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Abstract 

Oral squamous cell carcinoma (OSCC) is the eleventh most common cancer in the 

world. The five-year survival rate of patients who are diagnosed with OSCC at an early 

stage is about 80-90%. On the other hand, at an advanced stage, the five-year survival 

rate is less than 30%. Therefore, it is important to detect OSCC at an early stage. In this 

study, we subjected OSCC patients’ serum samples to gas chromatography/mass 

spectrometry (GC/MS)-based metabolomic analysis. The serum samples of 18 OSCC 

patients were used as a training set. Their preoperative serum metabolite levels were 

compared with those of healthy volunteers. In addition, the pre- and postoperative 

serum metabolite levels of these patients were also compared. The serum samples 

collected from another 17 OSCC patients and healthy volunteers were used as a 

validation set. In addition, 12 patients with oral diseases other than OSCC were also 

used to evaluate the reliability of the extracted serum metabolite biomarker candidates. 

The metabolites that displayed significant differences were subjected to multiple logistic 

regression analysis, and it was found that models based on candidate biomarker pairs 

possessed greater accuracy than single biomarker candidates. GC/MS-based 

metabolomic analysis is a promising method for detecting early-stage OSCC.   

 

Keywords 

Oral squamous cell carcinoma; Oral cancer; Biomarker; Gas chromatography/mass 

spectrometry; Metabolomics   
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Introduction 

Oral squamous cell carcinoma (OSCC) is the eleventh most common cancer in the 

world. In 2008, there were about 263,000 new oral cancer cases and about 127,000 

deaths from the disease [1]. The five-year survival rate of patients that are diagnosed 

with OSCC at an early stage is about 80-90%. On the other hand, when OSCC is 

diagnosed at an advanced stage the five-year survival rate is less than 30%. Overall, 

only about 50% of OSCC patients survive for five years. The treatment of OSCC at an 

advanced stage can have adverse effects on the patient’s appearance and can also lead to 

a variety of problems with eating and speaking. In addition, advanced-stage OSCC 

causes a greater reduction in quality of life than other cancers. Thus, it is important to 

detect OSCC at an early stage; however, this is currently difficult. The standard initial 

diagnostic approaches to OSCC are mainly dependent on inspection and manipulation. 

Conventional tumor markers, e.g., SCC antigen, and diagnostic imaging, such as 

computed tomography and biopsy, are not suitable for OSCC screening because 

conventional tumor markers have low sensitivity for the disease, diagnostic imaging is 

expensive, and biopsy is invasive. Therefore, new methods for detecting OSCC at an 

early stage are required. 

 

The metabolome, which is the comprehensive characterization of the small molecular 

weight metabolite profiles, is beginning to gain attention. Analyzing metabolite profiles 

allows genotype-phenotype relationships to be evaluated because the metabolome is 

closely related to physiological functions and pathological characteristics. In 

metabolomics, nuclear magnetic resonance (NMR) spectroscopy, gas 

chromatography/mass spectrometry (GC/MS), liquid chromatography/mass 
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spectrometry (LC/MS), and capillary electrophoresis/mass spectrometry (CE/MS) have 

been used to measure the levels of a variety of metabolites. In this study, we used 

GC/MS-based metabolomic analysis to discover new biomarkers and screening methods 

for OSCC. The main advantages of GC/MS are its simplicity of use, the abundance of 

databases for serum metabolite analysis, and its high repeatability; therefore, GC/MS is 

suitable for screening studies aimed at discovering metabolite biomarkers of OSCC. We 

have performed several metabolomic studies using GC/MS [2] and reported serum 

metabolite biomarkers for various cancers [3,4,5,6,7]. In this study, we used 18 OSCC 

patients and 18 healthy volunteers as a training set, and an OSCC prediction model was 

established via multiple logistic regression analysis. Then, the validity of the prediction 

model was assessed using a validation set consisting of OSCC patients (N=17) and 

healthy volunteers (N=17). 
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Materials and methods 

Participants 

This study was approved by the ethics committee at Kobe University Graduate School 

of Medicine. The human samples were used in accordance with the guidelines of Kobe 

