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Abstract

Cryptography is the fundamental technology for the information security. Based on
mathematical aspects of cryptography such as a randomness, a one-wayness, and
an unpredictability, a number of information systems, electrical appliances and net-
work services ensure its security. Among them, symmetric cryptographic algorithms
including block ciphers, stream ciphers, hash functions and message authenticated
codes play a central roll in today’s information society. These algorithms mainly
provide a data confidentiality and a data integrity, and are efficiently implementable
in the software and the hardware. Actually, 99 % of encrypted date around the
world is encrypted with symmetric cryptographic algorithms.

This thesis is dedicated to analysis and design of symmetric cryptographic algo-
rithms. We deal with security analysis of block ciphers, stream ciphers and hash
functions, and provide new insights and feedbacks for designing secure algorithms.
We introduce a block cipher Piccolo as a secure block cipher.

Analysis of Block Cipher

Block cipher is a permutation that converts a fixed-length input (a plaintext) into
a fixed-length output (a ciphertext), depending on a secret key. Since the confiden-
tiality of a key guarantees the security of block ciphers, the computational difficulty
of finding a key is the important criteria for its security evaluations. This thesis
mainly tackles enhancements of the Meet-in-the-Middle (MITM) attack, which is a
powerful technique for key recovery attacks of block ciphers.

To begin with, we develop a new variant of the MITM attack called Reflection-
Meet-in-the-Middle (R-MITM) attack, and apply it to the full GOST block cipher,
which is the Russian encryption standard block cipher. We propose a first single-
key attack on the full-round GOST block cipher.

We apply the MITM attack to lightweight block ciphers Piccolo, LED and XTEA
by exploiting its slow diffusion property and low key dependency. As a results, we
update best attacks of these ciphers with respect to the number of attack rounds in
the single key setting.

We extend the MITM attack to apply it to wider class block ciphers. We propose
an all subkey recovery approach which aims to recover all subkeys instead of the
master key. It allows us to construct MITM attacks without dealing with the key
scheduling function. Then we can update the best single-key attacks on SHACAL-2,
CAST, KATAN, Blowfish and FOX with respect to the number of attack rounds.

Also, we construct related-key boomerang attacks, which use statistical weak-
ness, on the KATAN block cipher, and improve best attacks.
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Analysis of Stream Cipher

Stream cipher is a function that converts fixed-length inputs (a key and an Initial
Vector (IV)) into an arbitrary-length output called keystream. A ciphertext is ob-
tained by XORing a plaintext and a keystream. This thesis analyzes the security of
stream ciphers Py, RAKAPOSHI and RC4.

Py is a software oriented stream cipher, and was submitted to the ECRYPT
stream cipher project (eSTREAM). We show a practical key recovery attack of
Py, utilizing a guess and determine approach in conjunction with an IV collision
property.

RAKAPOSHI is a hardware oriented lightweight stream cipher. We reveal that
RAKAPOSHI has a slide property such that two different Key-IV pairs generate the
same keystream but n-bit shifted. Then, we show that this property is exploitable
for a key recovery attacks on RAKAPOSHI in the related-key setting.

RC4 is a software oriented stream cipher, and is one of most widely used stream
ciphers in the world. We introduce new biases in initial bytes of the keystrem of
RC4, and demonstrate a plaintext recovery attack using these biases in the broadcast
setting where the same plaintext is encrypted with different user keys. Also, we show
that our set of these biases are applicable to plaintext recovery attacks, key recovery
attacks and distinguishing attacks.

Analysis of Hash Function

Hash function is a function that converts an arbitrary-length input (a message) into
a fixed-length output (a digest) without using a secret key. A cryptographic hash
function is required to satisfy at least three security properties: preimage resistance,
second preimage resistance and collision resistance. This thesis focuses on the MITM
technique of hash functions, and evaluate the security of well known hash functions
SHA-2, Tiger and Skein.

We propose one-block preimage attacks on reduced Tiger and SHA-2 by using
new technique, called independent transform, for finding neutral words for the MITM
technique. We improve previous preimage attack of Tiger and SHA-2.

We provide a new insight of relation between a meet-in-the-middle preimage
attack and a pseudo collision attack, and presents a generic technique to convert a
MITM preimage attacks into pseudo collision attacks. By using our technique, we
update best attacks of pseudo collision attacks of SHA-256, SHA-512 and Skein with
respect to the number of attack rounds.

Design of Block Cipher

Finally we gives several feedbacks for secure designs of symmetric cryptographic
algorithms. Adopting secure design criteria, we introduce a 64-bit blockcipher Pic-
colo supporting 80 and 128-bit keys as a secure block cipher. We show that Piccolo
offers a sufficient security level against known analyses including recent related-key
differential attacks and meet-in-the-middle attacks.
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Chapter 1

Introduction

1.1 Motivation

Cryptography is the science of the secret, and the core technology for the information
security. With development of the highly-networked information society, cryptogra-
phy becomes increasingly important as the way of protecting sensitive information,
controlling the access to the system and authenticating the data. As a results,
we can see cryptography everywhere, from rich-resourced cloud servers to resource-
constrained devices such as RFIDs and sensor nodes. Based on mathematical aspects
of cryptography such as a randomness, a one-wayness and an unpredictability, to-
day’s secure system, products, network services are constructed, e.g., an internet
banking, an internet shopping, an electronic voting and a secure multi-party com-
putation.

Modern cryptography is based on a computational security, not an informational
security which is due to the fact that an adversary does not have enough information
to break it, regardless of the computation power. In contrast, the computational
security relies on the computational in-feasibility and difficulty for violating security
requirements. If an adversary has enough computational power, modern crypto-
graphic schemes can be broken. However the approach of the computational security
allows us to construct today’s practical cryptographic schemes with reliable security
evaluations, while the informational security is of less practical, e.g., it requires large
amount of secret information to achieve its security.

1.1.1 Symmetric Cryptographic Algorithms

Symmetric cryptographic algorithms play a central roll in the security of today’s
computer-aimed networks and systems. In the symmetric setting (often called pri-
vate key setting or secret key setting), two parties in advance share some secret
information (key), and use it to communicate secretly with each other. Since the
same key is used in both sides, it is called symmetric cryptographic algorithm. In
general, these algorithms include block ciphers, stream ciphers, hash functions and
message authenticated codes.

A block cipher and a stream cipher provide a data confidentiality. In these
functions, a plaintext is converted into a scrambled data ciphertext, depending on
a secret key, and the plaintext is recovered from the ciphertext with same secret
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key. These processes are referred to as encryption and decryption, respectively. For
example, a block cipher and a stream cipher are used in the case where two parties try
to share a data secretly through public communication channels such as an Internet.
The sender encrypts the data to be sent with the shared key. After the sender
sends it to the receiver, the receiver decrypts it with the same key to obtain the
plaintext. Then the sender and the receiver successfully share the data. Formally,
a block cipher is a permutation that converts a fixed-length input (a plaintext) into
a fixed-length output (a ciphertext), depending on a secret key. A stream cipher is
a function that converts fixed-length inputs (a key and an Initial Vector (IV)) into
an arbitrary-length output called keystream. A ciphertext is obtained by XORing a
plaintext and a keystream.

Message authentication code (called MAC) algorithm provide a data integrity.
The sender computes an authentication tag from the data with a secret key, and
send it to the receiver with data. Then, the receiver computes the authentication
tag corresponding to the message in the same manner. If the authentication tag
calculated by the receiver coincides with the one obtained from the communication
channel, the message is considered as valid, and the integrity of data is confirmed.
Formally, a MAC is a function that converts an arbitrary-length input (message)
into a fixed-length output (digest) by using a secret key.

Hash functions are similar to message authentication codes and can also be used
to provide a data integrity. Although a hash function does not use a secret key, it is
often regarded as a family of symmetric cryptographic algorithms, because the design
principle is very similar to it. A cryptographic hash function is required to satisfy
at least three security properties: preimage resistance, second preimage resistance
and collision resistance. Formally, a hash function is a function that converts an
arbitrary-length input (message) into a fixed-length output (digest).

1.1.2 Cryptanalysis

Design of modern cryptographic algorithms follows the Kerckhoffs’s principle :

The cipher method must not be required to be secret,
and it must be able to fall into the hands of the enemy without inconvenience.

This principle says that cryptographic algorithms should not be kept secret, and
only a key should be kept secret. In other words, cryptographic algorithms should
be designed so as to be secure even if an adversary knows the details of all the
component algorithm of the scheme, as long as the adversary does not know the
key.

Cryptanalysis of Symmetric Cryptographic Algorithms

According to the Kerckhoffs’s principle, the details of algorithms are given, and only
a key is unknown. Cryptanalysis is to analyze cryptographic algorithms for finding
mathematical weaknesses of it. To put it more precisely, the purpose of cryptanalysis
is to study attacks for violating security claims of cryptographic algorithms, e.g.,
a randomness of outputs, a computational difficulty of finding keys and forging a
MAC tag, a collision resistance and a preimage resistance. Following the policy of
the open cryptographic design, in general, after an cryptographic algorithm is public,
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and then third party researchers analyze the algorithm and try to break it. If no
weakness is found for a long time, it is regarded as a secure algorithm. Actually,
AES [1] and SHA-3 [2], which are the American standard block cipher and the hash
function, were selected through such an open evaluation process. Over 12 years after
the end of AES project in 2001, no weakness is found so far (July, 2013). Thus,
the cryptographic community believes that the process of the open cryptographic
design and the evaluation are well suited for selecting secure algorithms, from the
academical and the industrial points of views. Therefore, cryptanalysis is one of the
important field in cryptography, along with design of cryptographic algorithms.

Techniques of Cryptanalysis

After pioneer works of a differential cryptanalysis by Biham and Shamir [3] in 1990
and a linear cryptanalysis [4] by Matsui in 1993 for block ciphers, a number crypt-
analysis methods and technique were developed in two decades, e.g., truncated differ-
ential attack [5], higher order differential attack [5], related key attack [6], impossible
differential attack [7], boomerang attack [8], meet-in-the middle attack [9], slide at-
tack [10] and integral attack [11]. Recently, attack techniques for hash functions have
made tremendous progress after Wang’s breakthrough results [12, 13]. Rebound at-
tack [14], rotational attack [15] and meet-in-the-middle preimage attack [16] are
developed during the SHA-3 competition.

1.2 Our Contribution and Outline

This thesis is dedicated to analysis and design of symmetric cryptographic algo-
rithms. We deal with security analysis of block ciphers, stream ciphers and hash
functions, and provide new insights and feedbacks for designing secure algorithms.

First, we introduce definitions and security requirements of symmetric crypto-
graphic algorithms. The main part of this thesis consists of four parts : analysis of
block cipher, analysis of stream cipher, analysis of hash function and design of block
cipher. The details of the main part are as follows.

Analysis of Block Cipher

• Chapter 3 shows a first single-key attack on full GOST block cipher. The
GOST block cipher is the Russian encryption standard published in 1989 [17].
In spite of considerable cryptanalytic efforts over the past 20 years, a key
recovery attack on the full GOST block cipher without any key conditions
(e.g., weak keys and related keys) has not been published yet. In this chapter,
we show the first single-key attack, which works for all key classes, on the
full GOST block cipher. At first, we develop a new attack framework called
Reflection-Meet-in-the-Middle Attack. This approach combines techniques of
the reflection attack [18] and the meet-in-the-middle (MITM) attack [9]. Then,
we apply it to the GOST block cipher employing bijective S-boxes. In order
to construct the full-round attack, we use additional novel techniques which
are the effective MITM techniques using equivalent keys on a small number
of rounds. As a result, a key can be recovered with a time complexity of 2225

encryptions and 232 known plaintexts. Moreover, we show that our attack is
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applicable to the full GOST block cipher using any S-boxes, including non-
bijective S-boxes.

• Chapter 4 investigate the security of the lightweight block ciphers against
the meet-in-the-middle (MITM) attack [9]. Since the MITM attack mainly
exploits low key-dependency in a key expanding function, the block ciphers
having a simple key expanding function are likely to be vulnerable to the
MITM attack. On the other hand, such a simple key expanding function leads
compact implementation, and thus is utilized in several lightweight block ci-
phers. However, the security of such lightweight block ciphers against the
MITM attack has not been studied well so far. We apply the MITM attack to
the XTEA [19], LED [20] and Piccolo [21], then give more accurate security
analysis for them. Specifically, combining thorough analysis with new tech-
niques, we present the MITM attacks on 29, 8, 16, 14 and 21 rounds of XTEA,
LED-64, LED-128, Piccolo-80 and Piccolo-128, respectively. Consequently, it
is demonstrated that the MITM attack is the most powerful attack in the
single-key setting on those ciphers with respect to the number of attacked
rounds.

• Chapter 5 extends the MITM attack so that it can be applied to a wider class
of block ciphers. In our approach, MITM attacks on block ciphers consisting
of a complex key schedule can be constructed. We regard all subkeys as inde-
pendent variables, then transform the game that finds the user-provided key
to the game that finds all independent subkeys. We apply our approach called
all subkeys recovery (ASR) attack to block ciphers employing a complex key
schedule such as CAST-128, [22] SHACAL-2 [23], KATAN [24], Blowfish [25]
and FOX [26], and present the best attacks on them with respect to the num-
ber of attacked rounds in literature. Moreover, since our attack is simple
and generic, it is applied to the block ciphers consisting of any key schedule
functions even if the key schedule is an ideal function.

• Chapter 6 analyzes the KATAN block cipher. KATAN/KTANTAN is a fam-
ily of hardware oriented block ciphers proposed at CHES 2009 [24] . Although
the KTANTAN family have been broken by a meet-in-the-middle approach [9],
the KATAN family are secure at present. In this chapter, we investigate the
KATAN family in the related-key boomerang framework [27] with several tech-
niques. By using an efficient differential characteristics search method, long
boomerang distinguishers can be built. Furthermore, the key recovery phase
is optimized by exploiting several properties of the round function such as the
high linearity of the round function and the slow key diffusion. As a result, we
can attack 174, 145 and 130 rounds of KATAN32, KATAN48 and KATAN64,
which substantially improve the known best results whose attacked rounds are
120, 103, 94 rounds, respectively. Our attacks are confirmed by various exper-
imental verifications, especially, we give concrete right quartets for KATAN32.

Analysis of Stream Cipher

• Chapter 7 proposes an effective key recovery attack on stream ciphers Py [28]
and Pypy [29] with chosen IVs. Our method uses an internal-state correlation
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based on the vulnerability that the randomization of the internal state in the
KSA is inadequate, and it improves two previous attacks proposed by Wu and
Preneel (a WP-1 attack and a WP-2 attack) [30, 31]. For a 128-bit key and a
128-bit IV, the WP-1 attack can recover a key with 223 chosen IVs and time
complexity 272. First, we improve the WP-1 attack by using the internal-state
correlation (called a P-1 attack). For a 128-bit key and a 128-bit IV, the P-1
attack can recover a key with 223 chosen IVs and time complexity 248, which
is 1/224 of that of the WP-1 attack. The WP-2 attack is another improvement
on the WP-1 attack, and it has been known as the best previous attack against
Py and Pypy. For a 128-bit key and a 128-bit IV, the WP-2 attack can recover
a key with 223 chosen IVs and time complexity 224. Second, we improve the
WP-2 attack by using the internal-state correlation as well as the P-1 attack
(called a P-2 attack). For a 128-bit key and a 128-bit IV, the P-2 attack can
recover a key with 223 chosen IVs and time complexity 224, which is the same
capability as that of the WP-2 attack. However, when the IV size is from 64
bits to 120 bits, the P-2 attack is more effective than the WP-2 attack. Thus,
the P-2 attack is the known best attack against Py and Pypy.

• Chapter 8 gives a first security evaluation of a lightweight stream cipher
RAKAPOSHI [32]. In particular, we analyze a slide property of RAKAPOSHI
such that two different Key-IV pairs generate the same keystream but n-bit
shifted. To begin with, we demonstrate that any Key-IV pair has a corre-
sponding slide Key-IV pair that generates an n-bit shifted keystream with
probability of 2−2n. In order to experimentally support our results, some ex-
amples of such pairs are given. Then, we show that this property is able to
be converted into key recovery attacks on RAKAPOSHI. In the related-key
setting, our attack based on the slide property can recover a 128-bit key with
time complexity of 241 and 238 chosen IVs. Moreover, by using a variant of
slide property called partial slide pair, this attack is further improved, and
then a 128-bit key can be recovered with time complexity of 233 and 230 cho-
sen IVs. Finally, we present a method for speeding up the brute force attack
by a factor of 2 in the single key setting.

• Chapter 9 investigates the practical security of RC4 in broadcast setting
where the same plaintext is encrypted with different user keys. We introduce
several new biases in the initial (1st to 257th) bytes of the RC4 keystream,
which are substantially stronger than known biases [33, 34, 35, 36]. Combining
the new biases with the known ones, a cumulative list of strong biases in
the first 257 bytes of the RC4 keystream is constructed. We demonstrate a
plaintext recovery attack using our strong bias set of initial bytes by the means
of a computer experiment. Almost all of the first 257 bytes of the plaintext
can be recovered, with probability more than 0.8, using only 232 ciphertexts
encrypted by randomly-chosen keys. We also propose an efficient method to
extract later bytes of the plaintext, after the 258th byte. The proposed method
exploits our bias set of first 257 bytes in conjunction with the digraph repetition
bias proposed by Mantin in EUROCRYPT 2005 [37], and sequentially recovers
the later bytes of the plaintext after recovering the first 257 bytes. Once the
possible candidates for the first 257 bytes are obtained by our bias set, the later
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bytes can be recovered from about 234 ciphertexts with probability close to 1.
Finally, we show that our set of these biases are applicable to key recovery
attacks and distinguishing attacks.

Analysis of Hash Function

• Chapter 10 shows new preimage attacks on reduced Tiger [38] and SHA-
2 [39]. Our new preimage attack finds a one-block preimage of Tiger reduced
to 16 rounds with a complexity of 2161 [40]. The proposed attack is based on
meet-in-the-middle attacks by Aoki and Sasaki [16]. It seems difficult to find
“independent words” of Tiger at first glance, since its key schedule function is
much more complicated than that of MD4 or MD5. However, we developed
techniques to find independent words efficiently by controlling its internal vari-
ables. Surprisingly, the similar techniques can be applied to SHA-2 including
both SHA-256 and SHA-512. We present a one-block preimage attack on SHA-
256 and SHA-512 reduced to 24 (out of 64 and 80) steps with a complexity of
2240 and 2480, respectively. To the best of our knowledge, our attack is the best
known preimage attack on reduced-round Tiger and our preimage attack on
reduced-step SHA-512 is the first result. Furthermore, our preimage attacks
can also be extended to second preimage attacks directly, because our attacks
can obtain random preimages from an arbitrary IV and an arbitrary target.

• Chapter 11 presents a new technique to construct a collision attack from a
particular preimage attack which is called a partial target preimage attack.
Since most of the recent meet-in-the-middle preimage attacks can be regarded
as the partial target preimage attack, a collision attack is derived from the
meet-in-the-middle preimage attack [16]. By using our technique, pseudo col-
lisions of the 43-step reduced SHA-256 and the 46-step reduced SHA-512 can
be obtained with complexities of 2126 and 2254.5, respectively. As far as we
know, our results are the best pseudo collision attacks on both SHA-256 and
SHA-512 in literature. Moreover, we show that our pseudo collision attacks
can be extended to 52 and 57 steps of SHA-256 and SHA-512, respectively, by
combined with the recent preimage attacks on SHA-2 by bicliques. Further-
more, since the proposed technique is quite simple, it can be directly applied
to other hash functions. We apply our algorithm to several hash functions
including Skein which is the SHA-3 finalists [41]. We present not only the best
pseudo collision attacks on SHA-2 family, but also a new insight of relation
between a meet-in-the-middle preimage attack and a pseudo collision attack.

Design of Block Cipher

• Chapter 12 gives several feedbacks for secure designs of symmetric crypto-
graphic algorithms. Then, we introduce a 64-bit blockcipher Piccolo support-
ing 80 and 128-bit keys. Adopting secure design criteria, Piccolo achieves
high security. We show that Piccolo offers a sufficient security level against
known analyses including recent related-key differential attacks [6, 27] and
meet-in-the-middle attacks [9].
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Chapter 2

Symmetric Cryptographic
Algorithms

Symmetric cryptographic algorithms are divided into block ciphers, stream ciphers,
hash functions and a message authenticated codes. A block cipher and a stream ci-
pher provide a confidentiality, and a hash function and a message authenticated code
provide an integrity. In this chapter, we explain definitions, security requirements,
attack scenarios of block ciphers, stream ciphers and hash functions, respectively.

2.1 Block Cipher

A block cipher is a permutation that converts a fixed-length input (a plaintext) into
a fixed-length output (a ciphertext), depending on a secret key, and provides a data
confidentiality as shown in Fig. 2.1. Formally it is defined as follows.

Definition 1. Block cipher is a keyed permutation such that a mapping Ek : {0, 1}k×
{0, 1}n = {0, 1}n, where n is block size and k is key size. The inverse of Ek is defined
as E−1

k . If a key is fixed, the mapping is bijective.

A block ciphers is a n-bit to n-bit keyed permutation. There are (2n)! permuta-
tions in a set of n bit permutations. A key plays a role to chooses one permutation
from (2n)! permutations. Thus, a n-bit block and k-bit key block cipher consists of
2k n-bit permutations.

Mode of operation is a way to encrypt an arbitrary length input, based on block
ciphers. We introduce major mode of operations.

Electronic Codebook (ECB) mode : This is the simplest mode of operation.
Given blocks of a plaintext, each block is separately encrypted with the same
key. Outputs obtained from each block are concatenated, and it is regarded
as a ciphertext. This mode can be parallel implemented for each block. This
mode is described in Fig. 2.2.

Cipher Block Chaining (CBC) mode: In this mode of operation, every block
of a plaintext is XORed with the previous ciphertext block. The result is
then used as an input to the block cipher. The first block of a plaintext is
XORed with a public initial value (IV), where IV should be randomly chosen
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Figure 2.1: Block cipher of n-bit block and k-bit key

and be unpredictable for ensuring its security. This encryption mode needs to
be serially implemented, and the parallel implementation is infeasible. Note
that the decryption mode is parallel executable with the previous block of a
ciphertext. This mode is described in Fig. 2.3 .

Counter (CTR) mode : In this mode of operation, a counter value is encrypted
by the block cipher, and the output is XORed with the block of a plaintext to
obtain the block of a ciphertext. The counter is incremented before it is used in
the next block. This mode can be seen as a way of generating a pseudo random
number from block ciphers. This mode is fully parallel implemented in both
the encryption and decryption mode. Also it is possible to generate a pseudo
random number before a plaintext or a ciphertext is given, independently from
inputs. This mode is described in Fig. 2.4.

Cipher Feedback (CFB) mode : In this mode of operation, the previous block
of a ciphertext is used as an input to the block cipher. A ciphertext is obtained
by XORing the output of a block cipher and the block of a plaintext. The input
of the first block is a public initial value (IV). The parallel implementation is
infeasible in the encryption mode similar to the CBC mode. This is described
in Fig. 2.5.

Output Feedback (OFB) mode: In this mode of operation, the previous output
of a block cipher is used as an input to the block cipher. A ciphertext is ob-
tained by XORing the output of a block cipher and the block of a plaintext.
Similar to the CTR mode, it looks like a way of generating a pseudo random
number by using block ciphers. It is also possible to generate a pseudo ran-
dom number a head of time, independently from inputs, while the parallel
implementation is infeasible in the encryption mode. This mode is described
in Fig. 2.6.
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2.1.1 Security Requirement

A block cipher should be modeled as a (strong) pseudo random permutation. This
enables a formal analysis of block cipher based constructions such as mode of oper-
ations, message authentication codes, authentication protocols and hash functions.

Before definition of a (strong) pseudo random permutation, we define the term
of negligible as follows.

Definition 2. [42] A function f is negligible if for every polynomial p(·) there exist
an N such that for all integers n > N it holds that f(n) < 1/p(n).

Such a function f is defined as negl. If the probability that the algorithm is broken
is less than 1/p(n) for every polynomial p, the algorithm is regarded as secure in
terms of the computational security.

The definition of the pseudo random permutation is given as follows.

Definition 3. [42] Let F : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be an efficient, keyed permu-
tation. We say that F is a pseudo permutation if for all probabilistic polynomial-time
distinguisher D, there exist a negligible function negl such that

∣
∣
∣Pr[DFk(·)(1n)]− Pr[Df(·)(1n)]

∣
∣
∣ ≤ negl(n)
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where k ← {0, 1}n is chosen uniformly at random and f is chosen uniformaly at
random from the set of permutation on n-bit string.

The definition of a strong pseudo random permutation is given as follows.

Definition 4. [42] Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, keyed per-
mutation. We say that F is a strong pseudo permutation if for all probabilistic
polynomial-time distinguisher D, there exist a negligible function negl such that

∣
∣
∣Pr[DFk(·),F

−1
k (·)(1n)]− Pr[Df(·),f−1(·)(1n)]

∣
∣
∣ ≤ negl(n)

where k ← {0, 1}n is chosen uniformly at random and f is chosen uniformaly at
random from the set of permutation on n-bit string.

2.1.2 Goal of Attack

Cryptanalysis is to study attacks for violating security claims of cryptographic algo-
rithms. Due to the Kerchoffs’s principle, block ciphers should to be resistant to any
attack even if the algorithm is public. Generally, goals of attacks on block ciphers
are given as follows.

26



Ek

IV

C1

Ek

C2

Ek

C3

m1 m2 m3

Figure 2.6: Output Feedback (OFB) mode

Key Recovery Attack : Adversary finds a secret key. Once a secret key is found,
any ciphertext/plaintext is easily decrypted/encrypted.

Distinguishing Attack : Adversary distinguishes a block cipher from a (strong)
random pseudo permutation. This attack violates security requirements of
block ciphers as a (strong) pseudo random permutation.

Secure block ciphers should be resistant to distinguishing attacks and key recovery
attacks in any reasonable amount of time. If an adversary tries out all possible
keys, a secret key can be recovered. This is called a brute force attack and surely
applicable to any cipher as a generic attack. A block cipher is regarded as secure if
the time complexity of best known attack is less than that of the brute force attack.
We give the following definition.

Definition 5. (Successful attack) If the time complexity of an attack is less than
that of the brute force attack, such an attack is regarded as a successful attack.

2.1.3 Attack Scenario

Several types of adversaries are considered in attacks on block ciphers. They know
additional information with respect to inputs and outputs of block ciphers. We
describe attack scenarios of block ciphers, which are sorted by power of an adversary.

Ciphertext-only attack : Adversary is allowed to obtain only ciphertexts without
any plaintext query.

Known plaintext attack : Adversary is allowed to know pairs of a plaintext and
the corresponding ciphertext.

Chosen plaintext attack: Adversary is allowed to choose plaintexts to be en-
crypted and obtain the corresponding ciphertexts.

Chosen ciphertext attack : Adversary is allowed to choose ciphertexts to be de-
crypted and obtain the corresponding plaintexts.
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According to definitions 2 and 3, a pseudo random permutation should be se-
cure (indistinguishable) against a chosen plaintext attack, and a strong random
permutation should be secure (indistinguishable) even if a chosen ciphertext attack
is allowed.

Following stronger scenarios are also taken into consideration in the line of at-
tacks on block ciphers.

Adaptive plaintext attack : Adversary is allowed to adaptively choose plain-
texts, i.e., after obtaining a pair of chosen plaintext and ciphertext, she can
send a chosen-plaintext query.

Adaptive ciphertext attack : Adversary is allowed to adaptively choose cipher-
texts, i.e., after obtaining a pair of chosen ciphertext and a plaintext, she can
send a chosen-ciphertext query.

An adversary aims to violate security claims of block ciphers in these attack
scenario. Basically, today’s block ciphers should be secure even if an adversary in
all scenarios is assumed.

Finally we introduce an other class of an attack scenario called related-key at-
tacks [6]. In the related-key scenario, an adversary can encrypt plaintexts/decrypt
ciphertexts under multiple unknown keys such that the relation between them is
known to the adversary. Though this type of the attack may not lead to a realistic
threat in practical security protocols which use the block cipher in a standard way, it
is meaningful during the design and certification of ciphers, and also useful for secu-
rity evaluations of block cipher-based constructions such as message authenticated
codes and hash functions.

2.2 Stream Cipher

A stream cipher is a function that converts fixed-length inputs (a key and an Initial
Vector (IV)) into an arbitrary-length output called keystream, and provide a data
confidentiality. A ciphertext/plaintext is obtained by XORing a plaintext/ cipher-
text and a keystream. Figure. 2.7 shows a stream cipher of c-bit IV and k-bit key.
Formal definition is as follows.

Definition 6. Stream cipher is a function such that a mapping S : {0, 1}k×{0, 1}c =
{0, 1}ℓ, where k is key size, c is an IV size and ℓ is a keystream size.

Typically, a stream cipher consists of a key scheduling algorithm (KSA) and a
pseudo-random generation algorithm (PRGA). The KSA converts a user-provided
key and a IV into a seed, typically called state, whose size is more than twice size of
a key. The PRGA generates each unit of keystreams with updating the state. Note
that a key is kept to be secret, while an IV is a public value.

2.2.1 Security Requirement

Ideally, a stream cipher should behave like a pseudo random number generator. The
definition of a pseudo random number generator is as follows.
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Definition 7. [42] Let ℓ be a polynomial and let G be a deterministic polynomial-
time algorithm such that for any input s ∈ {0, 1}, algorithm G outputs a string of
length ℓ(n). We say that G is a pseudo random generator if following two condition
hold:

1. (Expansion :) For every n it holds that ℓ(n) ≥ n

2. (Pseudorandomness :) For all probabilistic polynomial-time distinguisher D,
there exists a negligible function negl such that :

|Pr[D(r) = 1]− Pr[D(G(s)) = 1]| ≤ negl(n),

where r is chosen uniformly at random from {0, 1}ℓ(n), the seed s is chosen
uniformly at random from {0, 1}n, and the probabilities are taken over the
random coin used by D and the choice of r and s.

2.2.2 Goal of Attack

Goals of attacks on stream ciphers are given as follows.

Key Recovery Attack: Adversary finds a secret key. If a secret key is recovered,
any keystream can be obtained. It means that any ciphertext/plaintext is
easily decrypted/encrypted.

State Recovery Attack: Adversary recovers a internal state, which is essentially
equivalent to the secret key. Once the state is recovered, later units of a
keystream can be computed. If the state update function is invertible, all
units of a keystream are obtained.

Distinguishing Attack: Adversary distinguishes a keystream from a random
stream. It aims to violates a pseudo randomness of an output, which is a
security requirement of stream ciphers.
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Prediction Attack: Adversary predicts an unknown keystreams by using the knowl-
edge of known keystreams.

Figure 2.8 shows these attacks. Secure stream ciphers should be resistant to all of
above attacks in any reasonable amount of time. A stream cipher is regarded as
secure if time complexity of best known attacks is less than that of a brute force
search of the key. In other word, a successful attack of stream ciphers is feasible
with less time complexity than the brute force attack.

2.2.3 Attack Scenario

We describe attack scenarios of stream ciphers, which are sorted by power of an
adversary.

Ciphertext-only attack : Adversary is allowed to obtain only ciphertexts without
any plaintext query.

Known plaintext attack : Adversary is allowed to know pairs of a plaintext and
the corresponding ciphertext.

Chosen plaintext attack : Adversary is allowed to choose plaintexts to be en-
crypted and know the corresponding ciphertexts.

Chosen ciphertext attack : Adversary is allowed to choose ciphertexts to be de-
crypted and know the corresponding plaintexts.

In these scenarios except a ciphertext-only attack, we can obtain the corresponding
keystream by XORing plaintexts and the ciphertexts.

Following scenarios with respect to IV are also considered.

Known IV attack : Adversary is allowed to knows the value of IV.

Chosen IV attack : Adversary is allowed to choose the value of IV.

Note that the combination of these are also considered e.g., a chosen IV known
plaintext attack and a know IV chosen ciphertext attack. In general, stream ciphers
should be secure even if an adversary in all scenarios is assumed. Similar to block
ciphers, a related key attack also is considered in stream ciphers.
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2.3 Hash Function

Hash function is a deterministic function that converts an arbitrary-length input
(a message) into a fixed-length output (a digest) without using a secret key, and
basically provide a data integrity. Formally, it is defined as

Definition 8. Hash function is a mapping H : {0, 1}m = {0, 1}n, where m is a
message size and n is digest size.

2.3.1 Security Requirement

Ideally, a keyed hash function (a family of hash functions) should behave like a
pseudo random function. The definition of it is as follows.

Definition 9. [42] Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length-
preserving, keyed function. We say that F is a pseudo permutation if for all proba-
bilistic polynomial-time distinguisher D, there exist a negligible function negl such
that ∣

∣
∣Pr[DFk(·)(1n)]− Pr[Df(·)(1n)]

∣
∣
∣ ≤ negl(n)

where k ← {0, 1}n is chosen uniformly at random and f is chosen uniformly at
random from the set of function mapping n-bit strings to n-bit strings.

Many cryptographic protocols require a secure hash function which holds several
security properties such as classical ones: collision resistance, preimage resistance
and second preimage resistance. These are defined as follows.

Collision resistance It should be difficult to find two different messages M1 and
M2 such that H(M1) = H(M2).

Preimage resistance Given a digest d, it should be difficult to find messages M
such that d = H(M).

Second preimage resistance Given a pair of a massage M1 and digest d such
that d = H(M1), it should be difficult to find another messages M2 such that
d = H(M2).

2.3.2 Goal of Attack

Attacks of hash functions aim to violate security claim such that the collision re-
sistance, the preimage resistance and the second preimage resistance. Unlike block
ciphers and stream ciphers, hash functions does not have the secret key.

A hash function is regarded as secure if time complexity of best known attack is
less than that of generic algorithm of finding collision, preimage and second preim-
ages. When digest size is n, these are given as 2n/2, 2n and 2n, respectively.

2.3.3 Attack Scenario

Hash functions do not use any secret information, and an adversary can freely com-
pute the algorithm of hash functions. We do not consider attack scenarios.
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Part I

Analysis of Block Cipher
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Chapter 3

A Single-Key Attack on GOST
Block Cipher

The GOST block cipher is the Russian encryption standard published in 1989. In
spite of considerable cryptanalytic efforts over the past 20 years, a key recovery
attack on the full GOST block cipher without any key conditions (e.g., weak keys
and related keys) has not been published yet. In this chapter, we show the first
single-key attack, which works for all key classes, on the full GOST block cipher.
At first, we develop a new attack framework called Reflection-Meet-in-the-Middle
Attack. This approach combines techniques of the reflection attack and the meet-in-
the-middle (MITM) attack. Then, we apply it to the GOST block cipher employing
bijective S-boxes. In order to construct the full-round attack, we use additional novel
techniques which are the effective MITM techniques using equivalent keys on a small
number of rounds. As a result, a key can be recovered with a time complexity of
2225 encryptions and 232 known plaintexts. Moreover, we show that our attack is
applicable to the full GOST block cipher using any S-boxes, including non-bijective
S-boxes.

3.1 Introduction

The GOST block cipher [17] is known as the former Soviet encryption standard
GOST 28147-89 which was standardized as the Russian encryption standard in 1989.
It is widely used in Russia for commercial and governmental uses, and also adopted
as a national standard of surrounding countries such as Belarus, Kazakhstan and
Ukraine.

GOST 1 is based on a 32-round Feistel structure with 64-bit block and 256-bit
key size. The round function consists of a key addition, eight 4× 4-bit S-boxes and
a rotation. The GOST standard [17] does not specify a set of S-boxes, and each
industry uses a different set of S-boxes given by the government. For example, one
set of the S-boxes used in the Central Bank of the Russian Federation is known as
in [43]. Although the choice of the S-boxes can also be seen as a part of the secret
key, Saarinen has pointed out that a chosen key attack reveals the set of S-boxes
with a time complexity of 232 encryptions [44].

1For the remainder of this chapter, we refer to the GOST block cipher as GOST.
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In addition, GOST is well-suited for compact hardware implementations due to
its simple structure. Poschmann et al. showed an extremely compact implementation
requiring only 651 GE [45]. Therefore, GOST is considered as one of ultra lightweight
block ciphers such as PRESENT [46], KATAN family [24], LED [20] and Piccolo [21],
which are suitable for the constrained environments including RFID tags and sensor
nodes.

Over the past 20 years, a number of attacks on GOST have been published.
Kelsey et al. first analyzed related-key characteristics of GOST [47]. After that, a
differential attack on 13-round GOST was proposed by Seki and Kaneko [48]. In the
related-key setting, the attack is improved up to 21 rounds [48]. Ko et al. showed
a related-key differential attack on the full GOST [49]. These results work only
when GOST employs the S-boxes of the Central Bank of the Russian Federation
[43]. Fleischmann et al. presented a related-key boomerang attack on the full
GOST which works for any S-boxes [50]. However, Rudskoy pointed out flaws of
this attack and modified it [51]. As another type of attack, Biham et al. showed
slide attacks on reduced GOST [52]. Their attack utilizes self similarities among
round functions of the encryption process, and does not depend on the values of
S-boxes. In other words, even if an attacker does not know the S-boxes, 24-round
GOST can be attacked by this approach. If the values are known, this attack can
be extended up to 30 rounds. In addition, for a class of 2128 weak keys, the full
GOST can be attacked by this approach. After that, Kara proposed a reflection
attack on 30-round GOST [18]. This attack also uses self similarities among round
functions, and works for any bijective S-boxes. The difference from the slide attack
proposed by Biham et al. [52] is to use self similarities between the round function
and its inverse function 2. The reflection attack utilizes these similarities in order to
construct fixed points of some round functions. Moreover, for a class of 2224 weak
keys, the full GOST can be attacked by using the reflection technique.

In spite of considerable cryptanalytic efforts, a key recovery attack on the full
GOST without any key assumptions (e.g., weak keys and related keys) has not
been published so far. Furthermore, a weak-key attack and a related-key attack are
arguable in the practical sense, because of their strong assumptions. A weak-key
attack is generally applicable to a small fraction of the keys, e.g., in the attack of
[18], the rate of weak keys in all keys is 2−32(= 2224/2256). Hence, almost all keys,
(2256 − 2224) ≈ 2256 keys, cannot be attacked by [18]. Besides, the attacker cannot
even know whether a target key is included in a weak key class or not. Only if
the key is in the weak key class, the complexity for finding the key is less than
that of the exhaustive key search. A related-key attack requires an assumption that
the attacker can access the encryption/decryption under multiple unknown keys
such that the relation between them is known to the attacker. Though this type of
attack is meaningful during the design and certification of ciphers, it does not lead
to a realistic threat in practical security protocols which use the block cipher in a
standard way as stated in [53] 3. Therefore, the security under the single-key setting
is the most important issue from the aspect of the practical security. In particular,

2Another difference between [52] and [18] is rounds to be attacked. [52] proposes an attack on
the first 30 rounds while [18] proposes an attack on the last 30 rounds.

3In nonstandard uses, there are cases where a related-key weakness leads to realistic threats such
as the Microsoft’s Xbox attack [54]. In this case, the block cipher TEA [55] is used as a compression
function in a hash function.
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Table 3.1: Key recovery attacks on GOST

Key setting Type of attack Round Time Data Paper

Single key Differential∗1 13 - 251 CP [48]

Slide∗3 24 263 263 ACP [52]

Slide∗3 30 2253.7 263 ACP [52]

Reflection∗2 30 2224 232 KP [18]

R-MITM ∗3 32 2225 232 KP Our

Single key Slide (2128 weak keys) ∗3 32 263 263 ACP [52]

(Weak key) Reflection (2224 weak keys)∗2 32 2192 232 CP [18]

Related key Differential∗1 21 - 256 CP [48]

Differential∗1 32 2244 235 CP [49]

Boomerang ∗2 32 2224 210 CP [51]

*1 Works for one specific set of S-boxes in [43]. *2 Works for any bijective S-boxes.

*3 Works for any S-boxes.

an ultra lightweight block cipher does not need a security against related-key attacks
in many cases. For example, in low-end devices such as a passive RFID tag, the key
may not be changed in its life cycle as mentioned in [46, 24]. Indeed, KTANTAN
supports only a fixed key [24] and the compact implementation of GOST proposed
by Poschmann et al. also uses a hard-wired fixed key [45].

Recently, the Meet-in-the-Middle (MITM) attack on KTANTAN [24] was pre-
sented by Bogdanov and Rechberger [9]. Their attack mainly exploits the weakness
of the key schedule function of KTANTAN, which is that large parts of the cipher
depend on a part of key bits. The MITM attack seems to be effective for block
ciphers whose key schedules are simple, e.g., a bit or a word permutation, in the
sense that the key dependency is not strong. In fact, the key schedule function of
KTANTAN consists of only a bit permutation. Since GOST also has a simple key
schedule function, which is a word permutation, the MITM attack seems applicable
to it. However, it does not work well on the full GOST, because the key dependency
of the full GOST is stronger than that of KTANTAN due to the iterative use of key
words in many round functions.

Our Contributions. In this chapter, we first introduce a new attack framework
called Reflection-Meet-in-the-Middle (R-MITM) Attack ; it is a combination of the
reflection attack and the MITM attack. The core idea of this combination is to make
use of fixed points of the reflection attack to enhance the MITM attack. If some
round functions have fixed points, we can probabilistically remove these rounds from
the whole cipher. Since this skip using fixed points allows us to disregard the key
bits involved in the removed rounds, the key dependency is consequently weakened.
Thus, our attack is applicable to more rounds compared with the original MITM
attack if fixed points can be constructed with high probability. Then, we apply it to
the GOST block cipher employing bijective S-boxes. Furthermore, to construct the
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Table 3.2: Key schedule of GOST

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Key k1 k2 k3 k4 k5 k6 k7 k8 k1 k2 k3 k4 k5 k6 k7 k8

Round 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Key k1 k2 k3 k4 k5 k6 k7 k8 k8 k7 k6 k5 k4 k3 k2 k1

full-round attack, we use additional novel techniques which are the effective MITM
techniques using equivalent keys on a small number of rounds. As a result, we suc-
ceed in constructing the first key recovery attack on the full GOST block cipher in
the single key setting. It can recover the full key with a time complexity of 2225

encryptions, 232 known plaintext/ciphertext pairs and memory of 264 blocks. More-
over, by analyzing the properties of GOST exploited for the attack deeply, we show
that this attack can be applied to the full GOST block cipher using any S-boxes,
including non-bijective S-boxes, with the same data and time complexities, while
the memory depends on the used S-boxes. These results are summarized in Table 1.

3.2 Preliminaries

In this section, we give brief descriptions of GOST, the MITM attack and the re-
flection attack.

3.2.1 Description of GOST

GOST is a block cipher based on a 32-round Feistel structure with 64-bit block and
256-bit key size.

The 256-bit master keyK is divided into eight 32-bit words, K = (k1, k2, . . . , k8),
ki ∈ {0, 1}

32. These words are used as round keys rki (1 ≤ i ≤ 32) as

rki =

{

ki−8×⌊ i−1
8

⌋ (1 ≤ i ≤ 24),

k9−(i−8×⌊ i−1
8

⌋) (25 ≤ i ≤ 32).

See Table 8.2.
Let a 64-bit data state be Li||Ri, {Li, Ri} ∈ {0, 1}

32, where || is a concatenation,
L0||R0 denotes a plaintext P , and L32||R32 denotes a ciphertext C. In each round,
the state is updated as

Li+1 = Ri,

Ri+1 = Li ⊕ (F (rki ⊞Ri)),

where ⊞ is an addition modulo 232 and ⊕ is a bitwise exclusive OR. The F-function
consists of eight 4 × 4-bit S-boxes Sj (1 ≤ j ≤ 8) and an 11-bit left rotation (See
Fig.1). Note that the GOST standard [17] does not specify a set of S-boxes, and
each industry uses a different set of S-boxes.
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Figure 3.1: One round of the GOST block cipher

3.2.2 Meet-in-the-Middle Attack

The Meet-in-the-Middle (MITM) attack was first proposed by Diffie and Helman
[56]; it evaluates the security of the multiple encryptions with distinct keys key1
and key2 such that C = Ekey2(Ekey1(P )). The central idea is to compute Ekey1(P )
and E−1

key2(C) independently by guessing key1 and key2. If the guessed key value

is correct, the equation Ekey1(P ) = E−1
key2(C) holds. Due to the parallel guesses

of key1 and key2, the attack is more effective than an exhaustive search in terms
of time complexity. So far, the MITM attack has been applied to several block
ciphers [57, 58, 59, 53, 60, 61]. Furthermore, over the past few years, this attack has
been improved in a line of preimage attacks on hash functions, and several novel
techniques have been introduced, e.g., the splice and cut [16] and the initial structure
[62].

The MITM attack consists of two stages: a MITM stage and a key testing
stage. First, the MITM stage filters out some wrong key candidates and reduces the
key space. Then, the key testing stage finds a correct key from the surviving key
candidates in a brute force manner.

Let EK : {0, 1}b → {0, 1}b be a block cipher with an l-bit key K and a b-bit
block. Assume that EK is a composition of round functions as follows;

EK(x) = Fkr ◦ Fkr−1 ◦ · · · ◦ Fk1(x), x ∈ {0, 1}
b,

where r is the number of rounds, k1,. . . ,kr are round keys and Fki is the i-th round
function, Fki : {0, 1}b → {0, 1}b. The composition of j − i + 1 functions starting
from i is denoted by FK [i, j] defined as

FK [i, j](x) = Fkj ◦ · · · ◦ Fki(x), 1 ≤ i < j ≤ r.

In the following, we give details of each stage of the MITM attack.

MITM stage : Ek(X) is divided into two functions as EK(X) = FK [a + 1, r] ◦
FK [1, a], 1 < a < r − 1 4. Let K1 and K2 be sets of key bits used in FK [1, a] and

4As in the attack of KTANTAN [9], by using the partial matching technique, EK is divided into
FK [1, a] and FK [a+ t, r], t > 1. However, we consider only the case of t = 1, because we do not use
partial matching.

37



FK[1, a] FK[a + 1,  r]
Plaintext Ciphertext

 (A0 , A1)

matching

v uP C

 (A0 , A2)
 K1  K2

Figure 3.2: Meet-in-the-middle stage

FK [a+1, r], respectively. A0 = K1 ∩K2 is the common set of key bits used in both
FK [1, a] and FK [a+1, r]. A1 = K1 \K1 ∩K2 and A2 = K2 \K1 ∩K2 are the sets of
key bits used in only FK [1, a] and only FK [a + 1, r], respectively. In this stage, we
use only one plaintext/ciphertext pair (P,C). 5

The procedure of the MITM stage is as follows. Fig. 2 shows the overview of
the MITM stage.

1. Guess the value of A0.

2. Compute v = FK [1, a](P ) for all values of A1 and make a table of (v,A1) pairs.
In this step, 2|A1| pairs are generated, where |Ai| is the bit length of Ai and
2|Ai| is the number of elements of Ai.

3. Compute u = F−1
K [a+1, r](C) for all values of A2. In this step, 2|A2| pairs are

generated.

4. Add key candidates for which the equation v = u is satisfied to the list of
surviving keys. The number of surviving keys is 2|A1|+|A2|/2b.

5. Repeat steps 2-4 for each different value of A0 (2|A0| times).

In this stage, 2l−b key candidates survive, because 2|A1|+|A2|/2b × 2|A0| = 2l/2b.

Key testing stage : We test surviving keys in a brute force manner by using
additional plaintext/ciphertext pairs.

We evaluate the cost of this attack. The whole attack complexity Ccomp is
estimated as

Ccomp = 2|A0|(2|A1| + 2|A2|)
︸ ︷︷ ︸

MITM stage

+(2l−b + 2l−2b + . . .).
︸ ︷︷ ︸

Key testing stage

The number of required plaintext/ciphertext pairs is ⌈ lb⌉. The required memory is

min(2|A1|, 2|A2|) blocks6 , which is the cost of the table used in the MITM stage.
When min(|A1|, |A2|) > 1, the attack is more effective than an exhaustive search.
Therefore, the point of the MITM attack is to find independent sets of master key
bits such as A1 and A2.

5Though more such pairs can be used to reduce the key space, this chapter only treats a single
pair. This constraint is necessary for utilizing the equivalent-key technique in our attack.

6When |A1| > |A2|, it is possible to swap roles of A1 and A2.
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round key rk in all round

3.2.3 Reflection Attack

The reflection attack was first introduced by Kara and Manap [63]; it was applied to
Blowfish [64]. After that, the attack was generalized by Kara [18]. In this section,
we introduce the basic principle of the reflection attack used in our attack. See
[18, 63] for more details about the reflection attack.

The reflection attack is a kind of a self-similarity attack such as the slide at-
tack [10, 65]. Though the reflection attack utilizes similarities between the round
function and its inverse function, the slide attack exploits similarities among the
round functions of only the encryption process. The reflection attack utilizes these
similarities in order to construct fixed points of some round functions.

Let UK(i, j) be the set of fixed points of the function FK [i, j] defined as follows;

UK(i, j) = {x ∈ {0, 1}n | FK [i, j](x) = x}.

The basic principle of the reflection attack is given by the following Lemma.

Lemma 1. [18] Let i and j be integers such that 0 ≤ j − i < i + j < r. Assume
that Fki−t = F−1

kj+t
for all t : 1 ≤ t < i. If FK [i − t, i − 1](x) ∈ UK(i, j), then

x ∈ UK(i − t, j + t) for all t : 1 < t < i. In addition, if x ∈ UK(i − t, j + t) for
certain t : 1 < t < i, then FK [i− t, i− 1](x) ∈ UK(i, j).

For the explanation of Lemma 1, we consider a 4-round Feistel structure with
64-bit block, EK : {0, 1}64 → {0, 1}64. Assume that each round uses the same round
key rk, then EK is expressed as

EK = FK [3, 4] ◦ FK [1, 2]

= F−1
K [1, 2] ◦ S ◦ FK [1, 2],

39



FK[i, j] Fk j+1 Fk j+tFk i-1Fk i-t

Fixed Point

Xin Xout

Fk j+1
-1

Fk j+t
-1

x x

FK[i - t,  j + t]

Fixed Point

Figure 3.4: Basic principle of the reflection attack

where S is the swap of the Feistel structure. Figure 3 shows these equivalent descrip-
tions of the 4-round Feistel structure. S has 232 fixed points, because the probability
of that the right halves equal to the left halves is 2−32. Thus, EK also has 232 fixed
points, i.e., |UK(1, 4)| = 232 due to the property of FK [3, 4] = F−1

K [1, 2].
Lemma 1 shows that if the round functions hold the conditions, a local fixed

point is expanded to previous and next rounds as shown in Fig. 4. Roughly speaking,
such a cipher may have fix points of the long round functions if local fixed points
are found. These fixed points enable us to probabilistically skip the round functions
in a whole cipher.

We give an example to explain this skip in detail. Let i and j be integers such
that 0 < j − i < i + j < r. Assume that Fki−t = F−1

kj+t
for all t : 1 < t < i, and

EK(x) is expressed as follows;

EK(x) = FK [j + i, r] ◦ FK [j + 1, j + i− 1] ◦ FK [i, j] ◦ FK [1, i− 1](x)

= FK [j + i, r] ◦ F−1
K [1, i− 1] ◦ FK [i, j] ◦ FK [1, i− 1](x).

Additionally, assume FK [1, i−1](x) ∈ UK(i, j), then FK [1, j+ i−1](x) = x (Lemma
1). Thus EK(x) is expressed as

EK(x) = F [j + i, r](x).

In this case, the round functions FK [1, j + i − 1] can be skipped from EK . The
probability Pref of that above skip occurs for arbitrary x is |UK(i, j)|/2b. If Pref >
2−b (i.e., |UK [i, j]| > 1), this skip occurs at FK [1, j + i− 1] with higher probability
than a random function.

3.3 Reflection-Meet-in-the-Middle Attack

We propose a new attack framework called reflection-meet-in-the-middle (R-MITM)
attack, which is a combination of the reflection and the MITM attacks. As mentioned
in Section 2.2, the point of the MITM attack is to construct independent sets of
master key bits. In general, if the master key bits are used iteratively in each round
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and the use of key bits is not biased among rounds 7, it seems to be difficult to
find the independent sets of master key bits, because such a cipher has a strong key
dependency even for a small number of rounds.

To overcome this problem, we utilize the technique of the reflection attack. In
the reflection attack, some rounds satisfying certain conditions can be skipped from
the whole cipher with probability Pref . From now on, we call this skip a reflection
skip. Since key bits used in skipped round functions can be omitted, it becomes
easier to construct independent sets of master key bits. Thus, the R-MITM attack
is applicable to more rounds compared with the original MITM attack when the
reflection skip occurs with high probability. This is the concept of the R-MITM
attack. In the following, we give a detailed explanation of the attack.

3.3.1 Details of the R-MITM Attack

Suppose that EK is expressed as follows;

EK(x) = FK [a3 + 1, r] ◦ FK [a2 + 1, a3] ◦ FK [a1 + 1, a2] ◦ FK [1, a1](x),

where 2 < a1+1 < a2 < a3−1 < r−2 and the reflection skip occurs at FK [a2+1, a3]
with probability Pref . Then, EK can be redescribed as follows and denoted by
E

′

K(x),

E
′

K(x) = FK [a3 + 1, r] ◦ FK [a1 + 1, a2] ◦ FK [1, a1](x).

The R-MITM attack consists of three stages; a data collection stage, an R-MITM
stage and a key testing stage. In the following, we explain each stage.

