

PDF issue: 2025-12-05

RECURRENCE FOR COSINE SERIES WITH BOUNDED GAPS

NEUPANE DINESH

(Degree) 博士 (理学) (Date of Degree) 2012-03-25 (Date of Publication) 2012-09-10 (Resource Type) doctoral thesis (Report Number) 甲5575 (URL) https://hdl.handle.net/20.500.14094/D1005575

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

Doctoral Dissertation

RECURRENCE FOR COSINE SERIES WITH BOUNDED GAPS

January 2012

Graduate School of Science, Kobe University NEUPANE DINESH

Doctoral Dissertation

RECURRENCE FOR COSINE SERIES WITH BOUNDED GAPS (有界間隙余弦列の再帰性)

January 2012

Graduate School of Science, Kobe University NEUPANE DINESH

Abstract. Ullrich, Grubb and Moore proved that a lacunary trigonometric series satisfying Hadamard's gap condition is recurrent a.e. We prove the existence of a recurrent trigonometric series with bounded gaps.

1 Introduction.

If we regard the sequence $\{\cos 2\pi n_k x\}$ as a sequence of random variables on the unit interval equipped with the Lebesgue measure, it behaves like a sequence of independent random variables when n_k diverges rapidly. For example, by assuming Hadamard's gap condition

$$n_{k+1}/n_k > q > 1 \ (k = 1, 2, ...),$$

the central limit theorem for $\sum \cos 2\pi n_k x$ was proved by Salem and Zygmund [9], the law of the iterated logarithm by Erdős and Gál [4], and the almost sure invariance principles by Philipp and Stout [8].

As to recurrence, Hawkes [7] proved that $\{\sum_{k=1}^{N} \exp(2\pi i n_k x)\}_{N\in\mathbb{N}}$ is dense in the complex plane for a.e. x assuming the very strong gap condition to $\sum n_k/n_{k+1} < \infty$. Anderson and Pitt [1] weakened the gap condition to $n_{k+1}/n_k \to \infty$ or $n_k = a^k$, where $a \ge 2$ is an integer. These results imply the recurrence of $\sum_{k=1}^{N} \cos(2\pi n_k x)$. For this one-dimensional recurrence, Ullrich, Grubb and Moore [11, 5] succeeded in weakening the condition to Hadamard's gap condition.

It is very natural to ask if the gap condition can be replaced by a weaker one. For the central limit theorem, Erdős [3] relaxed the gap condition to $n_{k+1}/n_k > 1+c_k/\sqrt{k}$ with $c_k \to \infty$. This condition is best possible. Actually Erdős [3] and Takahashi [10] constructed counter examples to the central limit theorem satisfying $n_{k+1}/n_k > 1+c/\sqrt{k}$ with c>0. But there still remains the possibility that some series having smaller gaps may obey the central limit theorem. Indeed, for any $\phi(k) \uparrow \infty$, Berkes [2] proved the existence of $\sum \cos 2\pi n_k x$ with small gaps $n_{k+1} - n_k = O(\phi(k))$ which obeys the central limit theorem. And it was a longstanding problem whether some trigonometric series with bounded gaps $n_{k+1} - n_k = O(1)$ can obey the central limit theorem. Recently the existence of such series was proved in [6] and the problem was solved.

In this paper, we consider the same problem for recurrence, and prove the existence of recurrent series with bounded gaps.

Theorem 1. Suppose that $\{n_k\}$ satisfies the Hadamard's gap condition and $\{m_j\}$ is an arrangement in increasing arrangement of $\mathbb{N} \setminus \{n_k\}$. If we put

$$S_N(x) = \sum_{j=1}^N \cos 2\pi m_j x,$$

then $\{S_N(x)\}$ is recurrent a.e. x.

The sequence $\{n_k\}$ satisfying the Hadamard's gap condition has null density $\lim_{k\to\infty} n_k/k = 0$, and its complement sequence $\{m_k\}$ defined above has full density $\lim_{k\to\infty} m_k/k = 1$. Both of these define recurrent trigonometric series. We can also construct a sequence with bounded gaps and intermediate density defining recurrent trigonometric series.

Theorem 2. Let p/q $(p,q \in \mathbb{N})$ be an arbitrary rational number in (0,1). Put $I_{p,q} = \{lq + j | l = 0,1,2,...; j = 1,2,...,p\}$ and suppose that $\{n_k\}$ is a sequence satisfying Hadamard's gap condition and $\{n_k\} \cap I_{p,q} = \phi$. Let $\{m_j\}$ be an increasing arrangement order of $\{n_k\} \cup I_{p,q}$. Then $\sum \cos 2\pi m_k x$ is recurrent a.e. x, and $\{m_j\}$ has density $\lim_{k\to\infty} m_k/k = p/q$.

The proofs are modifications of those in Grubb and Moore [5]. We use the properties of the Dirichlet kernel.

2 Proof.

We use a lemma which is a modification of that in Grubb and Moore [5].

Lemma 3. Let I be a non-empty open interval $E_N, F_N \subset I(N \in \mathbb{N}), c > 0$ and $0 < \delta_N \downarrow 0$. Assume that for any $x \in E_N$, there exists N_0 such that for $N \geq N_0$, there exists an interval J_N with $x \in J_N, |J_N| = \delta_N$ and $|F_N \cap J_N| \geq c|J_N|$. If $x \in E_N$ infinitely often almost every $x \in I$, then $x \in F_N$ infinitely often for almost every $x \in I$.

Proof of Theorem 1: Take $\rho > 0$ arbitrarily and take an open interval $I \subset [0,1]$ such that $2\sin \pi qx > \rho$ on I. Since ρ is arbitrary, it is sufficient to prove the recurrence for a.e. $x \in I$.

Put $\Delta = 2\pi \left(\frac{q}{q-1} + \frac{4}{\rho^2}\right)$ and take an arbitrary $\epsilon \in \left(0, \frac{\Delta}{2}\right)$. We have

$$S_N(x) = D_{m_N}(x) - \frac{1}{2} - \sum_{j: n_j \le m_N} \cos 2\pi n_j x,$$

where $D_n(x)$ is the Dirichlet kernel given by

$$D_n(x) = \frac{1}{2} + \sum_{j=1}^n \cos 2\pi j x = \frac{\sin \pi (2n+1)x}{2\sin \pi x}.$$

It is easily verified that $|D'_n(x)| \leq 2\pi(2+2n)/\rho^2 \leq 8\pi n/\rho^2$ on I and $|T'_j(x)| \leq 2\pi(n_1+n_2+...+n_j) \leq 2\pi n_j q/(q-1)$ where $T_j(x) = \cos 2\pi n_1 x + \cos 2\pi n_2 x + \cdots + \cos 2\pi n_j x$. Hence $S'_N(x) \leq \Delta m_N$ on I. Take an arbitrary $a \in \mathbb{R}$ and put

$$E_N = \{ x \in I : S_N(x) \ge a, S_{N+1}(x) < a \},\$$

$$F_N = \{ x \in I : |S_N(x) - a| < \epsilon \text{ or } |S_{N+1}(x) - a| < \epsilon \}.$$

By noting $|D_n(x)| \leq \frac{1}{\rho}$ and the properties $\sup_j T_j(x) = \infty$ and $\inf_j T_j(x) = -\infty$ a.e. of lacunary trigonometric series (205pp of Zygmund [12]), we have $\sup_N S_N(x) = \infty$ and $\inf_N S_N(x) = -\infty$, for a.e. $x \in I$. Hence $x \in E_N$ infinitely often for a.e. $x \in I$.

