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1. Introduction 

1.1. To Understand Living System 

It is important to understand a living system in the context of the relation between "parts and 
whole". A living system makes itself by itself and maintains its systemic property by using its 
parts. Obviously, we distinguish between "a system" and "making a system" as distinct 
concepts. A "system", revealing its own entity, has to be distinguished from other systems. On 
the other hand, "making a system" is very different from "a system"; the notion of "making a 
system" implies a process of individualizing a system. Therefore, we usually have asked the 
relation between "system" and "making system" or "parts" and "whole" or "self' and "making 
self' when we consider the system theory [1-14]. "Making system" usually is accepted as a 
result of interactions between parts. 

One famous example is a cellular automaton [15]. Cellular automata, which are developed by 
Wolfram, are generally constructed by cells, which have two states, on the one-dimensional line. 
(Of course, there are many types of cellular automata such as two-dimensional model (Game of 
Life) or the number of states over two (Universal cellular automata). Here, we can consider the 
most popular case without losing generality.) In the cellular automata, each cell can interact 
with nearest neighbor. Each cell determines next state by the state of its two neighbors and its 
own state. Therefore, there are 28=256 patterns of changing rule for the cellular automaton. 
Wolfram examined the behavior of automata for all pattern of rule. He found that some rules 
showed simple periodic or stable behavior but some rules shows a complete random behavior. 
He classified four types for these behaviors of cellular automaton such as Class I, Class II, Class 
III and Class IV. When the rule is Class I, all cells rapidly converge into a uniform state. When 
the rule is Class II, all cells rapidly converge into a periodic state. There is no strangeness so far 
because simple rules result simple behavior. However, when the rule is Class III, Rule 30 for 
example, the behavior of cellular automata becomes complete random state. The most intriguing 
case is Class IV. When the rule is Class IV, Rule 110 for example, the behavior of cellular 
automata never shows periodic neither random. Generally, it is hard to obtain Class IV in the 
cellular automaton because there are very few cases, which show Class IV behavior in all 256 
rules. 

Wolfram found that we can compute AND, OR and NOT by using Class IV [15, 16]. In other 
words, cellular automata have an equivalent computational capability with Turing machine. 
Wolfram suggests the principle of computational equivalence, which means that the 
computational performance becomes equivalent if the computing machine exceeds a certain 
threshold. He also suggested that the threshold of universal computation is very low. Wolfram 
insists that these universal computations would be common phenomena in nature. However, we 
should set the initial condition precisely when we compute the problem by using the cellular 
automata. We could list other examples of needing precise initial condition such as a billiard 
ball computation [17]. Of cause, some researchers argue against the concept of the principle of 
computational equivalence. Melanie Mitchell, who is known for researches of the genetic 
algorithm, compared with C. elegans and a brain of human and criticized that it must not be the 
same such as a sophistication, for example the computational speed or accuracy in the living 
organisms. We consider, however, that these intuitive arguments never criticize essentially 
Wolfram's idea. Ifwe really try to criticize Wolfram's idea, we must criticize his framework of 
the principle of computational equivalence. We will back to this problem about Class IV latter. 

What the concept of Class IV brings into the system theory is a critical property [18]. In other 
words, Class IV is on the boarder of regularity and randomness. Many researchers have 
discussed the relation between criticality and living system when they consider the emergent 
behaviors. For example, Kauffman suggests that the living system is on the edge of chaos, 
which means that the living systems are on the boarder of order and disorder [19, 20]. Other 
recent example is the neural network. Copelli et al. [21, 22] suggested the famous 
psychophysics law (a Weber-Fechner logarithmic law or a Stevens power law [23]) could be 
explained by using a simple cell automaton model when the responsibility of the excited media 
was on the critical state. Bertschinger and NatschHiger showed the computational performance 
of random connected neural networks reached maximum when the neural networks were on the 

3 



criticality [24]. 
Why is the criticality so important? We can list here two reasons to answer this question. One 

is that the emergent properties in a living system would need events of chance [15, 18,21,23]. 
If the living system only shows regularity, the system never would evolve. To avoid this 
disadvantage, the living system is desirable to have both properties, which are the regularity and 
the accident. Another reason is that the criticality would be well-fitted to the existing idea of the 
condensed physics. The critical property is often compared with the phase transition. 

1.2. Why Does We Consider Collective Phenomena 

Here we introduce Vicsek's model for the collective behavior [25, 26]. The detail of his 
model will be discussed later (Chapter 2). He considered that a set of self-propelled particles is 
the individual units, which interact with other individuals within a fixed-radius neighborhood. 
Each individual tries to align its directions within its interaction range. Therefore, each 
individual imitates each other. As a result, they consist several groups and sometimes behave as 
one collective. The degree of collectiveness can be tuned by a noise parameter. If the noise is 
high, individuals is hardly to make groups. However, individuals behave as one collective if the 
noise is very small. It can be observed the phase transition by the noise tuning. If the noise 
parameter exceeds a certain threshold, each individual suddenly shows a group behavior [25, 
26]. 

Although there is no obvious central control such as a brain in the aggregation, we can 
acknowledge that the aggregation moves as though it has one body or one mind [27, 28, 29]. In 
fact, birds flocking, fish schooling and other collective phenomena are sometimes discussed in 
the context of self-organization [30, 31]. Global properties emerge only from local interactions 
of each individual. Recently, a more accurate analysis of flocking behavior can be achieved than 
was formerly possible [32, 33, 34]. Cavagna et al. measured velocity fluctuations of real birds (a 
precise definition will be discussed later) and found that the range of the spatial correlation does 
not have a constant value, but it scales with the linear size of the flock [34]. The size of 
correlation domain is obviously larger than the interaction range of each bird. Birds share more 
information than they can interact. Cavagna and others called this phenomenon "scale-free 
correlation". This is a very suggestive result because scale-free correlation indicates that a flock 
cannot divide into independent subparts. If one individual in a flock changes his direction, its 
influence would spread to all individuals. Cavagna's empirical results sometimes are compared 
with the criticality in condensed physics [35]. Real flocking spontaneously approaches to the 
critical state. This phenomenon is called self-organized criticality (SOC in short) [36, 37, 38]. 
Real flocks in the critical state can respond external perturbation (such as predator's attack) 
quickly [34]. 

Here we found the common ground for the Class IV, which has high computational ability, 
and SOC. We note that we never agree on the attitude, which such situation would important 
when we discuss the living system. We argue the problems, which are emerged through such 
criticality, when we believe "collective phenomena is on the critical state". In the critical state, it 
is considered that the fixed point would connect the whole and parts. Therefore, whole system is 
given in advance. However, in the collective phenomena, it is not trivial problem to determine 
what is one collective in natural flocks. It is still vague for the criterion of a flock. Self (what is 
a flock) is not prepared in advance. 

This is why we take the theme of this paper as the collective phenomena. The collective 
phenomena contain important problems of the relation between "parts" and "whole". If we 
cannot prepare a "self', then what does mean "making self'? Many system theories miss this 
point. Returning to the definition of the word "self-organize", we point out that the word must 
contain two levels, which are "self' (parts) and "making self' (whole), at least. However, the 
word "self' would contain other elements, which never belongs to "self' in advance, because 
the "self' can make progress by actively taking in unknown factors when he adapts to changing 
environment. "Self' itself must be defined as incomplete in the self-organization. Changing 
"self' also requires changing "making self' as a whole. Therefore, the relation between "self' 
and "making self' must be dynamic. To overcome these problems, we use the concept of type 
(e.g., kind, classes, roles, variables) and token cognition (e.g., individuals, instances, filters, 
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values). Types and tokens are essential characteristics of physical symbol systems hypothesized 
in human and nonhuman mental representation [39,40,41]. Although it has been reported that 
nonhuman animals appear to reason on the basis of particular sets of features shared by 
members (tokens) rather than on abstract roles (types), we have to consider ambiguity between 
types and tokens when we consider the dynamical relation between parts and whole. The model 
of Chapter 2 and Chapter 3 are constructed by regarding the type and toke cognition. Each 
individual of our model adjusts a dynamical relation between type and token cognition though 
its own experience. 

1.3. Construction of This Paper 

In Chapter2, we will discuss about the flocking phenomena. Recently, the analysis of the 
flocking behavior can be more accurately analyzed than it was used to be. These researches 
make us reconsider to the notion of the neighborhood for the theoretical model. Topological 
distance is regarded as one of results. The topological distance elaborates that a birds never 
interacts with his or her neighbors in the neighborhood in a fixed length (they call "metric 
distance"), but interacts with the nearest 1 st - 7th neighbors. Cavagna et aI., moreover, found the 
new phenomenon in flocks explained by neither the metric distance nor topological distance. 
They found that the correlated domain in a flock is larger than the metric and topological 
distance, and discovered that this domain is proportional to the flock size. To synthesize 
topological and metric distance, we propose the metric-topological interaction model that 
reveals both metric and the topological distance. This model shows the various behaviors of a 
flock without any external noise. The metric-topological interaction model also shows the 
scale-free correlation in a flock, and simulating results are well-fitted to the empirical data 
obtained by Cavagna et al in two- and three dimensions. We also will discuss many properties 
for the fluctuation such as SOC and releasing and storing fluctuation. 

In Chapter 3, we will discuss the ecological evolutional system. There are two contradictory 
aspects for the adaptive process in evolution. The one is that species must optimally increase its 
own fitness in a given environment. The other is that species must keep their variation ready to 
changing environment. In a strict sense, these two aspects might be exclusive with each other. If 
species is adapted to the optimal, the variation of species which can be trapped to the 
suboptimal decreases, and vice versa. To resolve this dilemma, we have to find the balancing 
between the optimal adaptation and the robust adaptation. Finding balance between them, 
however, needs the complete and static information for the locality and globality. The balancing 
between them must be more dynamic. In this study, we proposed the model that shows 
dynamical negotiation between global and local information by using a lattice theory. By using 
lattice theory, we never only can represent dynamic global information from local incomplete 
information. Species of our model show the power law of the lifespan distribution and 1/j 
fluctuation for adapting process. Finally, we argue that our model enables the balance between 
the optimal adaptation and the robust adaptation without any parameter. Incompleteness of 
information positively helps ecosystem to adapt to a given environment optimally. 
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2. Metric-Topological Interaction Model in Collective 
Behavior 

2.1. Background 

Collective behavior is observed in many biological systems in nature [30, 31,42, 43, 44, 45]. 
Common examples include bird flocks [32,33], fish schools [46,47,48,49], human trails [50], 
swarms of insects [51] and bacterial cultures [52, 53]. Much is unknown about why animals 
exhibit collective behavior. Parrish et al. point out that there is a trade-off between individual 
and aggregation [47]. Aggregation would increase the survival chances and reproductive 
success of any new member. On the other hand, aggregations attract predators. Decision-making 
of each individual in a group is also an important aspect of collective behavior. The collective 
behavior sometimes seems to behave as if controlled by one mind [27, 28]. The individuals 
emerge as one collective through the decision of each individual under various conditions. Fish 
schools [48] and locust swarms [51], for example, adopt their environment by making different 
formations. 

There are many models to explain these collective behaviors. The basic property of the model 
mainly has two aspects: ( i ) each individual unit (particle, bird, fish, etc.) interacts locally 
within a given space; and (ii) the global collective properties emerge from the interactions of 
individual units [54]. The key point is that the collective behavior, in particular the aggregation 
of the individual units, has a global property, which is not observed in the behavior of an 
isolated unit, through the interaction of the individual units; it is global even though individual 
units interact only locally, i.e., within a limited local space. Therefore, collective behavior can 
be considered an example of the concept of self-organization because the collective behavior 
emerges without the need for centralized control. 

Many theoretical models of collective behavior have been proposed. The one of the famous 
models is the flocking and schooling model of Reynolds [55], whose computer simulations 
showed that the aggregation of individuals could reproduce various patterns. Vicsek's model, 
also called the self-propelled particle system (SPPs), can be considered as an abstraction of 
Reynold's model [25, 26, 56, 57]. Roughly speaking, this model assumes that each particle 
interacts with other particles only within a fixed neighborhood; it exhibits an order-disorder 
phase transition as a noise parameter is increased. Vicseck's physics-based model has been 
extended in several abstract ways. For example, Gregoire et al. showed that a system could 
change its collective behavior from a solid phase to a liquid phase by varying its parameter that 
determines the strength of a force between particles [29, 58]. There are some studies of the 
collective behavior by using the equation of the motion. Dossetti et al. examined the phase 
transition of the particle's behavior when non-liner noise is introduced into the equation of the 
motion [73]. 

Huth and Wissel introduced the idea that each individual had a repulsion zone within which 
other individuals are avoided and an attraction zone within which other individuals are attracted 
[59]. After Huth's study, Couzin et al. showed that the individuals using three interaction zones 
could reproduce various aggregation patterns by varying the sizes of these two zones. From 
their results, they noted the existence of a colleCtive memory in the patterns formed by the 
aggregation of individuals [28]. In other words, a formation of the flock is affected by their past 
history. Another point of this model was that they used the field of perception. Each individual 
has the area of blindness. Several studies suggest that this kind of a limit of the animal cognition 
would play an important role in the collective behavior [60, 61, 62, 63]. 

Recently, another approach to collective behavior has developed from fieldwork [32, 33]. 
From careful research, Ballerini et al. proposed an alternative model of bird flocking in which 
the interactions of each bird depend on topological distance (the rank of the distance between 
two birds, e.g., first, second, third, etc., neighbors) rather than on metric distance (the length 
separation between them). It was a fixed radius neighborhood, that is SPP model, for example, 
that they mentioned "metric distance" here. Each bird interacts with a fixed number of its 
closest neighbors (typically six or seven), regardless of how distant those neighbors are. For 
comparison, in metric-distance models, each bird interacts with all neighbors within a 
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well-defined region in space, no matter how many they are. Recently, Ginelli et al. proposed the 
model of the topological distance [64]. They defined neighbors as the Voronoi tessellation. In 
this model, each individual can interact with Voronoi neighbors each other. Thus, there is no 
metrical information, but only well-defined topological information. This model that is based on 
the topological distance showed that subgroups have a weak cohesion since each subgroup 
never becomes independently because of their Voronoi neighbors. However, there are still a few 
models and discussions that are based on the topological distance [64, 65, 66, 67]. 

2.2. Metric Distance vs. Topological Distance 

In this section, we review the notions of metric and topological distances and spelling out the 
problem of models based on either of them. 

A metric-distance model was proposed by Vicsek et al. [25, 26]. In this model, self-propelled 
particles (SPPs) are the individual individuals, which interact with other individuals within a 
fixed-radius neighborhood; the interactions encourage the individuals to align their direction. In 
other words, each individual has a range of perception (eyeshot) and attempts to emulate in the 
motion of other individuals within its eyeshot. The eyeshot gives a clear and consistent 
definition for all individuals of their interaction neighborhood. In the models ofVicsek et al. [25, 
26, 57] and Couzin et al. [28], the eyeshot interaction distance is set the same for all individuals. 
Mathematically, the metric-distance model can be defined as follows. An individual labeled by 
the index i has a position Xi (t) and velocity Vi (t) at a time t. The next state of every individual is 
determined simultaneously at each time step. Specifically, the next state is given by the formula 

(2.2.1 ) 

The velocity of the individuals is determined to have an absolute value v and a direction that 
is given by the angle B(t). This angle is updated according to the expression 

B (t+ 1) = (B(t)r+ AB (2.2.2) 

where (B(t)r denotes the direction of the velocity averaged over all the individuals within a 
radius r of the given particle, which defines its neighborhood. The average of the directions is 
given by the angle (sin B(t),J(cos B(t)r. Each individual aligns its direction with the direction 
averaged within its neighborhood radius r, but with a noise representing the uncertainty of its 
estimation of that average. The noise also represents the degree to which the individual is free of 
social restraint. In this paper, we fix the absolute value of velocity. Other metric-distance 
models add regions such as repulsion and attraction zones [28, 52, 53, 54, 55, 59, 60, 68, 69, 70], 
increasing the complexity of their behaviors; this is important in modeling the flocking of birds 
or the schooling of fish. However, because we wish to consider abstract models, we do not add 
such complexities in this section. 

The metric-distance model provides a good explanation for collective, synchronized motions 
when the density of individual individuals is high. Such density-dependent synchronization is a 
common feature of collective behavior, e.g., in locust swarms [51] and fish schools [44]. In the 
metric-distance model, if the individual density is high, the neighborhoods of the individuals 
tend to overlap significantly with each other. Because of such overlapping neighborhoods, the 
individuals imitate one another, eventually synchronizing and aligning in the same direction. At 
the other extreme, if the individual density is low, their neighborhood rarely overlap; in such 
cases, groups may be formed but rarely synchronize. 

Recently, another approach to the phenomenon of synchronization has been suggested. From 
their observations of bird flocking, Ballerini et al. proposed the idea that topological distance 
should be used to define the interaction neighborhood [32, 33]. Rather than assuming that an 
individual interacts with all other individuals within a given radius, they suggest that the 
individual interacts with only its 6-8 closest neighbors regardless of how distant they are. This 
model can be compared with the "magic number seven" hypothesis, which states that a limit of 
individual instant cognition is given seven objects, plus or minus two [71]. This hypothesis 
means that there is a cognitive limitation for the birds. Such limitation of the cognition also is 
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applied for the flocking models. Bode et aI., for instance, constructed the model by a limited 
interaction and suggested that the limited interaction plays an important role in flocks [62, 63]. 
The difference between the metric-distance and topological-distance models lies in how they 
define the neighbors interacting with a given individual; the former model considers all 
individuals within an interaction range r, whereas the latter model considers only its six or seven 
nearest neighbors. Thus, each bird always interacts with its six nearest neighbors, regardless of 
their separation. Ballerini et al. carried out computer simulations of the metric-distance and 
topological-distance models of the attraction zone. They observed that topological-distance 
models were more robust against predator attack than were metric-distance models [32, 33]. 
Topological-distance models can be robust since individuals can interact with their flock-mates 
even when separated from their flock. In metric-distance models, the individual can no longer 
interact with its flock once separated by more than the interaction range. 

The question remains, however, whether birds really interact with exactly six or seven 
neighbors. If there is a fluctuation to taking neighbors around 6-7, what scale this fluctuation 
would be? Such questions arise for the metric-distance model. Is the eyeshot range, i.e., the 
limiting distance of each individual's perception, correct? In other words, does the modeled 
neighborhood of each individual correspond to its true neighborhood? Such questions inevitably 
occur, and indeed were raised by Bajec et al [61]. They pointed out that the range of each 
individual's perception is never completely clear. We adapt their approach by considering 
uncertain neighborhoods of the individuals. We will, therefore, discuss the notion of the 
neighborhood and neighbors and then present a new model in the following section. 

2.3. The Abstracted MTI model 

2.3.1. Algorithm 

In previous section, we discussed the difference between the metric distance and the 
topological distance. To apply the ambiguity of the metric and topological distance to our model, 
we re-evaluate these models, which leads to a hybrid metric-topological interaction (MTI) 
model. First, we point out that, when considering an individual's neighborhood, the notions of 
metric and topological distance are inseparable. Second, we describe the definitions of an 
interaction neighborhood in terms of the metric and topological distances, corresponding to 
identifying flock-mates as a class and a collection, respectively. By introducing these notions, it 
would become clear between the flocking model and the animal cognition. Finally, we propose 
the new model for collective behavior, namely the MTI model. 