Data collection stage : We collect plaintext/ciphertext pairs to obtain a pair in
which the reflection skip occurs at FK [a2+1, a3]. Since the probability of this event
is Pref , the number of required plaintext/ciphertext pairs is P−1

ref .

After that, the R-MITM stage and the key testing stage are executed for all
plaintext/ciphertext pairs obtained in the data collection stage.

R-MITM stage : We divide EK into two functions: FK [1, a1] and FK [a1+1, r]8.
In this stage, we ignore FK [a2 + 1, a3] as follows;

F ′
K [a1 + 1, r] = FK [a3 + 1, r] ◦ FK [a1 + 1, a2],

assuming that the reflection skip occurs. Let K1 and K2 be sets of key bits used in
FK [1, a1] and F

′
K [a1 + 1, r], respectively. A0 = K1 ∩K2 is the set of key bits used

in both FK [1, a1] and F
′
K [a1 + 1, r]. A1 = K1 \K1 ∩K2 and A2 = K2 \K1 ∩K2

are the sets of key bits used in only FK [1, a1] and only F ′
K [a1 + 1, r], respectively.

Figure 5 illustrates the R-MITM stage.
The procedure of the R-MITM stage is almost the same as the MITM stage of

Section 2.2. The difference is that in the R-MITM stage, we assume that a reflection
7In KTANTAN [24], 6 bits of master key are not used in the first 111 rounds and another 6 bits

of master key are not used in the last 131 rounds. The attack of [9] utilizes this bias of used key
bits among rounds.

8Though there are many choices of divisions, we use it as an example.
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Figure 3.5: Reflection-meet-in-the-middle stage

skip occurs, i.e., FK [a2 + 1, a3] is ignored. After this stage, 2l−b key candidates
survive.

Key testing stage : We test surviving keys in a brute force manner by using
several plaintext/ciphertext pairs.

Evaluation of the R-MITM Attack

We evaluate the cost of the R-MITM attack. The whole attack complexity Ccomp is
estimated as

Ccomp = ((2|A0|(2|A1| + 2|A2|))
︸ ︷︷ ︸

R-MITM stage

+(2l−b + 2l−2b + . . .)
︸ ︷︷ ︸

Key testing stage

)× P−1
ref .

The number of required plaintext/ciphertext pairs is max(⌈l/b⌉, P−1
ref ). The re-

quired memory is min(2|A1|, 2|A2|) blocks, which is the cost of the table in the R-
MITM stage. When min(2|A1|, 2|A2|, 2b) > (P−1

ref ), the attack is more effective than
an exhaustive search.

Compared with the basic MITM attack in Section 2.2 for the R-MITM attack, the
number of required plaintext/ciphertext pairs increases, because the R-MITM attack
utilizes the probabilistic event, i.e., reflection skip. In addition, more independent
key bits are needed for the successful attack. However, the R-MITM attack has a
distinct advantage, which is the ability to skip some round functions by the reflection
skip. Recall that it is the essential for the MITM attack to find independent sets of
master key bits. Since the reflection skip enables us to disregard key bits involved in
some rounds, it obviously becomes easier to construct such independent sets. Thus,
this attack seems to be applicable to more rounds than the MITM attack when the
reflection skip occurs with high probability.

3.4 R-MITM Attack on the Full GOST Block Cipher

In this section, we apply the R-MITM attack to the full GOST block cipher [17].
From Table 2, in the whole 32 rounds, the master key is iteratively used four times
and all master key bits are used in the each 8-round units, i.e., 1-8, 9-16, 17-24 and
25-32 rounds. The basic MITM attack in Section 2.2 is not applicable to the full
GOST, because independent sets of master key bits cannot be constructed in any
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divisions of 32 rounds. However, by using the R-MITM attack, we can construct
independent sets and mount a key recovery attack on the full GOST. In this attack,
we do not care about specific values of the S-boxes, and only assume that the S-boxes
are bijective.

We first introduce the reflection property of GOST proposed by Kara [18] to
construct the reflection skip. Next, we present an effective MITM techniques to
enhance the R-MITM stage. These techniques make use of the equivalent keys of
four round functions. Finally, we evaluate our attack.

3.4.1 Reflection Property of GOST

The reflection attack on GOST has been proposed by Kara [18] 9. The GOST block
cipher EK : {0, 1}64 → {0, 1}64 is expressed as

EK = S ◦ FK [25, 32] ◦ FK [17, 24] ◦ FK [9, 16] ◦ FK [1, 8]

= F−1
K [1, 8] ◦ S ◦ FK [1, 8] ◦ FK [1, 8] ◦ FK [1, 8].

As mentioned Section 2.3, S has 232 fixed points. From Lemma 1, F−1
K [1, 8] ◦ S ◦

FK [1, 8] also has 232 fixed points, i.e., |UK(17, 32)| = 232. Thus, with probability
Pref = 2−32 (= (232/264)), FK [17, 32] can be ignored. EK is redescribed as follows
and denoted by E

′

K

E
′

K = FK [1, 8] ◦ FK [1, 8].

Figure 6 shows this reflection skip of GOST.
Therefore, in the data collection stage, we need to collect P−1

ref = 232 plain-

text/ciphertext pairs. In 232 collected pairs, there is a pair in which the reflection
skip occurs, i.e., last 16 rounds can be removed from EK .

3.4.2 Effective MITM Technique Using Equivalent Keys on Four
Rounds

In the R-MITM stage, we mount the MITM approach on only E
′

K = FK [1, 8] ◦
FK [1, 8] for all 232 collected pairs.

As described in Section 3.2, we need to construct independent sets A1 and A2

which hold the condition, min(2|A1|, 2|A2|) > 232. However, despite the reduction of

9The similar technique for constructing a fixed point is also used in the attacks on the GOST
hash function [66, 67].
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rounds by the reflection skip, in the straightforward method, we cannot find such
sets in any divisions of 16 rounds, due to the strict condition of independent sets.

We introduce effective MITM techniques which make use of equivalent keys of
four round functions. The aim of these techniques is to ignore the first and the last
four rounds and to mount the MITM approach in only intermediate eight rounds.
These techniques enable us to construct independent sets enough for the successful
attack.

We treat E
′

K as the following four-round units;

E
′

K = FK [5, 8] ◦ FK [1, 4] ◦ FK [5, 8] ◦ FK [1, 4].

In the following, we first explain equivalent keys used in our attack. Then, we present
detail of the R-MITM stage using the equivalent keys.

3.4.3 Equivalent Keys on Four Rounds.

Define a set of equivalent keys on FK [i, j] as follows:

Z(FK [i, j], x, y) = {ek ∈ {0, 1}256 | Fek[i, j](x) = y},

where (x, y) ∈ {0, 1}64. Note that the class of keys defined above is the equivalent
keys with respect to only one input/output pair. To put it more concretely, if
equivalent keys ek ∈ Z(FK [i, j], x, y) are used, an input x is always transformed to
y in FK [i, j]. For other input/output pairs, these relations do not hold even if the
same equivalent keys are used.

GOST has an interesting property regarding the equivalent keys on four rounds
as described in the following observation.

Observation 1 : Given any x and y, Z(FK [1, 4], x, y) and Z(F−1
K [5, 8], x, y) can

be easily obtained, and the number of equivalent keys for each pair (x, y) is
264.

For FK [1, 4], k1, k2, k3 and k4 are added in each round. Given the values of k1 and
k2, the other values of k3 and k4 are determined from FK [1, 2](x) and y as follows:

k3 = F−1(zL + yL)− zR, (3.1)

k4 = F−1(zR + yR)− yR, (3.2)

where F−1 is the inverse of F-function, yL and yR are left and right halves of y,
and zL and zR are those of FK [1, 2](x). Since the values of (k1, k2) are 64 bits, the
number of Z(FK [1, 4], x, y) is 264. Figure 7 shows this procedure. A similar property
holds for F−1

K [5, 8].

From Observation 1, we can easily obtain 264 equivalent keys of the first and
the last four rounds for any input/output pairs. Besides, FK [1, 4] and F−1

K [5, 8]
use different key bits each other, Ka = (k1||k2||k3||k4) and Kb = (k5||k6||k7||k8),
respectively. Thus, Z(FK [1, 4], x, y) and Z(F−1

K [5, 8], x, y) can be expressed by sets
of only Ka and Kb as follows;

ZKa(FK [1, 4], x, y) = {eka ∈ {0, 1}
128 | Feka [1, 4](x) = y},

ZKb(F
−1
K [5, 8], x, y) = {ekb ∈ {0, 1}

128 | F−1
ekb

[5, 8](x) = y}.

Since Ka and Kb are independent sets of mater key, ZKa(FK [1, 4], x, y) and
ZKb(F

−1
K [5, 8], x, y) are also independent sets.
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Figure 3.7: Equivalent keys of four rounds

3.4.4 R-MITM Stage Using Equivalent Keys.

Let S and T be FK [1, 4](P ) and F−1[5, 8](C), which are the input and output values
of intermediate eight rounds, i.e., FK [5, 12] = FK [1, 4] ◦FK [5, 8]. From Observation
1, given the values of P , C, S and T , we can easily obtain two sets of 264 equivalent
keys, ZKa(FK [1, 4], P, S) and ZKb

(F−1
K [5, 8], C, T ).

When ZKa(FK [1, 4], P, S) and ZKb
(F−1

K [5, 8], C, T ) are used, S and T are not
changed. Thus by using these equivalent keys, the first and the last four round can be
ignored, and we can mount the MITM attack between FK [5, 8](S) and F−1

K [1, 4](T ).
The number of elements in each independent set is 264, which is enough for a suc-
cessful attack.

The procedure of the R-MITM stage is as follows and illustrated in Fig. 8.

1. Guess the values S and T .

2. Compute v = FK [5, 8](S) with 264 Kb in ZKb
(F−1

K [5, 8], C, T ) and make a table
of (v,Kb) pairs.

3. Compute u = F−1
K [1, 4](T ) with 264 Ka in ZKa(FK [1, 4], P, S).

4. Add key candidates for which the equation v = u is satisfied to the list of
surviving keys. The number of surviving keys is 264+64/264 = 264.

5. Repeat 2-4 with the different values of S and T (2128 times).
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After this procedure, 2192 (=264×2128) key candidates survive. These key candidates
are evaluated in the key testing stage.

The R-MITM stage utilizes equivalent-key sets of ZKa(FK [1, 4], P, S) and
ZKb

(F−1
K [5, 8], C, T ), 0 ≤ S, T < 264, where each set includes 264 elements.

For ZKa(FK [1, 4], P, S), 0 ≤ S < 264, from Eq. (1) and (2), all elements of every
set are surely different under the assumption that the S-boxes are bijective. Thus,
ZKa(FK [1, 4], P, S), 0 ≤ S < 264 covers all 2128 (= 264× 264) values of Ka. A similar
property holds for Kb. Therefore, all possible values for the master key are tested
and the set of surviving key candidates surely contain the correct key if the reflection
skip occurs.

3.4.5 Evaluation

The whole attack complexity Ccomp is estimated as

Ccomp = ((2128(264 + 264))
︸ ︷︷ ︸

R-MITM stage

+(2256−64 + 2256−128 + . . .)
︸ ︷︷ ︸

Key testing stage

)× 232,

= 2225.

The number of required known plaintext/ciphertext pairs is max(⌈l/b⌉, P−1
ref ) =

max(⌈256/64⌉, 232) = 232. The required memory is min(264, 264) = 264 blocks, which
is the cost of the table used in the R-MITM stage. Therefore, this attack can recover
a key with a time complexity of 2225 encryptions, 232 known plaintext/ciphertext
pairs and 264 memory. It is more effective than an exhaustive attack in terms of
time complexity.

3.5 Discussion : Attack without Constraints on S-boxes

In this section, we consider an attack without constraints on the used S-boxes unlike
the attack in Section 4 which works only when GOST employs bijective S-boxes. The
property of bijective S-boxes is utilized for finding equivalent keys of four rounds
(Observation 1). Given a pair (x, y), the values of k3 and k4 are determined from
the values of k1 and k2 by using Eq. (1) and (2). Under the assumption that the
S-boxes are bijective, since the F-functions are also bijective, each k3 and k4 has
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only one solution with respect to arbitrary values of k1 and k2. Thus, the number
of equivalent keys for each pair (x, y) is 264, because the joint length of k1 and k2
are 64 bits. Thus, the time complexity of the R-MITM stage is easily estimated as
2128(264 + 264) encryptions.

For an arbitrary S-box, including non-bijective S-boxes, it is difficult to estimate
the number of equivalent keys for each pair (x, y). When the F-functions is not
bijective, it is not guaranteed that each k3 and k4 has only one solution for Eq. (1)
and (2). In other words, there are cases where k3 and k4 have more than one solution
or no solution for particular values of k1 and k2. Thus, the number of equivalent
keys for each pair (x, y) strongly depends on the used S-boxes.

However, we are still able to evaluate the whole complexity of the attack. Define
the number of equivalent keys in a set Z(FK [i, j], x, y) as Z(FK [i, j], x, y). In the
R-MITM stage, for all 2128 values of S and T , v and u are computed by using sets
of equivalent keys ZKb

(F−1
K [5, 8], C, T ) and ZKa(FK [1, 4], P, S), respectively. The

complexity in the R-MITM stage is estimated as

264−1∑

S=0

(
264−1∑

T=0

(
#ZKb

(F−1
K [5, 8], C, T ) + #ZKa(FK [1, 4], P, S)

)

)

= 264 ·

(
264−1∑

T=0

#ZKb
(F−1

K [5, 8], C, T )

)

+264 ·

(
264−1∑

S=0

#ZKa(FK [1, 4], P, S)

)

.

According to the definition of the equivalent keys in Section 4.2,

264−1∑

T=0

#ZKb
(F−1

K [5, 8], C, T ) =
264−1∑

S=0

#ZKa(FK [1, 4], P, S) = 2128.

Thus, the time complexity of the R-MITM stage is 2193(= 264 · 2128 + 264 · 2128)
encryptions. In addition, the condition for surviving keys is not changed, i.e., v = u.

Since the reflection property does not depend on the S-boxes, the number of
required known plaintext/ciphertext pairs is also 232. The whole complexity is
estimated as

Ccomp = ( 2193
︸︷︷︸

R-MITM stage

+(2256−64 + 2256−128 + . . .)
︸ ︷︷ ︸

Key testing stage

)× 232

= 2225.

Therefore, even if arbitrary S-boxes, including non-bijective S-boxes, the complexity
and required data are the same as those of the attack on GOST employing bijective
S-boxes in Section 4.

However, the required memory size is different, and it depends on the used set of
S-boxes. The required memory, which is used for the matching, is estimated as the
maximum value of the set {min(#ZKb

(F−1
K [5, 8], C, T ),#ZKa(FK [1, 4], P, S)) | 0 ≤

S, T < 264}. The best case is when:

∀S, T ∈ {0, 1}64, #ZKb
(F−1

K [5, 8], C, T ) = #ZKa(FK [1, 4], P, S) = 264,

which holds if and only if all S-boxes are bijective. Then, the required memory is
264 blocks. The worst case is when:

∃S, T,∈ {0, 1}64, #ZKb
(F−1

K [5, 8], C, T ) = #ZKa(FK [1, 4], P, S) = 2128.
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Then, the required memory is 2128 blocks.
Therefore, although the required memory depends on the values of the used S-

boxes, our attack is applicable to the full GOST using any S-boxes with the same
data and time complexities.

3.6 Conclusion

This chapter has presented the first single-key attack on the full GOST block cipher
without relying on weak key classes. To build the attack, we introduced a new attack
framework called Reflection-Meet-in-the-Middle Attack, which is the combination of
the reflection and the MITM attacks. We then applied it to the full GOST block
cipher employing bijective S-boxes. Furthermore, in order to construct the full-
round attack, we utilize further novel techniques which make use of equivalent keys
of four round functions. These techniques enable us to mount the effective MITM
approach. As a result, we succeeded in constructing the first key recovery attack on
the full GOST without any key conditions, which works for any bijective S-boxes.
Moreover, by analyzing procedures of the attack, we showed that this attack can
be extended to GOST employing any S-boxes, including non-bijective S-boxes. Our
result shows that GOST does not have the 256-bit security for all key classes, even
if a fixed key is used such as in [45].

The idea of the R-MITM attack seems applicable to other block ciphers in which
the fixed point can be constructed with high probability and its key schedule is
simple in the sense that the key dependency is not strong. Furthermore, the basic
principle of the attack does not require the reflection property and fixed points.
Other non-random properties of round functions may also be able to be utilized as
the skip techniques, e.g., the strong correlations among round functions.
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Chapter 4

Security Analysis of Lightweight
Block Ciphers XTEA, LED and
Piccolo

In this chapter, we investigate the security of the lightweight block ciphers against
the meet-in-the-middle (MITM) attack. Since the MITM attack mainly exploits low
key-dependency in a key expanding function, the block ciphers having a simple key
expanding function are likely to be vulnerable to the MITM attack. On the other
hand, such a simple key expanding function leads compact implementation, and
thus is utilized in several lightweight block ciphers. However, the security of such
lightweight block ciphers against the MITM attack has not been studied well so far.
We apply the MITM attack to the ciphers, then give more accurate security analysis
for them. Specifically, combining thorough analysis with new techniques, we present
the MITM attacks on 29, 8, 16, 14 and 21 rounds of XTEA, LED-64, LED-128,
Piccolo-80 and Piccolo-128, respectively. Consequently, it is demonstrated that the
MITM attack is the most powerful attack in the single-key setting on those ciphers
with respect to the number of attacked rounds. Moreover, we consider the possibility
of applying the recent speed-up keysearch based on MITM attack to those ciphers.

4.1 Introduction

Over past years the demand for security in low resource devices such as RFID tags
and sensor nodes has been dramatically increased. This motivates cryptographers
to design a new cryptographic primitives aimed to such constrained devices, and
thus several lightweight block ciphers have been proposed such as PRESENT [46],
LED [20] and Piccolo [21]. In such ciphers, several newly developed design tricks are
utilized in order to reduce the required gates. For example, a serially computable
MDS matrix used in LED provides good diffusion but requires small gate areas. The
key expanding function of KTANTAN [24] does not need to update the user provided
secret key itself to generate sub-keys. This allows us to significantly reduce the
required gates especially in the fixed-key mode, i.e., a secret key is hard-wired. This
technique is utilized in several block ciphers such as XTEA [19], LED and Piccolo.
We refer such design trick for a key expanding function as a direct-key expansion

49



throughout this chapter. More precisely, the direct-key expansion referred in this
chapter is defined that each subkey ki can be represented by a secret key K and a
round constant ci as ki = KPi(K)⊕ ci or ki = KPi(K)⊞ ci, where KPi denotes an
arbitrary bit permutation.

While the direct-key expansion leads compact implementation peculiarly in the
fixed-key mode, it sometimes causes the security problems due to its slow diffusion
regarding sub-keys. For instance, it has been known that KASUMI [68], which
consists of the direct-key expansion, is vulnerable to the related-key attacks [69].
Though the practical impact on a related-key attack depends on an application and
required conditions for related-keys, the security for most of the recently proposed
block ciphers having the direct-key expansion against the related-key attack is well
analyzed by the designers such as KTANTAN, LED and Piccolo. Therefore these
ciphers are expected to be secure against the related-key attack. In fact, for a
well-designed direct-key expansion, it is relatively simple to show that there is no
unexpected flaw regarding the related-key attack in the key expanding, in contrast
to a complicated key expanding such as AES [1]. It is considered as one of the
desirable design features of the direct-key expansion.

Meet-in-the-middle (MITM) attack was first introduced in [56]. Since the MITM
attack usually exploits the slowness of the diffusion in a key expanding function, the
ciphers having the direct-key expansion are likely to be vulnerable to it. In fact,
KTANTAN, which is believed to be secure against the related-key attack, has been
theoretically broken by the MITM attack [9]. However, the security of the other
block ciphers consisting of the direct-key expansion against the MITM attack have
not been well studied. Thus, while the direct-key expansion has several desirable
features especially in implementation, it is less reliable compared to a complicated
key expanding function due to lack of the thorough security analysis.

In this chapter, we reconsider the security of lightweight block ciphers against
the MITM attacks. Our target ciphers are XTEA, LED and Piccolo, which have
the direct-key expansion. Combining recent advanced techniques with new tech-
niques such as an equivalent transformation technique for SPN ciphers, we succeed
in improving the numbers of attacked rounds for those ciphers by the MITM attack.
Specifically, we present the MITM attacks on 29 (out of 64), 8 (out of 32), 16 (out of
48), 14 (out of 25) and 21 (out of 31) rounds of XTEA, LED-64, LED-128, Piccolo-80
and Piccolo-128, respectively. Note that all of our attacks are the best with respect
to the number of attacked rounds1 in the single-key setting in literature. This im-
plies that the MITM attack is actually the most effective attack for block ciphers
having the direct-key expansion, and its security analysis is necessary. Moreover,
we consider the possibility of applying the recent speed-up keysearch based on the
MITM attack, which are applied to the full AES [70] and the full IDEA [71], to our
target ciphers.

4.2 Target Ciphers

This section gives brief descriptions of our target ciphers including XTEA [19],
LED [20] and Piccolo [21]. Note that all of our target ciphers consist of the direct-

1The MITM attacks on the 14- and 21-round Piccolo-80 and Piccolo-128 were introduced in [21].
However, the details of those attacks have not been published.
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key expansion. In the descriptions, for each algorithm, we use the same notations
used in their original papers.

4.2.1 Description of XTEA

XTEA is a 64-round Feistel cipher with 64-bit block and 128-bit key proposed by
Needham and Wheeler in 1997 [19]. Let 64-bit state of the round i be Si = Li|Ri,
where Li, Ri ∈ {0, 1}32. Each round updates a state by using a 32-bit round key
RKi as

Li+1 = Ri, Ri+1 = Li
⊞(32) ((δ

i
⊞(32) RK

i)⊕ F (Ri)),

where ⊞(32) denotes an addition modulo 232 and δi represents the i-th round con-
stant. The function F is defined as F (x) = ((x≪ 4)⊕ (x≫ 5))⊞(32) x. Each round
key RKi is derived from a secret key K = K0|K1|K2|K3, Ki ∈ {0, 1}

32 according to
the predefined rule (see Table 4.1).

4.2.2 Description of LED

LED is an SPN-type block cipher supporting a 64-bit block and 64-bit to 128-bit
keys proposed by Guo et al. in 2011 [20]. For the 64-bit key mode called LED-64,
a 64-bit secret key K is XORed to the 64-bit state every 4 rounds. For the 128-bit
key mode called LED-128, a 128-bit secret key K is divided into two 64-bit sub-keys
K1 and K2, then K1 and K2 are alternatively XORed to the 64-bit state every 4
rounds. Each round function consists of AddConstants, SubCells, ShiftRows and
MixColumnsSerial similar to the round function of AES. The numbers of rounds
for LED-64 and LED-128 are 32 and 48, respectively.

4.2.3 Description of Piccolo

Piccolo is a 64-bit block cipher supporting 80 and 128-bit keys proposed by Shibutani
et al. in 2011 [21]. Piccolo-80 and Piccolo-128 consist of 25 and 31 rounds of a variant
of a generalized Feistel network, respectively. Let 64-bit input of the i-th round be
Si = Xi

0|X
i
1|X

i
2|X

i
3, X

i
j ∈ {0, 1}

16. Then the (i + 1)-th round input Si+1 is derived
as follows:

Si+1 = RP (Xi
0|(X

i
1 ⊕ F (X

i
0)⊕ rk2i−2)|X

i
2|(X

i
3 ⊕ F (X

i
2)⊕ rk2i−1)),

where F is a 16-bit F-function, RP is a 64-bit permutation, and rk2i−2 and rk2i−1

are round keys introduced into the i-th round. Each 16-bit round key rki is derived
from an 80-bit secret key K = k0|k1|...|k4 or a 128-bit secret key K = k0|k1|...|k7,
where kj ∈ {0, 1}

16 according to the predefined manner (see Table 4.2 and 4.3).

4.3 Meet-in-the-Middle Attacks

In this section, we briefly review the MITM attack presented in [9] and several
advanced techniques introduced in [72, 16, 62, 70, 71].

The MITM attack consists of the MITM stage and the key testing stage. The
attacker first filters out some wrong keys and reduces the key space in the MITM
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Table 4.1: Key expanding functions of XTEA,

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j of Kj for RKi 0 3 1 2 2 1 3 0 0 0 1 3 2 2 3 1

Round 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
j of Kj for RKi 0 0 1 0 2 3 3 2 0 1 1 1 2 0 3 3

Round 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
j of Kj for RKi 0 0 1 0 2 3 3 2 0 1 1 1 2 0 3 3

Round 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
j of Kj for RKi 0 0 1 3 2 2 3 2 0 1 1 0 2 3 3 2

Table 4.2: Key expanding functions of Piccolo-80

Round i 1 2 3 4 5 6 7 8

j of Kj for RKi 2 3 0 1 2 3 4 4 0 1 2 3 0 1 2 3

Round i 9 10 11 12 13 14 15 16

j of Kj for RKi 4 4 0 1 2 3 0 1 2 3 4 4 0 1 2 3

Round i 17 18 19 20 21 22 23 24

j of Kj for RKi 0 1 2 3 4 4 0 1 2 3 0 1 2 3 4 4

Round i 25
j of Kj for RKi 0 1

stage, then exhaustively searches a correct key from the surviving key candidates in
the key testing stage.

The MITM stage first divides an n-bit block cipher E with an ℓ-bit secret key
K into two functions F(1) and F(2). K is grouped into three sets K(1), K(2) and
K(3), where K(1) and K(2) are used only in F(1) and F(2), respectively, and K(3)

denotes the other bits of K. Such K(1) and K(2) are called neutral key bits of F(2)

and F(1), respectively. Then, we can compute F(1)(P ) and F−1
(2) (C) independently

by guessing each neutral key bit. If the guessed key value is correct, the equation
F(1)(P ) = F−1

(2) (C) holds. Due to parallel guesses of K(1) and K(2), we can effi-
ciently check whether the guessed key is the correct one. After this stage, we have
2ℓ−n(= 2|K(1)|+|K(2)|/2n × 2|K(3)|) key candidates2. In the key testing stage, the at-
tacker exhaustively searches a correct key from the surviving key candidates by using
additional plaintext/ciphertext pairs. The required computations of the attack in
total Ccomp is estimated as

Ccomp = 2|K(3)|(2|K(1)| + 2|K(2)|)
︸ ︷︷ ︸

MITM stage

+(2ℓ−n + 2ℓ−2n + 2ℓ−3n + ...)
︸ ︷︷ ︸

Key testing stage

.

The number of the required plaintext/ciphertext pairs is ⌈ℓ/n⌉. The required mem-
ory is min(2|K(1)|, 2|K(2)|) blocks, which is the cost of the table used in the MITM
stage.

Here, we review several advanced techniques that enhance the MITM attack.

2The number of key candidates can be reduced by repeatedly performing the MITM stage with
additional plaintext/ciphertext pairs.
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Table 4.3: Key expanding functions of Piccolo-128

Round i 1 2 3 4 5 6 7 8

j of Kj for RKi 2 3 4 5 6 7 2 1 6 7 0 3 4 5 6 1

Round i 9 10 11 12 13 14 15 16

j of Kj for RKi 4 5 2 7 0 3 4 1 0 3 6 5 2 7 0 1

Round i 17 18 19 20 21 22 23 24

j of Kj for RKi 2 7 4 3 6 5 2 1 6 5 0 7 4 3 6 1

Round i 25 26 27 28 29 30 31
j of Kj for RKi 4 3 2 5 0 7 4 1 0 7 6 3 2 5

• Partial Matching [16] : When checking F(1)(P ) = F
−1
(2) (C), it is not neces-

sary to match all values of the state. By using only part of the state value for
the matching, some key bits around the matching point can be omitted.

• Splice and Cut [72, 16] : It regards the last and the first rounds of the
block cipher as consecutive rounds assuming the chosen plaintext attack or
the chosen ciphertext attack. This allows the attacker to freely choose two
functions F(1) and F(2), though it generally requires more plaintext/ciphertext
pairs than the attack without the splice and cut.

• Initial Structure [62, 70] : It is used to skip some rounds around the starting
point of the MITM attack, by exchanging two neutral key bits in those skipped
round. The formal concept of the initial structure is called biclique [73, 70].

Since the MITM attack exploits low key-dependency that large parts of the cipher
are independent from some key bits, it is considered as one of the most powerful
attacks for the direct-key expansion. Moreover, since the MITM attack does not
require related-keys, i.e., it works in the single-key setting, its security analysis is
considered to be more important than related-key attacks. These are the reasons
why we focus on the MITM attack in this work.

4.4 Meet-in-the-Middle Attacks on Lightweight Block
Ciphers

In this section, we apply the MITM attack to lightweight block ciphers XTEA, LED
and Piccolo. The results on our MITM attacks and known single-key attacks are
summarized in Table 10.1.

In the followings, F [i, j] denotes the (j− i+1) consecutive rounds starting from
the i-th round, e.g., F [3, 6] represents 4 consecutive rounds starting from the 3rd
round. Xi[j] denotes the j-th bit of Xi, where Xi[0] is the most significant bit. Also,
Xi[0−4] denotes the bits Xi[0] to Xi[4].

4.4.1 Security of XTEA against MITM Attack

The MITM attack on the 23-round reduced XTEA was proposed in [74]. In order
to improve this attack, we develop the 12-round partial matching by thoroughly
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Table 4.4: Summary of the attacks in the single-key setting

algorithm #rounds attack
#attacked

time data
memory

reference
rounds [bytes]

XTEA 64
MITM 23 2117 18 KP negligible [74]
IDA 23 2105.6 263 CP 2104 [75]

MITM 29 2124 245 CP 24 Our

LED-64 32
diff./linear 8∗1 - - - [20]
MITM 8 256 28 CP 211 Our

LED-128 48
diff./linear 8∗1 - - - [20]
MITM 16 2112 216 CP 219 Our

Piccolo-80 25
MITM 14 - - - [21]
MITM 14 273 264 CP 28 Our

Piccolo-128 31
MITM 21 - - - [21]
MITM 21 2121 264 CP 29 Our

IDA: impossible differential attack, KP: known plaintext, CP: chosen plaintext
∗1: there is no useful differentials or linear hulls over 8 rounds.

plaintext ciphertext

round

K3[0−4]K3[0−4] K0[0−4]

PM

11 15 21 33 39

Figure 4.1: Overview of the 29-round attack on XTEA

analyzing the diffusion property of the round functions of XTEA, especially the
addition property regarding key differences. Moreover, we carefully choose the value
of the starting point in each inner loop to make the splice and cut technique more
effective. It enables us to save the amount of the required data in spite of the
use of the splice and cut technique. By combining these techniques, we succeed in
constructing a MITM attack on the 29-round reduced XTEA. Figure 4.1 shows an
overview of the attack. In the figure, PM and IS denote partial matching and initial
structure, respectively.

MITM Attack on 29-round XTEA.

For the 29-round variant of XTEA starting from the round 11, using neutral key
bits K(1)(=K0[0−4]) and K(2) (=K3[0−4]), two chunks, F [16, 21] and F−1[34, 39] ◦
F−1[11, 15], can be computed independently. The detailed explanations of the par-
tial matching for this attack and the attack complexity are given as follows.

• Partial Matching. Due to the differential property of the addition, we can
compute L27

[30−31] and R
27
[30−31] from S21 without using the value of K3[0−4] in

the forward process. On the other hand, L27
[30−31] and R

27
[30−31] are calculated

from S33 without using the value of K0[0−4] in the backward process as well.
Thus, the 12-round partial matching works (see Fig. 4.2).
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Figure 4.2: 12-round partial matching of XTEA

• Evaluation. The time complexity Ccomp is estimated as

Ccomp = 2118(25 + 25)
︸ ︷︷ ︸

MITM

+ 2124
︸︷︷︸

Key testing

≈ 2124.

The required memory is 24 byte (= 25 · 4 bits). The number of the required
plaintext/ciphertext pairs depends on the range of the output of F−1[11, 15].
As mentioned in [76], the entire code book seems to be necessary, because
F−1[11, 15] contains more key bits than the block size. However, by using
the fact that neutral key bits K3[0−4] do not affect L11

[25−31] and R11
[20−31] as

shown in Fig. 4.3, we can fix L11
[25−31] and R

11
[20−31] in the MITM stage. To put

it more precisely, we choose the start value as S16 = F [11, 15](S11) in each
value of K(3), where L

11
[25−31] and R11

[20−31] are set as arbitrary constant, and

the other bits are free. Then, during the MITM stage, L11
[25−31] and R11

[20−31]

are always fixed. Thus, the required data is estimated as 245(= 264−19) chosen
plaintext/ciphertext pairs.

55



MSBMSB LSBLSB

00

5

5

10

10

15

15

20

2025 3131
L10

L15

R10

R15

: data that are not affected by K3[0−4]

K1

K2

K2

K3

K3

Figure 4.3: F−1[11, 15] of XTEA

4.4.2 Security of LED against MITM Attack

For SPN structures with the direct-key expansion, it seems hard to apply a MITM
attack, since all of secret key bits are used in the small number of rounds. In fact,
all of secret key bits of LED-64 are introduced in every 4 rounds. However, using
equivalent transformation technique, we show MITM attacks on the 16-round and
the 8-round reduced LED-128 and LED-64, respectively. Figures 4.4 and 4.5 show
attack overviews for LED-128 and LED-64, respectively.

MITM Attack on 16-round LED-128.

We consider the 16-round variant of LED-128 starting from the 1st round (i.e.,
F [1, 16] of LED-128). Let FF and FB be 8 and 4 consecutive round functions
starting from the round 1 and 13, respectively, i.e., FF = F [1, 8] and FB = F [13, 16]
of LED-128. Also, FB contains both the final and the initial key additions by K1

as shown in Fig. 4.4. Using neutral key bits K1 and K2, two chunks FB and FF
can be computed independently. The partial matching used in this attack and the
estimated attack complexity are explained as follows.

• Partial Matching. The 4-round partial matching is done at rounds 9 to 12
including the key additions before the 9-th round by K1 and after the 12th
round by K2. T1, ..., T19 denote each state in this part as shown in Fig. 4.6,
where each state consists of the 16 4-bit words arranged in a 4×4 square array.
Ti[j] denotes the j-th 4-bit word of Ti and Ti[j, k] denotes Ti[j] and Ti[k] , e,g.,
Ti[3, 7, 11, 15] is four 4-bit words in the right most column of Ti. K1 and K2

are denoted in a similar way.

In the straightforward method, it seems hard to construct the 4-round partial
matching, since the 2 rounds of LED achieve the full diffusion. We introduce
an equivalent transformation technique regarding the key addition by K2.
SinceMC is a linear operation, T19 can be expressed as T19 =MC(T17)⊕K2 =
MC(T17 ⊕ K

′
2), where MC is an operation of MixColumnsSerial and K ′

2 =
MC−1(K2). This equation means that the operation of MixColumnsSerial
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Figure 4.4: Overview of the 16-round attack on LED-128
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Figure 4.5: Overview of the 8-round attack on LED-64

and the key addition of K2 are exchangeable by exploiting the linearity of
MixColumnsSerial. In that case, the diffusion effect of the MixColumnsSerial
regarding K2 can be omitted in the backward computation. Since MC−1 is
an invertible function, even if we directly control the value of K ′

2 instead of
K2, the MITM attack surely works in a similar manner.

Besides, we utilize the match through MixColumns technique [77]. Suppose
that K(1) isK

′
2[0, 5, 10, 15] and K(2) isK1[0, 7, 10, 13] , then we can compute the

values of T9[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14] without using K(2) in the forward
computation, and the values of T10[1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15] without us-
ing K(1) in the backward computation as shown in Fig. 4.6.

Then we do the matching between these values by using the match through
MixColumnsSerial. In particular, we obtain the following equations with
respect to the first columns of T10,

T10[4] = (8 · T9[0])⊕ (6 · T9[4])⊕ (5 · T9[8])⊕ (6 · T9[12]), (4.1)

T10[8] = (B · T9[0])⊕ (E · T9[4])⊕ (A · T9[8])⊕ (9 · T9[12]), (4.2)

T10[12] = (2 · T9[0])⊕ (2 · T9[4])⊕ (F · T9[8])⊕ (B · T9[12]). (4.3)

For Eqs. (4.1)-(4.3), only T9[0] is unknown values in the matching. We elimi-
nate this values by combining with these equations. Then we obtain the two
independent equations that do not include the variable T9[0]. As an example,
we give the following equation obtained from Eqs. (4.1) and (4.2),

B · T10[4]⊕ 8 · T10[8] = B · ((6 · T9[4])⊕ (5 · T9[8])⊕ (6 · T9[12]))

⊕8 · ((E · T9[4])⊕ (A · T9[8])⊕ (9 · T9[12])).

Since each column has such two independent 4-bit equations, it is equivalent
to 32 (= 4× 2× 4)-bit matching.
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Figure 4.6: 4-round partial matching of LED-128

• Evaluation. The complexity of the attack Ccomp is estimated as

Ccomp = 296(216 + 216)
︸ ︷︷ ︸

MITM

+ 296
︸︷︷︸

Key testing

≈ 2112.

The required memory is 219 byte (≈ 216 · 6 bytes). For the backward chunk,
only 16 bits of the plaintext are affected by K1[0, 7, 10, 13]. Thus, when the
start state is properly chosen similar to the attack on XTEA, the number of
required plaintext/ciphertext pairs is estimated as 216.

MITM Attack on 8-round LED-64.

We consider the 8-round variant of LED-64 starting from the round 1. Let Ka

and Kb be the 32-bit left and right two columns of K, respectively, i.e., Ka =
K[0, 1, 4, 5, 8, 9, 12, 13] andKb = K[2, 3, 6, 7, 10, 11, 14, 15]. Then the 64-bit key XOR
of K is divided into two 32-bit key XORs of Ka and Kb. FF denotes the functions
from rounds 1 to 4 (i.e., F [1, 4] of LED-64) including key addition of Kb, and FB
denotes the first and last key addition of Ka. By using Ka and Kb, two chunks FB
and FF can be computed independently (see Fig. 4.5).

Suppose that K(1) is K[10, 15] ∈ Kb and K(2) is K ′[0, 13] ∈ Ka, where K
′ =

MC−1(K). Then, the 4-round partial matching can be constructed similar to the
partial matching for the attack on the reduced LED-128. The complexity of the
attack Ccomp is estimated as

Ccomp = 248(28 + 28)
︸ ︷︷ ︸

MITM

+ 232
︸︷︷︸

Key testing

≈ 256.

The required memory is 211 bytes and the required data is 28 chosen plaintext/ciphertext
pairs.
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Figure 4.7: Overview of the 21-round attack on Piccolo-128

4.4.3 Security of Piccolo against MITM Attack

We show MITM attacks on the 21-round and the 14-round reduced Piccolo-128 and
Piccolo-80, respectively.

MITM Attack on 21-Round Piccolo-128.

For the 21-round variant of Piccolo-128 starting from the round 2, using neutral
key bits K(1)(= k3[8−15]) and K(2)(= k6[0−7]), two chunks F [9, 13] and F−1[19, 22] ◦
F−1[2, 5] can be computed independently (see Fig. 4.7). We give detailed explana-
tions for the partial matching and the initial structure used in this attack, and the
estimated attack complexity as follows.

• Partial Matching. For F [14, 18], in the forward process, X17
1 is obtained

from S14 without using the value of k6[0−7]. On the other hand, X17
1 is also

computed from S19 without using the value of k3[8−15] in the backward process.
Thus, the 5-round partial matching works (see Fig. 4.8).

• Initial Structure. For F [6, 8], we aim to exchange the positions of k6[0−7]

for k3[8−15]. Here, differences of k6[0−7] in the forward process and k3[8−15] in
the backward process are independent in F [6, 8]. It means that one differential
trail does not affect the others, since these trails do not share any non-linear
elements. Thus, these values are exchangeable by splitting F [6, 8] as illustrated
in Fig. 4.9. This can be seen as the 3-round bicliques, and finding independent
differentials directly leads the construction of the initial structure as mentioned
in [70].

• Evaluation. The complexity of the attack on the 21-round reduced Piccolo-
128 Ccomp is estimated as

Ccomp = 2112(28 + 28)
︸ ︷︷ ︸

MITM

+ 2112
︸︷︷︸

Key testing

≈ 2121.

The required memory is 29 bytes (= 28· 2 bytes), which is the cost of the table
used in the MITM stage. The number of required plaintext/ciphertext pairs
depends on the range of F−1[2, 8], because k6[0−7] is included in the initial
structure. Due to the 4-round full diffusion property, the required data is 264

plaintext/ciphertext pairs, which is called a code book attack. In case the code
book attack is not allowed, the number of attacked rounds might be decreased.
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MITM Attack on 14-Round Piccolo-80.

For the MITM attack on the 14-round variant of Piccolo-80 starting from the round
5, using neutral key bits K(1)(= k0[0−7]) and K(2)(= k4[8−15]), two chunks F [5, 8] ◦
F [15, 18] and F−1[13, 14] can be computed independently. For F [9, 12], the 4-round
partial matching is constructed as illustrated in Fig. 4.10. The complexity of the
attack on the 14-round reduced Piccolo-80 Ccomp is estimated as

Ccomp = 264(28 + 28)
︸ ︷︷ ︸

MITM

+ 272
︸︷︷︸

Key testing

≈ 273.

The required memory is 28 bytes (= 28· 1 bytes), which is the cost of the table used
in the MITM stage. The number of required plaintext/ciphertext pairs depends on
the range of F [15, 18], i.e., size of the possible output values of F [15, 18] during the
MITM stage. In general, if neutral key bits k0[0−7] does not affect the all bits of the
output of F [15, 18], it is possible to avoid code book attack by fixing some bits of
the output similar to the AES attack [70]. However, k0[0−7] affects all bits of the
output due to the 4-round full diffusion property. Thus, the required data is 264

plaintext/ciphertext pairs. In our search, such 14-round attack without relying on
the code book cannot be found. Thus, we expect that the number of attacked rounds
may be slightly reduced in the non-code book attack on the reduced Piccolo-80.
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4.5 Discussion

This section discusses the security of lightweight block ciphers against the speed-
up keysearch based on the MITM attack. Then we compare our results with the
previous attack results on our target ciphers.

4.5.1 Security against Speed-up Keysearch Based on MITM Attack

The speed-up keysearch based on the MITM attack is the recently proposed novel
technique, which is known as the first attack for the full AES [70]. It makes use
of matching with precomputation in conjunction with a biclique which is a formal
concept of the initial structure. In general, it works slightly faster than the exhaus-
tive key search, i.e., by a factor of 2 to 5, since it essentially tests all possible keys.
This cryptanalysis is naturally applicable to lightweight block ciphers. Indeed, it
has been applied to HIGHT [78], whose attacks is slightly faster than that of the
exhaustive key search. As mentioned in [79], for many block ciphers, one also can
speed up the exhaustive keysearch with simple techniques, e.g., distributive tech-
nique and early abort technique. Therefore, it is debatable whether such a marginal
improvement regarding the time complexity should be considered as a real attack
in terms of exploiting algorithmic weaknesses. However, it is still meaningful from
the view of the security evaluation of such ciphers. In the following, we roughly
estimate the required time complexity for the speed-up keysearch of the lightweight
block ciphers, XTEA, LED and Piccolo, assuming that the code book is allowed to
use and the rounds of the partial matching and the initial structure can be omitted,
i.e., the cost of the recomputation is regarded as zero in these rounds. Due to such
strong assumptions, our estimations may not be accurate but provide indications of
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the security evaluations of the speed-up keysearch based on the MITM attack.
For XTEA, assuming the 12-round partial matching and two 6-round indepen-

dent chunks, the time complexity for the speed-up keysearch of the full XTEA is
estimated as 2127.32(= 2128 × ((64 − 12 − 12)/64)). For LED-64/128, the 4-round
partial matching is constructed. Exploiting the two 4-round independent chunks,
the time complexities for the speed-up keysearch of the full LED-64/128 are roughly
estimated as 2127.59 = (2128× ((48−4−8)/48)) and 279.32(= 280× ((32−4−8)/32)),
respectively. For Piccolo-80/128, the 3-round initial structure and the 5-round par-
tial matching are constructed as described in Section 4.4.3. Assuming the two 5-
round independent chunks, the time complexity for the speed-up keysearch of the
full Piccolo-128 is roughly estimated as 2126.74(= 2128 × ((31− 3− 5− 10)/31)). In
a similar way, the time complexity of the full Piccolo-80 is roughly estimated as
278.53(= 280 × ((25− 3− 5− 8)/25)).

We emphasize that the above observations are rough estimations of the speed-
up keysearch based on the MITM attack. Thus, the time complexities seem to be
improved by analyzing deeply 3. However, since these are marginal improvements
in time complexity compared to the exhaustive key search, we do not claim them to
be real attacks based on algorithmic weaknesses.

4.5.2 Comparison with Other Cryptanalysis Results

We compare our MITM attacks to the previously proposed attacks for each cipher.
Note that we focus only on the single-key setting, which is the practical setting of
fields in where lightweight cipher are needed, e.g., RFID tags and sensor nodes.

For XTEA, the previously best attacks regarding the number of the attacked
rounds are the impossible differential attack and the MITM attack on the 23-round

3This types of the speed-up keysearch on the reduced Piccolo-80/128 has been estimated in [80].
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variants [74, 75]. Thus, our MITM attack, which is the 29-round attack, greatly
improves their attacks with respect to the number of attacked rounds.

For LED-64/128 and Piccolo-80/128, there exist only designers’ self evaluations,
i.e., no external cryptanalysis has been published so far. According to [20], the
maximum differential probability and the best linear hull probability of 4 rounds
of LED-64/128 are both upper bounded by 2−32. Thus, it was implicitly claimed
that there is no useful differentials or linear hulls over 8 rounds of LED-64/128 in
the single-key setting, though the actual attack has not been presented so far. By
using the equivalent transformation technique, we showed the MITM attacks on the
8-round LED-64 and the 16-round LED-128. While the designers showed chosen
key distinguishers for the 15-round LED-64 and the 27-round LED-128, our MITM
attacks can be regarded as the best attacks on the reduced LED in the single-key
setting.

For Piccolo-80/128, according to [21], the 9-round Piccolo-80/128 have a suffi-
cient security level against differential and the linear cryptanalysis by the evaluations
based on the number of the active F-functions. On the other hand, our MITM at-
tacks work on the 14-round Piccolo-80 and the 21-round Piccolo-128, though both
attacks require full plaintext/ciphertext pairs, which are called code book attacks.
These results imply that MITM-type attacks are more effective than differential and
linear cryptanalysis for both LED-64/128 and Piccolo-80/128 in the single-key set-
ting, because the number of rounds to be attacked by the MITM attack is much
larger than those of differential and linear cryptanalysis.

Therefore it is demonstrated that MITM attacks are the most powerful attacks
on these lightweight ciphers in the single-key setting.

4.6 Conclusion

We have analyzed the security of several lightweight block ciphers that have the
direct-key expansion against the meet-in-the-middle attack. While a simple key
expanding function like the direct-key expansion leads compact implementation,
its security analysis has not been studied well so far. On the other hand, since
MITM attack mainly exploits low key-dependency that large parts of the cipher are
independent from some key bits, a block cipher having the direct-key expansion is
likely to be vulnerable to MITM attack. Moreover, since the MITM attack does not
require related-keys, i.e., it works in the single-key setting, its security analysis is
considered to be more important than related-key attacks.

In this chapter, we have shown new MITM attacks on several lightweight block
ciphers that have the direct-key expansion. Combined with new techniques such as
equivalent transformation technique, we have presented the MITM attacks on 29
(out of 64), 8 (out of 32), 16 (out of 48), 14 (out of 25) and 21 (out of 31) rounds of
XTEA, LED-64, LED-128, Piccolo-80 and Piccolo-128, respectively. Note that all
of our attacks presented in this chapter are the best or the first attacks in literature.
For instance, the attack on the 29-round reduced XTEA is the best attack with
respect to the number of attacked rounds. These results imply that MITM attack is
actually effective for lightweight block ciphers. Thus, its security analysis is crucial,
even if the cipher is expected to be secure against the other attacks.
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Chapter 5

All Subket Recovery Attack on
Block Ciphers : Extending
Meet-in-the Middle Approach

We revisit meet-in-the-middle (MITM) attacks on block ciphers. Despite recent
significant improvements of the MITM attack, its application is still restrictive. In
other words, most of the recent MITM attacks work only on block ciphers consisting
of a bit permutation based key schedule such as KTANTAN, GOST, IDEA, XTEA,
LED and Piccolo. In this chapter, we extend the MITM attack so that it can
be applied to a wider class of block ciphers. In our approach, MITM attacks on
block ciphers consisting of a complex key schedule can be constructed. We regard
all subkeys as independent variables, then transform the game that finds the user-
provided key to the game that finds all independent subkeys. We apply our approach
called all subkeys recovery (ASR) attack to block ciphers employing a complex
key schedule such as CAST-128, SHACAL-2, KATAN, FOX128 and Blowfish, and
present the best attacks on them with respect to the number of attacked rounds
in literature. Moreover, since our attack is simple and generic, it is applied to the
block ciphers consisting of any key schedule functions even if the key schedule is an
ideal function.

5.1 Introduction

Meet-in-the-middle (MITM) attack, originally introduced in [56], is a generic crypt-
analytic technique for block ciphers. It was extended to preimage attacks on hash
functions, and several novel techniques to extend the attack have been developed [16,
81, 82, 83, 84, 85]. Then, it has been shown that those advanced techniques are also
applied to block ciphers [9, 86, 70, 71].

Since the MITM attack mainly exploits a low key-dependency in a key schedule,
it works well for a block cipher having a simple key schedule such as a key schedule
based only on a bit permutation. In fact, most of the recent MITM attacks were
applied to ciphers having a simple key schedule such as KTANTAN, GOST, IDEA,
XTEA, LED and Piccolo [9, 86, 71, 87, 88]. However, as far as we know, no results
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have been known so far for block ciphers consisting of a complex key schedule1

except for the recent attack on AES [70]. In general, the MITM attack at least
requires two sets of neutral key bits, which are parts of secret key bits, to compute
two functions independently. For a simple key schedule such as a permutation based
key schedule, since each subkey is directly derived from some secret key bits, it is
relatively simple to find “good” neutral key bits. Yet, for a cipher equipped with a
complex key schedule, finding neutral key bits, which is the core technique of the
MITM attack, is likely to be complicated and specific. For instance, the MITM
attack on the 8-round reduced AES-128 in [70] looks complicated and specific, i.e.,
it seems difficult to directly apply their technique to other block ciphers not having
the AES key schedule.

In this chapter, we extend the MITM attack, then present a generic and sim-
ple approach to evaluate the security of ciphers employing a complex key schedule
against the MITM attack. The basic concept of our approach is converting the game
of finding the user-provided key (or the secret key) to the game of finding all subkeys
so that the analysis can be independent from the structure of the key schedule, by
regarding all subkeys as independent variables. This simple conversion enables us
to apply the MITM attack to a cipher using any key schedule without analyzing the
key schedule. We refer this attack as all subkeys recovery (ASR) attack for simplic-
ity, while our approach is a variant of the MITM attack. We first apply the ASR
attack to CAST-128, Blowfish and FOX128 in a straightforward way, then show the
best attacks on them with respect to the number of attacked rounds in literature.
Moreover, to construct more efficient attack, we present how to efficiently find useful
state that contains a smaller number of subkey bits by analyzing internal compo-
nents, then apply it to SHACAL-2 and KATAN family. The attacks presented in
this chapter are summarized in Table 10.1 (see also Table 5.2). We emphasize that
our attack can be applied to any block cipher having any key schedule function even
if the key schedule is an ideally random function. This implies that our approach
gives generic lower bounds on the security of several block ciphers against the MITM
attacks.

5.2 Notation

The following notation will be used throughout this chapter:
a||b : Concatenation.
|a| : Bit size of a.

≫ or ≪ : Right or left bit rotation in 32-bit word.
⊕ : Bitwise logical exclusive OR (XOR) operation.
⊞ : Addition modulo 232 operation.
⊟ : Subtraction modulo 232 operation.

5.3 All Subkeys Recovery (ASR) Attack

In this section, the basic concept of the all subkeys recovery (ASR) attack is intro-
duced. First, we briefly present the basic concept, then, the detailed procedure of

1In this chapter, we refer a complex key schedule as a non-permutation based key schedule such
as a key schedule having non-linear components.
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the basic ASR attack is given. Finally, we show an ASR attack on the balanced
Feistel network as a concrete example.

5.3.1 Basic Concept

The previous MITM attack aims to determine the user-provided key by finding
good neutral key bits which are parts of the user-provided key. In order to find
good neutral key bits, an attacker needs to thoroughly analyze the key schedule. In
general, this makes the analysis complex and specific, and it is difficult to evaluate
the security of a wide class of block ciphers, including ciphers having a complex key
schedule, against the MITM attack.

The basic concept of the ASR attack is to convert the game of finding the user-
provided key to the game of finding all subkeys, regarding all subkeys as inde-
pendent variables. Note that an attacker is able to encrypt/decrypt any plain-
texts/ciphertexts by using all subkeys, even if the user-provided key is unknown. In
addition, if a key schedule is invertible, then the user-provided key is obtained from
all subkeys.

In the ASR attack, analyzing the key schedule is not mandatory, since we only
treat subkeys (not secret key). Obviously, this makes analysis simpler than finding
good neutral key bits. In fact, the ASR attack depends only on the sizes of the
secret key and the round keys, and the structure of the data processing part such
as balanced Feistel network and SPN (substitution-permutation-network).