Pick an arbitrary $x \in E_N$. Put $\delta_N = 1/m_{N+1}$ and $J_N = (x - \delta_N/2, x + \delta_N/2)$. We have $J_N \subset I$ for large N. We divide the proof into two cases:

Case I: there exists an $x_0 \in J_N$ such that $S_N(x_0) = a$. Then we have $|S_N(x) - a| < \epsilon$ on $(x_0 - |J_N|\epsilon/\Delta, x_0 + |J_N|\epsilon/\Delta)$. Since $J_N\epsilon/\Delta \le |J_N|/2$, either $(x_0 - |J_N|\epsilon/\Delta, x_0)$ or $(x_0, x_0 + |J_N|\epsilon/\Delta)$ is contained in J_N and hence on $F_N \cap J_N$. Therefore $|F_N \cap J_N| \ge |J_N|\epsilon/\Delta$.

Case II: $S_N(x) > a$ on J_N . As $x \in E_N$, we have $S_N(x) \ge a$ and $S_{N+1}(x) < a$. Since $|J_N| = 1/m_{N+1}$, there exists an $x_1 \in J_N$ such that $\cos 2\pi m_{N+1} x_1 = 0$. Hence $S_{N+1}(x_1) = S_N(x_1) \ge a$, and therefore we can find $x_2 \in J_N$ such that $S_{N+1}(x_2) = a$. In the same way as in the previous case, we can see that $|F_N \cap J_N| \ge |J_N| \epsilon/\Delta$.

Applying the lemma, we see that $x \in F_N$ infinitely often for a.e. $s \in I$.

Theorem 2 can be proved in the same way by noting that

$$D_n(x) = \sum_{l=1}^n \cos 2\pi (lq+j)x = \frac{\sin \pi ((2n+1)q+2j)x - \sin \pi (q+2j)x}{2\sin \pi qx}.$$

3 Differentiation of Monotone functions

3.1 Vitali Covering

let

Let J be a collection of intervals, then the collection J covers a set E in the sense of Vitali, if for each $\epsilon > 0$ and any $x \in E$ there is an interval $I \in J$ such that $x \in I$ and $l(I) < \epsilon$.

Lemma 4. Vitali Lemma: Let E be a set of finite outer measure and J a collection of intervals which covers E in the sense of Vitali. Then given $\epsilon > 0$ there is a finite disjoint collection $\{I_1, \ldots, I_N\}$ of intervals in J such that

$$m^* \Big(E \sim \bigcup_{n=1}^N I_n \Big) < \epsilon.$$

Proof: Suppose each interval in J is closed.

Let O be an open set of finite outer measure containing E. Since J is a Vitali covering of E, without loss of generality we may assume that each I of J is contained in O. We choose a sequence (I_n) of disjoint intervals of J by induction as follows: Let I_1 be any interval in J.

Let $k_1 = \sup \{l(I) : I \in J, I \cap I_1 = \phi\}$. Since $I \subset O$, we have $k_1 \leq mO < \infty$. If $E \subset I_1$, then there is nothing to prove. If $E \subset I_1$ is not true, we can find an interval $I_2 \in J$ with $l(I_2) > k_1/2$ and $I_2 \cap I_1 = \phi$.

Let it holds for p = n, i.e., disjoint intervals I_1, I_2, \ldots, I_n have chosen by induction. For p = n + 1,

$$k_n = \sup \{l(I) : I \in J, I \cap I_1 = \phi, I \cap I_2 = \phi, \dots, I \cap I_n = \phi\}.$$
 (1)

Since $I \subset O$, we have $k_n \leq mO < \infty$. If $E \subset \bigcup_{i=1}^n I_i$, then there is nothing to prove.

If $E \subset \bigcup_{i=1}^n I_i$ is not true, we can find an interval $I_{n+1} \in J$ with $l(I_{n+1}) > k_n/2$ and $I_{n+1} \cap \left(\bigcup_{i=1}^n I_i\right) = \phi$.

Since from the definition of suprema, there exists an $I_{n+1} \in J$ such that $I_{n+1} \cap \left(\bigcup_{i=1}^n I_i\right) = \phi$ and

$$l(I_{n+1}) > k_n/2. (2)$$

Thus we have a sequence (I_n) of disjoint intervals of J, and $\bigcup l(I_n) \leq mO < \infty$. Hence, there exists N such that

$$\sum_{N+1}^{\infty} l(I_n) < \epsilon/5. \tag{3}$$

Let

$$R = E \sim \bigcup_{n=1}^{N} I_n.$$

We prove $m^*R < \epsilon$.

Let x be an arbitrary point of R. Since $\bigcup_{n=1}^{N} I_n$ is a closed set not containing x, by using the definition of Vitali covering, there exists an interval $I \in J$ such that $x \in I$, and whose length is so small that I does not meet any of the intervals I_1, I_2, \ldots, I_N . From Eqs. (1) and (2), we have $l(I_n) \leq k_n \leq 2l(I_{n+1})$. Since $\lim l(I_n) = 0$, $l(I_n) \leq k_n \leq 2l(I_{n+1}) \to 0$ as $n \to \infty$ the interval I must meet at least one of the intervals I_n . Let n be the smallest integer such that I meets I_n . We have n > N, and $l(I) \leq k_{n-1} \leq 2l(I_n)$. Since $x \in I$, and I has a point in common with I_n , it follows that the distance from x to the midpoint of I_n is at most $l(I_n) + \frac{1}{2}l(I_n) \leq \frac{5}{2}l(I_n)$. Thus x belongs to the interval P_n having the same midpoint as I_n and

$$l(P_n) = 5l(I_n). (4)$$

Thus we have shown that

$$R \subset \bigcup_{N+1}^{\infty} P_n. \tag{5}$$

Hence from Eqs. (3), (4) and (5),

$$m^*R \le \sum_{N+1}^{\infty} l(P_n) = 5 \sum_{N+1}^{\infty} l(I_n) < \epsilon.$$

Suppose each interval in J is not closed.

Let $I_1, I_2, ..., I_N$ is not closed interval of J. We have

$$E \sim \bigcup_{n=1}^{N} I_n \subset \left(E \sim \bigcup_{n=1}^{N} clo(I_n)\right) \cup \left(\bigcup_{n=1}^{N} \{ \text{ end points of } I_n \} \right),$$

where $clo(I_n)$ =closure of (I_n) . Hence

$$m^*\left(E \sim \bigcup_{n=1}^N I_n\right) \leq m^*\left(E \sim \bigcup_{n=1}^N clo(I_n)\right) + m^*\left(\bigcup_{n=1}^N \{\text{ end points of } I_n\}\right).$$

Since the measure of the set of endpoint of $I_1, I_2, ..., I_N$ is equal to 0, which implies

$$m^* \Big(E \sim \bigcup_{n=1}^N I_n \Big) \le m^* \Big(E \sim \bigcup_{n=1}^N clo(I_n) \Big) = m^* R < \epsilon.$$

Therefore we have the conclusion.