In a neighborhood defined by the topological distance, the individual can interact with its 
nearest 6-8 neighbors, no matter their distance. Thus, every individual has a unique limit to its 
perception defined by its neighbors' distances. This perception limit of the individual 
corresponds to its metric neighborhood. In other words, the notion of the topological distance 
implicitly admits a neighborhood defined analogously to the metric-distance model. Thus, in a 
certain sense, a topological-distance model can be construed as a type of metric-distance model. 
How about the metric-distance model? It may seem that topological distance plays no role in 
defining a metric-distance neighborhood. However, when defining the metric-distance 
neighborhood, the modeler creating a model always considers the mean density of individuals, 
i.e., how many individuals fit into such a neighborhood. But this latter notion corresponds to 
topological distance; thus, the topological distance is used to define the metric-distance 
neighborhoods. This is an important point for the collective behavior since we should give an 
appropriate neighborhood to individuals in advance. Therefore, the concepts of metric and 
topological distance are complementary. 

An important point in topological-distance models is that the neighborhood of each individual 
is not fixed in advance. To put it another way, the neighborhood of each individual is elastic in 
terms of the metric distance. The topological distance depends on the notion of metric distance. 
Let us recall that a metric-distance neighborhood is determined in advance by the researcher 
making the model. Hence, we can consider that topological-distance models serve to make the 
metric neighborhoods uncertain, but in a way different from earlier fuzzy-logic approaches [61]. 

The topological-distance model can be considered as a metric-distance model with uncertain 
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neighborhoods but, conversely, a metric-distance model cannot be construed as a 
topological-distance model with uncertain neighborhoods. However, an analogous 
uncertain-neighbor problem pertains, corresponding to the uncertainty of whether a given 
individual will interact with another nearby individual. In a metric-distance model, an individual 
interacts with all other individuals within its neighborhood. The number of neighbors within its 
neighborhood fluctuates dynamically as nearby individuals enter and leave its neighborhood. 
Hence, we can interpret a metric-distance model as a topological-distance model in which the 
number of interacting neighbors is uncertain. Thus, the topological-distance and metric-distance 
models can be viewed as the other with added uncertainty. As shown above, the topological 
distance cannot be defined without the metric distance, and vice versa. 

Next we re-interpret the neighborhoods in terms of class and collection cognition of an 
individual. The metric-distance neighborhood is defined by an individual's eyeshot (the limit of 
its perception); the individual determines its next direction by averaging the direction of the 
flock-mates in its neighborhood. In the averaging operation, the individual integrates over its 
whole neighborhood to obtain one direction; the neighborhood is an assembly that the 
individual wishes to imitate. We call such a cognition a class cognition. A class corresponds to 
uniting different objects (such as events, phenomena, etc.) into one type. In the case of the 
metric distance, all directions in the neighborhood are compressed into one direction. 

The individual of a topological-distance model interacts with its 6-8 nearest neighbors. Seen 
as a neighborhood (not as a set of neighbors), the neighborhood of each individual expands and 
shrinks continuously. It is important for the flocking model that each individual has a different 
neighborhood. At each time step, the individual of a topological-distance model adjusts its 
eyeshot (the limit of its perception) so as to prevent interactions with neighbors further than the 
7th _9th nearest neighbors. The individual in such a model behaves as if these further neighbors 
don't exist. Such an individual does not recognize an assemblage of a certain size around him, 
but rather decides its next action only from its particular 6-8 nearest neighbors. We call such a 
cognition a collection cognition. The notion of collection comes from gathering up similar 
objects, recognizing them as a set of objects. 

We point out here the qualitative difference between class and collection cognitions. A class 
cognition compresses sundry individual information similar to the process of abstraction. By 
contrast, a collection calculation gathers up similar objects but does not compress their 
information. There is, thus, a qualitative difference between them. But we also note the 
interdependence between both types of cognition. To carry out a class cognition, one needs to 
identify similar objects from which to abstract; this identification corresponds to a collection 
cognition. Similarly, a collection cognition requires a criterion for identifying a set of similar 
objects, which corresponds to a class cognition. We consider this ambiguous but qualitative 
difference in cognition to be very important in the decision-making of animals. These notions 
are by no means strange. It has turned out that, for instance, fishes may have two systems to 
recognize conspecifics. One is the system that fishes can distinguish small number of objects 
[72], and another is the system that fishes can distinguish the numerical rate such as 1:2 or 2:3 
[73]. These two systems would correspond to the collection (distinguishing small number) and 
the class cognition (distinguishing the numerical rate). Agllilo et al. suggested that a fish would 
have two mechanisms of the quantity, but it is hard to prove that there is no ambiguity between 
these two systems [72, 73, 74]. When we consider the animal's numerical cognition, these two 
systems have been discussed for many studies. From these perspectives, the class and the 
collection cognition would be enough possible on animals [72, 73, 74, 75]. 

Interactions based on metric and topological distance correspond to this distinction, and the 
ambiguity between these calculations corresponds to the ambiguity between the metric and 
topological distances. This cognitional ambiguity allows us to consider topological distance and 
metric distance as two aspects of a single model. This is why we use the terms, which are a 
collective and a class cognition. 

We emphasized above that the metric distance and the topological distance can each be 
construed as the other with an uncertain neighborhood or uncertain neighbors. This concept is 
the motivation of our hybrid model. Roughly speaking, our model lies between the extremes of 
the metric-distance and topological-distance models. We describe our algorithm in Figure 2.1, 
and sketch our model here. First, we set x/ as a position vector and 8/ as an angle of each 
individual. i is an index of each individual. t is a time step, respectively. <>s means to take 
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average of directions in set S (for example, S is given as N-TOP or N-MET in Figure 2.1). We 
use this average to compute the result of individual's interaction such as metric or topological 
distance. Our model is characterized by two parameters: a, the threshold for class cognition, and 
b, the threshold for collection cognition. When the individual uses class cognition, its interaction 
neighborhood is defined by metric distance. On the other hand, when the individual uses 
collection cognition, its interaction neighbors are defined by topological distance. The main 
feature of our MTI model is that, at every time step, each individual updates its neighborhood, 
switching between class (metric) and collection (topological) cognition (Figure 2.2). Each 
individual, therefore, has a different interaction range and adjusts its neighborhood to the 
varying conditions in the flock. The flexibility of its neighborhood is determined by the 
parameters a and b for class and collection cognition. For example, if the difference in the 
direction between the individual of interest and his neighbours is under a (3iEN-TOP, 10/ 
-<B>N-Topl<a), the individual ofinterest changes his interaction domain to the metric distance, 
which means that the individual changes to the class cognition from the collection cognition 
when his neighbours seem to behave like himself. Or if the difference in the direction between 
his randomly selected two neighbours is over b (Vi, j EN-MET, 10/ -O/I>b), then this individual 
uses the topological distance again. 

1 Each agent is allocated space and given a direction at random. 1 

+ 
r---------------------------~TheAgentkr----------------------------, 

~ Use Collection Cognition 

·N-TOP={ IEM Irank(l)~6J 

·rank(/): the rank with distance 

between Xk and XI 

-----1 Use Class Cognition 

e'+ 1
k = e'k + <e>N-MET 

·N-MET={lEM 10~1 Xk- x/l~RJ 

. R = 1 Ox[(Xk- xt}/l 0] 

if(3iEN-TOP I e'k-<e>N-TOpl ~ a) if('v'i.jEN-MET. I e'i- ejl ~ b) 

I YES I A CI C ""I=:JOi ~ Next gent k Uses ass ognltlon .-----------, 

---------------- .. 1 Next Agent k us!s Collection Cognition 1 ____ ~_~_~ .......... ______ .. ______ .......... . 

NO 1 1 1 Update The . 
1 Neighborhood of 

LAre all agents Updated? ----N--O-----~:. 
The Agent k+ 1 . : .................. _ .. _ ..................... --' 

l YES 

1 Align All Agents Direction and Add Noise I 

I 

Figure 2.1. Algorithm of the metric-topological interaction model. x/ is a position vector and 
0/ is a angle of each individual. i is an index of each individual. t is a time step. <>s means to 
take average of directions in set S. The model has only two parameters: a (the threshold for 
collection calculation) and b (the threshold for class calculation). At each time step, each 
individual decides whether to define its interaction neighbors based on the metric or 
topological distance. 
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Figure 2.2. Depiction of the metric-topological interaction model. Initially, the center 
individual interacts with its 1 st_3rd 

, for example, neighbors as defined by the topological 
distance (shown in shaded arrows). If the direction alignment of these neighbors is under a 
threshold a, the individual re-defines its neighborhood for next decision to be based on the 
metric distance. The right figure shows that the re-defined neighborhood, which contains new 
individuals (the arrow with circle). If the direction alignment of two individuals selected at 
random exceeds a second threshold b, the neighborhood is again re-defined, returning to the 
topological distance neighborhood shown in the left figure. Thus, an individual of the 
metric-topological interaction model can alternate between neighborhoods defined by the 
metric distance and the topological distance. 

From this definition, we can consider that if a is higher, class cognition is favored over 
collection cognition. For example, the individual tends to use class cognition when a is high, 
meaning that individuals will behave like those of a metric-distance model. By contrast, if b is 
lower, then collection cognition is favored over class cognition, meaning that individuals will 
behave like those of a topological-distance model. Hence, these parameters are essential for the 
MTI model. The degree of ambiguity of the class (metric) and collection (topological) cognition 
is represented by these parameters and we can reproduce the behaviors of metric-distance and 
topological-distance models by tuning these parameters appropriately. For this reason, our MTI 
model can be considered as a hybrid of the metric-distance and topological-distance models. 
Here, we need to pay attention to the model that Hidenbrandt et al. proposed that treats the 
metric and the topological interaction. In their model, each individual can adjust its interaction 
range when its density of neighbors changes (Hidenbrandt et aI., 2010). However, our hybrid 
model focuses on the degree of alignment (that is determined by the threshold parameter). We 
definitely distinguish two interactions that are the metric and the topological distance. The 
individual of our model can use only one interaction (the metric or the topological distance) in 
the same time, respectively. 

2.3.2. Behavior of Abstract Flocking Model 

Here we discuss the properties of our MTI model. First, we define the order parameter that 
estimates the degree of alignment of all individuals in the system 

1 N 

q;=-~Vi 
. Nv i=l (2.3.1 ) 

The absolute value of each velocity is given by v, whereas N is the number of individuals in 
the system. The order parameter qJ measures the degree of the alignment. If the directions of all 
individuals are nearly the same, qJ is high. qJ rises to 1.0 at a maximum when the directions of all 
individuals are perfectly aligned. At the other extreme, the order parameter is zero when the 
directions of the individuals are completely uncorrelated. Huth and Wissel call this order 
parameter "polarization" [59], a term we also adopt. qJ decreases if the noise of each individual 
is high. We, therefore, define the noise parameter p as follows. 

L1B = 2np (2.3.2) 
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The individual behaves completely randomly if the noise parameter is set equal to 1.0. Using 
this definition, we compare the three models, that is, the metric-distance, topological-distance, 
and MTI models. Figure 2.3 shows the relation of the order parameters in these three models 
with the noise parameter for simulations of 20,000 time steps. We set the individual of the 
metric distance has a fixed neighborhood size of 100 and the individual of the topological 
distance has a fixed neighbors as six. We did not take the method of Voronoi neighbor for the 
topological distance [64]. The neighborhood of the topological distance is only determined by 
the rank of individual's distance [32, 33]. We set the parameters for the metric-topological 
interaction model as a=1.2 (radians) and b=1.2 (radians). 

1 

0.9 

0.8 

.... 0.7 
Q) 

+"' 

E 0.6 
ro .... 
ro 0.5 Co. .... 
Q) 

0.4 "0 .... 
0 

0.3 

0.2 

0.1 

0 

~Metric 

+--\---;---~:------- -Topological 

+--+---Ir------"<----- - Metric-Topological _ 

0 0.2 0.4 0.6 0.8 1 
Noise Parameter 

Figure 2.3. Dependence of the order parameter on the noise parameter in the metric-distance 
model (rectangular), the topological-distance model (circle) and the metric-topological 
interaction model (triangle). The number of individuals was 400 and the length of the space 
1000. The order parameter of the topological-distance and metric-topological interaction 
models decreases more rapidly than that of the corresponding metric model. 

In each model, the polarization tends to decrease as the noise parameter rises. Relative to the 
metric-distance model, both the topological-distance and the MTI model rapidly decrease. At 
high noise levels, the MTI model resembles the topological-distance model since the 
metric-distance neighborhood tends to break down in high noise. Next, we examine the 
behavior of each model at noise parameter 0.1. 

Intermittency is a useful parameter to characterize the motion of the individuals as one flock, 
as done for the SPP model (metric distance) [76]. Intermittency corresponds to the sudden decay 
of polarization observed in a time series. When such a decay occurs, a flock of individuals 
divides into several flocks with different directions. However, after a certain time, the flocks 
rejoin into one flock and the system's polarization recovers. Intermittency, thus, is a measure of 
the collective motion in a single direction. Moving as one flock is an important property in 
understanding collective behavior. 
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Figure 2.4. Time series of the polarization for the three models. The solid line corresponds to 
the metric-distance model, the dotted line corresponds to the topological-distance model, and 
the dashed line corresponds to the metric-topological interaction model. The neighborhood 
radius of the metric-distance model was set to 100, and the number of neighbors in the 
topological-distance model was set to six. The number ofthe individual is fixed 100. 

The solid line in Figure 2.4 shows the time series of the polarization of the metric-distance 
model. The polarization shows a sudden decay and soon recovers from it. The individual of the 
metric distance has a fixed neighborhood size of 100, so the sum of neighborhoods for all 
individuals is significantly larger than the space (1 OOOx 1000). Hence, the metric-distance 
neighborhoods of the individuals overlap each other significantly, and for this reason, the 
polarization recovers quickly (Figures 2.4A, B, and C). Of course, the density of individuals 
plays an important role for the flocking behavior under the metric distance [25, 56, 57]. In this 
study, however, we focus on how to make flocks in a limited environment. We previously 
discussed the problem that a modeler adjusted a radius ofthe metric interaction when we used it. 
Therefore, what we should examine here is not the behavior of flocks under various densities, 
but the adaptability in a limited space. 

By contrast, the flocks of the topological distance (dotted line in Figure 2.4A, Band C) align 
the same direction for the early steps, but the polarization hardly recovers over 0.9 even after 
20,000 steps (Figure 2.4B). This lack of recovery stems from the neighborhood of topological 
distance. The individuals align their directions in early steps because of the interaction length is 
infinite (Figure 2.5A). The flock of the topological distance, however, cannot maintain this 
distance because the interaction range changes with the topological interaction. Once the 
individuals form small clusters, they are unlikely to decrease their density again (Figure 2.5B). 
These small but high-density clusters scarcely interact with each other because the interaction 
range of each individual is concentrated mostly within the cluster. Hence, these clusters rarely 
integrate into one flock. For comparison, clusters in the metric-distance model can easily 
interact with each other because every individual interacts with other individuals within its fixed 
neighborhood no matter how many individuals lie within. In a metric-distance model, a flock 
can have a high density and still interact with other flocks (Figure 2.5C); hence, it is easier to 
integrate the flocks of a metric-distance model into one flock compared with those of a 
topological-distance model. 

(A) (B) 
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Figure 2.5. (A) State of a topological-distance system after 1,000 steps. In such early stages, 
all three models behave in nearly the same way. (B) State of a topological-distance system at 
42,300 steps. The individuals form small clusters and their polarization is 0.725. (C) State of 
a metric-distance system at 27,775 steps. The polarization is 0.721. Despite having almost 
the same polarization as the previous topological-distance system, the individuals form only 
three flocks. (D) State of a metric-topological interaction system at 52,200 steps. The 
individuals move as one flock and maintain this flock by adjusting their neighborhood. (E) 
State of a metric-topological interaction system at 31,000 steps, showing several flocks. 

The MTI model (dashed line in Figure 2.4) exhibits both behaviors of the metric-distance and 
topological-distance models. (We set the parameters a=1.2 (radians) and b=1.2 (radians), 
respectively, in Figure 2.1) Large and small intermittencies occur repeatedly (Figure 2.4C). 
Unlike the topological-distance model, clusters in the MTI model do interact significantly with 
other clusters. To see the detail of the MTI model, Figure 50 shows the individuals at 52,200 
steps (Figure 2.4C); the individuals form one flock and move as one aggregation. In this case, 
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this flock lasts about 300 steps. The flock maintains its unity as in the metric-distance model by 
adjusting the interaction neighborhoods. For comparison, Figure 2.SE shows its state at 31,000 
steps (Figure 2.4B) when the polarization is 0.2, indicating that there are several flocks moving 
in different directions. This state resembles the behavior of the topological-distance model. 
Hence, the MTI model exhibits both properties, that is, moving as one flock and dividing into 
several flocks. From this simulation, individuals of the MTI model show more dynamical flocks 
(dividing, uniting, keeping one collective) under a given space without determining each 
neighborhood in advance. The state of a MTI model is more dynamic than those of the metric­
and topological-distance models. 

Next we examine the changes in the flock behavior due to tuning the parameters, i.e., the 
thresholds for class and collection cognition. To characterize the integrating and dividing flocks, 
we define the "flocking duration" and the "recovery time". The duration time is defined as the 
mean time for which the polarization is over 0.9. If the polarization is over 0.9, almost of all 
individuals are aligned in a similar direction; thus, we deem the individuals to move as one 
flock when the polarization is over 0.9. The recovery time is defined by the mean time for 
which the polarization is under 0.9, which characterizes the time required for divided flocks to 
re-integrate into one flock. Figure 2.6A shows the relation among class cognition (metric 
distance), collection cognition (topological distance), and flock duration. Evidently, class 
cognition plays an important role in determining the duration time. As class cognition becomes 
more significant, the duration time becomes longer, because the system behaves like a 
metric-distance model when class cognition predominates. The same reasoning applies to the 
recovery time (Figure 2.6B). Flocks rarely divide into several flocks because the neighborhood 
of each individual overlaps so much with those of the other individuals in the flock. Both 
figures divide into three areas, which are colored white, gray, and black. In the black areas, the 
system behaves like a topological-distance model, whereas systems in the white area behave as 
metric-distance models. The distinctive behavior of the metric-topological interaction model 
discussed in Fig 2.4 is identified with white areas. Systems in this area have properties both of 
the metric- and topological-distance models. In this gray area, it observed the tendency that 
individuals never showed converging into one flock nor getting into several peaces, but 
supported both patterns at the same time in a given space. This is because of the ability of 
changing neighborhood for MTI model. By tuning the parameters of class and collection 
cognition, we can obtain behaviors of both the metric- and topological-distance models from a 
single hybrid model. 
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Figure 2.6. Relative effects of class and collection calculation on the duration (A) and 
recovery time (B). The system resembles a metric-distance model in the white area and a 
topological-distance model in the black area. The flock duration (A) and recovery time (B) 
show a tendency to increase and decrease, respectively, as class calculation becomes 
dominant, i.e., as the metric-distance model predominates. Systems in the white areas are 
intermediate, exhibiting properties of both limiting models. We take 100,000 steps for this 
simulation. The number of the individuals is fixed 100. 

