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Preface. We study scattering problems in time-dependent electric fields asymp-
totically constant in time. In the first section, we report the result obtained by
Adachi-Ishida [5]. We show the asymptotic completeness for one-body quantum
systems in an external electric field converging on non-zero constant. In addi-
tion, this result is applied to a charge transfer model considered in Ishida [25].
In the second section, according to Adachi-Fujiwara-Ishida [4], we discuss one of
the multidimensional inverse scattering problems based on the time-dependent
method of Enss-Weder [13]. We allow that the electric field converges on zero and
show that the high velocity limit of the scattering operator determines uniquely
the short-range part of the potential. This work is an improvement of Adachi-
Kamada-Kazuno-Toratani [6].

Acknowledgments. The author would like to thank Professor Tadayoshi Adachi
for insightful comments and warm encouragement. Not only the construction of
this paper, from an opportunity of the problems to the idea of the proofs, owing
to his advice, the author could accomplish this work.



1 Direct Problem

1.1 Introduction

Throughout this paper, we consider a quantum system in a time-dependent elec-
tric field E(t) € R? asymptotically constant in time. The free Hamiltonian under
the consideration is given by

Ho(t) = p*/(2m) — @ E(t) -z (LL1)

acting on L?(R?), where m > 0, go € R\ {0} and p = —iV stand for the mass, the
charge and the momentum of the particle under consideration. The mass m of the
particle can be put as 1 by a suitable scale transformation. Except in subsection
1.4, we put qo = 1 for simplicity’s sake.

Hy(t) =p*/2 — E(t) - x. (1.1.2)

Let Up(t, s) be the unitary propagator generated by Hy(t).

In the first section, we assume that the external electric field converges on
non-zero as in Assumption 1.1.1 mentioned below. We will prove the asymptotic
completeness a one-body system and a charge transfer model. All of the arguments
in one-body case are originated in Adachi-Ishida [5]. As an application of the one-
body case, we discuss the scattering theory for the charge transfer model. We will
obtain an improvement of the previous result of Ishida [25].

Assumption 1.1.1. For somen > 0, lete(t) € C(R,R?) be the perturbation of the
constant electric field E € R\ {0} such that E(t) = E+e(t) and e(t) = O(|t|™")

as |t| = oco.

Until the end of subsection 1.3, we suppose that the potential V' satisfies the
following assumption and the full Hamiltonian is given by

H(t) = Hy(t) +V, (1.1.3)
where V =Vs+ V' e ¥, + ¥, with some p; > 1/2 and 0 < p; < 1/2.

Assumption 1.1.2. Let p > 0. ¥, is the class of the real-valued multiplication
operators V satisfying V € C*°(RY) and

102V (z)] < Calax) P72 (z) = (1 4 22)V/2. (1.1.4)

It is known that the self-adjointness of H(t) on L?(R?) for each t € R can be
guaranteed. By virtue of results of Yajima [44] and the Avron-Herbst formula



(see Cycon-Froese-Kirsch-Simon [10]), the existence and uniqueness of the prop-
agator U(t, s) generated by H(t) can be also guaranteed as below. We introduce
a strongly continuous family of unitary operators {7 (t) };er by

F (1) = 000z i) (1.15)

t t t

b(t) = / E(r)dr, &(t) = / b(r)dr, a(t) = / b(r)?/2dr. (1.1.6)
0 0 0

We also introduce the time-dependent Hamiltonian

H%(t) = p?/2 + V(z + &(t)). (1.1.7)

Since the propagator generated by H9¢(t) exists uniquely by virtue of results of
[44], we write it as U%(t,s). Then we see that the propagator U(t,s) generated
by H(t) also exists uniquely because of the Avron-Herbst formula

Ult,s) = f(t)USC(t, s)ﬁ(s)* (1.1.8)
In the case where 0 < 1 < 2, we need an additional assumption.

Assumption 1.1.3. When 0 < n < 2, we suppose

ep = |E| —supw- (V,V)(xz) >0, w=E/E| (1.1.9)
z€R4
We first consider the case where V! = 0 and we can report the following

theorem obtained by [5].

Theorem 1.1.4. (Asymptotic Completeness [5]) In the case where V! = 0,

the wave operators
W= = s-lim U(t,0)*Uy(t,0). (1.1.10)

t—+o0

exist and are unitary on L?(RY).

We next consider the case where V! # 0. In this case, it is known that the
wave operators (1.1.10) do not exist generally (see e.g. Ozawa [33]) and we have
to discuss some modifications. Throughout this section, we often use the following
convention for smooth cut-off functions 0 < Fy < 1 with § > 0 satisfying

1 A<pu—0 1 A>p+o
Fg()\gu):{ o Fg(wu):{ e (1.1.11)



and put Fs(py < A < pe) = F5(A = ) Fs(A < p2). Introduce well behaved
potential V| as

Vi(t,z) = Vi) F,(2/()* > &), 2z=w-u, (1.1.12)
where
€0 = { T};ﬁi 2 ig< 2 (1.1.13)
An approximate solution of the Hamilton-Jacobi equation
(DK (t,€) = (€ +b(1))*/2+ Vilt, (VeK) (¢, €)) (1.1.14)

can be constructed quite similarly in Adachi [2] and Adachi-Tamura [9], by the
decaying property
10%Vi(t, )| < Cy(t)y2n 1AL, (1.1.15)

[5] could obtain the asymptotic completeness of the modified wave operators.

Theorem 1.1.5. (Asymptotic Completeness [5]) In the case where V' # 0,
the modified wave operators

W5 = selim U(1,0)°Up(t, 0)e o V' (Ve s (1.1.16)

exist and are unitary on L*(RY).

In particular, when 1/4 < p < 1/2, one can take K(t,&) as Ko(t,&) = t£2/2 +
é(t) - €+ a(t), which is an unique solution of (1.1.14) with V! = 0. This modifier

—z fO VgKO)(T p))d lfo H(pr+e(r))dr (1117)

is the so-called Dollard-type one (cf. Jensen-Ozawa [26], Jensen-Yajima [27] and
White [40]). As for a modifier in the position representation, see Adachi-Kimura-
Shimizu [7], in which a time-periodic E(t) is treated. Moreover, let ¥, be the
class of real-valued potentials V satisfying V € C*(R%) and

|07V ()| < Cyla) =1, (1.1.18)
[5] could also obtain the asymptotic completeness of the modified wave operators.

Theorem 1.1.6. (Asymptotic Completeness [5]) If V' # 0 satisfies a stronger
condition V' € ¥, with 0 < p < 1/2, then the modified wave operators

W = slim U(t,0)"U(t, 0)e —ifo Vie)dr (1.1.19)

exist and are unitary on L*(RY).



This modifier e=# /o V(€M) ig the so-called Graf-type (or Zorbas-type) one (cf.
Graf [17], [26] and Zorbas [49]).

[5] claims that the threshold of —n, which is the power of the decaying order of
e(t), is —2 in terms of the boundedness of a certain energy in time. We first move
the effect arising from e(t) into the potential V', and reduce the present problem to
the one for a so-called Stark Hamiltonian with a certain time-dependent potential,
by using a version of the Avron-Herbst formula. This treatment was initiated by
Mgller [30] in the case where e(t) is periodic in time. When 0 < 7 < 2, we put

b(t):/o e(t)dr, c(t):/o b(T)dr (1.1.20)

b(t) = — /too e(r)ds, c(t)=— /too b(t)dr (1.1.21)

if we treat the case where t — oo, since b(t) = O(t'™") with 1 —n < —1. If we
treat the case where t — —oo, similarly we put

b(t) = / e(r)dr, c(t) = —/ b(T)dr. (1.1.22)
Here we note that c(t) = o(|t|?) as |t| — oo, more precisely,

O(|t]*~™) n<lorn>2
c(t) =4 O(t|loglt]) n=1 (1.1.23)
O([t]) l<n<2.

We also introduce the time-dependent Hamiltonian H®(t) by
H?(t) = Hy +V(z +c(t), Hj =p*/2—-FE -, (1.1.24)

and strongly continuous family of unitary operators {7 (t) }ier by
t
T (t) = e71aWebyeo=icldr () = / (b(1)?/2 — E - ¢(7))dr. (1.1.25)
0

H§ is called the free Stark Hamiltonian. Write the unitary propagator generated
by HS(t) as U%(t, s), then the Avron-Herbst formula

Ult,s) = T )U(t,s).T(s)* (1.1.26)



holds. We note the domain invariance property U (¢,0)2(HS) C 2(HS) (see e.g.
Theorem X. 70 in Reed-Simon [34]). The Heisenberg derivative of ®(t) associated
with H(t) is denoted by Dy ®(t) = 0,2(t) + i[H(t), ®(t)]. Then we obtain

Dys@yH () = b(t) - (V,V)(z + c(t)). (1.1.27)

When 7 > 2, Dys)H®(t) is integrable on I because b(t) is integrable on I and
V.V is bounded, where I = [0,00) if the case ¢ — oo is treated. In the case
where ¢ — —oo we just put [ = (—o00,0]. This implies the boundedness of
HS(t)US(t,0)f(HS) in t € I for f € C°(R), which is one of the keys in this
section. Let U (¢, s) be the unitary propagator generated by the time-dependent
Hamiltonian

HE(t) = HS + Vi(t,z + c(t)). (1.1.28)

The following theorem yields the proof of Theorems 1.1.4, 1.1.5 and 1.1.6.

Theorem 1.1.7. (Asymptotic Clustering [5]) Under the above assumptions,
W5 = slim US(t,0)*U(t, 0) (1.1.29)

t—=+oo
exist and are unitary on L*(RY).

It follows from this theorem and the Avron-Herbst formula (1.1.26) that

WE = s-lim U(t,0)*U(t, 0) (1.1.30)
t—=to0
exist and are unitary on L?(RY), where Uy(t, s) is the unitary propagator generated
by the time-dependent Hamiltonian

If V! =0, that is, V is a Stark short-range potential, then this means Theorem
1.1.4 itself. For a Stark short-range potential V' € ¥, with p, > 1/2, Yokoyama [46]
showed this theorem, that is, asymptotic completeness of W=, in the following two
cases. In the first case, it is supposed that n > 1 with the additional condition
(1.1.9). In the second case, it is supposed that n > 7/2 without (1.1.9). The
condition n > 1 implies the integrability of e(t) on R. [5] was be able to relax
the decaying conditions on e(t) and the derivatives of V', and also deal with Stark
long-range case. The notion of the asymptotic clustering has played an important
role particularly in the study of the N-body long-range scattering in an external
electric field (see e.g. [9], Herbst-Mgller-Skibsted [21], [2] and Adachi [3]).

In the case where V] # 0, we will firstly prove Theorem 1.1.6 by assuming that
Theorem 1.1.7 holds. In the argument below, we will consider the case where
t — oo only. The case where t — —oo can be dealt with quite similarly.
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Proof of Theorem 1.1.6. By virtue of Theorem 1.1.7, it is sufficient to show the
existence and the unitarity of

selim U (1, 0)" Uy (1, 0)e i Jo VI(Em)dr (1.1.32)
— 00
We will prove the existence of

s-lim e? Jo V'EOIT L ¢ 0)* T (¢, 0) (1.1.33)

t—o00

only. The proof of the existence of (1.1.32) are quite same. We compute

By (e VI EOIT (1, 0) Uy (1, 0))
= i o VIET T (4 0)* (VA(E(E)) — Vi(t, 2)) Ui (¢, 0). (1.1.34)
Noting that V! € ¥, and the decaying property (see (1.1.15)), we have
102Vi(t, )| < Cy(t)y =228 (1.1.35)
Then we can obtain following propagation estimate for U)(¢,0)
[z = e(®)|i(t, 0)o[l = O(t) (1.1.36)
for ¢ € C§°(R) because
Dingo(p = b(®) = ~(VW)(E2), Dugola—(0) =p—b(e).  (L137)
Noting that ¢(t) = o(¢?) and (1.1.13), we can see that
&(t) - w/(t)* = |E[t*/(2(6)*) — le(t)|/{t)* > 2€0 (1.1.38)

as t — oo holds. We thus obtain V1(&(t)) = Vi(t,é(t)) and
ViE(t) — Vit z) = /O (V. V)(t, 0(z — &(t)) + &(t))dl - (v — &(t)).  (1.1.39)
Using (1.1.35) and (1.1.36), we can estimate

18, (1o V€T (£ 0) Uy (£, 0)) g = O 2L, (1.1.40)

This implies the exisitence of (1.1.33) by the Cook-Kuroda method and a density
argument. O



In order to lead Theorem 1.1.5 from Theorem 1.1.7, we prepare some notation
and propositions. For simplicity’s sake, we assume that 1/4 < py < 1/2. The case
where 0 < p; < 1/4 can be shown on the analogy (see [3] and [9] for the details).
Recall

Ko(t, &) = /Ot(g +0(7))%dr/2 = E2t)2 + &(t) - € + a(t) (1.1.41)

as mentioned above and take K (¢, &) as an unique solution of the first approximate
Hamiltom-Jacobi equation (1.1.14)

(DK (8, €) = (€ +b(t))* /2 + VAt (Veko) (£,€)), (1.1.42)
that is, t
Kyt €) = Kot €) + /0 Vi(r, (Ve Ko)(, €))dr. (1.1.43)
We here note that
;euﬂgi |07 (K1(t, ) — Ko(t,€))| = O(t' ) (1.1.44)

holds by virtue of (1.1.15). Putting So(t,&) = Ko(t,€ — b(t)) and S(¢,€) =
Ki(t, & —b(t)), Si(t,&) satisfies

(0:S1)(t,€) = &7/2 — E(t) - (VeS1)(t, €) + W(t, (VeSo)(t, €))- (1.1.45)
We will write Vio(¢, &) = Vi(t, (VeSo)(t,€)) and Vi1 (¢, &) = Vi(t, (VeS1) (2, €)) below

~

and define the Hamiltonian H,(t) by

Hy(t) = Ho(t) + Vio(t,€) (1.1.46)
and let Ul(t, s) be the propagator generated by ﬁl(t).
Proposition 1.1.8. The following propagation estimates hold for ¢ € C3°(R?).

llz = (VeSo) (&, p)|Ui(E, 0)9]| = o), (1.1.47)
llz = (VeSo)(t, p)|Ui(t, 0)¢l] = Ot ). (1.1.48)

Proof. Put ®(t) = (z — (VeS1)(t, p)). We first note that
]D)Ho(t)q)(t) =P <8tvﬁsl)(tap) - E(t) ' vgsl(tap) = —(V§Vi70)(t,p> (1149)
holds by (1.1.45). We thus obtain

]D)ﬁl(t)q)(t) = _DHo(t)q)(t) — (VeWio)(t,p) = 0. (1.1.50)

9



(1.1.48) can be obtained by this and (1.1.44). We next note that H,(t) = H(t) +
Vi(t, ) — Vio(t,p). We put

glt,2,€) = / (VW) (0 — (VeS)(Ep) + (VeS)(Lp)dd  (1.151)

By the Baker-Campbell-Hausdorff formula with the Weyl symbol of the Pseudo-
differential calculation (see e.g. Derezinski-Gérard [11]),

Vi(t,z) = Via(t, p) = g(t, 2, §) - @(t) + i dive g(t, z, ) /2. (1.1.52)

We thus can compute

Dy ®(t) = D,y @(1) +i[Vi(t, p) = Vio(t, ), 2(1)]
= ilg(t, x, p), ®(1)]@(t) — [(dive g)(t, x, p), B(t)] /2
+ilVia(t,p) = Vio(t, p), B(1)]
= Ot HD(t) + Ot 272 + Ot ), (1.1.53)

where we used (1.1.15) and (1.1.44). Since —4p; < —1 by assumption, we have

||1@(t)|Ui(t,0)¢] < C (1 —|—/0 2|1 ® () |Ui(, 0)¢Hdr) (1.1.54)

with C' > 0, which implies |||®(t)|Ui(t,0)¢|| = O(1) by virtue of the Gronwall
inequality. Thus (1.1.47) follows from this and (1.1.44). O

Proposition 1.1.9. The strong limat

s-lim Uy(t,0)*Uy(¢,0) (1.1.55)
—00

exists and is unitary on L?(RY).

Proof. We decompose

Vi(t,#) = Vio(t,p) = g(t,2,p) - (# = (VeSo(t, p)) + i(dive 9) (2, 2, p) /2
+glt,ap) ((VeSo(t,p)) — (VeSi(t,p))) + Via(t,p) — Vio(t,p), (1.1.56)

using (1.1.52). Since g(t,z,p) = O(t72"71), (dive g)(t, z,p) = Ot 27 1), Vi1 (¢, p)—
Vio(t,p) = O(t™*) and (1.1.44),

Vi(t,z) — Vip(t,p) = Ot > 1) (z — (VeSo(t,p) + O >~ +O(™*) (1.1.57)

holds. By virtue of Proposition 1.1.8 and the Cook-Kuroda method, we obtain
this proposition because —p; — 1+ 1 — 2p, = —4p; < —1 by assumption. O]

10



Proposition 1.1.10. The strong limit

St_hm ei fot Vl((V§KO)(T,p))€7i f(;5 VE(T,(VgKo)(T,p)) (1158)
—s00

exists and is unitary on L*(RY).

Proof. Let ¢ € /(R be such that ¢ € C5°(R%). Here ¢ stands for the Fourier
transform of ¢. We can estimate

(Fehn)t6)-4/ ) = (6100 </ 0 3 |EI) C247) = e+ 1)1 2
as t — oo for & € supp ¢, here we used ¢(t) = o(t2). We thus obtain B

(VI{(VeEo)(t,p) = Vi(t, (VeEo)(t,p)))¢ = 0. (1.1.60)

This implies the proposition by the Cook-Kuroda method and a density argument.
O

Now we prove Theorem 1.1.5 assuming that Theorem 1.1.7 holds.

Proof of Theorem 1.1.5. By virtue of Theorem 1.1.7, Propositions 1.1.8, 1.1.9 and
1.1.10, it is sufficient to see the existence and the unitarity of

selim 01 (¢, 0)" Uy 0)et o il (VeR) (), (1.1.61)
—00

However, this follows immediately from

BT (¢, 0)* Up(t, 0)e~ Jo il (VeK)ma))y — (1.1.62)
8y (et o M (VK =N (4, 0)* Ti(£, 0)) = 0 (1.1.63)

by the Avron-Herbst formula (1.1.8) for Uy(t,0) and the Cook-Kuroda method.
[l

Thus we are devoted to the proof of Theorem 1.1.7.

For time-dependent Hamiltonians, the lack of energy conservation is an ob-
struction in studying this scattering problem. Howland [23] proposed the sta-
tionary scattering theory for time-dependent Hamiltonians by introducing a new
Hamiltonian which is formally given by —id;, + H(t) acting on an appropriate
grand Hilbert space like L*(R, L2(R?)). This formulation is the quantum ana-
logue to the procedure in the classical mechanics for the sake of recovering the
conservation of energy. As is well known, it is shown by Yajima [42] that this
method does work well for the Hamiltonians which govern two-body quantum

11



systems with time-periodic short-range potentials, also by virtue of the Floquet
theory (see also Howland [24], Yokoyama [45], [30] , [2] and so on). Nowadays the
method is called the Howland-Yajima method. However, when one deals with the
long-range case, it seems necessary to obtain propagation properties of the phys-
ical propagator directly (see Kitada-Yajima [29], [3] and [7]). Hence, [5] derives
some useful propagation estimates for the physical propagator U®(t,0) directly
for smooth potentials. Some of them were already obtained in [46] under the
assumptions stronger than [5] (see also Adachi [1] as for the case where E(t) is a
non-zero constant vector, and [3] and [7] as for the case where E(t) is periodic in
time with non-zero mean). We will watch the influence of the decaying condition
on e(t) upon propagation estimates of U*(t,0) later.

1.2 Propagation estimates

We first prepare the notations by following Skibsted [35]. For given 3, «
0 and € > 0, take a function 1, (\) = F(A < —¢) such that ¢, (\) <
ae(N) + A, (A) = k(A)? for some k € C®(R) with kK = 0. Put gga.(), 1)
—t7 (= M) (A/t) for A € R and t > 0. Write g5 (A1) = 0iggac()t) for
k e NU{0}.

We recall the almost analytic extension method due to Helffer-Sjostrand|[22],
which is useful in analyzing operators given by functions of self-adjoint operators.
For m € R, let S™ be the set of functions f € C*®(R) such that |f®(\)] <
Cr(N™ ¥ for k > 0. If f € S™ with m € R, then there exists f € C°°(C) such
that f(A) = f(A) for A € R, supp f(¢) C {¢ € C | [Im¢| < C(1 + |Re(|)} and
10:F(O)] < Caur ()™ "M Tm ¢[M for M € N{J{0}. Such a function f is called an
almost analytic extension of f. Let B be a self-adjoint operator. If f € S™ with
m > 0, then f(B) is represented by

I =WV

1) = [ o) = By n i) (1.2.1)

For f € S™ with m € R and self-adjoint operators B; and By, we have the
following formulas of asymptotic expansion of the commutator (see Gérard[15],
[11] and Remark 1.2.6). Define ad};, (Bs) by ad} (Bs) = Bs, and adj (By) =
[ad}; " (Bs), Bi] for k > 1, then

B F(B)] = S (-1t adly (B fP(BY/M + Ry (122)
k=1
e FR(By) adfy, (Bs)/k! + Ry, (1.2.3)

£
Il

1

12



where
Ry = (—1)M*! /Cégf(g)(g — By) tadl (By)(¢ — By)"Md¢ A dC/ (2mi), (1.2.4)
= /C FeF(O)(C — By ™ adY (Bo)(C — By)~'d¢ A dE/(2mi). (1.2.5)

We first consider the case where 0 < 1 < 2, which can be treated easier than the
case where 17 > 2 by virtue of the additional condition (1.1.9). We set A = w - p,
which is known as a conjugate operator for the Stark Hamiltonian H® = H5 +V
(see Theorem 1.1.5 below due to Herbst-Mgller-Skibsted [20]). One of the main
purposes in this subsection is obtaining the following propagation estimates for
US(t,0).