3.2 Differentiability of functions on the real line

A function f defined in a neighborhood of a point $x \in \mathbf{R}$ is called differentiable at this point if there exists a finite limit

$$\lim_{h \to \infty} \frac{f(x+h) - f(x)}{h},$$

which is called the derivative of f at the point x and denoted by f'(x).

In the study of derivatives it is useful to consider the derivate of a function f that take values on the extended real line and are define by the following equalities:

$$D^{+}f(x) = \overline{\lim}_{h \to 0_{+}} \frac{f(x+h) - f(x)}{h};$$
 (6)

$$D^{-}f(x) = \overline{\lim}_{h \to 0_{+}} \frac{f(x) - f(x-h)}{h}; \tag{7}$$

$$D_{+}f(x) = \lim_{h \to 0_{+}} \frac{f(x+h) - f(x)}{h};$$
 (8)

$$D_{-}f(x) = \lim_{h \to 0_{+}} \frac{f(x) - f(x - h)}{h}.$$
 (9)

If $D^+f(x) = D_+f(x)$ then we say that the function f has the right derivative $f'_+(x) := D^f(x) = D_+f(x)$ at a point x; and if $D^-f(x) = D_-f(x)$, then we say that f has the left derivative $f'_-(x) := D^-f(x) = D_-f(x)$ at the point x. Clearly we have $D^+f(x) \ge D_+f(x)$ and $D^-f(x) \ge D_-f(x)$. If

$$D^{+}f(x) = D_{+}f(x) = D^{-}f(x) = D_{-}f(x) \neq \pm \infty;$$
(10)

we say that f is differentiable at x and f'(x) to be the common value of the derivatives at x.

Theorem 5. Let f be an increasing real-valued function on the interval [a,b]. Then f is differentiable almost everywhere. The derivative f' is measurable, and

$$\int_{a}^{b} f'(x)dx \le f(b) - f(a). \tag{11}$$

Proof: Let us show that the set where any two derivatives are unequal have measure zero. Consider a set $E = \{x : D^+f(x) > D_-f(x)\}$. For every pair of positive rational numbers u and v such that u > v. Let

$$E_{u,v} = \{x : D^+ f(x) > u > v > D_- f(x)\}.$$
(12)

It is clear that

$$E = \bigcup_{u,v \in \mathbb{Q}; 0 < u < v} E_{u,v}. \tag{13}$$

We first prove that $m^*E_{u,v} = 0$, for all $u, v \in \mathbb{Q}$ such that 0 < v < u. Let us assume a contrary that there exist positive rational numbers u and v such that u > v and $m^*E_{u,v} = s$. Take arbitrary $\epsilon > 0$, there is an open set O such that $E_{u,v} \subset O$ with

$$m^*O \le m^*E_{u,v} + \epsilon = s + \epsilon. \tag{14}$$

If $x \in E_{u,v}$ then $x \in O$ and $D_-f(x) < v$. Since $x \in O$, there exists a δ' such that $(x - \delta', x + \delta') \subset O$, and $D_-f(x) < v$, from Equation (9) $\lim_{h \to 0_+} \frac{f(x) - f(x - h)}{h} < v$, there exists an h' such that for all $0 < h < \min\{h', \delta'\}$ such that $h < \epsilon$ and f(x) - f(x - h) < vh and $[x - h, x] \subset O$, there is an arbitrary small interval [x - h, x] contained in O such that f(x) - f(x - h) < vh. Denote $[x_i - h_i, x_i] = I_i$. From Vitali lemma, there exists a finite disjoint collection $\{[x_i - h_i, x_i]\}_{i=1}^N$ such that

$$m^* \Big(E_{u,v} \sim \bigcup_{i=1}^N I_i^o \Big) = m^* \Big(E_{u,v} \sim \bigcup_{i=1}^N I_i \Big) < \epsilon,$$
 (15)

where

 $I_i^o = \text{ interior of } I_i.$

Define

$$A = E_{u,v} \cap \bigcup_{i=1}^{N} I_i^o. \tag{16}$$

We have

$$A = E_{u,v} \cap \bigcup_{i=1}^{N} I_i^o = E_{u,v} \sim \left(E_{u,v} \sim \bigcup_{i=1}^{N} I_i^o \right).$$

$$m^*A = m^*E_{u,v} - m^*(E_{u,v} \sim \bigcup_{i=1}^N I_i^o) > s - \epsilon,$$

since by Equation (15). Then summing over these intervals, we have,

$$\sum_{n=1}^{N} \left(f(x_n) - f(x_n - h_n) \right) < v \sum_{n=1}^{N} h_n < v mO < v(s + \epsilon).$$
 (17)

Since
$$\bigcup_{n=1}^{N} I_n \subset O$$
 implies $m(\bigcup_{n=1}^{N} I_n) = \sum_{n=1}^{N} l(I_n) = \sum_{n=1}^{N} h_n \leq mO$.

Now, for each point $y \in A$, there exists an arbitrary small interval [y, y + k] which is contained in some I_n for $n \leq N$, and for which f(y+k)-f(y) > uk. Again from Vitali lemma, there is a finite disjoint collection $\{J_1, J_2, ..., J_M\}$ where $J_M = [y_M, y_M + k_M]$

such that $m^*(A \sim \bigcup_{i=1}^M J_i) < \epsilon$.

Define

$$B = A \cap \bigcup_{i=1}^{M} J_i. \tag{18}$$

Then

$$m^*B = m^*A - m^* \left(A \sim \left(A \sim \bigcup_{i=1}^M J_i \right) \right) > s - \epsilon - \epsilon = s - 2\epsilon.$$
 (19)

Then summing over these intervals, we have

$$\sum_{i=1}^{M} \left(f(y_i + k_i) - f(y_i) \right) > u \sum_{i=1}^{M} k_i > u(s - 2\epsilon), \tag{20}$$

since
$$s - 2\epsilon < m^*B \le m\left(\bigcup_{i=1}^M J_i\right) = \sum_{i=1}^M k_i$$
.

Each interval J_i (i = 1, 2, ..., M) is contained in some interval I_n , and if we sum over those i for which $J_i \subset I_n$. We have

$$\sum \left(f(y_i + k_i) - f(y_i) \right) \le f(x_n) - f(x_n - h_n), \tag{21}$$

since f is increasing. Thus

$$\sum_{n=1}^{N} \left(f(x_n) - f(x_n - h_n) \right) \ge \sum_{i=1}^{M} \left(f(y_i + k_i) - f(y_i) \right), \tag{22}$$

and so

$$v(s+\epsilon) > u(s-2\epsilon). \tag{23}$$

Since this is true for each positive ϵ , we have $vs \geq us$. But u > v, and so s must be zero. Therefore $m^*E_{u,v} = 0$, for all $u, v \in \mathbb{Q}$. Then

$$m^*E = m^* \Big(\bigcup_{u,v \in \mathbf{Q}} E_{u,v}\Big) = 0.$$
 (24)

Hence

$$m\{x: D^+f(x) > D_-f(x)\} = 0 \text{ implies } D^+f(x) \le D_-f(x) \text{ a.e.}$$
 (25)

And similarly

$$m\{x: D^-f(x) > D_+f(x)\} = 0 \text{ implies } D_+f(x) \ge D^-f(x) \text{ a.e.}$$
 (26)

We know

$$D^+f(x) \ge D_+f(x) \text{ and } D^-f(x) \ge D_-f(x).$$
 (27)

Combining Eqs. (25), (26) and (27), we get,

$$D^+f(x) = D_+f(x) = D^-f(x) = D_-f(x)$$
 a.e. (28)

This shows that

$$g(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

is defined a.e. and that f is differentiable whenever g is finite.