2.3.3. Discussion 

Although we have pointed out the differences between the metric-distance and 
topological-distance models, we have also pointed out that these models have a strong 
connection in nature. In the metric-distance model, the individuals have a fixed limit of 
perception, corresponding to their interaction neighborhoods, which the researcher defines in 
advance. Outside of this neighborhood, individuals do not interact with each other. Analogously, 
in the topological-distance model, the perception limit is defined by the number of neighbors. 
We showed that the two models can be viewed as uncertain versions of each other, either as a 
metric-distance model with an uncertain neighborhood or as a topological-distance model of 
uncertain number of interacting neighbors. We pointed out that the researcher creating a model 
cannot avoid such uncertainties. 

We took a positive evaluation against this problem of the uncertain neighborhood. Therefore, 
we adopted a different approach by re-casting this uncertainty in terms of class and collection 
cognition. To use these terms, we emphasize the aspect of the ambiguity of the cognitions, 
which is the class and the collection cognition, when the individual recognizes his environment. 
The interdependency of two cognitions makes individuals switch between the metric and the 
topological interaction. The individual of our hybrid MTI model decides the nature of its 
neighborhood "on the fly" at each time step, switching between the metric-distance and 
topological-distance. In the MTI model, neither the neighbors nor the neighborhoods are 
determined by the researcher in advance. Not to determine each neighborhood beforehand, each 
individual can adjust a size of his neighborhood where he is. The MTI model shows that the 
flock divides into several flocks or unites into one large flock because each individual can 
change his neighborhood flexibly against his environment. This behavior would not observed 
for the model of pre-determined neighborhood such as metric or topological distance. 

Our hybrid model behaves like the metric-distance model when the individuals within a 
neighborhood are well-aligned; this corresponds to our notion of class cognition. By contrast, 
the hybrid model behaves like a topological-distance model when individuals differ 
significantly from their neighbors, i.e., when individuals exhibit less coherent motion than in the 
metric-distance model; this corresponds to our notion of collection cognition. The two limiting 
cases differ only in the relative balance between class and collection cognition. It should be also 
emphasized that the difference between the metric distance and the topological distance is 
relative; they represent only two limiting cases of the same perception. The MTI model, 
therefore, is a hybrid model, intermediate between the metric-distance and topological-distance 
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models on taking account of previous studies [25,28,32,33,61]. 
Constant switching between class and collection cognition makes the individuals possible to 

overcome the problem of uncertain neighbors. At least, we can suggest one approach of whether 
the metric distance or the topological distance is better should be tabled. It is a worth to point 
out the difference between the metric-topological interaction model and the model of Bode et al 
[62, 63]. Bode's limited interaction model has both properties such as the metric interaction and 
the topological interaction. The individual of their model interacts with one neighbor and 
updates asynchronously. The selecting probability of this individual is decreased in inversely 
proportional to a distance between the individual and its neighbor [62, 63]. The topological 
interaction is represented by this limited interaction and the metric interaction is represented by 
the selecting probability of the individuals on Bode's study. In contrast, the interaction range of 
the MTI model is not purely this stochastic property (the interacting individual is determined by 
the probability) but is determined by surrounding his environment. The randomness only 
emerges in the checking the neighborhood (class congnition) of the individual. Moreover, we 
confirmed that an individual took one set from several individuals or he differentiated 
independent individuals from one aggregation. The MTI model never only mixed the metric 
distance with the topological distance, but also deeply related to the animal's cognition. These 
attitudes, which are the randomness of the interaction and the cognition of the individual, are a 
main difference between Bode's model and our model. 

2.4. MTI model in Two-Dimension 

2.4.1. To approach a real collective behavior 

In this section, we consider more realistic case for the collective behavior. See Figure 2.7 A 
and 2.7B, which show the rough sketches of the MTI model. An individual using the MTI 
model determines its neighborhood by switching between two different but related 
neighborhoods, defined by the metric distance and the topological distance. Figure 2.7 A shows 
the topological neighborhood, and Figure 2.7B shows the metric neighborhood. When the green 
individual uses the topological distance, the central individual aligns its direction to coincide 
with the average of the directions of the yellow individuals. The yellow individuals comprise 
the topological neighborhood around the central individual. On the other hand, the metric 
neighborhood (Figure 2.7B) is quite different. This is the main different point from previous 
section (abstracted model). We added more two zones, the attraction zone (colored blue) and the 
repulsion zone (colored red), to the alignment zone (colored yellow). We chose these interaction 
zones based on the model that was proposed by Huth et al. and other researchers [28, 55, 59, 60]. 
The attraction zone is shown in blue, meaning that the central individual is attracted to the blue 
individuals who are in the blue area. A blue individual, in other words, is a target of the central 
individual, who tries to approach him. The alignment zone is shown in yellow, meaning that the 
central individual aligns himself with the yellow individuals who are in the yellow area. 
Although these two interactions, which are the metric and the topological interaction, are quite 
different, an individual of the MTI model can switch between the two dependent on the 
behavior of its neighbors. In this section, we firstly give the explanation for the way of the 
computation of two interactions. Next, we discuss the switching algorithm of MTI model and 
the variation of speed for each individual. 

(A) (B) 
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Figure 2.7. The image of the metric-topological interaction model. A corresponds to the 
topological distance, and B corresponds to the metric distance. The red zone of Figure 2.7B 
corresponds to the repulsion zone, the yellow zone of Figure 2.7B corresponds to the 
alignment zone, and the blue zone of Figure 2.7B corresponds to the attractive zone. Each 
individual of the MTI model switches between these two interactions, which are shown in 
Figure 2.7 A and 2.7B, based on the behavior of its neighbors. 

First, we consider the topological interaction (Figure 2.7 A). The definition of the topological 
interaction is not yet settled. Ginelli and Chate, for example, define the topological neighbors as 
Voronoi's tessellation [64], whereas Bode et al. interpreted the topological interaction as the 
limited interaction [62, 63]. Sometimes, the density-dependent interaction is also regarded as the 
topological interaction [68, 69]. In this study, we use the simple rule that each individual can 
interact with the nearest six neighbors when that individual is using the topological interaction. 
Thus, the direction of the individual for the next step is given by the following equation: 

(2.4.1 ) 

In this equation, k is the index of each individual, and t is the time step of the simulation. We 
described this condition as the symbol (-)/. v~ is the unit velocity vector of individual k when 
the time step is t. N-TOPk

l is the set of individual k' s topological neighbors, which are its six 
nearest neighbors at time t. (nT)/ is the number of elements of the set N-TOP/' In this paper, we 
set (nTh! = 6, and we define (2.4.1) as the topological interaction. 

Next we consider the metric interaction (Figure 2.7B). In Figure 2.7B, there are three layers 
of interactions, which are the repulsion, the alignment and the attraction zones. We add up all 
directions that are determined by these three zones. Thus, the direction of the individual for the 
next time step is given by the following equation: 

I "1 1 ' , V'+1 = v' + }: x k -~- + ------ - }: vf + ______ }: XI -~_ 
k k (nRep)~ JE(N-MET . )' Ilx; - x~ 1 1 (nAligll ) ~ /E( N-MET . I )' (nAtlrJ~ JE(N-MET . )' Ilx; - x~ 11 

R~pul."on It Allgmnl!nt k Aflrarl/rlfl It 

(2.4.2) 

In this equation, k is the index of each individual, I is the index of each interacting neighbor of 
the individual k, and t is the time step of the simulation. v~ is the unit velocity vector of 

individual k when the time step is t. x~ is the position vector of individual k when the time step 
is t. II-II represents the norm of the vector. The expressions (N-METRepulsion)/, (N-METAlignment)/, 
and (N-METAllraction)/ are the sets of the individuals in the repUlsion, alignment, and attraction 
interaction zones, respectively, and (nRep)/, (nAlign)/, and (nAllra)/ are the number of elements for 
these each set. 

Next, we discuss the timing of switching between the metric and the topological interaction. 
An individual using the MTI model can choose only one type of interaction, either topological 
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or metric, per time step. The switching operation is based on the class-collection 
(metric-topological) interdependence of the MTI model that we discussed in the previous 
section. We can relate this interdependency to the individual's ability to transition between the 
metric and topological neighborhoods because the individual is affected by its past 
neighborhood, which determines whether its interaction range is the metric or the topological 
distance. Therefore, we used a threshold parameter to determine when an individual will change 
its interaction domain. 

The switching system is as follows. If an individual uses the topological distance for a 
sufficient length of time, the individual will have almost the same direction as its nearest 
neighbors because the topological interaction always leads him to align with them (see Equation 
(2.4.1)). Therefore, we define the threshold parameter, a. If the difference between the 
individual directions of its neighbors and the average of neighbors' direction is under the 
threshold parameter, the individual of interest changes its interaction domain to the metric 
distance. Thus, the condition for switching from the topological to the metric interaction is; 

(2.4.3) 

( ) ,indicates the mean value for elements of a set N-TOPk I, while <, > signifies the 
N-TOP, 

operator of the inner vector. This equation represents the individual transitions to the class 
cognition from the collection cognition when its neighbors seem to behave almost identically. 
This transition is consistent with the definition of the class cognition. 

When an individual switches to metric interaction, that individual must prepare the sizes of its 
interaction domains for the metric interaction. These domains, which are the repulsion, 
alignment, and attraction zones, are determined by the distance between the individual of 
interest and its topological neighbors. First, we check the distance between the furthest neighbor, 
the sixth neighbor in this case, and the individual of interest. The distance between them 
determines the three interaction domains. Concretely, each individual takes three interaction 
zones as follows. 

(R1)kl 
= Rl min + r X #kl 

(R2)/ = R2min + al X #kl 

(R3)k
l 
= (R2)/ + at X #kl 

when Ilx~ - x~ll- R~in > 0 

otherwise 

(2.4.5) 

(2.4.4) 

#kl is a positive integer that is determined by the distance between the individual of interest 
(indexed k) and the furthest neighbor (indexed s). [] is the floor function. Rl min and R2 min are the 
minimum range when #kl is zero. r, ai, at are the parameters of the proportional constant. All 
parameters are listed on Appendix A. Equations (2.4.5) correspond to the three interaction zones. 
In other words, the interval [0, (R1V] is the repulsion zone, [(R1)/ (R2)/] is the alignment zone, 
and [(R2)/' (R3)k

l
] is the attraction zone. There is no attraction zone when # is zero. 

Next, we consider the switching property for the metric interaction. The individual always 
verifies whether or not the metric interaction is well defined by considering two of its neighbors 
who are randomly selected from among other individuals in its metric neighborhood. Then, 
individual assesses the difference of the directions between these two neighbors. Here, we recall 
the definition of the class cognition. The class cognition was defined as the abstraction of a 
single notion from the differences of objects. The abstraction, however, never fits its definition 
anymore when objects in the notion conflict with each other. Thus, an individual who uses the 
class cognition must always check its neighbors to verify whether the class cognition is being 
used appropriately. Conflict between the class and the collection cognition corresponds to large 
differences in direction between the neighbors that are being compared. Therefore, we set the 
threshold parameter b in the case of the class cognition. The individual switches its 
neighborhood to the topological neighborhood when the difference between the directions of 
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two randomly selected individuals within its metric neighborhood is over the threshold 
parameter b or, in other words, when the individual cannot keep the class cognition under the 
threshold parameter any longer. Thus, the switching condition from the metric to the topological 
interaction is given as follows; 

Vi, j E (N-METRepulsion)kIU (N-METAlignmenl)kl 
(i and j are randomly selected from the set (N-METRePulsiOn)klor (N-METAlignmenl)/) 

-I (~I ~ I) b cos (Vi' V j ) > (2.4.6) 

The individual, after switching to the topological neighborhood, aligns its directions with the 
nearest six individuals to construct the metric neighborhood again (using the Equation (2.4.1 )). 
We can tune these parameters to observe the various flocking behaviors. Tuning these threshold 
parameters is equivalent to determining whether the individual prefers to use the collection or 
class cognition. In this paper, we set these two parameter as one parameter, that is a=th, b=th for 
two dimension and a=th, b=2*th for three dimension. We set these parameters to fit 
experimental results for following section. 

Finally, we also add velocity variation to the three-dimensional MTI model. If we consider 
the flocking behavior in two dimension, we fixed the speed as the constant. However, most 
fascinating collective behaviors, such as flocking birds or schooling fish, are in three 
dimensions. By adding velocity variation, we hope to gain deep insight into this collective 
behavior. The definition of the velocity variation is very simple and is given as follows: 

(2.4.7) 

8/ is the angle for the polar coordination (v/, qJ/ , 8/) for an individual i when the time is t. 
Each velocity (scalar quantity) vtl is determined by the angle for the perpendicular axis. This 
means that the speed of each individual is affected by the gravitation. Vo shows the velocity 
when the individual moves horizontally. The minimum speed of each individual is given as Vo-
V + when the individual goes up perpendicularly. The maximum speed of each individual is 
given as Vo + V+ when the individual descends perpendicularly. This formula indicates that the 
velocity changing of the individual is always connected to its direction. Thus, it is natural to 
define the intensity of speed in a way that has some connection with the direction changing. 
Some researchers consider this gravitational effect to the individual in the flock [68, 69]. 

Therefore, from (2.4.1) - (2.4.7), the direction vector of each individual is given as the 
following: 

V
I+I - VI+IV~ 1+1 
k - k k (2.4.8) 

In this way, the next state of all individuals is determined. We summarize the algorithm in the 
Appendix A section. We set the boundary condition is periodic one. However, there is no 
essential difference of our results between them (for example, reflection one). 

2.4.2. Role of Two Interactions in the MTI flock 

Simulations of this model show that the spontaneous direction can change without noise 
(Figure 2.8). The direction change is used to show that the noise of each individual causes the 
flock's direction to change. Couzin's model also included noise for each individual [28]. Most 
models of flocking or schooling behavior have used individual noise that is unrelated to explain 
the various formations and the various motions of collective behavior [28, 55, 59, 60, 78]. It is 
worth pointing out that the rapid direction changing of the metric-topological interaction model 
is not explained by the external noise model because the external noise model states that each 
individual has a different direction for the external noise but almost all of the differences in each 
direction are cancelled by averaging their directions. The rapid direction changing does not only 
require a difference in the direction of each individual, but it also requires a certain consensus of 
the whole direction. Each individual of the metric-topological interaction model has a different 
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neighborhood. In other words, the differences in the range of the repulsion, alignment, and 
attractive zones makes the entire motion change directions. This difference in the neighborhood 
ensures both of the requirements; that is, the differences in each individual's direction and a 
certan consensus of the whole direction. This phenomenon cannot be explained by the model 
that has randomly distributed areas for each individual, that is, for the repulsion zone, the 
alignment zone, and the attractive zone. Therefore, this result shows that the flock as a one 
whole should be effected for its past neighborhoods. This fact is consistent with the results of 
Couzin et al. in 2002 [28]. 
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Figure 2.8. The flock of the MTi model rapidly changes their direction (nearly 90') in 200 
steps. 

Next we examined the contribution of switching behavior of each individual to the flocking 
behavior as one collective. In other words, each individual stops switching between the metric 
and the topological interaction and keeps using the metric interaction, which is obtained by 
Equation (2.4.4) and Equation (2.4.5), when they move as one collective. Figure 2.9 shows the 
lifetime of moving one flock for the normal MTi model and the MTI model which stopped 
adjusting its interaction (only using the metric interaction). Blue bars correspond to the normal 
MTi model and red bars correspond to the MTi model without adjustment. Clearly, we can 
observe that there is a difference between them. The flock of the MTi model without adjustment 
collapses within 7,000 steps. About 70% of the flocks never survive if each individual stops 
switching two interactions on the way. On the other hand, the lifetime of the MTi flock is longer 
than the MTi flock without adjustment. Switching behavior between two interactions prevents 
the flock collapsing. 
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Figure 2.9. A comparison of the MTI model and the MTI model without adjustment between 
the class cognition and the cognition as a collection. The number of the individuals of the 
flock is fixed at lOO.The horizontal axis is the number of steps for which the flock does not 
collapse. The vertical axis is the frequency. The red bar is the MTI model without adjustment 
between the class cognition and the collection cognition. The blue bar is the MTI model. We 
observed one flock that was moving and rounding as a single aggregate up to 22000 steps. 
We examined this simulation 500 times for each case and made a histogram every 1000 steps. 
The flock of the MTI model without adjustment collapses before 2000 steps have passed. On 
the other hand, for the normal MTI model, there is a flock that survives up to 22000 steps. 

2.4.3. Scale-free Correlation in Real flocks 

Next, we examine the scale-free correlation of the MTI model. The scale-free correlation is 
measured by using the correlation function defined by Cavagna et al. [34]. We define the 
fluctuation vector before we define the correlation function. The fluctuation vector Ui is given 
by subtracting the average of the whole velocity vector from each individual's velocity vector Vi 

(i is the index of each individual). 

1 N 
u · =v . ---~v 

I I NL.i k 
k-I (2.4.9) 

where N is the number of individuals in the flock. To compute each fluctuation vector, we 
obtain more interior information for the flock. In other words, the fluctuation vector shows the 
direction of the bias of each individual in the flock to which they belong. Next, we define the 
correlation function C(r). 

~Ui' U jD(r- rij) 

C( r) - .....:ij~. =-----------
~D(r- Ii) 
ij (2.4.1 0) 

The distance between each individual is given by rij. The delta function is defined by 
J(r-rij)=l if r=rij; J(r-rij)=O, otherwise. Based on the research of Cavagna et al. [34], a real flock 
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with a finite size has a correlation function with a value of one at short distances, which decays 
with increasing r, and at last, the value of the correlation function becomes negative at large 
distances. This shows that the flock always has a correlation domain at short distances and an 
anti-correlation domain at large distances. The value of the correlation function monotonously 
decreases, so there is a distance of the noncorrelation. They called this the "correlation length". 
In other words, the equation must be satisfied as follows. 

C(r=~ =0 (2.4.11) 

By calculating the value of (, we can see the distance over which the fluctuation vectors are 
correlated. Cavagna et al. showed that this "correlation length" was proportional to the flock 
size. Flock sizes are calculated by determining the maximum distance between two birds 
belonging to the flock. We represent the "flock size" as L; then the relation of the correlation 
length and the flock size must be satisfied; 

(= aL (2.4.12) 

For a real flock, the value of the proportional constant a is 0.35 [34]. An important point of 
this equation is that the correlation length dynamically changes with the flock size, regardless of 
how large the flock is. On the other hand, the notion of a topological distance suggests that an 
individual only interacts with its nearest seven neighbors. It seems that the notion of a 
topological distance has a gap with the correlation domain. Despite each individual only 
interacting with seven neighbors, each individual has larger domains of information sharing 
than that obtained using a topological distance. Figure 2.10 shows that the flock of the MTI 
model has a correlation domain corresponding to the fluctuating vectors. The flock can be 
divided into two parts, that is, the top domain of the flock points in the left direction and the 
bottom domain of the flock points to the right. The middle area of the flock corresponds to the 
un-correlated area because this area changed continuously for a series of steps. The 
metrc-topological interaction model shows these inclinations for flocks of other sizes and 
numbers of individuals. The SPPs model does not show that the correlation domain is clearly 
observed for one type of flock. 

