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CHAPTER 1  

 INTRODUCTION 

1.1 Background  

 International trade through shipping is significant. Almost 90% of international trade is 

carried out via shipping.  The size of seaborne trade is increasing around 3% per year. In 

2006 global shipping was accounted as 30.686 million tonne-miles. In 2007 it was 32,000 

billion tonne-miles and was projected to grow in 2008 to more than 33,000 billion tonne-

miles. The growth of sea born trade from 1983 to 2010 according to Fearnleys Review (CO2 

Emissions, 2010) is shown in Fig.1-1.  

 

Fig.1-1 Growth in world seaborne trade (billion tonne-miles) 
 

Increase in the seaborne trade affects the number and size of the ships globally. The total 

deadweight tonnage (dwt) of ships is increasing therewith the increase in the size of 

individual ships. In Fig.1-2 the increase of the number of ships by selected ship types from 

the Clarkson Research 2012 is shown (CWFS, 2012).  
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Fig.1-2 Increase in the number of ships by ship types 

The increase of the ship dwt and the individual ship size from the statistics of ISL can be 

seen in Fig.1-3 (ISL-SSMR, 2011).  

  
(a) 
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(b) 

Fig.1-3 (a) World merchant fleet- Annual tonnage changes 1998-2011 (dwt-percent)  

   (b) World merchant fleet- Ship size development of selected ship types 

   Safety ship navigation has become more important by the increment in the ship sizes and 

number of ships worldwide. The researches show that there is not a significant change in the 

number of marine accidents. In Fig.1-4 there is a research outcome of Japan Coast Guard 

(JCG, 2007) which is showing the number of accidents from 1976 to 2007. 

 

Fig.1-4 The number of maritime accidents 
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   In this report, all of the maritime accident types are included. We would like to focus on the 

accidents which are related to safety navigation such as collision and contacts. The statistical 

data of European Maritime Safety Agency (EMSA) show that the number of collisions and 

contacts in European waters are forming the great part of all accidents which is displayed in 

Fig.1-5 (EMSA, 2010).  

 

Fig.1-5 Number of accidents by different accident types 

Marine accidents and collisions are forming a great risk for environment and maritime 

sector and this risk is gradually increasing by the increment in the number and the size of the 

ships. Maritime authorities of countries need better control opportunity of ship traffic 

especially in strict areas as territorial waters and straights due to the risk of accidents and 

environmental pollution. For this reason the VTS’s (Vessel Traffic Services) are developed 

and many people employed at VTS Centers to be able to control the traffic flow. Even more, 

worldwide maritime authority IMO (International Maritime Organization) constitutes new 

laws to achieve safer ship navigation and safer sea areas. 
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 Analysis of maritime accidents shows that the main reason of accidents is categorized as 

“human factor”. According to the report of Marine Accident Inquiry Agency more than 80% 

of accidents are due to human factors and 54.3% of the collisions are due to “improper 

lookout (MAIA, 2007).  Another research shows that the 54.4% of collisions between 2002 

and 2006 are due to improper look-out (KMST). In the study (Furusho et al., 2011) the ratio 

of accidents due to improper look-out is almost same between 2000 and 2008. Therefore it is 

clear that improving the lookout and piloting of the ship will have a key factor for decreasing 

the number of marine accidents, especially collision. 

For safer navigation through improved look-out system, ship detection has a great 

importance. There are already some detection devices as RADAR/ARPA (Automatic Radar 

Plotting Aid) and AIS (Automatic Identification System) on board ships. Radar is the 

essential tool for detecting other ships. AIS is a relatively new equipment and mandatory only 

for the vessels which are greater than 300GT. Therefore, AIS is capable of detecting ships 

which are greater than 300 GT in the range of 20 nautical miles. However, the ships smaller 

than 300 GT and which are not carrying AIS device induce a high risk of collision. Even 

more in case of small ships such as fishing boats, the radar cannot distinguish the ship and sea 

clutter and may cause false detection. The researches show that the most of the collisions are 

with such kind of small boats. For example, MAIA Digest which is a publication of Marine 

Accident Inquiry Agency Japan published a report with the title of “Collisions with Fishing 

Boats under Operation” in September 2008 (MAIA, 2008). This report says that 50% of the 

collisions reported between 2003 and 2007 are with the fishing vessels. This is shown in 

Fig.1-6. Another research carried out in Korea (KMST) is illustrated in Fig.1-7 which shows 

that 70.4% of collisions are with fishing boats.   
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Fig.1-6 Ratio of collisions related to fishing boats (2003-2007) 

 

Fig.1-7 Number of collisions by ship type 

Therefore, the existing equipment may not be enough for collision-free navigation 

especially in domestic waters where small vessels like fishing boats exist. And there is a 

necessity to detect the ships without AIS, which form the greatest ratio of collisions. 

In this study I exploit a system to detect ships and other obstacles in the range of about 2 

nautical miles (about 3 km) which is important to avoid from collision. The ships to be 
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detected may be large or small in size and may not carry AIS. The best way to do this is 

considered to be a vision system that actually is carried out by human now. The inquiries 

show that most of the collisions take place in the range of 3 nautical miles from shore (MAIA, 

2007). One of the reasons for this is the fatigue of navigation officers. After a hectic work in 

port (loading and discharging), the navigation officer is already tired and has to carry out a 

navigation watch. Besides, near the port area the marine traffic is expected to be dense. In 

this case, the collision risk is increasing. By the application of such an assistant look-out 

system, the workload of seafarers will be reduced and safer navigation environment will be 

constituted.  

In maritime field, detection of ships and autonomous navigation is getting more important 

day by day due to reduction in the number of mariners and increasing number of ships. 

Application of computer vision and digital image processing techniques can be effective for 

this purpose. This subject has not been studied sufficiently especially in maritime field, so far. 

Some limited number of studies already has been carried out, but an accurate and precise 

system has not been developed yet. Furusho et al. showed that most of the collisions are in 

the good weather conditions and good visibility (Furusho et al., 2011). A camera system can 

be used under these conditions to automate and improve the look-out for safety navigation. 

Stereo vision system is one of the most exploited systems to recover 3D information from 

2D images. However, it has been applied almost for the land-based robotic applications and 

not for maritime field. Therefore, stereo vision using digital images is one of the candidate 

methods for ship detection, 3-D location measurement, intelligent look-out system and 

autonomous navigation of ships. Hence, this research is proposing a new method for 

automatic detection and accurate position estimation of ships through application of a stereo 

vision system. 
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1.2 Literature Review 

      The topics of obstacle detection and localization are mostly studied in realizing unmanned 

(autonomous) vehicles. In the autonomous vessel the environment information is needed for 

navigation (localization and mapping). Obtaining the environment information through 

several sensors, the navigation planning is carried out in accordance with some localization 

and mapping algorithms. In this study I focus on obstacle detection, position estimation and 

tracking the estimated positions of targets using visual information. The obtained information 

is including stationary and moving obstacles which are useful for collision avoidance. 

1.2.1 Vision-based Ship Detection 

There are various studies carried out for ship detection.  Except for the RADAR and 

SONAR detection techniques it’s almost based on detecting from images. However, there are 

numerous imaging techniques as infrared (IR), SAR (Synthetic Aperture Radar), ISAR 

(Inverse Synthetic Aperture Radar), laser and optical (or digital) images. Most of the image 

based ship detection studies are using satellite SAR imagery and optical satellite imagery. A 

comparatively new study is presenting the state-of-art in ship detection with SAR imagery 

(Crisp, 2004). Sato and Ishii (Sato and Ishii, 1998) studied a collision avoidance system 

which integrates the radar and infrared (IR) image information and Alves et al. studied 

classification of ship types exploiting Forward Looking Infrared (FLIR) images (Alves et al., 

2004). On the other hand, the number of digital image-based ship detection studies is very 

limited which is the topic of this study. 

1.2.1.1 Maritime Surveillance with Single Camera 

Takahashi et al. proposed a ship detection method based on combination of some image 

processing techniques to the sea images which are taken from a shore set-up, stationary single 

photo camera (Takahashi et al., 2005). Santhalia et al. studied classification of ship types 
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applying neural networks to digital images from a single stationary camera (Santhalia et al., 

2008). Luna et al. proposed another method for ship identification which used silhouette of 

ship as an input and compared it with the stored database using Concavity-Convexity Scale 

Space (CCSS) which is an improved model of Curvature Scale Space (CSS) (Luna et al., 

2005). However, in the real sea images it is very difficult to get such clear silhouette of ship 

images.  Ju et al. studied detecting and extracting the moving ship from complex background 

by applying mixture of Gaussians models using stationary surveillance cameras (Ju et al. 

2008). Wang et al. used change detection, morphological operators and Connected 

Components Labeling for ship detection from stationary cameras for a port area surveillance 

system (Wang et al., 2008). Qi et al. studied maritime surveillance system for detecting small 

surface objects calculating the dark channel image and considering atmospheric scattering 

model (Qi et al., 2010). Socek et al. applied an algorithm for object detection from a static 

camera for maritime surveillance (Socek et al., 2005). They obtained a probabilistic 

background model for foreground segmentation and then made color segmentation to detect 

the object. Voles et al. studied a target identification system for maritime surveillance using a 

static camera (Voles et al., 1999). In this study they applied anisotropic diffusion for filtering 

the image and used statistical differences for object detection. Then they improved the study 

by tiling the image applying variable size image windows and Mahalanobis distance measure 

for segmentation and obtaining the object region (Voles et al., 2000). Szpak and Tapamo 

(Szpak and Tapamo, 2011) studied detection and tracking of sea objects using level-set 

background subtraction and active contour tracking method. Their main purpose is maritime 

surveillance. Therefore they used stationary cameras with which detection and tracking of 

objects is much easier than moving cameras. Fefilatyev et al. applied a maritime surveillance 

system using a camera installed on a buoy (Fefilatyev and Goldgof, 2008; Fefilatyev et al., 

2009; Fefilatyev et al., 2010). Their algorithm uses edges for detecting ships assuming all the 
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edges above detected horizon line belongs to an object which result in false detections when 

the horizon line is not straight due to waves. Bouma et al. used digital cameras and infrared 

cameras for surface vessel detection (Bouma et al., 2008). Their algorithm is firstly detecting 

the horizon line and then estimating the background using robust computer vision techniques. 

However, there is not enough explanation of the method in the paper. Finally, object is 

obtained by subtracting the image from background. 

1.2.1.2 Single Camera Installed Onboard Ship 

Smith and Wright’s study is one of the oldest studies for the interpretation of ship images 

which gets the estimated location, orientation, dimensions, and heading of the ship using the 

spatial moments of the image (Smith and Wright, 1971). They used only simulated images 

which are like overhead ship images but not a side view image of ships. Hayashi et al. studied 

a semi-automatic image ranging system for ship detection purpose (Hayashi et al., 1994-a, 

Hayashi et al., 1994-b). In this study, the minute angle and global geometric calculations 

using horizon line is exploited for range calculation. The system they developed is interactive 

and needs some data through an operator by mouse pointer. Sumimoto et al. studied image 

processing techniques for rescue operations of marine casualties (Sumimoto et al., 2000). 

Their idea is based on detecting the orange color in the image due to life saving equipment is 

usually in this color. Shimpo et al. studied real-time detection of ships by calculating optical 

flow and moving vector between the digital image sequences and integrated this with other 

navigational equipment as AIS (Shimpo et al., 2005; Shimpo et al., 2006; Shimpo et al., 

2007). Another study of Shimpo et al. investigates the feasibility of navigational lookout 

support system applying image processing techniques to the image sequence from a single 

video camera (Shimpo et al., 2008). In this study combination of region segmentation and 

optical flow techniques are emphasized. In the study of Kang et al. ship target extraction is 

carried out after filtering the image and sea-sky line is obtained (Kang et al., 2006). They 
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applied a mean filter depending on the variance of local windows for smoothing and multiple 

histogram matching for object extraction.  In this study a ship is assumed to lie on the sea-sky 

line and the algorithm works based on this assumption. However, this is not always true. 

Besides, their algorithm would fail in case of multiple objects or in case of rolling of the ship.  

Martins et al. built an autonomous surface vehicle which had a navigation system that mainly 

consisted of a monocular camera, a GPS and Inertial Navigation System (INS) (Martins et al., 

2007). Kalman filter is used for obstacle position estimation. Dunbabin et al. proposed a self-

docking of USV using a vision system of a single camera, GPS and Inertial Measurement 

Unit (IMU). This vision system has three primary functions: (1) Target segmentation from 

the image, (2) correction for camera lens distortion, (3) transformation from image 

coordinates to global coordinates. However, target distance and length data is not so reliable 

according to the experimental results (Dunbabin et al., 2007, Dunbabin et al., 2008). Liu et al. 

designed a system composed of a GPS, an e-compass and an omnidirectional camera (Liu et 

al., 2008). They used visual attention algorithm for object detection which adaptively selected 

discriminative features and mean-shift algorithm for tracking objects. Gong et al. studied an 

autonomous surface vessel using an omnidirectional camera, Global Positioning System 

(GPS) and a gyro sensor (Gong et al., 2008). They used the image sequence data for stereo 

calculation assuming the vessel speed is fixed and 1.5 m/sec. They obtained the features by 

Shi-Tomasi algorithm and tracked these features by KLT (Kanade-Lucas-Tomasi) feature 

tracker. A matching residual-based outlier rejection is applied to eliminate surface reflections. 

Finally, N-ocular stereo algorithm is applied to get 3D point cloud. Wang et al. applied an 

adaptive segmentation algorithm for object segmentation which is based on information 

entropy theory (Wang et al., 2010). They calculate the local image complexity using 

information entropy theory and obtain the complexity image.  Then applying median filter 

recursively to this image depending on the mean of the total image complexity to decrease 
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the complexity and when the complexity is under a certain threshold this image is binarized. 

Finally the object is segmented by thresholding the binary image. 

