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Introduction 
The computational study of D-modules started about 20 years ago except 

a few pioneering works. However, almost all works are on the Weyl algebra, 
which is the ring of differential operators with polynomial coefficients. 

The objective of this thesis is a computational study of D-modules by utiliz­
ing the ring of differential operators with rational function coefficients of which 
denominators do not vanish at the origin. We denote the ring by Valg. Es­
pecially, we are mainly interested in algorithms of computing local b-functions, 
related objects and the Mora division algorithm in Valg. 

Here is a brief overview of each chapters. 

• Chapter 1 - Computing Local b-functions by an Exhaustive Search 

In computational algebraic analysis, b-functions is very important. Oaku 
gave general algorithms of computing global b-functions and local b-functions 
for polynomials ([21]). An efficient version of Oaku's algorithm comput­
ing global b-functions was given by Noro ([19]). These algorithm utilizes 
Grabner basis computations in the ring of differential operators with poly­
nomial coefficients D. 

In this chapter, we will give a new algorithm of computing local b-functions 
by utilizing Grabner basis computation in the ring of differential operators 
with rational function coefficients of which denominators do not vanish at 
the origin. V alg . This algorithm is simple and can be applied not only for 
the computation of local b-functions for polynomials but also for that of 
generic local b-functions. 

• Chapter 2 - Computing Local b-Functions by an Approximate Division 
Algorithm 

Castro gave a constructive division theorem in the ring of differential oper­
ators with formal power series coefficients D ([4]). This division procedure 
generally needs infinite reductions and is not algorithm. We will give an 
approximate division algorithm in D, which gives an approximation of the 
remainder by Castro's division in D. And we will propose a new algorithm 
computing local b-functions by utilizing this approximate division. 

• Chapter 3 - Computing Annihilating Ideals 

In this chapter, we will give an algorithm of computing the annihilating 
ideal of fB in Valg[S], which is denoted by AnnValg[sjfB. It can be com­
puted by an analogous method in the case of the Weyl algebra D. 

In fact, AnnValg[sjfB are generated by generators of AnnD[sjfB. But, 
in some cases, the computation of AnnValg[sjfB is faster than that of 
AnnD[sjfB. 

• Chapter 4 - Interactive User Interface for Computer Algebra 

In previous chapters, we use the Buchberger algorithm and a Mora di­
vision algorithm in Valg. But in some cases, the algorithms cause hard 
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computation. Methods to improve the algorithms have not been studied 
in detail. We have designed and implemented a system to understand and 
improve the algorithms. We call this system "interactive user interface 
for computer algebra". The system visualizes computations of the algo­
rithms. And we easily control the algorithms by utilizing the system. In 
this chapter, we will introduce the system, and give an interesting example 
found by utilizing the system. 

• Chapter 5 - Some Mathematical Results and Questions 

We want to apply our computational techniques to mathematical problems 
and hope to find new mathematical facts with a help of our computational 
methods. 

Sekiguchi studied the 17 weighted homogeneous polynomials in 3 variables 
in the paper [27], and determined the factors of the b-functions of the 
polynomials. In this chapter, we will give the result of computing the 
b-functions of the polynomials by utilizing Oaku's algorithm. 

Sekiguchi posed a question on annihilating ideals AnnDfD:. Here, we will 
illustrate some computational experiments on the question. 

We have not yet tried local version of these problems. It will be a next 
step. 
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Chapter 1 

Computing Local 
b-Functions by an 
Exhaustive Search 

1.1 Introduction 

We use the following notations in this chapter. 

x = (Xl,'" ,xn),a = (al ,'" ,an),s = (s) 

D[s] = { L ak,(3(x)ska(3 I ak,(3(x) E C[X]} 
kEN,(3ENn 

C[x](x) = {~~:? I f(x),g(x) E C[x],g(O) :l O} 

Valg[S] = { L ak,(3(x)ska(3 I ak,(3(x) E C[X](X)} 
kEN,(3ENn 

D[s] = { L ak,(3(x)ska(3 I ak,(3(x) E C[[X]]} 
kEN,(3ENn 

We start with the definitions of the global b-function and the local b-function 
at the origin for a given polynomial f E C[x]. 

The global b-function b( s) E C[ s] for a polynomial f is the monic and minimal 
degree polynomial which satisfies pr+l = b(s)r for a differential operator 
p E D[s]. 

The local b-function is defined analogously by replacing D[s] by Valg[S]. In 
other words, The local b-function b(s) E C[s] at the origin for a polynomial f is 
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the monic and minimal degree polynomial which satisfies P r+1 = b( s) r for a 
differential operator P E Valg[S]. Let us present examples. 

Example 1.1.1. (The global and local b-function of f = Xl (Xl + X2 + 1).) 
The global b-function is b(s) = (s + 1)2. In fact, the following identity holds. 

(-8~ + 81 82 )r+1 = (s + 1)2 r 

The local b-function is b(s) = s + 1. In fact, the following identity holds. 

1 811s +1 = (s + l)r 
1 + 2Xl + X2 

The global b-function is defined by Mikio Sato and J.Bernstein indepen­
dently. The existence of the global b-function for any polynomial f is proved by 
J.Bernstein ([2], [3]). Hence, the b-function is sometimes called the Bernstein­
Sato polynomial. 

Let us note some properties of b-functions. Put 

B(s) = {b(s) E <C[s]1 b(s)r E Dr+1} 

B(s) = {b(s) E <C[s] I b(s)r E Valg[S]r+1} 

Then, these two sets are principal ideals in <C[s]. The monic generator of B(s) is 
the global b-function b(s) and the monic generator of B(s) is the local b-function 
b(s). Since D[s] C Valg[S], we have B(s) C B(s) and hence (b(s)) C (b(s)). 
Therefore, the global b-function b(s) is divided by the local b-function b(s). 
This fact will be used in our algorithms of computing local b-functions. If f 
has no singularity at the origin, the local b-function of f at the origin is s + 1. 
M.Kashiwara proved that the roots of the global b-function are negative rational 
numbers [13]. 

General algorithms of computing global b-functions for polynomials have 
been studied since the work of T.Oaku ([24], [21], [22]). Oaku also implemented 
his algorithms in computer algebra systems for differential operators Kan/sml 
([30], bfunction.sml). An efficient version of Oaku's algorithm was given by 
M.Noro [19]. Noro implemented his algorithm in library bfct for the computer 
algebra system Risa/ Asir ([29]). 

T.Oaku gave an algorithm of computing local b-functions in [24], [21], [22], 
[25]. This algorithm utilizes Grabner basis computations in the ring of polyno­
mials and in the ring of differential operators with polynomial coefficients. 

In 2005, Granger, Oaku, Takayama gave a Mora division algorithm for V alg 
[9], [10]. We will give a new algorithm of computing local b-functions by utilizing 
the Mora division algorithm for V alg . We call the algorithm the exhaustive 
search algorithm. It is not efficient when the degree of the global b-function 
increases, but it is simple and can be applied not only for the computation 
of local b-functions but also for the computation of generic local b-functions. 
We also implements these algorithms and apply them to some problems. In this 
chapter, we illustrate these algorithms and explain details of our implementation 
and examine some test computations. 
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1.2 A survey of general methods for computing 
b-functions 

In this section, we summarize the general methods for computing global and 
local b-functions by T.Oaku. 

1.2.1 Algorithm of computing global b-function 

The following algorithm, which computes the global b-function, is given by 
T.Oaku in [24], [21], [22]. An efficient version is given by M.Noro [19] 

Algorithm 1.2.1. (Computing the global b-function for a polynomial f) 

1. Compute a set of generators G of the annihilating ideal AnnD[sJr of r 
in D[s]. (We mean by the annihilating ideal the set of the differential 
operators P E D[s] such that p. r = 0.) 

2. Let J be the left ideal in D[s] generated by G u {f}. Compute the monic 
generator of the principal ideal J n C[s]. (The generator is the global 
b-function of f.) 

(1.) A method to find generators of AnnD[sJr is given in [24], [21], [22], 
which utilizes Grabner bases in D n+1 • Two methods, which are given by Oaku 
and Noro respectively, are known to get the generator of J n C[s]. 

2a. Compute Grabner basis with the elimination order < to eliminate variables 
except s in J (Xi, Oi > S ). 

2b. Compute a Grabner basis G of J with respect to an order <. Compute the 
normal form NF d si, G, <) of si with respect to G. Determine numbers 
ai such that alNF < (sl, G, <) + ... + aoNF < (1, G, <) = 0 and l is taken as 
the minimal number such that al =j:. O. The polynomial alsl + ... + ao is 
the generator of J n C[s] ([19]). 

Thus, we can obtain the global b-function by utilizing Grabner basis com­
putations in D[s]. Let us see an example to illustrate the algorithm. 

Example 1.2.2. (Computing a global b-function) 
We will compute the global b-function of f = X2 + y2. Generators of the 

annihilating ideal AnnD[sJr are as follows. 

{XOx + Yay - 2s, YOx - XOy} 

Let I be the left ideal in D[s] generated by these generators and f. We compute 
the Grabner basis of I with respect to the elimination order X, y, ax, Oy ~ sand 
the result is 
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Therefore, the generator of InC[s] is -s2 -2s-1 and hence the global b-function 
is (s + 1)2. 

We note that it is known that the global b-function of 1 = L:~l x; is 
(s + 1) (s + ~) and the differential operator in the left hand side of the definition 
of the b-function is P = L:7=1 0; 

1.2.2 Algorithm for computing local b-function 

In this subsection, we illustrate the algorithm of computing local b-function 
by T.Oaku [21], [22]. Grabner basis computations in the ring of polynomials 
K[x, s] and in the ring of differential operators D[s], DnH [y] are used. We also 
implemented this algorithm to compare with our new methods. 

Algorithm 1.2.3. (Computing the local b-function [21], [22]) 
Let y be a parameter. 

1. Put I = DnH[Y]·{ t - yl, Oi + yltOt(i = 1,··· ,n)}. Compute a Grabner 
basis G for I with the elimination order with respect to y such that w­
homogeneous. Here, the weight vector w is defined as follows. 

xn t Y 6 
o o -1 1 0 o 1 

2. Put 'ljJ(G) = {'ljJ(P(l)) I P(y) E G}. Here, P E Dn+1 and ordw(P) = m. 
(ordw(P) is the order of P with respect to w; in other words, it is the 
maximal order with respect to w among the terms in P.) The polynomial 
'ljJ(P) is defined by 

'ljJ(P)(s) = 'ljJ(P) (tOt) = {~nw(t~p) (m ~ 0) 
lllw(Ot m P) (m < 0) 

(Here, inw(P) is the sum of maximal w-order terms in P.) 

3. Compute a Grabner basis G1 of D[s] . 'ljJ(G) with the elimination order 
with respect to Oi. Put 1 = K[x, s] . (G1 n K[x, s]). 

4. The local b function be -s - 1) is the monic generator of K[[x]][s] 1 n K[s]. 
The global b-function b( -s -1) is the monic generator of 1nK[s]. Hence, 
the remaining thing to do is to find the generator of K[[x]][s] 1 n K[s]. 

5. Computing the generator of K[[x]][s] 1 n K[s]. 
Let generators of 1 be {h (x, s),··· ,jk(X, s)}. 

(a) Let 10(s) be the generator of 1(0) = K[s]· {h(O, s),··· ,lk(O, s)}. 
(b) Factorize 10(s) in Q[s]; we obtain 10(s) = gl(S)lt ... gd(s)ld. 

(c) For each i = 1,··· ,d, compute the ideal quotient 1 : gi(s)l (l = 
li' li + 1, ... ) until the quotient does not contain a multiple of gi (s). 
Let l~ be the minimal l such that the condition above is satisfied. 

(d) Put b(s) = gl(s)l~ ... gd(s)l~. Then, b(s) is the generator. 
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1.3 Division algorithm and Grobner basis in Valg[Y] 

In this section, we will introduce the Mora division algorithm in D[y] (Algorithm 
1.3.5). The results of this section will be used in our algorithm of computing 
local b-functions (Algorithm 1.4.3). 

1.3.1 The Mora division algorithm in D[y] 
In the previous sections, we utilized Grober bases in D[s]. We will use the 
parameter s for a homogenization parameter in this section. The role of the 
variable s in the previous sections will be played by the variable y in the sequel. 

The algorithm given in this section is a variation of the Mora division algo­
rithm given by M.Granger, T.Oaku, N.Takayama [9],[10]. They mainly discuss 
the Mora division algorithm in homogenized differential operators. We will dis­
cuss the Mora division algorithm in D[y], which is the differential operator with 
a parameter y. No new idea is necessary and our discussion is analogous to that 
in [10]. 

By virtue of our Mora division algorithm in D[y], we can obtain Grabner 
bases in Valg[y] and also the ideal membership test in Valg[Y]. 

We want to perform a division in D[y] with respect to the following monomial 
order <1. 

o 
-1 

Xn Y 6 
o 1 1 

-1 0 0 
(any term order <') 

1 
o 

Since the order <1 is not a term order, the division algorithm for term orders will 
not terminate in general. The Mora division algorithm is a division algorithm 
which terminates for non-term orders. This algorithm utilizes a new variable s to 
make (-1, I)-homogenization. We perform the division with the homogenization 
and the term order <1 in D[y][s] associated to <1. The result is obtained by 
dehomogenization (s is replaced by 1). 

Let us define (-1, I)-homogenization. The weights for the variables Xi are 
-1 and the weights for y and the variables ~i are 1. The weight for the variable s 
is -1. A power of s is added to each term to make the polynomial homogeneous 
with this weight vector. 

Definition 1.3.1. ((-1, I)-homogenization) 
Let P E D[y] be expressed as P = "L-aOi(3,x 0i 8(3y' (0: E (Z~o)n,iJ E 

(Z~o)n,I' E Z~o). We put 

m = min {liJl - 10:1 + 11'11 aOi(3, =j:. O} (Here, Ivl is the sum of each element of v) 

The (-1, I)-homogenization pCs) of P is defined by 
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Suppose that P E D[y][s] is expressed as P = L aa/3,vxaa!3y' SV. When 
d = -Ial + 1,81 + 11'1-1/11 holds for all (a,,8, 1', /I) such that aa!3,v =j:. 0, P is called 
the degree d (-1, I)-homogeneous operator (polynomial). 

We define a term order <1 in D[y][s] associated to <1 as follows. 

Definition 1.3.2. (A term order associated to <1) 
We define a term order <1 in D[y][s] by the following weight vectors and a 

tie-breaker. 

Xl Xn Y S 6 ~n 
1 1 0 1 0 0 
0 0 1 0 1 1 

-1 -1 0 0 0 0 
(any term order <') 

Since the first weight vector and the second weight vector are positive and 
cover all variables, this order is a term order. 

For a given (-1, I)-homogeneous element, the leading monomial with respect 
to <1 and the leading monomial with respect to <1 are related as follows. 

Lemma 1.3.3. (LM w.r.t <1 and w.r.t <i) 
Suppose that P E D[y][s] is (-1, I)-homogeneous. Then, we have 

LM<l (Pls=d = (LM<i (P))ls=l 

Let P, Q E D[y][s] be (-1, I)-homogeneous elements of the same degree. 
Then, we have 

LM<i (P) <1 LM<], (Q) ¢:} LM<l (Pls=d <1 LM<l (Qls=d 

We suppose that P, Q E D[y][s] are (-1, I)-homogeneous and P is reducible 
by Q (Le., LM<i(P) is divisible by LM<i(Q)). Then, the remainder R is also 
(-I,I)-homogeneous and its (-1, I)-degree is same with that of P. Moreover, 
we have LM<i (R) <1 LM<i (P). It follows from the Lemma above that we have 
LM<l (Rls=d <1 LM<l (Pls=l). These facts are key ingredients of the Mora 
division algorithm in D[y]. 

Theorem 1.3.4. (The Mora division algorithm in D[y], [9] [10]) 
P, PI,'" ,Pm E D[y] are inputs. The Mora division algorithm outputs 

a(x) E qx], Q1,'" ,Qm E D[y], R E D[y], which satisfy the following con­
ditions. 

a(x)P = Q1P1 + ... + QmPm + R 

a(O) =j:. 0 (a(x) is unit) 

Qi =j:. 0 ~ LM<l (QiPi) ~1 LM<l (P) 
R =j:. 0 ~ LM<l (R) is not divisible by any of LM<l (Pi) 

The algorithm of computing these a(x), Q1,'" ,Qm, R are as follows. 
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Algorithm 1.3.5. (The Mora division algorithm, [9],[10]) 

MoraDivision(P, {PI"" ,Pm}, <d I 
inputIP,P1, .. · ,Pm ED[y] 

output I a(x) E qX], Ql,'" ,Qm, R E D[y], which satisfy the conditions of Theorem 1.3.4. 
r. +- [pts) ... p(s)] 
~ l' ,m 
R +- p(s) 

A +-1 
Q +- [0"" ,0] (Q is an array with m elements) 
if (R ~ 0) 

F +- {pi E Q l::It E Z~o S.t. LM<f(P')ILM<f(sIR)} 
else 

F+-¢ 
H +- 0 
while (F ~ ¢){ 

} 

pi +- (t of pi is the minimum among F (suppose that pi is the i-th element of Q)) 
if (l > O){ 

Q +- append (Q, [R]) 
H +- append (H, [[A, QJ]) 

} 
R +- (the remainder of sl R by the division by Pi) 
U +- (the monomial multiplied to pi during the reduction above) 
if(i:5 m ){ 

Q[i] +- Q[i] + U 
} else if (i > m) { 

} 

[A', QI] +- H[i - m] 
A+- A- UA' 
for (j +- 1; j :5 m; j +- j + 1) 

Q[j] +- Q[j] - UQ'(j] 

if (siR) { 
v+-( the maximal k such that sk IR) 
R +- RIs!.' 

for (j +- 1; j :5 m; j +- j + 1) 
Q(j] +- Q(j]ls=l 

R +- Rls=l 
a+- Als=l 
return [a, Q, R] 

The set Q is called reducer set. When this algorithm starts, Q = {p}") , ... ,p~)} 
holds. When a reduction is done after multiplying sl, the remainder is added 
to Q. This part is different from the standard (non-Mora) division algorithm. 
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Let us see 3 examples of the Mora division. 

