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Abstract

In recent years, the rapidly improving data processing capacity of computers
has made the widespread use of real-world image data in various applications
possible despite the large amount of information contained in images. How-
ever, given the complex structure of real-world objects in image data, even
state-of-the-art computer vision processing frameworks have great difficulty in
accurately recognizing various objects. Therefore, a recognition method which
can flexibly and precisely discriminate a wide variety of real-world objects is
sorely needed. In order to develop such a recognition method, we propose an
effective recognition method based on visual learning. The introduction of the
idea of machine learning into computer vision processing allows visual learning
to perform flexible recognition. By autonomously acquiring knowledge from
given image data, visual learning develops the ability to discriminate objects.
We propose two types of visual learning methods which are applicable to various
recognition tasks. The first method describes and recognizes objects using the
features represented by the intensity values of each pixel in an image. Since an
image contains a large number of pixels, we propose an efficient feature selection
algorithm based on the Set Covering Machine.

In the second method, diverse features such as contour, texture and spatial
frequency are used for recognition. To utilize multiple features, we introduce
an ensemble learning framework which constructs and integrates multiple vi-
sual learners. As a result, our method is able to achieve improved recognition
performance compared with existing recognition methods which utilize a single
or a few features. In object recognition tasks, however, the recognition perfor-
mance is negatively impacted by the crucial problem that real-world image data
often contain inappropriate images, such as objects which are highly deformed
or occluded or are located in cluttered backgrounds. Learning these images
results in the degradation of recognition accuracy. Thus, in order to solve this
problem, we propose an effective machine learning algorithm called NadaBoost
and introduce it into our visual learning.

NadaBoost is based on a widely used ensemble learning algorithm called
AdaBoost. One critical drawback of AdaBoost is that its performance is easily
worsened by examples that are difficult to classify correctly. In object recog-
nition domains, these examples, called hard examples, correspond to inappro-
priate images. However, NadaBoost considerably reduces the influence of hard
examples by identifying hard examples and determining weight thresholds. By
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controlling the weights of hard examples, it prevents the degradation of clas-
sification performance which these examples can cause. As a result of the in-
troduction of NadaBoost into visual learning, our visual learning is robust to
inappropriate images. Through several object recognition experiments using
real-world image data, we verify the effectiveness of our visual learning meth-
ods.
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Chapter 1

Introduction

As the information processing ability of computers improves, real-world images
are more and more widely used in various applications, for example, content-
based image retrieval and surveillance system. Thus, flexible and accurate im-
age recognition methods are strongly needed for efficient image data mining.
However, real-world images generally contain a wide variety of objects which
have complex features (e.g., shapes and textures). Therefore, it is difficult to
recognize real-world objects accurately using conventional pattern recognition
methods. Most of conventional methods utilize a small number of features while
real-world objects are so complex that they cannot be fully described by a few
features. Although complex objects can be described using multiple features,
finding useful features for precise recognition is difficult because useful features
are dependent on objects. Moreover, real-world images often contain consider-
able noise. These properties make accurate recognition quite difficult. Because
of these problems, the recognition performance of current recognition systems
for real-world recognition tasks is far from adequate compared with human vi-
sual ability.

In order to facilitate the acquisition of a level of recognition ability compa-
rable to that of human visual systems, one effective method consists of intro-
ducing learning schemes into image understanding frameworks. Based on this
idea, visual learning has been proposed [15]. Visual learning is the learning
framework to autonomously acquire knowledge to recognize images (or objects
in images) based on machine learning frameworks which analyze given images
and construct recognition models to correctly recognize unseen images for given
recognition tasks. Visual learning attempts to emulate the ability of human
beings that acquires excellent visual recognition ability through observing vari-
ous objects and identifying several features by which to discriminate them [22].
Similar to the human visual system, a visual learning system first extracts sev-
eral features from given images. Then, it inputs the features into some kinds
of machine learning algorithms to acquire the necessary knowledge. In visual
learning, therefore, the learning framework and the strategy to extract, select
or construct features are the key points to perform accurate recognition.
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As a learning framework to deal with diverse features, we introduce ensemble
learning. In ensemble learning, multiple classifiers are constructed using diverse
features. Then, the classifiers are integrated into an ensemble classifier whose
recognition performance is better than a single classifier. To fully take advantage
of ensemble learning, all classifiers cooperate with each other in our ensemble
learning in order to optimize their own individual recognition performance. This
learning strategy enables more flexible and accurate recognition.

As mentioned above, visual learning makes use of machine learning algo-
rithms for object recognition. Thus, the performance of the machine learning
algorithms used in visual learning has a considerable effect on recognition per-
formance. In order to enhance the performance of visual learning, we propose
an effective machine learning method based on AdaBoost [11][33]. AdaBoost,
a kind of boosting algorithm, adopts an ensemble learning framework [8] in
which multiple classifiers are integrated into an ensemble classifier with better
classification ability. Thus, this ensemble learning strategy leads to better clas-
sification results compared with common machine learning strategies which use
a single classifier. However, AdaBoost has one crucial drawback, in that it is
easily affected by outliers or noisy data (we call them hard examples). This
problem is caused by AdaBoost’s algorithm, which gives high weights to hard
examples. In order to overcome this drawback, we introduce a weight thresh-
olding algorithm to detect hard examples and reduce their weights. As a result,
the proposed boosting algorithm is robust to hard examples. In visual learning,
hard examples correspond to objects that are highly deformed or occluded or
are found in cluttered scenes. Therefore, applying the proposed method to vi-
sual learning, we are able to construct visual learning methods which are fully
robust to such objects.

The subsequent sections of this dissertation are organized as follows. Chapter
2 reviews the object recognition studies and machine learning frameworks which
are the bases of the proposed visual learning methods.

In Chapter 3, we propose an efficient machine learning algorithm called Nad-
aBoost, which is applicable to visual learning frameworks because of its capacity
to improve boosting algorithm. Since the problem of AdaBoost stems from the
fact that its learning strategy heavily weights hard examples in order to clas-
sify them correctly, we determine weight threshold by searching for the optimal
threshold using an efficient search algorithm and reduce the weights of those
hard examples which have higher weights than this optimal threshold. We ver-
ify the effectiveness of the proposed method through several data classification
experiments using various benchmark data sets.

In Chapter 4, we propose a visual learning method for object recognition
tasks. To discriminate objects, we utilize the intensity values of the pixels in an
image as features. We then construct hypotheses to classify given images using
the Set Covering Machine algorithm. Since an image contains a vast number of
pixels, using all pixels makes the learning and recognition processes quite time-
consuming. Thus, for efficient learning and recognition, we introduce feature
selection. Specifically, we define an estimation criterion to assess the usefulness
of each pixel and select a small number of useful pixels which contribute to dis-



13

criminate objects correctly according to the estimation criterion. As a result of
this feature selection, the computational complexity is considerably decreased
without the degradation of the recognition performance. Through several recog-
nition experiments, we verify the performance of the proposed method.

In Chapter 5, we propose an efficient visual learning model which is able
to utilize diverse features such as contours, textures and spatial frequency to
discriminate complex objects accurately. In order to deal with multiple fea-
tures, we introduce ensemble learning. We construct multiple classifiers using
diverse features and integrate them into an ensemble classifier which performs
better than a single classifier. Ensemble learning generally trains each classifier
separately and integrates only the learning results of multiple classifiers. This
learning strategy is insufficient because there is no interaction among multiple
classifiers. In the visual learning process, all classifiers should help each other to
optimize their own individual recognition performance. Thus, we introduce this
cooperative learning strategy through the interaction among classifiers. This
strategy results in a better ensemble classifier compared with existing ensem-
ble learning methods. Since we attempt the correct classification of real-world
images which contain hard examples such as deformed or occluded objects, it
is necessary to deal with such hard examples. Thus, we introduce NadaBoost,
proposed in Chapter 3, to detect hard examples and prevent them from affecting
recognition performance. We then demonstrate the effectiveness of this strategy
through several object recognition experiments and a comparison with several
existing object recognition methods.

Finally, Chapter 6 remarks on the effectiveness and remaining problems of
the proposed methods and refers to future work.
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Chapter 2

Visual Learning

At the beginning of computer vision and image understanding research, the
recognition process was human-intensive. That is, large part of domain knowl-
edge is given by hand. As the amount and complexity of images increase,
however, conventional image recognition methods have difficulty in recognizing
real-world objects because of the following problems: First, it is quite difficult
to give domain-specific knowledge manually for complex recognition problems.
For example, predefined templates are needed by template matching methods.
However, real-world objects have a huge variety of shapes and textures and man-
ually defining appropriate templates is virtually impossible. Second, although
the recognition performance of the conventional methods is sufficient for only
limited domains (e.g., face recognition and hand-written character recognition),
they have great difficulty in effecting flexible recognition, which is able to dis-
criminate any real-world object. Finally, the recognition performance of these
methods tend to be affected by noisy images which contain cluttered back-
grounds, bad lighting conditions, occluded or deformed objects, and so on.

To solve these problems and improve recognition ability, visual learning has
been developed. The first problem can be solved based on the property of
machine learning that the resulting learning model consists of domain-specific
knowledge derived through the analysis of given images called training examples.
Although the features in the data used for machine learning is explicitly given in
advance, the features of image data are generally not specified because an image
is given just as a set of pixels. Thus, some kinds of features are generated by
visual learning algorithms using feature extraction and/or feature construction
techniques. Since various types of features are generated from image data,
flexible recognition can be performed by generating and utilizing appropriate
features according to the given recognition tasks. Consequently, the second
problem can be solved. As for the third problem, the statistical distributions of
the features generated from noisy images, which contain occlusion, deformation,
bad lighting conditions, tend to be different from the images which contain none
of them. Thus, in the statistical analysis, they can be detected as outliers.
Machine learning is able to prevent the degradation of recognition performance
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by eliminating these outliers.
Since various methods of computer vision processing and machine learning

have been proposed, diverse visual learning models can be developed by com-
bining these methods. Therefore, visual learning is actively studied and many
visual learning models have been proposed. The models of visual learning can
be defined from the following viewpoints:

1. Representation of examples

2. Features

3. Classifiers

The first is the method of representing an example (i.e., an image). Since an
image contains a large amount of information, it is represented by a data struc-
ture. In visual learning, an image is often represented by one or more feature
vectors because this representation is suitable to enable most machine learning
algorithms to handle and analyze images. The second is the features used to
discriminate objects. A variety of features can be extracted from an image using
feature extraction methods such as edge detector and local feature descriptor
[18]. In general, multiple features are used to describe complex objects, espe-
cially in visual learning methods based on ensemble learning. The third is the
classifiers which detect the objects in images. The number of classifiers and the
methods of training each classifier are closely related to the recognition perfor-
mance of visual learning methods. According to this definition, we divide visual
learning models into four types as shown in Figure 2.1.

Visual learning

Single-learner Ensemble

1.Single-feature 2.Multi-feature 3.Separated 4.Collaborative

Figure 2.1: Visual learning models.

The first model is the single-feature model [37]. This is the simplest visual
learning model as it discriminates objects using a single feature and a single
classifier. This model is defined as follows:

1. An example is represented by a single feature vector.

2. A single feature is used.
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3. A single classifier is trained.

For example, in [37] faces are described by a feature vector in a multi-dimensional
space called face space, which is defined using only the intensity values of the
pixels in the face image. Although this method achieves high recognition accu-
racy, it lacks flexibility and is insufficient for generic object recognition because
a single feature is inadequate when describing a wide variety of objects.

