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INTRODUCTION 

Metabolomics is a science based on exhaustive profiling of metabolites. It has 

been widely applied to animals and plants, microorganisms, food and herbal medicine 

materials, and other areas. In metabolomics, gas chromatography mass spectrometry 

(GC-MS), liquid chromatography mass spectrometry (LC-MS), and capillary 

electrophoresis mass spectrometry (CE-MS) are all-important technologies for the 

analysis of metabolites [1]. Especially, CE-MS technique has some advantageous points 

for metabolomics. It is suited to detect charged species, so comprehensive and 

simultaneous analysis of several anionic metabolites can be achieved [2, 3]. 

A statistical approach such as multivariate analysis, and information science 

technique is essential for metabolomics research. The combination of metabolomics, 

biochemical methodology, and informatics technique (bioinformatics) has the great 

potentiality in post genomic era. Soga et al [4] found that ophthalmic acid is a new 

biomarker of acetaminophen-induced hepatotoxicity by using metabolome analysis with 

differential analysis developed by Baran et al [5]. Functional genomics, which reveals 

biochemical functions corresponding to DNA sequence, by using metabolomics has 

been reported in many publications [6, 7, 8, 9]. Hirai et al [10, 11] identified a group of 

genes concerned with glucosinolate biosynthesis by analyzing metabolome and 

transcriptome with batch learning self-organizing map (BL-SOM) developed by Kanaya 

et al [12]. Prediction of the retention time of unknown metabolites in chromatography 

with computational method is also challenging problem [13, 14]. 

Data from analytical instruments, such as GC-MS, LC-MS, and CE-MS, are 

usually high-dimensional data. Dimensionality reduction technique is required as a 

preprocessing step for multivariate regression, visualization, and discrimination. Curve 

resolution problem, which resolve the overlapping peaks in chromatogram, is useful for 

metabolomics because some metabolites are often coeluted in chromatogram. This 

problem is also interpreted as dimensionality reduction under non-negativity 
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constraints. 

Dimensionality reduction for multivariate regression 

The regression problem [15] is to construct regression model between the 

explanatory variable and response variable. A multiple linear regression (MLR) is 

ordinary regression method, however, it is difficult to apply for high-dimensional data 

by multicollinearity. Especially, MLR cannot be applied for the data in which the 

number of variables (P) exceeds the number of observation (N), N «p. A variables 

selection by Akaike information criteria (AIC) [16] or t-statistic sometimes used to 

reduce the number of variables (model selection). It is not practical approach for 

high-dimensional and N «p type data. 

In part I, dimensionality reduction technique for multivariate regression is 

described. Fig. 1 shows the scheme of the dimensionality reduction for multivariate 

regression. 
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X is the original data, and X is deflated to X. t is a latent variable, and w is the weight 

vector. The dimension of the original data is reduced from p to 1 by using 

dimensionality reduction, and achieved deflation of X. This operation has been iterated 

since the required number of latent variables is computed. 

Dimensionality reduction for visualization and discrimination 

Visualization by projection onto 2 or 3 dimensional subspace helps us to 

understand the data structure. And discrimination in high-dimensional space often 

causes the bad accuracy of prediction. 

In part II, dimensionality reduction technique for visualization and 

discrimination is described. 

Dimensionality reduction 
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Fig. 2. Multivariate analysis for visualization and discrimination 
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Fig. 2 shows the scheme of the dimensionality reduction for visualization and 

discrimination. The dimension of the original data is reduced from p to k by using 

dimensionality reduction. Unsupervised dimensionality reduction by principal 

component analysis (PCA) can extract n latent variables in the case N« p, otherwise, 

supervised dimensionality reduction by partial least squares (PLS) and Fisher 

discriminant analysis (FDA) can extract only k = c (the number of class)-1 latent 

variables. 

Dimensionality reduction for curve resolution 

Curve resolution problem has been mainly studied in chemometrics [17] to 

resolve the overlapping peaks in data from analytical instrument, such as 

chromatography and near-infrared spectroscopy. It has common problem with 

separation of mixed signal in signal processing and feature extraction of face 

recognition in image processing. 

In part III, dimensionality reduction technique for curve resolution is described. 

Fig. 3 shows the scheme of the dimensionality reduction for curve resolution. The 

Dimensionality reduction 

p ---~~ k: number of component 
,.--__ A'-__ ~ r , 

x 
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Fig. 3. Multivariate analysis for curve resolution 

4 

Fig. 2 shows the scheme of the dimensionality reduction for visualization and 

discrimination. The dimension of the original data is reduced from p to k by using 

dimensionality reduction. Unsupervised dimensionality reduction by principal 

component analysis (PCA) can extract n latent variables in the case N« p, otherwise, 

supervised dimensionality reduction by partial least squares (PLS) and Fisher 

discriminant analysis (FDA) can extract only k = c (the number of class)-1 latent 

variables. 

Dimensionality reduction for curve resolution 

Curve resolution problem has been mainly studied in chemometrics [17] to 

resolve the overlapping peaks in data from analytical instrument, such as 

chromatography and near-infrared spectroscopy. It has common problem with 

separation of mixed signal in signal processing and feature extraction of face 

recognition in image processing. 

In part III, dimensionality reduction technique for curve resolution is described. 

Fig. 3 shows the scheme of the dimensionality reduction for curve resolution. The 

Dimensionality reduction 

p ---~~ k: number of component 
,.--__ A'-__ ~ r , 

x 

non-negative 

Fig. 3. Multivariate analysis for curve resolution 

4 



dimension of the original data is reduced from p to k (number of pure metabolites) by 

using dimensionality reduction under non-negative constraints. The original data is 

decomposed to the concentration matrix e and A which includes each pure components 

(metabolites) in each rows. 

An overview of multivariate analysis 

A multivariate analysis such as peA, PLS, Fisher discriminant analysis (FDA) 

[18], have been applied for dimensionality reduction. peA has been widely used in 

many research areas. PLS was developed by Wold [19] and mainly studied in 

chemometrics research area. FDA has been applied for pattern recognition, such as 

handwriting recognition. 

The results of toy examples are shown in Fig. 4 Sample data (A), the results of 

peA (B), PLS (e), and FDA (D) are shown respectively. 
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In Fig.4, the symbols (0, +) belong to the each class. The dotted line denotes the 

I-dimensional subspace obtained by each method. We want to find the direction of 

projection that achieved high separation of each class (binary classification problem). A 

direction of 1st axis in PCA (Fig.4 (B)) denotes the direction of the maximum variance 

of whole data, and 2nd axis is orthogonal to 1st axis. PLS and FDA find the direction 

which considers the separation between class. The axis of PLS (Fig.4 (C)) denotes the 

direction between the centers of each class. The axis of FDA (Fig.4 (D)) denotes the 

direction that maximizes between the centers of each class and minimizes the scatter of 

observation within each class. 

Several dimensionality reduction methods have been proposed and ordinary 

multivariate analysis was extended. For example, locality-preserving projections (LPP) 

[20] optimally preserves the neighborhood structure of the data by using graph 

Laplacian. Local Fisher discriminant analysis (LFDA) [21] was developed for the 

supervised version of LPP. LFDA shows good results for the data in which the 

distribution of the observations within class is multimodal. An extension of PLS and 

FDA are also reported [22, 23]. Recently, nonlinear extension of linear classifier and 

multivariate analysis by kernel method are proposed. Vapnik [24] first introduced kernel 

methods to linear classifier as support vector machine. The main advantageous point of 

nonlinear extension by kernel methods is easy to compute by "kernel trick". Nonlinear 

multivariate analysis by kernel methods, such as kernel PCA [25], kernel PLS [26], 

kernel FDA [27], were proposed, and kernel methods are applied in bioinformatics [28]. 

Books about detailed theory of kernel methods have been published [29, 30]. 

An overview of curve resolution problem 

Curve resolution problem, which resolve the overlapping peaks in 

chromatogram and near-infrared spectroscopy, has been studied in chemometrics 

research area. This problem can be interpreted to the dimensionality reduction under 

non-negative constraints as above mentioned. Alternating least squares (ALS) [31] is 
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one of the most well known methods, and it can be computed by simple algorithm. 

Recently, independent component analysis (lCA), which is one of the multivariate 

analysis, was proposed [32, 33], and it has been mainly studied theoretically. ICA 

extracts independent components that are mutually statistically independent by using 

high order statistics (kurtosis). Non-negative ICA, which extracts independent 

components under non-negative constraints, was also proposed [34]. Non-negative 

matrix factorization (NMF) [35, 36, 37] was developed for image recognition, and its 

extension has been reported [38]. NMF has theoretical advantage to ALS in which the 

solution at least will reach local optimal solution. The curve resolution problem is still 

the challenging problem because it remains some practical problems such as the initial 

value that should be determined to compute these methods. 

In part I, multivariate regression by PLS and regularized canonical correlation 

analysis (RCCA) was reported. RCCA has not been applied for the regression of 

high-dimensional data. We applied these methods to GC-MS data in which the 

intracellular metabolites of the leaves of Japanese green tea were analyzed. The main 

purpose of this research is to construct a quality-predictive model between ranking 

results by sensory test of tea taste and the value of chromatogram. The result shows that 

the optimal number of latent variables in RCCA was significantly fewer than in PLS, to 

construct a quality-predictive model. 

In part II, visualization by multivariate analysis, PCA, PLS, OPLS, RFDA was 

achieved. We extended these methods to smoothness methods by introducing the 

differential penalty of the latent variables with each class, and to nonlinear method by 

kernel method. We applied these methods to CE-MS and GC-MS data in which the 

intracellular metabolites of yeast about ethanol fermentation from xylose were analyzed. 

The effect of smoothness can be found by the results. 

