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Abstract 

Speech recognition has been used recently in various applications such as automatic 

transcript, website indexing, navigation, mobile systems, ubiquitous systems, and 

robotics as a human interface. Large vocabulary continuous speech recognition 

(LVCSR) with acoustic and language models is too resource-hungry and 

power-sensitive for software applications. Hardware implementation by very large scale 

integrated circuit (VLSI) or field programmable gate array (FPGA) is demanded 

especially for use in mobile equipment and intelligent robots because of advantageous 

high processing speed and low power consumption.  

This dissertation reports VLSI designs for large vocabulary real-time continuous 

speech recognition based on context-dependent Hidden Markov Model (HMM). As the 

background of this research area, the objective of this study and an overview of this 

dissertation are presented in Chapter 1. Then issues related to the VLSI implementation 

for real-time continuous speech recognition are noted in Chapter 2. The main issues are 

explained as four parts: 1) large-vocabulary are needed to support a higher word-cover 

rate. 2) low-power is required for longer working time and lower temperature, 3) 

high-speed is demanded for a more comfortable human interface, and 4) small area 

which means less recourse would be cost. Algorithm optimization and specialized 

architectures are proposed to solve these problems. 

In Chapter 3, some algorithm optimizations are presented: beam pruning using a 

dynamic threshold to cut the workspace and memory bandwidth for sort processing; the 

modified unigram language model which eliminated the updata process for 

word-internal transitions; two-stage language model searching to reduce cross-word 

transitions which reduce the memory access greatly. The accuracy degradation of the 

important parameters in Viterbi computation is strictly discussed. These optimizations 

are utilized in all the three chips introduced in the following chapters. 

Chapter 4 describes the first chip (HMM1) we implemented for 60-kWord real-time 

continuous speech recognition. It includes a cache architecture using locality of speech 

recognition, as some of the data that has been used in the current frame may be reused 

in the following frames, on chip caches are introduced for keeping some of them to 

reduce the external memory access, the specialized cache architecture achieve a hit-rate 
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of 75%; a highly parallel Gaussian Mixture Model (GMM) architecture based on the 

mixture level; a variable-50-frame look-ahead scheme; and elastic pipeline operation 

between the Viterbi transition and GMM processing. Results show that our 

implementation achieves 95% bandwidth reduction (70.86 MB/s) and 78% required 

frequency reduction (126.5 MHz) comparing to the referential Julius [1] system. The 

test chip, fabricated using 40 nm CMOS technology, contains 1.9 M transistors for logic 

and 7.8 Mbit on-chip memory. It dissipates 144 mW at 126.5 MHz and 1.1 V for 60 

kWord real-time continuous speech recognition.  

Chapter 5 describes the second chip (HMM2) we designed for 60-kWord real-time 

continuous speech recognition. It features a compression–decoding scheme to reduce 

the external memory bandwidth for Gaussian Mixture Model (GMM) computation and 

a 4-path Viterbi transition units. We optimize the internal SRAM size using the 

max-approximation GMM calculation and adjusting the number of look-ahead frames. 

The test chip, fabricated in 40 nm CMOS technology, occupies 1.77 mm × 2.18 mm 

containing 2.52 M transistors for logic and 4.29 Mbit on-chip memory. The measured 

results show that our implementation achieves 34.2% required frequency reduction 

(83.3 MHz), 48.5% power consumption reduction (74.14 mW) for 60 k-Word real-time 

continuous speech recognition compared to the previous work while 30% of the area is 

saved with recognition accuracy of 90.9%. It can maximally process 2.4× faster than 

real-time at 200 MHz and 1.1 V with power consumption of 168 mW.  

Chapter 6 describes the third chip (HMM3) we designed for 60-kWord real-time 

continuous speech recognition. It includes a 8-path Viterbi transition architecture to 

maximize the processing speed by cutting the on-chip latency and adopts tri-gram 

language model to improve the recognition accuracy. A two-level cache architecture is 

implemented for the demo system to cut the off-chip latency. Measured results show 

that our implementation achieves 25% required frequency reduction (62.5 MHz) and 

26% power consumption reduction (54.8 mW) for 60 k-Word real-time continuous 

speech recognition compared to the previous work. The chip can maximally process 

3.02× and 2.25× times faster than real-time at 200 MHz using the bigram and trigram 

language models, respectively. 

Finally, the conclusion of this study is presented in Chapter 7. This thesis presents the 

VLSI designs for low-power speak-independent large vocabulary real-time continuous 
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speech recognition based on context-dependent Hidden Markov Model (HMM). The 

work contributes to achieve a comfortable human interface for mobile systems and 

robotics. 

 

Keywords: large vocabulary continuous speech recognition (LVCSR), Hidden Markov 

Model (HMM), speak-independent, 40nm VLSI, Low power, high speed. 
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Chapter 1 Introduction 

1.1 Background of Research Area 

Speech recognition based on Hidden Markov Model (HMM) can provide high 

recognition accuracy, thus has been used recently in various applications (Fig. 1.1) such 

as automatic transcript, website indexing, navigation, especially in mobile systems, 

ubiquitous systems, and robotics as a human interface. High-end personal computers 

can accommodate speech recognition task well even with large acoustic and language 

models [1]. However, such methods are not applicable for mobile systems while 

considering the physical size and power consumption [2]. Additionally, they are 

unsuitable for next-generation applications such as “audio mining”, which request the 

recognizer to deliver results at rates that are 10×, 100×, or 1000× faster than real-time [3, 

4]. Hardware implementation by very large scale integrated circuit  (VLSI) or an field 

programmable gate array (FPGA) is a good approach to satisfy these demands because 

of its good processing speed and power consumption. 

There have been several hardware-based speech recognizers. Some of them only 

adopted hardware accelerator or a coprocessor for the GMM computation part [5, 6, 7], 

however, as the vocabulary size increases, the portion of the GMM probability 

computation becomes smaller while the Viterbi processing becomes larger which need 

to be covered. Some complete hardware implementation for both Viterbi and GMM 

processing are also presented. Lin et al. reported a Multi-FPGA implementation for 5 

k-word continuous speech recognition [8] that achieves 10× faster than real time, but 

the system is not extendable for larger vocabularies because it is not cost-effective. It 

needs two FPGAs and two DDR2 DRAMs each with a 64-bit wide data-path. 

Yoshizawa et al. proposed a scalable architecture for speech recognition [9]. Their chip 

can have an adjustment between vocabulary size and processing speed, but the system 

only offers real-time performance with a limited vocabulary of 800 words. Choi et al. 

developed FPGA and VLSI implementations for 20 k-word speech recognition [10, 11, 

12]. They implemented a special memory interface for several parts of the recognition 

engine to apply optimized DRAM access, which improves the data transfer efficiency, 

but the numerous external DRAM accesses cause high IO frequency, which requires a 
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high supply voltage and high power consumption in both the FPGA side and DRAM 

side. In Image and Vidio processing system, the DRAM only acts as a buffer between 

camera and chip, the pixels are read from DRAM orderly and saved to the on-chip 

memory. However, in large vocabulary continuous speech recognition (LVCSR) system, 

the DRAM functions as a data-base which saves the dictionary parameters and language 

models. These data will be accessed randomly during the processing. According to the 

characteristics of DRAM , there are several cycles of  latency caused by pre-charge 

every time before we read from the DRAM, therefore if the required data are not saved 

sequentially, the access-efficiency is bad. As a result, speech recognition needs much 

higher IO frequency than video processing to get the same amount of data from DRAM. 

Especially, with the number of vocabulary increase, the external memory bandwidth 

become enormous which causes two problems, firstly, real-time processing is 

impossible to be achieved because of  the I/O frequency limitation. Secondly, large 

amount of power is consumed by I/O because of the high supply voltage (3.3V). 

Consequently, reducing external memory access and optimizing the latency is the most 

important things to implement a low-power large-vocabulary real-time continuous 

speech recognition system. 

 

24

Speech Recognition

Automatic Transcript

Human 

Interface

Index Searching

Voice Mail

 

Fig. 1.1  Multifarious applications using speech recognition. 
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1.2 Objective of This Study 

This dissertation focuses on VLSI design for low-power, large-vocabulary, real-time, 

speak-independent continuous speech recognition based on context-dependent Hidden 

Markov Model (HMM). The proposed algorithm optimizations and specialized 

architectures are described in this dissertation. 

1.3 Overview of This Dissertation 

An overview of this dissertation is presented in Fig. 1.2 with clear correlation 

between the issues and solutions. First, the background and the objective of this study 

are decribed in Chapter 1. Then issues related to the VLSI implementation for real-time 

continuous speech recognition are noted in Chapter 2. The main issues are explained as 

four parts: 1) large-vocabulary are needed to support a higher word-cover rate. 2) 

low-power is required for longer working time and lower temperature, 3) high-speed is 

demanded for a more comfortable human interface, and 4) small area is also expected 

which means less recourse would be cost. Algorithm optimization and specialized 

architectures are proposed to solve these problems. 

In Chapter 3, some algorithm optimizations are presented: beam pruning using a 

dynamic threshold to cut the workspace and memory bandwidth for sort processing; the 

modified unigram language model which eliminated the updata process for 

word-internal transitions; two-stage language model searching to reduce cross-word 

transitions which reduce the memory access greatly. The accuracy degradation of the 

important parameters in Viterbi computation is strictly discussed. These optimizations 

are utilized in all the three chips introduced in the following chapters. 

