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Preface

This doctoral dissertation is a conclusion of my study for the Graduate School of

Science and Technology, Kobe University. From the final-year of baccalaureate

degree program to the doctoral course, I and supervisor have been pursuing the

subject of paradoxical expression with respect to autonomy and/or life in the terms

of self-reference. As the dynamical system representing such a paradoxical prop-

erty of autonomy, we have proposed time-state-scale re-entrant system (TSSRS).

At the beginning, this attempt simply concentrates into the goal to understand the

uncertainty and/or complexity of autonomous systems, that is thought such as the

term randomness or chaos. However, recently, the term ”network” increasing im-

portance for the study of biological systems. Thus, we have to extend TSSRS

to global study including both of the system and the network, and then we apply

TSSRS to the study of self-referential modeling of molecular chemical reaction

network. We hope that this abstract but important study provides a rich system

theoretic perspective of biological systems to the related study.
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Chapter 1

Introduction

The transition from a system to a network is increasing necessity in the paradigm

of system theoretical approach for a wide variety of organism. At many per-

spectives of scales, subjects, definitions and levels of nature, the indicated and/or

described systems have made been thought of the complex networks. However,

the many way of understanding the systems with using the lower level structural

property of complex network is reduced the system theoretic analysis of systems.

The problem of the system theory is that it can not include the discussion about

a perspective of observer, and because of that, the system theory can not directly

express the notion of autonomy and/or life but indicate them as the complexity

and/or uncertainty. A complex network property of a system appears if the ele-

ments are seemed to be standing on the same levels, namely the uncertainty of a

system is assimilated to the complexity as the result of execution of the network.

This paradigm in the description of the natural systems is based on the ideal sys-

tem that is closed and completely described. To understand the systems in nature,

1



CHAPTER 1. INTRODUCTION 2

we have to find the way to understand the open systems that extremely connected

each other, and then the network property with the definition on the same levels is

invalidated. Hence, the way to understand autonomy and/or life is replaced with

the construction of the interaction among different levels that is called heterarchy.

In this paper, we take the notion of observation into consideration, and define that

the system and the network are the question of degree. If this question of degree

is possible, the network property can not simply defined on the same levels, and

then we can present the model of the network consisting of interacted different

levels.

Autopoiesis

The word ”system” have been explicitly defined by Bertalanfy as in the general

system theory (Bertalanfy, 1968). He has defined a system as follows;

• A system consists of interrelated components.

• A system can not be reduced to a subclass.

• A system moves toward one purpose.

• A system have some subsystems that have original structure.

• Subsystems make the system with interacting and regulating each other.

The definitions of general systems negated the ordinal reductionism. General sys-

tem theory has one problem that is about observer because the nonreduced system

derives from external observer, and then the autonomous system that does not

need a external observation, e.g. life, itself plays role of observer. Such a observer
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oriented problem of autonomy and/or life reveals the self-referential paradox in

logic, as shown later. Because of this difficulty of formation the self-referential

property, the system theoretic approach has been mainly developed in cybanetics

(von Foerster, 1995) that is about open systems. The feature of developed system

theory is open system that interacts with their environment.

Maturana and Valera (Maturana and Varela, 1991) have proposed the devel-

oped theory of open systems called autopoiesis. Autopoiesis is defined that both

the components and the boundary of a system does not exist from beginning

but is yielded when the system executes, and then the system configures united

wholeness, after that, the system yields its own components. By this cycle of the

boundary formation, realization of the system is possible. However, in spite that

the autopoietic system plays a role of internal observer, the cyclic process needs

foundation from external observer since the cyclic process itself is closed (Luisi,

2003). Thus, the theory of autopoiesis also reveals self-referential paradox. So,

what is meaning of the self-reference to the system theoretic approach to life or

complex systems? We, here, take one attitude that self-reference is not a clasp

of evolution and/or duration of living organism but a genesis of the asymmetric

property of life.

Self-reference and frame-problem

Basically, the self-referential paradox is presented in the field of mathematical

logic that is explicitly expressed in a category theoretical form by Lawvere (Law-

vere, 1969). He have defined the logical self-reference as the paradox in the carte-

sian closed category. This types of paradox reveals from the basis of completely
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indicated wholeness to the consequence of infinite reduction of the elements. Such

a consequence of infinite reduction only reveals internal observation but not the

external observation. Thus, the self-reference reveals the impossibility of repre-

senting the system that plays the role of internal observer. Here, we construct the

alternative view of self-reference that is co-exitence of internal and external ob-

server from the perspective of paradoxical formation of the systems. In the field

of artificial intelligence, on the other hand, the similar impossibility of description

of the system referred, that is called frame-problem (McCarthy and Hayes, 1969).

Frame-problem is basically defined as the impossibility of defining wholeness that

is based on the premise of indicated elements. The two notions self-reference and

frame-problem, here, are complementary since the consequence of paradox in-

validate the premise of each other, in other word, the frame-problem reveals the

impossibility of indicating the perspective of external observer. If we take both

perspective of self-reference and frame-problem, internal and external observer

are not completely definable, however, we think that the incomplete view of mea-

surements of the observer paradoxically makes the expression of open system,

namely the formalization of the autonomy and/or life.

The more explicit the structural over view of the systems presented by the

notion of heterarchy that is based on the network based analysis of the systems in

nature. The reason why we refer the notion of heterarchy is that it is easy to be

applied any other systems that have a basic property of network structure.
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Heterarchy

Heterarchy (McCulloch, 1945; Stark, 1999) is a dynamical hierarchy that have an

interplay and/or overlapping multiple scale of network structure. This structural

property of network is deeply related to the notion of robustness (Jen, 2003) and

evolvability (Kirschner and Gerhart, 1998). Jen, in her paper, has characterized ro-

bustness and evolvability of living organism as the possibility of structural change

against future perturbation from environment, and the term structure in this dis-

cussion is realized only on the basis of the united wholeness of the systems, then

it reveals the heterarchical structure. However, the model of heterarchical systems

can not be easily expressed since the notion of interplay is basically defined on

the same levels of systems, namely among elements or systems. Thus, in order

to assume the interplay among hierarchy, it needs to assimilation between the el-

ement and the wholeness. Such a assimilation among hierarchy instantly reveals

an inconsistency between wholeness and elements, in other word intent and ex-

tent. Now, the possibility of modeling heterarchy is replaced with addressing the

inconsistency. The mathematical modeling of addressing inconsistency has been

presented in some framework (Gunji et al., 2004; Gunji and Kamiura, 2004). This

schema is very similar to the discussion about the system theoretic possibility of

describing autonomy, and then the purpose of this paper become more clear, that is

to consistently discuss the paradoxical construction of the self-referential property

of autonomous systems and the heterarchical network structure.
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Time-State-scale Re-entrant system

To construct the consistent modeling as mentioned above, we firstly propose the

formal model of autonomous systems called time-state-scale re-entarant system

(TSSRS) (Gunji and Sasai, (in press; Gunji et al., 2007). TSSRS is based on

a logic-based dynamical systems that is presented in order to avoid the self-

referential paradox in liar statement. A foundation of avoidance of paradox in liar

statement is by introducing the time spent for inference process (Spencer-Brown,

1969; Lefebvre, 2001), that corresponds to the boundary formation process men-

tioned in the discussion about autopoiesis. Grim et al. have applied this discussion

to fuzzy logic and express the self-reference as a chaotic dynamics. We extend

their work according to the formation both of self-reference and frame-problem,

and two dynamical systems corresponding to them are obtained. By connect-

ing the two dynamical systems, we can construct the paradoxical modeling of

autonomous systems, and we call this connecting schema of self-reference and

frame-problem as time-state-scale re-entrant form. The introduction and defini-

tion of TSSRS and back ground more specifically discussed in chapter 2.