University Hospital, and written informed consent was obtained from all subjects. For 

the training set, serum samples were collected from 18 patients who underwent 

resection for OSCC. Serum samples were collected from these patients both before 

surgery and over 2 weeks after the operation. In addition, serum samples were also 

obtained from healthy volunteers in the morning after overnight fasting. For the 

validation set, serum samples were collected prior to surgery from 17 patients who were 

scheduled to undergo resection for OSCC as well as from 17 healthy volunteers. Serum 

samples were also obtained prior to surgery from 12 patients who underwent operations 

for oral diseases other than oral cancer, and further samples were collected from 10 of 

these patients over 2 weeks after the operation. The serum samples from the OSCC and 

oral disease patients were collected at Kobe University Hospital between April 2011 

and March 2012. The patients were diagnosed by microscopy, biopsy, or surgical 

resection and classified using the TNM classification of the Union for International 

Cancer Control (UICC). The serum samples from the healthy volunteers were obtained 

at another facility. The characteristics of all subjects are summarized in Table 1. The 

serum was separated by centrifugation at 3,000 x g for 10 min at 4
o
C, before being 

transferred to a clean tube and stored at -80
o
C until use. 

 

Experimental procedures 

The extraction of low molecular weight metabolites was performed according to the 
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method described in our previous report [8], and 0.5 mg/ml of 2-isopropylmalic acid 

(Sigma-Aldrich, Tokyo, Japan) dissolved in distilled water was used as an internal 

standard. Then, oximation and the subsequent derivatization for GC/MS measurement 

were carried out according to a previously described method [8]. 

 

 GC/MS analysis was performed using a GCMS-QP2010 Ultra spectrometer (Shimadzu 

Co., Kyoto, Japan) with a fused silica capillary column (CP-SIL 8 CB low bleed/MS; 

inner diameter, 30 mm × 0.25 mm; film thickness, 0.25 m; Agilent Co., Palo Alto, 

CA), according to a previously described method [9]. The front inlet temperature was 

230
o
C, and the flow rate of helium gas through the column was 39.0 cm/sec. The 

column temperature was held at 80
o
C for 2 min and then raised by 15

o
C/min to 330

o
C 

and held there for 6 min. The transfer line and ion-source temperatures were 250
o
C and 

200
o
C, respectively. Twenty scans per second were recorded over the mass range 

85-500 m/z using the Advanced Scanning Speed Protocol (ASSP, Shimadzu Co.). 

 

Data processing was performed according to the methods described in previous reports 

[9,10]. Briefly, the MS data were exported in netCDF format. The peak detection and 

alignment were performed using the MetAlign software (Wageningen UR, The 

Netherlands). The resultant data were exported in CSV format and then analyzed with 

in-house analytical software (AIoutput). This software enables peak identification and 

semi-quantification using an in-house metabolite library. For semi-quantification, the 

peak height of each ion was calculated and normalized to the peak height of 

2-isopropylmalic acid as an internal standard. Names were assigned to each metabolite 

peak based on the method described in a previous report [10].
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Statistical analysis 

The patients (N=35) were allocated to the training or validation sets (Table 1). 

Regarding the healthy volunteers used for the training set, age- and sex-controlled 

samples were prepared (N=18). In the training set study, the OSCC patients’ 

preoperative serum metabolite levels were compared with those of the healthy 

volunteers using the Wilcoxon rank sum test, and comparisons between the OSCC 

patients’ pre- and postoperative serum metabolite levels were performed using the 

Wilcoxon signed-rank test. The metabolites that displayed significant differences 

(p<0.05) in their levels in both of these comparisons were selected for the validation set 

study. In the validation set study, the preoperative levels of the selected metabolites in 

the OSCC patients were compared with those of the healthy volunteers using the 

Wilcoxon rank sum test. Comparisons between the oral disease patients and OSCC 

patients, and between the pre- and postoperative serum metabolite levels of the oral 

disease patients were also performed. Based on these univariate analyses, tumor 

biomarker candidates were selected. In the training set, multiple logistic regression 

models were used to predict OSCC positivity and negativity. Receiver operating 

characteristic (ROC) analysis was carried out using JMP10 (SAS Institute Inc.), and the 

optimal cut-off, AUC, specificity, and sensitivity values were calculated. In the 

validation set and the training + validation set studies, the predictive models were 

evaluated using different samples, and the specificity and sensitivity of the models were 

examined using the cut-off values obtained from the training set. p values of less than 

0.05 were considered to indicate a significant difference. 
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Results 

In our GC/MS-based metabolomic analysis system, which mainly targeted 

water-soluble metabolites, 101 metabolites were detected in the subjects’ sera. Among 

the 101 metabolites, 1 metabolite; i.e., 2-isopropylmalic acid, was used as an internal 

standard. Therefore, this metabolite was excluded from the subsequent analyses, and a 

total of 100 metabolites were subjected to a comparative evaluation between OSCC 

patients and healthy volunteers.  

