on w if U is a filter and X € U or w\ X € U for X € p(w). Bis a
base for a filter F if B C F and for each X € F there exists Y € B such that
Y C X. The ultrafilter number u is the least size of a base for a ultrafilter.

\/7\
\\/

/
\

w1
van Douwen’s diagram.
(— means that the inequality < is provable in ZFC).

1.1.1 Cichon’s diagram

We will introduce cardinal invariants related to an ideal on R. Let Z be a ideal
on R.

add(Z) = min{|A|: ACIAVX €ZIFY c AX 2Y)}
cov(Z) = min{lA: ACZAR=|]A}

non(Z) = min{|X|X cRA|JX ¢T}

cof(Z) = min{|JA|: ACIAVX €IV € A(XCY)}.

Let A be a null ideal. Let M be a meager ideal. Then we have the following
relations.
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add(N) =<—— add(M) =<—— cov(M) =<—— non(M)
Cichont’s diagram.
(— means that the inequality < is provable in ZFC).

1.2 Motivation

The aim of this thesis is to deal with two kinds of problems concerning to
cardinal invariants.

The one is the relationship between combinatorial principles called “parametrized
¢ principles” related to cardinal invariants in Cichon’s diagram and the other
is the properties of cardinal invariants related to the structure ((w)*, <*).

In [20], Jensen showed V=L implies Suslin’s hypothesis doesn’t hold. To
prove this result he introduced the {$-principle:

¢ There exists a sequence (A, C a: a < w;) such that for all X C w; the set
{a <w;: XNa=A,} is stationary.

It is known that many statements which are independent of ZFC follow from
& (see [15], [17]). In [19] Hrusdk introduced the {-like principle 3:

o There exists a sequence (g, : w < o < wq) such that g, is a function from
«a to w and for every f:w; — w there is an a > w with f]a <* g,.

The purpose of this principle was to give a partial solution to a question of
J. Roitman who asked whether 0 = w; implies a = w; and to answer a question
of Brendle who asked whether a = w; in any model obtained by adding a single
Laver real. In [31] Moore, Hrusdk, and Dzamonja provided a broad framework
of “parametrized {-principles” and techniques to force them and to force the
negation of them.

Here we introduce other techniques to force parametrized <) principles and
to force the negation of parametrized <) principles. We prove several consistency
of the propositions on parametrized <> principles related to cardinal invariants
in Cichoni’s diagram.

Next we investigate cardinal invariants on the structure ((w)*, <*) of infinite
partitions of w ordered by <* where A <* B if all but finitely many blocks of A is
union of a subset of B. In recent decade cardinal invariants related to the similar
structures to (p(w)/fin, <fin) are defined and investigated to understand the
similarities and differences between their properties. For example the interesting
works on (Dense(Q), Cpwq) are done in [2] and [11].



1.2. MOTIVATION 9

On ((w)¥,<*) a dualized version of Ramsey’s theorem proved by Simpson
and Carlson in [13] inspire a number of papers. Cardinal invariants of ((w)*, <*)
was initiated by Matet in [25], and investigated comprehensively by Cichon,
Krawczyk, Majcher-Iwanow and Weglorz in [14], Halbeisen in [18], Spinas in [33]
and Brendle in [10]. However the relation between cardinal invariants related
to ((w)¥, <*) and cardinal invariants in Cichoi’s diagram has not investigated
so much except dual-splitting number cov(M) < s4 in [14]. We investigate the
relationship dual cardinals and cardinals in Cichoi’s diagram.

In Chapter 2 we will investigate parametrized < principle and study the
forcing method to force them and the negation of them.

In Chapter 3 we shall survey the relations between cardinal invariants related
to ((w), <*) and other cardinal invariants.

In Chapter 4 we will study interaction between the cardinal invariants related
to ((w)¥, <*) and forcings.






Chapter 2

Parametrized diamond
principles and c.c.c forcing

The purpose of this chapter is to present some techniques to force parametrized
¢ principles.

2.1 Definition of parametrized diamonds and their
applications

In this section, some properties of parametrized {$ principles are introduced.
Firstly we define parametrized < principles and state their properties.

2.1.1 Borel invariants and parametrized diamonds, and
their properties

In [36] Vojtas introduced a framework to describe many cardinal invariants.
Definition 1. [36][31] The triple (A4, B, E) is an invariant if

(1) [A],1B| < [R],
(2) EC AxB,
(3) For each a € A there exists b € B such that (a,b) € E and
(4) For each b € B there exists a € A such that (a,b) € F.

We will write aEb instead of (a,b) € E. If A and B are Borel subsets of some
Polish spaces and F is a Borel subset of their product, we call the triple (A, B, E)
“Borel invariant” .

Borel invariants were introduced in [6]. In the present paper we are interested
only in Borel invariants.

11



12CHAPTER 2. PARAMETRIZED DIAMOND PRINCIPLES AND C.C.C FORCING

Definition 2. Suppose (A, B, E) is an invariant. Then its evaluation is defined
by
(A,B,E) =min{|X|: X C B and Va € A3b € X (aED)}.

If A = B, we will write (A, FE) and (A, E) instead of (4, B, E) and (A, B, E).

Example 1. The following Borel invariants (N, 2), (N, C), (R, M, €),
(MR, %), (w¥, <*), (w¥, #*) and ([w]“, is split by) have the evaluations add(N),
cof(N), cov(M), non(M), 9, b and s respectively.

Definition 3. Suppose A is a Borel subset in some Polish space. Then F' :
2<%t — A is Borel if for every o < wy F'|2% is a Borel function.

In [15, 32] the principle “weak diamond principle” was introduced by Devlin
and Shelah. This was the starting point for the parametrized diamond principles
introduced by Moore, Hrugdk and Dzamonja [31].

Definition 4. [31](Parametrized diamond principle)
Suppose (4, B, E) is a Borel invariant. Then (A, B, F) is the following state-
ment:

O(A,B,E)  For all Borel F' : 2<“t — A there exists g : w; — B such that for
every f:w; — 2 the set {a € wy : F(f|a)Eg()} is stationary.

The witness g for a given F in this statement will be called {(A, B, E)-
sequence for F.

O(A, B, E) and { have the following relation:
Proposition 2.1.1. [31] Let (A, B, E) be a Borel invariant. ¢ implies {(4, B, E).
(A, B, E) and (A, B, E) have the following relation:

Proposition 2.1.2. [31] Suppose (4, B, E) is a Borel invariant and (4, B, E)
holds. Then (A, B, E) < w; holds.

If two Borel invariants (A1, By, E1),(Az, B, Es) are comparable in the Borel
Tukey order, then (A1, By, E1) and $(As, Ba, F3) have some relation:

Definition 5. (Borel Tukey ordering [6]) Given a pair of Borel invariants
(Al, Bl, El) and (AQ, BQ, Eg), we say that (Al, Bl, El) Sg (AQ, BQ, Eg) if there
exist Borel maps ¢ : A; — Ag and ¢ : Bo — By such that (¢(a),b) € Ey implies
(a,9(b)) € Ey.

Proposition 2.1.3. [31] Let (A, B1, E1) and (Ag, By, E3) be Borel invari-
ants. Suppose (A1, B1, E1) <2 (Ag, By, Es) and {(As, Ba, E3) holds. Then
<>(A1,Bl,E1) holds.

By Proposition 2.1.3 if (A1, By, E1) <2 (As, B, F2) and {(Aa, Ba, E»), then
{(Aq, By, E7) holds. But if we can separate (Ay, By, E1), (As, Ba, Es), then can
we separate $(Aq, By, Fy) from $(Ag, Ba, o) ?
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Question 1. [31] If (A1, B1, E1) and (Aa, Ba, Es) are two Borel invariants such
that the inequality (A1, B1, E1) < (Aa, Ba, E3) is consistent, is it consistent that
(A1, By, Ep) holds and O(As, B, Es) fails in the presence of CH?

Concerning <2, we know the following diagram holds.

(Cichori’s diagram)
(Ran E) D — (MvRa 3) -~ (M7 C) <~ (Na C)

| |

(Na ZS) <~ (M,Zﬁ) ~ (RaMa 6) -~ (N7R7 3)
(The direction of the arrow is from larger to smaller in the Borel Tukey order).
Hence the following holds:

o

/

Ocov(N)) =—— S(non(M)) <—— $(cof(M)) <—— O(cof(N))

| |

O (b) 0(0)

| |

O(add(NV)) =—— ¢(add(M)) <—— O (cov(M)) <—— O (non(N))

(The direction of the arrow is the direction of the implication.)

We call this diagram “Cichon’s diagram for parametrized diamonds”.

Note When we deal with Borel invariants in Cichoit’s diagram, we will use the
standard notation for their evaluations to denote the Borel invariants themselves

(e.g., we will use {(add(N)) to denote $(N, 2) ).

So this suggests the following interesting question:

Question 2. If we can construct a model M such that some cardinals in Ci-
chori’s diagram are w; and others are ws, then under CH can we construct
a model such that for the invariants which are w; in M, the corresponding
parametrized diamond principle holds but for the others it doesn’t hold?

In this question the hypothesis “CH holds” is important since an ws-stage
countable support iteration of definable forcings which forces (A, By, E1) = w1
and (As, Ba, Fs) = wy also forces $(Ay, By, E1) (see [31]). In this paper we will
give some general technique dealing with this problem and give some results.



14CHAPTER 2. PARAMETRIZED DIAMOND PRINCIPLES AND C.C.C FORCING

2.1.2 Parametrized < principles and cardinal invariants

We shall show some cardinal invariants are influenced by the parametrized
diamondsuit principles.

Theorem 2.1.4. [31] {
Theorem 2.1.5. [31] $
Theorem 2.1.6. [31]
Theorem 2.1.7. [31] $

R, #) implies t = w;.
b) implies a = wy.

t) implies u = wy.

_~ o~ A~ A

tg) implies i = w;.

2.2 wi-stage finite support iteration and parametrized
< principles

In this section, some techniques for dealing with parametrized <) principles are
introduced. Firstly we shall construct parametrized < principles by using ws-
stage finite support iteration.

2.2.1 Construction of diamonds

We present a technique to construct (A, B, E). In [31] some methods to con-
struct models of (A, B, E) are given.

Theorem 2.2.1. [31] Let C,, and B,, be the Cohen and random forcing

corresponding to the product space 2'. Then V&1 |= “¢(non(M))” and
VBer = “$(non(N))”.

Similarly we can prove the following theorem.
Theorem 2.2.2. Let PP,,, be an w;-stage finite support iteration of c.c.c forcings
such that for any o € w; there exists b € B N VP« such that aFEb for any

a € ANVPa Then V¥ = $*(A, B, E) where O*(A, B, E) is the statement
obtained by replacing “stationary” by “club ” in (A4, B, E).
Remark 1. If A is Borel set and P is a forcing notion, then we will write ANVF

for the interpretation of a Borel code for A in V.

Proof of Theorem. Let F € VP be such that F' : 2<“1 — A is a Borel
function. For each 6 € wy, let 75 € VF«1 be a real coding F [ 2°. Then define
f :wy — wy strictly increasing such that rs € VEr .

Then define g : w; — B so that

g(a) = b where b satisfies (2) for f(«).
Claim 1. g is $*(A, B, E)-sequence for F'

Let h : w; — 2. Then define Cj, = {a € wy : h|a € VFa}. Since P, is c.c.c,
Cy, is club. Then by construction if a € Cj, then F(h[a) € ANVFie. So
F(hla)Eg(a). Hence g is a $*(A, B, E)-sequence for F.

ClaimM Theorem O
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2.2.2 Preservation of non-diamond
We present a technique to preserve ={(A, B, E).

Theorem 2.2.3. (General preservation of =(A, B, F))
Let (A, B, E) be a Borel invariant and let PP be a forcing notion which doesn’t
collapse wy.

(i) Suppose V¥ = (A, B, E). If for each Borel function F : 2<%t — A in
V and for a (A, B, E)-sequence § : w; — B for F in VF there exists
g* :w; — B in V such that

Yae ANV [( IPpeP(plkaEi(w) )) implies aEg¢*(a)| , (2.1)

then V = (A, B, E).

(ii) If P is a forcing notion such that for any P-name b with |- b € B there
exists b’ € BNV such that

Vae ANV [(ﬂp eP(pl aEb)) implies a BV’ | , (2.2)

then V |= ~O(A, B, E) = VF = ~O(A, B, B).

Proof. (ii) follows from (i). So we shall show only (i).

Suppose (A, B, E) holds in VF. Let F : 2<“1 — A be a Borel function in
V and ¢ be a P-name for a {(A, B, F)-sequence for F in V. Then by (1) there
exists ¢* : w; — B in V such that

VaewnVae ANV [(Elp eP(plkaEj(a) )) implies aEg*(a)| .

Let f:w; — 2 bein V. Then {& € w; : there exists p € P such that p I+
“F(fla)Eg(a)”} is stationary. Since {& € wy @ F(f [a)Eg*(«)} contains this
set, it is also stationary. Hence V' |= (A4, B, E).

O

In the Kitami set theory seminar, Yasuo Yoshinobu pointed out the following
fact.

Proposition 2.2.4. Let (A, B, FE) be an Borel invariant. Then (ii) in Theorem
2.2.3 implies that P has (A, B, E)-c.c.

Proof. Suppose there is an antichain A C P with cardinality (A, B, E) and
D C B witnesses (A, B, E). Then we have a P-name b such that for alla € ANV
there exists p € P such that p |- “aEb”. If (i) in Theorem 2.2.3 holds, then
there exists b € B NV such that for all a € ANV aEb holds. But this is a
contradiction to (4) in Definition 1.