In part III, curve resolution problem is achieved. We extended ALS to RALS 

(regularized ALS), an extension of ALS by using regularized term. (R)ALS and ICA 
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was applied to LC-diode array detector (DAD) data in which the part of the intracellular 

metabolites of micro algae was analyzed. The results suggested that RALS gives more 

optimal solution than ALS, and it gives more suitable solution with non-negativity than 

rCA. 
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SYNOPSIS 

Part I 

Multivariate analysis for regression 

Canonical correlation analysis for multivariate regression and its 

application to metabolic fingerprinting 

Multivariate regression analysis is one of the most important tools in 

metabolomics studies. For regression of high-dimensional data, partial least squares 

(PLS) has been widely used. Canonical correlation analysis (CCA) is a classic method 

of multivariate analysis; it has however rarely been applied to multivariate regression. 

In the present study, we applied PLS and regularized CCA (RCCA) to high-dimensional 

data where the number of variables (P) exceeds the number of observations (N), N «~po 

Using kernel CCA with linear kernel can drastically reduce the calculation time of 

RCCA. We applied these methods to gas chromatography mass spectrometry (GC-MS) 

data, which were analyzed to resolve the problem of Japanese green tea ranking. To 

construct a quality-predictive model, the optimal number of latent variables in RCCA 

determined by leave-one-out cross-validation (LOOCV) was significantly fewer than in 

PLS. For metabolic fingerprinting, we successfully identified important metabolites for 

green tea grade classification using PLS and RCCA. 
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Part II 

Multivariate analysis for visualization and discrimination 

Dimensionality reduction by peA, PLS, OPLS, RFDA 

with smoothed penalty 

Dimensionality reduction is an important technique as a preprocessmg of 

high-dimensional data. We extended some ordinary dimensionality reduction methods, 

principal component analysis (peA), partial least squares (PLS), orthonormalized PLS, 

and regularized Fisher discriminant analysis (RFDA) by introducing the differential 

penalty of the latent variables with each class. We proposed smoothed peA, PLS, OPLS, 

and RFDA for the data in which observation is in transition with time. A nonlinear 

extension to these methods by kernel methods was also proposed as kernel smoothed 

peA, PLS, OPLS, and FDA. All these methods are formulated by generalized 

eigenvalue problem, so the solution can be computed easily. In this study, we applied 

these methods to the data in which the observation is in transition with time and the 

number of variables (P) exceeds the number of observation (N), N« p. In this paper, 

the effect of smoothness was elucidated by the results of visualization. 
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Part III 

Multivariate analysis for curve resolution 

Application of regularized alternating least squares and 

independent component analysis to curve resolution problem 

The analysis of data from analytical equipment will be an important factor in 

the execution of metabolomics. Self-modeling curve resolution (SMCR) is one of the 

theoretical techniques of chemometrics and has recently been applied to the data of 

hyphenated chromatography techniques. Alternating least squares (ALS) is a classical 

SMCR method. In ALS, however, different solutions are produced depending on 

randomly chosen initial values. Simulation in the present study showed that the use of a 

normalized constraint in calculating ALS was effective in avoiding this problem. We 

also improved the ALS algorithm by adding a regularized term (regularized ALS: 

RALS). Independent component analysis (lCA) is a comparatively new method and has 

been discussed very actively by information science researchers, but has still been 

applied only in very few cases to curve resolution problems in chemometrics studies. 

We applied RALS with a normalized constraint and ICA to the HPLC-DAD data of 

Haematococcus pluvialis metabolites and obtained a high accuracy of peak detection, 

suggesting that these curve resolution methods are useful for identification of 

metabolites in metabolomics. 
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Canonical correlation analysis for multivariate regression and its 

application to metabolic fingerprinting 

1. Introduction 

Metabolomics is a science based on exhaustive profiling of metabolites. It has 

been widely applied to animals and plants, microorganisms, food and herbal medicine 

materials, and other areas. In metabolomics, gas chromatography mass spectrometry 

(GC-MS), liquid chromatography mass spectrometry (LC-MS), and capillary 

electrophoresis mass spectrometry (CE-MS) are all important technologies for the 

analysis of metabolites [1]. Metabolic fingerprinting [2, 3] is a technology that 

considers the metabolome to be a fingerprint and is applied to various classifications 

and forecasts. The procedures include the identification of important metabolites for 

regression or classification by applying multivariate analysis or machine learning to 

data obtained by the abovementioned analytical methods. 

Several multivariate regression methods have been applied in metabolomics 

studies [4, 5]. For regression and classification of high-dimensional data, partial least 

squares (PLS) [6, 7] has been widely used so far. Recently, PLS has been used in the 

field of bioinformatics research to analyze gene expression data from cDNA 

microarrays [8, 9]. The main reason why PLS has been widely used is its ready 

applicability where the number of variables (P) exceeds the number of observations (N), 

N «p, and where there is multicollinearity among the variables. 

Canonical correlation analysis (CCA) [10] is, like principal component analysis 

(PCA), a classic method of multivariate analysis; it is however rarely applied to 

high-dimensional data for regression because it is theoretically impossible to apply CCA 

to N« p type data, to which we can however apply regularized CCA (RCCA). The 

value of the regularized parameter in RCCA interpolates smoothly between PLS and 

CCA[U]. 

17 

Canonical correlation analysis for multivariate regression and its 

application to metabolic fingerprinting 

1. Introduction 

Metabolomics is a science based on exhaustive profiling of metabolites. It has 

been widely applied to animals and plants, microorganisms, food and herbal medicine 

materials, and other areas. In metabolomics, gas chromatography mass spectrometry 

(GC-MS), liquid chromatography mass spectrometry (LC-MS), and capillary 

electrophoresis mass spectrometry (CE-MS) are all important technologies for the 

analysis of metabolites [1]. Metabolic fingerprinting [2, 3] is a technology that 

considers the metabolome to be a fingerprint and is applied to various classifications 

and forecasts. The procedures include the identification of important metabolites for 

regression or classification by applying multivariate analysis or machine learning to 

data obtained by the abovementioned analytical methods. 

Several multivariate regression methods have been applied in metabolomics 

studies [4, 5]. For regression and classification of high-dimensional data, partial least 

squares (PLS) [6, 7] has been widely used so far. Recently, PLS has been used in the 

field of bioinformatics research to analyze gene expression data from cDNA 

microarrays [8, 9]. The main reason why PLS has been widely used is its ready 

applicability where the number of variables (P) exceeds the number of observations (N), 

N «p, and where there is multicollinearity among the variables. 

Canonical correlation analysis (CCA) [10] is, like principal component analysis 

(PCA), a classic method of multivariate analysis; it is however rarely applied to 

high-dimensional data for regression because it is theoretically impossible to apply CCA 

to N« p type data, to which we can however apply regularized CCA (RCCA). The 

value of the regularized parameter in RCCA interpolates smoothly between PLS and 

CCA[U]. 

17 



The kernel method [12, 13] has been studied mainly in machine learning since 

a support vector machine was developed and actively studied in the field of 

bioinformatics research [14]. Nonlinear extension of multivariate analysis using the 

kernel method, including kernel PCA [15], kernel Fisher discriminant analysis (FDA) 

[16], kernel PLS [17], and kernel CCA [18,19], has been proposed. We can perform 

nonlinear multivariate analysis by replacing the inner products in the feature space with 

the kernel function without explicitly knowing the mapping in the feature space. 

In the present study, we applied PLS and RCCA to GC-MS data, which were 

analyzed to resolve the problem of Japanese green tea ranking. The main objective of 

the present study is to apply RCCA to N «p type data and compare RCCA with PLS. 

When we apply an ordinary PLS algorithm to large-size data such as high-dimensional 

data, the algorithm often requires a large amount of memory and long computational 

time. An alternative PLS algorithm to avoid these problems is therefore proposed [20]. 

These problems are more serious in RCCA than in PLS because of the need to handle a 

large size matrix,p x p. Using kernel CCA with a linear kernel allows the use of a small 

size matrix, N x N. 

2. Data analysis 

2.1. Data 

In the present study, we used data from GC-MS in which hydrophilic primary 

green tea metabolites were analyzed [21]. The main purpose of the Japanese green tea 

ranking problem is to construct a quality-predictive model. Data preprocessing 

including peak alignment, peak identification, and conversion to numeric variables was 

achieved in a way similar to that previously reported [21]. The explanatory variable X 

consists of metabolite-profiling data from chromatography. The response variable y is 

ranking of teas from 1 st to 53rd determined by the total scores of the sensory tests, 
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which are leaf appearance, smell, and color of the brew and its taste, judged by 

professional tea testers. The explanatory variable X and the response variable y are 

mean-centered but are not scaled. Fifty-three samples were divided into two groups: 

forty-seven samples as a training set and six samples, those ranked 2nd, 12th, 22nd, 

32nd, 42nd, and 52nd, excluded as a test set. Each data set contained 2064 variables in 

which retention time changed every 0.01 min from 4.01 min to 24.64 min. 

2.2. Data analysis methods 

Multiple linear regressIOn (MLR) is an ordinary regressIOn analysis; it 

constructs a regression model between the explanatory variable X and the response 

variable y. However, MLR cannot be applied to N« p type data. Regression methods 

by using latent variables such as PLS construct a regression model between a new 

explanatory variable t, which is obtained by dimensionality reduction of X, and the 

response variable y. Here we explain the dimensionality reduction method in PLS, CCA, 

RCCA, kernel PLS, and kernel CCA as a generalized eigenvalue problem, as described 

previously [22]. 

2.2.1. Partial least squares (PLS) 

PLS is explained as the optimization problem of maximizing the square of 

covariance between the score vector t, which is a linear combination of the explanatory 

variable X, and the response variable y under the constraint ofw'w = 1: 

max [cov(Xw,y)]2 

s.t. w'w = 1 

where w is a weight vector. X and y are mean-entered. Finally, PLS is formulated as the 

following eigenvalue problem: 
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1 
-X'yy'Xw = AW (1) 
N2 

where A is a Lagrange multiplier. 

The eigenvector corresponding to the maxImum eigenvalue is the weight 

vector of PLS. This eigenvalue problem is solved by singular value decomposition 

(SVD). A score vector can be calculated as t = Xw. To calculate more than one latent 

variable, we perform deflation of X and y and then calculate the eigenvector 

corresponding to the maximum eigenvalue in Eq. (1). This operation is iterated until the 

number of latent variables reaches the required number. 