Example 1.3.6. (The Mora division algorithm: the simplest example) 
We will divide x by the unit 1 + x. Since 1 + x is a unit in Valg[y], we have 

1 
x = -- . (1 + x) + 0 ((1 + x) . x = (1 + x) + 0) 

l+x 

In order to illustrate steps of the Mora division algorithm, we derive the expres­
sion above by the algorithm. 

Make (-1,1) homogenization of 1 +x. The result is s+x. Steps of the Mora 
division algorithm are as follows. 

Polynomials under arrows are reducers. If s is written on an arrow, it means that 
s is multiplied. Monomials above arrows are multipliers for reductions. Poly­
nomials with underlines are those added to the reducer set 9. This reduction 
process yields the following identities. 

s . x = x . (s + x) - x2 

_x2 = -x· x + 0 

From these identities, we obtain 

(s + x) . x = x . (s + x) + 0 

of which dehomogenization is 

(1 + x) . x = x . (1 + x) + 0 

Note that this procedure is nothing but the Mora division algorithm in <C[x] 
([11], [16]). The Mora division algorithm in D[y] is a generalization of the Mora 
division algorithm in <C[x] 

Example 1.3.7. (The Mora division algorithm for differential operators) 
We will divide 8 by 1 + x. Since 1 + x is a unit in Valg[y], the remainder 

should be o. 
Let us apply the Mora division algorithm. The (-1, I)-homogenization of 

1 + x is s + x. 
8 ~ -x8 - 1 ~ -1 s.,-l) x ~ 0 
- s+x Q - s+X -1 

The reduction procedure yields 

s·8 = 8· (s + x) - x8 - 1 

-x8 - 1 = -x ·8 - 1 

s· (-1) = (-1)· (s +x) +x 

x = (-x)· (-1) +0 
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Thus, we obtain 

(S + X)2 ·0= (so + xo - 1) . (S + x) + 0 

Dehomogenization of the expression above is 

(1 + x)2 ·0 = (0 + xo - 1) . (1 + x) + 0 

Although we have seen simple examples, the Mora division procedure may 
require high complexity to finish even for small inputs. 

Example 1.3.8. (The Mora division algorithm, a hard example) 
We start with the following easy example; we will divide P = XIX20102 by 

PI = XI0l + XIX202, P2 = X202 + XIX201, which is taken from an example in [9], 
[10]. 

Homogenize the inputs, we obtain p(s) = XI X20102, P1(s) = SXI 0l +XI X202, p~s) = 
SX202 + XIX201 We obtain the following division procedure. 

Thus, we have 

Now, we will consider harder problems. We will multiply units to P and 
divide it by PI, P2. The next table is the time and the number of reductions 
when we divide (1 + Xl)n . P by PI, P2 with our Mora division algorithm. We 
can see that the complexity becomes huge when n increases. 

I n I time (seconds) I the number of reductions 

50 0.90 + 0.22 2762 
100 11.9 + 1.1 10512 
200 173.2 + 14.5 41012 
300 823.9 + 61.1 91512 

1.3.2 The Mora division algorithm 2 in D[y] (with usmg 
yet another monomial orders) 

In the previous section, we give the Mora division algorithm for the monomial 
order < 1. We will give yet another monomial orders for which the Mora division 
algorithm works. When the Mora division for <1 is hard, these orders might 
work well for some problems. 

Let us consider the following monomials order <2 
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Xl Xn Y 6 ~n 
0 0 0 1 1 
0 0 1 0 0 
-1 -1 0 0 0 

(any term order <') 

We will use <2 instead of <1. The difference is weights for y. Since 6, ... ~n >2 
y, this order is an elimination order with respect to 6, ... , ~n. 

The (-1, I)-homogenization of the Mora division algorithm for this order is 
different from the case of < 1 . In case of < 1, the following weight vector Vl is 
used for homogenization with respect to the variable s. 

Xn Y s 6 
-1 -1 1 -1 1 1 

In case of <2, we use the following weight vector V2 for homogenization with 
respect to s. 

Xl Xn Y s 6 ~n 
-1 -1 0 -1 1 1 

The term order on D[y][s] associated to <2 is as follows. 

Xl Xn Y s 6 ~n 
1 1 0 1 0 0 
0 0 0 0 1 1 
0 0 1 0 0 0 
-1 -1 0 0 0 0 

(any term order <') 

The Lemma 1.3.3 and the Theorem 1.3.4 holds for the order <2 and then Al­
gorithm 1.3.5 is correct. 

We consider the following order <3 

o 
o 

-1 

o 1 0 
o 0 1 
-1 0 0 

( any term order <') 

The weight vector V3 for the (-1, 1) -homogenization is 

Xl Xn Y s 6 
-1 -1 0 -1 1 

The associated term order <3 is 

Xl Xn Y s 6 
0 0 1 0 0 
1 1 0 1 0 
0 0 0 0 1 

-1 -1 0 0 0 
(any term order <') 
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The Mora division algorithm works for this order, too. 

1.3.3 An implementation of the Mora division algorithm 
in D[y] 

We have implemented the Mora division algorithm. We will present some heuris­
tic strategies installed in our implementation to improve the performance. 

• Strategies to choose a reducer: In the Algorithm 1.3.5, we choose one 
reducer pI among g. The choice sometimes changes the performance 
drastically. 

Example 1.3.9. (Comparison of strategies to choose a reducer) 

We will compare two strategies to choose a reducer. One is to choose the 
minimal sugar degree reducer (min sugar) and the another is to chose the 
maximal sugar degree reducer. As to the definition of the sugar degree, 
see [8]. When no cancellation happens, the sugar degree agrees with the 
total degree. It is known that choosing the minimal sugar polynomial to 
reduce among the S-polynomials makes the Buchberger algorithm efficient 
([8]). 

We apply the Mora division algorithm for P = (1 + Xd50XIX28182 with 
the initial reducer set PI = X181 + XIX282, P 2 = X282 + XIX281 and with 
the order < 1 . 

The following table is a comparison of the two strategies (min sugar and 
max sugar). 

Choice of reducer Time(seconds) The number of reductions 

min sugar 0.20 1062 
max sugar 99.3 + 9.9 2989 

The "min sugar" strategy gives a better performance than the "max sugar" 
strategy in this example. 

• Using modular computation: When coefficients swell into huge big num­
bers during the computation, the computation in Zip'll makes the perfor­
mance better. However, the remainder is not always correct, this method 
can be used only for guessing the answer. 

• Use the monomial orders <2 or <3: When the computation with <1 fails, 
it might succeed with the order <2, <3. There are opposite cases, too. 

1.3.4 Computation of Grobner bases in Dalg[y] 

Suppose that an ideal I in Valg[Y] or D[y] is generated by elements in D[y]. 
There are two known methods to compute Grabner basis of I. 
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1. Use the Buchberger algorithm in D[y] with the Mora division algorithm. 

2. Make (-1, 1 )-homogenization of inputs. Compute Grabner basis by the 
Buchberger algorithm with the term order <1' Dehomogenize the result. 

In most examples I have tried, the latter method is faster. The number of the 
elements in the basis is larger in the latter method in most cases. 

Example 1.3.10. (The Buchberger algorithm with the Mora division algorithm 
vs the Buchberger algorithm with the homogenization method) 

We will compute the Grabner basis of 

Since P1 = 1 + x3 is unit in Valg[Y]' we have I = Valg[Y]. 
The Buchberger algorithm with the Mora division: The remainder of SP<l (P1, P2 ) 

by {H,P2 } with the Mora division and with the order <1 is O. Then, {P1 ,P2 } 

is a Grabner basis. 
The Buchberger algorithm with the homogenization: The Grabner basis of 

I(s) = {p~S) = 0, p~s) = s3 + x 3 } with respect to the term order <1 is 

Both outputs imply that the ideal is generated by 1. 

1.4 An algorithm of computing the local b func­
tions; an exhaustive search method 

Let I in Valg[S] be the ideal generated by AnnD[sjr and f. The monic generator 
of In q s] is the local b-function. In case of the ring of polynomials or the Weyl 
algebra, we can obtain the generator by computing Grabner basis with the 
elimination order to eliminate all variables except s. However, we cannot use 
the elimination order for Valg[S]. Because the order to eliminate the variables 
except S must satisfy the condition Xl, ... ,Xn > s. 

In this section, we will give an algorithm of performing this elimination and 
obtain the generator. The second method will be given in the next section. Let 
us sketch the idea of our method. Let G be a Grabner basis of I in Valg[S]. We 
note that we can solve the ideal membership test in Valg[s] by the Mora division 
algorithm. We perform the ideal membership tests by G of the all products by 
combinations of linear factors of the global b-function. Since the local b-function 
b(s) is a factor of the global b-function b(s), the minimal degree product which 
belongs to I is the local b-function. 

Algorithm 1.4.1. (Computing the local b-function (exhaustive search method)) 

~:fEqX] 
I Output I : The local b-function of f 
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H f- a set of generators of AnnD[sJF 
If- (the ideal in 'Dalg [8] generated by H u {f}) 
G f- a Grabner basis of I 
BF f- the global b-function of j 
L f- the set of the divisors of BF 
LF f- the set of elements of L of which remainders by the Mora division with G are 0 
return the minimal degree polynomial in LF 

Example 1.4.2. (Computing the local b-function of j = xi(x1 + 1)3) 
The global b-function of j = xi(x1 + 1)3 is b(8) = 118 (8 + 1)(28 + 1)(38 + 

1)( 38 + 2). The set {gl = 28 + 58X1 - Xl a1 - xi an is a set of generators of 
AnnD[sJF· Put J = 'Dalg[8]' {j,gd. The set G = {j,gd is a Grabner basis 
of J. The remainders by the Mora division algorithm by G of the following 
divisors of b(8) are O. 

• 118 (8 + 1)(28 + 1)(38 + 1)(38 + 2) 

• ~(8 + 1)(28 + 1)(38 + 1) 

• ~(8 + 1)(28 + 1)(38 + 2) 

• ~(8+1)(28+1) 

The minimal degree polynomial is ~(8 + 1)(28 + 1) and then it is the local 
b-function of j. In particular, by examining the division procedure of ~(8 + 
1)(28 + 1) by G, we obtain the following identity, too. 

The disadvantage of the exhaustive search method is that larger the degree of 
the global b-function is, huger the number of combinations of factors is. We may 
not check all the combinations and can reduce the number of ideal membership 
tests. Let us explain the ideal. We note that 

g(8) EInC[8] ¢}:J(adivisorofg(8)) EInC[8]. 

Therefore, if g( 8) ~ I, we do not need to make the ideal membership test for 
the divisors of g( 8). 

Let us explain this method more precisely. We can suppose that the global 
b-function is factored as 

by Kashiwara's rationality theorem. Put 
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We suppose that ideal membership tests outputs the following result. 

If there is no J;, which belongs to I, then we conclude that the generator of 
In Cls] is b(s). We will consider the other case, in which m > 0 holds. Put 
g(s) = gcd(h (8),··· ,lim (s)). We have g(s) E I. Replace b(s) by g(s) and 
repeat this procedure until we succeed. Let us summarize this method by a 
pseudo code. 

Algorithm 1.4.3. (Computing the local b-function (improved exhaustive search 
method)) 

localb-rr(f) I 
input I f E Clx] 

Output I : The local b-function of f 
H f- a set of generators of AnnD[sjr 
If- (the ideal in 'Dalg[8] generated by H U {f}) 
G f- a Grabner basis of I 
BF f- the global b-function of f 
LF f- BF 
while (true) { 

} 

LF = b1(s)e l ···bl(8)e/ (bi(s) = s+ai,ai E Qbo) 
fi f- LF/bi (8) (1::; i ::; t, here, we choose i such that bi(s)ILF) 
Check if Ii belongs to I by the Mora division algorithm by G. 
if (fi ~ I(1 ::; 'Vi ::; t)) 

return LF 
If fi l , ••• ,fim E I, then 
LF f- gcd(h,··· ,lim) 

Example 1.4.4. (The local b-function of f = (x - 1)3 + (y + 1)2) 
The global b-function of f = (x -1)3 + (y + 1)2 is b(s) = (s + 1)(8 + ~)(s + ~). 

Since the polynomial f is smooth at the origin, the local b-function is 8 + 1. We 
will derive this result by applying the algorithm above. 

A set of generators of AnnD[sjr is 

{gl = -6s - 28x + 38y + 2x8x + 3y8y , g2 = 28x - 38y + 2y8x + 6x8y - 3x28y } • 

Put I = 'Dalg[8]· {f,gl,g2}. The set {j,gl,g2} is a Grabner basis of I. 

We denote by f ~ 9 that the remainder of f by the Mora division algorithm 
by G is g. 

By applying the division algorithm, we have 

- 5 7 G 
b(8) = (8 + 1)(8 + 6)(8 + 5) -+ 0 
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For each degree 2 factors of b( s), we have 

5 G 
h = (s + l)(s + 6) --+ 0 

7 G 
fz=(s+1)(s+5)--+O 

5 7 G 
h = (s + 6)(s + 5) --+ non-zero 

We have (s + 1) = gcd(h, fz) and 

s+l Eto 
Therefore, we conclude that the local b-function is s + 1. 

1.5 Algorithm of computing local generic b-functions 

1.5.1 Global generic b-function 

Let K be a field. 

Definition 1.5.1. (global generic b-function, [26]) 
Let I be a left ideal in D. The global generic b-function of I with respect to 

the weight vector wE Z:;o \ {O} is the monic generator b(s) of in(_w,w) (I) nK[s] 
where s = wIth + ... + wnBn. The generic b-function is also called the indicial 
polynomial. 

The global b-function of a polynomial j is the generic b-function of the 
holonomic Dn+l-ideal Dn+1 . {t - j, ch + /tat, ... ,an + ltat} with respect 
to the weight vector W = (0,··· ,0,1) (the weight of tis 1). 

It is known that the generic b-function for holonomic D-ideal is not zero 
([26, Theorem 5.1.2,Corollary 5.1.4]). Roots of generic b-functions are used in 
the restriction and integration algorithms for holonomic D-modules. Algorithms 
of computing the generic b-function are given in [22], [25]. 

1.5.2 A definition of local generic b-function 

We suppose that the weight vector W E Z~o \ {O} satisfies the condition 

WI = ... = wp = 0, Wp+1 > 0,··· Wn > 0 

Then, we have 

For given V-ideal I, in(_w,w) (I) is the ideal in gr(-w,w) (V) generated by 
{in(_w,w)(P) I P E I}. 
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Definition 1.5.2. (local generic b-function) The local generic b-function b(s) 
of V-ideal I with respect to the weight vector W is the monic generator of 
in(_w,w) (I) n K[s] where s = wp+1Bp+1 + ... + wnBn. 

The local b-function for f is nothing but the generic local b-function for the 
holonomic Vn+1-ideal Vn+1 . {t - f, 01 + ~at, ... , an + ~ad with respect to 

VXl UXn 

the weight w = (0, ... ,0,1) (the weight for t is 1). Here, K is supposed to be 
<C. 

We suppose that both of D-ideal I and V-ideal I are generated by PI, ... , Pm. 

Lemma 1.5.3. Retain the assumption above. Then, the local generic b-function 
with respect to the weight w is a divisor of the global generic b-function of I 
with respect to the weight w. 

Let us prove this lemma. Since in(_w,w) (I) C in(_w,w) (I), we have 
in(_w,w) (I) nK[s] C in(_w,w) (I) nK[s]. Any ideal in K[s] is principal, then the 
global generic b-function is divided by the local b-function. 

It follows from the lemma that the exhaustive search method described in 
the previous section can also be applied to the computation of generic local 
b-functions. 

Note that we need a factorization method in K[x] for our algorithm. When 
K = <C and the global generic b-function lies in Q[x], this can be done by 
factorization algorithms in algebraic extension fields. 

1.5.3 Computation of the local generic b-function 

Theorem 1.5.4. Suppose that generators Pi have coefficients in Q. When 
K = <C, the local generic b-function is computable with the following algorithm. 

Let us illustrate our algorithm. In the first step, we need to find gener­
ators of in(_w,w) (I). We use the Mora division algorithm in gr(_w,w)(V) = 
K[[X1,'" ,Xp]][Xp+1,'" ,xn](a1,'" ,an), We can use the following monomial 
order < for the Mora division algorithm in K[[X1, ... , xp]] [xp+1, ... , Xn] (01, ... , an) 

Xl Xp Xp+1 Xn 01 ap ap+1 an 
0 0 1 1 0 0 1 1 
0 0 0 0 1 1 0 0 

-1 -1 0 0 0 0 0 0 
( any term order ) 

The following weight vector is used for the homogenization with respect to s. 

-1 -1 0 o -1 1 1 0 o 
The following order <8 is a term order and we apply the Mora division algorithm 
with this order. 
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Xl Xp Xp+l Xn S [it ap ap+l an 
0 0 1 1 0 0 0 1 1 
1 1 0 0 1 0 0 0 0 
0 0 0 0 0 1 1 0 0 

-1 -1 0 0 0 0 0 0 0 
( any term order ) 

By utilizing this order and the Mora division, we can perform Grabner basis 
computation in K[[Xl,· .. ,Xp]][Xp+l,··· ,xn](al ,··· ,an) and also ideal mem­
bership tests. 

