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Abstract

We consider the percolation on the k-out graph G,y (n, k). The critical prob-

ability of it is k+\/1k?7—k‘ Similarly to the random graph G(n,p), in a scaling

window H—@(l + O(n—1/3>), the sequence of sizes of large components
—2/3

rescaled by n converges to the excursion lengths of a Brownian motion
with some drift. Also, the size of the largest component is O(logn) in the
subcritical phase, and O(n) in the supercritical phase. The proof is based on
the analysis of the exploration process.
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Chapter 1

Introduction

The random graph G(n,p) has n vertices {1,...,n} and each edge (i, ) is
realized independently with probability p. It is well known that the random
graph has ”double jump”. Namely, for G(n,c/n), the size of the largest
component C; is of order logn for ¢ < 1, of order n?/3 for ¢ = 1, and of order
n for ¢ > 1, see [5]. Furthermore, it became clear that the structure of the
random graph rapidly changes in a ”scaling window” 2(1+0(n~/3)), see [6],
[7]. In a scaling window, the sequence of sizes of components (|C4], [Ca],...)
aranged in decreasing order, converges when scaled by n=2/3, see [8]. Aldous
showed that this scaled sequence converges to the sequence of excursions of
Brownian motion with some drift. This fact is provided by the analysis of the
exprolation process. In this process, we explore one vertex w; at each time t,
i.e., we count vertices connected to w; by an edge. So, the exploration process
reveals the structure of connected components of G(n,p). The convergence
to the Brownian excursions appears in another graph model too. Nachmias
and Peres investigated it in the random d-regular graph Gyeg(n,d). It is
known that the d-regular graph is a.s.-connected for d > 2, see [9], [10].
But when we consider the percolation on Gieg(n,d), i.e., each edge remains
with probability p and is removed with probability 1 — p independently, we
can consider a similar problem for percolation clusters. For this model, in
a scaling window p = %}1/3), the sequence of the sizes of the connected
components converges to the sequence of the excursions of a Brownian motion
with some drift, both arranged in decreasing order, see [2]

We prove this convergence for the k-out graph, where & > 2 is a given inte-
ger and we fix it throughout this paper. The k-out graph model is explained
in [10]. First we construct the graph with directed edges éout(n, k). The



vertex set of Gou(n, k) is V = {1,...,n}. For each v € V, choose k distinct
edges (v,v1),..., (v,vg) uniformly from {(v,1),(v,2),...,(v,n)} \ {(v,v)}.
This is a construction of the C_jout(n, k). The vertex set of Goui(n, k) is V
too and a non-directed edge (v, w) is in the edge set of Goyu(n, k) if either
(v,w) or (w,v) is an edge of Goyu (n, k). However, it is convenient to keep the
information of the direction of each edge until we construct the exploration
process. We also consider percolation on Goy(n, k). Each edge is open with
probability p and closed with probability 1 — p independently. Our explo-
ration process explores open clusters of Gou(n, k).

The k-out graph model is related to the Watts-Strogatz (WS) model,
which is commonly used in the study of complex networks. We hope that
the analysis of the k-out graph model will lead to knowing the structure of
the WS model, hence the structure of real networks. Further, the critical
point of percolation on these graphs can be considered as an indicator of
robustness of the graph model. Thus this result may be useful to analyze
real networks.

Bollobas and Riordan proved the phase transition of the growing k-out
graph in [4]. This graph model is similar to the k-out graph, but it has inho-
mogeneous degree of verteices. The growing k-out graph has more robustness
than the k-out graph. In fact, it is interesting to see that the critical point
of growing k-out graph is half of the critical point of the k-out graph.

In Chapter 2 we state main results. There are some theorems in each
phase of the percolation for the k-out graph. Chapter 3 introduces the con-
struction of the exploration process for the k-out graph. Proofs of Theorem
1, 3, 4 are in Chapter 4. In Chapter 5 the proof of Theorem 2 is provided by
the convergence of the exploration process.

For the construction and the calculation of the exploration process of the
k-out graph, we follow the argument in [2]. However, we have to overcome
some difficulties peculiar to the k-out graph.



Chapter 2

Main results

Let C; be the I-th largest open cluster of Goy(n, k).

Theorem 1 (critical phase). Let A € R be fized and let p = p(\) = };:‘7%

Then there exist positive constants c(\, k), C(\ k) such that for a large
enough A = O(n'/1%) and a large enough n,

—c(\k) A3
P(|ci| = an*?) < C(A’k)z .

Let {B(s) : s € [0,00)} be a standard Brownian motion. For A € R, we
define the process B* by

Bs) = B(2(k - VI —k)s)
+2(k = VE2—k)As — (VE> =k — k +1)s° (2.1)
for s € [0,00). Next we define the reflected process of B* by
WH(s) = B*s) — min B(s'). (2.2)

0<s’'<s

Let (|7;);>1 be the sequence of all excursion lengths of W* arranged in a
decreasing order. Also let (|C;]);>1 be the sequence of sizes of open clusters
in a decreasing order, concatenated by zeros to form a vector in /2.

Theorem 2 (scaling window). Let A € R be fized and let p = p(A) =

14 n—1/3
kevioR Lhen

- d
D (1G]) 0 = (1) o1

where convergence holds with respect to the [>-norm.
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Next, we state the results of the largest open cluster size in subcritical
C

and supercritical phases. Let p = Pyt

Theorem 3 (subcritical phase). If ¢ < 1 and A > 0 is sufficiently large,
then

P(|C1| > Alogn) — 0, asn — .

Theorem 4 (supercritical phase). If ¢ > 1 and 6 > 0 is sufficiently small,
then

P(|Ci| < on) =0, asn — oc.

2.1 Notation

Throughout this paper, we write f = o(g) if lim,, . f(n)/g(n) = 0, and
f = O(g) if there exists some constant C' > 0 independent of w and n, such
that f(n) < Cg(n) for a large enough n.

Next, we introduce an abbreviated notation,

X ~ NB(n;p) + Bin(m; q) +c,

to mean that X = X; + X5 + ¢ for independent random variables X; and X,
and a constant ¢ such that X; ~ NB(n;p) and X5 ~ Bin(m;q).



Chapter 3

Exploration process of the
k-out graph

We consider the k-out graph with directed edges éout(n, k). Each vertex
has state neutral or active or explored, and each edge has state checked or
unchecked. Let w; be the vertex that we explore at time ¢t. Let N, be the set
of neutral vertices at time ¢, A; be the set of active vertices at time ¢, and &
be the set of explored vertices at time ¢.

Let A" be the set of vertices at time ¢ such that, for v € N, (i) v is
neutral, and (ii) among k edges starting from v, exactly i edges are checked.
Therefore N, equals the union of M(O),A/t(l), . ,M(k). Simirally, let Af) be
the set of active vertices at time ¢ with exactly ¢ edges being checked. So A;
equals the union of .A]EO), A§”, . ,AE’“. Further we define the set Nt(zi) as
UlC N(j) Similarly we define N (<) A (24) A(Si

Let NV and N denote the cardlnahtles of N; and ./\/t , respectivery. Also
let A; and A denote the cardinalities of At and At , respectlvery

At time 0, all the vertices are in M . For t > 1, given At,l, ./\/’t(i‘)17
0 <1 <k, we construct Aﬁi), /\/'t(i), 0 <1< kin k+ 2 steps in the following
way. We write ./\/;(i)u and A,Ei_)u for N and A® at each step [ at time t.

tep 0)|choosing w; >0 an =0, w; is chosen from
(Step 0)[choosing w,] If A”, > 0 and A=) =0, w, is chosen f
A(Z)l uniformly. If A,_; = 0, w; is chosen from N;_; uniformly. We put
M(lo—M)1\{wt}andAt10: gl—)1\{wt}f0r0§i§k-

(Step [, 1 <[ < k)[directed edge from wy] If w; € M<l Dy Aﬁ‘”,
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we execute arm stretch process (AS process) pi—1;. The AS process
will be described later. If w, € N, 5 () §>ll), do nothing and put
N;:(zu —./\/t()ll ,and A% 1 —AE i 1f0r0<z<l<;at this step.

(Step k + 1)[directed edge to wy For v € ./\/;(i)lvk, if there is an
unchecked edge (v,w;) in éout(n k) and this edge is open, then v €
Aﬁ”fk 41, if this edge is closed, then v € /\ft”{lk) 1~ After this we declare
that the edge (v,wy) is Checked. If there is not such an edge, then
v E J\/tz)1 ki1 For v € At 1 if there is an unchecked edge (v, w;) in
Gout(n, k), then v € Aﬁlk 41, and we declare (v, w;) checked. If there

is not such an edge, then v € At Lkt1-

When all the above steps are over, we put & = &_1 U {w;}, N J\/tz)1 k1

AW = A k1 for 0 <7 <k, and the exploration of w is finished.

Next we explain the AS process p;—1;. It is composed of the following
algorithm. We start with T, = 0. First, we check one directed edge from
wy, and write 1,17, ,+1 for the head of this edge. If 1,17 ,41 is chosen
from N}E’L,fl and the edge (w¢, m—1.1,_,+1) is open, we say that m_y 7,_, 41 s
good, and let ;1 7,_, 11 change to active. Otherwise we say that n,_17,_,4+1 4
bad. After this we declare that the edge (wy, m—17,_,+1) is checked. For z >
1, suppose that we have distinct x good vertices m,—17,_,4+1,- .-, T—1.7_,+=-
Then we check one directed edge from 7:_1 1, |4+, and write m,_1 7, 4441 for

the head of this edge. If 417, | 40t1 € -/\/;(—0)1,1—1 \AM—1141y 1T )
and (Ne—1.1,_,+a, M—17,_,+a+1) 1S open, then we say that 9.1 7,_, 4241 is good.
Otherwise we say that 7,17, 1,41 is bad. After this we declare that the
edge (Me—11y_y+2> M—1,17_,+2+1) 1s checked. We continue it until we get to a
bad vertex, where we stop this process. Let {n:—17_,41,---, M—11,_,42} DE€
vertices obtained by the above procedure. Then 7,1 7,_, 1, is good for y < x
and 7_17,_,+o is bad. We set T} = Tj_; + = and we renew the states of
vertices in the following way. First we consider the case where n,_q17,_,+1 is

bad, SO Mi—1,17 = M—1,1;_1+1-

If 9,17, is chosen from Ay—1 ;-1 \ {me—119+1, - - M—1.17_o+1}

or n;_17, is chosen from N;_1; 1 \ {m-119+1,--M-117,_,+1} and the
edge (wy, mi—1.77) is closed,

then we put

‘/\/’t(i)l,l = t(i)l,lfl for 0 <i<F, Agl)u = E o for0<i <k



If ;1 7, is chosen from ./\/;(i)lvl_l for 1 < ¢ < k and the edge (wy, m—1.77)
is open,

then we put ' '

‘/\/’t(i)ll = 'N‘t(l)ll P\ -1} A/;(i)l,l = M(i)l,lfl for j # 1,

Agl)ll Agl)ll Ui} AE{)M = Agl,lq for j # 1.

Next we consider the case where 7;_1 1,_,+1 is good. Suppose that n,_17,_, 41,
s M1,y +a—1 are good and 7,17, 4+, is bad for > 2. Then n_1 1, =
N—1,T,_ 1+ and
If mi—17y is chosen from Ay U{w} U{m_11_ 41, i—1.m—1},
or n—17 is chosen from N;_;; ; and the edge (m—17-1,-117) 1S
closed,
then we put

j\/;f(oll:'/\/;f 11— AR U/ ST Y ey
./\ft(lll—./\ft()ll Lfor 1 <0 <k,

Ag 11 = At 1 1Y e mvts - 11}y
At 11_~At 11 for i # 1.

If 79—y 7y is chosen from /\/t(_l)1,z_1 and the edge (ni—11,-1, Nt—1.1,) is open,
then we put

Nt(o)lz = Ntolz AR U/ T AT T )

-/vt(lu Nt 1,1-1 \{n-11},

A/;(l1z—M( ll  for 2 <0 <k,

Ag 1z = At 1 PIRCR (/ST TR T

At = At 11 for i # 1.

If ni_17 is chosen from ./\ft(i)u_1 for 2 < i < k and the edge

(=111, Me—1,1;) 1s open,
then we put

/\/;(0)11 N; 11 R U/ ST Y ey >
'/\/;f(il,l = t—l,l—l \ {nt—l,Tz}7
'/\/;S(z)l,l = '/\/;f(z)l,l—l for j # 0,1,
AS)U = A§1)1 Yo meim— )
At 1= At 101 Y {11}
Atq,z = At71,zf1 for j # 1,1.