The second is the multi-feature model [15]. This model has a greater ability to
describe complex objects because of its utilization of multiple features. Thus,
it can perform more flexible recognition than the single-feature model. This
model is defined as follows:

1. An example is represented by multiple feature vectors.

2. Multiple features are used.

3. A single classifier is trained.

For example, in [15], a classifier is trained using multiple features obtained
using image filtering and a logical/mathematical calculation of intensity values.
The optimal combination of features is automatically determined by genetic
programming.

Although the recognition performance is to some extent improved by mul-
tiple features, the representational capability of a single classifier is inadequate
for dealing with various features. Hence, the separated ensemble model [38] [24]
is developed. In this model, a single classifier utilizes one or several features.
Based on ensemble learning, multiple classifiers are constructed. By combining
multiple classifiers which utilize different features, this model takes advantage
of multiple features. This model is defined as follows:

1. An example is represented by multiple feature vectors.

2. A single or multiple feature(s) are used.

3. Multiple classifiers are separately trained.

For example, in [38], a successful object detection method is proposed. In this
method, a cascade classifier, which is an ensemble of classifiers, is constructed
based on a single feature. The cascade classifier is able to select a small num-
ber of useful features from a large number of extracted features, and thus can
quickly and accurately detect objects. In [24], appearance-based and region-
based classifiers are trained using decision trees and discriminant analysis. The
two classifiers are then integrated into a classifier that achieves much better
recognition performance than a single classifier.

Because conventional ensemble learning methods do not take hard examples
into consideration, however, the recognition performance of separated ensemble
models can be degraded by the influence of hard examples. Thus, overfitting is
a crucial problem in the presence of many hard examples. In order to solve this
problem, the ensemble model defined as follows is required:
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1. An example is represented by multiple feature vectors.

2. Multiple features are used.

3. Multiple classifiers are interactively trained.

Based on this definition, we propose a collaborative ensemble model. In the
collaborative ensemble model, multiple classifiers are simultaneously trained.
Thus, when a classifier X has misclassified some examples, these examples are
subsequently learned by other classifiers instead of by X. Conversely, X learns
examples that have been misclassified by other classifiers. This strategy facili-
tates finding and thus dealing with hard examples. In addition, each classifier
is able to optimize its own performance through the collaboration process. As a
result, the collaborative ensemble model performs more efficient learning than
do separated ensemble models.
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Chapter 3

Noise-robust Boosting
Algorithm: NadaBoost

3.1 Introduction

Boosting is a method for improving the classification accuracy of a given learning
algorithm by combining hypotheses created by the learning algorithm. Recently,
many researchers have carried out research on AdaBoost [11][31][33], the typical
boosting algorithm. They have reported that AdaBoost has shown very good
performance on many classification problems.

However, some drawbacks of AdaBoost have also been reported. One of the
drawbacks of AdaBoost is its susceptibility to noisy examples. In a phenomenon
called overfitting, AdaBoost tends to concentrate on noisy examples, thus wors-
ening its performance. AdaBoost usually calls repeatedly for a given learning
algorithm, which we term WeakLearn. AdaBoost maintains a set of weights
over the training examples which is employed as a distribution. Initially, all
weights are set equally in advance, but on each round, the weights of incorrectly
classified examples are increased so that WeakLearn is forced to concentrate on
those examples which are difficult to classify correctly. Thus, as the weight of
a certain example becomes higher, the hypothesis becomes more specific to the
example. However, since noisy examples are quite difficult to classify correctly,
AdaBoost tends to assign higher weights to these examples if any are included
in the training set. As a result, AdaBoost overfits the noise [7].

To solve this problem, several boosting methods have been proposed to im-
prove the algorithm of AdaBoost. For example, MadaBoost [9] reduces the in-
fluence of noisy examples by modifying AdaBoost’s weighting rule of AdaBoost
so that it does not give high weights to noisy examples. From the viewpoint
that the learning process of AdaBoost can be regarded as a margin maximiza-
tion process, Soft Margin AdaBoost has been proposed [30]. It has been proven
in [30] that AdaBoost increases the margins not only of non-noisy examples but
also of noisy examples, with the result that overfitting occurs. Soft Margin Ad-
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aBoost prevents overfitting by controlling the margins of noisy examples. Since
these methods implicitly control the weights or margins of noisy examples, they
are unable to detect these examples. In order to reduce fully the influence of
overfitting, these methods selectively decrease the weights of noisy examples,
which is inadequate to reduce their influence.

To resolve this issue, we propose an effective modification of the weighting
rule of AdaBoost which overcome its vulnerability to noisy examples. Since
AdaBoost tends to assign higher weights to noisy examples, those examples to
which excessively high weights are assigned seem to be noisy examples. There-
fore, we assume that, when too highly weighted examples are misclassified, the
weights of such examples should be decreased. Thus, we introduce thresholds to
judge whether or not the weight is too high. We also modify the weighting rule
so that weights that are higher than the threshold are always decreased even
if the examples are misclassified. This modification prevents WeakLearn from
overfitting noisy examples.

However, it is very difficult to choose the optimal threshold because quite
large time complexity is required to search the optimal thresholds from all pos-
sible thresholds. Thus, we apply the beam search, which is a variant of the best
first search, to our method. In the search process, the search space is appropri-
ately limited by the beam search. This search strategy leads to the determina-
tion of weight threshold in realistic time complexity without the degradation of
classification accuracy.

3.2 AdaBoost

AdaBoost, which was first proposed by Freund and Schapire [11], is the typical
boosting algorithm. The generalized version of AdaBoost was introduced by
Schapire and Singer [33]. The pseudocode of Schapire and Singer’s AdaBoost
is shown in figure 3.1.

The pseudocode takes a training set of m examples (x1, y1), · · · , (xm, ym) as
input where each xi(1 ≤ i ≤ m) is an element of instance space X and each yi is
an element of label space Y . To make it simple, we assume Y = {−1,+1}; that
is, the binary classification problem. AdaBoost repeatedly calls WeakLearn.
The number of iterations T is determined in advance. AdaBoost maintains a
set of weights over training examples which is employed as a distribution. The
weight of this distribution on training example i on the t-th round is denoted as
Dt(i). On each round, the distribution Dt is normalized by the normalization
factor Zt, so Dt(i) ∈ [0, 1]. On the tth round, WeakLearn creates a hypothesis
ht : X → R based on the distribution. We call the hypothesis a weak hypoth-
esis. In this research, we limit ht : X → [−1,+1]. Weights, which are initially
equal, are updated on each round. The weights of correctly classified examples
are decreased and those of misclassified examples are increased. Once the weak
hypothesis ht has been received, AdaBoost chooses a parameter αt, which in-
tuitively measures the importance of ht. αt is employed when the weights are
updated. In Schapire and Singer’s AdaBoost, αt is given as follows:
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Given: (x1, y1), · · · , (xm, ym); xi ∈ X, yi ∈ {−1,+1}.
Initialize D1(i) = 1/m.
For t = 1, · · · , T :

1. Train WeakLearn using the weights Dt.
2. Get weak hypothesis ht : X → [−1,+1].
3. Choose αt ∈ R.
4. Update:

Dt+1(i) = Dt(i) exp(−αtyiht(xi))
Zt

,

where Zt is a normalization factor
(chosen so that Dt+1 will be a distribution).

Output the final hypothesis:

H(x) = sign
(∑T

t=1 αtht(x)
)

.

Figure 3.1: Schapire and Singer’s AdaBoost.

αt =
1
2

ln
(

1 + rt

1− rt

)
, (3.1)

where

rt =
∑

i

Dt(i)yiht(xi). (3.2)

After the iteration is finished, AdaBoost combines all weak hypotheses as a
final hypothesis H. H is the weighted majority vote of weak hypotheses where
αt is the weight assigned to ht. H is given as follows:

H(x) = sign

(
T∑

t=1

αtht(x)

)
. (3.3)

This weighting rule described above is the advantage of AdaBoost; how-
ever it can also be considered the drawback. The training set usually includes
noisy or exceptional examples, called hard examples, with which it is undesir-
able for learning algorithms to be specialized. As Dietterich has reported [7],
AdaBoost tends to overfit hard examples by weighting them much more heavily
than other examples. As a result, weak hypotheses are specialized with hard
examples, causing the final hypothesis to overfit hard examples. In order to pre-
vent AdaBoost from overfitting, we have to restrict the increment of the weights
assigned to hard examples. That is, if the training set includes hard examples,
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we have to detect hard examples among the misclassified examples and modify
the weighting rule in order to decrease weights of misclassified hard examples.

3.3 NadaBoost

3.3.1 Modification of the weighting rule

We employ each weight as the indicator in order to judge whether or not the
example is a hard example. We assume that examples which have already been
given too high weights are treated as hard examples. Since it is preferable that
AdaBoost should not assign much higher weights to such examples, we introduce
thresholds to judge whether or not weights are too high. Thus, we modify the
weighting rule as follows:

Dt+1(i) =
Dt(i)
Zt

·




e−αtyiht(xi), ht(xi)yi ≥ 0,
e−αtyiht(xi), ht(xi)yi < 0 ∧Dt(i) ≤ HighWeightt,
eαtyiht(xi), ht(xi)yi < 0 ∧Dt(i) > HighWeightt

=
Dt(i) exp(−αtyiht(xi)I(yiht(xi), Dt(i)))

Zt
, (3.4)

where

I(yiht(xi), Dt(i)) =
{ −1, ht(xi)yi < 0 ∧Dt(i) > HighWeightt,

+1, otherwise. (3.5)

Now, let HighWeightt be the threshold on the tth round. If a certain
training example is classified correctly, the weight is decreased as under the
weighting rule of AdaBoost. If the example is misclassified, the weight is com-
pared with HighWeightt. The weight is increased only when the weight is lower
than HighWeightt. If the weight is higher than HighWeightt, the weight is
decreased in the same way as if the training example were classified correctly.
Thus, even if hard examples are misclassified on every round, their weights are
not excessively high. We now analyze the performance of our modification. Our
analysis is closely modeled on that of Schapire and Singer [33]. We give and
prove the upper bound of the training error of the modified version of AdaBoost
as theorem 1.

Theorem 1 The training error of the modified weighting rule is at most

T∏
t=1

Zt ·




m∑

i=1

DT+1(i) · exp


−2

∑

t:It,i=−1

αtyiht(xi)






 . (3.6)

Proof. To simplify the notation, let It,i be I(yiht(xi)). From equation (3.4),
we obtain
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DT+1(i) =
exp(−∑

t αtyiht(xi)It,i)
m

∏
t Zt

. (3.7)

Here, if It,i = −1 then yiht(xi) < 0. Thus,

DT+1(i) =
exp(−∑

t αtyiht(xi) + 2
∑

t:It,i=−1 αtyiht(xi))

m
∏

t Zt
. (3.8)

Let f(x) =
∑

t αtht(x). Then we obtain

DT+1(i) =
exp(−yif(xi)) · exp(2

∑
t:It,i=−1 αtyiht(xi))

m
∏

t Zt
. (3.9)

Moreover, let [π] be an indicator variable. [π] is 1 if the predicate π is true and
0, otherwise. Then we obtain the following:

H(xi) 6= yi ⇒ yif(xi) ≤ 0
⇒ exp(−yif(xi)) ≥ 1
⇒ [H(xi) 6= yi] ≤ exp(−yif(xi)), and

H(xi) = yi ⇒ yif(xi) ≥ 0
⇒ exp(−yif(xi)) ≥ 0
⇒ [H(xi) 6= yi] ≤ exp(−yif(xi)). (3.10)

Thus, in all cases we obtain

[H(xi) 6= yi] ≤ exp(−yif(xi)). (3.11)

Here,

error(H(x)) =
1
m

m∑

i=1

[H(xi) 6= yi]. (3.12)

Combining equations (3.9) and (3.11), we obtain the following:

1
m

m∑

i=1

[H(xi) 6= yi] ≤ 1
m

m∑

i=1

exp(−yif(xi))

=
1
m

m∑

i=1

DT+1(i) ·m
∏

t

Zt · exp


−2

∑

t:It,i=−1

αtyiht(xi)




=
∏

t

Zt ·




m∑

i=1

DT+1(i) · exp


−2

∑

t:It,i=−1

αtyiht(xi)






 .

