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Chapter 1

Introduction

By ℘(ω) we denote the power set of the set of ω of natural numbers. In set
theory the infinitary combinatorics of (℘(ω)/fin,≤fin) has been studied, where
℘(ω)/fin is the power set of natural numbers ω modulo the finite sets ordered by
≤fin where [A] ≤fin [B] if A\B is finite. Here we denote by [A] the equivalence
class of a set A ⊂ ω. To investigate combinatorial structures of (℘(ω)/fin,≤fin)
cardinal invariants of the continuum are introduced and analyzed. For example
the reaping number r is the least size of a family R of infinite subset of the
natural number such that for every 2-coloring of ω there is a monochromatic
set in R.

One can easily show that the reaping number is strictly larger than ω and
r is at most the cardinality c of the continuum. Then it is natural to ask how
large r is. The answer of this question is that it depends on the underlying
model. Assuming Zermero-Fraenkel set theory with Axiom of Choice ZFC and
the Continuum Hypothesis CH, the answer is trivial, that is, ω1 = r = c. Also
assuming ZFC with Martin’s Axiom MA, r is equal to c and strictly larger than
ω1. With the forcing method we can show that r < c is consistent with ZFC.

So it doesn’t seem reasonable to ask how large cardinal invariant is in ZFC.
But there are relations which is provable in ZFC. For example, let b is the least
size of a family of ωω which cannot eventually dominated by a function in ωω,
then it is provable in ZFC that b is smaller than r. Therefore it is reasonable to
ask whether relationships between cardinal invariants is provable or unprovable
in ZFC. The relationship between cardinal invariants related to the infinitary
combinatorics of (℘(ω)/fin,≤fin) has been investigated and is displayed in van
Dowen’s diagram.

1.1 van Douwen’s Diagram

Throughout this thesis, we will assume ZFC.
By [ω]ω we denote the set of all infinite subsets of ω. We denote the set of

all finite subsets of ω by [ω]<ω. ωω and ω<ω stand for all function from ω to ω
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6 CHAPTER 1. INTRODUCTION

and all finite sequence of ω respectively.
We introduce several cardinal invariants and display the interaction between

them, called van Douwen’s diagram.
For X,Y ∈ [ω]ω X is almost included by Y , we write X ⊂∗ Y if |X \ Y | <

ℵ0. For F ⊂ [ω]ω A is a pseudointersection of F if A ⊂∗ F for F ∈ F .
T = 〈tα : α < κ〉 is a tower if

1. tα is an infinite subset of ω for α < κ,

2. tβ ⊂∗ tα for α < β < κ and

3. there is no pseudointersection of T .

The tower number t is the least length of a tower.
P has the strong finite intersection property if every non-empty finite sub-

family has infinite intersection. The pseudointersection number p is the least
size of a P ⊂ [ω]ω which has the strong finite intersection property with no
infinite pseudointersection.

D ⊂ [ω]ω is open if X ∈ D, then Y ∈ D for Y ⊂∗ X. D ⊂ [ω]ω is dense if
for X ∈ [ω]ω there exists Y ⊂ X such that Y ∈ C. The distributivity number 〈
is the least size of a open dense families with empty intersection. h

For X,Y ∈ [ω]ω X and Y are almost disjoint if |X ∩ Y | < ω. A ⊂ [ω]ω is
almost disjoint family if |A| ≥ ω and pairwise almost disjoint. The maximal
almost disjoint number a is the least size of a maximal almost disjoint family.

For X,Y ∈ [ω]ω X splits Y if |X ∩ Y | = ℵ0 and |Y \X| = ℵ0. S ⊂ [ω]ω is
a splitting family if for Y ∈ [ω]ω there exists X ∈ S such that X splits Y . The
splitting number s is the least size of a splitting family.

R ⊂ [ω]ω is a reaping family if for X ∈ [ω]ω there exists Y ∈ R such that X
cannot split Y i.e., |X ∩ Y | < ω or Y ⊂∗ X. The reaping number r is the least
number of a reaping family.

For f, g ∈ ωω f eventually dominates g, denotes f ≤∗ g if for all but
finitely many n ∈ ω f(n) ≤ g(n). F ⊂ ωω is a dominating family if for each
g ∈ ωω there exists f ∈ F such that g ≤∗ f . The dominating number d is the
least size of a dominating family.

G ⊂ ωω is an unbounded family if for each f ∈ ωω there exists g ∈ G such
that g 6≤∗ f i.e., there exists infinitely many n ∈ ω such that g(n) > f(n). The
unbounded number b is the least size of an unbounded family.

I ⊂ [ω]ω is a independence family if for any finite subsets A,B ⊂ I with
A ∩ B = ∅ ⋂A ∩⋂{ω \ B : B ∈ B} is infinite. The independence number i is
the least size of a maximal independence family.

F is a filter on ω if

1. if X,Y ∈ F , then X ∩ Y ∈ F .

2. if X ∈ F , then Y ∈ F for X ⊂ Y .

3. ∅ 6∈ F .
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We will consider only the filters which contains all cofinite subset of ω. U is a
ultrafilter on ω if U is a filter and X ∈ U or ω \ X ∈ U for X ∈ ℘(ω). B is a
base for a filter F if B ⊂ F and for each X ∈ F there exists Y ∈ B such that
Y ⊂ X. The ultrafilter number u is the least size of a base for a ultrafilter.
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van Douwen’s diagram.
(→ means that the inequality ≤ is provable in ZFC).

1.1.1 Cichoń’s diagram

We will introduce cardinal invariants related to an ideal on R. Let I be a ideal
on R.

add(I) = min{|A| : A ⊂ I ∧ ∀X ∈ I∃Y ∈ A(X 6⊃ Y )}
cov(I) = min{|A| : A ⊂ I ∧ R =

⋃
A}

non(I) = min{|X|X ⊂ R ∧
⋃
X 6∈ I}

cof(I) = min{|A| : A ⊂ I ∧ ∀X ∈ I∃Y ∈ A(X ⊂ Y )}.

Let N be a null ideal. Let M be a meager ideal. Then we have the following
relations.
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cov(M) oo non(M) oo cof(M) oo cof(N )

b oo
²²

d
²²

add(N )
²²

oo add(M)
²²

oo cov(M)
²²

oo non(M)
²²

.

Cichoń’s diagram.
(→ means that the inequality ≤ is provable in ZFC).

1.2 Motivation

The aim of this thesis is to deal with two kinds of problems concerning to
cardinal invariants.

The one is the relationship between combinatorial principles called “parametrized
♦ principles” related to cardinal invariants in Cichoń’s diagram and the other
is the properties of cardinal invariants related to the structure ((ω)ω,≤∗).

In [20], Jensen showed V=L implies Suslin’s hypothesis doesn’t hold. To
prove this result he introduced the ♦-principle:

♦ There exists a sequence 〈Aα ⊂ α : α < ω1〉 such that for all X ⊂ ω1 the set
{α < ω1 : X ∩ α = Aα} is stationary.

It is known that many statements which are independent of ZFC follow from
♦ (see [15], [17]). In [19] Hrušák introduced the ♦-like principle ♦d:

♦d There exists a sequence 〈gα : ω ≤ α < ω1〉 such that gα is a function from
α to ω and for every f : ω1 → ω there is an α ≥ ω with f ¹α ≤∗ gα.

The purpose of this principle was to give a partial solution to a question of
J. Roitman who asked whether d = ω1 implies a = ω1 and to answer a question
of Brendle who asked whether a = ω1 in any model obtained by adding a single
Laver real. In [31] Moore, Hrušák, and Džamonja provided a broad framework
of “parametrized ♦-principles” and techniques to force them and to force the
negation of them.

Here we introduce other techniques to force parametrized ♦ principles and
to force the negation of parametrized ♦ principles. We prove several consistency
of the propositions on parametrized ♦ principles related to cardinal invariants
in Cichoń’s diagram.

Next we investigate cardinal invariants on the structure ((ω)ω,≤∗) of infinite
partitions of ω ordered by ≤∗ where A ≤∗ B if all but finitely many blocks of A is
union of a subset of B. In recent decade cardinal invariants related to the similar
structures to (℘(ω)/fin,≤fin) are defined and investigated to understand the
similarities and differences between their properties. For example the interesting
works on (Dense(Q),⊂nwd) are done in [2] and [11].
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On ((ω)ω,≤∗) a dualized version of Ramsey’s theorem proved by Simpson
and Carlson in [13] inspire a number of papers. Cardinal invariants of ((ω)ω,≤∗)
was initiated by Matet in [25], and investigated comprehensively by Cichoń,
Krawczyk, Majcher-Iwanow and Wȩglorz in [14], Halbeisen in [18], Spinas in [33]
and Brendle in [10]. However the relation between cardinal invariants related
to ((ω)ω,≤∗) and cardinal invariants in Cichoń’s diagram has not investigated
so much except dual-splitting number cov(M) ≤ sd in [14]. We investigate the
relationship dual cardinals and cardinals in Cichoń’s diagram.

In Chapter 2 we will investigate parametrized ♦ principle and study the
forcing method to force them and the negation of them.

In Chapter 3 we shall survey the relations between cardinal invariants related
to ((ω),≤∗) and other cardinal invariants.

In Chapter 4 we will study interaction between the cardinal invariants related
to ((ω)ω,≤∗) and forcings.





Chapter 2

Parametrized diamond
principles and c.c.c forcing

The purpose of this chapter is to present some techniques to force parametrized
♦ principles.

2.1 Definition of parametrized diamonds and their
applications

In this section, some properties of parametrized ♦ principles are introduced.
Firstly we define parametrized ♦ principles and state their properties.

2.1.1 Borel invariants and parametrized diamonds, and
their properties

In [36] Vojtáš introduced a framework to describe many cardinal invariants.

Definition 1. [36][31] The triple (A,B,E) is an invariant if

(1) |A| , |B| ≤ |R|,
(2) E ⊂ A×B,

(3) For each a ∈ A there exists b ∈ B such that (a, b) ∈ E and

(4) For each b ∈ B there exists a ∈ A such that (a, b) 6∈ E.

We will write aEb instead of (a, b) ∈ E. If A and B are Borel subsets of some
Polish spaces and E is a Borel subset of their product, we call the triple (A,B,E)
“Borel invariant”.

Borel invariants were introduced in [6]. In the present paper we are interested
only in Borel invariants.

11
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Definition 2. Suppose (A,B,E) is an invariant. Then its evaluation is defined
by

〈A,B,E〉 = min{|X| : X ⊂ B and ∀a ∈ A∃b ∈ X (aEb)}.
If A = B, we will write (A,E) and 〈A,E〉 instead of (A,B,E) and 〈A,B,E〉.

Example 1. The following Borel invariants (N , 6⊃), (N ,⊂), (R,M,∈),
(M,R, 63), (ωω, <∗), (ωω, 6>∗) and ([ω]ω, is split by) have the evaluations add(N ),
cof(N ), cov(M), non(M), d, b and s respectively.

Definition 3. Suppose A is a Borel subset in some Polish space. Then F :
2<ω1 → A is Borel if for every α < ω1 F ¹2α is a Borel function.

In [15, 32] the principle “weak diamond principle” was introduced by Devlin
and Shelah. This was the starting point for the parametrized diamond principles
introduced by Moore, Hrušák and Džamonja [31].

Definition 4. [31](Parametrized diamond principle)
Suppose (A,B,E) is a Borel invariant. Then ♦(A,B,E) is the following state-
ment:

♦(A,B,E) For all Borel F : 2<ω1 → A there exists g : ω1 → B such that for
every f : ω1 → 2 the set {α ∈ ω1 : F (f ¹α)Eg(α)} is stationary.

The witness g for a given F in this statement will be called ♦(A,B,E)-
sequence for F .

♦(A,B,E) and ♦ have the following relation:

Proposition 2.1.1. [31] Let (A,B,E) be a Borel invariant. ♦ implies♦(A,B,E).

♦(A,B,E) and 〈A,B,E〉 have the following relation:

Proposition 2.1.2. [31] Suppose (A,B,E) is a Borel invariant and ♦(A,B,E)
holds. Then 〈A,B,E〉 ≤ ω1 holds.

If two Borel invariants (A1, B1, E1),(A2, B2, E2) are comparable in the Borel
Tukey order, then ♦(A1, B1, E1) and ♦(A2, B2, E2) have some relation:

Definition 5. (Borel Tukey ordering [6]) Given a pair of Borel invariants
(A1, B1, E1) and (A2, B2, E2), we say that (A1, B1, E1) ≤B

T (A2, B2, E2) if there
exist Borel maps φ : A1 → A2 and ψ : B2 → B1 such that (φ(a), b) ∈ E2 implies
(a, ψ(b)) ∈ E1.

Proposition 2.1.3. [31] Let (A1, B1, E1) and (A2, B2, E2) be Borel invari-
ants. Suppose (A1, B1, E1) ≤B

T (A2, B2, E2) and ♦(A2, B2, E2) holds. Then
♦(A1, B1, E1) holds.

By Proposition 2.1.3 if (A1, B1, E1) ≤B
T (A2, B2, E2) and ♦(A2, B2, E2), then

♦(A1, B1, E1) holds. But if we can separate 〈A1, B1, E1〉, 〈A2, B2, E2〉, then can
we separate ♦(A1, B1, E1) from ♦(A2, B2, E2) ?
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Question 1. [31] If (A1, B1, E1) and (A2, B2, E2) are two Borel invariants such
that the inequality 〈A1, B1, E1〉 < 〈A2, B2, E2〉 is consistent, is it consistent that
♦(A1, B1, E1) holds and ♦(A2, B2, E2) fails in the presence of CH?

Concerning ≤B
T , we know the following diagram holds.

(Cichoń’s diagram)
(R,N ,∈) oo (M,R, 63) oo (M,⊂) oo (N ,⊂)

(ωω, 6≥∗) oo
²²

(ωω,≤∗)
²²

(N , 6⊃)
²²

oo (M, 6⊃)
²²

oo (R,M,∈)
²²

oo (N ,R, 63)
²²

(The direction of the arrow is from larger to smaller in the Borel Tukey order).
Hence the following holds:

♦

♦(cov(N )) oo ♦(non(M)) oo ♦(cof(M)) oo ♦(cof(N ))
zz

tttttttttt

♦(b) oo
²²

♦(d)
²²

♦(add(N ))
²²

oo ♦(add(M))
²²

oo ♦(cov(M))
²²

oo ♦(non(N ))
²²

.

(The direction of the arrow is the direction of the implication.)

We call this diagram “Cichoń’s diagram for parametrized diamonds”.

Note When we deal with Borel invariants in Cichoń’s diagram, we will use the
standard notation for their evaluations to denote the Borel invariants themselves
(e.g., we will use ♦(add(N )) to denote ♦(N , 6⊃) ).

So this suggests the following interesting question:

Question 2. If we can construct a model M such that some cardinals in Ci-
choń’s diagram are ω1 and others are ω2, then under CH can we construct
a model such that for the invariants which are ω1 in M , the corresponding
parametrized diamond principle holds but for the others it doesn’t hold?

In this question the hypothesis “CH holds” is important since an ω2-stage
countable support iteration of definable forcings which forces 〈A1, B1, E1〉 = ω1

and 〈A2, B2, E2〉 = ω2 also forces ♦(A1, B1, E1) (see [31]). In this paper we will
give some general technique dealing with this problem and give some results.
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2.1.2 Parametrized ♦ principles and cardinal invariants

We shall show some cardinal invariants are influenced by the parametrized
diamondsuit principles.

Theorem 2.1.4. [31] ♦(R, 6=) implies t = ω1.

Theorem 2.1.5. [31] ♦(b) implies a = ω1.

Theorem 2.1.6. [31] ♦(r) implies u = ω1.

Theorem 2.1.7. [31] ♦(rQ) implies i = ω1.

2.2 ω1-stage finite support iteration and parametrized
♦ principles

In this section, some techniques for dealing with parametrized ♦ principles are
introduced. Firstly we shall construct parametrized ♦ principles by using ω1-
stage finite support iteration.

2.2.1 Construction of diamonds

We present a technique to construct ♦(A,B,E). In [31] some methods to con-
struct models of ♦(A,B,E) are given.

Theorem 2.2.1. [31] Let Cω1 and Bω1 be the Cohen and random forcing
corresponding to the product space 2ω1 . Then V Cω1 |= “♦(non(M))” and
V Bω1 |= “♦(non(N ))”.

Similarly we can prove the following theorem.

Theorem 2.2.2. Let Pω1 be an ω1-stage finite support iteration of c.c.c forcings
such that for any α ∈ ω1 there exists b ∈ B ∩ V Pω1 such that aEb for any
a ∈ A ∩ V Pα . Then V Pω1 |= ♦∗(A,B,E) where ♦∗(A,B,E) is the statement
obtained by replacing “stationary” by “club ” in ♦(A,B,E).

Remark 1. If A is Borel set and P is a forcing notion, then we will write A∩V P
for the interpretation of a Borel code for A in V P.

Proof of Theorem. Let F ∈ V Pω1 be such that F : 2<ω1 → A is a Borel
function. For each δ ∈ ω1, let rδ ∈ V Pω1 be a real coding F ¹ 2δ. Then define
f : ω1 → ω1 strictly increasing such that rδ ∈ V Pf(δ) .

Then define g : ω1 → B so that

g(α) = b where b satisfies (2) for f(α).

Claim 1. g is ♦∗(A,B,E)-sequence for F

Let h : ω1 → 2. Then define Ch = {α ∈ ω1 : h¹α ∈ V Pα}. Since Pω1 is c.c.c,
Ch is club. Then by construction if α ∈ Ch, then F (h ¹ α) ∈ A ∩ V Pf(α) . So
F (h¹α)Eg(α). Hence g is a ♦∗(A,B,E)-sequence for F .

Claim¥ Theorem 2
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2.2.2 Preservation of non-diamond

We present a technique to preserve ¬♦(A,B,E).

Theorem 2.2.3. (General preservation of ¬♦(A,B,E))
Let (A,B,E) be a Borel invariant and let P be a forcing notion which doesn’t

collapse ω1.

(i) Suppose V P |= ♦(A,B,E). If for each Borel function F : 2<ω1 → A in
V and for a ♦(A,B,E)-sequence ġ : ω1 → B for F in V P there exists
g∗ : ω1 → B in V such that

∀a ∈ A ∩ V
[(
∃p ∈ P( p ° ǎEġ(α) )

)
implies aEg∗(α)

]
, (2.1)

then V |= ♦(A,B,E).