Let G be a Grabner basis of I with respect to «-w,w) « a term order). 
Then, in(_w,w)(G) is a set of generators of in(_w,w) (I). Analogous statement 

holds for V-ideal I 

Proposition 1.5.5. Let G be a Grabner basis of I with respect to «-w,w) « 
is the monomial order defined above). Then, in(_w,w)(G) is a set of generators 
ofin(_w,w) (I). 

To finish the first step, we need to compute Grabner basis of I with respect to 
«-w,w). Let us explain our method. It can be performed by a homogenization 
as follows, which is an analogous homogenization method in case of D. 

1. Homogenize generators of I with respect to (-w,w). The new variable 
Xo is used for the homogenization. The homogenized ideal is denoted by 
Ih. 

2. Let <h be the monomial oder in K[[Xl,··· ,xp]][xp+l,··· ,xn,xo](al ,··· ,an) 
defined by the following weight vectors. 

Xl Xp Xp+l Xn Xo al ap ap+l an 
0 0 0 0 1 0 0 0 0 
0 0 1 1 0 0 0 1 1 
0 0 0 0 0 1 1 0 0 
-1 -1 0 0 0 0 0 0 0 
( any term order ) 

This monomial order is an elimination order with respect to Xo. 

Compute Grabner basis of Ih with respect to <h. (We may use either 
the Buchberger algorithm with the Mora division or that with the Lazard 
homogenization method.) Let Gh be the Grabner basis obtained. 

3. The set G = in(_w,w)(Ghlh=l) is a set of generators of in(_w,w) (I). 

The set G is nothing a set of generators of in( -w,w) (I), but also a Grabner basis 
of the initial ideal with respect to the monomial order <. 

In the second step, by utilizing this Grabner basis and the Mora division 
algorithm, we can determine the local generic b-function by trying to reduce 
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all combinations of factors of the global generic function. The minimal degree 
polynomial of which remainder is 0 is the local generic b-function. This step 
is analogous with that of the exhaustive search method to determine the local 
b-function for a polynomial 1. 

Note that we need the factorization of the global b function into first or­
der factors. In other words, we need the factorization in the polynomial ring 
with algebraic extension fields of Q. We have not yet implemented this algo­
rithm completely. Our factorization is done only in Q[8]. Note that in case of 
the b-function of a polynomial we need factorizations only in Q[8] by virtue of 
Kashiwara's theorem. 

Let us show one example. 

Example 1.5.6. (Computation of the local generic b-function) 
Put 1 = x 3 -(y+l)2. The annihilating ideal of 1-1 is of the form AnnDI-1 = 

D·{ -3x2oy-2(y+l)ox, 3(y+l)oy+2xox -6}, which is known to be a holonomic 
ideal. We denote this ideal by I and by I the V-ideal generated by the same 
set of generators. Let us compute the local generic b-function of I with respect 
to the weight vector w = (1,0). 

Apply o~r first step for this input. A set of generators of inC_w,w) (I) is 

{3(y + l)oy + 2xox + 6, (y + l)oy + 2, ox} 

which is also a Grabner basis. We put it G. On the other hand, the global 
generic b-function of I with respect to w is 8(28 + 3). We try to divide all 
combinations of the linear factors of the global generic b-function by the Mora 
division. 

8(28 + 3) ~ 0 

8~0 

28 + 3 ~ non-zero 

1 ~ non-zero 

Thus, we conclude that the local generic b-function is 8. 
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Chapter 2 

Computing Local 
b-Functions by an 
Approximate Division 
Algorithm 

2.1 Introduction 

Let K be a field of characteristic O. We denote the differential operator 8~i by 
ai . The ring of differential operators with polynomial coefficient 

D = { L ak,{3(X)a{3 I ak,{3(x) E K[X]} 
{3ENn 

is denoted by D, and that with formal power series coefficient 

is denoted by 15. Here x = (Xl,'" ,xn) and a = (a1,'" ,an), 
Division theorems are fundamental in several construction for D-modules. 

Castro gave a constructive division theorem in 15, which gives unique quotients 
and remainder [4]. However, the division procedure needs infinite reductions. 
On the other hand, Granger, Oaku and Takayama gave a division algorithm for 
algebraic data in 15 ([9], [10D, which is an analogous algorithm with the Mora 
division algorithm in the polynomial ring [11]. We call this division the Mora 
division algorithm in D. The division algorithm stops in finite steps, but the 
remainder is not completely reduced. By using the division algorithm, we can 
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get ~ Grabner basis and solve the ideal membership problem for algebraic data 
in v. 

The local b function of a polynomial f E K[x] is the minimum degree monic 
polynomial b(s) E K[s] which satisfies 

3P E D[s] such that pr+l = b(s)r. 

Oaku gave algorithms computing the local b function of a given polynomial by 
using a Grabner basis method in D ([21], [22], [25]). In this paper, we propose 
a new algorithm to compute the local b function. We use the Mora division 
algorithm in D and an approximate division algorithm in 13, which gives an 
approximation of the remainder by Castro's division in D. 

2.2 Division theorem and approximate division 
algorithm in the ring of power series K[[x]] 

There are several kinds of division theorem in K[[xlJ. Among them, we need 
a division theorem which gives unique quotients and unique remainder for our 
approximate division algorithm in D. We start with explaining this kind of 
division theorem. As to details about the division theorem including a history, 
we refer [6]. 

We define a monomial order <r on monomials in K[[xlJ by the following 
1 x n matrix and a term order < as the tie-breaker. 

Xl xn 
-1 -1 
( term order < ) 

In other words, we define the order <r as 

(3 {-a1 - ... - an < -/31 - ... - /3n or 
xC> <r X ¢} 

(-a1 - ... - an = -/31 - ... - /3n and xC> < x(3) 

Since the order is not a well order, ordinary division algorithm does not generally 
stop in finite steps. 

Let a(l),··· ,a(s) E (Z>o)n. For (a(l),··· ,a(s)), we define a partition 
6.1, ... ,6.8 ,6. of(Z2:o)n as-

6.1 = a(l) + (Z2:o)n, 

6.2 = (a(2) + (Z2:o)n) \ 6.1
, ... 

6. 8 = (a(s) + (Z2:0)n) \ (6.1 U··· U 6. 8
-

1
), 

6. = (Z2:0)n \ (6.1 U··· U 6.8
). 
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Let f E K[[x]]. We define the following notations. 

LM<r (f) : leading monomial of f with respect to <r 
LT <r (f) : leading term of f with respect to <r 
LE<r (f) : leading exponent of f with respect to <r 
Exps(f) : set of exponents appearing in f 

Rest<r (f) : f - LT <r (f) 

For example, let f = 3X1 +X1 X2, then LM<r (f) = Xl, LT <r (f) = 3X1, LE<r (f) = 
(1,0), Exps(f) = {(I,O), (1, I)}, and Rest<r(f) = X1X2. 

Lemma 2.2.1. (Division by terms in K[[x]]) 
Let f E K[[x]], g1, ... ,gs E K[[xll and ~1, ... ,~s, ~ be the partition of 

(Z;:::o)n with respect to (LE<r(gl),··· ,LE<r(gs)). Then, there exist quotients 
q1,· .. ,qs E K[[x]] and remainder r E K[[xll which satisfies the following con­
ditions : 

f = q1 LT<r(gd + ... + qsLT<r(gs) + r, 
EXPS(gi) + EXPS(qi) C ~i, 

Exps(r) C ~. 

Namely, this is a division of f by leading terms LT <r (gd, ... ,LT <r (g s). Espe-
cially, (q1, ... ,qs, r) is uniquely determined by (f, LT <r (gd, ... ,LT <r (gs), <r). 
We call this computation term-div(f, gl, ... ,gs). 

Theorem 2.2.2. (Division theorem in K[[x]]) 
Let f E K[[xll, gl,··· ,gs E K[[xll, and ~1, ... ,~s, ~ be the partition of 

(Z>o)n with respect to (LE<r(gd,··· ,LE<r(gs)). Then, there exist quotients 
q1 ,-: .. ,qs E K[[x]] and remainder r E K[[xll which satisfies the following con­
ditions. 

f = q1g1 + ... + qsgs + r 

LE<r(gi) + EXPS(qi) C ~i 

Exps(r) C ~ 

Especially, (q1,··· ,qs,r) is uniquely determined by (f,gl,··· ,gs,<r). 

We show a procedure to obtain q1, ... ,qs, r. 
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K[[xlJ-division(f,911 ... ,98) 
Input: j E K[[x)], 91, ... ,98 E K[[x)) 
Output: q1,··· ,q8' r E K[[x)) which satisfies 

j = q191 + ... q898 + r 
LE<r(9i) + EXpS(qi) C ~i 
Exps(r) C ~ 

1 : F f- j, qi f- 0 (1 ~ i ~ s), r f- 0 
2 : while (F :f. 0) { 
3: [q', r') f- term-div(F, 91,··· ,98) 
4 : qi f- qi + q~ (1 ~ i ~ s) 
5: r f- r + r' 
6 : F f- - L::=1 q~Rest<r (9i) 
7: } 
8 : return [q, r) 

This procedure generally does not stop in finite steps. Therefore this pro­
cedure is not an algorithm in a strict sense. If input j and 9i are polynomials, 
we can give an algorithm which returns approximate quotients and approximate 
remainder which are correct up to given total degree N. Approximate algorithm 
of this kind has been discussed by several authors, for example, see [15). After 
the manner of the approximate algorithm, we will give an algorithm which gives 
approximations of quotients and remainder by K[[x))-division. 

Algorithm 2.2.3. (K[[xlJ-approximate-division) 

K[[xlJ-approximate-division(f, 91, ... ,98, N) 
Input: j E K[x], 91,··· ,98 E K[x], N E Z>o 
Output: q1,··· ,q8' r, F E K[x) which satisfies the following conditions. 

j = q191 + ... + q898 + r + F 
F :f. 0 =:;. ILE<r (F) I 2: N 
Terms of qi whose total degree is smaller than N -ILE<r(9i)1 agree 
with those of qi. 
Terms of r whose total degree is smaller than N agree with those of r. 

Here lal is L:~1 ai, where a = (a1,··· ,an), 
and qi, r are quotients and remainder of K[[xlJ-division(f, 91,··· ,98). 
1 : F f- j, qi f- 0 (1 ~ i ~ s), r f- 0 
2: while (F:f. 0 and ILE<r(F)1 < N) { 
3 : [q', r') f- term-div(F, 91, ... ,98) 
4: qif-qi+q~(I~i~s) 
5: r f- r + r' 
6 : F f- - L::=1 q~Rest<r (9i) 
7: } 
8 : return [q, r, F] 

Example 2.2.4. (Example of K[[x))-approximate-division) 
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The example of the case of f X,gl 1 + x,N 5 (execute K[[xll-
approximate-division(x,l + x, 5)) 

term-div q' r' q r F 
0 0 x 

x=x·1+0 x 0 x 0 -X·X 

-x2 = -x2 . 1 + 0 -x2 0 X -x2 0 -( -x2 ) . X 

x3 = x3 ·1 + 0 x3 0 X - x2 + x3 0 -x3 ·x 
_x4 = _x4 . 1 + 0 _x4 0 X - x2 + x3 - X4 0 -( -x4 ) . X 

x5 = x5 ·1 + 0 x5 0 X - x2 + x3 - X4 + x5 0 -x5 ·x 

The output of the approximate division algorithm is 

x = (x - x2 + x 3 
- X4 + x5

) . (1 + x) - x6
. 

In this case, the quotients and the remainder by K[[xll-division are 

x 
x = -_. (1 + x) + 0 

l+x 
= (x - x2 + x3 - X4 + x5 - ... ) . (1 + x) + 0 

2.3 Division theorem and approximate division 
algorithm in D[y] 

Castro gave a constructive division procedure in i5 [4]. His division procedure 
returns unique quotients and remainder. In this section, we give an algorithm 
which gives approximations of the quotients and the remainder by his division. 
The approximate quotients and remainder are correct up to a given total degree. 

Let y be a parameter, and ~ be a commutative variable which stands for 
a. We define a monomial order < on i5[y] by using the following 2 x (2n + 1) 
matrix and the tie-breaker <1. 

o 
-1 
( 

xn y 6 
o 1 1 
-1 0 0 

term order < 1 

1 
o 
) 

And we define an other monomial order <r on i5[y] by using the following 
1 x (2n + 1) matrix and tie-breaker <1. 

-1 
( 

xn y 6 
-1 -1 -1 
term order < 1 

-1 
) 

We define a weight vector e for monomials {x"'~,6 y"Y} as 

Xl 

o 
xn y 6 
o 1 1 
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If 1,81 + II'I = 1,8'1 + h'l (in other words, monomials have the same order with 
respect to the weight vector e), then it holds that 

Therefore, we get 
LM(P) = LM<r(ine(P)) 

Here ine (P) is the initial part of P with respect to the weight vector e. For 
example, when P = x18? +xi8? +x18l + 1, we have ine(P) = Xla +xi~r And 
LM<r(ine(P)) = xl~?,LM(P) = Xl~? 

We review Castro's division procedure in D[y]. Of course, since the monomial 
order < is not a well order, the procedure needs infinite reductions. 

Theorem 2.3.1 ([4]). (Division theorem in D[y]) 
Let P, PI,'" ,Ps E D[y], and Dol"" ,DoS, Do be the partition of Z;~+1 with 

respect to (LEdPd,'" ,LEdPs))' There exist Ql,'" ,Q.,R E DIy] which 
satisfies the following conditions. 

P = QlPl + ... + QsPs + R 

LEdPi ) + EXpS(Qi) C Do i 

Exps(R) C Do 

Especially, (Ql," . ,Q s, R) are uniquely determined by (P, PI , ... ,P., <). 

We show procedure for the division theorem. 

D-division( P, PI, ... ,Ps) 

Input: P, PI, ... ,Ps E v[y] 
Output: Ql,'" ,Qs, R E D[y] which satisfies 

P = QlPl + ... + QsPs + R 
LEdPi) + EXpS(Qi) c Doi 

Exps(R) C Do 
1: Qi+-O (lSiss),R+-P 
2: rna +- orde(R) 
3: for (k +- rna; k 2: 0; k +- k - 1) { 
4: r +- (total symbol of the part of R whose e-order is k) 
5: [q~,r'] +- K[[xll-division (r,ine(Pd,'" ,ine(ps),<r) 
6 : Q~ +- (replace ~ with 8 in qD (1 SiS s) 
7: R +- R - 2::=1 Q~Pi 
8: Qi+-Qi+Q~ (lSiss) 
9: } 
10 : return [Qi, R] 

Here, orde(R) is e-order of R, defined by 

orde(R} = max{e· a I a E Exps(R)} , 
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and the total symbol of P(x,y,8) = 2:",a",(x,y)8'" (a",(x,y) E K[[x]][y]) is 
P(x, y,~) = 2:", a",(x, y)~"'. For example, when P = (Xl + XIX2)8r + xl 81 + 1, 
orde(P) = 2 and the total symbol P(x,O = (Xl + XIX2)~r + xl6 + l. 

Since the procedure uses K[[xll-division at the 5th line, it does not stop in 
finite steps. We suppose that inputs are algebraic data, in other words, inputs 
are elements in D. By replacing the K[[x]]-division with K[[xll-approximate­
division (Algorithm 2.2.3), we can get approximations of the quotients and the 
remainder by V-division. 

Algorithm 2.3.2. (V-approximate-division) 

V-approximate-division(P, PI,'" , Ps, N) 
Input: P,PI ,'" ,Ps E D[y],N E Z>o 
Output: QI,'" ,Qs,RE D[y] satisfies 
P = QIPI + ... + QsPs + R 
Terms of Qi whose total degree is smaller than N - ILEdPi)1 agree with those of Qi 
Terms of R whose total degree is smaller than N agree with those of R 
Here, Qi and R are the result of V-division(P, PI, ... , Ps). 
1 : Qi +- 0 (1:::; i :::; s), R +- P 
2: rno +- orde(R) 
3: for (k +- 0; k :::; rno; k +- k + 1) 
4: Mk +- max(ILEdPi)I + 2(k - orde(Pi )) I i such that k ~ orde(Pi )) 

5 : Bound +- N + 2::°0 Mi 
6: for (k +- rno; k ~ 0; k +- k - 1) { 
7 : r +- (total symbol of the part of R whose e-order is k and whose 

total degree is smaller than Bound) 
8 : [q~,?] +- K[[xll-approximate-division(r, ine(PI),··· , ine(ps), <r, 

Bound) 
9 : Q: +- (replace ~ with 8 in qD (1:::; i :::; s) 

10 : R +- R - 2::=0 Q:Pi 

11: Qi+-Qi+Q: (l:::;i:::;s) 
12: Bound +- Bound -Mk 
13: } 
14: return [Qi, R] 

Since K[[xll-approximate-division stops in finite steps, the algorithm stops 
in finite steps. In the remainder of this section, we will prove the correctness of 
the algorithm. 

We put 

D(rn) = {p E D[y] (or V[y]) I orde(P) = rn} , 
T(i) = {p E D[y] (or V[y], K[x,~], K[[x]][y, W I (the total degree of every term of P) ~ i} . 
It follows from the definition that P - Q E T(i) is equivalent to that P and Q 
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are the same up to total degree i-I. From the Leibniz rule, we get the following 
property of the multiplication of approximate elements. 