Proposition 1.2.1. (Minimal Acceleration Bound [5]) Let f € C§(R),
e1 <ep, 0< 89 < sy and e > 0. Put Cas, (t) = US(t,0)f(Hy)(A)~5/2. Then the

following estimate holds as t — oo.
[(ex = A/t)*PF(AJt < e = )Casy (D)) = O(7?). (1.2.6)

Proof. This proposition was proved essentially in [46] under the assumption that
n > 1 by the abstract theory due to [35]. Here, we sketch the proof by following
the argument slightly modified by [3].

Let us abbreviate Dys(,y as D. Set A(t) = A — e;t. Then we have

DA(t) =i[H(t),A] —ey, = |B| —w- (V.V)(x +é(t) —e1 = eg—e; >0, (1.2.7)

which is one of the keys in the proof. Take 0 < fy < 1, and set B(t) = A(t)/t.
Let (B,a) = (Bo, ) or (B,a) = (0,9 — 1) # (0,0) Wlth ag € N. For ¢ €
L*(RY), we put ¢(t) = Ca.a(t)¢ and use the convention (P(t)); = (é(t), P(t)p(t)).
Putting 04.(A) = (—A)*Xa.c(A) as in [3], gaac(A, 1) is written as gzac(A,t) =
—t* P, (\/t). Hence we have

Gp.ae(A(t),t) = —t*Po, (B(1)). (1.2.8)

We abbreviate gg o, and 0, ¢ as g and o, respectively. Note that an almost analytic
extension & of o € S* satisfies |9,5(¢)| < Cn(C)* M| Im ¢|M for M > 0. Since

(9408 = (=9(AW). D) ~ [ @y dr (129)
let us watch
Dg(A(7),7) = =7 PDa(B(7)) — (a — B)7* P~ Lo(B(7)). (1.2.10)
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By virtue of the almost analytic extension method, one can write

).7) =D Bs(r) (1.2.11)
with

Ei(1) = TQ_B_IB<T)O'(1)(B(T)) —(a— B)Ta_ﬁ_lU(B(T)), (1.2.12)
Ey(1) = 077 y(B(7))(DA(7))7(B(7)), (1.2.13)
Es(r) = 7777 5(B(r)) Y (=1)"r ™ adi,) (DA(T))7 ™ (B(r)) /ml, (1.2.14)
Ey(1) = 7P 9(B(1))Ry(1), (1.2.15)

Es(r) = =Y 77" g(B(7)hn(B(7)) /m!
X i( 1)ymr—m dz(ﬁm YDA(T))g"™)(B(7))/my!, (1.2.16)
= PG (B(7) h (B(7)) Ry (7) /m, (1.2.17)

Er(r) = —ro-eo=A-1 / 8:F(O)(C — B(r)) ™t ady,, (DA(r))
x (¢ — B(7))~td¢ A dC/(2mi), (1.2.18)

where oy = (v — 1) /2 if v is odd, and oy = /2 if « is even,

Ru(r) = (-1t [ 350 - B) ey (DA

x (¢ — B(1))™ ™ td¢ A dC/(2mi), (1.2.19)
Ror) = (<1707 [ 9,06 = B ady (BA()

x (¢ — B(1))™ "™ td¢ ndC/(2mi),  (1.2.20)

YA = (=aW))2 = (=N D2r(N) € SOV g, (N) = Tlammy ze2(N) €
Sle=m)+/2 and h,,(\) = (=A)"@™+am()) € S° with (s); = max{0,s} for
s € R, and 4 and g, are almost analytic extensions of v and g, respectively (see
[3] as for the details). Since

dMW(A) = =a(=X)*ae(A) + (=X PN = —=(=N)*TR(A)?, (1.2.21)
we have

Br(r) = =P =BE) B + P o(B() 20 (1.2.22)
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because of @/)((112 < 0 and 8 > 0. Since DA(7) > 0 as mentioned above,
Ey(1) >0 (1.2.23)
holds. Noting that ady . (DA(7)) = O(1) for 0 < n < ag, we have
Ri(1) = O(r~ 1) (1.2.24)
because of (o« — 1)/2 < «a; + 1, which is satisfied obviously. Similarly, we have
Ry (1) = O(r~tm=1) (1.2.25)

if (@ —m)/2 <a—m+1, that is, « > m — 2 for 2 < m < ap, which is satisfied
because o = ag — 1 or @ = «p.
By the non-negativity of Fy(7) and Es(7), we have

(—g(A(t), 1)) (1.2.26)

N
0N
S
—~
I
o
—_
S—
—_
S~—
S~
>
|
—
— -
&
—~
\]
SN—
~——
3
-y
\]

Now we would like to show

(=g(A(t),1))e = O(D)||¢]I? (1.2.27)

for (B8, a) = (Bo, ), (0,0 — 1) # (0,0) with ap € N by an induction on «y. We
first consider the case where ag = 1. Let (5, ) = (fo, 1). Since E5(7) = E5(7) =
Eg(t) =0 and
Ey1) =07, Ey(r) = O(r= 1), (1.2.28)
we have (1.2.27) for (8, a) = (Bo, 1) because of Gy > 0.
Suppose that (1.2.27) in the case where ag = n € N is true. We now consider

the case where oy = n + 1. We first let (8,a) = (0,0 — 1) = (0,n). By the
assumption of induction, for any r € R such that 0 <r < n

(=Gom—re(A(7), 7)) /2 Can(r) = O(r 772 (1.2.29)
holds because of —gg, n.c(A, 7) = =77 (e7)"gon—rc(A, 7). By this, we have
On-r)/2e(B(T))Can(T) = O(r*7/2). (1.2.30)
It follows from (1.2.30) that
IW(B(r)o(r)ll = O 2) |4 (1.2.31)
for 0 < m < ag,
lgw (B(r)o(7)|| = O(r =) || (1.2.32)
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form>2and 0 < m; <a—m, and
hm(B(1)) = O(1) (1.2.33)

for 2 < m < ap. Then we have E3(7) =0if n =1,

(Es(1))r = O(7%72)||¢||? (1.2.34)
if n > 2, and
B O(750/27312)16||> n is odd
(By(1))r = { 02D [g2  n is cven, (1.2.35)
(E5())- = O™ 2)||9]1%,  (Ee(7))7 = O(7 R~ )| g||?, (1.2.36)
(Ez(1))- = O(r7%)I9ll%, (1.2.37)

which are all integrable on [1,00) by virtue of Sy < 1. Thus we obtain (1.2.27)
for (5,a) = (0, n).

Next let (8, ) = (5o, ) = (Bo,n + 1). Tt follows from (1.2.27) for (5,a) =
(0,m), which is shown above, that

V"™ (B(r)(r)| = Oz~ V) 4| (1.2.38)
for 0 < m < oy,
gt (B(r))(r)|| = O(7~ V)¢ (1.2.39)
for m > 2 and 0 < m; < a —m, in the same way as above. Then we have
(Es(7))r = O(r~ 7 1)]|¢|? (1.2.40)

1.2.41
O(r=%/=H||¢||> n+ 1 is even, ( )

(Bs(1)); = O(77P Y ||p||2,  (Es(7)), = O(r— R0 D/2y )12 (1.2.42)
(Er(7)) = O(r Y]|o]1%, (1.2.43)

7—Po=3/2 2 n is o
(B :{0< Jol* n+1is odd

which are all integrable on [1,00) by virtue of 5y > 0. Thus we obtain (1.2.27)
for (8, a) = (By,n + 1). This complete the proof. ]

Proposition 1.2.2. (Minimal Acceleration Bound [5]) Let f € C(R),
0<Bo<1,0<s8 <3,e <eyande>0. Put (,(t) = US0)f(H) )"
Then the following estimate holds as t — oo.

[(e1/2 — 2/ (2 /12 < e1/2 — )¢ () || szz) = O P=3/2). (1.2.44)
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Proof. The proof is quite similar to the one of Proposition 1.2.1 (see also [1] and
[3]). We sketch the proof by using the notations in the proof of Proposition 1.2.1.
We set M(t) = —(e1/2 — t/2)"?, B(t) = —o1,2(M(t)) and A(t) = tB(t).

Since

001 (M(7)) = =0t} (M(T)(M(7) /7 — e1/(27M(7))),  (1.2.45)
Vaor,e2(M(7)) = =01, (M(7))w/ (27 M (7)), (1.2.46)

we have

DA(r) = o\ ,(M(r))M(7) = 01.e12(M (7)) — €10, (M (7)) /(2M (7))
(002 (M (7)) /M (7)) 2 (A7) (01 (M (1) /M (7)) 2 [2. (1.247)
Then we obtain one of the keys in the proof by a straightforward computation,

adly) (DA(T)) = —i(0y o (M(7))/M(7))?/ (47°). (1.2.48)

For ¢ € L?(R%), we put gb( ) = (,(t)¢. As in the proof of Proposition 1.2.1, we
compute Dg(A(7),7) = Z] . E;(7). Here we note that

E\(7) > 0. (1.2.49)

Now we watch Ey(7). Let § be such that 20 = ey — e; > 0. Put A'(t) = A — ept,
BI(t) = A'(t)/t = A/t — ey and C(t) = (01" ,(M(t))/M(1))/*y(B(t)). Note that

A/t —e1 = B'(7) + eo — ey = B'(r)F3(B'(1) < —0). (1.2.50)

Let us set G4(7) = (—=B'(7))F5(B'(1) < —0) for the sake of simplicity. Since

C(1)[Gh(T),C(1)] = O(T7?) (1.2.51)
if « <4 and
o0 (MT)M(7) = 01, (M(7)) = =(=M (7)) ,(M(7) 20 (1.2.52)
because of Xl /2 < 0, we have
Ey(1) = Ey(1) + O(r*771), (1.2.53)
Ei(1) = =17 P7HC(1)2GY(1) + GLH(T)C(1)?) /4. (1.2.54)

Although FY(7) is slightly different from the ones in [1] and [3], it is a device for
dealing with the case where H®(#)(,(t) may be unbounded in t. Let f; € C°(R)
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be such that fif = f. Then we note that (A)2f,(Hy){(z)~* is bounded on L*(R?).
Thus it follows from Proposition 1.2.1 that

GL() (1) = O(t2). (1.2.55)

We first consider the case where (8,a) = (0,1). Put oy = 2. Here we note
that C(7) = O(1) if a < 2 because of v € S@~1/2. We also note that E3(7) =
E5(1) = E7(7) = 0 and that

Ey(1) =O(t7?), Eg(r) = O(t7?), (1.2.56)
—(Ex(7))- < (O(77%) + O(= ) ll9lI* (1.2.57)

by (1.2.48) and (1.2.55). These imply
(=9(A(t),1): = O()]1¢]” (1.2.58)

for (8,a) = (0,1). Then we have

(=B(1)**F(B(t) < —e)¢.(t) = O(t™"/?) (1.2.59)

with 0 < so < 1 temporarily. We next consider the case where (8, a) = (0,2).
Put oy = 3, Here we note that Ey(7) = Eg(7) = E7(7) = 0 if @ > 2 and that

(E3(m)- = O(r )], (Es(r))- = O(r )], (1.2.60)
—(Ba())> < (O(772) + O(r ) |19l (1.2.61)

by (1.2.48), (1.2.55) and (1.2.59). Thus, (1.2.58) is obtained for (5,a) = (0,2).

Then we have a temporary estimate

(B F(B(t) < —)G(t) = O(t™) (1.2.62)

with 0 < so < 2. We finally consider the case where (3, ) = (5o, a0) = (B0, 3)
with 0 < By < 1. Here we note that

(Es(m))r = O(r7*)||0]?,  (Eg(7))r = O(r7*)||¢|%, (1.2.63)
—(By(1))» < O(r7172) 19| (1.2.64)

by (1.2.48), (1.2.55) and (1.2.62). These imply (1.2.58) for (3,a) = (Bo,3). O

We next consider the case where n > 2. Now we recall the Mourre estimate
for the Stark Hamiltonian H® = HJ + V (see [20]).
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Theorem 1.2.3. (Mourre Estimate [20]) The pure point spectrum of H® is
empty. And let 0 < v < |E|. Then one can take 6 > 0 so small uniformly in
A € R that

xs(HS — N)i[H®, Alxs(H® — \) = vxs(HS — \)? (1.2.65)

holds, where xs(\) = F5(|\| < 20). In particular, the spectrum of H® is absolutely
continuous.

Then the following propagation estimates for U*(¢,0) can be obtained.

Proposition 1.2.4. (Minimal Acceleration Bound [5]) Let f € C{°(R),
v < |E|], 0 < sp <1, max{0,3—n} < B <1 and e > 0. Put xs0(H5(t)) =
Xs(H® — X)) and Cax(t) = xsx(H2())U(t,0)f(H5)(A)~ . Then there exists a
0 > 0 uniformly in A € R such that the following estimate holds as t — oco.

||(V1 — A/t)SO/QFE(A/t < V — E)CA,)\(t)”%(LQ) = O(t(ﬁoil)m). (1266)

Proof. This proposition was proved essentially in [46] under a stronger assumption
that n > 7/2 > 3. We sketch the proof by using the notations in the proof of
Proposition 1.2.1.

Set A(t) = A —1yt. Then it follows from Theorem 1.1.5 that there exists a
0 > 0 uniformly in A € R such that

Xasn(H (£)) (DA()) X252 (H5 () = 0 (1.2.67)
holds, which is one of the keys in the proof. In fact, it can be obtained by using

Xosa(HS (1)) = €“OPyos \(HS(t) — A + E - c(t))e 07, (1.2.68)
e WP A(L))e P = i[H5, A] — v, (1.2.69)

Let max{0,3 —n} < By < 1, and set B(t) = A(t)/t. Let (5,a) = (B, 0) =
(5o 1). For ¢ € L(RY), we put 6(t) = US(t,0) f(HS)(A) . Put §(A(t),1) =
Xox(HS () g(A(t), t)xsx(H®(t)). By a computation similar to the one in the proof
of Proposition 1.2.1, we obtain

DG(A(T),7) = Z E(r), (1.2.70)
where E;(7) = xsa(HS (7)) E;j(T)xsA(H®(7)) for 1 < j < 7, and
Es(7) = Gs(1)g(A(7), T)xsa(H® (7)) + xaa(H®(7))g(A(T), 7)Gs(7), (1.2.71)
Gs(T) = /Céo&s(é =N = H(7))7'b(7) - (Vo V) (@ + (7))
x (¢ — H®(1))7'd¢ A dC/(2mi). (1.2.72)
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Note that X
Ei(1) > 0. (1.2.73)

Since o = 1, we see that Es(1) = F5(7) = Eg(r) = 0 and that
Ey(r) = O(r7'7P0), Ey(r) = O(r~ ), (1.2.74)

as in the proof of Proposition 1.2.1.

Since Ey() = xoa(H(7))x250 (H (7)) Ba(7) x50 (H5 (7)) x50 (H5 (7)), let us
replace Es(7) by

XQ&A(HS(T))EQ(T)XQ&)\(HS(T)) = ZEQJ'(T), (1.2.75)

where
Eyo(7) = 7777 9(B(7)) 25 (H® (7)) (DA(T)) x25 (H® (7))y(B(7)), (1.2.76)
Eo (1) = 7P Xas A (H® (7))7(B(7)) (DA(T)) Ry1 (7), (1.2.77)
Eya(1) = 7P Ry o (1) (DA(T)) Xas. (H® (7))7(B(7)) (1.2.78)

Rupl(r) = (~1)fr! / FAC)C — B(r) ™ adly (vasa (5 (7))
x(¢C— B(r))"td¢ AdC/(2mi)  (1.2.79)

for £k = 1,2. Noting that adh(T)(X257,\(HS(T))) = O(1) and Eyo(7) = 0 by virtue
of Theorem 1.2.3, we have

Ey(1) = O(r 150, (1.2.80)
By using
AU (t, O)f(HS)<A> — US(t,0)Af(Hg)(A)™
/ US (¢, 7)ilHS (v, AJUS (7, 0) f (HS)(A)~dr, (1.2.81)
Al = [E] —w - (VaV)(z + c(7)) = O(1), (1.2.82)
we obtain as a priori estimate
AUS(t,0) f(HH(A) ™ = O(t), (1.2.83)

which leads to
(A(T) +)U(1,0) f(HS{A) ™ = O(7). (1.2.84)
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Note that

(A(T) + D) xsa(HS (1) (A(1) +4) " = O(1) (1.2.85)
because i[H%(7), A(7)] = i[H®(7), A] = O(1). Since
g(A(T), T)(A(r) +4)~" = O(r™%), (1.2.86)
we have
9(A(7), 7)Cas(T) = O(T' 7). (1.2.87)
Also note that
Gs(T) = O(t'™™) (1.2.88)
because of b(7) = O(7'77). Then we obtain
(Bs(7)r = O(* ") l6)%, (1.2.89)
which is integrable on [1,00) by By > 3 —n. This implies the proposition. O
Proposition 1.2.5. (Minimal Acceleration Bound [5]) Let f € C§°(R),

v < |E|l, max{3 —n} < fp < as < 1,0 < sy < az and € > 0. Put (,,\(t) =
Xox(HS (0)US(t,0)f(HS){(2)"t. Then there exists a & > 0 uniformly in X € R
such that the following estimate holds as t — oo.

101/2 = 2/ F /2 < /2 = Car(®)l ey = O(E@- /2. (1.2.90)

Proof. The proof is quite similar to the one of Proposition 1.2.4 (see also the proof
of Proposition 1.2.2). Hence we sketch it.
set M(t) = —(v1/2 — 2/t*)V/2, B(t) = —01,o(M(t)) and A(t) = tB(t). In the

same way as in the proof of Proposition 1.2.2, we have
DA(T) = 01, (M(7)M(7) = 01,2(M(7)) = 0}, (M (7)) /(2M (7))
(o1 (M(7)/M(7) (A7) (0 5 (M (7)) /M (7)) /2 /2. (1.2.91)
and the key fact
ad )iy (DA(T)) = —i(o}) (M (7)) /M (7)) / (47%). (1.2.92)

For ¢ € L*(R?), we put ¢(t) = US(¢,0) f(Hy){(z)"1¢. As in the proof of Proposi-
tion 1.2.4, we obtain

DG(A(T),7) = Z E(7). (1.2.93)

We consider the case where (3, a) = (fo, a2) with max{0,3 —n} < fy < as < 1.
Put ag = 1 and a; = 0. Here we note that

~

Ey(7) >0, (1.2.94)
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A A A

Es(1) = E5(1) = Eg(7) = 0 and that

Ey(t) = O(r® =7 Er(r) = O(r®2 P, (1.2.95)

by (1.2.92). Now we consider Fy(7). Let p be such that 3u = |E| — 14 > 0. Put
vo = w1 +2u < |E|, B'(t) = A/t — vy and C(t) = (01", (M(1))/M(1))>y(B(1)).
Since a < 2, we have C(t) = O(1). Note that

AJr = =B(1)+v—1 = B(1)F.(B (1) < —p)*. (1.2.96)

Let us set G4(7) = (—B'(1))Y?F,(B'(t) < —p) for the sake of simplicity. Since

GH(T)[Gy(T),C(T)] = O(r7?), (1.2.97)

we have
Ey(7) = E(r) + O(72 7Y, (1.2.98)
EU(7) = =720y \(H3 (1) GA(r)C(7)2GU(T) xon (H (7)) /2. (1.2.99)

Since (A) fi1(H5){z)~! is bounded on L*(R?) for f; € C5°(R) such that fif = f,
Gy(T)n(T) = O(7 P 1/2) (1.2.100)
is obtained by Proposition 1.2.4. Thus, we have
(E5(T)r = O(r272)I9]1" (1.2.101)

Here we note that ay — fy — 4 < ay — 2 < —1. We finally consider EY(7). By
using

2US(4,0) f(Hy ) (z) ™ — US(t,0)2f (Hy ) (2) ™"
- / S(t, )i HS (7), 2|US (7, 0) f(HE) (=) \dr

= /t US(t, ) AU (1,0) f(H)(2) 'dr (1.2.102)

and (1.2.83), we have an a priori estimate
(z —nit?)2)U(L,0) f(HS)(z) ™t = O(1?). (1.2.103)
Since U%(t,0) f(H5)(z)~! = O(1), by a complex interpolation, we obtain

(z —it?)2)"US(L,0) f(H)(2) ! = O(t*) (1.2.104)
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for 0 < k < 1. Now we will claim
(z — 1% )2)°2 2 s \(HS (1)) (2 — 2 /2) ™% = O(1) (1.2.105)
for £ > 1/2. Note that z — 1t%/2 = e~ ™11°4/25 A2 Then one can write
Xoas B2 (H5 (1)) = e7 A2y 5\ (HS (1)) 7472, (1.2.106)

~

HS(t) = Hy + V(z + c(t) + nwt?/2). (1.2.107)
Then we have only to obtain a constant C' such that
1(2)°*xo A (H (£))(2) " || 522 < C (1.2.108)
holds for any ¢, A € R. It follows from Proposition 1.2.7 below that
1) (A) Ro(C)42) ™ piuy < Cma{1, | Tm ¢|~*0) (1.2.109)

holds with v, > 1/2 and gy > 2, where Ry(¢) = (H5 —¢)~! for ¢ € C\ R. By the
almost analytic extension method for (-)*/2 € /2,

ad}y(Ro(¢)) = —Ro(¢) ad)y(H§ ) Ro(¢), (1.2.110)
ad’ (Ro(¢)) = 2Ro(¢) ady (Hy ) Ro(¢) ad}y (HF ) Ro(¢) — Ro(C) adi(Hg)lé%o(C) )
1.2.111

and iad(Hy) = |E|, we have
1AV, Ro(Olllaey < Cmaxc{| Tm (]2, [ Im |2}, (12.112)
Combining these, we obtain
1) (V2 Ry (O AY/2(2) ™ lanrsy < Cmax{1, | Tm (]} (1.2.113)

because one can take og as 2 < g < 3. By Ro(¢) — Ro(¢) = 2i Im (Ry(¢) Ry ((),
we obtain

1) (A2 Ro (Ol ey < Cmax{| Tm¢[ 72, [ Tm¢[ ). (1.2.114)

Note R
|(CHS — O () ~ O~ lazey < Cmax{1, | Im¢| ™'} (1.2.115)

because of the boundedness of V(x + ¢(t) + v1wt?/2), and

(A2, (H5(8) = O llseey < Cmax{|Im¢| =2, [ Tm ¢| 7%}, (1.2.116)
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which can be obtained by
iady(H5(t)) = |E| —w - (Vo V) (z + c(t) + nwt?/2) = O(1) (1.2.117)
in the same way as above. Then we have
) (A2 (1) = ) ey < Cmac{ | Tm ¢ 72, [T (|5}, (1:2.118)
1(z) 7 (HE () — Q) 7HAY 2| 22y < Cmax{|Tm (|72, | Tm ¢}, (1.2.119)

Noting that an almost analytic extension s € C*°(C) of x5 € C*(R) satisfies
10:x5(¢)] < Cy|Im [M for M > 0 and that

i[H5(t), ()77 = ()Y A= i((2)?)" /2, (1.2.120)

|((2)222)1 < (az/2) ()78, ((2)22)"] < (az/2)(2)2/27%, (1.2.121)

we obtain (1.2.108) by virtue of the almost analytic extension method because

az/2 —1< —1/2 and —k < —1/2. Noe we put 3¢’ = fy — max{0,3 —n} > 0 and
k=1/2+ ' >1/2. By (1.2.105) and

g(A(T), Tz — it?)2)722 = O(r7P0),  Gys(r) = O(r'™"), (1.2.122)

we finally obtain
(Bx(r))s = OG- ol = OG0l (12129
which is integrable on [1,00) by —max{n —2,1} — p/ < —1. O

Remark 1.2.6. In the proofs of Propositions 1.2.1, 1.2.2, 1.2.4 and 1.2.5, we
have used the formulas of asymptotic expansions of commutators in connection
with the almost analytic extension method due to Helffer-Sjostrand. For avoiding
the problem on the domains of the iterated commutators there, it is necessary to
apply the formulas to not objective unbounded operators but the ones truncated
appropriately once. After that, one has only to remove the truncation by taking
some limiting procedure (see e.q. [35]).