(3.13)
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In equation (3.13), we cannot determine the best value of the parameter
αt directly. On each round, we should choose αt , which minimizes the up-
per bound. However, the second term of the upper bound

∑m
i=1 DT+1(i) ·

exp(−2
∑

t:It,i=−1 αtyiht(xi)) is not determined unless the iteration is finished
because the term

∑
t:It,i=−1 αtyiht(xi) is the sum of αtyiht(xi) on each round.

Thus, it is impossible to choose αt for the purpose of minimizing the upper
bound. Therefore, we choose αt, so that the first term of the right-hand side of
equation (3.13),

∏
t Zt, can be optimized.

3.3.2 Choosing αt

In order to optimize
∏

t Zt, we choose αt, which minimizes Zt on each round.
On the tth round, we have

Zt =
m∑

i=1

Dt(i) exp(−αtyiht(xi)It,i). (3.14)

By following Schapire and Singer [33], we omit the subscript t from each notation
and let ui = yiht(xi) and Ii = I(yih(xi), D(i)). Here, ui ∈ [−1,+1], since weak
hypotheses h ∈ [−1,+1]. Then, we have

Z =
∑

i

D(i) exp(−αuiIi)

=
∑

i:Ii=1

D(i)e−αui +
∑

i:Ii=−1

D(i)eαui

≤
∑

i:Ii=1

D(i)
(

1 + ui

2
e−α +

1− ui

2
eα

)

+
∑

i:Ii=−1

D(i)
(

1− ui

2
e−α +

1 + ui

2
eα

)
. (3.15)

By solving the equation ∂Z/∂α = 0, we find that Z is minimized when

α =
1
2

ln
(

1 + r′

1− r′

)
, (3.16)

where

r′ =
∑

i

D(i)uiIi. (3.17)

Substituting this optimal α in equation (3.15), we have

Z ≤
√

1− r′2. (3.18)

Thus, the upper bound of training error of our method is the following.
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Theorem 2 Assume that each ht has range [−1,+1] and we choose

αt =
1
2

ln
(

1 + r′t
1− r′t

)
, (3.19)

where

r′t =
∑

i

Dt(i)yiht(xi)It,i. (3.20)

Then the training error of our method is at most

error(H(x)) ≤
(

T∏
t=1

√
1− r

′2
t

)

·



m∑

i=1

DT+1(i) · exp


−2

∑

t:It,i=−1

αtyiht(xi)





 .(3.21)

We call this upper bound errorbound. As the threshold HighWeightt be-
comes lower, the first term of the righthand side of the equation (3.21) becomes
smaller and the second term becomes larger. Intuitively, we can say that the
equation (3.21) represents the improvement of classification accuracy by avoid-
ing the concentration on excessively hard examples and the degradation of clas-
sification accuracy for such examples, respectively. However, the increment of
the second term is exponential. Thus, if HighWeightt is too low, the increment
of the second term offsets the decrement of the first term. In other words, too
low HighWeightt worsens the performance of our method. Thus, we have to
consider the value of errorbound when we set HighWeightt on each round.

3.3.3 Setting HighWeight

In this research, we employ the upper bound of training error as the indicator
of the performance of learning algorithms. The upper bound of AdaBoost was
given by Schapire and Singer [33]. We show the upper bound as theorem 3.

Theorem 3 (Schapire and Singer). Assume that each ht has a range [−1,+1]
and that we choose

αt =
1
2

ln
(

1 + rt

1− rt

)
, (3.22)

where

rt =
∑

i

Dt(i)yiht(xi). (3.23)

Then the training error of H is at most
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T∏
t=1

√
1− r2

t . (3.24)

We call this upper bound errorbound ada. On each round, we set HighWeightt
so that the upper bound of our method must be superior to that of AdaBoost.
That is, errorbound satisfies the following inequality:

errorbound ≤ errorbound ada. (3.25)

By setting each HighWeightt in the above way, our method can generate
theoretical evidence that shows the superiority to AdaBoost.

The value of HighWeight is continuous since the weights of training exam-
ples are also continuous. However, we can limit the range of HighWeight. For
example, if Dt(i) ∈ {0.1, 0.2, 0.3}, the possible thresholds are any one of “(1) All
training examples are regarded as hard examples”, “(2) Training examples with
the weights 0.2 or 0.3 are regarded as hard examples”, “(3) Training examples
with the weights 0.3 are regarded as hard examples”, or “(4) No training ex-
amples are regarded as hard examples.” We show the examples of the possible
thresholds in figure 3.2.

Figure 3.2: The examples of possible weight thresholds.

However, we can neglect the first threshold because it is impossible that all
training examples would be hard examples. Thus, in the above example, we can
consider three possible thresholds, which we call threshold candidates.

Specifically, we use the possible value of the weights as the candidates of
thresholds. For example, if Dt(i) ∈ {0.1, 0.2, 0.3}, the candidates of thresholds
are 0.1, 0.2, and 0.3. When 0.1 is chosen as HighWeight, all weights higher
than 0.1 are decreased.
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Here, the weights influence the weak hypotheses, the parameter α, and so
on. Furthermore, the weighting rule is dependent on HighWeight. Thus, the
state of each round depends on the value of HighWeight. In the above example,
then, when the number of the candidates of thresholds is three, the number of
possible states on the next round is also three. Thus, by regarding the states
as nodes and the candidates of thresholds as branches, we can describe the
state transition as a tree structure. We show an example of the tree structure
in figure 3.3. The three branches of St−1[j] correspond to the examples of the
candidates of thresholds described above. We search the final state that satisfies
the inequality (3.25) and let the path to the final state be HighWeight on each
round.

Figure 3.3: The tree structure of the beam search.

However, searching all of the tree structure requires quite large time com-
plexity. In order to solve this problem, we use the beam search, a variant of
the best first search. The beam search also opens the node with the lowest
cost value in the best first search manner. The difference lies in the fact that
the number of nodes that the beam search can retain is limited, whereas the
number of nodes that the best first search can retain is unlimited. The bound
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of retained nodes is called beam width. If the number of nodes that are to be
retained is higher than the value of beam width, then the beam search gives
preference to those nodes that have a lower cost.

As a cost function of the beam search, we employ the estimate value of
the upper bound of training error. The estimate value on the t-th round is
represented as estimated errort. We define estimated errort as follows:

estimated errort =

(
t∏

k=1

√
1− r

′2
k

)

·




m∑

i=1

Dt+1(i) exp


−2

∑

k:Ik,i=−1

αkyihk(xi)






 .

(3.26)

Equation (3.26) means the upper bound of training error, errorbound, on
the tth round. If a certain node has a higher estimated error, then the child
node also seems to have higher estimated error. Thus, the final state also seems
to have higher errorbound. By applying the beam search, those nodes that have
high estimated error are not opened.

3.3.4 Entire Algorithm

We propose the new boosting algorithm NadaBoost. NadaBoost updates the
weights of training examples by the modified weighting rule described above.
We show the entire algorithm of NadaBoost in figure 3.4.

At step 1, WeakLearn creates a weak hypothesis ht. At step 2, let HighWeightt[j]
be the jth threshold on the tth round. We must determine each of the possible
values of the threshold. At step 3, α and Dt+1 are determined by considering
each HighWeightt[j] and are given from the modified weighting rule (1) and
theorem 2. We calculate the value of the estimated errort by equation (3.26).
Let the state be determined by employing HighWeightt[j] be St[j]. The state
means the values of the all variables that appear in NadaBoost.

At step 4, all of St[j] are added to S list. However, the number of re-
tained states is limited by the value of beam width. For example, we assume
that NadaBoost tries to add three states to S list on the condition that the
value of beam width equals 2. In this case, the state which has the highest
estimated error is erased. At step 5, Sk[j] that has the lowest estimated errork

is popped out from S list. If Sk[j] is not the state of the final round, i.e., if
k 6= T , NadaBoost computes the next state Sk+1[j′], where j′ identifies the
possible value of the threshold. If Sk[j] is the state of the final round, that is,
k = T , we compare errorbound of Sk[j] with errorbound ada. We find Sk[j]
that satisfies the following:

errorbound ≤ errorbound ada (3.27)
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Given: (x1, y1), · · · , (xm, ym); xi ∈ X, yi ∈ {−1,+1}.
Initialize D1(i) = 1/m, t = 0, end = 0.
Let the number of iterations be T .
Let the number of states which NadaBoost can retain be beam width.

While end 6= 1:
1. Train WeakLearn using the weights Dt

and get weak hypothesis ht : X → [−1,+1].
2. Determine candidates of the threshold HighWeightt[j].
3. For all HighWeightt[j]:

(1) Determine αt and Dt+1;
(2) Determine estimated errort;
(3) Let the state be St[j].

4. Add all St[j] to S list.
5. If S list is empty, then let end be 1.

Otherwise, then choose Sk[j] which has the lowest estimated error and:
(1) Pop out Sk[j] from S list.
(2) If k = T , then

If errorbound ≤ errorbound ada,
Then add Sk[j] to Goal list and go to step 5.
Otherwise, then let t be k + 1.

Choose Sk[j] which has the lowest errorbound from Goal list.
Output the final hypothesis:

H(x) = sign
(∑T

t=1 αtht(x)
)

.

Figure 3.4: NadaBoost algorithm.

and add such Sk[j] to Goal list. That is, the states with errorbound superior
to AdaBoost are collected in Goal list. NadaBoost repeats a series of steps
followed until S list becomes empty. Finally, NadaBoost chooses the state that
has the lowest errorbound from Goal list and creates a final hypothesis based
on the state.

3.4 Experiments

In this section, we show the results of running AdaBoost and NadaBoost. We
employed ten data sets drawn from the UCI Machine Learning Repository and
the maze data set which we prepared. We employed C4.5 [29] as WeakLearn
and performed a ten-fold cross-validation paired t test [6] in order to evaluate
each of the two methods. We set the number of iterations and beam width for
NadaBoost at 30. For comparison, we also ran C4.5 alone. The results of the
experiment are shown in table 3.1. The mark * in the t test column represents
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the fact that NadaBoost outperforms AdaBoost significantly.

Table 3.1: The results of experiments for UCI data sets.
Data set Error(%)
name NadaBoost AdaBoost C4.5 t test
breast-w 3.72 4.15 6.16 *
crx 13.77 13.91 17.25 -
german 25.80 25.90 26.60 -
heart-c 21.81 22.80 28.05 *
hepatitis 18.08 20.71 21.21 *
ionosphere 5.42 6.55 9.11 *
maze 5.83 6.48 18.39 -
sonar 19.17 22.05 35.52 *
tic-tac-toe 1.56 1.67 15.13 -
pima-indians 26.41 27.06 26.81 *
vote 4.83 5.29 4.83 -

In six data sets, it is judged that NadaBoost outperformed AdaBoost sig-
nificantly. In the other data sets, the performance of NadaBoost was superior
or equal to that of AdaBoost. Thus, it seems that NadaBoost is superior to
AdaBoost.