 

In the training set study, the preoperative serum metabolite levels of the OSCC patients 

were compared with those of the healthy volunteers using the Wilcoxon rank sum test. 

The training set was composed of OSCC patients (N=18) and age- and sex-matched 

healthy volunteers (N=18). Thirty-eight metabolites displayed significant differences 

between the pre-operative levels of the OSCC patients and those of the healthy 

volunteers (p<0.05) (Table 2). Then, a comparison of the OSCC patients’ pre- and 

postoperative metabolite levels was performed with the training set using the Wilcoxon 

signed-rank test, and 32 of the metabolites displayed significant alterations (Table 3). 

Thirteen metabolites; i.e., benzoic acid, glyceric acid, serine (3TMS), acetylsalicylic 

acid, lauric acid, N-acetyl-L-aspartic acid_1, asparagine, ornithine, glucuronate_1, 

heptadecanoate, phosphate, O-phosphoethanolamine and cysteine+cystine, were 

extracted from both of the abovementioned comparisons. The 13 selected metabolites 

were re-evaluated using the validation set, which was composed of OSCC patients 

(N=17) and healthy volunteers (N=17). As a result, 7 metabolites were selected as 

biomarker candidates (Table 4) because significant and similar alterations in their serum 

levels were observed in both the training and validation sets. Among the oral disease 
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patients, 6 of the metabolites (not including ornithine) displayed significantly different 

levels compared with healthy volunteers (Table 5). None of the 7 metabolites exhibited 

significant differences between their preoperative and postoperative levels in the oral 

disease patients (Table 6). In Figure 1, the differences in the levels of the 7 metabolites 

among tumor stages are shown. The 7 biomarker candidates displayed higher values in 

the OSCC patients than in the healthy volunteers at each stage, and the more advanced 

tumor stages tended to exhibit higher levels of each metabolite than the earlier tumor 

stages. ROC curves were prepared using the data for these 7 metabolites, and the cut-off, 

sensitivity, and specificity values of each metabolite were calculated (Table 7). In the 

training set, glyceric acid (77.7%), lauric acid (100%), N-acetyl-L-aspartic acid (94.4%), 

ornithine (88.8%), and heptadecanoate (83.3%) displayed relatively high sensitivity 

values (shown in brackets). Regarding specificity, lauric acid exhibited 100% specificity, 

and glyceric acid (77.7%), serine (3TMS) (94.4%), N-acetyl-L-aspartic acid (94.4%), 

asparagine (88.8%), and ornithine (94.4%) also demonstrated relatively high specificity 

values (shown in brackets). Lauric acid, N-acetyl-L-aspartic acid, and ornithine all 

displayed AUC values of greater than 80%. We then performed evaluations using 

multiple biomarkers to improve the reliability of our predictive models. Multiple 

logistic regression models involving pairs of the 7 selected metabolite biomarkers 

metabolites were employed as a new evaluation method (Table 8). As a result, we found 

that 4 pairs of biomarker candidates; i.e., ornithine+asparagine, ornithine+glyceric acid, 

ornithine+N-acetyl-L-aspartic acid, and ornithine+serine (3TMS), displayed sensitivity 

values of over 80% and specificity values of over 70% in the training set, validation set, 

and training+validation set. 
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Discussion 

The five-year survival rate of patients that are diagnosed with OSCC at an early stage is 

about 80-90%, but when it is diagnosed at an advanced stage the five-year survival rate 

is less than 30%, suggesting that it is important to detect OSCC at an early stage. The 

SCC antigen is used as a tumor marker of OSCC; however, it is estimated that it 

displays a sensitivity of about 30% during the early stages of the disease. Therefore, the 

SCC antigen is unsuitable for the early detection of OSCC, although it is partially useful 

for assessing the effects of treatment and the early detection of recurrence. In this study, 

it was suggested that serum metabolome analysis might be useful for diagnosing 

early-stage OSCC, and 7 metabolite biomarker candidates; i.e., glyceric acid, lauric acid, 

N-acetyl-L-aspartic acid, ornithine, heptadecanoate, serine, and asparagine, were found. 