2.2.2. Canonical correlation analysis (CCA) 

CCA is explained as the optimization problem of maximizing the square of 

correlation between the score vector t, which is a linear combination of the explanatory 

variable X, and the response variable y: 

max [corr(Xw,y)]2 = [ cov(Xw,y) ]2 
~w'X'Xw/N 

This conditional equation is rewritten as follows: 

max [cov(Xw,y)]2 

1 
s.t. -w'X'Xw = 1 

N 

Finally, CCA is formulated as the following generalized eigenvalue problem: 

1 
-X'yy'Xw = AX'XW (2) 
N 

This generalized eigenvalue problem is solved by Cholesky decomposition of X'X 

when X'X is full rank and SVD. 
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number of latent variables reaches the required number. 

2.2.2. Canonical correlation analysis (CCA) 

CCA is explained as the optimization problem of maximizing the square of 

correlation between the score vector t, which is a linear combination of the explanatory 

variable X, and the response variable y: 

max [corr(Xw,y)]2 = [ cov(Xw,y) ]2 
~w'X'Xw/N 

This conditional equation is rewritten as follows: 

max [cov(Xw,y)]2 

1 
s.t. -w'X'Xw = 1 

N 

Finally, CCA is formulated as the following generalized eigenvalue problem: 

1 
-X'yy'Xw = AX'XW (2) 
N 

This generalized eigenvalue problem is solved by Cholesky decomposition of X'X 

when X'X is full rank and SVD. 
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2.2.3. Regularized canonical correlation analysis (RCCA) 

In contrast to PLS, CCA is not applicable to the case N «p because the matrix 

X'X is rank-deficient. A penalty on the norm of the weight vector is introduced into 

CCA. This regularized CCA, RCCA, is applicable to the case N «p because X'X + 't I 

is always a full rank matrix. I denotes the identity matrix and 't the regularized 

parameter. 

max [cov(Xw,y)f 

1 
S.t. (1- r)-w'X'Xw + rw'w = 1 

N 

Finally, RCCA is formulated as the following generalized eigenvalue problem: 

~2 X'YY'Xw=A{(1-r) ~X'x+rI}w (3) 

To calculate more than one latent variable, we perform deflation of X and y and 

calculate the eigenvector corresponding to the maximum eigenvalue in Eq. (3) as with 

PLS. This generalized eigenvalue problem is solved by Cholesky decomposition and 

SVD. In Eq. (3), 't = 1 corresponds to PLS while 't = 0 corresponds to CCA. 

2.2.4. Kernel P LS 

Kernel methods start by mapping the original data onto a high-dimensional 

feature space corresponding to the reproducing kernel Hilbert space (RKHS). The inner 

product of samples <px and <py in the feature space <<Px, <py> can be replaced by the kernel 

function k(x, y) which is positive definite: 

(<J)x,<J)y) = k(x,y) 

This formulation is called the "kernel trick". We can extend multivariate analysis to 

nonlinear multivariate analysis using the kernel trick without explicitly knowing the 
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mapping in the feature space. As kernel functions, polynomial kernel and Gaussian 

kernel have been widely used. A detailed theory of kernel methods has been outlined 

previously [12, 13] 

Rosipal et al. [17] introduced kernel PLS using a nonlinear iterative partial 

least squares (NIPALS) algorithm. Similarly to PLS, kernel PLS is explained as the 

optimization problem of maximizing the square of covariance between the score vector 

t, which is a linear combination of the explanatory variable <I> in the feature space, and 

the response variable y. We assume that there exists a coefficient a. which satisfies w = 

<1>' a. and denotes K = <1><1>': 

max [cov(Ka,y)]2 

1 
S.t. -a'Ka = 1 

N 

Finally, kernel PLS is formulated as the following generalized eigenvalue problem: 

1 
-2 Kyy'Ka = AKa (4) 
N 

K is a mean-centered kernel gram matrix of which the elements are an output of the 

kernel function. We perform deflation to K and yand then calculate the eigenvector 

corresponding to the maximum eigenvalue in Eq. (4) to calculate more than one latent 

variable. When K is rank-deficient, we approximate K on the righthand side of Eq. (4) 

to K + E I where E is a small positive value. This generalized eigenvalue problem is 

solved by Cholesky decomposition and SVD. A score vector can be calculated as t = 

Ka.. 

2.2.5. Kernel CCA 

Akaho [18] and Bach and Jordan [19] introduced kernel CCA, which is a 

kemelized version of RCCA. Like kernel PLS, we assume that there exists a coefficient 
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a which satisfies w = <1>' a and denotes K = <1><1>': 

max [cov(Ka,y)]2 

1 
s.t. (l-r)-a'K 2a+ra'Ka=1 

N 

Finally, kernel CCA is formulated as the following generalized eigenvalue problem: 

Bach and Jordan [19] approximated this eigenvalue problem for computational 

simplicity as follows: 

1 (N )2 N 2 Kyy'Ka =A K+ 2K I a 

where K is 't /(1 - 't). 

Let K be a small positive value. We perform deflation of K and y and then calculate the 

eigenvector corresponding to the maximum eigenvalue in Eq. (5) to calculate more than 

one latent variable, as in kernel PLS. This generalized eigenvalue problem is solved by 

Cholesky decomposition and SVD. A score vector can be calculated as t = Ka. 

The algorithm for multivariate regressions is given in the Appendix. Table 1 

gives a summary of these methods. 

2.3. Software 

The computer program for PLS, RCCA, kernel PLS, and kernel CCA 

calculation was developed in-house by the authors with the personal computer version 

of MATLAB 7 (Mathworks, Natick, MA, USA) by the authors. The computer system 

used to run these programs has a 2.4 GHz CPU and a 512 MB memory. 
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Table 1 Summary of partial least squares (PLS), regularized canonical correlation analysis (RCCA), kernel PLS, and 

kernel CCA where the response variable is univariate 

PLS RCCA Kernel PLS Kernel CCA 

w=X'y w ~ {(l-T) ~ X'X+rlf X'y a=y a~{(l-T) >+rlfy 
wora. a w a a+--

w w +-- a+-- ~(l-T) ~a'K2a+m'Ka w +-- ~(l-T) ~w'x'xw+nv'w ~ ~a'Ka -Jw'w 



3. Results and discussion 

3.1. Construction of a quality-predictive model by PLS and RCCA 

For the training set, we determined the optimal number of latent variables of 

PLS, RCCA (t = 0.5), and RCCA (t = 0.1) using leave-one-out cross validation 

(LOOCV). The optimal number of latent variables was 15, 3, and 1, respectively (Fig. 

1). The root mean squared error (RMSE) of PLS and RCCA ('t = 0.1) was 3.0054 and 

3.6631 for the training set and 12.7368 and 10.4296 for the test set, respectively (Table 

2). These results indicate that the number of components required to construct a 

quality-predictive model in RCCA is fewer than in PLS. The reason is thought to be as 

explained below. 

Because PLS maximizes the covariance between the score vector t, which is a 

linear combination of X, and the response variable y, the PLS model is affected by the 

explanatory variable X, which is not closely related to the response variable y and has a 

Table 2 Number of latent variables (LV) and root mean squared error 

(RMSE) by PLS and RCCA (1 = 0.5 or 0.1) 

RMSE 
Number of LV 

Training set Test set 

PLS 15 3.0054 12.7368 

RCCA ('t = 0.5) 3 3.4639 11.6177 

RCCA ('t = 0.1) 1 3.6631 10.4296 
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(t = 0.5 (B), 1: = 0.1 (C)). 
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large variance. As a result, PLS extracts a number of latent variables that are redundant 

to the construction of a quality-predictive modeL In the practical application of PLS, the 

explanatory variables, which are respective columns of X, are often scaled to unit 

variance to reduce this effect. In contrast, CCA maximizes the correlation between the 

score vector t and the response variable y. Because the correlation coefficient is equal to 

the covariance, which is divided by the product of the standard deviations oft and y, the 

effect of the explanatory variable X, which is not closely related to the response variable 

y and has a large variance, is reduced in RCCA. 

3.2. Reduction of calculation time of RCCA 

A long calculation time is required for cross-validation of RCCA. The 

calculation time for LOOCV of RCCA by implementation ofEq. (3) was 5.9962 x 104 s 

(about 16.5 h), while that for LOOCV ofPLS was 54.2970 s. By using kernel CCA with 

a linear kernel, we were able to reduce the calculation time for LOOCV of RCCA to 

8.1090 s. The main reason for this reduction is that the former formulation of RCCA 

required the handling of a large matrix of the size 2064 x 2064; whereas the latter 

formulation requires only a small size matrix of the size 47 x 47. A similar idea to 

reduce the calculation time and memory demand for PLS was proposed by Lindgren et 

al. [20]. 

3.3. Metabolicfingerprinting with PLS and RCCA 

For metabolic fingerprinting, variable importance in projection (VIP) has often 

been used. From the VIP value, we can identify metabolites important for the 

quality-predictive model by reading the retention time of the chromatogram and its 

mass spectrum. We picked out ten metabolites in descending order of VIP value as 

shown in Table 3. 
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Boulesteix et al. [7] pointed out that the VIP index lacks a theoretical 

background. In the present study, we used only one component for the calculation of the 

VIP value. In this case, the VIP value is equal to the root of the square of the weight 

vector multiplied by the number of variables. Moreover, the weight vector of PLS is 

proportional to the covariance between the explanatory variable X and the response 

variable y [23]. Therefore, the VIP value ofPLS in the present study corresponds to the 

covariance between the explanatory variable X and the response variable y. Table 1 

indicates that the weight vector and VIP value of RCCA correspond to the regression 

coefficient of ridge regression. 

