
Kobe University Repository : Kernel

PDF issue: 2025-02-01

A Study on VLSI Design for Real-Time Large
Vocabulary Continuous Speech Recognition

(Degree)
博士（工学）

(Date of Degree)
2014-03-25

(Date of Publication)
2015-03-01

(Resource Type)
doctoral thesis

(Report Number)
甲第6102号

(URL)
https://hdl.handle.net/20.500.14094/D1006102

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

He, Guangji

Doctoral Dissertation

A Study on VLSI Design for Real-Time Large

Vocabulary Continuous Speech Recognition

(実時間大語彙連続音声認識プロセッサ

VLSI 設計技術に関する研究)

January 2014

Graduate School of System Informatics

Kobe University

He Guangji

i

Abstract

Speech recognition has been used recently in various applications such as automatic

transcript, website indexing, navigation, mobile systems, ubiquitous systems, and

robotics as a human interface. Large vocabulary continuous speech recognition

(LVCSR) with acoustic and language models is too resource-hungry and

power-sensitive for software applications. Hardware implementation by very large scale

integrated circuit (VLSI) or field programmable gate array (FPGA) is demanded

especially for use in mobile equipment and intelligent robots because of advantageous

high processing speed and low power consumption.

This dissertation reports VLSI designs for large vocabulary real-time continuous

speech recognition based on context-dependent Hidden Markov Model (HMM). As the

background of this research area, the objective of this study and an overview of this

dissertation are presented in Chapter 1. Then issues related to the VLSI implementation

for real-time continuous speech recognition are noted in Chapter 2. The main issues are

explained as four parts: 1) large-vocabulary are needed to support a higher word-cover

rate. 2) low-power is required for longer working time and lower temperature, 3)

high-speed is demanded for a more comfortable human interface, and 4) small area

which means less recourse would be cost. Algorithm optimization and specialized

architectures are proposed to solve these problems.

In Chapter 3, some algorithm optimizations are presented: beam pruning using a

dynamic threshold to cut the workspace and memory bandwidth for sort processing; the

modified unigram language model which eliminated the updata process for

word-internal transitions; two-stage language model searching to reduce cross-word

transitions which reduce the memory access greatly. The accuracy degradation of the

important parameters in Viterbi computation is strictly discussed. These optimizations

are utilized in all the three chips introduced in the following chapters.

Chapter 4 describes the first chip (HMM1) we implemented for 60-kWord real-time

continuous speech recognition. It includes a cache architecture using locality of speech

recognition, as some of the data that has been used in the current frame may be reused

in the following frames, on chip caches are introduced for keeping some of them to

reduce the external memory access, the specialized cache architecture achieve a hit-rate

ii Abstract

of 75%; a highly parallel Gaussian Mixture Model (GMM) architecture based on the

mixture level; a variable-50-frame look-ahead scheme; and elastic pipeline operation

between the Viterbi transition and GMM processing. Results show that our

implementation achieves 95% bandwidth reduction (70.86 MB/s) and 78% required

frequency reduction (126.5 MHz) comparing to the referential Julius [1] system. The

test chip, fabricated using 40 nm CMOS technology, contains 1.9 M transistors for logic

and 7.8 Mbit on-chip memory. It dissipates 144 mW at 126.5 MHz and 1.1 V for 60

kWord real-time continuous speech recognition.

Chapter 5 describes the second chip (HMM2) we designed for 60-kWord real-time

continuous speech recognition. It features a compression–decoding scheme to reduce

the external memory bandwidth for Gaussian Mixture Model (GMM) computation and

a 4-path Viterbi transition units. We optimize the internal SRAM size using the

max-approximation GMM calculation and adjusting the number of look-ahead frames.

The test chip, fabricated in 40 nm CMOS technology, occupies 1.77 mm × 2.18 mm

containing 2.52 M transistors for logic and 4.29 Mbit on-chip memory. The measured

results show that our implementation achieves 34.2% required frequency reduction

(83.3 MHz), 48.5% power consumption reduction (74.14 mW) for 60 k-Word real-time

continuous speech recognition compared to the previous work while 30% of the area is

saved with recognition accuracy of 90.9%. It can maximally process 2.4× faster than

real-time at 200 MHz and 1.1 V with power consumption of 168 mW.

Chapter 6 describes the third chip (HMM3) we designed for 60-kWord real-time

continuous speech recognition. It includes a 8-path Viterbi transition architecture to

maximize the processing speed by cutting the on-chip latency and adopts tri-gram

language model to improve the recognition accuracy. A two-level cache architecture is

implemented for the demo system to cut the off-chip latency. Measured results show

that our implementation achieves 25% required frequency reduction (62.5 MHz) and

26% power consumption reduction (54.8 mW) for 60 k-Word real-time continuous

speech recognition compared to the previous work. The chip can maximally process

3.02× and 2.25× times faster than real-time at 200 MHz using the bigram and trigram

language models, respectively.

Finally, the conclusion of this study is presented in Chapter 7. This thesis presents the

VLSI designs for low-power speak-independent large vocabulary real-time continuous

iii

speech recognition based on context-dependent Hidden Markov Model (HMM). The

work contributes to achieve a comfortable human interface for mobile systems and

robotics.