(ii) If P is a forcing notion such that for any P-name ḃ with ° ḃ ∈ B there
exists b′ ∈ B ∩ V such that

∀a ∈ A ∩ V
[(
∃p ∈ P (p ° ǎEḃ)

)
implies aEb′

]
, (2.2)

then V |= ¬♦(A,B,E) ⇒ V P |= ¬♦(A,B,E).

Proof. (ii) follows from (i). So we shall show only (i).
Suppose ♦(A,B,E) holds in V P. Let F : 2<ω1 → A be a Borel function in

V and ġ be a P-name for a ♦(A,B,E)-sequence for F in V P. Then by (1) there
exists g∗ : ω1 → B in V such that

∀α ∈ ω1∀a ∈ A ∩ V
[(
∃p ∈ P ( p ° ǎEġ(α) )

)
implies aEg∗(α)

]
.

Let f : ω1 → 2 be in V . Then {α ∈ ω1 : there exists p ∈ P such that p °
“F (f ¹α)Eġ(α)”} is stationary. Since {α ∈ ω1 : F (f ¹α)Eg∗(α)} contains this
set, it is also stationary. Hence V |= ♦(A,B,E).

2

In the Kitami set theory seminar, Yasuo Yoshinobu pointed out the following
fact.

Proposition 2.2.4. Let (A,B,E) be an Borel invariant. Then (ii) in Theorem
2.2.3 implies that P has 〈A,B,E〉-c.c.

Proof. Suppose there is an antichain A ⊂ P with cardinality 〈A,B,E〉 and
D ⊂ B witnesses 〈A,B,E〉. Then we have a P-name ḃ such that for all a ∈ A∩V
there exists p ∈ P such that p ° “aEḃ”. If (ii) in Theorem 2.2.3 holds, then
there exists b ∈ B ∩ V such that for all a ∈ A ∩ V aEb holds. But this is a
contradiction to (4) in Definition 1.

2

So if CH holds in V , then P should have c.c.c in V .
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2.3 Cichoń’s diagram and Parametrized diamond
under CH

We would like to show that under CH we can separate parametrized diamond
principles for Borel invariants in Cichoń’s diagram. In [19] Hrušák showed the
following:

Theorem 2.3.1. [19] Con(CH+♦d + ¬♦).

In the proof Hrušák shows that if V |= “CH+¬♦”, then V Dω1 |= “CH+♦d+
¬♦”. Similarly we will start with a model in which the “weak” parametrized
diamond principle fails. By [31], CH doesn’t imply the “weak” parametrized
diamond principle:

Proposition 2.3.2. [31] (Rω, 6w) ≤B
T (N , 6⊃) where 6w is a relation on Rω such

that for x, y ∈ Rω x 6w y if rng(x) 6⊃ rng(y).

Theorem 2.3.3. [31] It is relatively consistent that CH + ¬♦(Rω, 6w). Hence
it is relatively consistent that CH + ¬♦(add(N )) by Proposition 2.3.2.

But ω1-stage countable support iteration of non-trivial proper forcing is not
suitable to solve Question 2.

Theorem 2.3.4. Let P = 〈Pα, Q̇α : α < ω1〉 be ω1-stage countable support
iteration of non-trivial proper forcing. Then °P ♦.

This is well-known and can be proved like Theorem 8.3 of Ch.VII, §8 in
[22]. So if we want to use countable support iteration, we cannot use ω1-stage
iteration. Hence in this paper we use finite support iteration. But finite support
iteration has some limitation.

Theorem 2.3.5. Finite support iterations of non-trivial forcing notions add
Cohen reals in limit stages of cofinality ω. Hence ω1-stage iterations of nontrivial
c.c.c forcing result in models of ♦(non(M)). More precisely ♦∗(non(M)) holds.

But by using finite support iteration of c.c.c forcing we have the following
results:

Theorem 2.3.6. (Main theorem) Each of the following are relatively consis-
tent with ZFC:

(1) CH +♦(non(M)) + ¬♦(cov(M)) (see Diagram 1),

(2) CH +♦(non(N )) + ¬♦(b) + ¬♦(cov(N )) (see Diagram 2),

(3) CH +♦(non(M)) +♦(non(N )) + ¬♦(d) (see Diagram 3),

(4) CH +♦(cov(M)) +♦(non(M)) +¬♦(d) +¬♦(non(N )) (see Diagram 4),

(5) CH +♦(cof(M)) + ¬♦(non(N )) (see Diagram 5),

(6) CH +♦(cof(M)) +♦(non(N )) + ¬♦(cof(N )) (see Diagram 6),

(7) CH +♦(cof(N )) + ¬♦ (see Diagram 7).
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2.3.1 Cohen forcing and random forcing

Firstly we use Cohen forcing, random forcing and ω1-stage finite support itera-
tion of random forcing. In this paper we write (B)ω1 for ω1-stage finite support
iteration of random forcing.

Proposition 2.3.7. (1) If V |= ¬♦(cov(N )), then V Bω1 |= ¬♦(cov(N )).

(2) If V |= ¬♦(cov(M)), then V Cω1 |= ¬♦(cov(M)).

To show this, we use the following theorem:

Theorem 2.3.8. [3, p.145 Lemma 3.3.17 for (1), p.125 Lemma 3.2.39 for (2)]

(1) Let A ∈M∩ V Cκ . Then there exists B ∈M∩ V such that

∀x ∈ R ∩ V
[(
∃p ∈ Cκ (p ° x ∈ A)

)
implies x ∈ B

]
.

(2) Let A ∈ N ∩ V Bκ . Then there exists B ∈ N ∩ V such that

∀x ∈ R ∩ V
[(
∃p ∈ Bκ (p ° x ∈ A)

)
implies x ∈ B

]
.

Proof of Proposition. We only show (2). Let F : 2<ω1 → R in V and let
g : ω1 → M in V Cκ be a ♦(cov(M))-sequence for F . Then by Theorem 2.3.8
and 2.2.3, we can find a ♦(cov(M))-sequence for F in V .

2

Proposition 2.3.9. Let B be a measure algebra. If V |= ¬♦(d), then V B |=
¬♦(d). Similarly if V |= ¬♦(b), then V B |= ¬♦(b).

Proof. Assume on the contrary that for each F : 2<ω1 → ωω Borel, there is
a ♦(d)-sequence g : ω1 → ωω in V [G]. Let F be a Borel function in V . By
ωω-bounding and c.c.c, there is g∗ such that ° g(α) ≤∗ g∗(α) for all α. Let
f : ω1 → 2 in V . Then {α ∈ ω1 : F (f ¹α) ≤∗ g∗(α)} is stationary.

2

More generally we have the following result:

Proposition 2.3.10. If a c.c.c forcing notion P doesn’t add dominating reals,
then V |= ¬♦(b) ⇒ V P |= ¬♦(d).

Proof. Let F : 2<ω1 → ωω in V be a Borel function. Suppose ♦(d) holds
and let g : ω1 → ωω be a ♦(d)-sequence for F in V P. Since P doesn’t add
dominating reals and has the c.c.c, for each α < ω1 there exists fα ∈ ωω such
that ° g(α) 6>∗ fα. Define g∗ : ω1 → ωω by g∗(α) = fα. Then ∃p ∈ P ( p °
f <∗ g(α) ) implies f 6>∗ g∗(α). So g∗ is a ♦(b)-sequence for F .

2
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Theorem 2.3.11. (1) If V |= CH+¬♦(cov(M)), then V Cω1 |= CH+♦(non(M))+
¬♦(cov(M)) (see Diagram 1).

(2) If V |= CH+¬♦(b)+¬♦(cov(N )), then V Bω1 |= CH+¬♦(b)+¬♦(cov(N ))+
♦(non(N )) (see Diagram 2).

(3) If V |= CH+¬♦(b), then V (B)ω1 |= CH+♦(non(M))+♦(non(N ))+¬♦(d)
(see Diagram 3).

Proof. (1): From Proposition 2.3.7 (2), and Theorem 2.2.1, this statement
holds.
(2): From Proposition 2.3.7 (1), 2.3.9 and Theorem 2.2.1, this statement holds.
(3) To show this we use the following theorem:

Theorem 2.3.12. [3, p.100 Lemma 3.1.2, p.313 Lemma 6.5.1 and Theorem
6.5.4] [8] Finite support iteration of random forcing doesn’t add dominating
reals.

From the above theorem and 2.3.10, V (B)ω1 |= ¬♦(d). By 2.2.2 and 2.3.5,
V (B)ω1 |= ♦(non(M)) +♦(non(N )).

2

By Theorem 2.3.11 it is relatively consistent with ZFC and CH that Cichoń’s
diagram for parametrized diamond looks as follows where a black square means
the corresponding parametrized diamond fails while the others hold:

♦(cov(N )) ♦(non(M)) ¥ ¥

♦(b) ¥

♦(add(N )) ♦(add(M)) ¥ ¥

Diagram 1

¥ ¥ ¥ ¥

¥ ¥

♦(add(N )) ♦(add(M)) ♦(cov(M)) ♦(non(N ))

Diagram 2
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♦(cov(N )) ♦(non(M)) ¥ ¥

♦(b) ¥

♦(add(N )) ♦(add(M)) ♦(cov(M)) ♦(non(N ))

Diagram 3

2.3.2 σ-centered forcing

Secondly we will deal with σ-centered forcings.

Definition 6. The Hechler forcing notion is defined as follows:

〈s, f〉 ∈ D if s ∈ ω<ω, f ∈ ωω and s ⊂ f.

It is ordered by
〈s, f〉 ≤ 〈t, g〉 if s ⊃ t and g ≤ f.

It is clear that the following statement holds.

Proposition 2.3.13. Hechler forcing D adds a dominating real:

There exists f ∈ ωω ∩ V D such that ° “g <∗ f” for all g ∈ ωω ∩ V.
Definition 7. The eventually different forcing notion is defined as follows:

〈s,H〉 ∈ E if s ∈ ω<ω and H ∈ [ωω]<ω

It is ordered by 〈s,H〉 ≤ 〈s′,H ′〉 if s ⊃ s′,H ⊃ H ′ and

for all f ∈ H ′ for all j ∈ [|s′| , |s|) s(j) 6= f(j).

Proposition 2.3.14. Eventually different forcing adds an eventually different
real:

There exists f ∈ ωω ∩ V E such that ° “∀∞n f(n) 6= g(n)” for all g ∈ ωω ∩ V.
So there is M ∈M∩ V E such that 2ω ∩ V ⊂M .

Now we use these two forcing notions. They have the following property:

Definition 8. Let P be a forcing notion.

(1) Let A ⊂ P. Then A is centered if every finite subset of A has a lower
bound.

(2) P is σ-centered if P =
⋃
n∈ω

Pn where each Pn is centered.
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σ-centered forcing has the following property:

Theorem 2.3.15. [3, p.321 Lemma 6.5.26, p.322 Theorem 6.5.29]
σ-centered forcing doesn’t add random reals. More precisely, if a P-name ẋ for
an element of 2ω is given, then there is a null set N ∈ V such that ° ẋ ∈ N .

Proposition 2.3.16. (1) If a forcing notion P doesn’t add Cohen reals and
has c.c.c, then V |= ¬♦(add(M)) ⇒ V P |= ¬♦(non(M)).

(2) If a forcing notion P doesn’t add random reals and has c.c.c, then V |=
¬♦(add(N )) ⇒ V P |= ¬♦(non(N )).

Proof. We show only the random case. Let F : 2<ω1 → N be a Borel function
in V. Suppose ♦(non(N )) holds in V P. Let g : ω1 → R be a ♦(non(N ))-
sequence for F . Since P doesn’t add random reals and has c.c.c, for each α < ω1

there exists Nα ∈ N ∩ V such that ° g(α) ∈ Nα. Define g∗ : ω1 → N by
g∗(α) = Nα. Let f : ω1 → 2 be given. Then

(
∃p ∈ P (p ° F (f ¹α) 63 g(α) )

)

implies F (f ¹α) 6⊃ g∗(α). So g∗ is a ♦(add(N ))-sequence for F .

2

Proposition 2.3.17. Suppose P is a σ-centered forcing notion. V |= ¬♦(add(N )) ⇒
V P |= ¬♦(non(N )).

Proof. Follows from Theorem 2.3.15 and Proposition 2.3.16

2

To treat ω1-stage iteration of D or E, we use the following result:

Proposition 2.3.18. [1] An ω1-stage finite support iteration of σ-centered forc-
ing notions is σ-centered.

Theorem 2.3.19. If V |= CH+¬♦(add(N )), then V Eω1 |= CH+♦(non(M))+
♦(cov(M)) + ¬♦(d) + ¬♦(non(N )) (see Diagram 4).

By Theorem 2.2.2, Proposition 2.3.14 and Proposition 2.3.17, it is clear that
V |= CH + ¬♦(add(M)) implies V Eω1 |= CH + ¬♦(non(N )) + ♦(non(M)) +
♦(cov(M)). To show V Eω1 |= ¬♦(d), we use following Theorem:

Theorem 2.3.20. [3, p.367,Theorem 7.4.9] Neither E nor Eω1 add dominating
reals.

Using this Theorem and Proposition 2.3.10, we have V Eω1 |= ¬♦(d).

2
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♦(cov(N )) ♦(non(M)) ¥ ¥

♦(b) ¥

♦(add(N )) ♦(add(M)) ♦(cov(M)) ¥

Diagram 4

Theorem 2.3.21. If V |= CH+¬♦(add(N )), then V Dω1 |= CH+¬♦(non(N ))+
♦(cof(M)) (see Diagram 5).

By Theorem 2.2.2 and Proposition 2.3.17, V Dω1 |= ♦(d) + ♦(non(M)) +
¬♦(non(N )). To show V Dω1 |= ♦(cof(M)), we use the following Theorem
which is analogous to cof(M) = max{d,non(M)}.
Theorem 2.3.22. If ♦∗(non(M)) and ♦(d), then ♦(cof(M)) holds. Similarly
♦(non(M)) and ♦∗(d), then ♦(cof(M)) holds.

Proof. We use the following statement:

Claim 2. [5] There are functions Φ : 2ω × ωω → M and Ψ : 2ω ×M → ωω

such that for each f ∈ 2ω, A ∈ M,Φ(f, ·) and Ψ(·, A) are Borel functions, and
if f ∈ ωω, A ∈ M, x ∈ 2ω, x 6∈ A + 2<ω, and f ≥∗ Ψ(x,A) then A ⊂ Φ(x, f).
Here for s ∈ 2<ω, f ∈ 2ω, f + s is in 2ω such that

(f + s)(n) :=
{
f(n) + s(n) ( mod 2 ) if n ∈ |s| ,

f(n) o.w.

And A+ 2<ω := {f + s : f ∈ A, s ∈ 2<ω}
We will show that ♦∗(non(M)) and ♦(d) implies ♦(cof(M)).
Let F : 2<ω1 →M be a Borel function . Let {σn : n ∈ ω} be an enumeration

of 2<ω.
By assumption, there is a ♦∗(non(M))-sequence g for F ∗ where F ∗ is F +

2<ω, that is, F ∗(h) = {f ∈ 2ω : there exists s ∈ 2<ω such that f + s ∈ F (h)}.
Then {α ∈ ω1 : F ∗(f ¹ α) 63 g(α)} is club for any f : ω1 → 2. Note that g
is also a ♦∗(non(M))-sequence for F . Define a Borel function G : 2<ω1 → ωω

by G(f ¹ α) := Ψ(g(α), F (f ¹ α)). Let h be a ♦(d)-sequence for G. Then
{α : g(α) 6∈ F (f ¹ α) and G(f ¹ α) ≤∗ h(α)} is stationary for any f : ω1 → 2.
By definition of G and the Claim, {α : F (f ¹α) ⊂ Φ(g(α), h(α))} is stationary.
Hence Φ(g(α), h(α)) witnesses a ♦(cof(M))-sequence for F .

Theorem 2.3.22 2

So by Theorem 2.3.22, V Dω1 |= ♦(cof(M)).

Theorem 2.3.21 2
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♦(cov(N )) ♦(non(M)) ♦(cof(M)) ¥

♦(b) ♦(d)

♦(add(N )) ♦(add(M)) ♦(cov(M)) ¥

Diagram 5

Question 3. (1) Does the conjunction of♦(non(M)) and♦(d) imply♦(cof(M))?

(2) Does ♦(add(M)) imply the disjunction of ♦(cov(M)) and ♦(b)?

(3) Are there models under CH such that

♦(cov(N )) ♦(non(M)) ¥ ¥

♦(b) ♦(d)

♦(add(N )) ♦(add(M)) ♦(cov(M)) ¥

holds?

By Theorem 2.3.22, we should add ♦(d) and ♦(non(M)) without ♦∗(d) nor
♦∗(non(M)). But ω1-stage finite support iteration adds♦∗(non(M)). Since ω1-
stage countable support iteration adds ♦, ω1-stage countable support iteration
is not suitable. The candidate is “mixed support iteration” or totally proper
forcing or some other forcings.

2.3.3 The forcing (B ∗ Ḋ)ω1

Thirdly we will deal with c.c.c forcing notion which preserves ¬♦(cof(N )).

Theorem 2.3.23. If V |= CH+¬♦(add(N )), then V (B∗Ḋ)ω1 |= CH+♦(cof(M))+
♦(non(N )) + ¬♦(cof(N )) (see Diagram 6).

By Theorem 2.2.2, V (B∗Ḋ)ω1 |= ♦(cof(M)) +♦(non(N )).

Proposition 2.3.24. If V |= ¬♦(add(N )), then V (B∗Ḋ)ω1 |= ¬♦(cof(N )) where
(B ∗ Ḋ)ω1 is finite support iteration .

To show this theorem we use the following lemma.

Lemma 2.3.25. [3, p.317 Theorem 6.5.14 - Lemma 6.5.18]
°(B∗Ḋ)ω1

⋃N ∩ V 6∈ N .
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Lemma 2.3.25⇒ Proposition 2.3.24
Suppose V (B∗Ḋ)ω1 |= ♦(cof(N )). Let F : 2<ω1 → N be a Borel function in V

. Let g : ω1 → N be a ♦(cof(N ))-sequence in V (B∗Ḋ)ω1 . By Lemma 2.3.25,
°(B∗Ḋ)ω1

⋃N ∩ V 6∈ N . So for each α ∈ ω1 there exists Nα ∈ N ∩ V such that
° Nα 6⊂ g(α). Then define g∗ : ω1 → N by g∗(α) = Nα. It is clear that g∗ ∈ V .

Claim 3. g∗ is a ♦(add(N ))-sequence for F .