Chapter 4 describes the first chip (HMM1) we implemented for 60-kWord real-time 

continuous speech recognition. It includes a cache architecture using locality of speech 

recognition, as some of the data that has been used in the current frame may be reused 

in the following frames, on chip caches are introduced for keeping some of them to 

reduce the external memory access, the specialized cache architecture achieve a hit-rate 

of 75%; a highly parallel Gaussian Mixture Model (GMM) architecture based on the 

mixture level; a variable-50-frame look-ahead scheme; and elastic pipeline operation 

between the Viterbi transition and GMM processing. Results show that our 
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implementation achieves 95% bandwidth reduction (70.86 MB/s) and 78% required 

frequency reduction (126.5 MHz) comparing to the referential Julius [1] system. The 

test chip, fabricated using 40 nm CMOS technology, contains 1.9 M transistors for logic 

and 7.8 Mbit on-chip memory. It dissipates 144 mW at 126.5 MHz and 1.1 V for 60 

kWord real-time continuous speech recognition.  

Chapter 5 describes the second chip (HMM2) we designed for 60-kWord real-time 

continuous speech recognition. It features a compression–decoding scheme to reduce 

the external memory bandwidth for Gaussian Mixture Model (GMM) computation and 

a 4-path Viterbi transition units. We optimize the internal SRAM size using the 

max-approximation GMM calculation and adjusting the number of look-ahead frames. 

The test chip, fabricated in 40 nm CMOS technology, occupies 1.77 mm × 2.18 mm 

containing 2.52 M transistors for logic and 4.29 Mbit on-chip memory. The measured 

results show that our implementation achieves 34.2% required frequency reduction 

(83.3 MHz), 48.5% power consumption reduction (74.14 mW) for 60 k-Word real-time 

continuous speech recognition compared to the previous work while 30% of the area is 

saved with recognition accuracy of 90.9%. It can maximally process 2.4× faster than 

real-time at 200 MHz and 1.1 V with power consumption of 168 mW.  

Chapter 6 describes the third chip (HMM3) we designed for 60-kWord real-time 

continuous speech recognition. It includes a 8-path Viterbi transition architecture to 

maximize the processing speed by cutting the on-chip latency and adopts tri-gram 

language model to improve the recognition accuracy. A two-level cache architecture is 

implemented for the demo system to cut the off-chip latency. Measured results show 

that our implementation achieves 25% required frequency reduction (62.5 MHz) and 

26% power consumption reduction (54.8 mW) for 60 k-Word real-time continuous 

speech recognition compared to the previous work. The chip can maximally process 

3.02× and 2.25× times faster than real-time at 200 MHz using the bigram and trigram 

language models, respectively. 

The conclusions of this study are presented in Chapter 7. The overall contributions 

are summarized briefly. 
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Fig. 1.2   Overview of this dissertation. 
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Chapter 2 Issues of VLSI Implementation for 

Large Vocabulary Continuous Speech 

Recognition 

In this chapter, issues of VLSI Implementation for large Vocabulary Continuous 

Speech Recognition are summarized in this chapter. 

The four issues are explained in detail: 1) large-vocabulary are needed to support a 

higher word-cover rate. 2) low-power is required for longer working time and lower 

temperature, 3) high-speed is demanded for a more comfortable human interface, and 4) 

small area is also expected which means less recourse would be cost.  

2.1 Issue of Large Vocabulary  

As a Recognizer can’t recognize words that are not included in the database, 

large-vocabulary are needed for many applications to support a sufficient word-cover 

rate. Figure 2.1 shows the # of vocabulary versus word-cover rate reported by Japanese 

Language researcher center . More than 20,000 words are needed for TV speech and TV 

script while more than 40,000 words are needed for daily life conversation to supply a 

nearly 100% of word-cover rate. However, The exist hardware recognizers [4, 5, 6, 7, 8, 

9, 10, 11, 12] are only available for small or medium vocabulary of 1,000-20,000 words. 

This is because with the increase of vocabulary size, the required frequency and external 

memory bandwidth for real-time processing grow exponentially as shown in Fig. 2.2 

and Fig. 2.3. Consequently, we must reduce both of them to be able to handle a large 

vocabulary of 60,000 words.  
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Fig. 2.1  # of vocabulary versus word-cover rate for TV speech, TV Script, and Daily 

Conversation. 
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Fig. 2.2  Required frequency for real-time continuous speech recognition. 
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Fig. 2.3  Required external memory bandwidth for real-time continuous speech 

recognition. 

 

2.2 Issue of Low Power 

Power consumption is extremely important when we considering the work-time and 

temperature of the device for mobile application. It won’t be comfortable if the device 

goes out of power or gets very hot in a short period. Consequently, we need to achieve 

the speech recognizer with as lower power consumption as possible. However, as shown 

in Fig. 2.2 and Fig. 2.3, with a large vocabulary of 60,000, the required memory 

bandwidth and the operation frequency of the hardware referential Julius [1] prototype 

respectively reach 3446 MB/s and 567.46 MHz. This kind of external memory 

bandwidth causes high IO frequency, which requires a high supply voltage and high 

power consumption at the chip side and causes hundreds of microwatts at DRAM side 

even with the state of the art lower power mobile DRAM [17]. Also, the high frequency 

inside the chip causes much core power. Therefore, we must reduce both the I/O power 

and core power to achieve a low-power speech recognizer. 
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2.3 Issue of High Speed 

Processing-speed is also a key issue for speech recognition. Real-time processing is 

the least requirement which means the recognizer can deliver results at the same speed 

as we speak. In fact, times of real-time processing are also needed when we considering 

the preprocessing time for adopting noise-cancelling or speaker adaptation, and some 

extra time for dealing with the recognizer results like translation for example. Some 

next generation applications like “Audio mining” which need to recognize hours of 

speech in a short time. However, the “on-chip” latency (stop until the data come to the 

compute unit) and the “off-chip” latency (loading latency from DRAM to IO ) which 

will be explained later delay the processing speed. Therefore, we need to reduce both of 

them to achieve a high-speed recognizer. 

2.4 Issue of Small Area 

Small-area is also expected which means less recourse would be cost. Some methods 

are available for high-performance speech recognizer but cost too much resource 

including logic element and on-chip memory [8]. For example, if we introduce all the 

language model data into the internal memory, the external memory bandwidth for 

Viterbi transition would be reduced greatly; also if we use a highly parallel architecture 

for all parts of computation, good performance can be achieved, however, a huge area 

would be cost which is not applicable and acceptable. Therefore, we must consider the 

efficiency of the proposed schemes to implement the VLSI chip with small-area. 

2.5 Summary 

This section summarizes the four issues of VLSI Implementation for large 

Vocabulary Continuous Speech Recognition. 

 Large-Vocabulary 

the required frequency and external memory bandwidth for real-time processing 

must be reduced to be able to handle a vocabulary of 60,000 words. 

 Low-Power 

we must reduce both the I/O power and core power to achieve a low-power 
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speech recognizer. 

 High-Speed 

we need to reduce both the “on-chip latency” and “off-chip latency” to achieve a 

high-speed recognizer. 

 Small-Area 

we must consider the efficiency of the proposed schemes to implement the VLSI 

chip with small-area. 

In this dissertation, novel techniques are presented in Chapters 3 to 6 to address the 

issues. 
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Chapter 3 Algorithm Optimization 

This chapter describes the algorithm optimizations to support a large-vocabulary 

recognizer. First, the speech recognition algorithm, as embodied in the Julius [1] 

software recognizer, which we adopt as our reference model is described in Section 3.1. 

then the beam pruning using a dynamic threshold is introduced in Section 3.2. Modified 

unigram language model are explained in Section 3.3. Section 3.4 presents the 

two-stage language model search scheme and accuracy trade-off of the important 

parameters are described in Section 3.5. Finally, the concluding remarks are made in 

Section 3.6. 

3.1 Speech Recognition Overiew 

Fig. 2 presents the speech recognition flow with the HMM algorithm [19]. The 

following items describe concrete stages. Step 1: Feature vector extraction – The input 

speech signal is converted from the time domain to frequency domain to obtain more 

unique acoustic characteristics. Feature vectors are extracted from 30 ms length of 

speech every 10ms. Step 2: GMM computation – A phonemic-model GMM is read and 

state output probabilities is calculated for all active state nodes. Step 3: Viterbi search – 

t (j) is calculated for all active state nodes using state output probabilities, transition 

probabilities, and the N-gram language model. Step 4: Sort – according to the beam 

width, active state nodes having a higher score (accumulated probability) are selected. 

The others are dumped. Step 5: Output sentence – The word list with the maximum 

score is output as a speech recognition result after final-frame calculation and 

determination of the transition sequence. 
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Fig. 3.1  Speech recognition flow with HMM algorithm. 

3.1.1 MFCC Feature Extraction 

The feature extraction converts a frame of speech input into a vector that represents 

frequency-domain characteristics. While there are several methods to extract the 

acoustic data, the most popular form, mel-frequency cepstral coefficients (MFCC), will 

be explained here. Its operations are based on the physiology of the human ear and 

relatively straightforward to implement as shown in Fig. 3.2. To generate the mfcc 

values per frame, a pre-emphasis filter is first used to boost the energy in the high 

frequencies which contain important acoustic information. A Hamming window and 

512-point FFT are then applied, and the power content of the frequencies, or spectrum, 

is computed. A triangular filter bank designed to extract mel-frequencies is applied to 

simulate the spectral resolution of the ear, and an inverse discrete cosine transform 

converts the data back to the time domain and into the mfcc values. To generate the 

acoustic feature vector, the mfcc values undergo cepstral mean normalization, which 

average the mfcc values over a certain time period. This helps reduce the effect of 

background noise on the mfcc values, and the time period varies from the entire speech 

sample (batch mode) to a subset of the preceding frames (live mode). Since human 

hearing is also related to the change velocity and acceleration of the mfcc values, the 

first and second derivative of the normalized mfcc values are taken to generate the 

acoustic feature vector. 
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Fig. 3.2  Calculation flow to obtain MFCC from speech waveform 

 

3.1.2 GMM Computation 

The left-right HMM, which is a kind of the HMM algorithm, is depicted in Fig. 3.3. 