When all the above operations are over, the AS process p;_q, is finished.
We difine & by

ft - At - Atfl,l - 1 (31)

Namely, & + 1 is the number of vertices changing their state from neutral to
active, from step (t —1,2) to step (t — 1,k + 1).

Next we define N(w;) by N(w;) = Ai—11 — Ar—1,0 + Liw,en;_,}- Roughly
N (wy) is the number of vertices changing their state from neutral to active,
during step 1 (including wy). Thus A; = A;_1 + N(wy) + &;.

The process N(w;) is positive exactly when A;; = 0, and A; can be
written as A, = Y20 N(w,) + 3.1, &. We will investigate the behavior of

t
Xt = Z gs-
s=1

Remark 1. By the above construction, AEO) = Aﬁf}) =0 for any t and l.



Chapter 4

Proof of Theorems 1, 3, and 4

By definition, we have
Xt - At - Zt; (41)

where Z; is non-decreasing process given by

Zy =Y N(w,).

Let 0 =ty < t; < ... be the times at which A; vanishes. Then Z; = Z;
forall t € {t; +1,...,tj;1}. Since Xy, = =7, we have X, = ~Z,,,, =
—7Zy < Xyforallt € {t;+1,...,t;11 —1}. Therefore each t; is one of renewal
times of the process ming<<; Xs.

For vertices v and v, we mean by u < v that there is a directed edge
(v,u) in C_jout(n, k), and we mean by {771:—1,Tl € /\/'t(i)l’lfl, open} that ne_1 7y €
/\/'t(i)l’lf1 and the edge (m—11,-1, —1.1,) 1s open (if me—17,-1 = M—1.7_,, then
(we, Me—1.1,) is open). Also, {wt — v, closed} means that w; < v and the
edge (wy,v) is closed. r;_1; denotes the number of good vertices in the AS
process pi_1.



Each Nt(i)u is described such that

Nt(g)l 1 = Nt(E)l — 1{ te/\/(o) }{1 + 7},171},

(0) _
Nt = t 11 {wtejvtm)l} E Tt-11
- E : @) A6 E : Tt—10 — E : 1 >
{thN TUA; } {wﬁ—v}
S e,

and for 1 <1 <k,

@ _ N0 _ |
Nioig = Ny 1{wte/\/£°)1}1{m1T16N5“1m open} 1{%6]\4@1

() _ (@)
Nt—l,k—i—l - Nt_lal Nt(o)l} Z {m 1TlENt 1,0-1 Open}

_Z {weeN®, UA@)} Z {ne-rmeN®,,_,, open}
+ Z 1{wt<—v, ClOSQd} - Z 1{wt<—v}'

veN 1,2 veN®, "
Let

/

r =r_1+1
t—1,1 t—1,1 (>1) P
{17,5_1,Tl€./\/'t,1,l,1, open}

i.e., 7’ is the number of new active vertices in p;_1.
We will use a little different expression of &. Assume that w; € /\/t(i)l U

A%Ql for some 1 <7 < k—1. Then we introduce fictitious AS processes p;_1,
for | = 1,...,4, which are independent copies of an AS process Wlth data
{/\/; 11-1 Y A,E])U 1} 0<5< k; which always executes, and M 100 E)”
are unchanged from ./\ft(_1 I—15 AEZ_)l - Let 7y and 7 rt_u be the number of
good vertices in p;_;; and number of new active vertices in p;_; ;. Forl > i+1,

we put py_1,; as the [-th AS process as before. Therefore 7,_1; = r,_1; and

10



Pty =711y, for Il > i+ 1. By (3.1), & is described by

k
N
& = ZZQ 1{wteN§§f‘”uA§§§‘1)}thlvl T Z 1{wtev, open} 1

veN; 1k
k
N
= T 5 1 —1
Z -1 T {wtev, open}
=2 UE-/V’tfl,k
k J
— 1, . +1 : E .
Z;{ {950, A2 =0} {Ai1=0, wen?), } — =11
j: =

(4.2)

Let F; be the g-algebra generated by all the information up to time t,
and let Fy_1; D Fi—1 be the o-algebra generated by all the information up
to the end of the [-th step of time t.

4.1 Crude estimates

Lemma 1. Let 0 < p < 1 and m = m(n) < n be a sequence such that
m(n) — oo as n — oo. Then

E[&|Fi-1]
D k Nt(j)l A,y
-1 1S L gl
( )1 —p P ]22 Tn—t Gn —t
k
- Z{l{Ag@1>o, Az} T o wen®) }
j=2
2 (=1)
. p . P N5 , P A
—)-L (-1 (-1
e e R e .
(Nt(le)l 1 + At—l 171)2 m1/3 1/3
— ——0(1) + 0 Yo
(n—t)? (1) + (n—t+m b )
where F; = (k — 1)% +Jjp and G = (k — 1)tz + kp. Furthermore, let
Dy =2(k—VE2 — k). (4.4)

11



Ifp= k+\1/z§7_k for some € = o(1), then

(k—l)%—l—kp—l:Dke—i—O(g). (4.5)

To calculate the conditional expectation E [& ‘.7-},1] , we analyze each step.
Before the proof, we note that

Nt
h 1{{ntfl,TlilJﬁl:'--7"7t71,T171+171} are good }
Xl{nt_ml_lﬂ is bad and changes to active from neutral}
+1{{77t—1,Tl71+17~--777t—1,T171+1} are good }
Xl{m,l,n_ﬁz“ is bad and doesn’t change its state}

- 1{7’}71,11’5*1}1{”1—1’7"16/\/15(7211,)1*1’ open}

+1{'f't—1,l:33} 1{nt71,Tl€Nt—1,l—17 Closed} + 1{"7t71,Tl€At—1,l—1U{wt}} )
(4.6)

Remark 2. Suppose that w, is a good vertex of the AS process ps_1; for
some s < t and some 1 < | < k. Namely, there erist s < t, 1 <1 < k
and y € N such that wy = ns_11,_,+y and Ti_y +y < T;. Then we have
checked the directed edge (Ns—1,1,_,+y, Ns—1,1_,+y+1)- Hence we have to ex-
clude ns_1.1,_,+y+1 when we check other directed edges from wy (= Ns—1.1,_,+y)-
Furthermore, when we execute the l-th AS process pi_11, Mi—1,1,_,+1 1S chosen
from Ni 11 U Ai1g1 outside {ne 1141, 11415 - 1141} How-
ever, if we take conditional expectation without considering these things, then
the error is O(L)

n—t

Proof of Lemma 1. First, we consider E[ff’g_lvl\ﬂ_u_l] for 2 <[ <k.

12



By Remark 2,

P(nt—l,Tl_l-i—l 1s gOOd‘E—l,l—l)
(0)

N2 1
At M JONNEG :
n—=t P (n—t)

P(nt,l,THH is bad and change to active from neutral}ft,l,l,l)
(>1)

NiZiaa 1
= @)
o (n—t)’

P(m—1m_1+1 is bad and doesn’t change its state’]:t_l,l_l)
_ Ni_111

A1 1
——(1 - ——+0 .
n—=t (1-p)+ n—t * (n—t)

In the above equalities and hereafter, O(ﬁ) can be taken independent of
w. Further, for y > 2,

P(ﬁt—l,n_1+y is good {m—1,1,_y+1, -+ Me-1,1,_y+y—1} ar€ g00d>

0
N - -1
n—t

p,

IP’(?]FLTHW is bad and change to active from neutral‘

{1, - 777t71,Tl,1+y71} are good)
(=1)
Ntfl,lfl
n—t

Y

P(Ut—l,in_1+y is bad and doesn’t change its state

{77t—1,Tl_1+17 . 777t—1,Tl_1+y—1} are good)

Niqg-1—(y—1) A1 +1
_ et A e i
n—t ( p)+ n—t

13



Therefore, from (4.6),

ft_l,l_l] =E Li:o xl{ﬂ )
R [ o)
R ).

+h{%p“{y o} ¢ n_t)}
(=

A/
E [th,l

y=0

Ni_1;1— A 1
x{ t—1,0-1 x(l—p)+ t111+l‘+0 )}]
n—t n—t n—

(0) tlll x—2 (0)
Ne_11-1 Nt 10— L N —vy 1
— ’ 1— O
n—t ! Z H o P\ =i)

where we understand that [ 1,{-} = 1.

N©

t—1,1-1  x—2 I —y
tl 1
> xn{ )

0)
t—1,1—1 z—2 (0)
N~y
s H{— :

z=|m1/3|4+1 y=0

t1l1 z—2 Nt(O)lll y
Ao, O H{ p}

- L 10 v 1/8ym'/5 ) 1 q O(1
= ( NG g +O\ o +mp '+{M%z lm}()‘
1— t—1,l—1p)
n—t

14



Thus
[Tt 11‘]:1: 1,0— 1]

Ni_q,- 1 ml/3
-1

n—t N n—t
-
+1{Nt(0)1l ml/s}O(l)
1)
N 1 p NS 1+ A
B n—tpl—p (1 —p)? n—t
(Nt(zll)l 1‘|‘At—1l—1>2 mt/3
L 2 0(1)+0 Vpm?
(n —t)? (1) + (n—t+m b
+1{Nt(g)1,z_1<m1/3}0(1>
(=1)
_ p P’ Nt—l,l—l _ P Ap11-1
l—p (1=pP? n—-t (1-p? n—t
(Nt(zll)l 1+At*1171)2 m!/3 1/3
— ’ o(l)+0|—— L/3pm
(n—1)2 (1) + (n—t+m b
+1{Nt(0)1l 1/3}0(1)

Since

E Nt(>1lz LA
n—t

2

NED 4+ 4 1
E_1:| g —tl_.l_O(—)7
n—t n—t
1

F . (Nt(—zll) +At71)2 L0
i (n —t)? n—t)’

B (Nt(>11l 1+ A 1)
(n —1t)?

15



we get

k

o[
=2
_ p p? NZ p A
R e Y G e Y g
NED L4 )2 1/3 s
o o7 e
B[ 0 O 7] 47)

<
where we used that 1{Nt(2)1,171<m1/3} < 1{N§°)<m1/3}'

Next, we consider the conditional expectation of step k£ + 1. Similarly to
Remark 2,

E 1 Fi_
5 e
k )
G (k—=J)p 1
— ZNt_lk — +O<n_t
7=0
k (9)
N A 1
— kp— =1k =Lk
b ;jpn—t n—t \a=t)
hence we have
E |:v6-/\;1,k 1{wt<_v7 Open} JT;t_l:|
k (4)
N A, 1
= kp— jp—tLt —kp=L +0 . 4.8
p ;Jpn_t p—— + 0| — (4.8)

16



Therefore, combining (4.7) and (4.8), we have

E[&| Fi-1]
2 (>1)
p p Nt—l p Ay
= (k—1)—/ — (k-1 —(k—1)———
N i S g g
k /)
N’ A
k_ . tfl_k: tl_l
+kp ;Jpn_t [ —

k

S, | +1 |
Z{ {4950, AZ7 =0} T H{am1=0, ween ), }
=2

. p . P NE P A
SO e e R e,

(Nt(le)l 1 + Atfl lfl)2 m1/3 1/3
= ——0(1)+0 Yopm
+ (n—1) ()+ (n—t+m D
_'_E |:1{Nt(0)<m1/3}0(1) E,l]
Here let F; = (k — 1)% +Jjpand G = (k — 1)tz + kp, we get (4.3).
(4.5) is trivial. O
Lemma 2. Let {oy_1,;} be independent random vaiables distributed as
a1y ~ Ge(l—p) (1<I<k), (4.9)
Bi ( —t; ﬁ) t<n-—1
Q1 k1 ™ o ai) (t<n=1) (4.10)
Be(kp) (t=n)

foreachl <t<nandl <[ <k+1. Then we can couple {ﬂ—u} and {o—1,}
such that almost surely 721/571,1 <y foreachl <t <mnandl <I[<k. Also

we can couple {ZveNt_l,k 1{MHJ7 open}} and {1 k+1} such that almost
surely ZUGM_M l{thj’ open} < Qo141 for each 1 <t < n. Further, let
oy = ZZLQ a1+ a1 1 — 1. Then oy is distributed as

NB(k_l;l_p)+Bin<n—t;%>—1 (t<n-—-1)
Qg ~ n
B NB(k —1;1—p) + Be(kp) — 1 (t=n)

for each 1 <t <n, and we can couple {§;} and {a;} such that almost surely
& < ay for each t.

(4.11)

17



Proof. We consider a modified AS process for each (t — 1,1) for 1 <[ < k,
which is constructed from the following rule. It continues until it checkes a
closed edge even if it hits a bad vertex. Other procedure is just the same
as the AS process. Let x;_1; be the number of new active vertices in this
process. By definition, almost surely #;_;; < x;—1;, and we can couple x; 1,
and o1, such that almost surely x;—1; < a;—1;. Therefore we can couple
iy, and a; .