As mentioned above, our aim of this research is to discuss the consistent mod-

eling of the system to the network structure on the formulation of the heterarchy.

TSSRS derives from one self-referential liar statement, and further we extend

TSSRS to a self-referential representation of a biological network, and show that

the time-state-scale re-entarnt form reveals the autonomous robust and evolvable

property through the system to the network structure.
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Biological network

In the living organism, the network structure is thought as the essential genesis

of diverseness. For example, the most primitive network structure is the chemical

reaction network in a cell. The diverseness of cells derives from the phenotypic

multiplicity at the production of proteins, and the chemical network among mul-

tiple protein interactions configure the functional manifestation of the cell as the

biological signal processing. The heterarchical property can be also found in this

types of network structure such that, in the chemical reaction network have the

two types of feedback mechanisms: one is the results of the recurrent process of

local interaction among the activation sites, and the other is the influence from

the consequent infection to the target proteins (Albert, 1994). The two feedback

mechanisms interplay on the development of each node in the chemical reaction

network, and it yields the complex structural property of functional manifesta-

tion in the living organism. However, it is difficult to construct the model of this

interplay and overlapping property of biological network since the two feedback

mechanism have extremely different time scale, and only the unilateral interaction

affects the individual protein, namely the other influence is ignored. Recently, the

experimental results that reveals the co-existence of different time scale is pre-

sented, that is about the structural transformation of protein kinase at the phase

transition temperature (Henzler-Wildman et al., 2007). Thus, modeling the net-

work property of interplay among two scales of feedbacks is rapidly needed to

understand such a property of biological network.

The biological network is studied in the form of computational network anal-

ysis such as the boolean network (Kauffman and Glass, 1973). The boolean net-
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work consists of the simple definition of the behavior at the nodes of network as

an activation and an inactivation of each node. Signal propagation along network

is defined by boolean function based on the bivalent valued logic. System theo-

retical approach to these analytical framework of cell biology has been presented

by Tsuda et al. (Tsuda and Tadaki, 1997) They proposed the logical framework

directly indicating the feedback mechanism, and that reveals the self-referential

property of biological functional manifestation. We apply time-state-scale re-

entrant system to Tsuda’s model of biological network to provide the expression

of heterarchy not only in system theoretic modeling but in the form of network

architecture. Actually, the model of the network version of the time-state-scale re-

entrant form shows heterarchical property of network structure as the co-existing

time scale and fractal switching the dynamical property.

Our purpose of this work is simply to provide the heterarchical property of

network structure as direct modeling feedback mechanism in the form of self-

reference. The proposed model time-state-scale re-entrant form is useful to con-

struct the robust and evolvable network structure. In the next chapter, we intro-

duce the basic framework of time-state-scale re-entarn form and applied models

time-state-scale re-entarant system (TSSRS). The chapter 3 shows the example

network version of time-state-scale re-entrant form called coupled TSSRS and its

numerical results. The last chapter 4 includes the conclusion of this study and the

possibility of application to other framework.



Chapter 2

Time-State-scale Re-entrant System

In this chapter, we introduce the model of time-state-scale Re-entrant System

(TSSRS). As mentioned previous chapter, representation of heterarchical struc-

ture and invalidation of self-reference are deeply related each other. Here, we take

the model of self-reference presented by Grim et al. (Grim et al., 1994), and re-

construct it by the heterarchical meaning. Heterarchicy consists of two levels of

perspectives, subsystem level and wholesystem level. As a subsystem level, we

define the perspective of frame problem, and as a wholesystem level, we define the

perspective of logical self-reference, respectively. The simultaneous realization of

two perspectives enables invalidation of self-referential paradox in terms of het-

erarchical meaning. Heterarchical meaning is represented by connection between

two perspectives, and we call the connected two perspectives time-state-scale re-

entrant form. Firstly, we introduce the basic model of self-reference. As a second,

we define two perspectives, frame problem and logical self-reference. Finally, we

construct the connection of two perspectives.

9
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2.1 Chaotic liar

In this section, we briefly introduce the study of Grim et al. (Grim et al., 1994)

The most primitive liar statement is represented by ’This statement is false.’. The

paradox holds if we assume that the segment ’this statement’ and the whole state-

ment ’This statement is false.’ are the same implication. In logical expression,

X = ¬X, (2.1)

where, X ∈ {0, 1} is the truth value of the statement. Grim et al. introduce the

time transition from left hand side to right hand side. This time transition primar-

ily presented by Spencer-Brown (Spencer-Brown, 1969). In addition, applying

Łukaiewicts logic (Łukasiewicts, 1989) which is a kind of fuzzy logic (Zadeh,

1965), liar statement is interpreted to a simply oscillating dynamics. Definition of

Łukasiewicts logic is a infinite valued logic that takes the real truth value on [0, 1].

The real truth value indicates the degree or probability of truth. In Łukasiewicts

logic logical connectives are interpreted as following operator on [0, 1] intervals,

for x, y ∈ [0, 1],

¬x = 1 − x,

x ∧ y = min(x, y),

x ∨ y = max(x, y),

x→ y = max(1 − x, y)

x↔ y = min(max(x, 1 − y),max(1 − x, y))

(2.2)
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Logical connectives → and ↔ do not satisfy classical equality x ↔ x = 1. To

avoid this inconsistency, Łukasiewicts logic defines these connectives as follows,

x→ y = min(1, 1 − x + y), (2.3)

x↔ y = 1 − |x − y|. (2.4)

Apllying this logic system to (2.1.1.), dynamical representation of liar statement

is arise,

xt+1 = 1 − xt. (2.5)

Clearly, this dynamical system shows an periodic oscillation between x and 1− x.

Grim et al. have introduced chaotic liar to represent a logical paradox in liar

statement. Chaotic liar is the statement ’This statement is as true as it is estimated

to be false.’, as a logical equation,

X = X ↔ ¬X. (2.6)

Introducing Łukasiewicts logic system and time development to this equation, the

dynamical expression of chaotic liar is obtained as follows,

xt+1 = 1 − |1 − 2xt|. (2.7)

This dynamical expression shows chaotic behavior as shown in Fig. 2.1. By the

shape of return map structure, this chaotic map is called tent map.