Keywords: large vocabulary continuous speech recognition (LVCSR), Hidden Markov

Model (HMM), speak-independent, 40nm VLSI, Low power, high speed.

iv Abstract

v

Table of Contents

Abstract... i

Table of Contents ... v

List of Figures... ix

List of Tables .. xiii

Chapter 1 Introduction.. 1

1.1 Background of Research Area .. 1

1.2 Objective of This Study .. 3

1.3 Overview of This Dissertation .. 3

Chapter 2 Issues of VLSI Implementation for Large Vocabulary

Continuous Speech Recognition ... 7

2.1 Issue of Large Vocabulary .. 7

2.2 Issue of Low Power ... 9

2.3 Issue of High Speed .. 10

2.4 Issue of Small Area ... 10

2.5 Summary .. 10

Chapter 3 Algorithm Optimization... 13

3.1 Speech Recognition Overiew .. 13

3.1.1 MFCC Feature Extraction ... 14

3.1.2 GMM Computation .. 15

3.1.3 Time-Synchronous Viterbi Beam Search .. 16

3.2 Beam Pruning using a Dynamic Threshold ... 18

3.3 Modified Unigram Language Model .. 19

3.4 Two-stage Language Model Search .. 20

3.5 Accuracy Tradeoff ... 21

3.5.1 Detailed search cycle, the number of cross-word transitions (in

simplified search).. 21

3.5.2 Beam width, the number of cross-word transitions (in detailed

vi Table of Contents

search) 24

3.5.3 Default parameters .. 25

3.6 Summary .. 26

Chapter 4 Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor 27

4.1 Variable-frame look-ahead scheme .. 27

4.2 Elastic Pipeline Architecture.. 28

4.3 Highly Parallel GMM Architecture .. 30

4.4 Viterbi Cache Architecture ... 31

4.4.1 Bi-gram Cache ... 33

4.4.2 Active node map Cache .. 34

4.4.3 Hit rate ... 36

4.5 Implementation .. 37

4.5.1 Chip layout ... 37

4.5.2 Required frequency and memory bandwidth 39

4.5.3 Power consumption .. 40

4.5.4 Comparison with other works ... 42

4.6 Summary .. 43

Chapter 5 2.4x-Real-Time 60-KWord Continuous Speech Recognition

VLSI Processor .. 45

5.1 Speech Recognition System .. 45

5.2 GMM Architecture with Compression-Decoding 46

5.3 Max-Mixture Approximation GMM Calculation...................................... 49

5.4 4-Path Viterbi Transition Unit ... 52

5.5 Implementation .. 54

5.6 Summary .. 60

Chapter 6 3x-Real-Time 60-KWord Continuous Speech Recognition

VLSI Processor .. 61

6.1 Speech Recognition System .. 61

6.2 Level-2 Cache ... 62

6.3 8-Path Viterbi Transition Unit ... 64

vii

6.4 Simplified 3-gram Transition ... 66

6.5 Implementation .. 67

6.6 Summary .. 71

Chapter 7 Conclusion .. 73

References .. 77

List of Publications and Presentations ... 81

Publications in journals and transactions ... 81

Presentations at international conferences ... 81

Presentations at domestic conferences .. 82

Acknowledgement ... 85

viii

ix

List of Figures

1.1 Multifarious applications using speech recognition. 2

1.2 Overview of this dissertation... 5

2.1 # of vocabulary versus word-cover rate for TV speech, TV Script, and Daily

Conversation. .. 8

2.2 Required frequency for real-time continuous speech recognition................... 8

2.3 Required external memory bandwidth for real-time continuous speech

recognition. ... 9

3.1 Speech recognition flow with HMM algorithm. .. 14

3.2 Calculation flow to obtain MFCC from speech waveform 15

3.3 Left-right HMM. .. 16

3.4 Viterbi computation. ... 17

3.5 Beam width variation with dynamic threshold-cut scheme. 19

3.6 Appearance ratio of three types transitions in Viterbi search. 20

3.7 Two-stage language model search. .. 21

3.8 Cycle of detailed language model search versus the number of cross-word

transitions. ... 22

3.9 Cycle of detailed language model search versus recognition accuracy. 23

3.10 Relation between accuracy and the # of cross-word transitions. 23

3.11 External memory bandwidth versus beam width. 24

3.12 Accuracy versus beam width... 25

3.13 Accuracy versus External memory bandwidth. .. 25

4.1 The overall speech recognition architecture. ... 28

4.2 External memory bandwidth variety of Viterbi transition through frames after

the two-stage language model search. .. 29

4.3 Elastic pipeline. .. 29

4.4 GMM computation flow. .. 30

4.5 Viterbi computation flow. ... 32

4.6 External memory bandwidth of Viterbi transition. 32

4.7 Viterbi cache architecture.. 33

4.8 Two-way bi-gram cache. ... 34

x List of Figures

4.9 Memory accesses of active node. .. 35

4.10 Active node map cache. .. 35

4.11 Cache hit rate. ... 36

4.12 Chip microphotograph. ... 38

4.13 Bandwidth reduction by the proposed schemes. .. 39

4.14 Required frequency reduction for real-time processing. 40

4.15 Vdd versus period shmoo plot generated by SOC logic tester. 41

4.16 Power consumption with the lowest operation voltage. 41

4.17 Measurement results of frequency versus power consumption versus beam

width. .. 42

4.18 Power consumption comparison.. 43

5.1 Overall speech recognition architecture. ... 46

5.2 GMM architecture with compression-decoding scheme. 47

5.3 Pipeline operation in GMM core. .. 48

5.4 Run Length Encoding (RLE) for GMM parameters. 48

5.5 Three cases for decoding operation. .. 48

5.6 20-frame parallel processing versus 16-mixture parallel processing. 50

5.7 Max-mixture approximation GMM computation flow. 51

5.8 Power comsumption for real-time GMM computation of 16-core and 20-core

measured by simulation. .. 51

5.9 4-path Viterbi transition architecture. .. 53

5.10 Pipeline operation for viterbi transition. .. 53

5.11 Chip layout. .. 54

5.12 Required frequency reduction for real-time processing. 55

5.13 Required memory bandwidth reduction & GMM result RAM reduction. .. 56

5.14 Shmoo plot generated using a logic tester. ... 57

5.15 Power consumption versus operation frequency. 58

5.16 Processing speed versus required frequency. ... 58

5.17 Vocabulary versus speed. .. 59

6.1 Overall speech recognition system architecture. .. 62

6.2 Level-2 Cache architecture. .. 63

6.3 L2 cache data loading flow 63

xi

6.4 8-path Viterbi transition architecture. .. 65

6.5 # of paths versus # of logic elements versus processing speed at 200MHz. . 65