Table 3 indicates that the result of PLS was very similar to that of the 

orthogonal signal correction PLS (OSC-PLS) reported in a previous study [21], except 

for theanine. Quinic acid, amino acids, and groups of sugars were found to be 

significant in the construction of the quality-prediction model described in the previous 

study [21]. Furthermore, the VIP values corresponding to sucrose and glucose were 

significantly smaller in RCCA than in PLS and OSC-PLS. In contrast, the VIP values 

corresponding to glutamic acid and oxalic acid were larger in RCCA than in PLS and 

OSC-PLS, suggesting that these metabolites may also have a considerable effect on the 

quality-prediction model. 
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Table 3 VIP (variable importance in projection) value and ten metabolites identified by PLS and RCCA 

VIP value Metabolite 
Ranking 

PLS RCCA (-c = 0.1) PLS RCCA (-c = 0.1) OSC-PLS* 

1 23.8273 8.0146 sucrose glutamic acid sucrose 

2 13.8409 7.9499 glucose fructose 1 glucose 

3 8.5963 7.3738 malic acid quinic acid quinic acid 

4 8.5884 7.2561 phosphoric acid caffeine fructose 1 
tv 
'D 5 8.3986 7.1 fructose 1 oxalic acid caffeine 

6 8.0194 6.9783 glutamine2 theanine malic acid 

7 7.2698 6.2757 quinic acid malic acid theanine 

8 5.8229 6.2279 caffeine silane fructose2 

9 5.2665 6.2035 fructose2 glucose glutamine2 

10 5.1425 6.0373 silane inositol phosphoric acid 

* Orthogonal signal correction PLS [21] 
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3.4. Kernel PLS and kernel CCAfor multivariate regression 

As in linear PLS, the explanatory variable <l> in the feature space, which is not 

closely related to the response variable y and has a large variance, affects the 

quality-prediction model using kernel PLS. The effect may be more serious in kernel 

PLS than in linear PLS because we cannot perform scaling for the explanatory variable 

<l> directly in the feature space. 

We also applied kernel PLS and kernel CCA to the construction of a 

multivariate regression model (data not shown). As long as we searched for the optimal 

parameter of the kernel function, the quality-prediction model constructed with kernel 

PLS and kernel CCA was not significantly better than that with PLS and RCCA. We 

therefore concluded that linear PLS and linear RCCA are adequate for the construction 

of a quality-prediction model. In cases where the nonlinear relation between X and y is 

strong, the kernel method will be useful in constructing a multivariate regression model. 

Application of the kernel method to multivariate regression has been studied 

[24, 25], but there have been few applications. Kernel PLS and kernel CCA for 

multivariate regression need to be applied to various datasets and the usefulness of these 

methods demonstrated. 

Appendix 

A.I. Algorithmfor PLS, RCCA, kernel PLS, and kernel CCA 

The pseudo-code of the algorithms for multivariate regression is as follows: 

For i = 1 to k 

Compute w or a shown in Tablel / Solve generalized eigenvalue problem. 

N orrnalize w or a according to the constraint. 
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t=Xw ort= Ku. 

Deflation of X or K, and y. 

End 

We perform regression between T and y, y = Tb. The regression coefficient b 

is written as follows: 

The matrix T has a score vector t in each column, T=[ti 12 ... tk]. For the training set, 

the prediction is written as follows: 

y = Tb = T(T'T)-IT'y 

For the test set, the prediction is written as follows: 

Yt = Ttb = Tt (T'Tr l T'y 

A.2. Deflationfor multivariate regression 

The data matrix X is approximated as follows: 

X ~ tlPI + t 2P2 + ... + tkP k (AI) 

where P is called a loading vector. We assume that the first term in Eq. (Al), tIPI, is 

much larger than the sum of the other terms, t2P2 + ... + tkPk. Then, the loading vector 

P is approximated as follows: 

t 'X I 
PI =i't 

I I 

Deflation of X and similarly ofy is performed as follows: 

t'X 
X~X-t-

t't 

t'y 
y~y-t-

t't 

Deflation of <I> in the feature space is performed by deflation of K as follows: 
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( 
t 'cD)( t 'cD)' ( t ') ( t ' )' K = cD-t _1_ cD-t _1_ = I-t _1_ K I-t _I_ 

I t 't 1 t 't 1 t 't 1 t 't 
11 11 11 11 

By deflation, we obtain mutually orthogonal score vectors. 
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Dimensionality reduction by peA, PLS, OPLS, RFDA with 

smoothness 

1. Introduction 

Recently, some comprehensive analysis such as gene expression analysis from 

micro array and metabolome analysis has been studied actively. These data are often 

high-dimensional data, especially N « p, the number of variables (P) exceeds the 

number of observation (N), type data. Dimensionality reduction technique is required to 

visualize high-dimensional data as a preprocessing step. An unsupervised 

dimensionality reduction methods such as principal component analysis (PCA) and a 

supervised dimensionality reduction such as partial least squares (PLS) for 

discrimination [1] and Fisher discriminant analysis (FDA) [2] have been applied. 

For time series data analysis, smoothed PCA [3, 4] was proposed in the context 

of functional data analysis [5]. The differential penalty of the weight vector is added to 

the constraint condition of PCA in smoothed PCA, so it is suitable for the data in which 

the variables are in transition with time. In this study, we deal with the data in which the 

observation is in transition with time, and the data of such a type sometimes appears in 

microarray and metabolome research. In this study, we extended some ordinary 

dimensionality reduction methods, PCA, PLS, orthonormalized PLS (OPLS) [6], 

regularized FDA (RFDA) [7] by introducing the differential penalty with each class. We 

proposed smoothed PCA, PLS, PLS, RFDA and its nonlinear extension by kernel 

method as kernel smoothed PCA, PLS, OPLS, and FDA. These methods can reflect 

information about the data in which the observation is in transition with time to the 

results of visualization. 

In the present study, we applied smoothed PCA, PLS, OPLS, and RFDA, and 

kernel smoothed PCA, PLS, OPLS, FDA to CE-MS and GC-MS data, which is 

high-dimensional data (N «p). The main objective of the present study is to evaluate 
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these newly methods for metabolome data. This metabolome data is collected to clarify 

the part of the phenomenon of intracellular xylose metabolism in yeast for the 

fermentative production of ethanol by metabolome analysis. 

2. Theory 

We explained about smoothness by using differential penalty, and 

dimensionality reduction methods such as peA, PLS, OPLS, and RFDA, and its 

extension by introducing differential penalty and its nonlinear extension by kernel 

methods. These methods are formulated by generalized eigenvalue problem. 

2.1. Differential penalty 

Eilers [8] introduced the smoothing method by using differential penalty as 

'Whittaker smoother'. This problem is formulated as minimization problem as follows: 

min lis - tl1
2 

+ KIIDsl12 (1) 

The observation series t is fitted to the smoothed series s. First and second differential 

matrix D is set as follows in the case, which the number of observations is 5. 

1 -1 0 0 0 

D"~[~ ~l 
-2 1 0 

0 1 -1 0 0 
D'= 1 -2 1 

0 0 1 -1 0 
0 1 -2 

0 0 0 1 -1 

K is parameter of smoothness. The first term in Eq. (1) is the squared error between s 

and t and the second term is differential penalty of smooth series s. As the parameter of 

smoothness K becomes smaller, the squared error between sand t becomes more 

important. As K becomes larger, the smoothness of s becomes strong. The minimization 

of Eq. (1) is trade-off between the squared error and smoothness. The smoothness is 

controlled by the parameter of smoothness K. 
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2.2. Linear multivariate analysis with smoothness 

In the previous study, smoothed PCA [3, 4] was introduced in the differential 

penalty of the weight vectors in the context of functional data analysis [5] and penalized 

PLS was also proposed [9]. The differential penalty in the context of functional data 

analysis was interpreted as the smoothness that is suited for the data in which the 

variables were in transition with time. In this study, we introduced the differential 

penalty of the latent variables with each class to PCA, PLS, OPLS, and RFDA, and 

these methods are suited for the data in which the observation is in transition with time. 

The differential matrix D is set for the g class classification problem as follows: 

o 

:,J o 

2.2.1. Principal component analysis (peA) 

PCA is explained as the optimization problem of maximizing the variance of 

the latent variables t, which is the linear combination of the explanatory variable X. 

max var(t) 

s.t. w'w = 1 

where w is a weight vector. X is mean-centered. PCA is written as the following 

eigenvalue problem: 

(1/ N)X'Xw = AW 

We added the differential penalty of the latent variables t to the constraint condition of 

PCA. Smoothed PCA is formulated as follows: 

max var(t) 

S.t. w'w +K(Dt)'(Dt) = 1 
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Finally, smoothed peA is written as the following generalized eigenvalue problem 

about the weight vector w: 

l.x'xw = A(I + KX'D'DX)w 
N 

Wi is weight vector corresponds to the large eigenvalue in i-tho The i-th latent variables tj 

can be calculated as tj= X W j. 

2.2.2. Partial least squares (PLS) 

PLS is explained as the optimization problem of maximizing the covariance 

between the latent variables t=Xwx, which is a linear combination of the explanatory 

variable X, and the latent variables s=Ywy, which is a linear combination of the 

response variable Y. 

max cov( t, s) 

s.t. wx'wx =1 Wy'Wy =1 

X and Y are mean-centered. Finally, PLS is written as the following eigenvalue problem 

about the weight vector Wx: 

l. X'YV' Xw = AW (2) N x x 

We added the differential penalty of the latent variables t to the constraint condition of 

PLS. Smoothed PLS is formulated as follows: 

max cov( t, s) 

s.t. W x 'W x + K(Dt)' (Dt) = 1 W 'w =1 y y 

Finally, smoothed PLS is written as the following generalized eigenvalue problem about 

the weight vector Wx: 

_l_X'YY'Xw =A(I+KX'D'DX)w N 2 x x 

The matrix I is identity matrix. 
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2.2.3. Orthonormalized partial least squares (OPLS) 

OPLS is explained as the optimization problem of maximizing the covariance 

between the latent variables t and s as well as PLS. The constraint condition of OPLS is 

different from PLS. 

max cov( t, s) 

s.t. w x 'w x =1 var(s)=1 

Finally, OPLS is written as the following eigenvalue problem about the weight vector 

We added the differential penalty of the latent variables t to the constraint condition of 