So if CH holds in V', then P should have c.c.c in V.
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2.3 Cichon’s diagram and Parametrized diamond
under CH

We would like to show that under CH we can separate parametrized diamond
principles for Borel invariants in Cichoi’s diagram. In [19] Hrusék showed the
following:

Theorem 2.3.1. [19] Con(CH+{ + —<).

In the proof Hrusdk shows that if V = “CH+-<", then VP21 = “CH+, +
=<7, Similarly we will start with a model in which the “weak” parametrized
diamond principle fails. By [31], CH doesn’t imply the “weak” parametrized
diamond principle:

Proposition 2.3.2. [31] (R¥,2) <£ (N, %) where 2 is a relation on R¥ such
that for x,y € R¥ x 2 y if rng(x) 2 rmg(y).

Theorem 2.3.3. [31] It is relatively consistent that CH + —{(R“, 4). Hence
it is relatively consistent that CH 4+ —{(add(N)) by Proposition 2.3.2.

But w;-stage countable support iteration of non-trivial proper forcing is not
suitable to solve Question 2.

Theorem 2.3.4. Let P = (Pa,Qa ;@ < wy) be wy-stage countable support
iteration of non-trivial proper forcing. Then IFp <.

This is well-known and can be proved like Theorem 8.3 of Ch.VII, §8 in
[22]. So if we want to use countable support iteration, we cannot use w;-stage
iteration. Hence in this paper we use finite support iteration. But finite support
iteration has some limitation.

Theorem 2.3.5. Finite support iterations of non-trivial forcing notions add
Cohen reals in limit stages of cofinality w. Hence w-stage iterations of nontrivial
c.c.c forcing result in models of {(non(M)). More precisely ¢*(non(M)) holds.

But by using finite support iteration of c.c.c forcing we have the following
results:

Theorem 2.3.6. (Main theorem) Each of the following are relatively consis-
tent with ZFC:

CH + ¢(non(M)) + = (cov(M)) (see Diagram 1),

CH + $(non(N)) + =<O(b) + = (cov(N)) (see Diagram 2),

CH + $(non(M)) + $(non(N)) + =<H(0) (see Diagram 3),

(cov(M)) + & (non(M)) + ~0(0) + =0 (non(A)) (see Diagram 4),
CH + {(cof(M)) + = (non(N)) (see Diagram 5),

CH + {$(cof(M)) + S (mon(N)) + = (cof(N)) (see Diagram 6),

CH + $(cof(NV)) + =& (see Diagram 7).
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2.3.1 Cohen forcing and random forcing

Firstly we use Cohen forcing, random forcing and w;-stage finite support itera-
tion of random forcing. In this paper we write (B),,, for wi-stage finite support
iteration of random forcing.

Proposition 2.3.7. (1) If V = = (cov(N)), then VEer = = (cov(N)).
(2) If V = = (cov(M)), then VEer = = (cov(M)).
To show this, we use the following theorem:
Theorem 2.3.8. [3, p.145 Lemma 3.3.17 for (1), p.125 Lemma 3.2.39 for (2)]
(1) Let A € M N VS, Then there exists B € M NV such that

Va:eIRﬁV[(HpE(C,.i (pH—xEA)) impliesxeB}.

(2) Let A € NN VB~ Then there exists B € N'NV such that

Ve eRNV [(apem (pll—a:éA)) impliesxeB].

Proof of Proposition. We only show (2). Let F : 2<“* — R in V and let
g:w; — M in V& be a {(cov(M))-sequence for F. Then by Theorem 2.3.8
and 2.2.3, we can find a {(cov(M))-sequence for F in V.

O

Proposition 2.3.9. Let B be a measure algebra. If V = —{(0), then VE =
= (0). Similarly if V = =< (b), then VE = - (b).

Proof. Assume on the contrary that for each F' : 2<%t — w*“ Borel, there is
a {(0)-sequence g : w1 — w* in V[G]. Let F be a Borel function in V. By
w“-bounding and c.c.c, there is ¢* such that IF g(a) <* g*(a) for all a. Let
frwr—2in V. Then {a € wy : F(fla) <* g*(a)} is stationary.

More generally we have the following result:

Proposition 2.3.10. If a c.c.c forcing notion P doesn’t add dominating reals,

then V = =0 (b) = VE =~ (0).

Proof. Let F : 2<¥* — w* in V be a Borel function. Suppose {(?) holds
and let g : w; — w® be a $(0)-sequence for F in VF. Since P doesn’t add
dominating reals and has the c.c.c, for each a@ < wy there exists f, € w“ such
that IF g(a) #* fo. Define ¢* : w1 — w* by ¢*(a) = fo. Then Ip € P (p I+
f<*g(a) ) implies f #* ¢*(a). So g* is a {(b)-sequence for F.

O
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Theorem 2.3.11. (1) If V = CH+—<(cov(M)), then VE1 = CH+<{(non(M))+
- (cov(M)) (see Diagram 1).

(2) IfV = CH+=(b)+=O (cov(N)), then VEer |= CH+—=(b)+—< (cov(N))+
$(non(N)) (see Diagram 2).

(3) If V = CH4=(b), then VB = CHA+(non( M)+ (non(N))+-<(2)

(see Diagram 3).

Proof. (1): From Proposition 2.3.7 (2), and Theorem 2.2.1, this statement
holds.

(2): From Proposition 2.3.7 (1), 2.3.9 and Theorem 2.2.1, this statement holds.
(3) To show this we use the following theorem:

Theorem 2.3.12. [3, p.100 Lemma 3.1.2, p.313 Lemma 6.5.1 and Theorem
6.5.4] [8] Finite support iteration of random forcing doesn’t add dominating
reals.

From the above theorem and 2.3.10, V®«1 = =¢(2). By 2.2.2 and 2.3.5,
VEer = G (non(M)) + O (non(N)).

O

By Theorem 2.3.11 it is relatively consistent with ZFC and CH that Cichont’s
diagram for parametrized diamond looks as follows where a black square means
the corresponding parametrized diamond fails while the others hold:

O(cov(N)) —— S(non(M)) —— 1 —— 1

O) ———m

O(add(NV)) —— ¢(add(M)) — B ——H

Diagram 1
] ]
H—n

O(add(NV)) —— ¢(add(M)) —— O (cov(M)) —— $(non(N))

Diagram 2
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O(b) u

Oladd(V)) —— ¢(add(M)) —— O(cov(M)) —— O (non(N))

Diagram 3

2.3.2 o-centered forcing
Secondly we will deal with o-centered forcings.
Definition 6. The Hechler forcing notion is defined as follows:

(s,f)eDifsew< fewandsCf.

It is ordered by
(s, f) < (t,g)if sDtand g < f.

It is clear that the following statement holds.
Proposition 2.3.13. Hechler forcing D adds a dominating real:
There exists f € w® N VP such that I “g <* f” for all g € w* NV.
Definition 7. The eventually different forcing notion is defined as follows:
(s,H) eEif s € w<¥ and H € [w*]<¥
It is ordered by (s, H) < (s',H') if s D s', H D H' and
for all f € H' for all j € [|s'],[s]) s(7) # f(4).

Proposition 2.3.14. Eventually different forcing adds an eventually different
real:

There exists f € w* N VE such that IF “V®°n f(n) # g(n)” for all g € w* NV.

So there is M € M N VE such that 2 NV C M.
Now we use these two forcing notions. They have the following property:
Definition 8. Let P be a forcing notion.

(1) Let A C P. Then A is centered if every finite subset of .4 has a lower
bound.

(2) Pis o-centered if P = U P,, where each P, is centered.

new
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o-centered forcing has the following property:

Theorem 2.3.15. [3, p.321 Lemma 6.5.26, p.322 Theorem 6.5.29]
o-centered forcing doesn’t add random reals. More precisely, if a P-name & for
an element of 2% is given, then there is a null set N € V such that I & € N.

Proposition 2.3.16. (1) If a forcing notion P doesn’t add Cohen reals and
has c.c.c, then V = ={(add(M)) = VF = O (non(M)).

(2) If a forcing notion P doesn’t add random reals and has c.c.c, then V' =

~O(add(V)) = VP [ = (non (V).

Proof. We show only the random case. Let F : 2<“* — A be a Borel function
in V. Suppose {(non(N\)) holds in VE. Let g : w1 — R be a {(non(N))-
sequence for F'. Since P doesn’t add random reals and has c.c.c, for each a < wy
there exists N, € N NV such that I~ g(a) € N,. Define g* : w1 — N by

g* (o) = Ny. Let f:w; — 2 be given. Then (Elp eP(pl-F(fla)# gla) ))
implies F(f[a) 2 g*(a). So g* is a {(add(N))-sequence for F.

O

Proposition 2.3.17. Suppose P is a o-centered forcing notion. V = =$(add(N)) =
VE E = (non(N)).

Proof. Follows from Theorem 2.3.15 and Proposition 2.3.16

To treat wy-stage iteration of D or E, we use the following result:

Proposition 2.3.18. [1] An w;-stage finite support iteration of o-centered forc-
ing notions is o-centered.

Theorem 2.3.19. If V = CH+ - (add(N)), then VE«1 = CH+<(non(M))+
Olcov(M)) + = (0) + ~O(non(N)) (see Diagram 4).

By Theorem 2.2.2, Proposition 2.3.14 and Proposition 2.3.17, it is clear that
V = CH + =$(add(M)) implies VE1 = CH 4 =< (non(N)) + $(non(M)) +
O (cov(M)). To show VE« = = (0), we use following Theorem:

Theorem 2.3.20. [3, p.367,Theorem 7.4.9] Neither E nor E,,, add dominating
reals.

Using this Theorem and Proposition 2.3.10, we have VE«1 = ={(d).
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O(b) n

¢(add(V)) —— ¢(add(M)) —— O (cov(M)) —— W

Diagram 4

Theorem 2.3.21. If V = CH+—=<(add(N)), then VP = CH+-(non(N))+
O(cof(M)) (see Diagram 5).

By Theorem 2.2.2 and Proposition 2.3.17, VP« | () + $(non(M)) +
=& (non(N)). To show VP = {(cof(M)), we use the following Theorem
which is analogous to cof(M) = max{d,non(M)}.

Theorem 2.3.22. If $*(non(M)) and {(9), then $(cof(M)) holds. Similarly
O(non(M)) and $*(9), then $(cof(M)) holds.

Proof. We use the following statement:

Claim 2. [5] There are functions ® : 2¢ x w* — M and ¥ : 2 X M — w¥
such that for each f € 2¢, A € M, ®(f,:) and ¥(-, A) are Borel functions, and
if few  Ae Mxe2¥ o g A+2<% and f >* U(z,A) then A C O(x, f).
Here for s € 2<% f € 2¥ f + s is in 2¢ such that

(f +3)(n) = { Jm+ S(fn()ng mod 2) no.ewl.8|7

And A+2<v :={f+s:feAse2v}

We will show that ¢*(non(M)) and (9) implies $(cof(M)).

Let F : 2<“1 — M be a Borel function . Let {o}, : n € w} be an enumeration
of 2<%,

By assumption, there is a {*(non(M))-sequence g for F* where F* is F +
2<¢_ that is, F*(h) = {f € 2¥ : there exists s € 2<% such that f + s € F(h)}.
Then {a € wy : F*(f [ ) F g(a)} is club for any f : w; — 2. Note that g
is also a {*(non(M))-sequence for F. Define a Borel function G : 2<%t — ¥
by G(f | @) := U(g(a),F(f | a)). Let h be a {(d)-sequence for G. Then
{a:g(a) € F(f o) and G(f | o) <* h(a)} is stationary for any f : w; — 2.
By definition of G and the Claim, {« : F(f [a) C ®(g(a), h(a))} is stationary.
Hence ®(g(«), h(a)) witnesses a {(cof(M))-sequence for F.

Theorem 2.3.22 O
So by Theorem 2.3.22, VPe1 |= & (cof(M)).
Theorem 2.3.21 O
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O(eov(NV)) —— S (mon(M)) —— O(cof(M)) ——

O(b) ————— (0

¢(add(V)) —— ¢(add(M)) —— O (cov(M)) —— B

Diagram 5
Question 3. (1) Does the conjunction of {(non(M)) and &(9) imply $(cof(M))?
(2) Does {(add(M)) imply the disjunction of {(cov(M)) and H(b)?
(3) Are there models under CH such that

$(cov(N)) —— $(non(M)) [ | [ |

O(0) ————— ()

O(add(V)) —— ¢(add(M)) —— O (cov(M)) —— W

holds?

By Theorem 2.3.22, we should add {(?) and {(non(M)) without {*(d) nor
$*(non(M)). But wy-stage finite support iteration adds $*(non(M)). Since w;-
stage countable support iteration adds <, wi-stage countable support iteration
is not suitable. The candidate is “mixed support iteration” or totally proper
forcing or some other forcings.

2.3.3 The forcing (B * D).,
Thirdly we will deal with c.c.c forcing notion which preserves =<{>(cof(N)).

Theorem 2.3.23. If V = CH+-{(add(/N)), then y D)., E CH+(cof(M))+
O(non(N)) + = (cof(N)) (see Diagram 6).
By Theorem 2.2.2, B0, = O(cof(M)) + $(non(N)).

Proposition 2.3.24. If V |= =$(add(N)), then VED)e =~ (cof(N)) where
(B % D),, is finite support iteration .

To show this theorem we use the following lemma.

Lemma 2.3.25. [3, p.317 Theorem 6.5.14 - Lemma 6.5.18|
H_(B*D)wl UNNV ZN.
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Lemma 2.3.25= Proposition 2.3.24
Suppose VEDer = &(cof(N)). Let F : 2<“1 — N be a Borel function in V

. Let g : w; — N be a {(cof(N))-sequence in V(EDew, By Lemma 2.3.25,
H_(IB%*D)M UN NV €N. So for each o € wy there exists N, € N NV such that

IF Ny ¢ g(a). Then define g* : w3 — N by g*(a) = N,. It is clear that g* € V.