Moreover, in the ASR attack, the underlying key schedule can be treated as
an ideal function. In other words, our attack works even if the key schedule is an
ideal function. A concrete block cipher employs an weaker key schedule than an
ideal one. Thus, the number of attacked rounds may be extended by thoroughly
analyzing the key schedule. However, even without analyzing the key schedule, we
show several best attacks on several block ciphers in the single-key setting in the
following sections. Thanks to the MITM approach, our attack requires extremely
low data requirement, though it requires a lot of memory which is the same order
as the time complexity. We may employ memoryless collision search [89] to reduce
the memory requirements, while it requires a slightly larger computations, i.e., the
time complexity is multiplied by a small constant.

5.3.2 Recovering All Subkeys by MITM Approach (Basic Attack)

Let us explain the basic procedure of the ASR attack. As explained in the previous
section, we regard all subkeys in the cipher as independent variables. Then, we apply
the MITM approach to determine all subkeys that map a plaintext to the ciphertext
encrypted by the (unknown) secret key. Suppose that n-bit block cipher E accepting
a k-bit secret key K consists of R rounds, and an ℓ-bit subkey is introduced each
round (see Fig. 5.1).

First, an attacker determines an s-bit matching state S. The state S can be
computed from a plaintext P and a set of subkey bits K(1) by a function F(1) as
S = F(1)(P,K(1)). Similarly, S can be computed from the ciphertext C and another

set of subkey bits K(2) by a function F(2) as S = F−1
(2) (C,K(2)). K(3) denotes a set of

the remaining subkey bits, i.e., |K(1)|+ |K(2)|+ |K(3)| = R ·ℓ. By using those K(1) and

K(2), the attacker can independently compute F(1)(P,K(1)) and F
−1
(2) (C,K(2)). Note

66



P

C

K S

E

R rounds

K(1)

K(2)

K(3)

F(1)

F(2)

k

ℓ

n

n

s

k
ey

sc
h
ed

u
le

Figure 5.1: Basic concept of ASR attack

that the equation F(1)(P,K(1)) = F
−1
(2) (C,K(2)) holds when the guessed subkey bits

K(1) and K(2) are correct. Due to parallel guesses of K(1) and K(2), we can efficiently
check if the guessed key bits are correct. After this process, it is expected that
there will be 2R·ℓ−s key candidates. Note that the number of key candidates can be
reduced by parallel performing the matching with additional plaintext/ciphertext
pairs. In fact, using N plaintext/ciphertext pairs, the number of key candidates is
reduced to 2R·ℓ−N ·s, as long as N ≤ (|K(1)| + |K(2)|)/s. Finally, the attacker ex-
haustively searches the correct key from the surviving key candidates. The required
computations (i.e. the number of encryption function calls) of the attack in total
Ccomp is estimated as

Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2R·ℓ−N ·s. (5.1)

The number of required plaintext/ciphertext pairs is max(N, ⌈(R · ℓ − N · s)/n⌉).
The required memory is about min(2|K(1)|, 2|K(2)|) × N blocks, which is the cost of
the table used for the matching. Obviously, the ASR attack works faster than the
brute force attack when Eq.(5.1) is less than 2k, which is required computations for
the brute force attack. For simplicity, we omit the cost of memory access for finding
a match between two lists, assuming that the time complexity of one table look-up
is negligible compared to that of one computation of F(1) or F(2). The assumption
is quite natural in most cases. However, strictly speaking, those costs should be
considered. In other words, the cost of (max(2|K(1)|, 2|K(2)|) × N) memory accesses
is added to Eq.(5.1).

If the number of attacked rounds R and the size of the matching state s are
fixed, the time complexity and the memory requirement are dominated by |K(1)|
and |K(2)|. Thus, smaller |K(1)| and |K(2)| lead to more efficient attacks with respect
to the time and memory complexity. Therefore, the key of the ASR attack is to find
the matching state S computed by the smallest max(|K(1)|, |K(2)|).
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Figure 5.2: Balanced Feistel network

P

C

kr

kr+1

kr+2

kr−1

kr−2

K(1)

K(2)

S

F

F

F

F

F

n/2

..
.

..
.

Figure 5.3: Partial matching

5.3.3 ASR Attack on Balanced Feistel Networks

Let us show examples of the ASR attack. Suppose that an example cipher E with
n-bit block and k-bit secret key consists of R rounds of the balanced Feistel network
as illustrated in Fig. 5.2. Let the round function F be an (n/2)-bit keyed bijective
function. Here, for simplicity, we assume that an (n/2)-bit subkey is introduced
before F each round. Also, ki denotes the i-th round subkey.

As depicted in Fig. 5.3, an (n/2)-bit state S can be computed independently
from (n/2)-bit subkey kr. In other words, S can be computed from P and K(1) ∈
{k1, k2, ..., kr−1}. Also, S can be obtained from C and K(2) ∈ {kr+1, kr+2, ..., kR}.

When n = k/2 (e.g., a 128-bit block cipher accepting a 256-bit key), 7 rounds of
E can be attacked in a straightforward manner. In this attack, both F(1) and F(2)

are composed of 3 rounds of E, and thus the sizes of K(1) and K(2) are both 3n/2
bits. As explained in Section 5.3.2, using six plaintext/ciphertext pairs, the total
time complexity Ccomp is estimated as

Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2R·ℓ−N ·s

= 23n/2 × 6 + 27·n/2−6·n/2 ≈ 23n/2 (= 23k/4 ≪ 2k)

The required memory is around 6×23n/2 blocks. Since Ccomp is less than 22n(= 2k),
the attack works faster than the exhaustive key search. Note that the number of
attacked rounds might be extended by exploiting the subkey relations. Thus, the
number of attacked rounds 7 is considered as the lower bounds on the security of
this modelled cipher against the ASR attack.

Similarly to this, when n = k (e.g., a 128-bit block cipher accepting a 128-bit
key), the attack on at least 3 rounds of E is constructed. In this case, F(1) and F(2)

consist of 1 round of E, and the sizes of K(1) and K(2) are both n/2 bits. Therefore,
using 3 plaintext/ciphertext pairs (i.e. N = 3), the required time complexity Ccomp
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Table 5.1: Basic parameters of our target ciphers

algorithm
block size key size subkey size # rounds

(n) (k) (ℓ) (R)

CAST-128 [22] 64 40 ≤ k ≤ 128 37 12 (k ≤ 80), 16 (k > 80)
Blowfish [25] 64 128 ≤ k ≤ 448 32 16

Blowfish-8R∗ [90] 64 128 ≤ k ≤ 192 32 8
SHACAL-2 [23] 256 k ≤ 512 32 64

KATAN32/48/64 [24] 32/48/64 80 2 254
FOX128 [26] 128 256 128 16

∗ Fewer iteration version of Blowfish specified in [25] as a possible simplification.

is estimated as

Ccomp = max(2|K(1)|, 2|K(1)|)×N + 2R·ℓ−N ·s = 2n/2 × 3 + 1 (= 2k/2 × 3 + 1≪ 2k).

The required memory is around 3 × 2n/2 blocks. Consequently, the ASR attack
works faster than the brute force attack, which requires about 2n computations.

Roughly speaking, when Eq.(5.1) is less than 2k, the ASR attack works faster
than the brute force attack. Therefore, the necessary condition for the basic ASR
attack is that the size of subkey is less than the size of secret key.

5.4 Basic ASR Attacks on CAST-128 and Blowfish

The generic attack on a balanced Feistel network explained in the previous section
can be directly applied to a concrete block cipher. In this section, we apply the basic
ASR attacks to CAST-128 and Blowfish. In those attacks, the round function F is
assumed to be any function even ideal. However, in the case of a concrete cipher,
the underlying round function F is specified, i.e., it can be analyzed. By deeply
analyzing the round function, the number of attacked rounds may be increased.
Such advanced techniques are introduced in the next sections.

The basic parameters of the ciphers analyzed in this chapter are listed in Ta-
ble 5.1. Table 5.2 shows the parameters of our (ASR) attacks in this chapter.

5.4.1 Descriptions of CAST-128 and Blowfish

Description of CAST-128.

CAST-128 [22] is a 64-bit Feistel block cipher accepting a variable key size from 40
up to 128 bits (but only in 8-bit increments). The number of rounds is 16 when the
key size is longer than 80 bits. First, the algorithm divides the 64-bit plaintext into
two 32-bit words L0 and R0, then the i-th round function outputs two 32-bit data
Li and Ri as follows:

Li = Ri−1, Ri = Li−1 ⊕ Fi(Ri,K
rnd
i ),

where Fi denotes the i-th round function and Krnd
i is the i-th round key consisting

of a 32-bit masking key Kmi and a 5-bit rotation key Kri . Each round function
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Table 5.2: Parameters of our attacks presented in this chapter

algorithm
# attacked |K(1)| |K(2)| |K(3)| s attacked

rounds (forward) (backward) (remains) key size

CAST-128 7 111 111 37 32 120 ≤ k ≤ 128

Blowfish† 16 256 288 32 32 292 ≤ k ≤ 448

Blowfish-8R† 8 128 160 32 32 163 ≤ k ≤ 192

SHACAL-2 41 484 492 336 4 485 ≤ k ≤ 512

KATAN32 110 68 70 82 1 80

KATAN48 100 71 71 58 1 80

KATAN64 94 71 71 46 1 80

FOX128 5 224 224 192 32 256

† Known F-function setting.

Fi consists of four 8 to 32-bit S-boxes, a key dependent rotation, and logical and
arithmetic operations (addition, subtraction and XOR). Fi has three variations, and
the positions of three logical or arithmetic operations are varied in each round.
However, we omit the details of Fi, since, in our analysis, it is regarded as the
random function that outputs a 32-bit random value from a 32-bit input Ri and a
37-bit key Krnd

i .

Description of Blowfish.

Blowfish [25] is a 16-round Feistel block cipher with 64-bit block and variable key
size from 128 up to 448 bit. Several possible simplifications of Blowfish were also
described in [25]. We refer one of them that is an 8-round variant (fewer iterations)
of Blowfish accepting less than 192 bits of key as Blowfish-8R. First, Blowfish divides
a 64-bit plaintext into two 32-bit state L0 and R0. Then the i-th round output state
(Li||Ri) is computed as follows:

Ri = Li−1 ⊕K
rnd
i , Li = Ri−1 ⊕ F (Li ⊕K

rnd
i ),

where Krnd
i is a 32-bit round key at round i. The F-function F consists of four

8× 32 key dependent S-boxes. Note that, in the last round, the 64-bit round key is
additionally XORed with the 64-bit state. In this chapter, we assume that F-function
is known by an attacker, and it is a random 32-bit function. The assumption, i.e.,
the known F-function setting, has already been used in [91, 92].

5.4.2 ASR Attack on 7-Round Reduced CAST-128

The generic attack on a balanced Feistel network can be directly applied to a variant
of CAST-128 which accepts a more than 114 bits key. This variant consists of 16
rounds, since the key size is longer than 80 bits. While the size of each subkey of
the CAST-128 is 37 bits including a 32-bit masking key and a 5-bit rotation key,
the above explained attack still works faster than the exhaustive key search. For
the 7-round reduced CAST-128, we use |K(1)| = |K(2)| = 111(= 37 · 3), since each
of F(1) and F(2) consists of three rounds of the CAST-128. Consequently, using six
plaintext/ciphertext pairs, the total time complexity Ccomp for the attack on the
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7-round reduced CAST-128 is estimated as follows:

Ccomp = max(2|K(1)|, 2|K(2)|)×N + 2R·ℓ−N ·s

= 2111 × 6 + 27·37−6·32 = 2111 × 6 + 267 ≈ 2114.

The number of required known plaintext/ciphertext pairs is only 6 (= max(6, ⌈(258−
6 · 32)/64⌉), and the required memory is about 2114 (= min(2111, 2111) × 6) blocks.
Recall that our attack works faster than the exhaustive key search only when the
key size of the reduced CAST-128 is more than 114 bits. As far as we know, the
previous best attack on the reduced CAST-128 was for only 6 rounds in the single-
key setting [93]2. Thus, surprisingly, this simple attack exceeds the previously best
attack on the reduced CAST-128 with respect to the number of attacked rounds.

5.4.3 ASR Attack on Full Blowfish in Known F-function Setting

In this section, we apply the ASR attack on Blowfish block cipher in the known
F-function setting as with [91, 92].

For the full (16-round) Blowfish, we choose R8 as the 32-bit matching state, i.e.,
s = 32. Then K(1) and K(2) include 256 (= 32 × 8) and 288 (= 32 × 9) bits of
subkeys, respectively, and K(3) = 32. When N = 9 (≤ (256 + 288)/32), the time
complexity for finding all subkeys is estimated as

Ccomp = max(2256, 2288)× 9 + 2576−9·32 = 2292.

The number of required data is only 9 (=max(9, ⌈(576− 9 · 32)/64⌉)) known plain-
text/ciphertext pairs, and required memory is about 2260 (=min(2256, 2288) × 9)
blocks. In this setting, the attack works faster than the exhaustive key search when
the key size is more than 292 bits.

Similarly to the attack on the full Blowfish, for the full (8-round) Blowfish-8R,
we choose R4 as the 32-bit matching state, i.e., s = 32. Then K(1) and K(2) include
128 (= 32×4) and 160 (= 32×5) bits of subkeys, respectively, and K(3) = 32. When
N = 5 (≤ (128 + 160)/32), the time complexity for finding all subkeys is estimated
as

Ccomp = max(2128, 2160)× 5 + 2320−5·32 = 2163.

The number of required data is only 5 (=max(5, ⌈(320− 5 · 32)/64⌉)) known plain-
text/ciphertext pairs, and the required memory is about 2131 (=min(2128, 2160)× 5)
blocks. In this setting, the attack works faster than the exhaustive key search when
the key size is more than 163 bits.

Note that these attacks are the first results on the full Blowfish with all key
classes in the known F-function setting, while the attacks presented in [91, 92] work
only in the weak key setting, i.e., weak F-functions.

5.5 Application to SHACAL-2

In this section, we apply the ASR attack to SHACAL-2 block cipher. After a
brief description of SHACAL-2, we present the basic ASR attack on the reduced

2The differential attacks on the 8- and 9-round reduced CAST-128 in weak-key setting were
presented in [94].
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SHACAL-2 without analyzing the internal functions of the cipher. Then, by ana-
lyzing the functions of the cipher, we show the matching state that contains fewer
bits of subkeys. Finally, we demonstrate an advanced ASR attack by using this
matching state. Recall that the basic ASR attack regards internal components such
as an F-function of the balanced Feistel network as a black-box function, while the
advanced ASR attack analyzes the internal components.

5.5.1 Description of SHACAL-2

SHACAL-2 [23] is a 256-bit block cipher based on the compression function of SHA-
256 [39]. It was submitted to the NESSIE project and selected to be in the NESSIE
portfolio [95].

SHACAL-2 inputs the plaintext to the compression function as the chaining
variable, and inputs the key to the compression function as the message block.
First, a 256-bit plaintext is divided into eight 32-bit words A0, B0, C0, D0, E0, F0,
G0 and H0. Then, the state update function updates eight 32-bit variables, Ai, Bi,
..., Gi, Hi in 64 steps as follows:

T1 = Hi ⊞ Σ1(Ei)⊞ Ch(Ei, Fi, Gi)⊞Ki ⊞Wi,

T2 = Σ0(Ai)⊞Maj(Ai, Bi, Ci),

Ai+1 = T1 ⊞ T2, Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di ⊞ T1, Fi+1 = Ei, Gi+1 = Fi, Hi+1 = Gi,

where Ki is the i-th step constant, Wi is the i-th step key (32-bit), and the functions
Ch, Maj, Σ0 and Σ1 are given as follows:

Ch(X,Y, Z) = XY ⊕XZ,

Maj(X,Y, Z) = XY ⊕ Y Z ⊕XZ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22),

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

After 64 steps, the function outputs eight 32-bit words A64, B64, C64, D64, E64, F64,
G64 and H64 as the 256-bit ciphertext. Hereafter pi denotes the i-th step state, i.e.,
pi = Ai||Bi||...||Hi.

The key schedule of SHACAL-2 takes a variable length key up to 512 bits as the
inputs, then outputs 64 32-bit step keys. First, the 512-bit input key is copied to 16
32-bit words W0, W1, ..., W15. If the size of the input key is shorter than 512 bits,
the key is padded with zeros. Then, the key schedule generates 48 32-bit step keys
(W16, ...,W63) from the 512-bit key (W0, ...,W15) as follows:

Wi = σ1(Wi−2)⊞Wi−7 ⊞ σ0(Wi−15)⊞Wi−16, (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are defined by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X ≫ 3),

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X ≫ 10).
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Figure 5.4: Overview of 41 round attack on reduced SHACAL-2

5.5.2 Basic ASR Attack on 37-Step Reduced SHACAL-2

We directly apply the ASR attack described in Section 5.3 to SHACAL-2. This
leads to the attack on the 37-step reduced SHACAL-2.

Due to a generalized Feistel network-like structure of SHACAL-2, the i-step 32-
bit word Ai is computed without using subkeys Wi,Wi+1, ...,Wi+6 as mentioned
in [81]. Thus, the 15-step state A15 can be computed by each of F(1)(P,K(1)) and

F−1
(2) (C,K(2)), where K(1) ∈ {W0,W1, ...,W14} and K(2) ∈ {W22, ...,W36}. Since

|K(1)| = |K(2)| = 480(= 32 × 15) and the size of the matching state A15 is 32 bits,
by using 22 known plaintext/ciphertext pairs, the time complexity to compute all
subkey bits is estimated as

Ccomp = max(2480, 2480)× 22 + 237·32−22·32 ≈ 2485.

The required memory is about 2485 blocks. Note that this attack finds a secret key
more efficiently than the exhaustive key search only when the key size is more than
485 bits.

Surprisingly, this simple attack exceeds the previous best attack on the reduced
SHACAL-2 in the single-key setting for 32 steps [96] with respect to the number
of attacked rounds 3. In the following, by deeply analyzing the functions used in
SHACAL-2, we show further improvements.

5.5.3 Advanced ASR Attack on 41-Step Reduced SHACAL-2

In order to extend the basic ASR attack, we choose the lower 4 bits of A16 as the
matching state. Using this matching state, the 41-step reduced SHACAL-2 can be
attacked. The forward and backward functions F(1) and F(2) are given as follows
(see also Fig. 11.1).

3The MITM preimage attacks on the reduced SHA-256 were proposed in [84, 73]. However,
these attacks can not be directly applied to SHACAL-2, because in the block cipher setting, these
attacks require the code book, i.e., they require all plaintext/ciphertext pairs. Also, due to those
high time complexity, they do not seem to work faster than the exhaustive key search.
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Forward Computation in F(1) :

Due to the structure of SHACAL-2, the lower 4 bits of A16 can be computed from
the 15-th state p15 and the lower 4 bits of W15, since the other bits of W15 are not
affected to the lower 4 bits of A16. Thus, the matching state S (the lower 4 bits of
A16) is calculated as S = F(1)(P,K(1)), where K(1) ∈ {W0,W1, ...,W14, the lower 4
bits of W15} and |K(1)| = 484(= 32× 15 + 4).

Backward Computation in F(2) :

We give the following observation.

Observation 1. The lower t bits of Aj−10 are obtained from the j-th state pj and
the lower t bits of three subkeys Wj−1, Wj−2 and Wj−3.

In the backward computation, i.e., the inverse step function, the (j − 1)-th step
state pj−1 is computed from the j-th step state pj as follows:

Hj−1 = Aj ⊟ Σ0(Bj)⊟Maj(Bj , Cj , Dj)⊟ Σ1(Fj)

⊟Ch(Fj , Gj , Hj)⊟Kj−1 ⊟Wj−1,

Dj−1 = Ej ⊟Aj ⊞ Σ0(Bj)⊞Maj(Bj , Cj , Dj),

Gj−1 = Hj , Fj−1 = Gj , Ej−1 = Fj , Cj−1 = Dj , Bj−1 = Cj , Aj−1 = Bj .

Thus, pj−1 except for Hj−1 is obtained from pj . The lower t bits of Hj−1 can be
computed from pj and the lower t bits of Wj−1. Similarly, from Aj−1, ..., Gj−1 and
the lower t bits of Hj−1 and Wj−2, we can compute Aj−2, ..., Fj−2 and the lower t
bits of Gj−2 and Hj−2. Furthermore, Aj−3, ..., Ej−3 and the lower t bits of Fj−3 and
Gj−3 are computed from Aj−2, ..., Fj−2 and the lower t bits of Gj−2, Hj−2 andWj−3.
Again, as mentioned in [81], Aj−10 is determined by pj−3 without Wj−10, ...,Wj−16.
This relation can be translated to “the lower t bits of Aj−10 are determined from
only Aj−3, ..., Ej−3 and the lower t bits of Fj−3, Gj−3 and Hj−3”. Therefore, Aj−10

can be obtained from pj and the lower t bits of Wj−1,Wj−2 and Wj−3.
From Observation 1, the matching state S (the lower 4 bits of A16) can be

computed as S = F−1
(2) (C,K(2)), where K(2) ∈ {W26, ...,W40, the lower t bits of W23,

W24 and W25}. Thus, |K(2)| = 492(= 32× 15 + 4× 3).

Evaluation.

Recall that the matching state S is the lower 4 bits of A16, |K(1)| = 484, |K(2)| = 492
and |K(3)| = 336 (= 32×7+(32−4)×4). Thus, using 244 known plaintext/ciphertext
pairs (i.e. N = 244 ≤ (484 + 492)/4), the time complexity for finding all subkeys is
estimated as

Ccomp = max(2484, 2492)× 244 + 21312−244·4 = 2500.

The number of required data is 244 (=max(244, ⌈(1312 − 244 · 4)/256⌉)) known
plaintext/ciphertext pairs. The memory size is 2492 (=min(2484, 2492)× 244) blocks.
The attack works more efficiently than the exhaustive key search when the key size
is more than 500 bits.
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Table 5.3: Parameters of KATAN family

Algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

5.6 Application to KATAN family

In this section, we analyze KATAN family including KATAN32, KATAN48 and
KATAN64. First, we briefly describe the specification of KATAN family. Then,
we explain our attack strategy for finding the matching state depending on fewer
key bits. Finally, we develop ASR attacks on the reduced KATAN32/48/64. We
emphasize that all of our attacks on the reduced KATAN presented in this section
are the best (exponential-advantage) attacks in the single key setting with respect
to the number of attacked rounds.

5.6.1 Description of KATAN

KATAN [24] family is a feedback shift register-based block cipher consisting of three
variants: KATAN32, KATAN48 and KATAN64 whose block sizes are 32-, 48- and
64-bit, respectively. All of the KATAN ciphers use the same key schedule accepting
an 80-bit key and 254 rounds. The plaintext is loaded into two shift registers L1

and L2. Each round, L1 and L2 are shifted by one bit, and the least significant bits
of L1 and L2 are updated by fb(L2) and fa(L1), respectively. The bit functions fa
and fb are defined as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ k2i,

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ k2i+1,

where L[x] denotes the x-th bit of L, IR denotes the round constant, and k2i and
k2i+1 denote the 2-bit i-th round key. Note that for KATAN family, the round
number starts from 0 instead of 1, i.e., KATAN family consists of round functions
starting from the 0-th round to the 253-th round. Li

1 or Li
2 denote the i-th round

registers L1 or L2, respectively. For KATAN48 or KATAN64, in each round, the
above procedure is iterated twice or three times, respectively. All of the parameters
for the KATAN ciphers are listed in Table 6.2.

The key schedule of KATAN ciphers copies the 80-bit user-provided key to
k0, ..., k79, where ki ∈ {0, 1}. Then, the remaining 428 bits of the round keys are
generated as follows:

ki = ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 for i = 80, ..., 507.

5.6.2 Attack Strategy

Recall that the key of our attack is to find the state that contains as small number
of subkey bits as possible. In order to find such states, we exhaustively observe the
number of key bits involved in each state per round. A pseudo code for counting the
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Algorithm 1 : Counting the number of key bits involved in each state

Require: R /* Evaluated number of rounds */
Ensure: LK1[0], . . . ,LK1[|L1| − 1] and LK2[0], . . . ,LK2[|L2| − 1] /* The number of

key bits involved in each state after R round */
1: LK1[i]← 0 for i = 0, . . . , |L1| − 1
2: LK2[i]← 0 for i = 0, . . . , |L2| − 1
3: for i = 0 to R− 1 do
4: for j = 0 to |L1| − 2 do
5: LK1[(|L1| − 1)− j]← LK1[(|L1| − 1)− j − 1]
6: end for
7: for j = 0 to |L2| − 2 do
8: LK2[(|L2| − 1)− j]← LK2[(|L2| − 1)− j − 1]
9: end for

10: LK1[0]← LK2[y1] + LK2[y2] + LK2[y3] + LK2[y4] + LK2[y5] + LK2[y6] + 1
11: LK2[0]← LK1[x1] + LK1[x2] + LK1[x3] + LK1[x4] + (LK1[x5] · IR) + 1
12: end for
13: return LK1[0], . . . ,LK1[|L1| − 1] and LK2[0], . . . ,LK2[|L2| − 1]

number of subkey bits involved in the forward direction for KATAN32 is described
in Algorithm 1. We use similar code to observe how many subkey bits are affected
to each state of KATAN32 in the backward direction. Also, similar codes are used
for counting the number of subkey bits related to each state of KATAN48 and
KATAN64. As an example, Table 5.4 shows the results obtained by this algorithm
when R = 63 of KATAN32 in the forward direction.

5.6.3 ASR Attack on 110-Round Reduced KATAN32

We consider the 110-round variant of KATAN32 starting from the first (0-th) round.
In this attack, L63

2 [18] is chosen as the matching state.

Forward Computation in F(1) :

As shown in Table 5.4, L63
2 [18] depends on 68 subkey bits. This implies that L63

2 [18]
can be computed by a plaintext P and 68 bits of subkeys. More specifically, L63

2 [18] =
F(1)(P,K(1)), where K(1) ∈ {k0, ..., k54, k56, k57, k58, k60, ..., k64, k68, k71, k73, k77,
k88} and |K(1)| = 68.

Backward Computation in F(2) :

Table 5.5 shows the result obtained by Algorithm 1 modified to backward direction
on KATAN32 with R = 47 starting from 110 round. In the backward computation,
the matching state L63

2 [18] is computed as L63
2 [18] = F−1

(2) (C,K(2)), where K(2) ∈

{k126, k138, k142, k146, k148, k150, k153, k154, k156, k158, k160, . . . k219}, and |K(2)| = 70.

Evaluation.

For the 110-round reduced KATAN32, the matching state S is chosen as L63
2 [18]

(1-bit state). Since |K(3)| = 82(= 2× 110− 68− 70) which is more than 80 bits, we
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Table 5.4: Results on KATAN32 with R = 63 in forward direction (starting round
= 0)

LK1[i] 0 1 2 3 4 5 6 7 8 9 10 11 12
# key bits 108 104 102 100 98 98 96 94 92 88 86 84 84

LK2[i] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

# key bits 104 102 100 98 100 93 92 90 88 90 87 85 83 77 75 75 75 74 68

Table 5.5: Results on KATAN32 with R = 47 in backward direction (starting round
= 109)

LK1[i] 0 1 2 3 4 5 6 7 8 9 10 11 12
# key bits 44 46 48 50 52 54 56 58 60 62 64 66 68

LK2[i] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

# key bits 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

first determine only K(1) and K(2). After that, we additionally mount the MITM
approach in order to determine the remaining 82 bits of subkeys.

When N = 138 (≤ (68 + 70)/1), the time complexity for finding K(1) and K(2)

is estimated as

Ccomp = max(268, 270)× 138 + 2138−138·1 = 277.1.

The number of required data is 138 (=max(138, ⌈(138− 138 · 1)/32⌉)) known plain-
text/ciphertext pairs. The required memory size is about 275.1 (=min(268, 270)
×138) blocks.

Finally, we need to find the remaining 82 bits of subkeys by using the simple
MITM approach in the setting where K(1) and K(2) are known. The required com-
plexity and memory for this process is roughly estimated as 241. These costs are
obviously much less than those of finding K(1) and K(2).

5.6.4 ASR Attack on 100-Round Reduced KATAN48

We consider the 100-round variant of KATAN48 starting from the first (0-th) round.
In this attack, L58

2 [28] is chosen as the matching state.
In the forward computation, L58

2 [28] depends on 71 key bits, namely L58
2 [28] =

F(1)(P,K(1)), where K(1) ∈ {k0, . . . k60, k62, k64, k65, k66, k69, k71, k72, k75, k79,
k86}, and |K(1)| = 71. In the backward computation, L58

2 [28] depends on 71 key

bits, namely L58
2 [28] = F−1

(2) (C,K(2)), where K(2) ∈ {k116, k122, k124, k128, k130, k132,

k134, k135, k136, k138, . . . k199}, and |K(2)| = 71. Since the size of matching state s
is 1, |K(1)| = |K(2)| = 71 and |K(3)| = 58(= 2 × 100 − 71 − 71), by using N = 128
(≤ (71 + 71)/1) known plaintext/ciphertext pairs, the time complexity for finding
all subkeys is estimated as

Ccomp = max(271, 271)× 128 + 2200−128·1 = 278.

The number of required data is 128 (=max(128, ⌈(200− 128 · 1)/48⌉)) known plain-
text/ciphertext pairs. The memory size is 278 (=min(271, 271)× 128) blocks.
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Table 5.6: Summary of the attacks in the single-key setting

algorithm
# attacked

time
memory

data reference
rounds [block]

CAST-128
6 288.51 Not given 253.96 KP [93]
7 2114 2114 6 KP Section 5.4.2

Blowfish∗1 4 - - 221 CP [97]

Blowfish†
8 - - 248 CP [91]
16 2292 2260 9 KP Section 5.4.3

Blowfish-8R† 8 2160 2131 5 KP Section 5.4.3

SHACAL-2
32 2504.2 248.4 243.4 CP [96]
41 2500 2492 244 KP Section 5.5

KATAN32
78 276 Not given 216 CP [98]
110 277 275.1 138 KP Section 5.6.3

KATAN48
70 278 Not given 231 CP [98]
100 278 278 128 KP Section 5.6.4

KATAN64
68 278 Not given 232 CP [98]
94 277.68 277.68 116 KP Section 5.6.5

FOX128
5 2205.6 Not given 29 CP [99]
5 2228 2228 14 KP Section 5.7

† Known F-function setting.
∗1 The attacks on the full Blowfish in the weak key setting were presented in

[91] and [92]

5.6.5 ASR Attack on 94-Round Reduced KATAN64

Similarly to the attack on the 100-round reduced KATAN48, we consider the 94-
round variant of KATAN64 starting from the first (0-th) round. In this attack,
L54
2 [38] is chosen as the 1-bit matching state.
In the forward computation, L54

2 [38] depends on 71 subkey bits, namely L54
2 [38] =

F(1)(P,K(1)), where K(1) ∈ {k0, . . . k61, k63, k64, k65, k66, k68, k69, k71, k75, k82},
and |K(1)| = 71. In the backward computation, L54

2 [38] depends on 71 subkey

bits, namely L54
2 [38] = F−1

(2) (C,K(2)), where K(2) ∈ {k108, k110, k114, k116, k118,

k120, k122, k124, . . . k187}, and |K(2)| = 71. Since s = 1, |K(1)| = |K(2)| = 71,
and |K(3)| = 46(= 2 × 94 − 71 − 71), by using N = 116 (≤ (71 + 71)/1) known
plaintext/ciphertext pairs, the time complexity for finding all subkeys is estimated
as

Ccomp = max(271, 271)× 116 + 2188−116·1 = 277.68.

The number of required data is 116 (=max(116, ⌈(188− 116 · 1)/64⌉)) known plain-
text/ciphertext pairs. The memory size is 277.68 (=min(271, 271)× 116) blocks.

5.7 Application to FOX128

We apply the ASR attack to the 5-round reduced FOX128.
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5.7.1 Description of FOX128

FOX128 is a variant of FOX family [26] consisting of a 16-round modified Lai-
Massey scheme with 128-bit block and 256-bit key. A 128-bit input state at round i
is denoted as four 32-bit words (LLi−1 || LRi−1 || RLi−1 || RRi−1). The i-th round
function updates the input state using the 128-bit i-th round key Krnd

i as follows:

(LLi||LRi) = (or(LLi−1 ⊕ φL)||LRi−1 ⊕ φL)

(RLi||RRi) = (or(RLi−1 ⊕ φR)||RRi−1 ⊕ φR),

where or denotes a function converting two 16-bit inputs x0 and x1 to x1 and
(x0 ⊕ x1), and (φL||φR) = f64((LLi−1 ⊕ LRi−1)||(RLi−1 ⊕ RRi−1),K

rnd
i ). f64

consisting of two 8 8-bit S-box layers sigma8 separated by the 8 × 8 MDS matrix
mu8 returns a 64-bit data from a 64-bit input X and two 64-bit subkeys LKrnd

i

and RKrnd
i as (sigma8(mu8(sigma8(X ⊕ LKrnd

i )) ⊕ RKrnd
i ) ⊕LKrnd

i ). Two 64-bit
subkeys LKrnd

i and RKrnd
i are derived from Krnd

i as Krnd
i = (LKrnd

i ||RKrnd
i ).

5.7.2 ASR Attack on 5-Round Reduced FOX128

For the 5-round reduced FOX128, the following one-round keyless linear relation can
be exploited for the matching:

LLi+1 ⊕OR
−1(LRi+1) = LLi ⊕ LRi.

If we know LL2 and LR2, LL2 ⊕ OR
−1(LR2) can be obtained. Thus, we choose

LL2 and LR2 as the matching state in the forward computation. The 32-bit states
LL2 and LR2 are computed from a 128-bit subkey Krnd

1 , a 64-bit subkey LKrnd
2

and the left most 32 bits of RKrnd
2 , i.e., (LL2, LR2) = F(1)(P,K(1)), where K(1) ∈

{Krnd
1 , LKrnd

2 , the left most 32 bits of RKrnd
2 }, and |K(1)| = 224(= 128 + 64 +

32). Similarly, we choose LL3 and LR3 as the matching state in the backward
computation. Since the similar relation holds in the backward computation, LL3

and LR3 are computed as (LL3, LR3) = F
−1
(2) (C,K(2)), where K(2) ∈ {K

rnd
5 , LKrnd

4 ,

the left most 32 bits of RKrnd
4 }, and |K(2)| = 224. Thus, using the parameter N = 13

(≤ (224 + 224)/32), the time complexity for finding all round keys is estimated as

Ccomp = max(2224, 2224)× 13 + 2640−13·32 = 2228.

The number of required data is only 13 (=max(13, ⌈(640 − 13 · 32)/64⌉)) known
plaintext/ciphertext pairs, and required memory is about 2228 (=min(2224, 2224)×13)
blocks.

5.8 Discussion

On the ASR attack, an attacker attempts to recover all subkeys instead of the user-
provided key, regarding all subkeys as independent variables. Note that, if there is
no equivalent key, which is a reasonable assumption for a moderate block cipher,
there obviously exist unique subkeys that map a given plaintext to the ciphertext
encrypted by a secret key. In the standard MITM attack, determining neutral
key bits and constructing initial structure called bicliques seem two of the most
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complicated and important parts in the attack process. However, in our attack,
those two procedures are not required, since the attacker focuses only on subkeys
and all subkeys are treated equally. Moreover, in the ASR attack, it is not mandatory
to analyze the underlying key schedule, since it basically focuses only on the data
processing part. These features make the attack simple and generic. While the ASR
attack is simple and generic as explained, it is still powerful attack. Indeed, we can
significantly improve the previous results on several block ciphers as summarized in
Table 10.1 (see also Table 5.2 for the details of the target ciphers). We emphasize
that our approach is not polynomial-advantage attack, which requires access of all
possible keys, but exponential-advantage attack. Moreover, our attack works on the
block ciphers using any key schedule functions even if it is ideal.

While all subkeys are regarded as independent variables in the ASR attack,
there must exist some relations between them in an actual block cipher. Thus, if an
attacker exploits some properties in the underlying key schedule, the attacker may
be able to enhance the attacks presented in this chapter. For instance, the following
techniques might be useful:

• Finding the user-provided key from the part of subkeys.

• Reducing the search space of subkeys by using relation of subkeys.

Since the purpose of this chapter provides generic approach to evaluate the security
of block ciphers, we do not show these specific and dedicated techniques. However,
by using such techniques, the number of attacked rounds might be increased.

5.9 Conclusion

We have proposed a new but simple and generic attack on block ciphers. The
proposed attack called all subkeys recovery (ASR) attack is based on the meet-
in-the-middle (MITM) attack. The previous MITM attack applied to several block
ciphers consisting of a simple key schedule such as a permutation based key schedule,
since the MITM attack mainly exploits the weakness in the key schedule. However,
there have been a few results on the block ciphers having complex key schedule.

In this chapter, we applied the ASR attack to several block ciphers employing
complex key schedule, regarding all subkeys as independent variables. We showed
the ASR attacks on the 7-, 41-, 110-, 100-, 94- and 5-round reduced CAST-128,
SHACAL-2, KATAN32, KATAN48, KATAN64 and FOX128, respectively. More-
over, we presented the ASR attacks on the full Blowfish in the known F-function
setting. All of our results except for the attack on the reduced FOX128 significantly
improved the previous results with respect to the number of attacked rounds.
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Chapter 6

Related-Key Attack on
KATAN32/48/64

KATAN/KTANTAN is a family of hardware oriented block ciphers proposed at
CHES 2009. Although the KTANTAN family have been broken by a meet-in-the-
middle approach, the KATAN family are secure at present. In this chapter, we
investigate the KATAN family in the related-key boomerang framework with sev-
eral techniques. By using an efficient differential characteristics search method, long
boomerang distinguishers can be built. Furthermore, the key recovery phase is opti-
mized by exploiting several properties of the round function such as the high linearity
of the round function and the slow key diffusion. As a result, we can attack 174,
145 and 130 rounds of KATAN32, KATAN48 and KATAN64, which substantially
improve the known best results whose attacked rounds are 120, 103, 94 rounds,
respectively. Our attacks are confirmed by various experimental verifications, espe-
cially, we give concrete right quartets for KATAN32.

6.1 Introduction

KATAN/KTANTAN is a family of lightweight block ciphers designed for extremely
resource-constrained devices such as RFID and sensor nodes [24]. After its publi-
cation in CHES 2009, the full-round KTANTAN family was theoretically broken by
using a meet-in-the-middle approach [9]. The attack takes advantage of the simple
key scheduling algorithm for the KTANTAN family. The complexity of the attack
was later improved by using the splice-and-cut technique [76]. Armed with related-
key model, KTANTAN family can even be broken in practical time [100]. For the
KATAN family where the key is loaded into a register and updated in each round,
the meet-in-the-middle approach is not likely to work well as the cases of KTAN-
TAN. In the single-key setting, a conditional differential attack is applied to 78, 70
and 68 rounds of KATAN32, KATAN48 and KATAN64, respectively [98]. These
results were further improved by using a variant of the meet-in-the-middle approach
to 110, 100 and 94 rounds [101]. Also, a differential-style attack broke the 115-round
KATAN32 [102]. Even in the related-key setting, only 120, 103 and 90 rounds for
the respective three versions were broken by the conditional differential attack [103].
Given the full 254 rounds, the KATAN family seem to have enough security margin
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Table 6.1: Comparison of attacks against KATAN family
Cipher Attacking Technique #Rounds Time Data Mem. Reference

KATAN32 Differential (SK) 78 276 216 CP Not given [98]

MITM (SK) 110 277 138 KP 275.1 [101]

Differential (SK) 115 279 138 KP 275.1 [102]

Differential (RK) 120 231 Practical (CP) Practical [103]

Boomerang (RK) 172 276.2 227.6 CP 226.6 Ours

Boomerang (RK) 173 277.5 227.6 CP 226.6 Ours

Boomerang (RK) 174 278.8 227.6 CP 226.6 Ours

KATAN48 Differential (SK) 70 278 231 CP Not given [98]

MITM (SK) 100 278 128 KP 278 [101]

Differential (RK) 103 225 Practical (CP) Practical [103]

Boomerang (RK) 145 278.5 238.4 CP 237.4 Ours

KATAN64 Differential (SK) 68 278 232 CP Not given [98]

MITM (SK) 94 277.68 116 KP 277.68 [101]

Differential (RK) 90 227 Practical (CP) Practical [103]

Boomerang (RK) 130 278.1 253.1 CP 252.1 Ours

SK: Single Key, RK: Related Key, KP: Know Plaintext, CP:Chosen Plaintext.

at present.
In this chapter, we further investigate the security of the KATAN family in the

related-key boomerang framework. In order to build a long and efficient boomerang
distinguisher, we use an efficient differential characteristics search strategy. Gener-
ally speaking, this strategy is inspired by observing that there exists 39 consecutive
rounds where the related key difference is zero. We call it blank step, and by fixing
the starting round of the blank step, we can go backwards and forwards to com-
pute the input and output differences for both E0 and E1. Since the key scheduling
algorithm is linear for the KATAN family, key difference fixed in E1 can still be
propagated in backwards deterministically. Although a similar strategy was used
for conditional differential attacks [103, 103], we optimize it for boomerang-type at-
tacks. In particular, we carefully choose sets of input differences which are likely to
produce differential characteristics with very high probability, and then exhaustively
search for differential characteristics of each input set. The probability for E0 can be
further controlled by adding conditions in the plaintexts. By taking multiple output
differences for E0 and multiple input differences for E1 into consideration, we are
able to build 140, 119 and 113 rounds related-key boomerang distinguisher for the
corresponding three versions. Based on the boomerang distinguisher, we further
optimize the key recovery phase by exploiting the property of the round function in
order to reduce the complexity as well as increasing the number of attacked rounds.
The comparison of the attacks against the KATAN family is summarized in Table
6.1. Our attacks substantially improve previous attacks for all variants, and are con-
firmed by various experimental verifications, especially, we give the concrete right
quartets for KATAN32 which supports the feasibility of the attack.
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Figure 6.1: Key scheduling function of KATAN32/48/64
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Figure 6.2: Round function of KATAN32

6.2 Preliminaries

6.2.1 KATAN Block Cipher

The KATAN family [24] is a feedback shift register-based block cipher consisting of
three variants : KATAN32, KATAN48, KATAN64, whose block sizes are 32 bits,
48 bits and 64 bits, respectively. All variants use the same LFSR(Linear Feedback
Shift Register)-type key scheduling function accepting an 80-bit key.

The key scheduling function expands an 80-bit user-provided key ki (0 ≤ i < 80)
into a 508-bit subkey ski (0 ≤ i < 508) by the following linear operations,

ski =

{

ki (0 ≤ i < 80),

ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 (80 ≤ i < 508).

These operations are expressed as an 80-bit LFSR whose polynomial is x80 + x61 +
x50 + x13 + 1 as shown in Fig 6.1.

In the round function, each bit of a plaintext is loaded into registers L1 and L2.
Then, these are updated as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka,

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb,

L1[i] = L1[i− 1] (1 ≤ i < |L1|), L1[0] = fb(L2),

L2[i] = L2[i− 1] (1 ≤ i < |L2|), L2[0] = fa(L1),

where ⊕ and · are bitwise XOR and AND operations, respectively, and L[x] de-
notes the x-th bit of L, IR is the round constant value defined in the specification,
and ka and kb are two subkey bits. Table 6.2 shows the detailed parameters of
KATAN32/48/64. For round i, ka and kb correspond to sk2(i−1) and sk2(i−1)+1,
respectively. After 254 rounds (1-254 round), values of registers are output as a
ciphertext. Fig. 6.2 illustrates the round function of KATAN32.
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Table 6.2: Parameters of KATAN family
Algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

6.2.2 Related-Key Boomerang Attack

The related-key boomerang attack [27] is a combination of the boomerang attack
[8], and the related-key differential attack [6].

Boomerang-Type Attack

The main idea behind the boomerang attack [8] is to use two short differentials
with high probability instead of one long differential with low probability. Suppose
that a block cipher with n-bit block and k-bit key, E : {0, 1}n × {0, 1}k → {0, 1}n,
is expressed as a cascade cipher E = E1 ◦ E0, where E0 has a differential α → β
with probability p, and E1 has a differential γ → δ with probability q. Then, the
distinguisher is mounted as follows:

1 : Ask for the ciphertexts C1 = E(P1) and C2 = E(P2), where P2 = P1 ⊕ α.

2 : Ask for the plaintexts P3 = E−1(C3) and P4 = E−1(C4), where C3 = C1 ⊕ δ
and C4 = C2 ⊕ δ.

3 : Check whether P3 ⊕ P4 = α.

Here, E satisfies the condition of P3⊕P4 = α with probability of p2q2, while that of
a random permutation is 2−n. Note that the attack can be mounted for all possible
β’s and γ’s simultaneously. Therefore, the probability is improved to p̂2q̂2 from p2q2,

where p̂ =
√∑

β Pr
2[α→ β] and q̂ =

√∑

γ Pr
2[γ → δ].

The amplified boomerang attack converts the adaptive setting into the non-
adaptive one [104]. It exploits the birthday paradox in the middle round. An
attacker encrypts many plaintext pairs with a difference α, and collects plain-
text/ciphertext quartets. Then, she searches for right quartets in the form of
P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ. For E, this event occurs
if the following three conditions are satisfied:

Condition 1 : E0(P1)⊕ E0(P2) = E0(P3)⊕ E0(P4) = β,

Condition 2 : E0(P1)⊕ E0(P3)(or E0(P2)⊕ E0(P4)) = γ,

Condition 3 : C1 ⊕ C3 = C2 ⊕ C4 = δ.

The probability that a quartet is the right one is 2−np2q2. For a random permutation,
this event occurs with probability of 2−2n. Thus, if pq > 2−n/2, we can distinguish
E from a random permutation. Given N plaintext pairs having α difference, there
are

(
N
2

)
× 2 ≈ N2 quartets. Thus, the expected number of right quartets in N

pairs is N2 · 2−np2q2. The rectangle attack [105] exploits all β and γ to improve
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Figure 6.3: Related-key boomerang quartet

the amplified boomerang attack. If p̂2q̂2 > 2−n/2, this distinguisher works. Though
the rectangle attack requires a large amount of data, it can perform a key recovery
phase in the non-adaptive setting.

In this chapter, we refer boomerang-type attack using amplified and rectangle
techniques to boomerang attack for sake of simplicity.

Related-Key Boomerang Attack

The related-key boomerang attack [27] additionally uses key differences. See Fig. 3
for its illustration. Assume that E0 has a differential α→ β under a key difference
∆Ka with probability p̂, and E1 has a differential γ → δ under a key difference ∆Kb

with probability q̂. A related-key distinguisher is constructed by using four different
unknown keys, K1, K2 = K1 ⊕Ka, K3 = K1 ⊕Kb, K3 = K1 ⊕Ka ⊕Kb, as follows:

1 : Ask N ciphertext pairs (C1, C2), where C1 = EK1(P1), C2 = EK2(P2) and
P1 ⊕ P2 = α. Define the set of these pairs as S.

2 : Ask N ciphertext pairs (C3, C4), where C3 = EK3(P3), C4 = EK4(P4) and
P3 ⊕ P4 = α. Define the set of these pairs as T .

3 : Find right quartets satisfying the following conditions from S and T :

P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ,
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Table 6.3: Output differences of z for each input value (x, y) and its difference

Value of Difference of (x, y)
(x, y) (0,1) (1,0) (1,1)

(0,0) 0 0 1

(0,1) 0 1 0

(1,0) 1 0 0

(1,1) 1 1 1

Table 6.4: Sets of input differences with Hamming weight 2

set key difference no-difference subkeys plaintext differences Pcol

0 0, 19 20− 98 L2[9], L1[12] 2−2

1 1, 20 21− 99 L2[18], L1[2, 7, 12] 2−3

2 2, 21 22− 100 L2[8], L1[11] 2−3

3 3, 22 23− 101 L2[17], L1[1, 6, 11] 2−3

4 4, 23 24− 102 L2[7, 18], L1[10] 2−3

5 5, 24 25− 103 L2[16], L1[0, 5, 10] 2−4

6 6, 25 26− 104 L2[6, 17], L1[9] 2−3

7 7, 26 27− 105 L2[15, 18], L1[4, 9] 2−3

8 8, 27 28− 106 L2[5, 16], L1[8] 2−4

9 9, 28 29− 107 L2[14, 17], L1[3, 8] 2−5

10 10, 29 30− 108 L2[4, 15], L1[7, 12] 2−4

6.3 Related-Key Boomerang Distinguisher on KATAN32

In this section, we introduce an effective search strategy for finding good related-key
differential characteristics. This technique exploits the linearity of the key scheduling
and the low dependency of subkey bits. Although a similar search strategy was used
in [98, 103], we optimize it for a boomerang-type attack.

6.3.1 Differential Properties of KATAN

Round Function

Let us consider an XOR differential property of the round function of KATAN in
which there are four nonlinear components, i.e., AND operations. Table 6.3 shows
the differential property of the AND operation whose inputs are x, y and the output
is z, namely z = x · y. For example, for the value (1, 0) and the difference (1, 0), the
difference of z is obtained as (x · y)⊕ ((x⊕ 1) · (y ⊕ 0)) = (1 · 0)⊕ (0 · 1) = 0. From
Table 6.3, when input values have any differences, the output also has a difference
with probability 2−1(= 6/12).

Besides, one AND operation takes IR as one of the input bits. If one of input bits
is public and constant, the corresponding output difference is deterministic. Thus,
we can focus on only three AND operations as nonlinear operations.

Key Scheduling Function

The key scheduling function employs only linear operations based on the LFSR.
Then, we obtain the following observation.
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Observation. Choosing input key differences properly, 79 consecutive
subkey bits have no differences after the key scheduling function.

Since the key scheduling function is the 80-bit LFSR-type construction, any 80 con-
secutive subkeys surely contain some differences if the key has differences. However,
if only one bit of ki (0 ≤ i ≤ 18) has a difference, there is no differences in ki+1−ki+79,
because ki is not used until ki+80. As for the other case, Table 6.4 shows all possible
sets of 2-bit input key differences producing such 79-bit no differences subkeys. For
example, assuming that k0 and k19 have differences (set 0), k20 − k98 do not have
differences because the difference k0 is canceled by k19 when it is used for computing
k80. The same event occurs in other sets 1-10.

Note that, for all 79 consecutive subkey bits, we can generate the subkey dif-
ference which does not make any difference for the target 79 subkey bits. This can
be done by the kernel computing approach in [82]. However these sets do not give
advantage compared to the sets 1-10, and thus we omit the details.

6.3.2 Strategy for Finding Differential Characteristics

We introduce an effective search strategy for finding good related-key differential
characteristics. It is well-suited for boomerang-type attacks in terms of short differ-
ential characteristics with very high probability. In general, it is difficult to find good
differential characteristics for a bit-oriented cipher due to the large search space. Be-
sides, the related-key setting where key differences are additionally inserted makes
it more difficult. In order to get rid of this problem, our strategy is focusing on
particular input differential sets which are expected to give good characteristics for
boomerang-type attacks.

The differential characteristic search strategy consists of a collision step, a blank
step and a brute force step as shown in Fig.6.4.

Collision step : Plaintext difference and key difference cancel each other.

Blank step : No difference exists in registers and inserted subkeys.

Brute force step : Subkey differences propagate to the registers.

The key idea of this strategy is to construct the rounds having no difference called
blank round. Since the blank round does not reduce the differential probability,
i.e., differential probability of such rounds is one, we expect to obtain differential
characteristics with high probability. For constructing a long blank round, we utilize
the observation 1: we can set 79 consecutive subkey bits having no difference. If
there is no difference in registers where these 79-bit subkeys are used, the blank
round can be easily constructed. In other words, we properly choose plaintext
difference for canceling out subkey differences just before the blank round. Table 6.4
shows the plaintext differences for canceling the corresponded input key differences
before the blank round and its probability. After the blank round, we search for all
differential characteristics. As mentioned before, we regard three AND operations
as nonlinear components. Let Pcol, Pblk and Pbf be the differential probability of
each step, respectively. The whole differential characteristic probability is calculated
as Pcol · Pblk · Pbf , where Pblk = 1.
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Figure 6.4: Strategy for finding differential characteristics

Table 6.5: Maximum probability of differential characteristics of each set in E0

Round set0 set1 set2 set3 set4 set5 set6 set7 set8 set9 set10

65 2−9 2−9 2−7 2−8 2−7 2−8 2−7 2−7 2−7 2−7 2−7

66 2−10 2−10 2−7 2−9 2−7 2−9 2−7 2−8 2−8 2−8 2−8

67 2−12 2−10 2−8 2−10 2−7 2−10 2−7 2−9 2−8 2−9 2−9

68 2−13 2−11 2−9 2−10 2−8 2−11 2−7 2−11 2−8 2−10 2−10

69 2−14 2−12 2−10 2−12 2−9 2−11 2−8 2−12 2−8 2−11 2−11

70 2−15 2−12 2−12 2−12 2−10 2−12 2−9 2−12 2−9 2−12 2−12

71 2−16 2−13 2−13 2−12 2−12 2−13 2−10 2−14 2−10 2−12 2−12

Input key differences are restricted to the set satisfying the property of the
observation 1. Then, plaintext differences are also determined from the set of input
key differences for constructing the blank round (see Table 6.4).

6.3.3 Related-key Boomerang Distinguisher on 140-round KATAN32

Using the efficient differential characteristics search, we obtain the maximum prob-
ability of differential characteristics of each input set in E0 starting from round 1
(see Table 6.5).