6.6 Cross-word transition using bi-gram and tri-gram. 66

6.7 Performance and recognition accuracy for bi-gram and tri-gram (Test speech

pattern: 172Japanese sentences). ... 67

6.8 Required frequency reduction for real-time 60k-word continuous speech

recognition. ... 68

6.9 Chip layout. .. 68

6.10 Shmoo plot generated by a logic tester. ... 69

6.11 processing speed versus frequency. ... 70

6.12 Measured data of processing speed versus power consumption. 70

xii List of Figures

xiii

List of Tables

4.1 Implementation. .. 37

4.2 Summary of chip implementation. .. 38

4.3 Breakdown of internal memory. .. 39

5.1 Summary of chip implementation. .. 54

5.2 Breakdown of Internal memory. .. 55

6.1 Summary of chip implementation. .. 69

6.2 Comparison with recently reported works. .. 71

xiv List of Tables

 1.1 Background of Research Area 1

Chapter 1 Introduction

1.1 Background of Research Area

Speech recognition based on Hidden Markov Model (HMM) can provide high

recognition accuracy, thus has been used recently in various applications (Fig. 1.1) such

as automatic transcript, website indexing, navigation, especially in mobile systems,

ubiquitous systems, and robotics as a human interface. High-end personal computers

can accommodate speech recognition task well even with large acoustic and language

models [1]. However, such methods are not applicable for mobile systems while

considering the physical size and power consumption [2]. Additionally, they are

unsuitable for next-generation applications such as “audio mining”, which request the

recognizer to deliver results at rates that are 10×, 100×, or 1000× faster than real-time [3,

4]. Hardware implementation by very large scale integrated circuit (VLSI) or an field

programmable gate array (FPGA) is a good approach to satisfy these demands because

of its good processing speed and power consumption.

There have been several hardware-based speech recognizers. Some of them only

adopted hardware accelerator or a coprocessor for the GMM computation part [5, 6, 7],

however, as the vocabulary size increases, the portion of the GMM probability

computation becomes smaller while the Viterbi processing becomes larger which need

to be covered. Some complete hardware implementation for both Viterbi and GMM

processing are also presented. Lin et al. reported a Multi-FPGA implementation for 5

k-word continuous speech recognition [8] that achieves 10× faster than real time, but

the system is not extendable for larger vocabularies because it is not cost-effective. It

needs two FPGAs and two DDR2 DRAMs each with a 64-bit wide data-path.

Yoshizawa et al. proposed a scalable architecture for speech recognition [9]. Their chip

can have an adjustment between vocabulary size and processing speed, but the system

only offers real-time performance with a limited vocabulary of 800 words. Choi et al.

developed FPGA and VLSI implementations for 20 k-word speech recognition [10, 11,

12]. They implemented a special memory interface for several parts of the recognition

engine to apply optimized DRAM access, which improves the data transfer efficiency,

but the numerous external DRAM accesses cause high IO frequency, which requires a

2 Chapter 1 Introduction

high supply voltage and high power consumption in both the FPGA side and DRAM

side. In Image and Vidio processing system, the DRAM only acts as a buffer between

camera and chip, the pixels are read from DRAM orderly and saved to the on-chip

memory. However, in large vocabulary continuous speech recognition (LVCSR) system,

the DRAM functions as a data-base which saves the dictionary parameters and language

models. These data will be accessed randomly during the processing. According to the

characteristics of DRAM , there are several cycles of latency caused by pre-charge

every time before we read from the DRAM, therefore if the required data are not saved

sequentially, the access-efficiency is bad. As a result, speech recognition needs much

higher IO frequency than video processing to get the same amount of data from DRAM.

Especially, with the number of vocabulary increase, the external memory bandwidth

become enormous which causes two problems, firstly, real-time processing is

impossible to be achieved because of the I/O frequency limitation. Secondly, large

amount of power is consumed by I/O because of the high supply voltage (3.3V).

Consequently, reducing external memory access and optimizing the latency is the most

important things to implement a low-power large-vocabulary real-time continuous

speech recognition system.

24

Speech Recognition

Automatic Transcript

Human

Interface

Index Searching

Voice Mail

Fig. 1.1 Multifarious applications using speech recognition.

 1.2 Objective of This Study 3

1.2 Objective of This Study

This dissertation focuses on VLSI design for low-power, large-vocabulary, real-time,

speak-independent continuous speech recognition based on context-dependent Hidden

Markov Model (HMM). The proposed algorithm optimizations and specialized

architectures are described in this dissertation.

1.3 Overview of This Dissertation

An overview of this dissertation is presented in Fig. 1.2 with clear correlation

between the issues and solutions. First, the background and the objective of this study

are decribed in Chapter 1. Then issues related to the VLSI implementation for real-time

continuous speech recognition are noted in Chapter 2. The main issues are explained as

four parts: 1) large-vocabulary are needed to support a higher word-cover rate. 2)

low-power is required for longer working time and lower temperature, 3) high-speed is

demanded for a more comfortable human interface, and 4) small area is also expected

which means less recourse would be cost. Algorithm optimization and specialized

architectures are proposed to solve these problems.