/ 

Figure 2.10. The fluctuation vector of the flock of the MTI model. The flock number is 60. 
The flock clearly has a correlation domain. The flock can be divided into two parts. The 
center of the flock is the area of non-correlation 

We examined the relation between the correlation length and the flock size of the MTI model. 
We used periodic bounded conditions for all simulation, and the size of the space was set at 
2000x2000. One example of the relationship between the correlation function and the distance 
is shown in Figure 2.11A. It confirms that the value of the correlation function gradually 
decreases in relation to the distance. The correlation function is obtained by checking where the 
correlation function first intersects with zero. In this case, the correlation length is 270 when the 
number of individuals is 100. We varied the number of the flock at n= 30, 40, 60, 80, 100 and 
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ran 100 simulations for each fixed number. Figure 2.11 B shows the results of 500 simulations. 
The horizontal axis is the size of the flock, and the vertical axis is the correlation length. Figure 
2.11B shows that the flock of the MTI model has a correlation between the correlation length 
and the flock size. It should be noted that the gradient that is given by using the method of least 
squares is 0.352. This value is almost the same value given in the empirical work of Cavagna et 
al. [34], that is, a = 0.35. The two dimensional MTI model, therefore, is considerably close to 
the behavior of a real flock in terms of the correlation of the fluctuation vectors. The method 
used for calculating the correlation function follows the method of Cavagna et al. The 
correlation length was examined for one flock. In other words, we did not take account separate 
flocks, as did Crizok et al. [57]. We also examined the scale-free correlation in a time series of a 
flock. The number of individuals in the flock is 100. The value of the correlation length is 
obtained from the average of the value of the correlation function for 1,000 steps. The flock 
lasted for 8,000 steps of the simulation, so we were able to collect 8 data points. We plotted the 
data in Figure 2.11 C this way. The horizontal axis corresponds to the flock size and the vertical 
axis corresponds to the correlation length. The correlation length and the flock size are clearly 
correlated. The value of the proportional constant, a, is 0.35. This value is in good agreement 
with empirical results. It is worthwhile to point out that the flock size widely varies from 780 to 
900. The individuals of the type-token model always make their neighborhood along with their 
environment. It may be that these properties of the MTI model are reflected in the scale-free 
correlation. We simulated other cases where we changed the numbers of individuals and 
obtained similar results from 100 times simulations, that is, 0.353±0.022. 
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Figure 2.11. (A) Example of a figure of the correlation function in the flock. The number of 
individuals is 100. The correlation function gradually decreases its value and corresponds to 
the distance. The correlation length is given when the correlation function crosses ° on the 
x-axis. In this case, the correlation length is 270. (B) The relation between the correlation 
length and the flock size. We ran 100 simulations for the number of the individuals n = 30,40, 
60, 80, 100, and the results are plotted on the above graph. The correlation length and the 
flock size are clearly correlated. It is remarkable that the proportional constant is 0.352 for the 
MTI model. This value is coincident with the empirical value. (C) The scale free correlation 
of the type-token model when the number of individuals is 100. The horizontal axis 
corresponds to the flock size and the vertical axis corresponds to the correlation length. The 
type-token model shows a correlation of 0.89 between the correlation length and flock size. 
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Figure 2.12. A comparison of the SPPs model and the MTI model for the relation between 
the correlation length and flock size. The number of the individuals of the flock is fixed at 30. 
The SPPs model has no correlation between the correlation length and flock size (its 
correlation value is -0.15). On the other hand, the MTI model shows correlation between the 
correlation length and flock size (its correlation value is 0.89). Furthermore, for the SPPs 
model, the size of the flock is restricted to a small region (400-600). The invariant interaction 
range does not allow for various flock sizes. 

On the other hand, we want to consider the SPPs model. We compared the MTI model with 
the SPPs using the same conditions. The neighborhood of each individual in the SPPs model, 
which is the metric distance, is 100. The number of individuals is fixed at 30 for both models. 
The results are shown in Figure 2.12. The horizontal and vertical axes are the same as those in 
Figure 2.11B, C. The MTI model is well correlated. The SPPs model, however, shows that there 
is no correlation between the correlation length and the flock size. It can also be seen that the 
flock size of the SPPs model stays within a certain range, that is, 400-600. This occurs because 
the individuals of the SPPs model have an interaction range that is fixed. The fixed 
neighborhood cannot vary with the flock size. On the other hand, the flock size of the MTI 
model has a 2.S-times larger range than the flock size of the SPPs model. The individual of the 
MTI model continuously switches between the class cognition that is metric distance and the 
cognition as a collection that is the topological distance. Therefore, each individual has a 
different repulsion zone, alignment zone, and attractive zone; these differences in the 
neighborhood result in various flock sizes. Additionally, the gradient of the MTI model is 0.349. 
The MTI model, thus, has a scale-free correlation when the number of individuals is fixed. 

2.4.4. Critical Property in the MTI model 

2.4.4.1. Renormalization of the Fluctuation 

The scale-free correlation suggests that high correlation domains of fluctuations always exist 
in flocks. Additionally, the range of the correlation domains is not dependent on flock size. In 
other words, the larger the size of correlation domains, the larger the flock size is. In a previous 
study, we showed that the MTI model succeeded in explaining the scale-free correlation in two­
and three-dimensional simulations. From our simulation, there are always two highly correlated 
domains in the flocks. 

A self-similarity, or fractal, is considered to be an important property when discussing the 
relation between parts and whole. The self-similarity suggests that a part of the structure 
contains the information about the whole structure. Therefore, it can sometimes be considered 
as a bridge between parts and whole. If we confirm that correlation domains in flock have this 
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kind of self-similarity, it could allow us to suggest that the tuning direction that is seemingly 
random to external observers, has a global meaning in flocks and results in large correlation 
domains such as scale-free correlation. 

To evaluate this idea, we analyzed a flock with the MIl model by using a fluctuation vector. 
The fluctuation vector can be obtained by subtracting the average velocity vector from each 
individual velocity vector. In this section, we only consider the directional variance inside the 
flock. In other words, we only consider the direction of the fluctuation relative to the motion of 
the flock. This discrete information, left or right, is not an unnatural definition. Analogously, 
critical phenomena of a spin glass are constituted from up and down spin. In fact, collective 
phenomena are discussed in the context of statistical dynamics. 

Figure 2.13 shows an example of renormalization for a flock under the MIl model. We apply 
renormalization five times for this flock. The upper-left of the flock in Figure 2.13 is 
represented by a velocity vector. The number of individuals is 300. The size of space is 
2000x2000. The Unit length of this space is equal to a unit vector of an individual. We take the 
unit fluctuation vector (upper center in Figure 2.13) and divide this flock into three colors: red, 
green and blue. Red represents the largest correlated sub-domain in the flock. Green represents 
the second largest sub-domain in the flock. Blue corresponds to the rest of the flock. 
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Figure 2.13. Successional renormalization for the MIl flock. The number of individuals is 
300. Solid black arrows indicated application of one time renormalization. The red cluster is 
the largest correlation cluster; the green cluster is the second largest cluster, and blue 
represents the rest of the flock. The self-similar structure of correlation domains can be 
observed. 
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Figure 2.14. Decreasing rate of flocking as a function of renormalizations. Each color 
corresponds to the number of individuals (50, 100, 200, 300, 400, 500). For the first and 
second renormalizations, the rates of decrease show half the degree of flocking present before 
applying renormalization. For the third and fourth renormalizations, the rate of decrease 
drops to one-third. 

We define clusters recursively: An individual belongs to a cluster C, which is colored red, for 
example, if it is within a certain radius (80 in our analysis) of any other individuals belonging to 
C. We focus on the red colored individuals, which are the largest cluster, and take the 
fluctuation vector again, which yields the data in the upper-right panel of Figure 2.13. It can 
confirm that there are large correlation domains inside of the red cluster of the upper-center in 
Figure 2.13. This fact suggests that the sub-flock of the red cluster shares different directional 
information, although it seems to have the same information for a single renormalization. 
Repeating this method five times, we reach the lower right of Figure 2.13. Large coherences 
never vanish until the last renormalization. This reveals a nested structure of correlated domains 
in a flock. Figure 2.14 shows a decreasing rate of a red cluster's area as a function of 
renormalizations. The flock's area is measured by using 25x25 lattices on a moving space of 
dimension 2000x2000. The number of individuals is 50, 100, 200, 300, 400 and 500. We 
selected a non-dividing flock and took an average rate of decrease in area, over 1,000 step 
intervals. The horizontal axis represents the number of instances of renormalization. There is the 
same tendency for all cases to display a rate of decrease of one half from the 1 st to 2nd instances 
of renormalization, which suddenly decreases to 0.35 at upon a 3rd renormalization. Tails of the 
graph increase after the 4th renormalization because the relative number of individuals becomes 
large for the last few renormalizations. However, the size of the correlation domains is always 
greater than one third of the correlation domain before renormalization. Thus, the scale-free 
correlation is also applicable to correlated sub-flocks. This suggests that there is a self-similar 
structure of fluctuations in flocks. 

2.4.4.2. Fluctuation induces split of flocks 

In the previous section, we observed that flocks in the MTI model show a self-similar 
structure of fluctuations. This self-similarity suggests that directional tuning of each individual 
who tries to adjust its neighborhood results in global correlation domains such as scale-free 
correlation. Perpetual local alignments of each individual seem to behave randomly. However, 
each alignment always connects to the global correlated fluctuation, such as scale-free 
correlation. In this section, we will discuss the functionality of internal fluctuations contributing 
to flocking movements. We observed that MTI flocks showed scale-free correlation and that 
flocks were often divided into two highly correlated parts (colored red and green clusters) as 
shown in Figure 2.13. From many simulations, we observed that when flocks of the MTI model 
divided into two parts, splitting lines of flocks were mostly on line between two large correlated 
areas, which are colored as red and green individuals in Figure 2.13. In other words, these 
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highly correlated sub-flocks in one flock become individual flocks after the large flock has 
collapsed. If so, it is possible to consider that these correlated sub-flocks in one flock may have 
a partial impact on movements as independent flocks. 

We investigate the contribution of correlated domains to flock dividing. We report the timing 
of flock dividing and take snapshots of the 30 steps before flock division. We consider 100 
snapshots of MTI flocks. Most of these snapshots show the same pattern as Figure 2.15. In other 
words, the division is located between the two correlation domains which sizes are two largest 
domains respectively. These two clusters have the opposite direction of one another. 

/ 

Figure 2.15. The state of fluctuation vectors for 30 steps before the flock divides. 
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Figure 2.16. The relation between T, and T2. T, is the torque of the largest cluster and T2 is 
the second largest cluster. There is a positive correlation between (0.71) T, and Tz. This 
means that each sub flock rotates the same direction 

Next, we investigated the torque between two correlated fluctuation vectors. Torque is one of 
the moments in physics that measures the tendency of a force to rotate an object. The magnitude 
of a torque is determined by three quantities, the force applied, the length of lever arm that 
connects an applied force to a basing point, and the angle between two. In this case, the force 
(F) corresponds to an average of an absolute value of fluctuation vectors in a cluster of interest. 
A lever arm length (r) is the distance between the center of mass of the whole flock and the 
cluster of interest. The angle (8) is determined automatically after these procedures. Then, the 
torque (1) is 

T= rFsin(8) (2.4.13) 
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The value of T indicates the strength of turning, and the sign of T indicates the direction of 
rotation. We take a torque for two correlated areas whose sizes are the largest and second largest 
clusters that are indexed 1 and 2. If the signs of Tl and T2 are the same, each sub flock rotates in 
the same direction. Figure 2.16 shows the relation between these two quantities (Tl and T2). 
There is a positive correlation (0.71) between Tl and T2• This suggests that the coordinated 
torques of correlated subparts leads to the flock dividing. These subparts become new flocks 
after flock dividing. This is another aspect of scale-free correlation that is not suggested by 
Cavagna et al. Scale-free correlation in the flock suggests that a flock continues to coordinate 
with these correlated sub domains that can be split away. 

2.4.4.3. Oscillation of the strength of fluctuation 

In this section, we investigate the amplitude of the fluctuation vector inside of flocks. Figure 
2.17 shows how the amplitude of the fluctuation vector oscillates with time. We estimate the 
amplitude of the fluctuation vector as the absolute value of the average of fluctuation vectors 
that belong to the largest correlated domain. For example, these members correspond to red 
individuals in the upper center of Figure 2.13. Rate of these members always is above 0.35 (data 
not shown). One-third of individuals have the same direction for their fluctuation vector. The 
oscillation shown in Figure 2.17 shows how these members tune the strength of the fluctuations 
as a small flock. We compare the oscillation of the largest cluster with the second largest cluster, 
which is constituted by the green colored individuals in Figure 2.13. In the inset of Figure 2.17, 
the green line corresponds to the oscillation of the second largest cluster. The green line shows 
the same shape as the red line. As the amplitude of the red line increases, the amplitude of the 
green line also increases. The green cluster, as we observed in Figure 2.13, moves in a direction 
opposite to the red cluster. The green cluster compensates for the strength of fluctuation of the 
red cluster. This role-sharing tendency is observed throughout our simulation. 
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Figure 2.17. Oscillation of the average absolute value of fluctuation vector in the largest 
cluster. Inset: the green line is the oscillation of fluctuation vectors in the second largest 
cluster. Both lines are highly correlated. 

As we discussed previously, fluctuations in the flock had the potential power to split the flock 
in some cases. Thus, flocks must suppress increases in fluctuation amplitude to prevent division. 
As a result, the absolute value of the fluctuation vector shows temporal fluctuations. To 
investigate this detail, we take the power spectrum of the time series in Figure 2.17. We define 
S(f) as a power spectrum for the fluctuating representation in Figure 2.17. The mathematical 
expresslOn IS; 
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(2.4.14) 

Figure 2.18 shows the power spectrum of Figure 2.17. It shows a 1/f power law over a wide rage 
of time scales with a ~ 1.5. Emergence of this kind of power law is considered to be the 
characteristic property of critical phenomena such as self-organization criticality (SOC). This 
fact is consistent with several interpretations, one of which is the collective behavior on critical 
phenomena. Cavagna and others, who discovered scale-free correlation, suggest that some kind 
of criticality might in fact be present in starling flocks. Our simulation showed that it is also 
observed being criticality on a continuous time scale. 
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Figure 2.18. Power spectrum S(f) for the oscillation in Figure 2.17. The graph shows l/fpower 
law. 

2.4.5. Discussion 

Empirical research makes us to reconsider what the neighborhood is for each individual. A 
topological distance and a scale-free correlation cannot be explained by a fixed distance 
neighborhood. This observation brings us to consider the uncertainty in a neighborhood. This 
kind of problem has been addressed in simulations; there are, however, few discussions 
regarding uncertainty in a neighborhood [61, 62]. The MTI model is one example of this kind of 
model. The main concept of the MTI model is that each individual moves around in checking 
whether his own neighborhood is well-defined. The individual, thus, performs a double 
evaluation of the flock's motion. The individual moves by following his neighborhood while 
also checking its neighborhood as an evaluation of the whole. Our results show that this double 
evaluation is needed to produce scale-free correlation without giving external noise for each 
individual. 

Previous studies of flocks (or schools of fish) have involved fixed neighborhoods or 
neighbors for each individual with the addition of external noise. The external noise introduces 
a degree of freedom that is irrelevant to the various situations. This means that each individual 
can move and select its direction if its flock will follow. The external noise that is irrelevant to 
their wholeness gives rise to the problem of interpreting the critical phenomena for tuning the 
noise parameter. The SPPs model does not show scale-free correlation unless the degree of 
freedom of each individual is irrelevant for his position and the relation with its neighbors. In 
other word, the main problem of the flock is not what kind of noise should be given, but how 
each individual makes intrinsic noise in a certain environment. The question as to what kind of 
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noise should be given leads to a trade-off, that is, the flock never shows a variety of formations 
if the noise is low but the flock loses its coherence if the noise is high. This trade-off relation 
cannot be solved by the SPPs model. In the end, this trade-off has caused researchers to consider 
a "soft degree of freedom" [34]. 

The MTI model, by contrast, does not require this kind of external noise. The noise arises 
from adjusting between the class cognition and the cognition as a collection. Our model shows 
that the different evaluations of the neighborhood for each individual cause the flock to change 
direction, to keep the flock stable, and to collapse the flock. In particular, the gradient of the 
relation between the correlation length and the flock size is in good agreement with empirical 
studies. The concept of a collective memory can be thought of as an uncertain neighborhood. It 
has been shown that there is a antisymmetric relation when the range of the neighborhood 
(metric distance) of each individual gradually increases or decreases with uniformity. Cousin 
suggested that this is important to understanding collective behavior, that the neighborhood 
should expand to share information with a larger domain, but he never demonstrated how this 
works [28]. The MTI model suggests that three properties (that is, changing directions, adjusting 
between the class and the cognition as a collection, and collapsing the flock) are closely 
connected with each other for constructing flocks. We suggest that these relationships can 
emerge only through using double evaluations, that is, each individual makes a movement and 
simultaneously checks the evaluation of the whole (in this case, the whole flock). Our approach 
is not a highly complex system, but exhibits various properties in its behavior. We consider, 
thus, that the MTI model also sheds light on the different interpretations of scale-free correlation 
and collective behavior. 

2.5. MTI model in Three-Dimension 

2.5.1. Behavior in three dimension 

Figure 2.19A and Figure 2.19B are snapshots of a set of individuals using the MTI model. We 
fixed the threshold parameter at 0.05 radians. The arrow in both figures represents the velocity 
vector, which is projected onto a two-dimensional plane. The length of each velocity vector 
represents the amplitude of the individual's speed. Figure 2.19A shows a typical formation of 
the flocks observed using the MTI model, in which individuals move in a straight line as one 
collective. Another aspect of flocking behavior is direction changing. In Figure 2.19B, an MTI 
flock is going to change its direction. We observe that high-speed individuals who have long 
vectors are outside of the flock and low-speed individuals who have short vectors are inside of 
the flock. This means that each individual tunes its speed to change the flock's direction 
clockwise, which is represented by the solid line in Figure 2.19B. 
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Figure 2.19. Two examples offonnations for the MIl model's flock. The individual number is fixed 
100. The distribution of the velocity vectors is projected onto a two-dimensional plane. (A) The flock 
moves one direction. The directions of individuals align are nearly unifonn. (B) The flock shows a hard 
direction change. The individuals on the outside have high velocities, and the individuals on the inside 
have lower velocities. The threshold parameter is 0.05 radians. The black thin arrow shows the flock's 
directions several steps later. 