Let N ∈ N ∩ V . If ° “N ⊂ g(α)”, then N 6⊃ g∗(α) by ° g∗(α) 6⊂ g(α). So
for each f : ω1 → 2 in V , {α ∈ ω1 : there exists p ∈ P such that p ° F (f ¹α) ⊂
g(α)} ⊂ {α ∈ ω1 : F (f ¹α) 6⊃ g∗(α)}. Hence g∗ is a ♦(add(N ))-sequence for F.

Claim ¥

Hence V |= ♦(add(N )).

Lemma 2.3.25⇒ Proposition 2.3.24 2 Theorem 2.3.232

♦(cov(N )) ♦(non(M)) ♦(cof(M)) ¥

♦(b) ♦(d)

♦(add(N )) ♦(add(M)) ♦(cov(M)) ♦(non(N ))

Diagram 6

2.3.4 Amoeba forcing

Finally we will deal with Amoeba forcing.

Definition 9. (Amoeba forcing) [34] The Amoeba forcing notion A is defined
as follows:

(U, ε) ∈ A if U ⊂ 2ω, open and 0 < ε ≤ 1 µ(U) < ε.

For (U, ε), (V, δ) ∈ A they are ordered by

(U, ε) ≤ (V, δ) if U ⊃ V and ε ≤ δ.

Lemma 2.3.26. [3, p.106 Lemma 3.1.12] A is σ-linked, that is, A =
⋃
n∈ω

An

where An consists of pairwise compatible elements (we will say An is linked).

A has the following property:

Theorem 2.3.27. [35] V A |= “µ(Ra(V )) = 1” where Ra(V ) is the set of
random reals over V . So °

⋃N ∩ V ∈ N .
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Since σ-linked forcing notion has c.c.c, Aω1 preserves ¬♦.

Proposition 2.3.28. [22, Exercise (H.29) p.248]
Let P be a forcing notion with c.c.c, then V |= ¬♦ implies V P |= ¬♦.

Theorem 2.3.29. If V |= ¬♦, then V Aω1 |= ♦(cof(N )) +¬♦ (see Diagram 7).

Proof. By Theorem 2.2.2 and Proposition 2.3.28 this statement holds.

2

By Theorem 2.3.29 it is relatively consistent with ZFC and CH that Diagram 7
holds where the black square means ¬♦.

¥

♦(cov(N )) ♦(non(M)) ♦(cof(M)) ♦(cof(N ))

tttttttttt

♦(b) ♦(d)

♦(add(N )) ♦(add(M)) ♦(cov(M)) ♦(non(N ))

.

Diagram 7

So we proved the Main Theorem.

2

2.4 ω2-stage finite support iteration and parametrized
♦ principles

In [27] by using ω1-stage finite support iteration several models which satisfy CH
and some ♦(A,B,E) while others fail are constructed. For countable support
iteration, there is a general theorem to construct ♦(A,B,E).

Theorem 2.4.1. [31] Suppose that 〈Qα : α < ω2〉 is a sequence of Borel partial
orders such that for each α < ω2 Qα is equivalent to ℘(2)+ × Qα as a forcing
notion and let Pω2 be the countable support iteration of this sequence. If Pω2

is proper and (A,B,E) is a Borel invariant then Pω2 forces 〈A,B,E〉 ≤ ω1 iff
Pω2 forces ♦(A,B,E).

This result is best possible because the following proposition holds.

Proposition 2.4.2. Let (A,B,E) be a Borel invariant. If ♦(A,B,E) holds,
then 〈A,B,E〉 ≤ ω1.
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In this paper we shall prove the consistency of ♦(x) + y = ω2 for several
pairs (x, y) of cardinal invariants of the continuum. As mentioned above (Theo-
rem2.4.1) this has been achieved before by Moore, Hrušák and Džamonja in [31].
They used countable support iteration to show ♦(x)+y = ω2. But our approach
is completely different from the methods of Moore, Hrušák and Džamonja. We
shall use finite support iteration of Suslin c.c.c forcing notions to prove the
consistency of ♦(x) + y = ω2.

And our results are more general. We can obtain the consistency of♦(x)+y =
κ not just ♦(x) + y = ω2.

Along the way, new preservation results for finite support iteration are es-
tablished. These are interesting in their own right.

The present paper is organized as follows. Section 2 shows some properties
of Suslin forcing. Section 3 presents several models satisfying parametrized
diamond principles by using ω2-stage finite support iteration of Suslin forcing
notions.

2.4.1 Suslin c.c.c forcing and complete embedding

In this section we will study some properties of a family of c.c.c forcing notions
which have a nice definition.

Definition 10. [3, p.168] A forcing notion P = 〈P,≤P〉 has a Suslin definition
if P ⊂ ωω, ≤P⊂ ωω × ωω and ⊥P⊂ ωω × ωω are Σ1

1.
P is Suslin if P is c.c.c and has a Suslin definition.

Definition 11. [3, p.168] Let M |= ZFC∗. A Suslin forcing P is in M if all
the parameters used in the definitions of P, ≤P and ⊥P are in M .

We will interpret Suslin forcing notion in forcing extensions using its code
rather than taking the ground model forcing notion.

Definition 12. Let A and B be forcing notions. Then i : A→ B is a complete
embedding if

(1) for all a, a′ ∈ A if a ≤ a′, then i(a) ≤ i(a′),

(2) for all a1, a2 ∈ A a1 ⊥ a2 if and only if i(a1) ⊥ i(a2) and

(3) for all A ⊂ P if A is a maximal antichain in A then i[A] is a maximal
antichain in B.

If there is a complete embedding from A to B then we write Al B.

Lemma 2.4.3. Assume AlB and P is a Suslin forcing notion. Then A ∗ Ṗl
B ∗ Ṗ where Ṗ are names for interpretation of the code for the Suslin forcing
notion in each model.
Proof of Lemma. Let i : A→ B be a complete embedding. Define î : A∗ Ṗ →
B ∗ Ṗ by î(〈a, ẋ〉) = 〈i(a), i∗(ẋ)〉 where i∗ is the class map from A-names to
B-names induced by i (see [22, p.222]). We will show if A ⊂ A ∗ Ṗ is a maximal
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antichain, then î[A] is also a maximal antichain. It is clear î[A] is an antichain.
Let A be a maximal antichain of A∗Ṗ and put A = {〈aα, ṗα〉 : α < κ}. Assume
there exists 〈b, ṗ〉 ∈ B ∗ Ṗ such that 〈b, ṗ〉 and î(〈aα, ṗα〉) are incompatible for
all α < κ. Let G be a (B, V )-generic such that b ∈ G and let H = i−1[G]. Let
A′ = {ṗα[H] : i(aα) ∈ G} ∈ V [H].

Subclaim 1. V [H] |= “A′ is a maximal antichain”.
Proof of subclaim. Firstly we shall show A′ is an antichain. Suppose ṗα[H],
ṗβ [H] ∈ A′. Since aα, aβ ∈ H, aα and aβ are compatible. Since 〈aα, ṗα〉
and 〈aβ , ṗβ〉 are incompatible, for all r ≤ aα, aβ there exists s ≤ r such that
s ° “ṗα and ṗβare incompatible”. So ṗα[H] and ṗβ [H] are incompatible. Hence
A′ is an antichain.

From now on we shall show maximality of A′. Assume to the contrary, there
exists p ∈ P such that p and ṗα[H] are incompatible for any ṗα[H] ∈ A′. So
there exists a ∈ H and an A-name Ṗ for p such that a ° ∀α < κ(aα ∈ Ḣ →
ṗ and ṗα are compatible ). Hence 〈a, ṗ〉 and 〈aα, ṗα〉 are incompatible. But it
contradicts the maximality of A.

subclaim ¥

V [H] |= “A′ is a maximal antichain in P” and “A′ is a maximal antichain
in P” is a Π1

1 statement with parameter A′, P, ≤P and ⊥P . Hence by Π1
1-

absoluteness V [G] |= A′ is a maximal antichain in P. But this is a contradiction
to the fact V [G] |= “ṗ[G] ⊥ i∗(ṗα)[G]” for i(aα) ∈ G.

2

Theorem 2.4.4. Let 〈Qα : α < κ〉 be a sequence of Suslin forcing notions. Let
Pκ be the limit of the finite support iteration of 〈Pα, Q̇α : α < κ〉. Then A l B
implies A ∗ Ṗκ l B ∗ Ṗκ

Proof. By induction on κ. Limit stage is clear. Successor stage follows from
above Lemma.

2

Corollary 2.4.5. Let 〈Qα : α < κ〉 be a sequence of Suslin forcing notions. Let
I ⊂ κ. Then PI l Pκ where PI is the limit of the iteration of 〈Pα

I , Ṙα : α < κ〉
where °Pα

I
Ṙα =

{
Q̇α α ∈ I
{1} otherwise.

2

2.4.2 Construction of Parametrized ♦ principles

We shall construct several models by finite support iteration of Suslin forcing
notions.

Definition 13. (1) The Hechler forcing notion is defined as follows:

〈s, f〉 ∈ D if s ∈ ω<ω, f ∈ ωω and s ⊂ f.
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It is ordered by
〈s, f〉 ≤ 〈t, g〉 if s ⊃ t and g ≤ f.

(2) The eventually different forcing notion is defined as follows:

〈s,H〉 ∈ E if s ∈ ω<ω and H ∈ [ωω]<ω.

It is ordered by 〈s,H〉 ≤ 〈t, G〉 if s ⊃ t, H ⊃ G and

for all g ∈ G for all j ∈ [|t| , |s|) s(j) 6= g(j).

(3) Let Borel(2ω) be the smallest σ-algebra containing all open subsets of
2ω. Let µ be the standard product measure on 2ω and let N = {A ∈
Borel(2ω) : µ(A) = 0}. For A,B ∈ Borel(2ω) let A ∼=N B if A4B ∈ N .
Let [A]N be the equivalence class of the set A with respect to the equivalence
relation ∼=N .

Define
B = {[A]N : A ∈ Borel(2ω)}.

It is ordered by [A]N ≤ [B]N if A \B ∈ N .

Theorem 2.4.6. Let κ be an ordinal with cf(κ) > ω1. Let Dκ, Eκ, Bκ and
(B∗ Ḋ)κ be the κ-stage finite support iteration of D, E, B and B∗ Ḋ respectively.
Then the following statements hold:

(1) V Dκ |= ♦(cov(N )).

(2) V Eκ |= ♦(cov(N )) and ♦(b).

(3) V Bκ |= ♦(b).

(4) V (B∗Ḋ)κ |= ♦(add(N )).

Proof. (1) Let Π be a partition of ω into finite intervals In with |In| = n + 1
for n ∈ ω. Define a relation =∞Π so that x =∞Π y if there exist infinitely many
n ∈ ω such that x ¹ In = y ¹ In. We will show V Dκ |= ♦(2ω,=∞Π ). Let Ḟ be a
Dκ-name such that °Dκ Ḟ : 2<ω1 → 2ω. Since Dκ has the c.c.c, a real ṙα coding
the Borel function Ḟ ¹ 2α appears at an intermediate stage. By cf(κ) > ω1 we
can assume Ḟ is a Dβ-name for some β < κ. Furthermore we can assume Ḟ is
a Borel function in ground model. Let F be a Borel function in ground model.
Let ḟ be a Dκ-name such that °Dκ ḟ : ω1 → 2. Then the following claim holds:

Claim 4. Define Cḟ ⊂ ω1 by

Cḟ = {α < ω1 : ḟ ¹α is Dα∪[ω1,κ)-name}.

Then Cḟ contains a club.
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Remark 2. More precisely we should write

Cḟ = {α < ω1 : there exists Dα∪[ω1,κ)-name ẋα such that °Dκ
ḟ ¹α = i∗(ẋα)}

where i∗ is a class function from Dα∪[ω1,κ)-names to Dκ-names induced by the
complete embedding i : Dα∪[ω1,κ) l Dκ. But for convenience we will think of a
Dκ-name ẋ as DI-name if there exists a DI-name ẏ such that °Dκ

ẋ = iI∗(ẏ)
where iI is a complete embedding from DI to Dκ.

For α ∈ Cḟ let ẋα be a Dα∪[ω1,κ)-name such that °Dα∪[ω1,κ) F (ḟ ¹α) = ẋα.
Let ċα be a Dω1 -name such that for all ẋ ∈ 2ω∩V Dα °Dω1

∃∞n (ċα ¹In = ẋ¹In).
We can obtain such ċα. For example put ċα a Dω1-name for a Cohen real over
V Dα .

We shall show °Dκ
∃∞n (ċα ¹In = ẋα ¹In). To prove this we will work in

V Dα and show the following lemma.

Lemma 2.4.7. Suppose γ is an ordinal and P is a forcing notion which has
a P-name ċ such that for all x ∈ 2ω ∩ V °P ∃∞n (x¹In = ċ¹In). Let ẋ be a
Dγ-name such that ° ẋ ∈ 2ω. Then °P∗Ḋγ

∃∞n (ċ¹In = ẋ¹In). Here precisely
we should write °P∗Ḋγ

∃∞n (ċ¹In = i∗(ẋ)¹In) where i∗ is a canonical map from

Dγ-names to P ∗ Ḋγ-names induced by the complete embedding i : Dγ → P ∗ Ḋγ .
Proof. We proceed by induction on γ.
First step
Let ẋ be a D-name such that °D ẋ ∈ 2ω. Let ċ be a P-name such that °P
“∃∞n ∈ ω (ċ¹In = x¹In) ” for all x ∈ V ∩ 2ω. Let (p0, q̇0) ∈ P ∗ Ḋ and m ∈ ω.

It suffices to show there exist (p1, q̇1) ≤P∗Ḋ (p0, q̇0) and n ≥ m such that
(p1, q̇1) °P∗Ḋ ẋ¹In = ċ¹In.

Without loss of generality we can assume p0 ° q̇0 = 〈s, ġ〉 for some s ∈ ω<ω.
Let xs ∈ V ∩ 2ω such that

∀j ∈ ω∀g′ ∈ ωω (g′ ⊃ s→ ¬〈s, g′〉 °D ẋ¹Ij 6= xs ¹Ij) .

Let r ≤ p0 such that r °P xs ¹ In = ċ ¹ In for some n ≥ m. Then define
〈rk : k ∈ ω〉 a decreasing sequence of P and g∗ ∈ 2ω ∩ V such that r0 ≤P r and
rk °P ġ ¹(|s|+ k) = g∗ ¹(|s|+ k).

By definition of xs there is 〈t, h〉 ≤D 〈s, g∗〉 such that 〈t, h〉 °D xs ¹In = ẋ¹In.
Since 〈t, h〉 ≤D 〈s, g∗〉, for all l ∈ [|s| , |t|) t(l) ≥ g∗(l). Since r|t| °P ∀i ∈
|t| (ġ(i) = g∗(i) ≤ t(i)), r|t| °P 〈t, h〉 and 〈s, ġ〉 are compatible. Put p1 = r|t| and
put a P-name q̇1 so that p1 °P q̇1 ≤D 〈s, ġ〉, 〈t, h〉. Then (p1, q̇1) ≤P∗Ḋ (p0, q̇0)
and p1 °P xs ¹ In = ċ ¹ In by p1 ≤P r and p1 °P “q̇1 °D xs ¹ In = ẋ ¹ In” by
p1 °P q̇1 ≤D 〈t, h〉. Therefore (p1, q̇1) °P∗Ḋ ẋ¹In = xs ¹In = ċ¹In.
Successor step:
Suppose the lemma holds for γ. Let ẋ be a Dγ+1-name such that °Dγ+1 ẋ ∈ 2ω.
Let (p0, q̇0) ∈ P ∗ Ḋγ+1 and m ∈ ω. Without loss of generality we can assume
(p0, q̇0 ¹γ) °P∗Ḋγ

q̇0(γ) = 〈š, ġ〉 for some s ∈ ω<ω.
Let ẋs be a Dγ-name such that

°Dγ ∀j ∈ ω∀ġ′ ∈ ω̇ω (ġ′ ⊃ š→ ¬〈š, ġ′〉 °D ẋs ¹Ij 6= ẋ¹Ij) .
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By induction hypothesis there is (p′, q̇′) ∈ P∗Ḋγ and n ≥ m such that (p′, q̇′) ≤P∗Ḋγ

(p0, q̇0 ¹γ) and (p′, q̇′) °P∗Ḋγ
ẋs ¹In = ċ¹In.

Since Dγ l P ∗ Ḋγ , there is a Dγ-name Q̇ for a partial order such that
P ∗ Ḋγ

∼= Dγ ∗ Q̇. Let q∗ be the projection of (p′, q̇′) to Dγ .
Define Dγ-names ġ∗ and 〈ṙk : k ∈ ω〉 such that

(i) °Dγ
ġ∗ ∈ ωω and ṙk ∈ Q̇ for k ∈ ω,

(ii) (q∗, ṙ0) ≤ (p′, q̇′),

(iii) °Dγ ṙk+1 ≤Q̇ ṙk for k ∈ ω and

(vi) °Dγ
“ṙk °Q̇ ġ(k) = ġ∗(k)”.

Let q∗1 ≤Dγ q∗ such that there exists t ∈ ω<ω and Dγ-name ḣ for a function
from ω to ω such that q∗1 °Dγ

“〈ť, ḣ〉 ≤D 〈s, ġ∗〉 and 〈ť, ḣ〉 °D ẋ ¹ In = ẋs ¹ In”.

Since (q∗1 , ṙ|t|) ° ∀i ∈ |t|
(
ġ(i) = ġ∗(i) ≤ ḣ(i)

)
, (q∗1 , ṙ|t|) ° 〈t, ḣ〉 and 〈s, ġ〉 are

compatible.
Put (p1, q̇1) ∈ P ∗ Ḋγ+1 so that (p1, q̇1 ¹ γ) = (q∗1 , ṙ|t|) and (p1, q̇1 ¹ γ) =

(q∗, ṙ|t|) °Dγ∗Q̇ q̇1(γ) ≤D 〈t, ḣ〉, 〈s, ġ〉. Then (p1, q̇1 ¹ γ) °P∗Ḋγ
“ċ ¹ In = ẋs ¹

In and q̇1(γ) °Ḋ ẋs ¹In = ẋ¹In”. Therefore (p1, q̇1) °P∗Ḋγ+1
ċ¹In = ẋ¹In.

Limit step:
Suppose γ is a limit ordinal and for β < γ the lemma holds. Without loss of
generality we can assume the cofinality of γ is ω. Let 〈γi : i ∈ ω〉 be a strictly
increasing sequence converging to γ. Let (p0, q̇0) ∈ P ∗ Ḋγ , m ∈ ω and ẋ be a
Dγ-name such that °Dγ ẋ ∈ 2ω. Suppose (p0, q̇0) ∈ P ∗ Ḋγj .