Claim 3. ¢* is a {(add(N))-sequence for F.

Let Ne NNV. IfIF “N C g(«)”, then N 2 g*(a) by IF g*(a) ¢ g(). So
for each f:w; — 2in V, {a € w; : there exists p € P such that p IF F(f [a) C
gla)} C{a€ew : F(fla) B g*(a)}. Hence g* is a {(add(N))-sequence for F.

Claim B
Hence V = {(add(N)).
Lemma 2.3.25= Proposition 2.3.24 O Theorem 2.3.230

O(eov(N)) —— G mon(M)) —— O(cof(M)) ———— |

O(0) ————— ()

O(add(NV)) —— ¢(add(M)) —— O (cov(M)) —— (non(N))

Diagram 6

2.3.4 Amoeba forcing
Finally we will deal with Amoeba forcing.

Definition 9. (Amoeba forcing) [34] The Amoeba forcing notion A is defined
as follows:

(Ue)e AifU C2¥ openand 0 <e <1 p(U) < e.
For (U,e), (V,6) € A they are ordered by
(U,e) < (V,0)if U DV and € < 4.

Lemma 2.3.26. [3, p.106 Lemma 3.1.12] A is o-linked, that is, A = U A,
new
where A,, consists of pairwise compatible elements (we will say A,, is linked).

A has the following property:

Theorem 2.3.27. [35] VA = “u(Ra(V)) = 1”7 where Ra(V) is the set of
random reals over V. So IF JN NV € N.
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Since o-linked forcing notion has c.c.c, A, preserves —<.

Proposition 2.3.28. [22, Exercise (H.29) p.248]
Let P be a forcing notion with c.c.c, then V = =< implies VF = —¢.

Theorem 2.3.29. If V = =, then VA«1 = {(cof(N)) + =< (see Diagram 7).
Proof. By Theorem 2.2.2 and Proposition 2.3.28 this statement holds.
O

By Theorem 2.3.29 it is relatively consistent with ZFC and CH that Diagram 7
holds where the black square means —<$>.

~

O(cov(N)) —— S (non(M)) —— O(cof(M)) ——— $(cof(N))

Ob) ————— <)

Oladd(N)) —— O(add(M)) —— S(cov(M)) —— $(non(N))

Diagram 7

So we proved the Main Theorem.

2.4 wo-stage finite support iteration and parametrized
¢ principles

In [27] by using w;-stage finite support iteration several models which satisfy CH
and some (A, B, E) while others fail are constructed. For countable support
iteration, there is a general theorem to construct (A, B, E).

Theorem 2.4.1. [31] Suppose that (Q,, : a < wa) is a sequence of Borel partial
orders such that for each o < wa Q, 18 equivalent to p(2)* x Q, as a forcing
notion and let P,, be the countable support iteration of this sequence. If P,
is proper and (A, B, E) is a Borel invariant then P, forces (A, B, E) < wy iff
P, forces $(A, B, E).

This result is best possible because the following proposition holds.

Proposition 2.4.2. Let (A, B, E) be a Borel invariant. If $(A, B, E) holds,
then (A, B, E) < w;.
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In this paper we shall prove the consistency of {(xr) + 9y = wy for several
pairs (z,n) of cardinal invariants of the continuum. As mentioned above (Theo-
rem2.4.1) this has been achieved before by Moore, Hrusdk and Dzamonja in [31].
They used countable support iteration to show {(r) +9 = we. But our approach
is completely different from the methods of Moore, Hrusadk and Dzamonja. We
shall use finite support iteration of Suslin c.c.c forcing notions to prove the
consistency of {$(x) + by = wa.

And our results are more general. We can obtain the consistency of {(r)+y =
k not just $(x) + 9 = wa.

Along the way, new preservation results for finite support iteration are es-
tablished. These are interesting in their own right.

The present paper is organized as follows. Section 2 shows some properties
of Suslin forcing. Section 3 presents several models satisfying parametrized
diamond principles by using ws-stage finite support iteration of Suslin forcing
notions.

2.4.1 Suslin c.c.c forcing and complete embedding

In this section we will study some properties of a family of c.c.c forcing notions
which have a nice definition.

Definition 10. /3, p.168] A forcing notion P = (P, <p) has a Suslin definition
if P Cw?, <pC w¥ x w* and LpC w* x w* are ¥1.
P is Suslin if P is c.c.c and has a Suslin definition.

Definition 11. /3, p.168] Let M = ZFC*. A Suslin forcing P is in M if all
the parameters used in the definitions of P, <p and Lp are in M.

We will interpret Suslin forcing notion in forcing extensions using its code
rather than taking the ground model forcing notion.

Definition 12. Let A and B be forcing notions. Then i : A — B is a complete
embedding if

(1) for all a,a’ € A if a < d', then i(a) < i(da’),
(2) for all ay, as € A a; L as if and only if i(ay) L i(a2) and

(3) for all A C P if A is a mazimal antichain in A then i[A] is a mazimal
antichain in B.

If there is a complete embedding from A to B then we write A < B.

Lemma 2.4.3. Assume A <B and P is a Suslin forcing notion. Then A x P<
B « P where P are names for interpretation of the code for the Suslin forcing
notion in each model.

Proof of Lemma. Let i : A — B be a complete embedding. Define 7 : AP —
B« P by i({a,#)) = (i(a),i.()) where i, is the class map from A-names to
B-names induced by i (see [22, p.222]). We will show if A C A P is a maximal
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antichain, then [A] is also a maximal antichain. It is clear i[A] is an antichain.
Let A be a maximal antichain of AP and put A = {{(aq,Pa) : @ < Kk}. Assume
there exists (b, p) € B+ P such that (b, p) and i((aa,pe)) are incompatible for
all @ < k. Let G be a (B, V)-generic such that b € G and let H = i~ }[G]. Let
A" = {pa[H] : i(as) € G} € V[H].

Subclaim 1. V[H]| | “A’ is a mazimal antichain”.

Proof of subclaim. Firstly we shall show .4’ is an antichain. Suppose p,[H],
pglH] € A'. Since aqn, ag € H, a, and ag are compatible. Since (aq,pa)
and (ag,pg) are incompatible, for all » < a,,ag there exists s < r such that
s Ik “p, and pgare incompatible”. So p,[H] and pg[H| are incompatible. Hence
A’ is an antichain.

From now on we shall show maximality of A’. Assume to the contrary, there
exists p € P such that p and p,[H] are incompatible for any p,[H] € A’. So
there exists @ € H and an A-name P for p such that a IF Va < k(aq € H —
p and p, are compatible ). Hence (a,p) and (aq,pq) are incompatible. But it
contradicts the maximality of A.

subclaim W

V[H] E “A’is a maximal antichain in P” and “A’ is a maximal antichain
in P” is a II] statement with parameter A, P, <p and Lp. Hence by IIi-
absoluteness V[G] = A’ is a maximal antichain in P. But this is a contradiction

to the fact V[G] = “p[G] L ix(pa)[G]” for i(as) € G.
O

Theorem 2.4.4. Let (Q, : a < k) be a sequence of Suslin forcing notions. Let
P, be the limit of the finite support iteration of (Pq, Qun:a< k). Then A <B
implies A xP,, < B % Py,

Proof. By induction on «. Limit stage is clear. Successor stage follows from
above Lemma.

O

Corollary 2.4.5. Let (Qq : @ < k) be a sequence of Suslin forcing notions. Let
I C k. Then P; <P, where Py is the limit of the iteration of (P}, Ry : @ < K)

. Qo acl
where |Fpe Ry = { {1} otherwise.

2.4.2 Construction of Parametrized <) principles

We shall construct several models by finite support iteration of Suslin forcing
notions.

Definition 13. (1) The Hechler forcing notion is defined as follows:

(s,fYeDifsew< few andsC f.
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It is ordered by
(s, f) < (t,g) if sDtand g < f.

(2) The eventually different forcing notion is defined as follows:
(s,H) €E if s € w~* and H € [w*]<*.
It is ordered by (s,H) < (t,G) if s Dt, H D G and

for all g € G for all j € [|t],[s]) s(5) # 9(4)-

(3) Let Borel(2¥) be the smallest o-algebra containing all open subsets of
2¢. Let p be the standard product measure on 2% and let N = {A €
Borel(2¥) : u(A) = 0}. For A,B € Borel(2¥) let A~y B if AAB e N.
Let [A|nx be the equivalence class of the set A with respect to the equivalence
relation =ur.

Define
B = {[A],  : A € Borel(2¥)}.

It is ordered by [A]\, < [B]y if A\ B eN.

Theorem 2.4.6. Let x be an ordinal with cf(k) > wi. Let Dy, E., B, and
(BxD), be the k-stage finite support iteration of D, E, B and B*xD respectively.
Then the following statements hold:

(1) VP |= O (cov(N)).

(2) VE= = O(cov(N)) and G(b).
(3) VB = O(b).

(4) VED« = & (add(N)).

Proof. (1) Let II be a partition of w into finite intervals I,, with |I,| = n+1
for n € w. Define a relation =f so that = y if there exist infinitely many
n € w such that x [ I, = y [ I,,. We will show VPr = $(2¢,=2°). Let F be a
D,.-name such that IFp,_ F:2<%1 5 2% Since Dy has the c.c.c, a real 7, coding
the Borel function F' | 2% appears at an intermediate stage. By cf(k) > w1 we
can assume F is a Dg-name for some 3 < k. Furthermore we can assume Fis
a Borel function in ground model. Let F' be a Borel function in ground model.

Let f be a Dy-name such that Ip, f : wy — 2. Then the following claim holds:

Claim 4. Define Cf Cw; by

Cp={a <wi: flais Doy, x)-name}.

Then Cf- contains a club.
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Remark 2. More precisely we should write
O = {a <wi : there exists Doy, x)-name iq such that Ikp, fla=i,(is)}

where i, is a class function from Doy, «)-names to D, -names induced by the
complete embedding i : Doyjy, x) < Dx. But for convenience we will think of a
Dy-name & as Dr-name if there exists a Dr-name § such that lbp, & = ir.(9)
where iy is a complete embedding from Dy to Dy.

For v € C let &o be a Doy, ,x)-name such that Ikp, ., F(f @) = dg.
Let ¢, be a D, -name such that for all & € 2@ NV P IFp,,, 3%°n (oI, =a1,).
We can obtain such ¢é,. For example put ¢, a D,,-name for a Cohen real over
VDo,

We shall show IFp, 3%n (¢ [ I, = &4 [I,). To prove this we will work in
VP« and show the following lemma.

Lemma 2.4.7. Suppose v is an ordinal and P is a forcing notion which has
a P-name ¢ such that for allx € 2 NV Ikp I3°n (I, =¢|1,). Let & be a
D, -name such that I- & € 2¥. Then II—]P,*]D7 3°n (¢, =x11,). Here precisely
we should write Ibp, 30 (eI, =is(2) [ I,) where ix is a canonical map from

D, -names to P+ D, -names induced by the complete embedding i : D, — P D,
Proof. We proceed by induction on ~.
First step
Let & be a D-name such that IFp & € 2¥. Let ¢ be a P-name such that IFp
“Iopew(ell, =x[I,)” for all z € VN 2“. Let (po, o) € P D and m € w.
It suffices to show there exist (p1,¢1) <p,p (Po,do) and n > m such that
(P1,d1) IFpyp @ [ Ln = ¢ In.
Without loss of generality we can assume pg IF go = (s, g) for some s € w<¥.
Let z, € V N 2% such that

Vi€wvg €w? (g Ds— (s, g)Irp @I #xs[1;).

Let r < pg such that r IFp xs [ I, = ¢ | I, for some n > m. Then define
(rg : k € w) a decreasing sequence of P and g* € 2¥ NV such that ro <p r and
ri ke g1 (|s| + k) = g* [ (|s| + k).

By definition of x4 there is (t, h) <p (s, ¢*) such that (¢, h) IFp x5 [ [, = @] L,.
Since (t,h) <p (s,g*), for all [ € [|s|,|t]) t(I) > g*(I). Since rp IFp Vi €
|t| (9(i) = g*(i) < t(3)), rj¢ IFp (t, h) and (s, g) are compatible. Put p; = r}; and
put a P-name ¢; so that py IFp ¢1 <p (s,9), (t,h). Then (p1,d1) <p, (Po,qo)
and py Fp x5 [ I, = ¢ L, by p1 <pr and py IFp “¢1 Fp s [ I, = @ [ I,” by
p1lFp ¢1 <p (t, h). Therefore (p1,¢1) IFp,p @ 11 = x5 [ I, = ¢[ 1.

Successor step:
Suppose the lemma holds for 7. Let & be a D, 4 -name such that I-p_,, @ € 2¢.
Let (po,qo) € P D’y-l-l and m € w. Without loss of generality we can assume

(Po, G0 1Y) IFpap. do(y) = (3, ) for some s € w=.
Let @, be a D,-name such that

bp, Vi € w¥y € w¥ (3 D5 — —(5,§) kp @5 [ I; # #11).
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By induction hypothesis there is (p/, ¢’) € ]P’*I.D)V and n > m such that (p’, ¢') <p,p
(Posdo 1) and (p', ') Irp,p s [ In = ¢TI

Since D, < P * ]D)y, there is a ID,-name Q for a partial order such that
P x ]]'])7 =D, * Q. Let ¢* be the projection of (p/, ') to D,.