Now let us prove the following proposition, which was used in the above proof.

Proposition 1.2.7. Suppose v1, vo > 1/2, 09 > 2 and p € R\ {0}. Then there
exists a constant C > 0 such that for any ¢ € C(RY) and X\ € R the following
holds.

(=) Ag|| < C max{L, [ }HI{=)* (HE — A — i) (1.2.124)
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Proof. In the case where |u| > uo with some po > 0, this was already given in
Lemmas 2.3 and 2.4 of Herbst [19]. Hence we sketch the proof only for sufficiently
small |u| > 0 by following the argument of [19]. We first consider the case where

= 1 and H is written as A%2/2 — |E|z. One can suppose that 1/2 < v, < 1
without loss of generality. In the same way as in [19], we have

1€2) 7 Agll < [12) 7 12112 1K) (Hy = A = im)gll + 2'211(2) =gl l|¢z) ¢l

(1.2.125)
for € > 0, where g(z) = (|E|z + X + iu)'/? whose branch is chosen so that Im g(z)
has constant sign. By the Hélder inequality and (1 + |z|)/2Y2 < (2), |[{z)~¢'||
can be estimated as

1/(1+e€)
I7edh < 48122 ([ 1B+ 07+ i) 0472 )

e/(1+¢€)
x (/ <Z>2(1+e)dz)
R

< 272+6/(1+e)+e‘E|271/(1+e)‘IulflJrl/(lJre)(l + 26)76/(14’6) (/ <Z>(1+e))
R

< 27V 2/ () |y 1/ ()~ 1/ (1) (1.2.126)

1/(1+e€)

In the same way as in [19], we see that for 0 < ¢ < min{1, 2|u|}

I2)°all < (1{=)°(H5 = A = i)l + ell2) T Al / (|l — €/2) (1.2.127)

holds, since [({2)€)| < e(z)7! and |((2)9)”| < €(2)°?. Combining these, for
0 < e <min{l — vy, 2|ul}

1(2) " Ag|| < (co + cuo)ll{2)(HF — X —ip) @l + ecuell(z) " Aol (1.2.128)

with
co = 2[[(2) )T cpe = calp|SCUFN e VCATN /(1] — €/2), (1.2.129)
61 = 2472 a1, | B} @) ) 70 (1.2.130)

since € < 1 —7; < 1/2 < 5. Now we put € = |u|” with o3 > 2. For 0 < |u| <
(1 - ’71)1/017
117 cpgus < a0 EOHATI I A1 (1 )10 )

<
< a2 /(1 - (1 3) 7 2) (1.2.131)

holds because

o (1 =1/ + ™)) = [ul™ /(2(1 + [u™)) =1
= (01 =2)/2+ |p|" (or = D/ + |p|™)) > (01— 2)/2. (1.2.132)
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Thus, for
0 < [p| < min{(1 =) (1= (1 =)' /2)/(20) 7P}, (1.2.133)
we see that
1(2) ™" Aol < 2(co + ealul™)[{=) " (Hy — A — i) (1.2.134)

holds with ¢, = ¢;/(1 — (1 — ~1)'"Y?1/2) and 0y = (07 + 2)/2 > 2. This implies
the proposition in the case where d = 1. If d > 2, we introduce p; = p— Aw Then
H§ is written as

HS = A%)2 — |E|z + p2 /2. (1.2.135)

Thus, by using a direct integral method and above result, we obtain the proposi-
tion. 0

1.3 Proof of Theorem 1.1.7

We first show the existence of I/Vls’i. The following proposition is useful.

Proposition 1.3.1. Let ¢ € C°(RY). Then

I(A = [E[)* TP (t,0)¢]l = O(1), (1.3.1)
Iz = |E£2/2)"UP (£, 0)6]| = O(t") (1.3.2)

with k =1, 2 hold as t — oo.
Proof. Set Ag(t) = A — |E|t and z(t) = z — | E|t*/2. Since

Dps(ryAo(r) = —w - (VoW)(r, 2+ ¢(r)) = O(r~ ™), (1.3.3)
i[Ao(7), Dy Ao(7)] = —((w - Vo) W) (1,2 + &(r)) = O(777%) (1.3.4)

by (1.1.15), we obtain (1.3.1) with & = 1, 2 because of —2p — 1 < —1. (1.3.2)
with & = 1 can be obtained easily by (1.3.1) with k£ = 1, since

DHF(T)Z()(T) = Ao(7). (1.3.5)
Similarly, we see that
140(7)20(r) U (7, 0)¢ll = O(7),  [l20(7) Ao(r) U (7, 0)¢]| = O(7)  (1.3.6)

by (1.3.1), (1.3.2) with £ = 1, (1.3.3) and (1.3.5). These imply (1.3.2) with
k=2 [
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Proof of Theorem 1.1.7. By virtue of (1.3.2) with £ = 2, we see that for ¢ €
C5o(RY)

Ct* > (= — | B|t?/2)*UP(t, 09|
> |Fe(=/t* < |E|/2 = €)(2 = | B|t*/2)*UF (£, 0)¢|
> | F(2/t* < |E|/2 - U (L, 0)]] (1.3.7)

holds with € > 0, since € < |E|/2 — z/t? = —(z — | E|t?/2)/t* holds on the support
of F.(z/t* < |E|/2 — €). This leads to

1F(2/t < |E|/2 = )UP (1, 0)0]| < C/(et)*. (1.3.8)
By virtue of (1.3.8), ¢(t) = o(t*) and the boundedness of V', we have

10.(U> (¢, 0)'TF (¢, 0))¢ |
= [[(V(@ +c(t) = Vilt,x + c(t)))UP (¢, 0)¢]| = O™ 221 (1.3.9)

In fact, recall (1.1.13) and note that ¢y < |E|/14. We have
V(z +c(t)(1 — F,(2/t* < |E|/2 — €)) = O(t~%*) (1.3.10)
because of |E|/2 — 2¢y = 5ep > 0. On the other hand, we can wirte
Viz+c(t)=Vilt,z+c(t) = Vi +c(t)(1—Fy ((z+w-c(t)/{t)* = €)). (1.3.11)

On the support of 1 — F. ((z +w - c(t))/{t)? = €), (z+w - c(t))/{t)* < 2¢p holds.
If t > 0 is so large that |w c(t)]/{t)* < e and (t)*/t* < 4/3, then we obtain

2/t = 2/ {t)? x ()2 /1* < (2e0 + |w - c(t)]/{(t)?) x 4/3 < 4. (1.3.12)
Thus,
(1= Fo((z+w-c(®))/{)* = ) (1 = Foy (2/t* < |E|/2 = &) =0 (1.3.13)

holds for sufﬁmently large ¢t > 0, because |E|/2 — 2¢y > beg > 4€y. Since ps > 1/2,
the existence of W} +¢ can be shown by the Cook-Kuroda method, which implies
the existence of W S+ by a density argument.

We next show the unitary of W;>*. Let ¢ € 2((z)) be such that ¢ = f(HS)¢
for some f € CP(R). We first c0n31der the case where 0 < 7 < 2 with the
additional condition (1.1.9). Then, by virtue of Proposition 1.2.2,

1Fe (/1 < e1/2 = e)UP (1, 0)0]| = O(t!*=72) (1.3.14)
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holds with e; = eg — 2¢p = 1269 < ¢y and 0 < By < 1 (cf. (1.3.8)). Thus, in the
same way as above, the existence of

lim U (t,0)*U>(t,0)¢ (1.3.15)
—00

can be shown, which implies the unitary of VVIS’Jr by a density argument. We
finally consider the case where n > 2. Set hr(\) = Fi(—2 < A\/R < 2) € C§°(R)
for R > 0. Note that hy(0) = 1, one has

L= ha(H3(0) = [ 8u(OC" = (¢ = H(0)/R) )G n dG2mi)
- / B (C)CHS(0)(C — HO(6)/R)~d¢ A dC/(2niR), (1.3.16)

where hy € C3°(C) is an almost analytic extension of h;. Then we see that there
exists a constant C' > 0 such that

I(1 = ha(H*()))U°(¢,0)¢]l < C/R (1.3.17)

holds for any t > 0, since H®(t)U%(t,0)f(HS) is bounded in t (see (1.1.27)).
Hence, instead of showing the existence of lim;_,, U (t,0)*U*(t, 0)¢, one has only
to prove the existence of

lim U (t,0)*hg, (H® (£))U®(t,0)¢ (1.3.18)
for a sufficiently large Ry > 0. Since, by virtue of Proposition 1.2.4,
|1 Fey (2/1* < 01/2 = e0)hr(H (£)) U (2, 0) ]| = O(t*72)/%) (1.3.19)

holds with max{0,3 —n} < fy < as < 1 and v; = |E| —2¢y = 12¢y < |E|, one has
only to prove the existence of

lim UF(,0)* (1~ Fo (/2 < 11/2 = )b (HS)US(L0)6 (1.3.20)
because (fy — az)/2 < 0. Here we note that
(Vilt,x 4+ c(t)) — V(z +c())(1 — F(2/t* < 11/2 — e)) = O(t%"), (1.3.21)
which can be shown in the same way as above,
Dys@yhr, (H® (1)) = Ot"™") (1.3.22)
(cf. Gg(t) in subsection 1.2), and

ID)HS()(l— GO(Z/tQ 1/1/2—6()))
= 22F) (2/t* <11 /2 — &) /1> — AF! (2/t* < 11/2 — &) [1?
—iF! (2/t? < v1/2 — €0)/(2t%). (1.3.23)
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Now let us watch of the second term of (1.3.23). By using
APUS(t,0) f(Hy )(A) ™2 = US(t,0) A f(HF )(A) 2
= /t US(t,7)i[H(1), A%\ U (7,0) f(HS)(A) " tdr, (1.3.24)
i[[)]iS(T), A?) = 2iadyy (H¥(1))A — iad% (H (7)) (1.3.25)
and (1.2.83), we obtain an a priori estimate
(A2 US(t,0)f(HG)(z) ™ = Ot%), (1.3.26)
because (A)2f(H5)(z)~" is bounded for f; € C5°(R) such that fif = f. Since
(Ahr(H(1){A) 7 = 0(1), (A)’F,(2/t* <wn/2—e)(A)? = O(1), (1.3.27)
that can be shown in the same way as above, we have
(AF/ (2/1? <1 /2 — e)hg(H (1)) US(1,0) f(Hy )(2) " = O(#?).  (1.3.28)
Since
Fl (2/t* <1 /2 — e)hn(H5 (£))US(1,0) f(HG)(z) 7" = O(¢%~2%)  (1.3.29)
in virtue of Proposition 1.2.5, by a complex interpolation, we obtain

(AVFL (/1 <v1/2 = co)hr(H(0)US(1,0) f(Hp ) ()" = O+ oo/,
(1.3.30)
Combining these, we finally get

10:(UF (£, 0)"(1 — Foy (2/8* < 11/2 — €0) ) hro (H> (1)) U (2, 0)9) |
:O(tmax{ 2ps,1— n71+(6ofa2)/4}) (1.3.31)

because 4egt* < z < 5ept? on the support of F, (z/t* < v1/2—¢€) and —1+ (B —
az)/2 < —1+ (ﬁo—ag)/él by By < as. Since max{ 2ps,1—m, =1+ (Bo—a2)/4} <
—1 by assumption, one can shoe the existence of (1.3.20) by the Cook-Kuroda
method. This completes the proof of the unitary of I/VIS’Jr by virtue of a density
argument. O

1.4 Charge Transfer Model

In this subsection, we will apply the propagation estimates obtained by Adachi-
Ishida [5] to a charge transfer model. The charge transfer model describes a
quantum dynamics of a light particle in collisions with heavy N-particles obeying
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the laws of classical dynamics. Only the light particle is regarded as a quantum
particle while the heavy particles follow free classical trajectories. Recall the free
Hamiltonian is given by (1.1.1) with m = 1 in subsection 1.1. We denote the
specific charge of the k-th heavy particle by ¢, 1 < k < N. Now we assume

@ Fq, 0<k<I<N (1.4.1)

and put ¢ = qr — qo- (1.4.1) plays an important role. The classical trajectories
xx(t) € C*(R,RY) satisfy the free Newton equation

Ye(t) = aE(1), xx(0) =wr, xx(0)=vp, 1<ESN (1.4.2)
where vy, w;, € R? are constant vectors. Therefore y;, is given by
Xk(t) = qké(t) + ’Ukt -+ wg. (143)

Let VP € #,, with ps > 1/2 be the short-rage interaction potential between the
quantum particle and the k-th classical particle. As in the previous subsections,
when 0 < 7 < 2, we impose (1.1.9) in Assumption 1.1.3 on V}}, that is,

|Gk E| = sup (=(Gk/|ak]))w - (Va Vi) () > 0. (1.4.4)

zcRd

The full Hamiltonian which governs the system of charge transfer is given by

H(t) = Ho(t) + Vo(t,x), Vo(tz)=> Vile — xa(t)) (1.4.5)

k=1

and we denote the propagator generated by (1.4.5) as U(t, s). The existence and
uniqueness of U(t, s) can be also guaranteed by Yajima [44] as in subsection 1.1.
The result we want to claim in this subsection is following theorem.

Theorem 1.4.1. (Asymptotic Completeness) Under these assumptions, the
wave operators

W= = s-lim U(t,0)*Uy(t, 0) (1.4.6)

t—+o0

exist and are unitary on L*(RY).

The study of the scattering problem for the charge transfer model without
external electromagnetic field was initiated by Yajima [43] and continued by Graf
[16] in the short-range case and by Wiiller [41] and Zieliniski [47] in the long-range
case. Afterwards the similar problems were studied by Zielinski [48] in the case
where a system is set in a constant electric field and by Kayama [28] in a time-
periodic electric field whose mean in time is nonzero. In these two studies, the

30



assumption about specific charges (1.4.1) has played an important role too. This
assumption implies one has only to consider a single channel. Ishida [25] applied
the propagation estimates obtained by Yokoyama [46] and treated the case where
the time-dependent electric field tends to a constant electric field asymptotically
supposing n > 7/2 without (1.4.4) and V}} € "f7ps with ps > 1/2. Theorem 1.1.5
says that we can relax the condition such that n > 2 without (1.4.4) and V}} € 7,
with ps > 1/2 by virtue of [5], in addition we can treat the case where 0 < n < 2
as long as we assume (1.4.4).

We here prepare some notations which will be used in this subsection. As in
the previous subsections, we consider ¢ — oo only. For 1 < k < N we denote by
Uk(t, s) the evolutional propagator generated by the Hamiltonian

Hi(t) = Holt) + Vi — (1), (L4.7)

Put R
w(t) =p—ablt),  wolt) == — aoi(t). (148)

We also consider only t — oo below argument. Inspired by the discussion in [48]
and [28] we introduce some self-adjoint operators for ¢ > 1,

u = (vo(t)/t — 2mo(t)/£2)2 /2 + (wo () /2)* + 1, (1.4.9)
y =y + Vit )/ (1.4.10)
y P = O L Ve — (1) /3, 1< k<N, (1.4.11)

where we have set r = S0 sup, cga |V (z)]. By virtue of t > 1 and v > we
can define

Jin=0+y/n) 3 =1 +y/m)t, 0<k<N (1.4.12)

for n € N as bounded operators and 0 < gy, gjt(];) < 1 is satisfied.

We give some propagation estimates to prove the existence of the Deift-Simon
wave operators. Then we can reduce the problem to the one-body case by the
partition of identity.

Proposition 1.4.2.

lim, sup (1= G U (1,008 =0, lim sup (1 = g2 )Uo(t, 0)¢l] =0 (1.4.13)

n—oo t>1
hold for ¢ € L?(R?).

Proof. This proposition was proved essentially in [25] under the assumption that
n > 7/2 without (1.4.4) and V}{ € ¥, with ps > 1/2 (see also [28]). We will sketch
the proof.
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We compute

Dy = Doy yo V0, (V3(t, 2) /1) + (qob(t) /124220 () /£2) -V, V3 (L, 2). (1.4.14)

Note that Dy, (A(t)B(t)) = (Duyw)A(t))B(t) + A(t) (D, B(t)). It follows from
Dy @yvo(t) = 0, Dy yo(t) = vo(t) and
D0y (vo(t) /t — 2x0(2) /1?) = dao(t) /2 — 3vo(t) /12, (1.4.15)
]D)Ho 270( )/t2 = 'Uo( )/t — 21’0(t)/t2 (1416)
that
Dy = —3(vo(t)/t — 20(t) /12)? /1. (1.4.17)

Recall (1.1.23) and note that 2¢(t) — tb(t) = 2¢(t) + tb(t) = O(c(t)). Since V;,
V. V¢ and z - V,V(x) are bounded, we can compute

Or(ViE (x — xa(1))/17) 4 (qob(t) /1* + 220 () /1) - (Vo Vi) (& — x(t))
= 2(z = xi(t)) - (V2 Vi) (@ — xa(t)/ = 2V (2 — x(1)) /£
+(G(26(t) — tb(t)) + vit + 2w) - (Vo Vi) (z — xu(t)) /8
= 0(0(t)) (1.4.18)

for 1 < k < N, where 6(t) is

o(t=t=m) n<1
6(t) =< Ot 2logt) n=1 (1.4.19)
ot?) n>1,

and is integrable on [2,00). Combining these, we obtain

Drryye = —3(vo(t)/t — 20(t) /1) [t + O(O(t)). (1.4.20)

Then we have

Da@y (1 = Gen) = G Dawye)Jen/n
= —=3un(vo(t)/t — 220(t) /t*)*Gon/ (nt) + O(n~"0(1))
< O(n'0(t)). (1.4.21)

By this estimate, there exists C' > 0 such that

(1= Gen) e, 01) < ClloI1P/n+ (1 = o) b2, d2) (1.4.22)

holds for any ¢ > 2, where ¢ € 2(p* + 2?) and ¢; = U(t,0)¢. This implies the
first equality of (1.4.13) by a density argument because s-lim, o J2,, = 1 and
(1 = Gen)ell? < 2((1 = Gen)be, @¢). The other can be shown quite similarly. [
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Proposition 1.4.3. Fizn € N. Then there exists C > 0 such that for ¢ € L*(R?),

/:O 1((wo(t)/t = 220(t) /1) + 1)) 2GnU (2,000 /t dt < Cllgl|>, (1.4.23)
/200 1((vo(0)/t = 2a0(t)/£) + 1/8) 215 Un(2, 006/t dt < Cl@|f* (1.4.24)

with 0 < k < N hold.

Proof. This proposition can be proved similarly with [25] (see also [28]). We first
note that 0 < ¢, < 1, especially ¢;, = O(1). On the other hand, there exists a
constant C' such that

Doin = —GonBrrcop)ion > 35enOien/t — (/L +0())  (1.4.25)
by virtue of the computation (1.4.20), where we have put
A(t) = (vo(t)/t — 2xo(t)/12)? + 1/12. (1.4.26)
We thus obtain

1A 25t m el /t < (D) Gen) 1, 66) /3 + OO()) |01, (1.4.27)

since O(A(t)) > O(t72). This implies (1.4.23) because the right hand side of this
inequality is integrable on [2, 7] uniformly in 7" > 2. (1.4.24) can be shown quite
similarly. O

Take

< i — 4.
0<e<|E|/16 x ogggz%]vmk a (1.4.28)

and we have following key estimate.

Proposition 1.4.4. Fizn € N. Then there exists C > 0 such that for ¢ € L?(R?),
| I <1601 < 59U 0617 de < Cul? (1429
2

with 1 < k < N hold, where (p(t) = (xo(t)/1? — . E/2) - w.