A common feature of both figures is that each individual using the MTI model shows 
noise-like behavior without any external noise. Individuals never maintain one direction stably 
but always show a small deviations from their travelling direction. This noise-like behavior 
emerges from frequent switching between the topological and the metric distance. We examined 
the switching frequency is about 0.11(±0.04) in one step. This means that 11% of individuals 
change their neighborhood for every step. In other words, each individual makes the different 
interaction. This variety of different interactions in the flock gives a fluctuation to each 
individual. We also note that the randomness, in the MTI model, only emerges from an 
individual checking the class cognition to determine whether its metric neighborhood is being 
used under the proper conditions (satisfying the Equation (2.4.6)). The results would be very 
different if the MTI model were to add external noise to each individual because the intensity of 
the external noise cannot spontaneously change its value and thus may not be consistent with its 
environment. 

Next, we observed a time series showing an MTI flock changing directions. We set the 
threshold parameter as th=O.OS (radians) for the following simulations unless otherwise noted. 
Figure 2.20A is the time series of a flock's absolute direction-changing rate per 10 steps for a 
single simulation. This graph shows that the changing rate sometimes rises to 0.22 radians (in 
other words, approximately 12 degrees). This graph shows that a flock using the MTI model 
sometimes rapidly changes its direction. Furthermore, we ran this simulation 100 times and 
averaged the highest value of each time series (Figure 2.20B). We discovered that an MTI flock 
changes its direction up to 0.27±0.09 radians within 10 steps. This value is about twice the mean 
value (0.IS±0.03 radians). 
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Figure 2.20. We set the number of individuals to 100. The graphs in Figure 2.20B, 2.20C and 
2.20D show an average of 100 simulations, where each simulation consists of 4000 steps. (A) 
The graph shows an example of a time series for changing directions. We take the absolute 
value of the rate of change and plot its evolution over time. The vertical line corresponds to a 
rate change (radian) within 10 steps. In this graph, the flock changes its direction up to 0.21 
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radians. (B) A comparison between the mean direction changing rate and the highest 
direction-changing rate. The mean direction-changing rate is colored gray, and the highest 
direction-changing rate is colored light gray. The changing rate becomes roughly twice the 
mean value when the flock makes a hard direction change. (C) A graph of the relationship 
between the rank of the distance and the distance. We plotted the graph of the relation 
between the rank of the distance and its distance. This means that most nearest individual 
from the individual of interest positions about 85L away. There is a roughly proportional 
relation. (0) A graph showing the probability distribution for the nearest neighbor's distance. 
The probability distribution shows an asymmetric relation around its center, 80 L. This 
asymmetry comes from the difference property between the repulsion of the metric 
interaction. In other words, if the nearest individual is positioned too close to the individual of 
interest, it has a high risk of being located in the repulsion zone «R1)k

t2:80 L, see Equation 
(2.4.5)). 

Figure 2.20C and 2.200 show the positional relationship between individuals in MTI flocks. 
Figure 2.20C shows the average distance between individuals graphed against the ordinal 
position. This relationship demonstrates that the nearest individual from the position of the 
individual of interest is approximately 85 L away (L is the unit of the length, and 1 L indicates 
the length of the unit velocity vector in the space). There is a linear dependence between the 
average distance between individuals and its topological order. Figure 2.200 is the graph of the 
nearest individual's probability to exist at a certain distance. The peak of the probability is 
found at approximately 80 L. This figure also shows that there is an asymmetric existing 
distribution. This asymmetric relationship comes from the property of the repulsion zone of the 
metric interaction. If the nearest individual is positioned too close to the individual of interest, it 
has a high risk of being located in the repulsion zone «R1)/2:80 L from Equation(2.4.5)). Thus, 
an individual avoids its neighbors within 80 L when it uses the metric distance. As a result, the 
possibility of the nearest neighbor being located within 80 L is relatively low. This asymmetric 
relationship is also observed in the model of Hildenbrandt et al. [79]. 

2.5.2. Scale-free in three dimension 

In the case of three-dimension, we must not only examine the scale-free correlation for the 
direction, but also the scale-free correlation for the speed. In fact, Cavagna et al. not only 
defined the correlation function of the direction but also that of the speed. First, we defined the 
fluctuation speed with the fluctuation vector; 

(2.5.1) 

cfJ; is the fluctuation speed that is obtained by subtracting the average of all individual's 
speeds from each individual's speed; i is an index of each individual; and II-II indicates the norm 
of the velocity vector. Thus, IIvili = Vi for our simulation. Then, we obtain the correlation 
function of the speed: 

(2.5.2) 

Similarly, the correlation length for speed is the point when the speed's correlation function 
becomes zero. For the mathematical expression, the speed's correlation length is (,p when 
Csp«(sp=r)=O. 
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Figure 2.21. The distribution of the velocity vectors (Figure 2.21A) and the fluctuation 
vectors (Figure 2.21B) projected onto a two-dimensional plane. The number of individuals is 
150. It appears that the individuals that are represented by the velocity vector align in nearly 
the same direction as the upper side. However, if we take the fluctuation vector from Figure 
2.2IA, then we discover two large correlation domains in the flock (the upper and lower 
halves). The shape from these two large subdomains is very similar to the distribution of the 
fluctuation vectors in a real flock. 
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and distance. The number of individuals is 200, and the threshold parameter is 0.05 radians. 
The blue dots show the correlation function for the direction (using Equation (10)). The red 
dots show the correlation function of the speed (using Equation (12)). Both values gradually 
decrease as the distance becomes large. Especially the value of the correlation function 
suddenly rises up to positive values in speed. In this case, both of the correlation lengths are 
¢=370 L (direction) and ~sp=320 L (speed). Figures 2.22C and 2.22D show the relationship 
between the flock size and the correlation length. The number of individuals is set between 
100 and 300, and the threshold parameter is fixed at 0.05 radians. We made 300 simulations 
and averaged the results over a certain interval (100L on the horizontal axis). The error bars 
indicate the SD. The three-dimensional MTI model shows a scale-free correlation in both 
cases. The red dots correspond to the direction in Figure 2.22C, and the blue dots correspond 
to the speed in Figure 2.22D. Both are well correlated (correlation coefficients of 0.87 for the 
direction and 0.78 for speed). The gradients of both graphs are given as 0.36 (direction) and 
0.35 (speed). The gradient for the speed matches Cavagna's result. 

We can also observe scale-free correlation in a flock using the MTI model. Figure 2.21A 
shows the distribution of the velocity vector projected onto a two-dimensional plane. In this 
picture, the flock moves to the upper side, and it seems that each individual has almost the same 
direction. Now, we derive the fluctuation vector from this picture. By subtracting the mean 
velocity vector from each velocity vector, we obtain the distribution of the fluctuation vectors of 
this flock (Figure 2.2IAB). Obviously, this flock has some correlated sub-domains within itself, 
although each velocity vector has a similar direction in the flock (the upper side and the lower 
side of the flock). These correlated sub-domains always exist inside of the flock and flexibly 
change their shape at every time step. Next, we examine the relationship between the correlation 
length and the flock size (the flock size is given as the largest distance between flock members). 
In the previous study, we only showed the direction of the scale-free correlation in 
two-dimensional cases (Section 2.3). In this study, we investigate scale-free correlation of both 
direction and speed with Equations (9) - (12). Figure 2.22A and Figure 2.22B are the graphs of 
the relationship between the correlation function and the distance. Both graphs have a tendency 
to decrease the correlation value when the distance becomes large. This is a reasonable finding 
compared with the empirical result. Furthermore, the correlation function of the speed (Figure 
2.22B) shows its value abruptly rising up to the positive value when the distance becomes 
sufficiently large (not for all cases). This property has also been observed empirically, so it 
appears that the simulation result of the correlation function matches with the empirical result. 
We list other graphs under Supporting Information. Figure 2.22C and 2.22D show the 
proportional relationships between the correlation length and the flock size. The red points show 
the correlation with the direction (Figure. 2.22C), and the blue points show the correlation with 
the speed (Figure. 2.22D). We ran simulations 100 times for flocks with 100, 200, and 300 
individuals, respectively. Both characteristics examined (speed and direction) exhibit scale-free 
correlation. The gradients of these graphs are 0.36 (direction) and 0.35 (speed). This result 
almost matches with the experimental result (the experimentally derived slopes are 0.35 for the 
direction and 0.36 for the speed) []34. It turns out that, even without knowing the whole shape 
of the flock to which individual belongs, each individual in the three-dimensional MTI model 
constantly adjusts its fluctuation vector to make the correlation sub-domains maintain the proper 
size. 

2.5.3. Storing and Releasing Fluctuation 

In the previous section, we observed that flocks using the MTI model displayed scale-free 
correlation of both qualities (direction and speed). Ifwe take this fluctuation vector as noise, we 
can show that the noise has a structure inside the flock. This finding suggests that the noise-like 
behavior of the MTI individual is always limited to the structure of the scale-free correlation in 
the flock even though the noise-like behavior of the MTI individual appears random. 

Do the fluctuations inside the flock have another aspect? We extended our approach to look at 
the whole concept of fluctuation in the flock. So far when discussing the MTI model we have 
fixed the threshold parameter th for the whole simulation. In this section, we tune this 
parameter's value through a simulation series. For example, the parameter value gradually 
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decreases when all of the individuals in a given space move as a single flock. 
To clarify the meaning of the parameter tuning for the flock, we need to return to the notion 

of class and collection cognition. When the threshold parameter is high, the probability of 
exceeding th is very small (see Equation (2.4.3)). Thus, it is difficult for an individual to switch 
from the metric interaction to the topological interaction (see Equation (2.4.6)). In the same way, 
it is easy for an individual using the topological interaction to switch to the metric interaction. 
Therefore, the metric interaction (i.e. class cognition) is dominant when the threshold parameter 
is high, so each individual tends to neglect the differences between individuals within its 
neighborhood. 

On the other hand, when the threshold parameter is small, individuals tend to use the 
collection cognition (i.e. topological interaction). Specifically, for an individual using the metric 
interaction, it is easy to switch to the topological interaction because the probability of 
exceeding th is high (see Equation (2.4.6)). Conversely, it is hard for an individual using the 
topological interaction to switch from the topological interaction to the metric interaction (see 
Equation (2.4.3)). Therefore, the topological interaction (i.e. collection cognition) is relatively 
dominant when the threshold parameter is small. 

What happens to the individual when the threshold parameter gradually decreases or increases 
in the simulation? Before we begin this simulation condition, we must estimate the degree of the 
noise-like behavior of the MTI individual. We cannot estimate the noise-like behavior in 
advance because our model never introduces external noise. Therefore, we use the method that 
is described in Figure 2.24. The idea behind this method is that the noise is considered in the 
context of the SPP method. In other words, the degree of the noise estimates how the direction 
from the MTI model is different from the direction determined by the SPP method. Recall that 
alignment in the SPP model is determined by the average of the directions within the 
individual's neighborhood plus external noise. We therefore interpret the difference between 
this averaged direction and the determined direction from the MTI method as the noise 
contribution. Figure 2.24 shows our method for computing the fluctuation degree. First, we set 
the imaginary fixed neighborhood (blue dotted circle) for each individual, as in the SPP model. 
The radius of this imaginary circle is set to 100 L. We then determine the direction from the 
SPP model (blue colored arrow). Each individual has a direction that is determined by the MTI 
model (red colored arrow). We calculate the angle between the red and the blue arrow for each 
individual, and we refer to this value as the "fluctuation degree". We define a set for an 
individual k as N-IM/={IEN 1 0<11 x\ - Xtl 11< 100}, and the number of elements of N-IMkt is 

(nim){ Therefore, if we define each individual's next state as V~+l, then the fluctuation degree 
(FD) would be given as follows: 

(2.5.3) 

(2.5.4) 

We define (2.5.3) as the fluctuation degree (FD). In addition, we can compute the average of 
all of the fluctuation degrees (Equation (2.5.4)). We call this the average fluctuation degree 
(AFD). 
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Figure 2.24. An image for computing the "fluctuation degree". The blue, dotted circle is an 
imaginary neighborhood, and the blue arrow is the direction that is determined by using the 
interaction of SPP model on the imaginary neighborhood. The red arrow indicates the 
direction that is determined by the MTI neighborhood. We take the absolute value of the 
difference between the red and blue directions. The fluctuation degree can be computed by 
using Equation (2.5.3). 

The fluctuation degree (FD) asymptotically approaches zero when all individuals use the 
topological distance. Recall that an individual using the topological interaction aligns only its 
direction. Therefore, the difference between the two directions determined by the topological 
interaction and the imaginary SPP interaction becomes small because the direction determined 
by the imaginary neighborhood also only uses alignment. As a result, the AFD, which is the 
average of all FDs, also becomes small. Therefore, when the threshold parameter is small 
(nearly all individuals are using the topological interaction), the AFD is very small value. 

Figure 2.25A shows the result when the threshold parameter is tuned. We began tuning the 
threshold 1,000 steps after the point at which the individuals formed a single flock. The number 
of individuals is fixed at 100. The threshold parameter th goes up or down by 0.1 radians every 
100 steps. We started by tuning the threshold parameter from 1.0 radians to 0 radians and then 
reversed the process and tuned the threshold parameter from 0 radians to 1.0 radian. We do this 
in a single simulation. The red dots in Figure 2.25A correspond to the increasing threshold 
parameter, while the blue dots correspond to the decreasing threshold parameter. The arrows in 
Figure 2.25A indicate the direction of the process, and the numbers above the arrows indicate 
the order of the process. The simulation began by decreasing the threshold parameter from 1.0 
radians to 0 radians for each individual (colored blue) and then began increasing the threshold 
parameter from 0 radians to 1.0 radians for each individual (colored red). We observed an 
asymmetric relationship (i.e., hysteresis) between the increasing phase of the threshold 
parameter and the decreasing phase. The discrepancy in the AFD when th=1.0 (radians) will 
disappear when enough time has passed. In particular, there is a point at which the AFD 
suddenly rises in as the threshold decreases. At this point, the flock explodes (see Figure 2.25B). 
Several flocks in our simulations exploded and divided completely into different flocks. Such 
explosions have been observed empirically, for example, in schools of fish [34]. Previously, 
there was no model that could replicate this property. This explosion was not observed when the 
threshold was increasing. 
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Figure 2.25. (A) The graph shows the value for the average fluctuation degree as the 
threshold parameter changes. The number of individuals is fixed at 100. The threshold 
parameter, th, decreases or increases 0.01 radians every 100 steps. The red dots are the 
increasing case, and the blue dots are the decreasing case. The arrows indicate the direction of 
the change. The numbers indicate the order of the processes. There is an asymmetric 
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relationship between the deceasing case and the increasing case. In the decreasing case, there 
is a point at which the average fluctuation degree increases suddenly to 0.15 radians. The 
flock explodes at this point. However, this explosion never occurs in the increasing case. (B) 
The explosion of the flock. An explosion is obtained by changing the threshold parameter 
gradually. Each individual spreads out in a radical pattern. The center of the explosion is on 
the right side. Several steps later, the flock has divided into three sub-flocks. 

In Figure 2.25C and 2.25D, We selected a pair of the maximum (minimum) absolute 
variations of the AFD for the increasing and decreasing cases from one set of simulations. To 
do this, we took 50 data points from 50 simulations. The data would show the difference of 
variance of AFD for each step in the increasing and the decreasing case. (C) A graph of the 
mean absolute maximum variation of the ADF from Figure 2.25A. The increasing threshold 
parameter is colored gray, and the decreasing threshold parameter is colored light gray. The 
vertical axis corresponds to the mean absolute maximum variation of ADF from 50 
simulations. (D) A graph of the mean minimum absolute increment of the ADF from Figure 
2.25A. The increasing threshold parameter is colored gray, and the decreasing threshold 
parameter is colored light gray. The vertical axis corresponds to the mean minimum variation 
of ADF from 50 simulations. (E) The average switching frequency for each threshold 
parameter in Figure 2.25A. The red dots are the increasing case, and the blue dots are the 
decreasing case. The vertical axis represents the average switching frequency for each 
threshold parameter. The horizontal axis indicates the threshold parameter. The variation 
when the threshold parameter is decreasing around 0.15 radians is much steeper than when it 
is increasing. 

We repeated this type of the simulation 50 times. One replicate of the simulation includes the 
entire process of increasing and decreasing the threshold parameter as in Figure 2.25A. We 
selected a pair of the maximum (minimum) absolute variation of the AFD for the increasing and 
decreasing cases from one set of simulations. In this way we took 50 data points from 50 
simulations in which the flock did not divide during the simulation as we wanted to estimate the 
internal or inherent properties of the flock's fluctuation. All flocks in our simulation showed the 
same tendency when faced with AFD variation. We observed the same tendency for hysteresis 
even when the speed of each individual is fixed. Furthermore, all of the flocks in our simulation 
exploded. However, the timing of the flock's explosion was different in each simulation. We 
therefore take the absolute variation of the AFD when the threshold parameter increases or 
decreases by 0.01 radians, which corresponds to one step in Figure 2.25A. Figure 2.25C (2.25D) 
is the mean maximum (minimum) absolute variation obtained by tuning the threshold parameter. 
The increasing th is colored gray, and the decreasing one is colored light gray. Both figures 
suggest that there will be differences in the fluctuation of the flock when th is increasing and 
decreasing. In Figure 2.25C, the mean maximum of the AFD when th is decreasing is 3.5 times 
larger than when it is increasing (t-test: p < 0.001). The explosion of the flock causes this high 
variance of the AFD. In contrast in Figure 2.25D, the mean minimum of the AFD of the 
decreasing th is 0.2 times than the increasing one (t-test: p < 0.001). This small variance in the 
AFD comes from the first stage when th decreases from 0.5 to 1.0 radians (see Figure 2.25A). 
From these results, we conclude that there is an essential difference in a flock's fluctuation 
based on the tuning direction of its threshold parameter. 

Next, we return to Figure 2.25A and examine the switching behavior around 0.15 radians. 
There is a sharp peak around 0.15 radians when th is decreasing that indicates "explosion". 
Then, we provide an interpretation of this fluctuation in the flock. In this region, the interactions 
between each individual changes dramatically (see Figure 2.25E). Figure 2.25E shows the 
average switching frequency versus the threshold parameter. This graph corresponds to Figure 
2.25A. In Figure 2.25E, the switching event (from the metric to the topological interaction in 
this case) does not occur until the th reaches 0.15 radians. In other words, all of the individuals 
in the flock use the metric interaction. The switching event, however, suddenly becomes active 
when th reaches 0.13 radians. This means that the individuals nearly simultaneously switch 
from the metric interaction to the topological interaction. This event triggers the flocks' 
explosion. Nearly all individuals in the flock then repeatedly switch to the topological 
interaction and back to the new metric neighborhood. This switching behavior makes the flock 
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explode at 0.13 radians. 
This process of decreasing th can be replaced with the following story. Based on the example 

shown in Figure 2.2SA, we observe that this flock under the MTI model contains six to seven 
individuals that have a high FD (greater than 0.20 radians) when it reaches a high threshold 
parameter. In this case, the metric neighborhood of each individual is barely disrupted because 
this value is sufficiently small enough compared to high th, such as 0.8 radians. In fact, there is 
no individual who switches its interaction in the closed interval th E [0.18, 1.0] in Figure 2.2SE. 
However, when the threshold value gradually decreases, the probability of disrupting the metric 
neighborhood, or the probability of exceeding th (satisfying Equation (2.4.6)), increases. Once 
the metric neighborhood of an individual is disrupted by its fluctuation exceeding th, the 
individual will reform a new metric neighborhood under the MTI method. Therefore, this 
individual fluctuates vigorously to create a new neighborhood. This behavior increases the 
fluctuation of other, nearby individuals. These adjacent individuals then break their metric 
neighborhoods and perpetuate the fluctuation of other individuals. In this way, the neighborhood 
disruption process instantly spreads through the flock, causing an explosion. It therefore appears 
that a small fluctuation in the flock has the power to break the entire flock. However, by 
neglecting the difference between individuals, or continuing to use the metric interaction, the 
flock can restrict its fluctuation inside itself. Storing fluctuations means that each individual 
never switches to the topological interaction but instead keeps using the same metric interaction. 
If all individuals in the flock do this, no fluctuation emerges from switching between the two 
interaction types. In this regard, it can be considered that the entire flock stores its fluctuation, 
which is caused by a switching event, because the fluctuation would make the flock explode if 
the switching event occurs. 