In V Dγj let 〈rk : k ∈ ω〉 be a decreasing sequence of D[γj ,γ) such that
rk °D[γj,γ)

“ẋ¹Ik = xj ¹Ik” where xj ∈ 2ω ∩ V Dγj .
Back into V let ṙk and ẋj be Dγj -names such that °Dγj

“〈ṙk : k ∈ ω〉 and
ẋj satisfies the above”.

By induction hypothesis there exists 〈p′, q̇′〉 ≤P∗Ḋγj
〈p0, q̇0〉 and n ≥ m such

that (p′, q̇′) °P∗Ḋγj
ċ¹In = ẋj ¹In. Put p1 = p′ and °P q̇1 = q̇′aṙn

Then 〈p1, q̇1〉 °P∗Ḋγ
ċ¹In = ẋj ¹In = ẋ¹In.

Lemma 2

Let ċα be a Dω1 -name such that °Dω1
∃∞n (

ċα ¹In = ẋ¹In for ẋ ∈ 2ω ∩ V Dα
)
.

By the above lemma if α ∈ Cḟ , then °Dκ ∃∞n
(
ẋα ¹In = F (ḟ ¹α)¹In = ċα ¹In

)
.

Hence °Dκ 〈ċα : α ∈ ω1〉 is a ♦(2ω,=∞Π )-sequence for F .
Let φ : 2ω → N be the function such that

φ(x) = {y ∈ 2ω : ∃∞n (x¹In = y ¹In)}.

Then φ : 2ω → N and the identity function id : 2ω → 2ω witness (2ω,N ,∈) ≤B
T

(2ω,=∞Π ) (see [5, Theorem 5.11]). So V Dκ |= ♦(2ω,N ,∈).
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(1) 2

(2) °Eκ
♦(cov(N )) is similar to (1). We shall only show °Eκ

♦(ωω, 6≥∗). To
prove this it suffices to show the following lemma:

Lemma 2.4.8. Suppose γ is an ordinal and P is a forcing notion which has
a P-name ċ such that for all x ∈ ωω ∩ V °P ∃∞n (x(n) < ċ(n)). Let ẋ be a
Eγ-name such that °Eγ

ẋ ∈ ωω. Then °P∗Ėγ
∃∞n (ẋ(n) < ċ(n)).

Proof. We proceed by induction on γ. We shall only prove the successor step.
The rest of the proof is similar to the proof of Lemma2.4.7.
Successor step:
Suppose the lemma holds for γ. Let ẋ be a Eγ+1-name such that °Eγ+1 ẋ ∈ ωω.
Let (p0, q̇0) ∈ P ∗ Ėγ+1 and m ∈ ω. Without loss of generality we can assume
(p0, q̇0 ¹ γ) °P∗Ėγ

“q̇0(γ) = 〈s, Ḟ 〉 and Ḟ = {ḟj : j < l}” for some l ∈ ω and
s ∈ ω<ω. Let ẋs,l be a Eγ-name such that

°Eγ ẋs,l(i) = min{j : ∀Ḣ ⊂ ωω with ˙|H| = l
(
¬〈s, Ḣ〉 ° ẋ(i) > j

)
}.

By induction hypothesis there is (p′, q̇′) ∈ P∗Ėγ and n ≥ m such that (p′, q̇′) ≤P∗Ėγ

(p0, q̇0 ¹ γ) and (p′, q̇′) °P∗Ėγ
ċ(n) > ẋs,l(n). Since Eγ l P ∗ Ėγ , there is a Eγ-

name Q̇ for a partial order such that P ∗ Ėγ
∼= Eγ ∗ Q̇. Let q∗ be a projection of

(p′, q̇′) to Eγ . Find Eγ-names 〈ṙk : k ∈ ω〉 and Ḟ ∗ such that

(i) °Eγ
Ḟ ∗ = {ḟ∗j : j < l} ⊂ ωω and ṙk ∈ Q̇ for k ∈ ω,

(ii) (q∗, ṙ0) ≤ (p′, q̇′),

(iii) °Eγ ṙk+1 ≤Q̇ ṙk for k ∈ ω and,

(iv) (q∗, ṙk) °Eγ∗Q̇ ∀j < l
(
ḟ∗j (k) = ḟj(k)

)
for k ∈ ω.

Then there are q∗1 ≤Eγ q
∗, t ∈ ω<ω and Eγ-name Ġ such that q∗1 °Eγ “〈t, Ġ〉 ≤E

〈s, Ḟ ∗〉 and 〈t, Ġ〉 °Ė ẋ(n) ≤ ẋs,l(n)”.

Since (q∗, ṙ|t|) °Eγ∗Q̇ “∀j < l ∀k < |t|
(
ḟj(k) = ḟ∗j (k)

)
” and q∗1 °Eγ ∀j <

n∀k ∈ [|s| , |t|)
(
ḟ∗j (k) 6= t(k)

)
, (q∗1 , ṙ|t|) °Eγ∗Q̇ 〈t, Ġ〉 and 〈s, Ḟ 〉 are compatible.

Put (p1, q̇1) ∈ P ∗ Ėγ+1 so that (p1, q̇1 ¹ γ) = (q∗1 , ṙ|t|) and (p1, q̇1 ¹ γ) °P∗Ėγ

q̇1(γ) ≤E 〈s, Ḟ 〉, 〈t, Ġ〉. Then (p1, q̇1 ¹ γ) °P∗Ėγ
“ẋs,l(n) < ċ(n) and q̇1(γ) °Ė

ẋ(n) ≤ ẋs,l(n)”. Therefore (p1, q̇1) °P∗ ˙Eγ+1
ẋ(n) < ċ(n).

2

(3) To prove (3) it suffices to show the following lemma:
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Lemma 2.4.9. Suppose γ is an ordinal and P is a forcing notion which has
a P-name ċ such that for all x ∈ ωω ∩ V °P ∃∞n (x(n) < ċ(n)). Let ẋ be a
Bγ-name such that ° ẋ ∈ ωω. Then °P∗Ḃγ

∃∞n (ẋ(n) < ċ(n)).
Proof of lemma. We proceed by induction on γ. We shall prove only the
successor step.
Successor step:
Suppose for γ the lemma holds. Let µ be a measure on B. Let ẋ be a Bγ+1-name
such that °Bγ+1 ẋ ∈ ωω. Let ẋ∗ be a Bγ-name such that

°Bγ
µ([[ẋ(k) ≤ ẋ∗(k)]]Ḃ) ≥ 1− 1

2k
.

Let (p0, q̇0) ∈ P ∗ Ḃγ+1 and m ∈ ω. Without loss of generality we can assume

(p0, q̇0 ¹ γ) °P∗Ḃγ
µ(q̇0(γ)) ≥ 1

2l
. By induction hypothesis there is (p′, q̇′) ∈

P ∗ Ḃγ such that (p′, q̇′) ≤P∗Ḃγ
(p, q̇ ¹ γ) and n ≥ m, l such that (p′, q̇′) °P∗Ḃγ

ẋ∗(n) < ċ(n). Put (p1, q̇1) ∈ P ∗ Ḃγ+1 so that (p1, q̇1¹ γ) = (p′, q̇′) and (p1, q̇1¹
γ) °P∗Ḃγ

q̇1(γ) ≤B q̇0(γ), [[ẋ(n) ≤ ẋ∗(n)]]B. Then (p1, q̇1 ¹ γ) °P∗Ḃγ
“ẋ∗(n) <

ċ(n) and q̇1(γ) °B ẋ(n) ≤ ẋ∗(n)”. Therefore (p1, q̇1) °P∗Ḃγ+1
ẋ(n) ≤ ẋ∗(n) <

ċ(n).

Lemma 2

(4) To prove (4) we shall show V (B∗Ḋ)κ |= ♦(LOC, ωω, 6=) where LOC =
{φ : φ is a function from ω to ω<ω such that ∃k ∈ ω |φ(n)| ≤ nk for n ∈ ω}
and φ = x if ∀∞n (φ(n) 3 x(n)) for φ ∈ LOC and x ∈ ωω. Without loss of
generality we can assume B ∗ Ḋ is a complete Boolean algebra with strictly
positive finitely additive measure µ [3, p319 Lemma 6.5.18]. So it suffices to
show the following lemma:

Lemma 2.4.10. Suppose γ is an ordinal and P is a forcing notion which has a
P-name ċ such that for all φ ∈ LOC ∩ V °P ∃∞n (φ(n) 63 ċ(n)). Let Bγ be a γ-
stage finite support iteration of complete Boolean algebras with strictly additive
measure µ for each γ. Let φ̇ be a Bγ-name such that °Bγ φ̇ ∈ LOC. Then
°P∗Ḃγ

φ̇ 6= ċ.
Proof. We proceed by induction on γ. We shall prove only the successor step.
Successor step:
Suppose for γ the lemma holds. Let φ̇ be a Bγ+1-name such that °Bγ+1 φ̇ ∈
LOC. Let ψ̇i (i < ω), ṗi (i < ω) and k̇i (i < ω) be Bγ-names such that

• °Bγ ψ̇i ∈ LOC, ṗi ∈ Ḃ and k̇i ∈ ω for i < ω,

• °Bγ “ṗi °Ḃ ∀n ∈ ω
(
φ̇i(n) ≤ nk̇i

)
” and

• °Bγ ψ̇i(n) = {j : µ
(
[[j ∈ φ̇(n)]]Ḃ ∧ ṗi

)
≥ 1
n
}.
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Claim 5. °Bγ

∣∣∣ψ̇i(n)
∣∣∣ ≤ nk̇i+1.

Let m ∈ ω and (p0, q̇0) ∈ P ∗ ˙Bγ+1. Without loss of generality we can find i ∈ ω
and ni ∈ ω such that (p, q̇ ¹γ) °P∗Ḃγ

“µ (q̇(γ) ∧ ṗi) ≥ 1
ni

”. By induction hypoth-

esis there exist (p′, q̇′) ≤P∗Ḃγ
(p, q̇ ¹ γ) and n ≥ ni,m such that (p′, q̇′) °P∗Ḃγ

ċ(n) 6∈ ψ̇i(n). Without loss of generality we can assume p′ decides ċ(n) and
p′ °B “ċ(n) = l” for some l ∈ ω. Since (p′, q̇′) °P∗Ḃγ

l 6∈ ψ̇i(n), (p′, q̇′) °P∗Ḃγ

µ
(
[[l ∈ φ̇(n)]]Ḃ ∧ ṗi

)
<

1
n

. So (p′, q̇′) °P∗Ḃγ
µ

(
[[l 6∈ φ̇(n)]]Ḃ ∧ ṗi ∧ q̇(γ)

)
> 0.

Put (p1, q̇1) ∈ P ∗ Ḃγ so that (p1, q̇1¹ γ) = (p′, q̇′) and (p1, q̇1¹ γ) °P∗Ḃγ
q̇1(γ) =

[[l 6∈ φ̇(n)]]Ḃ ∧ ṗi ∧ q̇(γ). Then (p1, q̇1) °P∗Ḃγ+1
“ċ(n) = l 6∈ φ̇(n)”.

Lemma 2

So We have V (B∗Ḋ)κ |= ♦(LOC, ωω, 6=).
Let {Ci,j} be a family of independent open sets with µ(Ci,j) = 1

(i+1)2 for all
i, j. Let Φ : ωω → N be the function such that

Φ(f) =
⋃
n

⋂

i≥n

Ci,f(i).

For each B ∈ N fix a compact set KB ⊂ ωω \ B with µ(KB ∩ U) > 0 for
any open set U with KB ∩ U 6= ∅. Let {σB

n : n ∈ ω} list all σ ∈ ω<ω with
KB ∩ [σ] 6= ∅. Put

g(B,n, i) = {j : KB ∩ [σB
n ] ∩ Ci,j = ∅}

for i, n ∈ ω. Fix k(B,n) such that

|g(B,n, i)| ≤ (i+ 1)2

2n+1

for i ≥ k(B,n). Define Ψ : N → LOC by

Ψ(B)(i) =
⋃

k(B,n)≤i

g(B,n, i).

Then Ψ and Φ witness (N ,N , 6⊃) ≤T
B (LOC, ωω, 6=) (see [3, Theorem 2.3.9]). So

V (B∗Ḋ)κ |= ♦(N ,N , 6⊃).

Theorem 2

Corollary 2.4.11. Each of the following are relatively consistent with ZFC:

(i) c = add(M) = ω2 +♦(cov(N ))(see Diagram 1).

(ii) c = cov(N ) = cov(M) = ω2 +♦(b)(see Diagram 2).
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(iii) c = non(M) = cov(M) = ω2 +♦(b) +♦(cov(N ))(see Diagram 3).

(iv) c = cov(N ) = add(M) = ω2 +♦(add(N ))(see Diagram 4).

Proof. (i) Suppose V |= CH. By Theorem 2.4.6 (1) V Dω2 |= ♦(cov(N )).
Since Dω2 adds ω2-many dominating reals and Cohen reals, V Dω2 |= c = b =
cov(M) = ω2. Since add(M) = min{b, cov(M)} (see [3], [26]),

V Dω2 |= ♦(cov(N )) + c = add(M) = ω2.

Cichoń’s diagram for parametrized diamond looks as follows where an ω2 means
the corresponding evaluation of the Borel invariant is ω2 while the parametrized
diamond principle for the others hold.

♦(cov(N )) ω2 ω2 ω2

ω2 ω2

♦(add(N )) ω2 ω2 ω2

Diagram 1.

(ii) Suppose V |= CH. By Theorem 2.4.6 (2) V Bω2 |= ♦(b). Since Bω2 adds ω2

many Cohen and random reals, V Bω2 |= c = cov(N ) = cov(M) = ω2. Hence

V Bω2 |= ♦(b) + c = cov(N ) = cov(M) = ω2.

ω2 ω2 ω2 ω2

♦(b) ω2

♦(add(N )) ♦(add(M)) ω2 ω2

Diagram 2.

(iii) Suppose V |= CH. By Theorem 2.4.6 (3) V Eω2 |= ♦(cov(N )) + ♦(b).
Since Eω2 adds ω2 many Cohen and eventually different reals, c = non(M) =
cov(M) = ω2. Hence

V Eω2 |= ♦(cov(N )) +♦(b) + c = non(M) = cov(M).
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♦(cov(N )) ω2 ω2 ω2

♦(b) ω2

♦(add(N )) ♦(add(M)) ω2 ω2

Diagram 3.

(iv) Suppose V |= CH. By Theorem 2.4.6 (4) V (B∗Ḋ)ω2 |= ♦(add(N )). Since
(B ∗ Ḋ)ω2 adds ω2 many random, Cohen and dominating reals, c = cov(N ) =
add(M) = min{b, cov(M)} = ω2. Hence

V (B∗Ḋ)ω2 |= ♦(add(N )) + c = cov(N ) = add(M) = ω2.

ω2 ω2 ω2 ω2

ω2 ω2

♦(add(N )) ω2 ω2 ω2

Diagram 4

2

Hrušák asked the following question after a talk I gave at the 33rd Winter
School on Abstract Analysis -Section of Topology held in the Czech Republic
(2005 January).

Question 4 (Hrušák). Let A be a amoeba forcing. Then V Aω2 |= ♦(s)?



Chapter 3

partitions of ω

The structure ([ω]ω,⊂∗) of the set of all infinite subsets of ω ordered by “almost
inclusion” is well studied in set theory. To describe much of the combinatorial
structure of ([ω]ω,⊂∗) cardinal invariants of the continuum are introduced like,
for example, the reaping number r or the independence number i.

In recent years partial orders similar to ([ω]ω,⊂∗) have been focused on and
analogous cardinal invariants have been defined and investigated. For example
((ω)ω,≤∗), the set of all infinite partitions of ω ordered by “almost coarser”,
and the cardinal invariants pd, td, sd, rd, ad and hd have been defined and
investigated in [10], [14] and [18].

3.1 Cardinal invariants related to partitions of
ω

We say that X is a partition of ω if X is a subset of ℘(ω), pairwise disjoint and⋃
X = ω. (ω) denotes the set of all partitions of ω. We say a partition is finite

if it has finitely many pieces. By (ω)<ω we denote the set of all finite partitions
of ω. Also by (ω)ω we denote the set of all infinite partitions of ω.

For X,Y ∈ (ω) X is coarser than Y , we write X ≤ Y if each element of X
is a union of elements of Y . Note that ((ω),≤) is lattice. By X ∧ Y we denote
the infinimum of X and Y for X,Y ∈ (ω).

For X,Y ∈ (ω)ω X is almost coarser than Y , We write X ≤∗ Y if all but
finite element of X is a union of elements of Y . X is almost orthogonal Y , we
write X ⊥ Y if X∧Y ∈ (ω)<ω. We say X and Y are compatible, we write X‖Y
if X is not orthogonal Y , i.e., X ∧ Y 6∈ (ω)<ω.

For X,Y ∈ (ω)ω X dual-splits Y if X‖Y and Y 6≤∗ X. We call S ⊂ (ω)ω

is dual-splitting family if for each Y ∈ (ω)ω there exists X ∈ S such that X
dual-splits Y . We call R ⊂ (ω)ω is dual-reaping family if for each Y ∈ (ω)ω X
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cannot be dual-split by Y i.e., there exists X ∈ R such that X ⊥ Y or X ≤∗ Y .

rd = min{|R| : R ⊂ (ω)ω ∧R is dual-reaping family}
sd = min{|S| : S ⊂ (ω)ω ∧ S is dual-splitting family}

T ⊂ (ω)ω is a tower if T is a decreasing sequence ordered by ≤∗ and no lower
bound.

td = min{|T | : T ⊂ (ω)ω ∧ T is a tower}.

P ⊂ (ω)ω is ≤∗-centered family if for each finite P0 ⊂ P there is some X ∈ (ω)ω

such that X ≤∗ Y for all Y ∈ P0.

pd = min{|P| : P ⊂ (ω)ω ∧ P is a ≤∗ -centered family with no lower bound}.

By (ω)c we denote the set of partitions of ω which is not almost finer than
{{n} : n ∈ ω}. A ⊂ (ω)c is a maximal almost orthogonal family (mao family) if
A is a maximal family of pairwise orthogonal partitions.

ad = min{|A| : A ⊂ (ω)ω ∧ is maximal almost orthogonal family}.

A family F of mao families of partitions shatters a partition A ∈ (ω)ω if there
are F ∈ F, and two distinct partitions X,Y ∈ F such that A is compatible with
both X and Y .

hd = min{|F| : F is mao families and∀X ∈ (ω)ω(F shatters X)}.