To construct a distinguisher, we choose 70 rounds of set 8 whose probability
is highest of all the sets. E0 has 8 characteristics with probability p = 2−9, 16
characteristics with probability p = 2−10, 16 characteristics with probability p =
2−11 and 64 characteristics with probability p = 2−12, which are generated from the
same input. Thus, the overall probability for E0 is

p̂ =
√

(2−9)2 · 8 + (2−10)2 · 16 + (2−11)2 · 16 + (2−12)2 · 64 ≈ 2−7.1.

Table 6.7 gives a single differential trail of E0 with probability of 2−9, where round
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Table 6.6: Maximum probability of differential characteristics of each set in E1

Round set0 set1 set2 set3 set4 set5 set6 set7 set8 set9 set10

65 2−6 2−10 2−7 2−8 2−9 2−8 2−7 2−7 2−8 2−7 2−6

66 2−7 2−11 2−7 2−9 2−9 2−9 2−7 2−8 2−9 2−8 2−7

67 2−8 2−11 2−8 2−10 2−10 2−11 2−7 2−9 2−10 2−9 2−8

68 2−9 2−13 2−9 2−10 2−11 2−12 2−7 2−10 2−10 2−10 2−8

69 2−11 2−13 2−10 2−12 2−13 2−12 2−8 2−11 2−11 2−11 2−8

70 2−12 2−13 2−12 2−12 2−14 2−13 2−9 2−11 2−12 2−12 2−8

71 2−15 2−14 2−13 2−12 2−15 2−14 2−10 2−12 2−14 2−12 2−9

0 means initial differences, i.e., differences of a plaintext.
Since KATAN employs the LFSR-based key scheduling, all 508 subkey bits can

be calculated from any consecutive 80 subkey bits. It means that we can use the
efficient differential characteristics search strategy from any round by regarding the
consecutive 80 subkey bits as the master key bits. Thus, we search for differential
characteristics of E1 from round 71 with the same strategy.

Table 6.6 shows the maximum probability of differential characteristics of each
set in E1 starting from round 71. We choose set 1 as E1 with probability 2−8.
In addition, E1 has 4 characteristics with probability 2−8, 8 characteristics with
probability 2−9 and 32 characteristics with probability 2−10, which produce the
same output difference. Thus, the total probability for E1 is estimated as

q̂ =
√

(2−8)2 · 4 + (2−9)2 · 8 + (2−10)2 · 32 ≈ 2−6.5.

Table 6.8 gives a single differential trail of E1 with probability 2−8.
Combining these two-type differential characteristics, 140 (=70+70)-round related-

key boomerang distinguisher can be constructed with probability of

p̂2 · q̂2 = (2−7.1)2 · (2−6.5)2 = 2−27.2 (> 2−32).

The probability of the boomerang distinguisher, 2−27.2, is possible to verify prac-
tically. We performed the experiment on a standard PC and found right quartets
within a few minutes. One examples is shown in Table 6.9 .
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Table 6.9: Example of confirmed boomerang quartets for KATAN32

P1 0x46ec3236 C1 0xee39e8a1 K1 0x22fe640869975423bce9

P2 0x4eed3216 C2 0xf19133e1 K2 0x22fe640869975c23bde9

P3 0xd2379460 C3 0xee11e925 K3 0xa6ffe4826d8d3228d6c1

P4 0xda369440 C4 0xf1b93265 K4 0xa6ffe4826d8d3a28d7c1

P1 ⊕ P2 0x08010020 C1 ⊕ C3 0x00280184 K1 ⊕K2 = K3 ⊕K4 0x00000000000008000100

P3 ⊕ P4 0x08010020 C2 ⊕ C4 0x00280184 K1 ⊕K3 = K2 ⊕K4 0x8401808a041a660b6a28

Table 6.7: Differential characteristic
of KATAN32 E0 (1 - 70)

Round L2[0] . . . L2[18] L1[0] . . . L1[13] KaKb Pr.

0 0000010000000000100 0000000010000 0 0 1

1 0000001000000000010 0000000001000 0 0 2−1

2 0000000100000000001 0000000000100 0 0 2−1

3 0000000010000000000 0000000000010 0 0 2−1

4 0000000001000000000 0000000000001 1 0 2−2

5 0000000000100000000 0000000000000 0 0 2−2

6 0000000000010000000 0000000000000 0 0 2−3

7 0000000000001000000 0000000000000 0 0 2−3

8 0000000000000100000 0000000000000 0 0 2−4

9 0000000000000010000 0000000000000 0 0 2−4

10 0000000000000001000 0000000000000 0 0 2−4

11 0000000000000000100 0000000000000 0 0 2−4

12 0000000000000000010 0000000000000 0 0 2−4

13 0000000000000000001 0000000000000 0 1 2−4

14 0000000000000000000 0000000000000 0 0 2−4

53 0000000000000000000 0000000000000 0 1 2−4

54 0000000000000000000 1000000000000 0 0 2−4

55 0000000000000000000 0100000000000 0 0 2−4

56 0000000000000000000 0010000000000 0 0 2−4

57 0000000000000000000 0001000000000 0 0 2−4

58 0000000000000000000 0000100000000 0 0 2−4

59 0000000000000000000 0000010000000 0 0 2−4

60 0000000000000000000 0000001000000 1 0 2−5

61 1000000000000000000 0000000100000 0 0 2−5

62 1100000000000000000 0000000010000 0 0 2−5

63 0110000000000000000 0000000001000 0 0 2−6

64 0011000000000000000 0000000000100 0 0 2−6

65 0001100000000000000 0000000000010 0 0 2−7

66 0000110000000000000 0000000000001 0 1 2−8

67 1000011000000000000 1000000000000 0 0 2−8

68 0100001100000000000 0100000000000 0 0 2−8

69 0010000110000000000 1010000000000 0 0 2−8

70 0001000011000000000 1101000000000 0 0 2−9

Table 6.8: Differential characteristic
of KATAN32 E1 (71 - 140)

Round L2[0] . . . L2[18] L1[0] . . . L1[13] KaKb Pr.

70 0000100000000001000 0000000100001 0 0 1

71 0000010000000000100 0000000010000 0 0 1

72 0000001000000000010 0000000001000 0 0 2−1

73 0000000100000000001 0000000000100 0 0 2−1

74 0000000010000000000 0000000000010 0 0 2−1

75 0000000001000000000 0000000000001 1 0 2−2

76 0000000000100000000 0000000000000 0 0 2−2

77 0000000000010000000 0000000000000 0 0 2−3

78 0000000000001000000 0000000000000 0 0 2−3

79 0000000000000100000 0000000000000 0 0 2−4

80 0000000000000010000 0000000000000 0 0 2−4

81 0000000000000001000 0000000000000 0 0 2−4

82 0000000000000000100 0000000000000 0 0 2−4

83 0000000000000000010 0000000000000 0 0 2−4

84 0000000000000000001 0000000000000 0 1 2−4

124 0000000000000000000 0000000000000 0 1 2−2

125 0000000000000000000 1000000000000 0 0 2−2

126 0000000000000000000 0100000000000 0 0 2−3

127 0000000000000000000 0010000000000 0 0 2−3

128 0000000000000000000 0001000000000 0 0 2−3

129 0000000000000000000 0000100000000 0 0 2−4

130 0000000000000000000 0000010000000 0 0 2−4

131 0000000000000000000 0000001000000 1 0 2−5

132 1000000000000000000 0000000100000 0 0 2−5

133 1100000000000000000 0000000010000 0 0 2−5

134 0110000000000000000 0000000001000 0 0 2−6

135 0011000000000000000 0000000000100 0 0 2−6

136 0001100000000000000 0000000000010 0 0 2−7

137 0000110000000000000 0000000000001 0 1 2−8

138 1000011000000000000 1000000000000 0 0 2−8

139 0100001100000000000 0100000000000 0 0 2−8

140 0010000110000000000 1010000000000 0 0 2−8

6.4 Related-Key Recovery Attack on KATAN-32

In this section, a related-key attack on KATAN-32 is proposed given the 140-round
boomerang distinguisher. One of the challenging problems is how to reduce the
candidate quartets. This is usually achieved by studying the propagation of the
difference to the ciphertext in order to filter out definitely wrong quartets. For the
KATAN family, this may not be the best option. When we extend the attacking
rounds as long as possible, the difference propagation will leave us with no clue. In-
stead, we try to choose plaintext so that the characteristic for the first several rounds
are always satisfied. This strategy is also used in previous KATAN attacks [98, 103].
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We further optimize the key recovery phase by exploiting the property of the round
function, in order to reduce the complexity as well as increasing the number of
attacked rounds.

6.4.1 Conditions for Chosen Plaintexts

In the collision step for E0, we have calculated that pcol = 2−4. Recall that for two
inputs to an AND gate, one input with value 1 will guarantee the propagation of
the difference from the other input, and difference will disappear when the value
is fixed to 0. Thus we can assure the difference propagation with probability 1 by
fixing some of the plaintext bits. For KATAN32, the probability for the collision
steps can be increased to 1. The conditions on plaintext bits are L2[0] = L2[3] =
L2[7] = L1[5] = 0, and the increased probability for E0 is

p̂ =
√

(2−9+4)2 · 8 + (2−10+4)2 · 16 + (2−11+4)2 · 16 + (2−12+4)2 · 64 ≈ 2−3.1.

This indicates that we can expect one right quartet in 251.2(= (2−3.1)2·(2−6.5)2·2−32).
As a result, the number of quartet candidates is reduced to 251.2.

6.4.2 Optimizing Key Recovery Phase

Suppose that we append x rounds to the end of the 140-round distinguisher. The
attacker queries N pairs of plaintexts to oracles with K1 and K2. She also queries N
pairs of plaintexts to oracles with K3 and K4. Then, N2 quartets are constructed.
We set N ← p̂−1 · q̂−1 · 2n/2 so that a right quartet is generated.

To recover subkeys for the last x rounds with a straight-forward method, the
attacker guesses all subkeys for the last x rounds, and performs partial decryptions
until the end of the 140-round distinguisher for each of N2 quartets. Let gi, where
i ∈ {1, 2, 3, 4} be a set of subkey bits used in the last x rounds for the Ki oracle.
Because KATAN uses two subkey bits in each round, each gi contains 2x subkey bits.
We denote the x-round partial decryption for a ciphertext Ci with a guessed key gi
by Dgi(Ci). Note that if the guess forK1 oracle, g1, is determined, the corresponding
g2, g3, and g4 are determined uniquely. If the guessed value is correct, the attacker
will find one quartet such that Dg1(C1)⊕Dg3(C3) = Dg2(C2)⊕Dg4(C4) = δ. If such
a quartet is not found, the guess is wrong. Unfortunately, the complexity of this
approach is too high. Let #g be the number of subkey bits in each of gi, namely
2x. The approach requires N2 ·#g · 4 partial decryptions, where a factor of N2 is
too high.

Pairwise Approach

We propose a more efficient method. For each guess of g1 and corresponding
g2, g3, g4, we perform the partial decryption for N pairs of (C1, C2) and N pairs
of (C3, C4) independently, and identify the right quartet by checking their match as
follows:

1. Make a guess for g1 and determine the corresponding values for g2, g3, g4.

2. For all N pairs of (C1, C2), compute (Dg1(C1)⊕δ,Dg2(C2)⊕δ) and store them
in a table with N entries.
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Table 6.10: Partial-matching technique for KATAN32

#Skipped rounds Number of bits with unknown differences Pright

L1 L2 Total

1–4 0 0 0 N2 · 2−64

5 1 0 1 N2 · 2−62

6 2 0 2 N2 · 2−60

7 3 1 4 N2 · 2−56

r(≥ 6) r − 4 r − 6 2r − 10 N2 · 2−84+4r

If one subkey bit for the first skipped round is guessed, Pright decreases by 22.

3. For all N pairs of (C3, C4), compute (Dg3(C3), Dg4(C4)) and store them in
another table.

4. If the guess is correct, a match is found. Otherwise, the guess is discarded.

This method requires only N · #g · 2 partial decryptions for Step 2 and Step 3
respectively, in total N · #g · 4 partial decryptions. The memory requirement is
2N state. The memory for Step 3 can be saved by checking the match as soon
as we obtain a pair. Each guess is judged as a right-key candidate if one of N2

quartets satisfies two n-bit relations δ. We denote this probability by Pright, which
is N2 · 2−2n. After the analysis, the key space will be #g · Pright = #g ·N2 · 2−2n.
The remaining key space will be later examined by the exhaustive search.

Exploiting Linear Subkey Insertion

We further optimize the attack by exploiting the round function structure. Recall
Fig. 6.2. If the output value for some round r is known, the input difference for
round r can be computed without guessing subkeys. This is because the 1-round
decryption uses subkey values only in the linear operation. The situation continues
until unknown values are used as an input of AND operations. In the end, the
difference after the x-round decryption can be computed only with guessing subkeys
for the last x− 4 rounds.

Partial Matching

Another optimization is possible by exploiting the property that only 2 bits are
updated in each decryption round. Let us see what will happen if we go back 5
rounds without guessing subkeys. As mentioned above, the difference in all bits can
be computed up to 4 rounds. In the next round, the attacker cannot compute the
difference of the updated bit L1[12], while she knows the difference of the other 31
bits (L2[18] can be computed at this stage). Hence, the match can be performed
for 31 bits. The analysis is summarized in Table 6.10. Let r be the number of
rounds which we compute without guessing subkeys. Let z be the number of bits
with unknown difference. The match is performed for 32− z bits. From Table 6.10,
z = 2r − 10 for r ≥ 6. Because 2 pairs exist in a quartet, Pright is N

2 · 2−2(32−z),
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which is N2 · 2−84+4r. As long as Pright is small enough, subkeys can be recovered
faster than the exhaustive search.

Partial Key Guessing

The last technique for the optimization is partially guessing a subkey, i.e., only
guessing 1 bit of a subkey in the first skipped rounds. In Table 6.10, this makes
the number of unknown bits be 2r − 11 and Pright be N2 · 2−86+4r when r ≥ 6.
Intuitively, the technique increases the computational complexity by 1 bit due to
the additional guessed bit, while it increases the efficiency of the filtering function
by 2 bits due to two pairs in a quartet.

6.4.3 Attack Procedure and Complexity Evaluation

We append x = 34 rounds to the end of the 140-round distinguisher. The number
of rounds which we do not guess subkey values, r, is 8, but we use the partial key
guessing technique. Therefore, #g = 53, where each gi consists of 52 bits for the
last 26 rounds and 1 bit of subkey (either bit is fine) for the 27th last round.

1. Choose N = 225.6 plaintext pairs (P1, P2) so that P1 ⊕ P2 = α and satisfy the
4-bit conditions L2[0] = L2[3] = L2[7] = L1[5] = 0. Query them to the oracles
with K1 and K2, and store the corresponding 225.6 pairs of (C1, C2).

2. Do the same for (P3, P4) to obtain N = 225.6 ciphertext pairs (C3, C4).

3. Guess g1 and the corresponding g2, g3, g4. For each guess, do as follows.

(a) For 225.6 pairs of (C1, C2), decrypt them for 26 rounds. Then, further
decrypt them by 8 rounds to obtain differences in 32− (2× 8− 11) = 27
bits, and take the XOR with δ. Store them in a table with 225.6 entries.

(b) For 225.6 pairs of (C3, C4), do as follows.

i. Similarly decrypt the pair for 26 + 8 = 34 rounds to obtain the
differences in 27 bits.

ii. Check if the match exists between the stored values. If no match is
found, delete the guess from the candidate. Otherwise, do as follows.

iii. For exhaustive guesses of 80 − 53 = 27-bit subkeys which are not
guessed yet, check the correctness of the guess by using any pair of
plaintext and ciphertext (32-bit match). It it passes the check, then
further check the correctness of the guess with two more plaintext-
ciphertext pairs. If it passes all checks, output it as the correct key.

For Step 1 and 2, we need 4 ∗ 225.6 = 227.6 chosen plaintexts. Step 3a requires
253+25.6·2·34/174 ≈ 277.25 174-round KATAN32 computations. The memory require-
ment for Step 3a is about 2 · 225.6 = 226.6 state values. Step 3(b)i also requires 277.25

computations. After Step 3(b)ii, 253 · Pright = 253 · (251.2 · 2−86+4·8) = 250.2 key can-
didates will remain. Step 3(b)iii requires 250.2+27 = 277.2 174-round KATAN32 com-
putations for the first plaintext-ciphertext pair. Only 277.2−32 = 245.2 key candidates
are examined for the second pair, and only 245.2−32 = 213.2 candidates are examined
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for the third pair. Hence, the complexity for Step 3(b)iii is 277.2+245.2+213.2 ≈ 277.2

174-round KATAN32 computations.
In summary, the data complexity is 227.6 chosen plaintexts, the time complexity

is 277.25 + 277.25 + 277.2 ≈ 278.8 174-round KATAN32 computations. The memory
requirement is 225.6 state.

Note that our attack succeeds only if the right quartet is obtained i.e., the
differential with a probability of 2−51.2 is satisfied with 251.2 quartets. Hence, the
success probability of our attack is 1− 1/e ≈ 0.63. On the other hand, the success
probability of the brute force attack with 278.8 trials is 0.44. Hence, our attack is
better than the brute force attack with the same complexity.

Also note that the advantage of our attack becomes clearer if the number of
rounds is reduced more. For example, the complexity for 173 or 172 rounds is 277.5

or 276.2 computations, respectively, with the same data and memory.

6.5 Related-Key Boomerang Attack on KATAN-48/64

6.5.1 Differential Characteristics and Plaintext Conditions

First we give differential characteristic for KATAN48. Similar to KATAN32, we start
from finding collision steps, and by changing the starting point of the collision steps,
we go backwards to derive the input differences and key differences. As a result
we build a 119-round boomerang distinguisher for KATAN48. Table 6.11 and 6.12
demonstrate one characteristic for E0 and E1. We use a fixed characteristic between
rounds 1 to 49 of E0 and rounds 70 to 119 for E1, while we use a differential for
the other rounds. In total, for E0 there are 32 characteristics with probability 2−14,
128 characteristics with probability 2−15 and 128 characteristics with probability
2−16. For E1 there are 128 characteristics with probability 2−12. As a result, p̂ =
√

(2−14)2 · 32 + (2−15)2 · 128 + (2−16)2 · 128 = 2−10.9, q̂ =
√

(2−12)2 · 128 = 2−8.5.
Differential characteristics for E0 and E1 of KATAN64 are summarized in Table

6.13 and 6.14. Due to the more scrambling in each round, the number of the collision
steps and the brute force steps are reduced. We use a fixed characteristic between
rounds 1 to 46 of E0 and rounds 103 to 113 for E1, while we use a differential for
the other rounds. For E0 there are 64, 256, 512, 1024, and 1024 characteristics with
probability 2−16, 2−17, 2−18, 2−19, and 2−20, respectively. For E1 there are 4, 24, 88,
224, 416, 608, 704, 640, and 256 characteristics with probability 2−16, 2−17, 2−18,
2−19, 2−20, 2−21, 2−22, 2−23, and 2−24, respectively. As a result, p̂ = 2−12.25, and
q̂ = 2−13.8.

The probabilities of the collision steps of E0 for KATAN48/64 are both 2−7,
but this can be improved by 27 by choosing the plaintext satisfying the conditions.
The conditions are given below along with the improved probability for p̂. q̂ is not
affected by the chosen plaintext.

KATAN48

Conditions: L2[0] = L2[1] = L2[2] = L2[11] = L2[17] = 0, L2[10] 6= L2[18].
p̂ =

√

(2−14+7)2 · 32 + (2−15+7)2 · 128 + (2−16+7)2 · 128 = 2−3.9. We expect 272.8(=
(23.9)2 · (28.5)2 · 248) quartets before a right one shows up.
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Table 6.11: Differential characteristic of KATAN48 E0 (1 - 60)

Round L2(L2[0]...L2[28]) L1(L1[0]...L1[18]) KaKb Pr.

0 00000000011000000011000000011 0000000000000000011 1 0 1

1 00000000000110000000110000000 0000000000000000000 0 0 1

2 00000000000001100000001100000 0000000000000000000 0 0 2−2

3 00000000000000011000000011000 0000000000000000000 0 0 2−4

4 00000000000000000110000000110 0000000000000000000 0 0 2−5

5 00000000000000000001100000001 0000000000000000000 0 0 2−5

6 00000000000000000000011000000 0000000000000000000 0 0 2−6

7 00000000000000000000000110000 0000000000000000000 0 0 2−7

8 00000000000000000000000001100 0000000000000000000 0 0 2−7

9 00000000000000000000000000011 0000000000000000000 0 1 2−7

10 00000000000000000000000000000 0000000000000000000 0 0 2−7

49 00000000000000000000000000000 0000000000000000000 0 1 2−7

50 00000000000000000000000000000 1100000000000000000 0 0 2−7

51 00000000000000000000000000000 0011000000000000000 0 0 2−7

52 00000000000000000000000000000 0000110000000000000 0 0 2−7

53 10000000000000000000000000000 0000001100000000000 0 0 2−7

54 00100000000000000000000000000 0000000011000000000 0 0 2−9

55 00001000000000000000000000000 0000000000110000000 0 0 2−9

56 10000010000000000000000000000 0000000000001100000 1 0 2−9

57 10100000100000000000000000000 0000000000000011000 0 0 2−10

58 00101000001000000000000000000 0000000000000000110 0 0 2−12

59 10001010000010000000000000000 0000000000000000001 0 0 2−12

60 01100010100000100000000000000 0000000000000000000 0 0 2−14

KATAN64

Conditions: L2[6] = L2[7] = L2[8] = L2[21] = L2[30] = 0, L2[20] 6= L2[32], L2[19] 6=
L2[31]. p̂ becomes 2−5.25. We expect 2102.1(= (25.25)2 · (213.8)2 · 264) quartets before
a right one shows up.

6.5.2 Optimization and Summary of Key Recovery Attacks

The overall strategy is the same as the one for KATAN32. The only difference from
KATAN32 is the impact of the partial-matching technique, which comes from the
different register sizes |L1|, |L2| and input-bit positions for AND operations. The
results are summarized in Table 6.15 and Table 6.16.

145-round KATAN48

The attack generates p̂−1 · q̂−1 · 248/2 = 23.9+8.5+24 = 236.4 pairs of (P1, P2), and
236.4 pairs of (P3, P4). This makes 272.8 quartets, which include a right quartet with
probability 0.63. We append 26 rounds after the 119-round distinguisher. Hence,
145 rounds are attacked. In the key recover phase, we guess 42 bits of subkeys for
the last 21 rounds. Therefore, the number of skipped steps, r, is 5. This makes
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Table 6.12: Differential characteristic of KATAN48 E1 (61 - 119)

Round L2(L2[0]...L2[28]) L1(L1[0]...L1[18]) KaKb Pr.

60 00000000011000000011000000011 0000000000000000011 1 0 1

61 00000000000110000000110000000 0000000000000000000 0 0 1

62 00000000000001100000001100000 0000000000000000000 0 0 2−2

63 00000000000000011000000011000 0000000000000000000 0 0 2−4

64 00000000000000000110000000110 0000000000000000000 0 0 2−5

65 00000000000000000001100000001 0000000000000000000 0 0 2−5

66 00000000000000000000011000000 0000000000000000000 0 0 2−6

67 00000000000000000000000110000 0000000000000000000 0 0 2−7

68 00000000000000000000000001100 0000000000000000000 0 0 2−7

69 00000000000000000000000000011 0000000000000000000 0 1 2−7

70 00000000000000000000000000000 0000000000000000000 0 0 2−7

109 00000000000000000000000000000 0000000000000000000 0 1 2−7

110 00000000000000000000000000000 1100000000000000000 0 0 2−7

111 00000000000000000000000000000 0011000000000000000 0 0 2−7

112 00000000000000000000000000000 0000110000000000000 0 0 2−7

113 10000000000000000000000000000 0000001100000000000 0 0 2−7

114 00100000000000000000000000000 0000000011000000000 0 0 2−9

115 00001000000000000000000000000 0000000000110000000 0 0 2−9

116 10000010000000000000000000000 0000000000001100000 1 0 29

117 10100000100000000000000000000 0000000000000011000 0 0 2−10

118 00101000001000000000000000000 0000000000000000110 0 0 2−12

119 10001010000010000000000000000 0000000000000000001 0 0 2−12

the time complexity for the analysis for P1, P2 pairs be 236.4+42 · 2 · 26/145 ≈ 276.9

145-round KATAN48 computations. The memory requirement is 2 · 236.4 = 237.4

state values. The analysis for P3, P4 pairs also requires 276.9 145-round KATAN48
computations. Pright is 2

72.8 ·2−76 = 2−3.2. Hence, the complexity for the exhaustive
check becomes 280 ·Pright = 276.8. In the end, the data complexity is 4 · 236.4 = 238.4

chosen plaintexts. The computational complexity is 276.9 +276.9 +276.8 ≈ 278.5 145-
round KATAN48 computations. The success probability of our attack is 0.63, while
the success probability of the brute force attack with the same complexity is 0.35.

130-round KATAN64

The attack generates p̂−1 · q̂−1 · 264/2 = 25.25+13.8+32 = 251.05 pairs of (P1, P2), and
251.05 pairs of (P3, P4). This makes 2102.1 quartets, which include a right quartet with
probability 0.63. We append 17 rounds after the 113-round distinguisher. Hence,
130 rounds are attacked. In the key recover phase, we guess 28 bits of subkeys for the
last 14 rounds. Therefore, the number of skipped steps, r, is 3. This makes the time
complexity for the analysis for P1, P2 pairs be 251.05+28 · 2 · 17/130 ≈ 277.1 130-round
KATAN64 computations. The memory requirement is 2 · 251.05 ≈ 252.1 state values.
The analysis for P3, P4 pairs also requires 277.1 130-round KATAN64 computations.
Pright is 2102.1 · 2−110 = 2−7.9. Hence, the complexity for the exhaustive check
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Table 6.13: Differential characteristic of KATAN64 E0 (1 - 56)

Round L2(L2[0]...L2[38]) L1(L1[0]...L1[24]) KaKb Pr.

0 000000000000000000111000000000011100000 0000000000000000000000000 0 0 1

1 000000000000000000000111000000000011100 0000000000000000000000000 0 0 2−3

2 000000000000000000000000111000000000011 0000000000000000000000000 0 0 2−4

3 000000000000000000000000000111000000000 0000000000000000000000000 0 0 2−4

4 000000000000000000000000000000111000000 0000000000000000000000000 0 0 2−4

5 000000000000000000000000000000000111000 0000000000000000000000000 0 0 2−6

6 000000000000000000000000000000000000111 0000000000000000000000000 0 1 2−7

7 000000000000000000000000000000000000000 0000000000000000000000000 0 0 2−7

46 000000000000000000000000000000000000000 0000000000000000000000000 0 1 2−7

47 000000000000000000000000000000000000000 1110000000000000000000000 0 0 2−7

48 000000000000000000000000000000000000000 0001110000000000000000000 0 0 2−7

49 000000000000000000000000000000000000000 0000001110000000000000000 0 0 2−7

50 000000000000000000000000000000000000000 0000000001110000000000000 0 0 2−7

51 000000000000000000000000000000000000000 0000000000001110000000000 0 0 2−10

52 110000000000000000000000000000000000000 0000000000000001110000000 0 0 2−10

53 001110000000000000000000000000000000000 0000000000000000001110000 1 0 2−10

54 111001110000000000000000000000000000000 0000000000000000000001110 0 0 2−13

55 110111001110000000000000000000000000000 0000000000000000000000001 0 0 2−14

56 001110111001110000000000000000000000000 0000000000000000000000000 0 0 2−16

Table 6.14: Differential characteristic of KATAN64 E1 (57 - 113)

Round L2(L2[0]...L2[38]) L1(L1[0]...L1[24]) KaKb Pr.

56 000000000000000111000000000011100000000 0000000000000000000000000 0 0 1

57 000000000000000000111000000000011100000 0000000000000000000000000 0 0 1

58 000000000000000000000111000000000011100 0000000000000000000000000 0 0 2−3

59 000000000000000000000000111000000000011 0000000000000000000000000 0 0 2−4

60 000000000000000000000000000111000000000 0000000000000000000000000 0 0 2−4

61 000000000000000000000000000000111000000 0000000000000000000000000 0 0 2−4

62 000000000000000000000000000000000111000 0000000000000000000000000 0 0 2−6

63 000000000000000000000000000000000000111 0000000000000000000000000 0 1 2−7

64 000000000000000000000000000000000000000 0000000000000000000000000 0 0 2−7

103 000000000000000000000000000000000000000 0000000000000000000000000 0 1 2−7

104 000000000000000000000000000000000000000 1110000000000000000000000 0 0 2−7

105 000000000000000000000000000000000000000 0001110000000000000000000 0 0 2−7

106 000000000000000000000000000000000000000 0000001110000000000000000 0 0 2−7

107 000000000000000000000000000000000000000 0000000001110000000000000 0 0 2−7

108 000000000000000000000000000000000000000 0000000000001110000000000 0 0 2−10

109 110000000000000000000000000000000000000 0000000000000001110000000 0 0 2−10

110 001110000000000000000000000000000000000 0000000000000000001110000 1 0 2−10

111 111001110000000000000000000000000000000 0000000000000000000001110 0 0 2−13

112 110111001110000000000000000000000000000 0000000000000000000000001 0 0 2−14

113 001110111001110000000000000000000000000 0000000000000000000000000 0 0 2−16

becomes 280 · Pright = 272.1. In the end, the data complexity is 4 · 251.05 ≈ 253.1

chosen plaintexts. The computational complexity is 277.1 +277.1 +272.1 ≈ 278.1 130-
round KATAN64 computations. The success probability of our attack is 0.63, while
the success probability of the brute force attack with the same complexity is 0.27.
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Table 6.15: Partial-matching for KATAN48

#skipped #bits with unknown diff. Pright

rounds L1 L2 Total

1 0 0 0 N2 · 2−96

2 1 0 1 N2 · 2−94

3 3 0 3 N2 · 2−90

4 5 1 6 N2 · 2−84

5 7 3 10 N2 · 2−76

6 9 5 14 N2 · 2−68

r(≥ 4) 2r − 3 2r − 7 4r − 10 N2 · 2−116+8r

If one subkey bit for the first skipped round is guessed, Pright decreases by 24.

Table 6.16: Partial-matching for KATAN64

#skipped #bits with unknown diff. Pright

rounds L1 L2 Total

1 0 0 0 N2 · 2−128

2 2 1 3 N2 · 2−122

3 5 4 9 N2 · 2−110

4 8 7 15 N2 · 2−98

r(≥ 3) 3r − 4 3r − 5 6r − 9 N2 · 2−146+12r

If one subkey bit for the first skipped round is guessed, Pright decreases by 26.

6.6 Conclusion

In this chapter, we proposed the related-key boomerang attack to 174, 145 and 130
rounds of KATAN32/48/64, respectively, which dramatically improved the number
of attacked rounds compared with the previous results. Examples of the right quartet
on KATAN32 confirmed the feasibility of our attack. As far as we know, this is the
best result achieved on the KATAN family.
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Part II

Analysis of Stream Cipher
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Chapter 7

Chosen-IV Attack on Py and
Pypy

In this chapter, we propose an effective key recovery attack on stream ciphers Py and
Pypy with chosen IVs. Our method uses an internal-state correlation based on the
vulnerability that the randomization of the internal state in the KSA is inadequate,
and it improves two previous attacks proposed by Wu and Preneel (a WP-1 attack
and a WP-2 attack). For a 128-bit key and a 128-bit IV, the WP-1 attack can
recover a key with 223 chosen IVs and time complexity 272. First, we improve the
WP-1 attack by using the internal-state correlation (called a P-1 attack). For a 128-
bit key and a 128-bit IV, the P-1 attack can recover a key with 223 chosen IVs and
time complexity 248, which is 1/224 of that of the WP-1 attack. The WP-2 attack
is another improvement on the WP-1 attack, and it has been known as the best
previous attack against Py and Pypy. For a 128-bit key and a 128-bit IV, the WP-2
attack can recover a key with 223 chosen IVs and time complexity 224. Second, we
improve the WP-2 attack by using the internal-state correlation as well as the P-1
attack (called a P-2 attack). For a 128-bit key and a 128-bit IV, the P-2 attack
can recover a key with 223 chosen IVs and time complexity 224, which is the same
capability as that of the WP-2 attack. However, when the IV size is from 64 bits
to 120 bits, the P-2 attack is more effective than the WP-2 attack. Thus, the P-2
attack is the known best attack against Py and Pypy.

7.1 Introduction

Symmetric-key cryptography, which uses the same key for encryption and decryp-
tion, provides security (e.g. confidentiality and integrity) to data or network. Stream
cipher is a class of symmetric-key cryptography, and it is suitable for high-speed
applications (e.g. applications for large-scale data processing). A typical stream
cipher encrypts a plaintext by XORing it with a pseudo-random sequence (called
a keystream) that is generated from a secret key and an initialization vector (IV).
The core of the stream cipher is to generate the keystream from the secret key and
the IV.

Py [28] is a software-oriented stream cipher, and it was designed by Biham and
Seberry in April 2005. Py was submitted to the ECRYPT stream cipher project
(eSTREAM) [106], which is a project to identify a portfolio of promising new stream
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ciphers and takes multi-year effort from 2004 to 2008. The speed of Py is more than
2.5 times faster than that of RC4 on a Pentium III processor. RC4 is a widely-used
software-oriented stream cipher. Py uses a variable-length key and a variable-length
key IV. The key size varies from 1 byte to 256 bytes. The IV size varies from 1
byte to 64 bytes. The recommended parameters for security are that the key size
is up to 32 bytes and the IV size is up to 16 bytes. The Py algorithm consists of a
key scheduling algorithm (KSA) and a pseudorandom number generation algorithm
(PRGA).

Security of a stream cipher is analyzed under the assumption that a part of
a keystream is given. Since Biham, who is one of designers of Py, is known as a
researcher who did significant works, Py attracted the attention of many cryptan-
alysts. As the cryptanalysis of Py, a distinguishing attack, which distinguishes a
keystream from a random stream, was proposed by Paul, Preneel, and Sekar in De-
cember 2005 [107]. Their attack was improved by Crowley in January 2006 [108].
In order to resist these distinguishing attacks, a new version of Py, called Pypy, was
proposed by Biham and Seberry in March 2006 [29]. Wu and Preneel pointed out a
weakness of the IV setup algorithms of Py and Pypy in August 2006 [30]. The IV
setup algorithms of Py and Pypy are identical. The weakness is that two keystreams
generated from the chosen IVs can be identical with a high probability. They used
the weakness to construct a key recovery attack in September 2006 [109] (called a
WP-1 attack). In the WP-1 attack, if the IV size is more than 9 bytes, (IV sizeb−9)
bytes of the key can be recovered with (IV sizeb−4)×219 chosen IVs, where IV sizeb
stand for the size of the IV in bytes. For a 128-bit key and a 128-bit IV, which are
recommended parameters for security [28], 7 bytes of the key can be recovered with
223 chosen IVs. Thus, for a 128-bit IV, the WP-1 attack can recover a 128-bit key
with 223 chosen IVs and time complexity 272. Another key recovery attack against
Py and Pypy was proposed by Wu and Preneel in May 2007 [31] (called a WP-2
attack). The fundamental idea of the WP-2 attack is same as the WP-1 attack.
For a 128-bit key and a 128-bit IV, 13 bytes of the key can be recovered with 223

chosen IVs. Thus, for 128-bit IV, the WP-2 attack can recover a 128-bit key with
223 chosen IVs and time complexity 224.

In this chapter, we first improve the WP-1 attack [109] (called a P-1 attack). The
P-1 attack can recover more 3-byte key information than the WP-1 attack by using
the internal-state correlation. The P-1 attack has two new effective processes as
compared to those of Wu and Preneel. These two processes are called an expansion
process and a comparison process, respectively. In the P-1 attack, if the IV size is
more than 7 bytes, (IV sizeb− 6) bytes of the key can be recovered with (IV sizeb−
4)× 219 chosen IVs. For a 128-bit key and a 128-bit IV, 10 bytes of the key can be
recovered with 223 chosen IVs. Thus, for a 128-bit IV, the P-1 attack can recover a
128-bit key with 223 chosen IVs and time complexity 248, which is 1/224 of that of
the WP-1 attack. Second , we improve the WP-2 attack [31] by using the internal-
state correlation as well as the P-1 attack (called a P-2 attack). For a 128-bit IV,
the P-2 attack can recover a 128-bit key with 223 chosen IVs and complexity 224,
which is the same capability as that of the WP-2 attack. However, when the IV size
is from 8 bytes to 15 bytes, the P-2 attack is more effective than the WP-2 attack.
The P-2 attack is the known best attack against Py and Pypy.

We explain why we focus on Py and Pypy. We have the following opinion from
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our experience of stream-cipher analysis: if the internal-state size is much larger
than the key size, the KSA needs much computational cost in order to map the
key information to the internal state randomly. In other words, if the KSA of a
stream cipher is designed to be faster in general to achieve good key agility and the
randomization of the large internal state is not sufficient, then bytes of the internal-
state tend to correlate each other. We think that attacks based on the internal-
state correlation are effective against such stream ciphers, where the internal-state
correlation indicates that a part of the internal state includes information on the
other internal state. Recall Py and Pypy. Since the internal-state size of Py and
Pypy is 1300 bytes and the key size is at most 32 bytes, the internal-state size is
much larger than the key size. Indeed, the internal-state size of Py and Pypy is much
larger than that of other stream ciphers. Moreover, we think that the computational
cost for randomizing the internal state in the KSA of Py and Pypy is not sufficiently-
large, although the KSA has good key agility. Hence, we considered that Py and
Pypy were especially vulnerable to an attack based on the above opinion.

7.2 Description of Py and Pypy

Py and Pypy are stream ciphers that use a variable-length key and an IV. The
key size varies from 1 byte to 256 bytes. The IV size varies from 1 byte to 64
bytes. The recommended parameters for security is that the key size is up to 32
bytes and the IV size is up to 16 bytes. Internal states of Py and Pypy contain
two arrays –P and Y – and a 4-byte variable s. P is an array of 256 bytes that
contains a permutation of all the values 0, . . . , 255, and Y is an array of 260 4-byte
words indexed as −3, . . . , 256. The Py and Pypy algorithms consists of the KSA
and PRGA. In the KSA, the key and IV are expanded into internal states of Py
and Pypy. In the PRGA, a keystream is generated from internal states of Py and
Pypy. Py and Pypy have the same KSAs and different PRGAs. In the each step
of the PRGA, Py generates an 8-byte keystream, while Pypy generates only 4-byte
keystream to resist the distinguishing attacks [107][108]. The KSA consists of a Key
setup, an IV setup1, and an IV setup2. The Key setup initializes Y with the key.
The IV setup1 initializes P , s, and EIV with Y and the IV , where EIV is an array
with the same size as IV . IV setup2 updates Y , P , and s with EIV . We now
provide a description of the Key setup and the IV setup1 and omit the description
of the IV setup2 and the PRGA, since our attacks use only the Key setup and the
IV setup1.

Our descriptions of the Key setup and the IV Setup are some differences from
the original one to explain our attack easily.

7.2.1 Key Setup

In the Key setup, Y is initialized with the key. Figure 1 shows the structure of the
Key setup. The main process in the Key setup is divided into three processes listed
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Figure 7.1: Key setup.

as follows:

Y [i]1 = (Y [i]0 + key[(i+ 4) mod Keysizeb])

mod232, (7.1)

Y [i]2,j = Y [i]1,(j−1) mod 4 (j = 0, 1, 2, 3), (7.2)

Y [i+ 1]0,j =

{
Y [i]2,0 ⊕ sbox[Y [i]2,1] (j = 0)
Y [i]2,j (j = 1, 2, 3),

(7.3)

where Y [i]0, Y [i]1, and Y [i]2 are the outputs of each process, key[i] is the value of
the (i + 1)-th byte of the key, Keysizeb is the size of the key in bytes, Y [i]l,j is
the value of the (j + 1)-th byte of Y [i]l, sbox[·] is a substitution box that accepts a
1-byte input and yields a 1-byte output.

First, s is obtained from the key during the preprocessing. Second, the values
of Y [i]0 (−3 ≤ i ≤ 256) are decided from s and Eqs. (7.1)–(7.3), and the values
are outputted to IV setup as Y [i] (−3 ≤ i ≤ 256). In this chapter, we omit the
description of the preprocessing stage.

7.2.2 IV Setup1

In IV setup1, P, s, and EIV are initialized with the IV and Y . Figure 2 shows the
structure of IV setup1. P can be expressed as

v = IV [0]⊕ Y [0]0,2, (7.4)

d = (IV [1 mod IV sizeb]⊕ Y [1]0,2)|1, (7.5)

P [i] = sbox[v + i · d], i ∈ {0, 1, . . . , 255}, (7.6)

where v and d are 1-byte variables, IV [i] is the value of the (i + 1)-th byte of the
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Figure 7.2: IV setup1.

IV, and IV sizeb is the size of the IV in bytes.
The main process in IV setup1 is divided into four processes, which are expressed

as

s[i]1 = (s[i]0 + Y [i− 2] + IV [i+ 1])

mod232, (7.7)

s[i]2,j = s[i]1,(j−1) mod 4 (j = 0, 1, 2, 3), (7.8)

EIV [i+ 1] = P [s[i]2,1], (7.9)

s[i+ 1]0,j =

{
s[i]2,0 ⊕ P [s[i]2,1] (j = 0)
s[i]2,j (j = 1, 2, 3),

(7.10)

where s[i]0, s[i]1, and s[i]2 are the outputs of each process.
The values of EIV [i] (0 ≤ i ≤ IV sizeb− 1) can be determined from the above-

mentioned equations. s[−1]0 is given by

s[−1]0 = ((v <<24)⊕ (d <<16)⊕ (P [254] <<8)

⊕(P [255]))⊕ (Y [−3] + Y [256]). (7.11)

EIV [i] (0 ≤ i ≤ IV sizeb − 1) is initialized by using Eqs. (7.7)–(7.10). Next,
EIV [i] (0 ≤ i ≤ IV sizeb− 1) is updated by using

s′[i]1 = (s′[i]0 + Y [255− i] + IV [i+ 1])

mod232, (7.12)

s′[i]2,j = s′[i]1,(j−1) mod 4 (j = 0, 1, 2, 3), (7.13)

EIV ′[i+ 1] = EIV [i+ 1] + P [s′[i]2,1], (7.14)

s′[i+ 1]0,j =

{
s′[i]2,0 ⊕ P [s

′[i]2,1] (j = 0)
s′[i]2,j (j = 1, 2, 3),

(7.15)
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where s′ and EIV ′ indicate the updated values of s and EIV respectively. s′[−1] is
given as s[IV sizeb− 1]0.

7.3 WP-1 Attack

We describe the WP-1 attack [109] to understand the P-1 attack in Section 6.4 and
the WP-2 attack [31] in Section 6. 5.1. The WP-1 attack is based on the weakness
of the IV setup algorithm of Py and Pypy. The weakness is that two keystreams
generated from the chosen IVs can be identical with a high probability [30].

7.3.1 Identical Keystreams

From Eqs. (7.4)–(7.6), only 15 bits of the IV (IV [0] and IV [1]) are used to initialize
the array P . For an IV pair, if the 15 bits are identical, then the resulting arrays
P are the same. From [30], if IV1 and IV2 have only a two-byte difference and
satisfy the following four conditions, then this type of an IV pair results in identical
keystreams with probability 2−23.2.

Condition 1 : IV1[i]⊕ IV2[i] = 1 (1 ≤ i),

Condition 2 : IV1[i+ 1] 6= IV2[i+ 1] (1 ≤ i),

Condition 3 : The least significant bit of IV1[i] is 1 (1 ≤ i),

Condition 4 : IV1[j] = IV2[j] (0 ≤ j < i, i+ 1 < j ≤ IV sizeb− 1),

where i is a fixed value.
For the abovementioned IV pair, if two keystreams are identical, then the two

s[i+ 1]0 are the same. This implies

(P [B(s[i− 1]0,0 + IV1[i] + Y [−3 + i]0,0)]

⊕B(s[i− 1]0,3 + Y [−3 + i]0,3 + ξi1))

+256 + IV1[i+ 1]

= (P [B(s[i− 1]0,0 + IV2[i] + Y [−3 + i]0,0))]

⊕B(s[i− 1]0,3 + Y [−3 + i]0,3 + ξi2))

+IV2[i+ 1],

(7.16)

where B(x) is a function that provides the least significant byte of x, and ξi1 and
ξi2 are the carry bits introduced by IV [i] and Y [−3 + i]. The probability obtaining
ξi1 = ξi2 is very close to 1, since IV [i] has a negligible effect on ξi1 and ξi2.

7.3.2 Recovery of a Part of Y from the Identical IV Pairs

From Eq. (7.16) with the same values of s[i − 1]0,0 and s[i − 1]0,3, we can recover
values of B(s[i− 1]0,0+Y [−3+ i]0,0) and B(s[i− 1]0,3+Y [−3+ i]0,3+ ξi). Equation
(7.16) with the same values of s[i− 1]0,0 and s[i− 1]0,3 can be generated if the first
i bytes of all the IVs are the same. From [109], if there are seven Eqs. (7.16), the

105



values of B(s[i − 1]0,0 + Y [−3 + i]0,0) and B(s[i − 1]0,3 + Y [−3 + i]0,3 + ξi) can be
recovered.

After recovering the values of B(s[i − 1]0,0 + Y [−3 + i]0,0) and B(s[i − 1]0,3 +
Y [−3 + i]0,3 + ξi) for i ≥ 1, s[i]0,0 can be recovered as follows:

s[i]0,0 = P [B(s[i− 1]0,0 + IV [i]θ + Y [−3 + i]0,0)]

⊕B(s[i− 1]0,3 + Y [−3 + i]0,3 + ξi), (7.17)

where IV [i]θ is a fixed IV. In the WP-1 attack, we use arbitrary fixed IV θ. When
differences are introduced in IV [i] and IV [i+ 1], all the first i bytes of each IV are
chosen to be identical to those of IV θ.

We introduce the IV difference at the (i + 1)-th and (i + 2)-th bytes. The first
i + 1 bytes of each IV are identical to those of IV θ. Then, we recover the value of
B(s[i]0,0 + Y [−2 + i]0,0). From the value of B(s[i]0,0 + Y [−2 + i]0,0) and s[i]0,0, we
determine the value of Y [−2+ i]0,0. Figure 3 shows the method for recovering a part
of Y from s.

7.3.3 Generating the Equations

Here, we demonstrate a method for obtaining several equations with the same values
of s[i− 1]0,0 and s[i− 1]0,3.

To ensure that the same values of s[i − 1]0,0 and s[i − 1]0,3 appear in these
equations, we need to fix the values of IV [j] (0 ≤ j < i). Let the least significant
bit of IV [i] and IV [i + 1] choose all the 512 values and IV [j] (0 ≤ j < i) choose
IV θ[j] (0 ≤ j < i). Let IV [j] (i + 2 ≤ j ≤ IV size − 1) choose the optional fixed
values. Then we obtain 216(≈ 255×255) desired IV pairs. These 512 IVs are termed
as the desired IV group. From [30], this type of IV pair results in identical keystreams
with probability 2−23.2. We obtain 2−7.2(= 2−23.2 × 216) identical keystream pairs
from one desired IV group. We modify the value of the 7 most significant bits
of IV [i] and 3 bits of IV [i + 2]; we can then obtain 210(= 27 × 23) desired IV
groups. From these desired IV groups, we obtain 7 (= 210 × 2−7.2) Eqs. (7.16).
There are 219(= 27 × 23 × 29) IVs used in the attack. With (IV sizeb − 4) × 219

IVs, we can recover B(s[i − 1]0,0 + Y [−3 + i]0,0), B(s[i − 1]0,3 + Y [−3 + i]0,3 + ξi),
and s[i]0,0 (2 ≤ i ≤ IV sizeb − 3) for IV θ. Thus, we can recover the value of
Y [−3 + i]0,0 (3 ≤ i ≤ IV sizeb− 3).

7.3.4 Key Recovery

We now show how to recover the key from Y [−3+ i]0,0 (3 ≤ i ≤ IV sizeb−3). From
Eqs. (7.1)–(7.3), the relation between the key and Y is given by

(B(Y [−3 + i]0,0 + key[i+ 1] + ξ′i)

⊕sbox[B(Y [−3 + i+ 3]0,0 + key[i+ 4])]

= Y [−3 + i+ 4]0,0, (7.18)

where ξ′i is the carry bit introduced by key[i + 2] and key[i+ 3]; it is computed by
using ξ′i ≈ (key[i+2]+Y [−3+ i+1]0,0) <<8. The value of ξ′i is 0 with a probability
approximately 0.5.
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Figure 7.3: Recovery of a part of Y from s.

When Y [−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3) are known, Eq. (7.18) becomes an
expression that relates key[i+ 1] and key[i+ 4] for (3 ≤ i ≤ IV sizeb− 7). Once we
correctly guess the values of key[4], key[5], and key[6], we can determine the other
key bytes key[j] (6 < j ≤ IV sizeb − 3). Thus, the values of key[j] (4 ≤ j ≤
IV sizeb− 3) can be restricted to 224 values. This indicates that (IV size− 9) bytes
of the key constitutes the leaked information.

From the description given above, in the WP-1 attack, (IV sizeb−9) bytes of the
key can be recovered with (IV sizeb − 4) × 219 chosen IVs. Thus, time complexity
for recovering a key is 28×(Keysizeb−(IV sizeb−9)). For a 128-bit key and a 128-bit IV,
time complexity for recovering a key is 272 (= 28×(16−(16−9))).

7.4 P-1 Attack

We improve the WP-1 attack with the internal-state correlation. The WP-1 attack
and the P-1 attack are different in the process after recovering a part of a Y . The P-
1 attack comprises two new effective processes using the internal-state correlation.
These two processes are called an expansion process and a comparison process,
respectively. In the expansion process, Y [−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3) are
expanded into the candidate values of Y [−3 + i]0 (3 ≤ i ≤ IV sizeb − 3). In the
comparison process, the values of Y [−3+ i]0 (3 ≤ i ≤ IV sizeb− 3) are determined
by comparing the candidate values of Y [−3 + i]0 (3 ≤ i ≤ IV sizeb − 3) with
s[i] (2 ≤ i ≤ IV sizeb − 6) recovered from Eqs. (7.16) and (7.17). From these
processes, the P-1 attack can use the values of Y [−3+ i]0 (3 ≤ i ≤ IV sizeb− 3) for
recovering the key while the WP-1 attack use only Y [−3+i]0,0 (3 ≤ i ≤ IV sizeb−3).
By using the values of Y [−3+i]0 (3 ≤ i ≤ IV sizeb−3), key[j] (4 ≤ j ≤ IV sizeb−3)
can be recovered. Thus, the P-1 attack can recover more 3-byte key information than
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Figure 7.4: Expansion process.

the WP-1 attack.

7.4.1 Expansion Process

Theorem 1. If Y [i]0 and Y [i− 1]0,0 are known, then key[(i+ 3) mod Keysizeb],
Y [i− 1]0,1, Y [i− 1]0,2, and Y [i− 1]0,3 can be determined from

Y [i− 1]2,j =

{
Y [i]0,0 ⊕ sbox[Y [i]0,1] (j = 0)
Y [i]0,j (j = 1, 2, 3),

(7.19)

Y [i− 1]1,j = Y [i− 1]2,(j+1) mod 4 (j = 0, 1, 2, 3), (7.20)

key[(i+ 3) mod Keysizeb]

= B(Y [i− 1]1,0 − Y [i− 1]0,0), (7.21)

Y [i− 1]0 = (Y [i− 1]1 − key[(i+ 3) mod Keysizeb])

mod232. (7.22)

Proof. Eqs. (7.19)–(7.22) are derived from Eqs. (7.1)–(7.3). First, Y [i− 1]1 is deter-
mined from Y [i]0, Eq. (7.19), and Eq. (7.20). Second, key[(i+ 3) mod Keysizeb] is
determined from Y [i− 1]0,0, Y [i− 1]1,0, and Eq. (7.21). Finally, Y [i− 1]0 is deter-
mined from Y [i− 1]1, key[(i+3) mod Keysizeb], and Eq. (7.22). Hence, Y [i− 1]0,1,
Y [i− 1]0,2, and Y [i− 1]0,3 can be determined.

The expansion process is executed after recovering a part of Y from the identical
IV pair in the WP-1 attack. In the expansion process, we obtain the candidate
values of Y [−3 + i]0,1, Y [−3 + i]0,2, Y [−3 + i]0,3 (3 ≤ i ≤ IV sizeb − 3), and
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Figure 7.5: Comparison process.

key[j] (4 ≤ j ≤ IV sizeb − 3) from Y [−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3) by going
the Key setup algorithm backward. The algorithm of the expansion process is given
below. Figure 4 shows the expansion process.

Algorithm 1.

Input: Y [−3 + i]0,0 (3 ≤ i ≤ IV sizeb− 3).

Output: The candidate values of Y [−3 + i]0,1, Y [−3 + i]0,2, Y [−3 + i]0,3 (3 ≤ i ≤
IV sizeb− 3), and key[j] (4 ≤ j ≤ IV sizeb− 3).

Step 1: If Y [IV sizeb−6]0,1, Y [IV sizeb−6]0,2, and Y [IV sizeb−6]0,3 have been set
to all 224 values, terminate this algorithm. Otherwise, set those values that
have not been set yet to Y [IV sizeb−6]0,1, Y [IV sizeb−6]0,2, and Y [IV sizeb−
6]0,3.

Step 2: Substitute 0 into num.