For each n, define

$$g_n(x) = n\Big(f(x+1/n) - f(x)\Big),\tag{29}$$

where we set f(x) = f(b) for $x \ge b$.

We have $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ a.e. Therefore

$$\lim_{n \to \infty} g_n(x) = g(x) \text{ a.e.}$$
 (30)

Then $g_n(x)$ tends to g(x) for almost all x, and so g is measurable. Since f is increasing, i.e., $f(x+1/n) \ge f(x)$, we have $g_n(x) \ge 0$. Hence by Fatou's lemma,

$$\int_{a}^{b} g(x) \leq \lim_{n \to \infty} \int_{a}^{b} g_{n}(x)$$

$$= \lim_{n \to \infty} n \int_{a}^{b} \left(f(x+1/n) - f(x) \right) dx$$

$$= \lim_{n \to \infty} \left(n \int_{a}^{b} f(x+1/n) dx - n \int_{a}^{b} f(x) dx \right)$$

$$= \lim_{n \to \infty} \left(n \int_{b}^{b+1/n} f(x) dx - n \int_{a}^{a+1/n} f(x) dx \right)$$

$$= \lim_{n \to \infty} \left(f(b) - n \int_{a}^{a+1/n} f(x) dx \right)$$

$$\leq f(b) - \lim_{n \to \infty} n \int_{a}^{a+1/n} f(a) dx.$$

$$= f(b) - f(a).$$

Hence

$$\int_{a}^{b} g(x)dx \le f(b) - f(a). \tag{31}$$

This shows that g is integrable and hence finite almost everywhere. Thus f is differentiable a.e. and g = f' a.e.

3.3 Function of Bounded Variation

Let f be a real-valued function defined on the interval [a, b], and let $a = x_0 < x_1 < x_2 < \cdots < x_k = b$ be any subdivision of [a, b]. Define

$$p = \sum_{i=1}^{k} \left(f(x_i) - f(x_{i-1}) \right)^+, \tag{32}$$

$$n = \sum_{i=1}^{k} \left(f(x_i) - f(x_{i-1}) \right)^{-}, \tag{33}$$

$$t = n + p = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|,$$
(34)

where we use r^+ to denote r, if $r \ge 0$ and 0, if $r \le 0$ and set $r^- = |r| - r^+$. We have

$$f(b) - f(a) = p - n, (35)$$

since

$$p - n = \sum_{i=1}^{k} \left(f(x_i) - f(x_{i-1}) \right)^{+} - \sum_{i=1}^{k} \left(f(x_i) - f(x_{i-1}) \right)^{-}$$

$$= \sum_{i=1}^{k} \left(\left(f(x_i) - f(x_{i-1}) \right)^{+} - \left(f(x_i) - f(x_{i-1}) \right)^{-} \right)$$

$$= \sum_{i=1}^{k} \left(f(x_i) - f(x_{i-1}) \right)$$

$$= f(x_k) - f(x_0)$$

$$= f(b) - f(a).$$

Set

$$P = \sup p, \tag{36}$$

$$N = \sup n, \tag{37}$$

$$T = \sup t, \tag{38}$$

where we take these suprema over all possible subdivisions of [a, b]. Since $p \le t = p + n$, sup $p \le \sup t = \sup (p + n) \le \sup p + \sup n$. Hence we have

$$P \le T \le P + N. \tag{39}$$

We say P is the positive variation of f over [a,b]. Sometimes we write it by $P_a^b, P_a^b(f)$. Similarly we call N and T by negative variation of f over [a,b] and total variation of f over [a,b]. Sometimes we denote the negative variation by $N_a^b, N_a^b(f)$ and the total variation by $T_a^b, T_a^b(f)$, it means that dependence on the interval [a,b] or on the functions f. If $T \leq \infty$, we say that f is of **bounded variation** over [a,b]. This notation is sometimes abbreviated by writing $f \in BV$.

Lemma 6. If f is of bounded variation on [a,b], then

$$T_a^b = P_a^b + N_a^b \tag{40}$$

and

$$f(b) - f(a) = P_a^b - N_a^b. (41)$$

Proof: For any subdivision of [a, b]

$$p-n = f(b) - f(a)$$

$$p = n + f(b) - f(a)$$

$$\leq N + f(b) - f(a),$$

and taking suprema over all possible subdivisions, we obtain

$$P \le N + f(b) - f(a).$$

Since $N \leq T$ and f is of bounded variation over [a, b],

$$P - N \le f(b) - f(a). \tag{42}$$

Similarly,

$$N - P \le f(a) - f(b). \tag{43}$$

Hence from Eqs. (42) and (43),

$$P - N = f(b) - f(a).$$
 (44)

From Eqs. (34), (35) and (38),

$$T \ge t$$

= $p + n$
= $p + p - \{f(b) - f(a)\}.$

From Eq. (44)

$$T \geq 2p + N - P$$
.

Taking suprema over all possible subdivisions, we obtain

$$T \geq 2P + N - P$$
$$= P + N.$$

Since $T \leq P + N$, hence, we have

$$T = P + N$$
.

Theorem 7. A function f is of bounded variation on [a,b] if and only if f is the difference of two monotone real-valued functions on [a,b].

Proof: Let f be of bounded variation, and set

$$g(x) = P_a^x, (45)$$

and ·

$$h(x) = N_a^x. (46)$$

Let $a = x_0 < x_1 < \dots < x_k = x \le b$ be any subdivision of [a, x]. Assume $x < y \le b$. From Eq. (45) and taking suprema over all the possible subdivision of [a, x],

$$g(x) = \sup \sum_{i=1}^{k} (f(x_i) - f(x_{i-1}))^{+}$$

$$\leq \sup \sum_{i=1}^{k} (f(x_i) - f(x_{i-1}))^{+} + (f(y) - f(x))^{+}$$

$$\leq P_a^y$$

$$= g(y).$$

Hence g(x) is a monotone increasing function. Similarly h(x) is also a monotone increasing function, g(x) and h(x) are real valued functions, since $0 \le P_a^x \le T_a^x \le T_a^b < \infty$ and $0 \le N_a^x \le T_a^x \le T_a^b < \infty$. Since f is of bounded variation, from lemma 3

$$f(x) - f(a) = P_a^x - N_a^x. (47)$$

From Eqs. (45) and (46) and after calculate, we get

$$f(x) = g(x) - h(x) + f(a).$$

Since h(x) is a monotone increasing real valued function and f(a) is a constant, h(x) - f(a) is a monotone function. Hence f is the difference of two monotone real-valued functions on [a, b].