OPLS. Smoothed OPLS is formulated as follows: 

max cov( t, s) 

s.t. w x 'w x +K(Dt)'(Dt)=1 var(s)=1 

Finally, smoothed OPLS is written as the following generalized eigenvalue problem 

about the weight vector Wx: 

_1_ X 'y(y,y)-ly,Xw = /L(I +KX'D'DX)w 
N 2 x x 

2.2.4. Regularized Fisher discriminant analysis 

FDA is equal to canonical correlation analysis (CCA) when the response 

variables are a certain formulation of dummy variables [1]. We explained FDA by using 

the formulation of CCA. FDA is explained as the optimization problem of maximizing 

the correlation between the latent variables t and s. 

max corr( t, s) 
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This conditional equation is rewritten as follows: 

max cov(t,s) 

s.t. var(t) = 1 var(s) = 1 

However, FDA is not applicable to the N «p type data for X or Y. Here we considered 

the case in which the explanatory variables X are N «p, so 12-norm regularized term of 

the weight vector Wx is introduced to FDA. FDA with regularized term, regularized 

FDA (RFDA), is formulated as follows: 

max cov( t, s) 

S.t. (1- r) var(t) + 1W x'w x = 1 var(s) = 1 

't is regularized parameter and 0 <'t< 1. Finally, RFDA is written as the following 

generalized eigenvalue problem about the weight vector Wx: 

~X'y(y'yrly,xwx =A{(1-r) ~X'X+rl}Wx 

We added the differential penalty of the latent variables t to the constraint condition of 

RFDA. Smoothed RFDA is formulated as follows: 

max cov( t, s) 

S.t. (1- r) var(t) + 1W x 'w x + K(Dt)' (Dt) = 1 var(s) = 1 

Finally, smoothed RFDA is written as the following generalized eigenvalue problem 

about the weight vector Wx: 

2.3. How to set dummy variables to response variables for supervised dimensionality 

reduction 

In discrimination by PLS, OPLS, RFDA, the response variable is set dummy 

variables as follows: 

42 

This conditional equation is rewritten as follows: 

max cov(t,s) 

s.t. var(t) = 1 var(s) = 1 

However, FDA is not applicable to the N «p type data for X or Y. Here we considered 

the case in which the explanatory variables X are N «p, so 12-norm regularized term of 

the weight vector Wx is introduced to FDA. FDA with regularized term, regularized 

FDA (RFDA), is formulated as follows: 

max cov( t, s) 

S.t. (1- r) var(t) + 1W x'w x = 1 var(s) = 1 

't is regularized parameter and 0 <'t< 1. Finally, RFDA is written as the following 

generalized eigenvalue problem about the weight vector Wx: 

~X'y(y'yrly,xwx =A{(1-r) ~X'X+rl}Wx 

We added the differential penalty of the latent variables t to the constraint condition of 

RFDA. Smoothed RFDA is formulated as follows: 

max cov( t, s) 

S.t. (1- r) var(t) + 1W x 'w x + K(Dt)' (Dt) = 1 var(s) = 1 

Finally, smoothed RFDA is written as the following generalized eigenvalue problem 

about the weight vector Wx: 

2.3. How to set dummy variables to response variables for supervised dimensionality 

reduction 

In discrimination by PLS, OPLS, RFDA, the response variable is set dummy 

variables as follows: 

42 



lnl °nl °nl 

y= °n2 In2 °n2 

lng-l 

Ong Ong Ong 

Barker et al. [1] suggested that FDA is equal to CCA when the response variables are 

dummy variables, and they defined OPLS as PLS for discrimination. OPLS is explained 

as the special case of FDA that only maximizes the scatter among class. The difference 

between PLS and OPLS is prior probabilities of class. The prior probabilities of PLS is 

the squared of n/N, and OPLS is niNo The nj is the number of observations within i-th 

class. Recently, the prior probability ofPLS was reported in detail [10]. 

2.4. Nonlinear multivariate analysis by kernel method with smoothness 

We proposed kernel smoothed PCA, PLS, OPLS, and FDA, which is the 

nonlinear extension of smoothed PCA, PLS, OPLS, RFDA by kernel methods. Kernel 

methods start by mapping the original data onto a high-dimensional feature space 

corresponding to the reproducing kernel Hilbert space (RKHS). The inner product of 

samples <px and <py in the feature space <<Px, <py> can be replaced by the kernel function 

k(x, y) which is positive definite: 

This formulation is called the "kernel trick". We can extend multivariate 

analysis to nonlinear multivariate analysis using the kernel trick without explicitly 

knowing the mapping in the feature space. As kernel functions, polynomial kernel and 

Gaussian kernel have been widely used. A detailed theory of kernel methods has been 

outlined previously [7]. The advantageous point of the formulation by kernel methods is 

that we can compute nonlinear multivariate analysis easily and the computational costs 

for N « p data, especially leave-one-out cross validation, is reduced by using linear 

kernel [11]. 
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methods start by mapping the original data onto a high-dimensional feature space 

corresponding to the reproducing kernel Hilbert space (RKHS). The inner product of 

samples <px and <py in the feature space <<Px, <py> can be replaced by the kernel function 

k(x, y) which is positive definite: 

This formulation is called the "kernel trick". We can extend multivariate 

analysis to nonlinear multivariate analysis using the kernel trick without explicitly 

knowing the mapping in the feature space. As kernel functions, polynomial kernel and 

Gaussian kernel have been widely used. A detailed theory of kernel methods has been 

outlined previously [7]. The advantageous point of the formulation by kernel methods is 

that we can compute nonlinear multivariate analysis easily and the computational costs 

for N « p data, especially leave-one-out cross validation, is reduced by using linear 

kernel [11]. 
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2.4.1. Kernel peA 

Kernel PCA [12] is explained as the optimization problem of maximizing the 

variance of the latent variables t= <I> w, which is the linear combination of the 

explanatory variable <I> in feature space. We assume that there exists a coefficient a 

which satisfies w = <1>'a and denotes K = <1><1>'. The latent variables t can be calculated 

as t=Ka. 

max var(t) 

s.t. a'Ka = 1 

K is mean-centered. Finally, kernel PCA is written as the following generalized 

eigenvalue problem about the coefficients vector a: 

When K is rank-deficient, we approximate K on the right hand of above equation to K 

+ E I where E is a small positive value. We added the differential penalty of the latent 

variables t to the constraint condition of kernel PCA. Kernel smoothed PCA is 

formulated as follows: 

max var(t) 

s.t. a'Ka+K(Dt)'(Dt) =1 

Finally, kernel smoothed PCA is written as the following generalized eigenvalue 

problem about the coefficients vector a: 

aj is coefficient vector corresponds to the large eigenvalue in i-tho We can calculate the 

latent variables tj as tj= Kaj. 

2.4.2. Kernel PLS 

44 



Rosipal et al. [13] introduced kernel PLS using a nonlinear iterative partial 

least squares (NIPALS) algorithm. As well as PLS, kernel PLS is explained as the 

optimization problem of maximizing the covariance between the latent variable t, which 

is a linear combination of the explanatory variable <I> in the feature space, and the latent 

variable s, which is a linear combination of the response variable Y. 

max cov(t,s) 

s.t. ax 'Kax = 1 w 'w =1 y y 

Finally, kernel PLS is written as th~ following generalized eigenvalue problem about the 

coefficients vector ax: 

We added the differential penalty of the latent variables t to the constraint condition of 

kernel PLS. Kernel smoothed PLS is formulated as follows: 

max cov( t, s) 

s.t. ax 'Kax + K(Dt)' (Dt) = 1 w y 'w y = 1 

Finally, kernel smoothed PLS is written as the following generalized eigenvalue 

problem about the coefficients vector ax: 

1 
-2 KYV'Kax = A(K + Td(I)'DK)a x 
N 

2.4.3. KernelOPLS 

As well as kernel PLS, kernel OPLS is explained as the optimization problem 

of maximizing the covariance between the latent variable t, which is a linear 

combination of the explanatory variable <I> in the feature space, and the latent variable s, 

which is a linear combination of the response variable Y. The constraint condition of 

kernel OPLS is different from kernel PLS. 
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max cov(t,s) 

s.t. ax 'Kax = 1 SIS = 1 

Finally, kernel OPLS is written as the following generalized eigenvalue problem about 

the coefficients vector ax : 

We added the differential penalty of the latent variables t to the constraint condition of 

kernel smoothed OPLS. Kernel smoothed OPLS is formulated as follows: 

max cov( t, s) 

s.t. a x'Kax +K(Dt)'(Dt)=1 s's=1 

Finally, kernel smoothed OPLS is written as the following generalized eigenvalue 

problem about the coefficients vector ax : 

2.4.4. Kernel FDA 

Akaho [14] and Bach and Jordan [15] introduced kernel CCA, which is a 

kernelized version of RCCA. Kernel FDA [16] is introduced by using h-norm penalty to 

solve the sparse solution for the coefficient vector. Kernel FDA in this study is different 

from kernel FDA by Mika et al. In this section as well as the section 2.2.5, we explained 

kernel FDA by using the formulation of kernel CCA. Kernel FDA is formulated as 

follows: 

max cov( t, s) 

s.t. (1- r) var(t) + 1U x 'Ka x = 1 var(s) = 1 

Finally, kernel FDA is formulated as the following generalized eigenvalue problem 

about the coefficients vector ax : 
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We added the differential penalty of the latent variables t to the constraint condition of 

kernel FDA. Kernel smoothed FDA is formulated as follows: 

max cov( t, s) 

s.t. (1- r)var(t) + lUx 'Ka x + K(Dt)'(Dt) = 1 w y'w y = 1 

Finally, kernel smoothed FDA is written as the following generalized eigenvalue 

problem about the coefficients vector ax : 

All these generalized eigenvalue problem can be computed easily by using Cholesky 

decomposition and singular value decomposition. 