Other facts are trivial. n

Lemma 3. Let 6 > 0 be small enough. For any 0 < t < dn, there exist
positive constants Cy = Cy(k,d) and Cy = Cy(k, 6),
E[NEY+A] <Cit, E[(VF)+4)°) <Gt

PTOOf Let CN(>1)+A (Nt(ZI) + At) - (Nt(zll) + At 1) AISO let CNL +4 be a
random variable distributed as NB(k;1 — p) + Bm( n; nkt) where CN (=44
is independent of F,_;. We can couple ¢/ GY+4 hd Ct >+A’ such that

(1) NG
NEHA L NETRA g,

for all t < on. Hence we get some constant C; = C}(k,d) depending on k
and ¢,

0 < E[ >1)+At ZECN(>1)+A

t
_ kp kn
< E A < Oy,
P G < to— = O

s=1

Also there exists Cy(k,§) depending on k and 6,
N A
= E[(Nt(_zf)JrAt,l)}
+2]E[(Nt R N<>1>+A]
+E[( NEDLA L )2 geNED+A 1}

E [(NSP + At_lﬂ +2(Cy (k. 6))’t + O} (K, 6)
Co(k, 8)¢2

IN

IN

18



where C'(k, ) depends on n, k. O

Lemma 4. Let ¢ be in (0,1) and p < 1.
Ifa > k‘(ﬁ ), then there exists some constant I(a) > 0 such that

P(Nt(o) <n-—t-— at) < e~ I(a)t

for any t < on. In particular, if p < 3 L and 0 < , then there exists some
constant I(2k) > 0 such that

]P’(Nt(o) <n—t-— Qk:t) < g1k
for any t < dn.

Ifb < k;:g‘s for some 6 > 0, then there exists some constant 1(b) > 0
such that

P(NY >n—t—bt) <eL®

_2k—3

Hhr3)” then there exists some constant

for any t < don. In particular, if 6 <
1(5) > 0 such that

]P’(N(O) n—t- Et) L)
3

for any t < on.

Proof. Take an s < t. Recall that (NEVEA = (NEY 44 - (NED 4
As 1), and let { X} be ii.d. random variables distributed as NB(k;1—p) +
Bin( n Tom 5 ) for each s < t, and we couple CN(* '+4 and X, for each s < ¢

such that almost surely Cﬁv( V+A < X,. Let S, be Zszl X,. Then for any
6 € (0,1),

_ ]Eggt ]E@X1t
]P’(Nt(o)<n—t—at)§IP’<St>at>g - :( - )

eeat e@a

Here




for any ¢ satisfying e?p <1and 6 < 1, thus 0 < (—logp) A 1.
Let ¢(6) be logEe?*1. Then

_ _ 1
(0 = B = k(2 + —)
¢'(0) ! —p 1=5)
(5//(6) S C«
for some constant C' > 0. Therefore
]P’(St > at) < cté(6)—af]

< o [EX16-a0+C6? ] _

We can take this C independent of n and t. For some constant a satisfying
a > EX; = k(5 =+ L), take C satisfying & QIECXl < (—logp) A1 and let

I(a) be = EXI) , we get

P(St > at) < e~ 1@}t

In particular, set a = 2k and if p < 3 Land 6 < we get

2 3p’
]P(Nt(o) <n—t-— 2k:t) < k)

for any t < on.
Next, let X, bei.i.d. random variables distributed as B(n (1+b)(5n ky—

1. We can couple (N*"+4 and X, such that ¢¥N*"+4 > X on { 1k >
n—(14+0b) 5n} for each s <t, and X, is independent of Fs_; ;. We get

Ee %% = {—6_9 +1-— —} e’
n n
Let ¢(0) be log Ee?X1. Then

0) = EX, = k—1—k(1+b)5,
c

SN
=
VAN

for some constant C' > 0. Define S, = 22:1 X, we have

P(ﬁt < bt) < et[ﬂ—@)ﬂﬁ]

< ¢ [-Ex,0+b0+C0%]

20



For some b > 0 satisfying b < k —1 — k(1 + b)d, take C such that E%lc_b < 1.

Let 1(b) = %. Since N, 3(3) is decreasing for each time and step, we have
that B

) = S ]

IN

E [1 {NEYp A<t} 1 {Nf°)>n—(1+b)5n}]

P(S, < bt)

o1}t

if § < 223 then

<
<
and k(k+3)

In particular, set b =%

—~

IP’(NtU) >n—t— gt) < L)

for any t < on. O

4.2 Proof of Theorem 1

By Lemma 4 and the calculation of & in the proof of Lemma 1, we get the
proof of Theorem 1.

Proof of Theorem 1. Let {a,} be random variables given by (4.11), where
we extend the definition for s > n as in the following way,

N N{ NB(k—1;1—p)+ Bin(n —s;22) —1 (s <n—1),

' n—s

NB(k—1;1—p)+ Be(kp) — 1 (s >mn).

Let {IW;} be the process defined by W; = Wy + >_'_, v, where W}, is some
integer Wy > 0. We fix W, = d for some integer 1 < d < n'/3. Let h = n!/3
and

(4.12)

vh:min{t:Wt:OorWch}.
When s < n —1, for any ¢ > 0, we get

k—1 n—s
11— k k
Ee % = {—p } { P e ‘+1-— P } e
1—ep n—s n—s

= exp| - Doed1 - {EE

1—ep

Hn—s) log{l S (1= o) }+c] |

n—s

21



Here, when ¢ = o(1),

(l_eic)p _ (C—%—i—O(C%)p _ (C_é)p +O(C3)
L—ep 1—(1—c—|—§+0(c3))p l—-p+c —%p
2 2
p c p P 3
- - 2
T 2{1—p+ (1—p) }+O(C)’
and
kp kp 2 kp c3
1—e© - _°
( c )n—s Cn—s 2n—sjL <n—s>
Thus,
Ee™*
2 2
_ _ P cf P b 3
= exp[(k: 1)1og{1 cl_p—i— 2<1—p+2<1—p> )+O(C)}

2

kp 2 kp c3
—l—(n—s)log{l—cn_s s +O<n—s)}+c}

= exp [c{—(k; - 1)1L —kp+ 1}

—p
+%2{(k;— 1)1% + (k- 1)(%)2 +kp — : ps}+0(03)}-

Writing € = An~'/? and from (4.5), we have

—ca 02 p P 2
Ee = exp [—che + 5{(1{: — 1)1Tp + (k — 1)<ﬂ)

2,,2

thp— 2P }—1—0(03—{—062)]. (4.13)

n—s

When s > n, for any ¢ > 0 we get

1_ k—1

Ee s — {—p} {kjpe_c +1-— k’p}ec.
1—ep

So, similarly to the case of s <n — 1, we have

Ee—cos
2

_ - Sl () — k22
= exp[ che—i-z{(k: 1)1_p—|—(/{: 1)<1—p> + kp kp}

+0(c* + 062)] . (4.14)
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It is easy to see that
1< Dy <2. (4.15)

Furthermore,

k-1 (k- 1)(L)2+kp: (k — 1)(1&)2+ 1+ 0(e),

L=p L=p —p
(4.16)
and
P L0 < 40 (4.17)
k+vVEk?—k 2k —1
Using these facts, we will show that
%n_l/?’ A >0,
P(W,, >0)=<¢ S2n71/3 X<, (4.18)

dn~1/3 A=0.

When A > 0, let ¢ = 4¢ = 4 \n~/3. For any s > 1, by (4.13), (4.14) and
(4.16), (4.17), we have

Fe—cor > exp[s{—(k:—\/mH(k_1)%+(,€_1)(%)2
+k3p—k?2p2}62—|—0(63):|

= exp [8{ — kp + kp® — K*p* + 1}62 + 0(63>]

K —2k+1, 5
> _ .
> eofst o e s 0@)]

So, for a small enough € > 0, Ee~“* > 1. Since
echt

ngsgt E [e_cas}

is a martingale,

we have

)
|

—cd Ee_CWO _ E|: echWh :|

[Ticoe, Elee]
Ee=Wan

PR(W,, > 0) + P(W,, =0).

6—cn

IAINA
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It means that

1—e ddA
l—eent =T

P(W,, >0) <

When A <0, let ¢ = —e = —An"/3. From (4.17),

P 1
< .
1—p = 2(k—-1)

Using (4.13) - (4.16) and (4.19), for any s > 1, we have

—(2(k i 1))2 + 1)} + 0(63)}

(4.19)

Ee® < exp [62{ -1+ %((k‘ - 1)

< exp [— 262 + 0(63)]

Thus, for € < 0 with a small enough e[, Ee* < 1. Since

eth
——————— is a martingale,
ngsgt Eeces
we have
€Cd _ EeCWO _ E|: GCW’Y}L :|
[Ticic,, Beo
Z EecW«,h
> ¢ P(W,, > 0) + P(W,, =0).
It means that
ed _ 1 —2d\
P(W,, >0) < — n /3

ent? —1 7 er -1 ’

for a large enough n.

When A = 0, {W;} is a martingale. By optional stopping theorem,
P(W,, > 0) < dn~ 13,

Next, we check the bound of W; in the following lemma.

Lemma 5. For a large enough n,

EW,, < (3kn'®+1)P(W,, >0), (4.20)
EW2 < (9K°n°7 + 1)P(W,, >0). (4.21)
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Proof. We have

EW’Yh = E [W'yh—l + Oé’Yh]
E[n' + a5, 1o, <ar-nar/ay| W > 0JP(W5, > 0)

IA

+E [a7h1{awh>(3k71)n1/3}j|
3kn'*P(W,, > 0) + Ela,, 1 (g, >(3k—1)n1/3} )

IN

We calculate the second term. First,

E [0‘% 1{awh>(3k—1)n1/3}}
nl/3-1 o

S Z ZE[asl{a5>(3k71)n1/3} 0< le cee ?WS*Q < n1/3’ W 1= z,

r=1 s=1
oy > nt/3 — x}
xP(0 < Wi, ...,Wyp <0 W,y =3,0, >n'* —2)
nl/3-1
= Z ZE[%l{aS>(3k_1)n1/3}|&s > n'/? — 1]
r=1 s=1
XIP’(O <Wyp,...,Ws s < nl/?’,Ws,l =T,05 > n'/3 — x)

o0

E[os1 0> (3 1yn1/2)) B
; P(a, > n'/3) Bl =5, W >0)

IN

[e.e]

e Eal 1/3 13]
. S{Skln/<a<(3k 1)(j4+1)nt/3} .
= 11»](04 ) ! P(yn = s, W, >0)

P(as > (3k — 1)jn'/?)
]P’(as > n1/3)

s=1 j=1

A
NE
NE
<
+

P(y, = s, W, >0).
(4.22)

Recall (4.9), (4.10), (4.11). We have

1/3

P > ”1/3) > P12 > n1/3) =p"

25



P(a, > (3k —1)jn'/%) < > P(au_yy > 2jn'/?)
=2

+P (asl’kJrl 2 (k -+ 1)]”1/3)

1/3

< (k= DpP"" 4 Cy(kp) 07 (4.23)

for some constants C; = C(k) > 0, we get
P(as > (3k — 1)jn'/?)
P(as > n1/3) -

' ) inl/3
(k _ 1)p(2]*1)n /3 + Cl{k(kp)k}j

IN

inl/3 8 jnt/?
(k — Dp™" + ¢, (5) . (4.24)
From (4.22) and (4.24),

E [a7h L, >(3k71)n1/3}}

nl/3 00
< 02n1/3{p“”3 + (g) }Z P(y = s, W, >0)
s=1

nl/3
< 02n1/3{p"”3 + (g) }IP)(W% > 0) (4.25)

for some constant Cy = Cy(k) > 0, which implies that
]E[aﬁ/hl{a»yh>(3k—l)n1/3}} < P(W,, > 0)

for a large enough n. Therefore (4.20) is proved for a large enough n.
Next, we prove (4.21). By (4.25), we have

EW? = E|(W, 1 +a,,)’]

IA

E [n2/3 + (2n1/3a% + ozih)

l{a"/hg(gk*l)nl/i’)} W’Yh > Oi|

X]P)(nyh > 0) + E [(2711/3047}1 + CY,2yh) 1{a7h>(3k—1)n1/3}}
9k*n*/*P(W,, > 0)

8 nl/3
+2n!/3. C’gnl/?’{p”l/3 + <§> }]P’(W% > O)

+E [ai

IA

hl{a»yh>(3k—1)n1/3}:| ’
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Similary to the proof of (4.20), because of

E [agl{as>(3k71)n1/3}}
P(as > n1/3)

CY 1{ 3k—1)jnl/3<as<(3k—1)(j +1)n1/3}]

= Z ]P)(Ozs > n1/3)

Jj=1

/3 C' /®
n ;‘7 p<9)

for some constant C3 = Cs(k) > 0, we get

K [a?yh 1 {O"Yh >3(k—1)n1/3}]

2 Ea?1iy <3k 1)n1/sy)
=L ez T )

nl/3
< 03n2/3{p””3 + (g) }]P’(W% > 0).