Define D, -names ¢* and (7', : k € w) such that

~

(i) IFp, ¢* € w¥ and 7 € Q for k € w,
(ii) (g%, 70) < (0", 4,

(iii) IFp, Fr41 <o Tk for k € w and

(vi) ko, “F Ik 9(k) = §* (k)"

Let ¢f <p, ¢* such that there exists t € w<* and D,-name h for a function
from w to w such that ¢f IFp, “(f,h) <p (s,¢*) and (£, h) Ikp @ [ I, = i [ I,
Since (g7, 7)) IF Vi € [t] (g(z) =g"(1) < h(z)), (a7, 7)) IF (t,h) and (s, g) are
compatible. '

Put (p1,¢1) € P+ Dyyq so that (p1,¢117) = (q7,7y) and (p1,41[7) =

(@ 7)) Fp o @1(v) <p (th),(s,9). Then (p1,¢1[7) lrp,y “¢[In = &4 |
I, and ¢, () IFp @5 [ I, = & [ 1,,”. Therefore (p1,q1) IFP*DWl e, =xz|1,.
Limit step:
Suppose 7 is a limit ordinal and for § < 7 the lemma holds. Without loss of
generality we can assume the cofinality of v is w. Let (v; : i € w) be a strictly
increasing sequence converging to . Let (po,go) € P*D,, m € w and & be a
D,-name such that IFp_ 2 € 2. Suppose (po, o) € P * ]D)W.

In V% let (re + k € w) be a decreasing sequence of D, ) such that
by BNk =5 [ I where z; € 2 1) VP
Back into V' let 7y and #; be D, ,-names such that ||—ij “r + k € w) and

2; satisfies the above”.
By induction hypothesis there exists (p’, ¢’) <psb.,, (po, Go) and n > m such
J

Tk “_]D)

that (p/,¢") H—]P,*ij ¢l I, =a;[I,. Put p1 =p and IFp ¢1 = ¢y
Then (p1,d1) ”_]P’*]D)W ¢y =a; 11, =211,
Lemma O
Let ¢, be a Dy, -name such that Ihn)w1 d%°n (éa [ I, =21, forx € 2“N VDQ).
By the above lemma if o € C’f-, then IFp, 3%°n (ia [, = F(f [a) [ I, = éq [In).

Hence IFp, (¢ : @ € wy) is a $(2¥, =FF)-sequence for F.
Let ¢ : 2¥ — A be the function such that

(rb(x) = {y €2¥:3%n (x I, =y rIn)}

Then ¢ : 2¢ — N and the identity function id : 2* — 2 witness (2*, N, €) <B
(2@, =) (see [5, Theorem 5.11]). So VP= = (29N, €).
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(1o

(2) Ikg, $(cov(N)) is similar to (1). We shall only show IFg, $(w®, 2*). To
prove this it suffices to show the following lemma;:

Lemma 2.4.8. Suppose v is an ordinal and P is a forcing notion which has
a P-name ¢ such that for all x € w* NV Ikp 3%°n (z(n) < é(n)). Let & be a
E-name such that IFg, & € w”. Then by g 3%n (Z(n) < é(n)).

Proof. We proceed by induction on v. We shall only prove the successor step.
The rest of the proof is similar to the proof of Lemma2.4.7.

Successor step:

Suppose the lemma holds for 7. Let @ be a E,1-name such that I-g_, & € w®.
Let (po,do) € P IEA,_H and m € w. Without loss of generality we can assume
(po,do ) IFIP)*]-Ew “4o(v) = (s, F) and F = {f] : j < 1} for some | € w and
s € w<¥. Let &,; be a E,-name such that

be, ds(i) = min{j : VH C w* with [H| = (ﬁ<s, H) IF (i) > j)}.

By induction hypothesis there is (p/, ¢’) € ]P’*E,, and n > m such that (p’, ¢) <psi,
(po, go [ 7y) and (p’,¢) II—P*]-Ev ¢(n) > d&5y(n). Since E, < P« E,, there is a E,-
name Q) for a partial order such that P x E.y =E, * Q. Let ¢* be a projection of
(p',¢') to E,. Find Ey-names (7 : k € w) and F™* such that

(i) IFe, F* ={fr:j <1} Cw® and 7 € Q for k € w,
(ii) (¢*,70) < (0", 4),

(iii) IFe, 741 <o Tk for k € w and,

(V) (q770) I, Vi < L (£ () = £,()) for k€ w.

Then there are ¢f <g_ ¢*,t € w<* and E,-name G such that ¢} ke, “(t, G) <g
(s, F*) and (t,G) IFy @(n) < g (n)".
Since (¢%,7jy) .o “¥j < 1 Vk < |1 (fj(k) - f;(k)) " and g IFg, V) <

nvk € [|s], |t]) (fj*(k) + t(k)), (a7, 7)) Fe 0 (t,G) and (s, ') are compatible.

Put (p1,41) € P+ K, so that (p1,d1 [7) = (a7,7¢) and (p1,q1 ) L
Q1(y) <e (s, F),(t,G). Then (p1,G1 [7) lbp “Es1(n) < é(n) and Gi(y) by
#(n) < &5,(n)”. Therefore (p1,¢1) LS z(n) < é(n).

(3) To prove (3) it suffices to show the following lemma:
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Lemma 2.4.9. Suppose v is an ordinal and P is a forcing notion which has
a P-name ¢ such that for all x € w* NV Ikp I%°n (z(n) < é(n)). Let & be a
B, -name such that - & € w*. Then IFp 5 3% n(&(n) < ¢é(n)).

Proof of lemma. We proceed by induction on ~v. We shall prove only the
successor step.

Successor step:

Suppose for v the lemma holds. Let p be a measure on B. Let & be a B, 1-name
such that Ik, & € w*. Let 2* be a B,-name such that

s, n(le(k) < & (R)]z) = 1 - o.

Let (po,do) € P IBSV_H and m € w. Without loss of generality we can assume
(po,do | ) H—P*B w(go()) > o By induction hypothesis there is (p',¢’) €
P IBSAY such that (p/,¢") < <psb, (p,q 1) and n > m,l such that (p’,¢) H_IP’*IBA,

@*(n) < é(n). Put (p1,q1) € ]P)*]R'Hl so that (p1,¢117) = (¢',¢') and (p1,1]
’V) Fp.g @1(7) <B Go(7),[#(n) < @*(n)[z. Then (p1,d1~) e “r*(n) <
é(n) and G1(7) kg &(n) < &*(n)”. Therefore (p1,41) IF z(n ) < i*(n) <

(n).

]P*]B«,Jrl

Q-

Lemma O

(4) To prove (4) we shall show V' (B+D).x E O(LOC,w¥, 2) where LOC =
{¢ : ¢ is a function from w to w<* such that 3k € w|p(n)| < n* forn € w}
and ¢ 1 z if V°n (¢(n) 3 z(n)) for ¢ € LOC and z € w*. Without loss of
generality we can assume B * D is a complete Boolean algebra with strictly
positive finitely additive measure p [3, p319 Lemma 6.5.18]. So it suffices to
show the following lemma:

Lemma 2.4.10. Suppose v is an ordinal and P is a forcing notion which has a
P-name ¢ such that for all $ € LOCNV Ikp 3%°n (¢(n) # é(n)). Let B, be a -
stage finite support iteration of complete Boolean algebras with strictly additive
measure p for each . Let b be a B, -name such that I-p, é € LOC. Then
H—P*Bw o Aé.

Proof. We proceed by induction on y. We shall prove only the successor step.
Successor step:

Suppose for v the lemma holds. Let ¢ be a B, y1-name such that kg, b e

LOC. Let 1 (i <w), p; (i <w) and k; (i < w) be B,-names such that

o IFp, ¥ € LOC, p; € Band k; € w for i < w,

o kg, “pilFgVnecw (d)z(n) < nkl) ” and

o ks, itm) = G (I € s i) =~}
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Claim 5. I-g5,

wz(n)‘ < nkitl,

Let m € w and (po, §o) € P B’y'+1' Without loss of generality we can find i € w
1

and n; € w such that (p,q[) ”_P*& “u(q(y) Ap;) > —”. By induction hypoth-
n;

esis there exist (p/,q’) <p.s, (p,q 1) and n > n;,m such that (p/,q’) Fp.s,

é(n) & 1;(n). Without loss of generality we can assume p" decides ¢(n) and
p' kg “¢(n) =17 for some | € w. Since (p',¢') lbp, 5 1 & ¥i(n), (p,¢') IFp,p,

p (e omlann) <= So (.d) Ireug, (I # S01g A5 Ad() > 0.
Put (p1,¢1) € P » B, so that (p1,di117) = (p',¢') and (pr, @1 [) IFps, @1 (7) =
[l & é(n)]g Api Ad(y)- Then (p1,q1) p,p ,, “é(n) =1 & ¢(n)".

Lemma O

So We have V/(E*D)« E O(LOC, w®, A).
Let {C; ;} be a family of independent open sets with ;(C; ;) = ﬁ for all
i,7. Let ® : w* — N be the function such that

(I’(f) = U m Oi,f(i)-

n i>n

For each B € N fix a compact set K C w* \ B with u(Kp NU) > 0 for
any open set U with Kg NU # 0. Let {02 : n € w} list all ¢ € w<* with
Kp o] #0. Put

g(B,TL,i) :{j:KBm[af]ﬁCi,j :(Z)}

for i,n € w. Fix k(B,n) such that

. (i+1)2
lg(B,n,i)| < o

for i > k(B,n). Define ¥ : N' — LOC by

vB)i)= |J 9(B,n,i).

k(B,n)<i

Then ¥ and ¢ witness (N, N, 2) <T (LOC,w*, 7) (see [3, Theorem 2.3.9]). So
VED =GN, N, 2).

Theorem O
Corollary 2.4.11. FEach of the following are relatively consistent with ZFC:
(1) ¢ = add(M) = wa + $(cov(N)) (see Diagram 1).
(ii) ¢ = cov(N) = cov(M) = wy + $(b) (see Diagram 2).
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(iii) ¢ = non(M) = cov(M) = wy + $(b) + O(cov(N)) (see Diagram 3).

(iv) ¢ = cov(N) = add(M) = wa + $(add(N)) (see Diagram 4).

Proof. (i) Suppose V = CH. By Theorem 2.4.6 (1) VP« = {(cov(N)).
Since D,,, adds wo-many dominating reals and Cohen reals, VP« |= ¢ = b =
cov(M) = wy. Since add(M) = min{b, cov(M)} (see [3], [26]),

VPer = $(cov(N)) + ¢ = add(M) = ws.
Cichoni’s diagram for parametrized diamond looks as follows where an wy, means

the corresponding evaluation of the Borel invariant is wo while the parametrized
diamond principle for the others hold.

$(cov(N)) wo wo ws

w2

w2

Oadd(N)) w2 wa wa

Diagram 1.

(ii) Suppose V = CH. By Theorem 2.4.6 (2) VB2 = {(b). Since B, adds ws
many Cohen and random reals, VB2 = ¢ = cov(N) = cov(M) = ws. Hence

VBes = &(b) 4 ¢ = cov(N) = cov(M) = wy.

w2 w2 w2 w2

Ob) ———w2

O(add(V)) —— O(add(M)) —— w2

Diagram 2.

(iii) Suppose V |= CH. By Theorem 2.4.6 (3) VE«2 = {(cov(N)) + & (b).
Since E,,, adds wy many Cohen and eventually different reals, ¢ = non(M) =
cov(M) = ws. Hence

VE2 = G (cov(N)) + O(b) + ¢ = non(M) = cov(M).
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$cov(N)) wo wo woy

&(b) ——— ws

O(add(N)) —— O(add(M)) —— w2

w2
Diagram 3.

(iv) Suppose V = CH. By Theorem 2.4.6 (4) Y (BrD)o, E ¢(add(N)). Since
(B D), adds ws many random, Cohen and dominating reals, ¢ = cov(N) =
add(M) = min{b, cov(M)} = wy. Hence

VEDes L ¢ (add(N)) + ¢ = cov(N) = add(M) = ws.

w2 w2 w2 w2

w2

w2

Oadd(N)) w2 w2 wa
Diagram 4
O

Hrusék asked the following question after a talk I gave at the 33rd Winter
School on Abstract Analysis -Section of Topology held in the Czech Republic
(2005 January).

Question 4 (Hrusak). Let A be a amoeba forcing. Then VA2 |= {(s)?



Chapter 3

partitions of w

The structure ([w]¥, C*) of the set of all infinite subsets of w ordered by “almost
inclusion” is well studied in set theory. To describe much of the combinatorial
structure of ([w]¥, C*) cardinal invariants of the continuum are introduced like,
for example, the reaping number t or the independence number i.

In recent years partial orders similar to (Jw]*, C*) have been focused on and
analogous cardinal invariants have been defined and investigated. For example
((w)¥, <*), the set of all infinite partitions of w ordered by “almost coarser”,
and the cardinal invariants pg, tq, 4, tq, a4 and hg have been defined and
investigated in [10], [14] and [18].

3.1 Cardinal invariants related to partitions of
w

We say that X is a partition of w if X is a subset of p(w), pairwise disjoint and
UX =w. (w) denotes the set of all partitions of w. We say a partition is finite
if it has finitely many pieces. By (w)<“ we denote the set of all finite partitions
of w. Also by (w)“ we denote the set of all infinite partitions of w.

For X,Y € (w) X is coarser than Y, we write X <Y if each element of X
is a union of elements of Y. Note that ((w), <) is lattice. By X A'Y we denote
the infinimum of X and Y for XY € (w).

For X,Y € (w)¥ X is almost coarser than Y, We write X <* Y if all but
finite element of X is a union of elements of Y. X is almost orthogonal Y, we
write X L Y if X AY € (w)<¥. We say X and Y are compatible, we write X ||V
if X is not orthogonal Y, i.e., X AY & (w)<%.