To achieve speaker-independent decoding, variations in pronunciation (different voices, 

accents, genders, etc.) must be accommodated, therefore the weighted sum of Gaussian 

probability density functions called Gaussian mixture models (GMMs) are used to 

represent the state output probability of HMMs. The GMM computation obtains 

acoustic likelihood log [bj (xt)] from a feature vector xt and parameters of a GMM. As 

expressed in (3.1),  
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Therein, bj (xt) stands for a GMM probability density function (PDF), N represents a 

Gaussian distribution PDF, P is the number of dimensions in a feature vector, mix is the 

number of mixtures, xt signifies a feature vector, µ and  denotes mean and variance 

parameter respectively.  is a mixture weight coefficient and Ck is a constant number. 

(3.2) shows that the computation for one mixture consists of P subtractions, 2P 

multiplications, P summations, and one addition. After that,  the add-log operation is 

taken between the mixture results, which can be processed quickly based on an add-log 

table. 
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Fig. 3.3  Left-right HMM. 

 

3.1.3 Time-Synchronous Viterbi Beam Search 

The Viterbi computation is depicted in Fig. 3.4. Following formulas show a 

time-synchronous Viterbi beam search algorithm [16], which is divisible into two parts: 

internal-word transition and cross-word transition. Dynamic programming (DP) 
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recursion for the internal word transition is shown in (3.3). 

 

)(log]log);([max);( 1
,1

tjijit
jji

jt xbawsws  



                        (3.3) 

 

Where aij is the transition probability from state si to sj, and  δt (sj; w) stands for the 

largest accumulated probability of  the state sequence reaching state sj of word w at 

time t. Once an internal word transition reach a word-end state,   cross-word transition 

will be treated, a bi-gram (2-gram) model is used in this chip, where the transition 

probability of a word depends on the immediately preceding word. DP recursion for this 

part is shown in (3.4). 
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Therein, p(w | v) stands for the bi-gram probability from word v to word w, s0 and sf 

respectively denote the start state of word w and the last state of word v.  

In actual speech recognition, the problem is too large to allow for calculation of all 

the likelihood values. Therefore, after all the transitions in one frame are completed, 

only a limited number (“beam width”) of nodes with large likelihood values remains, 

the other nodes are terminated. This process is designated as beam pruning. Nodes that 

are unpruned in this stage are designated as active state nodes. In the next frame, only 

the likelihood values for the active state nodes will be computed.  
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Fig. 3.4  Viterbi computation. 
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3.2 Beam Pruning using a Dynamic Threshold 

In the conventional process, the sort is implemented after Viterbi processing at every 

frame before pruning the transitions with a lower score. This pruning necessitates a 

large workspace because all temporal scores generated by the Viterbi transition must be 

retained until the Viterbi search of the current frame is completed, although most scores 

will eventually be pruned by the beam-cutting process. Moreover, sort processing 

requires computational rates higher than 10 MIPS and demands external memory 

bandwidth greater than 400 MB/s for 60-kword recognition. 

A threshold-cut scheme is widely used to reduce the sort processing workspace and 

memory bandwidth. In this scheme, a threshold is set and all the transitions which have 

a lower score than the threshold are pruned immediately while processing the Viterbi 

search. Only the selected transitions with a higher score than the threshold are stored in 

workspace memory, which can cut off the superfluous workspace and processing. 

However, an improper threshold yields inappropriate cases in which too many nodes 

remain or too many nodes are cut off compared to the beam width, which degrades 

accuracy. Therefore, the means of deciding the threshold is important for this scheme.  

In some other works [4] [8], the max score of the current frame is used as the 

threshold  for next frame, which is insufficient because we should also consider the 

number of active nodes. When there are too few or too many active nodes, the threshold 

must be adjusted. As described in this paper, we proposed beam pruning using a 

dynamic threshold. An adaptive threshold is set based on the difference between the 

average scores of the previous frame and the current frame and the number of active 

nodes between the previous frame and the current frame. Fig. 3.4 shows the beam width 

variation with a dynamic threshold-cut scheme when the target width is set to 1,500. 

The threshold-cut results fluctuate ± 500 and the speech recognition accuracy is 

unaffected because almost all transitions that engender the final speech recognition 

output word list have higher scores. 
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Fig. 3.5  Beam width variation with dynamic threshold-cut scheme. 

3.3 Modified Unigram Language Model 

The Viterbi processing comprises word-internal transitions, cross-word transitions to 

isolated trees and cross-word transitions to shared trees. A unigram (1-gram) language 

model was used for computation of word-internal transitions. Each unigram value 

corresponds individually to a state of HMM trees. In the conventional scheme, when an 

HMM state transfers, the unigram probability of the previous state is subtracted from 

the temporal score before the new unigram probability of the current state is added. In 

terms of a unigram language model, the previous state of every state is individually 

identifiable. Therefore, we modified the unigram language model to hold only 

difference values between the probability of a new HMM state and the probability of its 

previous HMM state. Using our modified unigram language model, the extra memory 

access to the previous state and the memory to save the previous unigram probability 

can be reduced. Furthermore, because the unigram update process can be eliminated, 

word-internal transitions, cross-word transitions to the isolated trees, and cross-word 

transitions to shared trees can be treated using the same process module. 
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3.4 Two-stage Language Model Search 

Figure 3.6 presents the appearance ratio of the three types of transitions in Viterbi 

search: the cross-word transitions to isolated trees are dominant. Consequently, we 

proposed a two-stage language model search  scheme in this part to reduce the 

computational work-load and memory bandwidth for cross-word transitions to isolated 

trees. This scheme is derived from the transition frequency difference between 

phonemic HMM and language HMM. The cross-word transition search is divided into 

two stages. The first stage is a simplified language model search for the top N important 

transitions of two-gram probability. The second stage is a detailed language model 

search for all cross-word transitions. As depicted in Fig. 3.7, in the traditional language 

model search, only our second search treated every frame. However, in our proposed 

language model search, the second stage is treated at every n frames. By applying this 

proposed search, the computational amount and memory bandwidth can be reduced to 

1/n. 

With the increase of the detailed language model search cycle, we can achieve greater 

reduction of cross-word transitions, which is the main processing undertaken in Viterbi 

computation. However, the risk of losing the cross-word transition to the correct 

candidate word might increase, thereby affecting the recognition accuracy. Moreover, 

the beam width and the number of cross-word transitions during the detailed search and 

the simplified search strongly influence the recognition accuracy. Therefore, the tradeoff 

of these parameters described above must be discussed carefully. 
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Fig. 3.6  Appearance ratio of three types transitions in Viterbi search. 
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Fig. 3.7  Two-stage language model search. 

3.5 Accuracy Tradeoff 

We measured the accuracy using a referential software prototype profiling with Julius 

4.0 [1]. The test speech data consists of 48 test patterns, which totally include 172 

sentences of Japanese speech spoken by different speakers. The average values of all the 

patterns for each parameter set are shown in the following graphs. 

3.5.1 Detailed search cycle, the number of cross-word transitions (in simplified 

search) 

First, the tradeoff of the detailed language model search cycle and the number of 

cross-word transitions during the simplified language model search are discussed. The 

beam width is set to 4000. The cross-word transitions during the detailed language 

model search are set to 2000 to maintain high recognition accuracy. 

Figure 3.8 presents the relation between the detailed search cycle and the number of 

cross-word transitions. Top 10, Top 100, and Top 300 respectively signify the numbers 

of cross-word transitions during the simplified language model search. As portrayed in 

Fig. 3.9, more cross-word transitions during a simplified search can suppress the 
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decrease in recognition accuracy. However, when the detailed search cycles became 

greater than 7, all curves became steeper and the recognition accuracy falls below 90%. 

Moreover, the accuracy of “Top 10” is greater than “Top 100,” with a detailed search 

cycle of 5 and is lower than “Top 100” with a detailed search cycle of 7. Some words 

that can be recognized correctly with “Top 10,” but will not become the best results with 

“Top 100”. This is because for these words, even if the correct candidates are served, 

they will be defeated by some other cross-word transitions served by “Top 100.” 

Figure 3.10 portrays the relation between the number of cross-word transitions and 

recognition accuracy. A detailed search cycle of 7 with “Top 100” is chosen for the 

examinations described in this paper, causing 0.27% accuracy degradation. These 

parameters are alterable in the chip. Therefore, we can select them according to the 

request processing speed and recognition accuracy, but higher accuracy will cost more 

power because large amounts of extra cross-word transitions must be treated. 
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Fig. 3.8  Cycle of detailed language model search versus the number of cross-word 

transitions. 
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Fig. 3.9  Cycle of detailed language model search versus recognition accuracy. 
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Fig. 3.10  Relation between accuracy and the # of cross-word transitions. 
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3.5.2 Beam width, the number of cross-word transitions (in detailed search) 

In this section, the tradeoff of the beam width and the number of cross-word 

transitions during the detailed language model search are discussed. The detailed search 

cycle is set to 7 and the number of cross-word transitions during simplified searching is 

set to 100, in light of the previous discussion. 

Figure 3.11 presents the external memory bandwidth for Viterbi computation 

according to the beam width. The numbers of cross-word transitions during detailed 

searching were set to 1000, 1500, 2000, 2500, and 3000. Figure 3.12 presents the 

accuracy degradation. It is apparent that 1500 for the cross-word transition during 

detailed search is a good choice since it demands relatively smaller external memory 

bandwidth and less degradation in recognition accuracy with 3000 of beam width. 
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Fig. 3.11  External memory bandwidth versus beam width. 
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Fig. 3.12  Accuracy versus beam width. 