The data set which shows the tendency of overfitting is pima-indians. On
pima-indians, the performance of AdaBoost is inferior to that of C4.5. However,
the performance of NadaBoost is superior to that of C4.5, causing the modified
weighting rule to prevent the overfitting of hard examples. In addition, we
added 10% noise to the tic-tac-toe and maze data sets, which included no noisy
examples, and we performed the same experiments as above. The results of
these experiments are shown in table 3.2.

Table 3.2: The results of experiments for noisy data sets.
Data set Error(%)
name NadaBoost AdaBoost C4.5 t test
maze 24.46 25.76 26.61 *
tic-tac-toe 21.30 23.37 27.56 *

Because of the added noisy examples, the performance of AdaBoost wors-
ens. While NadaBoost’s performance also worsens, however, its degeneration in
performance is smaller than that of AdaBoost. We thus find that the modified
weighting rule prevents the overfitting of noisy examples as shown in table 3.1.
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3.5 Related works and comparison with them

In this section, we mention other boosting algorithms based on the margins [32]
of the training examples. We also analyze the margins in our algorithms, and
compare the result with other algorithms. The margin is the value which shows
the confidence in the prediction for a certain training example. The margin of
the example (x, y) is defined as follows:

y
∑T

t=1 αtht(x)∑T
t=1 αt

. (3.28)

Obviously, the margin is a real number in [−1,+1] and it is positive if the
final hypothesis H(x) correctly classifies the example. The example whose mar-
gin is close to +1 is classified correctly by many weak hypotheses; conversely,
the example whose margin is close to −1 is misclassified by many weak hy-
potheses. That is, the magnitude of the margin can be regarded as a criterion
of confidence in the prediction of the final hypothesis.

Schapire et al. [32] proved that larger margins on the training examples can
be translated into a superior upper bound of the generalization error. They
also showed that AdaBoost was effective in maximizing the margins of training
examples. A few rounds later, AdaBoost makes all the margins positive: that
is, the final hypothesis H(x) correctly classifies all the training examples. If
the training set includes noisy examples, it seems that this characteristic of
AdaBoost causes overfitting. Some research based on the notion described above
has been conducted.

Mason et al. [23] showed that some voting method such as AdaBoost min-
imize the cost function by the gradient descent method. They also proposed
the DOOM 2 algorithm, which performs a gradient descent optimization of the
cost function of the margin. They have argued that AdaBoost is a special case
of their algorithm. Rätsch et al. [30] showed that AdaBoost is a process which
minimizes a cost function g(b) and proved that the weights on the training set
are given by the margins and g(b). They showed that AdaBoost increases the
margins of all training examples excessively, thus overfitting hard examples, and
proposed a new boosting algorithm to decrease the lower bound of the margins.

As we described above, AdaBoost makes all the margins positive. In con-
trast, the margins of some training examples are negative on the other algo-
rithms. This phenomenon shows that these algorithms eliminate the influence
of hard examples based on the final hypothesis by giving up their attempts to
classify these examples.

For comparison with these algorithms, we analyzed the behavior of Nad-
aBoost in terms of the margins for noisy environments. We implemented Ad-
aBoost and NadaBoost for the tic-tac-toe and maze data set with 10% noise.
We set the number of iteration and beam width for NadaBoost at 30. Figure
3.5 shows the margin distribution for this experiment.

Figure 3.5 does not reveal an obvious difference between AdaBoost and Nad-
aBoost. In contrast to the two algorithms described above, most of the margins
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Figure 3.5: The margin distributions for AdaBoost and NadaBoost.

Table 3.3: The mean value of margins.
Data set Mean value
name Normal Noise
maze AdaBoost 0.440651 0.364279

NadaBoost 0.444992 0.351959
tic-tac-toe AdaBoost 0.457592 0.387820

NadaBoost 0.461568 0.373711

are still positive. Table 3.3 shows the mean value of the margins.
From table 3.3, we can find that NadaBoost effectively decreases the margins

of noisy examples. As we described above, the magnitude of the margin shows
the confidence of the prediction. From these results, we can find that NadaBoost
does not give up trying to classify hard examples but instead weakens their
influence. Therefore, NadaBoost can avoid overfitting without making some
margins negative.

For the experiments in this section, we used the training examples with 10%
noise artificially added. However, we cannot generally recognize whether or not
a data set includes noise. We can only recognize that some examples may be
noisy. We can conclude that NadaBoost classifies examples along such a point
of view. That is, NadaBoost classifies examples without determining that some
examples assigned to too high weights are noisy.

3.6 Conclusion

We have described the modification of AdaBoost and proposed NadaBoost.
Then, we formulated NadaBoost’s upper bound of training error. We have
provided empirical evidence that NadaBoost has lower error than AdaBoost
through several experiments. Thus, we can claim that NadaBoost is effective in
preventing the overfitting of the noisy data. Since the computational complexity
of NadaBoost is much higher than AdaBoost because of its search process, we
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should try to devise a more efficient search strategy to determine the optimal
(or suboptimal) value of HighWeight.
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Chapter 4

Visual Learning based on
Set Covering Machine

4.1 Introduction

In this chapter, we propose an object recognition method which is able to flex-
ibly and accurately distinguish real-world objects based on visual learning. As
mentioned in Chapter 2, visual learning [15] is widely used to acquire informa-
tion and knowledge from image data for various object recognition tasks.

There are, however, some open problems for visual learning. Firstly, many
conventional visual learning methods are based on trial-and-error learning algo-
rithms, such as genetic programming [14] and reinforcement learning [26]. These
methods require considerable learning time to search for the optimal solution. In
addition, their learning process is nondeterministic and depends to some extent
on randomness. Thus, their learning results can be rather unstable. Secondly,
because an image consists of a large number of pixels, it contains a large amount
of information. Although it is effective to utilize the intensity distribution of an
image as its feature, the computational cost of analyzing each pixel is a crucial
problem for efficient recognition even if the size of the image is not very large.
Finally, given images often contain noise, a factor which affects the recognition
performance when using the intensity distributions of pixels. To reduce the in-
fluence of noise, image filtering is effective. However, the number of applicable
filters is large, and it is difficult to determine the appropriate combination of
filters.

To solve these problems, we introduce the Set Covering Machine (SCM)
[19][20] into visual learning. The SCM discriminates objects using the distribu-
tion statistics of pixel intensity values. Since the SCM works without trial and
error, the cost of searching for the optimal solution is relatively small, while the
result of learning is stable. Additionally, the SCM is a general-purpose learning
algorithm and is thus applicable to a variety of visual learning tasks without
domain-specific knowledge.
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Since utilizing all pixels is quite time-consuming and many redundant pixels
are included in each image, we introduce a feature selection method to reduce
the number of attributes (i.e., pixels) used by the SCM. We define an estimation
function to evaluate the usefulness of an attribute and use this function to select
a small number of useful attributes. This strategy can reduce the computational
complexity considerably. In addition, we propose the adaptive learning method
based on the MDL principle to make the hypothesis more concise.

We perform image filtering for each given image using several filters to re-
duce the influence of noise. Since the combination of filters is exponential, we
efficiently determine the appropriate filters using the beam search. The beam
search can restrict the search space and improve the efficiency of finding a com-
bination of filters without the degradation of recognition performance. Through
the experiment using real-world image data, we verify the effectiveness and ef-
ficiency of the proposed method.

4.2 Set Covering Machine

The SCM [19][20] is a general-purpose learning algorithm that is applicable to
various learning tasks. The SCM takes a set of m examples {(x1, y1), (x2, y2), · · ·,
(xm, ym)} as the training set, where each xi is a n-dimensional vector and each
yi is a class label, which is an element of the label space Y = {0, 1}.

In the SCM, a Boolean-valued function hi is defined for each example xi. hi

is called feature. A feature is a classifier to be defined as:

hi,ρ(x) def= hρ(x,xi) =
{

yi if d(x,xi) ≤ ρ
yi otherwise (4.1)

where, yi denotes the Boolean complement of yi, and d(x,xi) denotes the dis-
tance between these two examples. Equation (4.1) means that if the distance
is equal to or less than some real value ρ, the feature hi,ρ outputs yi, otherwise
yi. When there is no ambiguity about ρ, we abbreviate hi,ρ(x) to hi(x).

The hypothesis f(x) of the SCM is expressed as a logical formula. It is
represented by conjunctions or disjunctions of features as follows:

f(x) =
{ ∧

i∈R hi(x) for a conjunction∨
i∈R hi(x) for a disjunction (4.2)

For the conjunction case, f(x) = 1, if hi(x) = 1 for all i, otherwise f(x) = 0.
For the disjunction case, f(x) = 0, if hi(x) = 0 for all i, otherwise f(x) = 1.

To generate an accurate hypothesis, useful features must be selected. In the
SCM, the usefulness of a feature is defined to determine useful features. The
usefulness Uh of feature h is defined as follows:

Uh
def= |Qh| − p · |Rh| (4.3)
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where, in a conjunction (disjunction) case, |Qh| denotes the number of negative
(positive) examples that are correctly classified by h, and |Rh| denotes the
number of positive (negative) examples that are misclassified by h. The penalty
value p is defined for the tradeoff between the accuracy of the training data and
the complexity of the hypothesis. A hypothesis consists of the features that are
selected in descending order of their usefulness.

4.3 Visual Learning with Set Covering Machine

The learning process of our method consists primarily of three components (see
Figure 4.1). First, image filtering is conducted to extract useful features of
images in order to generate an accurate hypothesis. There are 17 filters used
in our method, consisting of Intel Image Processing Libraries [3] and OpenCV
Libraries [4]. Second, there is the learning with the SCM to get a hypothesis.
Third, the hypotheses generated by each filtering to find the best filter are
evaluated. The learning proceeds by repeating these three operations D times,
then finally outputting a final hypothesis. D is the number of filters applied to
the training images. The parameter is given by the user. The final hypothesis
fD̂ is the hypothesis which has the highest value of the evaluation function
among the hypotheses generated during the learning loop (step 2 to step 5 in
Figure 4.1). Thus, the final hypothesis fD̂ is given by:

fD̂ = argmax
f∈{f1,···,fD}

E(f) (4.4)

where, E is the evaluation function (defined later).

1. Input training images, and d← 1.
2. For all filters, obtain a hypothesis with SCM.
3. Evaluate each hypothesis using the evaluation function.
4. Retain the best hypothesis fd which has the highest

value of the evaluation function.
5. If d = D, then goto step 6.

Otherwise, apply the best filter to all the training images,
d← d + 1, and goto step 2.

6. Output the final hypothesis fD̂ which has
the highest estimation value.

Figure 4.1: The learning process with the SCM.

Our method uses raw images as input data. An image consists of (width×
height) pixels. Provided that an image is a gray-scale image, each pixel’s depth
is represented in bits. Its intensity is expressed by a scalar value. The intensity
of a n-bit depth pixel ranges from 0 to 2n− 1. Thus, an example is represented
as (x, y), where x is a vector of the intensity values and y is a class label.
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We chose to construct a hypothesis with conjunctions of features for the
following two reasons: first, it is reported in [19] and [20] that the difference
between the conjunction and disjunction cases in the average classification ac-
curacy is not significant. Second, the computational complexity is almost equal
because the algorithms of the conjunction and disjunction cases are symmet-
rical. For our method, we define a feature hi,j,ρ by the distance between the
intensity of the j-th pixel of two examples as follows:

hi,j,ρ(x) def= hρ(xj ,xi,j) =
{

yi if |xj − xi,j | ≤ ρ
yi otherwise (4.5)

where, xj denotes the intensity of the j-th pixel. We abbreviate hi,j,ρ(x) to
hi(x) when there is no ambiguity about j and ρ.