For X,Y € (w)¥ X dual-splits Y if X||Y and Y £* X. We call § C (w)¥
is dual-splitting family if for each Y € (w)* there exists X € S such that X
dual-splits Y. We call R C (w)“ is dual-reaping family if for each Y € (w)* X

35
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cannot be dual-split by Y i.e., there exists X € R such that X 1 Y or X <* Y.

tg = min{|R|: R C (w)* AR is dual-reaping family}
sg = min{|S|:S C (w)* A S is dual-splitting family}

7T C (w)” is a tower if 7 is a decreasing sequence ordered by <* and no lower
bound.

tg=min{|7|: 7 C (w)” AT is a tower}.

P C (w)¥ is <*-centered family if for each finite Py C P there is some X € (w)*
such that X <*Y for all Y € Pg.

pe = min{|P|: P C (w)* AP is a <" -centered family with no lower bound}.

By (w)¢ we denote the set of partitions of w which is not almost finer than
{{n} :n e w}. A C (w)¢ is a maximal almost orthogonal family (mao family) if
A is a maximal family of pairwise orthogonal partitions.

ag = min{|A| : A C (w)“ A is maximal almost orthogonal family}.

A family F of mao families of partitions shatters a partition A € (w)* if there
are F € F, and two distinct partitions X,Y € F such that A is compatible with
both X and Y.

ha = min{|F| : F is mao families andvX € (w)*(F shatters X)}.

3.2 dual van Douwen diagram

The relationship between cardinal invariants of (p(w)/fin, C*) is displayed in
van Douwen diagram. We also display the relationship between cardinal invari-
ants of ((w)*,<*) in dual van Douwen diagram.
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\47\
\\/

/
.,

w1
van Douwen’s diagram.

By the following property, t4 is not countable.

Lemma 3.2.1. [14] If {X,, : n € w} be a countable subset of (w), then there
exists Y such that' Y dual-splits X,, for n € w. Therefore wi < tq.

As h <sand t<bh, we can prove the followings:
Theorem 3.2.2. [14] by < sg4.
Theorem 3.2.3. [14] tq < bg.

Some cardinal invariants is just w; or c.
Theorem 3.2.4. [1}] ag=c.
Theorem 3.2.5. [25] pg =tg = ws.

hg<~—54<—c

/

W) =——— 1y
dual van Douwen diagram.
(The direction of the arrow is from larger to smaller cardinal).

This diagram doesn’t collapse. Halbeisen proved the following result by using
dual-Mathias forcing.
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Theorem 3.2.6. [18] It is consistent that wy < hg.
Also he prove the following consistency by using Mathias forcing:

Theorem 3.2.7. [18] It is consistent that hg < b. Therefore it is consistent
ha < 54.

In [14] by using finite support iteration of c.c.c forcing, it is proved the
following statement:

Theorem 3.2.8. [14] It is consistent that vq,84 < c.

3.3 Relationship with other cardinal invariants

In this section we shall investigate the relationship between cardinal invariants
related to (w)* and cardinal invariants in Cichoi’s diagram and van Douwen’s
diagram.

Theorem 3.3.1. [18] hy < §.
Theorem 3.3.2. [14][21] 54 > s and tg < t.
Theorem 3.3.3. (Kamo) tq <0 and sq4 > b.

Proposition 3.3.4. There exists a o-centered forcing which add a new parti-
tions of w which dual-splits every partitions of w in ground model. Therefore

7N\,
%
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This diagram doesn’t collapse. By using Cohen forcing, we can prove the fol-
lowing:

Proposition 3.3.5. It is consistent that sq > s,b. It is consistent that tg < t,0.

In chapter 4 we shall prove it is consistent that b < t4. As results we can
say the followings.

Proposition 3.3.6. [t is consistent that p < tq.

We shall state relationship with Cichon’s diagram.

—~

M) <——cof(N) .

cov(N) =<—— non(M) <—— cof

<o <—

(

I

add(/\/)) <~ add(/\/l) <~ cov _/\/[) - non(/\f)
Cichont’s diagram.

—~

Theorem 3.3.7. [14}] tq < cov(M).
Theorem 3.3.8. (Brendle) tg < cov(N) and sq4 > non(N),s4 > non(M).

Therefore we have the following diagram.

This diagram doesn’t collapse.

Proposition 3.3.9. It is consistent that vy < non(M), non(N),d. Also it is
consistent that 54 > cov(M), cov(N), b.

In chapter 4 we shall prove more strong statement which say that it is con-
sistent vy < add(M) and it is consistent that s4 > cof(M).






Chapter 4

forcing and cardinal
invariants for partitions of w

4.1 dual-ultrafilter number for partitions of w
Let (P, <) be a partial order. Then F C P is a filter if

(1) if X € F,thenY € F for Y > X and

(2) it X,Y € F, then there exists Z € F such that Z < X,Y.

For a filter 7 on P, B C F is a base for F if for any X € F there exists Y € B
such that Y < X. For a filter F on P, F is a maximal filter if for each X € P
X e For X ¢ F. For afilter U on p(w) U is a ultrafilter if for any X € p(w)
X €U orw\ X € U. Notice that on p(w), U is a ultrafilter if and only if U is
a maximal filter.

For F C p(w) F is a non-trivial filter if F contains {X € p(w) : w C* X}.
For F C (w)¥ F is a non-trivial filter if F contains {X € (w)¥ : {{n} : n €
w} <* X}. Then define ultrafilter number u and dual-ultrafilter number uy by

u = min{|B|: B is a base for a non-trivial maximal filter on p(w)}.

ug = min{|B|: B is a base for a non-trivial maximal filter on (w)
Then we have the following relationship.
Theorem 4.1.1. (Minami) ug < u.
Proof. Let H be a non-principle filter on w. Put Fy be a filter on (w)“ which
generated by {X4 : A € H} where X4 = {{n} : n € A} U{w\ A}. Then

following statement holds.

Claim 6. [25] Fy is mazimal iff H is an ultrafilter.

41
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Proof of Claim. Suppose Fp is a maximal filter on (w)“. Let A € [w]¥ such

that A ¢ H. Choose Y € Fgy with Y A X4 = 0. Now let B € H such that

Xp <Y. Then BN A=0{. Hence B C w\ A. Therefore H is an ultrafilter.
Conversely suppose H is an ultrafilter on w. Let Y € (w)“\Fgy. If Min(Y) =

{min(y) :y € Y} ¢ H, then Y A X\ arin(y)=0.

Assume Min(Y) € H. If Min*(Y) = {min(y) : y € Y and |y| > 2} ¢ H, then

YA Xw\]%z’n*(Y) =0.

If Min*(Y) € H, then Xjz,yy < Y. It is contradict to Y ¢ Fpg. O

As t < u, we have the following result.
Theorem 4.1.2. (Brendle) tq < uq.

Proof. Let B C (w)* be a base for a maximal filter with |B| = uy. We shall
prove B is a dual-reaping family. Let X € (w)*¥ and let F be a maximal filter
generated by B. If X is compatible with all element of B, then { X} UB generate
a filter. Since B is a base for a maximal filter, X € F. Since B is a base for F,
there exists Y € B such that Y < X. O

/ t<=—u
Tqg<—Uq
It is natural to ask this diagram collapse.

Question 5. Is it consistent that tg < ug?

But it is difficult to show it is consistent that vty < uy because of influence
from <. For v and u there is the following influence from <.

Theorem 4.1.3. [31] {(x) implies that there exists a P-point of character wi.
In Particular $(t) implies u = wy.

For filters on (w)“ we introduce the notion corresponding to P-point.

Definition 14. [25] A filter F C (w)“ has the property P if, for every descend-
ing sequence Xog > X1 > ... > X, > ... of members of F , there exists X € F
such that X <* X,, for alln € w.

As influence of {(t), we have the following theorem.

Theorem 4.1.4. (Minami) {(tq) implies there exists a mazimal filter on (w)*
with property P of character wy. In particular {(tg) implies ug = w.

Proof. For each § < w;y fix a bijection e5 : § — w. The domain of the function
F we will consider will consist of pairs (U, C) such that U = (Ue : £ <0)isa
countable <*-decreasing sequence of infinite partition of w and C is a infinite
partition of w. Given U as above, let B(U) be the set {z; : i € w} where ; is a
subset of w such that
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(1) Vj <i(z;Nx; =0),
(2) Vi<i+1 (xl is a union of blocks of Ueé—l(j)> and
(3) 0 < min(z;) < min(z;) for i < j.
(4) zog=w)\ U x;
>0

Note that B(U) is infinite partition of w and almost contained in U for every
xi < J. Let

({icw:z;cyl:yeBU)ACY if BU)|C
1 otherwise.

F(U,C) = {

Now suppose that g : w1 — (w)¥ is a {(tg)-sequence for F. Construct a <*-
decreasing sequence (Ue : £ < wy) of infinite partition of w by recursion. Let

U, = {n} U{{k} : k > n}. Having defined U = (Ue:E<O)letUs={Ui€a:

—

a € g(0)} where B(U) = {z; : i € w}. The family (Ue : £ < wq) generates a
filter with property P. To see that it is a maximal filter, note C' € (w)* is given

and g guesses (j, C at ¢.
Case 1. F(U[4,C)* > g(0).

(1) BT 19)]C.

Since F(U 6,C)* > ¢(8), B(U [6) AC* > Us. So C* > Us.

(2) B(U168) L C. Then Us = B(U[4). So Us L C.

—

Case 2. F(U[4,C) L g(9).

(1) BT 19)]C.

Since F(U [ 6,C) L g(8), B{U | 6) AC L Us. Since Uy <* B(U | ),
Us LC.

(2) B(U168) LC.
Then 1 L g(0). It is impossible.

Therefore Us L C or C* > Us. O

Corollary 4.1.5. (Minami) It is consistent that ug < t.

Proof. By product lemma C(wz) = C(wa) * C(wy). Since Cohen forcing adds a
partitions of w which is almost orthogonal to every non-trivial partitions of w.
So VC@2) = $(xy). But Cohen forcing enlarge t. Therefore VCe: = uy <tv. O
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4.2 independence number for partitions of w

In this section we will define the dual-independence number i; analogous to the
independence number i and get a consistency result.

Once we define dual-independence number iy, we can prove the following
proposition similar to the proof of v <1i.

Proposition 4.2.1. [Brendle] vq4 < i4.
And t4 has the following property.
Theorem 4.2.2. [14] M A implies tq4 = c.
So it is consistent that i; = ¢. And it is natural to ask the following question.

Question 6. Is it consistent that ig < ¢?

4.2.1 (w)“ and dual-independent family

We will define the dual-independence number and study its properties.
As (w]“, C*), ((w)“, <*) has the following properties:

Lemma 4.2.3. [14] Suppose that Xo > X1 > Xo > ... is a decreasing sequence
of (w). Then there exists Y € (w)¥ such that Y <* X,, forn € w.

Lemma 4.2.4. [14] For X,Y € (w)* if 7(X <*Y), then there exists Z € (w)*
such that Z <* X and Z L Y.

So ((w)¥, <*) is similar to ([w]¥, C*). On the other hand there is a serious
difference: ([w]¥,C*) is a Boolean algebra but ((w)*,<*) is just a lattice and
not a Boolean algebra.

In general when we define independence, we use complementation. But
((w)*, <*) doesn’t have any natural complementation. So we will define inde-
pendence for ((w)*, <*) without mentioning complementation.

Definition 15. Let Z be a subset of (w)“. T is dual-independent if for all A
and B finite subsets of T with ANB =0 there exists C € (w)¥ such that

(i) C <* A for Ae A and
(ii) C L B for B € B.
Then define dual-independence number ig by
ig = min{|Z| : Z is a mazimal dual-independent family}.

Since there is no natural complementation for an element of ((w)“, <*),
it becomes more difficult to handle dual-independent families than to handle
independent families for a Boolean algebra. But the following lemmata helps to
handle dual-independent families.
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Lemma 4.2.5. [14] If XY € (w)¥ and —(X <* YY), then there exists an
infinite sequence {an}necw of different elements of X such that

VnewdyeY (yNag, #0AyNaz,+1 #0)

or there exists a finite subset A of X such that the set

{xeX\A:Her(mﬂy#@/\UAﬂy#@)}
1s infinite.

Proof. Suppose that we have defined a sequence {a,, },<2x but for any two a,b €
X\{ag,...,a2k_1} and y € Y we have anNy =0 or bNy = 0. Let A denote the
finite family {ao,...,a2r—1} and let

}':{x6X\A:EIyEY(mﬂy;é@AUAﬁy#@)}.
If F is finite, then the partition

X.={JAulJFrux\AuF)

is a finite modification of X which is coarser than Y. It is a contradiction to
(X <*Y). O

By this lemma we can prove the following useful lemma.

Lemma 4.2.6. If X € (w)* and B is a finite subset of (w)* such that —(X <*
B) for B € B, then there exists Z < X such that Z L B for B € B.

Proof. Let B = {B; : i < n}. By the above lemma for each 7 < n there exists
an infinite sequence {a} }re. of different elements of X such that

Vk € w3b € B;(bNaby, #DAbNah, ., #0)

or there exists a finite subset 4; of X and an infinite sequence {a}}rc, of
different elements of X \ A; such that

Vk € wib € Bi(bNaj, # DA JAinb #0).

In the first case we define A; = (.

Recursively we shall construct a subsequence {bj }rew of {a} }rew for i < n.
Given {bj};<ay, for i < n and b, békH for i < j for some j < n.
A; =0 Choose ky € w such that

{ad, W1} 0 <U Ay UL i < n AT < 2k} U {bhy, by s :i<j}> = (.

i<n

Joo_ ] J _ ]
Put by, = Aoy, and b2k+1 = Qo1
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A; # 0 Choose ko < ki € w such that

{a], ,a }N (U AiU{bf:i<n/\l<2k}u{b§k,b§k+1:i<j}> =0.
i<n
Put b}, = aj, and b%k+1 = ay,- |
Define Z = {Ubék tkewlU{w) U Ubék}. Then Z < X and for each

i<n kEwi<n
z € Z and 1 < n there exists b € B; such that

bnz£OA(w\ [ [ b)nb#0.
kEwi<n
Hence Z 1 B; for i < n. O
So it becomes easier to check dual-independence.