2.2 Notion of Time and State-scale

We construct the invalidation of self-reference by alternative way to time devel-

opment. It is connecting logical self-reference and frame problem. In this section,

we introduce the two perspectives, logical self-reference and frame problem.
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Figure 2.1: Behavior of chaotic liar. (a) chaotic time evolution of truth value. (b)

the return map structure of the dynamics.

Let us imagine the following situation (Fig. 2.2); We are looking at a statement

’This statement is false’ written on the black board. Then, we estimate the truth

value of this statement, and fall into self-referential paradox. Where, we call this

self-reference ”logical self-reference”. In addition, imagine that the word ’not’ is

written on the corner of black board. Then, we can not indicate the semantics of
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not
This statement is false.

①

②

②frame problem: indefinite indication

①logical self-reference: duality of indication

Figure 2.2: The definition of logical self-reference and frame problem in the par-

ticular situation.

the word ’this’. We call this indefinite indication ”frame problem”. These two

perspectives have a different logical states. The former is based on the completely

external observer, since we can completely indicate the statement. The latter is

based on the incomplete observation, since we can not completely indicate the

statement. This incomplete observation is deeply related to the study of internal

measurement (Matsuno, 1989) or endo-physics (Rössler, 1988). Our heterarchical

meaning is established by the crossover of the internal and external observers.

Next, we express the heterarchical meaning of logical self-reference and frame

problem. In Fig. 2.3, we show the schematic diagram of heterarchical meaning

of logical self-reference and frame problem. Logical self-reference, as mentioned

above, needs to indicate the whole statement at first, and leads to the indefinite

word as a part of the statement. Thus, logical self-reference can be applied to only

wholesystem. On the other hand, frame problem needs to indicate the words at
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whole-system

sub-system

(1)
logical self-reference

(2)
frame problem

whole-system

sub-system

Figure 2.3: Schematic diagram of heterarchical meaning of invalidation of self-

reference.

first, and leads to indefinite wholeness as a consequence. Thus, frame problem is

applied to only subsystem level. Here, we can following analogy; If logical self-

reference happens, then it implies indefinite sub-system and it puts at the extent

in the subsystem level description. Then, reconstructed extent of subsystem level

description leads to frame problem and indefinite wholeness happens. If these

process simultaneously occur, indication in the first condition of two perspectives

are made by indefinite ones. Our invalidation of self-reference is defined such a

indefinite foundation of perspectives1.

1The idea of invalidation of self-reference is deeply related to Kripke’s attitude toward Wittgen-

stein’s paradoxical definition of language(Kripke, 1982). He has introduced another skepticism
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Now we have defined logical self-reference as a whole-system level perspec-

tive, and frame problem as a sub- ssystem level perspective, respectively. In dy-

namical system, this whole-system level perspective corresponds to time transition

and subsystem level perspective corresponds to indicate the scale of state space.

Hence, we define these two perspectives as the dynamics of the time direction and

the direction of state-scale, respectively.

We name them the form of time and the form of state-scale. They are ex-

pressed by the following maps.

xt+1 = f (xt), (2.8)

xs+1 = g(xs), (2.9)

where x is state value and x ∈ [0, 1]. Eqs.(2.8) and (2.9) are expressed as logic-

based dynamics derived from logical statements consisting of combination of log-

ical connectives. We define dynamical heterarchical system as an interaction be-

tween the two forms, (2.8) and (2.9). In this section, we define the conditions for

(2.8) and (2.9).

Here, if it assumes that liar statement forms self-referential system as a heter-

archical system, these perspectives may serve as the form of time, and the form

of state-scale in the system derived from the liar statement. We redefine a system

derived from liar statement by the form including these two perspectives.

toward classical skepticism. The introduced skepticism invalidate the indication of wholeness to

establish the completely defined rule of connecting word. It concludes the invalidated classical

skepticism.
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2.2.1 The form of Time

In Łukasiewictz logic system, we refer to Cantor’s diagonal argument to construct

logical self-reference on the [0, 1] interval. Logical self-reference is replaced with

the value different from any other values which can be specified on [0, 1] inter-

val in our logic system. It is equivalent to the consequence in Cantor’s diagonal

argument not being contradictory. The consequence as follows; In Cantor’s di-

agonal argument one arranges the binary sequence corresponding to real number

perpendicularly, and assumes that it is enumerated by the natural number2. Then,

the reversed diagonal sequence differs from any sequences in order. Hence, the

sequence added on the table causes contradiction on an intersection.

Consequence in Cantor’s diagonal argument constitutes a contradiction result-

ing from self-reference in a term of intersection. Let X,NOT(X) be the binary

sequences such that for all k, X = 〈X1, X2, · · · 〉,

NOT(X) = 〈NOT(X1),NOT(X2), · · · ,NOT(Xk), · · · 〉, (2.10)

where NOT(Xk) = 1 − Xk. The binary operation, X ∩ Y , is defined by, for each i,

Xi ∩ Yi follows the truth table such that 0 ∩ 0 = 0 ∩ 1 = 1 ∩ 0 = 0 and 1 ∩ 1 = 1.

The contradiction appearing in Cantor’s diagonal argument is expressed as,

X ∩ NOT(X) = 0⇐⇒ ∀n ∈ N (Xn , NOT(Xn)), (2.11)

where 0 represents a all-0’s sequence, 〈0, 0, 0, · · · 〉.

We redefine AND operation so that the consequence of diagonal argument

does not reveal a contradiction. We define logical self-reference in our logic

2Even if it puts the real number in order as it is, it is essentially the same.
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system. In Kripke’s argument, a new value is added and the context is rede-

fined so that the new value invalidates a contradiction. In our statement of di-

agonal argument, (2.11), a new value Zn is introduced and added to a pair of

terms, X and NOT(X). A new pair, X′ and (NOT(X))′ are derived from Zn so that

X′ ∩ (NOT(X))′ , 0. Formally, for an infinite sequence X and NOT(X), such as

〈X1, X2, · · · , Xk, · · · 〉 and 〈NOT(X1),NOT(X2), · · · ,NOT(Xk), · · · 〉, a new number

Zn ∈ {0, 1} is inserted at the n-th digit, and it leads that,

X′ = 〈X1, X2, · · · ,Zn, · · · 〉, (NOT(X))′ = 〈NOT(X1),NOT(X2), · · · ,Zn, · · · 〉.