In particular, a diagnostic system for OSCC based on combining several metabolite 

biomarker candidates exhibited high sensitivity and specificity. During the early stages 

of the disease; i.e., stages 1 and 2, the sensitivity values of the 7 metabolite biomarker 

candidates for OSCC were 77.7% for glyceric acid, 83.3% for lauric acid, 66.6% for 

N-acetyl-L-aspartic acid, 88.8% for ornithine, 66.6% for heptadecanoate, 38.8% for 

serine, and 50.0% for asparagine. In addition, their specificity values were 88.5% for 

glyceric acid, 100% for lauric acid, 97.1% for N-acetyl-L-aspartic acid, 85.7% for 

ornithine, 80.0% for heptadecanoate, 97.1% for serine, and 91.4% for asparagine. 

Furthermore, the sensitivity and specificity values of ornithine+asparagine, 

ornithine+glyceric acid, ornithine+N-acetyl-L-aspartic acid, and ornithine+serine were 

94.4% and 82.8%, 88.8% and 85.7%, 88.8% and 97.1%, and 88.8% and 82.8%, 

respectively. Thus, our results suggest that various biomarker pairs might be useful for 

the early detection of OSCC. 
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Many studies of OSCC biomarkers have been performed by various research groups, 

but most of them did not intend to find biomarkers for OSCC screening, e.g., they 

examined the utility of SCC antigen. The sensitivity of SCC antigen for early-stage 

OSCC is about 30%, although it was found to be useful for aiding the early diagnosis of 

recurrence [11]. In another paper, it was demonstrated that SCC antigen is a prognostic 

indicator of OSCC but is not useful for OSCC screening [12]. A previous study 

suggested that metabolomics analysis of plasma samples using nuclear magnetic 

resonance spectroscopy might be useful for OSCC screening [13], and the plasma levels 

of ornithine and asparagine were found to be higher in OSCC patients than in healthy 

volunteers [14], which was consistent with our findings. In addition, it was reported that 

most essential and non-essential amino acids displayed lower levels in OSCC patients 

than in healthy volunteers [15,16]; however, these results were partly caused by 

dysphagia and insufficient food intake. However, all of the patients in the study by 

Stefano Tiziani et al. [14] were provided with sufficient nutrition; therefore, the 

observed alterations in the levels of ornithine and asparagine might not have been due to 

the patients’ nutrition status. Among the 7 metabolite biomarker candidates extracted in 

the present study, lauric acid and heptadecanoate are lipid-soluble compounds that are 

found in food, suggesting that the effects of nutrition in OSCC and/or other oral 

diseases might partially contribute to these variations. In addition, the metabolite profile 

of the blood represents the sum of metabolic events in multiple organs, and it is difficult 

to understand the reasons for changing serum metabolite levels in OSCC patients from 

serum metabolite profiling. However, in this study we performed comparisons not only 

between OSCC patients and healthy volunteers but also between the pre- and 
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postoperative values of OSCC patients. In addition, the preoperative levels of patients 

with oral diseases other than OSCC were investigated to diminish the influence of oral 

surgery on our results and enhance the reliability of the OSCC biomarker candidates we 

selected. Therefore, our findings are considered to closely reflect the differences 

between the presence and absence of OSCC. In particular, the level of ornithine did not 

differ significantly between the healthy volunteers and oral disease patients (Table 5); 

therefore, this metabolite might be heavily involved in OSCC. Heavy smoking and 

alcohol consumption are primary causes of OSCC. Moreover, a correlation between 

human papillomavirus (HPV) positivity and OSCC has also been found recently. 

However, the relationships between these risk factors and the metabolome have not 

been elucidated. To establish a metabolomics-based method for detecting early-stage 

OSCC, it will be necessary to investigate whether these risk factors influence the serum 

metabolite profile. 

 

In conclusion, the present study could represent a first step towards a novel serum 

metabolomics-based screening method for OSCC. The extracted serum metabolites 

were demonstrated to be more effective at detecting OSCC than conventional tumor 

biomarkers; i.e., they displayed high sensitivity. Moreover, based on comparisons of the 

pre- and postoperative values of OSCC patients, this novel approach might also be 

useful for diagnosing recurrence. This study was limited to analyses of serum samples 

obtained from OSCC patients, and comparative evaluations between OSCC and other 

forms of cancer should be performed in future. Thus, it will be necessary to perform a 

further study involving many serum samples from individuals with a variety of 

conditions. Taken together, our findings highlight the importance of large-scale studies 
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aimed at developing metabolomics-based methods for detecting early-stage OSCC. 
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TABLE LEGENDS 

Table 1. Subject information for the training and validation sets 

The cancer patients in this study all had squamous cell carcinoma. There was no 

significant difference (p>0.05) in any of the background characteristics between the 

OSCC group and healthy volunteer group according to the Wilcoxon rank sum test.  