1.2.1.3 Stereo Camera Installed Onboard Ship 

   Snyder et al. designed an autonomous river navigation system consisting of several sensors 

as Inertial Measurement Unit (IMU), Radar, Global Positioning System (GPS), Sonar, 

omnidirectional camera, 6 cameras to get 360°, pan-tilt camera, multi-camera stereo etc. They 

used an optical flow algorithm with Harris corner detector and normalized cross correlation 

for detecting and tracking features. They implemented an optic flow vector clustering based 

on RANSAC algorithm for motion detection. Ebken et al. applied unmanned ground vehicles 

(UGVs) technology to USVs. The primary obstacle avoidance sensor is a digital marine radar 

system produce by Xenex Inc. The radar provides both the raw radar image and the contact 

track data. It was intentioned to primarily use the raw radar image for obstacle avoidance and 

add the ARPA contact data to the obstacle map. However, due to unreliable nature of ARPA 

and high minimum detectable range (around 100 m) of digital marine radar, a stereo vision 

system is included to be able to detect the closer objects (Ebken et al., 2005). In reference 

(Larson et al., 2006) the obstacle detection and collision avoidance of a USV is carried out by 

categorizing the distance of target into two parts of near-field (180 -300 m) and far-field 

(more than 300m). Different techniques applied for these categories. For near-field obstacle 

avoidance raw radar, stereo vision, monocular vision, nautical charts and millimeter wave 

radar data are used. For the far-field AIS contacts, nautical charts and ARPA contacts are 

exploited. Another autonomous surface vessel is studied in (Zhang et al., 2009). This system 

has a Multi-Purpose Sensor System (MPSS) using a set of sensors that include stereo cameras, 

radars, compass, Global Positioning System (GPS), Inertial Measurement Units (IMUs) etc. 

The stereo vision component is used for obstacle detection and composed of two high 

resolution cameras with wide field of view and around 1 meter baseline. In the stereo 
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algorithm, the edges are obtained by Laplacian of Gaussians and non-maxima suppression is 

applied to get sub-pixel accuracy. Then a patch-based correlation algorithm is used for stereo 

matching. They obtain the 3D point clouds as an intermediate step and extract the objects in it 

as a post process. Huntsberger et al. proposed an autonomous surface vessel which consists of 

a dynamic planning engine, a behavior engine and a perception engine (Huntsberger et al., 

2011). The perception engine algorithms derived from those used onboard the Mars 

Exploration Rovers (MER) for passive stereo imaging, hazard detection/avoidance, and 

visual localization for navigation, combined with previous work by Spatial Integrated 

Systems in the areas of sensing and map-making. Camera models based on polynomial 

expansions used to correct camera/lens distortions are derived from a series of images 

obtained during a calibration procedure. A fast dense stereo algorithm developed at JPL (Jet 

Propulsion Laboratory) is used to generate a range map during the USV motion which 

consists of four cameras. The four cameras actually set two stereo systems, two cameras one 

set looking forward right side and other two cameras the other one set looking forward left 

side both sets with 1 meter baseline.  

1.3 Objectives of the Research 

   The main objective of the study is to get more environmental information for the safety 

navigation of the ship. This information may be integrated with other information from 

existing navigation equipment and make the environmental information of the ship more 

clear and understandable for the navigation officer. Considering the technologies for 

autonomous vessels, we thought that camera can be a promising device for this purpose. 

Learning from the marine casualty statistics that most of the collisions are in the good 

weather condition, the digital camera idea is strengthened. Of course, a system composed of 

infrared and/or thermal cameras with digital cameras may be stronger in the rainy or foggy 
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weather conditions and night time voyages. It may be a topic for future study. This study is 

focused on usage of digital cameras only. 

   In the literature there are various studies using cameras which are mentioned above. Most 

of these studies are focused on maritime surveillance and autonomous vehicles. And the 

algorithms are usually for very specific situations and assumptions. For example ships speed 

is assumed to be constant, the objects to be detected are assumed to be orange color (in case 

of emergency situations), the ships to be detected are assumed to be above sea-sky line etc. 

Actually it is assumed to be because of the difficulty of the problem. In case of the 

surveillance systems the cameras are stable and it is comparatively easier task to set-up the 

camera system and to detect the objects. When the cameras are onboard ship the complexity 

of the problem is increasing due to the dynamic structure of the environment. In the studies of 

autonomous vehicles the integration of many sensors is considered. The visual information is 

supported by sensors such as GPS, Inertial Measurement Unit (IMU) etc. The autonomous 

vehicles are usually small boats and their maneuverability is high. That’s why they don’t 

need a long range detection system. The visual systems of autonomous vehicles are usually 

designed for not more than 400 meters. In the literature there is a missing of vision-based 

system which is designed for navigational lookout support for marine vehicles. The study of 

Shimpo et al. (2008) is unique about the topic but it is using a single camera and only 

detection of objects is considered. I would like to contribute to the literature by a stereo 

vision-based navigational look-out support system which is capable of eliminating the 

problems of dynamic sea environment such as rolling and pitching of the ship, detecting the 

objects within a long range around 2 nautical miles, calculating the 3D locations with an 

acceptable accuracy, tracking them through the image sequences and obtaining the course of 

the tracked ships. Only digital cameras (not GPS or IMU integration) are considered to 

achieve this objective which is not realized in the literature yet. 
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   In this study a stereo vision system for accurate detection and localization of the ships is 

proposed. The illustration of the proposed system is shown in Fig.1-8. The system consists of 

two cameras installed on the port and starboard side of the ship bridge area. The cameras are 

looking forward and configured nearly parallel (optical axis) to each other. One of the 

advantages of stereo vision is that you can both detect and calculate the 3D location of the 

detected objects. So it can be used to obtain environmental data such as stationary and 

moving obstacles around ship and their 3D locations as a navigational tool aid. Therefore one 

of the objectives of the study is to measure the feasibility of the stereo camera system for 

obtaining environmental information in marine environment and especially the target ships.  

 
Fig.1-8. Concept of the proposed system 

   Detection of obstacles that lie on the ships course using visual information is one important 

point. The specular property of sea surface is a challenging problem for reliable detection. 

Another point is to calculate the distance of the detected objects accurately from the own 

vessel. In this case the effect of maritime environment such as ship movement (rolling and 
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pitching), and vibration may have important influence on camera set-up which should be 

considered for accurate calculation. 

   Only detecting the objects and calculating the 3D location is not sufficient for navigational 

safety. The course and speed of moving obstacles is also needed to take action according to 

COLREGs (International Regulations for Preventing Collisions at Sea). Therefore another 

objective is to get course and speed of target vessels. Tracking the 3D locations of detected 

objects through image sequences gives us the course and speed of them. As a result, this 

information can be used for increasing the situation awareness of the watch keeping officer or 

for an automatic action taking of ship control system in the future. 

 

Fig.1-9 Algorithm flowchart of overall system 

   The algorithm for the overall system is illustrated in Fig.1-9. First, a pair of stereo images, 

which are referred to as left and right images for convenience, is captured. The movement of 

the ship is calculated using the image data which is explained in detail in Chapter 7. The 
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cameras need to be externally calibrated. The extrinsic calibration process is explained in 

Chapter 2 and its meaning in case of ship rolling is explained in Chapter 7.  Then the images 

are rectified. Rectification of images is explained elaborately in Chapter 3. Noise filtering is 

one of the important steps to eliminate the noise in the images by some smoothing filters. The 

effects of different smoothing filters are analyzed in Chapter 5. In Chapter 3 the detection 

process is explained. The clustering step is studied in Chapter 6. 3D calculation with sub-

pixel accuracy is explained in Chapter 4. The tracking step is actually extension of the 

clustering step to time domain which is called spatio-temporal clustering and the 

methodology is explained in Chapter 6. The result of the spatio-temporal clustering is the 

track of the ship location in 3D coordinates. Chapter 8 is describing some further process to 

improve the study such as some different stereo matching strategies and color space of 

images. In Chapter 9 the conclusion of the study is explained with the main contributions of 

the study and future plan is discussed. 
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CHAPTER 2 

CAMERA CALIBRATION AND STEREO VISION SYSTEM 

2.1 Pinhole Camera Model and Perspective Projection 

   A camera is the device to transform visual information of 3D world to 2D images by 

performing some transformations. Various parameters are used in these transformations 

which are fundamental to describe the image acquisition system. The pinhole camera model 

is one of the most used and simple camera models with perspective projection to imaging 

screen. The transformation based on perspective projection is describing the behavior of real 

optic systems (natural systems such as human vision system) which can be described by a 

linear equation in a higher dimensional space of so-called homogeneous coordinates (Hartley 

and Zisserman, 2003; Faugeras, 1993).  

   Fig.2-1(a) shows a pinhole camera model. Light from an object is projected on the screen 

through a tiny pinhole. Let us define the xyz coordinates system whose origin is the pinhole 

and z axis is perpendicular to the screen. The xyz coordinate system is referred to as camera 

coordinate system. The distance between the origin and the screen is focal length. The z axis 

is also called as optical axis. Since the object is projected on the screen upside-down in the 

model, let us move the screen forward like Fig.2-1(b).  

           

(a)                                                              (b) 

Fig.2-1 Pinhole camera model and perspective projection 
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   In the pinhole camera model, a point of  (xc, yc, zc) in the camera coordinate system is 

projected onto the point of (xs, ys, f ), and we can obtain the following equation in matrix form 

for a real number λ 

 � ������ � = �1 0 00 1 00 0 1� ��	�	
	�                                                                                                 (2-1) 

This relation is referred to as perspective projection. This equation is obtained from similar 

triangles theorem of Thales. In this equation the values of both the camera coordinate point  

(xc, yc, zc) and its projection (xs, ys, f ) are expressed in the camera coordinate system. Writing 

the Eq.2-1 separately we obtain xs and ys at focal distance f as 

�� = � ���    ,   �� = � ���                                                                                               (2-2) 

2.2 Coordinate Systems 

   One of the difficult points of perspective projection is the coordinate systems. We have to 

constitute the mathematical relationship between some coordinate systems to represent the 

same point in each of them. Mainly we have to consider about four coordinate systems: 

1) World coordinate system, 

2) Camera coordinate system, 

3) Image (pixel) coordinate system, and 

4) Ship coordinate system. 

World coordinate system is the main coordinate system that we would like to get the 3D 

reconstruction result of the points. In the experiments, the main purpose is obtaining the data 

in world coordinate system. The camera coordinate system is the coordinate system which 

accepts the optical center as the origin. And the image coordinate system is the 2D coordinate 

system of the image sensor. The relationship between these coordinate systems except for 

ship coordinate system is illustrated in Fig.2-2. 



20 
 

 

Fig.2-2 Coordinate systems 

   In Fig.2-2 the point O(0, 0, 0) is the origin of the world coordinate system which is denoted 

by the axis X, Y, Z. In this research, world coordinate system is used for estimating three-

dimensional coordinates of marine vessels. Similarly, the camera coordinate system is 

represented by (xc, yc, zc) with the origin Oc(x0, y0, z0) which is also called optical center. The 

zc direction is called optical axis. The relationships between the world coordinates and 

camera coordinates are denoted by a rotation (R) and a translation (T). Translation of camera 

center (T) is actually equal to (x0, y0, z0). Another important part of the model is the image 

plane. The image plane is actually the CCD (Charge-Coupled Device) sensor of the camera 

which is sensing the brightness values. So, the image is tessellated into rectangular elements 

which are called pixels. The image plane is parallel to the (xc, yc) plane of the camera 

coordinates. The projection of the point Oc on the image plane in zc direction (optical axis) is 

called principal point (u0, v0) which is theoretically the center point of the image plane (but 

not in practice) and expressed in pixels. The distance from the Oc to the principal point is the 

focal length. P(X, Y, Z) is representing a point in world coordinates whereas pc(xc, yc, zc ) and 
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p(xs,ys,f) are representing the same point in camera coordinates and its projection onto image 

coordinates, respectively. Note that p(xs,ys,f) is expressed in the units of camera coordinate 

system. In other words it is the location of image point in camera coordinate system. p(u,v) is 

used for denoting the same point in image coordinate system which is shown in Fig.2-3 for a 

720x480 resolution image.  

 

Fig.2-3 The image coordinate system considering sub-pixel locations  

     Ship coordinate system is denoted by XSYSZS and it is very similar to world coordinate 

system. It is actually used for elimination of effect of dynamic environment such as ship 

motion (rolling and pitching) and vibration. In the case of no rolling, pitching and vibration 

the ship coordinate system overlaps with the world coordinate system. In case of such 

dynamics effects, these effects can be expressed in ship coordinate system. And the 

calculation in world coordinate system is possible using the constituted relationship between 

the ship coordinate system and the world coordinate system. It is the topic of Chapter 7 and 

the details are explained in the context of dynamic environment. 

 2.3 Camera Intrinsic Parameters   

   The unit of the camera coordinate system is “meter” due to convenience for 3D 

measurement, while the unit of the image coordinate system is “pixel”. The transformation 

from the camera coordinates to the image coordinate is carried out by  

�uv� = �α� β0 α�� �x�y�� + �u�v��                                                                                                                                             (2-3)     



22 
 

where (u, v) is the projected point in the image coordinate system, and (u0, v0) is the principal 

point. We can express Eq.(2-3) in homogeneous coordinates as 

� ���1� = ���� �� ��0 ��! ��0 0 1 � ������ �                                                                                   (2-4)  

Substituting this into Eq.(2-1) the following equation is obtained 

   fλ �uv1� = �fα� fβ u�0 fα� v�0 0 1 � �x#y#z#�                                                                                           (2-5) 

Generalization of equation by equating f to unity (f=1) is possible that the different values of f 

just correspond to different scaling of the image (Mohr and Triggs, 1996). Therefore, 

 � ���1� = ��� � ��0 �! ��0 0 1 � ��	�	
	 �                                                                                         (2-6) 

is obtained. �u, �v, �, u0, v0 are specific to a camera and are called intrinsic parameters. �u and 

�v are called scaling factor. � is the skew between the axes of image coordinates and (u0, v0) is 

the coordinates of image center (principal point). The inverse of the system which transforms 

camera coordinates to image coordinates can be expressed as 

  

�x#y#z#� = λ �α� β u�0 α� v�0 0 1 �-$ �uv1� = λ ⎣⎢⎢
⎡ $() - *()(, - �.() + *�.()(,0 $(, - �.(,0 0 1 ⎦⎥⎥

⎤ �uv1�
                                       

(2-7) 

 
2.4 Camera Extrinsic Parameters 

   In practice, the position of an object is usually represented in a fixed coordinate system 

irrespective of the camera (for example the world coordinate system). Therefore, we must 

constitute the transformation from the camera coordinate system to the world coordinate 

system. Denoting (X, Y, Z) as the position of the object in the world coordinate system, (X0, Y0, 

Z0) as the position of camera center in the world coordinate system, and (θx, θy, θz) as the 

rotation angle around the X axis, Y axis and Z axis of the camera (in world coordinate system) 

respectively, we obtain the following equation:  
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��	�	
	� = 45$ 6�789� − �7�8�9��: = [45$ −45$;] <7891> = [45$ ?] <7891>                                (2-8) 

where   
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T and R are called extrinsic parameters.  