Therefore (4.21) is proved for a large enough n. O

Using these facts, we have the following bound of E~j.

Lemma 6. For a large enough n,
Ev;, < 100k%dn'/?. (4.26)

Proof. Assume first that A > 1/4. By Ea, = DpAn~/? 4+ O(n=2/3) and
Dy > 1, {W, — tAn"'/3} is a submartingale for a large enough n. Thus the
optional stopping theorem and (4.20) of Lemma 5 provide

d = EW, < EW,, — A\n PEy,
< (3kn'2+ 1)P(W,, > 0) — M~/ Eq,.

Since 1 — e > 1/2 for A > 1/4, we get from (4.18),

3kn'/3  4d)

-1/3 1/3
E%_)\ =y p— o < 24kdn™’°.
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When 0 < A < 1/4, we consider (VVt — IEVVt)2 — %t. We have
1
E| (W, —EW,)" = 24|

2 1 2 2
— W — EW — —(t = P — _
( t—1 E t 1) 5 (t 1) + Eo (EOét)

o] =

It is easy to check that P(a, = 0) < 3/4 and (Eat)Q = O(¢?). Since Ea? —
(]Eat)2 — % >0, (Wt — EWt)2 — %t is a submartingale. Therefore, by optional
stopping theorem,

1

0 = E|(Wo—EWy)’] < E[(W,, —EW,,)"— 2]
1

= EW2 — (EW,,)" - B,

so Ev, < 5EW? . Using (4.21) and —A - <2for 0 < A < 1/4, we get
Erp, < 5-10 - 2k2dn®? - n=Y3 < 100k2dn'/3.
When A < 0, similarly to the case of A € (0,1/4],
Evy, < 5EW2 < 50k°n**P(W,, > 0).
If A =0,
Eryy, < 50k2n?3dn /3 < 50k2dn/?.

IfA<0,bye?—1> =)\,
B < 50/{:2712/3%71_1/3 < 100k%dn'/?.
6 j—

Therefore, for all A € R we have

E~, < 100k%dn'/3.

Let 7; = v, An??. Then we have
P(W,e > 0) < P(W,, >n'/?) + P(y, > n*?). (4.27)
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Using (4.18) for the first term of (4.27), also then, using (4.26) for the second
term of (4.27), we have some constant Cy = Cy(k, A) such that

P(W,: > 0) < Codn™"/2. (4.28)

Now we calculate ]E[ecft ’]-",5_1].
For 2 <1 <k, we can couple 7} ,, with i.i.d. random variables a1, in
(4.9), such that almost surely 7;_; } < a; 1.

We write {w; 0 v} for the event satisfying the following condition. We
choose uniformly [ edges from {(v, V') v e V\{EU {v}}} and among these

[ directed edges (v, w;) is chosen. Note that when v € ./\/t(fl_;) this is the same

as wy < v. But when v € J\/;(_Zlk,;l) by the above produce we allow v to choose
more edges than it can choose in the original k-out graph. If ¢ > n — [, we

understand that 1 {wtﬁl—)u} = 1. Further, {wt @ v, open} denotes the event

that {wt 101 U} occurs and the edge (v, w;) is open.
Thus we can couple {{wt < v,open} :v € V\{& U {wt}}} with

{{wt @ v,opento<i<k : v € V\ {51‘,71 U {wt}}}

such that (i) {w; 0 v, open <<k are independent of

{{wt @ U,opento<i<k 1 0 €V \ {51;_1 U {wy, v}}}

and that
(i) l{wt(@v, open} = l{wt@u, open}
almost surely for m > [, and that (iii) if v € ./\/;(51_2 then

1 wiew, Opent 1 wev, open }’
{ }
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Since Nt( 1> Nto)1 &> We have

Z 1{wt<—v, open}

vEN 1.k

- Z Z 1{wt<—fu, open}

=0 (4)
J UE'N’til,k

= Z 1{wt(<@'u, open} Z {wt(kél)v, open}

”eNt(O)l & N(>1 pUA— 1,k
< E 1 + E _ .
= {wt@v, open} {wt(k<—1)v, open}
veN ), veNZPUA

Therefore, for t < n and ¢ > 0 with ¢ = o(1), from (4.15)

Hf[ecgt.fi,l}

(0)
1—p ) F1 Ni—y
< p kp 4l kp
1—ep n—t n—t
(0)
k—1 k—1)p)" N
X{( e g )p} e

n—t n—t

IN

exp l(/f - 1){%@ + )+ (%)2(\/50)2}

+Nt(0)1{nkp (c +0)}+(nth0)1){%(c+02)}c}

= exp {(Dke +0())(c+ )+ A +2(k — 1) (%)28

-D

n—t— N

—Tﬁlp(”‘?)}

2
< exp {2(0—{— ) el + {1 +2(k—1) (%) }02
-p

n—t—N

—TJW”‘%]

(4.29)
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for a large enough n.
Now we define the event D and D; such that

k

D = {Nt(o)gn—t—gt, foreverytwithn1/3§t<5n},
k

D, = {Nt(o)gn—t—gt}, n'/? <t < én,

for some small § > 0.

Let v be a vertex in the component explored at first, and let C(v) be the
component including v. Let ¢, be the first time the process X; hits —N (wy).
It means that |C(v)| = t;. We couple & and «; for each ¢, such that & < oy
almost surely and o is independent of F;_;. Further, we can couple {X;}},
with {W;}7, such that X; < W; — W, almost surely for 0 < ¢t < n. We set
Wo = N(wi). Hence if |C(v)| > An*? for A > 1, then W,r > 0 as well as
Xy (a—1ynzs > —N(wi). Thus for a large enough n, we have

P(|C(v)| > Anz/g)
nl/3-1
< Z P(N(w;) =d,|C(v)| > An2/3) +P(N(wy) > n1/3)
d=1
ni/3-1

< Y P(N(wy) =d, Xoe s amryzin = —d, Wy > 0) +P(N(wy) > n'/?)
d=1
nl/3_1n2/3
< Z ZIP’ (w1) = d, v = 8, Wy > 0, Xy (4123 > —d, D)
HP(DC) +P(N(wy) > n'/?)
nl/3_1n2/3 (A_l)nQ/B
S Z ZP< wl _d77h_8W>0 Z guZ_WS_CLD)
s= u=s+1
+IP(DC) +P(N(wi) > n'?)
nl/3_1n2/3
c st(A-1)n?/3 cWs+cd *
< Z ZE[@ Luzst1 SutcWs Lipy; N(wy) =d, v, =5, W, > 0]

+P (DY) + P(N(wy) > n'/?)
for a small constant ¢ > 0, where D€ is complement of D. Since € = An~1/3,
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for n'/3 <t < dn, (4.29) implies that

E [ec&

]:t—l} 1ip, 13

2 k k
kp _k
< exp {2(0—1— ?)le| + {1 +2(k—1) (%) }02 — %p(C-F )

kpct
< exp [3c\e| - _gc + 202},
n

for a large enough n. Also from (4.29), we have Ee®t < exp [20|6| + 202} , and
hence

nl/3
Eet2s=1 & < exp [20]6\711/3 + 202711/3]

for a small enough ¢ > 0 and a large enough n. Since Dy D D for s €
[n'/3,6n], we have for s > 0 and 0 < s +t < dn,

E [eczzz’;ﬂ €1py ‘ ;S}
s+t

k
< exp [ Z {3c|e| - % + 202} + 2clelnt/? + 202711/3]
u=s+1

kpct®
< exp [30\6]15 - ]é_c + 2¢%t + 2cle|n!/® + 2c2n1/3} :
n
if ¢ > "2972/3 — 3|¢|. Therefore, putting t = (A — 1)n?/3, we have
IP’(|C(U)| > AnQ/S)

kpct?
< exp [30!6\15 — ]é_c + 2%t + 2cle|n'/? + 202n1/3]
n
nl/3_1 p2/3

X Z ZE[&CW‘S; N(wy) =d,v; = s, Wy > 0] e
d=1 s=1

+P(DY) + P(N(wy) > n'/?). (4.30)
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Here,

E[GCWS; N(wy) =d,v;, = s, W5 > 0]

1/3

< e E[ecasl{as§(3k—1)nl/3}; N(wr) =d, v, = s, W, > 0}

1/3

+e E[ecasl{as>(3k71)nl/3}; N<w1) =d, 7:2 =5, Ws > 0:|

1/3

< e?”“”l/glP’(N(wl) =d, v =s,W,>0)+e E[emsl{ao(%fl)n”:’}]

(4.31)

Using (4.23),

E |:€cas 1{as>(3k—1)n1/3}]

o

< ZE[ S N{ET 1)jn1/3<a5s<3k—1>(j+1>n1/3}}

Jj=1

< Z ec (3k—1)(j+1)n 1/5{(1{7 _ 1)p2jn1/5 c, (k’p) (k+1)jnt/3 } (432>

=1

.

for a small enough ¢ > 0 and a large enough n. From (4.30) - (4.32), we have
P(|C(v)| > An*/?)

kpct?
< exp [30| \t—g—+202t+20| eln'/® + 2¢*n 1/3]

nl/3_1 p2/3

X Z Z{ ke P (N (wy) = d, v = 5, W, > 0)

+ Z CBE=1)(G+1)n 1/3{ 2]n1/3 + (k:p) (k+1)jnt/3 }1 ecd

7j=1

+P(DY) + P(N(wi) > n'/?)
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kpct?
< exp [3c]e\t — Z— + 2%t + 2cle|n'/? + 202711/3]

1/3 1
y [e3kcnl/3 > (N (wy) = d)P(W,; > O|N(wy) = d)
d=1

+ny 66'3’“““)"1/3{% — ¥ 4y (kp) 0 ? H
j=1

+P(DY) + P(N(wy) > n'/?).
Now recall that ¢ = An~'/3 and set ¢ = (A — 1)n?/?,
B T
4(15 +nl/3)
If Ais large, ¢ > %n_2/3 — 2|¢|. From (4.28),
P(|C(v)| > An2/3)
[ 3)els - 2€n1/3}2]

8(t+n'/3)

nl/3-1

X [C4n_1/3 Z e“P(N(wy) = d)
d=1

+n Z eC'3k(J’+1)n1/3{<k _ 1)p2jn1/3 C, (kp)(k“ jnl/3 H

J=1

+P(DY) + P(N(wy) > n'/?)

< exp|—

for some constant Cy = Cy(k) > 0.