Converse Part: If f(x) = g(x) - h(x) on [a, b] with g(x) and h(x) is a monotone real-valued functions, and let $a = x_0 < x_1 < x_2 < \cdots < x_k = b$ be any sub-division of [a, b], then we have

$$f(x_i) - f(x_{i-1}) = g(x_i) - g(x_{i-1}) + h(x_i) - h(x_{i-1}).$$

Taking absolute value and summing both sides from i = 1, 2, ..., k; we get

$$\sum_{i=1}^{k} |f(x_i) - f(x_{i-1})| \leq \sum_{i=1}^{k} |g(x_i) - g(x_{i-1})| + \sum_{i=1}^{k} |h(x_i) - h(x_{i-1})|$$

$$= \sum_{i=1}^{k} \left(g(x_i) - g(x_{i-1}) \right) + \sum_{i=1}^{k} \left(h(x_i) - h(x_{i-1}) \right)$$

$$= g(b) - g(a) + h(b) - h(a).$$

Taking suprema over all the possible subdivisions, we obtain

$$T_a^b(f) \leq g(b) - g(a) + h(b) - h(a)$$

 $< \infty.$

Hence f is of bounded variation of [a, b].

Corollary 8. If f is of bounded variation on [a,b], then f'(x) exists for almost all x on [a,b].

Proof: Since f is of bounded variation, then from Theorem 7, f can be written as the difference of two increasing real-valued functions on [a, b]. Let suppose such functions are g and h, i.e. f(x) = g(x) - h(x). Again from Theorem 5, g and h are differentiable almost everywhere. Since

$$\pm \infty \neq \lim_{k \to 0} \frac{g(x+k) - g(x)}{k}$$

a.e. and

$$\pm \infty \neq \lim_{h \to 0} \frac{h(x+k) - h(x)}{k}$$

a.e. then

$$\pm \infty \neq g'(x) - h'(x)$$

$$= \lim_{k \to 0} \left(\frac{g(x+k) - g(x)}{k} - \frac{h(x+k) - h(x)}{k} \right)$$

$$= \lim_{k \to 0} \frac{\left(g(x+h) - h(x+h) \right) - \left(g(x) - h(x) \right)}{k}$$

$$= \lim_{k \to 0} \frac{\left(g - h \right)(x+h) - \left(g - h \right)(x)}{k}$$

$$= (g - h)'(x).$$

i.e. f'(x) = g'(x) - h'(x) for almost all x in [a, b]. Hence f is differentiable almost everywhere.

3.4 Differentiation of an Integral

We use these Theorem 9, Proposition 10 and Lemma 11 from Royden[13].

Theorem 9. (Monotone Convergence Theorem): Let (f_n) be an increasing sequence of nonnegative measurable functions, and let $f = \lim_{n \to \infty} f_n$ a.e. Then

$$\int f = \lim_{n \to \infty} \int f_n.$$

Proposition 10. Let f be a nonnegative function which is integrable over a set E. Then given $\epsilon > 0$ there is a $\delta > 0$ such that for every set $A \subset E$ with $mA < \delta$ we have

$$\int_A f < \epsilon.$$

If f is integrable function on [a, b], we define its indefinite integral to be the function F defined on [a, b] by

$$F(x) = \int_{a}^{x} f(t)dt. \tag{47}$$

Lemma 11. If f is integrable on [a,b], then the function F defined by

$$F(x) = \int_{a}^{x} f(t)dt$$

is a continuous function of bounded variation on $\left[a,b\right]$.

Proof: Since f is integrable over [a,b]. Write $f=f^+-f^-$. Here f^+ and f^- are non-negative integrable function over [a,b], then from Proposition 10, for all $\epsilon>0$, there exists a $\delta>0$ such that $(x,y)\subset [a,b]$ with $|x-y|<\delta$, we have $\int_x^y f^+<\epsilon/2$ and $\int_x^y f^-<\epsilon/2$. Therefore

$$|F(x) - F(y)| = \left| \int_{a}^{x} f(t)dt - \int_{a}^{y} f(t)dt \right|$$

$$= \left| \int_{x}^{y} f(t)dt \right|$$

$$= \left| \int_{x}^{y} f^{+}(t)dt - \int_{x}^{y} f^{-}(t)dt \right|$$

$$\leq \int_{x}^{y} f^{+}(t)dt + \int_{x}^{y} f^{-}(t)dt$$

$$\leq \epsilon.$$

Hence F(x) is a continuous function.

To show F is of bounded variation, let $a = x_0 < x_1 < x_2 < \cdots < x_k = b$ be any subdivision of [a, b]. Then

$$\sum_{i=1}^{k} \left| F(x_i) - F(x_{i-1}) \right| = \sum_{i=1}^{k} \left| \int_{x_{i-1}}^{x_i} f(t) dt \right|$$

$$\leq \sum_{i=1}^{k} \int_{x_{i-1}}^{x_i} |f(t)| dt$$

$$= \int_{a}^{b} |f(t)| dt$$

$$< \infty,$$

since f is an integrable function over [a, b]. Taking the suprema over all the possible subdivisions of [a, b] then

$$T_a^b(f) \le \int_a^b |f(t)| dt.$$

Hence F(x) is a continuous function of bounded variation on [a, b]. We take this Proposition 12 also from the theory of Lebesgue integral [13].

Proposition 12. If E is measurable, then for all $\epsilon > 0$ there is a closed set $F \subset E$ such that $m^*(E \sim F) < \epsilon$

Proposition 13. Every open set of real numbers is a union of a countable collection of disjoint open intervals.

Proposition 14. Let f be a nonnegative measurable function and (E_i) a disjoint sequence of measurable sets. Let $E = \bigcup E_i$. Then

$$\int_{E} f = \sum \int_{E_{i}} f$$

Lemma 15. If f is integrable on [a,b] and

$$\int_{a}^{x} f(t)dt = 0$$

for all $x \in [a,b]$, then f(t) = 0 a.e.in [a,b]

Proof: If f(t) = 0 a.e. does not hold then $m\{x : f(x) \neq 0\} > 0$. Denote $E = \{x : f(x) \neq 0\}$. Suppose f(x) > 0 on a set of positive measure. Take $mE > \epsilon > 0$ then from Proposition 12, then there is a closed set $F \subset E$ such that $m^*(E \sim F) < \epsilon$ Since E and F are measurable, then $m(E \sim F) < \epsilon$. Since $F \subset E$ then $mE - mF < \epsilon$. Hence $mE - \epsilon < mF$. It implies mF > 0.