2.5 Camera Calibration 

2.5.1 Introduction   

   So far, the theoretical explanation of a camera system is explained. However, in practice 

there are some differences from the theory. For example, the principal point (u0, v0) is usually 

not at image center in practice despite it is in the center of the image in theory. Or the image 

coordinates are not perpendicular to each other which result in skew factor ��Therefore a 

procedure which is called camera calibration is carried out to calculate the camera intrinsic 

and extrinsic parameters. There are various studies carried out for camera calibration (Tsai, 

1987; Zhang, 2000; Heikkila and Silven, 1997). In this study a calibration method using 

known 3D point coordinates is preferred.  

    Substituting Eq.(2-8), Eq.(2-9), and Eq.(2-10)  into Eq.(2-6) yields the following equation: 
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where K is intrinsic parameter matrix, T is translation, I is identity matrix and  P is parameter 

matrix. Therefore, if the elements of the parameter matrix P are known, then the projection of 

the point (X, Y, Z) in the 3-D space to the point of (u, v) in the image space can be obtained. It 

is possible to assign P34 =1.  Therefore, rearranging Eq.(2-11) gives the following equations: 

14131211 pZpYpXpu �����                                                                                                                     (2-12) 

24232221 pZpYpXpv �����
                                                                                                                      (2-13) 

1333231 ���� ZpYpXp�                                                                                                                       (2-14) 

Following equations are obtained by substituting Eq. (2-14) into Eq. (2-13) and Eq. (2-12)  

uuZpuYpuXppZpYpXp �


��� 33323114131211                                                                (2-15) 
vvZpvYpvXppZpYpXp �


��� 33323124232221                                                             (2-16) 

Eq.(2-15) and Eq.(2.16) are only for one point. Then, n points in the 3D space and their 

projections in the image plane are observed. Let  Pi(Xi, Yi, Zi) and pi(ui, vi)  (i=1,2,…,n ) as 

these points, and substituting them into Eq.(2-15) and Eq.(2-16) gives:  
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     Because the number of unknown parameters is 11, we can obtain p11 p33 by least square 

method if n is greater than or equal to 6. Note that we cannot determine the parameters if all 

the n points are coplanar in 3D space. It is desired to use uniformly scattered points in 3D 

space to determine the parameters correctly. 

   In case of dynamic environment we express the ship coordinate system separately as 

explained in Section 2.2. In this case one more parameter Rs should be considered which 
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represents the rotation caused by ship motion. The relationship between the XYZ coordinate 

system and the XsYsZs coordinate system is expressed by 
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where 

)()( XXZZS RRR ���                                                                                                      (2-19) 

Integrating the new rotation matix Rs we can express the overall relation as 

� ���1� = @4[4� −;] <7891> = �A$$ A$B A$C A$DAB$ ABB ABC ABDAC$ ACB ACC ACD� <7891>
                               

              (2-20) 

where pij (i=1, 2, 3, j=1, 2, 3, 4) are camera parameters obtained by following the above 

procedures. Equation (2-20) can be transformed into 
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When an object located at (X, Y, Z) is projected onto (ur,vr) and (ul, vl) in the right and left 

image, respectively, 3D location of the object (X, Y, Z) is calculated by solving the following 

the least square problem. 
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where pij and qij (i=1, 2, 3, j=1, 2, 3, 4) are right and left camera parameters, respectively. 

2.5.2 Separation of Intrinsic Parameters and Extrinsic Parameters 

     We need the intrinsic and extrinsic parameters of a camera separately for the further 

calculations such as distortion correction of lens as described later. Here, how to calculate the 

intrinsic parameters and extrinsic parameters separately from projection matrix P is shown.  
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   First of all, each parameter is divided by 2
33

2
32

2
31 ppp �� , and the components become as 

follows: 
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where, 12
33

2
32

2
31 ���� ppp3p  as above formula manipulation. Under this assumption, we 

can calculate the intrinsic parameters as follows: 

31 pp ��0u                                                                          (2-24) 

3pp �� 20v                                           (2-25) 

� � � �22
2

322 33 pppppp �
���v�                                           (2-26) 
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� 002 
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pp1
                                 (2-27) 

� � � � ��� 
�
�
�� 2
1

2
311 33 ppppppu                                         (2-28) 

and, 

     ��� � ��0 �! ��0 0 1 � [45$ ;] = E                                                                                        (2-29) 

so, 

   [45$ ;] = ��� � ��0 �! ��0 0 1 �5$ E                                                               (2-30) 

Using above equations the rotation array R and translation T are calculated.  

2.5.3 Correction of Lens Distortion 

      The image is affected by the lens shape used in the camera and the shapes of objects may 

be distorted. So far, the calculations were carried out as the lens has no distortion. However, 

in practice the image of a straight line may be bent in image space due to radial distortion. 
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Fig.2-4 Lens radial distortion model 

     The effect of distortion can be better understood from Fig.2-4. Here, (x, y, f ) is the actual 

projected point in the camera coordinate system and (x', y', f )  is the distortion corrected point. 

r and  r' are radial distance from principal point. r'  can be calculated by 

yxyxrkrkrr ::,5
2

3
1 �������

                                                 (2-31) 
 

2222 , yxryxr �������                                                                                                             (2-32) 
 

If k1 = k2 = 0, there is no distortion. If k1 and k2 are positive, the distorted point is further away 

from the principal point. This is called barrel distortion model. In contrast, if both k1 and k2 

are negative, it is spool distortion model.  By the way,   rxrx // ���  leads to 

)1( 4
2

2
1 rkrkxx ����                                                                                              (2-33) 

and 0000 ,,',' vyvuxuvyvuxu vuvu ���������� ����   (we can ignore β 

because it is very small)  lead following: 
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We can apply the same transformation for v and v′ and we obtain the following equations:  
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0 )()(                                                 (2-35) 
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0 (2-36) 

For practical purpose, it is needed to measure a large number of (ui ; vi), (u′i ; v′i) (i = 1, 2,.., n) 

and solve the following least-squares problem. 
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   The camera intrinsic parameters were obtained using the distorted images. That’s why it is 

difficult to obtain the distortion parameters. The distortion parameters are calculated using the 

intrinsic parameters obtained by camera calibration. Then distortion correction is carried out. 

Actually, this distortion correction is not sufficient. Therefore, the camera calibration is carried 

out again using these corrected images and new camera parameters are obtained. And then, the 

distortion parameters are calculated again using the new camera parameters which result in 

refined camera and distortion parameters. This procedure is recursively repeated until the error 

between calibration results converge to a threshold value which is small enough. 

2.6 Stereo Vision System 

2.6.1 Introduction to Stereo Vision 

   The basic studies of computational stereo are going back to 1960’s and 1970’s. Julesz 

(1960) studied depth perception of computer generated patterns. The stereo correspondence 

problem is studied through inspection of the human stereo vision system (Marr, 1974; Marr 

and Poggio, 1976; Marr and Poggio, 1977). Longuet-Higgins (1981) focused on computing 

relative orientation of cameras for 3D reconstruction from binocular stereo images. The 

advances of computational stereo especially in correspondence problem are summarized in 

Brown et al. (2003). A survey study about stereo vision methods is carried out by Koschan 

(1993). Recently, stereo vision is one of the most used methods for obtaining depth 

information from digital images which is using two cameras with a known distance between 

each other called baseline (LB). The fundamental theory of stereo vision is explained in detail 
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in many studies (Faugeras, 1993; Jain et al., 1995; Trucco and Verri, 1998; Hartley and 

Zisserman, 2003). The basic principle for stereo is the fact that projection of a 3D object 

point has a unique pair of image locations in two cameras viewing the same scene from 

different viewpoints. The projection of the object point is different in left and right images. 

These are called corresponding points. Therefore, given two camera images, it is possible to 

calculate three-dimensional location of an object point by triangulation if it is possible to find 

the image locations that correspond to the same physical point in real world. This is the most 

important problem of stereo vision which is called correspondence problem. A detailed study 

of correspondence problem for dense stereo matching is carried out by Schartein and Szeliski 

(2002). The displacement between the locations of projections on the left and right image is 

called disparity. Disparity and range are inversely proportional. When the object gets closer, 

disparity value increases. Some of the main reasons of correspondence problem are 

insufficiency of pixel level quantization, matching cost, occlusion, image noise, and lack of 

texture. In this study 3D error due to correspondence problem caused by pixel level 

quantization is eliminated by sub-pixel matching algorithm.  

2.6.2 General Stereo Configuration and Epipolar Geometry 

   In stereo vision system, the cameras may be configured arbitrarily. The cameras may be 

convergent, parallel or in any other geometric layout. The important thing is obtaining the 

relative relation of the cameras such as translation of camera centers and relative orientations 

of cameras. One of the most important constraints of stereo vision is epipolar constraint 

which is defined using epipolar geometry. Epipolar geometry is defining the relation of 

corresponding scan lines of left and right images using relative relationship of cameras. The 

plane passing through the object point in the scene and camera centers is called epipolar 

plane. The intersection of epipolar plane with left or right image plane defines epipolar lines. 

Epipolar plane and epipolar line of a convergent stereo system are shown in Fig.2-5. In this 
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case, the corresponding points of left image lying through the epipolar line l are found 

through the epipolar line l' of right image. 

         

Fig.2-5 Epipolar geometry of convergent cameras 

2.6.3 Standard Stereo Configuration 

   A standard stereo geometry is illustrated in Fig.2-6. It is the simplest stereo camera system 

with two identical cameras and the coplanar image planes in which optical axis of the 

cameras are parallel. Each image has its own image (pixel) coordinate system with the origin 

of upper-left corner. The distance between image center (principal point) and camera 

(optical) center is called focal length (f ). 

 
Fig.2-6 Standard stereo image acquisition system 

Y 

Z 
X 
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   Fig.2-7 illustrates the X-Z view of Fig.2-6. In this figure corresponding points and disparity 

can be seen more clearly.   

 
Fig.2-7 Standard stereo system viewed through X-Z axis 

The range (Z) of the object can be calculated by equation which is using similar triangles: 
   Z = F.HIJK-JL                                                                                                                       (2-38) 

which is called triangulation. 

   In standard stereo system the vertical disparity is zero, theoretically. In other words, 

corresponding points lie on the equivalent vertical locations in image planes (yl = yr ). In 

standard stereo system epipolar lines are parallel to the image scan lines with constant y (as 

shown in Fig.2-6) which decreases the corresponding point search to one dimension. That is 

because, the projection of any point in left image will lie on the epipolar line of the right 

image (yl = yr ).  

   In real environments it is very difficult to realize an ideal standard stereo configuration. 

Even a small misalignment of the cameras will cause invalidity of equations. Therefore, some 

additional calculations are carried out for obtaining the standard stereo configuration using 

the camera extrinsic parameters explained in camera calibration. Knowing the relative 

orientation of the cameras that forms extrinsic parameters, it is possible to get the images of 
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rotated cases using image processing techniques such that the cameras are in standard stereo 

configuration. This process is called stereo rectification. One of the main advantages of 

rectification is reducing the search space of corresponding point to 1D. The rectification 

should result in same scan lines of left and right images to be on the same line. In other words, 

the epipolar lines of left and right images should lie on the same line. Therefore, one image 

point of left image should be on the same scan line of right image with a difference of 

disparity.  
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CHAPTER 3  

BASIC STUDY 

   This chapter is explaining the study of (Yamamoto and Win, 2006, and Yamamoto and 

Win, 2007) which is the foundation of my study. (Yamamoto and Win, 2006) carried out a 

feasibility study for detecting ships using a stereo camera system. That study is the basic of 

my study. That’s why I need to explain that study of (Yamamoto and Win, 2006, and 

Yamamoto and Win, 2007) in this whole chapter as basic study and the improvements are 

discussed in the other chapters.  

3.1 Experimental Camera Configuration 

   The experiment was carried out at the Akashi Kaikyo Bridge to detect the ships from actual 

sea images. The experimental devices used in this study are two identical 3CCD Panasonic 

NV-GS300 video cameras with a zoom lens. The view angle of the cameras is maximum 43 

degrees and the preferred resolution of the images is 720x480. The cameras are set up nearly 

parallel directions of camera axis with 8.14m base length between. A tripod is also used for 

the calibration purposes. Fig.3-1 shows the camera set-up and sample stereo images. 

 

Fig.3-1 Experimental stereo configuration and obtained left and right images  

   The theoretical representation of experimental camera configuration is illustrated in Fig.3-2. 

The right and left cameras are set at (LB/2, 0, 0) and (-LB/2, 0, 0) in the world coordinates.   

An object point P(X, Y, Z) in the world coordinate system is projected onto the pr(xr , yr) in 

the right image coordinate system and pl(xl, yl) in the left image coordinate system, 
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respectively. Extrinsic parameters of the cameras, which include locations and orientations of 

cameras, should be calculated to be able to measure the 3D location.   

 

Fig.3-2 Experimental stereo configuration 

3.2 Ship Detection Algorithm 

   The ship detection algorithm used in this study is explained elaborately in (Yamamoto and 

Win, 2007). The images used in this study are RGB color images. At first step, the points 

with the high intensity gradient are assumed to be salient points and these points are searched 

only in the red channel of left stereo image. In Fig.3-3 an intensity profile of red channel of 

an RGB image scan line is illustrated. In this image the solid line is the intensity values 

through horizontal pixel locations and the dashed line is the moving average of intensity 

values. Then candidate salient points are determined as the intersection of moving average 

values and the intensity values (points A, B and C in Fig.3-3). However, the intensity values 

are very unstable and this result in too many candidate points. To overcome this problem the 

area formed by the intersection of the intensity values and moving average line is considered 

which is shown as blue area in Fig.3-3. If the area before and after intersection points are 

large enough they are determined to be a candidate point (points A and B in Fig.3-3) which 

means the intensity change at this point is high enough. In our implementation the areas 

greater than 30 pixels are considered to be interest points. 
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Fig.3-3 Detection algorithm using intensity profile 

3.3 3D Measurement 

   After the camera calibration is carried out and the orientations of cameras are obtained, 

three-dimensional measurement of a detected ship point can be carried out. Actually this is 

similar to reverse process of camera calibration. In camera calibration the pixel coordinates 

are acquired due to a known 3D point in world coordinates. In contrast, while 3D 

measurement the world coordinate data of a point is calculated up to the pixel coordinate data 

which is linearly related by camera calibration. To do this, firstly the interested point –marine 

vessel in our case- in image coordinates is extracted or detected in one of the images which is 

determined as the reference image. Left image is the reference image in this study and the 

notion for the coordinates of the point is (xl, yl).  The next step is finding the corresponding 

point in the right image. The rectification of the stereo images is carried out to reduce the 

corresponding point search to 1D. An example of rectification result is shown in Fig.3.4. 