(2.12)

As a result, we obtain,

X′ ∩ (NOT(X))′ , 0⇐⇒ ∃n ∈ N (Xn = (NOT(X))n = Zn). (2.13)

Let Z = 〈Z1,Z2, · · · ,Zn−1,Zn,Zn+1, · · · 〉 = 〈0, 0, · · · , 0,Zn, 0, · · · 〉 (i.e., ∀i ∈ N (i ,

n),Zi = 0), and decimal expressions of X′ and (NOT(X))′ are

x′ =
∑

i

2−i(Xi + Zi) = x + z, y′ =
∑

i

2−i((NOT(X))i + Zi) = y + z. (2.14)

The replacement (X,Y) of (X′,Y ′) is operationally re-expressed by X AND NOT(X) =

X′∩NOT(X′). In decimal expression, binary operation AND corresponds to MIN

such that,

MIN(x, y) = min(x′, y′). (2.15)

Due to the statement (2.13), MIN(x, y) ≥ min(x, y), and in addition, we define

MIN(x, y) to satisfy the condition of logical equivalent operator x ↔ x = 1. In

classical logic system, x ↔ y can be rewritten with ∧,∨, and ¬, such as x ↔ y =

(x ∨ ¬y) ∧ (¬x ∨ y). In our logic system, this can be represented with,

x↔ y = min(max(x, 1 − y),max(1 − x, y). (2.16)



CHAPTER 2. TIME-STATE-SCALE RE-ENTRANT SYSTEM 18

Consequently, we define MIN(x, y) to satisfy the conditions MIN(x, y) ≥ min(x, y)

and x↔ x = 1, such that

MIN(x, y) :=
min(x, y)

max(x, y)
. (2.17)

Clearly, this definition (2.17) satisfies MIN(x, y) ≥ min(x, y) and x ↔ x = 1. We

consequently obtain the form of time as the logical statement with AND operation.

It is clear to see that the form of time reveals logical self-reference and whole-

system level statement.

2.2.2 The form of State-scale

The form of state-scale can be also defined based on diagonal argument. Frame-

problem assumes that the element is already decided. The process of our under-

standing gives rise to reconstruction of the boundary of the context. In our logic

system, a binary sequence is expressed with finite length such as,

x =
N∑

i=1

2−iXi, (2.18)

where N is a length of the binary sequence X = {X1, X2, · · · , XN}. Since X is finite

binary sequence, a diagonal argument consisting of any x on [0, 1] interval has

not a contradictory intersection. We call this diagonal argument ”limited diagonal

argument”. In general,

X ∪ NOT(X) = 1, (2.19)

holds, where 1 represents a all-1’s sequence, 〈1, 1, 1, · · · 〉. In Cantor’s diagonal

argument the statement (2.19) allows that a whole set of sequence is invariant
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even by adding a new sequence derived from diagonal argument and that results

in a contradiction. In order to invalidate a contradiction, the idea of ”growing

wholeness” is introduced such that X′ ∪ (NOT(X))′ , 1. This idea can be easily

implemented in the limited diagonal argument.

We redefine OR operation so that the consequence of diagonal argument does

not reveal a contradiction. We define frame-problem in our logical system. In

Kripke’s argument, a new word is added and the context is redefined so that the

new word invalidates a contradiction. In our statement of limited diagonal argu-

ment(2.19), since N is a finite number, a new word ZN+1 can be introduced and

added to a pair of terms, X and NOT(X). A new pair, X′ and (NOT(X))′ are de-

rived from ZN+1 so that X′ ∪ (NOT(X))′ , 1. Formally, for a finite sequence X

and NOT(X), such as 〈X1, X2, · · · , XN〉 and 〈NOT(X1),NOT(X2), · · · ,NOT(XN)〉,

a new number ZN+1 ∈ {0, 1} ia added at the N + 1-th digit, and it leads that,

X′ = 〈X1, X2, · · · , XN ,ZN+1〉, (2.20)

(NOT(X))′ = 〈NOT(X1),NOT(X2), · · · ,NOT(XN),ZN+1〉. (2.21)

As a result, we obtain,

X′ ∪ (NOT(X))′ , 1. (2.22)

Let Z = 〈Z1,Z2, · · · ,ZN−1,ZN ,ZN+1〉 (i.e., ∀i ∈ N (i ≤ N),Zi = 0), and decimal

expressions of X′ and (NOT(X))′ are

x′ =
N∑

i=1

2−iXi +

N+1∑
i=1

2−iZi = x + z, y′ =
N∑

i=1

2−i(NOT(X))i +

N+1∑
i=1

2−iZi = y + z.

(2.23)

The replacement (X,Y) of (X′,Y ′) is operationally re-expressed by X OR NOT(X) =

X′ ∪ NOT(X′). In decimal expression, binary operation OR corresponds to MAX
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such that,

MAX(x, y) = max(x′, y′) ≥ x, y. (2.24)

We define MAX(x, y) to satisfy the conditions (2.24) and x↔ x = 1, as follows;

MAX(x, y) := sgn(x + y); sgn(z) =


z if z ≤ 1,

1 otherwise.
(2.25)

Clearly, the definition (2.25) satisfies (2.24) and x ↔ x = 1. We consequently

obtain the form of state-scale as the logical statement containing redefined OR

operation. It also reveals frame-problem.

By using definition (2.17) and (2.25), self-referential sentence leads both to the

form of time (2.8) and to the form of state-scale (2.9). In the following section,

we actually implement the system derived from liar statement.

2.3 Time-State-scale Re-entrant System

time-state-scale Re-entrant System is defined as the interaction between the form

of time and that of state-scale. We define the interaction as follows;

xt+1 = f
(
U
(
gN (V(xt)

)))
, (2.26)

where, U, V are operational functions defined later. Fig.2.4 shows the schematic

diagram for the interaction.

As mentioned above, two functions f and g are defined by a particular state-

ment with (2.17) and (2.25), respectively. To construct interaction between them,

we define operational functions that twist binary sequence from a row to a column

and vice versa.
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Figure 2.4: schematic diagram of time-state-scale Re-entrant system and its com-

ponent functions.

2.3.1 Definition of U(x)

Let A be a binary sequence expression of state-value x ∈ [0, 1].

A =



a(1)

a(2)
...

a(N)


, x =

N∑
i=1

2−ia(i). (2.27)

where N is a length of binary sequence, and a ∈ {0, 1}.
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A binary sequence An is obtained by n times applying g(x) to the state value x.

An =



an(1)

an(2)
...

an(n)


., gn(x) =

N∑
i=0

2−ian(i). (2.28)

The operational function U(gn(x)) is defined by

U(gN(x)) =
N∑

i=1

2−(N−i−1)ai(1). (2.29)

This equation means that U outputs the decimal value expression of the binary se-

quence consisting of most significant bits in the binary sequences A1, A2, · · · , AN .

Note that the order of the binary sequence is inverted by applying function U(gn(x)).

2.3.2 Definition of V(x)

Function V(x) plays a role in inversion of the order of the binary sequence A

corresponding to state value x.

V(x) =
N∑

i=1

2−ia(N − i − 1) (2.30)

From the definition of V(x), the order of binary sequence is preserved in each

transition when the direction is inverted. If f (x) and g(x) are given, time-state-

scale re-entrant form can be implemented.