Proof. This proposition was also proved essentially in [25] under the assumption
that n > 7/2 without (1.4.4) and V;} € ¥, with ps > 1/2 (see also [2§]).
We put the smooth cut-off

A
B(N) = / Fu(e < |4 < 5¢)du (1.4.30)
0



and define
M(t) = 60(Gk(t)) + (vo(t)/t — 2x0(t) /1) - W' (G(1))
L (G(t)w - (vo(t)/t — 2a0(8)/12). (1.4.31)

Since
Doy Ce(t) = (vo(t)/t — 220(2) /1) - w)/t, (1.4.32)

we obtain

D ®(Gh(£)) = (volt)/t — 2ro(t)/12) - w(Gu(£))/(20)
O (Glt))w - (vo(8) /1 — 2a0(1) /12)/(20).  (1.4.33)

We also obtain
Dy (vo(t)/t — 220(2) /1?) = dao(t) /t° — 3vo(t) /? — V., V3(t,z)/t.  (1.4.34)
Combining these, we can compute

Dy M () = —do(t) - w® (Gu(t)) /£ — 2V, V3 (E 7) - wd (Gu(t)) /t
+2(vo () /t — 2x0(t) /17) - w(®"(Cu(t)) /t)w - (vo(t) /t — 20 (1) /1)
— 0" (G(1))/(2t7). (1.4.35)

Note that |(x(f)| < 5e holds on the support of ®'((x(¢)) and we can estimate

— (/|GG (—40(t) - W' (G (1)) /1) Ftm
= (/1@ Ten (@l E1/2 + G (8) " (Cr(t))Ftn /T
> 401Gk [ E]/2 — 1G()) D' (G () Tem/t
> 123 1@ (G (t))Fen /1. (1.4.36)

x — Xk (t) is represented by
x — xi(t) = 2o(t) — Gut>E/2 — Gre(t) — vpt — wy (1.4.37)
and we obtain
(& = xk(t) - w] = (G = |aulle(t)] — ont +wi| > et?/2, (1.4.38)

as t — 00, if |(x(t)] = € holds, noting c(t) = o(t?). Let [ satisfy | # k. z — y;(t) is
represented by

z—x1(t) = (g — @)PE/2 + 20(t) — Gut*E/2 — Gie(t) — vt — wy (1.4.39)
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and we also obtain
[(z = xu(t) - w| = gk — @lt?E/2 =GB — |alle(t)] — [t +w| > 2€t®, (1.4.40)

as t — oo, if | (t)| < 5e holds, noting c(t) = o(t?) again. Tt follows from these
estimates and the assumption for the potential that

Fe(IGe(t)] 2 €)(Va Vi) (@ — xa(t)) = Ot 7), (1.4.41)
F(IG(O)] < 56)(Va Vi) (@ = xa(t) = O(t™172). (1.4.42)

Thus, we have

VL VAt @) - w®(G(1)/t = (Vo Vi) ( — xi(t)) - w® (CG(t))/t
+ Z (V V) (@ = xalt)) - w®'(G(t))/t

I<ISN, £k
= O(t27%), (1.4.43)
Since
M)V (0o (8) /t — 220(2) /12)2A(t) V2 < 1, (1.4.44)
we obtain
(vo(t)/t — 2xo(t) /tH)A(t) Y2 = O(1). (1.4.45)

Then there exists C' > 0 such that

—( @/ @) Gen (0o (£) [t = 220(t) /£2) - (D" (G(1)) ) - (vo(t) /t — 220 (t) /%) Gt
> CijpnAt)ion /1. (1.4.46)

Thus, we obtain

—(Gr/ @k e D ey M (t))Fen
> 126510 ® (Ce(8))Tin/t — CrienN(E) G/t — Co/t™MT220:} (1.4.47)

with some C; and Cy > 0. On the other hand, we compute by (1.4.20) (also
(1.4.25))

n<DH(t)?jt,n)M(t)gt,n = —3§t,nA(t)Qt,nM(t)gt,n/t
307, M ()G /6 + GenOO) G M (E)Gr - (1.4.48)

Since
Ten (o) /) Ti <1y o (vo(t)/t — 220(t) /t2)*Tom < 21, (1.4.49)

we have
(o(t) /)G = O1),  (vo(t)/t — 220(t) /1)y = O(1). (1.4.50)
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By this computation, we can see the commutator

[A@), Tt = =Ten[(v0(t) /t — 20(t) /%)%, (wo(£) /1)* + V2 (t, 2) )t /.

= 0(t™?) (1.4.51)
This implies
A GenA(t)™H = O(1). (1.4.52)
Similarly
AP (G (t)A() ™" = 0(1) (1.4.53)

follows from

[A(), D(G(1)] = —@"(G(1)) /1" — 2i®' (G (t))w - (wo(t)/t — 2a0(t)/1%) /£, (1.4.54)

because of A(t)~! = O(?), A(t)""/? = O(t) and (1.4.38). Applying the complex
interpolation to (1.4.52) and (1.4.53), we have

AW, A1) = 0(1), AW PBGO)AW) 2 =0(1).  (1455)

Noting estimates (1.4.45), (1.4.55) and A(t)Y2%;, = O(1) since G A(t)Gin <
2n + 1, we decompose

Y Nt M ()Gt
= 60n (1) X A(E) G A(8) 72 5 A PG (1)) A(E) 2 X A1) P
e M) X A1) Py x (v ()/t—%o( )/1%) - wA(t) 71?2
XA (L) (Ge(1))A ()2 5 A) G
M) X A )P0 x @ (Ge(t))
x (vo(t)/t — 220(t) /1?) - wA(t) T2 x A#)Y 2§y (1.4.56)

Therefore, there exists C' > 0 such that

=@/ 1@k ) (=30t A ) Gt M () Gt [t — 3Gt M () G0 M) Gt /1)
2 =ChnN)Gen/t. (1.4.57)
Since
GenM ()G = O(1) (1.4.58)

by (1.4.50), we obtain

(C]k/‘CZkD(( Z/t n)M(t)th,n + th,nM(t) (DH(t)?jt,n))
C3yt,n () Gen/t — Co/t* — C50(2) (1.4.59)
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with some C5, Cy and C5 > 0. Combining (1.4.47) and (1.4.59),

_<Q~k/|(jk‘)DH(t) (?jt,nM<t)gt,n)
> 1265 @ (G (6) e/ — (Cr + C)iunA(E)iion/t — Ceb(t) (1.4.60)

with Cs > 0 is obtained. This implies the proposition by virtue of Proposition
1.4.3 and the integrability of (¢). O

Now we can show the existence of the Deift-Simon wave operators. We set

Foo (|G ()] < 4e), 1<k<N
Ju(t,z) = 4 PrellGDl < 4e) (1.4.61)
1= 1qen Po(|G(t)] < 4e), k=0
Proposition 1.4.5. The Deift-Simon wave operators
Wy = st—lim Uk (t,0)* Ji(t, 2)U(t, 0) (1.4.62)
—00

with 0 < k < N all exist.

Proof. This proposition can be also proved similarly with [25] (see also [28]). Put

S(t — Vilx — t 1<ELEN
Vs(t, x) k=0.
We first claim
VSRt ) Jy(t, x) = O(t~2) (1.4.64)

for 0 < k < N. In fact, let [ satisfy [ # k for 1 < k < N. If [(x(¢)] < 4e holds, we
have |(z — xx()) - w| = 3et? as in (1.4.40). We thus obtain

VR o) Dt o) = ) V(e = xu() Fac(Gh(8)] < 4€) = O(t77). (1.4.65)

1<I<N, £k

On the support of Jy(t,z), |((¢)| = 2¢ holds for any 1 < I < N. Then we have
|(z — xu(t)) - w| > et® with 1 < I < N as in (1.4.38). This implies

VEO(t, ) Jo(t, 2) = O(t~2) (1.4.66)

and (1.4.64) have otained.
Noting (1.4.50) and (V,Ji)(t,x) = O(t?), we can compute

i [(vo(t) /£ = 20() 822, Ji(t, 2] = O(t?). (1.4.67)
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It follows from this and (1.4.64) that

To(t, )52 — Gen Tkt 2)Gen = Gew (U Ti(t, ) = Tty 2)ye) 52 /0

= @ﬁ,@[(vo( 1)/t — 2x0(t)/1*)?, Ju(t, x)]52,/ (2n)
—GIVER () Jy(t, 2) 52, (nt?)

— 0% (1.4.68)

with 0 < k < N. Then we have only to prove that the strong limits
s-lim U (t, 0)" i Ji(t, ) GenU (£, 0) (1.4.69)
—00
with 0 < k < N all exist for any n € N because of the decomposition

Uk(t,0)" Jx(t,2)U(¢,0) = Ur(t, 0)" Ji(t, 2) (1 — Gen + e (1 — Gen)))U (L, 0)
+Uk (t7 O)*(Jk (t x)?j?n - gt(,kn) Jk(t7 $)gt,n)U(t> 0)
+Uy(t,0)* ymjk(t z) G, U(t,0) (1.4.70)

and Proposition 1.4.2. Compute

O (Uk(t,0)"Gih) Ji(t, 2) el (1, 0))
= Un(t, 0)* (D, () i (8, )Gl (£, 0) + Ui(t, 0)* 5t Ji(t, 2) (Dpr ey e ) U (1, 0)
+Uk(t, 0)* 445 (D, 0y Ji(t, %)) GenU (2, 0)
—iUk(t, 0 G VR (¢, 2) J(t, 2) G U (£, 0). (1.4.71)

Use the computation (1.4.20) and (1.4.25) (see also (1.4.17) if k = 0) and we have

nUk(t,0)* (D 305D I (t, ) Gi.nU (1, 0)
= 3UL(1,0) G A()Y2 x A()Y2GEIA () 7Y% x M)V (8, 2)A ()~

xA(t)l/zg]tn (t,0)/t + O(0k(2)), (1.4.72)
where
B 0(t) 1<k<N
Or(t) = { 2 k—o (1.4.73)

By virtue of (1.4.59), there exists C' > 0 such that

(U (t, 0)* (D, (1 G T (t, )G U (£, 0), )|
< CIAD) YU (L, 0)0| | A 255 Ut 0)0]l/t + OB (E)) 1]l lip]]. (1.4.74)
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For 1 < k < N, we compute

Dy, s (t, 2) = (vo(t)/t — 220(t) /1) - w I (C(t)) [t + i J" (G (1)) /(2t), (1.4.75)

where we have put J(\) = Fy(|\| < 4€). By virtue of (1.4.52) and

J'(C(t) = J'(Gr(t)) Fele < [Gr(t)] < Be), (1.4.76)
there exists C' > 0 such that
[(Uk(£,0)" i) (D, 0y T (£, 2)) U (£, 008, 9)|

= C||F.(e <|G(t)] < 56U ¢, 0)|I[|A) 2N UL (L, 0)0)| /t
o)l (1.4.77)

The case where £ = 0 is also obtained similarly because

DHO(t)JQ(t 33 ZDHO(t Jk(t .T) (1478)

k=1
Combining these estimates and (1.4.64), we obtain
91 (Uk(t, 0 B Ju(t, 2)5nU (1,0), )]

< Cil|A@) Gl (1, 0)8[[[|A () G Un(t, 00| /1

+Ca| Fle < 1Ge(t)] < 5€)enl (£, 0)|I[|A () /255 Un(t, 0)¢]| /¢
+O(6x () 12l [ (1.4.79)

with some C; and Cy > 0.This implies the existence of (1.4.69) by Propositions
1.4.3, 1.4.4 and the integrability of 6(¢). O

Proof of Theorem 1.4.1. We only prove the asymptotic completeness, that is, the
existence of

S;f—lim Up(t,0)*U(t,0). (1.4.80)
—00

The existence of the wave operator can be shown quite similarly in [25] (see also
[28]). If we can prove

slim F(— @/ GG (6) < 5U(£,0) = 0 (1.4.81)
for 1 <k < N, (1.4.80) is obtained as follows. Since

Ji(t, w) = Fe(—=(Gu/1@k]) G (t) < 5€)Ji(t, @), (1.4.82)
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we have

Je(t,z)U(t,0)¢

= F(—(Gr/|ar])C(t) < 5€)Ui(t, 0)Ui(t,0)" Ji(t, 2)U(t,0)¢
= Fe(—(qr/lax]) Gk (t) < 5e)Uk(t,0)#5¢ + o(1)
— o(1) (1.4.83)

as t — oo for ¢ € L*(R?) by Proposition 1.4.5. Then by the partition of identity
(1.4.61) and Proposition 1.4.5 again,

U(t,0)¢p = Jo(t,z)U(t,0) + ZN: Ji(t,z)U(t,0)¢
= Up(t,0)#¢ + o(1k):1 (1.4.84)
holds as t — oo. This implies that
st—_>hor£1 Uo(t,0)*U(t,0) = #4. (1.4.85)
Thus the proof is completed. The duty left for us is showing (1.4.81). For the

proof, we try to rewrite Uy (,0) into what we can pursue the time evolution. For
1 < k < N, we define the time-dependent Hamiltonians

HV () = /24 @BE(1) -z + V(z), (1.4.86)
HP(t) = 02+ B - 2 + Vi (x — Guc(t)) (1.4.87)

and let U,gl)(t, s) and Uk(f)(t, s) be the propagators generated by (1.4.86) and
(1.4.87) respectively. We introduce unitary operators

gk(l)(t) _ e—if(f(foc(5)2/2+t§kE(5)'Xk(8))d86i>'<k(t)'fﬁe—iXk(t)'p’ (1.4.88)
gk(?)(t) — e i@a(t) o= idkb(t)-® Gidre(t) (1.4.89)
Then the Avron-Herbst formulas

Uilt,s) =4 OUL (4,90 (577, U (1,9) = 47 OUL (¢, )40 (5)°
(1.4.90)
hold (for the proof see [25] or [28]). Since |vxt + wy|/t? < € as t — 0o, we obtain

wi (2 = Xa(t) + @el8)) < —(@/ AN () — (vt + wy) -/ < 66 (14.91)
if —(qn/|Gr|)Ce(t) < 5e, where wy = —(Gr/|Gk|)w. This implies

Fo(—(Grl/ @) |Gk (t) < 5€) = Fo(—(qr/|Gr)|Cr(t) < 5€) Fe(wp (r—xx(t)+Gre(t)) < Te).
(1.4.92)
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In the case where 0 < n < 2 with (1.4.4), if necessary retake ¢ > 0 sufficiently
small, then we obtain

s-lim F (2./” < 70U (t,0) =0, (1.4.93)
—00

where 2z, = wy -z, as we have seen (1.3.14) in subsection 1.3 by Proposition 1.2.2
and a density argument. In the case where n > 2, we also obtain (1.4.93) in the
same way of (1.3.17) and (1.3.19) in subsection 1.3 by virtue of the boundedness
of the energy (1.1.27) and Proposition 1.2.5. It follows from (1.4.90), (1.4.92) and
(1.4.93) that

Fu(—(@i/|G])Gi(t) < 5e)Us(t, 0)¢
= F.(— <qk/|qk|>¢k<t><5e> (wr - (2 — xa(t) + Grel?)) < Te)
90 (192 (UL, OW (04 (0)*¢
= F.(- <qk/|qkr><k<t> <5e> V(G (4)F.(21/1* < Te)
<UD (009209 (0)*¢
= o(1) (1.4.94)

as t — oo for ¢ € L*(RY). Thus we have obtained (1.4.81). O
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2 Inverse Problem

2.1 Introduction

In the second section, we study one of the inverse scattering problems for quantum
systems in a time-dependent electric field, which was obtained in Adachi-Fujiwara-
Ishida [4]. As in the first section, we consider that the external electric field
converging on constant in time, but the most important point of this section is
that we can also consider the case where FE(t) — 0 as t — £oo. Throughout this
section, we assume the space dimension d > 2. The free Hamiltonian was given
by (1.1.2) in the first section. We firstly state the assumption of E(t).

Assumption 2.1.1. The time-dependent electric field E(t) € R? is represented
as

E(t) = Eo(1+[t])™" + Eu(t), (2.1.1)
where 0 < < 1, By € R4\ {0} and Ey(t) € C(R,R?) such that

/0 t /0 By (r)drds

Roughly speaking about the perturbation part F;(t), we assume that |Ey(t)] <
C(1+ |t|)~*2 for some po > p and take uy as follows,

< Cmax{|t], [t>} (2.1.2)

with p < py < 1.

M1 = 2 ,U<M2<1
p<pn <y pg=1 (2.1.3)
pr =1 p2 > 1.

Such F(t) was first dealt with in Adachi-Kamada-Kazuno-Toratani [6]. For brevity’s
sake, we suppose that Ey = e; = (1,0,...,0) € R?. We next assume that the
potential V is represented as V = Vs 4 Vs Vg ¥V 4 Vo, + 7/;},7”7 where the
classes ¥, ¥, and ”///j,,msatisfy following assumption.

Assumption 2.1.2. 7Y° is the class of real-valued multiplication operators V'V
is satisfying that VY° is decomposed into a sum of a singular part Vi* and a
reqular part Vys. Vs is compactly supported, belongs to L9 (R?) and satisfies
|IVVYs| € L2 (R?). Vs € CYRY) satisfies that Vy® and its first derivatives are all
bounded in R? and that

/ IE(l2l > RV @)l|undR < oc. (2.1.4)
0
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Here q, satisfies that q1 > d/2 and ¢ > 2, g satisfies

/g2 =1/2q) +2/d d=5
g <1/2q)+1/2 d=4 (2.1.5)
/g2 =1/2q) +1/2 d <3,

and F(|z| > R) is the characteristic function of {x € R?| |z| > R}.
7/:,% with some o, > 0 is the class of real-valued multiplication operators V*
is satisfying that V* belongs to C1(R?) and satisfies

V3(@)| < C{2)77, |07V3(x)| < Cafx) ™72, |6l =1 (2.1.6)

with some vy and o such that 1/(2 —p) <y <1 and a, < a <.
Finally, ¥, = with some y, = 1/(2(2 — ) is the class of real-valued multipli-

cation operators V! is satisfying that V! belongs to C*(RY) and satisfies
05V ()] < Clay V=0 5] < 2, (2.1.7)
with some yp such that v, < yp < 1/(2 — p).

We note that one can obtain
|1l > RV @) ) < o0 (2.18)
by this assumption and it is equivalent to
| W@ 2P el > R)landR < o (2.1.9)

because V* is a multiplication operator (see e.g. Reed-Simon [34]).
As for the class 77, , we also note that by virtue of a < 7, we can treat an
oscillation part. For example, the following function belongs to ”//lf,a#.

VE(x) = (x) 77 cos(z)? . (2.1.10)

In fact, we can verify easily that |V,V5(z)| < C({x)~177 + (z)717) < C(z) 17
holds with some C' > 0.
For Ve v 4797

IJ‘7O‘H

+ ”//#1%, it is known that the full Hamiltonian

H(t) = Hy(t) +V (2.1.11)

is self-adjoint on L?(RY) and that the unitary propagator U(t,s) generated by
H(t) exists uniquely by the results of Yajima [44] and the Avron-Herbst formula

(1.1.8), defining b(t), c(t) and a(t) as in (1.1.6).
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We first consider the case where V! = 0. Then the wave operators

W= = s-lim U(t,0)"Up(t, 0) (2.1.12)

exist as this fact was shown in [6] (see subsection 2.2). In the case where p = 0,

the asymptotic completeness of W* was discussed in Yokoyama [46] and Adachi-

Ishida [5] (see the first section), although that in the case 0 < p < 1 has never

been discussed, to our knowledge. Then the scattering operator S = S(V) is
defined by

S=WHyw-. (2.1.13)

The following obtained in [4] is one of those which we would like to report in this
section.

Theorem 2.1.3. (Uniqueness of Short-range Potentials [4]) Put

7—3u—+/(1—p)(17—9p) 0 2

W= 14 A2 —p) Sesl (2.1.14)
e 1/2<p<l.
2(2 — p)

Let Vi,Va € ¥ + 455 . If S(Vi) = S(Va), then Vi = Va.

In fact, the result corresponding to this theorem was already obtained under
the assumption that Vi,Vo € ¥ + 77, (see Theorem 1.1 of [6]). a, <
1/(2 — p) implies that above result is finer than the previous one. Here we note
that if a < b, then ¥, C V7 .

The scattering operators can determine uniquely the potentials which belong
to a certain class of short-range potentials. It is well-known that V* is short-
range and V*® is long-range in the absence of the external electric field. Even
in the absence of the external electric field, a potential belonging to #V° can
be determined by the associated scattering operator (see e.g. Enss-Weder [13]).
Thus we are interested in the influence of external electric fields F(t) in the unique
determination of V* by the scattering operator S.

In the case where E(t) = Ey, that is, the case of the Stark effect, this theorem
was first proved by Weder [38] under the condition V* € ¥, and the additional
assumption v > 3/4. However, as it is well-known, the short-range condition on
V under the Stark effect is v > 1/2. Later Nicoleau [31] proved this theorem for
real-valued V € C*°(RY) satisfying |07V (z)| < COg{z)7 71 with v > 1/2, under
the condition d > 3. After that, this theorem was obtained by Adachi-Maehara
8] under the condition that V* € ¥, ,. Moreover, recently Valencia-Weder [37]
obtained an extention of the results of the two-body case to the N-body case (see
also [38]) by using the method similar to the one in [§]
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In dealing with the Stark short-range part V*® of V' for the sake of improving
the result of [38], the Dollard-type modifier e~¢Jo V*PLm+e1™/2dr que to White
[40] (see also Adachi-Tamura [9] and Jensen-Yajima [27]) was introduced in [31],
where p, = (p1,p1). This modifier was also used in Nicoleau [32] in the study of
the case where E(t) is periodic in ¢ with non-zero mean Ej in ¢t. The assumption
d —1 > 2 is needed for the method of Nicoleau. On the other hand, in [§8], in
stead of e~ Jo V:(pam+erm®/2)dr the o_dependent Graf-type (or Zorbas-type) modifier
e~ Jo VP rterm? /)T wag introduced (in Graf [17] and Zorbas [49], it is supposed
that v = 0). By virtue of this device, one can deal with the case where d > 2 and
relax the smoothness condition on potentials supposed in [31].

The method of [8] has been used for the study of the cases where |E(t) — Ey| <
C(1+ |t])~#2 with py > 1 (see Toyoda [36]), where E(t) is periodic in ¢ with non-
zero mean FEy as in [32] (see Remark 2.1.5, Theorem 2.1.6 and Fujiwara [14]),
and where E(t) is given by (2.1.1)(see [6]). The present work obtained by [4] is a
continuation of [14] and [6].