In Chapter 3, some algorithm optimizations are presented: beam pruning using a

dynamic threshold to cut the workspace and memory bandwidth for sort processing; the

modified unigram language model which eliminated the updata process for

word-internal transitions; two-stage language model searching to reduce cross-word

transitions which reduce the memory access greatly. The accuracy degradation of the

important parameters in Viterbi computation is strictly discussed. These optimizations

are utilized in all the three chips introduced in the following chapters.

Chapter 4 describes the first chip (HMM1) we implemented for 60-kWord real-time

continuous speech recognition. It includes a cache architecture using locality of speech

recognition, as some of the data that has been used in the current frame may be reused

in the following frames, on chip caches are introduced for keeping some of them to

reduce the external memory access, the specialized cache architecture achieve a hit-rate

of 75%; a highly parallel Gaussian Mixture Model (GMM) architecture based on the

mixture level; a variable-50-frame look-ahead scheme; and elastic pipeline operation

between the Viterbi transition and GMM processing. Results show that our

4 Chapter 1 Introduction

implementation achieves 95% bandwidth reduction (70.86 MB/s) and 78% required

frequency reduction (126.5 MHz) comparing to the referential Julius [1] system. The

test chip, fabricated using 40 nm CMOS technology, contains 1.9 M transistors for logic

and 7.8 Mbit on-chip memory. It dissipates 144 mW at 126.5 MHz and 1.1 V for 60

kWord real-time continuous speech recognition.

Chapter 5 describes the second chip (HMM2) we designed for 60-kWord real-time

continuous speech recognition. It features a compression–decoding scheme to reduce

the external memory bandwidth for Gaussian Mixture Model (GMM) computation and

a 4-path Viterbi transition units. We optimize the internal SRAM size using the

max-approximation GMM calculation and adjusting the number of look-ahead frames.

The test chip, fabricated in 40 nm CMOS technology, occupies 1.77 mm × 2.18 mm

containing 2.52 M transistors for logic and 4.29 Mbit on-chip memory. The measured

results show that our implementation achieves 34.2% required frequency reduction

(83.3 MHz), 48.5% power consumption reduction (74.14 mW) for 60 k-Word real-time

continuous speech recognition compared to the previous work while 30% of the area is

saved with recognition accuracy of 90.9%. It can maximally process 2.4× faster than

real-time at 200 MHz and 1.1 V with power consumption of 168 mW.

Chapter 6 describes the third chip (HMM3) we designed for 60-kWord real-time

continuous speech recognition. It includes a 8-path Viterbi transition architecture to

maximize the processing speed by cutting the on-chip latency and adopts tri-gram

language model to improve the recognition accuracy. A two-level cache architecture is

implemented for the demo system to cut the off-chip latency. Measured results show

that our implementation achieves 25% required frequency reduction (62.5 MHz) and

26% power consumption reduction (54.8 mW) for 60 k-Word real-time continuous

speech recognition compared to the previous work. The chip can maximally process

3.02× and 2.25× times faster than real-time at 200 MHz using the bigram and trigram

language models, respectively.

The conclusions of this study are presented in Chapter 7. The overall contributions

are summarized briefly.

 1.3 Overview of This Dissertation 5

Chapter 1 : Introduction

Chapter 2 : Issues of VLSI Implementation for Large Vocabulary continuous Speech Recognition

Chapter 3 : Algorithm Optimization

- Beam Pruning using a Dynamic Threshold

- Two-stage Language model search

Chapter 4 : Real-Time 60-KWord Continuous Speech Recognition VLSI Processor

Chapter 5 : 2.4x-Real-Time 60-KWord Continuous Speech Recognition VLSI Processor

Chapter 7 : Conclusion

- Highly Parallel GMM architecture

- 50-frame look-ahead scheme

- Viterbi Cache -Elastic Pipeline

- Compression-decoding scheme

- approximation GMM computation

- 4-path Viterbi transition unit

Chapter 6 : 3x-Real-Time 60-KWord Continuous Speech Recognition VLSI Processor

- 8-path Viterbi transition unit

- Simplified 3-gram transition

- Level-2 cache

Large

Vocabulary

Low Power

High Speed

Small Area

Fig. 1.2 Overview of this dissertation.

6 Chapter 1 Introduction

 2.1 Issue of Large Vocabulary 7

Chapter 2 Issues of VLSI Implementation for

Large Vocabulary Continuous Speech

Recognition

In this chapter, issues of VLSI Implementation for large Vocabulary Continuous

Speech Recognition are summarized in this chapter.

The four issues are explained in detail: 1) large-vocabulary are needed to support a

higher word-cover rate. 2) low-power is required for longer working time and lower

temperature, 3) high-speed is demanded for a more comfortable human interface, and 4)

small area is also expected which means less recourse would be cost.

2.1 Issue of Large Vocabulary

As a Recognizer can’t recognize words that are not included in the database,

large-vocabulary are needed for many applications to support a sufficient word-cover

rate. Figure 2.1 shows the # of vocabulary versus word-cover rate reported by Japanese

Language researcher center . More than 20,000 words are needed for TV speech and TV

script while more than 40,000 words are needed for daily life conversation to supply a

nearly 100% of word-cover rate. However, The exist hardware recognizers [4, 5, 6, 7, 8,

9, 10, 11, 12] are only available for small or medium vocabulary of 1,000-20,000 words.

This is because with the increase of vocabulary size, the required frequency and external

memory bandwidth for real-time processing grow exponentially as shown in Fig. 2.2

and Fig. 2.3. Consequently, we must reduce both of them to be able to handle a large

vocabulary of 60,000 words.