 
(a) 
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(b) 

Fig.3-4 (a) Original images (b) Rectified images 

   Before corresponding point search, the color adjustment between left and right images is 

carried out for reliable corresponding point search. Color adjustment is carried out so that the 

mean value of each color channel of the right image agrees with that of the left image. For 

example, the red values of the right image are adjusted by 
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where Rr and Rr,new are, respectively, the original and adjusted red values of the right 

image; Rl,ave and Rr,ave, respectively, are the mean values of the red channel of the left and 

the right images. Then the corresponding point of this point (xr ,yr)  is searched in the other 

image through a similarity measure or matching cost called sum of squared differences (SSD) 

as shown in Fig.3-5. The equation of similarity measure with SSD is as follows: 

 ))],(),([

)],(),([

)],(),(([)(

2

2

2

,

jdiBjiB
jdiGjiG

jdiRjiRdR

rl

rl

Wji
rl



�



�



�  
!

                                                                                             (3-2) 

where R, G and B are RGB intensity values. The subscripts l and r indicate the reference 

(left) and observed (right) images, respectively. W is the area defined around the candidate 

point in the reference image. The pixel location d with the minimum value of R is determined 
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as the matching point. This is the vital point of the 3D measurement, because the accuracy of 

the 3D measurement is depending on the accuracy of the corresponding point.  

 

Fig.3-5 Corresponding point search 

   An experimental sample of stereo corresponding point pair is shown in Fig.3-6. 

 

Fig.3-6 A sample corresponding point matching with SSD similarity measure 

   As mentioned before the sea images comprise high noise content which results in finding a 

false point as matching result. For example some sea waves can cause this. To confirm the 

matching point to be true a reverse matching process is carried out as shown in Fig.3-7. In 

this case the matched point in the right image is searched in the left image and if the both 

locations are same this point is determined as true matching point. 
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Fig.3-7 Verification of matching 

   To be able to calculate the 3D location of a point in world coordinates, we use the pixel 

coordinates of that point (xl, yl) and (xr , yr)  which are the projections on the left image and 

right image, respectively. Having the pixel coordinates of interested point in both images the 

rotations of these points are compensated by the previously calculated rotation matrix to 

obtain the standard stereo configuration in which both cameras become parallel in Z-axis. 

This is called normalization and the normalized points are denoted as ),( r
n

r
n yx  for the right 

camera and ),( l
n

l
n yx  for the left camera. Besides, the rotation matrix for the right and left 

images are denoted as Rr(θXr, θYr, θZr) and Rl(θXl, θYl, θZl), respectively. Then the normalized 

points are calculated by                                                          
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where rrij and rlij represent (i, j)th component of the rotation matrices Rr and Rl , respectively. 

Finally, the location of the object in the world coordinate system is obtained by the following 

equation. 
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(3-5)

 

3.4 Tracking Ships through Image Sequences 

   A point is manually selected to track the ship through the image sequences as shown in 

Fig.3-8(a). The reason for manually selecting the point is to see the feasibility of tracking 

after giving a point to track. Here, the ship is represented as one point which can be near 

bridge because it is the navigation center. This point is selected from the left image. The 

corresponding point of this point is found and 3D location of the ship is calculated as 

explained above. Then this point is found in the next left image (time t+1) by SSD and the 

new 3D location at time t+1 is calculated as illustrated in Fig.3-8(b). This procedure is carried 

out through image sequences which result in 3D tracking of ship location. 

  

Fig.3-8 (a) Tracking point of ship (b) tracking through image sequence 

So far, all the points are calculated in one pixel accuracy. Therefore, the disparity is also in 

one pixel accuracy. The tracking result of 3D locations of ships with one pixel accuracy 

calculation is shown in Fig.3-9. The blue dots are showing the 3D location of the ship for a 

time t. The ship is moving from left side of the image to the right side of the image (through 

+X direction). The ship is about 1.5 km far from the cameras.  
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Fig.3-9 Tracking of ships with one pixel accuracy 

   It is seen in the figure that the ships trace is not continuous and there are certain gaps 

periodically.  It means that the 3D location of the ship is not found truly for every point. 

   The basic study explained so far shows that it is possible to detect the objects, measure the 

distance of detected of objects with some accuracy and track a given point through image 

sequences. However, it needs to be improved which is done in my study. First of all, the 3D 

calculation accuracy is considered because the 3D location results were not satisfying. The 

main reason of this situation is insufficiency of one pixel level matching. The image 

represents the very dense real world data with a few pixels which result in too much loss of 

data. Especially images of far points are squeezed into one pixel of an image. One of the 

solutions to overcome this problem is finding the sub-pixel locations of points. Then 3D 

location should be calculated using these sub-pixel locations. The sub-pixel matching 

algorithm improved the results. Then we utilized the sequences of image data for further 

improvement of the 3D location calculation. In the sequences of images, the calculated 3D 

points of images at time t and time t+1 should be close to each other. But due to some vision 

problems they will not be very close and it will be a little bit noisy. We applied Butterfly low-
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pass filter to improve the calculation which is a kind of averaging of data through the 

sequences of images. 

   Another problem is noisy sea images which are mainly due to specular sea surface. Some 

different smoothing filters are analyzed and an edge preserving smoothing filter is found to 

be more effective especially for detection purpose. 

   In the basic study the tracking is done manually by choosing a ship point in the beginning. 

It may be useful for a semi-automatic system in which the watch-keeping officer firstly 

selects a ship point manually. However, we would like to automate this process. It is done by 

clustering the detected points to represent fewer points to track and the center of these 

clusters are tracked automatically through the image sequences by a spatio-temporal 

clustering algorithm.  

   Another point is the environmental effects such as ship rolling and pitching to the camera 

system. This will affect the images obtained by the cameras and the geometric relation 

between camera and world coordinates will be changed. We proposed a system to calculate 

the ship motion utilizing the sea-sky line and eliminating the effect of ship motions such as 

rolling and pitching.  

   The algorithms and results are explained in the following chapters. 
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CHAPTER 4 

ACCURACY IMPROVEMENT OF 3D LOCATION MEASUREMENT 

4.1 Introduction to 3D Measurement Error 

   The images have finite number of pixels. The visual information of a wide area is 

compressed into this finite number of pixels. That’s why some data is lost. This results in 

quantization error which is due to lack of image plane quantization (Blostein and Huang, 

1987). This is one of the reasons of correspondence problem that the corresponding points 

can be represented in one pixel accuracy which is not sufficient. This affects the accuracy of 

the system especially in long range measurement because of increasing depth resolution. 

Considering the depth resolution, image plane with accuracy of one pixel, 3D reconstruction 

of adjacent points which are far from image plane will be more difficult. Increasing the 

distance from camera planes the accuracy of the depth measurement decreases (or depth 

resolution increases) due to the geometrical limitations caused by the geometrical parameters 

of a stereo system. In other words, the corresponding measurement area of one pixel in world 

coordinates is increasing. It can be better understood from Fig.4-1. 

 

Fig.4-1 Image plane quantization, region of uncertainty and depth resolution (R) 
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   Considering an ideal pinhole camera model and the quantization error, measured position of 

a scene point may be somewhere in a 3D volume due to finite resolution of the cameras 

which is called region of uncertainty (Blostein and Huang, 1987). In the Fig.4-1 ABCD 

quadrilateral is the X-Z direction view of region of uncertainty for point P. The exact location 

of the scene point can be anywhere in this region. As the scene point goes further in Z 

direction the region of uncertainty becomes greater. If the object is moved to point P' from 

point P, the region of uncertainty is increasing to quadrilateral of EFGH. In the case of long 

range object points, the spaciousness of region of uncertainty can be imagined. This causes 

greater errors in 3D recovery of long range points. 

   The accuracy of the 3D measurements with a stereo system is inversely proportional with 

the distance of the object. The stereo measurement error is discussed here. In the case of the 

ship is at the position of P(0,0,D), calculation will be P'(0,0,D+ΔD) if each left and right 

cameras have an orientation error of Δα. Fig.4-2 illustrates such kind of error situation.  

� �
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Fig.4-2 Error in case of P(0, 0, D) [Courtesy of S. Yamamoto] 

From the figure, D is calculated as 

                                                                                                                    
(4-1) 

Therefore contributing the error to the equation, it becomes 

�tan
2

BLD �
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                                                                                                  (4-2) 

Equation (4-3) can be derived from (4-1) and (4-2). 

                                                                                                     (4-3) 

where k is D/LB. 

   Fig.4-3 illustrates the relation between k and the percentage error when Δα is equal to θ/w 

which means that Δα is the orientation error in case of 1 pixel detection error on image plane. 

Here, θ is the camera view angle and w is the horizontal resolution of the image. Therefore, to 

measure the location of an object with a camera of 90° view angle within 20% 3D error, the 

distance of the object should be not more than 100 times of the baseline length.   
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Fig.4-3 Relation between distance and error [Courtesy of S. Yamamoto] 

   It shows the difficulty of measuring 3D location of far objects accurately. Considering a 

case that a baseline (LB) is 20m and an object distance (D) is 2000m, the calculated � is 

89.7135° which is almost right angle. From this, it is easier to understand that the orientation 

error is expected to be quite small. The effect of very small angular error ("�) on 3D 

calculation using Equation (4-3) is shown in Fig.4-4. We can see from the figure that 0.2° of 

orientation error result in 4626m of depth error when the object is at 2000m distance and 
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baseline is 20m. And the 3D error is 6025 meters when the baseline is 8,14 meters and object 

distance is 1000 meters. 

 

Fig.4-4 Effect of camera orientation error on 3D calculation 

   As a result, it is seen that the 3D calculation of far objects using stereo images is actually 

very difficult because even very small orientation error results in a large location error. 

4.2 Concept and Estimation of Stereo System Error 

   The insufficiency of the one pixel level representation of points is shown in the previous 

Section. We need sub-pixel locations of image points to improve the correspondence quality. 

Following is theoretical explanation of error caused due to one pixel level matching.    
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Fig.4-5 Concept of stereo 3D error due to correspondence problem 
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   Fig.4-5 shows a standard stereo camera configuration and concept of the correspondence 

and 3D reconstruction error. Two cameras are placed at (
LB/2, 0, 0) and (LB/2, 0, 0), 

respectively, in the world coordinates system O-XYZ. 

Focal lengths of both cameras are unity and their optical axes are parallel to Z-axis. In this 

model, an object located at P(X, Y, Z) is projected onto pl(xl, yl, 1) and pr(xr, yr, 1) in each 

camera coordinate system, respectively. Then, the (X, Y, Z) coordinate of object is obtained 

with one pixel accuracy by 
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where LB is a baseline length. 

   If the x-coordinate of pr, which is the corresponding point of pl, is detected with an error of 

#, the 3D location of P is estimated as P'(X', Y', Z'). The amount of this error can be estimated.  

Adding this error parameter #��to the general reconstruction Equation (4-4), the measured 

erroneous coordinate (X', Y', Z') is obtained by the following equation: 
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From Equation (4-4) the following equations are extracted. 
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           ZYyr /�                                                                                                         

Combining these equations with Equation (4-5) yields: 
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The difference of the points P(X, Y, Z) and P'(X', Y', Z') gives us the estimated error in world 

coordinates by the following equation 

�
�
�

�

�

�
�
�

�

	 �



�
�
�
�

�

�

�
�
�

�

	


�

�

�

Z
Y

XL

ZL
Z

ZZ
YY
XX B

B

2/

#
#                                                                                                (4-7) 

   While 3D reconstruction of an image point the data is obtained in pixel coordinates first and 

then transformed to camera coordinates and world coordinates. That’s why it is required to 

express the error in terms of the data of pixel coordinates, as well. From Fig.4-6 this process 

can be better understand.  

 

Fig.4-6 Correspondence error on image plane 

Considering δ is the amount of shift in pixel coordinates due to correspondence error, the 

difference of ith pixel and (i+ δ)th pixel yields the error in pixel coordinates. When focal 
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length f is normalized to 1 (or this image scale is chosen), the error # in the camera coordinate 

system is expressed as 

2
tan2 �$#

N
�                                                                                                                      (4-8) 

where ���is horizontal angle of view, N is a horizontal image size and $ is the detected error 

of pr expressed in pixels. In Fig.4-7 the estimated error results for different parameters can be 

seen. We can figure out from the figure that increasing the horizontal resolution and 

decreasing the camera view angle result in decrease of the error. But it can be designed 

depending on the purpose. A wider view angle or higher resolution may be desired up to 

some situations but the computational complexity should be considered as well. That’s why 

there is a trade-off between the parameters. 

 
Fig.4-7 Stereo error in pixel and camera coordinates in different cases of view angle(theta) 

and  resolution(N) 
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4.3 Matching with Sub-pixel Accuracy 

   Sub-pixel locations of the corresponding points can be calculated using similarity measure 

as a solution to decrease quantization error. In this study, similarity interpolation method of 

Shimizu and Okutomi is implemented which estimates the peak of a similarity function by 

parabola fitting (Shimizu and Okutomi, 2005). While estimating sub-pixel displacement 

through similarity interpolation, Sum of Squared Differences (SSD) between left and right 

images are calculated and the minimum value is selected as center similarity value R(0). The 

preceding similarity becomes R(-1) and the next is R(1).  The SSD values of R(0), R(-1) and 

R(1)  are calculated according to the following formula:  
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                                                                                        (4-9) 

where s is the shift value in pixel unit (-1, 0 or 1) from the corresponding point and d is the 

disparity. For instance, for s=1 R(1) is obtained. Then, a parabola fitting is carried out whose 

minimum is the estimated sub-pixel position. Fig.4-8 is illustrating this situation. 