Corollary 4.2.7. 7 is dual-independent if and only if for each finite subset A
of T and BET\ A
AL B.
By using corollary we can prove Proposition 4.2.1.

Proof. (Proposition 4.2.1) Let Z be a maximal dual-independence family. For
A€ [Z]<¥ and B € T\ A fix C4, B € (w)* such that

(i) Cap <* Afor Aec Aand
(i) Cap L B.

Let R = {Cap: Ac [I]*AB € (Z\.A) U{0}}. We shall show R is a
dual-reaping family.

Assume to the contrary, there exists X € (w)“ such that X dual-splits YV
for Y € R. Then X||Y and Y £* X for Y € R. So for each A € [Z]<¥
Cap <* NAL* X. And for each A € [Z]<“ and Be T\ A, NANX £* B
because C4 g||X. Therefore {X} UZ is dual-independent. It is contradiction.

O

4.2.2 Cohen forcing and dual-independence number
By using Cohen forcing we will prove it is consistent that iy < c.
Theorem 4.2.8. Suppose V |= CH. Then VE©2) =iy = w,.

To prove Theorem 4.2.8 we use the following lemma.

Lemma 4.2.9. Assume p € C, T is a countable dual-independent family and X
is a C-name such that p I+ “X is a non-trivial infinite partition of w and {X }UT
is dual-independent”. Then there exists X* € (w)¥ NV such that {X*} UZ is
dual-independent and p I+ X L X*.
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Proof of 4.2.8 from 4.2.9 Within the ground model we shall define a maximal
dual-independent family 7 of size wy. It suffices to verify maximality of Z in the
extension via C (see [22] pp256).

By CH, let (pe, 7¢) €& < wi enumerate all pairs (p, ) such that p € C and
T is a nice name for an infinite partition of w. By recursion, pick an infinite
partition of w as follows. Given {X,, : n < &} for some £ < w;. Choose X¢ so
that

(1) {Xe}U{X, :n <&} is dual-independent.
(2) Ifpe b {1} U{X, 1 p < &} is dual-independent”, then pe IF X L 7¢.

(2) is possible by Lemma 4.2.9. Let Z = {X,, : n < wi}. We shall prove Z is
maximal. If 7 is not maximal in V[G] for some C-generic G, then there exists
pe € G and 7¢ such that pe IF {7¢} UZ is dual-independent. By construction
there exists X¢ € 7 and pe IF ¢ L X¢. It is a contradiction.

O

Proof of 4.2.9. Let P(Z) be a partial order such that (o, H) € P(Z) if o is a
partition of a finite subset of w and H is a finite subset of Z. It is ordered by
(o, H) < (7,G) if

(i) Ve € 732 € o(z C 2'),

(i) H DG,

(iil) Voo # 21 € V2| € 0 (o C 2y — z1 N = 0),
)

(iv) VY € GYyo,y1 € (Y AT)Vyl, 91 € (Y A o)

(yoﬂyl :®/\Urﬂyo7é®/\UTﬂy17é®/\yo CyoAy1 Cyy — Yo MYy :(ZJ)'
Claim 7. The following sets are dense.
(i) D, ={{o,H) :ne€|Jo} forn € w.

(ii) DYy = {{(o,H) : AC HA|[{h e (NHAc):hnUao #0} > 1} for finite
subsets A of T and | € w.

(iii) Dag={(c,H) : ACHANTz € ({h e NH:xzNh#D} >1)} for finite
subsets A of T andl € w.

(iv) Let A be a finite subset of T, B€ I\ A and A = \A. Since =(A <* B)
and by Lemma 4.2.5, there exists {an tnew such that

VYn € wab € B (ag, Nb# DA agyi1 Nb#D) (4.1)
or there exists a finite subset Ay of A such that the set
]—“AO:{aeA\AO:EIyGY(yﬁa;é(Z)/\yﬁUAO;é@)} (4.2)

is infinite. If (4.1) holds, fix {an}necw- If (4.2) holds, fix Ag and Fa,
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(4.1) Let D gy = {{o,H) : H{a' : i < 21} C (AAo) (Vi < 20(Jo Na’ # DA
Na' :i < 21} is pairwise disjoint AVi <13b € B(a* Nb#0Aa® T Nb#£0))}.

(4.2) Let Dapy={({o,H): Ha':i <1} C (AAo) (Vi <l(UonNa" #D)A
{a' : i <1} is pairwise disjoint AVi < (Ao Na’ = D)A
Va € AglanJo #0) AVi<iFbe B(bna #0AbNJ Ay #0))}.

(v) Let {&; : i € w} be C-names such that = X = {&; : i € w} and mini; <
mind;i1. Put Dy, = {(o,H):3Ir <q (r -3z € (X A o) (U @i C x))}
forq<pandl € w.

Proof of Claim.

(i) Clear.

(ii) Let (r,H) € P(Z). Without loss of generality, we can assume A C H. Let
H = ANH. Choose h; € H for i <[ such that h; N|J7 = 0. Choose n; € h;. Put
o=7U{{n;} i<} Then{h;:i<l}Cc{he(HAo):hNnUo #0}. So
(0,H) € DYy.

We shall prove (o, H) < (1,H). Let Y € H. Since b N U7 =0 and n; € h;
fori<l,{ye YAo):ynUo#0}={ye Y AT):ynUo #0}U{y Y :
i < l(n; € y)}. Hence (o, H) < {1, H). (iii) Let (7, H) € P(Z). Without loss of
generality, we can assume A C H. Let H = A\ H. Choose {h; : i < [} distinct
elements of H such that h; N|J7 = 0 for i < I. Choose n; € h; for i < [. Put
oc=7U{{n;:i<i}}. Then{h € H :{n;:i<l}nNh#0}={h;:i<I}. So
<07 H> € D.A,lo

We shall prove (o, H) < (7, H).

Since h, "Ur = 0 and n; € h; for i < I, {y € Y Ao) : ynlUo #
0y ={ye YAT):ynUr # 03U{U{y € Y : Fi < Il(n; € y)}}. Hence
(o, H) < (1,H). (iv) (1) Let (7,H) € P(Z). Choose distinct i; € w for j <1 so
that (J7 Nag;; =0 and U7 Nagi;41 = 0 for j <. Let k, = mina, for n € w.
Put o = 717U {{inj}a{k%j-&-l} : ] < l} Since UT ﬂagij = UT N azij+1 = @
and ky € an, {azi;,02i,41:J <1} C(AN0), {azi,,a2;41:j < I} is pairwise
distinct and for 4 < [ there exists b € B such that bNag;, # 0 and bNag;, 11 # 0.
So (o0,H) € D,B,-

We shall prove (o, H) < (1,H) Let Y € H. Since |JTNag;, = U7Nag;+1 =

D, {ye (YAho):ynJo# 0} ={ye YAT) :ynJo #0}U{ye (Y AT):
3j < U(k2i; € yV kai; 41 € y)}. Hence (o, H) < (1,'H).
(2) Let (r,H) € P(Z). Without loss of generality we can assume | J7Na # 0
for a € Ag. Choose distinct a® for i < [ so that a* N|J7 = 0 and a' € Fyu,.
Let k; = mina® and 0 = 7 U {{k;} : i < 1}. Since JTNa® =0, a* € F4, and
ki € a’, {a':j <1} C (AA0o), {a’:i <1} is pairwise distinct, [ JAg Na’ = 0
and for each i < [ there exists b € B such that bNa® # () and bN|J Ag # 0. So
<Uv H> € DA,B,l-

We shall prove (o, H) < (1, H). Let Y € H. Then {y € (Y Ao):yNnJo #
0y ={ye YAT):ynUr #0tU{y e (YAT):Ti <k €y)}. Hence
(o, HY < (1,H). (v) Let (r,H) € P(Z) and ¢ € C. Let H = A'H. Let ¢ < ¢
and n; € w such that ¢’ IF n; € x; for ¢« < I. Without loss of generality we can
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assume n; € |J7. Since p I {X} UZ is dual-independent, p IF —=(H <* X).
Soplk “Ih, :n € w) C H(VnewﬂxGX(hgnﬂx#@/\hgnHﬂx#Q))

or 3H, C H finite (‘{heH\HO:HsceX(a:ﬂh;é@/\a:ﬂUHO;é@)}‘zw)”.

Without loss of generality we can assume

¢ I “Ahynew)C H(Vnewﬂx € X (han Nw # 0 A hania m”é@)) )
(4.3)

or

¢ IF “Sfinite Hy C H(’{he H\Hy:3x € X(@nh#0nzn|JH #@)}‘ =w)
(4.4)

case(4.3) Let r < ¢/, (h; : i < 2l) C H and (k; : i < 2l) such that [Jo Nh; =0,

h; are pairwise disjoint and

rIF Vi <13z € X (kg € £ M hoi Akogirr € 20 haig).

Put k_1 = ko. Then put 0 = {s' : s’ = sU {koj, kai—1 : n; € s} for s € 7}.

We shall prove (o,H) € Dy, .. Let @ be a C-name such that r I “i €
(X ANo)Az; C 2" for some i < [. Since r IF n; € &;, v IF n; € . Since there
exists ' € o such that {n;, ke;, koi—1} C s, r Ik ko; € &. Since r IF “Ix €
X({k‘gi, k2i+1} C x)” and there exists s’ € o such that {ka;t1, kait2,nit1} C &,
rlFnip1 € & Sorl-U; @ C 2. Hence (0,H) € Dy .

Finally we shall prove (o, H) < (r,H). Let Y € H and y; € Y such that
k; € y; for i < 2. Then {y € (Y Ao) :ynUc # 0} = {y U U{y2i, y2i—1 :
Ji<liniey)}:ye YAT)AyNnUT # 0} Since H <Y, {h; : i < 21} is
pairwise disjoint and [J7 N h; = 0 for ¢ < 2, {y; : ¢ < 2} is pairwise disjoint
and |JrNy; =0fori<l. Soify#y € (YAT) withynUr #£0Ay' NnUJT #0,
then (y U U{v2i,y2i—1 : ni € y}) N (Y U UH{y2i,y2i-1 : i € ¥'}) = 0. Hence
(0. H) < (T.H).
case(4.4) Let G be C-generic over V with ¢’ € G. We will work in V[G]. Let
Hy be a finite subset of H such that the set

{hEH\HO:erX[G}:hﬁx#@/\xﬁUHO;é@}

is infinite where X[G] is the interpretation of X in V|G]. Since Hy is finite,
there exists b’ € Hy such that the set

{(he H\{W}: 3z e X[G](hnz#DAzNR #0)}

is infinite.
Let (h; : j € w) be an enumeration of the set

(he H\ {1} : 3z € X[C] (hﬂx%@/\xﬁh'#@/\hﬂufzw)}
and (k; : j € w) be natural numbers such that

dr € X[G](kzj € xﬂhj /\k2j+1 € .Tﬂh/).
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Let {Y; : i < m} be an enumeration of H. By induction we shall construct
decreasing sequence {A; : j < m} of infinite sets of natural numbers. Put
A = {kQH_l RS UJ} \ UT.

Suppose we already have A;. Let A; [ Y41 ={A; Ny :y e Y1} \{0}. If
A; [ 'Y;41 is infinite, put

Aj =J4 0y ynJr=0ny eV}
If A; [ Y41 is finite, then choose y € Yj41 so that A; Ny is infinite and put
AjJrl =Y N Aj.

In both cases A;4, is infinite. Choose j; for ¢ < I so that kgj,11 € Ap—1 for
i < l. Then define 0 = {s' : s’ = sU{kyj, : n; € s} for s € T}U{{koj,4+1:7 < I}}.
From now on we will work in V" and prove (o,’H) € Dy ;. Let r < ¢’ such
that
rIFVi <13z € X (kaj, € x N hy, Nkaj,41 €xNH).

Suppose r - “¢ € (X Ao) Ax; C &7 for some i < [ and a C-name %. Since
rl-&; C &, rlFn; €& Since there exists s’ € o such that {ko;,,n;} C &,
r Ik {k‘gji,ni} C &. Since r IF dx € X(k‘gh € zxznN hh VAN k’gjﬁ_l cxn h/),
r - {kgj,”kgji_H} C . Since {k‘QjH-l < l} c o, r [+ k’gji+1+1 € z. By
similar argument, we have r I &;44 C @. Therefore r I+ |J._,#; C &. Hence
<0,H> S DX,q,l‘

Finally we shall prove (o, H) < (7, H). Let Y € H. By construction of
{A; : j < m}, there is y € Y such that {kgj,11 : ¢ <1} C y or for i < [ and
y €Y if koj,41 €y, thenyNY7r = 0.
case 1. There is y € Y such that {ks;,41 :7 <} Cy.

For each y € Y let y, € (Y A7) such that y C y,. Let ¢y € Y such that
{koj41 i<} Cy'. Then{y e (Y Ao):ynUo # 0} ={y }u{y- UU{y" €
Y:3i<l(koj, €y Ani€y):ynUr#0Ay e Y}

Suppose y. # y, for some y € Y with yN|{J7 # 0. Since H <Y, {hj, :i <
1} U{n'} is pairwise disjoint, y' C K/, koj, € hj, and Jo Nh; =0, y, Ny, =
veN(y- U{y* €Y : 3i <l(kej, €y* An; €y,)}) =0.