 

Table 2. A list of metabolites whose serum levels differed significantly (p<0.05) 

between the OSCC patients and healthy volunteers in the training set 

The values are shown as fold-induction values (the peak intensity of the OSCC patients 

(n=18) divided by that of the healthy volunteers (n=18)). P values were calculated using 

the Wilcoxon rank sum test. 

 

Table 3. A list of metabolites that displayed significantly different (p<0.05) pre- 

and postoperative serum levels in the OSCC patients 

P values were calculated using the Wilcoxon signed-rank test. 

 

Table 4. A list of metabolites (from among the 13 selected metabolites) whose 

serum levels differed significantly (p<0.05) between the OSCC patients and healthy 

volunteers in the validation set 

Values are represented as fold-induction values (the peak intensity of the OSCC patients 

(n=17) divided by that of the healthy volunteers (n=17)). P values were calculated using 

the Wilcoxon rank sum test. The 13 selected metabolites, whose serum levels differed 

significantly between the preoperative OSCC patients and the healthy volunteers as well 

as between the pre- and postoperative OSCC patients in the training set (p<0.05), were 
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evaluated, and then the listed metabolites were selected. 

 

Table 5. A list of metabolites whose serum levels displayed significant differences 

(p<0.05) between the oral disease patients and healthy volunteers 

Values are represented as fold-induction values (the peak intensity of the oral disease 

patients (n=12) divided by that of the healthy volunteers (n=35; data are from the 

training set + validation set)). P values were calculated using the Wilcoxon rank sum 

test. The oral disease patients had the following conditions: jaw deformities (n=9), a 

bone graft (n=1), a fractured jaw (n=1), or a benign tumor (n=1). The mean age of the 

oral disease patients was 28.9, and the male to female ratio was 5:7.  

 

Table 6. A list of metabolites whose pre- and postoperative serum levels in oral 

disease patients were significantly different (p<0.05) 

P values were calculated using the Wilcoxon rank sum test. The 12 preoperative samples 

were obtained from patients with the following oral conditions: jaw deformities (n=9), a 

bone graft (n=1), a fractured jaw (n=1), or a benign tumor (n=1). The 10 postoperative 

samples were collected from patients with the following conditions: jaw deformities 

(n=7), a bone graft (n=1), a fractured jaw (n=1), or a benign tumor (n=1). The mean age 

and male to female ratio of the oral disease patients were 28.9 and 5:7 for the 

preoperative samples and 29.7 and 1:1 for the postoperative samples, respectively. 

 

Table 7. Sensitivity, specificity, and AUC values of the 7 biomarker candidates 

Sensitivity, specificity, and AUC values were calculated in the training set, validation 

set, and training + validation set using ROC analysis. 
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Table 8. Sensitivity, specificity, and AUC values of metabolite pairs selected from 

among the 7 biomarker candidates 

The metabolite pairs were selected from among the 7 biomarker candidates and had 

their sensitivity, specificity, and AUC values evaluated by logistic regression analysis. 

 

 

FIGURE LEGENDS 

Figure 1. The serum levels of the 7 selected biomarker candidates according to 

clinical stage 

The 7 selected biomarker candidates included glyceric acid, serine, lauric acid, 

N-acetyl-L-aspartic acid, asparagine, ornithine, and heptadecanoate. The letter ‘a’ 

indicates a significant difference according to the Steel-Dwass test (p<0.05). The data 

were obtained from the training + validation set. 
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Table 1. Subject information for the training and validation sets 

   Training set   Validation set 

   OSCC patients Healthy volunteers   OSCC patients Healthy volunteers 

N   18 18  17 17 

 Male  13 13  11 12 

 Female  5 5  6 5 

        

Age  (years)       

 Mean  66.5 66.6  65.8 64.8 

 Range  38-88 59-75  23-87 57-75 

        

TNM stage I  4 -  4 - 

 II  6 -  4 - 

 III  2 -  4 - 

 IV  6 -  5 - 

        

Cancer location    Tongue   7 -  6 - 

 Gingiva  7 -  5 - 

 Cheek  2 -  4 - 

 Floor of the mouth  2 -  1 - 

  Lip  0 -  1 - 

The cancer patients in this study all had squamous cell carcinoma. There was no significant difference (p>0.05) in any of the background 

characteristics between the OSCC group and healthy volunteer group according to the Wilcoxon rank sum test.  
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Table 2. A list of metabolites whose serum levels differed significantly (p<0.05) between the OSCC patients and healthy volunteers in the training set 