3. Data 

3.1. Experimental data 

S. cerevisiae MT8-lIpIUX1X2XK strain developed in our previous study [17] 

was adapted to xylose. Three strains, the native strain, strain adapted to xylose under 

aerobic condition and anaerobic condition, were pre-cultured in 5 ml SD medium (20 g 

of glucose per liter, 6.7 g of yeast nitrogen base without amino acids [Difco 

Laboratories, Detroit, Mich.] per liter). After pre-culture, these strains were cultivated in 

500ml SDC medium (SD medium with 20 g of casamino acids [Difco] per liter). The 

cells were washed and ethanol fermentation was carried out in 100 ml SX (50 g of 

xylose per liter, 6.7 g of yeast nitrogen base without amino acids per liter, 20 g of 

cas amino acids per liter) medium. We collected the samples in triplicate at 0,8, 16,36, 

60, 96 hours. The intracellular metabolites were analyzed by CE (Beckman Coulter, 

Fullerton, CA, USA)-MS (Applied Biosystems, Foster City, CA, USA) and GC (Agilent 
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Technologies, Wilmington, DE, USA)-TOFMS (Leco, St.Joseph, Ml,USA). 

Almost all intracellular metabolites were identified and the concentration of 

each metabolite is collected in data matrix with each element. The number of 

observations was 53 and the number of variables was 114. Each sample was categorized 

into three classes, native strain (class 1), the adaptated strain by xylose under aerobic 

condition (class 2), and under anaerobic condition (class 3). The number of samples 

with each class was 18, 18, and 17, because one sample was lost by the experimental 

error. 

3.2. Software 

The computer program in this study was developed in-house with the personal 

computer version of MATLAB 7 (Mathworks, Natick, MA, USA) by the authors. Our 

computer system to run these programs in this study has 2.4GHz CPU and 512MB size 

memory. 

4. Results and discussion 

4.1. Results a/PeA, PLS, OPLS, RFDA with smoothness 

A visualization result by using PCA, PLS, OPLS, and RFDA in which the 

high-dimensional data is projected onto 2-dimensional subspace was shown in Fig. 1. In 

Fig. 1, the symbol 0 is the native strain, the symbol v is the adapted strain under 

aerobic condition and the symbol D is the adapted strain under anaerobic condition. 

Supervised dimensionality reduction, PLS, OPLS, and RFDA, achieved separability 

between class well compared with PCA. And the higher separability was achieved by 

using RFDA than PLS and OPLS. 
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Fig. 1. Results of peA, PLS, OPLS, and RFDA. The symbols (0, v, D) 

denote native strain (0), adapted strain under aerobic condition (v), and 

under anaerobic condition (D). (A) Result of peA. (B) Results ofPLS. (e) 

Result ofOPLS. (D) Result ofRFDA(,t = 0.1). 
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In this study, 1 st and 2nd axis was used for visualization. Only two axes can be 

extracted in PLS, OPLS, and RFDA in the case of 3-class classification, whereas more 

than two axis can be extracted in PCA. The result of PCA is not always optimal for 

separability among classes because the purpose of PCA is to find good representation of 

original data in lower dimensional subspace. The result ofPLS (Fig. 1 (B)) is similar to 

OPLS (Fig. 1 (C)). The matrix (y'yyl becomes identity matrix multiplied by constant, 

so we can eliminate the matrix (y'yyl from Eq. (3) when the number of samples within 

class is same. As a result, the Eq. (2) ofPLS becomes equal to the Eq. (3) ofOPLS. The 

regularized parameter of RFDA was set to 't=0.1. The methodology of setting the 

regularized parameter 't is described in the next section. 

A perfect separability between the native strain (0) and the adapted strain (0, 

\1) was achieved by RFDA in 1st axis. The 1st axis can be interpreted as the axis that is 

concerned with the adaptation. The effect of adaptation was known in ethanol 

fermentation from xylose [18]. In 2nd axis, the separability among the native strain (0) 

and the adapted strain under aerobic condition (D) and anaerobic condition (\1) was 

satisfactory. However, it is difficult to interpret the 2nd axis from biological point of 

view because the difference between adaptation under the aerobic condition (D) and 

anaerobic condition (\1) is not clear in experimental phase. 

The results of smoothed PCA, PLS, OPLS, and RFDA were shown in Fig. 2. 

The smoothed parameter K was set to 0.1. Compared to the results by original methods 

in Fig. 1, the effect of smoothness was found, especially in smoothed PCA. The 1 st axis 

in smoothed PCA (Fig. 2 (A)) can be interpreted as the axis that is concerned with time 

change. The effect of differential penalty can be found in other methods but not in 

greater detail. 
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Fig. 2. Results of smoothed PCA, PLS, OPLS, and RFDA. The symbols 

are the same as Fig. 1. Each symbols within class was connected from 0 

hour to 96 hour observations by the dotted line. (A) Result of smoothed 

peA. (B) Results of smoothed PLS. (C) Result of smoothed OPLS. (D) 

Result of smoothed RFDA ('t = 0.1). 
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4.2. Determination of regularized parameter of RFDA 

The results of RFDA with different value of the regularized parameter ( 't = 

0.00001, 0.01, 0.1, 1 ) were shown in Fig. 3. As shown in Fig. 3, the degree of 

separation of classes increased with decrease in the value of regularized parameter 't, 

whereas separation of individual data points in each class was increased with increase in 

the regularized parameter 'to It was seen in Fig. 3 (A) and (B) that individual data points 

were strongly assembled when the regularized parameter 't is up to 0.01 and prediction 

is not possible because of the high dimensional data. Even though, there is a slight 

decrease in the separation of classes in Fig. 3 (C) and (D), the separation of individual 

data points allows the prediction of data. Therefore, it is necessary to optimize the 

regularized parameter 'to The regularized parameter 't in RFDA was determined by using 

leave-one-out cross-validation (LOOCV). We remove one sample as a test sample and 

compute the lower dimensional subspace by using the rest of the samples. In this 

subspace, which class a test sample belongs to was checked by using Mahalanobis 

distance. For all samples, this operation has been iterated. Sum of the number of 

misclassification against the regularized parameter 't was plotted in Fig. 4. The 

regularized parameter corresponding to the minimum value of the sum of the number of 

misclassification is optimal. 
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Fig. 3. Results of RFDA with different regularized parameter 'to The 

symbols are the same as Fig. 1. (A) Result of smoothed RFDA ('t = 

0.00001). (B) Result of smoothed RFDA ('t = 0.01). (C) Result of smoothed 

RFDA ('t = 0.1). (D) Result of smoothed RFDA ('t = 1). 
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4.3. Kernel methods with smoothness 

In this study, high separability among class is achieved by using linear 

dimensionality reduction. Therefore, the results of nonlinear dimensionality reduction 

were shown only as a guide. The results of kernel peA, kernel PLS, kernel OPLS, and 

kernel FDA were shown in Fig. 5. As a kernel function, 2nd order polynomial kernel 

was applied. The smoothed parameter K was set to 0.1. Separability among class is not 

achieved (Fig. 5 (A), (B), (e)) except kernel FDA (Fig. 5 (D)). However, the results of 

kernel FDA are not satisfactory for the same reason as RFDA in the section 4.2. The 

results of kernel smoothed peA, PLS, OPLS, and FDA were shown in Fig. 6, and the 

effect of smoothness can be found. The high separability among class was achieved by 

using kernel smoothed PLS and OPLS compared with kernel PLS and OPLS. 

When we apply RFDA (ReeA) to large-size data such as high-dimensional 

data, it often requires a large amount of memory and long calculation time. In such case, 

kernel FDA with linear kernel as a kernel function can reduce the calculation time 

drastically. In this study, a marked difference of calculation time could not be found 

because the data size is comparatively small. 
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Fig. 6. Results of kernel smoothed peA, PLS, OPLS, and FDA with 
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(A) Result of kernel smoothed peA. (B) Results of kernel smoothed PLS. 

(e) Result of kernel smoothed OPLS. (D) Result of kernel smoothed FDA 

(t = 0.1). 
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Application of regularized alternating least squares and 

independent component analysis to curve resolution problem 

1. Introduction 

Metabolomics represents the exhaustive profiling of the metabolites contained 

In organisms. The final goal of metabolomics is the profiling of all metabolites 

contained in the target organism. However, it is almost impossible to perform profiling 

of as many as ten thousand metabolites due to lack of appropriate technology, and 

further development is required at each of the steps involved in metabolomics analysis, 

which consists of cultivation, sampling, extraction, data matrix conversion, data mining, 

and bioscience feedback [1]. 

To detect a number of metabolites, various analytical equipment has been used. 

In the present study, we considered only hyphenated techniques such as GC-MS and 

LC-diode array detection (DAD). In chromatography, complete separation of all 

metabolites is desirable to maintain a high degree of quantification, but several 

important metabolites may be coeluted because samples derived from living organisms 

contain many complex metabolites. 

Self-modeling curve resolution (SMCR) [2] is a chemometrics technique by 

which separation is achieved. SMCR has recently been applied extensively to two-way 

data obtained from chromatography hyphenated with multi-channel detection methods, 

for instance GC-MS and HPLC-DAD. In principle, SMCR does not require a priori 

information about the pure components. The only pre-requirement is generic knowledge 

about the pure variables such as non-negativity or unimodality. 

Alternating least squares (ALS) [3] is a classical algorithm of SMCR and has 

recently been applied in metabolomics studies [4]. ALS starts iteration with randomly 

chosen concentration vectors for the pure variables. By its character, ALS produces 

different solutions depending on the initial values, which presents a problem in practical 
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use. This problem is often avoided by applying multivariate curve resolution to ALS, 

which uses initial estimate that depends on the analysis equipment [5]. In the present 

study, we sought to avoid the problem by using a normalized constraint in calculating 

ALS. We also improved the ALS algorithm by adding a regularized term. 

Independent component analysis (lCA) [6] is comparatively new and mainly 

studied in branches of information science, such as signal processing and neural 

networks. Like SMCR, ICA does not require a priori information about the pure 

components, but only statistical independence among them. In chemometrics studies, 

the application of ICA to near-infrared spectroscopy has been studied [7], but its 

application to curve resolution problems is still very infrequent. 