We fixed the penalty parameter p in equation (4.3) to ∞ because this pa-
rameter setting simplifies the procedure for constructing the hypothesis. By this
setting, the features that misclassify one or more positive examples are never
selected. Thus, a hypothesis consists only of the features that correctly classify
all the positive examples. In our method, a hypothesis correctly classifies all
the training examples if the two examples that have the same intensity values
for all pixels and have opposite class labels do not exist.

To make our method efficient, we address the following four points and
discuss these points elaborately:

1. Find a small number of useful features to reduce the computational com-
plexity.

2. Evaluate hypotheses to find the best filter to be applied.

3. Search the best sequence of filters efficiently.

4. Extend the algorithm to solve multi-class problems.

4.3.1 Feature Selection

In the case of the first point, we present the method to select useful features
by evaluating the usefulness of each attribute. The number of possible fea-
tures is mp, where m is the number of training examples and p is the number
of attributes. The number of attributes is very large even if an image is not
very large. However, the number of useful features is small compared with that
of useless features. Thus, the computational complexity of finding useful fea-
tures tends to be excessively high. Generally, as the computational complexity
increases, the learning time becomes longer. Hence, the computational com-
plexity can be reduced considerably by selecting useful attributes to reduce the
number of possible features.

Figure 4.2 (a) is an example of a useful attribute. In this case, positive and
negative examples are separable. Thus, all the examples are correctly classified
by only one feature. In contrast, in the case of Figure 4.2 (b), it is impossible
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to classify all the examples correctly because there are two examples that have
the same intensity values and opposite class labels. Moreover, it is obvious that
even if these examples are eliminated, the remainder is not separable by one
feature.

intensity

positive example (y = 1)

negative example (y = 0)

(a) useful attribute

(b) useless attribute

intensity

Figure 4.2: A useful attribute and a useless attribute.

We use the statistics of the training examples as the criterion of the use-
fulness of an attribute. If the variances of the intensity values of the positive
and negative examples are small, and the distance between the mean intensity
values of the positive and negative examples is large, then the two classes will
be separable. Thus, we define the usefulness u(i) of the i-th attribute as

u(i) =
s2(i)

s2
P(i) + s2

N (i)
(4.6)

where, s2(i), s2
P(i) and s2

N (i) are the variance of mean intensity of each class of
the i-th attribute, and variances of the i-th attribute’s intensity of the positive
and negative examples respectively. That is,

s2(i) = (µ(i)− µP(i))2 + (µ(i)− µN (i))2 (4.7)

s2
P(i) =

∑
x∈P(xi − µP(i))2

NP
(4.8)

s2
N (i) =

∑
x∈N (xi − µN (i))2

NN
(4.9)

where,

xi : the i-th attribute’s intensity of example x.
P [N ] : the set of positive [negative] examples.
NP [NN ] : the number of positive [negative] examples.
µP(i), µN (i), and µ(i) : the mean value of the i-th attribute’s intensity

of positive, negative, and all examples,
respectively.
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In our method, if the number of possible features is large, only a few features
that have a high usefulness are used to generate a hypothesis. The number of
features M to be used is determined based on the number of the training images.
The maximum number of features Mmax included in the hypothesis of the SCM
is given by

Mmax = max{NN , NP + 1}. (4.10)

Hence, Mmax features are considered to be sufficient to generate a hypothesis
and we define M as

M
def= min{Mmax, a} (4.11)

where, a is the number of attributes of the training images. The hypothesis
H(x) consists of M selected features η1(x), · · · , ηM (x) ∈ {h1(x), · · · , hmp(x)},
and is given by

H(x) =
M∧

i=1

ηi(x). (4.12)

4.3.2 Evaluation of Filters

For the second point, we define an evaluation function based on the informa-
tion gain [28] to measure the usefulness of a filter. The information gain is a
measurement to determine useful attributes in order to classify the training ex-
amples efficiently and is used for decision tree learning algorithms such as C4.5
[27]. Though the information gain is usually computed for an attribute, in our
method, the information gain is computed to evaluate all features included in a
hypothesis. Since the information gain is the difference between the entropy of
the (i− 1)-th feature and the weighted mean of the entropy of the i-th feature,
we define the information gain for the i-th feature (i = 1, 2, · · · ,M) that

Gain(hi)
def= Entropy(hi−1)− N − νi

N − νi−1
Entropy(hi) (4.13)

where M denotes the number of generated features, and Entropy(hi) denotes
the entropy of the set (E \ Ni), where E is the training set and Ni is the set
of negative examples that are correctly classified by features h1, · · · , hi−1. The
entropy Entropy(hi) for the i-th feature (i = 0, 1, 2, · · · ,M) is given by:

Entropy(hi) = − NP
N − νi

log2

NP
N − νi

− NN − νi

N − νi
log2

NN − νi

N − νi
(4.14)

where,
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N : the number of training examples.
ni : the number of negative examples correctly classified by the i-th

feature hi.
νi : the sum of n1, · · · , ni, that is

∑i
j=1 nj , and ν0 is defined to be 0.

We define the evaluation function E as the weighted sum of the information
gain of all the features as follows:

E
def=

m∑

i=1

ni

NN
Gain(hi). (4.15)

4.3.3 Search for the Best Sequence of Filters

For the third point, we introduce a method to search efficiently for the best
sequence of filters. The learning process of our method can be regarded as a
search for the best sequence (or combination) of filters. There are nD possible
sequences of filters, and the search space is represented as a tree structure shown
in Figure 4.3. In Figure 4.3, the nodes in i-th depth are the candidates for the
i-th filter.

depth = 1 filter 1 filter 2 filter n

filter 1 filter 2 filter n. . .depth = 2

. . .

. . .

. . .

filter 1 filter 2 filter n. . .depth = D

.
... ...

..
...

... ... ...

. . . . . . . . . . . .

...

E = 0.25
E = 0.10 E = 0.05

Figure 4.3: The tree structure of the search space.

The tree consists of
∑D

i=0 ni nodes including leaves, where n is the number
of filters. Since the number of nodes in the tree increases exponentially as D
increases, searching the overall nodes of the tree requires quite large amount of
time.

Hence, we use the beam search (see Section 3.3), which is commonly used
for efficient searching to reduce the computational complexity by restricting
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the search space (i.e. the number of nodes). The maximum number of nodes
retained by the beam search is called beam width. If the number of nodes to be
retained is larger than the value of beam width, then the beam search does not
open the nodes which have low estimation values. If a certain node has a low
estimation value, then its child nodes also seem to have low estimation values.
Thus, by applying the beam search, the nodes that have low estimation values
will not be opened. For example, in Figure 4.3, the node “filter 2” at depth 1,
whose value of E is 0.10 and the node “filter n” at depth 1, whose value of E is
0.05 will not be opened.

4.3.4 Extension to Multi-class Problems

For the fourth point, we describe the method to solve multi-class problems.
Since the SCM originally solves only binary (two-class) problems, when a clas-
sification problem contains more than two classes, we must extend the SCM to
solve multi-class problems. To deal with multi-class problems, we used the one-
against-all method. In the one-against-all method, k hypotheses are obtained
by executing the learning algorithm k times, where k denotes the number of
classes. The i-th hypothesis is generated by regarding all of the examples that
belong to the i-th class as positive examples, and the remainder as negative
examples.

4.4 Experiments

We performed some experiments using the synthetic aperture radar (SAR) data
set in the MSTAR SAR database [10]. The learning task is to recognize the SAR
images of the three different objects (i.e. classes): BMP-2 Armored Personnel
Carrier, BTR-70 Armored Personnel Carrier, and T-72 Main Battle Tank. We
used a set of 585 images which had been split into a disjoint training set and a
test set. All images in the training set and the test set were regarded as gray
scale (8-bit depth) images and were resized to 48 × 48 pixels.

We carried out some experiments, the result of which are shown in Figure
4.4. To confirm the effectiveness of feature selection and the beam search, we
show the results with four different settings: with feature selection and the
beam search (feature selection + search), with feature selection only (feature
selection), with the beam search only (search), and with neither feature selection
nor the beam search (none). We fixed the value of beam width at 10.

Compared with the results produced without feature selection, the use of
feature selection considerably shortens the learning time, whereas the classifica-
tion accuracy is almost equal. By using feature selection, the number of features
used to generate a hypothesis is reduced from 2304 to 98. It is obvious that use-
ful features are selected by feature selection. With a small number of features,
it is possible to generate a hypothesis which is as accurate as the hypothesis
generated by using all the attributes. From the results, it can be said that the
beam search is effective in improving the classification accuracy but that the



4.4. Experiments 43

55

60

65

70

75

80

85

0 5 10 20

A
cc

ur
ac

y(
%

)

D

feature selection + search
feature selection
search
none

0

20000

40000

60000

80000

100000

5 10 20

Le
ar

ni
ng

 T
im

e 
(s

ec
)

D

feature selection + search
feature selection
search
none

Figure 4.4: The results of experiments for the MSTAR SAR data set.

search requires a relatively long learning time. Provided that the beam search
is carried out, the classification accuracy with D = 10 is fairly high compared
with the classification accuracy with D = 5. However, the classification accu-
racy with D = 20 is almost equal to the classification accuracy with D = 10.
This implies that to some extent the classification accuracy increases in propor-
tion to the value of D. However, assigning too high a value to D will make the
learning time quite long. Moreover, it will not further improve the classification
accuracy of the hypothesis. Thus, we must take into consideration the tradeoff
between the classification accuracy and the learning time. It is desirable to find
some criterion to determine the optimal parameter setting.
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4.5 Adaptive Learning Based on the MDL Prin-
ciple

In our method, the SCM continues learning until there are no more negative
training examples that can be correctly classified. A feature that correctly clas-
sifies many negative training examples generally makes a hypothesis accurate.
In contrast, a feature that correctly classifies few negative training examples is
generally useless to generate an accurate hypothesis.

Hence, we propose to introduce adaptive learning into our method. To put
it concretely, in step 3 of Figure 4.1, the hypothesis is evaluated with a cost
function. If the value of the cost function of the hypothesis is higher than that
of the previous hypothesis, the SCM stops learning (i.e., goes to step 6). By
introducing adaptive learning, an improvement of our method is expected.

We defined the cost function C based on the stochastic complexity of the
MDL principle [17]. The MDL principle provides a criterion for the trade-
off between the simplicity of the model and the model’s fitness for the data.
One is called model description length and the other is called data description
length. On one hand, the simpler the model, the smaller the model description
length. On the other hand, the better the model’s fitness for the data, the
smaller the data description length. In our case, the model description length
increases in proportion to the number of features and training examples. The
data description length is proportional to the rate of misclassification. The MDL
principle asserts that the best model poses the minimum value of the sum of the
model description length and the data description length. By introducing the
MDL-based criterion into our method, we can improve our method by excluding
useless features from the hypothesis.