Compound name Fold induction  p value 

 (cancer/healthy)  

Lactic acid 1.57  <0.0001 

Oxalate 1.91  0.0062 

Malonic acid 0.10  0.0003 

Urea 1.67  0.0007 

Benzoic acid 1.40  0.0155 

2-Aminoethanol 1.48  0.009 

Phosphate 0.81  0.0279 

Glycine (3TMS) 1.34  0.0009 

Succinic acid (or aldehyde) 1.24  0.009 

Glyceric acid 1.48  0.0025 

Serine (3TMS) 1.36  0.0382 

Thymine 0.24  0.0025 

Acetylsalicylic acid 2.69  0.0237 

Aspartic acid 1.66  0.0005 

Pyroglutamic acid 1.31  0.0068 

Glutamic acid 1.82  0.0005 

Phenylalanine 1.50  0.0008 

p-Hydroxybenzoic acid 10.25  <0.0001 

4-Hydroxyphenylacetic acid 2.59 0.0068 

Lauric acid 2.54  <0.0001 

N-acetyl-L-aspartic acid_1 2.35  <0.0001 

Ribose 0.49  <0.0001 

Asparagine 1.25  0.0119 

Xylitol 1.64  0.0013 

Arabitol 2.28  <0.0001 
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Orotic acid 3.57  <0.0001 

O-Phosphoethanolamine 0.77  0.0257 

Ornithine 1.58  <0.0001 

Glucose_1 1.31  0.0006 

Sebacic acid 0.58  0.0042 

Galactosamine_1  0.38  0.0002 

Glucuronate_1 0.995 0.0354 

Inositol 0.86  0.0042 

Heptadecanoate 1.38  0.0142 

Kynurenine 1.75  0.048 

Tryptophan 0.69  0.0038 

Spermidine 2.79 0.0445 

Cysteine+Cystine 0.80 0.0082 

The values are shown as fold-induction values (the peak intensity of the OSCC patients (n=18) divided by that of the healthy volunteers (n=18)). P 

values were calculated using the Wilcoxon rank sum test. 
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Table 3. A list of metabolites that displayed significantly different (p<0.05) pre- and postoperative serum levels in the OSCC patients  

Compound name p value 

Glycolic acid 0.0182 

Sarcosine 0.0023 

Ketoisoleucine_1 0.0182 

Valine (2TMS) 0.0208 

Benzoic acid 0.0432 

Phosphate 0.0208 

Isoleucine 0.0034 

Threonine (2TMS) 0.0047 

Glyceric acid 0.0237 

Serine (3TMS) 0.0483 

Nonanoic acid (C9) 0.0056 

Homoserine 0.0483 

Acetylsalicylic acid 0.0268 

Methionine 0.0023 

Pyrogallol 0.004 

Lauric acid <0.0001 

N-acetyl-L-aspartic acid_1 <0.0001 

Asparagine 0.001 

1,6-Anhydroglucose 0.0001 

Glutamine 0.0007 

4-Hydroxymandelate 0.0047 

O-Phosphoethanolamine 0.0432 

Theanine_2 0.0047 

Ornithine 0.0237 

Cadaverine 0.0268 

Tagatose_2 (or Psicose_2) 0.0432 
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-Sorbopyranose_1 (or Fructose_1) 0.0342 

Histidine 0.0034 

Glucuronate_1 0.0483 

1-Hexadecanol 0.0008 

Heptadecanoate <0.0001 

Cysteine+Cystine 0.0003 

P values were calculated using the Wilcoxon signed-rank test. 
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Table 4. A list of metabolites (from among the 13 selected metabolites) whose serum levels differed significantly (p<0.05) between the OSCC 

patients and healthy volunteers in the validation set 

Compound name Fold induction p value 

 (cancer/control)  

Glyceric acid 2.26  <0.0001 

Serine (3TMS) 2.68  <0.0001 

Lauric acid 3.71  <0.0001 

N-acetyl-L-aspartic acid_1 3.06  <0.0001 

Asparagine 2.55  <0.0001 

Ornithine 1.56  0.0003 

Heptadecanoate 2.30  <0.0001 

Values are represented as fold-induction values (the peak intensity of the OSCC patients (n=17) divided by that of the healthy volunteers (n=17)). P 

values were calculated using the Wilcoxon rank sum test. The 13 selected metabolites, whose serum levels differed significantly between the 

preoperative OSCC patients and the healthy volunteers as well as between the pre- and postoperative OSCC patients in the training set (p<0.05), 

were evaluated, and then the listed metabolites were selected. 
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Table 5. A list of metabolites whose serum levels displayed significant differences (p<0.05) between the oral disease patients and healthy volunteers  