As for the case of the time-dependent potentials in the absence of external
electric field, see Weder [39], which is the first work where the Enss-Weder time-
dependent method [13] has been applied to time-dependent potentials.

We next consider the case where V! #£ 0. If V! € 7/;},7#’ the Dollard-type
modified wave opearators

WE = slim U(t,0)"Uo(t, 0)Mp(t),  Mp(t) = e”loVomerir—(31,15)

exist by virtue of the condition yp > 1/(2(2 — u)) (see subsection 2.2 and also
[6]). Then the Dollard-type modified scattering operator Sp = Sp(V1, Vs 4 V)
is defined by

Sp = (W) Wp. (2.1.16)
Then we also report the following result.

Theorem 2.1.4. (Uniqueness of Short-range Potentials [4]) Suppose that
a given V! satisfies V! € ”f/ul,% with

1 1—
T = ot (2.1.17)
22—p)  22-p)
Put
15 — 5 — /(1 — p) (41 — 25u) 0< <5/t
Gup =4 1., °SC-n (2.1.18)
—r 5/7 < p< 1.
2(2 = p)
Let Vi,Vo € 7V + ”//W%D. If Sp(VL, Vi) = S(VI,Va), then Vi = V. Moreover,

any one of the Dollard-type modified scattering operators Sp determines uniquely
the total potential V.
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It is obvious that this theorem is an improvement of Theorem 1.2 of [6]. In
6], if 0 < p < (7 — /3 — V60 —22v/3)/4, then 7, was replaced by (—1/2 +
V1/4+ (1= )2/ (14 p))/(2 — p), while, if (7 —+/3 — /60 —22v/3)/4 < pu < 1,
then 7, was replaced by —(3—p)/8++/(3 — )2 /64 + (202 — T+ 7)/(4(2 — p)?).
&,,p was replaced by 1/(2 — p), which is strictly greater than &, p in (2.1.18). In
particular, there was no result for the case where p = 0.

Here we emphasize that if 5/7 < p < 1, then &, p = @&, holds, although if
0 < p<5/7, then &, p > @&, holds.

Remark 2.1.5. We assume that E(t) € C(R,RY) is T-periodic in time with
non-zero mean Ey, that is,

By = /T E(r)dr/T 0, (2.1.19)

which was treated by Nicoleau [32] and Fujiwara [14]. In this case, the method in
the proofs of Theorems 2.1.3 and 2.1.4 does work well also, because we have

b(t) — tEo| < /T|E(7) — Eyldr, (2.1.20)

L
&(t) — t*Ey /2| < / |b(1) — TEy|dT < C|t|, (2.1.21)
0
with C' = fOT |E(T) — EoldT by the periodicity of E(t). (2.1.21) implies p = 0 in
(2.1.1) and py =1 in (2.1.2).

By virtue of this fact, one can obtain an improvement of the results of [32]
and [14].

Theorem 2.1.6. Suppose that E(t) € C(R,R?) is T-periodic in time with non-
zero mean Ey. Then the followings hold.

1. Let Vi,Va € V¥ + Vs, If S(Vi) = S(Va), then Vi = V.

2. Suppose that a given V' satisfies V' € 7/017%. Let Vi,Vo € V' + V55, - 1f
Sp(VL, V1) = Sp(VL, Vy), then Vi = V. Moreover, any one of the Dollard-

type modified scattering operators Sp determines uniquely the total potential
V.

The plan of this section is as follows. In subsection 2.2, we recall some useful
properties of Uy (¢, 0) obtained by [6]. In subsection 2.3, we consider the case where
V! = 0. In subsection 2.4, we consider the general case.

In the following subsections, we always suppose a < v < 1 without loss of
generality, for the sake of simplicity.
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2.2 Preliminaries

In this subsection, we will recall some propagation estimates for the free propa-
gator Uy(t,0) and the existence of the wave operators W and the modified wave
operators W, which were already obtained in [6].

Proposition 2.2.1. Let ¢ € ./ (R?). Then

I(p = b(t));Us(¢, 0)¢]| = O(1), (2.2.1)
I = &(t));U(t, 006 = O(It]), (2.2.2)
[(z = é(t) = t(p — b(1)));Un(t, 0)o[| = O(1) (2.2.3)

hold as |t| — oo for 1 < j < d.

Proof. This proposition was proved in [6]. Recall the Avron-Herbst formula (1.1.8)
for the free propagator, that is,

Up(t,0) = e i) () o i(t) g —itp? /2 (2.2.4)

Then we only have to use
U(t,0)*(p = b(t))Uo(t,0) = p,  Up(t,0)"(x — &(1))Up(,0) = +pt  (2.2.5)
because ¢ € Z(p) () Z(z). O

According to the argument of [4] and [6], we decompose ¢(t) into sum of éy(t)
and ¢1(t). We note that for ¢ > 0,

/ / (Lt [rl)#drds = ((1+ 02 — 1)/(1— p)(@ — w) — /(1 — ) (2.26)

holds, and that for ¢t < 0,

/ t s = (= 0 =1/ = i - )+ ) @227)
holds. By taking account of these, we put éo(t) and & (t) as

Golt) = ((1+ [ED)* = D/((1 = w2 = p)en, (225)

ci(t) = —t|/(1 — pes +/ / E\(7)drds, (2.2.9)

with Fy = e;. This decomposition will be used frequently in the argument bellow.
We will write 1/((1 — p)(2 — p)) as a,, for brevity’s sake. Here we note that

lGo(t)] = au((1+ [t)* 7 = 1) = aultf™, (2.2.10)
161 (t)] < Mymax{|t], [t]* "} (2.2.11)

hold with some M; > 0 for any t € R by 2 — > 1 and assumption.
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Proposition 2.2.2. Let ¢ € /(RY) be such that ¢ € C5°. Then

1(p = b(1));Uo(t, 0) Mp (t)g]| = O(1), (2.2.12)
I(z = ¢());Un(t, 0)Mp ()¢ = O(Jt]), (2.2.13)
I(z = &(t) — t(p — b(1))),;Uo(t, 0) Mp(t)9]| = O(|¢t|*~ 2 E) (2.2.14)

hold as |t| — oo for 1 < j < d.
) =

Proof. Noting Mp(t)*pMp(t) = p, one can obtain (2.2.12) by Proposition 2.2.1.
As for (2.2.13) and (2.2.14), we note that

Mp(t)* zMp(t) = x + /0 (VL VY (pr + &(1))dr. (2.2.15)

By (2.2.10) and (2.2.11), there exists a constant C' > 0 such that

7€+ &(7)] 2 |eo(r)] = |en(r)] = |7[IE] = aul ™ — (M + C) max{]|7], 7[>~}
) (2.2.16)
holds for £ € supp ¢. Since, in particular,

7€+ &(7)| = au|T]P7H/2 (2.2.17)

holds € € supp ¢ and |7] > (2(M; + C)/a,)/#1=# > 1 by u < py < 1, one has

| /0 (Vo V) (pr + &(r))drg|| = O(Je' =P #), (2.2.18)

noting vp(2 — p) < 1. This implies the proposition. O
Proposition 2.2.3. 1. IfV € ¥V + 73, then W exist.

2. If VeV + 45+ 7, then W35 emist.

1/ (22-p)7

Proof. We will prove the existence of Wz for V€ %V + Vot ”// 1/(2(2—p))> Since

the existence of W* can be shown quite similarly. We dealt Wlth t — oo only.
Let J € C5°(R%) be such that 0 < J < 1,

L |zl
J p—y
() { 0 2]
Put j(t) = p—b(t), &(t) = = — &(t), and write J(Z(t)/t>*) as J(t, x) for brevity’s

sake. Let ¢ € .7 (R?) be such that ¢ € C§°(R?). Noting that |2(¢)| > a,/(8t**)
holds on the supprt of 1 — J(¢,z), we have

at” ™ [[(1= J(t,2))Uo(t, 0)Mp(£) | /8 < ||(1 = J (t, 2))|(t)|Uo(t, 0) Mp ()|l < Ct
(2.2.20)

/8 (2.2.19)
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by Proposition 2.2.2. This implies
lim U(t,0)"(1 — J(t,2))Us(t,0) Mp(t)p =0 (2.2.21)

t—00

because of 2 — p > 1. Then we only have to prove the existence of

lim U(t,0)*J(t, 2)Us(t, 0) Mp(t)$ (2.2.22)

t—o00

~

by a density argument. Let Je C5°(R?) be such that 0 < J < 1

a4 (2.2.23)

Put VI(t,z) = V'(z)J J(Z(t)/t>*). Then we have J(t,z)Vi(z) = J(t, 2)V(t, z)
because J.J = J. Moreover, we see that

Vipt + é(t))Mp(t)p = V(t, pt + &(t)) Mp(t)ep (2.2.24)

as t — oo holds because by p < 1, t¢|/t*™* < a,/4 for € € supp é. Then we
compute

Oi(U (L, 0)"J (¢, 2)Us(t,0)Mp(t))¢ = U (L, 0)" (Do) (¢, 2))Uo(t, 0) Mp(t)¢
+iU(t,0)* I (t, 2)(V¥*(2) + V() Us(t,0) Mp(t)¢
+iU(t,0)" I (t,2)(VI(t,2) — VI(t, tp(t) + (1)) Uo(t, 0)Mp (), (2.2.25)

where we used Uy(t,0)V(t,pt + &(t)) = VI, tp(t) + é(t))Us(t,0) by the Avron-
Herbst formula (2.2.4). It follows from

DHo(t)J(t>$) = (ij)(t, [L’) ’ (ﬁ(t))/tz_'u
—(2 = ) (Vo) (t ) - (2(6) /17 = i(V ) (t, @)/ (26757) (2.2.26)
that
(Do) I (8, ) Uo(t, 0) Mp (t) || < C/t** (2.2.27)

with some C; > 0 by Proposition 2.2.2. If |Z(¢)| < a,t**/4 holds, then we can
estimate

||

> |e(t)] — [2(t)] = [eo(t)] — |&1(t)] — a,t* " /4
> 3a,t* " /4 — Mymax{t, > "} > a, > " /2 (2.2.28)
as t — oo by (2.2.10), (2.2.11) and p < gy < 1. This implies
J(t,2)V(x) = Ot "), J(t,z)V*(z) = 0, (2.2.29)
17 (£, 2) V5" (@)Us (¢, 0) Mp ()¢ || < | F (2] = at®* /2)V5™ (@) ma) 6] (2.2.30)
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We thus obtain
(V¥ (x) + VZ(x))J (t, 2)Us(t, 0)9||
<Gt 4[| (2] > a2V @) lwgn)  (2:231)

with some C5. Finally, by virtue of the Baker-Campbell-Hausdorff formula, we
have

VIt x) = VIt tp(t) + &(t))

- / (VL V(L 8(E) + (1) + 0E(E) — tp(1)))dB - (3(t) — (1))
—it /1(1 — ) (DY, tp(t) + E() + 0(2(t) — tp(t)))do/2. (2.2.32)

Since

sup |V, Vi(t,z)| = Ot~ 0=y sup |[A V(L z)| = O 2702 (2.2.33)

z€R4 reRd

hold (cf. (2.2.28)), we obtain

I(VA(t @) = VIt t5(t) + &(8)))Un(t, 0) Mp(t)g]| < Cat=210 ) =170 )
(2.2.34)
with some C3 > 0 by Proposition 2.2.2. Combine (2.2.27), (2.2.31) and (2.2.34).
Then we have

10U (£, 0)"J (t, 2)Us(t, 0)) Mp(t) ]|
< (Cy + Co)t7 71 4 Cat =200 L Oy || F (|| = a,t> ™ /2)Vys(2)]], (2.2.35)
here used y(2—p) < 2—p and yp(2—p) < 1. This implies the existence of (2.2.22)

by the Cook-Kuroda method, because —y(2 — ) < —1, =2vp(2 — u) < —1 and
(2.1.4). O

To our knowledge, the problem of the asymptotic completeness of the wave
operators is still open in this case. However, it is well known that utilizing the
Enss-Weder method, one needs their existence only.

2.3 Short-range Case

The main purpose of this subsection is showing the following reconstruction for-
mula, which yeilds the proof of Theorem 2.1.3.
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Theorem 2.3.1. (Reconstruction Formula [4]) Let ¢ € R? be given such
that |0 - e;| < 1. Putv = |v|o. Let n > 0 be given, and o, ¥y € S (RY) be
such that g, ¥y € C°(RY) with supp ®o, supp Wy C {€ € R ‘ €] < n}. Put
P, = TPy, U, = Wy, Let V¥S € ¥ and V® € ¥, , where &, is the same

JTR-M
as in Theorem 2.1.5. Then

0] (i[5, ps]Pv, ¥y) = / (V¥(z + 9t)p; Po, Wo) — (V*(z + 0t)Po, p; Vo)
N +(i(02, V) (x4 0t)®g, ¥y) )dt + o(1) (2.3.1)
holds as |v| — oo for 1 < j < d.
We will make preparations for the proof of Theorem 1.1.7. We first need the
following proposition due to Enss [12] (see Proposition 2.10 in [12]).

Proposition 2.3.2. For any f € Cg°(R?) with supp f C {z € R? | |z| < n} for
somen >0 and any N € N, there exists a constant Cy dependent on f only such
that
|F(x € 4" )e 2 f(p)F(x € M) < Cn(r+ [t) ™ (2.3.2)
fort € R and measurable sets #', # with the property that r = dist(A', #) —
n|t| = 0. Here F(x € ) stands for the characteristic function of A .

The following proposition, which was already obtained in [6] (see Lemma 3.6
of [6]), can be proved as in [38].

Proposition 2.3.3. Let v and ®, be as in Theorem 2.53.1, then

/ﬁHVﬂw%@ﬁwmﬁ—OWMU (2.3.3)

[e.9]

holds as |v| — oo for Vs € ¥/Vs,

Proof. We will sketch the proof. Take f € C°(R?) such that fd, = by and
supp f C {¢ € R? | [¢] < n}. By the Avron-Herbst formula (2.2.4) and the

relation that
v —itp2 -
e, itp /2€wx

e _ e—itv2/26—itp-ve—itp2/2’ (2'3‘4)

we compute
V¥ (2)Up(t,0)®, || = [|[VY(z + vt + &(t))e ™ P0o|| < I + I, + [5. (2.3.5)
We have set I, I and I3 in (2.3.5) as

I = V(& + vt + 30) ()l | ()

<N (le] > 3Aolle)e 2 () F(le| < Aollt)laqz, (2.3.6)
I = [[V**(a + vt + &) () Il es) | () ()|

<|[E (2] = 3Mol[t)e /2 F () F(Je] > AlwllH]) (@) s, (2.3.7)
Iy = [[V(a + vt + &) () 2F (2l < BMol [t loalle™ 1 (0) ()0, (2.3.8)
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with A > 0. According to Weder|[38], A is independent of |v|, will be determined
below. Since ||V (z+vt+c(t))(p) 2| = ||V"*(z)(p)~?|| is bounded by assumption,
we have

I+ I, < C{o|t]) 2 (2.3.9)

for A|v| = n, using Proposition 2.3.2 for estimating I;. As for I3, we note that

V(2 + vt + &) (p) > F (2] < 3AJol]t])[|acz2)
= [IV**(2)(p) *F (|2 — (vt + &(t))] < 3AJv[[t]) || z(z2). (2.3.10)

Put 6 = |0 - ey| < 1. It follows from (2.2.10) and (2.2.11) that
&1 (8)|/|o(t)] < Mylt]* " Ja, < (1—6)/3 (2.3.11)

for [t| = T5 by p < 1, where Ty = max{1, (3M,/(a,(1 — 6))/*"~=#}. Then we
have

ot + E()]* = [o*[t]* + |G (t) + 1 (t)|* + 20t - (Go(t) + 1(1))

> [t + (1= (1= 0)/3)%o(t)* — 2(3 + (1 = 8)/3)[v]]t]co(t)]

= ((2+0)lco(t)]/3 — (1+20)[v][t]/(2+0))* + 3(1 = 0*)Ju[*[t[*/(2 + 0)?

> 3(1 =0t/ (2+0)* = (1= 0%)u[*Jt[*/3 (2.3.12)

for |t| > Ts. On the other hand, for |t| < Ty, |¢1(t)] < Mslt| holds with M, =
M,T; ™. Hence, we have or |t| < Ty and My/|v] < (1 —6)/3

lvt + E(t)|* = vt 4+ EL() > + |G (t)|* 4 2(vt + E1(1)) - E(t)

(t
> (1= (1= 0)/3)|ol*[t]* + 1Go(t)|* — 2(5 + (1 = 6)/3)[v][¢]|o(t)]
= (lo()] = (L +20)[v][t]/3)* + (1 = 6*) v [t]*/3 > (1 = 6%)|v[*[t]*/3.(2.3.13)

Summing up, for |v| = 3Ms/(1 —§),
vt +&(t)| = ((1—6%)/3)"2|v]|¢] (2.3.14)
holds. Take A as 4\ = ((1 — 62)/3)/2 > 0. Then we have
F(lz = (vt +¢(t)] < 3Al[t]) = F(lz = (vt + &) < 3AJv[[t) F (|| = Av][])

(2.3.15)
and
I < |[V(2) ()2 F(Jx] = Aol [t) |z | (p)*@o- (2.3.16)
Therefore, we obtain
/ (I + I + Iy)dt = O(|o| ™) (2.3.17)
by assumption, which implies the proposition. O
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The following proposition is an improvement of Lemma 3.4 of [6], which is the
key in this subsection.

Proposition 2.3.4. Let v and ®, be as in Theorem 2.3.1 and € > 0. Put

L, lampd—a)
Oo(a) = L(L pe-a 7" (2.3.18)
T p/(2—p) <a<p
Then
/_ TV (@) = VAt 4+ 5(0))Uo(t, 0, |[dt = O([u]®0@+) (2.3.19)

holds as |v| = oo for VS € V7 5 .

Proof. Take f € C°(R?) such that f®, = &y and supp f C {¢ € R? | 1€] < n}-
Then one has

V() = VE(ut + ¢(t)))Un(t, 0) @y |
= [(V*(x + vt + (1)) = V(ut + &1))e 2 f ()]l (2.3.20)

by virtue of the Avron-Herst formula (2.2.4) and (2.3.4). This can be estimated
as

[(VE(x) = V3(ut + &(2)))Uo(t, 0)@|| < Lo, Io = 2sup [VP(y)||Pol.  (2.3.21)

yeR4
This can be also estimated as
||(VS([E) —Vs(vt—i—é(t)))Uo(t O)CI) || Ilp+lgp+f3p, (2322)
with
I, = 2 sup [V3(y)|[|Pol|
yeRd
X E (2] > 3Afol? e 2 f(p)F(Je] < Afol?[t])l|seo, (2.3.23)
Iy, = 2 sup [V3(y)|[| (z) ¥ @
yeRd

x[|F (] = 3Mfol?[t)e™ 2 f(p)F (|| = M [ol?]t) (x) ™| sr2)(2.3.24)
I, = |(V?(z + vt +&(t) = V3(vt + () F (|| < 3M|ol”[t])] 522
x| "2 £ (p) Do, (2.3.25)
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by F(lz| = 3M[vf?lt]) + F(lz| < 3M[ol[t]) = 1 and F(lz] = Mfol[t]) + F([z] <
A|vlP|t]) = 1, where 3\ = (1 —9)/12, N e Nand 0 < p < 1.

One of the key points in this section is the way how to get better estimates of
the term like f(h,* + I, ,)dt and f]g’*dt than those in the previous works. We
suppose p = 0 and Fy(t) = 0 temporarily for ease of explanation of our idea. In
[38], Weder essentially obtained the estimate

/ (Iia + Iry)dt = O(Jv] ™), / L1 = O(|v]'™*), (2.3.26)
although in [38], these estimates with V*(vt 4+ é(t)) = 0 and a = 7 were really
used. After that, in [8], Adachi and Maehara obtained the estimate

o0

/ (T1py + T2, )dt = O(Jo]~"), / Iy p = O(Jv|"7*%) (2.3.27)
with 0 < p; < 1. As is seen, obviously, the estimate of [(I1. + I5.)dt in [38] is
better than that in [8], while the estimate of [ I5,dt in [8] is better than that in
[38]. In [8], by taking p; as —p; = p1 — 2a, that is, p; = «, they obtained an
optimal estimate

/ (Lo + oo + Iy)dt = O([0] ). (2.3.28)
By taking account of the advantage of both these estimations, we will introduce
a new parameter o; € R for the sake of getting better estimates of the term like
J (I« + I + I5,)dt. More concretely, by dividing the integral interval R into
{teR|[t| <|v["} and {t € R | |t| > |v|*} , we will obtain better estimates

/ (I1,1 + Ipn)dt = O(|v] ™), / I ,dt = O(|v|®rleeoy  (2.3.29)
[t[<|v]71 [tI<|v]7

/ (I, + Iop)dt = O(Jv]™Y), / I3, dt = O(|v]®* 7)) (2.3.30)
|t]>]v]o1 |t[>]v]o1

with negative ©1(c,01) and ©1(c,02). In order to get the optimal estimate
(2.3.19), after taking oy(c, p1) as O1(«, o1(a, p1)) = Oa(a, o1 (v, p1)), we will put
Op(a) as the infimum of ©1(«, o1 (e, p1)) when p; varies in the interval (0, 1). This
is the essence of our idea.