Lemma 2.3.3. (Multiplication of approximate elements) 

(T(i) n D(m)) . T(j) C T(i + j - 2m) 

Here, dot . means multiplication in the ring of differential operators. 

(Proof) We suppose that P E T(i) n D(m) and Q E T(j). Then we have 

P = L aOlf3XOlaf3 , Q = L b,ox' a o (aOlf3, b,o E K) 
1f3I::;m,I"I+If3I~i 1,1+lol~j 

To compute the multiplication PQ, we use the Leibniz rule. We can get the 
following total symbol for PQ. 

Here, v ::; 13 means Vi ::; 13i for all i. 
We consider the minimum total degree of terms of PQ. 

min(lal + 11'1 - Ivl + 1131 + 161 - Ivl I (a,13) E Exps(P), (')',6) E Exps(Q), v::; 13, v::; 1') 
(2.1) 

Since lal + 1131 ~ i, 11'1 + 161 ~ j and Ivl ::; 1131 ::; orde(P) = m hold, the minimum 
total degree (2.1) is more than or equal to i + j - 2m. Therefore, we conclude 
PQET(i+j-2m).D 

Lemma 2.3.4. Let qi and r be the quotients and remainder of 
K[[x]]-division(l, g1, ... , g8, <r). If f E T(N), then qi E T(N -ILE<r (gi)l), r E 
T(N). 

(Proof) It holds that 

f = qlgl + ... + q8g8 + r 
LE<r(gi) + EXPS(qi) c ~i 
Exps(r) C ~ 

where ~ 1 , ... , ~ 8, ~ are the partition of;:Z ;~+1 with respect to (LE<r (gd, ... , LE<r (g8))' 
From these properties, we get -

LE<r (qigi) ::;r LE<r (I) 

LE<r (r) ::;r LE<r (I) 
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From the definition of the monomial order <r, we have 

and 

D 

Lemma 2.3.5. Let f, g1, ... ,g8 E K[[xll and j be the part of f whose total 
degree is less than N, that is, f - j E T(N). Let qi and r be the quotients and 
remainder of K[[xll-division(J, g1, ... ,g8, <r). And let qi and r be the quotients 
and remainder of K[[x]]-approximate-division(f,g1,··· ,g8,<r,N). Then qi-
7fi E T(N -ILE<r(gi)l), r - r E T(N). 

(Proof) Let q~ and r' be the quotients and remainder of 
K[[xll-division(f,g1,··· ,g8, <r). Since K[[xll-division uniquely gives the quo-
tient and remainder, the quotients and remainder of K[[x]]-division(J-j, g1, ... ,g8, <r) 
are qi - q~ and r - r'. From f - j E T(N) and Lemma 2.3.4, qi - q~ E 
T(N - ILE<r (gi)l) and r - r' E T(N) holds. 

From the property of K[[xll-approximate-division, q~-qi E T(N -ILE<r (gi)l) 
and r' - r E T(N) hold. So we get qi - qi E T(N -ILE<r (gi)l) and r - r E T(N). 
D 

(Proof of Algorithm 2.3.2) We will compare steps in the for-loop in 15-
division with those in 15-approximate division. We put 

Mk = max(ILEdPi)I + 2(k - orde(Pi)) I i such that k 2': orde(Pi )). 

We suppose that R - R E T(N) in the (k - l)-th step. Let us compare k-th 
steps in the for-loop in 15-division and 15-approximate-division. 

15-division 
r +- (total symbol of the part of R whose e-order is k) 
[q~, r'] +- K[[x]]-division(r, ine(Pd,··· ,ine(P8), <r) 
Q~ +- q~(x, 8) 
Rnew +- R - 2: Q~Pi 

15-approximate-di vision 
r +- (total symbol of the part of R whose e-order is k and total degree 

is less than N) 
[q~, r'] +- K[[x]]-approximate-division( r, ine(Pd,··· ,ine(P8)' <r, N) 
Q~ +- q~(x,8) 

Rnew +- R - 2: Q~Pi 

We will prove that Rnew - Rnew E T(N - Mk) holds after these computations 
have been done. 
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It follows from Lemma 2.3.5 that 

q: - q; E T(N -ILE<r(ine(Pi))!) = T(N -ILEdPi)!), 

r' - r' E T(N) 

Remainders rand rare e-homogeneous elements of order k, and ine(Pi ) is 
e-homogeneous element of order orde(Pi ). So, if q;, q; =I- 0, then q;, q; are e­
homogeneous elements of order k - orde(Pi )(2': 0). And, if r',? =I- 0, then 
r', r' are e-homogeneous elements of order k. Therefore, if Q;, Q; =I- 0, then 
Q;, Q; have the same e-order k - orde(Pi ) and are the same up to total degree 
N - ILEdPi)1 - 1. In other words, it holds that 

From Lemma 2.3.3, we have 

Therefore it holds that 

Since Mk = max(ILEdPi)I + 2(k - orde(Pi )) I i such that k 2': orde(Pi )), we 
get 

s s 

L Q;Pi - L Q;Pi E T(N - Mk)' 
i=l i=l 

Therefore Rnew - Rnew E T(N - Mk)' 
The accuracy of approximation decreases by Mk at each step of the for loop. 

To keep the accuracy, we beforehand add 2:::::°0 Mi to N. D 

Example 2.3.6. (Example of V-division and V-approximate-division) 
Let n = 1. We put P = 8 2 , PI = (1 +x)8+x. We compare V-division(P, Pd 

and V-approximate-division(P, PI, 5). 
At first, we show the procedure of V-division( P, Pd. 
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R +- P,mo +- orde(R) = 2 
r +- (part of R whose e-order is 2) = e 
[q~, r'] +- K[[x]]-division(r, ine (PI)' <r) 
(q~ = I!X~' r' = 0) 
Q~ +- I!XO 
R +- R - Q' PI = -0 __ I_ 

I l±x 
r +- (part of R whose e-order is 1) = -~ 
[q~, r'] +- K[[xll-division(r, ine (PI)' <r) 
( '- 1 , - 0) ql - -1±x,r -
Q' 1 1 +- -1±x 
R +- R _ Q' P - -1±x 

1 1 - l±x 
r +- (part of R whose e-order is 0) = -=fW 
[q~,r'] +- K[[xll-division(r,ine(Pd, <r) 
(q' - 0 r' - -1±x) 1 - , - l+x 
Q~ +- 0 
R +- R _ Q' P - -1+x 

1 1 - l±x 

The output of D-division(P, Pd is 

1 1 -1 + x 
02 = (--0 - --)((1 + x)o + x) + . 

l+x l+x l+x 

The quotient is 

1 1 2 3 4 ) --o---=(l-x+x -x +x _···)(0-1 
l+x l+x 

and the remainder is 

-1 + x 2 3 4 5 --- = -1 + 2x - 2x + 2x - 2x + 2x _ .... 
l+x 

Next, we show the procedure of D-approximate-division (P, PI, 5). 
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R +- P, rno +- orde(R) = 2 
Mo +- O,Ml +-1,M2 +- 3 
Bound +- 5 + (0 + 1 + 3) = 9 
r +- ( part of R whose e-order is 2 and total degree is less than 9) = e 
[q~, r'] +- K[[xll-approximate-division( r, ine (Pd, <r, 9) 
(q~ = (1 - x + x2 - ... + X6)~,? = -x7 e) 
Q~ +- (1 - x + x2 - ... + x6)8 
R +- R - Q~ Pl = -x 7 82 - 8 - X 7 8 - 1 + x - x2 + x3 - X4 + x5 - x6 

Bound +- 9 - 3 = 6 
r +- ( part of R whose e-order is 1 and total degree is less than 6) = -~ 
[q~, r'] +- K[[xll-approximate-division( r, ine(Pd, <r, 6) 
(q~ = -1 + x - x2 + x3 - x4, r' = x5~) 
Q~ +- -1 + x - x2 + x 3 - X4 
R +- R - Q~Pl = -x782 + x58 - x78 -1 + 2x - 2x2 + 2x3 - 2X4 + 2x5 - x6 

Bound +- 6 - 1 = 5 
r +- ( part of R whose e-order is 0 and total degree is less than 5) 

= -1 + 2x - 2X2 + 2x3 - 2X4 
[q~, r'] +- K[[xll-approximate-division( r, ine(Pd, <r, 5) 
(q~ = 0, r' = r = -1 + 2x - 2X2 + 2x3 - 2X4) 

Q~ +- 0 
R +- R = -x782 + x58 - x78 - 1 + 2x - 2X2 + 2x3 - 2X4 + 2x5 - x6 

The output of V-approximate-division(P, Pl, 5) is 

82 =((1 - x + x2 + ... + x6)8 + (-1 + x - x2 + x3 - x4)) . ((1 + x)8 + x)+ 

- x 782 
- X 78 + x58 - 1 + 2x - 2X2 + 2x3 - 2X4 + 2x5 - x6 

The correct part of the remainder is 

-1 + 2x - 2x2 + 2x3 - 2X4. 

And this part is the same with the part of the remainder of V-division 

2.4 Computation of the local b function by the 
approximate division algorithm in 13[8] 

We will apply the approximate division algorithm in V (Algorithm 2.3.2) to 
obtain the local b function of a polynomial. In the sequel, we use the parameter 
variable s instead of y, and K denotes the field of complex numbers. 

2.4.1 Definition and algorithm of the b function 

Definition 2.4.1. (Global b function) 
For given f E K[x], we define the global b function as the monic polynomial 

b(s) of the least degree which satisfies 3P E D[s] S.t. p. r+l = b(s)r. 
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Definition 2.4.2. (Local b function) 
For given 1 E K[x], we define the local b function at the origin as the monic 

polynomial b(s) of the least degree which satisfies :3P E 13[s] s.t. P . r+1 
b(s)r· 

Example 2.4.3. (b function) 
Let 1 = x(x + y + 1) = x2 + xy + x. The global b function of 1 is (s + 1)2, 

and (0; + OxOy) . r+1 = (s + 1)2 r holds. The local b function of 1 is s + 1, 
and _1_0 .18 +1 = (s + 1)18 holds. 1+2x+y x 

Oaku gave algorithms computing the global b function and the local b func­
tion for a given polynomial ([21], [22], [25]). A Grabner basis method in D is 
used in these algorithm. 

Noro gave an efficient algorithm computing the global b function [19]. In 
this algorithm, a Grabner basis method in D, and modular method are used. 
Especially, to eliminate variables, normal forms with respect to a Grabner basis 
are used. 

In this paper, we propose an algorithm computing the local b function by 
utilizing an approximate normal form with respect to a Grabner basis. Our 
algorithm is an analogous algorithm with Noro's algorithm. For this purpose, 
we review a Grabner basis and a normal form in V and define an approximate 
normal form. 

2.4.2 Grobner basis and normal form in D[s] 

Although 13[s] is a transcendental object, for ideals in 13[s] generated by elements 
in D[s], we can compute a Grabner basis in finite steps by either ofthe following 
algorithms . 

• Lazard's method in D (using a homogenization) 

• method using the Mora division algorithm in D ([9], [10]) 

Definition 2.4.4. (Normal form in 13[s]) 
For P E 13[s] and a Grabner basis G in 13[s], the remainder of 13-division(P, G) 

(Theorem 2.3.1) is uniquely determined. We call the remainder the normal 
form of P by G with respect to the monomial order <, and we denote it by 
NF(P,G, <). 

We note that a normal form does not have a finite representation in general. 

Lemma 2.4.5. (Ideal membership) 
Let G be a Grabner basis of an ideal I in 13[s]. For P E 13[s], P E I is 

equivalent to NF(P, G, <) = o. 
Lemma 2.4.6. (Sum of normal forms) 

Let G be a Grabner basis in 13[s]. For P, Q E 13[s], it holds that 

NF(P + Q, G, <) = NF(P, G, <) + NF(Q, G, <) 

33 



2.4.3 Algorithm computing In K[sJ 

For an ideal I in 13[s], we propose an algorithm computing a generator of I n 
K[s]. In this algorithm, we use approximate normal forms. We fix a Grabner 
basis G of I. 

For g(s) = alsl + al_lsl- 1 + ... + ao E I, it holds that 

g(s) E I ¢} NF(g(s), G, <) = 0 

¢} aINF(sl, G, <) + al_INF(sl-l, G, <) + ... + aoNF(l, G, <) = o. 

We compute NF(Si, G, <) beforehand, and we compute the minimum land 
coefficients ai, ... , ao E K, al "I 0 which satisfies 

aINF(sl, G, <) + al_INF(sl-l, G, <) + ... + aoNF(l, G, <) = o. 

Then the polynomial alsl + ... + ao is a generator of the intersection. 
However we cannot generally compute normal forms in 13[s] in finite steps. 

The normal form NF(Si, G, <) has infinite terms in general. Therefore we use 
an approximate normal form. 

Definition 2.4.7. (Approximate normal form) 
Let P E 13[s] and G be a Grabner basis of an ideal I in 13[s]. We define the 

approximate normal form of P by G up to total degree N as the remainder of 13-
approximate-division(P, G, N) (Algorithm 2.3.2). We denote it by NF(P, G, < 
, N). By definition, NF(P, G, <) and NF(P, G, <, N) are the same up to the 
total degree N - 1. 

We suppose that 

aINF(sl, G, <, N) + al_INF(sl-l, G, <, N) + ... + aoNF(l, G, <, N) = O. 

Since we use approximate normal forms, it is not always true that alsl + 
al_lsl- 1 + ... + ao E I. However we can solve an ideal membership prob­
lem for algebraic data in 13[s] by utilizing the Mora division algorithm in D[s]. 
Therefore we need to apply the Mora division algorithm to the gotten candidate 
alsl + ... + ao in order to check if it is a member of I. 

We will explain an algorithm computing In K[s] by using these ideas. We 
suppose In K[s] "I {O}. We put 

Li,N = {(ao,'" ,ai) E KiH I aiNF(si,G, <,N) + ... + aoNF(l,G, <,N) = O} 

{ HI i _ } Li= (ao,"',ai)EK laiNF(s,G,<)+···+aoNF(l,G,<)-O, 

where G is a Grabner basis of I and N E N. It holds that 

Li,o :J Li,1 :J Li,2 :J ... :J Li. 

The polynomial aisi + ... + ao which satisfies Li "I {O}, Li- 1 = {O} and 
(ao,'" , ai) E Li is a generator of In K[s]. In summary, an algorithm to 
compute the generator is as follows: 
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Algorithm 2.4.8. (Computing the generator of I n K[s]) 

(1) N +-- (a natural number), d+--O 

(2) Find i which satisfies Li- 1 ,N = {O}, Li,N =I- {O}. (Compute Ld,N, Ld+1 ,N, .... 
Note that Li- 1 ,N = {O} :::} Lo = Ll = ... = Li- 1 = {O}.) 

(3) Take an element (ai,'" ,ao) E Li,N and put g(s) = aisi + ... + ao. 

(4) Divide g(s) by G by using the Mora division algorithm. If the remainder 
is 0, then g(s) is the generator. If not, then set N +-- N + 1, d +-- i and 
goto (2). 

2.4.4 Algorithm computing the local b function 

For a polynomial f E K[x], an algorithm of computing the local b function of f 
at the origin is as follows: 

(1) Compute a set of generators of AnnV[sjr. Denote it by H. 

(2) Set I = V[s](H U {J}). Compute the generator b(s) of I n K[s]. The 
polynomial b( s) is the local b function. 

In (1), we take a set of generators of AnnD[sjr as a set of generators of 
AnnV[sjr. We can compute a set of generators of AnnD[sjr by Oaku's algo­
rithm [22]. In (2), since In K[s] =I- {O} holds (from the existence of the local b 
function), we can utilize the Algorithm 2.4.8. 

We show an example of computing the local b function. 

Example 2.4.9. (Local b function of f = x2(y + 1)2z2 at the origin) 
The global b function of f is (s + 1)3 (s + !)3, and the local b function is 

(s + 1)2(s + !)2. 
A set of generators H of AnnV[sjr is 

{PI = -2s + zOz, P2 = -xox + zOz, P3 = -Oy + xOx - YOy} 

A Grabner basis G of.:J = V[s](H u {J}) with respect to < is 

We set N = 1 and will apply the Algorithm 2.4.8 to compute the intersection 
.:JnK[s]. We note that approximate normal forms of Si by G up to total degree 
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N = 7 are 

NF(l, G, <, 7) = 1 
1 

NF(s, G, <, 7) = 2z8z 

2 1 2 2 1 
NF(s ,G, <, 7) = 4z 8z + 4z8z 

3 133 3 22 1 
NF(s ,G, <, 7) = SZ 8z + SZ 8z + Sz8z 

NF(S4 G < 7) = _~z383 _ 31 z282 _ 31 z8 _~. 
, " 8 z 16 z 16 z 4 

Steps of Algorithm 2.4.8 are 

L 1,1 = {O} 
L 2 ,1 :;) (0,1) 

L2,2:;) (0,1) 

L 2,3 = {O} 

L3 ,3 :;) (0, -~, 1) 

L 3,4:;) (0, -~, 1) 

L 3 ,5 = {O} 

L 4 ,5 :;) (O,~, -~, 1) 

L 4,6:;) (0,~,-~,1) 

L 4 ,7 = {O} 

L 5 ,7 :;) (i,~, 14
3 ,3,1) 

Mora division 
S ) non-zero 

G 
Mora division 

S ) non-zero 
G 

L2 = {O} 
S

2 __ 1 S Mora division 
2 ) non-zero 

G 
S2 _ lS Mora division) non-zero 

2 G 

L3 = {O} 
S3 _ !!.S2 + lS Mora division) non-zero 

2 2 G 
8 3 _ ~S2 + !8 Mora division) non-zero 

2 2 G 

Therefore, the local b function is S4 + 3s3 + 14
3 

S2 + ~s + i = (s + 1)2(s + ~). 