Compound name Fold induction p value 

 (oral disease /healthy)  

Lactic acid 1.28  0.0108 

Glycolic acid 1.74  <0.0001 

Hydroxybutyrate 1.72  0.0009 

Oxalate 2.00  0.0013 

2-Aminobutyric acid 1.28  0.0441 

Ketoisoleucine_1 1.28  0.024 

Malonic acid 0.09  0.0308 

Valine (2TMS) 1.32  0.0348 

2-Aminoethanol 1.42  0.0163 

Phosphate 1.26  0.0101 

Threonine (2TMS) 1.42  0.0052 

Glycine (3TMS) 1.23  0.0036 

Succinic acid (or aldehyde) 1.62  0.0101 

Glyceric acid 2.44  <0.0001 

Uracil 0.94  0.0116 

Serine (3TMS) 1.74  0.0009 

Nonanoic acid (C9) 1.55  0.0022 

Thymine 0.19  0.0441 

Homoserine 1.39  0.037 

Malic acid 1.30  0.0308 

Homoserine lactone 1.17  0.0045 

Acetylsalicylic acid 2.44  <0.0001 

Aspartic acid 1.79  <0.0001 

Methionine 1.29  0.0495 



28 

 

trans-4-hydroxy-L-proline 1.47  0.0174 

Pyroglutamic acid 1.23  0.0124 

Glutamic acid 2.17  0.0001 

Phenylalanine 1.61  0.0006 

p-Hydroxybenzoic acid 15.70 <0.0001 

4-Hydroxyphenylacetic acid 1.22  0.0081 

Arabinose 0.74  0.0007 

Lauric acid 3.76  <0.0001 

N-acetyl-L-aspartic acid_1 2.94  <0.0001 

Ribulose 1.27  0.0045 

Ribose 0.44  <0.0001 

Asparagine 1.47  0.0036 

Xylitol 1.34  0.0163 

1,6-Anhydroglucose 2.21  0.0416 

Arabitol 1.60  0.037 

Theanine_2 0.48  0.0441 

Hypoxanthine 1.67  <0.0001 

Lysine (3TMS) 0.60  0.0328 

α-Sorbopyranose_1 (or Fructose_1) 2.19  0.0002 

Mannose_1 0.83  0.0308 

Sebacic acid 0.42  0.0005 

Gulcono-1,4-lactone 0.49  0.0041 

Galactosamine_1  0.30  0.0416 

Glucuronate_1 0.54  0.0001 

1-Hexadecanol 0.75  0.0108 

Inositol 0.85  0.0108 
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N--acetyl-L-lysine_2 3.59  0.0015 

Heptadecanoate 1.59  0.0017 

Kynurenine 1.46  0.0441 

Spermidine 2.17  0.003 

Cysteine+Cystine 0.73  0.0348 

Values are represented as fold-induction values (the peak intensity of the oral disease patients (n=12) divided by that of the healthy volunteers (n=35; 

data are from the training set + validation set)). P values were calculated using the Wilcoxon rank sum test. The oral disease patients had the 

following conditions: jaw deformities (n=9), a bone graft (n=1), a fractured jaw (n=1), or a benign tumor (n=1). The mean age of the oral disease 

patients was 28.9, and the male to female ratio was 5:7.  
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Table 6. A list of metabolites whose pre- and postoperative serum levels in oral disease patients were significantly different (p<0.05)  

Compound name p value 

Malonic acid 0.0272 

Nonanoic acid (C9) 0.0378 

Homoserine 0.0076 

4-Hydroxyphenylacetic acid 0.0027 

Arabitol 0.0161 

Ribitol 0.0001 

Glucarate 0.0378 

P values were calculated using the Wilcoxon rank sum test. The 12 preoperative samples were obtained from patients with the following oral 

conditions: jaw deformities (n=9), a bone graft (n=1), a fractured jaw (n=1), or a benign tumor (n=1). The 10 postoperative samples were collected 

from patients with the following conditions: jaw deformities (n=7), a bone graft (n=1), a fractured jaw (n=1), or a benign tumor (n=1). The mean age 

and male to female ratio of the oral disease patients were 28.9 and 5:7 for the preoperative samples and 29.7 and 1:1 for the postoperative samples, 

respectively. 
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Table 7. Sensitivity, specificity, and AUC values of the 7 biomarker candidates 
 Training set   Validation set  Training + validation set 