3.2 dual van Douwen diagram

The relationship between cardinal invariants of (℘(ω)/fin,⊂∗) is displayed in
van Douwen diagram. We also display the relationship between cardinal invari-
ants of ((ω)ω,≤∗) in dual van Douwen diagram.



3.2. DUAL VAN DOUWEN DIAGRAM 37

c

i
~~

}}}}}}}}
u

ÂÂ

>>>>>>>>

d
²²

r
¡¡

¡¡¡¡¡¡¡¡ÃÃ

@@@@@@@@
a

##

HHHHHHHHHHHHHHHHHHHHHHH

s
ÄÄ

~~~~~~~~
b
²²ÃÃ

@@@@@@@@
uu

kkkkkkkkkkkkkkkkkkkk

h
ÄÄ

ÄÄÄÄÄÄÄÄÂÂ

????????

t
²²

p
²²

ω1

²²

.

van Douwen’s diagram.

By the following property, rd is not countable.

Lemma 3.2.1. [14] If {Xn : n ∈ ω} be a countable subset of (ω)c, then there
exists Y such that Y dual-splits Xn for n ∈ ω. Therefore ω1 ≤ rd.

As h ≤ s and t ≤ h, we can prove the followings:

Theorem 3.2.2. [14] hd ≤ sd.

Theorem 3.2.3. [14] td ≤ hd.

Some cardinal invariants is just ω1 or c.

Theorem 3.2.4. [14] ad = c.

Theorem 3.2.5. [25] pd = td = ω1.

hd
oo sd oo c

ω1

~~

}}}}}}}}
oo rd

ÄÄ

¡¡¡¡¡¡¡¡

dual van Douwen diagram.
(The direction of the arrow is from larger to smaller cardinal).

This diagram doesn’t collapse. Halbeisen proved the following result by using
dual-Mathias forcing.
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Theorem 3.2.6. [18] It is consistent that ω1 < hd.

Also he prove the following consistency by using Mathias forcing:

Theorem 3.2.7. [18] It is consistent that hd < h. Therefore it is consistent
hd < sd.

In [14] by using finite support iteration of c.c.c forcing, it is proved the
following statement:

Theorem 3.2.8. [14] It is consistent that rd, sd < c.

3.3 Relationship with other cardinal invariants

In this section we shall investigate the relationship between cardinal invariants
related to (ω)ω and cardinal invariants in Cichoń’s diagram and van Douwen’s
diagram.

Theorem 3.3.1. [18] hd ≤ h.

Theorem 3.3.2. [14][21] sd ≥ s and rd ≤ r.

Theorem 3.3.3. (Kamo) rd ≤ d and sd ≥ b.

Proposition 3.3.4. There exists a σ-centered forcing which add a new parti-
tions of ω which dual-splits every partitions of ω in ground model. Therefore
p ≤ rd.
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This diagram doesn’t collapse. By using Cohen forcing, we can prove the fol-
lowing:

Proposition 3.3.5. It is consistent that sd > s, b. It is consistent that rd < r, d.

In chapter 4 we shall prove it is consistent that b < rd. As results we can
say the followings.

Proposition 3.3.6. It is consistent that p < rd.

We shall state relationship with Cichoń’s diagram.

cov(N ) oo non(M) oo cof(M) oo cof(N )

b oo
²²

d
²²

add(N ))
²²

oo add(M)
²²

oo cov(M)
²²

oo non(N )
²²

.

Cichoń’s diagram.

Theorem 3.3.7. [14] rd ≤ cov(M).

Theorem 3.3.8. (Brendle) rd ≤ cov(N ) and sd ≥ non(N ), sd ≥ non(M).

Therefore we have the following diagram.

sd

cov(N ) oo
tt

iiiiiiiiiiiiiiiiiiii
non(M) oo cof(M) oo cof(N )

b oo
²² ¥¥

ªªªªªªªªªªªªªªªª
d
²²

add(N ))
²²

oo add(M)
²²

oo cov(M)
¹¹

----------------------- ²²
oo non(N )

²²

rd

¥¥

ªªªªªªªªªªªªªªªªtt

jjjjjjjjjjjjjjjjjjj¹¹

.......................

.

This diagram doesn’t collapse.

Proposition 3.3.9. It is consistent that rd < non(M),non(N ), d. Also it is
consistent that sd > cov(M), cov(N ), b.

In chapter 4 we shall prove more strong statement which say that it is con-
sistent rd < add(M) and it is consistent that sd > cof(M).





Chapter 4

forcing and cardinal
invariants for partitions of ω

4.1 dual-ultrafilter number for partitions of ω

Let (P,≤) be a partial order. Then F ⊂ P is a filter if

(1) if X ∈ F , then Y ∈ F for Y ≥ X and

(2) if X,Y ∈ F , then there exists Z ∈ F such that Z ≤ X,Y .

For a filter F on P, B ⊂ F is a base for F if for any X ∈ F there exists Y ∈ B
such that Y ≤ X. For a filter F on P, F is a maximal filter if for each X ∈ P
X ∈ F or X 6∈ F . For a filter U on ℘(ω) U is a ultrafilter if for any X ∈ ℘(ω)
X ∈ U or ω \X ∈ U . Notice that on ℘(ω), U is a ultrafilter if and only if U is
a maximal filter.

For F ⊂ ℘(ω) F is a non-trivial filter if F contains {X ∈ ℘(ω) : ω ⊂∗ X}.
For F ⊂ (ω)ω F is a non-trivial filter if F contains {X ∈ (ω)ω : {{n} : n ∈
ω} ≤∗ X}. Then define ultrafilter number u and dual-ultrafilter number ud by

u = min{|B| : B is a base for a non-trivial maximal filter on ℘(ω)}.
ud = min{|B| : B is a base for a non-trivial maximal filter on (ω)ω}.

Then we have the following relationship.

Theorem 4.1.1. (Minami) ud ≤ u.

Proof. Let H be a non-principle filter on ω. Put FH be a filter on (ω)ω which
generated by {XA : A ∈ H} where XA = {{n} : n ∈ A} ∪ {ω \ A}. Then
following statement holds.

Claim 6. [25] FH is maximal iff H is an ultrafilter.
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Proof of Claim. Suppose FH is a maximal filter on (ω)ω. Let A ∈ [ω]ω such
that A 6∈ H. Choose Y ∈ FH with Y ∧ XA = 0. Now let B ∈ H such that
XB ≤ Y . Then B ∩A = ∅. Hence B ⊂ ω \A. Therefore H is an ultrafilter.

Conversely supposeH is an ultrafilter on ω. Let Y ∈ (ω)ω\FH . IfMin(Y ) =
{min(y) : y ∈ Y } 6∈ H, then Y ∧Xω\Min(Y )=0.
Assume Min(Y ) ∈ H. If Min∗(Y ) = {min(y) : y ∈ Y and |y| ≥ 2} 6∈ H, then
Y ∧Xω\Min∗(Y ) = 0.
If Min∗(Y ) ∈ H, then XMin(Y ) ≤ Y . It is contradict to Y 6∈ FH .

As r ≤ u, we have the following result.

Theorem 4.1.2. (Brendle) rd ≤ ud.

Proof. Let B ⊂ (ω)ω be a base for a maximal filter with |B| = ud. We shall
prove B is a dual-reaping family. Let X ∈ (ω)ω and let F be a maximal filter
generated by B. If X is compatible with all element of B, then {X}∪B generate
a filter. Since B is a base for a maximal filter, X ∈ F . Since B is a base for F ,
there exists Y ∈ B such that Y ≤ X.

r oo u

rd

~~

||||||||
oo ud

~~

}}}}}}}

It is natural to ask this diagram collapse.

Question 5. Is it consistent that rd < ud?

But it is difficult to show it is consistent that rd ≤ ud because of influence
from ♦. For r and u there is the following influence from ¦.
Theorem 4.1.3. [31] ♦(r) implies that there exists a P-point of character ω1.
In Particular ♦(r) implies u = ω1.

For filters on (ω)ω we introduce the notion corresponding to P-point.

Definition 14. [25] A filter F ⊂ (ω)ω has the property P if, for every descend-
ing sequence X0 ≥ X1 ≥ . . . ≥ Xn ≥ . . . of members of F , there exists X ∈ F
such that X ≤∗ Xn for all n ∈ ω.

As influence of ♦(r), we have the following theorem.

Theorem 4.1.4. (Minami) ♦(rd) implies there exists a maximal filter on (ω)ω

with property P of character ω1. In particular ♦(rd) implies ud = ω1.

Proof. For each δ < ω1 fix a bijection eδ : δ → ω. The domain of the function
F we will consider will consist of pairs (~U,C) such that ~U = 〈Uξ : ξ ≤ δ〉 is a
countable ≤∗-decreasing sequence of infinite partition of ω and C is a infinite
partition of ω. Given ~U as above, let B(U) be the set {xi : i ∈ ω} where xi is a
subset of ω such that
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(1) ∀j < i (xi ∩ xj = ∅),

(2) ∀j < i+ 1
(
xi is a union of blocks of Ue−1

δ (j)

)
and

(3) 0 < min(xi) < min(xj) for i < j.

(4) x0 = ω \
⋃

i>0

xi

Note that B(~U) is infinite partition of ω and almost contained in Uξ for every
xi < δ. Let

F (~U,C) =
{
{{i ∈ ω : xi ⊂ y} : y ∈ B(~U) ∧ C} if B(~U)‖C

1 otherwise.

Now suppose that g : ω1 → (ω)ω is a ♦(rd)-sequence for F . Construct a ≤∗-
decreasing sequence 〈Uξ : ξ < ω1〉 of infinite partition of ω by recursion. Let
Un = {n} ∪ {{k} : k ≥ n}. Having defined ~U = 〈Uξ : ξ < δ〉 let Uδ = {⋃ i ∈ a :
a ∈ g(δ)} where B(~U) = {xi : i ∈ ω}. The family 〈Uξ : ξ < ω1〉 generates a
filter with property P. To see that it is a maximal filter, note C ∈ (ω)ω is given
and g guesses ~U,C at δ.

Case 1. F (~U ¹δ, C)∗ ≥ g(δ).

(1) B(~U ¹δ)‖C.

Since F (~U ¹δ, C)∗ ≥ g(δ), B(~U ¹δ) ∧ C∗ ≥ Uδ. So C∗ ≥ Uδ.

(2) B(~U ¹δ) ⊥ C. Then Uδ = B(~U ¹δ). So Uδ ⊥ C.

Case 2. F (~U ¹δ, C) ⊥ g(δ).

(1) B(~U ¹δ)‖C.

Since F (~U ¹ δ, C) ⊥ g(δ), B(~U ¹ δ) ∧ C ⊥ Uδ. Since Uδ ≤∗ B(~U ¹ δ),
Uδ ⊥ C.

(2) B(~U ¹δ) ⊥ C.

Then 1 ⊥ g(δ). It is impossible.

Therefore Uδ ⊥ C or C∗ ≥ Uδ.

Corollary 4.1.5. (Minami) It is consistent that ud < r.

Proof. By product lemma C(ω2) = C(ω2) ∗ C(ω1). Since Cohen forcing adds a
partitions of ω which is almost orthogonal to every non-trivial partitions of ω.
So V C(ω2) |= ♦(rd). But Cohen forcing enlarge r. Therefore V Cω2 |= ud < r.
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4.2 independence number for partitions of ω

In this section we will define the dual-independence number id analogous to the
independence number i and get a consistency result.

Once we define dual-independence number id, we can prove the following
proposition similar to the proof of r ≤ i .

Proposition 4.2.1. [Brendle] rd ≤ id.

And rd has the following property.

Theorem 4.2.2. [14] MA implies rd = c.

So it is consistent that id = c. And it is natural to ask the following question.

Question 6. Is it consistent that id < c?

4.2.1 (ω)ω and dual-independent family

We will define the dual-independence number and study its properties.
As ([ω]ω,⊂∗), ((ω)ω,≤∗) has the following properties:

Lemma 4.2.3. [14] Suppose that X0 ≥ X1 ≥ X2 ≥ . . . is a decreasing sequence
of (ω)ω. Then there exists Y ∈ (ω)ω such that Y ≤∗ Xn for n ∈ ω.

Lemma 4.2.4. [14] For X,Y ∈ (ω)ω if ¬(X ≤∗ Y ), then there exists Z ∈ (ω)ω

such that Z ≤∗ X and Z ⊥ Y .

So ((ω)ω,≤∗) is similar to ([ω]ω,⊂∗). On the other hand there is a serious
difference: ([ω]ω,⊂∗) is a Boolean algebra but ((ω)ω,≤∗) is just a lattice and
not a Boolean algebra.

In general when we define independence, we use complementation. But
((ω)ω,≤∗) doesn’t have any natural complementation. So we will define inde-
pendence for ((ω)ω,≤∗) without mentioning complementation.

Definition 15. Let I be a subset of (ω)ω. I is dual-independent if for all A
and B finite subsets of I with A ∩ B = ∅ there exists C ∈ (ω)ω such that

(i) C ≤∗ A for A ∈ A and

(ii) C ⊥ B for B ∈ B.

Then define dual-independence number id by

id = min{|I| : I is a maximal dual-independent family}.

Since there is no natural complementation for an element of ((ω)ω,≤∗),
it becomes more difficult to handle dual-independent families than to handle
independent families for a Boolean algebra. But the following lemmata helps to
handle dual-independent families.
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Lemma 4.2.5. [14] If X,Y ∈ (ω)ω and ¬(X ≤∗ Y ), then there exists an
infinite sequence {an}n∈ω of different elements of X such that

∀n ∈ ω∃y ∈ Y (y ∩ a2n 6= ∅ ∧ y ∩ a2n+1 6= ∅)

or there exists a finite subset A of X such that the set

{x ∈ X \A : ∃y ∈ Y (x ∩ y 6= ∅ ∧
⋃
A ∩ y 6= ∅)}

is infinite.

Proof. Suppose that we have defined a sequence {an}n<2k but for any two a, b ∈
X \ {a0, . . . , a2k−1} and y ∈ Y we have a∩ y = ∅ or b∩ y = ∅. Let A denote the
finite family {a0, . . . , a2k−1} and let

F = {x ∈ X \A : ∃y ∈ Y
(
x ∩ y 6= ∅ ∧

⋃
A ∩ y 6= ∅

)
}.

If F is finite, then the partition

X∗ = {
⋃
A ∪

⋃
F} ∪ (X \A ∪ F)

is a finite modification of X which is coarser than Y . It is a contradiction to
¬(X ≤∗ Y ).

By this lemma we can prove the following useful lemma.

Lemma 4.2.6. If X ∈ (ω)ω and B is a finite subset of (ω)ω such that ¬(X ≤∗
B) for B ∈ B, then there exists Z ≤ X such that Z ⊥ B for B ∈ B.

Proof. Let B = {Bi : i < n}. By the above lemma for each i < n there exists
an infinite sequence {ai

k}k∈ω of different elements of X such that

∀k ∈ ω∃b ∈ Bi(b ∩ ai
2k 6= ∅ ∧ b ∩ ai

2k+1 6= ∅)

or there exists a finite subset Ai of X and an infinite sequence {ai