The cost function C(hi) of the i-th feature is defined as

C(hi)
def= MD(hi) + DD(hi) (4.16)

where MD(hi) and DD(hi) are the model description length and the data
description length, respectively, of the i-th feature defined as

MD(hi)
def=

i

2
log2 N (4.17)

DD(hi)
def=

i∑

j=1

nj log2

nj

NN
− (NN − νi) log2

NN − νi

(ε− i)NN
(4.18)

where, ε is the estimation of the number of features to be included in the
hypothesis. Since the value of f(i) = (NN − νi) tends to decrease exponentially
as i increases, we estimate the value by the function f(i) = aebi − 1. The
coefficients a and b are determined by the two conditions: f(0) = NN , f(1) =
NN − n1. Thus, we defined ε experimentally as
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ε
def=

ln(NN + 1)
ln(NN + 1)− ln(NN − n1 + 1)

. (4.19)

Here, ln x denotes the natural logarithm of x, and f(ε) = 0.
We performed some experiments using the same data set and the same pa-

rameter settings as in the experiments in Section 4.4. To verify whether adaptive
learning improves the performance of our method, we show the results with four
different settings: the results with adaptive learning and the beam search (adap-
tive + search), with adaptive learning only (adaptive), with the beam search
only (search), and with neither adaptive learning nor the beam search (none).
For all experiments, feature selection was carried out. The results are shown in
Figure 4.5.

By introducing adaptive learning, we reduced the average number of features
in the hypothesis from 27.7 to 13.3; thus, the learning time was also reduced
by 20 ∼ 30%. It is clear from the results that a reduction in the number of
features is effective to reduce the computational complexity. However, the clas-
sification accuracy did not change for all experiments. This result implies that
the features which correctly classify few negative training examples have little
influence over the overall classification ability of the hypothesis. The param-
eter ε may be connected with the performance of adaptive learning, since the
number of features included in the hypothesis decreases in proportion to the
reduction of ε, while the value of ε is sometimes underestimated. More precise
estimation of the value of ε may be effective in improving adaptive learning
method. From the experimental results, it is implied that adaptive learning is
effective in improving the computational complexity of our method.

4.6 Conclusion

We have proposed an efficient visual learning method using feature selection
based on the SCM algorithm. In order to find useful pixels, we introduced the
idea of discriminant analysis and developed an effective criterion to evaluate
the usefulness of each pixel. Consequently, the computational complexity is
considerably shortened without the degradation of classification accuracy.

We applied image filtering to given images in order to extract useful features.
Since the number of the combination of filters is exponential, we proposed an
efficient method to determine an appropriate combination of filters using the
beam search.

To judge the convergence of learning, we proposed an adaptive learning
method based on the MDL principle. We have shown the effectiveness of the
proposed method through several image classification tasks.

However, the proposed method is rather simple because it utilizes only a
single type of feature (i.e., the intensity distribution of pixels). In order to
distinguish real-world objects correctly, the utilization of diverse features seems
to be more effective. In addition, although image filtering can remove slight noise
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Figure 4.5: The results of experiments using adaptive learning.

in images, it will not be able to solve the problems of deformation, occlusion of
objects, and cluttered backgrounds. Thus, we try to solve these problems by
developing better visual learning. Details about this issue are described in the
next chapter.
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Chapter 5

Visual Learning with
Collaboration among
Diverse Classifiers

5.1 Introduction

In the previous chapter, we describe a visual learning method based on the
SCM for real-world object recognition. Although this method performs flexible
recognition by using the distribution of pixel intensity values, there is room for
improvement in the flexibility and accuracy of recognition strategy because of
the following problems.

The first problem stems from the features used to discriminate objects. Real-
world objects are so complex that they cannot be correctly discriminated using a
single feature, and conventional recognition methods including the visual learn-
ing method proposed in the previous chapter utilize a small number of features.
To make effective use of diverse features, the idea of modularity should be intro-
duced. A module corresponds to a simple recognition method that recognizes
objects using a small number of features. Then, multiple modules are integrated
to utilize a wide variety of features. This idea is based on the assumption that
human visual systems achieve excellent recognition through the modularization
of visual information processing [22]. There is, however, a crucial problem in
that, although useful modules contribute to the improvement of recognition
performance, useless modules deteriorate recognition performance and increase
computational complexity. Useful modules are difficult to find because useful
features depend on images. In addition, the problem of finding the optimal
recognition model (i.e., the optimal combination of modules) is complicated by
the large number of possible combinations. An efficient model selection method
is, therefore, essential.

The second problem lies in given images. A training set, the images input
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into a recognition method, often includes objects that are deformed, appear in
bad lighting conditions, etc. To deal with these images, transform algorithms
such as the Fourier transform are introduced to compensate for the deformation
of objects, while problems relating to lighting conditions are resolved using his-
togram modification [2]. It is extremely difficult, however, to resolve all of these
problems for a variety of environments. While the human visual system has the
intrinsic ability to correct for the deformations or poor lighting conditions of
objects, it may fail to discriminate objects when they are in bad environments
because the fundamental functions of human visual systems are built up in their
infancy using comprehensible objects that are not deformed or in poor lighting
conditions. This is a key point for the efficiency of human visual ability. Thus,
we have to select appropriate images that contribute to improving recognition
performance. Evaluating the appropriateness of an image is, however, a difficult
task.

The third problem is the optimization of the recognition model. Because of
the efficiency of modularity, several recognition methods based on modularity
have been proposed [13] [5]. These methods, called multiple classifier systems,
construct multiple modules by combining several features and/or image clas-
sification algorithms. The outputs of multiple modules are integrated using a
ranking algorithm, a voting algorithm, etc. The problem is that these methods
do not consider the interaction among modules but instead discriminate objects
by simply combining the predictions of each module. This strategy is not effi-
cient at recognizing complex objects because it does not intrinsically integrate
diverse features. In order to take advantage of modularity, the recognition model
should be optimized by accounting for the interaction among multiple modules.
In particular, the modules should cooperate so that all modules complement
each other.

In order to solve these problems, we propose an effective recognition method
based on visual learning. Visual learning adopts the idea of machine learn-
ing into computer vision understanding to develop more flexible and accurate
recognition methods [15].

First, we introduce an effective machine learning framework called ensemble
learning [8] to solve the first problem. This framework constructs and integrates
multiple modules called classifiers to make use of diverse features. Since the
number of possible combinations of classifiers is quite large, we have to select
the optimal one. Thus, we evaluate each classifier by defining the reliability
of a classifier as the possibility that it correctly classifies the given example.
Reliability is determined for each class (i.e., category of objects) and calculated
using the classification accuracy for training examples. For example, assuming
that a classifier X discriminates an image by analyzing its contours, X will
correctly distinguish balls from dice because they have different contours. But
it may fail to distinguish balls from oranges because they have similar contours.
Thus, the reliability for dice is high, while that for balls and oranges is low.
When an example is given, we select the optimal classifier based on reliability.

Next, we detect and deal with hard examples to solve the second problem. A
hard example refers to an image that is hard to classify correctly. For example,
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deformed images and occluded images are hard examples. The problem is that
hard examples cause overfitting. Overfitting means that a classifier is too spe-
cialized for the classification of hard examples and often misclassifies non-hard
examples. Thus, hard examples should be eliminated. It is difficult, however,
to detect hard examples appropriately. To resolve this issue, we propose an
efficient learning strategy that detects hard examples by giving a weight to each
example. The weight is a measure of the difficulty of correctly classifying the
example and is increased when the example is misclassified and decreased when
it is correctly classified. If the weight of an example becomes higher than a
threshold, we regard the example as a hard example and eliminate it from the
training set. This strategy reduces the influence of hard examples and thus
prevents overfitting.

Finally, to solve the third problem, we introduce interaction among multiple
classifiers by collaboratively training them so that they complement each other.
The collaboration of classifiers is based on the following viewpoint: a hard
example of a classifier can be correctly classified by other classifiers. According
to this viewpoint, we introduce collaboration of multiple classifiers. Specifically,
the classifiers are collaboratively trained as follows: when it turns out that the
classifier X cannot correctly classify some examples, they are regarded as hard
examples for X. Then, the hard examples are sent to other classifiers and,
if these classifiers can correctly classify the examples, are used to train them.
Conversely, the hard examples of other classifiers are sent to X and used for
training if X can correctly classify them. As a result of this collaboration, the
recognition model can be optimized during the learning process.

5.2 Collaborative Visual Learning Model

In order to deal with diverse features, we introduce the idea of ensemble learning.
As mentioned in Chapter 2, however, although the recognition performance of
separated ensemble models is higher than that of non-ensemble models, it is
still inadequate because of the influence of hard examples. We show an example
using two types of single-feature classifiers. The recognition task is to distinguish
face images from non-face images. The first classifier uses as a feature two-
dimensional histograms of pixel intensity, a simplified version of the face space
in [37]. We show an example of intensity histograms in Figure 5.1.

Figure 5.1 (a) represents the two-dimensional intensity histogram. The his-
togram is obtained by dividing an image into 8× 8 blocks (i.e., r11, r12, · · · r88)
and calculating the average intensity value for each block. (b) and (c) are the
original image (i.e., the training example) and its intensity histogram, respec-
tively. The central blocks around the face have high values because of the
brightness of skin. Conversely, several blocks around the hair have low values.
The spatial relationship between bright and dark blocks represents the structure
of the face.

The second classifier is based on contour density histograms, which are ob-
tained by extracting contours that represent the complexity of shapes in an
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Figure 5.1: The original images of the examples and its intensity histogram.

image. We show an example of contour density in Figure 5.2.

Figure 5.2: An example of contour density.

In a face image as depicted in Figure 5.2 (a), the contour density of the
regions of eyes, nose and mouth tend to be high because they have relatively
complex shapes. On the other hand, the forehead and cheeks have low contour
densities because of their simple shapes. A contour density histogram is obtained
through the following steps: First, the contours of objects are extracted from
an image. Next, the contour image is divided into 8 horizontal blocks and 8
vertical blocks as described in (b) and (c). Finally, the contour density for each
block (h1, · · · , h8 and v1, · · · , v8) is calculated as the ratio of the contours to the
whole image. The horizontal and vertical contour histograms are shown in (a).

In ensemble learning, hard examples are divided into two types. To show
this, we trained two classifiers XI and XC using approximately 400 face images
as positive examples and 400 non-face images as negative examples. XI is
trained using intensity histograms, and XC is trained using contour density
histograms. We used the intensity histograms of only two blocks r45 and r54,
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which are located in the center of a face. Similarly, we use the contour density
histograms of only two blocks h4 and v4 because they are also located in the
center of a face. We visualize XI and XC in Figure 5.3.

Figure 5.3: The learning results of XI and XC and the images of some hard
examples.

Figure 5.3 (a) and (b) represent the learning results of XI and XC respec-
tively. The positive examples pi and the negative examples ni (i = 1, 2, 3) are
the hard examples. p1 and n1 are misclassified by both XI and XC because of
the bad lighting condition of p1, and a person and cluttered background in n1.
We call these examples true hard examples, which refers to examples misclassi-
fied by all classifiers. p2 and n2 are correctly classified by XI but misclassified
by XC . p2 is misclassified due to the complex background. n2 is misclassi-
fied because it contains an illustration of persons whose contours are partially
similar to those of human faces. We call these examples feature-dependent hard
examples, which refers to examples misclassified by some classifiers but correctly
classified by other classifiers. Conversely, p3 and n3 are correctly classified by
XC and misclassified by XI . p3 is misclassified because its light condition is too
bright. The misclassification of n3 is caused by its intensity distribution which
is similar to that of a face. These are also feature-dependent hard examples.
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True hard examples should be eliminated to avoid overfitting, while feature-
dependent hard examples should be utilized to train classifiers that are able
to classify them correctly. Thus, p2 and n2 should be used to train XI , and
p3 and n3 should be used to train XC . Separated ensemble models, however,
cannot make use of these examples because they are not able to distinguish
feature-dependent hard examples from true hard examples. This leads to crucial
learning inefficiency.

In order to solve this problem, we propose a collaborative ensemble model
based on the following viewpoints:

• Introduce interaction between classifiers by collaboratively training each
classifier.