2.4 Time-state-scale re-entrant form

To construct the functions f (x) and g(x), we introduce Chaotic liar proposed by

Grim et al. Chaotic liar is expressed as the statement ”This statement is as true as
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false.” that evokes self-referential indication of liar statement, and it is rewritten,

in terms of logical operations, as

x = x↔ 1 − x (2.31)

= min(max(x, x),max(1 − x, 1 − x). (2.32)

In replacing min by MIN, eq.(2.17), a function f (x) corresponding to the form of

time is obtained, such that,

f (x) = MIN(max(x, x),max(1 − x, 1 − x)) (2.33)

=



x

1 − x
if x ≤ 0.5,

1 − x

x
otherwise.

(2.34)

On the other hand, in replacing max by MAX, eq.(2.25), a function g(x) corre-

sponding to the form of state-scale is obtained, such that,

g(x) = min(MAX(x, x),MAX(1 − x, 1 − x)) (2.35)

=


2x if x ≤ 0.5,

2(1 − x) otherwise.
(2.36)

Substituting (2.34), (2.36) into (2.26), we obtained one time-state-scale Re-entrant

System (TSSRS).

In Fig. 2.5, shows the numerical results of TSSRS. Upper figure indicates the

time series of xt. The behavior of TSSRS is complex intermittent pulse. This

intermittent pulse is basically derived from the form of time implying logical self-

reference. The affects from the re-entry via the state-scale form reveal the fractal
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Figure 2.5: Behavior of TSSRS. (a) the intermittent time evolution of truth value.

(b) the return map structure of the dynamics.

structure of dynamical property in phase space as shown in lower of Fig. 2.5. A

dynamical property of fractal structure in phase space indicates a nowhere differ-

entiable structure corresponding to jump among fractal structures. These fractal

jumps in TSSRS implies that the behavior in the laminar phase is not a simple

monotonic increase but the fast jumps. (see (Gunji et al., 2007)) Analytically,

this fractal structure is yielded by the term U(gN(V(x))), and it relates to a rule of
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cellular automata (see Appendix A).

Grim noted that the semantic dynamical property of self-referential statement

represents the reliability or the degree of truth with respect to the uncertainty or in-

determination in real world. The property of robustness is stability or adaptability

for the future transition of the environmental conditions. An itermittent dynamical

system basically includes stability and instability of its dynamical phase. Thus,

TSSRS represents the feature of robustness by a kind of intermittency.

To confirm the relationship between robustness and heterarchy with a dynami-

cal property, we construct the control experiment that the interaction between time

and state-scale is simple map composition. Concretely, the time development is

expressed as following,

xt+1 = f (g(xt)). (2.37)

Since the simple map composition does not need two direction, the both forms

of time and state-scale are applied same direction, namely time direction. In Fig.

2.6, we show the behavior of the control experiment (2.37) and its return map. The

return map shows linear curve, and the behavior is chaotic oscillation. There is not

a robust intermittent behavior. Thus, the comparison between TSSRS and control

experiment tells us the importance of the introduction of twisted orthogonality

corresponding to the heterarchical meaning.

To address the difficulty of constructing heterarchical system, we introduce

the two forms that represent the logical self-reference and frame problem, re-

spectively. The two forms indicate the inconsistency between the whole and sub-

system revels. As a dynamical system with connected two forms we define the

time-state-scale re-entarnt system (TSSRS). The connection between two forms
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Figure 2.6: Behavior of the control experiment. (a) the intermittent time evolution

of truth value. (b) the return map structure of the dynamics.

is defined by twisting sequence expressing real value. TSSRS shows intermittent

pulse and self-similar map structure. From the comparison between TSSRS and

the control experiment, this intermittency derives from not simple map composi-

tion but twisted orthogonality of the two forms. We conclude that self-referential

approach to constructing heterarchy is capable of representing robustness in dy-
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namical systems. Our aim of this research is to present the self-referential ap-

proach for the robustness and evolvability in dynamical models about uncertainty

in real world. In the next chapter, we apply the time-state-scale re-entarnt form

to a biological model as a example of effects from the heterarchical form in real

world.



Chapter 3

Coupled Time-State-scale

Re-entrant System

In this chapter, we show an example of time-state-scale re-entrant form related to

the biological systems. The basis of the modeling biological systems is a logic-

based dynamical system for the enzymatic reaction network. Tsuda et al. (Tsuda

and Tadaki, 1997) presented the dynamical theory of a biological network using

a self-referential description of functional manifestation of the kinase network.

We assume the heterarchy in the model of biological network, here, that local

hydrodynamical fluctuations and protein’s interactions are not clear cut, and they

interplay simultaneously. To reveal such interplay, we apply the schema of TSSRS

to Tsuda’s dynamical system.

28
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3.1 A logic-based dynamical model of the enzymatic

reaction system

In Tsuda’s work, functional manifestation of the kinase network is represented

with self-referential description of kinase and phosphatase activation. Although

the functional manifestation of this network is based on the results of the chem-

ical reactions between a complex and wide variety of enzymes, the most simpli-

fied model that treats the interaction between only two enzymes, namely kinase

and phosphatase, is accepted in this theory. In fact, cellular signal processing

depends heavily on the processes of phosphorylation and dephosphorylation de-

rived from activations of kinase and phosphatase, respectively. To represent the

reaction chain of the biological network, Tsuda introduced confusion between a

protein and a protein’s network, that is, a kinase and a kinase network.

Actual biological functional manifestation of enzymatic reaction system is the

result of complex chemical process over the reaction network. The molecular cell

biology express the complexity of chemical reaction network as that it consists not

only of the local activation but of the feedback from the final product that realize

the function of enzymes. Basically, enzymatic reaction is thought of one directed

process from a enzyme to a target protein. However, there are some feedback

process in this network processing, and it derives from the fact that a enzyme

also has a property of a protein. Tsuda mentioned this point, and assume the

identification between enzyme and protein as a self-reference. Basically, the self-

reference relates to the observer’s standing points, and that bases on the following

five assumptions;
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(1) The protein works as an observer for the k-p networks.

(2) The observation process is expressed as an inference process for the state-

ment concerning the state of the k-p networks. The records are kept until the

functional manifestation of the protein occurs.

(3) The protein calculates the truth values of statements and the process itself,

according to a base like Łukasiewicz logic.

(4) For the protein, molecules are indistinguishable from others of the same kind.

(5) There is only one kination site for each kinase, phosphatase and protein.

Where the term ”kinase” and ”phosphatase” are two enzymes, and ”protein” is the

properties as a protein of each enzymes, and ”k-p network” is the reaction network

consisting of two enzymes. Here, the process of chemical reactions are replaced

by inference processes on the observation of activation in each site of enzymes.