Step 3: Determine key[((IV sizeb−6)−num+3) mod Keysizeb], Y [(IV sizeb−6)−
num−1]0,1, Y [(IV sizeb−6)−num−1]0,2, and Y [(IV sizeb−6)−num−1]0,3
from Eqs. (7.19)–(7.22), Y [(IV sizeb − 6) − num]0, and Y [(IV sizeb − 6) −
num− 1]0,0 (Theorem 1).

Step 4: Add 1 to num.

Step 5: If num = IV sizeb− 6, go to Step 1. Otherwise, go to Step 3.

From the above algorithm, if Y [−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3) are known,
once we correctly guess the values of Y [IV sizeb − 6]0,1, Y [IV sizeb − 6]0,2, and
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Y [IV sizeb− 6]0,3, we can determine the values of key[j] (4 ≤ j ≤ IV sizeb− 3) and
Y [−3 + i]0 (3 ≤ i ≤ IV sizeb− 3). This implies that the values of key[j] (4 ≤ j ≤
IV sizeb − 3) and Y [−3 + i]0 (3 ≤ i ≤ IV sizeb − 3) can be restricted to only 224

values.

7.4.2 Comparison Process

Theorem 2. If s[i]0,0, s[i]0,1, s[i+1]0,0, s[i+1]0,1, s[i+2]0,0, s[i+2]0,1, Y [i−2], Y [i−
1], Y [i], IV [i + 1], IV [i + 2], and IV [i + 3] are known, s[i + 2]1,3 can be determined
from Eqs. (7.7), (7.8), and (7.10) as follows:

s[i]1 mod 216 = (s[i]0 mod 216 + Y [i− 2] mod 216

+IV [i+ 1]) mod 216, (7.23)

s[i+ 1]1 mod 224 = (s[i+ 1]0 mod 224

+Y [i− 1] mod 224

+IV [i+ 2]) mod 224. (7.24)

Proof. Eqs. (7.23) and (7.24) are derived from Eq. (7.7). First, s[i + 1]0,2 is deter-
mined from s[i]0,0, s[i]0,1, Y [i − 2], IV [i + 1], Eq. (7.8), Eq. (7.10), and Eq. (7.23).
Second, s[i+2]0,2 and s[i+2]0,3 are determined from s[i+1]0,0, s[i+1]0,1, s[i+1]0,2,
Y [i − 1], IV [i + 2], Eq. (7.8), Eq. (7.10), and Eq. (7.24). Finally, s[i + 2]1 is de-
termined from s[i + 2]0, Y [i], IV [i + 3], and Eq. (7.7). Hence, s[i + 2]1,3 can be
determined.

The comparison process is executed after the expansion process. In the compar-
ison process, we determine the correct values of Y [−3 + i]0 (3 ≤ i ≤ IV sizeb − 3)
from 224 candidate values and recover the value of key[j] (4 ≤ j ≤ IV sizeb− 3).

For IV θ, B(s[i − 1]0,0 + Y [−3 + i]0,0), B(s[i − 1]0,3 + Y [−3 + i]0,3 + ξi), and
s[i]0,0 (2 ≤ i ≤ IV sizeb − 3) are known. Hence, s[i − 1]1,0, s[i − 1]1,3, s[i]0,0, and
s[i]0,1 (2 ≤ i ≤ IV sizeb − 3) can be determined from Eqs. (7.7), (7.8), and (7.10).
From Theorem 2, s[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6) can be recovered from s[i]0,1,
s[i]0,0 (2 ≤ i ≤ IV sizeb − 3), Y [−3 + i]0 (3 ≤ i ≤ IV sizeb − 3), and IV θ. Thus,
by comparing s[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6) recovered from Eqs. (7.16) and
Eqs. (7.17) with s∗[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6), we can determine the correct
values of Y [−3+i]0 (3 ≤ i ≤ IV sizeb−3), where s∗[i] indicates the value determined
from the candidate values of Y [−3 + i]0 (3 ≤ i ≤ IV sizeb− 3).

The algorithm of the comparison process is given below. Figure 5 shows the
comparison process.

Input: s[i − 1]1,0, s[i − 1]1,3, s[i]0,1, s[i]0,0 (2 ≤ i ≤ IV sizeb − 3), the candidate
values of Y [−3 + i]0 (3 ≤ i ≤ IV sizeb− 3), and IV θ.

Output: Y [−3 + i]0 (3 ≤ i ≤ IV sizeb− 3).

Step 1: Set one candidate value of Y [−3 + i]0 (3 ≤ i ≤ IV sizeb − 3) to Y [−3 +
i]0 (3 ≤ i ≤ IV sizeb− 3).
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Step 2: From Theorem 2, determine s∗[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6) from the
candidate values of Y [−3 + i]0 (3 ≤ i ≤ IV sizeb− 3), s[i]0,1, s[i]0,0 (2 ≤ i ≤
IV sizeb− 3), and IV θ.

Step 3: Compare s∗[i+2]1,3(2 ≤ i ≤ IV sizeb−6) with s[i+2]1,3 (2 ≤ i ≤ IV sizeb−
6) recovered from Eq. (7.16). If s∗[i+2]1,3 = s[i+2]1,3 (4 ≤ i ≤ IV sizeb−3),
output the candidate values of Y [−3+ i]0 (3 ≤ i ≤ IV sizeb−3) as the correct
values. Otherwise, go to Step 1.

We discuss s∗[i+2]1,3 (2 ≤ i ≤ IV sizeb−6) and s[i+2]1,3 (2 ≤ i ≤ IV sizeb−6)
recovered from Eq. (7.16) in Step 3. If the values set in Step 1 are correct, then
s∗[i + 2]1,3 = s[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6). Theoretically, since the probability
s∗[4]1,3 = s[4]1,3 is 1/256, on comparing s∗[4]1,3 with s[4]1,3, we can determine 216

candidate values from 224 candidate values. Supposing that the probabilities of
s∗[4]1,3 = s[4]1,3, s

∗[5]1,3 = s[5]1,3, and s∗[6]1,3 = s[6]1,3 are independent, we can
determine 28 candidate values by comparing s∗[4]1,3 with s[4]1,3 and s∗[5]1,3 with
s[5]1,3. We can determine 1 candidate value by comparing s∗[4]1,3 with s[4]1,3, s

∗[5]1,3
with s[5]1,3, and s

∗[6]1,3 with s[6]1,3.
From the simulation for 104 keys, we were able to determine 65536.019 ≈ 216

candidate values by comparing s∗[4]1,3 with s[4]1,3, and 255.084 ≈ 28 candidate
values by comparing s∗[4]1,3 with s[4]1,3 and s

∗[5]1,3 with s[5]1,3, and 1.384 candidate
values by comparing s∗[4]1,3 with s[4]1,3, s

∗[5]1,3 with s[5]1,3, and s
∗[6]1,3 with s[6]1,3.

If the number of comparisons is more than three, only one value can be identified.
From the algorithm given above, we determine the values of Y [−3+ i]0 (3 ≤ i ≤

IV size − 3) and key[j](4 ≤ j ≤ IV size − 3). If IV size ≥ 10, these values can be
restricted to one value from more than two comparisons. If IV size = 9, these values
can be restricted to 28 values from two comparisons. If IV size = 8, these values
can be restricted to 216 values from one comparison.

7.4.3 Evaluation

In the P-1 attack, (IV sizeb− 6) bytes of the key can be recovered with (IV sizeb−
4)×219 chosen IVs. Thus, time complexity for recovering the key is the sum of that of
recovering (IV sizeb−6) bytes of the key with (IV sizeb−4)×219 chosen IVs and that
of exhaustive remaining key search. Since time complexity of exhaustive remaining
key search is very larger than that of recovering (IV sizeb− 6) bytes of the key with
(IV sizeb−4)×219 chosen IVs, time complexity for recovering a key is approximated
to that of exhaustive remaining key search which is 28×(Keysizeb−(IV sizeb−6)).

Time complexity of the WP-1 attack [109] and that of the P-1 attack for a
128-bit key are shown in Table 1. Time complexity of the WP-1 attack can be
calculated from Section 6.3.4 in this chapter. For a 128-bit key and a 128-bit IV,
which are recommended parameters for security [28], the P-1 attack can recover the
key with 223 chosen IV and time complexity 248 (= 28×(16−(16−6))). In addition,
when IV sizeb = 8 and 9, the WP-1 attack is ineffective; in this case, the P-1 attack
can recover the key with lower time complexity than the exhaustive key search.
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Table 7.1: Time complexity for recovering a 128-bit (16-byte) key.

IV sizeb 8 9 10 11 12 13 14 15 16

The WP-1 attack [109] 2128 2128 2120 2112 2104 296 288 280 272

The P-1 attack 2120 2112 296 288 280 272 264 256 248

The WP-2 attack [31] 2128 2128 2112 296 280 264 248 232 224

The P-2 attack 2112 296 264 248 232 224 224 224 224

7.5 Improvement on the WP-2 attack

In this section, we first explain the WP-2 attack [31] which is the improvement of
the WP-1 attack. Second, we propose the P-2 attack which is the improvement on
the WP-2 attack. The P-2 attack comprises two new effective processes using the
internal-state correlation as well as the P-1 attack. By using these processes, when
the IV size is from 8 bytes to 15 bytes, the P-2 attack is more effective than the
WP-2 attack.

7.5.1 WP-2 Attack

The WP-2 attack uses the same chosen IVs as the WP-1 attack. From [30], for
these chosen IV, if two keystream are identical, we obtain Eq. (7.16) and

(P [B(s′[i− 1]0,0 + IV1[i] + Y [256− i]0,0)]

⊕B(s′[i− 1]0,3 + Y [256− i]0,3 + ξi1))

+256 + IV1[i+ 1]

= (P [B(s′[i− 1]0,0 + IV2[i] + Y [256− i]0,0))]

⊕B(s′[i− 1]0,3 + Y [256− i]0,3 + ξi2))

+IV2[i+ 1].

(7.25)

TheWP-2 attack uses these two equations while the WP-1 attack uses only Eq. (7.16).
By applying an attack similar to the WP-1 attack, we can recover B(s′[i − 1]0,0 +
Y [256− i]0,0), B(s′[i−1]0,3+Y [256− i]0,3+ ξi), and s

′[i]0,0 (2 ≤ i ≤ IV sizeb−3) as
well as B(s[i−1]0,0+Y [−3+ i]0,0), B(s[i−1]0,3+Y [−3+ i]0,3+ ξi), and s[i]0,0 (2 ≤
i ≤ IV sizeb− 3) for IV θ. Thus, we can recover the value of Y [−3 + i]0,0 (3 ≤ i ≤
IV sizeb− 3) and Y [256− i]0,0 (3 ≤ i ≤ IV sizeb− 3).

When Y [−3+i]0,0 (3 ≤ i ≤ IV sizeb−3) and Y [256−i]0,0 (3 ≤ i ≤ IV sizeb−3)
are known, Eq. (7.18) becomes the expressions that relates key[j+1] and key[j+4]
(3 ≤ j ≤ IV sizeb− 7, 262− ivsizeb ≤ j ≤ 252). Thus, there are 2× (IV sizeb− 9)
expressions (7.18) linking the key bytes. For a 128-bit key and a 128-bit IV, 14
expressions (7.18) can be obtained : 7 expressions (7.18) linking key[j] and key[j+3]
(4 ≤ j ≤ 10), and another 7 expressions (7.18) linking key[j] and key[j + 3 mod 16]
(7 ≤ j ≤ 13). There are 13 bytes involved in these 14 expressions (7.18). Since these
14 expressions are sufficient to recover the involved 13 key bytes, time complexity
for recovering a key is 224. For IV sizeb ≤ 15, since the number of expressions
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(7.18) is less than that of involved key bytes, time complexity for recovering a key
is 28×(Keysizeb−2×(IV sizeb−9)). For a 128-bit key and a 120-bit IV, time complexity
for recovering a key is 232 (= 28×(16−2×(15−9))). The number of the chosen IVs used
for the attack is (IV sizeb− 4)× 219 as well as the WP-1 attack.

7.5.2 P-2 Attack

The P-2 attack has the expansion process and the comparison process after recov-
ering a part of a Y in the WP-2 attack as well as the P-1 attack.

In the expansion process, we obtain 224 candidate values of Y [−3+ i]0,1, Y [−3+
i]0,2, Y [−3 + i]0,3 (3 ≤ i ≤ IV sizeb − 3), and key[j] (4 ≤ j ≤ IV sizeb − 3)
from Y [−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3) by using Algorithm 1. Moreover, we can
obtain 224 candidate values of Y [256 − i]0,1, Y [256 − i]0,2, Y [256 − i]0,3 (3 ≤ i ≤
IV sizeb− 3), and key[j mod 16] (23− IV sizeb ≤ j ≤ 16) from Y [256− i]0,0 (3 ≤
i ≤ IV sizeb − 3) by using the algorithm similar to Algorithm 1. Thus, the values
of key[j] (4 ≤ j ≤ IV sizeb − 3) and Y [−3 + i]0 (3 ≤ i ≤ IV sizeb − 3), and
key[j mod 16] (23− IV sizeb ≤ j ≤ 16) and Y [256− i]0 (3 ≤ i ≤ IV sizeb− 3) can
be restricted to only 224 values respectively.

In the comparison process, we determine the values of key[j] (4 ≤ j ≤ IV sizeb−
3) and key[j mod 16] (23 − IV sizeb ≤ j ≤ 16). From the P-1 attack, we can
determine the correct value of Y [−3 + i]0 (3 ≤ i ≤ IV sizeb − 3) and recover the
value of key[j] (4 ≤ j ≤ IV sizeb − 3). For IV θ, B(s′[i − 1]0,0 + Y [256 − i]0,0),
B(s′[i − 1]0,3 + Y [256 − i]0,3 + ξi), and s′[i]0,0 (2 ≤ i ≤ IV sizeb − 3) are known
from the WP-2 attack. Hence, s′[i − 1]1,0, s

′[i − 1]1,3, s
′[i]0,0, and s

′[i]0,1 (2 ≤ i ≤
IV sizeb − 3) can be determined from Eqs. (7.12), (7.13), and (7.15). s′[i + 2]1,3
(2 ≤ i ≤ IV sizeb− 6) can be recovered from s′[i]0,1, s

′[i]0,0 (2 ≤ i ≤ IV sizeb− 3),
Y [256 − i]0 (3 ≤ i ≤ IV sizeb − 3), and IV θ. By using the algorithm similar to
Algorithm 2, we can determine the correct value of Y [256−i]0 (3 ≤ i ≤ IV sizeb−3)
and recover the value of key[j mod 16] (23− IV sizeb ≤ j ≤ 16).

From the algorithm given above, we determine the values of key[j](4 ≤ j ≤
IV size − 3) and key[j mod 16] (23 − IV sizeb ≤ j ≤ 16). If IV size ≥ 10, these
values can be restricted to one value from more than two comparisons. If IV size = 9,
these values can be restricted to 28 values from two comparisons. If IV size = 8,
these values can be restricted to 216 values from one comparison.

7.5.3 Evaluation

In the P-2 attack, we can recover the values of key[j](4 ≤ j ≤ IV size − 3) and
key[j mod 16] (23 − IV sizeb ≤ j ≤ 16) with (IV sizeb − 4) × 219 chosen IVs. For
a 128-bit key and a 128-bit IV, key[j mod 16] (4 ≤ j ≤ 16) can be recovered with
223 chosen IVs. Since remaining key values are key[1], key[2], and key[3], time
complexity for recovering a key is 224. Similarly, for a 128-bit key and an 88-bit IV,
since remaining key values are key[1], key[2], key[3], key[9], key[10], and key[11],
time complexity for recovering a key is 248.

Time complexity of the P-2 attack and that of the WP-2 attack [31] for a 128-bit
key are shown in Table 1. Time complexity of the WP-2 attack can be calculated
from Sect .6.5.1 in this chapter. When IV size is from 8 to 15 byte, the P-2 attack is
more effective than the WP-2 attack. In addition, when IV sizeb = 8, 9, the WP-2
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attack is ineffective; in this case, the P-2 attack can recover the key with lower time
complexity than the exhaustive key search and is more effective than the P-1 attack.

7.6 Conclusion

In this chapter, we have proposed the P-1 attack and P-2 attack which are improve-
ments on the WP-1 attack and WP-2 attack, respectively. These proposed attacks
comprise two new effective processes using the internal-state correlation. As a re-
sult, the P-1 attack can recover more 3-byte key information than the WP-1 attack.
For a 128-bit key and a 128-bit IV, the P-1 attack can recover the key with time
complexity of 248, which is 1/224 of that of the WP-1 attack. When IV sizeb is from
8 to 15 bytes, The P-2 attack can recover the 128-bit key with less time complexity
than the WP-2 attack. In particular, when IV sizeb is from 13 to 16 byte, the P-2
attack can recover a 128-bit key with time complexity 224. In Py and Pypy, since a
variable-length IV is used, in some cases the IV may range in size from 8 bytes to
15 bytes. Thus, the P-2 attack is the known best attack against Py and Pypy.

Our attacks show that the attack based on the internal-state correlation is ef-
fective against a stream cipher such that the internal-state size is large and the
randomization of the internal state in the KSA is not sufficient. Thus, the ideas of
our attacks are applicable to Py-like ciphers.
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Chapter 8

Slide Cryptanalysis of
RAKAPOSHI

This chapter gives a first security evaluation of a lightweight stream cipher RAKA-
POSHI. In particular, we analyze a slide property of RAKAPOSHI such that two
different Key-IV pairs generate same keystream but n-bit shifted. To begin with, we
demonstrate that any Key-IV pair has a corresponding slide Key-IV pair that gener-
ates an n-bit shifted keystream with probability of 2−2n. In order to experimentally
support our results, some examples of such pairs are given. Then, we show that this
property is able to be converted into key recovery attacks on RAKAPOSHI. In the
related-key setting, our attack based on the slide property can recover a 128-bit key
with time complexity of 241 and 238 chosen IVs. Moreover, by using a variant of slide
property called partial slide pair, this attack is further improved, and then a 128-bit
key can be recovered with time complexity of 233 and 230 chosen IVs. Finally, we
present a method for speeding up the brute force attack by a factor of 2 in the single
key setting.

8.1 Introduction

With the recent large deployment of low resource devices such as RFID tags and
sensor nodes, the demand for security in resource-constrained environments has been
dramatically increased. As a result, design and analysis of lightweight ciphers has re-
ceived a lot of attention from the cryptographic community. A number of lightweight
primitives are proposed, e.g., block ciphers : PRESENT [46], KATAN [24], LED [20]
and Piccolo [21], and hash functions : Quark [110], PHOTON [111] and SPON-
GENT [112]. As for lightweight stream ciphers, Grain v1 [113], Trivium [114] and
MICKY2.0 [115] are selected by eSTREAM project for hardware applications with
highly restricted resources [106]. In spite of considerable efforts in a multi-years
project, it is still debatable that design and analysis of stream ciphers are mature
enough. Indeed, after the end of this project in 2008, F-FCSR-H [116], which is
initially contained in the final portfolio, and the 128-bit version of Grain are bro-
ken [117, 118].

Cid, Kiyomoto, and Kurihara proposed a lightweight stream cipher RAKA-
POSHI [32] after the eSTREAM project. RAKAPOSHI is a hardware-oriented
stream cipher accepting a 128-bit key and a 192-bit IV, and employs a bit-oriented
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Dynamic Linear Feedback Shift Register. This structure is also adopted in K2
v2.0 [119], which is recently selected in ISO standard stream ciphers [120]. RAKA-
POSHI is considered as a variant of the K2 v2.0 for the low-cost hardware imple-
mentation. Its performance properties in hardware are comparable to stream ciphers
selected in eSTREAM, e.g., the circuit size of RAKAPOSHI is estimated as about
3K gates. In addition, RAKAPOSHI can provide a 128 bit security while Grain and
Trivium have only an 80-bit security. Thus, designers claim that RAKAPOSHI can
complement the eSTREAM portfolio, and increase the choice of secure lightweight
stream ciphers. Despite its notable features of design and implementations, there ex-
ist only designers’ self evaluations, i.e., no external cryptanalysis has been published
so far.

In this chapter, we give a first security evaluation of the lightweight stream cipher
RAKAPOSHI. In particular, we deeply analyze a slide property of RAKAPOSHI
such that two different Key-IV pairs generate same keystream but n-bit shifted.
This property mainly exploits a weakness of an initialization algorithm, and has
been applied to Grain v1 stream cipher [121, 122]. To begin with, by exploiting
the self-similarity of the initialization algorithm of RAKAPOSHI, we show that any
Key-IV pair has a corresponding slide Key-IV pair that generates an n-bit shifted
keystream with probability of 2−2n. For n = 1, a Key-IV pair has a corresponding
Key-IV pair that generates a only 1-bit shifted keystream with probability of 2−2.
Besides, we introduce a variant of the slide property, which is called partial slide
property, that occurs with higher probability than the basic slide property. Then we
utilize these properties in order to construct related-key attacks on RAKAPOSHI.
Our attack using the slide property can recover a 128-bit key with time complexity
of 241 and 238 chosen IVs. Moreover, by using the partial slide property, this attack
is further improved, and then a 128-bit key can be recovered with time complexity
of 233 and 230 chosen IVs. This result reveals that RAKAPOSHI is practically
vulnerable to the related-key attack based on the slide property. Finally, using this
variant of the slide property, we give a method for speeding up the brute force attack
in the single key setting by a factor of 2.

8.2 Description of RAKAPOSHI

RAKAPOSHI is a stream cipher supporting a 128-bit key and a 192-bit IV. At time
t, RAKAPOSHI consists of a 128-bit Non-linear Feedback Shift Register (NFSR) :
At = {at, at+1, . . . , at+127} (at ∈ {0, 1}), a 192-bit Linear Feedback Shift Register
(LFSR) : Bt = {bt, bt+1, . . . , bt+191} (bt ∈ {0, 1}) and an 8-to-1 nonlinear function v
(see Fig. 1). Since RAKAPOSHI employs the bit-oriented Dynamic Linear Feedback
Shift Register (DLFSR), two bits of the register A are used for dynamically updating
the feedback function of the register B.
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Figure 8.1: RAKAPOSHI stream cipher

The NFSR At and the LFSR Bt are updated as follows:

at+128 = g(at, at+6, at+7, at+11, at+16, at+28, at+36, at+45, at+55, at+62)

= 1⊕ at ⊕ at+6 ⊕ at+7 ⊕ at+11 ⊕ at+16 ⊕ at+28 ⊕ at+36

⊕at+45 ⊕ at+55 ⊕ at+62 ⊕ at+7at+45 ⊕ at+11at+55

⊕at+7at+28 ⊕ at+28at+55 ⊕ at+6at+45at+62 ⊕ at+6at+11at+62,

bt+192 = f(bt, bt+14, bt+37, bt+41, bt+49, bt+51, bt+93, bt+107, bt+120,

bt+134, bt+136, bt+155, bt+158, bt+176, c0, c1)

= bt ⊕ bt+14 ⊕ bt+37 ⊕ bt+41 ⊕ bt+49 ⊕ bt+51 ⊕ bt+93

⊕c0 · c1 · bt+107 ⊕ c0 · c1 · bt+120 ⊕ c0 · c1 · bt+134

⊕c0 · c1 · bt+136 ⊕ c0 · bt+155 ⊕ c0 · bt+158 ⊕ bt+176,

where ⊕ is a bit-wise XOR, x is complement of x, and c0 and c1 are at+41 and at+89,
respectively. The 8-to-1 nonlinear function v is expressed as

st = v(at+67, at+127, bt+23, bt+53, bt+77, bt+81, bt+103, bt+128).
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The non-linear function v is given as follows.

v(x0, x1, x2, x3, x4, x5, x6, x7) =

x0x1x2x3x4x5x6 + x0x1x2x3x4x5 + x0x1x2x3x4x6 +

x0x1x2x3x5x6x7 + x0x1x2x3x5x6 + x0x1x2x3x5x7 +

x0x1x2x3x5 + x0x1x2x3x6x7 + x0x1x2x4x5x6 +

x0x1x2x4 + x0x1x2x5x6 + x0x1x2x5x7 + x0x1x2x7 +

x0x1x2 + x0x1x3x4x5x6x7 + x0x1x3x4x5x7 + x0x1x3x4x5 +

x0x1x3x4x7 + x0x1x3x4 + x0x1x3x6 + x0x1x4x5x6x7 +

x0x1x4x5x6 + x0x1x4x5x7 + x0x1x4x6x7 + x0x1x4x7 +

x0x1x5x6x7 + x0x1x5x6 + x0x1x5 + x0x1x6 + x0x1 +

x0x2x3x4x5x6 + x0x2x3x4x5x7 + x0x2x3x4 + x0x2x3x5x6x7 +

x0x2x3x5x6 + x0x2x3x5x7 + x0x2x3x6 + x0x2x4x5x6x7 +

x0x2x5x6 + x0x2x5 + x0x2x6x7 + x0x2x7 + x0x3x4x5x6x7 +

x0x3x4x5x6 + x0x3x4x5x7 + x0x3x4x5 + x0x3x4x7 +

x0x3x5x6x7 + x0x3x5 + x0x3x6 + x0x3 + x0x4x5x6 +

x0x4x6x7 + x0x5x6 + x0x6 + x0 + x1x2x3x4 + x1x2x3x5x6 +

x1x2x3x5x7 + x1x2x3x5 + x1x2x3 + x1x2x4x5x6 + x1x2x4x6 +

x1x2x4 + x1x2x5 + x1x2 + x1x3x4x5x6x7 + x1x3x4x5x7 +

x1x3x4x6x7 + x1x3x4x6 + x1x3x4 + x1x3x5x6 + x1x3x5 +

x1x3x6 + x1x3x7 + x1x4x5x6x7 + x1x4x5x7 + x1x5x6 +

x1x5x7 + x1x5 + x1x6x7 + x1x6 + x1 + x2x3x4x5x6 +

x2x3x4x5x7 + x2x3x4x5 + x2x3x4x6x7 + x2x3x4 + x2x3x5x7 +

x2x3x6x7 + x2x3x6 + x2x4x5x6 + x2x4x5x7 + x2x4x5 +

x2x4x6x7 + x2x4x6 + x2x4x7 + x2x4 + x2x5x6x7 +

x2x6x7 + x2x6 + x2x7 + x3x4x5x6x7 + x3x4x5 + x3x4x6x7 +

x3x4x6 + x3x4x7 + x3x5x6x7 + x3x6x7 + x3x6 + x3x7 +

x4x5x6 + x4x5 + x5x6x7 + x5x6 + x5 + x6 + x7.

8.2.1 Initialization Process

A 128-bit key K = {k0, k1, . . . , k127} (ki ∈ {0, 1}) and an initialization vector IV =
{iv0, iv1, . . . , iv191} (ivi ∈ {0, 1}) are loaded into the register A and B as follows:

ai = ki (0 ≤ i ≤ 127), bi = ivi (0 ≤ i ≤ 191).

The initialization process updates the state 448 times without the keystream gener-
ation. It consists of a stage 1 (320 cycles) and a stage 2 (128 cycles). In the stage 1,
the output of the nonlinear function st is fed back to register Bt, i.e., st is XORed
with bt+192. In the stage 2, the output of the nonlinear function st is fed back to
register At, i.e., st is XORed with at+128. The usage of st is only the difference
between the stage 1 and the stage 2.

After the initialization process, the state S448 = ({A448, B448}) is obtained.
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8.2.2 Keystream Generation

For t ≥ 448, an internal state St = (At, Bt) generates a keystream bit zt−448 such
that zt−448 = bt ⊕ at ⊕ st with updating the internal state. Note that the fixed key
and IV pair must be changed after 264 keystream bits are generated.

8.3 Slide Property of Stream Cipher

If two different keys always convert same plaintexts into same ciphertexts, such a key
pair is called equivalent key in terms of that these keys are functionally equivalent.
Since stream ciphers additionally use IV for generating a keystream, equivalent Key-
IV pairs can also be defined. Here, a ciphertext is obtained by XORing a plaintext
with a keystream in stream ciphers. Thus, an equivalent Key-IV pair essentially
means the pair generating same keystreams. The existence of these pairs indicates
that effective (K, IV ) space is smaller than the expected value which is the sum of
the K and IV size.

In stream ciphers, a variant of equivalent (K, IV ) called slide Key-IV pairs is
also defined in [121, 122]. A slide Key-IV pair generates same keystream but w ·n-bit
shifted, where w is the size of the word zt in the keystream, e.g., RAKAPOSHI is
w = 1. Though the existence of this pair does not directly affect the effective (K, IV )
space unlike the case of equivalent Key-IV pairs, it has the following interesting
property.

Let (K ′
(n), IV

′
(n)) be w · n-bit slide Key-IV pair of (K, IV ). In other words,

(K ′
(n), IV

′
(n)) generates the w ·n-bit shifted keystream with respect to that of (K, IV )

such that z′t = zt+n for 0 < t. Suppose that plaintexts P = {p0, p1, . . . , pL} and
P ′ = {p′0, p

′
1, . . . , p

′
L} are encrypted with (K, IV ) and (K ′

(n), IV
′
(n)), respectively.

Then, ciphertexts C = {c0, c1, . . . , cL} and C
′ = {c′0, c

′
1, . . . , c

′
L} are as follows:

C = {c0, c1, . . . , cL} = {p0 ⊕ z0, p1 ⊕ z1, . . . , pL ⊕ zL},

C ′ = {c′0, c
′
1, . . . , c

′
L} = {p′0 ⊕ z

′
0, p

′
1 ⊕ z

′
1, . . . , p

′
L ⊕ z

′
L}

= {p′0 ⊕ zn, p
′
1 ⊕ zn+1, . . . , p

′
L ⊕ zn+L}.

If an attacker can gets above ciphertexts which are generated from w · n-bit slide
Key-IV pairs, he can obtain information of plaintexts from only ciphertexts without
knowledge of keys by XORing w · n-bit shifted C to C ′ as follows:

cn+t ⊕ c
′
t = pn+t ⊕ zn+t ⊕ p

′
t ⊕ zn+t

= pn+t ⊕ p
′
t.

At first glance, this assumption seems to be very strong. However, it corresponds
to the related-key and chosen IV setting for some classes of stream ciphers1. Beside,
a slide Key-IV pair can be used not only for exposing plaintext information but also
for related-key key recovery attacks [121, 122]. Moreover, it may be able to utilize
for speeding up the key search in the single key setting [122].

Therefore, the slide property is a very useful tool of analyses and evaluations of
the security of stream ciphers.

1It highly depends on structures and algorithms of target stream ciphers.
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Figure 8.2: n-bit slide pair of RAKAPOSHI

8.4 Slide Property of RAKAPOSHI

In this section, we analyze a slide property of RAKAPHOSHI stream cipher.

8.4.1 Conditions of Slide Pairs

For RAKAPOSHI, a (K, IV ) pair has a corresponding n-bit slide pair (K ′
(n), IV

′
(n))

that generates an n-bit shifted keystream for 0 ≤ n < 320, if these pairs satisfy
following conditions:

Condition 1 : Sn(= {An, Bn}) = S′0(= {A′0, B′0}),

Condition 2 : s320+i = 0 (0 ≤ i < n),

Condition 3 : s448+i = 0 (0 ≤ i < n),

where S′t is a state generated from (K ′
(n), IV

′
(n)) at time t. Figure 2 illustrates these

conditions for an n-bit slide pair.
Assume that the condition 1 holds, S320(= {A320, B320}) and S′320−n(= {A′320−n, B′320−n})

are identical, because Sn and S′0 are updated in the same manner during the stage
1.

However, S320 and S′320−n are updated by different update processes in the
stage 1 and 2, respectively. As mentioned before, the difference of these stages is
only usage of st, i.e., st is XORed with bt+192 in the stage 1 while it is XORed
with at+128 in the stage 2. When the condition 2 holds, the relation of s320+i =
s′320−n+i = 0 is obtained for 0 ≤ i < n. It allows us to omit these differences of
the stage 1 and 2, and then S320+n(= {A320+n, B320+n}) = S′320(= {A′320, B′320}).
After that, since these states are updated in the same manner during the stage 2,
S448(= {A448, B448}) and S′448−n(= {A′448−n, B′448−n}) are surely identical.

In the keystream generation, st is used for generating a keystream bits, and does
not affect the state updating. Therefore, the condition 3 ensures that S448+n(=
{A448+n, B448+n}) and S′448(= {A′448, B′448}) are identical. It means that (K ′, IV ′)
produces n-bit sliding keystream with respect to (K, IV ). In other words, the fol-
lowing equations holds, zi = z′i−n (n ≤ i < 264).
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Table 8.1: Experimental results of probability that a Key-IV pair have a n bit slide
pair.

n Theoretical value Experimental value

1 2−2 2−2.0011 (4191041/16777216)

2 2−4 2−4.0039 (1045695/16777216)

3 2−6 2−6.0027 (261636/16777216)

4 2−8 2−7.9942 (65797/16777216)

5 2−10 2−9.9951 (16439/16777216)

6 2−12 2−12.0084 (4072/16777216

7 2−14 2−14.0084 (1018/16777216)

8 2−16 2−16.0284 (251/16777216)

9 2−18 2−17.933 (67/16777216)

10 2−20 2−19.830 (18/16777216)

8.4.2 Evaluation

Let us estimate how many n -bit slide pairs exist in RAKAPOSHI stream cipher.
The condition 1 is expressed as

An = {kn, kn+1, . . . , k127, x0, . . . , xn−1}

= {k′0, k
′
1, . . . , k

′
127} = A′0,

Bn = {ivn, ivn+1, . . . , iv191, y0, . . . , yn−1}

= {iv′0, iv
′
1, . . . , iv

′
191} = B′0,

where xt = g(at, at+6, at+7, at+11, at+16, at+28, at+36, at+46, at+55, at+62) and yt =
f(bt, bt+14, bt+37, bt+41, bt+49, bt+51, bt+93, bt+107, bt+120, bt+134, bt+136, bt+155, bt+158,
bt+176, at+41, at+89)⊕st. Since the state size and the sum of K and IV size are same,
a (K, IV ) pair surely has one pair of (K ′

n, IV
′
n) satisfying the condition 1 regardless

of the value of n.
On the other hand, conditions 2 and 3 depend on the value of n. The prob-

ability that a (K, IV ) pair satisfies the conditions 2 and 3 is 2−2n(= 2−n × 2−n).
Therefore, any (K, IV ) pair theoretically has an n-bit slide pair (K ′

(n), IV
′
(n)) that

generates an n-bit shifted keystream with probability of 2−2n. We have confirmed
the correctness of this theoretical values by testing 224 random chosen (K, IV ) pairs
for n = 0, . . . , 10. Table 1 shows experimental results of probability that a Key-IV
pair have an n bit slide pair for 224 randomly-chosen Key-IV pairs. It is confirmed
that our theoretical values are correctly approximated. Table 2 gives examples of
1, 5 and 10 bits slide pairs. In addition, we can say that a (K, IV ) pair having
(K ′

(n), IV
′
(n)) pairs also has (K ′

(1), IV
′
(1)) . . . (K

′
(n−1), IV

′
(n−1)) pairs.

For n = 1, a (K, IV ) pair has (K ′
(1), IV

′
(1)) that generates a only 1-bit shifted

keystream with probability of 2−2, which is greatly high probability compared to
an ideal stream cipher that generates a random keystream by (K, IV ). If an at-
tacker can access to stream ciphers using such a slide pair, it is easy to distinguish
keystreams from random streams.
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Table 8.2: Examples of slide pairs

1-bit slide pair

K IV K ′
(1) IV ′

(1)

4bdf973abdd66263x 49cba4aa656336ebx 97bf2e757bacc4c7x 93974954cac66dd7x
d4ef3bfb30609c57x be0b3db8cc516480x a9de77f660c138afx 7c167b7198a2c901x

95b8910812c5c95bx 2b712210258b92b7x
keystream keystream

001000110011010100110101100110112 010001100110101001101011001101112
101000101111111001111001000010002 010001011111110011110010000100012

5-bit slide pair

K IV K ′
(5) IV ′

(5)

5f3c0c948aa9262ex 01660552b4169c5dx e78192915524c5cfx 2cc0aa5682d38bbax
7e55d395a458fba2x d584fedb576094f6x caba72b48b1f745bx b09fdb6aec129ed9x

cb5cd06e132a3644x 6b9a0dc26546c889x
keystream keystream

100101110000000011100110111010112 111000000001110011011101011011002
011000111111100000110110010011112 011111110000011011001001111001102

10-bit slide pair

K IV K ′
(10) IV ′

(10)

d048119b66a37d84x 8b75aad54c32a2b6x 20466d9a8df61354x d6ab5530ca8adbc4x
d51287aef2f796d1x f118a4764dd0560ax 4a1ebbcbde5b4738x 6291d93741582a23x

88fc32827bc213ccx f0ca09ef084f334bx
keystream keystream

001000101000101001000101100101112 001010010001011001011110011100102
100111001001001010011100110101112 010010100111001101011101010010012

8.4.3 Partial Slide Property of RAKAPOSHI

Here, we introduce a variant of the slide property. Recall that conditions 1-3 in
Section 7.4 ensure that a (K, IV ) pair has an n-bit slide pair (K ′

(n), IV
′
(n)) that

produces an n-bit sliding keystream of (K, IV ). If the condition 3 does not hold,
it is not ensured that a448+128+i and a

′
448+128+i+n are identical for 0 ≤ i < n, due

to the difference of usage of s. However, these differences do no affect generations
of zn+1(= z′1), . . . , z60(= z′60−n). Thus, if only the conditions 1 and 2 hold, we can
obtain the keystream pairs in which {zn+1, . . . , z60} and {z

′
1, . . . , z

′
60−n} are identical.

We call such pair n-bit partial slide pair.
Therefore, a (K, IV ) pair has an n-bit partial slide pair (K ′′

(n), IV
′′
(n)) that gen-

erates an n-bit partial sliding keystream with probability of 2−n, that occurs with
higher probability than the basic slide property. For n = 1, a (K, IV ) pair has a 1-bit
partial slide pair (K ′′

(1), IV
′′
(1)) with probability of 2−1, where 59 bits of {z2, . . . , z60}

and {z′1, . . . , z
′
59} are identical. If an attacker can access to stream ciphers using

such a partial slide pair, it is easy to distinguish keystreams from random streams.
The success probability is 1− 2−59, because the 59-bit conditions of the keystream
coincidentally hold with probability of 2−59 independently from the event of the
partial slide pair.
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8.5 Related-Key Attack on RAKAPOSHI

In this section, we give a technique for exploiting the slide property of RAKAPOSHI
in order to construct a related-key key recovery attack on RAKAPOSHI. To begin
with, we explain a method for determining a part of key bits by utilizing the 1-bit
slide property. After that, we generalize it and propose a related-key attack on
RAKAPOSHI based on the n-bit slide property. Moreover we improve it by using
the partial slide property.

8.5.1 Related-Key Attacks Using 1-bit Slide Pair

Define the related key K∗
(1) of this attack as 2

K∗
(1) = {k

∗
0, k

∗
1, . . . , k

∗
127} = {k1, k2, . . . , k127, x0}

where

x0 = g(a0, a6, a7, a11, a16, a28, a36, a46, a55, a62),

= g(k0, k6, k7, k11, k16, k28, k36, k46, k55, k62).

Since x0 includes only key bits and does not depends on the value of IV , a
related key K∗ is determined if K is given. In the related-key setting, an attacker
knows that a pair of (K,K∗

(1)) holds this relation, though actual values of those are
unknown.

This attack uses chosen IV pairs (IV , IV ∗
(1)) satisfying following relation,

IV = {iv1, iv2, . . . , iv191, y0}

= {iv∗0, iv
∗
1, . . . , iv

∗
191} = IV ∗

(1),

where

y0 = f(b0, b14, b37, b41, b49, b51, b93, b107, b120, b134,

b136, b155, b158, b176, a41, a89)

⊕v(a67, a127, b23, b53, b77, b81, b103, b128)

= f(iv0, iv14, iv37, iv41, iv49, iv51, iv93, iv107, iv120, iv134,

iv136, iv155, iv158, iv176, k41, k89)

⊕v(k67, k127, iv23, iv53, iv77, iv81, iv103, iv128).

In the chosen-IV setting, an attacker is able to choose the values of IV freely.
Given IV , we can determined IV ∗

(1) except iv∗191 (= y0), because y0 includes four

key bits, {k41, k89, k67, k127}, which are secret values even in the related-key setting.
If the value of iv∗191 is correctly guessed, (K, IV ) and (K∗

(1), IV
∗
(1)) satisfy the

condition 1 regarding the 1-bit slide pair. Then, (K∗
(1), IV

∗
(1)) generates a 1-bit

shifted keystream of (K, IV ) with probability of 2−2. Since the probability that
iv∗191 is correctly guessed is 2−1, we expect to obtain one 1-bit sliding keystream
pair after testing 23 (IV, IV ∗

(1)) pairs. Once such a (IV, IV ∗
(1)) pair is found, we

2This type of related keys has been utilized in attacks of Grain family [121, 122].
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can confirm that iv∗191(= y0) is correctly guessed. Then, a 1-bit equation of y0,
which includes 4 key bits of {k41, k89, k67, k127}, is obtained. Using four equations,
{k41, k89, k67, k127} can be determined with high probability.

The details of the attack procedure are given as follows:

1. Choose one pair of (IV , IV ∗
(1)), where iv

∗
191 is guessed.

2. Obtain two keystreams of (K, IV ) and (K∗
(1), IV

∗
(1)).

3. If these keystreams is the 1-bit sliding pair, then store the 1-bit equation of
{k41, k89, k67, k127} corresponding to iv∗191.

4. Repeat step 1-3 until 4 equations are obtained.

5. Determine the key bits of {k41, k89, k67, k127} by using four equations.

6. Obtain other 124 bits of the key in the brute force manner.

One equation can be obtained with probability of 2−3. Thus, it is expected to
repeat step 1-4 in 25 (= 4 × 23) times. The time complexity of the step 1-4 is
26 (= 2 × 25) initialization process, and the number of required chosen IVs is 26.
In the step 5, we search {k41, k89, k67, k127} by checking obtained 1-bit equations.
Specifically, we guess values of {k41, k89, k67, k127}, and check whether these values
satisfy all four equations. After testing 24 patterns of {k41, k89, k67, k127}, the one set
that holds equations expects to be found. Thus, the time complexity of the step 5 is
estimated as 24 estimations of equations, which is obviously less than 24 initialization
process. Therefore, the whole time complexity is estimated as 2124(≈ 24+26+2124)
initialization process. This related-key attack recovers a key with time complexity
of 2124, 26 chosen IVs and one related key.

8.5.2 Related-Key Attacks Using n-bit Slide Pair

We extend the attack exploiting a 1-bit slide pair to an attack based on the n-bit
slide pair. The related key K∗

(n) and chosen IV pair are defined as,

K∗
(n) = {k∗0, k

∗
1, . . . , k

∗
127} = {kn, kn+1, . . . , k127, x0, . . . , xn−1},

IV = {ivn, ivn+1, . . . , iv191, y0, . . . , yn−1}

= {iv∗0, iv
∗
1, . . . , iv

∗
191} = IV ∗

(n),

assuming that the values of n is less than 127. Table 3 shows involved key bits of
each yt for 0 ≤ t ≤ 12.

If the values of {y0, . . . , yn−1} are correctly guessed with probability of 2−n,
(K∗

(n), IV
∗
(n)) generate an n-bit sliding keystream of (K, IV ) with probability of 2−2n.

Once we find such pairs, n equations regarding each value of {y0, . . . , yn−1} are
obtained. If yt includes m bits of the key, m independent equations of yt are needed
for determining m bits of the key.

As an example, let us consider the attack using a 4-bit slide pair. {y0, . . . , y3}
includes 4, 13, 13 and 13 key bits, respectively, and in total these involve independent
41 key bits. If 13 independent equations regarding each y are obtained3, we can

3For y0, 4 independent equations are enough.
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Table 8.3: Included key bits in each yt

yt Included key bits

y0 41, 67, 89, 127

y1 42, 68, 90, (0, 6, 7, 11, 16, 28, 36, 45, 55, 62)

y2 43, 69, 91, (1, 7, 8, 12, 17, 29, 37, 46, 56, 63)

y3 44, 70, 92, (2, 8, 9, 13, 18, 30, 38, 47, 57, 64)

y4 45, 71, 93, (3, 9, 10, 14, 19, 31, 39, 48, 58, 65)

y5 46, 72, 94, (4, 10, 11, 15, 20, 32, 40, 49, 59, 66)

y6 47, 73, 95, (5, 11, 12, 16, 21, 33, 41, 50, 60, 67)

y7 48, 74, 96, (6, 12, 13, 17, 22, 34, 42, 51, 61, 68)

y8 49, 75, 97, (7, 13, 14, 18, 23, 35, 43, 52, 62, 69)

y9 50, 76, 98, (8, 14, 15, 19, 24, 36, 44, 53, 63, 70)

y10 51, 77, 99, (9, 15, 16, 20, 25, 37, 45, 54, 64, 71)

y11 52, 78, 100, (10, 16, 18, 21, 26, 38, 46, 55, 65, 72)

y12 53, 79, 101, (11, 17, 19, 22, 27, 39, 47, 56, 66, 73)

determine key bits included in each equation. It implies that this attack requires 13
pairs of (IV, IV ∗

(4)) causing a 4-bit sliding keystream. These pairs are obtained with

time complexity of 217 (= 13× 2× 23·4) and 217( = 13× 2× 23·4) chosen IVs. Then,
41 bits of the key can be determined with complexity of 215(= 24 + 213 + 213 + 213)
by exhaustively checking obtained equations. Therefore, the whole time complexity
is estimated as 287(= 287 + 215 + 217) initialization process. This related-key attack
recovers the key with time complexity of 287 and 217 chosen IVs.

Using 8-bit slide pairs, each values of {y0, . . . , y7} includes 13 bits of the key
except y0 and in total these involve independent 75 key bits. 13 pairs of (IV, IV ∗

(8))

causing a 8-bit sliding keystream are obtained with time complexity of 229 (= 13×
2× 23·8) and 229( = 13× 2× 23·8) chosen IVs. Then, in total 75 bits of the key are
determined with complexity of 216(= 24+213×7) by exhaustively checking obtained
equations. Therefore, the whole time complexity is estimated as 254(= 253+216+229)
initialization process. This related-key attack recovers the key with time complexity
of 254 and 229 chosen IVs.

Using 11-bit slide pairs, each values of {y0, . . . , y10} includes 13 bits of the key
except y0 and in total these involve independent 88 key bits. 13 pairs of (IV, IV ∗

(11))

causing a 11-bit sliding keystream are obtained with time complexity of 238 (=
13 × 2 × 23·11) and 238( = 13 × 2 × 23·11) chosen IVs. Then, in total 88 bits of
the key are determined with complexity of 217(= 24 + 213 × 10) by exhaustively
checking obtained equations. Therefore, the whole time complexity is estimated as
241(= 240+217+238) initialization process. This related-key attack recovers the key
with time complexity of 241 and 238 chosen IVs. This attack is optimized for the
time complexity.
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Table 8.4: Summary of our related-key attacks

Used Slide pair Time Complexity Chosen IVs

1 bit 2124 26

4 bit 287 217

8 bit 254 229

11 bit 241 238

1 bit (partial) 2124 26

4 bit (partial) 287 213

8 bit (partial) 254 221

11 bit (partial) 241 227

13 bit (partial) 233 230

8.5.3 Related-Key Attacks Using n-bit Partial Slide Pair

This attack is further improved by using n-bit partial slide pair in which {zn+1, . . . , z60}
and {z′1, . . . , z

′
60−n} of keystreams are identical. Using 13-bit partial slide pairs, i.e.,

47 bits of {z14, . . . , z60} and {z
′
1, . . . , z

′
47} are identical, each values of {y0, . . . , y12}

includes 13 bits of the key except y0 and in total these involve independent 96
key bits. 13 pairs of (IV, IV ∗

(13)) causing a 13-bit partial sliding keystream are ob-

tained with time complexity of 230 (= 13 × 2 × 22·13) and 230( = 13 × 2 × 22·13)
chosen IVs. Then, in total 96 bits of the key are determined with complexity of
218(= 24 + 213 × 12) by exhaustively checking obtained equations. Therefore, the
whole time complexity is estimated as 233(= 232 + 218 + 230) initialization process.
This related-key attack recovers the key with time complexity of 233 and 230 chosen
IVs. The success probability is estimated as (1− 2−47)13 ≈ 1.

This technique also allow to improve the attacks based on 1, 4, 8 and 11 -bit slide
pairs with respect to data complexity. Table 4 shows the summary of our results.
This result reveals that RAKAPOSHI is practically vulnerable to the related-key
attack based on the slide property.

8.6 Speed-up Keysearch on RAKAPOSHI

In this section, we give a method for speeding up a keysearch in the single key
setting.

In order to improve the naive brute force attack, we exploit partial slide pairs. In
particular, we utilize the observation that if the condition 2 regarding n-bit partial
slide pairs holds, we can check n keys without recalculations of the initialization
process.

Assume that an attacker aims to find Ktarget in the brute-force style search,
i.e., test all keys with the keystream of (Ktarget, IV target). Let us consider that a
candidate pair of (K, IV ) is set for the test. In the initialization process of (K, IV ),
if s320+i = 0 (condition 2) holds for 0 ≤ i < n, then (K, IV ) surely has 1, . . . , n
bit partial slide pairs such that {(K(1), IV(1)), . . . (K(n), IV(n))} = {(A1, B1), . . .
(An, Bn)}.
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Then we can simultaneously verify n keys with only initialization call of (K, IV )
by using additional keystreams of {(Ktarget, IV(1)), . . . (K

target, IV(n))}. Note that
n bits of IV(n), namely y0, . . . , yn, are uncontrollable and can not be fixed, while
other (192−n) bits of IV(n) is determined from IV target. Thus, this attack requires
a set of keystreams generated from 1 + 21 + 22. . . .+ 2n chosen IVs.

The detailed algorithm is as follows:

1. Set K = 0 and IV = IV target

2. Perform the initialization process and generate keystream bits (z0 . . . z60).

3. For t = 0 to [smallest 0 ≤ n < 60 for which s320+n+1 = 1],
check (zt . . . z60) match the keystream of (KTarget, IV(t)).

• if matching, output Ktarget = At

4. Updating K = At+1, and Return step 2 only if K 6= 0.

As estimated in [122], this algorithm will eventually reach K = 0 again, because
K is updated in the invertible way. Then, it is expected that this code check 2127

key values. The expected number of checked values of K in the step 3 for each loop
of step 2-4 is 2 (≈ 1+ 1 · 1/4+ 2 · 1/8+ . . .). Thus, the complexity of this algorithm
is estimated as 2126 initialization processes of the step 2. If we can not find the
target key, the algorithm can be repeated with different starting values which have
a different cycle.

In order to estimate the actual cost of the attack, we consider the case where
1− 10 bits partial slide pairs are used in this algorithm. Since the expected number
of checked values of K in the step 3 is 2 (≈ 1+1 ·1/4+2 ·1/8+ . . .+10 ·1/1024), time
complexity for searching 2127 key values is estimate 2126. After that, to cover all
key space, we will check another cycle with same complexity. The whole complexity
is given as 2127 initialization processes. The number of the set of IV used for the
attack is 211 (≈ 1 + 2 + 22 + . . .+ 210).

Therefore, we can speed up keysearch by a factor two. In the Grain v1 at-
tack [122], this type of attack seems applicable in the case of that IV are all 1.
Unlike the attack on Grain v1, our attack on RAKAPOSHI can be done for any IV
while a set of chosen IVs are needed. This shows that RAKAPOSHI has a 127-bit
security instead of 128 bits. However, this attack is a marginal improvement com-
pared to the brute force attack. Thus, we do not claim this to be real attack based
on algorithmic weakness.

8.7 Conclusion

this chapter has investigated slide properties of RAKAPOSHI stream ciphers. First,
we have shown that for RAKAPOSHI, any Key-IV pair has a corresponding slide
Key-IV pair that generates a n-bit shifted keystream with probability of 2−2n. Then,
we showed that this property is able to be converted into key recovery attacks on
RAKAPOSHI. In the related-key setting, our attack based on the slide property can
recover a 128-bit key with time complexity of 233 and 230 chosen IVs. In addition,
a method for speeding up the brute force attack by a factor of 2 can be constructed
in the single key setting.
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These results mainly exploit the self-similarity of the state update function of
RAKAPOSHI. If the self-similarity is destroyed, this type of attack can be avoid.
For example, inserting round constants or a counter value in each step is effective
for preventing the attack presented in this chapter.
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Chapter 9

Cryptanalysis of RC4

This chapter investigates the practical security of RC4 in broadcast setting where
the same plaintext is encrypted with different user keys. We introduce several new
biases in the initial (1st to 257th) bytes of the RC4 keystream, which are substan-
tially stronger than known biases. Combining the new biases with the known ones,
a cumulative list of strong biases in the first 257 bytes of the RC4 keystream is
constructed. We demonstrate a plaintext recovery attack using our strong bias set
of initial bytes by the means of a computer experiment. Almost all of the first 257
bytes of the plaintext can be recovered, with probability more than 0.8, using only
232 ciphertexts encrypted by randomly-chosen keys. We also propose an efficient
method to extract later bytes of the plaintext, after the 258th byte. The proposed
method exploits our bias set of first 257 bytes in conjunction with the digraph rep-
etition bias proposed by Mantin in EUROCRYPT 2005, and sequentially recovers
the later bytes of the plaintext after recovering the first 257 bytes. Once the possible
candidates for the first 257 bytes are obtained by our bias set, the later bytes can
be recovered from about 234 ciphertexts with probability close to 1.

Finally, we show that our set of these biases are applicable to plaintext recovery
attacks, key recovery attacks and distinguishing attacks.