Let $O=(a,b)\sim F$. Since $\int_a^b f(x)dx<\infty$, then either

$$\int_{a}^{b} f \neq 0$$

or else

$$0 = \int_{a}^{b} f$$
$$= \int_{F} f + \int_{O} f$$

and

$$\int_{\Omega} f = -\int_{E} f \neq 0.$$

Let $f = f^+ - f^-$. But from Proposition 14, O is the disjoint union of countable collection $\{(a_n, b_n)\}$ of open intervals, and so by Proposition 11,

$$\int_{O} f = \int_{O} f^{+} - \int_{O} f^{-}
= \sum_{n} \int_{a_{n}}^{b_{n}} f^{+} - \sum_{n} \int_{a_{n}}^{b_{n}} f^{-}
= \sum_{n} \int_{a_{n}}^{b_{n}} (f^{+} - f^{-})
= \sum_{n} \int_{a_{n}}^{b_{n}} f.$$

Since $\int_O f \neq 0$, thus for some n, we have

$$\int_{a_n}^{b_n} f \neq 0.$$

Here

$$\int_a^{b_n} f = \int_a^{a_n} f + \int_{a_n}^{b_n} f.$$

Then either

$$\int_{a}^{b_n} f = 0$$

or

$$\int_{a}^{b_n} f \neq 0.$$

If

$$\int_{a}^{b_n} f = 0,$$

then

$$\int_{a}^{a_n} f = -\int_{a_n}^{b_n} f \neq 0.$$

Hence either

$$\int_{a}^{a_{n}} f \neq 0$$

or

$$\int_{a}^{b_n} f \neq 0.$$

It contradicts that

$$\forall x \in [a, b], \int_a^x f(t)dt = 0.$$

Similarly, when f < 0 on a set of positive measure,

i.e. $m\{x: f(x) < 0\} > 0$ or $m\{x: -f(x) > 0\} > 0$.

Put -f(x) = g(x) then $m\{x : g(x) > 0\} > 0$. Again similarly, for some $x \in [a, b]$,

$$\int_{a}^{x} g(t)dt \neq 0,$$

or

$$-\int_{a}^{x} f(t)dt \neq 0,$$

implies that

$$\int_{a}^{x} f(t)dt \neq 0.$$

Therefore the lemma follows by contrapositive. We take the following Bounded convergence theorem from the theory of Lebesgue integral [13].

Theorem 16. (Bounded convergence theorem): Let (f_n) be a sequence of measurable functions defined on a set E of finite measure, and suppose that there is a real number K such that $|f_n(x)| \leq K$ for all n and x. If $f(x) = \lim f_n(x)$ for each x in E, then

$$\int_{E} f = \lim \int_{E} f_{n}.$$

The following Lemma is taken from Royden [13].

Lemma 17. If f is bounded and measurable on [a,b] and

$$F(x) = \int_{a}^{x} f(t)dt + F(a),$$

then F'(x) = f(x) for almost all x in [a, b].

Proof: Let $|f(x)| \le K$, let $a = x_0 < x_1 < x_2 < \cdots < x_k = b$ be any subdivision of [a, b]. Then

$$\sum_{i=1}^{k} \left| F(x_i) - F(x_{i-1}) \right| = \sum_{i=1}^{k} \left| \int_{x_{i-1}}^{x_i} f(t) dt \right|$$

$$\leq \sum_{i=1}^{k} \int_{x_{i-1}}^{x_i} \left| f(t) \right| dt$$

$$= \int_{a}^{b} \left| f(t) \right| dt.$$

If we take the supremum over all possible subdivision of [a, b],

$$T_a^b(F) \le \int_a^b \left| f(t) \right| dt.$$

Since f is bounded, therefore

$$T_a^b(F) < \infty$$
.

Hence F is of bounded variation. And from Corollary 5, F'(x) exists for almost all x in [a,b].

Setting

$$f_n(x) = \frac{F(x+h) - F(x)}{h} \tag{48}$$

with $h = \frac{1}{n}$, we have

$$f_n(x) = \frac{1}{h} \Big(F(x+h) - F(x) \Big)$$

$$= \frac{1}{h} \Big(\int_a^{x+h} f(t)dt + F(a) - \int_a^x f(t)dt - F(a) \Big)$$

$$f_n(x) = \frac{1}{h} \int_x^{x+h} f(t)dt.$$

Taking absolute value on both sides,

$$|f_n(x)| \leq \frac{1}{h} \int_x^{x+h} |f(t)| dt$$
$$\leq K \frac{1}{h} h$$
$$= K.$$

Hence for all n and all x, $|f_n(x)| \leq K$. Since $f_n(x) \to F'(x)$ a.e., the bounded convergence theorem implies that

$$\int_{a}^{c} F'(x)dx = \lim_{n \to \infty} \int_{a}^{c} f_{n}(x)dx$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{a}^{c} \left(F(x+h) - F(x) \right) dx$$

$$= \lim_{h \to 0} \left(\frac{1}{h} \int_{c}^{c+h} F(x)dx - \frac{1}{h} \int_{a}^{a+h} F(x)dx \right)$$

$$= F(c) - F(a)$$

$$= \int_{a}^{c} f(x)dx,$$

since F is continuous. Hence

$$\int_{a}^{c} \left(F'(x) - f(x) \right) dx = 0 \tag{49}$$

for all $c \in [a, b]$, and so from lemma 12,

$$F'(x) = f(x) \tag{50}$$

a.e. We will use the following Proposition from the theory of Lebesgue integral.

Proposition 18. Let f and g be an integrable over E. Then if $f \leq g$ a.e., then

$$\int_{E} f \le \int_{E} g.$$

Here we show that the derivative of the indefinite integral of an integrable function is equal to the integrand almost everywhere, which is taken from Royden [13].

Theorem 19. Let f be an integrable function on [a,b], and suppose

$$F(x) = F(a) + \int_{a}^{x} f(t)dt.$$

Then F'(x) = f(x) for all most all x in [a, b]

Proof: It is sufficient to prove for $f \geq 0$.

Let f_n be define by $f_n(x) = f(x)$ when $f(x) \le n$, and $f_n(x) = n$ when f(x) > n. Then $f_n(x) \le f(x)$. i.e.,

$$f(x) - f_n(x) \ge 0. \tag{51}$$

Define

$$G_n(x) = \int_a^x \left(f - f_n \right)(t) dt. \tag{52}$$

To show $G_n(x)$ is an increasing function of x, suppose x < y,

$$G_n(x) = \int_a^x (f - f_n)(t)dt$$

$$\leq \int_a^x (f - f_n)(t)dt + \int_x^y (f - f_n)(t)dt$$

$$= \int_a^y (f - f_n)(t)dt$$

$$= G_n(y)$$

$$G_n(x) \leq G_n(y),$$

since $f - f_n \ge 0$ implies $\int_x^y (f - f_n) \ge 0$. Hence $G_n(x)$ is an increasing function of x. Then from Theorem 5, $G_n(x)$ is differentiable a.e.

$$G'_n(x) = \lim_{h \to 0} \frac{G_n(x+h) - G_n(x)}{h}.$$

When h > 0,

$$G_n(x+h) \geq G_n(x)$$

$$G_n(x+h) - G_n(x) \geq 0$$

$$\frac{G_n(x+h) - G_n(x)}{h} \geq 0$$

$$\lim_{h \to 0^+} \frac{G_n(x+h) - G_n(x)}{h} \geq 0.$$

Therefore

$$G'_n(x) = \lim_{h \to 0} \frac{G_n(x+h) - G_n(x)}{h} > 0.$$

Here $f_n(x)$ is bounded measurable function and if we put $\int_a^x f_n(t)dt + F_n(a) = F_n(x)$ then from Lemma 17, $F'_n(x) = f_n(x)$ for almost all $x \in [a,b]$.