Let < k > and < p > be the statements, ’kinase is active’ and ’phosphatase is

active’, respectively. The propositional description of the protein’s interaction is

represented by,

< k > ⇐< k >↔< k > ∧ < ¬p >,

< p > ⇐< p >↔< k > ∧ < ¬p > .
(3.1)

This propositional description creates a self-referential version of minimal ex-

pression of the kinase network. The confusion between a protein and a protein’s

network is represented with ↔ in both Eqs. (3.1) and (3.2). The implication ⇐

represents time transition only. By introducing Łukaisewicz logic Eq. (2.2), these

two statements are interpreted into the dynamical system on [0, 1] interval, and let
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x and y be the truth value of the statements < k > and < p >, respectively,

xt+1 = xt ↔ min(xt, 1 − yt),

yt+1 = yt ↔ min(xt, 1 − yt).
(3.2)

The dynamical system of truth value of the statement about enzymatic activity is

easily reduced to the network dynamics of the enzymatic reactions since the truth

value of the statement corresponds to the degree of activity.

Applying the term min(xt, 1 − yt), the line x + y = 1 divides the unit square

into two regions: region I (x + y < 1) and region II (x + y > 1). Therefore, the

equations of the form of time are, in region I,

xt+1 = 1, (3.3)

yt+1 = 1 − |xt − yt|, (3.4)

, and in region II,

xt+1 = 2 − (xt + yt), (3.5)

yt+1 = 1 − |1 − 2yt|. (3.6)

In order to avoid the self-reference, Tsuda introduced the assumption of the

one-time-step delay in identifying consequence with premise. Ordinary, time tran-

sition in logic-dynamics is applied to the inference process, and deduction process

substituting consequence to premise is momentarily executed. Let P and C be the

premise and consequence of a statement, and let vt be a map that assigns the truth

value to the statemnt,

vt+1(C) = vt(P),

vt(P) = vt(C).
(3.7)
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Tsuda pointed out that one-time-step delay implies the action derived from the

internal observer. Since the internal observer can not instantly indicate the whole

system, deduction process spends time and inference process is momentarily exe-

cuted.

vt+1(C) = vt+1(P),

vt+1(P) = vt(C).
(3.8)

Applying Eq. (3.8) to region 1, the dynamical system consequently is obtained as

follows, in region 1,

xt+1 = 1, (3.9)

yt+1 = yt, (3.10)

, and in region II,

xt+1 = 2 − (xt + yt), (3.11)

yt+1 = 1 − |1 − 2yt|. (3.12)

yt in the right hand side of Eq. (3.10) implies one-time-step delay in region

I. In this paper, we call this model the ”time-step-delay model”. If one-time-step

delay is not assumed, the dynamical system shows periodic motion. On the other

hand, the time-step-delay model shows chaotic behavior. Tsuda concludes that

the difference between them implies invalidation of self-reference by introducing

the perspective of the internal observer, and this reveals chaotic behavior. As

mentioned earlier, our purpose is to construct heterarchy defined as dynamical

hierarchy with respect to invalidation of the self-referential paradox. In this paper,

we take an alternative way to invalidate the self-referential paradox, namely the

time-state-scale re-entrant form.
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3.2 Coupled TSSRS as the model of the enzymatic

reaction system

In place of one-time-step delay, we introduce the time-state-scale re-entrant form

to self-referential description of the kinase network. Feedback mechanism of ki-

nase network is separated to two levels, local interaction and effects from final

products. The former corresponds to sub-system level, and the latter corresponds

to whole-system level. In actual biological enzymatic network, these feedback

interactions of two levels are simultaneously occur. If we describe this situation

as a model, the inconsistency between different levels is revealed. To realize the

model of such a situation, we construct the time-state-scale re-entrant form in the

self-referential model of kinase network.

First, we define a propositional description of the whole-system level as the

form of time revealing logical self-reference. Since the kinase network that we

suppose in this paper including only two enzymes, the statement of wole-system

level, interaction with final products corresponds to interaction among two en-

zymes, namely inference process of the coupled two statement similar to Eq.

(3.2). In the form of time, ↔ is interpreted as classical equality x ↔ y =

min(max(x, 1 − y),max(1 − x, y)) with replacing min by MIN. Now let φ(x, y)

and ψ(x, y) be the temporal dynamics representing transition at the whole-system
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Figure 3.1: Schematic diagram of time development in the coupled TSSRS.

level, then,

φ(x, y) = xt ↔ min(xt, 1 − yt)

= MIN(max(x, 1 −min(x, 1 − y)),max(1 − x,min(x, 1 − y))),
(3.13)

ψ(x, y) = yt ↔ min(xt, 1 − yt)

= MIN(max(y, 1 −min(x, 1 − y)),max(1 − y,min(x, 1 − y))).
(3.14)

Similar to Tsuda’s dynamical system, applying the term min(x, 1 − y), the line

x+ y = 1 divides the unit square into region I (x+ y < 1) and region II (x+ y > 1).
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Therefore, the equations of the temporal dynamics are, in region 1 (x + y < 1),

φ(x, y) = MIN(max(x, 1 − x),max(1 − x, x))

= 1
(3.15)

ψ(x, y) = MIN(max(y, 1 − x),max(1 − y, x))

=


1 − y
1 − x

(x < y)

1 − x
1 − y

(otherwise)
,

(3.16)

and in region II (x + y > 1),

φ(x, y) = MIN(max(x, y),max(1 − x, 1 − y))

=


1 − x

y
(x < y)

1 − y
x

(otherwise)

,
(3.17)

ψ(x, y) = MIN(max(y, y),max(1 − y, 1 − y))

=


y

1 − y
(y < 1

2 )

1 − y
y

(otherwise)
,

(3.18)

In addition, for the state-scale dynamics revealing frame-problem, we intro-

duce another dynamical representation of two self-referential statements,

xs+1 = xs ↔ 1 − xs, (3.19)

ys+1 = ys ↔ 1 − ys. (3.20)

The reason why the statements are introduced is simply to define the local in-

teraction level. A local interaction that derives from transformation of activation

site in individual protein is also complex. We imply this complexity as the sin-

gle self-referential statement. Since two statements is not coupled each other, we
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can define the state-scale transition function as g(α), where α ∈ [0, 1]. In the

form of state-scale,↔ corresponds to classical equality x ↔ y = min(max(x, 1 −

y),max(1−x, y)), and max is replaced with MAX. Hence, the state-scale transition

function is defined as,

g(α) = α↔ 1 − α

= min(MAX(α, 1 − α),MAX(1 − α, α))

= 1 − |1 − 2α|.

(3.21)

This transition function is similar to Eq. (2.36). By introducing the statement

of two levels, we can represent the two levels of complexity in kinase network,

namely the complex feedback from final products of the network reaction and the

complex transformation of activation site in individual enzymes.

Our aim of this study is very simple, as to construct the model representing

the interaction between two levels in biological systems, here the local interaction

and global feedback in kinase network as a complex chemical reaction network.