9.1 Introduction

RC4, designed by Rivest in 1987, is one of most widely used stream ciphers in the
world. It is adopted in many software applications and standard protocols such as
SSL/TLS, WEP, Microsoft Lotus and Oracle secure SQL. RC4 consists of a key
scheduling algorithm (KSA) and a pseudo-random generation algorithm (PRGA).
The KSA converts a user-provided variable-length key (typically, 5–32 bytes) into
an initial state S consisting of a permutation of {0, 1, 2, . . . , N − 1}, where N is
typically 256. The PRGA generates a keystream Z1, Z2, . . ., Zr, . . . from S, where
r is a round number of the PRGA. Zr is XOR-ed with the r-th plaintext byte Pr

to obtain the ciphertext byte Cr. The algorithm of RC4 is shown in Algorithm 2,
where + denotes arithmetic addition modulo N , ℓ is the key length, and i and j are
used to point to the locations of S, respectively. Then, S[x] denotes the value of S
indexed x.

After the disclosure of its algorithm in 1994, RC4 has attracted intensive crypt-
analytic efforts over past 20 years. Distinguishing attacks, which attempt to distin-
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Algorithm 2 RC4 Algorithm

KSA(K):

for i = 0 to N − 1 do
S[i]← i

end for
j ← 0
for i = 0 to N − 1 do
j ← j + S[i] +K[i mod ℓ]
Swap S[i] and S[j]

end for

PRGA(K):

i← 0
j ← 0
S ← KSA(K)
loop
i← i+ 1
j ← j + S[i]
Swap S[i] and S[j]
Output Z ← S[S[i] + S[j]]

end loop

guish an RC4 keystream from a random stream, were proposed in [123, 124, 37, 33,
125, 126, 34]. State recovery attack, which recovers a full state instead of the user-
provided key, was shown by Knudsen et al. [127], and it was improved by Maximov
and Khovratovich [128]. Other types of attacks are also proposed, e.g., key collision
attack [129], keystream predictive attack [37] and key recovery attacks from a state
[130, 131].

In FSE 2001, Mantin and Shamir presented an attack on RC4 in the broadcast
setting where the same plaintext is encrypted with different user keys [33]. The
Mantin-Shamir attack can extract the second byte of the plaintext from only Ω(N)
ciphertexts encrypted with randomly-chosen different keys by exploiting a bias of Z2.
Specifically, the event Z2 = 0 occurs with twice the expected probability of a random
one. In FSE 2011, Maitra, Paul and Sen Gupta showed that Z3, Z4, . . . , Z255 are
also biased to 0 [34]. Then the bytes 3 to 255 can also be recovered in the broadcast
setting, from Ω(N3) ciphertexts.

Although the broadcast attacks were theoretically estimated, we find that three
questions are still open in terms of a practical security of broadcast RC4.

1. Are the biases exploited in the previous attacks the strongest biases for the
initial bytes 1 to 255?

2. While the previous results [33, 34] estimate only lower bounds (Ω), how many
ciphertexts encrypted with different keys are actually required for a practical
attack on broadcast RC4?

3. Is it possible to efficiently recover the later bytes of the plaintext, after byte
256?

9.1.1 Our Contribution

In this chapter, we provide answers to all the aforesaid questions. To begin with,
we introduce a new bias regarding Z1, which is a conditional bias such that Z1 is
biased to 0 when Z2 is 0. Using this bias in conjunction with the bias of Z2 = 0
[33], the first byte of a plaintext is extracted from Ω(N2) ciphertexts encrypted with
different keys. Although the strong bias of the first byte, which is a negative bias
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towards zero, has already been pointed out in [125, 35], it requires Ω(N3) ciphertexts
to extract the first byte of the plaintext. Thus, the new conditional bias observed
by us is very useful, because the number of required ciphertexts to recover the first
byte reduces by a factor of N/2 compared the straightforward method. Besides,
we introduce new strong biases, i.e., Z3 = 131, Zr = r for 3 ≤ r ≤ 255, and
extended keylength-dependent biases such that Zx·ℓ = −x · ℓ for x = 2, 3, . . . , 7 and
ℓ = 16, which are extensions of the keylength-dependent biases in which only the
parameter of x = 1 is considered [36]. These new biases are substantially stronger
than known biases of Zr = 0 in case of certain bytes within Z3, Z4, . . . , Z255. After
providing theoretical considerations for these biases, we experimentally confirm the
validity of the same. Combining the new biases with known biases, we construct
a cumulative list of strongest known biases in Z1, Z2, . . . , Z255. At the same time,
we experimentally show two new biases of Z256 and Z257, and add these to our bias
set. Note that biases of Z2, Z3, . . . , Z257 included in our bias set are strongest biases
amongst all single positive and negative biases of each byte when a 16-byte (128-bit)
key is used.

We demonstrate a plaintext recovery attack using our bias set by the computer
experiment, and estimate the number of required ciphertexts and success probability
when N = 256. Almost all first 257 bytes, P1, P2, . . . , P257, can be extracted with
probability more than 0.8 from 232 ciphertexts encrypted by randomly-chosen keys.
Given 234 ciphertexts, all bytes of P1, P2, . . . , P257 can be narrowed down to two
candidates each with probability one. This is a first practical security evaluation
of broadcast RC4 using all known biases of the cipher, and some new ones that we
observe.

Finally, an efficient method to extract later bytes of the plaintext, namely bytes
after P258, is given. It exploits our bias set of Z1, Z2, . . . , Z257 in conjunction with the
digraph repetition bias proposed by Mantin [37], and then sequentially recovers bytes
of the plaintext. Once the possible candidates for P1, P2, . . . , P257 are obtained by our
bias set, Pr (r ≥ 258) are recovered from about 234 ciphertexts with probability one.
Since the digraph repetition bias is a long-term bias, which occurs in any keystream
byte, our sequential method is expected to recover any plaintext byte from only
ciphertexts produced by different randomly-chosen keys. We show that the first 250

bytes ≈ 1000 T bytes of the plaintext can be recovered from 234 ciphertexts with
probability of 0.97170.

Also, the broadcast setting is converted into the multi-session setting of SSL/TLS
where the target plaintext block are repeatedly sent in the same position in the
plaintexts in multiple sessions.

9.2 Known Attacks on Broadcast RC4

This section briefly reviews known attacks on RC4 in the broadcast setting where
the same plaintext is encrypted with different randomly-chosen keys.

9.2.1 Mantin-Shamir (MS) Attack

Mantin and Shamir first presented a broadcast RC4 attack exploiting a bias of
Z2 [33].
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Theorem 3. [33] Assume that the initial permutation S is randomly chosen from
the set of all the possible permutations of {0, 1, 2, . . . , N − 1}. Then the probability
that the second output byte of RC4 is 0 is approximately 2

N .

This probability is estimated as 2
256 when N = 256. Based on this bias, the

broadcast RC4 attack is demonstrated by Theorems 14 and 5.

Theorem 4. [33] Let X and Y be two distributions, and suppose that the event e
happens in X with probability p and in Y with probability p · (1+ q). Then for small
p and q, O( 1

p·q2
) samples suffice to distinguish X from Y with a constant probability

of success.

In this case, p and q are given as p = 1/N and q = 1. The number of samples is
about N .

Theorem 5. [33] Let P be a plaintext, and let C(1), C(2), . . . , C(k) be the RC4
encryptions of P under k uniformly distributed keys. Then, if k = Ω(N), the second
byte of P can be reliably extracted from C(1), C(2), . . . , C(k).

According to the relation C
(i)
2 = P

(i)
2 ⊕ Z

(i)
2 , if Z

(i)
2 = 0 holds, then C

(i)
2 is same

as P
(i)
2 . From Theorem 3, Z2 = 0 occurs with twice the expected probability of a

random one. Thus, most frequent byte in amongst C
(1)
2 , C

(2)
2 , . . . , C

(k)
2 is likely to

be P2 itself. When N = 256, it requires more than 28 ciphertexts encrypted with
randomly-chosen keys.

9.2.2 Maitra, Paul and Sen Gupta (MPS) Attack

Maitra, Paul and Sen Gupta showed that Z3, Z4, . . . , Z255 are also biased to 0 [34, 35].
Although the MS attack assumes that an initial permutation S is random, the MPS
attack exploits biases of S after the KSA [132]. Let Sr[x] be the value of S indexed
x after r round, where S0 is the initial state of RC4 after the KSA. Biases of the
initial state of the PRGA are given as follow.

Proposition 1. [132] After the end of KSA, for 0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1,

Pr(S0[u] = v) =

{
1
N ·
(
(N−1

N )v + (1− (N−1
N )v) · (N−1

N )N−u−1
)

(v ≤ u),
1
N ·
(
(N−1

N )N−u−1 + (N−1
N )v

)
(v > u).

The probability of Sr−1[r] in the PRGA are given as the follows.

Theorem 6. [35] 1 For 3 ≤ r ≤ N − 1, the probability Pr(Sr−1[r] = v) is approxi-
mately

Pr(S1[r] = v) ·

(

1−
1

N

)r−2

+
r−1∑

t=2

r−t∑

w=0

Pr(S1[t] = v)

w! ·N
·

(
r − t− 1

N

)w

·

(

1−
1

N

)r−3−w

,

where Pr(S1[t] = v) is given as

Pr(S1[t] = v) =







Pr(S0[1] = 1) +
∑

X 6=1 Pr(S0[1] = X ∧ S0[X] = 1) (t = 1, v = 1),
∑

X 6=1,v Pr(S0[1] = X ∧ S0[X] = v) (t = 1, v 6= 1),

Pr(S0[1] = t) +
∑

X 6=t Pr(S0[1] = X ∧ S0[t] = t) (t 6= 1, v = t),
∑

X 6=t,v Pr(S0[1] = X ∧ S0[t] = v) (t 6= 1, v 6= t).

1The theorems with respect to Zr = 0 in [34] and [35] are slightly different. this chapter uses
the results from the full version [35].
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Figure 9.1: Event for bias of Z1 = 0|Z2 = 0

Then, the bias of Pr(Zr = 0) is estimated as follows.

Theorem 7. [35] For 3 ≤ r ≤ N − 1, Pr(Zr = 0) is approximately

Pr(Zr = 0) ≈
1

N
+

cr
N2

,

where cr is given as

cr =

{ N
N−1 · (N · Pr(Sr−1[r] = r)− 1)− N−2

N−1 (r = 3),
N

N−1 · (N · Pr(Sr−1[r] = r)− 1) (r 6= 3).

Since the parameters of p and q are given as p = 1/N and q = cr/N , The number
of required ciphertexts with different keys for the extraction of P3, P4, . . . , P255 is
roughly estimated as Ω(N3).

9.3 New Biases : Theory and Experiment

This section introduces four new biases in the keystream of RC4. To begin with, we
prove a conditional bias of Z1 towards 0 when Z2 = 0. After that, we present new
biases in the events, Z3 = 131, Zr = r, and extended keylength-dependent biases,
which are substantially stronger than the known biases such as Zr = 0. Then, we
construct a cumulative list of strong biases in Z1, Z2, . . . , Z257 to mount an efficient
plaintext recovery attack on broadcast RC4.

9.3.1 Bias of Z1 = 0|Z2 = 0

A new conditional bias such that Z1 is biased to 0 when Z2 = 0 is given as Theorem
8.

Theorem 8. Pr(Z1 = 0|Z2 = 0) is approximately

Pr(Z1 = 0|Z2 = 0) ≈
1

2
·
(

Pr(S0[1] = 1) + (1− Pr(S0[1] = 1)) ·
1

N

)

+
1

2
·
1

N
.
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Proof. Two cases of S0[2] = 0 and S0[2] 6= 0 are considered. As mentioned in [33],
when Z2 is 0, S0[2] is also 0 with probability of 1

2 .

• S0[2] = 0
For i = 1, if S0[1] is 1, the index j is updated as j = S0[i] = S0[1] = 1. Then
the first output byte Z1 is expressed as follows (see Fig. 9.1),

Z1 = S1[S1[i] + S1[j]] = S1[S1[1] + S1[1]] = S1[2] = S0[2] = 0.

Assuming that Z1 = 0 holds with probability of 1
N when S0[1] 6= 1, the prob-

ability of Pr(Z1 = 0|S0[2] = 0) is estimated as

Pr(Z1 = 0|S0[2] = 0) = Pr(S0[1] = 1) + (1− Pr(S0[1] = 1)) ·
1

N
.

• S0[2] 6= 0
Suppose that the event of Z1 = 0 occurs with probability of 1

N . Then Pr(Z1 =
0|S0[2] = 0) is estimated as

Pr(Z1 = 0|S0[2] 6= 0) =
1

N
.

Therefore Pr(Z1 = 0|Z2 = 0) is approximately

Pr(Z1 = 0|Z2 = 0) = Pr(Z1 = 0|S0[2] = 0) · Pr(S0[2] = 0|Z2 = 0)

+Pr(Z1 = 0|S0[2] 6= 0) · Pr(S0[2] 6= 0|Z2 = 0)

≈
1

2
·
(

Pr(S0[1] = 1) + (1− Pr(S0[1] = 1)) ·
1

N

)

+
1

2
·
1

N
.

When N = 256, Pr(S0[1] = 1) is obtained by Proposition 1.

Pr(S0[1] = 1) =
1

256
·

((
255

256

)

+

(

1−

(
1

256

))

·

(
1

256

)254
)

= 0.0038966.

Then, Pr(Z1 = 0|Z2 = 0) is computed as

Pr(Z1 = 0|Z2 = 0) =
1

2
·

(

Pr(S0[1] = 1) + (1− Pr(S0[1] = 1)) ·
1

256

)

+
1

2
·

1

256

= 0.0058470 = 2−7.418 = 2−8 · (1 + 2−1.009).

Since the experimental value of Pr(Z1 = 0|Z2 = 0) for 240 randomly-chosen
keys is obtained as 0.0058109 = 2−8 · (1 + 2−1.036), the theoretical value is correctly
approximated.

From this bias, Pr(Z1 = 0 ∧ Z2 = 0) can also be estimated, as follows.

Pr(Z1 = 0 ∧ Z2 = 0) = Pr(Z2 = 0) · Pr(Z1 = 0|Z2 = 0).

When N = 256, it is estimated as

Pr(Z1 = 0 ∧ Z2 = 0) =
2

256
· 2−7.418 = 2−14.418 = 2−16 · (1 + 20.996).
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This type of bias, called digraph bias, was proved as a long term bias by Fluhrer
and McGrew [124]. However, such a strong bias in initial bytes was not reported.
Specifically, the probability of the general long-term digraph bias is estimated as
2−16 · (1 + 2−8) in [124] when N = 256, while that of our bias is 2−16 · (1 + 20.996).
Thus our result reveals that the digraph bias in initial bytes is much stronger than
what is estimated in [124].

Note that we searched for the similar form of conditional biases in first 256
bytes of the RC4 keystream. In particular, we check following specific patterns,
(Zr−a = X|Zr = Y ) for 0 ≤ X, Y ≤ 255, 2 ≤ r ≤ 256, 1 ≤ a ≤ 8. However, such
a strong bias could not be found in our experiment, while all conditional biases are
not covered.

Application to Broadcast RC4 attack:

Using this new conditional bias of Z1 = 0|Z2 = 0 in conjunction with the bias
of Z2 = 0 [33], the first byte of the plaintext can be efficiently extracted, where
N = 256. After 217 ciphertexts with randomly-chosen keys are collected, following
procedures are performed.

Step 1 Extract the second byte of the target plaintext, P2, from 28 ciphertexts [33].

Step 2 Find the ciphertext in which Z2 = 0 is XOR-ed by the computation of
C2 ⊕ P2. Then, 210 = 217 · 2/256 ciphertexts matching this criterion are
expected to be obtained.

Step 3 Regard the most frequent byte in the first byte C1 of these matching 210

ciphertexts as P1.

In Step 3, using the bias of Pr(Z1 = 0|Z2 = 0) = 2−8 · (1 + 2−1.009), P1 is extracted
from remaining 210(∼ 1

2−8·(2−1.009)2
) ciphertexts by Theorems 14 and 5, assuming

the relation of C1 = P1 ⊕ Z1 = P1 holds. Although the bias of the first byte has
already been pointed out in [125, 35], it requires 224 ciphertexts to extract the first
byte using the known biases, because the probability of the strongest bias, which is
a negative bias of Z1 towards 0, is estimated as about 2−8 · (1− 2−8) [35]. Thus, the
new conditional bias identified by us is very efficient, because the number of required
ciphertexts reduces by a factor close to N/2 compared to that of the straightforward
method.

9.3.2 Bias of Z3 = 131

A new bias of Z3 = 131, which is stronger than Z3 = 0 [34, 35], is given as Theorem 9.

Theorem 9. Pr(Z3 = 131) is approximately

Pr(Z3 = 131) ≈ Pr(S0[1] = 131) · Pr(S0[2] = 128) +

(1− Pr(S0[1] = 131) · Pr(S0[2] = 128)) · 1/N.

Proof. Suppose the events S0[1] = 131 and S0[2] = 128 occur after the KSA. For
i = 1, j is updated as S0[1] = 131. After S0[1] and S0[131] are swapped, S1[131]
becomes 131. For i = 2, j is updated as 131 + S1[2] = 131 + S0[2] = 131 + 128 =
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j = 3 + S2[3]
  = 3 + 128 = 131

Figure 9.2: Event for bias of Z3 = 131

3, and S1[2] and S1[3] are swapped. Then S2[3] = 128 is obtained. Finally, for
i = 3, j is updated as 3 + S2[3] = 3 + 128 = 131. After S2[3] and S2[131] are
swapped, S3[3] = 131 and S3[131] = 128 holds. Then, a third output byte Z3 is
Z3 = S3[S3[3] + S3[131]] = S3[131 + 128] = S3[3] = 131. Thus, when S0[1] = 131
and S0[2] = 128 hold, Z3 = 131 holds with probability one. Figure 9.2 depicts this
event.

Assuming that in other cases, that is when S0[1] 6= 131 or S0[2] 6= 128, the event
Z3 = 131 holds with probability of 1/N , the probability of Pr(Z3 = 131) is estimated
as

Pr(Z3 = 131) ≈ Pr(S0[1] = 131) · Pr(S0[2] = 128) +

(1− Pr(S0[1] = 131) · Pr(S0[2] = 128)) · 1/N.

When N = 256, by Proposition 1, Pr(S0[1] = 131) and Pr(S0[2] = 128) are
estimated as

Pr(S0[1] = 131) =
1

256
·

((
255

256

)256−1−1

+

(
255

256

)131
)

= 0.0037848,

Pr(S0[2] = 128) =
1

256
·

((
255

256

)256−2−1

+

(
255

256

)128
)

= 0.0038181.

Thus, Pr(Zr = 131) is computed as

Pr(Z3 = 131) ≈ 0.0039206 = 2−8 · (1 + 2−8.089).

Since experimental value of this bias for 240 randomly-chosen keys is obtained as
0.0039204 = 2−8 · (1 + 2−8.109), the theoretical value is correctly approximated.
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Figure 9.3: Event (Case 1) for bias of Zr = r

Let us compare it to the bias of Z3 = 0 of the MPS attack [34, 35]. The
experimental value for 240 randomly-chosen keys is obtained as

Pr(Z3 = 0) = 0.0039116 = 2−8 · (1 + 2−9.512).

Thus, the bias of Z3 = 131 is stronger than that of Z3 = 0.
We should utilize Z3 = 131 instead of Z3 = 0 for the efficient plaintext recovery

attack. When Z3 = 131 and Z3 = 0 are jointly used, two candidates of P3 remain.
Thus, in order to detect one correct value of P3, the only use of Z3 = 131 is more
efficient.

9.3.3 Bias of Zr = r for 3 ≤ r ≤ N − 1

We also present a new bias in the event Zr = r for 3 ≤ r ≤ N−1, whose probabilities
are very close to those of Zr = 0 [34], and the new biases are stronger than those of
Zr = 0 in some rounds. Thus, for an efficient attack, we need to carefully consider
which biases are stronger in each round. The probability of Zr = r is given as
Theorem 10.

Theorem 10. Pr(Zr = r) for 3 ≤ r ≤ N − 1 is approximately

Pr(Zr = r) ≈ pr−1,0 ·
1

N
+ pr−1,r ·

1

N
·
N − 2

N
+

(1− pr−1,0 ·
1

N
− pr−1,r ·

1

N
− (1− pr−1,0) ·

1

N
· 2) ·

1

N
,

where pr−1,0 = Pr(Sr−1[r] = 0) and pr−1,r = Pr(Sr−1[r] = r).

Proof. Let ir and jr be r-th i and j, respectively. For ir = r, an output Zr is
expressed as

Zr = Sr[Sr[ir] + Sr[jr]] = Sr[Sr[r] + Sr−1[r]].

Then, let us consider four independent cases.

Case 1 : Sr−1[r] = 0 ∧ Sr[r] = r

Case 2 : Sr−1[r] = r ∧ Sr[r] = jr − r ∧ jr 6= r, r + r
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Case 3 : Sr−1[r] 6= 0 ∧ Sr[r] = r − Sr−1[r]

Case 4 : Sr−1[r] 6= 0 ∧ Sr[r] = r

In Case 1 and Case 2, the output is always Zr = r. On the other hand, in Case 3
and Case 4, the output is not Zr = r.

Case 1 : Sr−1[r] = 0 ∧ Sr[r] = r
The output is expressed as Zr = Sr[Sr[r] + Sr−1[r]] = Sr[r + 0] = Sr[r] = r (see
Fig. 9.3). Then, the probability of Zr = r is one. Here Sr[r] is chosen by pointer j.
Since jr for r ≥ 3 behaves randomly [34], Sr[r] is assumed to be uniformly random.
it is estimated as

Pr(Sr−1[r] = 0 ∧ Sr[r] = r) = pr−1,0 ·
1

N
.

Case 2 : Sr−1[r] = r ∧ Sr[r] = jr − r ∧ jr 6= r, r + r
The output is expressed as Zr = Sr[Sr[r] + Sr−1[r]] = Sr[jr − r + r] = Sr[jr] =
Sr−1[r] = r (see Fig. 9.4). Then, the probability of Zr = r is one. Similar to Case
1, Sr[r] is assumed to be uniformly random.

When jr = r, the probability of Zr = r is zero because of the relation of Zr =
Sr[Sr[r] + Sr−1[r]] = Sr[0 + r] = Sr[r] = 0. Also, when jr = r + r, since Sr[r] = r
and Zr = Sr[Sr[r]+Sr−1[r]] = Sr[r+ r] 6= r, the probability of Zr = r is zero. Thus,
the conditions of jr 6= r, r + r are necessary for Zr = r. Then, it is estimated as

Pr(Sr−1[r] = r ∧ Sr[r] = jr − r ∧ jr 6= r, r + r) = pr−1,r ·
1

N
·
N − 2

N
.

Case 3 : Sr−1[r] 6= 0 ∧ Sr[r] = r − Sr−1[r]
The equation of Zr = Sr[r−Sr−1[r]+Sr−1[r]] = Sr[r] holds. Then, Sr[r] = r−Sr−1[r]
is not r, because Sr−1[r] is not 0. Thus, it is estimated as

Pr(Sr−1[r] 6= 0 ∧ Sr[r] = r − Sr−1[r]) = (1− pr−1,0) ·
1

N
.

Case 4 : Sr−1[r] 6= 0 ∧ Sr[r] = r
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Figure 9.5: Theoretical values and experimental values of Zr = r

The output is expressed as Zr = Sr[r + Sr−1[r]]. According to the equation of
Sr−1[r] 6= 0, The probability of Zr = r is zero. Thus, it is estimated as

Pr(Sr−1[r] 6= (0, r) ∧ Sr[r] = r − Sr−1[r]) = (1− pr−1,0) ·
1

N
.

Assuming that in other cases, Zr = r holds with probability of 1/N , the proba-
bility of Pr(Zr = r) is estimated as

Pr(Zr = r) ≈ pr−1,0 ·
1

N
+ pr−1,r ·

1

N
·
N − 2

N
+

(1− pr−1,0 ·
1

N
− pr−1,r ·

1

N
− (1− pr−1,0) ·

1

N
· 2) ·

1

N
.

Here, pr−1,r and pr−1,0 are obtained from Theorem 6. Figure 9.5 shows the
comparison of theoretical values and experimental values of Zr = r for 240 randomly-
chosen keys when N = 256. Since the theoretical values do not exactly coincide with
the experimental values, we do not claim that Theorem 10 completely prove this bias.
We guess that several minor events are not covered in our approach. However, the
order of the bias seems to be well matched. At least it can be said that the main
event causing this bias is discovered.

9.3.4 Extended Keylength-Dependent Biases

Extended keylength-dependent biases, which are extensions of keylength-dependent
biases [133, 36], are the bias of Zℓ = −ℓ when the key length is ℓ bytes. For
example, when using a 128-bit key (16 bytes), Z16 is biased to −16 (= 240). In
addition to it, we show that when the key length is ℓ bytes, Zx·ℓ is also biased to
−x · ℓ (x = 2, 3, 4, 5, 6, 7), e.g., Zr = −r for r = 32, 48, 64, 80, 96, 112, assuming ℓ =
16. Importantly, the extended keylength-dependent biases are much stronger than
the other known biases such as Zr = 0 and Zr = r. Table 9.1 shows experimental
values of the extended keylength-dependent bias Zr = −r, Zr = 0, and Zr = r for
240 randomly-chosen keys, when r is a multiple of the key length, ℓ = 16 in this case.
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Table 9.1: Experimental values of Zr = −r, Zr = 0 and Zr = r

r Pr(Zr = −r) Pr(Zr = 0) Pr(Zr = r)

16 2−8 · (1 + 2−4.811) 2−8 · (1 + 2−7.714) 2−8 · (1 + 2−7.762)

32 2−8 · (1 + 2−5.383) 2−8 · (1 + 2−7.880) 2−8 · (1 + 2−7.991)

48 2−8 · (1 + 2−5.938) 2−8 · (1 + 2−8.043) 2−8 · (1 + 2−8.350)

64 2−8 · (1 + 2−6.496) 2−8 · (1 + 2−8.244) 2−8 · (1 + 2−8.664)

80 2−8 · (1 + 2−7.224) 2−8 · (1 + 2−8.407) 2−8 · (1 + 2−9.052)

96 2−8 · (1 + 2−7.911) 2−8 · (1 + 2−8.577) 2−8 · (1 + 2−9.351)

112 2−8 · (1 + 2−8.666) 2−8 · (1 + 2−8.747) 2−8 · (1 + 2−9.732)

The probability of these biases is given as Theorem 11.

Theorem 11. When r = x · ℓ (x = 1, 2, . . . , 7), the probability of Pr(Zr = −r) is
approximately

Pr(Zr = −r) ≈
1

N2
+

(

1−
1

N2

)

· γr + (1− δr) ·
1

N
,

where

γr =
1

N2
·

(

1−
r + 1

N

)

·
N−1∑

y=r+1

(

1−
1

N

)y

·

(

1−
2

N

)y−r

·

(

1−
3

N

)N−y+2r−4

,

and δr = Pr(Sr[jr] = 0) = Pr(Sr−1[r] = 0).

Figure 9.9 shows our experimental values for 240 randomly-chosen keys and the-
oretical values of these extended keylength-dependent biases. Since theoretical and
experimental values have almost the same value, theoretical values are correctly
approximated.

Proof of Theorem 11

In order to prove Theorem 11, we give following Lemma 2 and Theorem 12, which
are extensions of Lemma 2 and Theorem 3 in [35]. Let (SK

r , i
K
r , j

K
r ) be (S, i, j) of

the r-th round in the KSA, respectively.

Lemma 2. When r = x · ℓ (x = 1, 2, . . . , 7), the probability of Pr(SK
r+1[r − 1] =

−r ∧ SK
r+1[r] = 0) is approximately

Pr(SK
r+1[r − 1] = −r ∧ SK

r+1[r] = 0) ≈
1

N2
+

(

1−
1

N2

)

· αr,

where αr =
1
N ·
(
1− 3

N

)r−2
·
(
1− r+1

N

)
.
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Proof. The event of (SK
r+1[r− 1] = −r∧SK

r+1[r] = 0) consists of following events. In
the first round of the KSA, when iK1 = 0 and jK1 = K[0], the value 0 is swapped for
the value of SK

0 [K[0]] with probability of one. The index jK1 requires jK1 = K[0] 6∈
{r−1, r,−r}, so that the values r−1, r, −r are not swapped in the first round of the
KSA, respectively. In addition to it, it is required that K[0] 6∈ {1, 2, . . . , r − 2}, so
that the value 0 at index K[0] is not touched by these values of iK during the next
r − 2 rounds of the KSA. This happens with probability of

(
1− r+1

N

)
. From round

2 to r− 1 of the KSA, jK2 , j
K
3 , . . . , j

K
r−1 do not touch the three indices {r,−r,K[0]},

respectively. This happens with probability of
(
1− 3

N

)r−2
. In the r-th round of the

KSA, if the index jKr has the index −r, which happens with probability of 1/N , the
value −r is swapped into the index r− 1. In the (r+1)-th round of the KSA, when
iKr+1 = r and jKr+1 = jKr + SK

r [r] +K[r] = −r + r +K[0] = K[0], the value SK
r [r] is

swapped for the value SK
r [K[0]], and from the above discussion, this index contains

the value 0. Considering the above events to be independent, the probability that
all of above events happen together is given by αr = 1

N ·
(
1− 3

N

)r−2
·
(
1− r+1

N

)
.

Assuming that in other cases, (SK
r+1[r−1] = −r∧S

K
r+1[r] = 0) holds with probability

of 1/N2, the probability of Pr(SK
r+1[r − 1] = −r ∧ SK

r+1[r] = 0) is estimated as

Pr(SK
r+1[r − 1] = −r ∧ SK

r+1[r] = 0) ≈
1

N2
+

(

1−
1

N2

)

· αr.

Figure 9.6 shows the major path of SK
r+1[r − 1] = −r ∧ SK

r+1[r] = 0.

Theorem 12. When r = x · ℓ (x = 1, 2, . . . , 7), the probability of Pr(Zr = −r ∧
Sr[jr] = 0) is approximately

Pr(Zr = −r ∧ Sr[jr] = 0) ≈
1

N2
+

(

1−
1

N2

)

· γr,
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where

γr =
1

N2
·

(

1−
r + 1

N

)

·
N−1∑

y=r+1

(

1−
1

N

)y

·

(

1−
2

N

)y−r

·

(

1−
3

N

)N−y+2r−4

.

Proof. From the algorithm of the PRGA, we have jr = jr−1 + Sr−1[r]. Hence,
Sr[jr] = Sr−1[r] = 0 implies jr = jr−1. In this case, an output Zr is expressed as

Zr = Sr[Sr[ir] + Sr[jr]] = Sr[Sr−2[r − 1]].

Then, let us consider Pr(Sr[Sr−2[r − 1]] = −r ∧ Sr[jr] = 0).
The major path for the joint event (SK

r+1[r − 1] = −r ∧ SK
r+1[r] = 0) constitutes

the first part of our main path leading to the target event. The second part can be
constructed as follows. In an index y ∈ [r + 1, N − 1], if the jK do not touch the
index y, we have SK

y [y] = y with probability of
(
1− 1

N

)y
. From round r + 2 to y

of the KSA, jK do not touch the two indices {r − 1, r}, respectively. This happens

with probability of
(
1− 2

N

)y−r−1
. In the (y + 1)-th round of the KSA, if the index

jKy+1 has the index r − 1, which happens with probability of 1/N , the value y is

swapped for the value −r. Then, the value −r moves to SK
y+1[y] = SK

y+1[S
K
y+1[r−1]].

For the remaining N − y − 1 rounds of the KSA and for the first r − 1 rounds of
the PRGA, the jK or j values should not touch the indices {r − 1, S[r − 1], r},

respectively. This happens with probability of
(
1− 3

N

)N−y+r−2
. Now, we have

(Sr−1[Sr−2[r−1]] = −r∧Sr−1[r] = 0). And then, we should also have jr 6∈ {r−1, y}
for Sr[Sr−2[r − 1]] = −r. The probability of this condition is

(
1− 2

N

)
. Then, from

algorithm of the PRGA, the output is Zr = Sr[Sr−2[r − 1]] = −r. Considering the
above events to be independent, the probability that the second part events happen
together is given by

α′
r =

1

N
·

N−1∑

y=r+1

(

1−
1

N

)y

·

(

1−
2

N

)y−r

·

(

1−
3

N

)N−y+r−2

.

Then, the probability that all of the events happen together is estimated as

γr = αr · α
′
r

=
1

N2
·

(

1−
r + 1

N

)

·
N−1∑

y=r+1

(

1−
1

N

)y

·

(

1−
2

N

)y−r

·

(

1−
3

N

)N−y+2r−4

.

Assuming that in other cases, Zr = −r ∧ Sr[jr] = 0 holds with probability of 1/N2,
the probability of Pr(Zr = −r ∧ Sr[jr] = 0) is approximately

Pr(Zr = −r ∧ Sr[jr] = 0) ≈
1

N2
+

(

1−
1

N2

)

· γr.
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Figure 9.7 and 9.8 show the major path of Zr = −r ∧ Sr[jr] = 0.
Using these extended joint events, the theorem 11 is proved as follows.

Proof. We can write Pr(Zr = −r) = Pr(Zr = −r∧Sr[jr] = 0)+Pr(Zr = −r∧Sr[jr] 6=
0), where the first term is given by Theorem 12. When Sr[jr] 6= 0, the event
Zr = −r can be assumed to hold with probability of 1/N . Then, the probability of
Pr(Zr = −r) is estimated as

Pr(Zr = −r) ≈
1

N2
+

(

1−
1

N2

)

· γr + (1− δr) ·
1

N
.

9.3.5 Cumulative Bias Set of First 257 Bytes

When N = 256, a set of strong biases in Z1, Z2, . . . , Z255 is given in Table 9.2.
Our new biases, namely the ones involving Z1, Z3, Z32, Z48, Z64, Z80, Z96, Z112,
are included. Here, let us compare between the biases of Zr = 0 [34, 35] and
Zr = r, whose probabilities are of the same order, and are very close in the range
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3 ≤ r ≤ 255. According to our experiments with 240 randomly-chosen keys (see
Fig. 9.10), Zr = r is stronger than Zr = 0 in Z5, Z6, . . . , Z31. Thus we choose the
bias Zr = r in Z5, Z6, . . . , Z31 and the bias Zr = 0 in the other cases as the strongest
bias except for the cases involving Z3, Z16, Z32, Z48, Z64, Z80, Z96, Z112. Besides,
we experimentally found two new biases for the events Z256 6= 0 and Z257 = 0, and
added these to our bias set, while we could not provide the theoretical proofs. Note
that it is experimentally confirmed that biases of Z2, Z3, . . . , Z257 included in our
bias set are strongest known biases amongst all the positive and negative biases that
have been discovered for these bytes.

For the first time, we propose a cumulative list of strongest known biases in the
initial bytes of RC4 that can be exploited in a practical attack against the broadcast
mode of the cipher.

9.4 Experimental Results of Plaintext Recovery Attack

We demonstrate a plaintext recovery attack using our cumulative bias set of first
257 bytes by a computer experiment, when N = 256, and estimate the number of
required ciphertexts and the probability of success for our attack. The details of our
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Table 9.2: Cumulative bias set of first 257 bytes

r Strongest known bias of Zr Prob.(Theoretical) Prob.(Experimental)

1 Z1 = 0|Z2 = 0 (Our) 2−8 · (1 + 2−1.009) 2−8 · (1 + 2−1.036)

2 Z2 = 0 [33] 2−8 · (1 + 20) 2−8 · (1 + 20.002)

3 Z3 = 131 (Our) 2−8 · (1 + 2−8.089) 2−8 · (1 + 2−8.109)

4 Z4 = 0 [34] 2−8 · (1 + 2−7.581) 2−8 · (1 + 2−7.611)

5–15 Zr = r (Our) max: 2−8 · (1 + 2−7.627) max: 2−8 · (1 + 2−7.335)
min: 2−8 · (1 + 2−7.737) min: 2−8 · (1 + 2−7.535)

16 Z16 = 240 [36] 2−8 · (1 + 2−4.841) 2−8 · (1 + 2−4.811)

17–31 Zr = r (Our) max: 2−8 · (1 + 2−7.759) max: 2−8 · (1 + 2−7.576)
min: 2−8 · (1 + 2−7.912) min: 2−8 · (1 + 2−7.839)

32 Z32 = 224 (Our) 2−8 · (1 + 2−5.404) 2−8 · (1 + 2−5.383)

33–47 Zr = 0 [34] max: 2−8 · (1 + 2−7.897) max: 2−8 · (1 + 2−7.868)
min: 2−8 · (1 + 2−8.050) min: 2−8 · (1 + 2−8.039)

48 Z48 = 208 (Our) 2−8 · (1 + 2−5.981) 2−8 · (1 + 2−5.938)

49–63 Zr = 0 [34] max: 2−8 · (1 + 2−8.072) max: 2−8 · (1 + 2−8.046)
min: 2−8 · (1 + 2−8.224) min: 2−8 · (1 + 2−8.238)

64 Z64 = 192 (Our) 2−8 · (1 + 2−6.576) 2−8 · (1 + 2−6.496)

65–79 Zr = 0 [34] max: 2−8 · (1 + 2−8.246) max: 2−8 · (1 + 2−8.223)
min: 2−8 · (1 + 2−8.398) min: 2−8 · (1 + 2−8.376)

80 Z80 = 176 (Our) 2−8 · (1 + 2−7.192) 2−8 · (1 + 2−7.224)

81–95 Zr = 0 [34] max: 2−8 · (1 + 2−8.420) max: 2−8 · (1 + 2−8.398)
min: 2−8 · (1 + 2−8.571) min: 2−8 · (1 + 2−8.565)

96 Z96 = 160 (Our) 2−8 · (1 + 2−7.831) 2−8 · (1 + 2−7.911)

97–111 Zr = 0 [34] max: 2−8 · (1 + 2−8.592) max: 2−8 · (1 + 2−8.570)
min: 2−8 · (1 + 2−8.741) min: 2−8 · (1 + 2−8.722)

112 Z112 = 144 (Our) 2−8 · (1 + 2−8.500) 2−8 · (1 + 2−8.666)

113–255 Zr = 0 [34] max: 2−8 · (1 + 2−8.763) max: 2−8 · (1 + 2−8.760)
min: 2−8 · (1 + 2−10.052) min: 2−8 · (1 + 2−10.041)

256 Z256 = 0 (negative bias) (Our) N/A 2−8 · (1− 2−9.407)

257 Z257 = 0 (Our) N/A 2−8 · (1 + 2−9.531)

experiment are as follows.

Step 1 Randomly generate a target plaintext P .

Step 2 Encrypt P with 2x randomly-chosen keys, and obtain 2x ciphertexts C.

Step 3 Find most frequent byte in each byte, and extract Pr, assuming Pr = Cr⊕Zr

where Zr is the value of the keystream byte from our bias set.

In the case of P1, the method mentioned in Section 8.3 is used for efficient extraction
of P1. Specifically, after P2 is recovered, we extract P1 by using the conditional bias
such that Z1 = 0 when Z2 = 0.

We perform the above experiment for 256 different plaintexts in the cases where
26, 27, . . . , 235 ciphertexts with randomly-chosen keys are given. Figure 9.11 shows
the probability of successfully recovering the values of P1, P2, P3, P5, and P16 for
each amount of ciphertexts. Here, the success probability is estimated by the num-
ber of correctly-extracted plaintexts for each byte. For example, if the target byte
of only 100 plaintexts out of 256 plaintexts can be correctly recovered, the prob-
ability is estimated as 0.39 (= 100/256). The second byte of plaintext P2 can be
extracted from 212 ciphertexts with probability one. In previous attacks such as
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the MS attack [33] and the MPS attack [34], the number of required ciphertexts is
theoretically estimated only in terms of the lower bound Ω. Our results first reveal
the concrete number of ciphertexts, and the corresponding success probability.

Figure 9.12 shows that the success probability of extracting each byte Pr (1 ≤ r ≤
257) when 224, 228, 232, 235 ciphertexts are given. Note that the probability of a ran-
dom guess is 1/256 = 0.00390625. Given 232 ciphertexts, all bytes of P1, P2, . . . , P257

can be extracted with probability more than 0.5. In addition, most bytes can be
extracted with probability more than 0.8. Also, the bytes having stronger bias such
as P1, P2, P16, P32, P48, P64, are extracted from only 224 ciphertexts with high prob-
ability. However, even if 235 ciphertexts are given, the probability does not become
one in some bytes. It is guessed that in such bytes, the difference of probability of
the strongest known bias (as in our cumulative bias set) and the second one is very
small. Thus, more ciphertexts are required for an attack with probability one.

We additionally utilize the second most frequent byte in the ciphertexts for ex-
tracting plaintext bytes. In other words, two candidates are obtained by using the
relation of Pr = Cr ⊕ Zr, where Cr are most and second most frequent ciphertext
bytes and Zr is chosen from our bias set. This result is shown in Fig. 9.13, and
its success probability is estimated as the probability that the guess for the cor-
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rect plaintext byte is narrowed down to two possible candidates. Note that the
probability of a random guess for such a scenario is 2/256 = 0.0078125. Given 234

ciphertexts, each byte of P1, P2, . . . , P257 can be extracted with probability one. In
this case, although we can not obtain the correct byte of the plaintext, it is nar-
rowed down to only two candidates. For the experiments of Fig. 9.12 and 9.13, it
requires about one day if one uses a single CPU core (Intel(R) Core(TM) i7 CPU
920@ 2.67GHz) to obtain the result of one plaintext, where 256 plaintexts are used.

Figure 9.14 shows the number of plaintext bytes that are extracted with five times
higher probability than that of a random guess, i.e., where the success probability
is more than 5

256 . Given 229 ciphertexts, all the plaintext bytes P1, P2, . . . , P257 are
guessed with much higher probability than random guesses.

9.5 How to Recover Bytes of the Plaintext after P258

In this section, we propose an efficient method to recover later bytes of the plaintext,
namely bytes after P258. The method using our bias in initial bytes is not directly
applied to extract these bytes, because it exploits biases existing in only the initial
keystream. For the extraction of the later bytes, a long-term bias, which occurs
in any keystream bytes, is utilized. In particular, the digraph repetition bias (also
called ABSAB bias) proposed by Mantin [37], which is the strongest known long-
term bias, is used. Combining it with our cumulative bias set of Z1, Z2, . . . , Z257,
we can sequentially recover bytes of a plaintext, even after P258, given only the
ciphertexts.

9.5.1 Best Known Long-term Bias (ABSAB bias)

ABSAB bias is statistical biases of the digraph distribution in the RC4 keystream [37].
Specifically, digraphs AB tend to repeat with short gaps S between them, e.g.,
ABAB, ABCAB and ABCDAB, where gap S is defined as zero, C, and CD,
respectively. The detail of ABSAB bias is expressed as follows,

Zr || Zr+1 = Zr+2+G || Zr+3+G for G ≥ 0, (9.1)

where || is a concatenation. The probability that Eq. (9.1) holds is given as Theo-
rem 13.

Theorem 13. [37] For small values of G the probability of the pattern ABSAB in
RC4 keystream, where S is a G-byte string, is (1 + e(−4−8G)/N/N) · 1/N2.

For the enhancement of these biases, combining use of ABSAB biases with
different G is considered by using the following lemma for the discrimination.

Lemma 3. [37] Let X and Y be two distributions and suppose that the independent
events {Ei: 1 ≤ i ≤ k } occur with probabilities pX(Ei) = pi in X and pY (Ei) =
(1 + bi) · pi in Y. Then the discrimination D of the distributions is

∑

i pi · b
2
i .

The number of required samples for distinguishing the biased distribution from
the random distribution with probability of 1− α is given as the following lemma.
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Lemma 4. [37] The number of samples that is required for distinguishing two dis-
tributions that have discrimination D with success rate 1−α (for both directions) is
(1/D) · (1− 2α) · log2

1−α
α .

This lemma shows that in the broadcast RC4 attack, given D and the number
of samples Nciphertext, the success probability for distinguishing the distribution of
correct candidate plaintext byte (the biased distribution) from the distribution of one
wrong candidate of plaintext byte (a random distribution) is a constant. Prdistingush
denotes this probability.

9.5.2 Plaintext Recovery Method Using ABSAB Bias and Our Bias
Set

The following equation allows us to efficiently use ABSAB bias in the broadcast
RC4 attack.

(Cr || Cr+1)⊕ (Cr+2+G || Cr+3+G)

= (Pr ⊕ Zr || Pr+1 ⊕ Zr+1)⊕ (Pr+2+G ⊕ Zr+2+G || Pr+3+G ⊕ Zr+3+G)

= (Pr ⊕ Pr+2+G ⊕ Zr ⊕ Zr+2+G || Pr+1 ⊕ Pr+3+G ⊕ Zr+1 ⊕ Zr+3+G). (9.2)

Assuming that Eq. (9.1) (the event of the ABSAB bias) holds, the relation of
plaintexts and ciphertexts without keystreams is obtained, i.e., (Cr || Cr+1) ⊕
(Cr+2+G || Cr+3+G) = (Pr⊕Pr+2+G || Pr+1⊕Pr+3+G) = (Pr || Pr+1)⊕(Pr+2+G || Pr+3+G).

However, in the straight way, we can not combine these relations with different G
to enhance the biases, as we do in the distinguishing attack setting. When the value
of G is different, the above equation is surely different even if r is properly chosen.
For example, in the cases of (r and G = 1) and (r + 1 and G = 0), right parts of
equations are given as (Pr || Pr+1)⊕(Pr+3 || Pr+4) and (Pr+1 || Pr+2)⊕(Pr+3 || Pr+4),
respectively. Thus, due to independent use of these equations with different G, we
are not able to efficiently make use of ABSAB bias in the broadcast setting.

In order to get rid of this problem, we give a method that sequentially recovers
the plaintext after P258 with the knowledge of pre-guessed plaintext bytes. For
example, in the cases of (r and G = 1) and (r+1 and G = 0), if Pr, Pr+1, and Pr+2

are already known, the two equations with respected to (Pr+3 || Pr+4) is obtained
by transposing Pr, Pr+1, and Pr+2 to the left part of the equation. Then, these
equations with different G can be merged.

Suppose that P1, P2, . . . , P257 are guessed by our cumulative bias set of the initial
bytes, where the success probability of finding these bytes are evaluated in Section
8.4. Then we aim to sequentially find Pr for r = 258, 259, . . . , PMAX by using
ABSAB biases of G = 0, 1, . . . , GMAX . The detailed procedures are given as follows.

Step 1 Obtain C258−3−GMAX
, C258−2−GMAX

, . . . , CPMAX
in each ciphertext, and make

frequency tables Tcount[r][G] of (Cr−3−G || Cr−2−G) ⊕ (Cr−1 || Cr) for all
r = 258, 259, . . . , PMAX and G = 0, 1, . . . , GMAX , where (Cr−3−G || Cr−2−G)
⊕ (Cr−1 || Cr) = (Pr−3−G || Pr−2−G)⊕ (Pr−1 || Pr) only if Eq. (9.1) holds.

Step 2 Set r = 258.

Step 3 Guess the value of Pr.
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Step 3.1 For G = 0, 1, . . . , GMAX , convert Tcount[r][G] into a frequency table
Tmarge[r] of (Pr−1 || Pr) by using pre-guessed values of Pr−3−GMAX

, . . . ,
Pr−2, and merge counter values of all tables.

Step 3.2 Make a frequency table Tguess[r] indexed by only Pr from Tmarge[r]
with knowledge of the Pr−1. To put it more precisely, using a pre-guessed
value of Pr−1, only Tables Tmarge[r] corresponding to the value of Pr−1

is taken into consideration. Finally, regard most frequency one in table
Tguess[r] as the correct Pr.

Step 4 Increment r. If r = PMAX + 1, terminate this algorithm. Otherwise, go to
Step 3.

The bytes of the plaintext are correctly extracted from Tmarge[r] only if it is
distinguished from other N2 − 1 wrong candidate distributions. Assuming that
wrong candidates are randomly distributed, a probability of the correct extraction
from Tmarge[r] is estimated as (Prdistingush)

N2−1. In Step 3.2, our method converts
Tmarge[r] into Tguess[r] by using knowledge of Pr−1, where Tguess[r] has N −1 wrong
candidates. It enables us to reduce the number of wrong candidates from N2− 1 to
N − 1. Then, a probability of the correct extraction from Tguess[r] is estimated as
(Prdistingush)

N−1, which is 1/(Prdistingush)
N+1 times higher than that of Tmarge[r].

Therefore, the table reduction technique of Step 3.2 enables us to further optimize
the attack.

Experimental Results:

We perform practical experiments using our algorithm to find P258, P259, P260, and
P261 (PMAX = 261). As a parameter of ABSAB bias, GMAX = 63 is chosen,
because the increase of D is converged around GMAX = 63. Then, D is estimated
as D = 2−28.0. The success probability of our algorithm for recovering Pr (r ≥ 258)
when 230 to 234 ciphertexts are given is shown in Table 9.3, where the number of
tests is 256. Note that P1, P2, . . . , P257 are obtained by using our bias set (candidate
one) with success probability as shown in Fig. 9.12. For this experiment, it requires
about one week if one uses a single CPU core (Intel(R) Core(TM) i7 CPU 920@
2.67GHz) to get the result of one plaintext, where 256 plaintexts are used.

Interestingly, given 234 ciphertexts, P258, P259, P260, and P261 can be recovered
with probability one, while the success probability of some bytes in P1, P2, . . . , P257

is not one. Combining multiple biases allows us to omit negative effects of some
uncorrected value of P1, P2, . . . , P257. Although our experiment is performed until
P261, the success probability is expected not to change even in the case of later bytes,
because ABSAB bias is a long-term bias.

Let us discuss the success probability of extracting bytes after P262 when 234

ciphertexts are given. According to Lemma 4 and D = 2−28.0, 234 ciphertexts
allow us to distinguish an RC4 keystream from a random stream with the prob-
ability of Prdistinguish = 1 − 10−19. Then, assuming that wrong candidates are
randomly distributed, the probability of correctly extracting the candidate from
(N − 1) wrong candidates is estimated as (Prdistinguish)

N−1. Therefore, our method
enables to extract consecutive (257 + X) bytes of a plaintext with the probability
of ((Prdistinguish)

N−1)X = (Prdistinguish)
(N−1)·X . For instance, when X = 240 and

X = 250, the success probabilities are estimated as 0.99997 and 0.97170, respectively.
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Table 9.3: Success probability of our algorithm for recovering Pr (r ≥ 258).

# of ciphertexts P258 P259 P260 P261

230 0.003906 0.003906 0.000000 0.000000

231 0.039062 0.007812 0.003906 0.007812

232 0.386719 0.152344 0.070312 0.027344

233 0.964844 0.941406 0.921875 0.902344

234 1.000000 1.000000 1.000000 1.000000

As a result, by using our sequential method, a large amount of plaintext bytes,
e.g., first 250 bytes≈ 1000 T bytes, is recovered from 234 ciphertext with a probability
of almost one. Therefore, it can be said that our attack is a full plaintext recovery
attack on broadcast RC4, the first of its kind proposed in the literature.

9.6 Key (State) Recovery Attack

Our new biases are also applicable to key (state) recovery attacks by using the
relation among the keystream, the state and the key. The conditional bias, Z3 = 131
bias and extended keylength-dependent biases, whose occurrence probabilities are
completely proved, can be used for (state) key recovery attacks.

Interestingly, this attack is feasible even if only ciphertexts are given in the
broadcast setting. In particular, the aforementioned plaintext recovery attack allow
us to extract target bytes of the plaintext from only ciphertexts. Then, we observe
target bytes of the keystream, and then mount key (state) guess attacks if target
bytes are expected values.

9.6.1 Key (State) Recovery Attack Using Conditional Bias

When Z1 = 0 and Z2 = 0 are observed, the probability of Pr(S0[1] = 1 ∧ S0[2] =
0|Z1 = 0 ∧ Z2 = 0) is estimated as follows.

Pr(S0[1] = 1 ∧ S0[2] = 0|Z1 = 0 ∧ Z2 = 0)

=
Pr(S0[1] = 1 ∧ S0[2] = 0)

Pr(Z1 = 0 ∧ Z2 = 0)

·Pr(Z1 = 0 ∧ Z2 = 0|S0[1] = 1 ∧ S0[2] = 0)

=
1

256 ·
1

255

2−14.427
· 1 = 2−1.567.

Thus, the event of Z1 = 0 and Z2 = 0 allows us to guess two bytes of the state of
S0[1] and S0[2] with the probability of 2−1.567, while the probability of the random
guess is 2−16. This state guess has a 214.433 times advantage over the random guess.

Moreover, we also guess the value of the key by using the following Roos’s state-
key relations [134].

S0[1] = 1 +K[0] +K[1], S0[2] = 3 +K[0] +K[1] +K[2].

Above two 1-byte equations hold with the probability of 0.371 and 0.368, respec-
tively [130]. Thus, when Z1 = 0 and Z2 = 0 are observed, the success probability of
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guessing above equations is (0.371) · (0.368) · (2−1.567) = 2−4.440. This key recovery
has a 211.560 times advantage over the random guess.

9.6.2 Key (State) Recovery Attack Using Z3 = 131

When Z3 = 131 is observed, the probability of Pr(S0[1] = 1∧S0[2] = 0|Z3 = 131) is
estimated as follows.

Pr(S0[1] = 131 ∧ S0[2] = 128|Z3 = 131)

=
Pr(S0[1] = 131 ∧ S0[2] = 128)

Pr(Z3 = 131)

·Pr(Z3 = 131|S0[1] = 131 ∧ S0[2] = 128)

=
1

256 ·
1

255

2−7.99947
· 1 = 2−8.000.