k}k∈ω of

different elements of X \Ai such that

∀k ∈ ω∃b ∈ Bi(b ∩ ai
k 6= ∅ ∧

⋃
Ai ∩ b 6= ∅).

In the first case we define Ai = ∅.
Recursively we shall construct a subsequence {bik}k∈ω of {ai

k}k∈ω for i < n.
Given {bil}l<2k for i < n and bi2k, b

i
2k+1 for i < j for some j < n.

Aj = ∅ Choose k0 ∈ ω such that

{aj
2k0
, aj

2k0+1} ∩
(⋃

i<n

Ai ∪ {bil : i < n ∧ l < 2k} ∪ {bi2k, b
i
2k+1 : i < j}

)
= ∅.

Put bj2k = aj
2k0

and bj2k+1 = aj
2k0+1.
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Aj 6= ∅ Choose k0 < k1 ∈ ω such that

{aj
k0
, aj

k1
} ∩

(⋃

i<n

Ai ∪ {bil : i < n ∧ l < 2k} ∪ {bi2k, b
i
2k+1 : i < j}

)
= ∅.

Put bj2k = aj
k0

and bj2k+1 = aj
k1

.

Define Z = {
⋃

i<n

bi2k : k ∈ ω} ∪ {ω \
⋃

k∈ω

⋃

i<n

bi2k}. Then Z ≤ X and for each

z ∈ Z and i < n there exists b ∈ Bi such that

b ∩ z 6= ∅ ∧ (ω \
⋃

k∈ω

⋃

i<n

bi2k) ∩ b 6= ∅.

Hence Z ⊥ Bi for i < n.

So it becomes easier to check dual-independence.

Corollary 4.2.7. I is dual-independent if and only if for each finite subset A
of I and B ∈ I \ A ∧

A 6≤∗ B.
By using corollary we can prove Proposition 4.2.1.

Proof. (Proposition 4.2.1) Let I be a maximal dual-independence family. For
A ∈ [I]<ω and B ∈ I \ A fix CA, B ∈ (ω)ω such that

(i) CA,B ≤∗ A for A ∈ A and

(ii) CA,B ⊥ B.

Let R = {CA,B : A ∈ [I]<ω ∧ B ∈ (I \ A) ∪ {∅}}. We shall show R is a
dual-reaping family.

Assume to the contrary, there exists X ∈ (ω)ω such that X dual-splits Y
for Y ∈ R. Then X‖Y and Y 6≤∗ X for Y ∈ R. So for each A ∈ [I]<ω

CA,B ≤∗ ∧A 6≤∗ X. And for each A ∈ [I]<ω and B ∈ I \ A,
∧A ∧ X 6≤∗ B

because CA,B‖X. Therefore {X} ∪ I is dual-independent. It is contradiction.

4.2.2 Cohen forcing and dual-independence number

By using Cohen forcing we will prove it is consistent that id < c.

Theorem 4.2.8. Suppose V |= CH. Then V C(ω2) |= id = ω1.

To prove Theorem 4.2.8 we use the following lemma.

Lemma 4.2.9. Assume p ∈ C, I is a countable dual-independent family and Ẋ
is a C-name such that p ° “Ẋ is a non-trivial infinite partition of ω and {Ẋ}∪I
is dual-independent”. Then there exists X∗ ∈ (ω)ω ∩ V such that {X∗} ∪ I is
dual-independent and p ° Ẋ ⊥ X∗.
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Proof of 4.2.8 from 4.2.9 Within the ground model we shall define a maximal
dual-independent family I of size ω1. It suffices to verify maximality of I in the
extension via C (see [22] pp256).

By CH, let 〈pξ, τξ〉 ξ < ω1 enumerate all pairs 〈p, τ〉 such that p ∈ C and
τ is a nice name for an infinite partition of ω. By recursion, pick an infinite
partition of ω as follows. Given {Xη : η < ξ} for some ξ < ω1. Choose Xξ so
that

(1) {Xξ} ∪ {Xη : η < ξ} is dual-independent.

(2) If pξ ° “{τξ} ∪ {Xη : η < ξ} is dual-independent”, then pξ ° Xξ ⊥ τξ.

(2) is possible by Lemma 4.2.9. Let I = {Xη : η < ω1}. We shall prove I is
maximal. If I is not maximal in V [G] for some C-generic G, then there exists
pξ ∈ G and τξ such that pξ ° {τξ} ∪ I is dual-independent. By construction
there exists Xξ ∈ I and pξ ° τξ ⊥ Xξ. It is a contradiction.

2

Proof of 4.2.9. Let P(I) be a partial order such that 〈σ,H〉 ∈ P(I) if σ is a
partition of a finite subset of ω and H is a finite subset of I. It is ordered by
〈σ,H〉 ≤ 〈τ,G〉 if

(i) ∀x ∈ τ∃x′ ∈ σ(x ⊂ x′),

(ii) H ⊃ G,

(iii) ∀x0 6= x1 ∈ τ∀x′0 ∈ σ (x0 ⊂ x′0 → x1 ∩ x′0 = ∅),
(iv) ∀Y ∈ G∀y0, y1 ∈ (Y ∧ τ)∀y′0, y′1 ∈ (Y ∧ σ)

(
y0 ∩ y1 = ∅ ∧

⋃
τ ∩ y0 6= ∅ ∧

⋃
τ ∩ y1 6= ∅ ∧ y0 ⊂ y′0 ∧ y1 ⊂ y′1 → y′0 ∩ y′1 = ∅

)
.

Claim 7. The following sets are dense.

(i) Dn = {〈σ,H〉 : n ∈ ⋃
σ} for n ∈ ω.

(ii) Dl
A = {〈σ,H〉 : A ⊂ H ∧ |{h ∈ (

∧H ∧ σ) : h ∩⋃
σ 6= ∅}| ≥ l} for finite

subsets A of I and l ∈ ω.

(iii) DA,l = {〈σ,H〉 : A ⊂ H ∧ ∃x ∈ σ (|{h ∈ ∧H : x ∩ h 6= ∅}| ≥ l)} for finite
subsets A of I and l ∈ ω.

(iv) Let A be a finite subset of I, B ∈ I \ A and A =
∧A. Since ¬(A ≤∗ B)

and by Lemma 4.2.5, there exists {an}n∈ω such that

∀n ∈ ω∃b ∈ B (a2n ∩ b 6= ∅ ∧ a2n+1 ∩ b 6= ∅) (4.1)

or there exists a finite subset A0 of A such that the set

FA0 = {a ∈ A \A0 : ∃y ∈ Y
(
y ∩ a 6= ∅ ∧ y ∩

⋃
A0 6= ∅

)
} (4.2)

is infinite. If (4.1) holds, fix {an}n∈ω. If (4.2) holds, fix A0 and FA0
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(4.1) Let DA,B,l = {〈σ,H〉 : ∃{ai : i < 2l} ⊂ (A∧σ)
(∀i < 2l(

⋃
σ ∩ ai 6= ∅)∧

∧{ai : i < 2l} is pairwise disjoint ∧ ∀i < l∃b ∈ B(a2i ∩ b 6= ∅ ∧ a2i+1 ∩ b 6= ∅))}.
(4.2) Let DA,B,l = {〈σ,H〉 : ∃{ai : i < l} ⊂ (A∧ σ)

(∀i < l(
⋃
σ ∩ ai 6= ∅)∧

{ai : i < l} is pairwise disjoint ∧ ∀i < l(
⋃
A0 ∩ ai = ∅)∧

∀a ∈ A0(a ∩
⋃
σ 6= ∅) ∧ ∀i < l∃b ∈ B(b ∩ ai 6= ∅ ∧ b ∩⋃

A0 6= ∅))}.

(v) Let {ẋi : i ∈ ω} be C-names such that ° Ẋ = {ẋi : i ∈ ω} and min ẋi <

min ẋi+1. Put DẊ,l,q = {〈σ,H〉 : ∃r ≤ q
(
r ° ∃x ∈ (Ẋ ∧ σ)(

⋃
i<l ẋi ⊂ x)

)
}

for q ≤ p and l ∈ ω.

Proof of Claim.
(i) Clear.
(ii) Let 〈τ,H〉 ∈ P(I). Without loss of generality, we can assume A ⊂ H. Let
H = ∧H. Choose hi ∈ H for i < l such that hi ∩

⋃
τ = ∅. Choose ni ∈ hi. Put

σ = τ ∪ {{ni} : i < l}. Then {hi : i < l} ⊂ {h ∈ (H ∧ σ) : h ∩ ⋃
σ 6= ∅}. So

〈σ,H〉 ∈ Dl
A.

We shall prove 〈σ,H〉 ≤ 〈τ,H〉. Let Y ∈ H. Since hi ∩
⋃
τ = ∅ and ni ∈ hi

for i < l, {y ∈ (Y ∧ σ) : y ∩⋃
σ 6= ∅} = {y ∈ (Y ∧ τ) : y ∩⋃

σ 6= ∅}∪̇{y ∈ Y :
∃i < l(ni ∈ y)}. Hence 〈σ,H〉 ≤ 〈τ,H〉. (iii) Let 〈τ,H〉 ∈ P(I). Without loss of
generality, we can assume A ⊂ H. Let H =

∧H. Choose {hi : i < l} distinct
elements of H such that hi ∩

⋃
τ = ∅ for i < l. Choose ni ∈ hi for i < l. Put

σ = τ ∪ {{ni : i < l}}. Then {h ∈ H : {ni : i < l} ∩ h 6= ∅} = {hi : i < l}. So
〈σ,H〉 ∈ DA,l.

We shall prove 〈σ,H〉 ≤ 〈τ,H〉.
Since hi ∩

⋃
τ = ∅ and ni ∈ hi for i < l, {y ∈ (Y ∧ σ) : y ∩ ⋃

σ 6=
∅} = {y ∈ (Y ∧ τ) : y ∩ ⋃

τ 6= ∅}∪̇{⋃{y ∈ Y : ∃i < l(ni ∈ y)}}. Hence
〈σ,H〉 ≤ 〈τ,H〉. (iv) (1) Let 〈τ,H〉 ∈ P(I). Choose distinct ij ∈ ω for j ≤ l so
that

⋃
τ ∩ a2ij = ∅ and

⋃
τ ∩ a2ij+1 = ∅ for j < l. Let kn = min an for n ∈ ω.

Put σ = τ ∪ {{k2ij}, {k2ij+1} : j < l}. Since
⋃
τ ∩ a2ij =

⋃
τ ∩ a2ij+1 = ∅

and kn ∈ an, {a2ij , a2ij+1 : j < l} ⊂ (A ∧ σ) , {a2ij , a2ij+1 : j < l} is pairwise
distinct and for i < l there exists b ∈ B such that b∩a2ij 6= ∅ and b∩a2ij+1 6= ∅.
So 〈σ,H〉 ∈ DA,B,l.

We shall prove 〈σ,H〉 ≤ 〈τ,H〉 Let Y ∈ H. Since
⋃
τ ∩a2ij =

⋃
τ ∩a2ij+1 =

∅, {y ∈ (Y ∧ σ) : y ∩⋃
σ 6= ∅} = {y ∈ (Y ∧ τ) : y ∩⋃

σ 6= ∅} ∪ {y ∈ (Y ∧ τ) :
∃j < l(k2ij ∈ y ∨ k2ij+1 ∈ y)}. Hence 〈σ,H〉 ≤ 〈τ,H〉.
(2) Let 〈τ,H〉 ∈ P(I). Without loss of generality we can assume

⋃
τ ∩ a 6= ∅

for a ∈ A0. Choose distinct ai for i < l so that ai ∩ ⋃
τ = ∅ and ai ∈ FA0 .

Let ki = min ai and σ = τ ∪ {{ki} : i < l}. Since
⋃
τ ∩ ai = ∅, ai ∈ FA0 and

ki ∈ ai, {ai : j < l} ⊂ (A ∧ σ), {ai : i < l} is pairwise distinct,
⋃
A0 ∩ ai = ∅

and for each i < l there exists b ∈ B such that b ∩ ai 6= ∅ and b ∩⋃
A0 6= ∅. So

〈σ,H〉 ∈ DA,B,l.
We shall prove 〈σ,H〉 ≤ 〈τ,H〉. Let Y ∈ H. Then {y ∈ (Y ∧ σ) : y ∩⋃

σ 6=
∅} = {y ∈ (Y ∧ τ) : y ∩ ⋃

τ 6= ∅} ∪ {y ∈ (Y ∧ τ) : ∃i < l(ki ∈ y)}. Hence
〈σ,H〉 ≤ 〈τ,H〉. (v) Let 〈τ,H〉 ∈ P(I) and q ∈ C. Let H =

∧H. Let q′ ≤ q
and ni ∈ ω such that q′ ° ni ∈ ẋi for i < l. Without loss of generality we can
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assume ni ∈
⋃
τ . Since p ° {Ẋ} ∪ I is dual-independent, p ° ¬(H ≤∗ Ẋ).

So p ° “∃〈hn : n ∈ ω〉 ⊂ H
(
∀n ∈ ω∃x ∈ Ẋ(h2n ∩ x 6= ∅ ∧ h2n+1 ∩ x 6= ∅)

)

or ∃H0 ⊂ H finite
(∣∣∣{h ∈ H \H0 : ∃x ∈ Ẋ(x ∩ h 6= ∅ ∧ x ∩⋃

H0 6= ∅)}
∣∣∣ = ω

)
”.

Without loss of generality we can assume

q′ ° “∃〈hn : n ∈ ω〉 ⊂ H
(
∀n ∈ ω∃x ∈ Ẋ(h2n ∩ x 6= ∅ ∧ h2n+1 ∩ x 6= ∅)

)
”

(4.3)
or

q′ ° “∃finite H0 ⊂ H
(∣∣∣{h ∈ H \H0 : ∃x ∈ Ẋ(x ∩ h 6= ∅ ∧ x ∩

⋃
H0 6= ∅)}

∣∣∣ = ω
)

”.
(4.4)

case(4.3) Let r ≤ q′, 〈hi : i < 2l〉 ⊂ H and 〈ki : i < 2l〉 such that
⋃
σ ∩ hi = ∅,

hi are pairwise disjoint and

r ° ∀i < l∃x ∈ Ẋ (k2i ∈ x ∩ h2i ∧ k2i+1 ∈ x ∩ h2i+1) .

Put k−1 = k0. Then put σ = {s′ : s′ = s ∪ {k2i, k2i−1 : ni ∈ s} for s ∈ τ}.
We shall prove 〈σ,H〉 ∈ DẊ,l,q. Let ẋ be a C-name such that r ° “ẋ ∈

(Ẋ ∧ σ) ∧ ẋi ⊂ ẋ” for some i < l. Since r ° ni ∈ ẋi, r ° ni ∈ ẋ. Since there
exists s′ ∈ σ such that {ni, k2i, k2i−1} ⊂ s′, r ° k2i ∈ ẋ. Since r ° “∃x ∈
Ẋ({k2i, k2i+1} ⊂ x)” and there exists s′ ∈ σ such that {k2i+1, k2i+2, ni+1} ⊂ s′,
r ° ni+1 ∈ ẋ. So r °

⋃
i<l ẋi ⊂ ẋ. Hence 〈σ,H〉 ∈ DẊ,l,q.

Finally we shall prove 〈σ,H〉 ≤ 〈τ,H〉. Let Y ∈ H and yi ∈ Y such that
ki ∈ yi for i < 2l. Then {y ∈ (Y ∧ σ) : y ∩ ⋃

σ 6= ∅} = {y ∪ ⋃{y2i, y2i−1 :
∃i < l(ni ∈ y)} : y ∈ (Y ∧ τ) ∧ y ∩ ⋃

τ 6= ∅}. Since H ≤ Y , {hi : i < 2l} is
pairwise disjoint and

⋃
τ ∩ hi = ∅ for i < 2l, {yi : i < 2l} is pairwise disjoint

and
⋃
τ ∩yi = ∅ for i < l. So if y 6= y′ ∈ (Y ∧ τ) with y∩⋃

τ 6= ∅∧y′∩⋃
τ 6= ∅,

then (y ∪ ⋃{y2i, y2i−1 : ni ∈ y}) ∩ (y′ ∪ ⋃{y2i, y2i−1 : ni ∈ y′}) = ∅. Hence
〈σ,H〉 ≤ 〈τ,H〉.
case(4.4) Let G be C-generic over V with q′ ∈ G. We will work in V [G]. Let
H0 be a finite subset of H such that the set

{h ∈ H \H0 : ∃x ∈ Ẋ[G] : h ∩ x 6= ∅ ∧ x ∩
⋃
H0 6= ∅}

is infinite where Ẋ[G] is the interpretation of Ẋ in V [G]. Since H0 is finite,
there exists h′ ∈ H0 such that the set

{h ∈ H \ {h′} : ∃x ∈ Ẋ[G] (h ∩ x 6= ∅ ∧ x ∩ h′ 6= ∅)}
is infinite.

Let 〈hj : j ∈ ω〉 be an enumeration of the set

{h ∈ H \ {h′} : ∃x ∈ Ẋ[G]
(
h ∩ x 6= ∅ ∧ x ∩ h′ 6= ∅ ∧ h ∩

⋃
τ = ∅

)
}

and 〈kj : j ∈ ω〉 be natural numbers such that

∃x ∈ Ẋ[G](k2j ∈ x ∩ hj ∧ k2j+1 ∈ x ∩ h′).
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Let {Yi : i < m} be an enumeration of H. By induction we shall construct
decreasing sequence {Aj : j < m} of infinite sets of natural numbers. Put
A−1 = {k2i+1 : i ∈ ω} \⋃

τ .
Suppose we already have Aj . Let Aj ¹ Yj+1 = {Aj ∩ y : y ∈ Yj+1} \ {∅}. If

Aj ¹ Yj+1 is infinite, put

Aj+1 =
⋃
{Aj ∩ y : y ∩

⋃
τ = ∅ ∧ y ∈ Yj+1}.

If Aj ¹ Yj+1 is finite, then choose y ∈ Yj+1 so that Aj ∩ y is infinite and put

Aj+1 = y ∩Aj .

In both cases Aj+1 is infinite. Choose ji for i < l so that k2ji+1 ∈ Am−1 for
i < l. Then define σ = {s′ : s′ = s∪{k2ji

: ni ∈ s} for s ∈ τ}∪{{k2ji+1 : i < l}}.
From now on we will work in V and prove 〈σ,H〉 ∈ DẊ,q,l. Let r ≤ q′ such

that
r ° ∀i < l∃x ∈ Ẋ (k2ji

∈ x ∩ hji
∧ k2ji+1 ∈ x ∩ h′) .

Suppose r ° “ẋ ∈ (X ∧ σ) ∧ ẋi ⊂ ẋ” for some i < l and a C-name ẋ. Since
r ° ẋi ⊂ ẋ, r ° ni ∈ ẋ. Since there exists s′ ∈ σ such that {k2ji , ni} ⊂ s′,
r ° {k2ji , ni} ⊂ ẋ. Since r ° ∃x ∈ Ẋ(k2ji ∈ x ∩ hji ∧ k2ji+1 ∈ x ∩ h′),
r ° {k2ji , k2ji+1} ⊂ ẋ. Since {k2ji+1 : i < l} ∈ σ, r ° k2ji+1+1 ∈ ẋ. By
similar argument, we have r ° ẋi+1 ⊂ ẋ. Therefore r °

⋃
i<l ẋi ⊂ ẋ. Hence

〈σ,H〉 ∈ DẊ,q,l.
Finally we shall prove 〈σ,H〉 ≤ 〈τ,H〉. Let Y ∈ H. By construction of

{Aj : j < m}, there is y ∈ Y such that {k2ji+1 : i < l} ⊂ y or for i < l and
y ∈ Y if k2ji+1 ∈ y, then y ∩⋃

τ = ∅.
case 1. There is y ∈ Y such that {k2ji+1 : i < l} ⊂ y.

For each y ∈ Y let yτ ∈ (Y ∧ τ) such that y ⊂ yτ . Let y′ ∈ Y such that
{k2ji+1 : i < l} ⊂ y′. Then {y ∈ (Y ∧ σ) : y ∩⋃

σ 6= ∅} = {y′τ} ∪ {yτ ∪
⋃{y∗ ∈

Y : ∃i < l (k2ji ∈ y∗ ∧ ni ∈ yτ )} : y ∩⋃
τ 6= ∅ ∧ y ∈ Y }.

Suppose y′τ 6= yτ for some y ∈ Y with y ∩⋃
τ 6= ∅. Since H ≤ Y , {hji : i <

l} ∪ {h′} is pairwise disjoint, y′ ⊂ h′, k2ji ∈ hji and
⋃
σ ∩ hi = ∅, y′σ ∩ yσ =

y′τ ∩ (yτ ∪ {y∗ ∈ Y : ∃i < l (k2ji ∈ y∗ ∧ ni ∈ yτ )}) = ∅.
Let y0

τ 6= y1
τ such that y0

τ 6= y′τ , y1
τ 6= y′τ , y0∩⋃

τ 6= ∅ and y1∩⋃
τ 6= ∅. Since

H ≤ Y , {hji : i < l} is pairwise disjoint, y′ ⊂ h′, k2ji ∈ hji and
⋃
σ ∩ hi = ∅,

y0
σ ∩ y1

σ = (y0
τ ∪

⋃{y∗ ∈ Y : ∃i < l
(
k2ji ∈ y∗ ∧ ni ∈ y0

τ

)}) ∩ (y1
τ ∪

⋃{y∗ ∈ Y :
∃i < l

(
k2ji ∈ y∗ ∧ ni ∈ y1

τ

)} = ∅. Hence ∀y0, y1 ∈ Y
(
y0

τ ∩ y1
τ = ∅ ∧

⋃
τ ∩ y0 6= ∅ ∧