By Lemma 4,
on k
) = £ r(frzn-reb)
s=nl/3
< ne_ﬂg)"l/3

for some fixed I(%) > 0. Also note that, N (w1) is stocasticaly dominated by
a random Varlable distributed as 1 + Ge(1 — p). Therefore we have

P(|C(v)| > An?/3) < On~H3e (AL’ (4.33)
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for some constants C' = C'(k,A) > 0 and r = (k,A\) > 0 and a large enough
n. This estimate is correct if A = O(n!'/10).
Similar argument applies for components explored after the first one.
Denote by St the number of vertices contained in components larger than
T. Then |C;| > T implies that S > T. So taking T = An?3 we have

ESr _ nP(IC(v)| > T) < gefr(Afl):i
T - T - A

)

P(ICi] >T) <P(Sy >T) <

completing the proof. O

4.3 Proofs of Theorems 3, 4

In cases of above or below the critical point, we also use the calcuation of
the Xt-

Proof of Theorem 3. Let {as} be the random variables given by (4.11).
There exists a constant D > 0 such that for s <n—1and 0 <0 < D,

Ec’* < exp {(k - 1){%(9 +6%) + (%)2(@9)2}

=P (e 1) —91

n—s

< exp[{(k— 1)% Vkp— 1}<e+e2)

ol el

The right hand side of the above inequality is not larger than e~ for some
r > 0 and a small enough ¢ > 0. We have the same estimate for s = n. Let
v be a vertex v such that it is included in the component explored at first.
IC(v)| > Alogn implies that S oy > X g10gn > —N(wy). Also, N(wy)
is stochasticaly dominated by a random variable distributed as Ge(1 —p)+1.
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Therefore we have

P(|C(v)| > Alogn) < ZPUV(UH) = )P (X progn > —d)
< Y P(N(wy) = d)B(M¥aren > ¢ %)

< Z P(N(wl) _ d) e*THAlogn+9d
d=1
S C«nfrHA

for some constant C' > 0. The argument is similar for the components
explored after second time, too. Similarly to the proof of Theorem 1,

nP(|C(v)] > Alogn)
Alogn

Cfn177"9A

Alogn

P(|C,| > Alogn) <

If A is large enough, P(|C;| > Alogn) — 0 as n — oc. O
Proof of Theorem 4. When ¢ = k + Vk?> —k (i.e., p = 1), since the k-out

graph is almost surely connected, |C;| = n. We consider the case where
l<c<k+vVk*—k(e,p<l). Let r = (k—1)s5 +kp—1. Then ris
positive in this case. Let

k
g = Yt Y L open) (434
=2

vEN; 1k
k J
¢ = Z Lo @it _ol T1 () Zﬁ 10
{Atil>o, A= :0} {At,lzo, wte/\/til} b
j=2 =2

(4.35)

Then & = & — &. Further, let X/ = 2t ¢ and X/ = >\, €¢". So
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X = X{ — X/'. We have for any r > 0,
26mn

P(lCi| <dn) < > P(X,<0)

t=0n-+1

20n rt
< IP(X’< —> IP’(X” ) .
< 3 {plu<q)rr(xr=;

Take a > k(% + 1=3;) with a small § > 0. For 0 <'s < 24n and 1 <1 <F,
we define the event DS and DSJ by

D, = {N§0)>n—2(1+a)5n},

Dy, = {N(O) >n—2(14+a)in—1— 2/{:571}

For s <t and 2 <1<k, let r,_,; be following independent non-negative
random variables;

P(Zs—u _ :C> _ ﬂ{n—2(1+a)5n— 1 —2k;5n—yp}(1 _ ),

n—s

y=0
for x > 1, and it puts on 0 the remain}ng probability. We can couple 7_,
and r,_,, such that f;—l,l >reqy0n Dy g, 1. We also let by ;41 be inde-
pendent random variables distributed as Bin(n —2(1+a)dn — 1 — 2kén; £2)

for each s. We can couple ZvENS_lk 1{w,«vopeny and bs 141 such that

ZUENs—l,k 1{w5<—v,0pen} > bs—l,k—‘rl on Ds—l,k- We get for 6 > 07

k
—0X] —0X; 4 | | Ts—
Ee < E{ { “1{Dt 111}+1{Dt 111}}

=2

—ob,_ .
{ P e }H
k
E H {H e 01,107 00s—1,k+1 0

s=1"%]=2

k
Or,_ ,
X H{l{ﬁz_l,l—l} te Ul{ﬁtc_u—l}}

=2

6b, 1,
X{l{@“,k}“ lk*ll{@sl,k}H
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t k
S E |:H{H€_29r5“}62%51”““629}

s=1 N[=2

t k 9
e Bl
=2 )

Here
t k 2
Or, Obs 1111
]E[l + Hl{ge s u}e b+ 1{15%“}}
t k
or Obs_
< 1+E |:3 g{ll_! e20rs -1, }62 Lkﬂl{ﬁ%n’k}}
t k —
< 1+ 3\ E {H{H 01,1 }e4ebs—1,k+l} P(D%,.4)
s=1 N[=2
t k -
= 1+ 3\ H{H Ee‘*"rs—nz}Eewbs—w,/P(ngw).
s=1 N[=2
So

t k
Ee 0%t < E |:H{H e~ 20 1, }6_29b51vk+1629:|

s=1 N[=2

k

t
x 143 H{HE&@T“,Z}E&%SL,M P(ﬁ%n,k)'
s=1

1=2
Let ¢(0) = log Eerot for 1 <1 < k and ¢,(6) = log Ee®0.++1. Then
P
¢(0) = EZOJ = Tp + 0(9),
9p(0) = Ebopsr = kp+ O(6).
Since
P(Dgs, ) < P(Dg,) +P(Nig, — Na . > 1+ 2kdn)
S e—I_(a)~25n + k,p26n
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and

Ee 200, 6—29E£0,l+9201

E€—29b07k+1 6_20Eb0'k+1+020k+1

IA A

for some C; > 0,2 <[ <k, Cr1 > 0 and a small enough 6 > 0, we have

t k
EB—QX]g < H{H 6_20E£0’l+62cle_ZG]EbO’k+1+920k+1 629 }:|
s=1

=2

X\/]. + \/6—f(a)-25n _|_p25n0(]_)

— exp{—@{(k‘—1)%+kp—1+0(5)}t
Sfgasa)]
14 T 1 o),

Therefore
Tt
P(Xt’ < 5) < et (4.36)
for some small ; > 0 and a small enough ¢ > 0.
To estimate Ee?X | take a vertex v which appears as wy € N (=2 (>2)
Then there is some time u < s — 1 such that v € N 1k Y A 1k and that
{w, + v} occurs. Therefore > '_ &’ < S 1{wseNSf’uAE?}le2 my

and the right hand side is stochastlcally dominated by
t k
YO DRV pravs
TN DAL, =

where {a,_1,(v)} for 1 <u <t 2<I1<k,veV areiid. random variables
distributed as Ge(1 — p). Here we define random variables f(x) and g5 and
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hs by
f(z) ~ NB((k—1)z;1~-p)

gs ~ Bm<2(1+a)6 (1]{_;2;)>

hg ~ Bm( %)

Then we have

¢
EefX! < [H{e 9*)1 }+e

s=1

o
t
E {H OFles) | H O1(h) 1 Lo }

s=1

]

IN

(VAN
ﬁ
i‘;
i?
_|_
=Nk
=
Q)
Do
2
z
=
I
2Q
N

IA
o

o)
5

Therefore

for some r9 > 0.

Combining (4.36) and (4.37), we get the proof of the lemma.
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Chapter 5

Proof of Theorem 2

5.1 Detailed calculation

We start a further analysis of the exploration process. Let ¢t < dn for some

small 0 > 0. From now on, we assume that ¢ = €(n) is a sequence such that

€(n) — 0 as n — oo and we write p = p(n) = kif/% Also we assume that

50 is in [0,00) and m = [son?/?].

Lemma 7. If n is large enough, then for all t < son®?,
EA, = O(en®? + n'/?), (5.1)
EZ, = O(en2/3 + nl/g). (5.2)

Proof. We can couple the & and a4, such that almost surely & < oy and oy
is independent of F;_; for 1 <t < dn. Thus, using (4.4) and (4.5), we have

E[&|Fi-1] < Eo
p
= k-2 ykp-1
(k=1)7= LT
= Dye+ O(€). (5.3)
Recall that {to,t1,...} are times such that A;, = 0. By definition of N (w;),

N(w;) = 0 for any ¢t # t; + 1, and for N(wy,41), we can couple it and a
random variable k. distributed as Ge(1 — p) 4 1 independent of F;,. So

E[N(wy,41)|F,] < % +1  as. (5.4)
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From (4.1),
Ziyr1 = =X+ N(wy11) + &1 (5.5)
So, using (5.3) and (5.4), we get
E[Ztﬁl‘]—}j} < —E[thﬂ‘]:tj} + % + 1+ Dre+ 0(62) a.s..
Thus

Zt = jz:;l{tj«gtjﬂ}ztﬁl

- Z; L sty {_th“ TN Cwa) étj“}
p

< —min X, + max {/‘65 + ozs}. (5.6)

- s<t

Here X, — 22:1 E[ﬁs‘};_l] is an (F;)-martingale. So, using Doob’s maximal
L? inequality and Lemmas 1, 3 and 4, we have

1 +EL§: ‘E[gs}fs_l] ”

—]E[minXs} < E[max
s<t

s<t
g W

t

< ;E{l{f‘gi?>o} + 1{,45_1:0’ wte-/\/;(ff)}] O(l)

t2
+O<\/Z+et+ ~ +logn)

X, =) E[€|Fua] |+ max
u=1 o

ZE[gulfu—l}

X =Y E[&|F]
s=1

:
< ;E{I{Ag%o} Tl wte/\/;z?}} o(1)
+0(en? +n/?). (5.7)
For 1 <i <k, let
= A~ A (5.8)
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Further we define aizi) = Agzi) — AE?O. By definition, agi) € F; and

Lazos) = ens) T e 1 aen0,)
< { (>2>>1} +1 {A(>2)>2} (5'9)

Now we use the following lemma. We prove this later.

Lemma 8. For s <t < syn®? and d € NU {0},

<{a ) =@} n {NY n—t—%t}‘]—"s 1) < 2“{#0}{ —

P({A§22) >2 N {N" >n—t- 2kt}> =0(n??).

k(t + 2kt) }d7

Using (5.9) and Lemmas 4, 8, we have

Z ]El{A<>2) O(1) = O(n'/%). (5.10)

Next, we get

NED _ NED
E|:1{AS—1:0, thNS(ff)}’f81:| - {A 1= 0} Ns 1 = n—s

By Lemma 3,

t
2 EL o ez} O =00). (5.11)
Using (5.7), (5.10) and (5.11), we have
—E[Iglgl? Xs] = O(en2/3 + n1/3). (5.12)
Therefore, using (5.6) and (5.12), we obtain that

EZ, < —E[r?gi?Xs}jLO(logn)

= O(en2/3 + n1/3).
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Also, by Lemmas 1, 3, 4 and (5.10), (5.11), we have
EX; = O(en2/3 +n'? +log n) = O(en2/3 + nl/g). (5.13)
Further, from (4.1) and (5.13),

EAt = EXt + ]EZt
O(en2/3 + nl/g).

Proof of Lemma 8. Let d be a fixed natural number. First, note that
dAk
1 = 1 1
{aZV=a} ; {a2? A& —c} T {a2?, | —aZD —q-c}
ANk

- ;1{<I>c}1{<n>dc}'

For each ¢ with 0 < ¢ < d A k, we have

1{(1)6} < Z H 1{A(z2> 7AS21>’%71:1}

; 1,1,
1<l <la <<l <k i=1 ST

Xl{A@Q) A®2, —ofor any I # {ly,...,l.}}

s—1,1! s—1,1/—1

C
S 1 (22) _ 4(>2) _
1Sll<l;-<lcﬁki11 {Asiili A;i’li—lfl}
C
:: 1 )
1<ll<l;'<lc<kz]1 {(]]I)Z}
By
1{ =1 1 (>2)
(]]I)i} {lz—th AS process excutes} {ns—l,Tli estl,lrlvOPGIl}
= 1{71571,Tli€./\/’5(§i)li71}’
we have
NED
E[l{(ﬂm} }—H”H] = Thos
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The inequarity N§0_)17li_1 > n —t — 2kt means that Ngi)li_l + A;qy,01 <

t — s+ 2kt, so

FS—I,li—1i|

>92
Ns(:l,)li—l

>1
Ns(:l?li_l'f'As—l,li—lSt_5+2kt} n—s

E [1 {am,} 1 {Ns((i)l’liflznftfﬂct}

Sl{

<t—s+2kt < k(t+2kt)'
- n—s - n—t

Next, we estimate (II)4—.. We have

(1) _1\ %
N=7 + Ag 1k k—1
ﬁ _ < S 1,]43 El -
51’4 - ( d—c )(n—s

L d—c
S { (Ns(§11,)k + As—l,k) } 9

n—s

E [1{(H)d—c}

SO

IN

{ k(t — s + 2kt) }dc

n—s

E[l (H)dfc 1 N((i) >n—t—2kt ‘FS—I,k]
s—1,k

n—t

{kz(t + 2kt) }dc‘

Now, since Nt(,(l]) is decreasing in both ¢ and [, we have

t k
l{Nt(O)Zn—t—th} S H H 1{Ns((i>1,12n—t—2kt}

s=11=0

for s <t. Thus

E [1{a§>2>:d} 1{Nt<0)2n—t—2kt} -stl,k}

dNk c

k(t+ 2kt)
<2 2 Dqwytpe ﬁn—t—?kt}{?} ’

=0 1<l <lp <+ <1<k i=1 s=1,l—
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therefore

= [1 {aZ?=d} 1{N§2)1,k2n—t—2kt} ‘fs—l]

< dﬁ; (’Z) {’“(T_?ft) } { l-c(z;1 +_2tk;t) }d‘c

d
< Qk{w} .
n—t
Furthermore, for d € NU {0},
k(t + 2kt) )
k1
E [l{ag>2):d} l{Nt(O)ZTL*t*Zkt} .7:5_1] <2 {d#o}{ﬁ} '

To prove the second part of this lemma, let {d(q)}zzr be non-negative
integers for 0 < r < s < t. Using notations 1)y, 1y and 1) again, we
get