Thus, the event of Z3 = 131 allows us to guess two bytes of the state of S0[1] and
S0[2] with the probability of 2−8.000, which has a 28.000 times advantage over the
random guess.

Similar to the key recovery attack using the conditional biases, Roos’s state-key
relations regarding S0[1] and S0[2] can be used. When Z1 = 0 and Z2 = 0 are
observed, the success probability of guessing above key equations is (0.371) · (0.368) ·
(2−8.000) = 2−10.873. This key recovery has a 25.128 times advantage over the random
guess.

9.6.3 Key (State) Recovery Attack Using Extended Keylength De-
pendent Biases

When Zr = −r is observed, the probability of Pr(Sr−1[r] = 0 | Zr = −r) is estimated
as follows.

Pr(Sr−1[r] = 0 | Zr = −r) =
Pr(Zr = −r ∧ Sr−1[r] = 0)

Pr(Zr = −r)
,

where Pr(Zr = −r∧Sr−1[r] = 0) is given in Theorem 12 and Pr(Zr = −r) is given in
Theorem 11. If j does not touch the index r during first r− 1 rounds of the PRGA,
S0[r] = 0 is expected. The probability of Pr(S0[r] = 0 | Zr = −r) is estimated as
follows,

Pr(S0[r] = 0 | Zr = −r) =
1

N
+

(

1−
1

N

)r

· p0,

where p0 = Pr(Sr−1[r] = 0 | Zr = −r). Table 9.4 shows experimental and theoretical
values of Pr(S0[r] = 0 | Zr = −r). All cases are more efficient than the random guess.

The key recovery attack can be constructed by using the following Roos’s state-
key relation [134],

S0[r] =
r · (r + 1)

2
+

r∑

x=0

K[x].

For r = 16, above equation holds with the probability of 0.206 [130]. When
Z16 = −16 is observed, the success probability of guessing above equation is (0.206) ·
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(2−4.772) = 2−7.051. Thus, one byte of the key information is obtained with proba-
bility of 2−7.051.

Furthermore it can be improved by using the other event. When Zr = −r is
observed, the probability of Pr(jKr = −r | Zr = −r) is estimated as follows

Pr(jKr = −r | Zr = −r) =
Pr(jKr = −r)

Pr(Zr = −r)
· Pr(Zr = −r | j

K
r = −r),

where Pr(jKr = −r) = 1/N and Pr(Zr = −r) is given in Theorem 11. Pr(Zr =
−r | jKr = −r) is approximately

Pr(Zr = −r | j
K
r = −r) ≈

1

N2
+

(

1−
1

N2

)

γ′r + (1− δr) ·
1

N
,

where δr = Pr(Sr[jr] = 0) = Pr(Sr−1[r] = 0) and

γ′r =
1

N
·

(

1−
r + 1

N

)

·
N−1∑

x=r+1

(

1−
1

N

)x

·

(

1−
2

N

)x−r

·

(

1−
3

N

)N−x+2r−4

.

Here, δr is obtained from Theorem 6. Table 9.5 shows experimental and theoretical
values of Pr(jKr = −r | Zr = −r). The event of Zr = −r allows us to guess the
value of jKr with the probability of 2−4.737 for (r = 16). Using following Roos’s
key-correlation in RC4 [134], the key is also guessed.

jKr = −r =
r(r − 1)

2
+

r−1∑

x=0

K[x].

When r = 16, above equation is satisfied with the probability of 0.627 [130]. Then,
when Z16 = −16 is observed, the success probability of guessing above equation is
(0.627) · (2−4.752) = 2−5.426. Using it with the method in the previous event, two
bytes of key information are guessed with the probability of 2−12.477. Therefore,
this key recovery attack has a 23.523 times advantage against the random key guess.
Since the experimental value of this two bytes of key information obtained by a
computer experiment for 233 randomly-chosen keys is 2−13.14, this attack also can
be experimentally confirmed.

However, the other cases such as r = 32, 48, . . . , 112 have no advantage over the
random guess for the key recovery.

9.7 (Multiple-Key) Distinguishing Attack

Our new biases are also applicable to distinguishing attacks, which distinguish an
RC4 keystream from a random stream. The number of required samples to the
successful distinguishing attack is given as the followings theorem.

Theorem 14. [33] Let X and Y be two distributions, and suppose that the event e
happens in X with probability p and in Y with probability p · (1+ q). Then for small
p and q, O( 1

p·q2
) samples suffice to distinguish X from Y with a constant probability

of success.
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Table 9.4: Experimental and theoretical values of Pr(S0[r] = 0 | Zr = −r)

r Prob.(Theoretical) Prob.(Experimental)

16 2−4.676 2−4.772

32 2−5.177 2−5.257

48 2−5.640 2−5.697

64 2−6.060 2−6.102

80 2−6.416 2−6.588

96 2−6.706 2−6.951

112 2−6.931 2−7.256

Table 9.5: Experimental and theoretical values of Pr(jKr = −r | Zr = −r)

r Prob.(Theoretical) Prob.(Experimental)

16 2−4.737 2−4.752

32 2−5.217 2−5.203

48 2−5.686 2−5.668

64 2−6.134 2−6.067

80 2−6.549 2−6.560

96 2−6.919 2−6.929

112 2−7.232 2−7.233

Multiple-key distinguishing attack aims to distinguishes the set of keystreams,
generated by multiple keys, from a random stream. The known best multiple-key
distinguishing attack is proposed by Mantin and Shamir [33]. Since this attack
exploits the bias such that that second byte of a keystream is biased to 0, only
second bytes of keystreams generated by different keys is used for the distinguishing
attack. When N = 256, this attack requires about 1

p·q2
= N = 28 samples (the

second byte of keystreams), where p and q are given as p = 1/N and q = 1.
In order to get rid of such strong biases of initial bytes, the RC4-drop(n) is

proposed as a countermeasure. It disregards first n bytes of the keystream of RC4 2.
In the case of n ≥ 2, the above multiple-key distinguishing attack using the second
byte of keystreams does not work. Hereafter, we only deal with the typical parameter
N = 256 for simplicity.

The keylength-dependent biases [133], such that ℓ-th bytes of keystreams is bi-
ased to −ℓ, becomes the most efficient multiple-key distinguishing attack in the case
of 2 ≤ n ≤ ℓ− 1 with respect to the number of samples. In the case of ℓ ≤ n ≤ 254,
the Maitra-Paul-Sen Gupta Bias [34] becomes the most efficient attack.

We improve these attacks by using our new biases in conjunction with known
biases. For the multiple use of biases in each byte, the following lemma for the
discrimination is given.

Lemma 5. [37] Let X and Y be two distributions and suppose that the independent

2RC4-drop(n) is a generalized implementation of the countermeasure written by [125], and this
is defined at http://www.users.zetnet.co.uk/hopwood/crypto/scan/cs.html.
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events {ei: 1 ≤ i ≤ k } occur with probabilities PrX(ei) = pi in X and PrY (ei) =
(1 + qi) · pi in Y . Then the discrimination D of the distributions is

∑

i pi · q
2
i .

The number of required samples for the distinguishing attack with the probability
of 1− α is given as the following lemma.

Lemma 6. [37] The number of samples that is required for distinguishing two dis-
tributions that have discrimination D with success rate 1−α (for both directions) is
(1/D) · (1− 2α) · log2

1−α
α .

When the number of samples is 1
p·q2

, a success probability is estimated as about
0.778. For the fair comparison, we consider the distinguishing attack with success
probability of (1− α) = 0.778.

Table 9.6 shows the number of required samples of multiple-key distinguishing
attacks on RC4-drop(n), where each type of biases are Type A (Z2 = 0 [33]), Type
B (Zr = 0 for 3 ≤ r ≤ 255 [34, 35]), Type C (Zr = r for 3 ≤ r ≤ 255 (our)), Type
D (Z16 = −240 [36]), Type E (Zr = −r for r = 32, 48, 64, 80, 96, 112 (our)), Type
F (Z256 6= 0 (our)), Type G (Z257 = 0 (our)).. Note that our attack uses multiple
biases, while previous attacks use only the single bias. These values are estimated
by using Lemma 5 and 6 and the experimental values of biases obtained by 240 tests.
When 2 ≤ n ≤ 255, our attack can improve the attack using previous single bias.
In addition, when n = 256, our attacks is the first successful attack with the less
samples than that of the known best single-key distinguishing attack, which require
228 samples [37] 3.

Therefore, our multiple-key distinguishing attacks substantially improve the known
best attack of RC4-drop(n).

9.8 Conclusion

In this chapter, we have evaluated the practical security of RC4 in the broadcast
setting. After the introduction of four new biases of the keystream of RC4, i.e.,
the conditional bias of Z1, the biases of Z3 = 131 and Zr = r for 3 ≤ r ≤ 255,
and the extended keylength-dependent biases, a cumulative list of strongest known
biases in Z1, Z2, . . . , Z257 is given. Then, we demonstrate a practical plaintext re-
covery attack using our bias set by a computer experiment. As a result, most bytes
of P1, P2, . . . , P257 could be extracted with probability more than 0.8 using 232 ci-
phertexts encrypted by randomly-chosen keys. Then, we have proposed an efficient
method to extract bytes of plaintexts after P258. Our attack is able to recover any
plaintext byte from only ciphertexts generated using different keys. For example,
first 250 bytes of the plaintext are expected to be recovered from 234 ciphertexts
with high probability. Finally, we showed that our set of these biases are applicable
to plaintext recovery attacks, key recovery attacks and distinguishing attacks.

Note that our attack on broadcast RC4, as proposed in this chapter, utilizes the
advantage of sequential recovery of plaintext bytes. If the initial 256/512/768 bytes
of the keystream are suppressed in the protocol, as recommended in case of RC4

3Paul and Preneel found the bias of Z257 6= Z258 and proposed a multiple-key distinguishing
attack in FSE 2004 [126]. This attack works in n = 256, however the number of samples for success
is around 232, which is larger than that of the known best single-key distinguishing attack [37].
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Table 9.6: The number of required samples for multiple-key distinguishing attacks
on RC4-drop(n)

Position of Range of Multiple biases (our) Single bias (previous)
biases (r) best attacks #samples Types #samples Types

2 0 ≤ n ≤ 1 28 A 28 A

16 2 ≤ n ≤ 15 217.58 B, C, D 217.63 D

32 16 ≤ n ≤ 31 218.69 B, C, E 223.76 B

48 32 ≤ n ≤ 47 219.76 B, C, E 224.13 B

64 48 ≤ n ≤ 63 220.82 B, C, E 224.50 B

80 64 ≤ n ≤ 79 222.10 B, C, E 224.82 B

96 80 ≤ n ≤ 95 223.22 B, C, E 225.14 B

112 80 ≤ n ≤ 111 224.25 B, C, E 225.48 B

113, 114 n = r − 1 min: 225.17 B, C min: 225.51 B
. . . , 183 max: 226.84 max: 226.92

184, 185 — min: 226.87 B, C min: 226.94 B
. . . , 255 max: 228.04 max: 228.04

256 183 ≤ n ≤ 255 226.87 F — —

257 n = 256 227.02 G — —

usages [125], our attack does not work any more. However, widely-used protocols
such as SSL/TLS use initial bytes of the keystream. For SSL/TLS, the broadcast
setting is converted into the multi-session setting where the target plaintext block
are repeatedly sent in the same position in the plaintexts in multiple SSL/TLS
sessions [135].

Our evaluation reveals that broadcast RC4 is practically vulnerable to the plain-
text recovery attacks as moderate amount of ciphertexts, i.e., 224 to 234 cipher-
texts generated by different keys, leaks considerable information about the plain-
text. Thus, RC4 is not to be recommended for the encryption in case of the typical
broadcast setting and multi-session setting of SSL/TLS.
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Part III

Analysis of Hash Function
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Chapter 10

Preimage Attack on Tiger and
SHA-2

This chapter shows new preimage attacks on reduced Tiger and SHA-2. Indesteege
and Preneel presented a preimage attack on Tiger reduced to 13 rounds (out of 24)
with a complexity of 2128.5. Our new preimage attack finds a one-block preimage
of Tiger reduced to 16 rounds with a complexity of 2161. The proposed attack is
based on meet-in-the-middle attacks. It seems difficult to find “independent words”
of Tiger at first glance, since its key schedule function is much more complicated
than that of MD4 or MD5. However, we developed techniques to find independent
words efficiently by controlling its internal variables. Surprisingly, the similar tech-
niques can be applied to SHA-2 including both SHA-256 and SHA-512. We present
a one-block preimage attack on SHA-256 and SHA-512 reduced to 24 (out of 64 and
80) steps with a complexity of 2240 and 2480, respectively. To the best of our knowl-
edge, our attack is the best known preimage attack on reduced-round Tiger and
our preimage attack on reduced-step SHA-512 is the first result. Furthermore, our
preimage attacks can also be extended to second preimage attacks directly, because
our attacks can obtain random preimages from an arbitrary IV and an arbitrary
target.

10.1 Introduction

Cryptographic hash functions play an important role in the modern cryptology.
Many cryptographic protocols require a secure hash function which holds several
security properties such as classical ones: collision resistance, preimage resistance
and second preimage resistance. However, a lot of hash functions have been broken
by collision attacks including the attacks on MD5 [13] and SHA-1 [12]. These hash
functions are considered to be broken in theory, but in practice many applications
still use these hash functions because they do not require collision resistance. How-
ever, (second) preimage attacks are critical for many applications including integrity
checks and encrypted password systems. Thus analyzing the security of the hash
function with respect to (second) preimage resistance is important, even if the hash
function is already broken by a collision attack. However, the preimage resistance
of hash functions has not been studied well.
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Table 10.1: Summary of our results

Target Attack Attacked steps Complexity
(first or second preimage) (rounds)

Tiger (full 24 rounds) first [40] 13 2128.5

first (this chapter) 16 2161

second [40] 13 2127.5

second (this chapter) 16 2160

SHA-256 (full 64 steps) first (this chapter) 24 2240

second (this chapter) 24 2240

SHA-512 (full 80 steps) first (this chapter) 24 2480

second (this chapter) 24 2480

Tiger is a dedicated hash function producing a 192-bit hash value designed by An-
derson and Biham in 1996 [38]. As a cryptanalysis of Tiger, at FSE 2006, Kelsey and
Lucks proposed a collision attack on 17-round Tiger with a complexity of 249 [136],
where full-version Tiger has 24 rounds. They also proposed a pseudo-near collision
attack on 20-round Tiger with a complexity of 248. This attack was improved by
Mendel et al. at INDOCRYPT 2006 [137]. They proposed a collision attack on
19-round Tiger with a complexity of 262, and a pseudo-near collision attack on 22-
round Tiger with a complexity of 244. Later, they proposed a pseudo-near-collision
attack of full-round (24-round) Tiger with a complexity of 244, and a pseudo-collision
(free-start-collision) attack on 23-round Tiger [138]. The above results are collision
attacks and there is few evaluations of preimage resistance of Tiger. Indesteege and
Preneel presented preimage attacks on reduced-round Tiger [40]. Their attack found
a preimage of Tiger reduced to 13 rounds with a complexity of 2128.5.

In this chapter, we introduce a preimage attack on reduced-round Tiger. The
proposed attack is based on meet-in-the-middle attacks [16]. In this attack, we
needs to find independent words (“neutral words”) in the first place. However, the
techniques used for finding independent words of MD4 or MD5 cannot be applied
to Tiger directly, since its key schedule function is much more complicated than
that of MD4 or MD5. To overcome this problem, we developed new techniques to
find independent words of Tiger efficiently by adjusting the internal variables. As
a result, the proposed attack finds a preimage of Tiger reduced to 16 (out of 24)
rounds with a complexity of about 2161. Surprisingly, our new approach can be
applied to SHA-2 including both SHA-256 and SHA-512. We present a preimage
attack on SHA-256 and SHA-512 reduced to 24 (out of 64 and 80) steps with a
complexity of about 2240 and 2480, respectively. As far as we know, our attack is the
best known preimage attack on reduced-round Tiger and our preimage attack on
reduced-step SHA-512 is the first result. Furthermore, we show that our preimage
attacks can also be extended to second preimage attacks directly and all of our
attacks can obtain one-block preimages, because our preimage attacks can obtain
random preimages from an arbitrary IV and an arbitrary target. These results are
summarized in Table 10.1.
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Figure 10.1: Compression function f of Tiger

10.2 Preliminaries

10.2.1 Description of Tiger

Tiger is an iterated hash function that compresses an arbitrary length message
into a 192-bit hash value. An input message value is divided into 512-bit message
blocks (M (0),M (1), ...,M (t−1)) by the padding process as well as the MD family. The
compression function of Tiger shown in Fig. 10.1 generates a 192-bit output chaining
value H(i+1) from a 512-bit message block M (i) and a 192-bit input chaining value

H(i) where chaining values consist of three 64-bit variables, A
(i)
j , B

(i)
j and C

(i)
j . The

initial chaining value H(0) = (A
(0)
0 , B

(0)
0 , C

(0)
0 ) is as follows:

A
(0)
0 = 0x0123456789ABCDEF,

B
(0)
0 = 0xFEDCBA9876543210,

C
(0)
0 = 0xF096A5B4C3B2E187.

In the compression function, a 512-bit message blockM (i) is divided into eight 64-bit
words (X0, X1, ..., X7). The compression function consists of three pass functions and
between each of them there is a key schedule function. Since each pass function has
eight round functions, the compression function consists of 24 round functions. The
pass function is used for updating chaining values, and the key schedule function
is used for updating message values. After the third pass function, the following
feedforward process is executed to give outputs of the compression function with
input chaining values and outputs of the third pass function,

A′
24 = A0 ⊕A24, B

′
24 = B0 −B24, C

′
24 = C0 + C24,

where Ai, Bi and Ci denote the i-th round chaining values, respectively, and A′
24, B

′
24

and C ′
24 are outputs of the compression function.

In each round of the pass function, chaining values Ai, Bi and Ci are updated
by a message word Xi as follows:

Bi+1 = Ci ⊕Xi, (10.1)

Ci+1 = Ai − even(Bi+1), (10.2)

Ai+1 = (Bi + odd(Bi+1))×mul, (10.3)

where mul is the constant value ∈ {5, 7, 9} which is different in each pass function.
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The nonlinear functions even and odd are expressed as follows:

even(W ) = T1[w0]⊕ T2[w2]⊕ T3[w4]⊕ T4[w6], (10.4)

odd(W ) = T4[w1]⊕ T3[w3]⊕ T2[w5]⊕ T1[w7], (10.5)

where 64-bit value W is split into eight bytes {w7, w6, ..., w0} with w7 is the most
significant byte and T1, ..., T4 are the S-boxes: {0, 1}

8 → {0, 1}64. Figure 10.2 shows
the round function of Tiger.

The key schedule function (KSF ) updates message values. In the first pass
function, eight message words X0, ..., X7, which are identical to input message blocks
of the compression function, are used for updating chaining values. Remaining two
pass functions use sixteen message words which are generated by applying KSF :

(X8, ..., X15) = KSF (X0, ..., X7), (10.6)

(X16, ..., X23) = KSF (X8, ..., X15). (10.7)

The function KSF which updates the inputs X0, ..., X7 in two steps. The first step
shown in the left table generates internal variables Y0, ..., Y7 from inputs X0, ..., X7
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as follows.

Y0 = X0 − (X7 ⊕ const1), (10.8)

Y1 = X1 ⊕ Y0, (10.9)

Y2 = X2 + Y1, (10.10)

Y3 = X3 − (Y2 ⊕ (Y1 ≪ 19)), (10.11)

Y4 = X4 ⊕ Y3, (10.12)

Y5 = X5 + Y4, (10.13)

Y6 = X6 − (Y5 ⊕ (Y4 ≫ 23)), (10.14)

Y7 = X7 ⊕ Y6. (10.15)

X8 = Y0 + Y7, (10.16)

The second step shown in the right table calculates outputs X8, ..., X15 from internal
variables Y0, .., Y7 as follows.

X9 = Y1 − (X8 ⊕ (Y7 ≪ 19)), (10.17)

X10 = Y2 ⊕X9, (10.18)

X11 = Y3 +X10, (10.19)

X12 = Y4 − (X11 ⊕ (X10 ≫ 23)), (10.20)

X13 = Y5 ⊕X12, (10.21)

X14 = Y6 +X13, (10.22)

X15 = Y7 − (X14 ⊕ const2), (10.23)

where const1 is 0xA5A5A5A5A5A5A5A5 and const2 is 0x0123456789ABCDEF. By us-
ing the same function, X16, ..., X23 are also derived from X8, ..., X15. Figure. 10.3
shows the key schedule function of Tiger .

10.2.2 Description of SHA-256

We only show the structure of SHA-256, since SHA-512 is structurally very similar
to SHA-256 except for the number of steps, word size and rotation values. The
compression function of SHA-256 consists of a message expansion function and a
state update function. The message expansion function expands 512-bit message
block into 64 32-bit message words W0, ...,W63 as follows:

Wi =

{
Mi (0 ≤ i < 16),
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X ≫ 3),

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X ≫ 10).
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The state update function updates eight 32-bit chaining values, A,B, ..., G,H in 64
steps as follows:

T1 = Hi +Σ1(Ei) + Ch(Ei, Fi, Gi) +Ki +Wi, (10.24)

T2 = Σ0(Ai) +Maj(Ai, Bi, Ci), (10.25)

Ai+1 = T1 + T2, (10.26)

Bi+1 = Ai, (10.27)

Ci+1 = Bi, (10.28)

Di+1 = Ci, (10.29)

Ei+1 = Di + T1, (10.30)

Fi+1 = Ei, (10.31)

Gi+1 = Fi, (10.32)

Hi+1 = Gi, (10.33)

where Ki is a step constant and the function Ch, Maj, Σ0 and Σ1 are given as
follows:

Ch(X,Y, Z) = XY ⊕XZ,

Maj(X,Y, Z) = XY ⊕ Y Z ⊕XZ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22),

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).

After 64 step, a feedfoward process is executed with initial state variable by using
word-wise addition modulo 232.

10.2.3 Meet-in-the-Middle Approach for Preimage Attack

We assume that a compression function F consists of a key scheduling function
(KSF ) and a round/step function as shown in Fig. 10.4. The function F has two
inputs, an n-bit chaining variable H and an m-bit message M , and outputs an n-bit
chaining variable G. The function KSF expands the messageM , and provides them
into the round/step function.

We consider a problem that given H and G, find a message M satisfying G =
F (H,M). This problem corresponds to the preimage attack on the compression
function with a fixed input chaining variable. In this model, a feedforward function
does not affect the attack complexity, since the targets H and G are arbitrary values.
If we obtain a preimage from arbitrary values of H and G, we can also compute a
preimage from H and H ⊕G instead of G.

In the meet-in-the-middle preimage attack, we first divide the round function into
two parts: the forward process (FP ) and the backward process (BP ) so that each
process can compute an ℓ-bit meet point S independently. We also need independent
words X and Y in KSF to compute S independently. The meet point S can be
determined from FP and BP independently such that S = FP (H,X) and S =
BP (G, Y ).

If there are such two processes FP and BP , and independent words X and Y ,
we can obtain a message M satisfying S with a complexity of 2ℓ/2 F evaluations,
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assuming that FP and BP are random ones, and the computation cost of BP is
almost same as that of inverting function of BP . Since remaining internal state
value T is (n− ℓ) bits, the desiredM can be obtained with a complexity of 2n−ℓ/2(=
2n−ℓ+ℓ/2). Therefore, if FP and BP up to the meet point S can be calculated
independently, a preimage attack can succeed with a complexity of 2n−ℓ/2. This
type of preimage attacks on MD4 and MD5 was presented by Aoki and Sasaki [16].

In general, it is difficult to find such independent words in a complicated KSF .
We developed new techniques to construct independent transforms in KSF by con-
trolling internal variabes to obtain independent words.

10.3 Preimage Attack on Reduced-Round Tiger

In this section, we propose a preimage attack on 16-round Tiger with a complexity
of 2161. This variant shown in Fig. 10.5 consists of two pass functions and one key
schedule function. First, we show properties of Tiger which are used for applying
the meet-in-the-middle attack. Next, we show how to apply the meet-in-the-middle
attack to Tiger, and then introduce the algorithm of our attack. Finally, we evaluate
the required complexity and memory of our attack.

10.3.1 Properties of Tiger

We show five properties of Tiger, which enable us to apply the meet-in-the-middle
attack.
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Property 1 : The pass function is easily invertible.

Property 1 can be obtained from the design of the round function. From Eq. (10.1)
to Eq. (10.3), Ai, Bi, and Ci can be determined from Ai+1, Bi+1, Ci+1 and Xi.
The computation cost is almost same as the cost of calculating Ai+1, Bi+1 and Ci+1

from Ai, Bi, Ci and Xi. Since the round function is invertible, we can construct the
inverse pass function.

Property 2 : In the inverse pass function, the particular message words are inde-
pendent of particular state value.

The detail of the Property 2 is that once Xi, Ai+3 Bi+3 and Ci+3 are fixed, then
Ci, Bi+1, Ai+2 and Bi+2 can be determined from Eq. (10.1) to Eq. (10.3) indepen-
dently of Xi+1 and Xi+2. Thus the property 2 implies that Xi+1 and Xi+2 are
independent of Ci in the inverse pass function.

Property 3 : In the round function, Ci+1 is independent of odd bytes of Xi .

The property 3 can be obtained from the property of the non-linear function even.

Property 4 :The key schedule function KSF is easily invertible.

The property 4 implies that we can build the inverse key schedule function KSF−1.
Moreover, the computation cost of KSF−1 is almost the same as that of KSF .

Property 5 :In the inverse key schedule function KSF−1, if input values are cho-
sen appropriately, there are two independent transforms.

The property 5 is one of the most important properties for our attack. In the next
section, we show this in detail.

10.3.2 How to Obtain Two Independent Transforms in the KSF−1

Since any input word of KSF−1 affects all output words of KSF−1, it appears that
there is no independent transform in the KSF−1 at first glance.

However, we analyzed the relation among the inputs and the outputs of KSF−1

deeply, and then found a technique to construct two independent transforms in the
KSF−1 by choosing inputs carefully and controlling internal variables. Specifically,
we can show that a change of input word X8 only affects output words X0, X1, X2

and X3, and also modifications of X13, X14 and X15 only affect X5 and X6 if these
input words are chosen properly. We present the relation among inputs, outputs and
internal variables of KSF−1 and then show how to build independent transforms in
the KSF−1.

As shown in Fig. 10.6, changes of inputsX13, X14 andX15 only propagate internal
variables Y0, Y1, Y5, Y6 and Y7. If internal variables Y6 and Y7 are fixed even when
X13, X14 and X15 are changed, it can be considered that an internal variable Y0, Y1
and an output X7 are independent of changes of X13, X14 and X15. From Eq. (10.22)
and (10.23), Y6 and Y7 can be fixed to arbitrary values by choosing X13, X14 and
X15 satisfying the following formulae:

X14 = Y6 +X13, (10.34)

X15 = Y7 − (X14 ⊕ const2). (10.35)
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Figure 10.6: Relation among inputs and outputs of KSF−1

Therefore modifications of inputs X13, X14 and X15 only propagate X5 and X6 by
selecting these input values appropriately. In addition, a modification of X8 only
affects X0, ..., X3.

As a result, we obtain two independent transforms in KSF−1 by choosing
X13, X14 and X15 properly, since in this case a change of X8 only affects X0, ...,
X3, and changes of X13, X14 and X15 only propagate X5 and X6.

10.3.3 Applying Meet-in-the-Middle Attack to Reduced-Round Tiger

We show the method for applying the meet-in-the-middle attack to Tiger by using
above five properties. We define the meet point as 64-bit C6, the process 1 as rounds
1 to 6, and the process 2 as rounds 7 to 16.

In the process 2, intermediate values A9, B9 and C9 can be calculated from
A16, B16, C16 and message words X9 to X15, since Tiger without the feedforward
function is easily invertible. From the property 2, C6 can be determined from A8, B8

and X6. It is also observed that A8 and B8 are independent of X8, because these
values are calculated from A9, B9 and C9. From the property 5, X8 does not affect
X6. Therefore, C6, the output of the process 2, can be determined from X6, X9 to
X15, A16, B16 and C16.

In the process 1, the output C6 can be calculated from X0 to X5, A0, B0 and
C0. If some changes of the message words used in each process do not affect the
message words used in the other process, C6 can be determined independently in
each process.

The message words X0 to X4 are independent of changes of X6 and X13 to X15, if
X9 to X12 are fixed and X13 to X15 are calculated as illustrated in the section 10.3.2.
Although changes of X13, X14 and X15 propagate X5, from the property 3, C6 in
the process 1 is not affected by changes of odd bytes of X5. Therefore, if even bytes
of X5 are fixed, C6 in the process 1 can be determined independently from a change
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Figure 10.7: Meet-in-the-middle attack on 16-round Tiger

of X5.
We show that the even bytes of X5 can be fixed by choosing X11, X12 and X13

properly. From Eq. (10.21), Y5 is identical to X13 when X12 equals zero, and from
Eq. (10.13), X5 is identical to Y5 when Y4 equals zero. Thus X5 is identical to X13

when both X12 and Y4 are zero. Consequently, if the even bytes of X13 are fixed,
and X12 and Y4 equal zero, the even bytes of X5 can be fixed. Y4 can be fixed to
zero by choosing X11 as X11 ← X10 ≫ 23. Therefore, if the following conditions are
satisfied, C6 in the process 1 can be independent of changes of X13, X14 and X15.

• X9 and X10 are fixed arbitrarily,

• X11 = X10 ≫ 23, X12 = 0,

• X13, X14 and X15 are chosen properly.

By choosing inputs of the inverse pass function satisfying the above conditions,
we can execute the process 1 and the process 2 independently. Specifically, if only
X13, X14 and X15 are treated as variables in the process 2, then the process 2 can
be executed independently from the process 1. Similarly, if only X8 is treated as a
variable in the process 1, then the process 1 is independent of the process 2, as long
as X8 to X15 satisfy the above conditions. These results are shown in Fig. 10.7.

10.3.4 (Second) Preimage Attack on 16-Round Tiger Compression
Function

We present the whole algorithm of the (second) preimage attack on the compres-
sion function of Tiger reduced to 16 rounds. The attack consists of three phases:
preparation, first and second phase.
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The preparation phase sets Xi(i ∈ {4, 7, 9, 10, 11, 12}), Yi(i ∈ {2, 3, 4, 6, 7}) and
even bytes of X13 as follows:

Preparation

1: Let A′
16, B

′
16 and C ′

16 be given targets. Choose A0, B0 and C0 arbitrarily, and set
A16, B16 and C16 as follows:

A16 ← A0 ⊕A
′
16, B16 ← B0 −B

′
16, C16 ← C ′

16 − C0.

2: Choose X9, X10, Y6, Y7 and even bytes of X13 arbitrarily, set X12 and Y4 to zero,
and set X7, X11, Y2, Y3 and X4 as follows:

X7 ← Y6⊕Y7, X11 ← X10 ≫ 23, Y2 ← X9⊕X10, Y3 ← X11−X10, X4 ← Y3.

The first phase makes a table of (C6, odd bytes of X13) pairs in the process 2 as
follows:

First Phase

1: Choose odd bytes of X13 randomly.

2: Set X5, X6, X14 and X15 as follows:

X5 ← X13, X6 ← Y6+X13, X14 ← Y6+X13, X15 ← Y7−((Y6+X13)⊕const2).

3: Compute C6 from A16, B16, C16, X6 and X9 to X15.

4: Place a pair (C6, odd bytes of X13) into a table.

5: If all 232 possibilities of odd bytes of X13 have been checked, terminate this phase.
Otherwise, set another value, which has not been set yet, to odd bytes of X13

and return to the step 2.

The second phase finds the desired message values X0 to X15 in the process 1
by using the table as follows:

Second Phase

1: Choose X8 randomly.

2: Set Y0, Y1, X0, X1, X2 and X3 as follows:

Y0 ← X8 −X7,

Y1 ← X9 + (X8 ⊕ (Y7 ≪ 19)),

X0 ← Y0 + (X7 ⊕ const1),

X1 ← Y0 ⊕ Y1,

X2 ← Y2 − Y1,

X3 ← Y3 + (Y2 ⊕ (Y1 ≪ 19)).
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3: Compute C6 from X0 to X4, even bytes of X5, A0, B0 and C0.

4: Check whether this C6 is in the table generated in the first phase. If C6 is in the
table, the corresponding X0 to X7 are a preimage for the compression function
of the target A′

16, B
′
16, C

′
16 and successfully terminates the attack. Otherwise,

set another value, which has not been set yet, to X8 and return to the step 2.

By repeating the second phase about 232 times for different choices of X8, we
expect to obtain a matched C6. The complexity of the above algorithm is 232(=
232 · 6

16 +232 · 1016) compression function evaluations, and success probability is about
2−128. By executing the above algorithm 2128 times with different fixed values, we
can obtain a preimage of the compression function. In the preparation phase, A0,
B0, C0, X9, X10, Y6, Y7 and even bytes of X13 can be chosen arbitrarily. In other
words, this attack can use these values as free words. These free words are enough
for searching 2128 space. Accordingly, the complexity of the preimage attack on the
compression function is 2160(= 232 · 2128). Also, this algorithm requires 232 96-bit or
235.6 bytes memory.

10.3.5 One-Block (Second) Preimage Attack on 16-Round Tiger

The preimage attack on the compression function can be extended to the one-block
preimage attack on 16-round Tiger hash function. For extending the attack, A0,
B0, C0 are fixed to the IV words, the padding word X7 is fixed to 447 encoded in
64-bit string, and the remaining 224 bits are used as free bits in the preparation
phase. Although our attack cannot deal with another padding word X6, the attack
still works when the least significant bit of X6 equals one.

Hence, the success probability of the attack on the hash function is half of that
of the attack on the compression function. The total complexity of the one-block
preimage attack on 16-round Tiger hash function is 2161 compression function com-
putations.

This preimage attack can also be extended to the one-block second preimage
attack directly. Our second preimage attack obtains a one-block preimage with the
complexity of 2161. Moreover, the complexity of our second preimage attack can
be reduced by using the technique given in [40]. In this case, the second preimage
attack obtains the preimage which consists of at least two message blocks with a
complexity of 2160.

10.4 Preimage Attack on Reduced-Round SHA-2

We apply our techniques to SHA-2 including both SHA-256 and SHA-512 in straight-
forward and present a preimage attack on SHA-2 reduced to 24 (out of 64 and 80,
respectively) steps. We first check the properties of SHA-2, then introduce the
algorithm of the preimage attack on 24-step SHA-2.

10.4.1 Properties of 24-step SHA-2

We first check whether SHA-2 has similar properties of Tiger. The pass function
of Tiger corresponds to the 16-step state update function of SHA-2, and the key
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Figure 10.8: Message expansion function of 24-step SHA-2

Table 10.2: Relation among message values W16 to W23.

computed value values for computing

W16 W14,W9,W1∗,W0∗

W17∗ W15,W10,W2,W1∗

W18 W16,W11∗,W3∗,W2

W19 W17∗,W12,W4,W3∗

W20 W18,W13,W5,W4

W21 W19,W14,W6,W5

W22 W20,W15,W7,W6

W23 W21,W16,W8,W7

schedule function of Tiger corresponds to the 16-step message expansion function of
SHA-2. Since the state update function and the message expansion function of SHA-
2 are easily invertible, the compression function of SHA-2 without the feedforward
function is also invertible.

In the inverse state update function, A18, B18, ..., H18 are determined fromA24, B24, ..., H24

and W18 to W23, and A11 only depends on A18, ..., H18. Thus A11 is independent
of W11 to W17 when A18, ..., H18 and W18 to W23 are fixed. It corresponds to the
property 2 of Tiger.

Then we check whether there are independent transforms in the inverse message
expansion function of SHA-2. It corresponds to the property 5 of Tiger. For the
24-step SHA-2, 16 message words W0 to W15 used in the first 16 steps are identical
to input message blocks of the compression function, and 8 message words W16 to
W23 used in the remaining eight steps are derived from W0 to W15 by the message
expansion function shown in Fig. 10.8. Table 10.2 shows the relation among message
words in the message expansion function. For example, W16 is determined from
W14,W9,W1 and W0. By using these relation and techniques introduced in previous
sections, we can configure two independent transforms in the message expansion
function of SHA-2.

We show that, in the inverse message expansion function of 24-step SHA-2, i)
a change of W17 only affects W0,W1,W3 and W11, and ii) W19,W21 and W23 only
affect W12 by using the message modification techniques. In Tab. 10.2, asterisked
values are variables of i), and underlined values are variables of ii).
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Figure 10.9: Meet-in-the-middle attack on 24-step SHA-2

First, we consider the influence of W23. Though W23 affects W7,W8,W16 and
W21, this influence can be absorbed by modifyingW21 →W19 →W12. Consequently,
we obtain a result that W19,W21 and W23 only affect W12 by choosing these values
properly, sinceW12 does not affect any other values in the inverse message expansion
function.

Similarly, we consider the influence of W17 in the inverse message expansion
function. W17 affects W1,W2,W10 and W15. This influence can be absorbed by
modifying W1 → W0. W17 is also used for generating W19. In order to cancel this
influence, W3 → W11 are also modified. As a result, we obtain a result that W17

only affects W0,W1,W3 and W11 by choosing these values appropriately.

10.4.2 (Second) Preimage Attack on 24-Step SHA-256 Compres-
sion Function

As shown in Fig. 10.9, we define the meet point as 32-bit A11, the process 1 as steps
1 to 11, and the process 2 as steps 12 to 24. In the process 1, A11 can be derived
from A0, ..., H0 and W0 to W10. Similarly, in the process 2, A11 can be determined
from A24, ..., H24 andW18 toW23. Since the process 1 and process 2 are independent
of each other for A11 by using the above properties of SHA-2, we apply the meet-
in-the-middle attack to SHA-2 as follows:

Preparation

1: Let A′
24, ..., H

′
24 be given targets. Choose A0, ..., H0 arbitrarily, and compute

A24, ..., H24 by the feedforward function.
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2: Choose 32-bit value CON and Wi(i ∈ {2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18}) arbi-
trarily, and then calculate W20 and W22.

First Phase

1: Choose W23 randomly.

2: Determine W21,W19 and W12 as follows1:

W21 ← σ−1
1 (W23 −W16 − σ0(W8)−W7),

W19 ← σ−1
1 (W21 −W14 − σ0(W6)−W5),

W12 ← W19 − CON.

3: Compute A11 from A24, ..., H24 and W18 to W23.

4: Place a pair (A11, W23) into a table.

5: If 216 pairs of (A11, W23) have been listed in the table, terminate this algorithm.
Otherwise, set another value, which has not been set yet, to W23 and return
to the step 2.

Second Phase

1: Choose W17 randomly.

2: Determine W0,W1,W3 and W11 as follows:

W1 ← W17 − σ1(W15)−W10 − σ0(W2),

W0 ← W16 − σ1(W14)−W9 − σ0(W1),

W3 ← CON− σ1(W17)− σ0(W4),

W11 ← W18 − σ1(W16)− σ0(W3)−W2.

3: Compute A11 from A0, ..., H0 and W0 to W10.

4: Check whether this A11 is in the table generated in the first phase. If A11 is in the
table, the corresponding W0 to W23 is a preimage of the compression function
of the target A′

24, ..., H
′
24 and successfully terminates the attack. Otherwise,

set another value, which has not been set yet, to W17 and return to the step
2.

By repeating the second phase about 216 times for different W17, we expect to
obtain a matched A11. The complexity of the preimage attack on the compres-
sion function is 2240(= 2256−32/2) compression function evaluations. The required
memory is 216 64-bit or 219 bytes. In this attack, the words A0, ..., H0, CON and
Wi(i ∈ {2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18}) can be used as free words. The total
free words are 22 words or 704 bits.

1The method how to calculate σ−1
1 is illustrated in the appendix.

171



10.4.3 One-Block (Second) Preimage Attack on 24-Step SHA-2
Hash Function

The preimage attack on the compression function can be extended to the (second)
preimage attack on the hash function directly, since our preimage attack can obtain
random preimages from an arbitrary IV and an arbitrary target, and can deal with
the padding words W14 and W15. Thus the complexities of the preimage attack
and the second preimage attack on 24-step SHA-256 are 2240. Furthermore, this
attack can also be extended to the (second) preimage attack on 24-step SHA-512.
The complexities of the (second) preimage attack on 24-step SHA-512 are 2480(=
2512−64/2).

10.5 Conclusion

In this chapter, we have shown preimage attacks on reduced-round Tiger, reduced-
step SHA-256 and reduced-step SHA-512. The proposed attacks are based on meet-
in-the-middle attack. We developed new techniques to find “independent words”
of the compression functions. In the attack on reduced-round Tiger, we found the
“independent transforms” in the message schedule function by adjusting the internal
variables, then we presented there are independent words in the compression func-
tion of Tiger. In the attack on reduced-round SHA-2, we found the “independent
transforms” in the message expansion function by modifying the messages, then we
showed that there are independent words in the compression function of SHA-2.

Our preimage attack can find a preimage of 16-step Tiger, 24-step SHA-256
and 24-step SHA-512 with a complexity of 2161, 2240 and 2480, respectively. These
preimage attacks can be extended to second preimage attacks with the almost same
complexities. Moreover, our (second) preimage attacks can find a one-block preim-
age, since it can obtain random preimages from an arbitrary IV an arbitrary target,
and can also deal with the padding words.
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Chapter 11

Converting Meet-In-The-Middle
Preimage Attack into Pseudo
Collision Attack: Application to
SHA-2

In this chapter, we present a new technique to construct a collision attack from a
particular preimage attack which is called a partial target preimage attack. Since
most of the recent meet-in-the-middle preimage attacks can be regarded as the par-
tial target preimage attack, a collision attack is derived from the meet-in-the-middle
preimage attack. By using our technique, pseudo collisions of the 43-step reduced
SHA-256 and the 46-step reduced SHA-512 can be obtained with complexities of
2126 and 2254.5, respectively. As far as we know, our results are the best pseudo
collision attacks on both SHA-256 and SHA-512 in literature. Moreover, we show
that our pseudo collision attacks can be extended to 52 and 57 steps of SHA-256
and SHA-512, respectively, by combined with the recent preimage attacks on SHA-2
by bicliques. Furthermore, since the proposed technique is quite simple, it can be
directly applied to other hash functions. We apply our algorithm to several hash
functions including Skein which is the SHA-3 finalists. We present not only the best
pseudo collision attacks on SHA-2 family, but also a new insight of relation between
a meet-in-the-middle preimage attack and a pseudo collision attack.

11.1 Introduction

Cryptographic hash functions play a central role in the modern cryptography. A
secure hash function, which produces a fixed length hash value from an arbitrary
length message, is required to satisfy at least three security properties: preimage
resistance, second preimage resistance and collision resistance.

While there has not been a generic method to convert a collision attack into
a preimage attack, it has been known that the preimage attack that can find at
least two distinct preimages from the same target can be directly converted into a
collision attack. However, the converted collision attack is often not efficient due
to that the birthday bound of a collision attack (2n/2) is far lower than the generic
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bound of the preimage attack (2n), where n is the bit size of the hash value. Thus,
it is left as open question that how to convert an efficient preimage attack into an
efficient collision attack. In the case of the reduced SHA-256 regarding the number
of attacked rounds, a preimage attack, covering 43 steps [84], is much better than
the best known collision attack, with only 27 steps [139]. Moreover, basically, a
collision attack and a preimage attack require quite different techniques. In other
words, in general, the techniques used for the collision attack do not work well for
a preimage attack, and vice versa. In fact, most of the recent collision attacks are
based on a differential attack [13, 12], in contrast to that most of the recent preimage
attacks are based on a meet-in-the-middle (MITM) attack [16]. Though converting
the differential collision attack to a (pseudo) preimage attack was discussed in [140],
there is no generic way to construct a collision attack from a MITM preimage attack.

In this chapter, we give a generic method to convert a particular preimage attack
into a collision attack. By using our technique, an efficient collision attack which
works faster than a generic collision attack can be constructed from a partial target
preimage attack even if the complexity of the preimage attack is more than the
birthday bound (2n/2). Our method is especially fit for converting a MITM preim-
age attack into a pseudo collision attack, since most of the recent MITM preimage
attacks can be considered as the partial target preimage attack as long as its match-
ing point is located in the end of the compression function. We first apply our
algorithm to SHA-256 and SHA-512 and show the best pseudo collision attacks on
them in literature. Specifically, pseudo collisions of the 43-step (out of 64-step) re-
duced SHA-256 and the 46-step (out of 80-step) reduced SHA-512 can be derived
faster than a generic attack. Combined with the recent preimage attacks on SHA-
2 [73], these attacks are extended to the 52-step and 57-step reduced SHA-256 and
SHA-512, respectively. Then we show some other applications of our conversion
techniques including a pseudo collision attack on the 37-round reduced Skein-512.
While it seems hard to extend our pseudo collision attacks to collision attacks, the
proposed conversion technique is a generic, and thus it is expected to be widely used
for security evaluations of hash functions.

11.2 Preliminaries

In this section, we first give security notions used throughout this chapter, then
briefly refer a meet-in-the-middle (MITM) preimage attack.

11.2.1 Security Notions

Let f be a compression function which outputs an n-bit chaining variable hi from
an n-bit input chaining variable hi−1 and a k-bit input message mi, i.e., hi =
f(hi−1,mi). Similarly, let H be an iterated hash function consisting of f , which
produces an n-bit hash value d from an initial value IV (= h0) and an arbitrary
length message M , i.e., d = H(IV,M) = f(· · · f(f(IV,m1),m2), · · · ,mt), where
pad(M) = (m1|m2| · · · |mt) and pad denotes a padding function. This type of hash
function, in which the size of an intermediate chaining variable is the same as that
of a hash value, is called a narrow-pipe hash function. On the other hand, a hash
function having a larger internal state size is called a wide-pipe hash function, i.e.,
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the size of a final hash value is smaller than that of a chaining variable. We use the
terminology introduced in [141] for a collision attack and a pseudo (or free-start)
collision attack on hash functions as follows.
Definition 1 (Collision attack) Given IV , find (M,M ′) such that M 6= M ′ and
H(IV,M) = H(IV,M ′).

Definition 2 (Free-start or pseudo collision attack) Find (IV , IV ′, M , M ′)
such that H(IV,M) = H(IV ′,M ′) and (IV,M) 6= (IV ′,M ′).

Additionally, we give several definitions for (pseudo) preimage attacks on hash func-
tions and (pseudo) preimage attacks on compression functions.
Definition 3 (Preimage attack) Given IV and d(= H(IV,M)), find M ′ such
that H(IV, M ′) = d.

Definition 4 (Pseudo preimage attack) Given d(= H(IV,M)), find (IV ′, M ′)
such that H(IV ′,M ′) = d.

Definition 5 ((t-bit) partial target preimage attack) Given IV and t-bit par-
tial target of d(= H(IV,M)), findM ′ such that t-bit of d′(= H(IV,M ′)) is the same
as the t-bit of d at the same position, and the other part of d′ is randomly obtained.

Definition 6 (Preimage attack on compression function) Given hi−1 and
hi(= f(hi−1, mi)), find m

′
i such that f(hi−1,m

′
i) = hi.

Definition 7 (Pseudo preimage attack on compression function) Given
hi(= f(hi−1, mi)), find (h′i−1,m

′
i) such that f(h′i−1,m

′
i) = hi.

Definition 8 ((t-bit) partial target preimage attack on compression func-
tion) Given hi−1 and t-bit partial target of hi(= f(hi−1,mi)), find m′

i such that
t-bit of h′i(= f(hi−1,m

′
i)) is the same as the t-bit of hi at the same position, and the

other part of h′i is randomly obtained.

Definition 9 ((t-bit) pseudo partial target preimage attack on compres-
sion function) Given t-bit partial target of hi(= f(hi−1,mi)), find (h′i−1, m

′
i) such

that t-bit of h′i(= f(h′i−1,m
′
i)) is the same as the t-bit of hi at the same position,

and the other part of h′i is randomly obtained.

11.2.2 Meet-in-the-Middle Preimage Attack

The basic concept of the MITM preimage attack was introduced in [16]. Since
then, the MITM preimage attacks have been drastically improved and applied to
several hash functions [142, 62, 82, 81, 84, 85]. Also, the techniques for the MITM
preimage attacks on hash functions have been extended to the attacks on several
block ciphers [9, 86].

As shown in Fig. 11.1,1 in the MITM preimage attack on a compression function,

1Here, we show the MITM preimage attack on Davies-Meyer mode as an example. MITM
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Figure 11.1: Meet-in-the-middle preimage attack

the compression function f is assumed to be divided into two sub-functions: f1
(forward process) and f2 (backward process) so that the w-bit matching point z
calculated by f1 does not depend on m2 which is some message bits of m, and z
calculated by f2 does not depend on m1 which is other message bits of m. Such m1

and m2 are called neutral bits of f2 and f1, respectively. Then, the MITM preimage
attack finds a preimage m′ such that f(x,m′) = y from a given x and y(= f(x,m))
as follows.

Step 1. Choose a random m except for m1 and m2.

Step 2. For all possible m1, calculate w-bit z1(= f1(x,m1)), and add a pair of

(z
(i)
1 ,m

(i)
1 ) to a list, where (1 ≤ i ≤ 2|m1|), and | ∗ | denotes the bit size of ∗.

Step 3. For all possible m2, calculate w-bit z2(= f−1
2 (x ⊕ y,m2)), and add a pair

of (z
(j)
2 ,m

(j)
2 ) to a list, where (1 ≤ j ≤ 2|m2|).

Step 4. Compare two lists to find pairs satisfying z
(p)
1 = z

(q)
2 . If such pair is found,

then check if the other bits of the matching point derived from m
(p)
1 and m

(q)
2

are the same value.

Step 5. If the other parts are also the same, then outputs such m including m
(p)
1

and m
(q)
2 . Otherwise, go back to Step 1 and repeat the computation.

From Steps 2 and 3, we have 2|m1| and 2|m2| values of w-bit z1 and z2, i.e., we have
2|m1|+|m2| values of (z1 ⊕ z2). Since the probability of (z1 ⊕ z2 = 0) is 2−w, we have
2|m1|+|m2| · 2−w pairs such that z1 = z2 in Step 4. Thus, by repeating this algorithm
about 2n−w · 2−(|m1|+|m2|) · 2w times, we expect to obtain a desired preimage. The
required computation for the one process from Step 1 to 4 is at most max(2|m1|, 2|m2|)
calls of the compression function. Thus, the total computation to find a preimage
of the compression function is about 2n · 2−(|m1|+|m2|) ·max(2|m1|, 2|m2|).2

For a narrow-pipe hash function, by replacing x and y by IV and d, this MITM
preimage attack on a compression function can be directly converted into a preimage
attack on a hash function. However, for an attack on a hash function, some of the

preimage attacks on other modes like Matyas-Meyer-Oseas mode can be performed in a similar
way.

2The estimated complexity does not depend on the size of the matching point w. However,
as discussed in [85], if w is extremely small like w = 1, the total complexity is dominated by the
recomputations in Step 4 which is ignored in our estimation. Thus, in our evaluation, we assume
that w is sufficiently large.
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message bits related to the padding bits are required to be controlled by the attacker
to set appropriate padding data.

11.3 Method to Convert Preimage Attack into Collision
Attack

In this section, we present how to efficiently convert a particular preimage attack
into a pseudo collision attack. First, we introduce a generic technique to construct
a pseudo collision attack from a partial target preimage attack. Then, we intro-
duce the MITM preimage attack whose matching point is located at the end of the
compression function. We show that such class of the MITM preimage attack is
regarded as the partial target preimage attack. Finally, we show that a pseudo col-
lision attack can be efficiently constructed from the MITM preimage attack whose
matching point is at the end by showing how to efficiently obtain many partial target
preimages.

11.3.1 Generic Conversion of Partial Target Preimage Attack into
Collision Attack

We consider the oracle A that can find a t-bit partial target preimage with a com-
plexity of 2s. Also, A is assumed to return different M ′ for each call. Obviously,
we can construct a collision attack with a complexity of 2s · 2(n−t)/2 by iteratively
calling A as follows.

• Set t-bit random data as d′

• Call A with the parameter IV and d′ in 2(n−t)/2 times

After this procedure, we have 2(n−t)/2 of (n − t)-bit random data, and thus there
exists a colliding data with a high probability. Once the colliding data are found,
we have a collision of the hash function since the rest of the hash value d′ is fixed.
The total complexity is 2(n−t)/2 ·2s. This conversion itself can be applied to not only
a narrow-pipe hash function but also a wide-pipe hash function, since the required
complexity depends only on the size of the digest. The basic concept of this attack
that fixes t-bit of the target with the complexity of 2s has been used to find a
collision of (new) FORK-256 in [143] and a collision and a second preimage of LUX
in [144]. However, the method does not work if the partial target preimage attack
is not efficient, i.e., (s ≥ t/2). In this case, the required complexity in total will be
higher than 2n/2.

11.3.2 Meet-in-the-Middle Attack with Matching Point in Last Step

We consider a similar model explained in Section 11.2.2. The difference from the
model shown in Fig. 11.1 is that the matching point is restricted to be in the last
step as shown in Fig. 11.2. In this scenario, the MITM pseudo preimage attack on a
compression function finds a preimage m′ and a random x′ such that f(x′,m′) = y
from a given y(= f(x,m)) as follows.