• Eliminate true hard examples from all training sets.

• Utilize feature-dependent hard examples for each classifier if the other
classifiers can classify them correctly.

The structure of collaborative ensemble model is represented in Figure 5.4.

classifier X

classifier Xeliminated

correctly classified examples

feature-dependent hard examples

true hard examples

1

2

classifier X3

... ...

Figure 5.4: The collaborative ensemble model.

In the collaborative ensemble model, an arbitrary number of classifiers can
be simultaneously trained. To detect feature-dependent and true hard examples,
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each classifier Xi (i = 1, 2, · · · , n where n is the number of classifiers) informs
the other classifiers about examples misclassified by Xi. Similarly, the other
classifiers inform Xi about the examples they have misclassified. In this manner,
Xi is trained using the feature-dependent hard examples of the other classifiers
and vice versa. In addition, examples that are misclassified by all the classifiers
are regarded as true hard examples and eliminated to prevent overfitting. The
collaboration between classifiers enables the exploitation of training examples
and, thereby, learning that is more efficient than separated ensemble models.

5.3 Collaborative Visual Learning Algorithm

5.3.1 A Weighting Algorithm to Detect Hard Examples

To describe the proposed algorithm, we first formulate an object recognition
task as a classification problem. The training set S is represented as S =
{(x1, y1), · · · , (xm, ym)}, where m is the number of training examples, and xi

and yi ∈ {1, · · · , C} correspond respectively to an image and a class label for
recognition of C kinds of objects. Each example has a weight that measures the
difficulty of correctly classifying the example. We iteratively train a classifier
using the weights. Referring to an iteration as a round, the weights of all
examples are updated to assess their classification difficulty at the end of each
round. A higher weight means that the example is more difficult to classify
correctly. In the machine learning domain, it has been proven that training
a classifier using examples with high weights leads to an improvement in the
performance of the classifier unless the examples are hard examples [8].

In order to train each classifier using examples that have high weights, in
each round, we construct a training set by sampling examples from the training
set S according to their weights. In AdaBoost [11], this process is referred to
as a resampling of training examples. This method only works well, however,
under the assumption that a training set contains no (or few) hard examples.
If hard examples are included in the training set, overfitting occurs because
the weighting algorithm of AdaBoost gives excessively high weights to hard
examples. To resolve this issue, we propose a weighting algorithm that uses
a weight distribution. A higher value for the weight distribution means that
further use of the example will improve the performance of a classifier. We
propose a weighting algorithm based on the following two points: (1) To prevent
overfitting, when an example is regarded as a hard example by a classifier X, it
should not be sampled as a training example for X in subsequent rounds. (2) To
collaboratively train each classifier, when X misclassifies a training example, its
weight distribution for other classifiers should be increased so that the example
is used to train them. We, therefore, define the weight distribution Dl

i,t of the
i-th example xi for the l-th classifier X l in the t-th round as follows:

Dl
i,t =

δl
i,td

l
i,t∑m

i=1 δl
i,td

l
i,t

(5.1)
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where δl
i,t is 0 if xi is regarded as a hard example by X l (i.e., the weight of xi

becomes higher than the threshold1), otherwise δl
i,t is 1, and

dl
i,t =

1
n− 1

n∑

j 6=l

(
wj

i,t∑m
i=1 wj

i,t

)
, (5.2)

where n is the number of classifiers and wj
i,t is the weight of xi for X l in the t-th

round. When an example xi is regarded by X l as a hard example, δl
i,t = 0. Thus,

from equation (5.1), Dl
i,t is 0 and xi is never sampled in any subsequent rounds.

Equation (5.2) represents the collaboration of classifiers. dl
i,t depends on the

weights of the examples of the other classifiers. Thus, the weight distribution of
examples misclassified by other classifiers tends to be high. Consequently, this
weighting algorithm works well even if many hard examples are included in the
training set.

5.3.2 Construction of an Ensemble Classifier Using Col-
laboration among Diverse Classifiers

Assuming that the number of rounds is T , the l-th classifier trained in the t-th
round is represented as X l

t (t = 1, · · · , T ). At the end of the T -th round, we
integrate the classifiers {X l

t}Tt=1 into an ensemble classifier X l, and determine
the prediction of X l by integrating the predictions of all classifiers {X l

t} using
a voting method. That is, the class label predicted by the ensemble classifier
corresponds to the class label which is predicted by the majority of classifiers. In
order to take the classification performance of each classifier into consideration,
we introduce weighted voting. The prediction X l(x) of the ensemble classifier
X l for an example x is defined as follows:

X l(x) = argmax
c∈{1,···,C}

T∑
t=1

αl
t[X

l
t(x) = c], (5.3)

where [X l
t(x) = c] is 1 if X l

t(x) = c and otherwise is 0. αl
t = log 1−εl

t

εl
t

, where

εl
t is the classification error of X l. Thus, a higher value for αl

t means a lower
classification error.

In the learning process, each classifier is specialized to classify non-hard ex-
amples precisely. Thus, we should determine whether the given example is a
hard example or a non-hard example. To distinguish hard examples from non-
hard examples, we define a criterion and call it class separability. Class sepa-
rability is defined so that it is proportional to the classification performance of
a classifier for each class. When X l

t correctly classifies most of the examples
whose class labels are c, the class separability for class c is high. If X l

t misclas-
sifies many examples into the class c, the class separability for class c is low.

1The threshold is determined by searching for the optimal value using the beam search,
whose algorithm is shown in Section 3.3.



5.3. Collaborative Visual Learning Algorithm 55

Since hard examples are frequently misclassified, the class separability of a hard
example will be much lower than that of a non-hard example. Here, we consider
the case where X l

t predicts the class label of an unseen example x as class c. If
the class separability of X l

t for class c is high, x will be a non-hard example.
That is, the possibility that the prediction is correct will be high. We define the
class separability sl

t(c) for class c as follows:

sl
t(c) =

{
sl

t+(c) if X ′l
t (x) = c,

sl
t−(c) otherwise, (5.4)

where

X ′l
t (x) = argmax

c∈{1,···,C}

t∑
τ=1

αl
τ [X l

τ (x) = c],

sl
t+(c) =

nl
t,c,c∑C

i=1 nl
t,c,i

, sl
t−(c) =

∑C
i 6=c

∑C
j 6=c nl

t,i,j∑C
i 6=c

∑C
j=1 nl

t,i,j

.

nl
t,i,j denotes the number of examples whose class label is i but which were

misclassified into class j. sl
t+(c) is also high when many examples with class

label c are correctly classified into class c. sl
t−(c) is high when many examples

with a class label other than c are classified into a class other than c. If the
prediction X ′l

t (x) of the l-th ensemble classifier is c, sl
t+(c) is used as the class

separability for class c because sl
t+(c) represents the classification accuracy for

the class c. On the other hand, if the prediction X ′l
t (x) is not c, sl

t−(c) is
used as the class separability for the class c because sl

t−(c) corresponds to the
recognition accuracy for all classes other than c.

When classifying an unseen example, we first obtain the predictions of all
ensemble classifiers {X l}nl=1, where n is the number of features. We next cal-
culate the class separability of each ensemble classifier and select the classifier
with the highest class separability as the most reliable classifier. Then, the final
prediction F (x) for an example x is determined by the following equation:

F (x) = X l∗(x) such that l∗ = argmax
l

t∑
τ=1

sl
τ (X ′l

τ (x)). (5.5)

Finally, we show the algorithm list of the collaborative ensemble method as
follows:

1. Initialize: t = 1, Dl
i,1 = 1

m and δl
i,1 = 1 for all i and l.

2. For each classifier, construct the training set Sl
t by sampling from the

original training set S according to the weight distribution Dl
i,t.

3. Train each classifier using Sl
t and obtain X l

t.

4. If t = T then make the final prediction F and finish the learning process,
otherwise go to step 5.
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5. For all l, classify all training examples using X l
t. Then, decrease the

weights of correctly classified examples and increase that of misclassified
examples.

6. Determine weight thresholds for each classifier to detect hard examples.

7. Set δl
i,t+1 to 0 if xi is regarded as a hard example by X l

t, otherwise 1.

8. Calculate the weight distribution Dl
i,t+1 for each l and i.

9. t← t + 1 and go to step 2.

5.4 Experiments

We carried out several experiments to verify the performance of our method
using the images in the ETH-80 Image Set database [16]. This data set contains
8 different objects: apples, cars, cows, cups, dogs, horses, pears, and tomatoes.
We used 20% of the examples as training examples and the remainder as test
examples. The number of rounds was experimentally set to 100. We constructed
five types of classifiers using five types of features as given in Figure 5.5.

The first classifier is an appearance-based recognition method which utilizes
contour fragments [25], as shown in (b). The set of contour fragments is grouped
into meaningful structures called patterns as provided in Figure 5.5 (c). The
second classifier is based on the distributions of pixel intensity values [25]. The
distributions are represented by a Generic Fourier Descriptor (GFD). A GFD
is obtained by calculating the spatial frequency of an image as described in
(d). The third classifier is a feature tree [24]. This method generates region-
based features by image filtering as shown in (e). It then combines several
features into several decision trees called feature trees. The fourth classifier
is based on Scale Invariant Feature Transform (SIFT) [18]. SIFT generates
deformation-invariant descriptors by finding some distinctive points in objects
(indicated by white arrows in (f)). The points represent the characteristics of
the object based on image gradients. The fifth classifier uses the shape context
method [1]. In this method, the contour of an object is described by a set of
points as illustrated in (g). Using the set of points, log-polar histograms of
the distance and angle between two arbitrary points, called shape contexts, are
calculated for all points. An example of shape context is given in (h). This
method discriminates the object by matching its shape contexts with the shape
contexts in the training set.

5.4.1 Collaborative Model vs Non-Collaborative Model

To verify the effectiveness of our collaborative ensemble model, we construct
four types of classifiers, L2, L3, L4 and L5, by integrating two, three, four
and five classifiers respectively. Li consists of the first, second, · · ·, and i-th
classifiers. Then, we compare their performance. The result of the experiment
is provided in Figure 5.6.
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Figure 5.5: The features used in this experiment.

Recognition accuracy is proportional to the number of integrated classifiers.
In particular, accuracy improves significantly for animals with complex shapes
and textures. This result implies that diverse features are required to discrim-
inate correctly between complex objects and that our method can effectively
utilize various features.

L5 achieved much higher accuracy than the other classifiers. Although this
improvement is due to the high classification performance of the shape context
classifier (i.e. the fifth classifier), our method fully outperforms the shape con-
text method. Since the shape context method depends on the shapes of objects,
it sometimes fails to distinguish between objects which have similar shapes such
as apples and tomatoes. Therefore, our method selects an appropriate classi-
fier other than the shape context classifier for the classification of apples and
tomatoes. This leads to a higher recognition accuracy for our method.

Next, we compare the recognition performance of the separated ensemble
model with our collaborative ensemble model. In the separated ensemble model,
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Figure 5.6: The recognition accuracy for each object classifiers.

each classifier is separately trained using AdaBoost. We construct four types
of classifiers Λ2, Λ3, Λ4 and Λ5. Λi consists of the same classifiers as Li. The
recognition accuracy of each classifier is shown in Figure 5.7.
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Figure 5.7: The recognition accuracy for the separated ensemble method.