⋃
τ ∩ y1 6= ∅ → y0

σ ∩ y1
σ = ∅

)
.

case 2. for i < l and y ∈ Y if k2ji+1 ∈ y.
If ∀i < l∀y ∈ Y (k2ji ∈ y → y ∩⋃

τ = ∅), {y ∈ (Y ∧ σ) : y ∩ ⋃
σ 6= ∅} =

{⋃{y ∈ Y : ∃i < l(k2ji+1 ∈ y)}}∪{yτ∪
⋃{y∗ ∈ Y : ∃i < l (k2ji ∈ y∗ ∧ ni ∈ yτ )} :

y ∩ ⋃
τ 6= ∅ ∧ y ∈ Y }. Since k2ji+1 ∈ y implies y ∩ ⋃

τ = ∅, ⋃{y ∈ Y : ∃i <
l(k2ji+1 ∈ y)} ∩

⋃
τ = ∅.
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Let y0
τ 6= y1

τ with y0 ∩ ⋃
τ 6= ∅ and y1 ∩ ⋃

τ 6= ∅. Since H ≤ Y and
{hji

: i < l} is pairwise disjoint, (y0
τ ∪

⋃{y∗ ∈ Y : ∃i < l(k2ji
∈ y∗ ∧ ni ∈

y0
τ )}) ∩ (y1

τ ∪
⋃{y∗ ∈ Y : ∃i < l(k2ji ∈ y∗ ∧ ni ∈ y1

τ )}) = ∅. Hence ∀y0, y1 ∈ Y
(
y0

τ ∩ y1
τ = ∅ ∧

⋃
τ ∩ y0 6= ∅ ∧

⋃
τ ∩ y1 6= ∅ → y0

σ ∩ y1
σ = ∅

)
.

Therefore 〈σ,H〉 ≤ 〈τ,H〉.

Claim ¥

Let D = {Dn : n ∈ ω} ∪ {Dl
A : A is a finite subset of I ∧ l ∈ ω} ∪ {DA,l :

A is a finite subset of I ∧ l ∈ ω} ∪ {DA,B,l : A is a finite subset of I ∧ B ∈
I \ A ∧ l ∈ ω} ∪ {DẊ,l,q : q ≤ p ∧ l ∈ ω} and G is D-generic for P(I).

Let XG be a partition generated by ≡G where ≡G is defined by

n ≡G m if ∃〈σ,H〉∃x ∈ σ ({n,m} ⊂ x) .

Then by (i) and (ii) XG ∈ (ω)ω. By (ii) XG ∧ ∧A ∈ (ω)ω for finite A ⊂ I.
By (iii) ¬(

∧A ≤∗ XG) for finite A ⊂ I. By (iv) ¬(XG ∧
∧A ≤∗ Y ) for finite

A ⊂ I and Y ∈ I \ A. Therefore {XG} ∪ I is dual-independent by Corollary
4.2.7. By (v) p ° Ẋ ⊥ XG. Hence XG is a required partition.

2

4.3 reaping number and splitting number for
partitions of ω

In this section we shall investigate the relationship between rd, sd, b and d.

Definition 16. [14] Let DS be a forcing notion such that 〈σ,A〉 ∈ DS such that

(1) σ is a partition of finite subset of ω,

(2) A ∈ (ω)<ω,

(3) for s ∈ σ there exists a ∈ A such that s ⊂ a and

(4) for a ∈ A the set {s ∈ σ : s ⊂ a} has cardinality at most one.

DS is ordered by 〈σ,A〉 ≤ 〈τ,B〉 if

(i) ∀t ∈ τ∃s ∈ σ (t ⊂ s),

(ii) A ≥ B.

Theorem 4.3.1 (Brendle). The followings are consistent;

(i) sd < d,

(ii) rd > b
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Proof. It suffices to show following claim.

Claim 8. Let ḟ be a DS-name such that °DS ḟ ∈ ωω. There exists 〈fn : n ∈
ω〉 ∈ V such that fn ∈ ωω and for any g ∈ ωω ∩ V if g 6≤∗ fn, then °DS g 6≤∗ ḟ
Proof of Claim. Let ḟ be a DS-name for a function from ω to ω. LetDSσ,k be a
subset of DS such that 〈τ,A〉 ∈ DSσ,k if 〈τ, A〉 ∈ DS, τ = σ and |A| ≤ k. Define
fσ,k ∈ ωω ∩ V so that fσ,k(n) = min{m : ∀〈σ,A〉 ∈ DSσ,k¬〈σ,A〉 ° ḟ(n) ≥ m}.
Subclaim. fσ,k is well-defined.
Proof of subclaim. Suppose not. Then there exists n ∈ ω such that for each
j ∈ ω there exists Aj ∈ (ω)≤k such that 〈σ,Aj〉 ° ˙f(n) ≥ j. For A ∈ (ω)≤k

with {ai : i < k} such that min ai < min aj for i < j define hA ∈ kω such that
hA(l) = i if l ∈ ai. By compactness of kω there exists A ∈ (ω)≤k and 〈jl : l ∈ ω〉
such that liml→∞ hAjl

= hA. Then 〈σ,A〉 ∈ DS since for large enough i ∈ ω
hAji

¹ ∪σ = hA ¹ ∪σ and 〈σ,Aji
〉 ∈ DS.

Let 〈τ,B〉 ≤ 〈σ,A〉 and m ∈ ω such that 〈τ,B〉 ° ḟ(n) = m. Since hji
→ hA,

there exists i0 such that i ≥ i0 implies ji > m and hAji
¹ ∪τ = hA ¹ ∪τ , so is

〈τ,B〉 and 〈σ,Aji〉 compatible. But it is contradiction to 〈σ,Aji〉 ° ḟ(n) ≥ ji >
m.

subclaim ¥

Let g ∈ ωω ∩ V such that g 6≤∗ fσ,k for a partition σ of a finite subset of ω
and k ∈ ω. Let n ∈ ω and 〈σ,A〉 ∈ DS with |A| ≤ k. Then there exists m ≥ n
such that g(m) > fσ,k(m). By definition of fσ,k, there exists 〈τ,B〉 ≤ 〈σ,A〉
such that 〈τ,B〉 ° ḟ(m) ≤ fσ,k(m) < g(m). So °DS g 6≤∗ ḟ .

Claim ¥ Theorem 2

By this theorem it looks that there is no relation between rd and d, sd and b.
But Kamo at Osaka prefecture university prove the following Theorem.

Theorem 4.3.2. (Kamo) b ≤ sd. d ≥ rd.

To prove this theorem we use the following lemma.

Lemma 4.3.3. Suppose M |= ZFC−. Let d ∈ ωω such that f ≤∗ d for
f ∈ ωω ∩M . Let a = rng(d). Then x \ a is infinite for x ∈M ∩ ωω.

2

[b ≤ sd]
LetM0 ⊂M1 ⊂M2 ⊂ . . . be a sequence of ZFC− model. Let {dn+1 : n ∈ ω}

be a sequence such that

• dn+1 ∈Mn+1 ∩ ω↑ω,

• f ≤∗ dn+1 for f ∈Mn ∩ ωω for n ∈ ω,
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• rng(dn+1) ⊃ rng(dn),

• dn+1(0) > n and

• for f ∈M0 ∩ ωω for all but finite n ∈ ω |[f(n), f(n+ 1)) ∩ rng(d1)| ≤ 1.

For each n ∈ ω put a0 = ω and an = rng(d1) ∩ rng(d2) ∩ . . . ∩ rng(dn). Then
ω = a0 ⊂ a1 ⊂ . . . and

⋂
n<ω an = ∅. Put bn = an \ an+1 for n ∈ ω. By Lemma

4.3.3 bn ∈ [ω]ω. Put B = {bn : n ∈ ω}. Then B ∈ (ω)ω and B ⊂ [ω]ω.

Lemma 4.3.4. For x ∈ M0 ∩ [ω]ω and n ∈ ω x ∩ an is infinite if and only if
x ∩ bn is infinite.

Proof. (⇐) It is clear.
(⇒) By Lemma 4.3.3 and x∩an ∈ [ω]ω∩Mn, x∩an\an+1 = x∩(an\an+1) =

x ∩ bn is infinite.

Lemma 4.3.5. For X ∈M0 ∩ (ω)ω if X‖B, then B ≤∗ B.

b ≤ sd follows directly from Main lemma. Because by Lemma ?? |M0 ∩ ωω| <
b implies M0 ∩ (ω)ω cannot dual-split B.

Lemma 4.3.6. (1) For x ∈ X ∩ [ω]ω there exists n < ω such that x∩an = ∅.
(2) There exists n ∈ ω such that x ∩ an = ∅. Therefore x ∩ an = ∅ for all but

finite n ∈ ω
Proof. (1) To get a contradiction, assume that x ∈ X ∩ [ω]ω and x∩ an 6= ∅ for
all n < ω. Then it holds x∩ an infinite. So by Lemma 4.3.4 x∩ bn is infinite for
all n < ω. So x glue all elements of B. Hence X ⊥ B. It is contradict to X‖B.
(2) By (1) for each x ∈ X ∩ [ω]ω, put kx = max{n < ω : x∩an is infinite}. Note
that for each x ∈ X ∩ [ω]ω x ∩ bj is infinite for j ≤ kx. Since X‖B, we have
that k = sup{kx : x ∈ X ∩ [ω]ω}. Put y =

⋃
(X ∩ [ω]ω) \⋃

n≤k bn. Since X‖B,
there is an m < ω with m > k such that y ∩ bm = ∅. Then we have that y ∩ am

is finite. So there exists an n ≥ m such that y ∩ an = ∅.

Set Y = {x ∈ X : 2 ≤ |x| < ω}.
Lemma 4.3.7. For all but finite x ∈ Y |x ∩ a1| ≤ 1.

Proof. Since Y ⊂ [ω]<ω is pairwise disjoint, we can take f, g ∈ M0 ∩ ω↑ω such
that for all x ∈ Y there exists n < ω such that x ⊂ [f(n), f(n+ 1)) or x ⊂
[g(n), g(n+ 1)). Take m < ω such that for n ≥ m |[f(n), f(n+ 1)) ∩ a1| ≤
1 and |[g(n), g(n+ 1)) ∩ a1| ≤ 1. Then it holds that for x ∈ Y if minx ≥
max(f(n), g(n)), then |x ∩ a1| ≤ 1.

Lemma 4.3.8. (
⋃
Y ) ∩ an = ∅ for some n ∈ ω. Therefore (

⋃
Y ) ∩ an = ∅ for

all but finite n by definition of an.
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Proof. Suppose not. Since
⋃
Y ∈M0 ∩ [ω]ω, we have that (

⋃
Y )∩ bn is infinite

for all n < ω. By Lemma 4.3.7 for all but finite x ∈ Y |x ∩ a1| ≤ 1. So for
x ∈ Y x ∩ a1 = ∅ (x ⊂ b0) or |x ∩ a1| = (x ∩ b0 6= ∅). Since

⋃
Y ∩ bn 6= ∅, there

exists x ∈ Y such that x ∩ bn 6= ∅. But this x ∈ Y satisfies x ∩ b0 6= ∅. Hence
X ⊥ B. It is contradict to X‖B. So Lemma holds.

Proof. (Lemma 4.3.5) By Lemma 4.3.6 and 4.3.8 take n < ω such that x∩an = ∅
for x ∈ X ∩ [ω]ω and x ∩ an = ∅ for x ∈ Y . Then it holds that for m ≥ n for
j ∈ bm j ∈ X. So we have that B ≤∗ X.

[rd ≤ d] We shall prove the following theorem.

Theorem 4.3.9. Suppose M |= ZFC− and M∩ωω is dominating family. Then
M ∩ (ω)ω is a dual-reaping family.

Proof. Let X ∈ (ω)ω.
case 1 If there exists x ∈ X such that x is infinite:

Take d ∈ M ∩ ωω so that d(0) = 0 and x ∩ [d(n), d(n+ 1)) 6= ∅ for n < ω.
And put A = {[d(n), d(n+ 1)) : n ∈ ω}. Then A ∈M ∩ (ω)ω and A ⊥ X.
case 2 If X ⊂ [ω]<ω:

Take d ∈ M ∩ ω↑ω so that d(0) = 0 and for x ∈ X there exists n < ω such
that x ⊂ (d(n), d(n+ 2)).

Put a = rng(d), b1 = {j ∈ a : {j} ∈ X} and b2 = a \ b1.
case 2.1 If b1 is finite:

Put A = {ω \ a} ∪ {{j} : j ∈ a}. Then A ∈ M and if |x| ≥ 2, then
x∩ (ω \a) 6= ∅ since for x ∈ X there exists n < ω such that x ⊂ (d(n), d(n+ 2)).
Therefore A ⊥ X.
case 2.2 If b2 is finite:

Put A = {ω \ a} ∪ {{j} : j ∈ a}. Then A ∈M and A ≤∗ X.
case 2.3 If both b1 and b1 are infinite:

Pick e ∈ M ∩ ω↑ω so that e(0) = 0 , b1 ∩ [e(n), e(n+ 1)) 6= ∅ and b2 ∩
[e(n), e(n+ 1)) 6= ∅ for n ∈ ω. Put A = {ω \ a} ∪ {[e(n), e(n+ 1)) ∩ a : n ∈ ω}.

Then A ∈ M and A ⊥ X. Because if {j} ∈ X and j ∈ a, then there
is n < ω such that j ∈ [e(n), e(n+ 1)) ∩ a. Pick x ∈ X with |x| ≥ 2 and
[e(n), e(n+ 1)) 6= ∅. Then since there is m ∈ ω such that x ⊂ (d(m), d(m+ 2)),
x \ a 6= ∅. So x∩ (ω \ a) 6= ∅. Therefore x joints [e(n), e(n+ 1))∩ a and {ω \ a}.
Therefore A ⊥ X.

So the following diagram holds.
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sd

cov(N ) oo
tt

iiiiiiiiiiiiiiiiiiii
non(M) oo cof(M) oo cof(N )

b oo
²² ¥¥

ªªªªªªªªªªªªªªªª
d
²²

add(N ))
²²

oo add(M)
²²

oo cov(M)
¹¹

----------------------- ²²
oo non(N )

²²

rd

¥¥

ªªªªªªªªªªªªªªªªtt

jjjjjjjjjjjjjjjjjjj¹¹

.......................

.

Between r, s and cardinal invariants in Cichoń’s diagram there is the following
relationship.

r

cov(N ) oo
tt

iiiiiiiiiiiiiiiiiiii
non(M) oo cof(M) oo cof(N )

b oo
²² ¥¥

­­­­­­­­­­­­­­­­
d
²²

add(N ))
²²

oo add(M)
²²

oo cov(M)
¹¹

----------------------- ²²
oo non(N )

²²

s
¦¦

­­­­­­­­­­­­­­­­tt

jjjjjjjjjjjjjjjjjjj¹¹

-----------------------

.

Also we know the following relationship.

Theorem 4.3.10. [14][21] sd ≥ s. rd ≤ r.

For s and r we have the following consistency result.

Theorem 4.3.11. [7] It is consistent that u < s. Therefore it is consistent that
r < s.

By this Theorem we can say it is consistent that sd > r and rd < s. So there
is the following question:

Question 7. Is it consistent that sd < r? rd > s?

In this context it is natural to ask the following question.

Question 8. Does DS preserve r?
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Theorem 4.3.12. If V |= b = c, then V DSω1 |= r = c.

Lemma 4.3.13. Let Π̇ be a DSδ-name for an interval partition. Then there is
Πn ∈ IP ∩ V such that if Π ∈ IP ∩ V = 〈Ik : k ∈ ω〉 dominates Πn for n ∈ ω,
then for any p ∈ DSδ there exists k0 ∈ ω and q ∈ DSδ such that for each k ≥ k0

there exists r ≤ q such that

r ° ∃I ∈ Π̇(J ⊂ Ik).

Proof. We shall prove by induction on δ.
δ = 1 Let σ be a partition of a finite subset of ω and k ≥ |σ|. Then define
gσ,k : ω → ω so that

∀〈σ,A〉 ∈ DSσ,k¬〈σ,A〉 ° ∃I ∈ Π̇ (I ⊂ [n, gσ,k(n))) .

Then by compact trick, gσ,k is well-defined. Define Πσ,k = {
[
gl

σ,k(0), gl+1
σ,k (0)

)
:

l ∈ ω} where g0
σ,k(0) = 0.

Claim 9. Πσ,k(σ, k ≥ |σ|) satisfy required condition.

Proof. Suppose Π ∈ IP ∩ V dominates all Πσ,k. Let p = 〈σp, Ap〉 ∈ DS and
kp = |Ap|. Let k0 ∈ ω such that for k ≥ k0 there exists J ∈ Πσp,kp such that
J ⊂ Ik. By construction of Πσp,kp there exists r ≤ p such that

r ° ∃I ∈ Π̇(I ⊂ J).

Therefore r ° ∃I ∈ Π̇(I ⊂ Ik).

δ = α+ 1 Suppose for α the induction hypothesis holds. Let p ∈ DSα+1 and Π̇
be a DSα+1-name for an interval partition of ω. Then for each partition σ of a
finite subset of ω and l ≥ |σ| let Π̇σ,l = 〈İσ,l

m : m ∈ ω〉 be a DSα-name such that

°DSα ∀〈σ,A〉 ∈ DSσ,l∀m ∈ ω¬〈σ,A〉 °DS ¬
[
∃I ∈ Π̇(I ⊂ Iσ,l

m )
]
.

Then by induction hypothesis for each partition σ of a finite subset of ω and
l ≥ |σ| there exists Πj

σ,l(j ∈ ω) ∈ IP ∩V which satisfies the induction hypothesis
on α.

Suppose Π ∈ IP ∩ V = 〈In : n ∈ ω〉 dominates all π. Extend p to p0

so that there exists a partition σ of a finite subset of ω and i ∈ ω such that
p0 ¹ α °DSα p0(α) = 〈σ,A〉 and |A| = i. By induction hypothesis there exists
q′ ≤DS p0 ¹ α and k0 ∈ ω such that for k ≥ k0 there exists r′ ≤DSα q

′ such that

r ° ∃I ∈ Π̇σ,i(I ⊂ Ik).

By definition of Πσ,i q = q′_〈σ,A〉 and k0 satisfies desired condition.
δ is limit ordinal. It is enough to show the case cf(δ) = ω. Let δn be a increasing
sequence converging to δ as n→ ω. Let Π̇ = 〈İm : m ∈ ω〉 be a DS-name for an
interval partition of ω. For n ∈ ω let Π̇n = 〈İn

m : m ∈ ω〉 and 〈ṗn
m : m ∈ ω〉 be a
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DSδn
-name such that °DSδn