However, the flock with an increasing th never explodes as it does when th decreases. In the 
increasing case, the AFD first gradually rises as the threshold parameter becomes large. The 
AFD variation keeps its high value after th reaches 0.2 radians. All individuals tend to use the 
topological distance and continue to switch from metric to topological interaction or from 
topological to metric interaction When the flock with an increasing th starts out with a small th 
(see Figure 2.2SE). Each individual always tries to resolve differences in direction with the 
topological interaction as they occur. The fluctuation is not neglected as in the decreasing case 
but instead is released by each individual. Nearly all individuals use the metric interaction after 
0.3 radians, but several individuals switch to the topological interaction and back a new metric 
interaction. We observed that this process continues even when th exceeds O.S radians in Figure 
2.2SE. This robust switching process becomes difficult as the degree of fluctuation scales down. 
That is why the ADF never becomes consistent at high tho In contrast to the decreasing th, a high 
ADF after 0.3 radians means that the flock releases its fluctuation. Releasing the fluctuation 
means that each individual never keeps using the same metric interaction but that some 
individuals can switch between two interactions. The flocks cannot store the fluctuation when 
they release it. 

We also point out that variations in speed never affect our results, including explosions. All 
events in the model without speed variation are the same as in the model with speed variation. 
Therefore, we can apply these results to both flocking behavior and fish schooling. 

2.5.4. Discussion 

We showed that this inherent noise revealed a special property, called scale-free correlation, 
with respect to direction and speed when the threshold parameter is set in an appropriate manner. 
Furthermore, the shape of the correlation function for both the direction and speed fit with 
experimental data despite the inclusion of several noisy graphs (such as Supporting Information 
Example 3). This indicates the correlation function shows slow decay in the flock. Scale-free 
correlation requires the individuals to change their behavior (direction and speed) in context. To 
explain this flexibility, spontaneous judgment of direction and speed is needed for each 
individual. If we provide the noise externally, the model has to find the proper noise intensity 
for every case. Several researchers consider this type of inherent noise to be an important issue 
when studying collective behavior [31, 80]. Although Hemelrijk's model can also explain 
scale-free correlation, it only applies a scale-free correlation to the direction [24]. The scale-free 
correlation for the speed and shape of the correlation function had not previously been 
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demonstrated. Our model satisfies all properties (scale-free correlation to the speed, direction 
and shape of the correlation function). This is the main achievement of our study. 

In the previous section, we observed that various flocking behaviors (including explosion) 
were obtained by tuning the threshold parameter. Let us interpret this in the context of the class 
and the collection cognition. In our model, we correspond the metric interaction to the class 
cognition and the topological interaction to the collection cognition. Recall that the class 
cognition means the cognition of "sameness" (or neglecting the differences) and that the 
collection cognition means the cognition of "difference" (or distinguishing the differences). 
Switching between the class and the collection cognition means that each individual checks "the 
difference" and re-constructs "the sameness" of its neighbors' behavior. This switching 
operation makes each individual fluctuate, and this fluctuation is not sufficient to collapse the 
flock. However, if the class cognition is dominant, "the difference" never disappears but instead 
continues to exist inside of the flock because the switching event never occurs. We observed 
that the flock exploded if these neglected difference were recognized simultaneously. In this 
sense, it can be thought that the flock stores the fluctuation and that the power of these 
fluctuations collapses the flock. In contrast, the difference would never be neglected and is 
eliminated by each individual if the collection cognition is dominant. The difference cannot be 
maintained inside of the flock. In this sense, the flock never stores the fluctuation but always 
releases it. 

The biological significance of the difference between the class and the collection cognition 
emerges as a sense of the quality (class) and quantity (collection) [34, 35]. However, 
distinguishing between quality and quantity is very difficult in principle [29, 36]. Our model 
suggests that this difficulty in distinguishing the two cognitions has a great effect on the 
collective movement. Storing and releasing the fluctuation never emerges through only one side 
of the two cognitions but is released by both cognition states. This also means that the difficulty 
of distinguishing both cognitions may sometimes make the flock continue to use the same 
cognition. We considered the case when the class cognition was maintained and observed that 
this is the cause for an explosion. Our switching model provides an interpretation of fish school 
explosions from this cognitive perspective. 

Our model can induce inherent noise, which shows scale-free correlation, for each individual 
from the perspective of switching between the class and collection cognitions. Some flocking 
models include noise without considering the individual's context [25, 26 28, 52, 53, 55, 59, 60, 
78]. Therefore, the origin of the noise remains vague. Compared with this type of model, our 
model shows that switching between the two cognitions inevitably generates noise. Other 
models have too many biological or environmental restrictions [62, 63, 66 , 79]. In this type of 
model, it becomes difficult to focus on what is important for the collective behavior because 
there are too many parameters. Our model is constructed based on a minimal assumption that 
each individual uses two cognition states and adjusts between them according to the 
environment. We believe that this cognitive perspective will play an important role in 
understanding the collective phenomena. 
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3. Evolving Lattice Model in Ecological Systems 

3.1. Background 

Adaptation is one of the intriguing issues for vast biological events such as evolution and 
ecology [81, 82]. Each species must survive in various environments. Generally, we consider 
fitness to explain that species adapts to an environment. "Survivor of fittest", proposed by 
Darwin [82], is the most famous theory for the adaptation and the evolution. Many evolving 
model, therefore, have applied the concept of fitness whether we like or not [81, 83, 84, 85]. 
The celebrated model of Bak and Sneppen explained the biological evolution by using a fitness 
landscape [83, 84]. Their model has very simple construction. Each species has own fitness 
among species and connects each other on the periodic one-dimensional line. A selected least fit 
species flips its value of fitness randomly. Then two connected species also flip their value of 
fitness at random. Bak and Sneppen explained biological evolution of an ecology such as power 
laws for extinction's distribution by using this simple model [83, 84]. 

The evolutional model of Bak and Sneppen provides many suggestions when we consider the 
species' adaptation in fitness landscape. The problem of their model, which we take up here, is 
their assumption of perfect information of the fitness because the model needs the knowledge of 
all fitness value to decide a least fit species. This assumption seems unnatural. The concept of 
fitness landscape, however, implicitly requires the knowledge of global fitness information. In 
the living world, it is very hard to ask perfect information for an environment because an 
environment would dramatically change with time and the relation between species also 
changes with their environment. Therefore, we must admit this incomplete information for the 
environment when we construct the model of adaptation. 

If we accept changing environment, we change the consideration to adapting process as a 
whole species from particular species [86, 87, 88, 89]. It could become disadvantage for only 
increasing population of fittest species. Let consider the genetic example. In the genetics, there 
are two types of allele that are wild type and mutant [90, 91]. The wild type is most common in 
the population of allele. If the proportion of the wild type becomes too large, it would make 
easy to become extinct when the environment changes. To avoid such extinction, it never needs 
to produce wild type, but also some mutations. However, too many mutations make allele's 
fitness fall. Therefore, it needs the balance between the selection and mutation in the population. 
The balance between selection and mutation also appears as the balance between selection and 
variation in the ecological evolution [81, 92]. However, we generally must find fine-tuning of 
the mutation rate for gene reproduction to obtain optimal variety of mutants for the adaptation. 
We confirm here that the problem of incomplete information for the environment would shift 
into the statistical property in the popUlation. This statistical property emerges as probabilistic 
parameters in many models [91, 92, 93, 94, 95, 96, 97, 98]. The problem, which we suggest for 
the model of Bak and Sneppen, comes back again here. To determine the optimal degree of 
variation, we need the complete global information of the population. 

The assumption of complete global information would· erase the essential problem for 
adapting individuals to their environment. The problem of incomplete information, which we 
have discussed, imposed on modelers who decide fine-tuning between selection and variation. 
Apparently, this incomplete information in the living world should not reduce to the modeler, 
but adapting individuals. If we try to discuss the adapting process of species, we never easily 
have to start with the assumption of complete globality. Therefore, we must pay attention to not 
losing the incomplete information when we construct the model of adaptation to an 
environment. 

In pervious study, we suggested that the importance of incomplete observation (information) 
for the adapting process [99, 100, 101]. We insisted that the dynamic relation between 
incomplete locality and globality would be needed if we want to understand the adapting 
process. The relation between locality and globality, however, tends to replace the relation 
between parts and a whole on the context of self-organization. The concept of self-organization 
is the global emergence property through the local interaction without any central control. The 
ecological model of Bak is also sorted by one kind of the model of self-organization. 
Unfortunately, most of these models require complete global information such as the threshold 
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value, least fit species and parameter turning [83, 84, 86, 87]. The balance between globality 
and locality is assured by these factors in advance. Therefore, there is no dynamical relation 
between them in the model of the self-organization. 

Returning to the definition of the word "self-organize", we point out that the word must 
contain two levels, which are "self' (parts) and "making self' (whole), at least. However, the 
word "self' would contain other elements, which never have belonged to "self', because the 
"self' can make progress by actively taking in unknown factors when he adapts to changing 
environment. "Self' itself must be defined as incomplete in the self-organization. Changing 
"self' also requires changing "making self' as a whole. Therefore, we cannot avoid the problem 
of the incomplete information when we consider the relation between locality and globality. 
Considering self-organization, faithfully, suggests that the relation between parts and whole 
must progress by containing such incompleteness [100, 101]. That is why it needs to consider 
the dynamical relation between locality and globality in adapting process. 
In this paper, we use the lattice theory to represent the incompleteness of locality in adapting 
process. The lattice structure in the lattice theory also provides us dynamical changing globality. 
Each species can observe only parts of environment. This local incomplete information 
represents as block information. Each species construct the dynamical globality by using block 
information. In our evolving lattice model, local incomplete information drives the constructed 
lattice evolving. Then constructed global information re-estimates incomplete local information 
by using a quotient lattice. The quotient lattice plays a role of identifying a set of connected 
block information as representative block information. Using identification by a quotient lattice, 
we show that species can obtain variation without any parameter tuning. 

3.2. Basic Notion 

To construct our model, we use a lattice theory. The lattice theory has widely used in the 
computer science such as an automaton theory [102, 103]. Here we review the basic definitions 
and notion, which are used in our model for unfamiliar readers of the lattice theory. 

Definition 2.1 (Partial Order) Let P be a set. An order on P is a binary relation s on P such that, 
for all x,y, z E P 
(i) x s x 
(ii) x sy andy sx ~x = Y 

(iii) xsyandysz~xsz o 

We denote a partially ordered set by the pair, (P, s). For example, a set of bit (binary) strings 
can construct a partial order. A bit string a\a2a3 ... an is a finite sequence of zero or one (aiE{O, 
I}). An order between two bit strings such as a\a2a3 ... an and b\b2b3 ... bn is defined by 
a\a2a3 ... an s b\b2b3 ... bn if ai s bJor all i. We use a set of bit strings in this study. However, A 
partial order is not a lattice. Then we define the meet and the join. We define the join "v" and 
the meet ",," of two elements x andy in P. The join can be defined by xvy =sup{x, y} when it 
exists. The join can be defined by x"y =inf{x, y} when it exists. The notation of sup (in.!) means 
the lowest (greatest) upper bound of {x, y} in P. 

Definition 2.2 (Lattice) Let (P, s) be a non-empty partially ordered set. 
If xvy and X" Y exist for all x, yEP, then (P, s) is called for a lattice. 0 

To distinct a partially ordered set, we denote a lattice as (L, s, ", v). In this paper, there are 
often-used sets that are an ideal and a filter. An ideal is used when we construct the congruence 
on a lattice. 

Definition 2.3 (Ideal) Let (L, s, ", v) be a lattice. A non-empty subset of J is called an ideal if 
(i) x, y E J implies xvy E J, 
(ii)xEL,yEJandxsyimplyxEJ. 0 
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Definition 2.4 (Filter) Let (L, s, A, v) be a lattice. A non-empty subset of F is called an ideal if 
(i) x, y E F implies XAy E F, 
(ii) x E L, y E F andy s x imply x E F. 0 

The typical example of an ideal is a down set on a lattice. The definition of a down set is a 
subset J = {y ELI y s x} when x E L. We denote a down set of x as ~x. It can easily be rerified 
that a down set satisfies the condition of ideal. In a similar way, we can define an upper set on a 
lattice such as F = {y ELI x s y} when x E L. We denote an upper set of x as t x. We can also 
rerify that an upper set satisfies the condition of a filter. Next, we consider congruence on a 
lattice to define a quotient lattice. A congruence is an equivalence relation which is restricted by 
a certain condition. 

Definition 2.5 (Congruence on a Lattice) Let (L, s, A, v) be a lattice. Let an equivalence 
relation on L be 8 = {<x,y> E LxL} such that any x, y, z E L, 
(i) <x,x> E 8 
(ii) <x,y> E 8 ~ <y,x> E 8 
(iii) <x,y> E 8 and <y,z> E 8 => <x,z> E 8 

We also denote <x,y> E 8 as x==y (mod 8). Then an equivalence relation is a congruence on L, if 
for any x, y, z, wE L, (x==y (mod 8) and z==w (mod 8) ) => (xvz == yvw (mod 8) and XAZ == yAW 
(mod 8) 0 

Then we can make a quotient lattice by using a congruence. 

Definition 2.6 (Quotient Lattice) Let 8 be a congruence on a lattice (L, s, A, v), then a set L/8 is 
defined by 

L/8 = {[x]. I x E L} with [x], = {y ELI x==y (mod 8)} 

The join and the meet on L/8 are defined by 

[x]. A [y]. := [XAY ]., [x]. v [y]. := [xvy]. 

Then we call (L/8, s, A, v) the quotient lattice of L modulo 8. o 

In this study, we construct a quotient lattice from a given ideal. First we introduce the 
equivalence relation derived from an ideal. 

Definition 2.7 (Equivalence Relation Derived from an Ideal) Let J be an ideal on a lattice L. 
The equivalence relation derived from an ideal J is; 

8 (J):={<x, y> E LxLI3z E J xv z = yv z} o 

We can easily rerify that Definition 2.7 satisfies Definition 2.5 and that 8 (J) is well-defined to 
be a congruence relation. Then next proposition ensures the ideal as a block of the partition 
derived by a quotient lattice. This proposition would be used when we discuss the existence of 
the lowest block information. 

Proposition 2.8 Let 8 (J) be an equivalence relation derived from an ideal J on a lattice L. Then 
J is a block of the corresponding partition of L. 

Proof. J is a block of the corresponding partition of L iff't/ x E J, [x]'(J) = J (*) 
Therefore we must prove (*). 
(i) V y E [x]'(J) ¢> (3z E 8 (J) xV z = yv z ~ xV z = yv z E J (Definition 2.3) ~ ysyv z, y 

E J (Definition 2.3) 
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(ii) Supposing y E J, for [x]. (.I), it is trivial that x E J, then xvy E J. Clearly, xv(xvy) = 
yv(xvy).ltentailsyE [x]'(.I) 

From (i) and (ii), we proved [x]'(.I)=J. 0 

We also point out that a quotient lattice is deeply connected to a map between lattices, which is 
called a homomorphism. 

Definition 2.9 (Homomorphism) Let Land K be a lattices. A map f: L -+ K is said to be a 
homomorphism if for any x, y E L, 

(i) f(XAy) = f(x) Af(y) (meet-preserving) 
(ii)f(xvy) = f(x) V fey) (join-preserving) 

Especially,fis called isomorphism whenfis a bijective homomorphism. 0 

Proposition 2.10 (Homomorphism between a Lattice and a Quotient Lattice) Let 8 be a 
congruence on a lattice L. Then (L, s, A, v) is a lattice and a natural quotient map f: L -+ L/ 8, 
defined by f(x) := [x]., is a homomorphism. 

Proof. We check that a natural quotient mapfsatisfies Definition 2.5. 
f(xvy) =[ xvy]. = [x]. v [y]. = f(x) V fey) 
f(XAY) =[ xAy]. = [x]. A [Y]. = f(x) Af(y) 0 

The next theorem is often used in this paper. The theorem is used for constructing a quotient 
lattice from an ideal. Using this theorem, we can determine a quotient lattice from a given 
lattice. 

Theorem 2.11 (Reconstruction of a Lattice from a Quotient Lattice) Let L be a lattice and fbe a 
natural quotient map such as f: L -+ L18. For the binary relation derived from an ideal J c;;, L, 
there exists a filter K c;;, L such that [x]. (.I) = Fl(x), where for any x E K,f-I(X) := ~x - UyeK,y<xb 

Proof. See [99]. o 

3.3. The detail of Evolving Lattice model 

There are many individual differences in species, but there are many common properties in 
species. In our model, the different and the common properties in species apply to bit strings. 
Bit strings represents species. Bit strings are constructed from a series of zero and one sequence 
such as 010011. Formally, n-bit string can represent ala2a) ... an and aiE{O, I} for all iE{I, 2, 
.... , n}. We briefly denote ala2a) ... an as [a]n. We can replace the resemblance or the differences 
between species to the resemblance or the differences between bit strings. 

In a set of bit strings, we can make an order between two bit strings is defined by [a]n S [b]n if 
ais bi for all i E{I, 2, .... , n}. Therefore, a set ofn-bit strings constructs a partial order. We also 
define the meet and the join in n-bit strings. 

Definition 3.1 (Meet and Join of n-Bit String) Let [a]n and [b]n be a n-bit strings. 
(meet) [a]n A [b]n:= min{al' bdmin{a2' b2} ... min{an, bn} 
(join) [a]n v [b]n := max {at, bdmax{a2' b2} ... max{am bn} 0 

The notation ofmaxS (or minS) means taking the largest (or smallest) value in a set S. 
In our model, we provide two types of bit strings. One is a bit string that represents an 

environment (or a target). Another is a bit string that represents a species. We denote [t]n and 
[s]n for a target bit string and a species bit string, respectively. We consider a group of species, 
which are represented by n-bit strings, as a set M = {[sl]n' [i]n, ... , [sm]n}' The number of 
elements in a set M is fixed at m. Each species tries to adapt a target bit string [t]n' An adaptation 
in our model means that each species tries to imitate a target bit strings. In other words, we 
presume that a bit string of a species has high fitness from the evolutional perspective when it 
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resembles a target bit string. 
To raise fitness, a species has to decide what is important or what is not important for the 

adaptation. Or this proposition would replace the following question such as "which should be 
changed in a part of a bit string to raise fitness?" However, we point out that there are two 
problems for the adaptation between an environment and a species. First, a species generally 
never can have a perfect knowledge for an environment. Many models of the adaptation to an 
environment take account into this point. Second, an interaction between a species and an 
environment never would be independent for the other species. The model of adapting to an 
environment must satisfy at least these two conditions. 