H 1 {a5122)=d(q)} 1 {Nt(”) 2n7t72kt}
q=r
s d(g)Nk c(q)
< H Z Z H 1{(]]1)(”-}1{N§?1yli712n—t—2kt}

q=r ¢(q)=0 1<li <lp <<l (g) <k i=1

x1 { (M) g,d(q)—c(q) } 1 {Né(i)l,an—t—2kt} ’

Thus, by the first part of this lemma,

Foi]

I [ H 1 {agzg):d(q)} 1 {Nt(o) Zn—t—Qk’t}
q=r

u d(q) S d(g)
< H 9F11d(g)0} {M} — 9k Yo a() 20 {M} a

n—t n—1t
q=r

k > g—r d(q)
< {2 k(t ~|—fkt)} ' (5.14)
n —
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Now

ez}

< {A(>2)>2} {Vu<s a<>2)<2} +1 {3u<s a< - =3, Yu'#u, a(>2)<2}

+1{3u,u’§s, a&zQ):ai?Q)ZS} + l{ﬂugs, a222)24} ’

When A 1 =0, 1f a7 = x then A7? = 2. When A(EQ) > 1, since w, is
chosen from Au L, if a7 = 2 then AF? = Az(le) + 2 — 1. On the event
{ASZQ > 2, Yu < s, aZ? < 2}, if

t{uels—rs); a(2?) = 2} —t{uels—rs; alz?) = 0} <0

u

for all r < s, then A(()EQ) > 0, which is a contradiction. So there exists a time
r € [0, s] such that

t{uels—rs; alz? = 2} —t{uels—rs; alz? = 0} =1.

u

Therefore

1 {A§22)>2} 1 {Vugs, aSFZ)gQ}

S Zl{ﬁ{ue[s 7,s]; a&>2) 2} ﬁ{uES r,s]; (>2)0}1}1{Vu<s a§L>2 <2}

s |r/2]

= 2 o))

r=0 x=0

1 1 .
8 {ﬁ{ue[sfr,s]; a£22)=2}:x+1} {ﬁ{ue[sfr,s]; a222):1}:r72x}
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Thus, from (5.14),

E[ {A<>2)>2} {vuss, a(>2><2}1{Nt(0)2nt2kt}}

. 2s:LT/z?:J Zkk( + 2kt) 2(z+1)+r—2z
— x!( :v—i— 7’—233) n—t
28k (t + 2kt)

< 3T+1

SEE

(%)

Next, we have

1{ (22>>2}1{E|u<5 a(22>*3 Yu'#u, a&ZQ)SQ}

< 1{ (>2)>2} + 1{ (>2)22}

+{ { (22)*1} + 1 agz?l}}l{ﬂuﬁs—z a&zz)*i’)}

L ugea, oo, i, a2} oo} {424
(5.15)

From the first part of this lemma, we know that

E[{the first and the second term of (5'15)}1{N§0)2n—t—2kt}}

t2
- o(5)

and from the first part of this lemma,

. t t3 t2
E|{ the third term of (5.15)}1{N§0)2n_t_%t}} - O(nt$>— O(ﬁ).

We consider the fourth term of (5.15). Similarly to the above inequality, we
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have

1{3u§s, a&ZQ):S, Yu'#u, ag2)§2} 1{(1222):0,2%21):0}1{Ai§22>24}

< E 1
- - {aELZQ):3, Yu!F#u, ai?2)§2}
u=

s—3—u

1
: Z { u'€[s—d—r,s—4]; a (>2) 2} ﬁ{ue —4—r,5—4]; <>2)—0} }
+ Z 1{a222):3, Yu! #u, ai?mSZ}

1
XZ { v elu—1-ru—1]; a (>2) 2} ﬁ{ueu 1-ru—1]; (>2)—0} }

s—3—u /2]

Zl{ == 3} Z Z 1{ uE[s 4—r,s—4]; a(?Q) O}:x}

r=0 =0

1 1
8 {ﬁ{u’6[3—4—rs—4}’ a(22):2}:z+1} {ﬁ{u’e[s—4—r,s—4]; aq(;2):1}:r—23:}

u=2 |r/2]

+ Z 1{ (>2) 3} Z Z 1{ﬁ{u’e[u—1—r,u—1]§ a52):0}:x}

r=0 x=0

><1 1 .
{ﬁ{u’e[u—l—r,u—l]; ai?2)22}:a:+1} {ﬁ{u’e[u—l—r,u—l}; af?Q):l}:r—Z:L‘}

By similar calculation as above, we have

L [1{3u<8, aZP =3, Yu'#u, a1§22>§2} 1 {a§22): <Z2)—0} 1 {A<22)>4} 1 {N<O)>n—t—2kt}:|
S

<

-3 s_s—uwz‘zj ( +1) {2’“k(t+2kt)}3+2 (x+1)+r—2z

e iiber it !l (z + D)(r — 2z)! n—t

+5—2 u—2 |r/2] (r—i—l)! Qkk(t—l—Zkt) 34+2(z+1)+r—2x
l(x + D)(r — 22)! n—t
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Therefore
t2
E[I{Ag»)zg}l{augs’ aZ2 23, vurtu, a7(1>2)§2}1{Nt(0)2nt2kt}] =0 ﬁ '

Finally, by a straightforward calculation

E |:1 {Hu,u’gsz, a&ZZ):aL?%:B} 1 {Néo)zntth}]

3 3 2
_ 2 _
—O(t n—n—>—0(n—)

E [1 {3u§s—2, a§22)24} 1 {N§°)>n—t—2kt}]

oft)-of2)

2 o, .

Thus we have E|:1{Ag222)22}1{Nt(0)2n—t—2kt}} = O(%), it is the second part
of this lemma. |
Lemma 9. If n is large enough, then for all t < syn?/3,

IENt(O) = n— {(l{; - 1)% + k}t + O(en2/3 + n1/3),

-p

ENY = k(1 —p)t+ O(en2/3 + nl/?’),

IENt(i) = O(en2/3 + n1/3), for2 <i<k.
Proof. We have

k
0 _ (0) 2
M Nt‘l_l{wtewfé}_;1{%6%\&?%‘5{) e
_ Z 1
UGN;(E)NC {wt<—v}

0
= N t(f)l

k
> - Y1 -1 {1 i }
t—1,1 {wt<—v} {At—1=07wt€A/t(E>1 T b
=2 0
UENt(—>1,k
N J
i=2 {4250 Az =0} T A =0, ween) } o

=2
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So, take conditional expectation of both sides, we get

]E[Nt(())“/__;f—l} = ZE[Tt 11’]‘} 1] N(O)%

1
+1{At—1:0}0<1) + 1{Ag?>0}0<1) + O(E) .

Here recall that we have put m = [son??] for some sy € [0,00). Then

E (o1 Fooryon] = E[le TEp— E—1,z—1]

NO

- 3 Iy o)

N(O) —x N(zl) + A e _|_ T 1
% t—1,1—1 (1 —p) + t—1,0—1 t—1,1—-1 Lol =
n—t n—t

N©

NeZvior o= (0) (0)
t—10-1 Y Ntl
= 1— O
S eI ()
N
Nt(O)lll Nt(O)ll el e tlll -y 1
= o 11— —= O -
Sl };fﬂ{ e tpo(;)

0 0
_ N ! {1 . Nf_’l,l_lp}
n—t (1 B Nt(,j)iilpy n—t

o ™2 s g o(1
+ n +m>p + {Nt(g)l,l71<m1/3}. (1)

p NEY_ + Ay

_ 4 D ) O(l) +O<7’L_2/3) _|_1{N(0> 1/3}O<1).

tlll
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Therefore
E[Nt(0)|}_t—1] _ Nt(E)l _ (k; _ 1)L —k+ 1{A(>2) }O 1

Nt(fl,lfl + At—l,l—l
+1{At—1:0}0(1) + - O(l)

+0(n2%) + 1o, l_1<m1/3}0(1)'

Using Lemma 7, we have also

t
B[4 ] SBZ =0 400)

and by Lemma 4 and Lemma 8§,

2

t
_ Uy 1/3
E[;I{A??w}] —O<logn+ n) = 0(n'?).
Furthermore by Lemma 3,
EN" =n — {(k — 1)& + k}t +O(en®? +n'/3).

Next, for i > 1

k
(6 _ (4)
Nt - Ntfl - Z 1{77t,Tl e/\/’t(i)l 1 Open} + Z 1{wtev, ClOSed}
= | v,
B Z 1 {wt <—U}

veNt@Lk
k
+ ;{1{A§ﬂ1>0, AE%{#I):O} + 1{At71=0, wte/\/t(”l}}
J
* ZZQ 1{nt7Tl€'/\/'t(i)1’l,1, Open}
—1{%6/\@1 - 1{wt€/\ft(9>1}1{mm1 en, 5, open}’
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So, we have

k—i—1)(1-p)
n— 1t + 1{At—1:0}0(1>

NEZD L+ Ania
+1{AE?>O}O<1) + t—1,0—1 - O(l)

+0 (n*2/3) + 1{Nt(2)1 l_1<m1/3}0(1).

E[Nt(i)‘]:tq} _ Nt(i)l+Nt(:1)(

When ¢ =1,
W k1= 2/3 | 1/3
EN; " = k(1 — p)t + O(en®? + n'/?),
and when 7 > 2,

]ENt(i) _ O(6n2/3 + n1/3).

Lemma 10. If n is large enough, then for all t < syn?®/3 and 0 < i <k,

E Nt(i) _ ENt(i) _ O(€n2/3 + n1/3>.

Proof. By Lemma 9, For i > 2, E|Nt(i) — ]ENt(i)| < QENt(i) = O(en?3 4+ n'/3),
also by Lemma 7, E|A, — E4,| < O(en?? 4+ n!/3). So we consider for i = 1.
By

t
Nt(l) B Z Z 1{wsH}, closed}

s=1 ,UGNS(S>1J€

t

r k
- ; a ; 1{775—1,Tl GNS(i)l,l_l, open} - UGA/Z(I) 1{ws<—’l)}:|
s—1,k
t r k
+ Z Z{I{AS)?O: Aiéji+l):0} + 1{A371:0’ wteNgj)l}}

s=1 +j5=2

J
xD 1
— {ns-LTleNs@l,l,l, open}}

t
_ ; {1{%6%(0)1}1{%1?1 NV, . open} + l{wse/\fs“)l}] :
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we have
BIN —EN;"|

Z Z 1{wSH;, closed}_EZ Z l{wsev, Closed}'

t t
s=1 (0) s=1 (0)
UeNsilyk ,UEN.sfl,k

+0(en? + n1/?),

<E

Here recall the definition of {w, ol v} in the proof of Theorem 1,

t ¢
k Z Z 1{ws<—v, closed} o EZ Z 1{ws<—v, closed}‘
s=1 UENS(E)I,IC s=1 ”eNs(E)l,k
t t
=E Z Z 1{%@”, closed} N EZ Z 1{ws(<@v, closed}
s=1 v gEs s=lvgéEs

t t
+Z Z 1{wSH;, closed} -k Z 1{ws<—v, Closed}

s=Lyen® | s=1pen @ |
t t
N Z Z 1{ws(ﬁv, Closed} T EZ Z 1{ws@u, closed}"
s=1 v ¢Es s=1 vEEs
By Schwarz’s inequality,

t t
Z Z 1{%@@, closed} N EZ Z 1{ws<<5)v, closed}‘

s=1 v gEs s=1 vEEs

<V (i 2 1,m, closed})

s=1 'Uggs

= Z(n_s)u<1 _ M)

n—s n—s

=0(Vt) = O(n'?).

E

o4



Also,

{ws<—v, closed} Z Z {ws<—v, closed}

(0) (0)

N Z Z 1{wb<—v closed } + ]EZ Z 1{w By, closed }

s=1 v £E, s=1 v £E,

ZZE) Z 1{%(@%, closed }

= >1
=1 LeneD oA

+0 (en2/3 + n1/3),

IN

therefore

E‘Nt(l) _ ENt(l)

= O(en2/3 + nl/g).
Finally by N\ =n—SF N® — 4, — ¢,

E‘Nt(o) _ ENt(O)’ _ O(en2/3 + nl/S)‘

5.2 Convergence of the exploration process

Recall times tq < t; < ... such that Atj = 0. We define the process Xt by
X() = X(] =0 and for any t e [tj, tj+1),

) {Xt it X, > X, (5.16)

X, = .
t X, othewise,

and X, = X,, for any t > n. By this definition, the times when the minima
of X; updates are only {t;}.