8 Chapter 2 Issues of VLSI Implementation for Large Vocabulary Continuous

Speech Recognition

0%

20%

40%

60%

80%

100%

0 10,000 20,000 30,000 40,000

W
o

rd
 c

o
v
e
ra

g
e
 r

a
te

 [
%

]

TV speech

TV Script

Conversation

[word]

Fig. 2.1 # of vocabulary versus word-cover rate for TV speech, TV Script, and Daily

Conversation.

0

100

200

300

400

500

600

5000-word 20000-word 60000-word

Required frequency[MHz]

178.30

314.98

567.46

[MHz]

Sort

Viterbi

GMM

Others

Fig. 2.2 Required frequency for real-time continuous speech recognition.

 2.2 Issue of Low Power 9

Required external memory bandwidth[MB/s]

0

1000

2000

3000

4000

5000-word 20000-word 60000-word

432.17

1302.89

3446.40

[MB/s]

Sort
Viterbi
GMM

Others

Fig. 2.3 Required external memory bandwidth for real-time continuous speech

recognition.

2.2 Issue of Low Power

Power consumption is extremely important when we considering the work-time and

temperature of the device for mobile application. It won’t be comfortable if the device

goes out of power or gets very hot in a short period. Consequently, we need to achieve

the speech recognizer with as lower power consumption as possible. However, as shown

in Fig. 2.2 and Fig. 2.3, with a large vocabulary of 60,000, the required memory

bandwidth and the operation frequency of the hardware referential Julius [1] prototype

respectively reach 3446 MB/s and 567.46 MHz. This kind of external memory

bandwidth causes high IO frequency, which requires a high supply voltage and high

power consumption at the chip side and causes hundreds of microwatts at DRAM side

even with the state of the art lower power mobile DRAM [17]. Also, the high frequency

inside the chip causes much core power. Therefore, we must reduce both the I/O power

and core power to achieve a low-power speech recognizer.

10 Chapter 2 Issues of VLSI Implementation for Large Vocabulary Continuous

Speech Recognition

2.3 Issue of High Speed

Processing-speed is also a key issue for speech recognition. Real-time processing is

the least requirement which means the recognizer can deliver results at the same speed

as we speak. In fact, times of real-time processing are also needed when we considering

the preprocessing time for adopting noise-cancelling or speaker adaptation, and some

extra time for dealing with the recognizer results like translation for example. Some

next generation applications like “Audio mining” which need to recognize hours of

speech in a short time. However, the “on-chip” latency (stop until the data come to the

compute unit) and the “off-chip” latency (loading latency from DRAM to IO) which

will be explained later delay the processing speed. Therefore, we need to reduce both of

them to achieve a high-speed recognizer.

2.4 Issue of Small Area

Small-area is also expected which means less recourse would be cost. Some methods

are available for high-performance speech recognizer but cost too much resource

including logic element and on-chip memory [8]. For example, if we introduce all the

language model data into the internal memory, the external memory bandwidth for

Viterbi transition would be reduced greatly; also if we use a highly parallel architecture

for all parts of computation, good performance can be achieved, however, a huge area

would be cost which is not applicable and acceptable. Therefore, we must consider the

efficiency of the proposed schemes to implement the VLSI chip with small-area.

2.5 Summary

This section summarizes the four issues of VLSI Implementation for large

Vocabulary Continuous Speech Recognition.

 Large-Vocabulary

the required frequency and external memory bandwidth for real-time processing

must be reduced to be able to handle a vocabulary of 60,000 words.

 Low-Power

we must reduce both the I/O power and core power to achieve a low-power

 2.5 Summary 11

speech recognizer.

 High-Speed

we need to reduce both the “on-chip latency” and “off-chip latency” to achieve a

high-speed recognizer.

 Small-Area

we must consider the efficiency of the proposed schemes to implement the VLSI

chip with small-area.

In this dissertation, novel techniques are presented in Chapters 3 to 6 to address the

issues.

12 Chapter 2 Issues of VLSI Implementation for Large Vocabulary Continuous

Speech Recognition

 3.1 Speech Recognition Overiew 13

Chapter 3 Algorithm Optimization

This chapter describes the algorithm optimizations to support a large-vocabulary

recognizer. First, the speech recognition algorithm, as embodied in the Julius [1]

software recognizer, which we adopt as our reference model is described in Section 3.1.

then the beam pruning using a dynamic threshold is introduced in Section 3.2. Modified

unigram language model are explained in Section 3.3. Section 3.4 presents the

two-stage language model search scheme and accuracy trade-off of the important

parameters are described in Section 3.5. Finally, the concluding remarks are made in

Section 3.6.

3.1 Speech Recognition Overiew

Fig. 2 presents the speech recognition flow with the HMM algorithm [19]. The

following items describe concrete stages. Step 1: Feature vector extraction – The input

speech signal is converted from the time domain to frequency domain to obtain more

unique acoustic characteristics. Feature vectors are extracted from 30 ms length of

speech every 10ms. Step 2: GMM computation – A phonemic-model GMM is read and

state output probabilities is calculated for all active state nodes. Step 3: Viterbi search –

t (j) is calculated for all active state nodes using state output probabilities, transition

probabilities, and the N-gram language model. Step 4: Sort – according to the beam

width, active state nodes having a higher score (accumulated probability) are selected.

The others are dumped. Step 5: Output sentence – The word list with the maximum

score is output as a speech recognition result after final-frame calculation and

determination of the transition sequence.

14 Chapter 3 Algorithm Optimization

Step 1

Feature vector

extraction

Feature Vector

Step 2

GMM Probilities

Computation

),,,(
21 m

wwww 　
Sentence

Ｓｔｅｐ 3
Viterbi

Search

t
x

Loop until the last frameStep 5

I want

to be

…..

Ｓｔｅｐ 4
Sort

Final frameInput speech

aw

k a g e

asu

影

草

川

HMM tree structure
dictionary
（example）

N-gram model

・
・・

I-am:0.3

I-like:0.2

Step 6

output

Fig. 3.1 Speech recognition flow with HMM algorithm.