“〈ṗn
m : m ∈ ω〉 is a decreasing sequence of DS[δn,δ)

and for each m ∈ ω ṗn
m °DS[δn,δ) İm = İn

m”.
For each n ∈ ω there exists Πj

n(j ∈ ω) ∈ IP ∩ V which witness induction
hypothesis for Π̇n.

Suppose p ∈ DSδn and Π ∈ IP ∩ V = 〈Ik : k ∈ ω〉 dominating all Πj
n

for j, n ∈ ω. Then there exists q ≤DSδn
p and k0 which witness induction

hypothesis for Π̇n on δn. So for each k ≥ k0 there exists r ≤DSδn
q such that

r ° ∃I ∈ Π̇n(I ⊂ Ik). Extend r to r′ so that there exists m ∈ ω such that
r′ ° İn

m ⊂ Ik. Then put r∗ = r′_ṗn
m. Then r0 ° İm = İn

m ⊂ Ik. Therefore q
and k0 satisfies desired property.

Proof of Theorem from Lemma. Let Ẋ be a DSδ-name for an infinite subset
of ω. Let Π̇ be a DSδ-name for an interval partition of ω such that ° ∀I ∈
Π̇(I ∩ Ẋ 6= ∅). Let Π = 〈In : n ∈ ω〉 be an interval partition witnessing Lemma
for Π̇. Let X be an infinite and coinfinite subset of ω in V . By lemma for each
p and l ∈ ω we can find q0, q1 ∈ DSδ and l0, l1 ≥ l such that l0 ∈ X, l1 6∈ X,
q0 ° ∃I ∈ Π̇(I ⊂ Il0) and q1 ° ∃I ∈ Π̇(I ⊂ Il1). Therefore °

⋃
n∈X In split Ẋ.

2

Corollary 4.3.14. It is consistent that sd < r. Also it is consistent that rd > s.

4.4 additivity of M, cofinality of M, rd and sd

To investigate rd and sd we introduce new cardinal invariants pair-splitting
number spair and pair-reaping number rpair.

For X ∈ [ω]ω, A ⊂ [ω]2 infinite, X pair-splits A if there exists infinitely
many a ∈ A such that a ∩ x 6= ∅ and a \ x 6= ∅. We call S ⊂ (ω)ω is a pair
splitting family if for A ⊂ [ω]2 there exists X ∈ S such that if |A| = ℵ0, then X
pair-splits A.

spair = min {|S| : S ⊂ (ω)ω ∧ S is pair-splitting family } .

We call R ⊂ ℘([ω]2) is a pair-reaping family if |A| = ℵ0 for A ∈ R and for each
X ∈ [ω]ω there exists A ∈ R such that X cannot pair-split A i.e., for all but
finite a ∈ A a ⊂ X or a ∩X = ∅.

rpair = min
{|R| : R ⊂ ℘([ω]2) ∧R is a pair-reaping family

}
.

rpair and spair have the following properties.

Proposition 4.4.1. (1) rpair ≤ r.

(2) s ≤ spair

(3) rpair ≤ sd.
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Proof. (1) Let R ⊂ [ω]ω be a reaping family. Then for R ∈ R pick AR so
that AR ⊂ [R]2 and pairwise disjoint. Then {AR : R ∈ R} witness pair-reaping
family.
(2) Let S be a pair splitting family. Then for Y ∈ [ω]ω define AY = [Y ]2. If
X ∈ S pair-splits AY , then X splits Y . Hence S is a splitting family.
(3) Let κ < rpair and S ⊂ (ω)ω with |S| = κ. For each S ∈ S fix AS ⊂ [ω]2 such
that AS is infinite, pairwise disjoint and for a ∈ AS there exists x ∈ S such that
a ⊂ x. Put A = {AS : S ∈ S}. Then A ⊂ ℘([ω]2) and |A| = κ. Since κ < rpair,
there exists y0 ∈ [ω]ω such that x0 pair-splits A for A ∈ A.

Define S0 = {yA : A ∈ A ∧ yA =
⋃ {a \ y0 : a ∩ y0 6= ∅ ∧ a ∈ A}}. Then S0 ⊂

[ω]ω and |S0| = κ < rpair ≤ r. So there exists y1 ∈ [ω \y0]ω such that y1 splits y
for y ∈ S0. Recursively define yi+1 ∈ [ω\⋃j<i+1 yj ]ω and Si+1 ⊂ [ω\⋃j≤i+1 yj ]ω

so that yi+1 splits all y for y ∈ Si and Si+1 = {y \ yi+1 : y ∈ Si}. Without loss
of generality we can assume

⋃ {yi : i ∈ ω} = ω. Let Y = {yi : i ∈ ω} ∈ (ω)ω.
Then by construction Y ⊥ S for S ∈ S. Hence S is not dual-splitting family.

Proposition 4.4.2. spair ≤ non(M),non(N ). rpair ≥ cov(M), cov(N ).

Proof. For a countable pairwise disjoint subset A ⊂ [ω]2, DA = {X ∈ [ω]ω : X
pair-splits A} is comeager and measure 1 subset of 2ω. Therefore if κ < cov(M)
and 〈Aα : α < κ〉 is a family of countable pairwise disjoint subsets of [ω]2,⋂

α<κDAα 6= ∅. Let X ∈ ⋂
α<κDAα . Then X pair-split all Aα. Hence rpair ≥

cov(M). The rest of proof is similar.

Theorem 4.4.3. It is consistent that rd < add(M). Also it is consistent that
sd > cof(M).

Proof. Let Ẋ be a Dα-name for a non-trivial infinite partition of ω. If we can
find Y ∈ (ω)ω ∩ V such that °Dα Ẋ ⊥ Y , then we can prove the desired
statement. To show this, we shall prove the following lemma.

Lemma 4.4.4. Let Ȧ = 〈Ȧn : n ∈ ω〉 and Ċ = 〈Ċn : n ∈ ω〉 be Dα-names such
that

°Dα ∀n ∈ ω(Ȧn ⊂ [ω]2, ∀m ∈ ω∃a ∈ Ȧn(a ∩m = ∅) and Ċn ∈ [ω]ω).

Then there exists A = 〈An : n ∈ ω〉 ∈ ([ω]2)ω ∩ V and C = 〈Cn : n ∈ ω〉 ∈
([ω]ω)ω ∩ V such that if there exists y ∈ [ω]ω ∩ V such that y pair-splits An and
y splits Cn for n ∈ ω, then

°Dα ∀A ∈ Ȧ(y pair-splits A) and ∀C ∈ Ċ(y splits C).

Proof. Induction on α.
α = 1 Given D-names Ȧ = 〈Ȧn : n ∈ ω〉 and Ċ = 〈Ċn : n ∈ ω〉. Since Hechler
forcing preserves s, there are C∗ = 〈Ci

n : n ∈ ω ∧ i ∈ ω〉 such that if y ∈ [ω]ω

splits Ci
n for i < ω, then °D y splits Ci

n. So it is enough to think about Ȧ.
We will use rank argument as [4]. Let t ∈ ω<↑ω, E ⊂ ω<↑ω. Define by

recursion on the ordinal when rk(t, E) = α.
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1. rk(t, E) = 0 if t ∈ E.

2. rk(t, E) = α if ¬(β < α ∧ rk(t, E) = β) and ∃m ∈ ω∃tk ∈ ω<↑ω(k ∈ ω)
such that ∀k ∈ ω(t ⊂ tk), |tk| = m and tk(|t|) ≥ k.

Recall the following theorem:

Theorem 4.4.5. [4] If I ⊂ D is dense, E =
{
t ∈ ω<↑ω : ∃f ∈ ω↑ω : 〈t, f〉 ∈ I},

then rk(t, E) < ω1 for any t ∈ ω<↑ω.

For each m ∈ ω let Dm = {〈s, f〉 ∈ D : ∃k0, k1 ≥ m (〈s, f〉 ° {k0, k1} ∈ An} .
ThenDm is dense open subset of D. Let Em =

{
s ∈ ω<↑ω : ∃f ∈ ω↑ω 〈s, f〉 ∈ Dm

}
.

By above Theorem, rk(t, Em) is always defined. By induction of rk, define

• when t is





t is bad
t is so-so
t is good
t is neither

for m.

• For bad t, define k0
t,m < k1

t,m ∈ ω \ (m+ 1).

• For so-so t, define k0
t,m ∈ ω and Ct,m ∈ [ω]ω.

• For good t, define At,m countable subset of [ω]2.

Basic step
rk(t, Em) = 0. Then t is bad for m.
Since rk(t, Em) = 0, t ∈ Am. So ∃f such that 〈t, f〉 ∈ Dm. Hence there

exists k0
t,m and k1

t,m such that m ≤ k0
t,m < k1

t,m.
Recursion step

rk(t, Em) > 0. Choose ti , i ∈ ω such that t ⊂ ti , |ti| = |tj |, ti(|t|) ≥ i,
rk(ti, Em) < rk(t, Em).
Case 1 Almost all ti bad.
Subcase (a) ∃k0

t,m, k
1
t,m such that ∃∞i ∈ ω(k0

ti,m = k0
t,m ∧ k1

ti,m = k1
t,m).

Then t bad.
Subcase (b)¬(Subcase (a)) and ∃k0

t,m such that ∃∞i ∈ ω(k0
ti,m = k0

t,m).
Then t is so-so and Ct,m =

{
k1

ti,m : ∃i ∈ ω(k0
ti,m = k0

t,m)
} ∈ [ω\(k0

ti,m+1)]ω.
Subcase (c)¬(Subcase(a) ∨ Subcase(b)).

Then t is good and At,m =
{{
k0

ti,m, k
1
ti,m

}
: i ∈ ω}

infinite subset of [ω]2.
Case 2 Infinitely many ti are not good.

Then t is neither.

Now we shall construct A and C:
If t is bad with respect to almost allm, then putAt =

{{
k0

t,m, k
1
t,m

}
: m ∈ ω}

.
Then put A = {At : t is bad for almost all m} ∪ {At,m : t is good for m} and
C = {Ct,m : t is so-so for m} ∪ C∗.

We shall show if y ∈ [ω]ω ∩ V such that y pair-splits A for A ∈ A and y
splits C for C ∈ C, then

°D ∀A ∈ Ȧ(y pair-splits A) and ∀C ∈ Ċ(y splits C).
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Suppose y ∈ [ω]ω ∩ V such that y pair-splits A for A ∈ A and y splits C for
C ∈ C. Since y splits C for C ∈ C∗ ⊂ C, °D y splits C for C ∈ Ċ.

So we shall prove °D ∀A ∈ Ȧ(y pair-splits A).
Fix 〈s, f〉 ∈ D, m ∈ ω and D-name Ȧ such that °D Ȧ ∈ Ȧ. We need to find

〈t, g〉 ≤ 〈s, f〉 and k0, k1 ≥ m such that

〈t, g〉 °D
{
k0, k1

} ∈ Ȧ ∧ {
k0, k1

} ∩ y 6= ∅ ∧ {
k0, k1

} \ y 6= ∅.

Case 1 ∀m∗ ≥ m s bad for m∗.
Since y pair-splits As, there exists m∗ and k0

s,m∗ , k1
s,m∗ ≥ m∗ such that

y ∩ {
k0

t,m∗ , k1
t,m∗

} 6= ∅ and
{
k0

t,m∗ , k1
t,m∗

} \ y 6= ∅. By construction of As there
exists si such that s ⊂ si, f(j) ≤ si(j) for j ∈ |si|, rk(si, Em∗) < rk(s,Em∗),
k0

si,m∗ = k0
s,m∗ , k1

si,m∗ = k1
s,m∗ and si bad for m∗.

By induction on rank, we see there exists t such that si ⊂ t, t(j) ≥ f(j)
for j ∈ |t|, rk(t, Em∗) = 0, k0

t,m∗ = k0
si,m∗ = k0

s,m∗ and k1
t,m∗ = k1

si,m∗ = k1
s,m∗ .

By definition t ∈ Em∗ , so there exists g ∈ ω↑ω such that 〈t, g〉 ∈ Dm∗ with
〈t, g〉 °

{
k0

t,m∗ , k1
t,m∗

} ∈ Ȧ. Without loss, g ≥ f. Therefore 〈t, g〉 ≤ 〈s, f〉.
Case 2 ∃m∗ ≥ m s is not bad for m∗.

So s is neither, so-so or good. By induction on rank we can see there exists
s∗ such that s ⊂ s∗, s∗(i) ≥ f(i) for i ∈ |s∗| and s∗ is good or so-so.
Subcase (i) s∗ is so-so for m∗.

So we have k0
s∗,m∗ and Cs∗,m∗ . Assume k0

s∗,m∗ ∈ y. Since y splits Cs∗,m∗ ,
there exists s∗i such that s∗ ⊂ s∗i , s

∗
i (j) ≥ f(j) for j ∈ |s∗i |, rk(s∗i , Em∗) <

rk(s∗, Em∗), s∗i is bad, k0
s∗i ,m∗ = k0

s∗ ,m∗ and k1
s∗i ,m∗ ∈ Cs∗,m∗ \y. By induction on

rank, we see there exists t such that s∗i ⊂ t, t(j) ≥ f(j) for j ∈ |t|, rk(t, Em∗) = 0,
k0

t,m∗ = k0
s∗i ,m∗ = k0

s∗,m∗ and k1
t,m∗ = k1

s∗i ,m∗ . By definition, t ∈ Em∗ , so
there exists g ∈ ω↑ω such that 〈t, g〉 °D

{
k0

s∗,m∗ , k1
s∗,m∗

} ∈ Ȧ. Without loss of
generality, g ≥ f . Therefore 〈t, g〉 ≤ 〈s, f〉 and

〈t, g〉 °D
{
k0

s∗,m∗ , k1
s∗,m∗

} ∈ Ȧ, k0
s∗,m∗ ∈ y and k1

s∗,m∗ 6∈ y.
Subcase (ii) s∗ is good for m∗.

So we have As∗,m∗ countable subset of [ω]2. Since y pair-splits As∗ , there
exists s∗i such that s∗ ⊂ s∗i , rk(s∗i , Em∗) < rk(s∗, Em∗), s∗i (j) ≥ f(j) for j ∈ |s∗i |,
s∗i is bad,

{
k0

s∗i ,m, k
1
s∗i ,m

}
∈ As∗,m ,

{
k0

s∗i ,m, k
1
s∗i ,m

}
∩ y 6= ∅ and

{
k0

s∗i ,m, k
1
s∗i ,m

}
\

y 6= ∅.
Assume k0

s∗i ,m ∈ y and k1
s∗i ,m 6∈ y. By induction on rank, we see there exists

t such that s∗i ⊂ t, t(j) ≥ f(j) for j ∈ |t|, rk(t, Em∗)=0, k0
t,m∗ = k0

s∗i ,m∗ and
k1

t,m∗ = k1
s∗i ,m∗ . By definition, t ∈ Em∗ , so there exists g ∈ ω↑ω such that

〈t, g〉 °D
{
k0

s∗i ,m∗ , k1
s∗i ,m∗

}
∈ Ȧ. Without loss of generality, g ≥ f . Therefore

〈t, g〉 ≤ 〈s, f〉 and

〈t, g〉 °D
{
k0

s∗i ,m∗ , k1
s∗i ,m∗

}
∈ Ȧ, k0

s∗i ,m∗ ∈ y and k1
s∗i ,m∗ 6∈ y.

α is a successor ordinal or limit ordinal
We use following theorem.
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Theorem 4.4.6. Let 〈<n: n ∈ ω〉 be a increasing sequence of two-place relation
on ωω or similar space. Put <=

⋃
n∈ω <n. Assume ∀f ∈ ωω, {g : f <n g} is

closed. Take F ⊂ ωω in V such that for a countable X ⊂ ωω there exists f ∈ F
such that f 6< g for g ∈ X.

Let
〈
Pα, Q̇α : α < δ

〉
be an finite support iteration of c.c.c p.o’s. Assume

for α < δ
°α“°Q̇α

“for all countable X ⊂ ωω there exists a countable Y ⊂ ωω ∩V [Ġα]
in V [Ġα] such that ∀f ∈ F̌(∀g ∈ Y (f 6< g) → ∀g ∈ X(f 6< g))””. Then

°δ“for all countable X ⊂ ωω there exists a countable Y ⊂ ωω ∩V in V such
that (∀f ∈ F̌(∀g ∈ Y (f 6< g) → ∀g ∈ X(f 6< g)))”.

So it suffices to find relations < and 〈<n: n ∈ ω〉 such that for y ∈ [ω]ω and
〈X,A〉 ∈ [ω]ω×{B ⊂ [ω]2 : |B| = ω∧∀n ∈ ω(B∩[ω\n]2 6= ∅)} = G y 6< 〈X,A〉 if
y splits X, y pair-splits A and for y ∈ [ω ]ω for n ∈ ω {〈X,A〉 ∈ G : y <n 〈X,A〉}
is closed. Define y <n 〈X,A〉 if y ∩X ⊂ n or X \ y ⊂ n and |rng(f ¹ a))| = 1
for a ∈ A ∩ [ω \ n]2. Then <nis required.

(Lemma 4.4.4⇒Theorem 4.4.3)
Let Ẋ be a Dα-name for a non-trivial partition of ω. Then there is a Dα-name

Ȧ for a countable subset of [ω]2 such that

°Dα ∀a ∈ Ȧ∃x ∈ Ẋ(a ⊂ x) ∧ ∀m ∈ ω∃a ∈ Ȧ(a ∩ n = ∅).
Then by Lemma 4.4.4 there exists A = 〈An : n ∈ ω〉 ∈ ([ω]2)ω ∩ V and
C = 〈Cn : n ∈ ω〉 ∈ ([ω]ω)ω ∩ V such that if y ∈ [ω]ω satisfies that y pair-splits
An for all n ∈ ω and y splits Cn for n ∈ ω, then °Dα y pair-splits Ȧ. Fix such
y ∈ [ω]ω. Recursively we will construct 〈yn : n ∈ ω〉 = Y ∈ (ω)ω:

1. y0 = y.

2. Suppose given yi for i < n. Then pick yn ∈ [ω \⋃
i<n yi]ω so that °Dα yi

splits
⋃

a∈Ȧ {a \ y : a ∩ y 6= ∅} \⋃
i<n yi .

Second condition is possible since the finite support iteration of Hechler forcing
preserve s. By construction ° “∃a ∈ Ȧ(a ∩ yi 6= ∅ ∧ a ∩ y0 6= ∅)” for each i ≥ 1.
So ° ∃x ∈ Ẋ(x ∩ y0 6= ∅ ∧ x ∩ yi 6= ∅). Therefore ° Y ⊥ Ẋ.

Question 9. rd ≤ spair?
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