Step 1. Choose a random m except for m1 and m2, and a random starting state S.
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Figure 11.2: MITM preimage attack with the matching point in the last step

Step 2. For all possible m1, calculate w-bit z1(= f1(S,m1)), and add a pair of

(z
(i)
1 ,m

(i)
1 ) to a list, where (1 ≤ i ≤ 2|m1|).

Step 3. For all possible m2, calculate w-bit z2(= f−1
2 (S,m2)), and add a pair of

(z
(j)
2 ,m

(j)
2 ) to a list, where (1 ≤ j ≤ 2|m2|).

Step 4. Compare two lists to find pairs satisfying that z
(p)
1 ⊕ z

(q)
2 equals the t-bit

of y. If such pair is found, then check if the XORed other bits of the matching

point derived from m
(p)
1 and m

(q)
2 is the same as the rest of y.

Step 5. If the XORed other bits are also the same as y, then output such m in-

cluding m
(p)
1 and m

(q)
2 , and x′ calculated from the data of the matching point.

Otherwise, go back to Step 1 and repeat the computation.

Note that, this attack basically cannot obtain a preimage from the given x unlike
the attack described in Section 11.2.2, since x′ will be randomly derived. Thus,
this attack is considered as a pseudo preimage attack on a compression function.
However, for a narrow-pipe hash, it has been known that a pseudo preimage attack
on a compression function can be converted into a preimage attack on a hash function
assuming that the attacker can set valid padding bits [85]. The estimated complexity
to find a desired pseudo preimage is the same as that presented in Section 11.2.2,
i.e., 2n · 2−(|m1|+|m2|) ·max(2|m1|, 2|m2|).

11.3.3 Conversion of MITM Preimage Attack into Pseudo Collision
Attack

If we can construct the MITM pseudo preimage attack whose matching point is
located at the end of the compression function, we can control part of the output
variables as explained in the previous subsection. In other words, the MITM pseudo
preimage attack described in the previous subsection can be regarded as the pseudo
partial target preimage attack on a compression function. For the MITM preimage
attack, at least 2t/2 computations are required to derive a preimage of an t-bit partial
target. Thus, the directly converted pseudo collision attack will at least have the
complexity of 2(n−t)/2+t/2 = 2n/2, that is not an efficient pseudo collision attack.

In order to overcome this problem, we exploit extra freedom of a neutral word
after finding a partial target preimage. For example, in the case of t = 10 and
|m1| = |m2| = 8 (> t/2), we can find 26(= 28+8/210) 10-bit partial target preimages
with the complexity of 28. It essentially means that a 10-bit partial target preimage
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is found with the complexity of 22(= 28/26) < 25(= 210/2). When t ≤ w, the
required complexity to find a partial target preimage from a given t-bit partial
target is estimated as

2t−(|m1|+|m2|) ·max(2|m1|, 2|m2|),

where recall that w denotes the bit size of the matching point. In particular, s < t/2,
which is the condition for a successful attack as mentioned in Section 11.3.1, holds
when min(|m1|, |m2|) > t/2, where recall that 2s represents the required complexity
to find a t-bit partial target preimage. Therefore, if we can move the matching point
of the MITM attack to the end of the compression function and there is enough
freedom in neutral words, we can construct an efficient pseudo collision attack on a
compression function.

Moreover, for a narrow-pipe hash function, it has been known that a (pseudo)
collision attack on a compression function can be directly converted to a (pseudo)
collision attack on a hash function by appending another message block illustrated in
Fig. 11.3, which is called multi-block message technique. By using the multi-block
message technique, an attacker can append arbitrary messages. Thus, unlike the
conversion to a (pseudo) preimage attack on a hash function, for the conversion to a
pseudo collision attack on a hash function, there is no restriction on controllability
of message bits for a MITM pseudo preimage attack on a compression function.
This will relax conditions on the position of the matching point for the MITM
pseudo preimage attack on a compression function, and thus may allow us to attack
larger number of steps. Note that, for a wide-pipe hash function, even though a
(pseudo) collision attack on a compression function can not be directly converted to
a (pseudo) collision attack on a hash function by using multi-block message, we still
can convert a MITM pseudo preimage attack on a hash function to a pseudo collision
attack on a hash function since the conversion of a partial target preimage attack
into a collision attack is generic. Furthermore, in our attack, t-bit of the colliding
digest can be determined by the attacker unlike the usual collision attack that derives
a completely random digest. This is another feature of our approach. On the other
hand, the required complexity of our converted (pseudo) collision attack is likely to
be high due to a few gains from the MITM procedure, though it is still more efficient
than the generic attack. This is considered as one of the limitations of our approach.

11.4 Pseudo Collision Attacks on SHA-2

In this section, we apply our conversion technique to SHA-2. At first, we briefly
describe the algorithm of SHA-2. Then, we review the previous collision attacks
on SHA-2. After that, we introduce the known MITM preimage attack on the 43-
step SHA-256 presented in [84]. After we modify these results in order to fit our
conversion technique, i.e., moving the matching point to the end of the compression
function, we show the pseudo collision attack on the 43-step SHA-256. Moreover,
we present the pseudo collision attack on the 46-step SHA-512 based on the MITM
preimage attack on the 46-step SHA-512 [84]. Furthermore, pseudo collision attacks
on the 40-step reduced SHA-224 and SHA-384 are demonstrated as well. Finally, we
discuss pseudo collision attacks based on the recent MITM preimage attacks [73],
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which significantly improve the results of [84] in terms of the number of attacked
steps by using bicliques. These results on SHA-2 are summarized in Table 11.1.

11.4.1 Description of SHA-2

While our target is both SHA-256 and SHA-512, we only explain the structure of
SHA-256, since SHA-512 is structurally equivalent to SHA-256 except for the number
of steps, the amount of rotations and the word size. The compression function of
SHA-256 consists of a message expansion function and a state update function. The
message expansion function expands a 512-bit message block into 64 32-bit message
words (W0, · · · ,W63) as follows:

Wi =

{
Mi (0 ≤ i < 16),
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 (16 ≤ i < 64),

where the functions σ0(X) and σ1(X) are defined by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X ≫ 3),

σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X ≫ 10).

The state update function updates eight 32-bit chaining variables, A, B, · · · , G, H
in 64 steps as follows:

T1 = Hi +Σ1(Ei) + Ch(Ei, Fi, Gi) +Ki +Wi,

T2 = Σ0(Ai) +Maj(Ai, Bi, Ci),

Ai+1 = T1 + T2, Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di + T1, Fi+1 = Ei, Gi+1 = Fi, Hi+1 = Gi,

where Ki is the i-th step constant and the functions Ch, Maj, Σ0 and Σ1 are given
as follows:

Ch(X,Y, Z) = XY ⊕XZ,

Maj(X,Y, Z) = XY ⊕ Y Z ⊕XZ,

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22),

Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25).
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Table 11.1: Summary of collision attacks on the reduced SHA-2

algorithm type of attack steps complexity based attack paper

SHA-256

collision 24 228.5 - [145]
collision 27 (practical) - [139]

semi-free-start-collision∗1 24 217 - [145]
semi-free-start-collision∗1 32 (practical) - [139]
pseudo-near-collision 31 232 - [145]

pseudo collision 42 2123 [84] Our (Section 11.4.7)
pseudo collision 43 2126 [84] Our (Section 11.4.4)
pseudo collision 45 2126.5 [73] Our (Section 11.4.9)
pseudo collision 52 2127.5 [73] Our (Section 11.4.9)

SHA-224 pseudo collision 40 2110 [84] Our (Section 11.4.8)

SHA-512

collision 24 228.5 - [145]
pseudo collision 42 2244 [84] Our (Section 11.4.7)
pseudo collision 46 2254.5 [84] Our (Section 11.4.6)
pseudo collision 50 2254.5 [73] Our (Section 11.4.9)
pseudo collision 57 2255.5 [73] Our (Section 11.4.9)

SHA-384 pseudo collision 40 2183 [84] Our (Section 11.4.8)

∗1: semi-free-start-collision attack finds (IV ′,M,M ′) such that H(IV ′,M) =
H(IV ′,M ′) and M 6=M ′.

After 64 steps, a feed-forward process is executed with initial state variables by using
word-wise addition modulo 232.

11.4.2 Known Collision Attacks on SHA-2

The first collision attack on reduced SHA-256 was presented in [146] which is a
19-step near collision attack. Since then, the collision attacks on SHA-2 have been
improved [147, 145, 139]. The previously published best collision attacks in terms of
the number of attacked steps are the 27 steps on SHA-256 [139] and the 24 steps on
SHA-512 [145]. A non-random property, which is a second-order differential collision,
of the 47-step reduced SHA-256 compression function was reported in [148].

11.4.3 Known MITM Preimage Attack on 43-step SHA-256

The MITM preimage attack on the 43-step SHA-256 presented in [84] uses the 33-
step two chunks Wj , . . . ,Wj+32 including the 4-step initial structure (IS), the 2-step
partial fixing (PF), the 7-step partial matching (PM) and the 1-step indirect partial
matching (IPM). In the following, we review the details of these techniques.

33-step Two Chunks with the 4-step IS.

The message words of length 33 is divided into two chunks as {Wj , . . . ,Wj+14,Wj+18}
and {Wj+15, Wj+16, Wj+17, Wj+19, . . . ,Wj+32}. Using message compensation tech-
nique [84], the first chunk and the second chunk are independent from Wj+15 and
Wj+18, respectively. In particular, the following constraints ensure the above mes-
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sage words to be neutral words with respect to each chunk;

Wj+17 = σ1(Wj+15), Wj+19 = σ21(Wj+15), Wj+21 = σ31(Wj+15),
Wj+22 = Wz+5, Wj+23 = σ41(Wj+15), Wj+24 = 2σ1(Wj+15),
Wj+25 = σ51(Wj+15),

(11.1)

where σ21(X) means σ1 ◦ σ1(X).
These two chunks include the 4-step IS, which essentially exchanges the order of

the words Wi and Wi+3 by exploiting the absorption property of the function Ch.
After the swapping, the final output after the step (i + 3) still keeps unchanged.
Here, Wj+18 is moved to the first chunk and Wj+15, Wj+16 and Wj+17 are moved to
the second chunk.

In the forward direction, a state value of pj+33 = Aj+33|| . . . ||Hj+33 can be com-
puted independently of the first chunk. In the backward direction, a state value of
pj = Aj || . . . ||Hj can be computed independently of the second chunk. Note that
the 33-step two-chunk is valid regardless of the choice of j for j > 0.

7-step PM.

In the backward computation, Aj can be computed from pj+7 without knowing
{Wj , · · · ,Wj+6} for any j as used in [81].

2-step PF.

PF is a technique to enhance PM by fixing a part of a neutral word. The equation
for Hj−1 is as follows:







Hj−1 = Aj − Σ0(Bj)−Maj(Bj , Cj , Dj)− Σ1(Fj)
−Ch(Fj , Gj , Hj)−Kj−1 −Wj−1,

Wj−1 = Wj+15 − σ1(Wj+13)−Wj+8 + σ0(Wj).

If we fix the lower ℓ bits of Wj+15, which is assumed to be a neutral word for the
other chunk, the lower ℓ bits of Hj−1 can be computed without using the value of
the higher (32− ℓ) bits of Wj+15. Furthermore, the equation for Hj−2 is expressed
as follows:







Hj−2 = Aj−1 − Σ0(Bj−1)−Maj(Bj−1, Cj−1, Dj−1)− Σ1(Fj−1)
−Ch(Fj−1, Gj−1, Hj−1)−Kj−2 −Wj−2,

Wj−2 = Wj+14 − σ1(Wj+12)−Wj+7 + σ0(Wj−1).

The lower (ℓ − 18) bits of Hj−2 can be computed if we can obtain the lower ℓ bits
of Ch(Fj−1, Gj−1, Hj−1) and the lower (ℓ − 18) bits of σ0(Wj−1). Note that these
values can be computed by using only the lower ℓ bits of Wj+15. Thus, when we fix
the lower ℓ bits of Wj+15, the lower (ℓ− 18) bits of Hj−2 can be computed without
knowing the higher (32− ℓ) bits of Wj+15. Therefore, by combining the 7-step PM
with the 2-step PF, 9 steps can be skipped in the backward computation.

1-step IPM.

For the forward computation, Aj+34 can be expressed as a sum of two independent
functions ψF , ξF of each neutral word as follows;
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





Aj+34 = Σ0(Aj+33) +Maj(Aj+33, Bj+33, Cj+33) +Hj+33 +Σ1(Aj+33)
+Ch(Aj+33, Bj+33, Cj+33) +Kj+33 +Wj+33,

Wj+33 = σ1(Wj+31) +Wj+26 + σ0(Wj+18) +Wj+17,

⇒ Aj+34 = ψF (Wj+15) + ξF (Wj+18).

Then, we can compute ψF (Wj+15) and ξF (Wj+18) independently. It is equiva-
lent to move the computation of ξF (Wj+18) to the backward chunk. In this case,
ξF (Wj+18) = σ0(Wj+18).

Attack Overview.

These techniques enable us to construct the 43 (= 33 + 7 + 2 + 1)-step attack on
SHA-256. Here, we have the freedom of choice of j as long as 36 steps (Wj−2 to
Wj+34) is located sequentially.

For the actual attack in [84], j is chosen as j = 3, because W13, W14 and W15

can be freely chosen to satisfy the message padding rule. The matching state is
the lower 4 bits of A37. In addition, the number of fixed bits ℓ for PF is chosen as
ℓ = 23. Then, neutral words of W18 and W21 have 5- and 4-bit freedom degrees,
respectively. As a result, a pseudo preimage is found with the complexity of 2251.9.
After that, pseudo preimages are converted into a preimage with the complexity of
2254.9. See [84] for more details about this attack.

11.4.4 Pseudo Collision Attack on 43-step SHA-256

As discussed in Section 11.3.3, to convert a MITM preimage attack into a pseudo col-
lision attack, the matching point is located into the end of the compression function,
i.e., the addition of the feed-forward. As mentioned in section 11.4.3, the matching
point of the 43-step MITM preimage attack is selected at the state after the step 37
(j = 3) due to the padding bits.

However, for a (pseudo) collision attack, we do not need to control message words
for satisfying the padding rules, since we can generate correct padding by simply
adding another message block as discussed in Section 11.3.3. It means that the last
block of a compression function is used only for satisfying the padding condition in
the collision attack when pseudo collision can be found before the last compression
function as shown in Fig. 11.3. As a result, for a (pseudo) collision attack, we can
move the matching point to the state after the step 43 (j = 9) that is the end of the
compression function. 3

Let a 256-bit output of the compression function be CV = {ZA|| · · · ||ZH}, where
each word is 32 bits. For j = 9, W24 and W27 are neutral words, and the matching
point is the lower 4 bits of A43(= A0 ⊕ ZA).

In order to construct the pseudo collision attack, we give the efficient method to
obtain 4-bit partial target preimages by using the MITM technique [84]. Figure 11.4
shows the overview of the 43-step pseudo collision attack.
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Partial Matching Partial Fixing Initial Structure Indirect Partial Matching

Matching

First Chunk Second Chunk
CV

Fixed

0 10 20 24 27 30 40

: variables not depending on W24 : variables depending on both W24 and W27

: variables that can be expressed as a sum module 232 of W24 and W27

: variables not depending on W27 : a few bits of variables depending only on W27

Figure 11.4: 43-step pseudo collision attack on SHA-256

Attack Procedure.

1. Choose the lower 4 bits of ZA, which are target values.

2. Randomly choose the value of p25 and message W25. Randomly fix the lower
23 bits of W24. Then we can find 25 values of W24 on average from 9 free bits
that correctly construct the 4-step initial structure and store them in the table
TW .

3. Randomly choose message words not related to the initial structure and the
neutral words, i.e., W19, W20, W21, W22, W23 and W29 (called an initial con-
figuration).

4. For all 25 possible W24 in TW , compute W26, W28, W30, W31, W32, W33 and
W34 following Eq. (11.1). Compute forward and find ψF (W24). Then, store
the pairs (W24, ψF (W24)) in a list LF .

5. For all 24 possible values (the lower 4 bits) ofW27, compute backward and find
ξF (W27) and the lower 4 bits of A0. Then, store the pairs (W27, ZA ⊕ A0 −
σ0(W27)) in a list LB.

6. If a match is found, i.e., ψF (W24) = ZA ⊕ A0 − σ0(W27), then compute two
group of states A43, B43, · · · , H43 and A0, B0, · · · , H0 with corresponding W24

and W27, respectively. Then obtain 25 (= 29/24) CV whose 4-bit are fixed,
i.e., the lower 4 bits of ZA, and store these in a List L1.

7. Repeat (3)-(6) 2121 times with different values of the initial configuration.

After the above procedures, we obtain 2126 (= 25 × 2121) pairs whose 4 bits are
fixed.4 Thus, there exists a colliding pair with a high probability, because of the

3It is also pointed out in [85] as the matching point can be rotated to the end of the compression
function

4It is noted that we need a slightly more than 2121 times repeated experiments to get 2126 pairs
that will achieve a probability higher than 2−1. However the difference is so small that we ignore
it here.
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equation of (2126 = 2(256−4)/2).

Evaluation.

We assume that the complexity for the 1-step function and the 1-step message expan-
sion is 1/43 compression function operation of the 43-step SHA-256. As estimated
in [85], the complexity of Step 2 in the presented attack is 29, and that of Steps 3-6
is 24.878, which is the complexity for finding 25 4-bit partial target preimages. Thus,
whole complexity of the pseudo collision attack on the 43-step SHA-256 is estimated
as 2126 ≈ 29 + (2121 × 24.878).

11.4.5 Known MITM Preimage Attack on 46-step SHA-512

The MITM preimage attack on the 46-step SHA-512 presented in [84] uses the 31-
step two chunksWj , . . . ,Wj+30 including the 2-step IS, the 8-step PF forWj−1, . . . ,Wj−6

and Wj+31,Wj+32 and the 7-step PM. In this attack, we can choose j as long as 39
step (Wj−6 to Wj+32) are located sequentially. For the actual attack in [85], j is
chosen as j = 6 to satisfy the padding rule. Then, the neutral words W21 and W22

have 4 and 3-bit freedom degrees, respectively, and the bit size of the matching point
is 3. Thus, a preimage of the 46-step SHA-512 is found with the complexity of 2511.5.
See [84] for more details about this attack.

11.4.6 Pseudo Collision Attack on 46-step SHA-512

Similarly to the attack on the reduced SHA-256, we can move the matching point
to the end of the compression function, because the padding issue can be avoided
by using multi-block message technique in the pseudo collision attack. In the case
of SHA-512, since the bit size of the matching point is 3, we utilize the 3-bit partial
target preimages for the attack. Then, the complexity of the attack is estimated as
2254.5 = (2(512−3)/2).

11.4.7 Pseudo Collision Attacks on 42-step SHA-256 and 42-step
SHA-512

We consider pseudo collision attacks on smaller number of rounds of SHA-2 in order
to save the time complexity. For the 42-step reduced SHA-256, we can use 10 bits
of freedom in both directions to find a 10-bit partial target preimage as discussed in
Section 5.4 of [84]. This implies that a 10-bit partial target preimage is obtained with
the complexity 1 (< 25). Thus, a pseudo collision is found with the complexity of
2123(= 2(256−10)/2×210/210). Similarly to this, for the 42-step reduced SHA-512, we
can use 24 bits of freedom in both directions to find a 24-bit partial target preimage
as discussed in Section 6.5 of [84]. Therefore, a pseudo collision of the 42-step
reduced SHA-512 is found with the complexity of 2244(= 2(512−24)/2 × 224/224).

11.4.8 Pseudo Collision Attacks on Reduced SHA-224 and SHA-
384

The pseudo collision attack on the 43-step SHA-256 described in Section 11.4.4 is
applicable to the 43-step SHA-224 in the similar manner. However, we can not use

185



the multi-block message technique straightforwardly, because the pseudo collision
attack on SHA-224 needs to be done in the last compression function whose output
ZH is disregarded. Thus, due to the padding issue, we can mount only pseudo
collision attack on a compression function of 43-step, not a hash function. The
estimated complexity is 2110 for this attack.

However, the smaller number of rounds of SHA-224 hash function can be attacked
by using another MITM attack. The 40-step SHA-224 hash function can be attacked
by using the same two chunks for the 43-step preimage attack on SHA-256 in [84],
i.e., the case of j = 3. The 7-step partial matching for backward computation are
replaced by the 4-step one. Then the message wordsW13,W14 andW15 are left as free
message words to satisfy the padding rule. Instead of the lower 4 bits of ZA, we use
the lower 4 bits of ZD as the target value. Here, we need additional one step: when
finding matches at the lower 4 bits of A37, we compute forward from the matching
point to the end of the compression function (40-th step) by using these values that
are computed forward from the starting point. Since A37 = D40 = D0 ⊕ ZD for the
40-step SHA-224, the lower 4 bits of ZD will keep unaffected by the additional step.
Thus, we can still get a partial target preimage. It can be converted into a pseudo
collision attack on a hash function, because we can set W13, W14 and W15 to follow
the padding rule.

The detail of the attack procedure is as follows.

1. Choose the lower 4 bits of ZD, which are target values.

2. Randomly choose the value of p19 and message W19. Randomly fix the lower
23 bits of W18. Then we can find 25 values of W18 on average from 9 free bits
that correctly construct the 4-step initial structure and store them in the table
TW .

3. Randomly choose message words not related to the initial structure and the
neutral words, i.e., W13, W14, W15, W16, W17, W23 (called an initial configu-
ration [84]).

4. For all 25 possible W18 in TW , compute W20, W22, W24, W25, W26, W27, W28

following Eq, (11.1). Compute forward and find ψF (W18). Store the pairs
(W18, ψF (W18)) in a list LF .

5. For all 24 possible values (the lower 4 bits) of W21, compute backward and
find ξF (W21) and the lower 4 bits of A37 (= D40 = ZD ⊕D0). Store the pairs
(W21, ZD ⊕D0 − σ0(W27)) in a list LB.

6. If a match is found, i.e., ψF (W24) = ZD⊕D0−σ0(W27), then compute forward
to get the states A40, B40, · · · , H40 with corresponding W24 and W27, respec-
tively. D40 will keep unaffected in this step. Then obtain 25 (= 29/24) CV
whose 4 bits are fixed, i.e., the lower 4 bits of ZD, and store these in a List.

7. Repeat (3)-(6) 2105 times with different values of the initial configuration.

The complexity of the attack is estimated as 2110.
Similarly, the pseudo collision attack on the 46-step SHA-512 hash function de-

scribed in 11.4.6 can also be applied to the 46-step SHA-384 compression function
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with the complexity of 2190.5 = (2(384−3)/2). For a pseudo collision attack on the re-
duced SHA-384 hash function, we use the 43-step preimage attack on SHA-384 [84].
Combining the result in [84] with our conversion technique, a pseudo collision attack
on the 40-step SHA-384 hash function can be constructed. The matching bit is 18
when chosen parameter of partial matching as ℓ = 27. The complexity of the pseudo
collision attack on the 40-step SHA-384 is estimated as 2(384−18)/2 = 2183. These
40-step pseudo collision attacks give examples that the matching point is not at but
near the end of compression function. That is compatible to solve padding problem.

11.4.9 Application to Other Results of SHA-2

Recently, the MITM preimage attacks on the reduced SHA-2 are improved by us-
ing “bicliques” technique which is considered as generalized initial structure [73].
This technique enables us to construct longer initial structures than those of the
attacks [84]. In the following, let us consider pseudo collision attacks based on [73].

For SHA-256, the 36-step two independent chunks including the 6-step IS based
on bicliques are constructed. Combining the 2-step PM with the 7-step PM and the
1-step IPM, the MITM preimage attack on the 45-step SHA-2 is derived. In this
attack, both neutral words have 3-bit freedom degrees, and the matching point is
4-bit. Since our conversion technique does not need to consider the padding issue,
the matching point can be moved to the end of the compression function similar
to the 43-step attack. Then, we can convert it into the 45-step pseudo collision
attack on SHA-256 with the complexity of 2126.5 (= 2(256−3)/2) 5. Similarly, we
can construct the 50-step pseudo collision attack on SHA-512 based on the 50-step
MITM preimage attack [73]. In this attack, both neutral words have 3-bit freedom
degrees, and the bit size of the matching point is 3. Thus, the complexity of the
attack is estimated as 2254.5 (= 2(512−3)/2).

In addition, [73] showed pseudo preimage attacks on the 52-step SHA-256 and the
57-step SHA-512. For the setting of a pseudo preimage attack, the cost of converting
a pseudo preimage to a preimage is omitted. Thus, larger number of rounds can
be attacked. Note that in these attacks, the amount of freedom degrees for both
neutral words are only 1-bit, and the bit size of the matching point is 1. In order to
construct a pseudo collision attack by using our conversion technique, it is sufficient
to obtain a pseudo preimage on a compression function, i.e., a preimage on a hash
function is not needed. Therefore, the above explained pseudo preimage attacks can
also be converted into pseudo collision attacks in a similar way. The complexities of
the pseudo collision attacks on the 52-step SHA-256 and the 57-step SHA-512 are
estimated as 2127.5 (= 2(256−1)/2) and 2255.5 (= 2(512−1)/2), respectively.

11.5 Application to Skein

In this section, we show pseudo collision attacks on the reduced Skein-512 [41] based
on the preimage attacks presented in [73].

5Our attack uses only 3 bits for the matching and find 3-bit partial target preimages, because
this setting is optimal with respect to the time complexity.
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Table 11.2: Parameters of the (pseudo) preimage attacks on the reduced Skein-512
Parameters of the preimage attack on the 22-round Skein-512 hash function

Chunks Matching

Forward Backward Biclique Partial matching Matching bits Total matching pairs Complexity

8-11 16-19 12-15 20→ 24 = 3← 7 I130,31,53 23 22.3

Parameters of the pseudo preimage attack on the 37-round Skein-512 compression function

Chunks Matching

Forward Backward Biclique Partial matching Matching bits Total matching pairs Complexity

8-15 24-31 16-23 32→ 38 = 2← 7 I325 2 21.2

11.5.1 Description of Skein

Skein is built from the tweakable block cipher Threefish EK,T (P ), where K, T and
P denote a key, a tweak and a plaintext message, respectively. The compression
function F (CV, T,M) of Skein outputs the next chaining variable as F (CV, T,M) =
ECV,T (M) ⊕ M , where CV is the previous chaining variable and M is an input
message block.

Threefish-512 supports a 512-bit block and a 512-bit key, and operates on 64-bit
words. The subkey Ks = (Ks

0 ,K
s
1 , . . . ,K

s
7) injected every four rounds is generated

from the secret key K = K[0], K[1], . . . ,K[7] as follows:

Ks
j = K[(s+ j) mod 9], (0 ≤ j ≤ 4); Ks

5 = K[(s+ 5) mod 9] + T [s mod 3];
Ks

6 = K[(s+ 6) mod 9] + T [(s+ 1) mod 3]; Ks
7 = K[(s+ 7) mod 9] + s,

where s denotes a round counter, T [0] and T [1] denote tweak words, T [2] = T [0] +
T [1], and K[8] = C240 ⊕

⊕7
j=0K[j] with a constant C240. Each Threefish-512

round consists of four MIX functions followed by a permutation of the eight 64-bit
words. The 128-bit function MIX processes the pairs of eight words of internal
state I0, I1, . . . , I7 after key addition.

11.5.2 Known Pseudo Preimage Attacks on Skein

We briefly review two MITM preimage attacks on Skein-512 presented in [73]: one
is a preimage attack on the 22-round reduced Skein-512 hash function starting from
the 3rd round, and the other is a preimage attack on the 37-round reduced Skein-512
compression function starting from the 2nd round.

For the 22-round attack, the 3-dimension biclique at rounds 12-15 is obtained
with the complexity of 2200. Since many bicliques can be produced out of one, the
cost of constructing the bicliques is negligible in the total complexity of the attack.
In this attack, we can obtain 23 pairs matched in 3 bits by 22.3 calls of the 22-round
Skein-512 compression function. As a result, a preimage of the 22-round reduced
Skein is found with the complexity of 2511.2.

Considering a pseudo preimage attack on the compression function, it is natural
to assume that tweak bits T can also be controlled by the attacker. Due to additional
freedom, the pseudo preimage attack on the 37-round reduced Skein-512 is feasible
by using the 1-dimension biclique at rounds 16-23. In this attack, we can obtain 2
pairs matched in 1 bit by 21.2 calls of the 37-round Skein-512 compression function.
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Consequently, a pseudo preimage of the 37-round reduced Skein is found with the
complexity of 2511.2.

The parameters for the preimage attacks on the 22-round and the 37-round
reduced Skein-512 hash function and compression function are summarized in Ta-
ble 11.2. See [73] for more details about this attack.

11.5.3 Pseudo Collision Attacks on Skein.

Since the matching point used in the MITM preimage attack on the 22-round reduced
Skein-512 hash function [73] is located in the end of the compression function, our
conversion technique can directly convert it to the pseudo collision attack on the
22-round reduced Skein-512. In this attack, the neutral words have 3-bit freedom
degrees, and the bit size of the matching point is 3. As reported in [73], a 3-
bit matching candidate can be found with the complexity of 22.3/23. Thus, the
complexity of the pseudo collision attack on the 22-round reduced Skein-512 hash
function is estimated as 2253.8 (= 2(512−3)/2 × 22.3/23).

The pseudo preimage attack on the 37-round reduced Skein compression function
can be converted into a pseudo collision attack on a hash function in a similar way.
The required complexity for the pseudo collision attack on the 37-round reduced
Skein hash function is estimated as 2255.7 (= 2(512−1)/2 × 21.2/2).

11.6 Conclusion

In this chapter, we gave a generic method to convert preimage attacks to pseudo
collision attacks. It provides a new insight to evaluate the security of hash functions.
The essence of the method is converting a partial target preimage attack to a pseudo
collision attack. That is especially compatible to meet-in-the-middle preimage at-
tacks since it can be converted into a partial target preimage attack if the matching
point can be moved to the end of a hash function or a compression function and
enough freedom on neutral bits are left.

Using the proposed approach, we presented the best pseudo collision attacks on
SHA-2 based on the known preimage attacks, which has been left as open question.
We showed pseudo collision attacks on the 43- and 46-step reduced SHA-256 and
SHA-512 based on the MITM preimage attacks presented in [84]. Also, pseudo
collision attacks on the 52- and 57-step reduced SHA-256 and SHA-512 based on the
more advanced MITM preimage attacks in [73] were demonstrated. We also applied
the conversion technique to other hash functions including Skein with the meet-in-
the-middle preimage attacks, which showed the widely usage of this method. The
pseudo collision attacks on the 22- and 37-round reduced Skein-512 were presented.
Our technique may also apply to other hash functions, such as Tiger [38]. Based on
the MITM preimage attack on the full Tiger [85], we might construct the pseudo
collision attack on the full Tiger. We believe that the technique can be used for
more hash algorithms once their preimage or pseudo preimage attacks are found.

By this method, now we only can get pseudo collision attacks. It is left as future
works that how to construct collision attacks from known preimage attacks.
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Part IV

Design of Block Cipher
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Chapter 12

A Block Cipher Piccolo

We gives several feedbacks for secure designs of block ciphers, stream ciphers and
hash functions. Then, we introduce a 64-bit blockcipher Piccolo supporting 80
and 128-bit keys as a secure block cipher. Adopting secure design criteria, Piccolo
achieves high security. We show that Piccolo offers a sufficient security level against
known analyses including recent related-key differential attacks and meet-in-the-
middle attacks.

12.1 Feedback for Secure Design

12.1.1 Feedback for Block Cipher

• Self similarities among round functions should be avoided. The property causes
several weaknesses such as slide attacks [10, 65], a reflection property [18], a
reflection meet-in-the-middle attack (Chapter 3) and equivalent keys on the
short number of rounds (Chapter 3). To destroy self similarities, round con-
stants should be used.

• Lightweight block ciphers often adopt the simple key scheduling functions in
order to to reduce the gate size. Since the MITM attack mainly exploits a
low key-dependency, the MITM attack becomes the most powerful attack for
such ciphers with respect to the number of attack rounds. If the related key
setting is allowed, the low key-dependency property is also exploited for a
boomerang-type attacks [8, 27]. Actually, in the single key setting, the MITM
attack is best attacks on Piccolo, LED, XTEA (Chapter 4) and KATAN 48/64
(Chapter 5). In the related key setting, the related-key boomerang attack is
best attacks on KATAN 32/48/64 (Chapter 6). When designing lightweight
block ciphers, the number of round should be considered by carefully analyzing
the immunity of MITM attacks and related-key differential-type attacks.

• For MITM attacks, the diffusion property of key information in the data pro-
cessing part is also important. If the large parts of the cipher are independent
from some key bits, it may be vulnerable to MITM attacks. In addition, the
internal state should be nonlinearly affected by a key, because linear rela-
tions between the key and the state are disregarded by the indirect matching
technique [84]. Thus, a key bits should be nonlinearly-diffused in the data
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processing part as fast as possible. Also, all the key bits should be used in a
small number of rounds.

• The all subkey recovery approach assumes that a key scheduling function is
an ideal function (Chapter 6). Thus, it gives generic lower bounds of the
security of several construction against the MITM attacks, regardless of the
construction of key scheduling functions.

12.1.2 Feedback for Stream Cipher

• Different pairs of keys and IVs must generate different keystreams. The exis-
tence of such pairs means that the effective (K, IV ) space is smaller than the
expected one which is the sum of the K and IV size. Also, the IV collision
may leak the information of the internal state (Chapter 7 and [31]). Thus the
key scheduling algorithm should be an injective function with respect to a key
and an IV.

• It should get rid of the sliding property such that two different Key-IV pairs
generate same keystream but n-bit shifted. In the related key setting, a
keystream is easily distinguished from a random keystream, and a key may
be efficiently recovered (Chapter 8). To destroy self similarities, using round
constants in the key scheduling function is recommended.

• If the internal-state size is much larger than the key size, the sufficient ran-
domization is required when converting the key information into the internal
state in the the key scheduling algorithm. If it is not sufficient, bytes (or bits)
of the internal-state tend to correlate each other. It may lead to attacks based
on the internal-state correlation such as guess and determine attacks (Chapter
7) and efficient state-recovery attacks (Chapter 9 and [128]).

• Keystreams should not be biased to particular values. It allows to mount not
only distinguishing attacks, but also plaintext recovery attacks in the cipher-
text only setting (Chapter 9). The sufficient randomizatin of the internal state
before outputting a keystream are required.

12.1.3 Feedback for Hash Function

• The MITM preimage attack exploits the low diffusion property and the simple
message scheduling function (Chapter 10). Countermeasures of this attack
are almost same as those of the MITM attack on block ciphers. However, the
purpose of the MITM preimage attack of hash functions is to efficiently find the
internal state by controlling message values, while that of block ciphers is to
detect wrong keys using the internal state relation. Thus, the size of internal
state depend on the time complexity of preimage attacks unlike attacks on
block ciphers. Therefore, the larger state is one of meaningful countermeasures.

• New relation between a meet-in-the-middle preimage attack and a collision
attack is found (Chapter 11). Thus, even if a hash function requires only
a collision resistance, i.e., the preimage resistance is not needed, the MITM
attack should be taken into consideration.
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12.2 Specification of Piccolo

This section provides the specification of Piccolo. Piccolo is a 64-bit blockcipher
supporting 80 and 128-bit keys. The 80 and the 128-bit key mode are referred as
Piccolo-80 and Piccolo-128, respectively. Both ciphers consist of a data processing
part and a key scheduling part. The differences between two key modes lie in the
number of rounds for the data processing part and the key scheduling part. We first
give notations used throughout this chapter, then define each part.

12.2.1 Notations

a(b) : b denotes the bit length of a.

a|b or (a|b) : Concatenation.
a← b : Updating a value of a by a value of b.

t
a : Transposition of a vector or a matrix a.
{a}b : Representation in base b.

12.2.2 Data Processing Part

The data processing part of Piccolo consisting of r rounds, Gr, takes a 64-bit data
X ∈ {0, 1}64, four 16-bit whitening keys wki ∈ {0, 1}

16(0 ≤ i < 4) and 2r 16-bit
round keys rki ∈ {0, 1}

16(0 ≤ i < 2r) as the inputs, and outputs a 64-bit data
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Y ∈ {0, 1}64. Gr is defined as follows:

Gr :

{
{0, 1}64 × {{0, 1}16}4 × {{0, 1}16}2r → {0, 1}64

(X(64), wk0(16), ..., wk3(16), rk0(16), ..., rk2r−1(16)) 7→ Y(64)

Algorithm Gr(X(64), wk0, ..., wk3, rk0, ..., rk2r−1) :
X0(16)|X1(16)|X2(16)|X3(16) ← X(64)

X0 ← X0 ⊕ wk0, X2 ← X2 ⊕ wk1
for i← 0 to r − 2 do

X1 ← X1 ⊕ F (X0)⊕ rk2i, X3 ← X3 ⊕ F (X2)⊕ rk2i+1

X0|X1|X2|X3 ← RP (X0|X1|X2|X3)
X1 ← X1 ⊕ F (X0)⊕ rk2r−2, X3 ← X3 ⊕ F (X2)⊕ rk2r−1

X0 ← X0 ⊕ wk2, X2 ← X2 ⊕ wk3
Y(64) ← X0|X1|X2|X3

where F is a 16-bit F-function and RP is a 64-bit permutation defined in the
following sections. The decryption function G−1

r is obtained from Gr by simply
changing the order of whitening and round keys as follows:

G−1
r :

{
{0, 1}64 × {{0, 1}16}4 × {{0, 1}16}2r → {0, 1}64

(Y(64), wk0(16), ..., wk3(16), rk0(16), ..., rk2r−1(16)) 7→ X(64)

Algorithm G−1
r (Y(64), wk0, ..., wk3, rk0, ..., rk2r−1) :

wk′0 ← wk2, wk
′

1 ← wk3, wk
′

2 ← wk0, wk
′

3 ← wk1
for i← 0 to r − 1 do

rk′2i|rk
′

2i+1 ←

{
rk2r−2i−2|rk2r−2i−1 (if i mod 2 = 0)
rk2r−2i−1|rk2r−2i−2 (if i mod 2 = 1)

X(64) ← Gr(Y,wk
′

0, ..., wk
′

3, rk
′

0, ..., rk
′

2r−1)

The number of rounds, r, is 25 and 31 for Piccolo-80 and -128, i.e., G25 and G31

for Piccolo-80 and -128, respectively (See Fig. 12.1).

F-Function.

F-function F : {0, 1}16 → {0, 1}16 consists of two S-box layers separated by a diffu-
sion matrix (See Fig. 12.3). The S-box layer consists of four 4-bit bijective S-boxes
S given by Table 12.1, and updates a 16-bit data X(16) as follows:

(x0(4), x1(4), x2(4), x3(4))← (S(x0(4)), S(x1(4)), S(x2(4)), S(x3(4))),

where X(16) = x0(4)|x1(4)|x2(4)|x3(4). The diffusion matrix M is defined as

M =







2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2






.

Then the diffusion function updates a 16-bit data X(16) as follows:

t(x0(4), x1(4), x2(4), x3(4))←M · t(x0(4), x1(4), x2(4), x3(4)),

where the multiplications between matrices and vectors are performed over GF(24)
defined by an irreducible polynomial x4 + x+ 1.
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Table 12.1: 4-bit bijective S-box S in hexadecimal form

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] e 4 b 2 3 8 0 9 1 a 7 f 6 c 5 d

Round Permutation.

The round permutation RP : {0, 1}64 → {0, 1}64 divides a 64-bit input X(64) into
eight 8-bit data as X(64) = x0(8)|x1(8)|...|x7(8), then permutes them by the following
manner:

RP : (x0(8), x1(8), ..., x7(8))← (x2(8), x7(8), x4(8), x1(8), x6(8), x3(8), x0(8), x5(8)).

Finally, the round permutation concatenates (x0(8), x1(8), ..., x7(8)) into X(64) (See
Fig. 12.2).

12.2.3 Key Scheduling Part

The key scheduling part of Piccolo supports 80 and 128-bit keys and outputs 16-bit
whitening keys wki(16)(0 ≤ i < 4) and round keys rkj(16)(0 ≤ j < 2r) for the data
processing part. The key scheduling functions for Piccolo-80 and -128 are referred
as KS80

r and KS128
r , respectively. We first define 16-bit constants con80i and con128i ,

then describe each key schedule.

Constant Values.

The constants con80i and con128i used in KS80
r and KS128

r , respectively, are generated
as follows:

{
(con802i |con

80
2i+1) ← (ci+1|c0|ci+1|{00}2|ci+1|c0|ci+1)⊕ {0f1e2d3c}16,

(con1282i |con
128
2i+1) ← (ci+1|c0|ci+1|{00}2|ci+1|c0|ci+1)⊕ {6547a98b}16,

where ci is a 5-bit representation of i, e.g., c11 = {01011}2.

Key Schedule for 80-Bit Key Mode (KS80
r ).

The key scheduling function for the 80-bit key mode, KS80
r , divides an 80-bit key

K(80) into five 16-bit sub-keys ki(16) (0 ≤ i < 5) and provides wki(16)(0 ≤ i < 4) and
rkj(16)(0 ≤ j < 2r) as follows:

Algorithm KS80
r (K(80)) :

wk0 ← kL0 |k
R
1 , wk1 ← kL1 |k

R
0 , wk2 ← kL4 |k

R
3 , wk3 ← kL3 |k

R
4

for i← 0 to (r − 1) do

(rk2i, rk2i+1)← (con802i , con
80
2i+1)⊕







(k2, k3) (if i mod 5 = 0 or 2)
(k0, k1) (if i mod 5 = 1 or 4)
(k4, k4) (if i mod 5 = 3),

where kLi and kRi are left and right half 8 bits of ki, respectively, i.e., ki(16) = kLi(8)|k
R
i(8)

and kRi(8) contains the least significant bit of ki(16).
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Table 12.2: Min. # differentially and linearly active F-functions (single-key setting)

rounds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
min. # active F-functions 0 1 2 3 4 6 7 8 9 10 11 12 13 14 15

rounds 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
min. # active F-functions 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Key Schedule for 128-Bit Key Mode (KS128
r ).

The key scheduling function for the 128-bit key mode, KS128
r , divides a 128-bit key

K(128) into eight 16-bit sub-keys ki(16) (0 ≤ i < 8) and provides wki(16)(0 ≤ i < 4)
and rkj(16)(0 ≤ j < 2r) as follows:

Algorithm KS128
r (K(128)) :

wk0 ← kL0 |k
R
1 , wk1 ← kL1 |k

R
0 , wk2 ← kL4 |k

R
7 , wk3 ← kL7 |k

R
4

for i← 0 to (2r − 1) do
if (i + 2) mod 8 = 0 then

(k0, k1, k2, k3, k4, k5, k6, k7)← (k2, k1, k6, k7, k0, k3, k4, k5)
rki ← k(i+2) mod 8 ⊕ con

128
i

12.3 Security Evaluation of Piccolo

In this section, we provide results on security analysis for Piccolo. We show that
Piccolo offers a sufficient security level against known analyses including recent
related-key differential attacks and meet-in-the-middle attacks.

12.3.1 Differential Attack / Linear Attack

We first show the minimum numbers of differentially and linearly active F-functions
of Gr up to 30 rounds in Table 12.2. Note that the minimum numbers for differ-
entially and linearly active F-functions are the same due to the duality of differen-
tial and linear attacks and the similarity of Gr and G−1

r . MDP and MLP of the
F-function are 2−9.3 and 2−8.0, respectively. Combining those results, Piccolo con-
sisting of at least 7 or 8 rounds provide at least 7 or 8 active F-functions, and have
no differential or linear trails whose probabilities are more than 2−64, respectively.
Thus, we expect that the full-round of Piccolo (25 and 31 rounds for Piccolo-80 and
-128) has enough immunity against differential and linear attacks, since it has large
security margin.

12.3.2 Boomerang-Type Attacks

The boomerang-type attacks (including the boomerang, amplified boomerang and
rectangle attacks) first divide the cipher into two sub-ciphers, then find a boomerang
quartet with high probability. The probability of constructing a boomerang quartet

is denoted as p̂2q̂2, where p̂ =
√
∑

β Pr
2[α→ β], and α and β are input and output

differences for the first sub-cipher, and q̂ for the second sub-cipher. p̂2 is bounded
by the maximum differential trail probability, i.e., p̂2 ≤ maxβ Pr[α → β], and q̂2
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as well. Let p, q be the maximum differential trail probability for the first and the
second sub-ciphers. Then, p, q are bounded by multiplying the minimum number of
active F-functions in each sub-cipher with MDP of the F-function. From Table 12.2,
any combination of two sub-ciphers for Piccolo consisting of at least 9 rounds has at
least 7 active F-functions in total. Hence, we conclude that the full-round of Piccolo
is sufficiently secure against boomerang-type attacks.

12.3.3 Impossible Differential Attack

An impossible differential attack is likely to be applied to a variant of GFN due to
its slow diffusion. However, Piccolo utilizes the round permutation RP to achieve
faster diffusion compared to a standard type-II GFN. Then, for both encryption and
decryption sides, Piccolo requires only four rounds to be full diffusion, which is a
property that all outputs are affected by all inputs. We also search the longest impos-
sible differential by modified U -method algorithm and found a 7-round impossible
differential exploiting a 4-bit truncated differential. Therefore, we conclude that
the full-round of Piccolo is expected to be secure against the impossible differential
attack.

12.3.4 Related-Key Differential Attacks

In the related-key setting, a distinguisher is allowed to use related-keys and usually
uses key differentials to cancel out differentials in a data processing part. While
the practical impact of related-key differential attacks is still controversial, we care
about it from a pessimistic (designers’) point of view. We evaluate the immunity
against related-key differential attacks by counting the minimum number of differ-
entially active F-functions in the related-key setting. Table 12.3 shows the minimum
numbers of differentially active F-functions for the 80 and the 128-bit key modes up
to 20 rounds. Unlike the attacks under the single-key setting, the total number of
active F-functions for the related-key differential attacks may vary according to the
starting round. However, in our evaluations, those differences are at most 2 active
F-functions, even if the starting round is changed. Consequently, we obtain that
over 14 and 16 rounds for Piccolo-80 and -128 have at least 7 differentially active
F-functions in the related-key setting, respectively.

Moreover, we consider related-key boomerang/rectangle attacks [27]. Similarly
to non related-key boomerang-type attacks, we evaluate the security in the worst
case that an attacker can use pq instead of p̂2q̂2 for the probability of a boomerang
quartet. As a result, we confirmed that over 17 and 21 rounds of Piccolo-80 and
-128 provide enough (seven) differentially active F-functions in this setting.

Furthermore, we take related-key impossible differential attacks [154] into ac-
count. Consequently, by using modified U -method, we found an 11 and a 17-round
impossible differential distinguisher using an 8-bit truncated differential for Piccolo-
80 and -128 in the related-key setting, respectively, and they are the longest in our
evaluation. Therefore, we conclude that the full-round Piccolo is expected to be
resistant to those attacks.
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Table 12.3: Min. # differentially active F-functions (related-key setting)

❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤❤

starting round i
rounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

for Piccolo-80 encryption

i mod 5 = 0 0 0 0 0 0 2 3 4 4 5 5 6 7 7 7 8 9 10 11 11
i mod 5 = 1 0 0 0 0 1 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11
i mod 5 = 2 0 0 0 0 1 2 3 3 4 6 6 6 7 7 9 9 9 10 10 12
i mod 5 = 3 0 0 0 0 1 2 2 3 4 5 5 6 6 7 8 8 9 9 10 11
i mod 5 = 4 0 0 0 0 0 0 2 3 4 5 6 6 7 7 7 7 9 10 11 11

for Piccolo-80 decryption

i mod 5 = 0 0 0 0 0 1 2 2 3 4 5 5 6 6 7 8 8 9 9 10 11
i mod 5 = 1 0 0 0 0 1 2 3 3 4 6 6 6 7 7 9 9 9 10 10 12
i mod 5 = 2 0 0 0 0 1 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11
i mod 5 = 3 0 0 0 0 0 2 3 4 4 5 5 6 7 7 7 8 9 10 11 11
i mod 5 = 4 0 0 0 0 0 0 2 3 4 5 6 6 7 7 7 7 9 10 11 11

for Piccolo-128 encryption

i mod 4 = 0 0 0 0 0 0 0 0 1 3 3 4 5 5 6 7 7 8 9 10 10
i mod 4 = 1 0 0 0 0 0 0 1 2 3 3 4 5 5 6 7 7 8 9 10 11
i mod 4 = 2 0 0 0 0 0 0 1 2 2 3 4 4 5 6 6 7 7 9 9 9
i mod 4 = 3 0 0 0 0 0 1 1 1 2 3 4 5 5 6 7 7 8 9 9 10

for Piccolo-128 decryption

i mod 4 = 0 0 0 0 0 0 1 1 2 3 3 4 5 5 6 6 7 8 9 9 11
i mod 4 = 1 0 0 0 0 0 0 1 2 3 3 4 4 5 6 7 7 8 9 9 9
i mod 4 = 2 0 0 0 0 0 0 0 1 2 3 4 5 5 6 7 7 7 9 10 10
i mod 4 = 3 0 0 0 0 0 0 1 1 2 3 4 5 5 6 7 7 8 9 10 10
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12.3.5 Meet-in-the-Middle Attack

Three-subset meet-in-the-middle (MITM) cryptanalysis [9] is a recent attack on
blockciphers. This attack works well for blockciphers having a simple key schedule
and slow diffusion. Indeed, KTANTAN and GOST have been theoretically broken
by this attack [9, 86]. Since Piccolo consists of the permutation based key scheduling
and a variant of GFN, evaluating the resistance against this attack is important.

Similarly to data difference, Piccolo requires 4 rounds to non-linearly diffuse any
round-key difference to all output data in the data processing part, i.e., any round-
key bits of the i-th round non-linearly affect all input of the (i− 3)-th round and all
output of the (i + 3)-th round. Thus, we assume that an attacker might construct
an 8-round indirect-partial matching [82] and a 4-round initial structure [83] in the
worst case. Besides, we even allow the attacker to use code book and splice and cut
techniques [16]. In this worst setting, Piccolo-80 and -128 without whitening keys
have neutral words up to 19 and 23 consecutive rounds, respectively. We expect that
the attacked rounds obtained by this observation are upper bounds on the security
against the three-subset MITM attack, since the given assumptions are sufficiently
strong. Moreover, we attempt to construct actual attacks to obtain the lower bounds
on the security. As a result, the Piccolo-80 and -128 without whitening keys reduced
to 14 and 21 rounds can be attacked by the three-subset MITM attacks, respectively.
Since Piccolo actually has whitening keys, it is obviously stronger than the variants
evaluated above. Thus, we conclude that Piccolo has enough immunity against the
three-subset MITM attack.

12.3.6 Other Attacks.

We also consider other attacks including a slide, a saturation, an interpolation, a
higher order differential, a truncated differential, and an algebraic attack. Though
the details of the evaluations for those attacks are omitted due to the page limitation,
consequently, we expect that none of them work better than the previously explained
attacks.
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Chapter 13

Conclusion

This thesis has studied analysis and design of symmetric cryptographic algorithms.
Especially, we focused on block ciphers, stream cipher and hash functions.

Analysis of Block cipher

We have improved the Meet-in-the-Middle (MITM) attack. At first, we devel-
oped the new variant of the MITM attack called Reflection-Meet-in-the-Middle (R-
MITM) attack, and constructed the first single-key attack on the full-round GOST
block cipher.

We applied the MITM attack to lightweight block ciphers Piccolo, LED and
XTEA, and updated best attacks of these ciphers with respect to the number of
attack rounds in the single key setting.

We extended the MITM attack to apply it to wider class block ciphers, and
proposed the new technique called all subkey recovery approach. It allows us to
construct the MITM attack without dealing with the key scheduling function. Then
we updated the best single-key attack on SHACAL-2, CAST, KATAN, Blowfish and
FOX with respect to the number of attack rounds.

Also, we constructed related-key boomerang attacks, which relies on statistical
weaknesses, on KATAN 32, 48 and 64, and improve best attacks.

Analysis of Stream Cipher

We have analyzed the security of several stream ciphers Py, RAKAPOSHI and RC4.
We showed the practical key recovery attack of Py by using the guess-and-

determine approach in conjunction with the IV collision property.
We pointed out that RAKAPOSHI has the slide property, and showed that this

property is exploitable for the key recovery attacks on RAKAPOSHI in the related-
key setting.

we have introduced new biases in initial bytes of the keystrem of RC4, and
demonstrated the plaintext recovery attack using these biases in the broadcast set-
ting where the same plaintext is encrypted with different user keys.
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Analysis of Hash Function

We have improved on the MITM technique for hash functions, and evaluated the
security of well known hash function SHA-2, Tiger and Skein.

We proposed preimage attacks on reduced Tiger and SHA-2 by using the new
technique, called independent transform, for finding neutral words for the MITM
technique.

We provided the new insight of the relation between the meet-in-the-middle
preimage attack and the pseudo collision attack, and presents a generic technique
to convert a MITM preimage attacks into pseudo collision attacks. By using our
technique, we updated best attack of pseudo collision attacks of SHA-256, SHA-512
and Skein with respect to the number of attack rounds.

Design of Block Cipher

We have given several feedbacks for secure designs of symmetric cryptographic al-
gorithms. Then, we have introduced a 64-bit blockcipher Piccolo supporting 80
and 128- bit keys as a secure block cipher. Adopting secure design criteria, Pic-
colo achieves high security. We have shown that Piccolo offers a sufficient security
level against known analyses including recent related-key differential attacks and
meet-in-the-middle attacks.
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