We first have

/ Todt = O(Jv] ™). (2.3.31)
Jt|< o]~

Let p; be given as 0 < p; < 1. Take a new parameter o; € R such that oy > —p;.
By using Proposition 2.3.2 for bestimating /; ; under the condition A\ |v| > 7, we

have
Ly + Ly < C{o|t)y ™ (2.3.32)
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for A|v|] > n, which implies

/ (111 + I1)dt = O] ™) (2.3.33)
ol <lt< ol

By simple calculation. Put § = |0 - e;| < 1. Let |z| < 3\{|v||t|. Then,

|z + vt + &(t)]2 = |z + vt]2 + |Eo(t) + E1(t)|* + 2(z + vt) - (Go(t) + (1))
> (1= (1= 8)/12)* ] [t* + (2 + 6)/3)*[co(t)
—2((1420)/3 4 ((1 = 8)12)(1 + (1 — 8)/3))|v]|t||é(t)] (2.3.34)

for |t| > T5 can be obtained as in the proof of Proposition 2.3.3. It follows from
this that for |¢t| > T

|z + vt + E(t)|2 > ko max{k1|v|2|t|2/(2 + 5)2, 16k1|60(t)|2/(11 + 5)2}
> ko max{ky|v|*[t]*/9, ki|co(t)|?/9} (2.3.35)

holds with ky = (1 — 4)/6 and k; = (6% + 166 + 19)/2, by a straightforward
computation. On the other hand, for |t| < Ts and M,y /|v| < (1 —6)/3

|z 4+ vt + @) = |z + vt + &) + |G + 2(x + vt + &1(t)) - Co(t)
> ((240)/3 = (1= 8)/12)*|v[*[t]* + |eo(t)[*
—2((1+28)/3 + (1 — 8)/12)|v|[t]|é ()] (2.3.36)

holds. In the same way as above, we have

|z 4+ vt + &(t)]* = komax{(1+ §)[v|?[t|*/(2 4+ 6)?, 144(1 + 8)|co(2)]? /(T + 50)*}
> ko max{(1 + 8)|v2|t|2, (1 + 8)|co(t)[2}. (2.3.37)

Since
k19— (1406) = (82 + 165 +19)/18 — (1 +8) = (1 — 6)2/18 > 0,  (2.3.38)
we finally see that || < 3A1|v||t| and |v| = 3My/(1 — )
|z 4+ vt + ¢é(t)| = dy max{|v||t], |éo(t)|} (2.3.39)

holds with d; = ((1 — 6)ko)"/? = ((1 — 6%)/6)'/2. This estimate was obtained by
6]. Since [¢o(t)| = a,|t|** by (2.2.10), we have

|z + vt + &(t)] = di|v][t] (2.3.40)
with d, = dlaif“ and

0r=k+2—p(1—kK)=2—pu—r(l—p), (2.3.41)
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where 0 < x < 1. Now, by using this new parameter x, we introduce V3, (7) as

Ve on(@) = VA()gule/ (0 IEP)), (23.42)
where g, € C®(R?) such that 0 < g, <1,

gﬁ(x):{ 1 |z

= dy
| (2.3.43)
0 |z|<d

/2.
We note that the potential like V5, (2) with parameter x was already introduce

[6] and [8] for the sake of dealing with the long-range part V! of V. Then I3 is
estimated as

Iy < NV (a0t +2(0)) — Vg (ot 2(0) F (] < 3ol Lm0l (23.49)
if |v] > 3M,/(1 —§). By using

1
V(@ t+ot+c(t) = V5, (vt +E(t)) :/ (Vo V3 ) (0x vt +E(t)) - xdf, (2.3.45)
0

we have

I < 3N [@olllolle] sup (V. V2, )W), (2.3.46)

yeRd

Here we note that

sup |(Vo Vi) )] < C(ol*t7) 77 + (Jol ") 7 Jol"[t7) 7). (2.3.47)

y€Rd
holds. Thus
/ I31dt < C/ (ol o] <E|7=) = + (o]t 7=) =) dt
o] =1 <t < w71 [o| =1 <t < w71

— O(J| = 14e) 1 O(Jo] =10+ = O(Jof ettt (2.3.48)
is obtained under the conditions a« <y < 1land 14+0; > 1—p; > 0. Now we put
O1(a,01) =01 —a(l+01) = —a+o01(l — a). (2.3.49)

We note that ©1(«, 01) is monotonically increasing in oy because of 1 —a > 0.
By using Proposition 2.3.2 for estimating /; ,, under the condition A |v|** > 7,
we have

Lpy + Iy < (0 [ty ™ (2.3.50)

for Ai|v|”* > n, which implies

/|| y (I.p, 4 Iy, )dt = O(Jo| 1 (PrFoUN)y (2.3.51)
t|=]v|91
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by simple calculation. Since p; + o > 0, for sufficiently large N € N, —p; — (p1 +
01)N < —1 holds.

Let |z| < 3A1|v|P*|t] and |v| > max{1,3M5/(1 — d)}. Then, in the same way
as in obtaining the estimate (2.3.39), one can obtain the estimate

|z + vt + ¢&(t)| = dy max{|v||t], |¢o(t)]} (2.3.52)
Then I3 ,, is estimated as

Loy S (Voy (e + ot + (1) = Vi (vt + &) E (|| < 3Aa[ol” [¢])]] ) | Dol

(2.3.53)
if |v| > max{1,3M,/(1 —9)}. By using (2.3.45), we have
Is py < 3| ol[[0]”[t] sup [(Va V7, ) ()] (2.3.54)

yeRd

By (2.3.47),

/ I3,p,dt < C/ (ol el [e]7) == + ol = [t = (o] *[t|7) ~7)dt
[t]>v|71 [t]>v|71

— O(’U’p1*l€(1+a)+01(2*5n(1+a))) + O(’U’p1fn(1+’y)+o1(276,¢(1+’y))) (2355)
is obtained under the integrable conditions

2-6,(1+a)<0, 2—6.(147)) <0, (2.3.56)

which imply the condition on x

1 2 2-pl+a) -2
0<K< —(2—p— = =! Ko 2.3.57
) 1—u< : 1+a) I-wl+ta) " (2:3.57)
since o < 7. The reason why we need the additional condition
a>pu/(2—p) (2.3.58)

is that we have to guarantee the positivity of k,. Moreover, we see that k, < 1
hods because of oo < 1. If o, satisfies

K+ 010, > 0, (2.3.59)
then we have
I3, dt = O(|v|p1—ﬁ(1+a)+01(2—5~(1+a))) (2.3.60)
[t|>[v]71
because o < 7. Now we put
Os(a, p1,k,01) = p1 — k(1 +a) +01(2 — 64(1 + @)) (2.3.61)
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We note that Os(a, p1,k,01) is monotonically decreasing in o; because of 2 —
7.(1+a) <0.
Step 1.

Now we will obtain the optimal estimate of the left-hand side of (2.3.19) for
given «, p; and . To this end, we have only to obtain the condition under which
there exists oy such that oy > —py, (2.3.59) and

@1(0&,01) < 0, @2(&,ﬂ1,/‘€,0’1) <0 (2362)
hold. The conditions (2.3.59) and (2.3.62) can be written as
K
oL > — =: h(k), (2.3.63)
P2 k(- p)

a
2.3.64
o1 < 1 — & ( )

— k(1

o > pr =l +a) =: G(a, p1, k), (2.3.65)

(1+a)2—p—r(l—p) -2
respectively, since 1 —a and (14+«a)(2 —p— k(1 —p)) —2 =61(1 + a) — 2 are
positive. By simple calculation, we see that

p(2—p)(1+a)-1)
(1+a)(L+pi(1—p))

G(a,p1,k) 2 —p1 <= Kk < =: k1(a, p1), (2.3.66)

G(a, p1,k) = h(k) <= Kk < % =: Ka(p1), (2.3.67)
h(k) = —p1 <= Kk < % =: k3(p1)- (2.3.68)

We also note that k3(p1) > k1(a, p1), k3(p1) > Ka(p1),

2-pl+a)-2
1—p '

ki(a, p1) > Ka(p1) == p1 <

(65)

( )

Ko > Ki(a, p1) <= p1 < Pa, ( )

Ko > K3(p1) <= p1 < Pa/2, (2.3.71)

Pa <1 = 1/(2—p), ( )

Paf2 <1 <= a<]l, ( )

by simple calculation. We will divide situation into cases below for ease of con-

sideration.

Case A. 0 < p; < po/2.

Then ka(p1) < ki(a, p1) < kK3(p1) < Ko holds. We first suppose 0 < K <
Ka(p1). Then it is necessary that

max{—p1, h(k), G(a, p1,k)} = Gla, p1, k) < /(1 — @) (2.3.74)
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is satisfied. Note
«
1_—

o - G<a7 P1, H)

(2= )14 a) —2) — (1 — a) + w1+ a)(1 — a2 — )
- =o)L+ a) (@) — (1= )~ 2) - (23.75)

If1—a(2—pu) <0, that is, @ > 1/(2 — p), then we obtain an additional condition

e (2= (1l +0) =2 —p(l—0) _
K< 1+ a)a@—m -1 =: Kkq(a, p1). (2.3.76)

We note that
(1—a)((2—p)(1+a)=2—pi(1—p))
(1= +a)(a2—p)—1) ’

which implies that when p; < p,,

(2.3.77)

I€4(O{,p1) — Ra =

Ko < Ky(a, p1) (2.3.78)

R(©(a,)) = (61(cr, G(av, p1, K)),0), (2.3.79)
R(Os(a, p1, K, ) = (O2(a, p1, K,/ (1 — ), 0), (2.3.80)
since ©1(a, /(1 — a)) = Oy, p1,k, G(e, p1,k)) = 0, where R(O:(a,-)) and

R(©s(a, p1, K, +)) stand for the ranges of ©1(«, 01) and Os(a, p1, K, 01) when oy
varies in the interval under the consideration. Then it follows from

R(©1(a, ) [\ R(Oala, p1, 5, ) # 0 (2.3.81)

that there exists a unique oy such that ©1(a, 01) = O1(«, p1, K, 01), by virtue of
the monotonicity of ©; and O,. In fact, by putting
1 1-— P1

o1(a, p1, k) = = - p0rai—n (2.3.82)

we have

@1(0[, 0'1(Oé, P1; H)) = 62(&/7 P1, K, 0'1(01, P1, H))
=—a+ o (a,p,k)(1 — a) =: O3(a, p1, K). (2.3.83)

Then we obtain the optimal estimate

/_Oo |(VE(x) — VE(ut + (1)) Up(t, 0) D, ||dt = O(|v|®(@rrm)) (2.3.84)

e}
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for given «, p; and k. Here we note that ©3(«, p1,x) > —1. In fact, we see that

Os(a, pr, k) > -1 =Kk <1-— G —IM;(§)1+ 5 = ke, pr) (2.3.85)
by simple calculation. Noting that for p; < 1,
kol py) — Ks(p1) = (1= py) ( CE ! ) =0 (23.86)
L+p(l—p) 2—p+a)

since 1 +p1(1 —p) <2 —pu < (2—p)(l+ «), we have O3(c, p1, k) > —1.

If1—a2—pu) =0, that is, a = 1/(2 — u), then it follows from (2.3.75)
that (2.3.74) is equivalent to p; < p, with a = 1/(2 — p), by using (1 —1/(2 —
©1))/(1/(2 —p)) =1 — p. Hence, the optimal estimate (2.3.80) can be obtained in
the same way as above.

Ifl—a2-—p) >0, that is, a < 1/(2 — p), then we obtain an additional
condition on K

k> ky(a, pr). (2.3.87)

Since k4(a, p1) < 0 in this case, (2.3.87) is automatically satisfied by 0 < k <
Ka(p1). Hence, the optimal estimate (2.3.84) can be obtained in the same way as
above.

We next suppose ka(p1) < k < k3(p1). Then it is necessary that

max{—p1, h(k),G(a, p1,k)} = h(k) < a/(1 — ) (2.3.88)

is satisfied, but this holds obviously because h(x) < 0. When oy varies in the
interval (h(k),a/(1 — «)), we have

R(Gl(a7 )) = (@l(a’ h(/i))v O)a (2389)
R(Oz(a, p1,K,)) = (Oa(a, p1, K, /(1 — @), Oa(x, p1, K, h(K))). (2.3.90)
We will show (2.3.81) with (2.3.89) and (2.3.90) hold. By

k(1 + «)

@2(047p1, R, h(’i)) - @1(047 h(’i)) = pP1 +a— 9 _ - Ii(l — M)?

(2.3.91)

we see that

Oa(a, p1, #, h(K)) > Ou(a, h(k))

2-ppta)
=K< ot - ta) ks(a, p1). (2.3.92)

Note that

a2 —p)(1—p1)
L+a+ (1 —p)(pr+a)(1+p(1—p)
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holds. Hence we see that (2.3.81) with (2.3.89) and (2.3.90) is satisfied. In the
same way as above, the optimal estimate (2.3.84) is obtained for given «a, p; and
K.

We finally suppose k3(p1) < k < Kq. Then it is necessary that

max{—p1, h(k),G(a, p1,k)} = —p1 < /(1 — ) (2.3.94)
is satisfied, but this holds obviously because —p; < 0. When o, varies in the
interval (—py, /(1 — «)), we have

R(©1(a, ")) = (©1(c, —p1),0), (2.3.95)
R(@Q(a> P1, Ry )) = (92(0'/’ P1, R, Oé/(l - Oé)), @2(&, P1, Ry _pl))' (2396)

We will consider the condition under which (2.3.81) with (2.3.95) and (2.3.96) can
be satisfied. By

@2(0&, P1, K, _pl) - @1(04, _pl)
— (@ = (1t 0)—a) +a—w(l+a) 1+ p(l—p), (2397)

We see that

Oz(a, p1, K, —p1) > Oi(a, —p1)

= Kk < plZ=pta)=a)ta =: kg(a, p1). (2.3.98)

1+ )+ pi(1 —p)

By
pi(l —p)(2—a)—(a—p)
ke(a, p1) — Ko = , 2.3.99
ol p) = e = T+ )+ i1 p) (2399
we have
Kol p1) = ba == p1 > — ) (2.3.100)
e e -
Hence, if a > u, 0 < p1 < po and kg, p1) < Kk < Kq, then
R(©1(a,-)) [ R(Oa(ct, pr, 5, ) = 0 (2.3.101)

with (2.3.95) and (2.3.96) holds, otherwise (2.3.81) with (2.3.95) and (2.3.96) is
satisfied, which yields the optimal estimate (2.3.84). Noting that for p; < 1,

1—p 1 1
e, pr) = Ko, p1) = +a1 (1 gt —u) >0 (2.3.102)

since 1+ p1(1 — p) < 2 — p, we have O3(, p1, k) > —1. On the other hand, when
a >, 0 < p; < po and kg(a, p1) < K < Kq, the estimate

/_OO (V3 () — VE(ut + &) Uo(t, 0) @, ||dt = O(Jv|OH{emr)+e) (2.3.103)

o0

61



is obtained for any ¢ > 0.
Case B. /,/2 < p1 < min{l, g, }.
Then ra(p1) < Ki(a, p1) < Ko < K3(p1) holds. In the same way as in the Case
A, we first suppose 0 < k < Ka(p1). Then it is necessary that (2.3.74) is satisfied.
Thus we have only to show that (2.3.81) with (2.3.79) and (2.3.80) is satisfied.
This can be done in the same way in the Case A. Therefore we have (2.3.84).
We next suppose k2(p1) < kK < kq. Then we have only to show that (2.3.81)
with (2.3.89) and (2.3.90) is satisfied. We note that when p; > p./2,

20 —p)(pr+a) = (1 +a)(2-p)(d+a)—2)
(I=pw(+a)l+a+(1—u(p+a))
2(p1+a) — (1+ a)pa
I+a)d+a+1—p)p+a))

S (2 = pa)
T (1+a)l+a+(1-pw(pn+a)

Rs(Q, p1) — Ko =

> 0. (2.3.104)

Hence we used (2 — p)(14+ a) — 2 = po(1 — p). Hence, in the same way in the
Case A, we obtain (2.3.81) with (2.3.89) and (2.3.90), which yields (2.3.84).
Case C. p, < p1 <1

Then we assume that o < 1/(2 — u) necessarily, and need an additional con-
dition (2.3.87). Here we note that k., < k1(, p1) < K2(p1) < Kk3(p1) in this case.
Since ko < Kaa, p1) by (2.3.77) in this case, we see that there is no  satisfying
both 0 < k < Kk, and (2.3.87).

Step 2.

Now we will obtain the optimal estimate of the left-hand side of (2.3.19) for
given av. We will divide the situation into the cases below for ease of consideration.
Case 1. a > pu.

First of all, we note that O3(a, p1, k) is monotonically decreasing in . In fact,

we have

(1—a)(1=p1)
(1=p)(1+a)(1 - k)
We first suppose that p; is given as 0 < p; < po. By virtue of the result in the
Case A, for 0 < k < Kg(a, p1), the estimate (2.3.84) holds. Here we note that

aﬁ@fi(aa P1, K“) =

<0. (2.3.105)

inf Os(a, p1, k) = O3(a, p1, ke(ax, p1))

0<k<ke(a,p1)

=—a—pi(1—a)=0(a,—p1), (2.3.106)

by simple calculation. Here we see that the optimal estimate of the left-hand
side of (2.3.19) when k varies in the interval [0, kg(c, p1)) is just the estimate
(2.3.103). On the other hand, for kg(a, p1) < k < Kq, the estimate (2.3.103)
holds. Summing up, for given p; such that 0 < p; < p,, the optimal estimate
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of the left-hand side of (2.3.19) is just the estimate (2.3.103). Here we note that
©1(a, —p1) is monotonically decreasing in p; by —(1 — ) < 0.

We next suppose that p; is given as p, < p1 < min{l, p,}. By virtue of the
result in the Cases A and B, for 0 < k < k,, the estimate (2.3.84) holds. Now we
put

O4(a, p1) = inf Osz(a, p1, k)

0<Kk<Ka
@-p+a)-2
1—p '

= O3(a, p1,Ka) = pP1 (2.3.107)

Then we obtain the estimate

/ [(VE(x) = VE(ut + (1)) Us(t, 0) @, ||dt = O(|v|©4ler)+e) (2.3.108)
as the optimal estimate of the left-hand side of (2.3.19) for given p; such that
Pa < p1 < min{l, p,}, by the monotonicity of O3(a, p1,x) in k. Here we note
that ©4(«, p1) is monotonically increasing in p;, as is seen obviously.

Now we will obtain the optimal estimate of the left-hand side of (2.3.19) when
p1 varies in (0, min{1, p,}). Here we note that

. X (a—p)(1—-a)
inf O1(a,—p1) = O1(a, —po) = —a — , (2.3.109
0<p1< pe 1( pl) 1( P ) (1 _ M)(Q — Oé) ( )

| A (a = (1 —a)
inf O4(a, = 0O4(a, po) = —a — , (2.3.110
pa<pr<min{l,ju} 4( pl) 4( P ) (1 _ M)(2 _ Cl{) ( )

by simple calculation. Putting
(@ —p)(1—-a)

() = —a — , 2.3.111
o) - W) S
we obtain the optimal estimate (2.3.19) by the monotonicity of ©;(a, —p;) and

@4(a7 :01)'
Case 2. pu/(2—p) <a<p.

We first note that min{1, p,} = p, holds in this case by p < 1/(2 — ). We
suppose that p; is given as 0 < p; < po. By virtue of the result in the Cases
A and B, for 0 < kK < Kq, the estimate (2.3.84) holds. Then, for given p;, the
optimal estimate (2.3.108) is obtained as in the Case 1. Now we will obtain the
optimal estimate of left-hand side of (2.3.19) when p; varies in (0, g,). Putting

Op(a) = inf  O4(a, p1) = B4, 0)

0<p1<pa
2 — 1 -2 —
__2=plte=2 ke (2.3.112)
1—p 1—p
we obtain the optimal estimate (2.3.19) by the monotonicity of ©4(a, py). O
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Remark 2.3.5. In Lemma 3.4 of [6], the power ©g(«) + € of |v| in the estimate
(2.3.19) is replaced by —((2 — p)(1 + ) —2)/(2(1 — w)). The inequality Oy(a) <
—((2—p)(14+a)—2)/(2(1 —p)), which can be verified easily, shows that the above
proposition is an improvement of Lemma 3.4 of [6].

We now introduce auxiliary wave operators

Qf, = slim U(1,0)Uau(t),  Usy(t) = Un(t, 0)Ma, (1) (2.3.113)
with
Mg, (t) = e~ Vi0rsemdr (2.3.114)
as in [8] and [6]. We know that
Uio = WG, g, = lim Me,(t), (2.3.115)

by virtue of the estimate
ot +&(t)] = (1= 6%)/3)"2[e(t)] = a,((1 = 6%)/3)" 2 [t~ (2.3.116)

for |v| = 3M5y/(1 — §), which can be obtained in the same way as in obtaining
the estimate (2.3.14). Here we used (2.2.10). Then the assumption v > 1/(2 —
p) yields that Ié}v exist. As emphasized in [8] and [6], the Graf-type modifier
Me¢ ., (t) commutes with any operators. This fact will be used frequently. Then
the following can be obtained as in [8] and [6].