2.5 Implementation and timing Data 

Our algorithm computing the local b function has been implemented by utilizing 
computer algebra system "Risa/ Asir". The name of our package is "nk..lllora/local-b. rr". 
We show the timing data. 

Our algorithm computing the local b function consists of the following 3 
parts. 

(1) Computation of a set of generators of Ann13[sjfB (In fact, computation of 

a set of generators of AnnD[sjfB) 

(2) Computation of the Grabner basis of I = Ann13[sjfB + D[s]! 

(3) Computation of the intersection In K[s] (Algorithm 2.4.8) 
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To perform the step (1), we use Oaku's algorithm computing AnnD[sjr [21]. In 
the timing table, we denote this by (I). To perform the step (2), we have the 
following 2 algorithms. 

(2a) Buchberger algorithm utilizing the Mora division algorithm in D[s] 

(2b) Lazard's homogenized method in D[s] 

We denote this parts by (GB-a) and (GB-b). To perform the step (3), we use 
the Algorithm 2.4.8. We denote this part by (localb-nf). 

We took some examples from [22]. 

f I GB-a GB-b localb-nf localb 

x + y. + z· 0.00504 0.0190 0.00494 0.00503 0.00612 
x2 + y2 + z2 0.00524 0.00157 0.00224 0.0229 0.0119 
x3 + y2 + z2 0.00637 0.0298 0.0694 + 0.0192 0.0417 +0.0244 0.0226 
x4 + y2 + Z2 0.00631 0.0317 1.41 + 0.27 0.131 + 0.0884 0.0384 
x5 + y2 + z2 0.00624 0.0306 7.23 + 1.51 0.325 + 0.272 0.0612 
x6 + y2 + z2 0.00619 0.0291 33.0 + 3.25 0.726 + 0.598 0.129 
x 7 + y2 + z2 0.00610 0.0281 + 0.0170 137.5 + 24.1 1.26 + 0.674 0.247 
x' + xy· + z· 0.0260 0.172 0.107 0.114 + 0.0756 0.0767 
x4 + xy2 + z2 0.0566 0.140 2.29 + 0.338 0.501 + 0.284 0.184 
x 5 + xy2 + z2 0.0903 0.194 32.6 + 5.47 0.505 + 0.284 0.173 
x' + y' + z· 0.00858 0.118 1.45 1.43 + 0.821 0.197 

x 3 + xy3 + z2 0.0110 0.236 + 0.337 1.09 2.94 + 1.40 1.06 
x3 + y5 + z2 0.00979 0.123 18.3 + 2.82 4.36 + 1.80 0.615 

XU + xOyO + yU 0.70 0.28 0.052 - 7.06 
x4 + x2y2 + y4 0.0061 0.0138 0.0019 0.163 0.153 
x3 + x2y2 + y3 0.031 0.0748 0.018 33.4 0.0932 

x 3 + y3 + z3 0.0062 0.00162 0.0025 0.142 0.112 
x6 + y4 + z3 0.0134 0.052 76.5 131.1 23.2 

x3 + y2 Z2 0.029 0.0462 0.016 0.868 + 0.108 0.144 
(x3 _ y2 z2)2 0.102 7.49 + 1.67 0.0932 17.4 + 1.40 3.99 

x5 _ y2 z2 0.013 0.0827 0.092 3.77 + 0.279 0.817 
x5 _ y2 z3 0.0088 0.0265 0.0028 15.9 + 1.22 3.53 

x 3 + y3 _ 3xyz 0.019 0.473 0.020 0.641 + 0.0540 0.0946 
x 3 + y3 + z3 _ 3xyz 0.013 0.140 0.012 0.0658 0.0207 

y(x5 _ y2 z2) 0.014 16.7 + 3.43 0.58 58.6 + 5.24 6.10 
y(x3 _ y2 z2) 0.644 2.65 + 0.668 0.15 4.18 + 0.338 0.711 

y((y + 1)x3 _ y2 z 2) 0.284 18.8 + 1.34 3.6 + 0.14 - 10.2 
x" + x'y' + y" 0.004 0.012 0.002 1.38 1.73 
x8 + x4y4 + y8 0.003 0.058 0.0039 5.25 16.3 

x5 + y5 + z5 0.004 0.018 0.003 6.86 8.58 
x 6 + y6 + z6 0.003 0.018 0.003 25.2 56.4 

• localb - total time of Oaku's algorithm computing the local b function 
[21] 

• deg - degree of the local b function 

• machine - CPU: Athlon MP 1800+ (1533MHz) (2 CPU), Memory 
3GB, OS : FreeBSD 4.8 

The total time of our algorithm is (I + GB-a + localb-nf) and the total 
time of Oaku's algorithm is local-b. Oaku's algorithm(localb) is faster than 
our algorithm for the first 27 examples in the table. The reasons seems to be 
as follows: 
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deg I 
1 
2 
3 
4 
5 
6 
7 
4 
6 
6 
7 
8 
9 
7 
6 
4 
5 

18 
7 

14 
13 
17 
5 
3 

18 
10 
10 
10 
14 
11 
14 



1. :D-approximate-division algorithm (Algorithm 2.3.2) is heavy computation 
in our theory and implementation. The variable Bound in Algorithm 2.3.2 
becomes very large and K[[xJJ-approximate-division becomes heavy. (It is 
a question if we can make the Bound smaller with a sharper estimate) 

2. Mora division algorithm in D is heavy computation. 

Although there are these negative aspects in practice in our algorithm, our 
algorithm is faster than Oaku's one for the last 4 examples in the table. It is 
a future question to find conditions so that our algorithm is faster than Oaku's 
one. One simple observation is that the last 4 examples are homogeneous. 

Although, our new method is not always faster than Oaku's one, however 
the author thinks that it is promising method for some class of problems. In 
fact, for the last example, Oaku's method spends a lot of time to compute a 
Groebner basis computation in the Weyl algebra D which is done with highly 
optimized built-in function in "Risa/ Asir". Our implementations of the Mora 
division in D and :D-approximate-division are written in the user language of 
"Risa/ Asir" and further reduction strategies in these algorithm have not yet 
been highly optimized, which seems to be an interesting research subject. 
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Chapter 3 

Computing Annihilating 
Ideals 

In this chapter, we give an algorithm of computing the annihilating ideal of r 
in Dalg . It can be computed by an analogous method in the case of the Weyl 
algebra [22], [25]. Correctness proofs are also analogous. 

We use the following notations: 

x = (Xl,··· ,xn),a = (01,··· ,an) 

D = {L: a,Ax)a'" I a EN", a",(x) E qx]} 

D(t,at) = {L:a",(x)ti3 a"'af I a E N",/1 E N, a", (x) E qx]} 

{ 
f(x) } 

qx](x) = g(x) I f(x),g(x) E qx],g(O) i- 0 

Dalg = {L: a",(x)a'" I a EN", a",(x) E qx](x) } 

Dalg(t,at) = {L:a",(x)ti3 a"'af I a E N",/1 E N,a",(x) E qx](x)} 

3.1 Computing generators of annihilating ideals 
AnnD[s]f

s 

We summarize the algorithm to compute generators of annihilating ideals AnnD[s] r 
by T.Oaku [22]. 

A weight vector w is defined as follows. 

u v other variables 
-1 1 -1 1 0 

For a w-homogeneous element P E D(t,at) whose w-weight is m, 'ljJ(P)(tat) 
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is defined by 

We put 

P ta _ {tm P (m ~ 0) 
V;( )( t) - O;m P (m < 0) 

{
of of } 

If = D(t,ot)· t - f,01 + OX1 Ot,··· ,On + OXn Ot . 

It is easy to show that AnnD(t,o,)fs = If. 
Theorem 3.1.1. (Computing generators of AnnD[s]fB, [22]) 

We put 

{
of Of} J=D(t,ot)[u,v)· t-uf,01+ OX1UOt,··· ,on+ ox

n
,l-uv . 

A Grabner basis of J with respect to an elimination order for u, v which consists 
of w-homogeneous elements is denoted by G. We put 

Go = N(P)( -s - 1) E D[s) I PEG n D(t, Ot)}. 

Then, Go generates AnnD[s]fB. 

3.2 Computing generators of annihilating ideals 
AnnDalg[s)f

s 

It is analogous to show that 

in the case of Dalg(t, Ot). We denote this ideal by If. We can analogously 
compute generators of AnnVaI9[s]fB as in the case of AnnD[s]fB. 

Theorem 3.2.1. (Computing generators of AnnValg[s]fB) 

We put 

We denote an elimination order of u, v in Dalg (t, Ot)[u, v) by <. A Grabner basis 
of J with respect to < which consists of w-homogeneous elements is denoted by 
G. We put go 

go = {V;(P)( -s - 1) I PEg n Dalg(t, Ot)}. 

Then, go generates AnnVaI9[s]fB. 
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The proof of this theorem is almost the same as that of Theorem 3.1.1. 
(proof) 
We prove 90 c AnnValg[sjr. For P E 9 n Valg(t, 8t ), since P E J, there 

exist Qo, ... , QnH E V alg (t, 8t )[u, v] such that 

We substitute u = 1, v = 1 in the above formula, 

P = Q~(t - 1) + :t Q~(8i + :!ad E If 
i=l t 

Since P is w-homogeneous, 'ljJ(P)(t8t ) is t m P or 8;n P. Therefore, 'ljJ(P)(tat ) E 
If holds. In other words, we have 'ljJ(P)( -8 - 1) . r = 0, and hence 90 c 
AnnValg[sjr holds. 

Conversely, we prove that 90 generates AnnValg[sjr. For P(8) E AnnValg[sjr, 

since P( -8t t) E If, there exist Qo, Q1,··· Qn E Valg(t, 8t ) such that 

We homogenize the both sides in the above formula by this weight vector 
t 8t other variable . . . . 

-1 1 0 ' where the vanable for homogemzatlOn 1S u. Then, 

there exist l, lo,· .. , ln E N such that 

where Q7 is the homogenization of Qi with respect to the above weight vector. 

P( -8t t) = (1 - UlVl)p( -8t t) + ulVl P( -8t t) 

= (1 - uv) (1 + uv + ... + Ul- 1vl- 1 )P( -8t t) + vlul P( -8t t) 

P( -8t t) E J holds. We put 

9 = {P1 , ... , Pk, PkH . .. , Pr } , 

and assume that P1 , ... , Pk do not include u, v and PkH , ... , Pr include u or 
v. Hence, we have 

Since 9 is a Grabner basis of J and the elements in 9 are w-homogeneous, when 
we divide P( -8t t) by 9 with respect to < (the Mora division in Valg(t, 8t )[u, v]), 
there exist w-homogeneous elements U1,··· , Ur E Valg(t, 8t )[u, v] such that 

r 

P( -8t t) = L UiPi 
i=l 
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We assume that Uk+1 =j:. 0 or ... or Ur =j:. O. Since < is an elimination order of 
U, v, it holds that 

This is a contradiction. Therefore Uk+1 = ... = Ur = 0 holds, and 

k 

P = L UiPi (Ui E Dalg (t, 8t )) 
i=l 

P( -8t t) is a w-homogeneous element with w-weight O. We denote the w-weight 
of Pi by Wi. Then, the w-weight of Ui is -mi. 

And we get 

k k 

P( -8tt) = L UI(tat)SiPi = L U:(t8t)~(Pi)(tat), 
i=l i=l 

k 

P(s) = L UI( -s - l)~(Pi)( -s - 1), 
i=l 

which implies that the P(s) in AnnValg[sjr is generated by go in Dalg[s]. 0 

Proposition 3.2.2. (Generators of AnnD[sjr and AnnVaI9[sjr) 
We denote by Go a set of generators of AnnD[sjr. 

AnnValg[sjr = Dalg[S]' Go 

(proof) It is trivial that Go C AnnValg[sj r. 
We take an element P(s) in Annvalg[sjr. There exists a polynomial g(x) 

such that g(O) =j:. 0 and g(x)P(x) E D[s]. And g(x)P(s) E AnnD[s]r. We put 
Go = {P1,··· ,Pk}. There exist Q1,'" ,Qk E D[s] such that 

k 

g(x)P(s) = L QiPi 
i=l 

Therefore Annvalg[sjr = Dalg[s]· Go holds. 0 
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3.3 Algorithm of computing Annva1g[s]f
s 

We explain details of our algorithm computing generators of AnnValg[sjfB. 

Algorithm 3.3.1. (Algorithm computing generators of AnnValg[sjfB) 
Input : a polynomial f in n variables 
Output: generators of AnnValg[sjfB 

1. We put the ideal 

8f 8f 
.:J = V a1g (t,8t )[u,v]· {t - uf,81 + -8 u8t ,··· ,8n + -8 u8t , 1- uv}, 

Xl Xn 

and take the following monomial order < : 

Xl Xn t u v 81 8n 8t 

0 0 0 1 1 0 0 0 
0 0 1 0 0 0 0 1 
0 0 0 0 0 1 1 0 

-1 -1 0 0 0 0 0 0 
(a term order) 

We note that this monomial order < is an elimination order of u, v, a 
global order with respect to t and a local order with respect to Xl, •.• X n . 

We compute a Grabner basis of.:J with respect to <. The Grabner basis 
is denoted by 9. 

2. We put 
90 = N(P)( -s - 1) I P E 9 n Va1g(t, 8t )}. 

Then 90 generates AnnValg[sjfB. 

The correctness of this algorithm follows from Theorem reflocalAnn. 
Let us present an example. 

Example 3.3.2. (Computing generators of AnnValg[sjfB) 
We put f = x+y(l +x). AnnD[sjfB is generated by the following 3 elements 

P1 = -(x + y(l + x))8x + (1 + y)s 

P2 = 8y - (1 +x)28x + (1 +x)s 

P3 = -(1 + y)8y + (1 + x)8x • 

On the other hand, we get the following smaller set of generators of AnnVal9[sjfB 
by Algorithm 3.3.1 : 

P3 = -(1 + y)8y + (1 + x)8x 

P4 = x(l + y)8y + ((1 + x)y - x2)8x - (1 + y)s 
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From Proposition 3.2.2, it holds that 

We note that they generate different D[s] ideals; 

We have given algorithms computing the local b-function of a polynomial 
J in chapters 2 and 3. These algorithms need generators of AnnValg[sjr. We 
use generators of AnnD[sjr, which also generate AnnValg[sjr, in these algo­
rithms. For some polynomials J, computing AnnVal9[sjr is faster than that of 
AnnD[sjr as we see below. This implies that we can obtain local b-functions 
faster. Moreover, by using Algorithm 3.3.1, we can get the local b-function only 
by computation in V alg . 

Example 3.3.3. (Timing data of computing AnnvaI9[sjr) 

J AnnValQ[SJr 
X7 + y7 + x4y4 0.51 s 

XlI + yll + X 6
y 6 6.0 s 

Xl3 + yl3 + x7y7 7.6 S 

Xl5 + yl5 + x8 y 8 10.0s 
X5 + y5 + X3 y 3 0.32 s 
x5 + y5 + x4y4 

xlOOO + y3 0.18 s 
x2000 + y3 0.18 s 
x3000 + y3 0.18 s 

AnnD[sjr : Algorithm based on Theorem 3.1.1 
AnnValg[sjr : Algorithm 3.3.1 

AnnD[sJr 
8.3 s 
759 S 

0.52 s 
0.096 S 

1.6 s 
5.3 s 
12.1 s 

Software - Risa/ Asir, Machine - CPU: Core2(1.06GHz), Memory: 2 GB 
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Chapter 4 

Interactive User Interface 
for Computer Algebra 

4.1 Introduction 

Our objectives of building the interactive user interface are as follows: 

(1) To select reducers in division algorithms and S-pairs in the Buchberger 
algorithm interactively. 

(2) To visualize division algorithms and the Buchberger algorithm and to 
understand the algorithms intuitively. 

(3) To create a user interface of division algorithms and the Buchberger algo­
rithm without using computer algebra system languages. 

Objective (1) has a mathematical background. We have studied and imple­
mented division algorithms and the Buchberger algorithm in the ring of differ­
ential operators with rational function coefficients whose denominators do not 
vanish at the origin, V alg ([17], [10]). In the ring of polynomials and the local 
ring of that, methods of efficiently computing a remainder and a Grabner basis 
have been studied in detail ([7], [8], [11]). However, in the ring V alg , methods 
of those have not been studied in detail. As far as we have known, no system 
has satisfied our objectives. Therefore, we have designed an interactive user 
interface as a tool to understand and improve these algorithms. This system 
is a tool for us to study algorithms, however it may be useful for educational 
purposes. 
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4.2 System Architecture 

The proposed system consists of two parts: polynomial computation and user in­
terface. The Polynomial computation part is performed by Risa/ Asir. Risa/ Asir 
is an open source computer algebra system, and it is efficient at factorization, 
Grabner basis computation ([29]). The user interface part is written in Java. 
These two parts are connected by OpenXM over HTTP ([31]). We can concen­
trate on the user interface with this architecture. 

4.3 Interactive User Interface for Division Algo­
rithms 

As shown in the screenshot (Fig.4.1, Fig.4.2), each ball stands for a monomial. 
Each row stands for a polynomial. The first row is a divident. The rest are 
divisors. In this case, x lO + 1 is divided by x2 + xv, xy + y2 with respect to 
the lex order such that x > y. The Monomial balls are sorted by the lex order. 
The possible reducers are emphasized in blue. In the manual mode, when we 
click a blue ball, the system executes a reduction by the selected reducer. In the 
automatic mode, the system automatically executes reductions with the current 
strategy on the clicking of the start button. We can easily switch between these 
two modes. 