3.5.3 Default parameters 

The final choice of the parameter combination is presented in Fig. 3.13. Total 

accuracy degradation by the proposed schemes is 0.82%, thereby achieving almost 80% 

reduction (1500 + 100*6) / (1500*7) = 20%) of both memory access and arithmetic 

operations in Viterbi processing. 

From these test results, we also found that larger beam width can absolutely offer 

higher recognition accuracy while treating more cross-transitions might not. Therefore 

the parameters for cross-word transition must be decided carefully, the most appropriate 

parameter combination may change when using different language models. 

79

81

83

85

87

89

91

93

0 100 200 300 400 500 600 700

A
cc

u
ra

cy
 [

%
]

External memory bandwidth [MB/s]

Beam width: 3000
Detailed search  cycle: 7
Cross-word: 1500 (detailed search)
Cross-word: 100  (simplified search)
Accuracy degradation: 0.82%

1000 cross-words

1500 cross-words

2000 cross-words

2500 cross-words

3000 cross-words

 

Fig. 3.13  Accuracy versus External memory bandwidth. 
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3.6 Summary 

In this section, we describe the algorithm optimizations to support a hardware-based 

large-vocabulary recognizer. First, the speech recognition algorithm, as embodied in the 

Julius software recognizer, which we adopt as our reference model is described. Then 

the beam pruning using a dynamic threshold to cut the workspace and memory 

bandwidth for sort processing is introduced. After that, modified unigram language 

model, which eliminated the updata process for word-internal transitions are explained. 

Finally, the two-stage language model search scheme which reduce the memory access 

greatly, and accuracy trade-off of the important parameters are presented. These 

optimizations are utilized in all the three chips introduced in the following chapters. 
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Chapter 4 Real-Time 60-KWord Continuous 

Speech Recognition VLSI Processor 

This chapter describes the first chip (HMM1) [13, 14] we implemented for 60-kWord 

real-time continuous speech recognition. The following techniques are proposed to 

reduce the cycle count and external memory bandwidth for a large-vocabulary of 60,000 

words.  

1) Variable-50-frame look-ahead scheme 

2) Elastic Pipeline 

3) highly parallel GMM architecture 

4) Viterbi Cache 

4.1 Variable-frame look-ahead scheme 

The GMM calculations must load numerous parameters, which requires about 576.03 

MB/s when processing the 60-k Word speech recognition. The memory bandwidth can 

be reduced by sharing the parameter for several frames. Many studies have explored the 

use of this look-ahead scheme and compute the same state for several frames because 

the state which must be computed in the present frame might need to be calculated 

again in the subsequent frame at high probability. However, it is apparent that the 

probability decreases when the number of look-ahead frames increases. When different 

states are required, the results will become useless. The computation for those new 

states will delay the Viterbi operation. For 20-kWord and 60-kWord recognition, it is 

necessary to maintain sufficient beam width according to the number of words to 

achieve highly accurate recognition, which is true for almost all states of GMM 

processing. Therefore, in this study, we compute all 1987 states for the maximum of 50 

look-ahead frames. The number of look-ahead frames is variable to make an adjustment 

between the delay and the memory bandwidth.  This scheme requires 5 Mbit internal 

memory for storing the GMM probabilities. However, the memory bandwidth for GMM 

processing can be reduced to 13.3 MB/s at most. Because that can be accomplished for 

all states of GMM computation, pipeline operation between GMM and Viterbi is readily 

applicable. 
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4.2 Elastic Pipeline Architecture 

The overall chip architecture is depicted in Fig. 4.1. The proposed architecture 

comprises a global Sequencer, GMM-core, Viterbi-core, and double GMM result buffer 

to support pipeline operation. Because of the all-state GMM computation and variable 

50-frame look-ahead scheme, it is easy to apply elastic pipeline operation between the 

Viterbi transition and GMM processing by 1–50 frames. Herein, we will explain why 

the elastic pipeline architecture can reduce the memory bandwidth for Viterbi transition. 

Figure 4.2 shows the memory bandwidth variety of Viterbi transition after applying the 

two-stage language model search. The frames, when detailed search are used, have the 

largest amount of data to be read. For conventional operation, these data must be read at 

0.01 s, which yields the largest memory bandwidth (549.91 MB/s). By applying this 

scheme, we can process several frames together, although the frames needing the largest 

memory bandwidth can use the IDLE time of other frames to load data (Fig. 4.3), which 

can reduce the peak memory bandwidth by 87.2%  (70.86 MB/s). By changing the 

number of look-ahead frames, we can readily adjust the delay and the memory 

bandwidth and maximize the elastic pipeline operation efficiency. 
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Fig. 4.1  The overall speech recognition architecture. 
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Fig. 4.2  External memory bandwidth variety of Viterbi transition through frames after 

the two-stage language model search. 
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Fig. 4.3  Elastic pipeline. 
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4.3 Highly Parallel GMM Architecture 

Figure 4.4 shows the operation flow of the GMM calculation, which consists of data 

loading, mixture computation and add-log processing. The GMM core has 16 mixture 

processing blocks, each of which has a 1.6 Kb register to preserve the mixture 

parameter (Fig. 4.1). All blocks are processed simultaneously for the look-ahead frames, 

which are saved in the MFCC buffer. The parameters will be reused until all look-ahead 

frames are processed. The mixture results will soon be calculated using the add-log 

processor based on a look-up table. The mixture computation, add-log calculation, and 

parameter reading are processed in the pipeline. 
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Fig. 4.4  GMM computation flow. 
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4.4 Viterbi Cache Architecture 

Fig. 4.5 shows the Viterbi transition flow. The Viterbi transition in a frame is divided 

roughly into three steps; word-internal transition, trellis-word save, and cross-word 

transition. The Viterbi transition is performed for all active state nodes left in the 

previous frame. First, fetch an active state node from an active node queue. (1) 

Word-internal transition: perform word-internal transition when the transition source 

node and destination node belong in the same word. (2) Trellis save: save a trellis when 

the active state node is the end of a word. The trellis is a dataset, which has a word 

history and a score of the word-end node. It is used to determine the recognition result 

in the last frame. (3) Cross-word transition: perform cross-word transition after trellis 

save. In this step, the transition is performed from a word-end state node, to all 

word-start state nodes. 

The word-internal transition and cross-word transition can be expressed with the 

same flow. (1.1) Calculate score: The transition probability from the HMM dictionary 

and the GMM probability from the result buffer is added to the score of the active state 

node. (1.2) Fetch transition destination node data: fetch the information of a transition 

destination node from the active node work space. (1.3) Create active state node: create 

an active state node when there is no active state node on the transition destination. (1.4) 

Overwrite the active state node: overwrite the active state node at a destination node 

when its score is lower. 

Figure 4.7 shows the Viterbi cache architecture. Since it is apparent that the Active 

Node, Active Node Map, and the Bi-gram account for 96% of the memory bandwidth 

for Viterbi transition, as portrayed in Fig. 4.6, we introduce all the active node work 

space and part of the bi-gram and active node map data into the cache memory using the 

locality of speech recognition that some data which have been used for this frame might 

be reused in the following frames. We employ some novel schemes for these caches to 

achieve a higher hit rate. 
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Fig. 4.5  Viterbi computation flow. 

 

Active Node

Active Node Map

Bi-gram

Others

37%

37%

22%

Total: 2581MB/s  

Fig. 4.6  External memory bandwidth of Viterbi transition. 

 



 4.4  Viterbi Cache Architecture  33 

 

 

GMM RESULT RAM

A
D

D

Active node
Workspace RAM0

Active node
Workspace RAM1

A
D

D

HMM Tree Dictionary, N-gram DB, Transition DB

N-gram
Cache

N-gram
Shared
Tree DB

A
D

D

MUX

C
M

P

Divider

Beam
threshold

Active
Node Map

Cache

M
U

X

C
M

P Trellis
Buffer

Output
Buffer

Viterbi Core

 

Fig. 4.7  Viterbi cache architecture. 

4.4.1 Bi-gram Cache 

We try to retain the bi-gram data with higher scores in the cache because they have 

higher probability to be reused in the subsequent frame. We set the timing of writing 

new data to the cache as a previous node is overwritten whereas a higher score appears 

in the cross-word transition. In doing so, a bi-gram probability with a higher score in 

one frame tends to remain in the cache. However, one index of the bi-gram cache stands 

for many bi-gram IDs. Therefore when a new bi-gram score is written to cache, a 

high-score bi-gram for other nodes might be overwritten, which affects the hit-rate.  

Therefore we proposed a specialized cache architecture as shown in Fig. 4.8, the 

cache adopts a two-way set associative scheme for both tags and data. The lower bit of 

bi-gram ID is used to create the index, and the whole bi-gram ID is used as the tag. The 

data part has 20 bit for the destination node ID and 8 bit for bi-gram score. The two-way 

cache has “two places” for each index. Therefore, when a miss-hit occurs, a new 

bi-gram probability is written to the first way, whereas the previous score can be stored 

to the second way. The hit rate is improved by 14.5% because two-way cache can retain 

more high-score bi-gram data than a one-way cache.  
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Fig. 4.8  Two-way bi-gram cache. 

4.4.2 Active node map Cache 

The active node map is also called a “Token list,” which is used to check if an active 

node exists in the transition destination. It must be checked every time a transition 

occurs, thereby causing many memory accesses. We adopt a direct mapping cache for it.  