$$\frac{d}{dx}\left(\int_{a}^{x} f_{n}(t)dt + F_{n}(a)\right) = f_{n}(x)$$

for almost all $x \in [a, b]$. Hence

$$\frac{d}{dx} \int_{a}^{x} f_n(t)dt = f_n(x) \tag{53}$$

for almost all $x \in [a, b]$. And so

$$\frac{d}{dx}F(x) = \frac{d}{dx}F(a) + \frac{d}{dx}\int_{a}^{x} f(t)dt$$

$$= 0 + \frac{d}{dx}\left(G_{n}(x) + \int_{a}^{x} f_{n}(t)dt\right)$$

$$= G'_{n}(x) + \frac{d}{dx}\int_{a}^{x} f_{n}(t)dt$$

$$\geq f_{n}(x)$$

a.e. Since n is arbitrary,

$$F'(x) \ge f(x) \tag{54}$$

a.e. Consequently,

$$\int_a^b F'(x)dx \ge \int_a^b f(x)dx = F(b) - F(a).$$

Thus by Theorem 5, we have

$$\int_a^b F'(x)dx = F(b) - F(a) = \int_a^b f(x)dx,$$

and

$$\int_{a}^{b} \Big(F'(x) - f(x) \Big) dx = 0.$$

Since $F'(x) - f(x) \ge 0$, this implies that F'(x) - f(x) = 0 a.e., and so F'(x) = f(x) a.e.

3.5 Absolute Continuity

A real valued function f defined on [a, b] is said to be **absolutely continuous** on [a, b] if, given $\epsilon > 0$, there is a $\delta > 0$ such that

$$\sum_{i=1}^{n} \left| f(x_i') - f(x_i) \right| \le \epsilon$$

for every pairwise disjoint family $\{(x_i, x_i')\}_{i=1}^n$ of open intervals of [a, b] with

$$\sum_{i=1}^{n} \left| x_i' - x_i \right| < \delta.$$

Proposition 20. An absolute continuous function is continuous.

Proof: Let $f:[a,b]\to\mathbb{R}$ be an absolutely continuous function. Take arbitrary $\epsilon>0$. And $\delta>0$ is defined same as in the definition of absolute continuity. Take $x\in[a,b]$, for $y\in[a,b]$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon$, since from the definition of absolute continuity. Hence f(x) is an continuous function.

Proposition 21. Every indefinite integral is absolutely continuous.

Proof: Let

$$F(x) = \int_{a}^{x} f(t)dt,$$

for all $x \in [a, b]$, is an indefinite integral where f(x) is integrable on [a, b]. Since f(x) is an integrable function, |f(x)| is also an integrable function. Let $\epsilon > 0$, for all non

overlapping intervals $\{(x_i, x_i')\}_{i=1}^n \subset [a, b]$ with $m(\bigcup_{i=1}^n (x_i, x_i')) < \delta$, where δ is the positive number corresponding to ϵ in the definition of the absolute continuity of f. Applying Proposition 10, we get

$$\int_{\bigcup_{i=1}^{n}(x_i, x_i')} |f(t)| dt < \epsilon. \tag{55}$$

Since

$$\sum_{i=1}^{n} |F(x_i') - F(x_i)| = \sum_{i=1}^{n} |\int_{x_i}^{x_i'} f(t)dt|$$

$$\leq \sum_{i=1}^{n} \int_{x_i}^{x_i'} |f(t)|dt$$

$$= \int_{\bigcup_{i=1}^{n} (x_i, x_i')} |f(t)|dt.$$

i.e.

$$\sum_{i=1}^{n} |F(x_i') - F(x_i)| \le \int_{\bigcup_{i=1}^{n} (x_i, x_i')} |f(t)| dt.$$
 (56)

From Eqs (55) and (56) gives that F(x) is an absolutely continuous function.

Lemma 22. If f is absolutely continuous on [a,b], then it is of bounded variation on [a,b].

Proof: Since f is an absolutely continuous on [a,b], there is a $\delta > 0$ such that for every finite pairwise disjoint family $\{(a_k,b_k)\}_{i=1}^n$ of open intervals of [a,b] of total length

$$\sum_{k=1}^n (b_k - a_k) < \delta$$

implies

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < 1.$$

Let $a < c_0 < c_1 < \dots < c_m < b$ be any subdivision of [a,b] such that $c_{k+1} - c_k < \delta$ for $k = 0, 1, 2, \dots m-1$. Here $c_{k+1} - c_k < \delta$ for $k = 0, 1, 2, \dots m-1$. Again for every finite pairwise disjoint family $\{(c_i, c_{i+1})\}_{i=1}^n$ of open intervals of (c_k, c_{k+1}) ,

$$\sum_{i=1}^{n} |c_{i+1} - c_i| < \delta$$

implies

$$\sum_{i=1}^{n} |f(c_{i+1}) - f(c_i)| < 1,$$

since f is an absolutely continuous function. Hence

on the interval (c_k, c_{k+1}) for $k = 0, 1, 2, \dots m-1$. Therefore on the interval [a, b],

$$t < M$$
.

If we take the suprema over all the possible subdivision of [a, b], we have

$$T_a^b < \infty$$
.

Hence f is of bounded variation of [a, b].

Corollary 23. If f is absolutely continuous, then f has derivative almost everywhere

Proof: Since f is an absolutely continuous then from Lemma 22, f is of bounded variation. Again from Corollary 8, f has a derivative almost every where.

Lemma 24. If f is absolutely continuous on [a,b] and f'(x) = 0 a.e., then f is a constant.

Proof: We want to show that f(a) = f(c) for any $c \in [a,b]$. Let

$$E = \Big\{ x \in (a, c) : f'(x) = 0 \Big\}.$$

Put $A = \{x \in (a,c) : f'(x) \neq 0\}$. We have f'(x) = 0 a.e. $x \in [a,b]$, then

$$A \subset \left\{ x \in [a, b] : f'(x) \neq 0 \right\}.$$

It implies,

$$mA \le m \Big\{ x \in [a, b] : f'(x) \ne 0 \Big\} = 0.$$

Hence mA = 0. Here $E \cap A = \phi$ and $E \cup A = (a, c)$. Therefore mE + mA = c - a. Hence mE = c - a. Let $\epsilon > 0$ be an arbitrary number. Take $\eta > 0$ arbitrarily. For each $x \in E$ there is a small interval [x, x + h] contained in [a, c] such that

$$|f(x+h) - f(x)| < \eta h. \tag{57}$$

By Lemma 1, we can find a finite disjoint collection $\{[x_k, x_k + h_k]\}_{k=1}^n$ of intervals such that

$$m\left(E \cap \left(\bigcup_{k=1}^{n} [x_k, x_k + h_k]\right)^c\right) = m\left(E \sim \left(\bigcup_{k=1}^{n} [x_k, x_k + h_k]\right)\right) < \delta, \tag{58}$$

where δ is the positive number corresponding to ϵ in the definition of the absolute continuity of f. We can assume that $a = x_0 + h_0 \le x_1 < x_1 + h_1 < x_2 < x_2 + h_2 < \cdots < x_n < x_n + h_n < x_{n+1} = c$. Since

$$(a, x_1) \cup (x_1 + h_1, x_2) \cup \dots \cup (x_n + h_n, c) = \left(\bigcup_{k=1}^n [x_k, x_k + h_k]\right)^c$$
$$E \cap \left((a, x_1) \cup (x_1 + h_1, x_2) \cup \dots \cup (x_n + h_n, c)\right) = E \cap \left(\bigcup_{k=1}^n [x_k, x_k + h_k]\right)^c.$$