Figure 4.1: initial state Figure 4.2: result 
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4.4 Interactive User Interface for the Buchberger 
Algorithm 

As shown in the screens hots (Fig.4.3, Fig.4.4), each ball stands for an S-pair. 
A red ball has not yet been divided. A sky blue ball has been divided. The 
polynomials in the bottom window are intermediate Grabner basis, and will 
finally become a Grabner basis. 

When we click a ball, the system executes the division of the ball by the 
intermediate Grabner basis. If the remainder is 0, then the ball is eliminated. 
Else, then the set of S-pairs and the intermediate Grabner basis are updated. 
When we click the start button, the system switches to the automatic mode and 
an S-pair is automatically chosen with the current strategy, either the normal 
strategy or the sugar strategy. The pairs eliminated by the Buchberger criterion 
or the Gebauer-Maller criterion are visualized. These pairs are colored white or 
gray. 

~t.Hll"H .. <¢.~':rl 
I 

tt\.l.JIt-, i 

I (0.1) M .I.l..') 
0.0 .. 

Figure 4.3: initial state 

'O.l~" ("it) I; e.. O-YO 

C4.t) " (t,~") .. -Jl. -'1, 0-

a;o it.Z 0 , ' 

eV.4)'" u , .) 0 ~ 4)D , 4)11 

0,1 0 . 1 . , J 

Figure 4.4: result 

4.5 Application and Conclusion 

We show an example of computing a Grabner basis in the ring Valg[S]. We 
consider the computation of the Grabner basis of the left ideal in Valg[s] gen­
erated by xy + x 3 + y3, x8x - y8y + 3y28x - 3x28y , sx + 3sy2 - xy8y - x 38y -

y38y , - 3s + 2x8x + y8y + 27 sxy - 3x28y - 9x2 y8x - 9xy28y , 3sy + 9sx2 - 2xy8x -

y28y - 3x38x - 3x2y8y . This example appears in the computation of the local b 
function of x 3 + xy + y3. We cannot compute the Grabner basis with the normal 
strategy or the sugar strategy. 

Using the interactive user interface, we can easily try all orders of S-pair 
selections. However, in any case, the computation stops in the Mora division of 
an S-pair. We conclude that S-pair selection strategies do not solve the problem, 
and the implementation of the Mora division algorithm in Valg[S] should be 
improved. 
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This negative discovery was made with our interactive user interface. Nev­
ertheless, our interface can be a useful tool to test new methods of computation 
such as for playing video games. 
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Chapter 5 

Some Mathematical Results 
and Questions 

In this chapter, we will apply our computational methods to two mathematical 
questions. 

5.1 b-functions of 17 polynomials by Sekiguchi 

In the paper [27], Jiro Sekiguchi classified weighted homogeneous polynomi­
als in 3 variables with some nice conditions as discriminants of Weyl groups. 
The 17 polynomials classified in [27) are decomposed into 3 families by the 
weights (p,q,r); (I) (p,q,r) = (2,3,4), (II) (p,q,r) = (1,2,3), (III) (p,q,r) = 
(1,3,5). These families are related with the reflection groups of rank three. 
In fact, there are three irreducible reflection groups of rank three and their 
types are A3, B3, H3. The discriminant of the reflection group W(A3) (resp., 
W(B3), W(H3)) is contained in (I) (resp., (II), (III)). Let x, y, z be the vari­
ables such that their weights are p,q,r, respectively and let F(x,y,z) be one 
of the seventeen polynomials. Then he finds not only that the hypersurface of 
CS defined by F(x, y, z) = 0 is regarded as a space of I-parameter deformations 
of curves in the yz-space of a simple curve singularity whose type is one of the 
types E6 , E7 , Es but also that it defines a Saito free divisor ([27)). The following 
polynomials are the 17 polynomials. 

(I) The case of (p, q, r) = (2,3,4) 
FA,l = 16x4z - 4x3 y2 - 128x2z 2 + 144xy2z - 27y4 + 256z3 

FA,2 = 2x6 - 3x4z + 18x3y2 - 18xy2z + 27y4 + z3 
(II) The case of (p, q, r) = (1,2,3) 
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FB,l = Z(X2y2 - 4y3 - 4x3z + lSxyz - 27z2) 
FB,2 = Z( _2y3 + 4x3z + lSxyz + 27z2) 
FB,3 = Z( _2y3 + 9xyz + 45z2) 
FB,4 = Z(9X2y2 - 4y3 + lSxyz + 9z2) 
FB,5 = Xy4 + y3 z + Z3 
FB,6 = 9Xy4 + 6X2y2Z - 4y3z + X3Z2 - 12xyz2 + 4z3 

FB,7 = 1/2xy4 - 2X2y2z - y3 z + 2X3Z2 + 2xyz2 + Z3 
(III) The case of (p,q,r) = (1,3,5) 

FH,l = -50z3 + (4x5 - 50x2y)z2 + (4x7y + 60x4y2 + 225xy3)z-
135/2y5 - 115x3y4 - lOx6y3 - 4x9 y2 
FH,2 = 100x3y4 + y5 + 40x4y2 Z - 10xy3 Z + 4x5 z2 - 15x2yz2 + z3 
FH,3 = SX3y4 + 10Sy5 - 36xy3 Z - x 2yz2 + 4z3 

FH,4 = y5 - 2xy3 Z + x 2yz2 + z3 
FH,5 = X3y4 - y5 + 3xy3 Z + z3 
FH,6 = X3y4 + y5 - 2x4y2 Z - 4xy3 Z + x5 z2 + 3x2yz2 + z3 
FH,7 = xy3z + y5 + z3 
FH,8 = X3y4 + y5 - Sx4y2z - 7xy3z + 16x5z2 + 12x2yz2 + Z3 

As a next step to study properties of these polynomials, we focus our at­
tention on the determination of their b-functions and make clear the roles of 
the roots of the b-functions ([IS]). There are several methods to compute b­
functions. In the paper([lS]), we employ two methods. One is the well-known 
method developed by M. Kashiwara (cf. [14]) which is quite theoretical. The 
other is an algorithmic method established by Oaku ([21]); This is improved 
and implemented to the computer algebra system "Risa/Asir" by Noro ([19]). 
As an advantage of the first method, it is possible to understand the role of the 
factors of b-functions. By the first method we can find factors of b-functions but 
cannot completely determine b-functions. By the second method we can com­
pletely determine b-functions. In fact, for each of the seventeen polynomials, 
its b-function bF(s) is expected to be the product of three factors associated 
to a stratification, namely, the first one corresponds to the contribution of the 
hypersurface, the second does to that of the singular locus of the hypersurface 
and the third does to that of the origin. 

Applying these two methods to our case, we obtain the following result. 

Theorem 5.1.1. ([IS]) 
If F(x, y, z) is one of the seventeen polynomials, then 

where b} a (s) and b} a (s) are associated with the singular locus of the hyper­
surface F(x, y, z) = 0' and the origin respectively. 

The following polynomials are b},a (s) and b},a (s) by using the first method. 
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F 
FA,j (j = 1,2) (s+~)(s+!!.) 

FB,j (j = 1,2,3,4) (s + i)(s + l)(s + V 
FB,j (j = 5,6,7) (s+1)(s+~) 
FH,j (j = 1,2, ... ,8) 

The following polynomials are b-functions of the 17 polynomials computed 
by the Oaku's algorithm. 

We prove our theorem by case by case checks. 
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5.2 Annihilating ideals of powers of polynomials 

Let f be a polynomial and b( s) the b-function. We denote by R the set of the 
roots of b(s) = O. 

The following fact is well known. 

Theorem 5.2.1. If a is not in R + Z>o, 

(5.1) 

where AnnD[sjFls-+o: = {P(a) E D I P(s) E AnnD[sjF}. 

When we have worked together on the question in the previous section, Jiro 
Sekiguchi posed the following question. 
"Study the relation between AnnD[sjFls-+o: and AnnDfO: when a E R + Z>o". 

We will call it the "Sekiguchi's question on annihilating ideal". As the first 
step to consider his question, we will computationally study if the next relation 
holds for polynomials with Klein singularities. Our conjecture is the following : 

Conjecture 5.2.2. 
AnnD[sjrls-+o: ~ AnnDfO: (5.2) 

for all polynomials f with Klein singularities and a E R + Z>o. 

We have an algorithm computing AnnD[sjFIs-+o: ([26, Algorithm5.3.15]). 
This algorithm uses syzygies in D. 

Next examples are computational evidences for the conjecture. We checked 
the above relation in the case of f(x, y, z) = A l ,'" , A5 , D4 , D5 , E6 , E7 , Es and 
aER+l. 

Example 5.2.3. (f = x2 + y2 + Z2, A l ) 

Let f = x2 + y2 + z2. The roots of the b-function of fare -1, -~. 

AnnD[sjr = D . {x8x + y8y + z8z - 2s, y8x - x8y, z8x - x8z , z8y - y8z } 

AnnDfo = D . {8x , 8y, 8z , x8x + y8y + z8z , y8x - x8y, z8x - x8z , z8y - y8z } 

AnnDf-! = D·{8; + 8~ + 8;, x8x +y8y+z8z -1, y8x -x8y, z8x -x8z , z8y-y8z } 

The underlined elements are not in AnnD[slFls-+o:. 

Example 5.2.4. (n = 3,A l ,A2 ,A3 ,A4 ) 

Let a E R + 1 and f be Xk+l + y2 + Z2 (k = 1,2,3,4). These result shows 
that there are elements in AnnDr \ (AnnD[sjFls-+aJ 

x~2+y~2+ZA2 

A , 

o 
[-dz. -dy ,dx] 

F , 

x-2+y-2+z-2 
A , 

-1/2 
[ -dx-2-dy-2-dz-2J 
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F , 
J:~3+y-2+z-2 

A , 

[-dz. -dy ,dx] 

F , 

x-3+,-2+z-2 
A , 

-l/S 
[S*dx - 3 -27.y.d Y - 3-9 *dy - 2-54* y*dz - 2.dy-27 .. z*dz - 3 -63 *dz - 2] 

F , 

x-3+y-2+z-2 
A , 

-2/3 
[-4*dx-2-S*x*dy-2-9*:r*dz· 2. 
S*dx -3-27.y *dy - 3-4S*dy - 2-64*y*dz -2 *dy-27.z.dz - 3-99 *dz - 2] 

F , 

x-4+y-2+z-2 
A , 

[-dz. -dy ,dx] 

F , 
x-4+,-2+z-2 
A , 

-1/4 
[-dx-4-16*y· 2.dy· 4-24*y*dy - 3-4S*y-2*dz-2*dy-2+ (-48*y· 2-16*z-2) *dz-4-72*z*dz - 3-4S*dz-2] 

F , 

x-4+y-2+z-2 
A , 

-1/2 
[dx - 3-S* y. x*dy - 3-4*x *d Y - 2-16.y *x*dz - 2*dy-S*z*x *dz - 3-20*x *dz -2 • 
dx-4+ 16.y· 2*dy-4+4S*y*dy· 3+ (4S*y-2*dz-2+12) *dy -2+4S*y*dz -2.dy. (48*y-2+ 16*z-2) *dz -4+96*z*d%- 3+ 10a*dz-2] 

F , 
x-4+y-2+z-2 
A , 

-3/4 
[-dx-2-4*x-2*dy-2-4*x-2*dz-2. 
-dx - 3+8*y.x *dy - 3+ 12*x*d y - 2+ 16* y. x*dz - 2*dy+8.z *x.d.z - 3+28*x *dz - 2 • 
-dx -4-16.y - 2 My - 4-72. y.dy - 3+ ( -48. Y - 2.dz -2-48) .dy - 2-96.y.dz - 2 .dy+ ( -48.y - 2-16. z - 2) Mz - 4-120.z.dz - 3-192.dz - 2] 

F , 
x-5+y-2+z-2 
A , 

o 
[-dz.-dy.dx] 

F , 
x-5+y-2+z-2 
A , 
-1/5 
[32.dx-5-3125.y-3.dy- 5-11250.y-2.dy-4+ (-12500.y-3.dz - 2-4875.y) .dy-3+ (-15000.y -2.dz-2+75) .dy-2+ (-18750.y-3.dz-4-13500.y.dz-2) "dy+ 
(-12600.z.y-2-3126.z - 3) .dz -5+ (-40000.y-2-23760.z-2) .dz -4-38626.z.dz-3-9675.dz-2] 

F , 
x-5+y-2+z-2 
A , 

-2/5 
[-16 .dx -4-625.y - 2.x .dy -4-1125.y.x .dy - 3+ ( -1 876.y -2. x.dz -2-75.x) .dy - 2-3 75.y.x.dz - 2 .dy+ ( -1876.y - 2-626.z - 2) .x.dz - 4-3000.z. x.dz - 3-232 6. x.dz - 2 • 
- 32 .dx - 6+3126.y - 3.dy -6+ 16260.y - 2.dy -4+ ( 12600.y - 3.dz -2+ 13876.y ) .dy - 3+ (30000.y - 2 Mz - 2+525) .dy - 2+ 
( 18760.y - 3.dz -4+ 16600.y.dz - 2) .dy+ ( 12600. z.y - 2+3126.z -3) .dz - 5+ (55000.y - 2+28760.z - 2) .dz - 4+62626. z.dz - 3+2827 6 Mz - 2] 

F , 

x-6+y-2+z-2 
A , 
-3/6 
[8.dx - 3-125.y.x -2.dy - 3-7 6.x - 2.dy - 2-250.y. x - 2.dz -2.dy -126.z.x - 2"dz -3-326" x - 2.dz - 2 • 
16 "dx -4+626"y -2.x .dy -4+ 1876 .y.x.dy - 3+ ( 1 875.y -2.x.dz - 2+626 "x) .dy-2+ 1875"y. x"dz - 2.dy+ ( 1876.y - 2+626. z - 2) • x.dz -4+ 37 60.z.x .dz -3+4276. x.dz - 2 • 
32.dx-6-3126"y-3.dy-6-21260"y-2"dy- 4+ (-12600.y-3"dz-2-28876.y) .dy-3+ (-46000"y-2"dz-2-4726) "dy-2+ 
(-18760.y-3.dz-4-31600.y.d.z-2) "dy+ (-12600.z"y-2-3126.z-3) .dz-5+ (-70000.y-2-33760"z-2) .dz-4-92626"z"dz-3-624 76.d.z-2] 

F , 
x-6+y-2+z-2 
A , 

-4/6 
[-4.dx-2-26.x -3.dy-2-26.x-3.dz-2. 
-8 .dx - 3+ 125"y.x - 2 .dy - 3+ 1 75. x - 2.dy - 2+260.y"x -2 .dz - 2 .dy+ 126 "z.:z: - 2 .dz - 3+426 "X -2.dz - 2 • 
-16 .dx -4-626.y - 2.x.d Y - 4-2626. y. x.d Y - 3+ ( -1876.y - 2.x .dz - 2-167 6.:z:) .dy - 2-3375.y. x.dz - 2.dy+ (-1876.y - 2-626.z • 2) • x.dz -4-4600.z.x.dz - 3-6 826. x"d.z - 2 • 
-32.d:z:-6+3126.y-3.dy-6+26260"y-2.dy-4+ (12600.y-3.dz-2+49876.y) .dy-3+ (60000"y· 2.dz-2+17326) "dy-2+ 
( 18760. Y - 3.dz - 4+68600. y.dz - 2) .d y+ ( 12600.z.y-2+ 3126.z - 3) .dz - 6+ (86000.y - 2+ 38750.z - 2) .dz -4+ 128626.z .dz - 3+ 117 076.dz - 2] 

Example 5.2.5. (n = 3, D 4 , D 5 ) 
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Let a E R + 1 and f be x2y + yk + Z2 (k = 4,5). These result shows there 
are elements in AnnDr \ (AnnD[sJrls-+oJ 

F , 
,.:.:-2+,-3+z-2 
A , 

[-dz,dy,-dx] 

F , 

y.:.:-2+y-3+z-2 
A , 

-1/6 
[-72.y.d:l -4+ (-48.y.d,-2+ (-180.z*dz+ 12) *dy) "'dx-2+24.y.dy-4+ (12*z*dz+76) "'d,· 3+8 1*z-2*dz-4+81*z*d.z-S-9*dz -2] 

F , 

y.%-2+,-3+z-2 
A , 

-1/2 
[-2.dx-3+(-2.d,-2-3*y.dz-2) *dx-x"'dz-2*dy. 
(-4.y.dy+6.z*dz-2) .dx-2-4.y.d,-3+ (-2"'z*dz-l0) My-2+9*z.y*d.z-S+3*y*dz -2. 
-4.,.dx· 3+ (-4*y*dy-2+ (-S*z*d2;-8) .d,) *dx-S*z.x*d.z-3-z*d,z-2. 
24.y"'dx· 4+ (16.y.dy-2+ (60*z*dz+36) *dy) *dx-2-S.y.dy· 4+ (-4.z.dz-28) *d,· 3-27*z-2*dz-4-Bl*z*dz-S-1S*dz-2] 

F , 

Y·:I.-2+,-3+Z-2 
A , 

-6/6 
[-6.y.dx-2-6.y.d,-2+ (-S*z*d.z-11) My-9*y-2*dz-2. 
(-12*y*dy. lS*z*d,z+6) .dx-2-12*y.dy· 3+ (-S*z*dz-34) .d,-2+27.z.y*dz -3.46.y.dz~2. 
-12.y.dx~ 3+ (-12.y.dy~2+ (-24*z.d:l:-40) .dy) .dx-9.z.x.d:l:~3-16*x*dz ~2. 
72.y*dx~ 4+ (48.y.dy~2+ (180.z*dz+228) *dy) .dx~2-24.y.dy~4+ (-12*z*dz-92) .dy~3-Bl.z~2*dz-4-406.z*dz~3-316*dz-2] 
O. 004sec(0. 009462sec) 

F , 
y*x~2+y~4+z~2 

A , 

[-dz ,dy ,dx] 

F , 
y*x-2+y-4+z-2 
A , 

-l/B 
[216*y-2*dx~ 4+ (-lB.y~2.dy-3-66*y*dy~2+ (34B*z.dz-204) .dy) *dx-2-B*y*dy-6+ (-16.z.dz-46) *dy~4+6*x-2*d:l:-2.dy~3+ (BO.z.y.d:l:-3+B*y.d:l:-2) *dy-
12B*z~2*d:l:-4-16*z.d:l:-3+24.d:l:-2. 