Let y¥ # yl such that 0 # ¢/, yX # 4., y°NU7T # 0 and y* NJ7 # 0. Since
H <Y, {hj, : t <1} is pairwise disjoint, y' C I/, koj, € h;, and |Jo N h; =0,
yony, = UUy €Y :3i <l(ky, ey* Aniey) )Ny Uy €Y
Ji <1 (koj, € y* An; €yt)} =0. Hence Vy°,y' € Y

i<l

(ygﬂyiz(ﬁ/\UTﬁyo;ﬁ@/\UTﬂyl#@eygﬂyé:@).

case 2. fori <land y € Y if koj, 41 € y.

Vi <lVy € Y(ky, cy—ynUr=0),{ye YAo):ynUo # 0} =
{Ufy € Y : 3i <l(koji1 € ) MUy, UU{y" €Y 1 3i <l(hoj, €y" Ans € yr)}:
yNUr # 0Ny € Y} Since koj, 11 € yimpliessyNJr =0, Y{y e Y : i <
Uk €y)ynUT = 0.
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Let ¢ # y! with ¢* N U7 # 0 and y* NJ7 # 0. Since H < Y and
{hj, i < 1} is pairwise disjoint, (yQ UU{y* € Y : Ji < l(kqj, € y* Am; €
YD) N (yr UULy* €Y 1 3i < l(kzy, € y* Any € yp)}) = 0. Hence Vy°,y' €Y

(ygﬂyl =®/\U7’ﬂy07§@/\UTﬂy1 0 -9yl Z(Z)).
Therefore (o, H) < (1, H).
Claim W

Let D = {D, : n € w}U{DY : Ais a finite subset of Z Al € w} U{Dy :
A is a finite subset of Z Al € w} U {D4 p,; : Ais a finite subset of Z A B €
INANl€wtU{Dyg, ¢ <pAl€w}and G is D-generic for P(T).

Let X be a partition generated by =g where =¢ is defined by

n=¢mif o, H)Ix € o ({n,m} Cx).

Then by (i) and (ii) Xg € (w)¥. By (ii) Xg A A A € (w)¥ for finite A C Z.
By (iii) =(A A <* X¢) for finite A C Z. By (iv) =(Xg A A A <*Y) for finite
ACZandY € T\ A. Therefore {Xs} UZ is dual-independent by Corollary
4.2.7. By (v) pl- X 1 X¢. Hence X¢ is a required partition.

O

4.3 reaping number and splitting number for
partitions of w
In this section we shall investigate the relationship between t4, s4, b and 0.
Definition 16. [14] Let DS be a forcing notion such that (o, A) € DS such that
(1) o is a partition of finite subset of w,
(2) Ae (W)=,
(3) for s € o there exists a € A such that s C a and
(4) for a € A the set {s € o : s C a} has cardinality at most one.
DS is ordered by (o, A) < (1, B) if
(i) Vt e tas € o (t C s),
(i) A> B.
Theorem 4.3.1 (Brendle). The followings are consistent;
(i) 4 <9,

(ZZ) tg>b
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Proof. It suffices to show following claim.

Claim 8. Let f be a DS-name such that IFps f € w®. There exists (fn:ine€
w)y €V such that f, € W and for any g € W NV if g £* f,, then lFbps g £* f

Proof of Claim. Let f be a DS-name for a function from w to w. Let DS, j be a
subset of DS such that (1, A) € DS, if (7, A) € DS, 7 = ¢ and |A| < k. Define
fok €w? NV so that f,x(n) = min{m : ¥(o, A) € DS, (o, A) I+ f(n) > m}.
Subclaim. f,; is well-defined.

Proof of subclaim. Suppose not. Then there exists n € w such that for each

j € w there exists A; € (w)=* such that (o, A;) |- f(n) > j. For A € (w)=k
with {a; : i < k} such that mina; < mina; for i < j define hy € k“ such that
ha(l) =iifl € a;. By compactness of k% there exists A € (w)<F and (j; : | € w)
such that lim;_, . hAJ‘z = ha. Then (o, A) € DS since for large enough i € w
ha; ['Uo=ha [Uo and (0, 4;,) € DS.

Let (1, B) < (0, A) and m € w such that (7, B) I+ f(n) = m. Since hj, — ha,
there exists ip such that ¢ > 79 implies j; > m and hAji [ UT = hy [ UT, so is
(1, B) and (0, A;,) compatible. But it is contradiction to (o, A;,) I+ f(n) > j; >
m.

subclaim W

Let g € w“ NV such that g £* f, for a partition o of a finite subset of w
and k € w. Let n € w and (0, A) € DS with |A| < k. Then there exists m > n
such that g(m) > f,x(m). By definition of f,j, there exists (7, B) < (o, A)
such that (7, B) I+ f(m) < f,x(m) < g(m). So lFpg g £* f.

Claim W Theorem O

By this theorem it looks that there is no relation between vy and 0, s4 and b.
But Kamo at Osaka prefecture university prove the following Theorem.

Theorem 4.3.2. (Kamo) b < s,. 0 > ty.
To prove this theorem we use the following lemma.

Lemma 4.3.3. Suppose M = ZFC~. Let d € w* such that f <* d for
fewNM. Let a =rng(d). Then x\ a is infinite for x € M Nw®.

[b < sq4
Let My C My C M3 C ... beasequence of ZFC~ model. Let {d,+1 : n € w}
be a sequence such that

o dpi1 € My N,

o [<*dyy for fe M, Nw* for n € w,
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o rng(dny1) O rng(dn),
e d,11(0) > n and
o for f € MynNw® for all but finite n € w |[f(n), f(n+ 1)) Nrng(dy)] < 1.

For each n € w put ap = w and a,, = rng(di) Nrng(dz) N...Nrng(d,). Then
w=ag Cay C...and (), ., an = 0. Put b, = a, \ apy1 for n € w. By Lemma
4.3.3 b, € [w]“. Put B = {b, : n € w}. Then B € (w)* and B C [w]“.

Lemma 4.3.4. For x € My N [w]¥ and n € w x N ay, is infinite if and only if
x N by, is infinite.

Proof. (<) It is clear.
(=) By Lemma 4.3.3 and zNa, € [wW]YNM,, zNap\ant1 = 2N(an\ant1) =
x N b, is infinite.

O

Lemma 4.3.5. For X € My N (w)* if X||B, then B <* B.

b < s4 follows directly from Main lemma. Because by Lemma ?? | My N w*| <
b implies My N (w)* cannot dual-split B.

Lemma 4.3.6. (1) Forx € X N[w]* there exists n < w such that xNa, = 0.

(2) There exists n € w such that x Nay, = 0. Therefore x Na, =0 for all but
finiten € w

Proof. (1) To get a contradiction, assume that x € X N [w]* and z Na, # 0 for
all n < w. Then it holds x N a,, infinite. So by Lemma 4.3.4 x Nb,, is infinite for
all n < w. So z glue all elements of B. Hence X L B. It is contradict to X|B.
(2) By (1) for each z € X N[w]“, put k, = max{n < w: xNa, is infinite}. Note
that for each x € X N [w]* x N b; is infinite for j < k,. Since X||B, we have
that k =sup{k, : x € X N [w]*}. Put y = J(X N [w]*)\ U, <4 bn- Since X | B,
there is an m < w with m > k such that y N b,, = @. Then we have that y N a,,
is finite. So there exists an n > m such that y Na, = 0. O

Set Y ={z € X :2<|z|<w}.
Lemma 4.3.7. For all but finite x € Y |z Nay| < 1.

Proof. Since Y C [w]<¥ is pairwise disjoint, we can take f,g € My Nw!¥ such
that for all © € Y there exists n < w such that « C [f(n), f(n+1)) or x
[9(n),g(n+1)). Take m < w such that for n > m |[f(n), f(n+ 1)) Nai]
1 and |[g(n),g(n+1))Nai| < 1. Then it holds that for x € YV if minxz
max(f(n),g(n)), then |z Na;| < 1.

OIVIAN

Lemma 4.3.8. (JY)Na, =0 for some n € w. Therefore (JY)Na, =0 for
all but finite n by definition of a,.
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Proof. Suppose not. Since JY € My N [w]*, we have that (YY) Nb, is infinite
for all n < w. By Lemma 4.3.7 for all but finite 2 € Y |z Na;| < 1. So for
xeY xzNa; =0 (x Chy)or |[xNai|= (xNby#0D). Since JY Nb, # 0, there
exists z € Y such that x Nb, # (. But this x € Y satisfies x N by # 0. Hence
X 1 B. It is contradict to X||B. So Lemma holds. O

Proof. (Lemma 4.3.5) By Lemma 4.3.6 and 4.3.8 take n < w such that zNa,, =0
forx € X N[w]* and zNa, =0 for z € Y. Then it holds that for m > n for
j € by j€ X. So we have that B <* X. O

[tq < 0] We shall prove the following theorem.

Theorem 4.3.9. Suppose M |= ZFC~ and MNw* is dominating family. Then
M N (w)¥ is a dual-reaping family.

Proof. Let X € (w)v.
case 1 If there exists z € X such that x is infinite:

Take d € M Nw* so that d(0) = 0 and N [d(n),d(n+ 1)) # 0 for n < w.
And put A= {[d(n),d(n+1)):n€w}. Then Ae MN(w)* and A L X.
case 2 If X C [w]<¥:

Take d € M Nw!® so that d(0) = 0 and for x € X there exists n < w such
that  C (d(n),d(n + 2)).

Put a =rng(d), by ={j€a:{j} € X} and by =a\ b;.
case 2.1 If by is finite:

Put A = {w\a} U{{j} :j € a}. Then A € M and if |z| > 2, then
zN(w\a) # 0 since for x € X there exists n < w such that z C (d(n),d(n + 2)).
Therefore A L X.

case 2.2 If by is finite:

Put A={w\a}U{{j}:j€a}. Then Ae M and A <* X.
case 2.3 If both b; and by are infinite:

Pick e € M Nw!¥ so that ¢(0) = 0, by N [e(n),e(n+1)) # O and by N
le(n),e(n+1)) #0 forn €w. Put A={w\a}U{[e(n),e(n+1))Na:n € w}.

Then A € M and A L X. Because if {j} € X and j € a, then there
is n < w such that j € [e(n),e(n+ 1)) Na. Pick x € X with || > 2 and
[e(n),e(n + 1)) # 0. Then since there is m € w such that = C (d(m),d(m + 2)),
z\a#0. SoxN(w\a)#0D. Therefore x joints [e(n),e(n+1))Na and {w\ a}.
Therefore A L X. O

So the following diagram holds.
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/

54

cov(N) =<—— non(g/l( cof(M) =<—— cof(N)
b 0
add(N)) =<—— add(M) \ / cov(M) =—— non(N)
L /
Between v, s and cardinal invariants in Cichon’s diagram there is the following
relationship.
/ T
cov(N) <—— non(M) cof(M) <—— cof(N)

Also we know the following relationship.
Theorem 4.3.10. [1/][21] 54 > 5. vg <.
For s and t we have the following consistency result.

Theorem 4.3.11. [7] It is consistent that u < s. Therefore it is consistent that
v < 8.

By this Theorem we can say it is consistent that s4 > v and vy < 5. So there
is the following question:

Question 7. Is it consistent that 54 < t? vg > 57
In this context it is natural to ask the following question.

Question 8. Does DS preserve t?
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Theorem 4.3.12. IfV = b =, then VP51 v =c.

Lemma 4.3.13. Let II be a DSs-name for an interval partition. Then there is
I, e IPNV such that if 1 € IPNV = (I} : k € w) dominates II,, forn € w,
then for any p € DSy there exists ko € w and q € DSs such that for each k > kg
there exists r < q such that

rlF3I e 1I(J C I).

Proof. We shall prove by induction on .
0 =1 Let o be a partition of a finite subset of w and k > |o|. Then define
Jo,k - W — w so that

V(o, A) € DSy~ (0, A) IF 3T € TI(I C [0, go.x(n))).

Then by compact trick, g, is well-defined. Define I, ; = {[g{lf,k(O), gf;,rkl (O)) :
| € w} where g ,(0) = 0.
Claim 9. II, x (0, k > |o|) satisfy required condition.

Proof. Suppose II € TP NV dominates all I, ;. Let p = (0,, A,) € DS and
kp, = |Ap|. Let ko € w such that for k > ko there exists J € II, , such that
J C Ii. By construction of 1, k, there exists r < p such that

rlF3I e T(I C J).
Therefore r I+ 31 € TI(I C I,). O

0 = a+ 1 Suppose for a the induction hypothesis holds. Let p € DS, 41 and II
be a DS, 1-name for an interval partition of w. Then for each partition o of a
finite subset of w and [ > |o| let 11, ; = (I : m € w) be a DS,-name such that

lFps, V(o, A) € DS, ¥m € w—(o, A) Ikps = |31 € TI(I C IZY)].

Then by induction hypothesis for each partition o of a finite subset of w and
I > |o| there exists IT/ ;(j € w) € IPNV which satisfies the induction hypothesis
on «.

Suppose Il € IPNV = (I, : n € w) dominates all 7. Extend p to pg
so that there exists a partition o of a finite subset of w and i € w such that
po | alkps, po(a) = (0, A) and |A| = i. By induction hypothesis there exists
q <ps po | @ and kg € w such that for k > kg there exists ' <ps_ ¢’ such that

rIF 3 €T, (I C I).

By definition of II, ; ¢ = ¢’ (o, A) and ko satisfies desired condition.
d is limit ordinal. Tt is enough to show the case cf(d) = w. Let d,, be a increasing
sequence converging to é as n — w. Let IT = (I,;, : m € w) be a DS-name for an

interval partition of w. For n € w let IT,, = (I : m € w) and (p?, : m € w) be a
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DSs, -name such that Ikps;  “(pp, : m € w) is a decreasing sequence of DSys, 4)

and for each m € w p7, H—DSW’M I, = I':,;”.