3.1.1 MFCC Feature Extraction

The feature extraction converts a frame of speech input into a vector that represents

frequency-domain characteristics. While there are several methods to extract the

acoustic data, the most popular form, mel-frequency cepstral coefficients (MFCC), will

be explained here. Its operations are based on the physiology of the human ear and

relatively straightforward to implement as shown in Fig. 3.2. To generate the mfcc

values per frame, a pre-emphasis filter is first used to boost the energy in the high

frequencies which contain important acoustic information. A Hamming window and

512-point FFT are then applied, and the power content of the frequencies, or spectrum,

is computed. A triangular filter bank designed to extract mel-frequencies is applied to

simulate the spectral resolution of the ear, and an inverse discrete cosine transform

converts the data back to the time domain and into the mfcc values. To generate the

acoustic feature vector, the mfcc values undergo cepstral mean normalization, which

average the mfcc values over a certain time period. This helps reduce the effect of

background noise on the mfcc values, and the time period varies from the entire speech

sample (batch mode) to a subset of the preceding frames (live mode). Since human

hearing is also related to the change velocity and acceleration of the mfcc values, the

first and second derivative of the normalized mfcc values are taken to generate the

acoustic feature vector.

 3.1 Speech Recognition Overiew 15

1. Compute the

absolute figure of a

waveform after Fourier

Transform

2. Compute the

filterbank in the Mel

frequency scale

4. Get the low

dimensions of

coefficients

Waveform

1f

3f 4f 5f 6f2f 

Frequency

Time

Frequency

3. Perform Discrete

Cosine Transform

after taking a

logarithm

MFCC

Fig. 3.2 Calculation flow to obtain MFCC from speech waveform

3.1.2 GMM Computation

The left-right HMM, which is a kind of the HMM algorithm, is depicted in Fig. 3.3.

To achieve speaker-independent decoding, variations in pronunciation (different voices,

accents, genders, etc.) must be accommodated, therefore the weighted sum of Gaussian

probability density functions called Gaussian mixture models (GMMs) are used to

represent the state output probability of HMMs. The GMM computation obtains

acoustic likelihood log [bj (xt)] from a feature vector xt and parameters of a GMM. As

expressed in (3.1),





mix

k

kktitj xNxb
1

),,(log)(log 
 (3.1)

 

 



















 













































 


 

 


 

 



mix

k

p

i ki

kii
k

mix

k

p

i ki

kii

p

i

ki

k

x
C

x

1 1
2

2

1 1
2

2

1

2

2
explog

2
exp

2

1
log












16 Chapter 3 Algorithm Optimization

 







 
 



p

i ki

kii
k

x
Cadd

1
2

2

2
log





 (3.2)
























p

i

ki

k
kC

1

22

log





Therein, bj (xt) stands for a GMM probability density function (PDF), N represents a

Gaussian distribution PDF, P is the number of dimensions in a feature vector, mix is the

number of mixtures, xt signifies a feature vector, µ and  denotes mean and variance

parameter respectively.  is a mixture weight coefficient and Ck is a constant number.

(3.2) shows that the computation for one mixture consists of P subtractions, 2P

multiplications, P summations, and one addition. After that, the add-log operation is

taken between the mixture results, which can be processed quickly based on an add-log

table.

)(
1 t

xb

11a 22
a

01
a

12
a

23
a

33a

34
a

Output probability

0q
1q 2q 3q

4q

)(
2 t

xb)(
3 t

xb

Initial-state Final-state

: Initial-state probability,



.

ija

)(i txb

: transition probability,

: output probability density

Fig. 3.3 Left-right HMM.

3.1.3 Time-Synchronous Viterbi Beam Search

The Viterbi computation is depicted in Fig. 3.4. Following formulas show a

time-synchronous Viterbi beam search algorithm [16], which is divisible into two parts:

internal-word transition and cross-word transition. Dynamic programming (DP)

 3.1 Speech Recognition Overiew 17

recursion for the internal word transition is shown in (3.3).

)(log]log);([max);(1
,1

tjijit
jji

jt xbawsws  



 (3.3)

Where aij is the transition probability from state si to sj, and δt (sj; w) stands for the

largest accumulated probability of the state sequence reaching state sj of word w at

time t. Once an internal word transition reach a word-end state, cross-word transition

will be treated, a bi-gram (2-gram) model is used in this chip, where the transition

probability of a word depends on the immediately preceding word. DP recursion for this

part is shown in (3.4).

)]}|(log[);({max);(10 vwpvsws ft
v

t  
 (3.4)

Therein, p(w | v) stands for the bi-gram probability from word v to word w, s0 and sf

respectively denote the start state of word w and the last state of word v.

In actual speech recognition, the problem is too large to allow for calculation of all

the likelihood values. Therefore, after all the transitions in one frame are completed,

only a limited number (“beam width”) of nodes with large likelihood values remains,

the other nodes are terminated. This process is designated as beam pruning. Nodes that

are unpruned in this stage are designated as active state nodes. In the next frame, only

the likelihood values for the active state nodes will be computed.

k

…

After transitionBefore transition

…

)(ibefore

)(jbefore
)(kbefore

ikalog kkalog

jkalog

i

j

…

max)(kafter

kkbefore ak log)(

gramNaj jkbefore  log)(

gramNai ikbefore  log)(

GMMScore

…

Fig. 3.4 Viterbi computation.