As presented in Fig. 4.9, more than 60% of the node information accesses are 

attributable to the start-state node because cross-word transitions must read them 

frequently, however, one index of the cache stands for start-state node, word internal 

node, terminal node and other nodes. The start node may be overwritten by other nodes 

if they stay in the same cache. Therefore we divided the active node map cache into two 

parts: one for the start-state node only, and the other nodes use the other part (Fig. 4.10), 

thereby improving the hit rate by almost 20%. 
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Fig. 4.10  Active node map cache. 
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4.4.3 Hit rate 

We maximize the cache memory size of bi-gram and active node map to 0.73 Mbit, 

as portrayed in Fig. 22, which can produce a hit rate of 75%. Further increase of cache 

memory size can hardly get a higher hit-rate. 
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Fig. 4.11  Cache hit rate. 
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4.5 Implementation 

As described in the previous sections, we used software prototype profiling with 

Julius 4.0 and Microsoft Visual C++ to analyze the accuracy tradeoff of the parameters 

and the proposed schemes. We implement the referential hardware using hardware 

description language (HDL) to check the required memory bandwidth and frequency for 

real-time operation. After that, a VLSI chip was designed and fabricated. Its 

performance was evaluated using a SoC logic tester. Table 4.1 shows the 

implementation flow and the CAD tools. 

Table 4.1  Implementation. 

Implementation Tool
NC-verilog (Cadence)

Design Complier (synopsys)
Astro (Synopsys)

Virtuoso  (Cadence)
Dracula  (Cadence)

Calibre  (Mentor Graphics)

Logic Synthesis

Implementation Flow
RTL Simulation

Placement and Routing
Layout Design

Design Rule Check
DRC / LVS  

 

4.5.1 Chip layout 

Fig. 4.12 shows a chip for the proposed SoC fabricated using 40 nm CMOS 

technology. A summary of the chip statistics is shown in Table 4.2.  It occupies 2.2 × 

2.5 mm
2
 containing 1.9 M transistors for the Logic and 7.8 Mbit on-chip SRAM. The 

logic transistors are mainly used by the GMM core because of the highly parallel 

architecture.  The breakdown of the internal memory is shown in Table III.  The 

power was measured when performing real-time 60 kWord  continuous speech 

recognition. The clock gating is implemented in the GMM result RAM and GMM Core. 
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Fig. 4.12  Chip microphotograph. 

 

Table 4.2  Summary of chip implementation. 

40-nm CMOS
2.2 mm  ×  2.5 mm

5 mm ×  5  mm
 GMM 1.1 M
 Viterbi 0.3 M
 Other 0.5 M
 Total 1.9 M

 7.8 Mbit
1.1V
3.3V

ADVAN SOC Tester System
126.5 MHz for 60 kWord real-time processing

144 mW
2.28 mALeakage current 

Process Technology
Core area
Chip area

On-Chip Memory (SRAM)

Transister Count (Logic )

Supply voltage
I/O voltage
Evaluation environment
Operating Frequency 
Measured Power (without IO)
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Table 4.3  Breakdown of internal memory. 

# of SRAM Size of SRAM (Kb) 
26 5000
1 26
1 8
3 993
6 1025
1 14
4 384
6 346
1 4
1 2
50 7802 (975kB)

output buffer
Total

add_log_table
active_node_work_space
shared Tree DB
bi-gram
active_node_map

Description
gmm_result_ram
gmm_buffer
MFCC_buffer

initial parameter

 

4.5.2 Required frequency and memory bandwidth 

Fig. 4.13 presents the total memory bandwidth reduction when using all the proposed 

schemes. The dynamic threshold-cut scheme reduces the memory bandwidth for sort 

processing. The variable-frame look-ahead scheme can reduce memory bandwidth by 

16.3% at most, whereas the two-stage language model search and the Viterbi cache can 

provide reduction of 66.4%, with the default parameters and cache memory size of 0.73 

Mbit. The total cycle time is reduced by 78%. This chip can process real-time 60-kWord 

continuous speech recognition at the frequency of 126.5 MHz (Fig.4.14). 
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Fig. 4.13  Bandwidth reduction by the proposed schemes. 
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Fig. 4.14  Required frequency reduction for real-time processing. 

4.5.3 Power consumption 

Using the shmoo plot [18] presented in Fig. 4.15, we measured the power 

consumption with the lowest operation voltage. Fig. 4.16 and Fig. 4.17 show measured 

data of power consumption versus operating frequencies versus beam-width. As 

described in section III, the larger beam-width can yield higher accuracy, but it will also 

increase the computational workload. This chip can function at 126.5 MHz for a 

beam-width of 3000. The power consumption is 144 mW with accuracy of 91.94%. It 

can function at 140 MHz for a beam-width of 3800: the power consumption is 204.8 

mW with accuracy of 91.89%. 

We also measured power consumption for I/O and PLL as shown in Table 4.4, The 

chip I/O consumes 58.2 mW at 31.625- MHz and it grows proportionally with the 

increase of I/O frequency, it grows much faster than the core power because it works at 

higher voltage .  The I/O power consumption  was reduced greatly by our proposed 

schemes because it is mainly caused by external DRAM access. 
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Fig. 4.15  Vdd versus period shmoo plot generated by SOC logic tester. 
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Fig. 4.16  Power consumption with the lowest operation voltage. 
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Fig. 4.17  Measurement results of frequency versus power consumption versus beam 

width. 

Table 4.4  Summary of power consumption. 

Frequency Supply Voltage Power consumption 
126.5 MHz 1.16V 144 mW
31.625 MHz 3.3V 58.2 mW
126.5 MHz 1.1V 1.98 mW

Core 
IO 

Power type

PLL  

4.5.4 Comparison with other works 

We compared the performance of our chip with those of other recently reported 

works (Table 4.5) in terms of the vocabulary size, GMM model, language model, 

real-time factor, operation frequency, memory bandwidth and the logic element. The 

real-time factor represents the system speed; for example, a real-time factor of “0.5” 

corresponds to “×2” faster than real-time operation, which means that the recognizer 

takes half the time of the input speech length to process it. The comparison reveals that 

our chip achieves the lowest external memory bandwidth, even with the largest 

vocabulary size of 60-kWord. Few reports of other studies presented the power 

consumption because most of them are FPGA-based systems. However, the comparison 

still proved that our chip is not only the first hardware-based recognizer able to process 

60-kWord continuous speech recognition in real time; but also achieves the lowest 

power consumption due to the great reduction of power for IO (Fig. 4.18). 
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Table 4.5  Comparison with recently reported works. 

This work This work
60 60

VLSI  (40 nm)
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 # of dimensions 25
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Fig. 4.188  Power consumption comparison. 

 

4.6 Summary 

As described in this chapter, several schemes including highly parallel architecture 

and cache architecture with high hit-rate are proposed to reduce the memory bandwidth 

and the operating clock frequency for a large-vocabulary of 60,000 words.  

1) a variable-50-frame look-ahead scheme;  

2) elastic pipeline operation between the Viterbi transition and GMM processing.  

3) a highly parallel Gaussian Mixture Model (GMM) architecture based on the mixture 

level;  

4) The Viterbi cache architecture using locality of speech recognition: as some of the 
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data that has been used in the current frame may be reused in the following frames, on 

chip caches are introduced for keeping some of them to reduce the external memory 

access, the specialized cache architecture achieve a hit-rate of 75%;  

Results show that our implementation achieves 95% bandwidth reduction (70.86 

MB/s) and 78% of the required frequency reduction (126.5 MHz) for 60-kWord 

real-time continuous speech recognition. We fabricated a VLSI test chip in 40 nm 

CMOS technology and assessed its performance. Results show that this chip can 

perform 60-kWord continuous real-time speech recognition at 126.5 MHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5.1  Speech Recognition System  45 
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Processor 

This chapter describes the second chip (HMM2) [15, 20] we implemented for 

60-kWord real-time continuous speech recognition. Although the external memory 

bandwidth was reduced adequately in the previous work, it needed a large amount of 

on-chip memory and caused long latency. Therefore in HMM2, we try to find another 

way to reduce the external memory bandwidth. The following techniques are proposed 

to achieve a smaller chip area and higher processing speed .  

1) Compression-decoding scheme 

2) max-mixture approximation GMM calculation 

3) 4-pass Viterbi transition unit 

5.1 Speech Recognition System 

The overall chip architecture, depicted in Fig. 5.1, comprises the GMM core, Viterbi 

core, double buffer for the GMM result, and the memory interface. We use a 

PowerMedusa [25] custom test board to construct a speech recognition system with a 

test chip. The MFCC feature vectors are extracted using a PC. The reason why we 

separate the feature extraction part from the recognizer is as follows: 

1) Firstly, the use of fixed-point computation in the feature extraction part will cause 

big degradation [26] [27] in recognition accuracy (3%-5%); 

2) Secondly, the computation workload for feature extraction is small and can be easily 

handled by PC or an embedded soft-core [4] [11] ; 

3) Lastly, it is flexible for adopting other capabilities like noise reduction or speaker 

adaptation [11].  

The input speech data can either be recorded as an audio stream or with real-time 

speaking. The database is set up at the beginning. The test chip accesses the DRAM 

through an on-board FPGA.  The data-path of the DRAM is 64 bit, but only 48pin is 

available for the test chip according to the pin limitation. The data-path for GMM 

computation (16pin) and Viterbi search (32pin) is separated to support pipeline 
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Fig. 5.1  Overall speech recognition architecture. 

5.2 GMM Architecture with Compression-Decoding 

The external memory bandwidth for GMM computation can be reduced by sharing 

the parameters for several frames. We can use this scheme to reduce the memory access 

as much as needed, theoretically. A variable 50-frame-look-ahead scheme was used in 

HMM1 [13, 14], which reduced the external memory bandwidth to 13.3 MB/S for 

GMM computation. However, it becomes cost-ineffective when the look-ahead frames 

are numerous because the reduction efficiency becomes worse while the on-chip 

memory for saving the GMM result is proportionally increased.  For the proposed 

method, we adjust the number of look-ahead frames to optimize the area. 