Theorem 5. Let \ be in R and € = An~Y3. Then
nV3X s, :d> B, as n — 0o,

where this convergence is on finite intervals.
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Remark 3. Recording minima for the process X, occurs only when A; = 0.
Since we explore one vertex at each time, the size of the j-th explored open
cluster is tj;1 — t;. Therefore the analysis of the process X, characterizes
open clusters of the k-out graph.

Recall that sq € [0,00) and m = |son??|. Let ¢ be in [0,1]. We define
&™ by

k
(m) — P
5 ;Ts_l’ll{";;_lylgml/?)}
k
+Z Z 1{ws<—v, open}l{EvGNm

7=0 ”GNS@Lk

-1,
{wsw open} Sml/g}

(5.17)
and let X!™ =y0 ¢l
To prove the convergence of the process X, we use a central limit theorem

for martingales (cf. [11] Chapter7, Theorem 7.2.). Namely,

1. ‘m_l/z (55””‘) — E[gﬁm)m_l})‘ < €, for all s < m with ¢,, — 0, and

2w SB[ B[ | )
and some C' > 0,

3,1} — Ct i.p. for any t € [0, 1]

then m~1/2 Zgj (5 ™) [§sm | Foz1]) % B(Ct), where B(t) is a standard
Brownian motion.
We start the calculation of IE[ |.FS 1} Similarly to the calculation of
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E[fsfl’l}]:s_l,l_l} in the proof of Lemma 1,

E [f;—l,ll{f,; l§m1/3} ‘]:s—l,l—l]
Lml/BJAN(O)u 1 z—2

(0)
Ns—ll—l stllfl s 1l 1
= — 1_—’
n—s ¥ n—s ¥ Z xH n—s

r=1

Ne 111 1 ml/3 13 m
e o +O( —+m'p
1—=27p
+1{N<0) 1/3}0(1)
(1)
p P N

1/3
s—1,1-1 m 1/3, m!
= - 0
—p (-p? n (n e >
N(>2 YA, "
+ s—1,1— ln 1 10(1)+
+1{N§(i)1,l_1<m1/3}0(1).

(N(>iz 1+ A1

S

o)

n2

Also, similarly to the calculation of E[Z%NS?M 1{w - open}}

o7

stl,k} n



the proof of Lemma 1, we have

k
E 1 1 ‘FS—
{z_; Z {wieo, open} {ZueN(” { 0 en}<m1/3} 14
J= 1)6./\/;]317,6 o wee OP
k Lm1/3j/\Ns@ ’ . . T . JAS—
S I =
' T n—s n—s
7=0 =0

k
ZN 1k ) —|—O( 1/3(kp)m1/3) + 1{N§(1)1 k<m1/3}0<1)

=0

<.

N(l) 1/3 ml/3
—k‘p—n *p 4+ O(m'3 (kp)™")

+N(>1k+AS 1Lk

n

O(1> + 1{N£?1,k<m1/3}0<1)’
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where we understand that Zzzl - =01if a > b. Therefore

E[¢™)] Fooi]
2 (1) k ()

p . s—1
kp — —— -1
(1—p)2n—s+ P ijn—s

= (k=g — (-1

(>2)
NEY A, )

1/3 )
+O(mn + m1/3(kp)m /3) +

(Ns 1 +As 1 i
+ +ZE[ {80, </}

n2
1) 1/3
N~ m
- Dke_p{(k_ Vi fp)2 * 1}718—15 +O(T +m (k)™ +€2)

(>2) N(El) A 2
+—NS‘1 +A8‘1O(1) +( 1t A) O(1)
n n?

Foalo(n). (5.18)

fs_l}o(l)

+E|1 [N <t}

In the last line we used the fact that N S(B)U > NS(O). Furthermore using
Lemmas 4, 7, 9, we get for a large enough n,

EE™ = Dye—kp(1 —P){(k— 1>(1 fp)z + 1}ni5

1/3 ‘ 2/3 | ,.1/3
+0 (m +m 3 pym 4 LR 62)
n n

= Dye—kp(1 —p){(k— 1)(1_p;p)2 + 1}&

+0(€ + en Y3 4+ n_2/3). (5.19)
Lemma 11. If n is large enough, then for all s < son®/?

(i) ]Efgm)—Dke—i—kp(l—p){(k: e +1} - =O0(E+en '3 4n723).
(i) E[E[E|F, ] —BE™| = O+ en ™ +n27).

(it}) E[(&™)"[Foma] = 2(k — VEZ=R)

+O(e+n7) + (N2 + A)O) +E[L ) [Fica |01
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Proof. (i) has already been confirmed. Also, by (5.18) and Lemmas 3, 7, 9,
10,

E[E[€™[F, ] — BE™)
_ p 1
- p{(k_ Doy +1}n—SE

1/3 2/3 1/3
+0 (m 3 (pym p LR 62)

1 1
N —END

n n
= 0(62 +en 13 4 n’2/3),

which proves (ii).
To prove the (iii), we consider (gﬁm) + 1)2. We get

E|(€) +1)°|Foi
_o E[Ag 1, 41, . }
2<l<zl/<k Tl {Ts}lgml/s}r 1 {rs7ll§m1/3} 1
k
+ Z E [(f‘;’l)ﬁ{fg z§m1/3} FS_1:|
1=2 ,
2
+E |:{ Z ! 1 } fs—1:|
UGNS(E)Lk {ws<—v, Open} { EUGNS(S)L,C l{wSHJ’ Open}gml/g}
UEA%M {ws<—v7 open} {ZveNs((l)l,k 1{%(_% open}gml/g}
k
. 1 1 ‘Fs—1:|
s—1,k

k 2
1
+E [{Z Z 1{wsev, open} { Zue\/s@l . 1{%%”‘ open} gml/g} }

=1 )
J UEstl,k'

«Fs—l:|
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k

N
+2 ZZ; E[#,1 {1 s}

..

We analyze each of them, similarly to the calculation of E[fs‘}"s_l] in the
proof of Lemma 1. For [ < I’ we have

D D s open} s

. 1 <m1/3
j=0 vGNs@l & UENs@Lk {ws<—v, open} }

E[# 1 o1
sl {f;lgm1/3}/r8,l/ {7;; l,§m1/3} fS*l,llfl

N&D + A1

— _r —2/3 s—11/—1
rs’ll{f’;’lﬁmlm}{l—p—i_O(n ) + "

0 ey}

o(1)

thus

E [féﬂll{f;,lgmw}f;vl’1{f;7,,3m1/3} ]:5‘1}

(=1)
I S +0(n"2) +Ns—1 + A
(1-») n

+E[1{N§°H,H<ml/3} fs_l} O(1) +E [1{

o(1)

Foa|oq).

Nig)l,l’—l<ml/3}
Next,

(0) 1/3
Ns—l,l—l/\m /

2
Z X 1{7“3’;:35}

=0

(=1 A
= p<1 p) - Ns—l s—1
(1—p)? 06

e [1 {N§S)1,171<m1/3 }

~ 2
E[(7,)"1 [ o) Foi| =E

n

Foa]o().
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On the other hand, for a large enough n,

Fs—l,k:|

2
N {ws v, I € } { ZUENgg)l,k l{u;s(—u, Open} s 1/3}

(0)
VEN Gk

- El Z 1{ws<—v, open}l{wsev', open}
UeNng)l,k l{ws<—va Open}

U,U’G./\/’gg)lyk,vyév’
Jrsl,k:|
+E[ 2 Lurcw open} s

© 1
vEN
UENS(Q)L]C € s—1,k {wsev, Open}

><1{Z Sml/3}

-Fs—l,k:|

<m1/3}

kp)? o kp .
— N(O) N(O) -1 (— N( R @) 2/3
571,k( s—1,k ) (n _ 5)2 + s=Lkp g + (n )

L, e} O1)

thus

2
E 1 1 -
L2 o) s gy

0
UGNS(—)l,k

(=1)
= Kp*+kp+0O(n??) + Mooy i 0(1)

n

+E [1{N§2)1,k<m1/3} Fs_l} 0(1)
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Similarly we have

QE[ Z 1{ws<—v, open}1{2§:02

veN?, ven ), l{wsev, open}gml/?’}
k
X 1 1 f51:|
ZNZU foecv open} {ELE ) 1 open} <
b 2
L S o )
;veﬂ%l,k o open i Zoen@, M, open}* )
JT:s—1:|
N
= 70(1).
Finally,

E [fé,ll{fg ,<m1/3 }

k
x Z Z 1{ws<—v, open}l{ S X <m1/3}

@ 1 <
i=0 yen @, veN ) 4 {ws<—v, open}

f31:|

(=1)
p _oyzy , Voo A1
= kp+ O Zsm1 T sl
—— +0(n??%) + p

Fea O +E[Lpyo0 )

o(1)

TE [1{N§°>Lll<m1/s} fs_l} O(1).
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Therefore we have

B[(™ +1)°| 7]

N _\p+p)
— (k- 1)k 2)(1_p)2 Hh- D
+2(k — 1)1Tkp

+ k2p2 + kp

_ NS:I) + Asfl :
+O(n 2/3) + %O(l) + ;E[l{N(o><m1/3}

N>1)+AS 1
n

]-"5,1}0(1)

= 2k —VE —k)+14+0(c+n"??) + O(1)

+E [1{N§0)<m1/3} Foalo(),

)

where we used N )“ > Ns © again. Also

E[( +1)°| ] = E[(607)| 7] + 2E[¢f™| 7] + 1,
so we obtain (iii). O
Lemma 12. Let A be in R and ¢ = An='/3. Then for t € [0,1],
mo2xm L, B(2(k — ViZ = k)t)
+2(k = VR = R)Asat — (1= (k= VI —k)") 2

3/2t2

in D[0, 1].

Proof. By definition, the condition 1 of ([11] Chapter7, Theorem 7.2.) is
satisfied. Also by Lemmas 3, 4 and the part (iii) of Lemma 11,

E[(™)’|F] = 20k —VE2— k) ip.

for 1 < s < |mt], thus

Lmt]

m—leKg(m —E[¢™|F, 1})2

fs_l} Sk —VE—R)t  ip.,
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it means that the condition 2 is satisfied. Therefore

|t
m~Y/? Z{g<m> —E[¢™|F,_1] } 4, B(Q(k; - M)t).

s

s=1
On the other hand,
[mt] |'mt]
_I/QZ]E m)}]_—t 1 — m_1/2Z]E[§( )
s=1
[mt]
S Z{E[ggm» Fot] — E[e™] }
s=1
Here, by the part (i) of Lemma 11,
|mt]
m—1/2 Z Efém)
s=1
m_l/QLit:J[Dke—k‘p(l—p){(k—l) P +1}f
— (1-p)? n
+0 (62 +en V3 4 n_2/3)}
12 p m*t® —~1/3
=m Dremt — kp(1 — p) (k—l)(l_p)2+1 o +0(n~'?)
1 P s2t2
= —— | Dpdsot — kp (k—1)——+1—p 2 |+0(n" 1/
\/S_o{ kASO p{( >1—p+ p} 21‘*‘ (n )
3/2

= 2(k = VI = k) \sot — (1= (k= VI = k)") 2
ﬂ(k—m)wgt_@_(k W))

Also, by the part (ii) of Lemma 11,

|mt|
_1/2 Z{ ’JT_-S . Eégm)}’

[t
< m 2 Z 0(62 +en 3 4 n_2/3)
s=1

— 0.
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Therefore,
m~ 12X 4 B((k ~ V2 -k + 1)t>
2k = VR =)Mot — (1= (k= VP = F)*) 2

3/2t2

]

tJ Al
Next, we show the convergence of m~1/2 Lm 7.
g it {Ag1>0,Ag?:0} 5,2

Lemma 13. Let A be in R and ¢ = A\n~'/3. Then fort € [0,1],

|mt] 9
k s t ‘
1/2} : [42), 50 A 0} . —(k V2 = ')2 0 i.p.

as n — Q.