18 Chapter 3 Algorithm Optimization

3.2 Beam Pruning using a Dynamic Threshold

In the conventional process, the sort is implemented after Viterbi processing at every

frame before pruning the transitions with a lower score. This pruning necessitates a

large workspace because all temporal scores generated by the Viterbi transition must be

retained until the Viterbi search of the current frame is completed, although most scores

will eventually be pruned by the beam-cutting process. Moreover, sort processing

requires computational rates higher than 10 MIPS and demands external memory

bandwidth greater than 400 MB/s for 60-kword recognition.

A threshold-cut scheme is widely used to reduce the sort processing workspace and

memory bandwidth. In this scheme, a threshold is set and all the transitions which have

a lower score than the threshold are pruned immediately while processing the Viterbi

search. Only the selected transitions with a higher score than the threshold are stored in

workspace memory, which can cut off the superfluous workspace and processing.

However, an improper threshold yields inappropriate cases in which too many nodes

remain or too many nodes are cut off compared to the beam width, which degrades

accuracy. Therefore, the means of deciding the threshold is important for this scheme.

In some other works [4] [8], the max score of the current frame is used as the

threshold for next frame, which is insufficient because we should also consider the

number of active nodes. When there are too few or too many active nodes, the threshold

must be adjusted. As described in this paper, we proposed beam pruning using a

dynamic threshold. An adaptive threshold is set based on the difference between the

average scores of the previous frame and the current frame and the number of active

nodes between the previous frame and the current frame. Fig. 3.4 shows the beam width

variation with a dynamic threshold-cut scheme when the target width is set to 1,500.

The threshold-cut results fluctuate ± 500 and the speech recognition accuracy is

unaffected because almost all transitions that engender the final speech recognition

output word list have higher scores.

 3.3 Modified Unigram Language Model 19

Higher worst

Lower worst

Fig. 3.5 Beam width variation with dynamic threshold-cut scheme.

3.3 Modified Unigram Language Model

The Viterbi processing comprises word-internal transitions, cross-word transitions to

isolated trees and cross-word transitions to shared trees. A unigram (1-gram) language

model was used for computation of word-internal transitions. Each unigram value

corresponds individually to a state of HMM trees. In the conventional scheme, when an

HMM state transfers, the unigram probability of the previous state is subtracted from

the temporal score before the new unigram probability of the current state is added. In

terms of a unigram language model, the previous state of every state is individually

identifiable. Therefore, we modified the unigram language model to hold only

difference values between the probability of a new HMM state and the probability of its

previous HMM state. Using our modified unigram language model, the extra memory

access to the previous state and the memory to save the previous unigram probability

can be reduced. Furthermore, because the unigram update process can be eliminated,

word-internal transitions, cross-word transitions to the isolated trees, and cross-word

transitions to shared trees can be treated using the same process module.

20 Chapter 3 Algorithm Optimization

3.4 Two-stage Language Model Search

Figure 3.6 presents the appearance ratio of the three types of transitions in Viterbi

search: the cross-word transitions to isolated trees are dominant. Consequently, we

proposed a two-stage language model search scheme in this part to reduce the

computational work-load and memory bandwidth for cross-word transitions to isolated

trees. This scheme is derived from the transition frequency difference between

phonemic HMM and language HMM. The cross-word transition search is divided into

two stages. The first stage is a simplified language model search for the top N important

transitions of two-gram probability. The second stage is a detailed language model

search for all cross-word transitions. As depicted in Fig. 3.7, in the traditional language

model search, only our second search treated every frame. However, in our proposed

language model search, the second stage is treated at every n frames. By applying this

proposed search, the computational amount and memory bandwidth can be reduced to

1/n.

With the increase of the detailed language model search cycle, we can achieve greater

reduction of cross-word transitions, which is the main processing undertaken in Viterbi

computation. However, the risk of losing the cross-word transition to the correct

candidate word might increase, thereby affecting the recognition accuracy. Moreover,

the beam width and the number of cross-word transitions during the detailed search and

the simplified search strongly influence the recognition accuracy. Therefore, the tradeoff

of these parameters described above must be discussed carefully.

Word internal

Cross-word isolated

Cross-word shared

96%

4%5%

95%92%

7%1%

5k words 20k words 60k words

Fig. 3.6 Appearance ratio of three types transitions in Viterbi search.

 3.5 Accuracy Tradeoff 21

Original algorithm:

Proposed algorithm:

Detailed language model search for all cross-word transitions

Simplified language model search for the top N important transitions

Detailed language model search for every frame

Detailed language model search for every n frame

Fig. 3.7 Two-stage language model search.

3.5 Accuracy Tradeoff

We measured the accuracy using a referential software prototype profiling with Julius

4.0 [1]. The test speech data consists of 48 test patterns, which totally include 172

sentences of Japanese speech spoken by different speakers. The average values of all the

patterns for each parameter set are shown in the following graphs.

3.5.1 Detailed search cycle, the number of cross-word transitions (in simplified

search)

First, the tradeoff of the detailed language model search cycle and the number of

cross-word transitions during the simplified language model search are discussed. The

beam width is set to 4000. The cross-word transitions during the detailed language

model search are set to 2000 to maintain high recognition accuracy.

Figure 3.8 presents the relation between the detailed search cycle and the number of

cross-word transitions. Top 10, Top 100, and Top 300 respectively signify the numbers

of cross-word transitions during the simplified language model search. As portrayed in

Fig. 3.9, more cross-word transitions during a simplified search can suppress the

22 Chapter 3 Algorithm Optimization

decrease in recognition accuracy. However, when the detailed search cycles became

greater than 7, all curves became steeper and the recognition accuracy falls below 90%.

Moreover, the accuracy of “Top 10” is greater than “Top 100,” with a detailed search

cycle of 5 and is lower than “Top 100” with a detailed search cycle of 7. Some words

that can be recognized correctly with “Top 10,” but will not become the best results with

“Top 100”. This is because for these words, even if the correct candidates are served,

they will be defeated by some other cross-word transitions served by “Top 100.”