The maximal IO frequency of the test chip is 50 MHz and the data pins for GMM 

computation are 16pin. Therefore, the IO transfer capability is 100 MB/S. The GMM 

parameters include 1987 states each with 16 mixtures.  There are 52 parameters for 

one mixture. The bit-width of one parameter is 32 bit. Therefore 2 IO cycles are 

necessary to load one GMM parameter. There are 100 frames in 1S speech. Assuming n 

frames look-ahead to support 2.4×-real-time processing (decided by Viterbi), n should 

be 32 according to the following limitation: 
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4B × 52 × 16 × 1987 × 100/n × 2 × 2.4 MB/S < 100 MB/S,  

which requires roughly 3.2 Mbit of result RAM and causes latency of 0.32 S. For 

further optimization, We proposed a compression–decoding scheme. GMM parameters 

saved in DRAM are compressed state-by-state to a smaller size using a lossless data 

compression algorithm. When the chip starts processing, the compressed data are 

transferred to a buffer inside the chip and then decoded. The parameters are rebuilt 

completely and therefore have no degradation to recognition accuracy. Then the 

compression-decoding scheme can reduce the required  external memory bandwidth by 

the compression ratio.  

The GMM architecture and pipeline operation are portrayed respectively in Fig. 5.2 

and Fig. 5.3 The GMM core comprise a MFCC buffer for feature vectors, two input 

buffers for loading the compressed data, a GMM buffer for the decoded parameters, one 

decoder and 20 GMM computation processors. As shown in Fig.5, the compressed data 

of state n is loaded to the input buffer while the decoding and the computation for state 

n-1 is treated. 
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Fig. 5.2  GMM architecture with compression-decoding scheme. 
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Fig. 5.4  Run Length Encoding (RLE) for GMM parameters. 
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Fig. 5.5  Three cases for decoding operation. 
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Clock gating is implemented in the decoder and the GMM processors. After 

decoding state n, the decoder will be clock gated until the loading for state n+1 is 

accomplished. GMM processors are also clock gated in the same way. The power 

consumption reduction by clock gating is measured by simulation with 40nm library 

and power compiler. Because of the high leakage current in 40nm process, only 1.25% 

power reduction is confirmed. 

The decoding time for one-compressed-state parameters must be shorter than the 

loading time for a complete state and the extra computation workload and logic 

elements for decoder should be small.  Therefore, we choose the run-length-encoding 

(Fig. 5.4) algorithm for our decoder. To adopt the GMM parameter, we modified the 

RLE operation, instead of compressing all bit, we merely compressed the top n bit for 

one parameter. There are three cases for decoding as shown in Fig. 5.5. In Case one or 

case two 2 steps are needed to generate one parameter while in case three only one step 

is needed.  As there are 832 parameters for one state, the total  number of operation is 

less than 832*2 = 1664. The average compression ratio is 37.5% with only 0.01% extra 

computation workload and 0.005% area overhead of the GMM core. Consequently, the 

number of look-ahead frames is reduced further to 20.  

5.3 Max-Mixture Approximation GMM Calculation 

According to the required processing speed of this chip, it is needed to increase the 

degree of parallelism. However, mixture-level parallel implementation is not flexible 

because only limited degrees can be utilized (16, 32 etc.), which will cause unnecessary 

increment of logic elements. Therefore we need to implement the parallel architecture at 

the frame level and it is just suitable for the 20-frame look-ahead scheme. As described 

herein, we implement a 20-frame parallel architecture for GMM computation to reduce 

the cycle count for the computation part.  Figure 5.6 presents both the 16-parallel 

processing at mixture level of the previous chip HMM1 and the 20-parallel processing 

at frame level of this chip.  

We calculate the log probability density function (PDF) by its max approximation 

instead of the previous log-table based one, which saves about 1 Mbit of on-chip 

memory while cause 049% degradation in regocnition accuracy. 
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Therein, logbs(Xt) represents the state output probability of a HMM state s for 

feature vector Xt at time t; xd stands for the vector component of the feature vector Xt, D 

is the feature dimension, and Cm, µmd, md respectively denote the constant, the mean, 

and the standard deviation of Gaussian mixture model.  

The GMM computation flow using the max-approximation algorithm is shown in 

Fig. 5.7. As the value of one mixture is getting smaller with the calculation going on, 

the computation for one mixture can be stopped when its value is less than the max 

result of the previous mixtures. Around 40% cycle count reduction is achieved by the 

above changes. The power consumption variety of 16-core and 20-core measured by 

simulation are shown in Fig. 5.8. Power consumption for real-time processing is 

reduced by 20%. 
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Fig. 5.6  20-frame parallel processing versus 16-mixture parallel processing. 
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Fig. 5.7  Max-mixture approximation GMM computation flow. 
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5.4 4-Path Viterbi Transition Unit 

The external memory bandwidth required in Viterbi processing has been reduced 

greatly by two-stage language model (LM) search, the specialized cache memory, and 

the elastic pipeline described in the previous Chapters. All GMM probabilities and 

active node information can be read out from the internal RAM. However, when a 

mis-hit occurs at the n-gram cache or active-node map during cross-word transition, it 

will take two IO cycles, which is eight internal cycles to access the external database. In 

the previous chip [9], the processing is stopped to wait until the required data is got 

from the DRAM, this latency strongly delays the Viterbi processing. Although the 

internal data-path to  the caches are available at this time, it is impossible to process 

the next transition. Consequently in this chip, we proposed a four-path 

Viterbi-processing units to hide the latency as portrayed in Fig. 5.9. Figure 5.10 shows 

the pipeline operation. When a mis-hit occurs at one of the transition paths, the other 

units will access the cache memory and continue processing other transitions. This 

scheme eliminates 34.2% of the cycle counts for the Viterbi transition. Because the 

computation time for Viterbi is the neck of the GMM-Viterbi pipeline processing, the 

total computation time is reduced by the same rate. 
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Fig. 5.9  4-path Viterbi transition architecture. 
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Fig. 5.10  Pipeline operation for viterbi transition. 
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5.5 Implementation 

The chip, which was fabricated in 40 nm CMOS technology as shown in Fig. 5.11, 

occupies 1.77×2.18 
2mm  containing 2.52 M transistors for Logic and 4.29 Mbit on-chip 

SRAM. A summary of the chip statistics is shown in Table 5.1. The breakdown of the 

internal memory is shown in Table 5.2.  
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Fig. 5.11  Chip layout. 

Table 5.1  Summary of chip implementation. 

40-nm CMOS
2.18 mm  ×  1.77 mm

5 mm ×  2.5  mm
 GMM 1.58 M
 Viterbi 0.43 M
 Other 0.51 M
 Total 2.52 M

 4.29 Mbit
1.1V
3.3V

 SOC Tester System
83.3 MHz for 60 kWord real-time processing

74.14 mW
1.35 mA

Process Technology
Core area
Chip area

On-Chip Memory (SRAM)

Transister Count (Logic )

Supply voltage
I/O voltage
Evaluation environment
Operating Frequency 
Measured Power (without IO)
Leakage current  
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Table 5.2  Breakdown of Internal memory. 

# of SRAM Size of SRAM (Kb) 
10 2000
1 26
2 36
1 16
6 1248
1 14
4 468
6 476
1 4
1 2
50 4290 (536kB)

Description

bi-gram
active_node_map
initial parameter

Total

gmm_result_ram

active_node_work_space
shared Tree DB

gmm_buffer

MFCC_buffer

output buffer

Input_buffer
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Fig. 5.12  Required frequency reduction for real-time processing. 
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Fig. 5.13  Required memory bandwidth reduction & GMM result RAM reduction. 

 

We implement a software prototype profiling with Microsoft Visual C++ and a 

referential hardware using hardware descrption language (HDL) to check the required 

memory bandwidth and frequency for real-time operation. The reduction of both 

frequency and external memory bandwidth are presented in Fig. 5.12 and Fig. 5.13. The 

required frequency for real-time processing is reduced by 34.2% compared to HMM1. 

This rate is just the same as Viterbi part because the computation time for Viterbi 

transition is the neck of the GMM-Viterbi pipeline operation. Although the external 

memory bandwidth was reduced greatly in HMM1, it needed a large amount of SRAM 

and caused long latency. Therefore in HMM2, we optimize the number of look-ahead 

frames cooperating with a compression decoding scheme to reduce the external memory 

bandwidth for GMM computation, which cuts down 3 Mbit of  GMM result RAM as 

shown in Fig. 5.13. 

We evaluated the test chip with a logic tester. The generated Shmoo plot is presented 

in Fig. 16. Figure 17 shows the power consumption at different frequency. This chip can 

process real-time 60-kWord continuous  speech recognition at 83.3 MHz and 0.84 V 

with power consumption of 74.14 mW which is only half of the power consumed by 

HMM_1. It can maximally process at 2.4× faster than real-time at 200 MHz with 
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standard voltage of 1.1 V while dissipating 168 mW (Fig. 18). Table 5.3 presents a 

comparison between this work and some recently announced works in terms of the 

vocabulary size, GMM model, language model, beam-width, recognition accuracy, 

real-time factor, operation frequency,  internal memory, external memory bandwidth, 

area and the logic element. Power consumption of both core and IO are also included. 

Figure 5.17 plots the vocabulary versus speed of the state of art hardware-based 

recognizers. 

The beam-width is the number of active node we treat every frame, as described in 

the previous Chapters, larger beam-width can afford higher recognition accuracy while 

increase the computation workload. Consequently, although the use of GMM 

approximation computation cause 0.49% accuracy degradation comparing to HMM_1, 

because of the performance-improvement, this chip can recognize speech with a larger 

beam-width of 4000 which provide a better recognition accuracy of 91.45% as shown in 

Table 3. In that case, the power consumption for real-time processing is increased to 

97.4 mW and the max-performance is decreased from 2.4x to 2.08x.  
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Fig. 5.14  Shmoo plot generated using a logic tester. 
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Fig. 5.15  Power consumption versus operation frequency. 
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Fig. 5.16  Processing speed versus required frequency. 
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Table 5.3  Comparison with recently reported works. 