Proposition 2.3.6. Let v and ®, be as in Theorem 2.3.1, ©g(«) be as in Propo-
sition 2.53.4, and € > 0. Then

sup (U026, = Us(1)®,]| = O(|v|***) (2.3.117)

holds as [v| = oo for V¥* € ¥ and V* € V7 -

Proof. Compute as following,
t
U(t,0)Ugn(t) — Qg, = / O-(U(7,0)*Ug (7))dT

_ / U0V ) Uan(r)dr (2.3.118)

with V*(t,z) = V¥*(x) + V3(z) — V3(vt + é(t)). Noting the unitarity of U(t,0),
we obtain

IU(t,0)92,, = Usw()Pull = I(Q2g, = U(t,0)"Us(1)) Pyl

< [ Qv e@titr o).+ |(V¥(a) — Vi(er + &) Ualr, 0@, )dr, (2:3119)

which yields the proposition by virtue of Propositions 2.3.3 and 2.3.4. We here
used the commutativity of Mg, (t) mentioned above. ]
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Proof of Theorem 2.3.1. The proof is quite similar to the one of Theorem 2.4 in
[38] (see also [8] and [6]). Suppose that V* € ¥ and V* € ¥7; . We first note
that S is represented as

§ = W)W = L0505 o = Ty = e I VHerscne
(2.3.120)
By virtue of (2.3.14) and (2.3.116),

[t + &(t)| > max{((1 - 6%)/3)"*Jollt], a,,((1 = 6%)/3)" 2t~} (2.3.121)

is obtained for |v| > 3M;/(1 — §). Therefore it follows by v > 1/(2 — u) and
the Lebesgue-dominated convergence theorem that I, — 1 as |v| — oo. Noting

1S, pj] =[S = LG, pj — vi], (pj — )Py = (pjPo), and
S — IGJJ = IG,U(QE,U - Q&,vkaa,v

S / Ueolt) V(LU0 At (23.122)
we have
|v](iS, pj]®y, V) = Ig,(I(v) + R(v)) (2.3.123)
with

= ol [ (V) U)o, U ))
—(V3(t, 2)Ugn(t) @y, Ugo(t) (p; %)) )dt, (2.3.124)
= o / (U402, — U () (0,80, Vi (1,2) U (1))
(U@, 000, — Ugo(t)) @y, Vi (t, 2)Ucw () (0 Vo)o))dt. (2.3.125)
By Propositions 2.3.3, 2.3.4 and 2.3.6, one has
R(v) = O(|v|T3Oo(@)+a)y (2.3.126)

noting the commutativity of the Graf-modifier M ,(t). Then we need the condi-
tion

+ (2(60(a) + €)) <0 (2.3.127)

in order to get R(v) — 0 as |v| — oco. This is equivalent to
Op(a) < —1/2, (2.3.128)

since one can take € > 0 so small that (2.3.127) holds for ©(«a) satisfying (2.3.128).
By simple calculation, we see that (2.3.128) is equivalent to

a> d,. (2.3.129)
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The rest of argument is going on in the same way as in [38], [6] and [8]. Using the
commutativity of Mg ,(t) again, by the Avron-Herbst formula (2.2.4) and (2.3.4),
we can compute

(V5 (t, 2)Ucw () (0 Po)o, Ugw(t) Vo) — (Vi (£, 2) U, () Po, Ug.o(t) (p; Vo))
= (V*(x + vt + &(t))e " /2p; D, e /2
—(V¥(x + vt + &(t))e 2Dy, e /2 )
+(z‘(axj V) (x + vt 4 &(t))e 2Dy, e 20, (2.3.130)

Then we write I (v f I,(7)dT where
L(r) = (V¥(a + 07 + &7/ [v]))e T/07 2, e /0D

—(V**(@ + 07 + &(r/|v])) e/ 1IP 2y e /0P 2 )
(00, Vo) (@ + 07 + &(7/|v]))e TP g =i /I0DP 2 ) (2.3.131)

by changing the integral variable such that ¢ = 7/|v|. This implies

lim I(v) = / (V¥*(x 4+ 67)p;o, Wo) — (V™ (& + 67) Do, p; W)

[v]—o00 0o

+(6(Dy, V) (1 + 07) g, Uy) )dr (2.3.132)

by the Lebesgue-dominated convergence theorem. In fact, noting that d,,V* €
Y8 by assumption,

11,0 < CUV () ) 2 F 2] = M)z + (7) 7 + (7)) (2.3.133)

can be obtained as in the proof of Proposition 2.3.3 and |I,(7)| is integrable
independently of |v]. O

By virtue of Theorem 2.3.1 and the Plancherel formula associated with the
Radon transform (see Helgason[18]), Theorem 2.1.3 can be shown in the quite
same way as in the proof of Theorem 1.2 in [38] (see also Enss-Weder [13]). We
thus can omit the proof of Theorem 2.1.3.

2.4 Long-range Case

The main purpose of this subsection is showing the following reconstruction for-
mula, which yields the proof of Theorem 2.1.4.

Theorem 2.4.1. (Reconstruction Formula [4]) Let ¢ € R? be given such
that |0 - e;| < 1. Put v = |v|o. Let n > 0 be given, and o, ¥y € S (RY) be
such that g, ¥y € C°(RY) with supp ®o, supp ¥y C {€ € R | 1¢] < n}. Put
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O, = VTP, U, = VW, Let V¥ € ¥V, Vs € ”//MS%D and V' € 7/;7 , where
&, p and 7, are the same as in Theorem 2.1.4. Then
0|(i[Sp, pj| Py, ¥y) = / (V¥(z + 0t)p; Do, Uy) — (V™(x + 0t) Do, p;¥o)

+(i(8, Vo) (x + 0t) o, Wo) + (i(8y, V') (z + 0t) Do, Ug))dt + o(1) (2.4.1)
holds as |v| — oo for 1 < j < d.
We first need the following proposition.

Proposition 2.4.2. Let v and ®, be as in Theorem 2.4.1, and V' € 7/11/ (2(2—p)-
Let k; be such that 0 < k; < 1 for 1 < j < 3. Then there exists a positive constant
C' such that

”<x>2MD,v(t)(I)0H < C(l + |U’*K17D,1‘t’2*5n1’m,1
_|_|,U|—21'€2’YD,1|t|2(2—5’m27D,1) + |,U|—:"€3'YD,2|t|3—5',€3'yD,2) (2‘4‘2)

holds as |v| — oo, where Mp, = e~ Jo Vi prvr+e(r) Y and ypy = vp +1/(2 — 1)
for1 <1 <2.

Proof. Take f € C5°(R?) such that f®, = &y and supp f C {¢ € R? | €] < n}.

In the same way as in [8] and [6], one can obtain

192 Mo (1) £ ()2 ey < M (8) £ ()2%() 2y
2] Mt / (VY (7 + 7+ ()T () - 2(@) ey
2 Moo ()2 ) () - ()l az)
2] M (1 / V) + o7 + )7 - (o) (D)) e

HIMp o () (D f)(P) (@)%l az2)

+{[Mp . (t) </O T(V V) (pr + 07 + 5(7))617) F0)(x) 2 lar2)

+||Mp,(t) /0 2L,V (pr + v7 + &(7))dT f(p) () 2| B(12)- (2.4.3)

Put § = |0-e1| < 1. If |{] < mand |v] > max{3M/(1—0),12n/(1 —0)}, then we
have the inequality

6t -+ vt + 2(t)] > dy masc{Jul[t], [20(8)[}. (2.4.4)
which yields the inequality
&t + vt + E(t)| = dy|v]"[t|7" (2.4.5)

67



for 0 < k < 1 because |¢y(t) = a,[t]** by (2.2.10), as in the proof of Proposition
2.3.4 (see (2.3.39) and (2.3.40)). By using (2.4.5), the straightforward calculation
leads to

t
sup / (Vo V) (pr 4 vt 4 &(1))dr| < Clo| "0 |t|27ox 1D (2.4.6)
gesupp f
t
sup | [ P8 g+ 7+ r)dr| < Clul e (24
gesupp f
with 0 < k < 1. Here we used 1 — 6,yp1 = —yp(2 —p) > —1l and 2 — G,ypa >
—vp(2 — /L) > —1 by assumption. These estimates yield the proposition. O

Then the following proposition can be shown as in [8] and [6].

Proposition 2.4.3. Let v and ®, be as in Theorem 2.4.1, and V' € 7/11/ (2(2—p))-
Then

/_OO VY3 (2)Up(t)®,||dt = O(Jv|™) (2.4.8)

holds as |v| — oo for V¥s € ¥V, where Up(t) = Uy(t,0)Mp(t) and Mp(t) is the
same as in (2.1.15).

Proof. One has to only note that
[V (@) Up ()@, || = |[V¥(x + vt + &(t))e 2 Mp , () Do (2.4.9)

holds by (2.2.4) and (2.3.4). Then This proposition can be proved in the same
way as in the proof of Proposition 2.3.3 by virtue of Proposition 2.4.2. One should
also take account of the estimate (2.4.2) with k1 = kg = k3 = 0, that is,

H(x)QMD,v(t)@OH <C(1+ |t\2(1—70(2—u))) (2.4.10)

and -
/ <|U||t’>f2|t‘2(lfvo(2fu))dt — O(M,l,g(l,w@,u))) (2'4'11)
by =2+2(1 = yp(2 — p)) = =29p(2 — p) < —1. O

The following proposition can be also proved in the same way as in the proof
of Proposition 2.3.4.

Proposition 2.4.4. Let v and ®, be as in Theorem 2.4.1, € > 0 and V' €

sy Put
([ a(83-20) 2(a—p)(1-aq)
i R e
B all —« o o
Qo) = —— 3~ § #)(4( 3a)) (2.4.12)
29p(2 —p) — 1
\ 1= vp < TI'h(a)
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in the case where o > a_ (), while, in the case where p/(2 —p) < o < a_(p),
put

_ _?:;‘ vp > Ta(a)
©o,p(a,7p) = 20 20a-—p) 29p(2-—p) -1 0 < Ta(a) (2.4.13)
3 3(L—n) 3(1— p) v Ry
where
o (y) = 2= 29(2__8’;<)2 —H (2.4.14)
B 1 21 — a1l + p)
B TC R R R e ) .
Ty(a) = 2(21—u) + O‘(g(;f)l;“. (2.4.16)
Then
[ 107w = v+ ) Up @)@, = O(uree (2aa)

holds as [v] — oo for V=€ V72 o .

Proof. We borrow some notation used in Proposition 2.3.4. Take f € Cse(RY)
such that f®q = &y and supp f C {£ € R? | |€] < n}. Then one has

[(V3(z) = VE(ut + &(1)))Up(t) Po
= [(V3(z + vt + &(t)) — VE(ut + &(t)))e /2 f(p) Mp , (£)Do|| (2.4.18)
as in the proof of Proposition 2.3.4. This can be estimated as

[(V3(x) = V3(vt + &())Up()®|| < Io, Io=2sup [V3(y)|Poll.  (2.4.19)

yERd
This can be also estimated as
1(V2(2) = V*(ot + E)Up O, ]| < Ly + fop + I (2.4.20)
with
I, = 2 sup [V3(y)|[[Mp,.(t) o
yER4
< ||F (|| = 3\ [vl[t)e ™™/ f(p) F(Jx| < Mlol?|t]) [l z2). (2.4.21)
I, = 2 sup [V3(y)|[[{(x)* Mp,, (t)Po||
y€ERL

<[ F (2] = 83X\ [ol?|t))e ™2 £ (p) F(|2] = Mol [t]) () || a2, (2.4.22)
Iz, = [|[(V3(z + vt + (1) — V3(ut + (1)) F(|z] < 3Ai[ol?[t])]|zr2)
x| ™72 £ (p) Mp o (£) o, (2.4.23)
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where 3\ = (1 —9)/12 and 0 < p < 1. Here we note that Iy, 1, and I3, are the
same as those in the proof of Proposition 2.3.4. Hence, by Step 1 of the proof of
Proposition 2.3.4, we have

/ Tdt = O(|v]™), / I, dt = O(Jv|™), (2.4.24)
<ol =1 v~ <[t|< |1 (@p1oR)

/ Iy pydt = O(Jp| 7= (prtorlepmNy (2.4.25)
|t|>\v\01(mp1w)

/ Isqdt + / I3, dt = O(|v]|®*@Pr™)y  (2.4.26)
ol =2 <[tI<[o]71(P1or) [t o1 (e

with N € N, where 0 < k < kg(a, p1) and 0 < p; < pg, if @ > p, while 0 < & < R,
and 0 < p; < po if 1/(2—p) < o < p. On the other hand, by virtue of Proposition
2.4.2, we have

o] =1 <|t|< |1 (@P1o0)

FO(Jof 0P E) 4 OJof 1200 ) = O(fo] ) (2427)

and
/ I~27p1dt O(|,U‘9o(a,p1,n)) + O(|’U|él(0‘7plyl‘€,:‘~il))
|t‘>|v|‘71<avf71,n)

FO(Jo| o) - OJo[ee i), (2.4.28)
where

90(a7p1a KJ) = _201 - 0‘1(0[, P1, K)?
‘91(0‘7p17 R, ’%1) = _2P1 — ’%I/YD,I + 0'1(047/017 ’i)(l - &klfyDJ%
62(06, L1, R, ’%2) = _201 - 2"~<V2P}/D,1 + 0-1(047 P1, K,)(?) - 26—1762’7D71)7
03(0[7 P1, K, "%3) = _2p1 - ’%37D,2 + 0'1((17 P1, "{)(2 - 5-:‘%37[),2)
for K1, ko and k3 satisfying
0<R <1, 0<kRa<1, 0<R3<, (2.4.33)
1-— 5_R17D,1 <0 ,3 — 25,%2’7D,1 < O, 2 — 5%37D,2 < 0. (2434)
Since —1+ 0 (a, p1, k) (1 — ) < 0, each 6;(a, py, K, &;) is monotonically decreasing

in k;. Therefore we obtain a better estimate for f|t|>\v\°'l(avplv“> jg,pl dt as follows.

/ jZ,pldt = O(l’l)’%(a’pl’”)> + O("U’al(a’pl’”))
‘t|>‘vlal(aaﬂl,.‘i)

HO(Jof() 4 0o M), (24.35)
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where

b1 (0, pr, i) = 01.0(p1) + € Yp1 <1 (2.4.36)
o —2p1 —ypa +o1(a, pi,k)(1 =vp1) Ypa > 1,
Oa(cv, p1, k) = Paplp) + ¢ 0.1 < 3/2 (2.4.37)
Y —2p1 —2vp1 + o1(a, p1,£)(3 = 2vp1) Vo1 > 3/2,
Os(a, p1, k) = folen) + e WRSE ) 4 39)
o —2p1 —Yp2 +oi1(a, p1,K)(2 —Vp2) VD2 > 2,
with
2 — 29p(2 — ) — 1
O,p(p1) = —2p1 — 7D1< — ,u)7 O2,0(p1) = —2p1 — WD(l — Z) . (2.4.39)

and € > 0. As is seen easily, 0, («, p1, k) with vp1 > 1, O02(av, p1, k) with yp 1 > 3/2
and 03(a, p1, k) with yp o > 2 are all less than O3(a, p1, k) = —a+0o1(a, p1, k) (1 —
a) by =1 —o1(a, p1,k) < 0 and o < 1. Here we used

_Q’VD,I + Ul(aa P1, ’i) (3 - 27D,1)

=—2—(2vp1—2)+o1(,p1,5)(1 = (2vp1 — 2)), (2.4.40)
—p2 + o1, p1,K)(2 —Vp,2)
=—1— (w2 —1) +oile, p1,6)(1 = (yp2— 1)), (2.4.41)

2yp1 —2 > 1if yp; > 3/2, and ypo — 1 > 1 if ypo > 2. We note that
01.0(p1) < b2.p(p1) holds by yp(2 — ) —1 < 0. Thus we obtain optimal estimate

/OO [(VE(2) = VZ (vt + () Up (1) Py||dt

—00

2.4.42
O(|U‘max{@g(a,pl,H),Go(a,l’lﬁ)}) YD1 > 3/2 ( )

{O('”lmax{@wﬁ)ﬂ@(a’pw}) FO(f+0 ) 1 < 32
for given «,p; and k by (2.4.24), (2.4.25), (2.4.26), (2.4.27), (2.4.28) and (2.4.35).
Here we emphasize that 65 p(p;) is monotonically decreasing in p;. Now we will
divide the situation into cases for ease of consideration.
Case 1. a > pu.
We first note that 6y(«, p1, £) is monotonically increasing in &, and that

Oo(c, p1, k) < O3(a, p1, k)
2—a)(1—p)

T Ao 2o a2 )

=: Ro(a, p1) (2.4.43)
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holds. If Ro(ar, p1) < 0, then Oy(a, p1, k) = Osz(a, p1, k) holds for any x > 0. We
recall that if 0 < p; < pa, then x can vary in the interval [0, k¢(av, p1)), while if
Pa < p1 < min{l, p,}, then x can vary in the interval [0, k). We also see that

Ro(a, p1) < kela, p1) <= p1 < 1, (2.4.44)

3 (2—p)a?—3a+2u
Ro(a, p1) < Ko <= p1 < — = Po,p, (2.4.45)

ol - W{—5)

_ a((l+a)2—p)—3)
>0 < p; > =: po.p, (2.4.46
Ro(a, p1) P1 4t a—2u(l+a) Pa,p; )

1
fap <0 < a< 2+—“ (2.4.47)
—

hold, by simple calculation. Here we note that (1 + u)/(2 — p) > pu because of

A+w)/C=p) —p=(—p+1)/2=p)>0. 1 (1+p)/2-—p <a<y<l
then one has f,,p < po besides po,p > 0. In fact, one can see that

fap < Pa = 0< (1 —p)a® — (2 — p)a®+3a —2u = n(a) (2.4.48)

by straightforward computation Since ny(a) = 3(1 — p)a? —2(2 — pw)a+3 >0
by (2—p)?* =91 —p)=p?>+5u—5<0when 0 < pu<2-3/(1+7) <1/2
Mo((1+ 1)/(2— 1)) = (1= (1 + /(2 = 1))* + 1) > 0 leads to 5p() > 0 for

> (1+ p)/(2 — p). Here we take account of that (1 + p)/(2 — p) < 7 with
0 < p < 1isequivalent to 0 < p < 2—3/(1+ 7). It can be verified easily that
Pa < Pa,p < 1 holds. Noting that

Pap < Pa == 0>2(2—p)a® — (5 — w)a + 2u =: n(a), (2.4.49)

one can also verify easily that po p < po holds when p < o <y <1, by m(p) =
—2u(1 — p)(3—2u) < 0 and 71(1) = —1 + p < 0. Therefore we have

Oo(cv, p1, Fola, p1)) = Os(a, p1, Ko(a, p1))

B e 2p(1—a)
= 9 o 9 _ o =S5 90(0&, pl) (2450)

for max{0, po.p} < p1 < Pa.p- We note that fo(cv, p1) is monotonically decreasing
inp; by a <y <1 If yp1 > 3/2, then we have the optimal estimate (2.4.17)
with

O©o,p(a,vp) = inf fo(v, p1) = éO(%ﬁa,D)

max{O,/Ba’D}<pl<ﬁa,D
4-3a (1- )(4 3a) h
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Here we note that éo(a,,éa,D) = Oy4(, po,p) holds. On the other hand, if vp; <
3/2, then we have the optimal estimate (2.4.17) with

©o.p(a,7p) = max{éo(a, pa,p),02.0(fa,p)} (2.4.52)

by virtue of the fact that both 6y(c, py) and 65 p(py) are monotonically decreasing
in p;. By simple calculation, we see that 0y(a, pa.p) > 02.0(pa.p) is equivalent to

1 N 2p — a1l + p)
22—p) 22— p)(4-3a)

Here we note that I'; () +1/(2—p) < 3/2 holds. In fact, I'y(a) +1/(2—pu) > 3/2
is equivalent to (8 — 10u)ar > 12 — 14u. When p = 4/5, this inequality does
not hold as can be seen easily. When 0 < pu < 4/5, this inequality is equivalent
toa > (6 —7u)/(4 —5u), but there is no « satisfying both this inequality and
a < v <1, because (6 — 7u)/(4 —5u) = 1+ 2(1 — p)/(4 — 5u) > 1. When
4/5 < p < 1, the above inequality is equivalent to o« < (70 — 6)/(5pp —4) — pu =
—(1—p)(6 —bu) /(5 — 4) < 0. Hence, if vp > I';(a), then we have the optimal
estimate (2.4.4) with (2.4.51), while, if vp < I';(«), then we have the optimal
estimate (2.4.4) with

V> —:T1(a). (2.4.53)

_ 20(l-0) 2f@—p)(d-a) 29p2-p) -1
Oo.p(@,7p) = = 4 — 3« _(1—u)(4—3a)_ 1—pu ’

(2.4.54)

Case 2. pu/(2—p) <a<p.
We note that Ro(c, p1) > 0 holds for 0 < p; < pa, but p, p is not always
positive, in this case. In fact, putting

a_(p) 22— ) : (2.4.55)
if p/(2—p) < a < a_(p), then p,p < 0, while, if a_(p) < a < p, then
0 < Pa.p < pa- Here we used my(a_(p)) = (1 + p)a_(pn) —2p < 0 because of
a-(p) < p < 2p/(1+ p).

We first consider the case where a_(u) < o < p. Then (2.4.50) holds for
0 < p1 < Pa,p- Therefore we obtain the same result as in Case 1.

We next consider the case where p/(2 — p) < a < a—(p). Then Oy(a, p1, k) <
O3(a, p1, k) holds for 0 < p; < p, and 0 < K < Ko. In order to get a better
estimate for [ [|(VS(z) — VS(vt + &(t)))Up(t)®,||dt, we have only to replace
O3(a, p1, k) by O4(a, p1) + €. Hence, if yp; > 3/2, then one can obtain the
optimal estimate (2.4.17) with

Oo,p(a,vp) = O4(r,0) = —ar + [f:z, (2.4.56)
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as in the proof of Proposition 2.3.4. We next suppose that yp; < 3/2. We note
that

02,0(p1) < Oula, p1)
2—p)(I+a)=2—=2yp(2—p)+1
3(1—p)

holds. Here we took account of that ©4(c, p1) is monotonically increasing in py,
while 05 p(p1) is monotonically decreasing in p;. Hence, if

<~ p1 > = Pa,D,— (2457)

L o@—p—up
2(2—p) 2(2 — p)
then one can also obtain the optimal estimate (2.4.4) with (2.4.56), since p, p - <

0. Here we note that I'y(a) +1/(2 — p) < 3/2 can be seen easily. On the other
hand, if 7p < I'a(«), then one can also obtain the optimal estimate (2.4.4) with

_ 20 2a—p)  2p@2-p) -1
Oopla1p) = Oulepan) = =5 =5 ) T TRy

This completes the proof of this proposition. O

Yp > =: I'y(a), (2.4.58)

(2.4.59)

The following proposition is the key in this subsection.

Proposition 2.4.5. Let v and ®, be as in Theorem 2.4.1, and V' € ”//;71/(2(2_@).
Put

—1 Yp > 1/2
S} = 29p(2 —p) =1
— 1

(2.4.60)

Then

|10 = Vit = 500) + AUpl)@dt = Ol *2027)  (2461)

e}

holds as |v| — oo.