 

Fig.4-8 Parabola fitting of similarities 

Following formula is the parabola fitting used for the calculation of sub-pixel shift ( MN ):  

MN = O(5$) – O($)BO(5$)5 DO(�) R BO($)                                                                             (4-10) 
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where R(-1), R(0) and R(1) are the similarity values obtained from Equation (4-9). 

4.4 Tracking the Ships with Improved Disparity 

   After the corresponding point is found the sub-pixel location of the corresponding point is 

calculated as explained above and the 3D calculation is carried out using this sub-pixel 

information. The 3D location of ship is tracked through the image sequences as shown in 

Fig.4-9. 

 

Fig.4-9 Tracking with sub-pixel accuracy 

      Sub-pixel matching is very effective method for decreasing the 3D error. In this study the 

detection range is quite far (around 2 nautical miles) and more accuracy is needed. In case of 

sub-pixel matching only a pair of stereo image set is sufficient. But we have a sequence of 

images in time series which can be utilized to decrease the error. The 3D calculation is based 

on the disparity of the same point in left and right images. In case of sequences of images, the 

disparity values of a tracked point through the sequence should be consistent. But due to the 

before mentioned problems of vision systems such as insufficiency of number of pixels 

(quantization problem) some noisy results will be obtained. This noise can be reduced by 

using the disparity data of many images in time series which is called disparity refinement.   
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Fig.4-10 Butterworth low pass filter response (ωc=1) 

Disparity refinement is one of the method to achieve a more complete and accurate scene 

interpretation (Skulimowski and Strumillo, 2008; McKeown and Perlant, 1992). The 

correspondence data (or disparity) between stereo images is a kind of low frequency 

information (Frankot and Chellappa, 1988). Therefore, removing the high frequency 

information clears the disparity data from noises which result in a refined disparity data. A 2nd 

order Butterworth low pass filter (BLPF) is used for eliminating the noisy data from the 

measured disparity values which is actually taking the average value of disparities calculated 

in image sequence. The response of Butterworth LPF can be seen at Fig.4-10.  

The transfer function of a BLPF is defined as: 

|S(T)|B = $$R � UU��VW  ,                                                                                                      (4-11) 

where ωc  is cut off angular velocity, and n is the filter order (Gonzales and Woods, 2008). 

   The effect of sub-pixel matching and low pass filtering on disparity data is shown in Fig.4-

11. In the figure the blue line is the result of one-pixel level calculation of disparity through 

sequences of images. It is seen that the disparity values of one pixel level calculation is not 

consistent. In Fig.4-11(a) the result of the sub-pixel matching on disparity data is seen. The 

disparity data became much more consistent. However, it can be still improved. The result of 
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disparity refinement is shown in Fig.4-11(b) that it is smoother than sub-pixel disparity 

results.  

 
(a)                                                                     (b)  

Fig.4-11 Effect of (a) sub-pixel matching and (b) low pass filtering on disparity    

   The 3D location tracking of one-pixel accuracy, sub-pixel accuracy and low pass filtered 

situations are shown in Fig.4-12. The Akashi Bridge is lying through the zero point of the X 

dimension. In the figure we can see that the one-pixel accuracy calculation is not continuous 

which result in great 3D calculation error while sub-pixel and low pass filtered data is 

continuous. 

 
Fig.4-12 Improvement of 3D ship location tracking 
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  In order to reduce errors, corresponding points between a pair of stereo images should be as 

accurate as possible. In other words, it is important to reduce the value of $ in Equation (4-8). 

Sub-pixel matching and low pass filtering are applied to decrease this error. The localization 

of a ship is shown in Fig.4-12. In the figure, the location of the ship’s bridge is traced. The 

blue rectangles are results obtained by stereo pair matching in one-pixel unit, while the red 

triangles are those by sub-pixel matching method. The green line shows the smoothing result 

of sub-pixel matching by a low pass filter. X-axis means the rightward direction of the image, 

and Z-axis does the depth direction. Since the actual locations of the ship are unknown and it 

navigates almost along the X-axis, errors of X-coordinate cannot be estimated. Therefore, 

those of Z-coordinate will be examined in the following. 

   There is one point we have to explain about the actual positions of ships. We attempted to 

measure the actual positions of the ships by using a surveying equipment (Topcon GPT-

7500). However, this was not possible because the ships were in motion. Therefore, a stable 

point on the Akashi bridge is measured to show the accuracy of the 3D measurement of the 

stereo camera system. The projections of this point to the left and right images are shown in 

Fig.4-13. The 3D location of this point measured by the surveying equipment is (
108.694m, 

193.502m, 917.499m) which are the X, Y, and Z distances, respectively. 3D measurement of 

this bridge point is performed by the stereo camera system for 50 images through image 

sequences. The average of these 50 calculations is (
110.733m, 195.06m, 930.171m). A 

comparison of the 3D measurement result of the surveying equipment and stereo camera 

system shows that the accuracy of the 3D measurement of the stereo camera system is 

acceptable. 

   A fitting line to the sub-pixel matching results is assumed to be the ships true course. 

Although we cannot find the systematic errors that are caused by, for instance, an improper 
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camera calibration, the errors due to the stereo pair matching problem can be estimated as the 

difference between the measured values and the fitting line.  

 
Fig.4-13 The bridge point measured for 3D accuracy 

   The ships tracking data for 26 seconds, 260 frames are examined to evaluate the accuracy. 

As a result, the errors of one-pixel unit matching range from about 
170 meters to about 210 

meters. The values will theoretically become from -140 meters to 170 meters using Equations 

(4-7) and (4-8) when $ ranges from 
0.5 pixels to 0.5 pixels, and this almost agrees with the 

experimental result. On the other hand, the errors of sub-pixel unit matching are from 
60 to 

55 meters, and the low pass filter can reduce them to a range from 
2 to 27 meters. This 

result indicates that sub-pixel matching with the low pass filter is at least 5 times more 

accurate than one-pixel unit. Therefore, it can be concluded that corresponding points 

between stereo pairs can be obtained with an error of %0.1 pixels. 

   Based on the above arguments, the accuracy that can be realized is estimated as follows. 

Let N be 720 pixels, $ be 0.1 pixels from the above discussions, � be 45 degrees. Then, since 

LB is much larger than #Z when Z is less than 10,000 meters, and LB is 8,14 meters, Equation 

(4-7) is approximated as 

BL
Z

Z
Z

���
" 
4101.1                                                                                                        (4-12) 

Fig.4-14 illustrates the above results. For example, if the baseline length LB can be set to be 

20 meters, we can measure an object up to 5km with an error less than one per cent. 
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Fig.4-14 Estimated error    
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CHAPTER 5 

COMPARISON OF SOME SMOOTHING FILTERS FOR REMOVING NOISE  

5.1 Noise Filtering as Pre-process 

       One of the disadvantages of sea images is containing high noise due to the specular 

property of sea surface. We see this by detecting the edges. Edge detectors respond to local 

changes in images. The edges are the important information of an image especially for 

computer vision tasks such as object detection. Despite the sky and sea surface visually 

appear so similar, edge detection results are completely different. There are many edges in 

the image of sea surface which are mostly noise. Mostly used edge detectors are Sobel, 

Prewitt, Roberts and Canny edge detectors. Sobel edge detector is used in this study due to its 

simplicity and effectiveness. Horizontal and vertical edges are obtained by applying the 

convolution masks displayed in Fig.5-1.  

 

Fig.5-1 Sobel convolution mask for horizontal (left) and vertical edges 

 

Fig.5-2 Edge detection by Sobel filter 
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   The result of Sobel edge detection on sea images is shown Fig.5-2. It can be clearly seen 

that there are abundant edges on sea surface which are noise while only a few edges detected 

on sky. This is the result of glares on sea surface. 

   During detection of the objects on the sea surface these edges of sea surface is also 

considered as a part of object which is an undesired situation. That’s why elimination of this 

noise through a smoothing filter is required as a pre-process. There are various smoothing 

filters applied in image processing. The effects of following filters are considered: 

1. Median Filter (7x7) 

2. Gaussian Filter (3x3) 

3. Multi-scale Gaussian Filter 

4. Bilateral Filter 

   Median filter is a non-linear filter which is eliminating the noise by taking the median of 

the sorted intensity data. Gaussian filter is applying 2D Gaussian kernel function to pixel 

intensity values of the images which have a blurring effect. In image processing Gaussian 

filter masks are obtained from Gaussian kernel to simplify the process. The Gaussian mask 

used in this study is shown in Fig.5-3. Multi-scale Gaussian filter is recursive application of 

Gaussian filter. Applying the Gaussian filter 2 times results in 2nd scale Gaussian filter and 3 

times result in 3rd scale Gaussian filter.  

 
Fig.5-3 3x3 Gaussian filter mask 

   The above mentioned filters are smoothing the image regardless of edge data. Bilateral 

filter is smoothing the image noise while preserving the edges (Tomasi and Manduchi, 1998). 

The bilateral filter is a non-linear filter where output image Js is a weighted average of the 
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input image I and the weighting for each pixel p is determined by the spatial distance and the 

intensity difference between center pixel s and pixel p within window Ω. Therefore, the value 

of pixel s is affected mainly by pixels that are spatially closer and have a similar intensity 

value. The output image is obtained by 
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where the function f for spatial domain and g for intensity domain are usually Gaussian 

functions. The f and g functions used in bilateral filter are: 
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   After removing the noise in the images by mentioned filters, the detection algorithm 

explained in Chapter 3 is carried out and the salient image points are detected. The 3D 

locations corresponding to these image points are calculated through the stereo theory 

explained before. 

5.2 Effect of Smoothing Filters on Sea Images and Ship Detection 

   The results of Sobel edge detection after application of median filter, Gaussian filter, 2nd, 

3rd, and 4th scale Gaussian filters and bilateral filter are shown in Fig.5-4. The size of the filter 

mask for median filter is 7x7 and the Gaussian filter is 3x3. The greater size of filter results in 

greater effect of smoothing. But the number of calculations will be greater which will slow 

down the algorithm. In the figure the most effective filter to remove noise is seen to be 

median filter. The effect of the Gaussian filter is increasing by increasing the scale of the 

filter because it is same as increasing the size of the filter. The bilateral filter is also effective 

even if it is not as good as median filter.  In this study we also consider the detection purpose 

in which filtering has important effect.  
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 (a)                                            (b)                                             (c)          

 
                      (d)                                               (e)                                            (f) 

Fig.5-4 Effect of smoothing on edge detection (a) Median filter (b) Gaussian filter (c) 2nd 

scale Gaussian (d) 3rd Gaussian (e) 4th scale Gaussian (f) Bilateral filter 

   In Fig.5-5 the detection algorithm of a real sea image is illustrated. The vertical axis shows 

the intensity values. The intensity value of an image may span between 0 and 255. The 

horizontal axis is the horizontal pixel location (1 to 720). The blue line is the intensity profile 

of one scan line and the red line is moving average. The green areas are the formed areas to 

be considered for saliency and the black points are candidate salient points. 

 
Fig.5-5 Detection algorithm on a real sea image  
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   Smoothing the images is an important step. However, some edge data is lost while 

removing the noise. That’s why a suitable smoothing filter should be preferred. The results of 

two types of smoothing filters to ship detection are compared from the previously mentioned 

filters due to their efficiency. One of them is 7x7 median filter and the second one is bilateral 

filter. The results of median filter and bilateral filter on a ship image are shown in Fig.5-6. 

While the original image is noisy, the filtered images are smoothed. However, in the median 

filtered images the edges of ship hull are deteriorated which results in difficulty of detection. 

Besides in bilateral filtered image the ship shape is preserved while the noise is removed.  

   

Fig.5-6 Effect of filtering on ship image a) Original b) Median filtered c) Bilateral filtered 

   Application of different kind of smoothing filters affects the intensity profile and hence 

detection quality. The intensity profile of a real sea image and its filtered forms are shown in 

Fig.5-7. Actually, only one scan line is not enough to show the total effect but only some 

local effects are displayed to show the algorithm.  

   The intensity values of a scan line are changed after the application of smoothing filter 

which affects the detection quality. The scan line after application of median filter and 

bilateral filter are shown in Fig.5-7. In the figure there are a bridge pier and two ships. One of 

the ships is closer and has a clear image while the other is farther and not so clear. The 

important point for detection is shown with the black circle that the median filtered image 

cannot detect the salient point while the bilateral filtered image can. Besides, the median filter 

is truncating the sharp edges while the bilateral filter preserves them. 
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Fig.5-7 Intensity profile of a sea image. Top: Non-filtered, Middle: Median filtered, Bottom: 

Bilateral Filtered 

   The intensity profiles of several scan lines are better to understand the smoothing effect. 

The scan lines between 320 and 355 (vertical image location) of image shown in Fig.5-7 are 

displayed in Fig.5-8 with the filtered versions. In the non-filtered intensity data which is 

displayed in Fig.5-8(a) the surface is generally so noisy that there are many spikes. The edge 

points are shown by black rectangles on the image where there are sudden and big changes in 

intensity data.  In Fig.5-8(b) the effect of median filter is seen. The surface is generally much 

smoother but some of the data in the edge locations are lost which are also shown with black 
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rectangles. In Fig.5-8(c) the effect of bilateral filter is shown. In the figure the surface is 

smooth and the edges are preserved. It can be seen by comparing the black rectangles. 

 
(a) 

 
(b) 
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(c) 

Fig.5-8 Intensity profiles of several scan lines for original and filtered images 

   The detected salient points are shown in Fig.5-9. It can be seen from the figure that bilateral 

filter is improving the detection quality. The detected ships are shown by yellow rectangles. 

Especially the ship which is on the left side is farther and the edges are weaker. This ship is 

better detected after bilateral filter. The positive effect of bilateral filtering can be seen more 

clearly on the tracking data which will be explained in Chapter 6. 

 
(a)                                                                (b) 

Fig.5-9 The detected points in left image after (a) median filter (b) bilateral filter   
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CHAPTER 6 

CLUSTERING THE DETECTED POINTS AND TRACKING CLUSTERS 

6.1 Collision Avoidance and Tracking of Ships 

   The statistical results of maritime accidents make the authorities and researchers to pay 

more attention to increase the navigational safety. It is desirable to have many choices for 

safety navigation which support the applicability of The International Regulations for 

Preventing Collisions at Sea (COLREGs) in which the target object location and course are 

essential information for obstacle avoidance. Fig.6-1 illustrates a crossing situation according 

to COLREGs rules. As it can be seen from the figure the action for the collision avoidance is 

depending on the location, course and the speed of the target vessel. Recently some studies 

are carried out for the application of COLREGs in autonomous surface vehicles. These 

studies assume that the obstacles are already detected and localized and, their algorithm 

makes localization and mapping in accordance with COLREGs rules (Perera et al., 2011; 

Benjamin et al., 2006; Statheros et al., 2008). However, the obstacle detection is a very 

complex step for collision avoidance. Especially, ships automatic detection becomes more 

important for the safety navigation of ships. 