 [13] (HMM_1)
60

VLSI (40 nm)
 # of states 2,000
 # of distributions 16
 # of dimensions 25
 # of unigram 60,001
 # of bigram 4,000,273

3000
91.39

1x 1x 2.4x 1x 2.08x
126.5 83 200 96 200

IO Frequency (MHz) 31.625 21 50 24 50
70.86 83 198 96 199

Power  Core (mW) 144 74 168 97 172
consumptionIO (mW) 58.2 39 94 45 94

5.5
  1.9 MTr

975

NA 3.86
2.52 MTr.

NA NA

91.45

100 100

NA

This work (HMM_2)
60

VLSI (40 nm)
2,000

NA

500
90.9

[11]

1.51x

Internal memory (KB) 140.1 416
Logic elements NA 13,835 slices
Core area (mm2) 15.47

3000

16
25

60,001
4,000,273

4000

100

External memory BW (MB/s) NA 800

Internal Frequency (MHz) 100

LM
5000

Viterbi beam width NA
Accuracy (%) 89 88

Vocabulary (k) 5 20
[12]

536

GMM Module
3,001 3,001

Technology VLSI (0.18 um)

16 16
39 39

FPGA

19,983
835,000 1,440,272

Real-time factor 2.38x

 

0

1

2

10

0 10,000 20,000 30,000 40,000 50,000 60,000

CMU [8]

5,000-words

FPGA 100 MHz 10x

CMU [4]

1,000-words

FPGA  50 MHz 0.7x

SNU [11]

20,000-words

FPGA 100 MHz 1.52x

This work

60,000-words

VLSI   2.4x

168 mW @ 200 MHz 

X
 R

e
a

l-tim
e

Break through power

[words]

60,000-words [13] 

VLSI   1x 

144 mW @ 126.5 MHz

 

Fig. 5.17  Vocabulary versus speed. 
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5.6 Summary 

As described in this chapter, several schemes are proposed to achieve a smaller area 

and higher processing speed. 

1) a compression–decoding scheme to reduce the external memory bandwidth for GMM 

computation, which reduce the result ram;  

2) max-mixture approximation GMM calculation, which reduce the add-log table.  

3) a 4-path Viterbi transition unit to hide the DRAM latency when a mis-hit occurs.  

The measured results show that our implementation achieves 34.2% required 

frequency reduction (83.3 MHz) , 48.5% power consumption reduction (74.14 mW) and 

30% area reduction compared to the previous work for 60 k-Word real-time continuous 

speech recognition with recognition accuracy of 90.9%. This chip can maximally 

process 2.4× faster than real-time at 200 MHz and 1.1 V with power consumption of 

168 mW. By increasing the beam width, better accuracy (91.45%) can be achieved. In 

that case, the power consumption for real-time processing is increased to 97.4 mW and 

the max-performance is decreased to2.08x. because of the increased computation 

workload. 
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Chapter 6 3x-Real-Time 60-KWord 

Continuous Speech Recognition VLSI 

Processor 

This chapter describes the third chip (HMM3) [21, 22] we implemented for 

60-kWord real-time continuous speech recognition. As the “on-chip” latency (stop 

processing until the data come to the compute unit) and the “off-chip” latency (loading 

latency caused by DRAM ) strongly delay the processing speed. We try to reduce the 

“off-chip latency” by implementing a two-level cache architecture and propose a 8-path 

Viterbi transition unit to reduce the “on-chip latency”, which maximize the processing 

speed. Furthermore, we adopts tri-gram language model to improve the recognition 

accuracy. The following techniques are explained in detail.  

1) Level-2 Cache 

2) 8-path Viterbi transition unit 

3) Simplified 3-gram transition 

6.1 Speech Recognition System 

The overall speech recognition system architecture is depicted in Fig. 6.1, The 

MFCC feature vectors are extracted using a PC, we separate the feature extraction 

from the chip because the use of fixed-point computation in the feature extraction part 

would cause big degradation in recognition accuracy and the computation workload for 

feature extraction is small thus can be easily handled by PC or an embedded soft-core. 

The input speech data can either be recorded as an audio stream or with real-time 

speaking. Before start working, the language and acoustic models are transferred from 

PC to SDRAM through USB to construct the database. The test chip accesses the 

DRAM through an on-board FPGA.  The data-path of the SDRAM is 64 bit, The 

data-path for GMM computation (32pin) and Viterbi search (32pin) is separated to 

support pipeline operation. We implement a 20-frame parallel architecture for GMM 

computation  to support 3× real-time processing (decided by Viterbi). In the previous 

chip HMM2, we suffered from the pin limitation that only 16 data-pin  are available 

for GMM part. We optimize the pin-placement in this chip by sharing the output pin 

with Viterbi part because we don’t need to output result in GMM computation  except 

the initial test.  Therefore the available data-pin for GMM is increased to 32 which is 
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enough to support the required speed . There are two GMM result buffer to support the 

GMM-Viterbi pipeline operation, each of the result buffers will be accessed by GMM 

core and Viterbi core respectively. 
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Fig. 6.1  Overall speech recognition system architecture. 

6.2 Level-2 Cache 

A two-level cache architecture is implemented to reduce the “off-chip latency” for 

accessing SDRAM. The Level-1 cache is the specialized caches we proposed in HMM1 

which are implemented inside the chip and can offer a high hit-rate of 75%.  However, 

when miss-hit occurs, the chip has to access the external SDRAM which causes long 

latency. In Image and Vidio processing system, the DRAM only acts as a buffer 

between camera and chip, the pixels are read from DRAM orderly and saved to the 

on-chip memory. Therefore the max length of burst mode for DRAM access can be 

utilized. However, in LVCSR system, the DRAM functions as a data-base which saves 
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the dictionary parameters and language models. These data will be accessed randomly 

during the processing. According to the characteristics of DRAM , there are several 

cycles of  latency caused by pre-charge every time before we read from the DRAM, 

therefore if the required data are not accessed sequentially, the efficiency is bad.  

Index
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Index = DRAM_address – start_address

DATAADD
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Start address

End address
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Fig. 6.2  Level-2 Cache architecture. 
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Fig. 6.3  L2 cache data loading flow . 

As described herein, a Level-2 cache is created in the host FPGA as shown in Fig. 
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6.1 . The possible required data are loaded to the L2 Cache during processing as shown 

in Fig. 6.2.  If the required data is found in L1 cache, it will not be transferred to the 

chip.  When the required data is not saved in L1 cache, There’s no need to access the 

SDRAM because the data can be read immediately from the L2 cache. The data 

loading flow is described in Fig. 6.3. This scheme is effective for many kind of data for 

speech recognition include the N-gram model for cross-word transition and destination 

node information for internal-word transition, which account for a big amount of 

DRAM access. 

6.3 8-Path Viterbi Transition Unit 

The architecture of Viterbi core is shown in Fig. 6.4. It comprises two active node  

workspace, an output buffer, a threshold calculator, trellis & token write module and the 

specialized cache consist of   N-gram cache and active node map cache. During 

transition processing, the active node information and the GMM probabilities can be 

read from the on-chip memory immediately without miss-hit. However, the N-gram data 

and active node map data may not be found in the caches. Even the hit-rate of the 

proposed cache reach 75%, the miss-hit still cause big latency because the Viterbi 

processing will have to stop to wait until the required data is read from the external 

data-base, which strongly delays the Viterbi processing. Increasing the number of  

transition-path can hide the miss-hit latency, which improve the processing speed of the 

recognition system because the computation time for Viterbi transition is the bottle neck 

of the GMM-Viterbi pipeline operation. To maximize the utilization ratio of the internal 

data-path to caches and the external data-path to the SDRAM data-base, we analyze the 

tradeoff between the number of gates, the number of transition-path  and processing 

speed at 200MHz as presented in Fig. 6.5. 200MHz is the maximum operating 

frequency of the test chip. Few speed improvement  can be achieved while  

increasing the number of paths from 8 to 10.  This means eight paths is enough to 

process most of the transitions in pipeline, as caches and external data-base has already 

been occupied, the extra paths will be in the waiting state most of the time during 

processing. Consquently, We choose to implement a 8-path Viterbi transition 

architecture, which offers a processing speed of 3.02×. 
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Fig. 6.4  8-path Viterbi transition architecture. 
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Fig. 6.5  # of paths versus # of logic elements versus processing speed at 200MHz. 
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6.4 Simplified 3-gram Transition 

Both bigram and trigram are available in this chip. The 60k-word bigram language 

model consists of 60,001 unigram and 4,000,273 bigram transitions while the trigram 

language model (3-gram) consists of 60,001 unigram, 2,420 231 bigram and 8,368,507 

trigram transitions. To adopt trigram transition, we need to treat much more transitions 

and remain a large network for the history of the two preceding words as shown in Fig. 

6.6, which is too costly. Therefore we utilize a simplified trigram transition [11] which 

only consider the best predecessor word. After bigram transition is applied, the best 

predecessor word can be decided, then the trigram transition from this word is treated. 

In case of Fig. 6.6, after treating the bi-gram transitions, word B1 is chosen as the best 

word. Therefore only the tri-gram transitions from B1 is applied, the other tri-gram are 

not considered. The recognition accuracy for our test patterns is improved by 1.4% 

when the trigram restrict is added. In that case, the processing speed is decreased to 

2.25× as shown in Fig. 6.7. 
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Fig. 6.6  Cross-word transition using bi-gram and tri-gram. 
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Fig. 6.7  Performance and recognition accuracy for bi-gram and tri-gram (Test speech 

pattern: 172Japanese sentences ). 