(27.z.dy-2+216.y~2*dz) .dx~4+ «36.z.y.d:l:-2+24.y.dz) .dy-2+ (420.z.dz-2+21S.d:l:) .dy) .dx~2-B.y.dz.dy-6+ (-16.z.dz~2-61*dz) .dy-4+ 
6* x ~ 2.dz ~ 3.dy - 3+ (BO. z*y*dz - 4+88*y*dz ~ 3) .dy-128.z - 2.dz - 5-272*z *dz - 4+8.d:l: - 3 , 

-243*Z*y*dx ~6+ (-216*z.dy -2+108.y-2*dz) *dx ~4+ (93*y*dz.dy-2+ (604.z~2*dz-3+84.z.dz -2-162.dz) *dy) *dx ~2+32*y*dz.dy-5+ (62.z.d:l:-2+220*dz) *dy~ 4-
18 *x ~ 2 *dz ~ 3 *dy - 3+ (-248.z .y*dz - 4-268 *y*dz ~ 3) *dy-192.z - 3 .dz - 6-784* z - 2*dz ~ 6-644.z.dz - 4-188*dz ~ 3] 

F , 

y*x-2+y-4+z-2 
A , 

-3/8 
[ ( 18 *Y - 2 .dy - 2+ 1 08 *y*dy-72.z .dz+36) .dx -2+8*y*dy~ 4+ ( 16*z.dz+39) .dy - 3-6.x - 2.dz ~ 2.dy - 2-96. z.y.dz -3-48*y*dz ~ 2 • 

243*z*y*dx-6+ (216.z.dy-2-Bl0.y~2.dz) *dx-4+ (-361.y.dz.dy-2+ (-604*z-2*dz ~ 3-1476.z.dz-2-10 17*dz) *dy) .dx~2-32.y.dz.dy-6+ (-62*z.dz-2-228.dz) .dy-4+1B.x-2.dz~ 3*dy-3+ 
(312*z.y.dz ~ 4+466.y.dz ~ 3) .dy+ 192* z - 3.dz ~ 6+1684.z ~ 2.dz - 5+3168* z*dz - 4+ 1296 .dz - 3] 

F , 

y*x-2+y~4+z-2 

A , 

-1/2 
[-9*y~2.dx-3+ (-4.y.dy~2+ (-10*z*dz-8) *dy) .dx-4*z.x.dz-3-x*dz~2. 

-81*z*y*dx-6-36.z.dy -2*dx~4+ « 48*z*y*dz ~2-36*y.dz) .dy-2+ (168*z~2*dz-3+4S2*z*dz~2-18*dz) .dy) *dx-2+ (-4.z.dz-2-8*dz) *dy~ 4+2.x~2*dz - 3*dy-3+ (96*z*y*dz· 4+136.y.dz ~ 3) .dy-
64* z - 3*dz - 6-432.z - 2 .dz - 6-364*z *dz ~ 4+ 191*dz ~ 3] 

F , 
y*x-2+y-4+z-2 
A , 

-6/8 
[( 18*y~2*dy+54*y) *dx-2+8.y.dy-3+ (lfi*z*dz+33) *dy-2-e*x- 2.dz- 2*dy+24*J-2.dz~2, 

243.z*y*dx-6+ (216.z*dy·2-64B*y-2*dz) .dx~ 4+ (-22S.y*dz*dy-2+ (-S04.z-2.dz-3-190a*z*dz - 2-1368.dz) .dy) .dx-2-32*y*dz*dy-6+ (-62.z*dz -2-236.dz) .dy-4+ 
18.x -2.dz - 3.d Y - 3+ ( 120* z* y*dz - 4+ 324. y.dz - 3) *d y+ 192*z - 3* dz - 6+ 1 872. z - 2*dz ~ 6+4416.z.dz - 4+2268 .dz ~ 3] 
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F , 
,.x-2+y-4+z-2 · , -7/8 
[-lS*y-2*dx -2·S*y*dy-2+ (-16*z*dz-27) *dy+E\*x -2"'dz - 2. 

243*z""y*dx-S+21S*z*dy· 2*dx - 4+ (117*y.dz*dy-2+ (-S04*z-2*dz - 3-1800*z*dz-2-522*dz) .dy) *dJ: -2-32*y"'dz*dy-S+ (-52*z*dz-2-244*dz) .dy· 4+18*x -2Mz - 3.dy - 3+ 
(-216*z.y"'dz-4-58S"'y"'dz -3) "'dr'" 192*z-3*dz-6+1872*z-2*d.z-6+3720.z*dz-4+33S*d.z- 3] 

Example 5.2.6. (n = 3, E 6 , E 7 , Es) 
Let a E R + 1 and f be x 3 + y4 + Z2, x 3y + xy3 + z2 or x 3 + y5 + z2. These 

result shows that there are elements in AnnDfOi \ (AnnD[s]fBls-+Oi). 

F , 
:I-3+,-4+z-2 · , o 
[-dz. -dy. -dx] 

F , 

%.-3+y-4+z-2 
A , 

-1/12 
[( -S76"'y-2*dy-2+ (76S*z""y*dz-268S*y) *dy-76S*z-2*dz-2+256*z*dz-1664) *dx-S+243.y*dy-S+ (64S.z*dz+667) "'dy· 4+ (64S*z*y*dz-3+72*y*dz-2) .dy+ 
2592. z - a*dz - 6+ 7776. z - 2*dz - 4+3384*z"'<1% - 3+21S*dz - 2] 

F , 

x-3+y-4+z-2 
A , 

-1/' 
[ (64.y - 2 *d y-64. z. y"'dz+ 128.y ) .dx ~ 3-27. y.d Y ~ 4+ ( - 81. z.dz-72) .dy ~ 3+ 18.y ~ 2 .dz ~ 2.dy+216. z ~ 2.y.d2; ~ 4+288.z.y.dz ~ 3+ 36.y.dz ~ 2 • 

(-676.y~2.dy~2+ (768.z.y.dz-2112.y) .dy-768.z ~2.dz~2-1280.z.d2;-1472) .dx~ 3+243.y.dy~6+ (648.z.dz+810) .dy~ 4+ (2592.z.y.dz~3+1368.y.d2;~2) .dy+ 
2692.z ~ 3.d.z ~ 6+ 1 6662.z ~ 2.dz ~ 4+20232. z.dz ~ 3+3628.dz ~ 2] 

F , 
x-3+y~4+z~2 · , -6/12 
[( 16.y~2.dy-2+ (-32.z.y.dz+64.y) .dy+64.z -2.dz~2+64.z.dz+32) .dx-2+9.x.dy-4+144.z~2.x.dz-4+216.z.x.dz-3. 
(676.y-2.dy-2+ (-768.z.y.dz+2688.y) .dy+ 
768.z ~ 2.dz - 2-1280.z .dz+640) .dx - 3-243.y.dy ~ 5+ (-648 .z.dz-121 6) .dy -4+ ( 4536.z.y.dz ~ 3+2520 .,.dz ~ 2) .d1-2592. z - 3.d.z - 5-7776.z ~ 2 .dz -4+ 12168. z.d.z - 3+ 7560.dz - 2] 

F , 

x-3+y-4+z-2 · , -7/12 
[64.y-2.dx - 3-27.,.dy-3+ (-108.z.dz-99) .dy-2-216.z.y-2.dz-3-72.y - 2.dz -2. 

(-576.y-2.dy~2+ (768.z.y.dz-1536.y) .dy-768.z-2.dz-2-2816.z.dz-2432) .dx -3+243.y.dy-6+ (648.z.d.z+l053) .dy~4+ (4536.z.y.dz-3+6552.y.d.z -2) .dy+ 
2592. z - 3.dz - 5+23328.z - 2.dz -4+52632 .z.dz - 3+24984.d.z - 2] 

F , 
x-3+y-4+z~2 

A , 

-2/3 
[( 16.1-2.dy-32.z.y.dz+16.y) .dx-2+9.x.dy-3-72.z.y.x.dz-3-36.y.x.dz~2. 

(576., -2.d,·2+ (-768.z.,.dz+2112.,) .dy+768.z-2.dz-2+256.z.dz+448) .dx-3-243.,.d,· 5+ (-648.z.dz-1458) .d1-4+ (2592.z.,.dz· 3+3816.,.dz· 2) .dy-
2592.z· 3 .dz· 5-15552. z -2.dz - 4-9864.z.dz - 3+9432.dz - 2] 

F , 
x-3+y-4+z-2 
A , 

-11/12 
[-16.y-2.dx-2-9.x.dy -2-36.y~2.x.dz-2. 

( 16., -2.d,-32. z. y.dz) .dx· 2+9 .x.d, - 3-72. z.y.x.dz -3 -1 08 .y. x.dz - 2 • 

( - 64., - 2.d y+64. z.y.dz -64.y ) .d.x - 3+27. y.dy -4+ (81.z .dz+ 171) .dy - 3+ 18.y - 2.dz - 2.d y-216. z - 2.y .dz ~ 4-1 008.z .y.dz - 3 -666.y.dz - 2 • 

( 16., -2.d, - 2+ ( - 32. z.y.dz+ 32., ) .d ,+64. z - 2.dz -2+ 192.z .o:1z+96) .dx -2+9. x.dy -4+ 144. z - 2.l[.d.z - 4+648.z.x .dz· 3+432 .x.dz - 2 • 
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(-S76*y· 2*dy A2+ (76S*z*y*dz-1536*y) *dy-76S*z· 2*dz ·2-1792*z*dz-140S) *dx A3+243*y*dy· S+ (64S*z*dz+ 170 1) *dy· 4+ (-64S*Z*y*dz· 3-1224*y*dz ·2) *dy+ 
2S92* z ~ 3*dz ~ 5+2332S*z ~ 2*dz ~ 4+4 7 44S*z*dz • 3+1720S *dz· 2] 

F , 

y*x·3+y·3U+z·2 
A , 

o 
[-dz,dy,dx] 

F , 

y*x-3+y-3*x+z-2 
A , 

-1/4 
[( -4*y*dy-6*z*dz-3) *dx· 4+ (-2S*z*dz+2) *dy-2*dx-2+ (32*z A2*y*dz· 4+4S*z*y*dz ~ 3) *dx+4*y*dy· S+ (2*z*dz+17) *dy -4+ (32*z· 2*x*dz A4+4S*z*x*dz A 3) *dy, 

(_12*y A2*dy A2+ (-10*z*y*dz-37*y) *dy+12*zA2*dz·2-6*z*dz-12) *dx· 3+ « -62*z*y*dz+3S*y) *dyA 3+ (-24*z A2*dz ·2-132*z.dz+96) .dyA2) .dx-12*y.x*dy -6+ 
(-6.z.x.dz-Sl*x) *dy A4-64*z-3*y.dz AS-192.z-2.y.dz· 4-4S.z.y.dz· 3, 

(-12.y-2.dy-1S.z.y.dz-9.y) .dx· 4+ « -S2*z.y.dz+3S.y) .dy-2+ (-SO*z-2.dz-2-104.z.dz+S6) .dy) .dx·2+12.y-2.dyAS+ (3S.z.y.dz+S3.y) .dy· 4+ 
(16.z- 2.dz - 2+136.z.dz+l04) .dy-3+64.z· 3.x.dz· S+192.z-2*x*dzA 4+4S.z.x.dz-3. 

(12.y-2.dy+1S.z.y.dz+9.y) IIIdx- 6+ (-12.y-2.dy-3+ (42.z.y.dz-99.y) .dy· 2+ (92.z· 2.dz -2+SS.z.dz-l0S) .dy) *dx A3+ (-12.y-2*dy- 5+ (-90*z.y.dz-46.y) .dy-4+ 
(-40.z-2.dz-2-320.z.dz+30) .dy-3) .dx-12*y*x*dy-6+ (-S.z.x.dz-Sg.x) .dy· S+12S*z· 4*dz -6+960*z· 3.dz-6+1440*z -2*dz-4+240.z.dz-g] 

F , 

y*x-3+y-3*X+Z A2 
A , 

-1/2 
[-4.dy*dx-g-g*y-2.dZ A2.dx A2-4*dy-3*dx+ (-3.x ·2+6.y-2) .dz-2.dy-2+ (12.z.y.dz-3+42.y.dz-2) .dy-4.z ·2.dz-4-su.dz· 3+1S.dz-2, 

(S.y-2*dy-2+ (6.z.y.dz+21.y) *dy-S*z-2*dz-2-3*z*dz+9) .dx-g+ «2S.z.y*dz-S*y) .dyAg+ (12*z -2*dz-2+7S*z*dz-1S) *dy -2) .dx+S.y.x.dy-S+ (g.z*x*dz+27.x) *dy· 4+ 
32.z-g.y.dz-6+ lS0.z-2.y.dz· 4+ 120*z.y*dz· 3. 

(-S*y-2.dy-9.z.y.dz-9.y) .dx-4+ « -26.z.y.dz+6*y) *dy-2+ (-40.z-2.dz-2-92.z.dz+12) .dy) .dx-2+6*y-2*dy~5+ (19*z*y*dz+61*y) My-4+ (S.z ·2.dz-2+7S.z*dz+S4) *dy· 3+ 
32*z· 3.x*dz - 6+1S0.z - 2.x.dz -4+120.z.x.dz - g • 

( -6*y - 2.dy-9. z.y*dz-9.y ) *dx - 5+ (6*y - 2.dy - 3+ ( - 21.z.y.dz+39.y ) .dy - 2+ ( -4S*z· 2*dz· 2-90*z.dz+42) .dy ) .dx • 3+ (S.y - 2.dy - S+ (45 .z.y.dz+46 *y ) *d Y A 4+ 
(20.z - 2*dz - 2+1S0* z*dz+SO) *dy - 3) *dx+S*y* x.dy· S+ (3.z .x.dz+33.x) *dy - 6-S4*z -4.dz - 6-640.z - g.dz· S-1520.z - 2.dz -4-720.z*dz - 3] 

F , 
y.x-3+y-3u+z-2 
A , 

-3/4 
[( -4.y.dy-S.z.dz-9) *dx-2-4*y*dy· 3+ (-2*z*dz-ll) .dy-2-1S.y-2.x.dz - 2*dy-16*z*y*x*dz -3-66*y*xMz-2, 

(-4.y A2.dy-6.z*y*dz-9*y) *dx-3+ (S*y-2*dy- 3+ (-24.z.y.dz+gS.y) *dy-2+ (-12*z -2*dz - 2-60*z*dz+27) .dy) *dx-12.yU*dy-4+ (-6*z*x*dz-46*x) *dy-g+32*z- 2.y-2.dz-4+ 
96.z.y-2.dzA3+24*yA2*dz-2. 

(12*y-2*dy+1S*z*y.dz+27.y) .dx- g+ (S.Y- 2*dy~ 3+ (S6*z*y*dz+60*y) .dy-2+ (SS.z-2*dz-2+244*z*dz+S7) *dy) *d.J:+4*y*x*dy-4+ (2.z*x.dz+ lS.x) *dy - g+ 
32 *z - 2 *x - 2 *dz - 4+9S*z.x -2.dz -3+24.x - 2*dz -2 • 

(-12*y-2*dy-2+ (-10*z*y*dz-47*y) *dy+12*z -2*dz-2+1S*z*dz-1S) *dx-3+ « -62*z*y*dz-14*y) .dy-g+ (-24.z -2*dz -2-1S0*z*dz-36) *dy-2) *dx-12*y*x.dy· 5+ (-S.z*x*dz-57u) *dy-4-
64*z - 3*y*dz - S-44S*z· 2 *y *dz - 4-624*z *y*dz - 3-9S *y*dz - 2 • 

(12*y-2*dy+1S*z*y*dz+27*y) *dx-4+ «S2*z*y*dz+ 14*y) *dy-2+ (SO*z· 2*dz-2+2S4.z.dz+4S) *dy) *d.J:-2-12*y-2.dy-6+ (-3S.z.y.dz-121*y) .dy -4+ (-lS*z- 2*dz· 2-16S.z*dz-240) .dy-g-
64* z· g • .J:.dz - 6-44S* z - 2. x.dz -4-624*z* x*dz - 3-96* x*dz - 2 • 

(12*y-2*dy+1S.z.y.dz+27*y) .dx-S+ (-12. y- 2*dy- 3+ (42*z.y*dz-S7*y) .dy- 2+ (92.z- 2.dz- 2+272.z.dz-17) .dy) *d.J:- g+ (-12.y- 2*dy- S+ (-90.z.y*dz-135.y) *dy- 4+ 
(-40*z -2*dz - 2-400.z.dz-290) .dy-3) .d.J:-12*y*.J:.dy· 6+ (-S.z*x.dz-69*X) .dy-6+12S.z-4.dz-6+ 1600*z-3*d,z-S+S2S0.z -2*dz -4+4S60.z.dz· 3+480.dz- 2] 

F , 
y.x-3+y-3u+z-2 
A , 
-1 
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(-2.y -2.dy- 2+ (-z.y.dz-8.y) .dy+3.z-2.dz-2+9.z.dz) .dx -2-2.y-2.dy-4+ (-Hz.y.dz-20.y) .dy-3+ (-3.z-2.dz - 2-2Hz.dz-36) .dy-2+8.z-2.y.x.dz-4+36.z.y.x.dz - 3+24.y.z.dz-2. 