In the present study, we applied two curve resolution methods, the regularized 

version of ALS (RALS) and ICA, to the metabolite data of the photosynthetic microalga 

Haematococcus pluvialis, which contain a number of metabolites. We focus on 

astaxanthin, a substance with high antioxidant action which is produced by H pluvialis, 

accumulated at high concentration in the cells, and co eluted in chromatography. In an 

assessment ofthe effectiveness of these curve resolution methods, we show that they are 

useful in the case of coelution in chromatography, as with metabolome data, and for 

identification of metabolites. 

2. Experimental 

2.1. Microorganism and cultivation conditions 

H pluvialis NIES-144, which was obtained from the Microbial Culture 

Collection in the National Institute for Environmental Studies (Tsukuba, Japan), was 

grown aerobically under illumination by light emitting diodes (Toyoda Gosei, Aichi, 

Japan) in Kobayashi's basal medium (PH 6.8) containing 0.12 w/v% sodium acetate, 0.2 

w/v% yeast extract, 0.04w/v% L-asparagine, 0.002 w/v% MgCh'6H20, 0.001 w/v% 
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FeS04·7H20, and 0.002 w/v% CaCh·2H20 [8]. After precultivation in a 200-cm3 

Erlenmeyer flask set in a glass-sided water bath under illumination at 3.8 J.lmol-photon 

m-2 
S-l with a fluorescent lamp, H pluvialis was inoculated at 0.03 mg-dry cell cm-3 into 

a 50-cm3 Erlenmeyer flask containing 50 cm3 of the medium, or into a glass vessel of 

6.5 cm height, 5.0 cm width and 2.6 cm depth with a working volume of 55 cm3
, and 

cultivated at 20°C under agitation with a magnetic stirrer bar. 

2.2. Measurement of metabolites withfocus on astaxanthin in cells 

Aliquots of 0.5 cm3 of the cell suspension were removed from the culture 

vessel and centrifuged at 7500 x g for 10 min. The cell precipitate was resuspended in 

0.5 cm3 of methanol and mixed with 0.40 g of silica particles (particle diameter, 0.2-1 

mm; Kanto Chemical, Tokyo, Japan). To extract astaxanthin and metabolites from the 

cells, the mixture was treated vigorously with a vortex mixer for 10 min and centrifuged 

for 10 min. The supernatant (0.5 cm3
) was mixed with 0.1 cm3 of a methanol solution of 

NaOH (5 mM NaOH) and kept at 20°C overnight under nitrogen and in darkness. The 

met!;l.bolites in the prepared samples were measured with an HPLC system (LC-10; 

Shimadzu, Kyoto, Japan) equipped with a reverse phase column (Cosmosil5C18-MS-II, 

4.6x150 mm; Nacalai Tesque, Kyoto, Japan). The mobile phase was methanol with a 

flow rate of 1 cm3 min-1 and the absorbance of the effluent solution was measured from 

350 nm to 700 nm with a photodiode array detector (SPD-M10A; Shimadzu). 

3. Data analysis 

3.1. Synthesized dataset 

We synthesized an artificial dataset, which was generated by means of X = CS 

where X was the data matrix, S was the two Gaussian type functions shown in Fig. lA, 
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Table 1. The initial value of C in artificial dataset 

Component 1 Component2 

Sample 1 0.0956 0.8961 

Sample 2 0.0694 0.6539 

Sample 3 0.8151 0.8738 

Sample 4 0.8808 0.1014 

Sample 5 0.1588 0.7608 

and C was the random value distributed on the interval [0, 1] given in Table 1. 

3.2. HPLC-DAD dataset 

A data matrix was formed from HPLC-DAD as follows: 

'2 Wavelength (nm)~ .-
S Xu X12 XtP Q) 

S X21 X22 X2P .-
X= ..... 

s:: 
0 .-15 Xn1 Xn2 Xnp 
Q) ..... 
~ 

In this matrix, each row corresponds to the spectrum at a certain retention time and each 

column to the chromatogram at a certain wavelength. C and S, respectively, denote the 

matrix of the concentration profile and of the pure spectrum of each metabolite. The 

following bilinear equation is assumed: 

X=CS 

SMCR decomposes the data matrix X to C and S without a priori information. In 

HPLC-DAD datasets, each column of C corresponds to the chromatogram of the pure 

components and each row of S to the diode array spectrum of the pure components. 
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Sample 2 0.0694 0.6539 

Sample 3 0.8151 0.8738 

Sample 4 0.8808 0.1014 

Sample 5 0.1588 0.7608 

and C was the random value distributed on the interval [0, 1] given in Table 1. 

3.2. HPLC-DAD dataset 

A data matrix was formed from HPLC-DAD as follows: 

'2 Wavelength (nm)~ .-
S Xu X12 XtP Q) 

S X21 X22 X2P .-
X= ..... 

s:: 
0 .-15 Xn1 Xn2 Xnp 
Q) ..... 
~ 

In this matrix, each row corresponds to the spectrum at a certain retention time and each 

column to the chromatogram at a certain wavelength. C and S, respectively, denote the 

matrix of the concentration profile and of the pure spectrum of each metabolite. The 

following bilinear equation is assumed: 

X=CS 

SMCR decomposes the data matrix X to C and S without a priori information. In 

HPLC-DAD datasets, each column of C corresponds to the chromatogram of the pure 

components and each row of S to the diode array spectrum of the pure components. 
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3.3. Data analysis methods 

3.3.1. Determination of component number 

Before we apply the curve resolution methods, we must estimate the number of 

pure components. In the present paper, we used the ratio of singular values (SVR) [9]. 

SVR extracts information about selectivity in singular value evolving profiles in order 

to more effectively determine peak homogeneity. 

3.3.2. Alternating least squares (ALS) 

ALS is a classical SMCR algorithm for decomposing the data matrix X into the 

two matrices S and C under non-negative constraints, as follows: 

X= CS (1) 

The algorithm comprises an iterative solving of two least squares problems. First, S is 

estimated from the original data matrix, X, and an assumed value of C, and then C is 

estimated from X and the estimated S, as follows: 

S = (CTCrICTX (2) 

C = XST (SSTr l (3) 

These two-step linear calculations are carried out iteratively until an appropriate 

convergence condition, such as IIX -CSII < &, is satisfied or the calculations are 

iterated 1000 times. 

ALS algorithm is as follows: 

1. C is initialized by using a normally distributed random value. 

2. S is determined by using the data matrix X and C, as S = (CTCr1CTX. 

3. Negative elements ofS are set to zero. 

4. C is estimated using the data matrix X and S, as C = XST(SSTrl. 

5. Negative elements of S are set to zero. 
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6. Repeat from Step 2 to 5 until IIX - CSII converges to & or the 

calculations are repeated 1000 times. 

3.3.3. Regularized ALS (RALS) 

In the context of regression problems, the ridge regression method is suggested, 

which involves a regularized term [10]. We proposed a regularized version of ALS, 

RALS. This is implemented very easily by adding a regularizing parameter, A. Thus, 

Eqs. (2) and (3) in ordinary ALS become the following modified equations 

S = (eTC + AlrlCTX (4) 

C = XST (SST + Alrl (5) 

where I is the identity matrix. 

Ordinary ALS is a special case of RALS in which the regularized parameter A 

is set to zero. 

3.3.4. Normalized constraint 

We used a constraint which normalizes the vector norm of each row of S to 1. 

This constraint was implemented in the (R)ALS algorithm between Step 2 and Step 3. 

3.3.5. Independent component analysis (ICA) 

ICA decomposes the data matrix X into C and S, assuming only that C and S 

are statistically independent. The statistical independence can be reflected by 

non-Gaussianity. In fast ICA algorithms [11], non-Gaussianity is measured by kurtosis, 

in its generalization, negentropy. The ICA algorithm is designed so that the number of 

samples is equal to the number of independent components. Otherwise, principal 

component analysis (PCA) is widely used for the dimension reduction of a data matrix. 
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Suppose that we seek for one of the independent components as y=wTx by 

using negentropy, where y is an independent component and w is a weight vector. 

Negentropy is based on the quantity of differential entropy. The larger the value of 

negentropy becomes, the more the variables are statistically independent. The 

differential entropy H of a random variable y with density p(y) is defined as: 

H(y) = - fp(y) log p(y)dy 

The negentropy J of y is then defined as: 

J (y) = H (y gauss) - H (y) 

where ygauss is a Gaussian random vector of the same covariance matrix as y. The 

estimation of independent components is reduced to finding y in a way that maximizes 

J(y). 

The approximation of negentropy takes the form: 

J(y) ~ [E{G(y)} - E{G(V)}]2 

where v is the normalized Gaussian variable, y is assumed to have zero mean and unit 

variance, G is a non-quadratic function, and E is expectation operator. Practical choices 

of G have been proposed as follows: 

1 4 
G3 (u) =-u 

4 

where al and a2 are suitable positive constants. The maximum value of negentropy Jo 

J G (w) = [E{G(w T x)} - E{G(V)}]2 

under constraints of E[(wTxi] = 1 would be likely to be found. We can solve this 

problem with Lagrangean or Newton-like iteration methods using the derivative 

function g of G. Finally, we obtain the following update rule [9] as follows: 
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3.4. Software 

The computer program for RALS calculation was developed in-house with the 

personal computer version of MATLAB 5.3 (Mathworks, Natick, MA, USA) by the 

authors. These codes can be run on a compatible PC. For ICA calculation, we used the 

FastICApackage for MATLAB developed at the Helsinki University of Technology. 

4. Results and discussion 

4.1. Comparison of solution between ALS and ALS with normalized constraint for 

synthetic dataset 

For the synthesized dataset shown in Fig. 1B, we applied ALS and ALS with a 

normalized constraint to the 100 different initial values of C. We overwrote the results 

of 100 simulations on a graph (Fig. 2). The figure shows that the number of solutions is 

greatly reduced by use of the normalized constraint. 

The reason why the normalized constraint gives a reduced number of 

solutions is explained in the following way. In the matrix decomposition shown in Eq. 