Proof. Let hg = 1{A Fio for 1 < s < [mt]. We have

2 >3
@ 50,42 =0}

|mt| |mt]
‘ —1/2 Z {A(z) 50,49 0} 32 m1/2 ZE[I{A@) 20,49 0} 82}
s=1
[mt] [mt]
< ]E‘m‘l/z > he—mT?Y Elh|Fs)]
s=1 s=1

|mt| |mt|

+E‘m_1/2 > ElhFes] —m™V?*Y Eh,|.
s=1 s=1

First, by Lemmas 4, 8 and (5.9) imply that

ER = O(n"?)
for 77 )logn < s < |mt]. Also,

ﬁlogn
> EhI=0(logn). (5.20)

s=1
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Therefore
2
_1/2Zh —I/QZE[hs’fS_Z}

|mt|

ot S B {s Bl B[ 7]
+m~ ZE[{h — E[hy|Fs 2}}2}

= O(n 1/3—|—n 2/3logn) = O(n™/%). (5.21)

' |mt| |mt]

IN

Next, from (4.7) in the proof of Lemma 1,

>
E[h|Fou] = 1 (49 i) { r - NED ; A
+ (e ;AS‘I)QO(l) +0 <m;/3 + ml/g’pmw)
+E[1{N§°)<mus}0(1) Forl }
So we have
S E I TS

>1) (>1
x{lprrN( :As 20(1) + (V. );AS 2) 0(1)
+0 <m1/3 +m' B ) }
n
+E[1 [0 o) Foa|o(1).
Here, recall o’ from (5.8), and let s be I(% plogn <'s < |mt].
I{AQ1>0,AS?=0} - l{A(Q) 50,42V =04 >1} +1 {42,504 —0,a? <0}

- {a(2)1>1} N {A(>3>>0 ) >1}

+1 {4® 50,429 =0,a? <0}
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Using Lemmas 4 and 7 - 9,

El{A(>3> 722>1>1} < IEl{A(>3) } = El{ (>3)> }+O( 2/3)7

< Elfen,) = O(n~23).

E1
{4® 50429=0a® <0} =

/\

Furthermore, as>?{) > 1 implies that some bad vertex of the AS process is

chosen from N 2 or there is a directed edge from N( 2k U AS ok 1O Ws—1.
So, by Lemmas 7, 9,

Elfcos,) = O(n=?3). (5.22)

We again use Lemmas 3, 4, 8 and above facts to obtain

N+ A,
Eh, = EHlf SRS 10(1)}1{a§2_)1>1}]+0(n2/3)

[ n
P _
= 1TpJE1{ag2_)121}+0(n 23). (5.23)
Now
s} = 1{ @21} a2, 50

{A(fz k*Agz) =0 A(2)2 k+1’A(2)2 k_l}
+1{A(2) -A?, ;>1,a{Y —1} +1 {a® 22}
- Mo,

O, a2, 210,21} T 1o, 52)

s—2,k

2 2 2 2 2)
_A( : k*l} {Ag >2 k_A( : 0=1 Ag >2 -~-1_A< k*l}

Ag2,k — AQQ,O > 1 implies that some bad vertex of the AS process is chosen
from -/\[8(3)2 So, by Lemmas 8, 9,

]El{ag—)lzl} - El{A<2) *A(Q) } —|— O(n*2/3).

s—2,k+1 s—2, k_
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Furthermore,
1
(2) (2)
{As—2,k+l_A -2 k_l}
{V”eAifz k,ws,1¢v,A§2)2 k+1*A(527)2,k:1}

+1{3U€A§2)2kw5 150, A( )2 k417 2) kil}
s 2k 1} {N((i)g’an—t—%t}

+1
{VUGA(2)2 o Ws—14-0, A )2 k:+17A(52)2 k:l} {N§@2‘k<n7t72kt}

=1
{VUEAS—);M“’S—WL” Ag )2 1T

‘|‘ (2) (2)
{HUEA o Ws— 1¢0,A7 2k+1_As 2k*1}

So,

s 2ki|

]E[l ) .
{Ag )2k+1 Ag )2k 1}

o (k=1p ( ~1/3 )
Ns—2,kn —s+1 L+ O(n ) 1{N5(2)2yk2n7t72kt}
(2)

A?Q’ko(l). (5.24)

+1 {NO, <n—t-2kt} O(1) +

By Lemmas 3, 4, and (5.23), (5.24), we have

_plop (E=Dp y
Ehs_E[l_ n_8+1N32+O( ). (5.25)

Therefore, by Lemma 10 and (5.20),

Lmt]

L]
E‘ml/z > Elh|Faz] —m™? Y Eh,
= s=1

[mt]
1/ P (k=Dp v mn® 13
< m Z 1—pn—s+1E N, —EN,%| + O(n""?logn)
s= I(2k) logn
= O(n~ /310g n). (5.26)
Using (5.21) and (5.26), we get

Lmt]

E|m /2 g 1 7
{AQ1>0,AS§)=0} 5,2
s=1

Lmt]

~1/2 [ )
-m 5 E|1, ., o3 7 }
— {A® 50,4290} 52

— 0,
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as n — 00. So, if we get the convergence of m~1/2 ZE:;J Ehyg, then the proof
of this lemma is complete. However, by (5.25) and Lemma 9,

o p (k?—l)p B —2/3
Eh, = l—pn—s—i—lk(l p)s+ O (n??)

_ a2l —-2/3
k(k—1)p - +O(n ),

for ﬁ logn < s < |mt]|. Therefore, by this and (5.20),

[mt] $3/242
“12NTEL, = k(k— D220 " 1+ O(n V31
m ; s ( )p 5 + (n ogn)

— E(lf— V2= k)’

sg/ 22
k .

2

O
Proof of Theorem 5. Recall the definition (5.16) of X;, which means that

‘Xt — Xy| < N(wy;41)

for each ¢ € [t;,t;11). We can couple N(w;) and a random variable &, dis-
tributed as 1 + Ge(1 + p), hence we have

m_l/QE‘Xt — Xt

< m_1/2n1/4IP’[ max m5§n1/4]
1<s<|m]

—i—mfl/QE[ max Kg: Inax ms>n1/4]
1<s<|m] 1<s<|m]

< mV2plA 2 Z :pIP)[ max KSZx}
. 1<s<|m)

— 0

as n — oo for t < |m|. Therefore it suffices to prove the convergence of X;.
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Using X, = X + x, — x(™,

k
*2 2 Yo open)x

=0 yen®), | N {wscs, open}

>m1/3}
J
Al
- E E r
{ {A(]) >0, A >]+1) 0} _'_ {Ag 1=0, ’UJtENg(J>1 } Syl:|
l

[mt]
= m_1/2XLmtJ 1/221{A >0A(>3) 0} 52

|mt|

+m_1/2 Z |:Z rsll T >m1/3
—l—Z Z 1{%%@, open}l{ZUGNs(i)l

=0 UGN;QLk
k J K j
—E 1, 4 , E P, — g 1 ; E ol
{A9), 50, AG =0} L7 {Ac1=0, woen®, } L7
=3 1=2 =2 1=2

7, is stochasticaly dominated by a random variable distributed as Ge(1—
p). Also Zve/\/g_l i 1{w - open} is stochasticaly dominated by a random

variable distributed as Bin(n — s; =2 ). By Lemmas 4, 8 and (5.22), we have

! wg+—v, OPEN >m1/3}
¢ {wsev opent}

k
’ [Z; Hagoo azmaa} | = B )
=

< El{ (>3)>1} +E1{A(>3) } ( _2/3)7
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for ;55 logn <'s < |mt]. Lemma 9 implies that

k
(2]
E|:jz21{As_1:0, wseNs(i)l} S El{wse./\/’s(ff)} = O(TL )

Therefore,

|mt] k

m— /2 Z [Zr T >m1/3
s=1 +1=3
+ Z Z 1{ws<—v, open } 1{ ),

1
]:O UGNS(QI . —1.k {wsev, OpeIl}

3 J 3 J

— 1 . . 72/ _ 1 ] /r./\/
2 {a9,>0, ASJJ”:O}Z 1> {410, wteN§i>1}Z o
=3 1=2 j=2 1=2

— 0, Lp..

>m1/3}

Therefore, combining Lemma 12 and Lemma 13, we get

Xy B(2(k — VI = R)t)
+2(k — VE = k) A/sot

(- vER e vy )
= B(2(k- VI = R)t)
+2(k = VE2 — F)Asot — (V2 — & — k 4+ 1)s3/ ¢
It means that
WK sy B(2(k V2 —F) 50t>
+2(k — VB2 — k) Asot — (VEZ =k — k + 1) s3t>.
0

We have proved the convergence of the exploration process, but to state
the convergence of the series of large component sizes, we need a bit more
work.
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. son2/
Lemma 14. Let A be in R and € = An~/3. We define C*° ) by the lagest
component that we started exploring after time son®3. Then for any a > 0
we have

lim lim supIP’(‘CfSOnZ/S)’ > om2/3> = 0.

850700 n—oo
Proof. Recall that Dy = 2(k — Vk? — k) < 2. Similarly to (4.29),

(k—Dp

E[&|F] < (k;—1)lTp+Nt<9>1m+(n—t_Nt@l) 1
—t— N,
— Dke—n _tt_l +O<€2)
< 2e——p
n—t

for a large enough n. Let some ¢ > 0 be fixed. We define
k
D = {Nt(o) <n-—t-— gt, for every t with son®?® < ¢ < (5n},
k
D, = {Nt(o) <n-—t-— gt}, for each t with son®/® <t < don.

Then we have

kt
3(n—t)

E [Etl{pu} ‘E_l} < oan~l3 — )

for all t € (son??3,0n] and a large enough n. Now if 5o = s(6, A) > 0 is large
enough, then for all t € (son?/3, én),

]E[gtl{ptl} ‘]—“H] < —5lpT13, (5.27)

Let &g > son?/? be the first time after son?/® such that A; = 0. We define
the stopping time ~ such that

v =min {t > 0: X, = X, — N(wg) -

We can couple N (w;, ) and a random variable « distributed as Ge(1—p)+1.
Let N(w;, ;) = d be fixed. We define an (F;)-supermartingale ); by Q; =
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22:1 550+81{p£0+s_1} +0~'n"/3t. By (5.27) and optional stopping theorem,

E[Qold]
E [Q%M { d}

YA YASn

E[ D pee— D Gorslioe, 0707y Adn}|d]
s=1 s=1

> —d+ ]P’(Dg)O(n) + 6 'nTVPE [fy A §n|d}.

By Lemma 4, P(Dg) < n~% Thus we have E[y A dn|d] < 26dn'/® and it
provides

0

Y

Vv

E[yAdn] < ) P(N(wg,,)=d)E[yAdn|d]
d=1
< D P(N(wgy.y) =d) - 26dn'/?
d=1
2 1/3
< T pén )

Also by v = |C(wj,4,)| and Theorem 1, P(y > dn) < n~! for a large enough
n. Thus

Ey < nIP’(’y>5n)+IE['yl{W§5n}] < 1+E[yAdn]

< iénl/ 3
l=p
for a large enough sy > 0. Similar argument applies to components explored
after second time. Hence E|C(v)| = O(§)n'/? for any v € V \ &,,2/5. There-

fore for any fixed a > 0, we get
P(|C(v)| > an2/3) = O(8)n~ 3.

Let S be the number of vertices v € V \ & 25 such that |C(v)] >
an?3. We have checked that ES < nP(|C(v)| > an??) = O(6)n*3. Also

son / . .
‘Cf on? 3)‘ > an?®? implies that S > an??. Hence

O(8)n¥?

]P)<|C§son2/3)‘ > Oé’fL2/3> < P(S > O{TLZ/S) _ o

= 0(5).

Since § > 0 was arbitrary and sy was large enough depending only on ¢ and
A, this completes the proof. ]
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Finally, we prove Theorem 2. This can be done parallel to the proof of
Theorem 5 in [2].

Proof of Theorem 2. We define for f € C|0, s,

= = {005 f() = F) = min f(w),

u<l

and f(x) > f(r) for every z with r < x < l}

and
(ﬁl,ﬁg,...) = (11—7’1,[2—7“2,"'3 li—’/’i Z liJrl—TAiJrl for all Z),

ie., ([,1, Lo, ... ) is the decreasing sequence of the length of the excursion of
f(r) —ming<, f(q). We call [ an ending point if (r,l) € = for some 0 < r < [.
If for almost every = € [0, s], there exists (r,1) € Z such that r < x < I,
we say the function f € C|0,s] is good. For m € N, we define the function
Om : C[0, 8] = R™ by

Sm(f) = (L1, Loy ., Lom).

Now we use the following proposition in [2].

Proposition 1 (Nachmias and Peres [2]). If f € C|0, s] is good, then ¢, (f)
is continuous at f with respect to the || - ||oo norm.

A sample path of a Brownian motion is good with probability 1. By
Cameron Martin Theorem, the process B*(-) is good with probability 1 too,
see [3]. Thus ¢,,(f)is continuous on almost every sample point of B*. Fur-
thermore, using Theorem 5 and Theorem 2.3 in Durret [11], Chapter 2, we
have

~ d
n 3¢, (X) = ¢ (B).
Thus we rescale by n=2/3 and order the sequence of the sizes of components
explored before time sn??3. Then this sequence converges in distribution to
the ordered sequence of excursion sizes of W*[0,s]. By Lemma 14, we get
the proof of Theorem 2. O]
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