Imperfect knowledge for an environment is expressed by concealing a part of a target bit 
string. Each species can only observe n-l bit from a target n-bit strings. The concealed position 
in a target bit string is randomly selected for each time step. If a concealed position is k (1 sksn) 
at time t, each species can observe a target bit string tlt2" .tk_Itk+I" .tn' 

Here we consider block information. Block information means a part of unchanging bit string 
by species' adaptation. Each species hold the part of block information in its bit string. The 
residual part of block information would change its value randomly. The definition of block 
information is as following. 

Definition 3.2 (Block Information) Let [s]nand [t]n be a n-bit strings. [s]n is a species and [t]n 
is a target. k is a concealed point of a target. 

For Isjsn, 

o 

1 (if a j = t j and j '¢ k) 

o (if a j '¢ t j and j '¢ k) 

o or 1 (otherwise) 

From the definition 3.2, we observe that block information [b]n is also n-bit string. One in 
block information means unchanging positions by species' adaptation. Zero in block 
information means changing positions by species' adaptation. In doing this way, we obtain all 
block information for all species which is a set B= {[ bl ]n, [b2]n' ... , [bl]n}. The number of 
elements of a set B is less than the number of elements of M (IBlsIMI, we denote I-I as a 
cardinality) because it contains some block information is the same. For example, consider 3-bit 
strings. A target, which is the case of no concealed point, is ° 11 and species are {O 10, 111, 01O}. 
Then a set of block information is {11 0, ° 11 } . We also use a set of block information that 
contains t~ same block information (the case of above example {110, OIl, 11O}). We denote 
this set as B . 

A set of block information constructs a partial set, but not a lattice. A lack of a lattice 
structure means that there is no unified structure that connects block information each other. 
Therefore, we need to construct a lattice structure from a given set of bit strings. In this study, 
we use a topped-intersection structure to construct a lattice. Next definition is the 
topped-intersection structure for bit strings. 

Definition 3.3 (Topped-Intersection Structure in Bit Strings) Let L be a set of bit strings. If L 
is a topped-intersection structure, L satisfies the conditions (a) and (b). 

(a) For any S ~ L, AS E L, . 
(b) vLE L 0 

The definition 3.3 means that a topped intersection structure is closed under the meet. In other 
words, a topped intersection structure contains any pair of elements for the meet operation. We 
consider 3 bit strings again. A target, which is the case of no concealed point, is ° 11 and species 
are {O 10, 111, 01O}. Thus a set of block information is {11 0, ° 11 }. The topped intersection 
structure of {110, OIl} is {01O, 110,011, 111}. Obviously, {01O, 110, OIl, 111} makes a 
lattice. We denote a lattice, which is constructed from block information, as L. By using a 
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topped intersection structure, we obtain global information between block information. 
We defined block information as a required block to raise fitness for each species. However, 

the decision of block information would involve a contextual constraint. We can correspond this 
contextual constraint to a quotient lattice because equivalence relations on a lattice are restricted 
by the global structure. Making a quotient lattice plays a role of an interface between local and 
global information. Before we discuss how to determine an ideal in the lattice, we define block 
information being induced by a quotient lattice. The block information, which is induced by a 
quotient lattice, is as follows. 

Definition 3.4 (Block Information Being Induced by a Quotient Lattice) Let L be a set of bit 
strings and 8be a congruence on lattice L. For IsislBI, 

[bi]n +- v {[x]E L I [x] E [a], such as [bi]n E [a],} 0 

Therefore, we can determine a unique element, which is induced by a quotient lattice. A 
determined element corresponds to a top of the congruence to which it belongs. The reason of 
this directly is confirmed from Definition 2.7. Figure 3.1 B shows an example of the process 
from obtaining block information to new block information. 

Determining an ideal, which means a down set for a lattice, is important for our model 
because the result would change by the selection of an ideal. Here we consider a "reference 
point" to determine an ideal in a lattice L. The meaning of a reference point will be discussed 
latter. If a reference point is determined, an ideal determines as a following rule. 

Rule 1 (Determining an Ideal) Let L be a lattice and [r]n E L be a reference point. Then an 
ideal is HX]n. [x]n is randomly selected from a filter j[r]n. 0 

Rule 2 (Determining a Reference Point) Let Lt be a lattice, [r]nt be a reference point and IP 
be a set of block information, which contains the same block information, at time t. Then a 
reference point at time t+ I is, 

[r]~ (if [r]~ EZ;+1 and [r]~ ¢ [O]~) 

randomly selected [X]~+l E{[r]~ 1\ [y]~+ll[y]~+l EZ;+l} 

(if [r]~ $.Z;+1 and [r]~ ¢ [O]~ and {[r]~ 1\ [y]~+ll[y]~+l EZ;+I} ¢ ifJ) 
-1+1 

randomly selected [b]~+l EB (otherwise) 

o 

Rule 3 (Checking a Reference Point) Let Lt be a lattice, [r]nt be a reference point and lit be 
a set of block information, which contains the same block information, at time t. Then next rule 
for the reference point is, 

{
Use Rule 2 for next step if( [bk]~ Et [r]~) 

randomly selected [b]~+l EBt+l for next step (otherwise) 

[bk]nt is randomly selected fromlitto check a reference point. o 

[O]n means an all zero n-bit string 00 ... 0 in a lattice L. Rule 2 and 3 is how to determine a 
reference point in a lattice. The reference point is randomly selected from a set lit. Therefore, a 
reference point reflects the proportion of population of block information (4th line of Rule 2). A 
reference point is created by the intersection operation when the reference point of time t does 
not exist on a lattice Lt+l (2nd line of Rule 2). The reference point plays an important role for the 
adaptation of species as a whole (see Results). Rule 3 suggests we check whether a reference 
point reflects the proportion of block information in a set B t because the origin of a reference 
point comes from a set lit. 

52 



Here we consider the meaning of a reference point in the model. A reference point means the 
finest information for the resemblance to the target bit strings. From the definition 3.4, we 
confirm that [x]n would be substituted by [r]n if an ideal is Hr]n and [x]ns[r]n. The lower 
elements would be identified by the upper element of the congruence to which they belong. 
There is no finer block information than a reference point (see Proposition 2.8). Rule I means, 
thus, that the lowest block information in a lattice becomes coarser than a reference point when 
we construct an ideal. 

This strong identification of block information by a quotient lattice would provoke mistakes 
of block information (see the example of Figure 3.1B). This errant block information, however, 
contributes to generate a diversification in species without any mutate parameter. We point out 
that all error of block information are restricted by a reference point and a lattice structure. 
Errors induced by strong identification are not simply random. The error contains a history of 
the evolving lattice structure. 

We summarize the algorithm of our model. 

(A) 
... - ...... , .. , ~ 

[] 
a bit string 

observed 

target bit string 

a set of bit strings y 

target bit string 
Block Information 

(B) 
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Make a congruence 

(iii) 

block informations 

Change all block informations 

(C) 

Figure 3.1 (A) Constructing block information from a set of species M . A concealed position 
corresponds to the dotted rectangle. We color black (one) and white (zero) to each bit string. 
Block information is represented by gray, white and cross. Grays correspond to unchanging 
positions. Crosses correspond to changing positions. A white corresponds to undetermined 
position by Definition 3.2. (B) Image of constructing a topped intersection structure and 
changing block information from a quotient lattice. Above rectangle shows that block 
information change its color in this figure. (i) corresponds to a set of block information. (ii) 
corresponds to a topped intersection structure by using (i). The solid arrow means a reference 
point. A red dotted circle is a filter of the reference point. Black circles are the congruence. (iii) 
shows an example of changing block information by using a quotient lattice. (C) Example of the 
evolving lattice. A set of block information corresponds to B. The constructed lattice 
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corresponds to L. It can be observed that B is not still a lattice. Red elements mean a reference 
point. Blue elements mean a selected ideal. The structure of the lattice changes through time 
step but the reference point is succeeded by into next lattice LI+I. 

Algorithm 

(1) Generating m n-bit strings [sl]nO, [i]no, ... , [sm]no and a target [t]n string randomly. 

(2) Determining a concealed position of the target is randomly selected from {I, 2, ... , n}. 
Making block information from a set of n-bit strings MI = {[sl]nl, [i]nl, ... , [sm]nl} by using 
Definition 3.2. A set of block information is denoted B 1 = {[bl]nl, [b2]nl, ... , [bll]nl}. 

(3) Making a lattice LI by using a topped intersection structure of B 1 (Definition 3.3). 

(4) Determining a reference point [r]nl in a lattice LI by using Rule 2 and checking a reference 
point by using Rule 3. 

(5) Making an ideal HX]n l from a reference point [r]n l by using Rule 1. Constructing a quotient 
lattice from the ideal ~ [x]/ 

(6) Substituting new block information by using Definition 3.4. 

(7) Changing each n-bit string by using block information. For Isjsn and Isism, 

1.1+1 J J 
, {Si:1 (if bi

:
t = 1) 

Sj = 0 or 1 (otherwise) 

(8) And constructing new set of species M+1 = {[sl]nl+\ [i]nl+\ ... , [sm]nl+I}. 
o 

We define the time step as (2)-(7) as one step. Repeating (2)-(7), we can observe the 
evolution of species and the lattice. Figure 3.1 C is an example of evolving lattice by using our 
algorithm. We constructed a lattice (L) from the partial order (B), which we called block 
information. Red elements correspond to a reference point in a lattice and blue elements 
correspond to a selected ideal by using Rule I. The reference point is succeeded by into next 
lattice. Therefore, the identification through a quotient lattice never changes so dramatically, but 
affects next lattice through the reference point. 

3.4. Results 

We set the number of species as 2n for n-bit string. 2n is the total number of n-bit strings. For 
example, there are 4 for 2-bit stings, which are {OO, 0 I, 10, II}. This number setting means that 
one n-bit string in all kind of n-bit string potentially has one niche. We tried a half and a double 
of 2n. However, there was no essential difference between them. Therefore, we fix the number 
of species as 2n. There is no additional parameter to our model. 

We examine the time series of the evolving lattice model. In this simulation, we consider a set 
of 8bit strings. Figure 3.2A is the time series of the number of element in the evolving lattice. It 
can be observed that the number of element in a lattice dynamically changes for every step. This 
suggests that the global structure, which is constructed from incomplete information, is not 
static. Therefore, the relation between globality and locality keeps changing through negotiation. 
Figure 3.2B shows the time series of the averaged distance to the target bit string. The averaged 
distance d can be computed by using following mathematical expression. 

(3.3.1) 
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We point out that the averaged distance also has information of fitness of total species. A bit 
string has the highest fitness when it is consistent with the target bit string. The averaged 
distance, thus, is the degree of fitness of total species. Figure 3.2A shows that the averaged 
distance oscillates around d= 1.1. Although d is large for early interval, the value soon shows an 
oscillation around low d. This oscillation keeps persisting for long time steps. The graph shows 
that each species tries to adapt the target, but sometimes many species fail to adapt its target. 
Therefore, the process of the adaptation to the target is far from equilibrium. 

Next we discuss Figure 3.2C. The vertical line of Figure 3.2C is bit flip rate per bit. It can be 
express by using following mathematical expression. 

fl
. t 1 ~ ~ Isjt+1 - s~tl 
lp = - L.JL.J 

m ;=1 j=1 n 
(3.3.2) 

The time series of bit flip rate shows like white noise (indeed, the slop of the power spectrum 
is -0.22). The bit flip rate never stays positive, sometimes becomes zero, which means that no 
bit flip event occurs in a certain interval. No bit flip event can occur when an ideal fully covers a 
lattice. The degree of the bit flip rate roughly depends on the structure of the quotient lattice, 
constructed by block information because the way of selecting ideal affect changing or 
unchanging positions for each bit string. Generally, it tends to become larger the number of 
elements of a quotient lattice when bit flip rate becomes larger. Figure 3.20 shows the 
correlation between bit flip rate and the log scale of number of congruence in a quotient lattice. 
The number of congruence is the number of the partition in a lattice. For example, the number 
of congruence is two for Figure 3.1B (ii). It can be observed zero bit flip rate occurs only when 
the number of congruence is one from Figure 3.20. The correlation coefficient in Figure 3.20 is 
0.68. The correlation relationship between them suggests the bit flip is not merely random. The 
structure of the evolving lattice affects the value of bit flip rate. The bit flip rate temporally 
changes without any parameter tuning. 
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Figure 3.2 (A) The graph shows a time series of the number of elements of a lattice. The 
constructed lattice never behaves static but dynamical. (B)The graph shows a time series of 
the averaged distance between a target and species. Smaller distance means higher fitness of 
total species. We can observe an oscillation in this graph. The mean averaged value is about 
1.1. (C) The graph shows a time series of the averaged bit flip rate per one bit. The bit flip 
rate is determined by block information and a quotient lattice for each step. (D) The relation 
between the bit flip rate and log scale of number of congruence in a quotient lattice, which is 
constructed from block information. There is a roughly correlation relation between them. 
The correlation coefficient is 0.68. 

To estimate the lifetime distribution is very important when we consider the evolutional or 
ecological system [104]. Especially, the power law whose slop is -2 is universally observed by 
many biological events such as fossil records [105, 106, 107]. Figure 3.3 shows that our model 
also has -2 power law for the lifetime distribution for 7-bit, 8-bit and 9-bit strings, respectively 
(we simulated 100,000 steps, respectively). The lifetime, in this study, is the length of time steps 
whose one kind of n-bit string exists in the popUlation. Bit strings, which are far from the target, 
would become extinct for high probability and bit strings, which are near by the target, would 
survive for high probability. Showing power law distribution means that there is no 
characteristic scale for extinction events of species. The power law suggests that species never 
behave independently, but interact each other through incomplete information. In our model, we 
construct a lattice from disjoint block information. The bit flip rate, which determines extinction 
events, is regulated by an evolving lattice. This regulation of our model inserts the global 
information to the population dynamics. 
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Lifetime 

Figure 3.3 Both figures show the distribution the lifetime of each species for 8bit strings and 
9bit strings. The vertical line is the frequency and the horizontal line is the lifetime of each 
species. We plotted them as log-log plot. Both bit strings shows the power law. The slopes of 
each graph are -2.17±0.I5 (7bit), -2.I8±0.07 (8bit) and -2.04±0.03 (9bit), respectively. We 
simulated 100,000 steps for each case. 

Evolving lattices also affect oscillations for the averaged distance from the target. Figure 3.4 
shows a power spectrum for Figure 3.2B. We define f as a frequency and S(f) as a power 
spectrum. Then we get the mathematical expression as SCI) ~ I-Y• The slope of the graph is r 
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= -1.36±0.02. In other words, Figure 3.4A obeys lif fluctuation. This relation indicates that 
adapting target bit string at different times correlates for the very long time scale. Here we 
discuss the importance of a reference point for lIffluctuation. We examined what would happen 
to the power spectrum without a reference point. Recall a reference point takes in local 
information. In other words, an element, which constructs an ideal, is randomly selected from 
evolving lattice without a reference point. If the model lacks a reference point, the distribution 
of power spectrum shows Figure 3.4B. Obviously, the graph becomes flat for high frequency. 
We examined both slopes in high frequency region (0,0.05] for these two figures. Then we get 
both slopes were -1.08±0.02 (Figure 3.4A) and -0.45±0.05 (Figure 3.4B), respectively. The 
difference of value between them is more than double. Figure 3.4B contains two essential 
suggestions for our model. One is that there is a distinction between short time scale and long 
time scale for our evolving lattice model. The slop of low frequency region purely depends on 
the evolving structure of lattices. Adaptive behavior of long time scale is mainly performed by 
evolving lattices without the reference point. Another is that divided two regions in power 
spectrum suggest that liffluctuation results from the collaboration between the evolving lattice 
structure and the way of choosing its reference point. Adding a reference point in a lattice, 
species also can adjust in short time scales. 
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Figure 3.4 Power spectrum S(j) for the oscillation in Fig. 3.2B. The slope of Figure 3.2B is 
-1.36±0.02. The graph shows lifnoise for species' adaptive behavior. Power spectrum S(j) 
for the oscillation like Fig. 3.4A without a reference point. The graph becomes flat for high 
frequency. Species without the reference point never shows the high intensity for short time 
scales. This suggests that the low intensity for long time scales purely result from global 
constraints, which correspond to a series of lattice structure. The slopes in the dotted region 
are -1.08±0.02 (Figure 3.4A) and -0.45±0.05 (Figure 3.4B), respectively. 

Next we compared with the model, which we called a "mutation model", to argue the 
characteristic property of evolving lattice model. The detail of algorithm is listed on Appendix. 
Here· we present the main concept of the mutation model. The mutation model shares the 
common feature using block information. Each species (n-bit string) constructs block 
information from the target and divides into two regions, which are unchanging and changing 
positions. The lattice evolving model change block information by using a quotient lattice, but 
mutation model change block information by using the probability, which we called mutation 
rate p, (this concept and the word highly relies on Eigen's model [90]). The mutation rate p, 
means the probability of copying error. All block information maintain if the mutation rate is 
zero. However, if the mutation rate becomes larger, unchanging positions tend to change 
changing position. Therefore, fitness of species becomes low and bit flip rate becomes high 
when the mutation rate is high. The type of bottom up model (such as mutation, extinction and 
collective phenomena etc.) uses the parameters which can control each behavior. Tuning these 
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parameters would lead the model to emerge some corrective properties. We construct the 
mutation model as one of typical example for the bottom up model. 

Figure 3.5A and 3.5B shows the behavior of the mutation model when the mutation rate is 
controlled. Figure 3.5A is the relation between the mutation rate and the averaged distance to 
the target bit strings. It can be observed the proportional relation between them. Averaged 
distance is low (or fitness is high) if the mutation rate is low. We can observe the standard 
deviation of averaged distance also becomes larger in high mutation rate. This is because of 
high bit flip rate. In fact, Figure 3.5B shows the proportional relation between the mutation rate 
and bit flip rate. The high bit flip rate brings on the fluctuation around the mean averaged 
distance. 
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Figure 3.5 Figure 3.5A and 3.5B are the graph of the mutation model. The detail of 
algorithm is listed on Appendix B. (A) The graph of the relation between mutation rate and 
averaged distance to the target. Error bars are standard deviations. Averaged distance from 
the target becomes larger when the mutation rate !l rises. (B) The graph of the relation 
between mutation rate and bit flip rate. Error bars are standard deviation. The bit flip rate 
becomes larger when the mutation rate !l rises. Nonzero value of bit flip rate at !l =0 causes 
the concealed position of the target bit string. 