Proof. One should note that
Uo(t, 0)V(pt + &(t)) = Vi(t(p — b(t)) + (1) Us(t, 0) (2.4.62)

holds by virtue of (2.2.4). Take f € CS°(R?) such that f®; = &y and supp f C
{¢ e RY| [¢] < n}. By virtue of (2.2.4) and (2.3.4), one has

1(V! () = V}(t(p = b(t)) + &) Up(t) Py ||
= (VY@ + vt + &(t)) — V(pt + vt + &(t)))e 2 f(p) Mp . () Do]|. (2.4.63)
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Put 6 = [0-e1] < 1. Let |{] < n and |v| > max{3M>/(1 —¢),12n/(1 —J)}. Then
(2.4.5) holds as mentioned above. Here we introduce V,, . (z) as

V(@) = V() gu(z /(o] [t]")), (2.4.64)

where g, € C*°(R?) such that 0 < g, < 1 and

)1 x| > de
gu(z) = { 0 |e| < d/2. (2.4.65)
Then we have
(V! () = VI(t(p = b(1)) + ( ) Up ()P ||
= (V! + vt + &(t) = Vi, o (pt + vt + E(8)))e "7/ £ (p) Mp o (£) o |
(V! + ot +&(8)) = Vo + vt + E(8))e ™2 £ () Mp o ()0 |

+|I( vm(x—l—pt—i—vt—l—c() — Vi o (pt + vt + &(1))) Mp o (t) Dol| (2.4.66)

~—

by €iP*/2ze=it*/2 = 1 + pt. This can be estimated as

1V (@) =Vt —b(t) + &) Un(t)®u|| < To, Iy =2 sup [V*(y)||@o|. (2.4.67)

y€ERd
Therefore we also have
(Vi) = V(t(p — b(t) + é(t))Up(t) @0l < Ty + Lo + T, (2.4.68)
with
I, = 2 sup [V3()|[[Mp,.(t) 0
yEeR
|| (2] = 3A[ol?[t])e ™™/ f(p) F (|2 < A|ol?[t) ]l acze). (2.4.69)
I, = 2 sup [V3(y)|[[{x)* Mp,, (t)®o||
yEeR

X|[F(Jz] = 3ol [t)e 2 f () F (|| = M [ol?[])(x) || ozz), (2:4.70)
= [|(V (4 pt + vt + E(1) = Vbt + vt + E(t))) Mp o () Dol (2.4.71)

when |v| > max{1,3My/(1 —9),12n/(1 — 9)}, where 3\; = (1 —0)/12, N € N,
0<p<1land0< k<1 Here we used the fact that

(Vi@ + vt + (1) — VD, (4 ot + &0))F (] < 3ot =0 (2.4.72)
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holds when |v| > max{1,3My/(1 — §),12n/(1 — 6)} because of 3\;|v|*~! < 3.

We note that by virtue of the Baker-Campbell-Hausdorff formula,

Vl

v,t,K

1
= / (va;,{t,ﬁ)(:ce + pt + vt + ¢&(t)) - xdb
0

(z + pt + vt +&(t)) — V;M(pt + vt + é(t))

1
it / (DaV! ) (@6 + pt+ vt + &(1))d6/2
0

hold. We also note that

sup |(VQ;Vl

v,t,K
yeR

sup |(A V)

yeRd v,t,K
H([ol*[¢]7) (o]t 7))

)W) < Col™]7) 7722 + (o] *[t]7) = (o] [¢[7) 7P

(2.4.73)

YW < Col" )72 + (ol *[t™) T fol*[¢]) P), (2.4.74)

(2.4.75)

holds. Now we take a parameter o; € R such that 0y > —1. Then, in the same

way as in the proof of Proposition 2.4.4, we have

/ Lodt = O(lo| ™), / Liadt = O[] ™),
[t]<|v] 1 [v] 1< [t[< w7t

/ Tadt = O(fo| 7-(#70N), / Toadt = O(jv] ™),
[t|>|v]71 [v] 1< (¢ vt

/ Lydt = O(Jo]*“) + O([v|*" 7)) + O([v|*7)) + O(|v|*V),
l>lo]

where

00(0’1) = -2 — 01

Yp(2 — 1)
o ID\ETH) <1
01(0n) = i ¢
—2—9p1+01(1 —9p1) p1>1,
Yp(2 — 1)
g IDVETH) < 3/2
(o) = T 21 < 3
_2_27D,1 —|—O’1(3—2’}/D,1) YD1 > 3/2,
Yo (2 — )
g BT, <2
03(01) = L—p ‘ 0

—2—9p2+01(2—7p2) Tp2>2,
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with € > 0. Because for o; > —1, every 60;(07) is less than —1, we finally obtain

/ Ldt = O(Jv] 1), / Ladt = O[] ™), (2.4.83)

jt]<lv| =1 ol =2 <[tI< o]
/ [171dt = O(’U|_1), / jgvldt = O(|U‘_l), (2484)

[t[=]v]71 o] =1t <[]
/ Lhqdt = O(Jv] ™). (2.4.85)

[t]> 0|1
Since ]

| Mp,(t)Pol| < C(1 + [o| 121 [t[>~7ma7P:1) (2.4.86)

holds with 0 < k; < 1 by the proof of Proposition 2.4.2, we obtain

/ j3 H}dt = O(|U|61,1(7D,1701,K/)) + O(|U|61’1(1+7D’0’1’K))
ol << o]

_i_O(‘,U|91,2(7D,1:’YD,1,0’1,K,/€1)) + O("U|91’2(1+7D’7D,17‘71:”7”1))

_|_O<|v|91,3(7D,2,01,I€)) + O<|,U‘91,3(1+'YD,1,0'17'€)> + O(‘U’91,3(2+’YD,0'17N))’ (2.4.87)
where
6 (co, o1, 5o < 1
O11(co,01,K) = 11<CO 71: %) ? N (2.4.88)
01(co, —1,Kk) Fhco > 1,
6! 5 5oy C1 < 3
01,2(00)0170-17/{/, K/l) = 12(0070170-1,/{/7/{/1) ?j “ +?j 101 (2489)
0y(co, c1, —1,K,K1)  GxCo + g C1 > 3,
81 ) ) Nn <2
th3(co, 01, k) = ?(CO 71, ) ? 0 (2.4.90)
05(co, —1,Kk) Frco > 2,
with 0 <k < 1 and 0 < k; < 1, by simple calculation. Here
0} (co, 01, k) = —rco + o1 (1 — Gaco), (2.4.91)
0912(00, C1,01, K, Kil) — —KCyp — R1C1 + O'1<3 — &HCO — 5',{101), (2492)
9;(00, o1,Kk) = —kcg + 01(2 — F.¢p). (2.4.93)
We omitted the formulas of 0}(co,01,%) when G.co = 1, of 0h(co, 1,01, kK, k1)

when 6,co+ 0, c1 = 3, and 913(00, 01, k) when 6,cy = 2, for ease of representation.
Noting that —x — 016, = —(2 — p)or + (=1 + (1 — p)oq1)k, the following can
be verified easily. For ¢y > 0 and ¢; > 0, 0}(co,—1,x) and 65(co, —1,k) are
monotonically decreasing in x, and 5(co, c1, —1, K, k1) is monotonically decreasing
in both x and k1, because —1 — (1 — p) = =2 4+ p < 0. Moreover, if o <
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1/(1 — p), then 6}(co, 01, k) and 6(co, 01, k) are monotonically decreasing in x,
and 05(cy, ¢1, 01, K, k1) is monotonically decreasing in both s and k1, because —1+
(1—u)oy < 0. Hence, for given oy such that —1 < oy < 1/(1—p), in order to obtain
a better estimate on f‘v‘,lg‘ﬂg'v'gl jgy*dt, we have only to put kK = k1 = 1. We note
that 6, = 1. Since —1—0; < 0, one can verify easily that 6, 1(yp1,01,1) > 611 (1+
Yp,01,1), b2(vpa1: YD, 01, 1,1) > 6ia(1 + vp,vp1, 01,1, 1) and 01 3(yp2,01,1) >
03(1 +vp1,01,1) > 632+ vp,01,1). Since —1/(2—p) +o1(1 —1/(2—p)) <0
by o1 < 1/(1 — ), 61(yp1,01,1) > O13(yp2,01,1) can be verified easily. For
1 < Y1 < 3/2, 01,2(7D,1;’YD,170'1; 1, 1) < 9171(’71),1,0'1, 1) = —1 holds because of
o1 < 1/(1 — p) < 1. Moreover, if

o1 <vp1/(2—="p1), (2.4.94)

then 612(vp,1,vp1,01,1,1) < 611(vp1,01,1) holds even when vp; < 1. Here we
note that yp1/(2—vp,1) < 1/(1—p) holds since yp < 1/(2—p). As a consequence,
we obtain a better estimate

/ I51dt = O(|v)|fr10paonl)) (2.4.95)
vl =<t o]t
with
—Co + 0'1(1 — C()) cp < 1
O11(co,01,1) = 2.4.96
L1(co, 01, 1) {_1 o> 1, ( )
under the additional assumption (2.4.94) besides oy > —1.
As for f\t|>|u|01 I3 .dt, we have the estimate
/ I3 . dt = O<|v‘911('YD,1,0'17/€)) + O(|U|911(1+vp,ol,n)>
[t]>v|71
+O(|U|912('YD,17’YD,170'17H7/'€1)) + O(|U|912(1+'YD7’YD,170'171“€,/‘€1))
+O(Jo|?s0P2715)) L O(|v] 0100018y L O (|p|0@H1D010) (2.4.97)
under the integrable conditions
&n'-)/D,l > 1, 657D,1 + C}KI"}/DJ > 3, &KVD,Q > 2. (2498)

Here we used 1 +vp > yp1 and 24+ vp > 1+ vyp1 > vp2. These integrable
conditions can be rewritten as

2_1u)—=2 202—p)—3
e 2= =2/pe kb1, K+ R < (2—p) =3/vpa _, kpa.  (2.4.99)

l—p
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Here we note that

Kpy > 1= yps>2, kps>1e=yp; >3/(3— p), (2.4.100)
Kpg2 > 2 <— YD1 > 3/2, Kp,1 < Kp2 <= "Yp > (\/g— 1)/(2 — ,u), (24101)

3— i+ /p% — L+ 25
i U ey (2.4.102)

2(2—p)

V3 — 1 is so called the Enss number. Now we will divide the situation into cases
for ease of consideration.
Case I. kp; > 1, thatis, kpo > 2.

Here we note that yp; >2—1/(2—pu) > 1 holds by 0 < pu < 1.
Subcase i. kp2 > 2, that is, yp1 > 3/2.

As mentioned above, for ¢y > 0, 0} (co, 01, &), O5(co, YD1, 01, K, k1) and 6(co, o1, K)
are all monotonically decreasing in k, by —1 4 (1 — u)o; < 0. Hence, in order to
a better estimate on fl Z‘g’*dt, we have only to put k = 1. Here we note that

kpip+1<Kps <= vp2 >

Hz ol
01(7p,1,01,1) > 03 (1+p,01,1), (2.4.103)
912(71)71’ YD,1,01, 17 '%1) > 912(1 + b, YD,1,01, 1, /€1), (2.4.104)
05(vp2,01,1) > 05(1 + p1,01,1) > 65(2 +p, 01, 1) (2.4.105)

hold by o1 > —1. Since 012(717,1,7,371,01, 1, k1) is also monotonically decreasing
in k1, in order to a better estimate on f\t|>|v|01 j37*dt, we shloud put k1 = 1 <
kpa — 1. By o1 < 1/(1 — p), i (vp1,01,1) > 04(vpa,01,1) holds, while, under
the additional condition (2.4.94), 6} (yp1,01,1) > 05(vp1,vp1,01,1,1) holds. By
oy > —1and yp1 > 3/2, 0i(yp1,01,1) +1 = (1 + o1)(1 — yp1) < 0 holds. By
(2.4.95), (2.4.83),(2.4.84) and (2.4.85), we obtain the optimal estimate

/ (Vi (x) = Vi(t(p - B(t)) + E))Up(t)®,||dt = O(Jv|™h). (2.4.106)
Subcase ii. 1 < kp2 < 2, that is, 3/(3 — 1) < yp1 < 3/2.

By the argument similar to the above one, in order to a better estimate on
f|t\>|v|01 I5 .dt, we have only to put kK = 1 and k; = kp2 — 1. Here we note that
under the additional assumption

—1
oy < (HD,~2 )VD,1 << D1 > 7 (2.4.107)
2= 0xp,-17D1 2—pa

911(’7D71,0'1,1) > 012(7D7177D,170171a/fD,2 — 1) holds. By o > —1 and YD1 >
3/(3—u) = 1,0} (yp1,01,1)+1 = (1+01)(1—yp1) < 0 holds. As a consequence,we
obtain the optimal estimate (2.4.106) in the same way as in Subcase i.
Subcase iii. 0 < kpo < 1, that is, 3/(2(2 — p)) < vp1 < 3/(3 — ).
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By the argument similar to the above one, in order to a better estimate on
f|t\>|v|01 I5 .dt, we have only to put kK = kp o and k1 = 0. Here we note that under
the additional assumption

oy > — D2 (= —1), (2.4.108)
UND,Q
one has
0\ (Yp,1,01,kp2) > 01 (1 + YD, 01, kp2), (2.4.109)
05 (YD1, VD15 01, kD2, 0) > 05(1 + vp, VD1, 01, K 2, 0), (2.4.110)
05(vp2,01,6p2) > 05(L+p1,01,6p2) > 052+ vp,01,kp2).  (2.4.111)

Moerover, under the additional assumption
o1 <0, (2.4.112)

0 (vyp.1,01,kp2) > 05(vp1, VD1, 01, Kp.2,0) holds by 2 — (2 — p)yp1 > 0. Here we
note that 011(71771, 01,Kkp2) = 911(7,371, o1, 1). Since

22— p)ypa —3
1—p

0y (YD1, 01, Kp2) = — +o1((2 = w)pa —2) (2.4.113)

and yp1 < 2/(2 — p), 01(yp.1,01,kp2) is monotonically decreasing in ;. Here
we note that 6} (vp1,0,kp2) = —(2(2 — w)yp — 1)/(1 — p) < —1 is equivalent to
~vp > 1/2. Therefore we obtain the optimal estimate

/_Oo (Vi) — Vi(t(p — b(t)) + &) Up(t)®,||dt = O(||®+P0P)F€) (2.4.114)

—1 vp > 1/2
Q] = 2 2 _ —

(2.4.115)

with € > 0.
Case 1II. KD,1 < 1, that iS, Kp2 < 2.
Subcase i. KD2 > VYD,1 + 1.

Since for 0 < p < 1, B3 — p+ /p? — 14p+25)/(2(2 — p)) > 2 holds, we do
not have to consider this subcase.
Subcase ii. kp;1 < Kkpa2 < kp1+1.

By the argument similar to the above one, in order to a better estimate on
f|t‘>|v|(,1 f37*dt, we have only to put kK = kp1 and K1 = Kp2 — kp,1. Here we note
that under the additional assumption

oy > — DL (5 ), (2.4.116)

O-HD,l
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one has

911(’)/D71,0'1, KJDJ) > 011(1 +’}/D,O'1, KD,l)a (24117)

9;(7D,1"YD,1, 01,Kkp1,Kp2 — Kkp1) > 912(1 + 9D, VD,1,01,KD,1, kD2 — KD,1),
(2.4.118)
Qé(VD’Q,O'l, IQDJ) > 9%(1 + YD,1,01, IQDJ) > 0;(2 + YD, 01, IfD’l). (24119)

By o1 < 1/(1 — ), &(vp.1,01,6p.1) > 05(vp2, 01, kp1) holds, while, under the
additional assumption

oy < (KD,f — KDp1)ID,1 (< D)1 ) , (2.4.120)
2 - Okpa—rp1 D1 2—pa

(911(’)/D71,0'1,/€D,1) > 9%(7D71,7D71,0—1,/“QDJ,K/DQ — kp1) holds. Here we note that
611('7D,17 gy, KJD’l) 2 911(’)/[)71,0'1, 1) Since

(2—pypIDa D
(1—- M)'YD,2 YD,2
is monotonically decreasing in ¢y, we should take oy as (kp2 — #p,1)¥p1/(2 —

Orpo-rp,YD,1) 0 order to obtain a better estimate on f‘ I3 .dt. We note
that

0)(Yp1. 01, kD) = — o1 (2.4.121)

t|>[v]71
0 (o, (kD2 — Kp1)YD1 o) = 22— p) -1
2-— Okp,2—kp,1VD,1 1- %
holds by straightforward computation. Therefore we obtain the optimal estimate
(2.4.114) in the same way as above.
Subcase iii. 0 < kp2 < Kp.
In the same way as in the subcase iii of Case I, we obtain the optimal estimate
(2.4.114). ]

(2.4.122)

In the same way as in [6], we introduce auxiliary wave operators

D g, =stmU(t0)'Upca(t), Upeu(t) = Up(t)Mcu(t) (2.4.123)

with M¢,(t) = ¢t Jo VTHEM)AT 45 in subsection 2.3. Then we see that Qfg’av =
Wi1g, exist with I5, = limy 1o Mg, (t). By virtue of (2.4.62), Propositions
2.4.3, 2.4.4 and 2.4.5, the following proposition can be obtained as Proposition
2.3.6. Thus we omit the proof.

Proposition 2.4.6. Let v and ®, be as in Theorem 2.4.1, ¢ > 0 and Oy p(c, vp)
and ©1 p(yp) be as in Propositions 2.4.4 and 2.4.5, respectively. Then

Sup | (U4, 0026, = Up.aal®) o] = 0o O0r(cawdnnaolie)  (3.4.124)
S

holds as |v| — oo for V¥s € ¥¥s Vs e 4% ) and Viey!

o) (2= w1/(2(2—p))"
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Proof of Theorem 2./.1. Since the proof is quite similar to the one of Theorem
2.3.1, we give its sketch only.

Suppose that Vs € #V$ and V® € 7/;&“' We first note that S is represented
as

S = (W)W = Len(@h 00 U Tin = T = et Vor st
(2.4.125)
Noting [Sp,p;] = [Sp — Ic.u, pj — vi], (pj — ;)@ = (pjPo), and

_ + - O
SD - IGJJ - [G»U(QD,G,'U - QD,G,U) QD,G,’U

= —UG,U/ Upygw(t)*l/;D(t,x)U(t)Qf,’G’Udt (2.4.126)

with
VP(t,2) = V¥(2)+ V3 (x) = V3 (vt +Et)+ V() = Vit(p—b(t)) +é(t)), (2.4.127)

e have [0|(i[Sp, p;]Pv, ¥y) = Ig.(Ip(v) + Rp(v)) (2.4.128)
with
Io(6) = ol [ (P (0. 0Un0ult) (0200, Unult) 0,
V(1)U (6B U (1) (py U0 ) )l (2.4.129)
o) = lo] | (@002 6., ~ Unalt) (5,200 V2(t.0)Un (012,

_((U(t’ O)QB,G,U - UD,G,v<t>>CDU7 V;;D(t7 x>UD,G,v(t> (pj\ljo)v))dt' (2‘4‘130)
By Propositions 2.4.3, 2.4.4, 2.4.5 and 2.4.6, one has
Rp(v) = O<|U|1+2(max{®0,D(av’YD)791,D(’YD)}+€))‘ (2.4.131)
In the same way as in the proof of Theorem 2.3.1, we need the condition

max{@QD(a,vD),@l,D(yD)} < —1/2 (24132)

in order to get Rp(v) — 0 as |v| — 00. O1 p(yp) < —1/2 implies the necesary

condition
1 1—p

_l’_
22-p) 42-p)
We first consider the case where o« > a_(p). Under the condition vp > I'1(«),
©o.p(,vp) < —1/2 implies

15 = 5p — /(1 — p) (41 — 25p)
g 8(2— u)

vp > =: . (2.4.133)

= a (u). (2.4.134)
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As can be verified easily, we see that if 0 < p < 5/7, then o™ () > a_ (i) holds,
while, if 5/7 < u < 1, then o~ (1) < a— () holds. Since

(5 — Do —4(2p — 1)

e R

(2.4.135)

one can verify easily that if 0 < p < 7/5, then I'1(a)) < 7, holds. Here we note

that 420 —1) 3(1 - )
= —
_ > —=1———F = 2.4.136
a-(p) S 1 S 1 (1) ( )
when 1/5 < p < 5/7. On the other hand, if 5/7 < p < 1 and o > ap(p), then
I't () < A, holds, while if 5/7 < p < 1 and a_(p) < o < ap(p), then I'y (o) > 7,
holds. As a consequence, in the case where 0 < p < 5/7, under the assumptions
a > a (p) and yp > 7y, (2.4.132) holds, in the case where 5/7 < 1 < 1, under
the assumptions o > ag(p) and vp > 7, (2.4.132) holds. Under the assumption

a(p) < a <ag(p),

201—0) 2Aa—p)(l-a) 2p2-p)—1 _ _%7 (2.4.137)

4 —3a (1—p)(4—3a) 1—p

that is,

(2 — p)a? — 3a+2u
C—w—30)
implies ©g p(a,vp) < —1/2. Since (2—p)a?—3a+2u)/((2—p)(4—3a)) < 0 when
a_(pu) < a < ap(p), (2.4.132) holds under the assumptions a_ (1) < o < ap(p)

and vp > 7,.

We next consider the case where p/(2 — u) < a < a_(p). In this case, we
assume 5/7 < p < 1 necessarily by the above argument. Under the condition
o > Ia(a), Oo,p(a,7p) < —1/2 implies

Y > F, + (2.4.138)

a> ﬁ = ai(p) > 2. (2.4.139)

If oq(p) < a < a_(p), then

202 —p)—1—p
42— p)

holds. Under the assumption a;(p) < a < a_(u),

2 2(a—p) 2v9p(2—p)—1 1
I e e L (2.4.141)

o) — 7, = >0 (2.4.140)

83



that is,

14+ p—2a(2 —p)
2(2 - p)

implies ©g p(a,7p) < —1/2. Since (1 + p — 2a(2 — p))/(2(2 — 1)) < 0 when

a(p) < a < a_(p), (2.4.132) holds under the assumptions aq(u) < o < a_(u)

and vp > 7. [

YD > A+ (2.4.142)

Moreover, Theorem 2.1.4 can be shown in the same way as in the proof of
Theorem 1.2 in [38] (see also Enss-Weder [13]). Thus we omit the proof.
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