For some objects, the classification accuracy is lower than that of the shape
context method because the separated ensemble method is easily affected by
hard examples. That is, if true hard examples are used as training examples,
recognition performance is degraded. Moreover, since the separated ensemble
method cannot exploit feature-dependent hard examples, learning efficiency is
lower than for our method. This result, therefore, reflects the advantage of our
model over the separated ensemble model.
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5.4.2 The Combination of Classifiers

In our model, the combination of modules will affect its performance. Thus,
recognition performance is dependent on the combination of classifiers. In order
to examine this, we arbitrarily combined two classifiers and verified recognition
performance. We show the recognition accuracy for each pair of classifiers in
Figure 5.8.
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Figure 5.8: The recognition accuracy of each pair of classifiers.

For example, combining the second and fifth (Region-based and Shape con-
text) classifiers is more effective than combining the first and fifth (Appearance-
based and Shape context) classifiers. The features used for the second classifier
are quite different from those used in the fifth classifier while both the first and
fifth classifiers use the contours of objects as features. Similarly, as the fourth
and fifth (SIFT and Shape context) classifiers are based on different features,
combining them improves recognition performance. This result confirms that
using diverse features leads to better model optimization.

Since finding the optimal combination of classifiers is an open problem, we
determine the combination of classifiers experimentally. Our ensemble algo-
rithm, however, enables an ensemble classifier to be less sensitive to the com-
bination of classifiers because it determines the optimal classifier for a given
example. To verify this, we performed an experiment using two types of clas-
sifier combination (we call them combination A and B) as described in Table
5.4.2.

For example, when the number of classifiers is 2, the first and second classi-
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Table 5.1: The classifier combinations.
Number of Used classifiers
classifiers Combination A Combination B

2 1, 2 4, 5
3 1, 2, 3 3, 4, 5
4 1, 2, 3, 4 2, 3, 4, 5
5 1, 2, 3, 4, 5 1, 2, 3, 4, 5

fiers are used in combination A. In combination B, the fourth and fifth classi-
fiers are used. For comparison, we show the recognition performance of a voting
algorithm [8]. The result of the experiment is shown in Figure 5.9.
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Figure 5.9: The recognition accuracy for each combination.

The recognition accuracy is proportional to the number of classifiers for
combination A (denoted by × and ∗ in Figure 5.9 respectively). This is quite
a reasonable result. For combination B, however, the recognition accuracy of
the voting (denoted by ¦) is degraded as the number of classifiers increases
while our recognition accuracy (denoted by +) increases. This occurs because
the voting treats the predictions of all classifiers equally regardless of individ-
ual recognition performance. Since the fourth and fifth classifiers have higher
recognition performance than the first and second classifiers, in combination B,
the recognition accuracy of the voting deteriorates when a classifier with a low
recognition performance is added. On the other hand, we are able to avoid the
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degradation of recognition accuracy as a result of the model selection and op-
timization strategy, leading to stability with respect to differences in classifier
combinations.

5.4.3 Comparison with Other Object Recognition Meth-
ods

We compare our recognition performance with that of the following six object
recognition methods. The first is the shape context [1]. The second is the mul-
tidimensional receptive histogram [34], which describes the shapes of objects
using statistical representations. The third is color indexing [35], which dis-
criminates an object using RGB histograms calculated from all the pixels in the
object. The fourth is based on local invariant features [12] that are generated by
a gradient-based descriptor and are robust to the deformation of images. The
fifth is the learning-based recognition method [21], where an object is described
by randomly extracted multi-scale subwindows in the image and classified by an
ensemble of decision trees. The sixth is the boosting-based recognition method
[36], where a probabilistic boosting-tree framework is introduced to construct
discriminative models. The recognition accuracy is shown in Table 5.2.

Table 5.2: The recognition accuracy for each object recognition methods (in %).
Swain [35] 64.85
Marée [21] 74.51

Tu [36] 76
Schiele [34] 79.79

Grauman [12] 81
Belongie [1] 86.402

proposed 87.27

Our recognition accuracy is higher than that of each other recognition method.
Since we utilize multiple features for recognition, we can thus discriminate a
wider variety of objects than single-feature recognition methods. In addition,
this result indicates that our learning strategy for selecting optimal classifiers
works well. Since the criterion for the determination of optimal classifiers is
determined by observing the collaborative learning process, this result implies
the effectiveness of our collaborative learning framework.

2[16] reports that the recognition accuracy of the shape context method by Belongie et al.
is 86.40%. This accuracy has been achieved, however, using over 98% of the examples in the
training set while we use only 20%. In addition, its recognition accuracy is proportional to
the number of the training examples as shown in [1]. The recognition accuracy of this method
using 20% of examples in the training set is 81.06%.
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5.4.4 Robustness to Hard Examples

In order to verify the robustness to hard examples, we carry out an experiment
using the Caltech image data set, which contains many hard examples. We use
the images of six kinds of objects from the data set: airplanes, cars, Dalma-
tians, faces, leopards and motorbikes. We use 20% of the examples as training
examples and the remainder as test examples. We compare our recognition
performance with that of the following two types of object classifiers. The first
classifier, X1, does not eliminate any hard examples and never increases the
weights of hard examples even if they are misclassified. The second classifier,
X2, also does not eliminate hard examples, but it does increase the weights
of all misclassified examples even if they are hard examples. First, we show
the recognition accuracy for each class and total recognition accuracy in Figure
5.10.
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Figure 5.10: The recognition accuracy for each class.

The recognition accuracy of X2 is the worst because it does not take hard
examples into consideration. X1 outperforms X2 by giving smaller weights to
hard examples and thus reducing their influence to some extent. Given that
our recognition accuracy is the best for all objects, it seems that detecting
and eliminating hard examples from training examples leads to more efficient
learning.

Next, we show the transition of total recognition accuracy during the learning
process in Figure 5.11. The recognition accuracy of X2 decreases in the 70th
round while the recognition accuracies of the other classifiers continue to increase
as the number of rounds increases. This shows the sensitivity of X2 to hard
examples. Compared with X1, our recognition accuracy seems to converge at
an earlier round. This occurs because we can decrease the number of hard
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examples as learning proceeds. Thus, classifiers are trained without the influence
of hard examples in later rounds. Consequently, we achieve a higher recognition
performance and earlier learning convergence.
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5.5 Conclusion

We have proposed an ensemble-based visual learning method using diverse fea-
tures. In order to reduce the influence of hard examples and improve learning
efficiency, we introduced interaction among multiple classifiers and proposed a
collaborative ensemble learning model. We extended NadaBoost’s algorithm
to apply to multiclass problems and ensemble learning. We confirmed through
several image recognition experiments that this led to robustness to hard ex-
amples. The proposed method can be made more accurate if we can determine
the optimal combination of classifiers. Thus, we should find an efficient method
to find this optimal combination. In addition, the computational complexity
of the proposed method should be diminished by improving the collaborative
learning model.





65

Chapter 6

Conclusion and Future
Work

In this dissertation, we have proposed visual learning methods, which are the
learning methods that autonomously acquire knowledge for object recognition
based on machine learning frameworks. Since visual learning analyzes training
examples and constructs recognition models, it is more effective for real-world
object recognition tasks than are conventional pattern recognition methods.
Specifically, we have proposed two types of visual learning methods based on
the SCM algorithm and ensemble learning. The recognition performance of
visual learning is highly affected by the machine learning algorithm. Thus,
we have proposed an ensemble learning method called NadaBoost, which is
suitable for visual learning, by improving AdaBoost’s algorithm with respect to
its robustness to hard examples. We then applied NadaBoost’s algorithm to the
proposed visual learning method and verified its effectiveness through several
experiments using real-world image data sets.

In Chapter 3, we proposed an effective boosting algorithm, NadaBoost, to
resolve the overfitting problem of AdaBoost. We set the threshold HighWeight
in each round so that the weights of hard examples which have higher weights
than HighWeight are reduced and the theoretical upper bound of the classi-
fication error of NadaBoost is lower than that of AdaBoost. Through several
experiments, we confirmed that NadaBoost is more robust to noisy data sets
which include many hard examples and performs better than NadaBoost even
if the data set has few hard examples.

The way of determining the best HighWeight, however, is very costly with
respect to time complexity. Thus, we introduced the beam search to reduce
the computational cost. However, it is still time-consuming compared with
AdaBoost. Although the time complexity can be reduced if we use a fixed ad
hoc value which is determined empirically for HighWeight, the optimal value
of HighWeight will be dependent on classification tasks. Thus, we should try
to find an efficient approach to reduce the time complexity.
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In addition, we have not given theoretical evidence in terms of the general-
ization error of NadaBoost. Freund and Schapire [11] have shown the method
to bound the test error of AdaBoost in terms of its training error, the number
of training examples, the VC-dimension of the weak hypothesis space, and the
number of rounds. Schapire et al. [32] have introduced the idea of margins
of training examples and proven that larger margins on the training examples
result in lower test error. We should investigate the theoretical test error of
NadaBoost from these viewpoints.

In Chapter 4, we proposed a visual learning method based on the SCM al-
gorithm and introduced the effective feature selection method. Additionally,
we have introduced the beam search to reduce the computational complexity.
We have verified by several experiments that the feature selection shortens the
learning time considerably without the degradation of the classification accu-
racy. We confirmed from the result that feature selection enables us to find
only appropriate attributes which make the hypothesis accurate. In addition,
we have introduced the MDL-based cost function to improve the performance
of our method by eliminating useless features. By using the cost function, the
search for features is terminated at the proper point, so that the hypothesis
consists only of useful features. Consequently, the learning time is shortened
and the classification accuracy is not changed.

Though our method is highly efficient, we did not find the optimal parameter
settings for the maximum number of filters D and beam width for the tradeoff
between the classification accuracy and the learning time. While it is very
difficult to find the optimal parameter settings because the optimal settings
generally depend on the given data set, we should try to find some criterion for
the tradeoff.

Since the images in the SAR data set are rather noisy, we confirmed from the
experimental results that our method works well for noisy data sets. However,
these results are not sufficient to prove that our method is robust to noisy data.
Thus, we should carry out more experiments using noisy data sets and make
our method more stable.

In Chapter 5, we proposed an effective visual learning model. We modular-
ized the recognition process to recognize complex objects efficiently. Since hard
examples have an extreme effect on the recognition performance, we developed
an efficient ensemble learning model to reduce the influence of hard examples by
introducing collaboration among multiple classifiers. We divided hard examples
into two types: true hard examples and feature-dependent hard examples. The
true hard examples should be eliminated from training sets because they often
cause overfitting, while the feature-dependent hard examples can be utilized to
train classifiers. Thus, we proposed an efficient interaction algorithm to elimi-
nate the true hard examples and utilize the feature-dependent hard example.

In the object recognition experiments, we verified the effectiveness of our
visual learning model by comparing our recognition performance with that of
other object recognition methods. Then, we examined the robustness of our
model to hard examples.

The recognition performance, however, is still inadequate to discriminate a
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wide variety of objects correctly in the real-world scene. Although the recog-
nition performance is highly dependent on the combination of the classifiers,
finding the optimal combination is an open problem. Thus, we should develop
an efficient method to determine the optimal combination in order further to
improve the recognition performance.

In addition, our method has the problem of high computational complex-
ity. The problem of the learning time can be solved by introducing parallel
processing into the collaborative ensemble learning. However, we should try to
find a more appropriate method of reducing the computational complexity by
developing a more efficient learning framework.

Through this dissertation, we discuss the effectiveness of the introduction of
learning frameworks into object recognition tasks. This method is effective be-
cause human beings acquire their excellent recognition ability through learning.
Although the performance of the proposed recognition methods is still inade-
quate, we attempt to make the recognition ability of visual learning comparable
to that of human beings by analyzing and modeling human visual systems.
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