6.5 Implementation 

We implement a software prototype profiling with Microsoft Visual C++ and a 

referential hardware using hardware description language (HDL) to check the required 

memory bandwidth and operating frequency for real-time operation. The required 

frequency reduction for real-time processing is reduced by 88.9% compared to the 

base-line system and 25%  compared to our previous work HMM2 as shown in Fig. 

6.8. The layout of the chip, which was fabricated in 40 nm CMOS technology is shown 

in Fig. 6.9. It occupies 1.77×2.18 
2mm  containing 2.98 M transistors for Logic and 4.29 

Mbit on-chip SRAM. The logic part is placed in the center area and the cache memory 

is placed around. We evaluated the test chip with a logic tester. The generated Shmoo 

plot is presented in Fig. 6.10. The green area of the Shmoo plot  shows the available 

frequency and operation voltage with which the chip can function correctly. 200MHz is 

the maximum operation frequency of the test chip under the standard operating voltage 

(1.1V).  
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Fig. 6.8  Required frequency reduction for real-time 60k-word continuous speech 

recognition. 

 

Fig. 6.9  Chip layout. 
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Table 6.1  Summary of chip implementation. 

40-nm CMOS
2.18 mm  ×  1.77 mm

5 mm ×  2.5  mm
 GMM 1.58 M
 Viterbi 0.89 M
 Other 0.51 M
 Total 2.98 M

 4.29 Mbit
1.1V
3.3V

 SOC Tester System
62.5 MHz for 60 kWord real-time processing

54.8 mW
1.32 mALeakage current 

Process Technology
Core area
Chip area

On-Chip Memory (SRAM)

Transister Count (Logic )

Supply voltage
I/O voltage
Evaluation environment
Operating Frequency 
Measured Power (without IO)

 

 

PASS

FAIL

1.1v  200MHz

200MHz 177MHz 133MHz145MHz160MHz

 

Fig. 6.10  Shmoo plot generated by a logic tester. 

 

Processing speed versus required frequency and the measured power are presented 

in Fig. 6.11 and Fig. 6.12. This chip can process real-time 60-kWord  continuous 

speech recognition with bi-gram model at 62.5 MHz while consumes  54.8 mW and 

maximally function 3.02× faster than real-time at 200MHz while consumes 177.4 mW. 

26% power consumption reduction for real-time processing is achieved compared to 

HMM2. When tri-gram is used, HMM3 can process real-time operation at 88.9 MHz 
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with power consumption of 76.7 mW and maximally function 2.25× faster than 

real-time at 200 MHz with power consumption of 165 mW. Table 1 presents a 

comparison between this chip and some recently announced works in terms of the 

vocabulary size, GMM model, language model, beam-width, real-time factor, operation 

frequency, external memory bandwidth , area , logic element and power consumption. 

Figure 6.13 plots the vocabulary versus speed of the state of art hardware-based 

recognizers. 

 

Fig. 6.11  processing speed versus frequency. 

 

Fig. 6.12  Measured data of processing speed versus power consumption. 
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Fig. 6.13  Measured data of processing speed versus power consumption. 

Table 6.2  Comparison with recently reported works. 

HMM1 [13]
60

VLSI  (40 nm)
 # of states 2,000
 # of distributions 16
 # of dimensions 25
 # of unigram 60,001
 # of bigram 4,000,273
 # of trigram NA

3000 3000 3000
1 1 2.4 1 3.02 2.25

126.5 83.3 200 62.5 200 200
70.86 82.6 198 82.6 250 264
5.5

  1.9 MTr. 
975

LM

Real-time factor
Viterbi beam width

  GMM Module

 Technology
Vocabulary (k)

Core area (mm2)

External memory BW (MB/s)
Internal Frequency (MHz)

Internal memory (KB)
Logic elements 

HMM2 [15]
60

VLSI  (40 nm)
2,000

16
25

60,001

536

60,001
4,000,273

NA

3.86
  2.52 MTr. 

3.86
  2.98 MTr. 

536

117

25
60,001

1
88.9

4,000,273
NA

3000

2,420,231
8,368,507

3000

This work
60

VLSI  (40 nm)
2,000

16

 

6.6 Summary 

As described in this chapter, several schemes are proposed to achieve higher 

processing speed. As the “on-chip” latency (stop processing until the data come to the 

compute unit) and the “off-chip” latency (loading latency caused by DRAM ) strongly 

delay the processing speed. We try to reduce the “off-chip latency” by implementing a 

two-level cache architecture and propose a 8-path Viterbi transition unit to reduce the 

“on-chip latency”, which maximize the processing speed. Furthermore, we adopts 
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tri-gram language model to improve the recognition accuracy. The measured results 

show that our implementation achieves 25% required frequency reduction (62.5 MHz) 

and 26% power consumption reduction (54.8 mW) for 60 k-Word real-time continuous 

speech recognition compared to the previous work. This chip can maximally process 

3.02× and 2.25× times faster than real-time at 200 MHz using the bigram and trigram 

language models, respectively. 
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Chapter 7 Conclusion 

This dissertation reports VLSI designs for large vocabulary real-time continuous 

speech recognition based on context-dependent Hidden Markov Model (HMM). As the 

background of this research area, the objective of this study and an overview of this 

dissertation are presented in Chapter 1. Then issues related to the VLSI implementation 

for real-time continuous speech recognition are noted in Chapter 2. The main issues are 

explained as four parts: 1) large-vocabulary are needed to support a higher word-cover 

rate. 2) low-power is required for longer working time and lower temperature, 3) 

high-speed is demanded for a more comfortable human interface, and 4) small area 

which means less recourse would be cost. In this study, the solutions to these issues are 

presented in Chapter 3 to Chapter 6 as shown in Table. 7.1. 

In Chapter 3, some algorithm optimizations are presented: beam pruning using a 

dynamic threshold to cut the workspace and memory bandwidth for sort processing; the 

modified unigram language model which eliminated the updata process for 

word-internal transitions; two-stage language model searching to reduce cross-word 

transitions which reduce the memory access greatly. The accuracy degradation of the 

important parameters in Viterbi computation is strictly discussed. These optimizations 

are utilized in all the three chips introduced in the following chapters. 

Chapter 4 describes the first chip (HMM1) we implemented for 60-kWord real-time 

continuous speech recognition. It includes a cache architecture using locality of speech 

recognition, as some of the data that has been used in the current frame may be reused 

in the following frames, on chip caches are introduced for keeping some of them to 

reduce the external memory access, the specialized cache architecture achieve a hit-rate 

of 75%; a highly parallel Gaussian Mixture Model (GMM) architecture based on the 

mixture level; a variable-50-frame look-ahead scheme; and elastic pipeline operation 

between the Viterbi transition and GMM processing. Results show that our 

implementation achieves 95% bandwidth reduction (70.86 MB/s) and 78% required 

frequency reduction (126.5 MHz) comparing to the referential Julius system. The test 

chip, fabricated using 40 nm CMOS technology, contains 1.9 M transistors for logic and 

7.8 Mbit on-chip memory. It dissipates 144 mW at 126.5 MHz and 1.1 V for 60 kWord 

real-time continuous speech recognition.  
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Chapter 5 describes the second chip (HMM2) we designed for 60-kWord real-time 

continuous speech recognition. It features a compression–decoding scheme to reduce 

the external memory bandwidth for Gaussian Mixture Model (GMM) computation and 

a 4-path Viterbi transition units. We optimize the internal SRAM size using the 

max-approximation GMM calculation and adjusting the number of look-ahead frames. 

The test chip, fabricated in 40 nm CMOS technology, occupies 1.77 mm × 2.18 mm 

containing 2.52 M transistors for logic and 4.29 Mbit on-chip memory. The measured 

results show that our implementation achieves 34.2% required frequency reduction 

(83.3 MHz), 48.5% power consumption reduction (74.14 mW) for 60 k-Word real-time 

continuous speech recognition compared to the previous work while 30% of the area is 

saved with recognition accuracy of 90.9%. It can maximally process 2.4× faster than 

real-time at 200 MHz and 1.1 V with power consumption of 168 mW.  

Chapter 6 describes the third chip (HMM3) we designed for 60-kWord real-time 

continuous speech recognition. It includes a 8-path Viterbi transition architecture to 

maximize the processing speed by cutting the on-chip latency and adopts tri-gram 

language model to improve the recognition accuracy. A two-level cache architecture is 

implemented for the demo system to cut the off-chip latency. Measured results show 

that our implementation achieves 25% required frequency reduction (62.5 MHz) and 

26% power consumption reduction (54.8 mW) for 60 k-Word real-time continuous 

speech recognition compared to the previous work. The chip can maximally process 

3.02× and 2.25× times faster than real-time at 200 MHz using the bigram and trigram 

language models, respectively. 

The conclusion of this study is presented in this Chapter. This thesis presents the 

VLSI designs for low-power speak-independent large vocabulary real-time continuous 

speech recognition based on context-dependent Hidden Markov Model (HMM). The 

work contributes to achieve a comfortable human interface for mobile systems and 

robotics. 
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Table 7.1  Mapping of the proposed techniques in Chapter 3-6 for the four issues. 

3.2 Beam Pruning ○ ○
3.3 Modif ied Unigram ○ ○
3.5 Two-stage LM Search ○ ○
4.1 50-frame Look Ahead scheme ○ ○
4.2 Elastic Pipeline Operation ○ ○
4.3 Highly Paralle l GMM  Architecture ○ ○
4.4 Viterbi Cache Architecture ○ ○
5.2 Compression-Decoding scheme ○
5.3 Max-Mixture GMM Calculation ○ ○
5.4 4-path Viterbi Transition unit ○ ○
6.2 Level-2 Cache ○ ○
6.3 8-path Viterbi Transition unit ○ ○

Proposed techniques
Issue of

Large Vocabulary
Issue of

Low Power
Issue of

High Speed
Issue of

Small Area
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