Compounds Sensitivity Specificity AUC   Sensitivity Specificity AUC   Sensitivity Specificity AUC  

Glyceric acid 77.7  77.7  0.79630   76.4  94.1  0.97232   77.1  88.5  0.88082  

Serine (3TMS) 55.5  94.4  0.70370       35.2  100  0.95848   42.8  97.1  0.79755  

Lauric acid 100  100  1.00000   70.5  100  0.99308   82.8  100  0.97796  

N-acetyl-L-aspartic acid_1 94.4  94.4  0.94136   52.9  100  0.96540   71.4  97.1  0.91755  

Asparagine 61.1  88.8  0.74691   52.9  94.1  0.95502   54.2  91.4  0.83592  

Ornithine 88.8  94.4  0.94753   88.2  70.5  0.86851   88.5  85.7  0.90204  

Heptadecanoate 83.3  61.1  0.74074   58.8  94.1  0.94810   71.4  80.0  0.81061  

Sensitivity, specificity, and AUC values were calculated in the training set, validation set, and training + validation set using ROC analysis. 
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Table 8. Sensitivity, specificity, and AUC values of metabolite pairs selected from among the 7 biomarker candidates  

 Training set   Validation set  Training+validation set 

Compounds Sensitivity Specificity AUC   Sensitivity Specificity AUC   Sensitivity Specificity AUC  

Asparagine+Heptadecanoate 72.2 94.4 0.87037  41.1 100 0.9654  57.1 97.1 0.86776 

Asparagine+Lauric acid 100 100 1  58.8 100 0.91176  80.0 100 0.9551 

Asparagine+N-acetyl-L-aspartic acid_1 94.4 94.4 0.93827  82.3 100 0.98962  74.2 97.1 0.92653 

Asparagine+Ornithine 94.4 88.8 0.94444  94.1 76.4 0.91003  94.2 82.8 0.92408 

Asparagine+Serine (3TMS) 61.1 94.4 0.76235  35.2 94.1 0.95502  48.5 94.2 0.84163 

Asparagine+Glyceric acid 77.7 83.3 0.85494  70.5 94.1 0.96886  74.2 88.5 0.89469 

Glyceric acid+Heptadecanoate 94.4 83.3 0.93827  64.7 100 0.97924  80 91.4 0.91673 

Glyceric acid+Lauric acid 100 100 1  64.7 100 0.94118  82.8 100 0.95102 

Glyceric acid+N-acetyl-L-aspartic acid_1 94.4 94.4 0.95062  58.8 100 1  74.2 97.1 0.94041 

Glyceric acid+Serine (3TMS) 72.2 94.4 0.83333  64.7 100 0.97578  68.5 97.1 0.88898 

Lauric acid+Heptadecanoate 100 100 1  70.5 100 0.91176  85.7 100 0.95224 

Lauric acid+N-acetyl-L-aspartic acid_1 100 100 1  64.7 100 0.91176  82.8 100 0.95347 

N-acetyl-L-aspartic acid_1+Heptadecanoate 94.4 94.4 0.93827  52.9 100 0.95502  74.2 97.1 0.91429 

Ornithine+Glyceric acid 88.8 94.4 0.94444  88.2 76.4 0.89273  88.5 85.7 0.91429 

Ornithine+Heptadecanoate 88.8 100 0.97222  64.7 94.1 0.9308  77.1 97.1 0.94694 

Ornithine+Lauric acid 100 100 1  58.8 100 0.85294  80.0 100 0.92653 

Ornithine+N-acetyl-L-aspartic acid_1 94.4 100 0.95988  88.2 94.1 0.97232  91.4 97.1 0.97061 

Ornithine+Serine (3TMS) 94.4 88.8 0.93519  88.2 76.4 0.88235  91.4 82.8 0.90612 

Serine (3TMS)+Heptadecanoate 77.7 72.2 0.81481  41.1 100 0.97232  60 85.7 0.84327 

Serine (3TMS)+Lauric acid 100 100 1  58.8 100 0.96886  80.0 100 0.97306 

Serine (3TMS)+N-acetyl-L-aspartic acid_1 94.4 94.4 0.94136  52.9 100 0.96194  74.2 97.1 0.91837 

The metabolite pairs were selected from among the 7 biomarker candidates and had their sensitivity, specificity, and AUC values evaluated by 

logistic regression analysis. 
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