As the way to represent the interaction between two levels, we construct the time-

state-scale re-entrant form between the statements defined in this section. Here

we define the time-state-scale re-entrant form between xt and xs, as yt and ys,

respectively. Let �∗ be the operation of re-entry defined by x∗ = U(gN(V(x))),

where U and V are defined same as single TSSRS (see chapter 2), then the time

transition of time-state-scale re-entrant form is represented by,

xt+1 = φ(x∗t , yt), (3.22)

yt+1 = ψ(xt, y∗t ). (3.23)

In Fig. 3.1, we show the schematic diagram of time development in this dynamical

system. The important property of heterarchy is that interplay between different
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levels is simultaneously executed. Thus, state-scale re-entry is executed just as the

next state of directions is calculated, namely when the application of the form of

time. In this schema, the unilateral transition �∗ of each direction represents the

simultaneity of interplay or interaction between two levels. Since this dynamical

system provides the way to construct the application of TSSRS for the coupled

statement, we call this the ”coupled TSSRS” in this paper.

3.3 Results of numerical experiments

In this section, we present some numerical results concerning heterarchy. The

most important characterization of the heterarchical structural dynamical system

is a particular intermittent motion (Kamiura and Gunji, 2006), a kind of on-off

intermittency(Platt et al., 1993). The coupled TSSRS shows a complex intermit-

tent motion as shown in Fig.3.2(a), and we also show the chaotic behavior of the

time-step-delay model in Fig.3.2(b). The complex intermittent behavior of the

coupled TSSRS includes two attracting phases: one is an attracting near fixed

point (x, y) = (1, 0) (Fig.3.2(c)), and the other is an attracting near periodic orbit

(Fig.3.2(d)). Actually, the whole system level description without re-entry at the

subsystem level simply oscillates. Periodic orbit in the coupled TSSRS is derived

from this periodicity. On the other hand, intermittent motion of an attracting near

fixed point is derived from the single TSSRS we presented in section 2. Broadly

speaking, the coupled TSSRS chaotically moves in phase space, and is sometimes

trapped attracters that are around fixed point and periodic orbit.

In conventional dynamical systems, chaotic, intermittent and periodic motions
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Figure 3.2: (a) Time evolution of x − y when 6500 ≤ t ≤ 8500 in the model

based on the idea of TSSRS (coupled TSSRS). (b) Time evolution of x − y when

0 ≤ t ≤ 2000 in the model presented by Tsuda et al. (c) Typical behavior of

an attracting near fixed point in the coupled TSSRS. (d) Typical behavior of an

attracting near periodic orbit. In (c) and (d), solid line indicates the value of xt and

dashed line indicates the value of yt.
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Figure 3.3: Recurrent plot on the plane x = 1 in phase space (xt, yt, yt+1).

are separated by a bifurcation parameter. The coupled TSSRS, however, does not

have such a parameter. Thus, we have to express the transition of attracting and

chaotic phases another way. To investigate the transition of phases, we show a

recurrent plot on the plane x = 1 in phase space (xt, yt, yt+1). The regions of gasket

structure in this plot indicate moving regions of attracting behavior, and those

regions not having gasket structure but which are concentrated points correspond

to behavior that escapes from the attractor. Single TSSRS moves among gasket

structures by jumping between them (see, (Gunji et al., 2007)). When the motion

jumps between gaskets, phase transition occurs at the landing sites of jumps, i.e.

jumps land at either an attractor region or chaotic region. Thus, jumps among
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Figure 3.4: (a) Power spectrum of the value x − y. Power-law slopes are a =

−0.8, b = −0.3, andc = −2.1. (b) Probability distribution of laminar phase of

coupled TSSRS � and time step delay model ∗. Power-law slope is α ≈ −2.
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discrete fractal structures lead to bifurcation of the phase in the coupled TSSRS.

A useful method to characterize the phases in the coupled TSSRS is spectrum

analysis. We show the power spectrum of the value x− y of the coupled TSSRS in

Fig. 3.4(a). The spectrum includes three regions of power-law distribution, where

the slopes are a = −0.8, b = −0.3 and c = −2.1. A peak in slope c indicates

periodic orbit. The power-law tail, slope a of this spectrum, corresponds to the

motion around a fixed point. Ordinarily, power-law distribution of the spectrum

implies some kind of fractal structure in the mechanism of dynamics. The most

interesting point of this analytical result is that the motion between two attracting

motions shows power-law slope b, indicating the existence of fractal structure in

this dynamic. Note that each dynamic corresponding to the three different regions

is a different time scale. Thus, the coupled TSSRS shows the dynamics including

motions at different levels.

The laminar phase of intermittent behavior in our model indicates the stabi-

lized truth value of proposition, in other words, functional manifestation of physi-

ology. In this analogy, the time spent in stabilization of the truth value corresponds

to the duration of a physiological or morphological property of an organism. A

strategy for estimating the duration of time spent in the laminar phase has been

proposed by Heagy et. al.(Heagy et al., 1994) The stability of laminar phase is

estimated by probability distribution of time spent as follows:

Λ(T ) = Prob

 T∩
j=1

y j ≤ τ ∩ yn+1 > τ
y1 ≤ τ

 . (3.24)

In the x-direction, the value in the laminar phase is x = 1. Thus, our estimation of
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time spent in functional manifestation is represented as follows:

Λ(T ) = Prob

 T∩
j=1

x j = 1 ∩ xn+1 < 1
x1 = 1

 . (3.25)

We show the probability distribution of time spent in the laminar phase in x-

direction in Fig. 3.3(b). The log-log plot of probability distribution shows a power

law with exponent a = −2.01294(± − 0.06472) ≈ −2. This power-law distribu-

tion is observed in a large variety of biological systems, referred to as Lévy flight

motion (Reynolds, 2005). The laminar phase that indicates x = 1, namely, the

stabilized state in which ”kinase is active” is true and ”phosphatase is active” is

false, corresponds to biological functional manifestation itself. This analogy is

the starting point of the computational modeling of proteins(Szacilowski, 2007).

This relationship proves the importance of a description of a logical propositional

with respect to heterarchy.



Chapter 4

Concluding Remarks

A heterarchical property of a system cannot easily expressed computationally be-

cause the conceptual definition of heterarchy including paradoxical logical expres-

sion that is based on the inconsistency between whole-system and sub-system. To

reveal this logical expression in the form of computational expression, we in-

troduce the self-referential statement called ”chaotic liar” presented by Grim et

al. (Grim et al., 1994). In the logical property of self-reference, we define the two

reasoning of paradox called logical self-reference and frame-problem. The former

logical self-reference represents the paradox as the consequence that sub-system

cannot be completely indicated from the premise the whole-system is completely

indicated. The latter frame-problem represents the incomplete indication of the

whole-system from the premise that the sub-system is completely indicated. Two

reasoning of the self-referential paradox are complementary and invalidating the

premises of them. Hence, connecting the two directional reasoning, we can ex-

press the duality of whole-system and sub-system.