Taking measure on both sides and using Eq. (58), we get,

$$|x_1-a|+|x_2-(x_1+h_1)|+\cdots+|c-(x_n+h_n)|<\delta.$$

Then from definition of absolute continuity,

$$\sum_{k=0}^{n} |f(x_{k+1}) - f(x_k + h_k)| < \epsilon.$$
 (59)

From Eq. (57)

$$\sum_{k=1}^{n} |f(x_k + h_k) - f(x_k)| < \eta \sum_{k=1}^{n} h_k \le \eta(c - a).$$

Hence

$$|f(c) - f(a)| = \sum_{k=0}^{n} |f(x_{k+1}) - f(x_k + h_k)| + \sum_{k=1}^{n} |f(x_k + h_k) - f(x_k)| < \epsilon + \eta(c - a).$$

Since ϵ and η are an arbitrary positive numbers, f(c) = f(a).

Theorem 25. A function F is an indefinite integral if and only if it is absolutely continuous.

Proof: Suppose F is an absolutely continuous on [a, b]. From Lemma 22, it is of bounded variation on [a, b]. Again from Theorem 7, F is the difference of two monotone real-valued functions on [a, b]. We may write

$$F(x) = F_1(x) - F_2(x),$$

where F_1, F_2 are monotone increasing real-valued functions. Using Theorem 5, F_1 and F_2 are differentiable almost everywhere, F'_1 and F'_2 are measurable and

$$\int_{a}^{b} F_{1}'(x)dx \le F_{1}(b) - F_{1}(a). \tag{60}$$

$$\int_{a}^{b} F_{2}'(x)dx \le F_{2}(b) - F_{2}(a). \tag{61}$$

Hence F'(x) exists almost everywhere and

$$|F'(x)| \le F_1'(x) + F_2'(x).$$

Integrate both sides from a to b, we get,

$$\int_{a}^{b} |F'(x)| \leq \int_{a}^{b} F_{1}'(x) + \int_{a}^{b} F_{2}'(x)$$

$$\leq F_{1}(b) + F_{2}(b) - F_{1}(a) - F_{2}(a)$$

$$< \infty.$$

From Eqs (60) and (61), hence F'(x) is integrable. Let

$$G(x) = \int_{a}^{x} F'(t)dt.$$

By Lemma 21, G is absolutely continuous and so is the function f = F - G. It follows from Theorem 19 that f'(x) = F'(x) - G'(x) = 0 a.e., and so f is constant by Lemma 24. Thus

$$F(x) = \int_{a}^{x} F'(t)dt + F(a).$$

Corollary 26. Every absolutely continuous function is the indefinite integral of its derivative.

3.6 Lebesgue Density Theorem

Theorem 27. Let $E \subset \mathbb{R}$ be a measurable set. Then $\lim_{h\to 0} \frac{1}{2h} m \Big(E \cap (x-h,x+h) \Big)$ is equal to 1 for a.e. $x \in E$ and equal to 0 for a.e. $x \in E^c$.

Proof: For each $n \in N$, define

$$G_n(x) = \int_{-n}^{x} \chi_E(t)dt, \ x \in (-n, n).$$

Here $\chi_E(t)$ is integrable over (-n,n). Every indefinite integral is absolutely continuous function. Therefore $G_n(x)$ is an absolutely continuous function. From Corollary 23, G'(x) exists almost every $x \in (-n,n)$. Again from Theorem 19, $G'_n(x) = \chi_{E \cap (-n,n)}(x)$ a.e. We prove

$$G'_n(x) = \lim_{h \to 0} \frac{m\left(E \cap (x - h, x + h)\right)}{2h}.$$

Since,

$$2G'_{n}(x) = \lim_{h \to 0} \frac{1}{h} \Big(G_{n}(x+h) - G_{n}(x) \Big) + \lim_{h \to 0} \frac{1}{h} \Big(G_{n}(x) - G_{n}(x-h) \Big)$$

$$G'_{n}(x) = \lim_{h \to 0} \frac{1}{2h} \Big(G_{n}(x+h) - G_{n}(x-h) \Big).$$

Put $\delta = \min\{n - x, n + x\}$. Suppose $0 < h < \delta$,

$$G_n(x+h) - G_n(x) = \int_x^{x+h} \chi_E(t)dt,$$

and

$$G_n(x) - G_n(x - h) = \int_{x-h}^x \chi_E(t)dt.$$

Hence

$$G_n(x+h) - G_n(x-h) = \int_{x-h}^{x+h} \chi_E(t)dt.$$

Hence for $x \in (-n, n)$

$$G'_{n}(x) = \lim_{h \to 0} \frac{1}{h} \int_{x-h}^{x+h} \chi_{E}(t)dt$$
$$= \lim_{h \to 0} \frac{m\left(E \cap (x-h, x+h)\right)}{2h}.$$

But we have,

$$G'_n(x) = \chi_{E \cap (-n,n)}(x)$$

a.e. Since n is an arbitrary, we have the result.

References

- [1] J. M. Anderson, D. Pitt, On recurrence properties of certain lacunary series. I. General results, II. The series $\sum_{j=1}^{N} \exp(ia^{j}\theta)$, J. Reine Angew. Math. **377** (1987) 65–82, 83–96.
- [2] I. Berkes, A central limit theorem for trigonometric series with small gaps, Z.Wahrsch. Verw. Gebiete 47 (1979), 157–161.
- [3] P. Erdős, On trigonometric series with gaps, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 37–42.
- [4] P. Erdős and I. S. Gál, On the law of the iterated logarithm I, II, Nederl. Akad. Werensch. Proc. Ser. A 58 (Indag. Math. 17) (1995), 65–76, 77–84.
- [5] D. J. Grubb and C. N. Moore, Certain lacunary cosine series are recurrent, Studia Math. 108 (1994) 21–23.
- [6] K. Fukuyama, A central limit theorem for trigonometric series with bounded gaps, Probab. Theory Related Fields, to appear.
- [7] J. Hawkes, *Probabilistic behaviour of some lacunay series*, Z. Wahrsch. Verw. Gebiete **53** (1980), 21–33.
- [8] W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. Amer. Math. Soc. 161 (1975).
- [9] R. Salem and A.Zygmund, On lacunary trigonometric series, Proc. Japan Acad. Sci. U.S.A. 33 (1947), 333–338.
- [10] S. Takahashi, On lacunary trigonometric series II Proc. Japan Acad. 44 (1968), 766–770.
- [11] D. Ullrich, Recurrence for lacunary cosine series, in: Contemp. Math. 137, Amer. Math. Soc., 1992, 459–467.

- [12] A. Zygmund, Trigonometric Series I, Cambridge Univ. Press, Cambridge, 1959.
- [13] H. L. Royden, Real Analysis Third Edition.