 

Fig.6-1 Crossing (Own vessel- give way) 
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   Another important point is tracking the 3D location of automatically detected ships through 

image sequences to obtain the course of the ship for collision avoidance which is the topic of 

this Section. At the previous Sections the tracking of the ship was carried out by selecting a 

ship point manually. In that case only one point was used for representing a ship. However, it 

is very difficult for a computer to represent an object by one point. But it is possible to reduce 

the number of detected points to represent ships which makes tracking easier for computers. 

In this chapter, the detection algorithm explained in Section 3.2 is implemented for detecting 

obstacles automatically. The detection result will be many points which belong to the same 

object. Then, these detected points are clustered which represent the ship. By this way the 

number of points which represent a ship is decreased. 

6.2 Clustering the Detected Points 

   The outline of the overall proposed method was explained in Chapter 1. It is summarized 

shortly here for capturing the place of clustering in overall context. First, a pair of stereo 

image, which are referred to as left and right images for convenience, are captured and the 

images are rectified. Then, vertical edges – edges are the important information of an image – 

are detected from the reference (left in this case) image after removing the noise from the 

image by a smoothing filter. The correspondences of the vertical edges are found in the right 

image and checked for trueness as explained in Section 3.2. The edges that cannot find the 

clear correspondence are removed. The remaining edges are assumed to be belonging to the 

detected objects. 

   As mentioned above, for a computer it is very difficult to represent an object with one point. 

Especially ship sizes have a great range from 5 meters to 350 meters. That’s why the detected 

points are clustered. When the detection is completed, there will be many points which 

belong to several objects. For a better object representation and tracking performance the 

number of points representing the same object should be decreased as much as possible. 
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Therefore the detected points are clustered with a simple clustering algorithm which uses 

pixel location and disparity data which is calculated after detection. Every cluster is 

represented by values of the coordinates (u, v) and disparity. (u, v) is the coordinates of 

average of points in the cluster. So if a detected point has close values of the cluster, the 

average of them will become the renewal cluster. This is illustrated in Fig.6-2. If the distance 

between the red and green points is less than a certain threshold value, this point will be 

included in the cluster and the average value will be refreshed which represent the renewal 

cluster. When the whole image is scanned we obtain a number of clusters.  

 

Fig.6-2 Clustering the detected points 

The detected points and the cluster of these points can be seen in Fig. 6-3. The clusters are 

mainly located at bow and stern of the ship. 

  

Fig.6-3 Sample of detected and clustered points 

The clustering results of detected points in several illumination conditions are displayed in 

Fig.6-4. 
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Fig.6-4 Clustering results of detected points under various illumination conditions 
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6.3 Tracking by Spatiotemporal Clustering and Feedback to Detection 

   After clustering the salient points, these points are tracked through image sequences. This is 

realized by the same procedure as clustering. The clusters of time t are saved. Then, detection 

is carried out in new image at time t+1. The detected points in the new image are integrated 

into the suitable existing cluster as it is a detected point of time t. When the cluster to which 

the salient points should belong doesn’t exist, a new cluster is generated with them. On the 

other hand, when a cluster isn’t updated several times in succession, it is removed. This 

results in tracking only stably detected clusters and elimination of unstable clusters. 

   The specular property of sea surface results in a noisy concept of sea images. This causes 

some reflectance points on sea surface to be perceived as an object point by computer. 

Despite smoothing by filtering it is not easy to eliminate all noise. It is possible to confirm the 

detection by tracking through image sequences which is improving the detection quality by 

elimination of such false detections. The tracking of 3D locations of certain object points will 

be stable and consistent while the arbitrary sea surface reflectance will change in successive 

images as shown in Fig.6-5.  

 
(a)                                                                        (b) 

Fig.6-5 Changing positions of arbitrary false points (a) image at time t (b) image at time t+1 

Ship 1 Ship 2 

Ship 2 Ship 1 
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   In the figure Ship1 is around 1500 meters in both images while Ship2 is around 1300 

meters. However there are also some falsely detected points whose locations are extremely 

changed. While the false detected points are at about 380 meters and 1400 meters, in the 

following image their locations changed to 900 meters to 3900 meters. In this algorithm, 

feedback of the detection through tracking of the clusters yields elimination of false detected 

points because the false detected points will be out of the range of the clusters. In other words, 

the false point will be far from the cluster center and it will not be included in the cluster. To 

be included in the cluster it should be consistently detected. In Fig.6-6 the calculated 3D 

locations of detected points in Fig.6-3 are displayed in X-Z coordinates. 

 
Fig.6-6 Calculated 3D locations of clusters 

   These points which represent one cluster are tracked through the sequences of images and 

the 3D locations are calculated for every image. In Fig.6-7 the calculated locations of all 

tracked clusters for median filtered images are shown for 300 images which mean tracking of 

30 seconds. 
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Fig.6-7 3D locations of tracked points for median filtered images 

   Implementing the clustering algorithm many clusters are obtained. Despite some few 

clusters are representing the same object they may seem as different clusters. However, 

tracking of these clusters for a dozen of seconds, the calculated 3D locations of these tracked 

points show a relationship between them. Visually it is easy to determine and distinguish the 

objects but it is very difficult for computers. So, we need to improve our clustering algorithm 

including the 3D locations of tracked points and constitute a relationship between the 

different clusters representing the same object as a future study. 

Ship2 

Ship1 

Bridge Pier 

Ship1 Ship2 Ship1 Ship2 
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   Application of bilateral filter is improving the clustering and tracking results as a result of 

better detection. The tracking result of clustered points after bilateral filter is seen in Fig.6-8. 

Comparing the result of tracking with Fig.6-7 we can see the improvement of tracking 

through image sequences. The locations of cluster are not scattered as in Fig.6-8. They form a 

more line like figure which shows the course of the ship. This is very important for collision 

avoidance purpose. 

 

Fig.6-8 3D Locations of tracked points for bilateral filtered images 

   From the tracking results in Fig.6-8 we can visually  constitute the relationship between 

tracked clusters and figure out that there are two ships moving through X axis which is shown 

by the arrow with a certain speed. The ship speeds are estimated as about 18 km/h for Ship1 

and 20 km/h for Ship2.  

   In Fig.6-9 there are some more ship tracking results which are carried out in different 

illumination conditions and different ships. 

 

Bridge Pier 

Ship1 
Ship2 
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Fig.6-9 Tracking results with different image sequences 
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6.4 Tracking (+) and (-) Edges 

   One of the difficult points of ship detection is size of the ships. Nowadays the length of a 

ship can be greater than 300 meters. Therefore, it is a problem to represent one ship with one 

cluster in case of large ships. Therefore the ideal clustering should include stern and bow of 

the ships. Classifying the clusters as (+) and (-) edges can help us to achieve this. There will 

be some clusters -not one- representing the bow and some clusters representing the stern. The 

concept of (+) and (-) edges are illustrated in Fig.6-10. This is actually the concept of 

brightness gradient. If the brightness is changing from higher values to lower values at edge 

point this edge is a (+) edge and otherwise it is a (-) edge. Considering a ship shape in the sea, 

ship bow and stern may be represented as (+) and (-) edges which results in better 

representation of a ship and more accurate tracking results.  

 

Fig.6-10 (+) and (-) edges 

   When the detected points are classified as (+) and (-) according to edge detection, the result 

will be as Fig.6-11. From this figure its seen that tracked clusters which seem as one part in 

Fig.6-8 can be divided into two parts. These represent the detected points in the stern side of 

ship and the bow side of the ship. 
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Fig.6-11 Tracking data of (+) and (-) edges 
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CHAPTER 7 

 ANALYZING THE INFLUENCE OF ENVIRONMENT 

7.1 Background and Problem Statement 

 A ship is in an extremely dynamic environment. There are many parameters which may 

degrade the system quality such as ship motion (rolling, pitching and yawing), vibration due 

to strong wind, and structural vibration. In this section, application of the vision system to 

such a dynamic environment is inspected. At first, a principle to measure 3D location of an 

object under the unstable condition on board ship is described. It includes estimating the 

rolling and pitching angles of the ship to eliminate the negative effects of such movements 

and calculating the relative camera orientations for accurate 3D calculation of detected 

objects. Then, details of sea-sky line detection from sea images to obtain the rolling and 

pitching angle of the ship is described. 

So far, the cameras were considered to be fully fixed and accuracy of the measurement 

was investigated. However, when the cameras are installed on board ship they will be 

exposed to vibration and movements caused by waves which result in camera shake and 

change in camera orientation which has a great effect on the accuracy of position 

measurement. Therefore it is really essential to obtain the camera headings precisely. To be 

able to obtain the camera headings we have to consider the movement of the ship and 

cameras separately. The cameras equipped on board ship are subjected to ship motion such as 

rolling and pitching which are same for both the ship and cameras. This can be eliminated by 

sea-sky line detection. However, they are also exposed to vibration different from ship’s 

general motion and should be considered separately. The effect of vibration is small changes 

in camera orientation which result in huge 3D calculation error and need to be corrected in 

real-time. This can be realized by observing some rigid points on ship’s hull. A method for 
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self-extrinsic calibration of cameras in a dynamic environment by integrating sea-sky line 

detection is explained in this section. 

The main goal of the overall system is detecting ships and measuring their locations and 

finally their velocity and course by using a stereo vision system. However, the following two 

points should be considered in order to equip the stereo vision system on board ship. One 

point is rolling and pitching of the ship by waves. Since this leads to discontinuity and 

irregularity of projected images of target ships, it is difficult to track them. This is illustrated 

in Fig.7-1(a). In addition to that, even if we can track them, using the coordinate system fixed 

to the own ship also makes results of the 3D coordinates of targets discontinuous and 

irregular. Therefore eliminating the rolling and pitching effect of the ship is important. This is 

carried out by adjusting the images so that each sea-sky line in the images becomes 

horizontal and its vertical position in the images keeps constant as shown in Fig.7-1(b). After 

the adjustment of the images it will be possible to trace the ships much more easily. In order 

to realize this adjustment, precise detection of sea-sky lines becomes a key technique. 

  
(a) Original images 

  
(b) Adjusted images by sea-sky lines 

Fig.7-1 Effect of adjustment on sea images 

   Of course, the cameras equipped on board ship are also subjected to ship motions such as 

yawing, surging and swaying. However, change of camera orientations with rolling and 
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pitching greatly affects locations of objects in the image as mentioned above, while a shift of 

camera positions with surging and swaying doesn’t so much. Yawing motion of a ship is not 

so fast and relative positions of the target ship to the own ship are important. Therefore, we 

can ignore yawing motion by defining the world coordinate system based on heading of the 

own ship as indicated in Chapter 3.    

   Another point is small change of camera orientations. Equipment on board ship is in severe 

conditions. Therefore, there is an enough possibility that vibrations from an engine, shock 

caused by waves or warp of ship’s hull change orientations of cameras a little even if the 

cameras are firmly fixed on the ship’s hull. We have to measure positions of targets at a 

distance of a few kilometers from the point of view of prevention of sea accidents. On the 

other hand, a baseline length is 10 to 20 meters at most because the cameras should be set at 

the both side of the ship and the baseline length is limited with the width of the ship. In this 

study, we measure targets at a distance about a hundred times of the baseline length. 

Therefore, a very small change of camera orientation can cause a large error of 3D 

measurement as explained in Section 3.6. From these reasons, it is necessary to measure 

rolling and pitching angles of ships, and precise orientation of cameras to the ship’s body. 

7.2. 3D Measurement in Dynamic Environment 

7.2.1 Coordinate Systems 

   In order to measure 3D locations of objects with a stereo vision system, intrinsic and 

extrinsic parameters of cameras are required which are explained in Chapter 2. The intrinsic 

parameters are related to camera internal geometry and they express mapping from 3D 

coordinates in the camera coordinate system which is fixed on the camera to image 

coordinates. On the other hand, extrinsic parameters are locations and orientations of the 

cameras in the world coordinate system. We have to define some coordinate systems and 

their relations as shown in Fig.7-2 which is needed to for the extrinsic camera parameters. 
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This is because the ship is in a dynamic environment and the coordinate systems have some 

relative changes due to rolling, pitching and yawing of ship and cameras which affect the 

camera extrinsic parameters and 3D calculation. 

 

Fig.7-2 Coordinate systems in case of dynamic environment 

   First, we define the XYZ-coordinate system (world coordinate system) which is independent 

from cameras and ship body with Z axis fixed and points to the forward (through the bow of 

ship). In this coordinate system XZ plain is horizontal, Y axis is vertical to the sea surface and 

X axis is parallel to the sea-sky line. Then we define XSYSZS coordinate system which is fixed 

to the ship body. When the ship is in stable condition (no rolling and pitching) the XYZ and 

XSYSZS coordinates are overlapped. XSYSZS coordinate system rotates around Z axis (rolling) 

at first, then, rotates around X axis (pitching) according to the motion of ship affected by 

waves. Since the objective of the proposed system is detection of other ships that have risk 

for a collision, knowing a relative direction and distance is sufficient and a yawing angle of 

the ship is not needed. This movement of the XSYSZS coordinate system is same with the left 

and right cameras for which the coordinate systems xlylzl and xryrzr are defined and fixed to 

the cameras. The cameras are located parallel to each other at (
LB/2, 0, 0) and (LB/2, 0, 0) on 

the XS coordinate of the XSYSZS coordinate system as shown in Fig.7-2. 

The main objective is to obtain 3D locations of the targets in the XYZ coordinate system. 

In order to achieve this, the locations and orientations of both cameras (i.e. extrinsic 
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parameters) in XYZ coordinate system should be known. At this time, two components of the 

camera orientations should be considered separately: posture of the ship, that is, relative 

rotation of XSYSZS coordinate system and XYZ coordinate system, and small movement of 

cameras, that is, cameras orientation in the XSYSZS coordinate system. Let’s denote the ships 

rolling and pitching angles in XYZ coordinate system as θZ and θX, and cameras rolling, 

pitching and yawing angles in XSYSZS coordinate system as (z, (x and (y, respectively. 