Next two graphs show the comparison with the evolving lattice model and mutation 
model. The parameter !l in the mutation is fixed at 0.09. The number of species unifies at 
28=256. (C) Both bars show averaged bit flip rate for the evolving lattice (colored black) 
model and the mutation model (colored gray). Error bars are standard deviations. The value 
of averaged bit flip rate of evolving lattice model is six times smaller than one of mutation 
model. (D) Both bars show mean variation from averaged distance for the evolving lattice 
(colored black) model and the mutation model (colored gray). Error bars are standard 
deviations. The value of the evolving lattice model is eight times larger than one of mutation 
model. 
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The mean averaged distance of the lattice evolving model is around d= 1.1. This value 
corresponds to !-l =0.09 for the mutation model. We fixed, thus, at !-l =0.09 to compare with the 
lattice evolving model. We run the simulation for 8bit strings. First, we compare averaged bit 
flip rate for both models. Figure 3.5C shows this result. The black bar corresponds to the 
evolving lattice model and the gray bar corresponds to the mutation model. The graph shows 
averaged bit flip rate of the mutation model is six times larger than the evolving lattice model. 
In other words, the averaged bit flip rate of our model is very small (this value is smaller than !-l 
= 0). We point out that bit flip rate of the mutation model hardly becomes zero like the evolving 
lattice model in Figure 3.2C because the error of the block information is determined 
stochastically. If the population becomes larger, it becomes impossible to occur no bit flip for 
every species. By contrast with the mutation model, the bit flip rate of the evolving lattice model 
never only depends on the probability, but also regulates a lattice structure (see Figure 3.2D). 
Therefore, bit flip event in the evolving lattice model never occurs as the same intensity. 
Figure 3.5D also provides us interesting information. We examined the mean variation (standard 
deviation) around averaged distance between the target and species. The corresponding colors 
of Figure 3.5D are the same as the Figure 3.5C. Figure 3.5D shows opposite to the result of 
Figure 3.5C. The mean variation of averaged distance of the mutation model is eight times 
smaller than one of the evolving lattice model. This means that the distance to the target hardly 
moves around the mean averaged distance. High bit flip does not lead the mutation model to 
high fitness, but stays on low fitness. On the other hand, the evolving lattice model moves for a 
wide range around mean averaged distance despite low bit flip rate. This fact suggests that the 
evolving lattice model efficiently uses its bit flips to approach the target bit string. This efficient 
using bit flip never observed for the probabilistic mutation model because the mutation rate is 
uniformly distributed to each bit string. 

3.5. Discussion 

In this study, we start from the concept of incomplete information. Each species decides what 
are necessary traits by using his information, respectively. Although each species cannot obtain 
partial information from an environment, how does species can adapt an environment? To 
overcome this problem, we insisted that it is very important to consider the ceaseless negotiation 
between local incomplete information and dynamical global information. 

We constructed the model with attention to these points. The lattice theory was employed to 
satisfy the interaction between global and local information. Elements (bit strings) in a set, 
which we called block information, are merely independent incomplete information per se. To 
construct the relation between elements, we used the topped intersection structure. By using the 
topped intersection structure, we can make a lattice from independent elements. Each element 
has some relation with other elements in a constructed lattice. There is no isolated element in a 
lattice. We considered that this lattice represents global information among species. This 
constructed lattice is not static, but dynamic for the time steps. 

We observed that our evolving lattice model shows various properties such as power laws for 
the lifetime distribution and liffluctuation for the adapting process. It should be noted that our 
model never needs bit flip events externally, but makes bit flip events inherently by negotiating 
between local and global information. The word of inherent here means that the rate of bit flips 
is never controlled by external parameters. Flipping rate of each bit string is determined by a 
structure of a lattice at time t. The importance of inherent bit flips rate becomes clear by 
comparing with the mutation model. The mutation model can control bit flip rate by the 
parameter !-l. In other words, the bit flip events in each bit strings are determined stochastically. 
We observed that this stochastic event never showed variability of adapting to the target. We 
also observed that bit flip rate of the evolving lattice model was much smaller than one of the 
mutation model although our model showed high variability. This suggests that inherent bit flip 
events are used efficiently to approach the target bit string. Species of the evolving lattice model 
maneuvers less noise-like event to adapt the environment (the target bit string). 

Next we consider the role of the reference point in our model. We suggested importance of 
the reference point in the lattice structure in adapting process. A reference point would become 
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the criteria when we make an ideal. This ideal induced a quotient lattice. By using a quotient 
lattice, all block information change its element to the upper limit in the congruence. Therefore, 
lower order elements are substituted by upper elements in a lattice. We have observed that this 
strong identification through a quotient lattice is important role for the population dynamics in 
species. However, we also observed that it was insufficient for the emergence of 1iffluctuation 
if there is no reference point. There was a lack for the intensity in short time scale. The 
reference point in the evolving lattice --'played a role of adjusting high frequency. Recall the 
reference point was selected from a set B . This selection suggests that a selected reference point 
has a property of an element as local information (one of the block information) and a set as 
global information (making ideal). In other words, the double meaning of reference point in a 
lattice activates more dynamical negotiation between global and local information for adaptive 
process. 

One may wonder how is the relation between our model and self-organized criticality (SOC) 
because our model shows the power law and lif fluctuation which are often observed in SOC 
[38, 108, 109]. The concept of SOC is that nature evolves toward the critical state without any 
fine-tuning. Each species in the critical state connects each other for various time and special 
scales. The power law and lif fluctuation suggests self-similar structure for biological events. 
Bak et al. suggests that each species construct one organization when systems are on the critical 
state [83, 84]. Recently, it found that flock could move as one corrective because the collection 
of birds is on the critical state [110]. Many researchers often discussed the relation between 
SOC and these emergent behaviors as organism. In fact, there are many studies to insist on the 
biological events (fossil record, corrective behavior and ecology [105, 106, 107, 110]) can be 
explained by SOC. However, it is still controversial issue for the emergence of SOc. 

The most general explanation of the emergence SOC is the balance between two factors, such 
as the balance between order and disorder or balance between birth and death etc. The simplest 
example is the random walk model which is discussed by Yang [110]. He considered the 
moving particle on the one-dimensional line. This particle can move right or left stochastically. 
In this model, the lifetime is, for instance, the returning time to the first position. Then power 
law of the lifetime distribution emerges when the probability of moving direction equals 112. 
The particle behaves the critical state when we gives equal probability. Here we must pay 
attention to the globality invades into this interpretation. Considering the balance between two 
powers is possible only when the state of two extremes is static. There is no room to consider 
the negotiation between local and global information once we consider the balance between two 
extremes. This static view, for example, emerges as the threshold, least fit species and equal 
probability for moving direction [83, 84, 105, 106, 107, 110]. Then the next question emerges 
the origin of the balance between two factors. 

To consider the negotiation between globality and locality, we must avoid the static 
assumption between two factors. It would be difficult to explain the origin of the criticality if we 
assume these static perspectives. Our evolving lattice model proposes a different perspective. In 
fact, both of global and local information of our model change dynamically. The dynamical 
local information emerges as incomplete information for an environment. The dynamical global 
information also emerges as global information constructed from incomplete local information 
for every step. The incomplete information never works negatiVely here, but drives the active 
negotiation between globality and locality. There is no perspective to find the balance between 
them in our model. Our method would become important when we grasp the emergent property 
of biological phenomena. 
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4. Conclusion 

Understanding a living system is a very important problem. Autopoiesis and self-organized 
criticality (SOC) provide some answers to these questions. Both approaches suggest that 
interfaces between parts and whole are needed to construct models. Autopoiesis intends to 
overcome this problem by constructing a one-to-one correspondence between parts and whole 
[7]. SOC intends to overcome this problem by using criticality [111]. In this paper, we insisted 
that understanding collective behavior helps to answer this question because individuals behave 
as one collective without any central control [28, 30, 31]. Collective behavior emerges only 
through local interactions. In fact, in order to explain flocking phenomena, the field naturalist 
EdmundSelous concluded that somehow, a connectivity of individual minds and transference of 
thoughts must underlie such behavior [28]. We could sometimes admit this kind of mind for a 
set of individuals. Therefore, the question of "what is a life?" lies closer to the question of "what 
is a collective behavior?" than we expected. 

In this study, we discussed the collective behavior which is observed in a flocking and an 
evolutional system. Each individual tries to adjust type- and token- cognition. We have 
considered a type cognition as the class cognition in Chapter 2 and the global lattice structure in 
Chapter 3. By contrast, we have corresponded a token cognition to a collection cognition in 
Chapter 2 and a block information of partial ordered set in Chapter 3. Each individual becomes 
differentiate the type and the token cognition in its own experience. 

We insisted in this study that the phenomenon of scale-free correlation might be a bridge 
between parts and whole in Chapter 2. Flocks always contain scale-independent correlated 
subparts that are represented by fluctuation vectors. Each correlated sub-domain provides an 
effective perception for each individual that belongs to the sub domain [34]. This means that a 
perception of one individual corresponds to the group perception. Cavagna and others, in fact, 
implied that scale-free correlation (or a criticality of flock) might contribute to the fascinating 
"collective mind" metaphor at a more quantity level. We observed that the MTI model satisfied 
various critical properties such as self-similar structure and 1/f fluctuation of the oscillation 
strength of fluctuations. For both cases, flocks in the MTI mode have a certain type of criticality 
for both extremes, such as spatial and temporal aspects. MTI flocks spontaneously direct and 
keep their fluctuations on the critical state for spatial and temporal aspects. These results are 
very consistent with SOC properties [36, 37, 111] and support Cavagna's presumption that 
flocks are on critical states, for various aspects. Furthermore, we have discussed an evolutionary 
system also has SOC properties such as -2 power low and l/ffluctuation in adapting process in 
Chapter 3. These facts suggest that each species behaves as one collective like flocking 
phenomena when they adapt to an uncertain environment. In the evolving lattice model, the 
reference point has an important role for the 1/f fluctuation in a short time range. To achieve 
collectivity, it would need the connecting elements between the global and local information. 
This discussion also applies to the MTI model. The individual of the MTI model evaluated 
through observing concrete information of its neighbors by checking the difference between 
them when it uses the metric (type) interaction. 

Is fulfilling these critical properties sufficient to understand a life or a mind? Critical 
properties are indeed very important for flocks to react more sensibly to external perturbations. 
Flocking behavior may be on the border between order and disorder. This interpretation 
resembles the idea of the edge of chaos as the metaphor for life [19, 20]. However, we consider 
that scale-free correlation in real flocks has a more suggestive aspect than the critical state. We 
recall that correlated domains not only have a role in effective perception that is suggested by 
Cavagna and others, but also are subparts that have the possibility to behave as an independent 
flock. This possibility was discussed in the section about splitting flocks. Extending an 
individual's perception range increases his ability to respond to external perturbation such as a 
predator at tack. There is no benefit for survival, however, if flocks promptly change their 
directions to another side. In a similar way, there is a difference between "a system" and 
"making a system". 

This is a shortcoming of SOC because most SOC models focus on the problem of "keeping 
its critical state" [112, 113]. In fact, some SOC models are associated with a lack of efficiency 
of learning, despite showing versatility [36, 37, 112, 113]. In other words, critical fluctuations 
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never assist with efficient learning, although it shows criticality. If we want to discuss a living 
system, we must consider both sides, which are "system" and "making a system". "Making a 
system", in this case, corresponds to "using its critical state" to drive its own system. For 
example, MTI flocks rapidly change direction without any external noise. Noise is inherent. 
Each internal but scale-invariant fluctuation enables the flock to change direction abruptly. This 
fact suggests that criticality in MTI flocks never sacrifices their mobility as flocks. Thus, the 
MTI model holds both conditions, "system" and "making a system". In Chapter 3, we also 
observed that inherent noise is (bit flip rate) efficiently used in the adapting process, compared 
with the mutation model. 

The general concept of "life on the critical state" is broadly embraced by several researchers 
[19,20,37, 112, 113, 114]. It is important in flocking cases that the critical state provides high 
sensibility to external perturbations to extend individuals' effective perception range.· The 
critical state is also observed in MTI flocks for spatial and temporal cases. However, we 
observed that this critical state, which is a correlated sub-domain in this case, also has the 
potential to split the flock's body. Additionally, these correlated subparts behave as individual 
flocks after they split. Furthermore, MTI flocks can change their direction abruptly by using 
internal fluctuations. These facts suggest that internal fluctuations, which are on the critical state, 
contribute to dynamical flocking motion in reducing the risk of collapse. A system that utilizes 
critical fluctuations positively has to be distinguished from a system that passively receives 
critical fluctuations. Flocks maneuver internal fluctuations when they act. Evolving lattice 
model in ecology, in Chapter 3, suggests the same fact. Whole species could use the fluctuation, 
which seems random, efficiently as one system. It is suggested that critical phenomena play an 
essential role in driving a living system. This calls attention to another aspect, which is "how to 
use criticality for a living system". By using type and token perspective brought us new 
perspective of system theory. 
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Appendix A 

The outline of the MTI model algorithm is as follows. All symbols that are used for 
equations from (1) to (8) is given an explanation as follows. 

t : the time step 
i, k, s, ... : the index of the individual 
N: a set of individuals 
n: the number of elements of set N 
th: a threshold parameter 
R \ min: a minimum length of repulsion zone 
R2 min: a minimum length of alignment zone 
Yo: the standard speed 
V +: the variation of speed 

The symbol that is listed below is different for each time (indexed t) and each individual 
(indexed k). We added to all symbols as (-)/. This symbol means that the quantity of - for the 
individual k at time t. 

x: a position vector of each individual 
v: a velocity vector of each individual 
v: a velocity (or norm of the velocity vector v) of each individual 
N-TOP: a set of the topological neighbors 
nT: the number of elements of the set N-TOP 
R\: a length of the repulsion zone 
R2: a length of the alignment zone 
R3: a length of the attraction zone 
N-METRepulsion: a set of individuals on the repulsion zone 
N-METalignment: a set of individuals on the alignment zone 
N-METAttraction: a set of individuals on the attraction zone 
nRep: the number of element of the set N-METRepulsion 
nAlign: the number of element of the set N-METAlignment 
nAttra: the number of element of the set N-METAttraction 

Each velocity vector can be also represented in the polar coordinate (v/, 0/) in two-dimension. 
x-coordinate: (v/)x= v/cos(O/) 
y-coordinate: (v/)y= v/sin(O/) 

Each velocity vector can be also represented m the polar coordinate (v/ , cp/ , Okt) m 
three-dimension. 

x-coordinate: (v/)x= VktCOS(CP/ )sin(O/) 
y-coordinate: (Vkt)y= v/sin(cp/ )sin(O/) 
z-coordinate: (v/)z= v/cos(O/) 

Start the Algorithm 
First, Each individual is allocated space and given a direction at random. 

The algorithm at time t. 
fore from k=1 to k= n){ 

if( individual k uses the topological interaction) { 

-N-TOP/={l E N] rank(l)snt} 
'(nT)/ = Num(N-TOP/) 
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·rank(!): the order of the distance between x/ and x/. 

V
/
+

l 
= v: - V cos(O) 

I 0 + 

V
t+l _ Vt+IVA 1+1 
k - k k 

if( Vi E N-TOPkl, cos-d v:,(v:) 1) < th){ 
\ lEN-TOP, 

} 
else { 

} 

#1 = {[(llx~ -x:ll- R~in) /5] when Ilx~ -x:ll- R~in > 0 

k 0 otherwise 

(RI)/= R l
min + r x #/ 

(Rz)/ = R
Z 
min + al x #/ 

(R3)/ = (Rz)/ + at x #/ 

· [] is a floor function. 
· < , > is an inner product. 
· < >s is an average of the individuals' direction on a set S. 
· the individual indexed s is 6th neighbor from the individual indexed k. 
The individual k uses the metric interaction for the next step. 

The individual k uses the topological interaction for the next step. 

} End topological interaction for an individual k 

if( individual k uses the metric interaction) { 

<for repulsion zone> 
1 I t 

(vRepulsion/ = _ ~ XI - xk 

k (nRep)~ IE(N-MET .)1 Ilx; - X~II 
RepulsIOn k 

· (N-METRepulsion)/ ={l E N] 0<11 Xtk - xtlll«RI)/} 
· (nRep)/ = Num( (N-METRepulsion)/) 

<for alignment zone> 

(VAlignment)~ = 1 t ~ v: 
(nAlign)k IE(N-MET . )1 IVII 

Alignment k 

· (N-METAlignmentV ={l E N] (RI)/<II Xtk - xtlll< (Rz)/} 
· (nAlign)/ = Num( (N-METAlignment)/ ) 

Then; 
V~+l = v~ + (vRepuISiOn)~ + (vAlignment)~ + (vAttractiOn)~ 

V
/
+

l = v: - V cos(O) 
I 0 + 

V
t+l _ • VA t+l 
k - V k k 

if (Vi,) E (N-METRepulsion)kt U (N-METAlignmenl)/, cos-
1«( v: ,v~)) > 2 * th){ 

} 
else{ 

· i and} are randomly selected from the set (N-METRepulsion)/ or (N-METAlignment)/ . 
The individual k uses the topological interaction for the next step. 
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} 

The individual k uses the metric interaction for the next step. 
The interaction domains, which are (RJ)/, (R2)kt and (R3)kt

, 

are preserved for next step. 

} End metric interaction for a individual k 

} End update all individuals 

Then back to the algorithm, which is fore from k= I to k=n) {-}, and repeat the same process to 
all individuals. 

End all algorithm. 

Here we set the parameter of MTI model. The threshold parameter th is fixed at 0.05 
radians unless otherwise noted. This parameter determines the switching property of each 
individual. If th sets a small value, the individual tends to use the topological interaction. Or if 
th sets a large value, the individual tends to use the metric interaction. The number of 
individuals for the topological interaction is fixed at six through this study. V o=3.0 and V+ = 
2.0. Thus the minimum speed is 1.0 and the max speed is 5.0. Rmin

J=80 and Rmi/=100. The 
proportional constants are r=3.0, a/=5.0, at= 2.5. These values selected to match with 
experimental data. If these value change, the slope of Figure. 2.22C and 2.22D will change or 
correlated relations would disappear. The space is set as width3

• The size of the space is fixed 
at width = 2,000. 

67 



Appendix B 

We give an explanation for a comparing model. The concept of the model comes from ideal 
copies and error. Each species tries to adapt its environment, which is represented by the target 
bit string. The target also has a randomly determined concealed position for every step. Then 
algorithm is as follows. 

(1) Generating m n-bit strings [SI]nO, [i]no, ... , [sm]no and a target [t]n string randomly. 

(2) Determining a concealed position of the target is randomly selected from {I, 2, ... , n}. 
Making block information from a set of n-bit strings Mt = {[sl]nt, [i]nt, ... , [sm]nt} by 
using Definition 3.2. A set of block information is denoted Bt = {[b1]nt, [b2]nt, ... , [b1t]nt}. 

(3) Changing each n-bit string by using block information. For lsjsn and lsism, 

. {{Sjt if (bjt = 1 and probability (1- J-t)) 

s~t+l = 0 or 1 if (b/ = 1 and probability J-t) 

o or 1 (otherwise) 

And constructing new set of species M+1 = {[Sl]nt+l, [i]nt+1, ... , [smV+l}. 

Repeat the process (2) - (3). !-l means a mutation rate for each bit in a string. Each species can 
copy completely without the concealed position when !-l equals zero. 
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