(1), any diagonal matrix M can be inserted as follows: 

x = CM-1MS = CS 

This means that the matrix decomposition is not undertaken uniquely. The use of the 

normalized constraint is equivalent to setting any diagonal matrix M to 
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where li is the nonn of the i-th row of S. The best choice of diagonal matrix M is a 

constraint physically meaningful for C or S. Given the constraint on either C or S 

regarding the nonn, the solution of ALS is detennined almost uniquely in such a simple 

case. 

4.2. Robustness of RALS against inappropriate number of pure components 

To show the robustness of the regularized version of ALS, known as RALS, we 

applied ALS and RALS to the 100 different initial values of C for the synthesized 

dataset shown in Fig. 1 B. This dataset was artificially synthesized to contain two 

components. We calculated ALS and RALS on the assumption that the number of pure 

components is three, which is a dummy number. We overwrote the results of 100 

simulations on a graph (Fig. 3). The figure shows that the number of solutions is greatly 

reduced by RALS, indicating that the robustness of RALS would be improved by 

adding a regularized tenn. 
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4.3. Analysis of HPLC-DAD data of H pluvialis metabolites 

Before curve resolution for the real dataset, the HPLC-DAD data of H 

pluvialis metabolites, we estimated the number of pure components and divided the 

whole dataset into subsets using SVR. Dividing the whole dataset into small subsets 

allows a complex problem to be made into a simple problem. Fig. 4 shows the results of 

SVR, which suggest that three subsets, data 1, data 2, and data 3, exist and that each 

subset involves only two pure components. In Fig. 5, the chromatogram and spectra of 

each subset are presented. 

The results of curve resolution by (R)ALS with a normalized constraint and 

ICA are presented in Figs. 6 and 7, respectively. In the calculation of RALS, the value 

of the regularized parameter /.., in the three datasets is 0, 0, and 0.01, respectively, as 

mentioned below. In ICA, each column of C in Eq. (1), which corresponds to the 

chromatogram, is considered to be independent of each other. We therefore seek the 

independent components of C, that is C = WX. The reason for this will be shown later. 

To make the comparison of ICA with RALS easy, the vector norm of each row of S was 

normalized to 1 in ICA. For data 1, inspection of the raw data did not show that the 

spectrum contained the spectra of two pure components. The curve resolution reveals 

that the data decomposed into two pure spectra and two chromatograms. As for data 1, 

data 2 and data 3 decompose into two pure spectra and two chromatograms. For data 2 

and data 3, similar results of curve resolution were obtained by RALS and ICA. In the 

calculation of ICA, each independent component has unit variance. By its character, 

information on the concentration profiles in chromatogram has been lost. In Fig. 7 (D), 

negative absorbance was obtained for data 1, because ICA does not take the 

non-negativity constraint into consideration. For these reasons, the resolution accuracy 

becomes worse especially for data 1. 

We used a normalized constraint in calculating RALS for the real dataset. As 

discussed above, the non-negativity constraint alone is not enough for practical use. 
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Because DAD shows the infonnation for each pure component while infonnation on the 

concentration profiles is consolidated in HPLC, the nonnalized constraint is valid for 

analyzing the HPLC-DAD dataset and is very comprehensible intuitively. 
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Fig. 4. Result of SVR. The vertical lines divide the whole dataset from 2.6 

min to 3.9 min into three sub-datasets, data 1 from 2.6 min to 3.2 min, data 

2 from 3.2 min to 3.6 min, and data 3 from 3.6 min to 3.9 min. 
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data 1. (B) Chromatogram of data 2. (C) Chromatogram of data 3. (D) 

DAD spectrum of data 1. (E) DAD spectrum of data 2. (F) DAD spectrum 

of data 3. 
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4.4. Identification of H pluvialis metabolites 

Table 2 presents a comparison of the position of the spectrum peaks obtained 

by each curve resolution method with those experimentally obtained by Yuan and Chen 

[12]. This table suggests that (3S,3'S)-trans-astaxanthin and adonirubin are contained in 

data 1, lutein and (3S,3'S)-9-cis-astaxanthin in data 2, and (3S,3'S)-13-cis-astaxanthin 

and (3R,3'R)-trans-astaxanthin in data 3. Table 2 shows that RALS and ICA 

successfully detected each metabolite peak in the spectra for data 3, whereas ALS failed 

in peak detection. It also suggests that regarding peak detection of each metabolite the 

results of RALS may be more accurate than those of ALS by using the optimal value of 

the regularized parameter A. 

In the detection of each metabolite peak in the spectra, high accuracy was 

achieved in comparison with the experimental results. Where our experimental 

conditions are different, it is of course difficult to compare directly with other 

experimental results or databases. The more sophisticated metabolomics becomes, the 

more mathematical methods will become necessary. 
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Table 2 Comparison of results ofALS, RALS and lCA with experimental results 

Peak wavelength (run) 
Metabolite 

Experimental ALS RALS leA 

Data 1 (3 S,3' S)-trans-astaxanthin 480 477 477 476 

Adonirubin * 472.8 469 469 490 
-....J 
\0 Lutein 443.9,472.8 445,470 445,470 442,468 

Data 2 
(3 S,3' S)-9-cis-astaxanthin 472.8 472 472 488 

(3 S,3' S)-13-cis-astaxanthin 371.8,472.8 474 369,454 367,447 
Data 3 

(3R,3'R)-trans-astaxanthin* 480 474 478 473 

* Tentatively identified. 
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4.5. Determination of regularized parameter 

In the present study, the regularized parameter A was determined by using the 

Frobenius norm of X - CS, IIX - CSII. For the three datasets, IIX - CSII was calculated 

by changing the value of A from 10-10 to 1 (Fig. 8). For data 1, the value of IIX - CSII 

increased almost exponentially. For data 2, IIX - CSII did not change at A < 0.01 and 

then increased sharply. Hence we determined the value of the regularized parameter to 

be 0 for these two datasets. For data 3, we determined the optimal value of A to be 0.01 

because IIX - CSII was the minimum at A = 0.01. 

Here Si denotes the vector of the i-th row of matrix S. If E[s;] = 0 and E[s/] = 1, 

the matrix n-1SS', where n is the number of samples, is the correlation coefficient matrix. 

Hence the off-diagonal elements of the matrix SS' are deeply related to the correlation 

of the Si and Sj which contains the information of the DAD spectra of pure components. 

Based on this consideration, we found that the resolution accuracy depends on the value 

of regularized parameter A. When the regularized term and parameter are selected to be 

suitable for a priori information, the accuracy of the curve resolution will be better than 

when using ordinary ALS. 

We improved the ALS algorithm by adding a regularized term. As can be seen 

in Fig. 6 (G) (A = 0) and (H) (A = 0.01), RALS was able to produce different solutions 

depending on the regularized parameter A. It is therefore necessary to determine the 

optimal value of A by investigating it for individual dataset. 
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Fig. 8. Frobenius norm of X-CS, IIX - CSII, calculated by changing the 

value of A from 10-10 to 1. (A) IIX - CSII for data 1. (B) IIX - CSII for data 

2. (C) IIX - CSII for data 3. 
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4.6. Theoretical problems of RALS and leA and future development 

If the matrix C'C or SS' is singular, the regularized term is often useful. In 

such cases, the regularized parameter A should be set to a small positive value. In the 

present study, since the matrix C'C or SS' is non-singular and the data contain little 

noise, we failed to clarify the advantage ofRALS. 

In the present study, we calculated ICA on the assumption that each column of 

C in Eq. (1) is independent of each other. By the theoretical character of ICA, heavily 

overlapping peaks violate the assumption of independence and make it difficult to 

resolve the spectrum. Because some metabolites have similar peak positions in the DAD 

spectrum, it is difficult to apply ICA in cases where each row of S in Eq. (1) 

corresponding to the spectrum is considered to be independent of the others. Indeed, it 

was impossible to resolve chromatographic peaks for data 1 by ICA assuming that each 

row of S in Eq. (1) is independent of each other. For data 2 and data 3, however, the 

results obtained on the assumption were similar to those in Fig.7 (E), (F) (data not 

shown). When ICA was applied to the real dataset, it should be noted to check whether 

statistical independence is valid for the data. To match with a real dataset, an improved 

ICA algorithm with non-negativity constraint may be needed. Recently, ICA with 

non-negativity constraints, non-negative ICA, has been proposed and further 

development of ICA can be expected in the SMCR context [13]. 
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GENERAL CONCLUSION 

Application of multivariate analysis to metabolome data for the purpose of 

visualization and discrimination, regression, and curve resolution is achieved. 

Multivariate analysis for regression was studied in part I. RCCA for 

multivariate regression was investigated and compared with PLS. The optimal number 

of latent variables in RCCA determined by LOOCV was significantly fewer than in PLS. 

PLS extracts a number of latent variables that are redundant to the construction of a 

quality-predictive model because the explanatory variable X, which is not closely 

related to the response variable y and has a large variance, affects the model more 

severely in PLS than in RCCA. A long calculation time is required for LOOCV of 

RCCA. This problem can be avoided by using kernel CCA with a linear kernel, which 

results in a reduction of the calculation time of RCCA from 5.9962 x 104 s (about 16.5 

h) to 8.1090 s. These results suggest that RCCA as well as PLS is useful for multivariate 

regression. 

Multivariate analysis for visualization and discrimination was studied in part II. 

We extended some ordinary dimensionality reduction methods, principal component 

analysis (PCA), partial least squares (PLS), orthonormalized PLS, and regularized 

Fisher discriminant analysis (RFDA) by introducing the differential penalty of the latent 

variables with each class. A nonlinear extension to these methods by kernel methods 

was also proposed as kernel smoothed PCA, PLS, OPLS, and FDA. The effect of 

smoothness can be found by calculation results. These methods are useful for the data in 

which observation is in transition with time. 

Multivariate analysis for curve resolution was studied in part III. We proposed 

a regularized version of ALS, known as RALS. We applied it by adding a normalized 

constraint to a real dataset consisting of the HPLC-DAD data of H pluvialis metabolites. 

We then used ICA to resolve the HPLC-DAD data. The results suggested that RALS 

gives different solutions by changing the regularized parameter 'A, and these curve 
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resolution methods are useful for peak detection of metabolites in HPLC-DAD data. 
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