Although there are two cameras, the same theory can be applied to both. Therefore, we 

denote them without distinction in the following sections. 

The algorithm flowchart for 3D calculation in a dynamic environment is shown in Fig.7-

3. Firstly, some stable points on ship hull are determined and their 3D coordinates are 

measured precisely. Then these points are tracked through image sequences for calculating 

camera orientations to ship body. Meanwhile, the sea-sky line is detected and used for 

calculating ships posture in world coordinates. Therefore, the detected ships 3D locations can 

be calculated by eliminating the variations occurred due to dynamic environment. These 

procedures will be described closely in the following sections.  

 

Fig.7-3 Algorithm flowchart for dynamic environment 
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7.2.2 Camera Orientation to the Ship 

   The relation between the ship coordinates and the image coordinates is expressed by  

  � ���1� = @4[X −;] <7�8�9�1 >                                                                               (7-1) 

which is very similar to the formulations explained in Chapter 2.3 and 2.4 but in this case 

world coordinates are replaced with ship coordinates Xs, Ys, Zs and R is a rotation matrix 

between the camera and ship coordinates such as  

4 =  4�(Y�)4�(Y�)4(Y)                                                                                          (7-2) 

where Ri((i) (i =x, y, z) are componential rotations of R around axis i by an angle of (i . The 

rotations (i are again between the camera coordinate system and ship coordinate system.  

   These intrinsic parameters K and extrinsic parameters R and T can be obtained by observing 

some known pairs of   (XSi, YSi, ZSi) and (ui, vi) i=1,2,…,N. Since the number of parameters is 

eleven and Equation (7-1) gives two equations by eliminating �, N must be equal to or larger 

than 6 when all the parameters are unknown. Once the parameters K and t are obtained, we 

can calculate the rotation matrix R by observing two or more known pairs of (XSi, YSi, ZSi) and 

(ui, vi) even if the camera rotates due to vibration etc. This can be realized by detecting at 

least two stable points on ship’s hull. 

7.2.3 Ship’s Posture 

   In order to calculate θZ and θX, we detect the sea-sky line in the camera image and obtain its 

slope θH as shown in Fig.7-3. The sea-sky line is formulated as  

� = tan \^(� − ��) + �^                                                                                                 (7-3) 

where the parameters can be seen from Fig.7-4. 

The following equations are expression of each row of Equation (2-6) separately. 

�� = ���	 + ��	 + ��
	                                                                                                  (7-4) 



81 
 

 
Fig.7-4 Sea-Sky line and its parameters 

�� = �!�	 + ��
	                                                                                                              (7-5) 

� = 
	                                                                                                                                 (7-6) 

Instituting Equation (7-6) in (7-4) and  (7-5) we can express them as 


_(� − �0) = ���_ + ��_                                                                                                   (7-7) 


_� = ���_ + �0
_                                                                                                             (7-8) 

Then instituting Equation (7-3) into Equation (7-8) we obtain 


_{tan \`(� − �0) + �`} = ���_ + �0
_                                                                            (7-9) 

Reshaping Equation (7-9) we obtain 

�� tan \^ �	 + (�� tan \^ − �!)�	 + (�^ − ��) 
	 = 0                                                (7-10) 

The slope yc/xc means the reverse of camera rolling angle, expressed as 
    − tan(\b + Y) = cd egh ijck5ld egh ij                                                                                       (7-11) 
and the slope yc/zc means the reverse of camera pitching angle, expressed as 

− tan(\m + Y�) = !j5!.ck5ld egh ij                                                                                      (7-12) 

Finally the rolling angle θZ of the ship in the XYZ coordinate system is obtained by 
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and the pitching angle θX can be calculated by   
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tan 01                                                                            (7-14) 

where vH is v coordinate of the sea-sky line at u = u0. (x and (z are assumed to be small 

enough. 

7.3 Sea-sky Line Detection 

7.3.1 Related Works 

   In literature, horizon detection studies are mainly classified into two approaches; region-

based and edge-based. For the flight autonomy usually region-based methods are preferred 

due to the high intensity differences between the sky and ground image data which makes it 

possible to model the region. Some instances of this approach are based on covariance 

matrices and Eigen values (Ettinger et al., 2003), and linear discriminant analysis (Todorovic 

and Nechyba, 2004). In contrary the proximity of intensity values of sea and sky in images 

makes it difficult to model the region; therefore edge-based approach is preferred for this 

study. 

   Bouma et al. (2008) applied multi-scale edge detection on gray-scale and infrared images 

for the purpose of sea-sky line detection. However, the method they used for the horizon 

detection is not explained. Besides the horizon line is assumed to be a straight line. In case of 

a ship or an object lying through sea-sky line may affect the algorithm and there is not any 

example of such situation. All the applications were carried out in clearly strait sea-sky line 

images. Ji et al. (2009) used horizontal projection to reduce the search area and canny edge 

detector followed by a kernel Hough transform which operates on real-time speed. Jiang et al. 

(2010) applied histogram analysis and linear line fitting on gray-scale image for the same 

purpose. Fefilatyev et al. (2006) exploited machine learning techniques such as support 

vector machines for horizon detection. In their study they used very few images (only 20 

images) to teach the sea-sky line to the system and the experimental images were so clear. In 

case of complex situations which are not taught to system will result in error. 
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   The mentioned studies are usually using clear sea images where the sea and sky are easily 

separable. They also don’t consider about the rolling and pitching of the ship and effect of 

different illumination conditions. In this study we show that an algorithm which can detect 

the sea-sky line in horizontal situation may fail when the ship is rolling. And the effect of 

change in contrast due to the chance of illumination conditions is considered. 

7.3.2 Outline of Detection Method 

   The sea-sky line detection algorithm of this study is as follows: Firstly the image is 

smoothed with the bilateral filter. Then Sobel filtering is applied to obtain the edge data. The 

sea-sky line is assumed to be a linear line in the image. Therefore, the edge data obtained by 

the Sobel filtering is used for Hough transformation for linear lines which result in the 

detection of the sea-sky line.  

7.3.3 Edge Detection 

   In order to detect the sea-sky line, we must firstly detect edges from the image. Edge 

detectors respond to local changes in images. Mostly used edge detectors are Sobel, Prewitt, 

Roberts and Canny edge detectors. In this study Sobel edge detector is used for obtaining 

horizontal, vertical and diagonal edges due to its simplicity and effectiveness. The Sobel 

operator performs a spatial gradient measurement of image brightness values. It computes the 

gradient at each pixel by 3x3 convolution kernels which are shown in Fig.7-5. The pixel is 

decided to be an edge when the gradient value is greater than a threshold value. 

 
Fig.7-5 Sobel edge detector convolution masks; (a) vertical, (b) horizontal, (c) and (d) 

diagonal 

   The sea images are very noisy due to specular property of sea surface. And it causes 

abundant edges on sea surface. Despite the sky and sea surface visually appear so similar, 
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edge detection results are completely different as shown in Fig.7-6 that at sea surface there is 

abundant of edges while at sky there are only a few edges. Therefore, a good smoothing filter 

is crucial before applying Sobel filter. 

 

Fig.7-6 Result of Sobel edge detection on non-filtered image  

   Another point is the edge detection effect in case of the rolling of the ship. Firstly, only first 

two Sobel masks shown in Fig.7-5 which are for horizontal and vertical edges are applied. 

The application of this Sobel filter is shown in Fig.7-6. We can see that the edges which are 

on the sea-sky line are nicely detected. However in case of the ship rolling, the sea-sky line 

lie in a diagonal form in the image. In this case the edge detection of only horizontal and 

vertical edges are not sufficient and the edges on the sea-sky line cannot be detected as shown 

in Fig.7-7 (a). This results in false detection of sea-sky line as shown in Fig.7-7(b) which will 

be explained in the following parts of this Section.  

 

Fig.7-7 Edge (a) and sea-sky line (b) detection result in case of rolling of ship 
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   That’s why the diagonal components of the Sobel filter is included which are shown in 

Fig.7-5.  The edge detection result including diagonal components is shown in Fig.7-8. In this 

case the edges on the sky are totally eliminated. 

 

Fig.7-8 Sobel edge detection with horizontal, vertical and diagonal components 

7.3.4 Effect of Smoothing Filters to Edge Detection on Sea Images 

    The smoothing effects of some filters to edge detection are compared. This is different 

from the edge detection results explained in Chapter 5 which uses only horizontal and vertical 

edges. Here the edge detection is using the diagonal components also as shown in Fig.7-5 and 

the situation of rolling of a ship is also considered. The compared filters are: 

1. Gaussian filter, 

2. Multi-scale Gaussian filter,  

3. Median filter, and  

4. Bilateral filter. 

Application of a 3x3 Gaussian filter to a horizontal image, a clockwise rotated image and a 

counter-clockwise rotated image are shown in Fig.7-9. 

  

Fig.7-9 Smoothing effect of Gaussian filter  
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   Multi-scale Gaussian filtering is applied as iteration of Gaussian filters. So, we applied 3x3 

Gaussian filter two more times and obtained the 2nd and 3rd scales. In Fig.7-10 multi-scale 

filtering and edge detection results for horizontal and rotated images are seen. Multi-scale 

Gaussian filtering is seen to be very effective to remove noise caused by sea surface 

reflectance. That is good for sea-sky line detection. However, its effect is not positive for the 

object detection purpose because the object edges are weakened by smoothing.  

 
(a) 2nd scale 

 
(b) 3rd scale 

Fig.7-10 2nd and 3rd scale Gaussian filtered images and edges 

   Median filter is a non-linear filter which is also very effective for removing sea surface 

noise. The result of a 7x7 median filter and Sobel edge detector is seen in Fig.7-11. 
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Fig.7-11 Smoothing effect of median filter and obtained edges 

   Bilateral filter is a new type of filter comparing to the above mentioned filters. It is a kind 

of edge preserving filter as mentioned in Chapter 5. Recently real-time speed of bilateral 

filter is achieved (Yang et al., 2009). The result of smoothing effect of bilateral filtering is 

shown in Fig.7-12. The advantage of bilateral filter is its edge preserving property.  

 

Fig.7-12 Smoothing effect of bilateral filter and obtained edges 

   Multi-scale Gaussian filter and median filter are very good for smoothing noise of sea 

surface. However, we have to consider the object detection purpose, as well. It is possible to 

use different filters for smoothing and for detection. However, filtering is an expensive 

operation and one filter is preferred if it is sufficient for both purposes. The bilateral filter is 

preferred in this study due to property of preserving edge data which is necessary for good 

object detection as explained in Chapter 4 and its sufficiency for noise removal. 

7.3.5 Adaptive Threshold for Sobel Edge Detection 

   During the experiments we observed a problem of contrast change in the images. The 

amount of light is changing in different weather conditions and it directly affects the contrast 

of the image which results in the deterioration of Sobel edge detector. A threshold value is 
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needed for the edge detection by Sobel filter. For the high contrast images this threshold 

value should be high and for the low contrast images it should be low.  

   An adaptive threshold is applied to solve this problem. Firstly the image contrast is 

calculated. Image contrast is the difference between the lowest and highest brightness values. 

Therefore, firstly the lowest and highest brightness values are found and the difference is 

calculated. The value of this difference is used for determining the threshold value for Sobel 

filter. One of the three levels (25, 50 or 75) of threshold is chosen up to the calculated image 

contrast.  

   The effect of the adaptive threshold is shown in Fig.7-13. In Fig.7-13 (a) and (b) the 

threshold value is 75. In high contrast image the edges are detected nicely but in low contrast 

image no edges could be detected as in Fig.7-13 (b). In Fig.7-13 (c) and (d) the threshold 

value is 25. In high contrast image many edges are detected while in low contrast image 

edges are optimally detected. 

  
(a)                                          (b) 

  
(c)                                                (d) 

Fig.7-13 Relation of image contrast and edge detection; (a) High contrast, high threshold (b) 

Low contrast, high threshold (c) High contrast, low threshold (d) Low contrast, low threshold 
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7.3.6 Hough Transform and Sea-sky Line Detection 

   The Hough transform is one of the most popular algorithms for extracting straight lines 

from an image (Duda and Hart, 1972). The algorithm mainly processes a mapping between 

an image space and a parameter space. Each edge point in the image is mapped to the 

parameter space to vote for the parameters. The line is represented as 

HH vvuur �� cos)(sin)( 00 
�

�                                                                           (7-11) 

where the parameter θH is the angle of the line and r is the distance of the line from the image 

center. The range of θH may span between [
)/6, π/6] due to the possible maximum rolling 

angle of a ship. It is limited to around 30 degrees depending on the ship type (France et al., 

2001; Shen et al., 2005). r may span around the length of image diagonal. These parameters 

are discretized to accumulator cells and every (u, v) value of edges is mapped to this 

parameter space and collected in the accumulator cells. The corresponding parameter values 

for the peak values of the accumulator cell result in the detection of the straight line. 

Detecting the sea-sky line we obtain the two parameters θH and vH which will be used for 

extrinsic calibration of the cameras as shown in Section 7.2.3. The results of sea-sky line 

detection for horizontal and rolling ships is illustrated in Fig.7-14. The green lines are the 

detected sea-sky line. In figure the calculated rolling angle of the sea-sky line is -9 degrees 

(minus means clockwise rotation) in the middle column images and 14 degrees in the right 

column images. 

 
(a) 3x3Gaussian filtered 
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(b) 2nd scale 3x3 Gaussian filtered 

 
(c) 3rd scale 3x3 Gaussian filtered 

 
(d) Median filtered 

 
(e) Bilateral filtered 

Fig.7-14 Hough transformation results 

   The results show the efficiency of the sea-sky line detection algorithm in horizontal and 

rotated images. 

7.3.7 Influence of Rolling and Pitching Angles and Their Errors 

   This section describes influence of errors in sea-sky line detection. At first, ship’s rolling 

angle �Z is almost 
(�H �(z) from Equation (7-13) since �u is nearly equal to �v and � is 

small enough for a usual camera. Therefore, accuracy of �Z is mainly decided by that of �H 
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(slope of the sea-sky line).  Next, since �v of a high definition video camera with a lens of 70 

degrees of view angle is about 1370 pixels, it is found that an error of 1 pixel in vH causes an 

error of 0.04 degrees in �X from Equation (7-14) and it is very small. 