43
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The definition of the directions for two reasonings is as in the abstract dynami-

cal system with the state-value expressed as the binary sequence. One direction is

the time that means an application of the function, and the other is the state-scale

(space) that means an indication or an approximation of the state-scale by indicat-

ing the least significant bit. According to two reasoning of self-reference, chaotic

liar is interpreted two dynamical systems called the form of time and state-scale.

The connection between the two directions is defined by coding and twisting se-

quence, and that implies the system theoretic study of a brain as a computer. In

the study of computational brain, the informations from the outside are coded and

stored as a memory. The brain makes a decision with such a memorize infor-

mation, and then the another information comes from outside as the result of the

decision. The algorithmic definition of the information processing of computa-

tional brain. The time-state-scale re-entrant form is defined along this algorithmic

definition and as connected two dynamics.

As a numerical results, time-state-scale re-entrant system shows an intermi-

itent pulse, and its dynamical structure forms self-similar gaskets. The self-similar

gasket structure is well known fractal property of dynamical systems, and fractal

property is considered to be important feature of multi-scale network or robust

systems. The more indicated robustness is intermittent behavior of time series.

Essentially, the truth value that is taken as the state value in TSSRS implies the re-

liability or possibility of realization of inconsistency between whole-system and

sub-system. Intermittent behavior of the truth value implies the stabilized state

that wholeness and parts are completely separated and formulate a consistency,

and that also implies the perturbed state at pulse is executed when the inconsis-
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tency is realized. Hence, TSSRS indicates the abstract logical property of robust

systems as the heterarchical systems.

Next, we present an example of TSSRS in biological systems. Heterarchical

property of biological systems is thought to be realized in the network structure

at the wide variety of scales. As similar to above mention, a computational mod-

eling of heterarchicy in biological systems encounters a self-referential paradox

between whole-system and subsystem. To address the difficulty of self-reference

in computational expression of heterarchical systems, we introduce the time-state-

scale re-entrant form to the self-referential description of the particular enzymatic

reaction system called coupled TSSRS. The coupled TSSRS derives from the cou-

pled self-referential statements indicating the signal propagation in the minimal

biological network that have two nodes, activating and inactivating, excitatory and

inhibitory. We assume the logical self-reference in such a network as the global

feedback from final products as the results of interaction among nodes, and also

assume the frame-problem as the self-feedback or self-reconfiguration of the in-

teractive activation site in the individual molecular structure. The time-state-scale

re-entrant form between the logical self-reference and frame-paroblem represents

the heterarchical property of a biological network.

The coupled TSSRS shows a mixing behavior of intermittent phase, periodic

phase and chaotic phase. Spectrum analysis clearly separates these three phases

on the frequency distribution. Each of them shows the 1/ f power-law distribution.

Power-law distribution implies the existence of underlying multiple structure. It

suggests that there is a heterarchical structure, namely, hierarchical structure with

multiply overlapped dynamical property. This structure can be proved by frac-
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tal gasket structure in phase space. The fractal structure in phase space makes

a jump from attractor to other regions. Overlapped hierarchical structure derives

from such a jump among fractal structure. Furthermore, we estimate a probabil-

ity distribution of time spent of protein’s activation derived from the term ”kinase

is activate”. The probability distribution of time spent shows a power-law dis-

tribution with exponent −2. −2 power-law distribution is closely relevant to the

anomalous diffusion process, and its dynamical property of on-off intermittency.

Most important feature of heterarchical structure is relevance to robustness and

evolvability (Jen, 2003). In molecular cell biology, anomalous diffusion is one of

representations of these notions (Bonci et al., 1996; Golding and Cox, 2006).1

From such a stream of biological study, our model significantly relates heter-

archical property of biological systems.

An importance of constructing hierarchical property from the perspective of

invalidation of self-reference is a possibility to realize the robust, evoluvable and

emergent behavior in the closed systems. Hence, the framework of TSSRS is

applicable to experimental designing, computational engineering and future study

related to artificial life, computational biology. In addition, it is suggested that

the possible methodology for artificial duplication of physiological, biological,

cognitive and social function in the field of biocomputing and so on. For instance,

slime mold computing(Tsuda et al., 2004)(Aono and Hara, 2007) is in this case. In

the architecture, slime compute according to different levels of logic from control

1The anomalous diffusion with power law distribution is also found in animal behavior as the

decision making (Viswanathan et al., 1996; Harmos et al., 2000). However, actually, the existence

of this types of power law behaviors are the subject of controversy (Edwards et al., 2007).
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mechanism. This paper assists the importance of such a methodology.
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CA representation of U(gN(V(x)))

The function U(gN(V(x))) defined in chapter 2 (also defined in chapter 3 as x∗)

corresponds almost to a rule of cellular automata (CA) (Wolfram, 1983). The

elementary cellular automata (ECA) is defined as the surjective map f : 2×2×2→

2 and the configuration {x[k]} ∈ 2N , i = 0, 1, . . . ,N, time evolution of this system

is represented particularly by,

xt+1[i] = f (xt[i − 1], xt[i], xt[i + 1]). (1)

This system has possible 28 = 256 rules. Here, we show that the function U(gN(V(x)))

equals to ECA with rule number 60.

The tent map g can be represented with the map of the binary sequence. Let

x = {x[k]} ∈ 2N , then, because the term 2, xs+1 = g(xs) = 1−|1−2xs| is interpreted

to the binary function,

xs+1[i] = xs[0] + xs[i + 1], (mod 2) (2)

xs :=
N∑

k=0

2−(k+1)xs[k]. (3)

Taking the definition of U into consideration, target sequence of U(gN(x0)) is

represented as,

U(gN(x0)) = {xN+1[0], xN[0], xN−1[0], . . . , x1[0]}. (4)
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From Eq. (2) and (4), we have,

x1[0] = x0[0] + x1[0] (mod 2),
...

...

xs+1[0] = xs[0] + xs[1] (mod 2),
...

...

xN+1[0] = xN[0] + xN[1] (mod 2).

(5)

Because the map a + b(mod 2) is symmetric to the inverse operation,

xs[i] + xs[i + 1] = 1 − xs[i] + 1 − xs[i + 1] (mod 2). (6)

Thus, we have the assumption of induction,

xs+1[i] + xs+1[i + 1] = xs[i + 1] = xs[i + 2] (mod 2). (7)

By induction, we have,

xs[0] = xs−1[0] + xs−1[1]

= xs−2[1] + xs−2[2]
...

= x0[s − 1] + x0[s] (mod 2).

(8)

This equation leads to the ECA with the rule table as following,

x0[s − 1] x0[s] x0[s + 1]

xs[0]

1 1 1 1 1 0 1 0 1 1 0 0

0 0 1 1

0 1 1 0 1 0 0 0 1 0 0 0

1 1 0 0

(9)
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The rule number is assigned as 25+24+23+22 = 60. Hence the function U(gN(x)))

corresponds to ECA rule 60.