For each n € w there exists I17(j € w) € IP NV which witness induction
hypothesis for II,,.

Suppose p € DS;, and I € IPNV = (I; : k € w) dominating all IT,
for j,n € w. Then there exists ¢ <ps; p and ko which witness induction
hypothesis for IL, on &,. So for each k > ko there exists r <ps,, ¢ such that
r I 3I € I,(I C I). Extend r to r’ so that there exists m € w such that
7 |- IZ}l C I. Then put r* = v'7p. Then rq I- I, = I,’,‘L C Ii. Therefore ¢
and kg satisfies desired property. O

Proof of Theorem from Lemma. Let X be a DSs-name for an infinite subset
of w. Let IT be a DSs-name for an interval partition of w such that I+ VI €
II(I N X # ). Let Il = (I,, : n € w) be an interval partition witnessing Lemma
for II. Let X be an infinite and coinfinite subset of w in V. By lemma for each
p and | € w we can find qo,q1 € DSs and lp,l; > [ such that lp € X, l; ¢ X,

Qo IF 3T € II(I C Iy) and q1 IF 3T € II(I C I;,). Therefore I,y I split X.

O

Corollary 4.3.14. It is consistent that s4 < t. Also it is consistent that tq > s.

4.4 additivity of M, cofinality of M, t; and s,

To investigate vy and s; we introduce new cardinal invariants pair-splitting
number s,4;, and pair-reaping number tpq;,.

For X € [w]¥,A C [w]? infinite, X pair-splits A if there exists infinitely
many a € A such that aNz # 0 and a\ x # . We call S C (w)* is a pair
splitting family if for A C [w]? there exists X € S such that if |A| = Ry, then X
pair-splits A.

Spair = Min {|S|: S C (w)* A S is pair-splitting family }.
We call R C p([w]?) is a pair-reaping family if |A| = R for A € R and for each
X € [w]* there exists A € R such that X cannot pair-split A i.e., for all but
fintea€ AaC X oranX = 0.
tpair = min {|R|: R C p([w]?) AR is a pair-reaping family} .
tpair and Spqir have the following properties.
Proposition 4.4.1. (1) tpq; <.
(2) 5 S 5pair

(3) tpair S 5q-
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Proof. (1) Let R C [w]“ be a reaping family. Then for R € R pick Ag so
that Ag C [R]? and pairwise disjoint. Then {Ag : R € R} witness pair-reaping
family.

(2) Let S be a pair splitting family. Then for Y € [w]® define Ay = [Y]?. If
X € S pair-splits Ay, then X splits Y. Hence S is a splitting family.

(3) Let k < tpair and S C (w)* with |S| = k. For each S € S fix Ag C [w]? such
that Ag is infinite, pairwise disjoint and for a € Ag there exists = € S such that
aCx Put A={Ag:S €S} Then A C p([w]?) and |A| = k. Since k < tpair,
there exists yo € [w]“ such that xg pair-splits A for A € A.

DefineSp ={ya: A Anya=U{a\vo:aNyo#0ANaec A}}. Then Sy C
[w]¥ and |Sp| = K < tpeir < t. So there exists y1 € [w\ yo]* such that y; splits y
for y € So. Recursively define y; 1 € [w\U; ;41 ¥51* and Siv1 C [w\U,<i0q ¥5]*
so that y; 41 splits all y for y € S; and S; 41 = {y \ Yi+1 : ¥y € Si}. Without loss
of generality we can assume |J{y;:i €w} =w. Let Y = {y; : i € w} € (w)~.
Then by construction Y L S for S € S. Hence S is not dual-splitting family.

O

Proposition 4.4.2. 5,4, < non(M), non(N). tpeir > cov(M), cov(N).

Proof. For a countable pairwise disjoint subset A C [w]?, Dy = {X € [w]* : X
pair-splits A} is comeager and measure 1 subset of 2. Therefore if k < cov(M)
and (A, : a < k) is a family of countable pairwise disjoint subsets of [w]?,
Nocr Da, #0. Let X € ., Da,. Then X pair-split all A,. Hence tpqir >
cov(M). The rest of proof is similar. O

Theorem 4.4.3. It is consistent that tq < add(M). Also it is consistent that
sq > cof(M).

Proof. Let X be a Dy-name for a non-trivial infinite partition of w. If we can
find Y € (w)¥ NV such that IFp, X L Y, then we can prove the desired
statement. To show this, we shall prove the following lemma.

Lemma 4.4.4. Let A= (A, :n € w) and C = (Cy, : n € w) be Dy-names such
that

lFp, Vn € w(A, C [w]2,¥Ym e wia € A,(anm=0) and C,, € [w]°).

Then there exists A = (A, :n € w) € ([wW)“ NV and C = (Cy, : n € w) €
([w]“)? NV such that if there exists y € [w]Y NV such that y pair-splits A, and
y splits C,, forn € w, then

lFp, VA € A(y pair-splits A) and ¥C € C(y splits C).

Proof. Induction on a.
o =1 Given D-names A = (4, : n € w) and C = (C,, : n € w). Since Hechler
forcing preserves s, there are C* = (CL : n € w Ai € w) such that if y € [w]*
splits C? for i < w, then IFp y splits C%. So it is enough to think about A.

We will use rank argument as [4]. Let ¢t € w<'¥ E C w<!¥. Define by
recursion on the ordinal when rk(¢, E) = .
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1. tk(t,E) =0ift € E.

2. 1k(t, E) = a if (8 < a Atk(t,E) = ) and Im € w3ty € w<1¥(k € w)
such that Vk € w(t C ty), |te| =m and ti(|t]) > k.

Recall the following theorem:

Theorem 4.4.5. [/ IfI C D is dense, E = {t € w<1¥:3f € wl¥ : (t, f) € I},
then tk(t, E) < wy for any t € w<1¥.

For each m € wlet D,,, = {(s, f) € D: Jko, k1 > m (s, f) IF {ko,k1} € An}.
Then D,, is dense open subset of D. Let F,, = {s cwslw:3fcwlv(s f) e Dm}.
By above Theorem, rk(t¢, E,,) is always defined. By induction of rk, define

t is bad
e when t is ¢ %S SO0 for m.
t is good

t is neither
e For bad t, define kf,, < k{,, € w\ (m+1).
e For so-so t, define kY, € w and Cy,, € [w]”.
e For good t, define Ay, countable subset of [w]?.

Basic step

rk(t, E,,) = 0. Then t is bad for m.

Since rk(t, Fyn) = 0, t € Ay, So 3f such that (¢, f) € D,,. Hence there
exists kf,, and k{,, such that m < kf  <ki,,.
Recursion step

tk(t, Ey) > 0. Choose t; , @ € w such that ¢t C t; , |t;]| = [t;], t:([t]) > ¢,
tk(t;, Ep) < tk(t, Ep,).
Case 1 Almost all t; bad.
Subcase (a) 3k?,,, k{ ,, such that 3%°i € w(kf, ,,, = k2, Ak . =kl ,.).

Then ¢ bad.
Subcase (b)—(Subcase (a)) and 3k{,, such that 3°°i € w(k{, ,, =k ,,).

Then t is so-so and Cyp, = {ki, ,,, : Ji € w(kf, ., = kP,,) } € [w\ (kf, ., +1)]*.
Subcase (c¢)—(Subcase(a) V Subcase(b)).

Then ¢ is good and A¢n, = {{k{ ..kl ,n} : i € w} infinite subset of [w]?.

t;,m>
Case 2 Infinitely many ¢; are not good.
Then t is neither.

Now we shall construct A and C:

If ¢ is bad with respect to almost all m, then put A; = {{kgﬂm ktlm} tm € w}.
Then put A = {4, : ¢ is bad for almost all m} U {A;,, : ¢ is good for m} and
C ={C¢m : tis so-so for m} UC*.

We shall show if y € [w]* NV such that y pair-splits A for A € A and y
splits C' for C € C, then

IFp VA € A(y pair-splits A) and YC € C(y splits C).
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Suppose y € [w]¥ NV such that y pair-splits A for A € A and y splits C for
C e C. Since y splits C for C € C* C C, Irp y splits C for C € C.

So we shall prove IFp VA € .A(y pair-splits A).

Fix (s, f) € D, m € w and D-name A such that IFp A € A. We need to find
(t,g) < (s, f) and k°, k' > m such that

(t,g) IFp {K%k'} € AN{KO Ky ny £ OA{KO B )\ y # 0.

Case 1 VYm* > m s bad for m*.

Since y pair-splits Ag, there exists m* and kgym*,k;m* > m* such that
YN kY e kit e} # 0 and {k), .. k- } \ y # 0. By construction of A, there
exists s; such that s C s;, f(j) < s;(j) for j € |s;], vk(ss, Epr) < tk(s, B+ ),
K2 = K2 k! = k!,,- and s; bad for m*.

S;,m* s,m*» Vs; m*
By induction on rank, we see there exists ¢ such that s; C t, t(j) > f(4)
fOI“j € ‘t|a I‘k(t,Em*) = 07 k?,m* = kg,;,m* = kg,m* and ktlm* = k;“m* = k%,m*

By definition ¢ € E,,«, so there exists g € w!* such that (t,g) € D,,- with
(t,g) b {kQ - k.- } € A. Without loss, g > f. Therefore (t, g) < (s, f).
Case 2 3m™* > m s is not bad for m*.

So s is neither, so-so or good. By induction on rank we can see there exists
s* such that s C s*, s*(i) > f(i) for i € |s*| and s* is good or so-so.

Subcase (i) s* is so-so for m*.

So we have k. .. and Cs- pp-. Assume k. . € y. Since y splits Cys p-,
there exists s} such that s* C sy, s¥(g) = f(y) for j € |s7|, tk(s], Epx) <
rk(s*, Ep+), sf is bad, k. . = kO, . and kl. . € Cs+ - \y. By induction on
rank, we see there exists ¢ such that sf Ct, t(js > f(j) forj € |t|, rk(t, Epp) = 0,
ke = Kl e = kow e and ki e = kgo .. By definition, ¢t € Ep-, so
there exists g € w! such that (¢, g) IFp {k% .. kL .-} € A. Without loss of
generality, g > f. Therefore (t,g) < (s, f) and

(t,g) Ibp {kO e kb e} € A, KO 0w €y and kL. .. £ .

Subcase (ii) s* is good for m*.

So we have Ag« - countable subset of [w]?. Since y pair-splits A, there
exists s} such that s* C s}, rk(s}, Ep+) < tk(s*, E»), s5(j) > f(j) for j € |s}],
st isbad, (k. o kh b € A s (R0 okl } Oy # 0 and (RO, oKL 0 )

* * *
sy,mo Vst m s7,mo Vstm sy,mo Vs¥m

Assume k:gf)m €y and k‘;f’m ¢ y. By induction on rank, we see there exists

t such that s C t, t(j) > f(j) for j € |t|, rk(t, Ep+)=0, kY ,.. = KO

t,m* s7,m
1 _ 1.1
kt,m* - ks;‘,nL* .

(t,g) IFp {kgﬁm*,k;*’m*} € A. Without loss of generality, g > f. Therefore
(t.g) < (s,f) and

(t9) i {KQ: e KL e } € AL K. e €y and K, e & .
« is a successor ordinal or limit ordinal

We use following theorem.

. and

By definition, t € E,,-, so there exists ¢ € w!“ such that
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Theorem 4.4.6. Let (T,: n € w) be a increasing sequence of two-place relation
on w* or similar space. Put C= J, ., Cn. Assume Vf € w”,{g: f T, g} is
closed. Take F C w* in'V such that for a countable X C w® there exists f € F
such that f £ g for g € X.

Let <]P’Q,Qa Ta< 5> be an finite support iteration of c.c.c p.o’s. Assume

fora < )
o kg, “for all countable X C w* there exists a countable Y C w* NV[G,]
in V[Gq] such thatVf € FNgeY(fiZ g) = Vg€ X(fZ£g))””. Then
IFs “for all countable X C w® there exists a countable Y C w? NV in V' such
that (Vf € F(Vg e Y(f Z g) = Vge X(f Zg))"

So it suffices to find relations T and (C,: n € w) such that for y € [w]* and
(X, A) € (W] < {B C [w]? : |Bl = wA¥n € w(BO\n] £ D)} =G y 7 (X, A) if
y splits X, y pair-splits A and for y € [w]“ forn e w {(X,A) €G:y En (X, A>}
is closed. Define y =, (X, A) if yN X Cnor X \y Cnand |rng(f [ a))| =
for a € AN [w\ n]2. Then C,is required.

O

(Lemma 4.4.4=Theorem 4.4.3)
~ Let X be a Dy-name for a non-trivial partition of w. Then there is a D,-name
A for a countable subset of [w]? such that

lFp, Va € A3z € X(a C ) AVm € wa € A(ann=10).

Then by Lemma 4.4.4 there exists A = (A, : n € w) € (W*)* NV and
C=(Cp:necw)e ([w“) NV such that if y € [w]* satisfies that y pair-splits
A, for all n € w and y splits C), for n € w, then IFp, y pair-splits A. Fix such
y € [w]“. Recursively we will construct (y, :n € w) =Y € (w)“:

L yo =vy.

2. Suppose given y; for i < n. Then pick y,, € [w \ U, ¥:]” so that IFp, v
splits U,cq4{a\y:any #0\ U, vi -

Second condition is possible since the finite support iteration of Hechler forcing
preserve s. By construction I- “Ja € Alany; Z0Aan yo # 0)” for each i > 1.
SolF3z e X(zNyy#0AzNy; #0). Therefore IFY L X.

O

Question 9. tg < 5p44r ?
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