   Our objective is to measure 3D locations of a target ship. Fig.7.15 shows a calculation of 

influence of errors in rolling and pitching angles. The solid line indicates a track of the target 

ship. The own ship is rolling with an amplitude of 10 degrees. The rolling period is 8 seconds. 

It is also pitching with the same amplitude, but the period is 12 seconds. Circles in the figure 

show calculated locations in case that the rolling and pitching motions are neglected. It is 

difficult to estimate the course of the target ship from these erroneous locations. Crosses in 

the figure indicate locations calculated using rolling and pitching angles which have a 

random error of +1 or 
1 degree. It is found that 1 degree of error does not affect the 

calculation of 3D locations so much and we can achieve this level of accuracy from the above 

argument. 

 

Fig.7-15 Influence of rolling and pitching angles 
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   Obtaining the camera headings is a crucial step to be able to detect and trace the ships 

accurately using a stereo camera system equipped on board ship. This section described a 

method to realize it in a dynamic environment of the sea. The proposed method will realize 

precise measurement of 3D locations of target ships with a stereo vision system on board ship 

and we intend to confirm it by some total experiments on the sea as a future work. 
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CHAPTER 8 

FURTHER CONSIDERATION ON DETECTION AND TRACKING 

8.1 Detection 

   So far, the detection algorithm is applied on a red channel of a color image. In this section, 

the performances of detection algorithm on different channels of same image are considered 

to improve the detection quality. That’s why the gray scale and histogram equalized gray 

scale of the color image are obtained. Transforming an image from color to gray scale is a 

trivial job using the following equation. 

Gray = 0.3R + 0.59G + 0.11B                                                                                       (8-1) 

where R, G and B are red, green and blue components of color image (Pratt, 2007).   

   Histogram equalization is a method to enhance the visual details of an image. The image is 

enhanced by applying a transformation to the histogram values. The RGB color image, its red 

channel, gray level and histogram equalized gray level images are shown in Fig.8-1. 

 
(a)                                       (b)  

 
(c)                                         (d) 

Fig.8-1 Images of different channel (a) RGB image (b) Red channel only (c) Gray level (d) 

Histogram equalized gray level 
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   The magnified images of Fig.8-1 are shown in Fig.8-2 to be able to see the effect on ship. 

 
(a)                                                      (b) 

 
(c)                                                      (d)  

Fig.8-2 Magnified ship images (a) Original (b) Red channel only (c) Gray level                    

(d) Histogram Equalized gray level 

From Fig.8-2 we can figure out that gray level and histogram equalized gray level images are 

visually better than only red channel. The histograms of gray scale image intensity data and 

histogram equalized gray scale image intensity data are shown in Fig.8-3 to see the effect of 

histogram equalization. 

 

 

Fig.8-3 Histograms before and after equalization 
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   Bilateral filter is applied to these images to eliminate the noise as explained in earlier 

chapters. The result of filtering to gray scale and histogram equalized gray scale images are 

displayed in Fig.8-4. 

 

Fig.8-4 Application of bilateral filter to gray scale and histogram equalized image 

The intensity data of a sea image (between orange dashed lines) is illustrated in Fig.8-5 for a 

better understanding of effect of processes.  
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Fig.8-5 Intensity profiles of processed images 
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   To show the effect of mentioned processes on detection algorithm only one scan line (327th 

row) of the images (yellow dashed line in Fig.8-5) are displayed in Fig.8-6. In the figure, 

vertical axis is the intensity data and the horizontal axis is pixel location through horizontal 

scan line. 

 
(a) 

 
(b) 
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(c) 

 
(d)  
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(e) 

 
(f) 

Fig.8-6 Effect of processes on detection algorithm (a) Red channel only (b) Gray scale (c) 

Histogram equalized gray scale (d) Red channel bilateral filtered (e) Gray scale bilateral 

filtered (f) Gray scale histogram equalized bilateral filtered 

   In Fig.8-6 we see that the intensity value of only red channel and gray scale images are 

almost same. Besides, the intensity gradients at edge locations are greater in the histogram 

equalized images which is expected to have positive effect on detection. The intensity 
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gradient change at edge locations are shown with green rectangles in Fig.2-7 (e) and (f). The 

detection results of some sea images are shown in Fig.8-7. 

 

 

 
Fig.8-7 Detection results on (Top) Red channel only (Middle) Gray scale (Bottom) 

Histogram equalized gray scale 

   We can figure out that the detection result in this image is increased by histogram 

equalization but it is not as much as expected. The effect of histogram equalization is needed 

to be examined for different kind of sea images with different illumination conditions. 
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Actually, histogram equalization is using the obtained images under some illumination 

conditions and it cannot change the quality of the obtained image. But it can make it to view 

better for human visual perception. We may say that it is not same for computers. For the 

existing experimental image data the effect of histogram equalization is not as expected. 

Some more analyses with different illumination cases are considered as a future study. 

8.2 Tracking 

  After the detection clustering is carried out and the 3D locations of these clusters are tracked 

through image sequences as explained in Chapter 6. The tracking results of red channel 

image, gray scale image and histogram equalized gray scale images are shown in Fig.8-8. 
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Fig.8-8 Tracking results of red channel (top), gray scale (middle) and histogram equalized 

gray scale (bottom) images 

   The tracking result of histogram equalized image is not as expected despite the detection 

result is better. The detected 3D locations are too much scattered. One reason of this result 

may be clustering algorithm. The number of detected points is increased in histogram 

equalized images. The effect of clustering algorithm on histogram equalized images may be 

studied later to increase the tracking accuracy. And the reason of bad tracking results should 

be investigated as a future study. 

8.3 Effect of Some Matching Strategies on Tracking 

   The effects of some matching strategies are considered for increasing the matching quality 

and 3D location calculation. In Fig.8-9 we can see three images of a ship which are original 

(non-filtered) image, bilateral filtered image and median filtered image.  
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Fig.8-9 Non-filtered (top), bilateral filtered (middle) and median filtered (bottom) images 

   In the stereo matching corresponding point is searched to find a region which surrounds a 

detected point as the red square in the figure. We can see that filtering is affecting the 

intensity data which belongs to ship area and cause some deterioration of the ship shape. The 

effect of deterioration changes depending on the filter behavior. For example, median filter 

has more deterioration than bilateral filter which can be seen in Fig.8-10.  

   In this stereo algorithm the left image is the reference image. Filtering is important for the 

detection purpose. Therefore, the left image is filtered and detection is carried out to obtain 

the object points. Then these points are found in the right image by a similarity search as 

explained in Chapter 3. In this case the situation of right image should be considered. It can 

be filtered or non-filtered. Therefore, the matching between right and left stereo pair images 

is considered with respect to filtering. Three matching situations may be considered:  

1. Filtered left image to non-filtered right image 

2. Filtered left image to filtered right image 

3. Non-filtered left image to non-filtered right image. 

   In case of non-filtered to non-filtered image matching, the detection is carried out after 

filtering the image. The location of detected point is used in non-filtered form of the left 
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image. Filter is bilateral filter through this section. Therefore the filtered image means the 

bilateral filtered image. The tracking results of these three situations are shown in Fig.8-10. 
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Fig.8-10 Tracking results of different matching situations 

   Inspecting the tracking results of different matching situations, it is seen that there is not a 

certain difference between them. One reason is that deterioration effect of bilateral filter is 

not much. However, in case of median filtered images a significant difference is observed 

which is displayed in Fig. 8-11. 
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Fig.8-11 Tracking results for median filtered images 

   In the case of median filtered images the result of matching with non-filtered to non-filtered 

images is better. The main reason is that the median filtered images are deteriorated as 

explained in 8.3. Therefore, an image patch which is changed by median filter is searched 

through the right image. This may result in finding the corresponding point with a little bit 

error. When matching is carried out on both non-filtered left and right images, the image 

patches will be more similar (except for the difference caused by the different viewpoints of 

cameras). This situation is illustrated in Fig.8-12. The image patch around ship’s bridge is 

compared in median filtered and non-filtered images. In the upper row of the figure median 

filtered left image and non-filtered right image are shown. In the lower row of the figure the 

left and right images are non-filtered. It is seen that the image patches of lower row is more 

similar comparing to image patches of upper row. Therefore, we can find the corresponding 

point with smaller error and the 3D calculation result will also be better which can be seen 

from Fig.8-11. 
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Fig.8-12 Effect of median filter to stereo matching 

   Considering the different types of filters and speed performance, non-filtered image to non-

filtered image matching can be preferred. In this case the right image is not filtered because 

the computational cost is decreased and the computational speed is increased. 
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CHAPTER 9 

CONCLUSION AND FUTURE RESEARCH 

   Obtaining the environmental data is very important for safety navigation. Statistical marine 

casualty analyses show that the existing navigation tools are not sufficient. And some tools 

are needed to improve the navigational information. Digital cameras are one of the most used 

tools for autonomous navigation of robots especially in the land based applications. Of course 

there are other sensors and the data fusion of these sensors is carried out and more reliable 

environmental data is obtained for localization and mapping of the robots. This can be used 

for ships, as well. In case of marine environment there are some disadvantages and 

advantages comparing to land based applications. For example sea surface glare is one of the 

problems which have great effect on object detection. Besides, sea images in open sea area 

are lack of texture. This is not good for camera self-calibration or stereo camera rectification. 

However, it is an advantage for ship detection because the ship can be easily separated from 

background.   

   In this study we described a method to detect, measure, and track ships from sea images 

using stereo vision for the purpose of safe navigation. The algorithm used in the method is 

mainly as follows. 

1. Detect the point at which the intensity of the image significantly changes in the 

horizontal direction as salient points. 

2. Find the corresponding points of the salient points between a pair of stereo images. 

3. Measure the 3D location of the detected points. 

4. Cluster the points. 

5. Track the clusters through image sequences. 

   The merit of using stereo vision is not only that it can measure the 3D locations of objects, 

but also it is useful for the detection of the objects. That is, a corresponding problem between 
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a pair of stereo images can distinguish clear objects, such as ships, from unclear objects, such 

as waves. In addition, tracking the objects makes the distinction clearer because ships can 

continuously be detected through image sequences. 

Main contributions of the study can be summarized as: 
 

1. A wide baseline stereo configuration is studied for detection and tracking purpose. It 

is for capability of long range measurement. There are a few stereo vision studies for 

maritime field which are applied for autonomous surface vessels. These vessels are 

usually small boats which have high maneuvering capability. The maximum baseline 

was 1 meter for these studies which is planned to work in 400 meter range. This is 

because that range is sufficient for that kind of vessels to maneuver. However, the 

merchant vessel size has a very wide range between around 50 meters to 350 meters. 

And the maneuvering is more time taking. That’s why longer range detection is 

necessary. Besides, the ship size is large and 8 meters baseline camera set-up is 

feasible. 

2. The 3D location measurement is improved by applying sub-pixel matching and low-

pass filtering. It is possible to calculate the range of ship with 1% error with a 

720x480 resolution image at around 2500 meters with 10 meters baseline stereo 

configuration and 5000 meters with 20 meters baseline stereo configuration which is 

sufficient for locating ships. When the distance is decreased the accuracy is increasing 

due to quantization of images. 

3. A theoretical explanation for the estimation of the accuracy of the 3D calculation in 

various conditions (view angle of the camera, baseline length, resolution of the image, 

distance of the target ship, etc.) is carried out. This result enables us to choose proper 

parameters to configure the stereo system for practical use.  
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4. The sea surface has a very dynamic texture which makes it very difficult to apply 

computer vision algorithms. Even more the glares on sea surface are big disadvantage 

comparing to land based computer vision applications. Effects of some different 

smoothing filters are examined for sea images to eliminate noise due to mentioned 

disadvantages.  

5. Effect of the mentioned smoothing filters on object detection and horizon detection is 

shown. A tradeoff between smoothing the sea surface and detecting the objects is 

displayed. A smoothing filter which is preferable for both purposes is recommended. 

6. A new clustering algorithm is proposed for clustering detected points. The clustering 

algorithm is capable of tracking the clusters through image sequences. The tracking 

results of clusters are analyzed. 

7. The feedback of the detected points of new image to the previous clusters is 

constituted. Therefore, the false detections due to sea surface glare are eliminated 

which means the improvement of detection algorithm, as well.  

8. The detected edges are classified as (+) or (-) edges for increasing the tracking 

accuracy. 

9. A horizon detection algorithm which is invariant to rotation (by ship rolling) and 

illumination changes is shown.  

10. An adaptive threshold is proposed for improving edge detection in different 

illumination situations. 

11. Effect of ship movement and vibration to stereo calculation is studied. A methodology 

is proposed for elimination of such environmental effects on stereo system which is 

based on self-extrinsic calibration of cameras. 

12. The detection algorithm is examined in color image, gray scale image and histogram 

equalized gray images. Effect of tracking is also shown.  
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13. The matching  between stereo pairs or image sequences is examined for  

* Filtered image to non-filtered image 

* Filtered image to filtered image 

* Non-filtered image to non-filtered image 

Non-filtered image to non-filtered image matching (after detection) is found to be more 

effective for tracking the 3D locations of detected points. Even more it eliminates the 

necessity for filtering the second image. 

   Our experimental results indicate the potential of the proposed method, although there are 

some points to improve. First, the accuracy of the 3D measurement is sometimes insufficient, 

as it heavily depends on the precise calibration of a stereo camera system. That is, we must 

obtain intrinsic parameters such as the focal length and lens distortions of the cameras and 

extrinsic parameters, which include the locations and orientations of the cameras. Second, 

detected points are solely clustered and tracked by closeness of coordinates and disparity in 

the image. Using a Kalman filter or particle filter is considered to estimate the movement of 

the ship which will improve the tracking and will enable estimation of a ship’s future course.  

   The rainy, foggy weather conditions and day time, night time situations are in consideration. 

A similar stereo configuration with infrared cameras is planned to investigate such kind of 

situations. Besides, we would like to carry out the same stereo configuration with wide angle 

lenses (~180°) which may obtain more visual information and monochrome camera to 

compare the efficiency with the current study.  

   Ship size is one of the problems for detection. It may span between 15 meters to 350 meters. 

In case of a large ship the distance between detected points may be very large.  It is important 

for forming the instantaneous map. Making a map of environment which includes the 

tracking data of the ship and the whole ships 3D shape of that moment as shown in Fig.9-1 is 

planned as a future work.  
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Fig.9-1 Map of ship shape and tracking data  
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