(6.y -2.dy+9.z.y.dz+ 18.y) .dx-3+ (4.y-2.dy-3+ (28.z.y.dz+44.y) .dy -2+ (34.z - 2.dz- 2+156.z.dz+96) .dy) .dx+2.y.x.dy-4+ (z.x.dz+8.x) .dy-3+ 16.z-2.x-2.dz-4+72.z.x-2.dz-3+48.x-2.dz- 2. 

(6.y-2.dy-2+ (5.z.y.dz+26.y) .dy-6.z-2.dz-2-15.z.dz+6) .dx-3+ «26.z.y.dz+20.y) .dy- 3+ (12.z-2.dz-2+ 102.z.dz+(0) .dy- 2) .dx+6.y.x.dy-5+ 
(3.z .x. dz+30. x) .dy - 4+ 32. z - 3.y.dz - 5+288. z - 2. y.dz - 4+600.z.y .dz - 3+240 .y.dz - 2 • 

(-6.y-2.dy-S.z.y.dz-18.y) .dx-4+ « -26.z.y.dz-20.y) .dy-2+ (-40.z-2.dz-2-172.z.dz-80) .dy) .dx-2+6.y-2.dy-5+ (19.z.y.dz+70.y) .dy-4+ 
(8.z - 2.dz - 2+92.z .dz+ 1(0) .dy - 3+32.z - 3. x.dz - 6+288. z - 2. x.dz - 4+600.z.z.dz - 3+ 240.z .dz - 2 • 

(-6.y-2.dy-9.z.y.dz-18.y) .dx - 5+ (6.y- 2.dy- 3+ (-21.z.y.dz+18.y) .dy-2+ (-46.z-2.dz-2-182.z.dz-48) .dy) .dx-3+ (6.y-2.dy-6+ (46.z.y.dz+90.y) .dy-4+ 
(20. z - 2.dz - 2+220. z.dz+240) .dy - 3) .dx+6.y. x.dy - 6+ (3. z. x.dz+ 36.x) .dy - 6-64.z - 4.dz - 6-960.z - 3 .dz - 5-4080. z - 2.dz - 4-5280.z .dz -3-1440.dz - 2] 

F , 
z-3+y-5+z-2 
A , 

o 
[-dz.-dy.-dz] 

F , 
z-3+y-5+z-2 
A , 

-1/30 
[-1000000.z - 2 .dz - 6+ (288000.y- 3 .dy - 3+2916000.y - 2 .dy - 2+ (3600000.z -2.y.dz - 2-1140000. z. y.dz+6 708000.y ) .dy+2250000.z - 3.dz - 3+ 1125000. z - 2 .dz - 2 - 3206000. z.dz+271 7000) .dx - 3-
62208.y.dy - 6+ ( -194400. z.dz-162928) .dy - 5+ (2430000.z - 2.y.dz - 4+2646000.z.y.dz - 3-111600.y.dz - 2) .dy+ 3796876.z - 4.dz - 6+24806250. z - 3.dz - 6+37749375.z - 2.dz - 4+ 
11557125.z.dz - 3-238725.dz - 2] 

F , 
z-3+y-5+z-2 
A , 

-7/30 
[ (36000.y - 3.dy - 2+ ( -60000.z.y - 2.dz+228000. Y - 2) .dy+ 75000.z - 2 .y.dz - 2-26000.z .y.dz+257000.y ) .dx - 3-7776.y .dy - 5+ ( -25920.z .dz-207 36) .dy -4+ 
( - 8 1 OOO.z.y - 2.dz - 3 -19800.y - 2.dz - 2) .dy-253125.z - 3.y.dz - 5-911260.z - 2 .y.dz - 4-64687 6 .z.y.dz -3-58725. y.dz - 2 • 

-1000000.z - 2.dx - 6+ (288000.y - 3.dy - 3+2628000.y - 2.dy - 2+ (3600000.z - 2.y.dz - 2+ 1020000.z .y.dz+6484000.y ) .d y+2250000.z - 3.dz - 3+ 1125000.z - 2.dz - 2-5545000.z.dz+ 160 1000) .dx - 3-
62208.y .dy - 6+ ( -194400.z .dz-215 136) .dy - 5+ (4860000.z - 2. y.dz - 4+8964000.z .y.dz - 3+666200.y.dz - 2) .dy+3 796875.z - 4.dz - 6+ 36966260.z - 3.dz - 5+920 193 75. z - 2.dz - 4+ 
53786126.z.dz - 3+ 188627 6.dz - 2] 

F , 

x-3+y-6+z-2 
A , 

-11/30 
[100000. z - 2.dx - 6+ (-21600. Y - 3.dy - 3-205200.y - 2.dy - 2+ ( -405000.z - 2. y.dz - 2-1 71 000.z.y.dz-426600.y ) .dy+247 600. z - 2.dz - 2+ 355500. z.dz-153900) .dz - 2-7776. x.dy - 5+ 
76937 6.z - 3. x.dz - 6+27 3S760. z - 2. x.dz - 4+ 1184625. z. x.dz - S-18225. x.dz - 2 • 

1 OOOOOO.z - 2.dx - 6+ ( -288000.y - 3.dy-3-2916000.y -2.dy -2+ ( - 3600000.z - 2.y.dz - 2-60000.z.y.dz-6108000.y ) .dy-2260000.z -3.dz - 3-1 0 125000.z - 2.dz - 2-7896000.z.dz - SO 1 7000) .dx - 3+ 
62208 .y.dy - 6+ ( 194400.z.dz+ 3(0288) .dy - 6+ (9720000.z - 2.y.dz - 4+ 19224000.z.y.dz - 3+2146600. y.dz - 2) My-379687 6.z - 4.dz - 6-14681260.z -3.dz - 5+47300626.z - 2.dz - 4+ 
93167875. z.dz - 3+ 7843725.dz -2] 

F , 

z-3+y-6+z-2 
A , 

-13/S0 
[ (4000. y - 3.dy-6000. z.y - 2.dz+ 11 OOO.y - 2) .dx - 3-864.y.dy - 4+ ( - 3240.z.dz - 2664) .dy - 3+ 1 800.y - S.dz - 2.dy+ 1687 5.z - 2.y - 2 .dz - 4+2587 5.z.y - 2 .dz - S+6525. Y - 2.dz - 2 • 

( - 36000.y -3.dy - 2+ (60000.z.y- 2 .dz-192000.y - 2) .dy-7 5000.z - 2 .y.dz - 2-95000.z.y.dz-233000.y ) .dx - 3+ 7776.y.d Y - 5+ (25920.z.dz+28512) .dy - 4+ 
(202600.z.y - 2.dz - 3+ 1251 OO.y - 2 .dz - 2) .d y+253125 *z - 3 .y.dz - 5+ 15187 50.z - 2*y.dz - 4+2146376*z*y*dz - 3+4 76426.y.dz - 2 • 

-1 OOOOOO.z - 2 .dz - 6+ {288000.y - 3 .dy - 3+2340000.y - 2 .dy - 2+ (3600000.z - 2 .y.dz - 2+ 3180000.z.y.dz+4836000.y ) .dy+2260000.z - 3 .dz - 3+ 1126000.z - 2.dz - 2-1 0046000. z.dz-461 000) .dz - 3-
62208.y.dy-6+ ( -194400.z.dz-277 344) .dy - 6+ (7290000.z - 2 .y.dz - 4+21114000.z .y.dz - 3+6698800.y.dz - 2) .dy+3 796875.z - 4.dz - 6+491 06250.z - 3.dz - 5+ 1730 193 75. z - 2.dz - 4+ 
U55511126.z.dz-3+21775275.dz-2] 

F , 
z-3+y-5+z-2 
A , 

-17/S0 
[ ( -400.y - 3.d Y - 2+ ( 1 000* z.y - 2.dz -2200.y - 2) .dy-2600.z - 2.y.dz - 2-2600.z.y .dz-2300.y ) .dz - 2-144. x.dy - 4-5626. z - 2. y. x.dz - 4-1 0 125* Z. y. x.dz - 3-67 6 .y.z .dz - 2 • 

{36000*y-3.dy-2+ (-60000.z.y -2.dz+228000.y-2) .dy+75000*z-2*y*d.z-2-125000.Z.y.dz+ 157000*y) *dx - 3-7776.y.dy-6+ (-25920.z.dz-46656) *dy-4+ 
(324000*z.y - 2.dz - 3+223200.y - 2*dz - 2) .dy-253125.z - 3.y.dz - 5-911250*z - 2.y.dz - 4+97 3125 *z .y*dz - 3+913275*y*dz - 2 • 

-1 OOOOO*z - 2 .dz - 5+ (21600*y - 3*dy - 3+ 183600.y - 2 .dy - 2+ (405000* z - 2*y *dz - 2+387000.z.y .dz+361800 *y ) *dy-382500*z - 2*dz - 2-724500. z*dz+83 700 ) .dz - 2+ 
7776. x.dy-5-7593 75* z - 3*x*dz -5-39487 50.z - 2.z .dz - 4-33 71625. z.z.dz - 3-127 675.z.dz - 2 • 

1 OOOOOO.z - 2 *dz - 6+ ( - 288000*y - 3 *dy - 3-2628000 *y - 2 *dy - 2+ ( - 3600000.z - 2.y.dz - 2-2220000*z.y Mz-4884000*y ) *dy-2250000* z - 3*dz - 3-1 0 126000* z - 2 .dz - 2-
9165000.z.dz-370 1 000) .dx - 3+62208 .y.dy - 6+ ( 194400 .z.dz+422496) .dy - 5+ (7290000*z - 2*y .dz - 4+22626000*z *y*dz - 3+721 0800*y*dz - 2) *dy-37968 7 6. z - 4.dz - 6-
26831250*z - 3.d.z - 5-2919 37 5 *z - 2*dz - 4+97 09987 5 *z .dz - 3+ 30 1 09725.dz - 2] 

F , 
x-S+y-5+z-2 
A , 

-19/30 

( -4000.y - 3 .dy+ 6000. z.y - 2.dz-7000.y - 2) .dx - 3+864.y.dy - 4+ (3240. z*dz+ 3528) *dy - 3-7200*y - 3.dz - 2 My-1687 5 *z - 2 *y - 2 *dz - 4-5 287 5*z*y - 2 *dz - 3 - 38925. Y - 2.dz - 2 • 
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( - 360oo.y ~ 3 .dy A 2+ (60000.z.y ~ 2 .dz-l 56000.y A 2) .dy-76000.z A 2.y.dz A 2- 21 5000.z.y.dz-281 OOO.y ) *dx A 3+7776 *y *dy ~ 6+ (26920 *z *dz+ 36288) .dy A 4+ 
(324000 *z *y A 2 *dz A 3+424800.y ~ 2*dz ~ 2) .dy+263126*z A 3*y*dz A 5+2126250. z A 2.y.dZ A 4+461587 5 .z*y*dz A 3+2123326*y*dz ~ 2 • 

-1 OOOOOO.Z A 2 .dx A 6+ (288000*y A 3*dy A 3+2052000.y ~ 2*d Y A 2+ (3600000 *Z A 2.y .dz ~ 2+6340000. Z. y.dz+4 7 64000.y ) *d y+2260000.z ~ 3* dz ~ 3+ 1126000. z A 2.dz A 2-16 706000*z .dz-516 7000 ) .dx A 3-
62208* y.dy A 6+ ( -194400. z.dz-33 95 5 2) *dy A 6+ (9720000.z A 2.y .dz A 4+ 39096000.z.y.dz ~ 3+220 1 7600.y.dz ~ 2) .dy+ 3 796875.z ~ 4.dz ~ 6+61256250* z R 3 .dz - 5+280749375. Z • 2. dz • 4+ 
387559125*z.dz - 3+ 1 08031276*dz A 2) 

F , 
xA3+y~5+z-2 

A , 

-23/30 
[(200*y-3*dy-500*z*y-2*dz+300*y-2) .dx - 2+72*x.dy-3-1126.z.y-2.:z:.dz -3-676.y~2.x.dz·2. 

(4000.y - 3.dy-5000. z.y - 2.dz+ 11 OOO.y - 2) .d:z: - 3-864.y .dy - 4+ ( - 3240.z Mz-5544) .dy - 3-7200.y - 3.dz - 2 .dy+ 16876. z - 2.y - 2*dz - 4+483 76 *z.y - 2.dz - 3-15976.y - 2.dz - 2 • 

( 400.y - 3.dy - 2+ ( -1 OOO.z.y - 2.dz+ 1800.y - 2) .dy+2600* z - 2. y.dz - 2+4600.z.y.dz+2700.y ) .dx - 2+ 144.:z: *d y - 4+6626*z A 2 .y.:z:.dz - 4+ 16875.z .y. :z:.dz - 3+4 726 *y .x.dz - 2 • 

(36000*y- 3*dy-2+ (-60000*z.y-2.dz+192000.y-2) .dy+76000*z -2*y.dz-2-6000.z.y.dz+133000.y) .d:z:-3-7776.y.dy-5+ (-26920*z*dz-54432) .dy-4+ 
(202500.z.y - 2 .dz - 3+279900.y - 2.dz - 2) *dy-263126.z - 3.y.dz - 6-1618760*z - 2.y*dz - 4-93037 5.z .y*dz - 3+90 167 5 .y.dz - 2 • 

100000.z-2*dx-5+ (-21600*y-3.dy-3-162000*y -2.dy~2+ (-406000.z -2*y*dz -2-603000.z.y.dz-340200.y) *dy+5 17500u-2.dz- 2+ 1309500.z*dz+137700) *dx· 2-
7776. :z:.dy - 6+ 7693 76. z - 3. x.dz - 6+61637 50*z - 2 *x .dz ~ 4+ 70 16626.z.:z: .dz - 3+ 11481 7 6 *:z:.dz - 2 • 

1000000. z - 2.dx - 6+ ( - 288000*y - 3 *dy - 3-2340000.y - 2.dy - 2+ ( - 3600000.z - 2.y.dz - 2-4380000*z* y.dz -4236000.y ) .dy-2250000*z - 3 *dz - 3-1 0 126000* z - 2.dz A 2-
8255000*z.dz - 3449000) .dx A 3+62208 .y.dy - 6+ ( 194400* z*dz+484 704) .dy - 6+ (4860000. z - 2.y*dz - 4+20 196000* z* y*dz - 3+ 11887200. y.dz ~ 2) .dy-3796 87 6. z - 4*dz - 6-
38981250.z ~ 3 .dz A 5 -7986937 5.z - 2 .dz - 4+21823875. z*dz - 3+44329725.dz - 2) 

F , 

:z:-3+y-5+Z-2 
A , 

-29/30 

(-4000.y - 3 .dy+6000.z.y - 2 .dz-7000*y - 2) .dx - 3+864.y.dy - 4+ (3240.z.dz+6408) .dy - 3+ 1800.y - 3 .dz - 2.dy-16875*z - 2*y 
- 2.dz - 4-75376.z.y - 2*dz - 3-43426.y - 2.dz - 2 • 

( - 36000.y - 3.dy - 2+ (60000.z.y -2.dz-156000.y - 2) .dy-76000*z - 2.y.dz - 2-115000.z.y .dz-181000.y) .dx - 3+7776 .y*dy - 6+ (26920.z *dz+62208) .dy - 4+ 
( -81 OOO.z.y - 2.dz - 3 -142200.y-2.dz ~ 2) My+253125.z - 3. y.dz - 5+ 2126250*z - 2*y *dz - 4+ 3806876.z.y.dz - 3+989325*y*dZ - 2 • 

1 OOOOO.z - 2 .d:z: - 6+ ( -21600.y - 3 .dy - 3-140400*y - 2.dy - 2+ ( -405000. z - 2.y.dz - 2-819000.z. y.dz-361800.y ) .dy+662500.z - 2.dz - 2+211 0600.z.dz+639900) .dx -2-
7776.x .dy - 5+75937S.z - 3.x.dz - 6+6378760*z - 2. x*dz - 4+ 12119626. z. x.dz - 3+4209976. x.dz - 2 • 

-1000000*z - 2.dx - 6+ (288000.y - 3.dy - 3+2062000.y - 2.dy -2+ (3600000.z - 2.y.dz - 2+6640000.z.y.dz+4164000*y ) .dy+2260000*z - S.dz - 3+ 1 0 126000.z - 2.dz - 2+6196000.z .dz+633000) .dx -3-
6220e.y.dy - 6+ ( -194400*z.dz-646912) .dy - 6+ ( -2430000.z ~ 2.y.dz - 4-11934000.z.y.dz - 3 -9176400 .y*dz - 2) *d y+379687 6.z - 4*dz - 6+61131250.z - 3 .dz - 5+ 183549375.z A 2* dz A 4+ 
173494126*z*dz-3+17S3627S"'dz-2) 

We have not yet tried of doing a local version of this section with applying 
our algorithms in the previous sections. It is a next problem as well as proving 
the conjecture mathematically. 
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