Figure 3.10 portrays the relation between the number of cross-word transitions and

recognition accuracy. A detailed search cycle of 7 with “Top 100” is chosen for the

examinations described in this paper, causing 0.27% accuracy degradation. These

parameters are alterable in the chip. Therefore, we can select them according to the

request processing speed and recognition accuracy, but higher accuracy will cost more

power because large amounts of extra cross-word transitions must be treated.

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12#
o

f
C

ro
ss

-w
o

rd
 t

ra
n

si
ti

o
n

s
[M

ill
io

n
]

Cycle of detailed language model search

Top 10
Top 100
Top 300

Fig. 3.8 Cycle of detailed language model search versus the number of cross-word

transitions.

 3.5 Accuracy Tradeoff 23

80

82

84

86

88

90

92

94

0 2 4 6 8 10 12

A
cc

u
ra

cy
 [

%
]

Cycle of detailed language model search

Top 10
Top 100
Top 300

92.21%

Fig. 3.9 Cycle of detailed language model search versus recognition accuracy.

80

82

84

86

88

90

92

94

0 10 20 30 40 50 60 70

A
cc

u
ra

cy
 [

%
]

of Cross-word transitions [Million]

Cycle of detailed
language model
search: 7 Top: 100

Fig. 3.10 Relation between accuracy and the # of cross-word transitions.

24 Chapter 3 Algorithm Optimization

3.5.2 Beam width, the number of cross-word transitions (in detailed search)

In this section, the tradeoff of the beam width and the number of cross-word

transitions during the detailed language model search are discussed. The detailed search

cycle is set to 7 and the number of cross-word transitions during simplified searching is

set to 100, in light of the previous discussion.

Figure 3.11 presents the external memory bandwidth for Viterbi computation

according to the beam width. The numbers of cross-word transitions during detailed

searching were set to 1000, 1500, 2000, 2500, and 3000. Figure 3.12 presents the

accuracy degradation. It is apparent that 1500 for the cross-word transition during

detailed search is a good choice since it demands relatively smaller external memory

bandwidth and less degradation in recognition accuracy with 3000 of beam width.

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000
Beam width

1000 cross-words
1500 cross-words
2000 cross-words
2500 cross-words
3000 cross-words

Ex
te

rn
al

 m
e

m
o

ry
 b

an
d

w
id

th
 [

M
B

/s
]

Fig. 3.11 External memory bandwidth versus beam width.

 3.5 Accuracy Tradeoff 25

78

80

82

84

86

88

90

92

94

0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
cc

u
ra

cy
 [

%
]

Beam width

1000 cross-words
1500 cross-words
2000 cross-words
2500 cross-words
3000 cross-words

91.94%
91.39%

Fig. 3.12 Accuracy versus beam width.

3.5.3 Default parameters

The final choice of the parameter combination is presented in Fig. 3.13. Total

accuracy degradation by the proposed schemes is 0.82%, thereby achieving almost 80%

reduction (1500 + 100*6) / (1500*7) = 20%) of both memory access and arithmetic

operations in Viterbi processing.

From these test results, we also found that larger beam width can absolutely offer

higher recognition accuracy while treating more cross-transitions might not. Therefore

the parameters for cross-word transition must be decided carefully, the most appropriate

parameter combination may change when using different language models.

79

81

83

85

87

89

91

93

0 100 200 300 400 500 600 700

A
cc

u
ra

cy
 [

%
]

External memory bandwidth [MB/s]

Beam width: 3000
Detailed search cycle: 7
Cross-word: 1500 (detailed search)
Cross-word: 100 (simplified search)
Accuracy degradation: 0.82%

1000 cross-words

1500 cross-words

2000 cross-words

2500 cross-words

3000 cross-words

Fig. 3.13 Accuracy versus External memory bandwidth.

26 Chapter 3 Algorithm Optimization

3.6 Summary

In this section, we describe the algorithm optimizations to support a hardware-based

large-vocabulary recognizer. First, the speech recognition algorithm, as embodied in the

Julius software recognizer, which we adopt as our reference model is described. Then

the beam pruning using a dynamic threshold to cut the workspace and memory

bandwidth for sort processing is introduced. After that, modified unigram language

model, which eliminated the updata process for word-internal transitions are explained.

Finally, the two-stage language model search scheme which reduce the memory access

greatly, and accuracy trade-off of the important parameters are presented. These

optimizations are utilized in all the three chips introduced in the following chapters.

 4.1 Variable-frame look-ahead scheme 27

Chapter 4 Real-Time 60-KWord Continuous

Speech Recognition VLSI Processor

This chapter describes the first chip (HMM1) [13, 14] we implemented for 60-kWord

real-time continuous speech recognition. The following techniques are proposed to

reduce the cycle count and external memory bandwidth for a large-vocabulary of 60,000

words.

1) Variable-50-frame look-ahead scheme

2) Elastic Pipeline

3) highly parallel GMM architecture

4) Viterbi Cache

4.1 Variable-frame look-ahead scheme

The GMM calculations must load numerous parameters, which requires about 576.03

MB/s when processing the 60-k Word speech recognition. The memory bandwidth can

be reduced by sharing the parameter for several frames. Many studies have explored the

use of this look-ahead scheme and compute the same state for several frames because

the state which must be computed in the present frame might need to be calculated

again in the subsequent frame at high probability. However, it is apparent that the

probability decreases when the number of look-ahead frames increases. When different

states are required, the results will become useless. The computation for those new

states will delay the Viterbi operation. For 20-kWord and 60-kWord recognition, it is

necessary to maintain sufficient beam width according to the number of words to

achieve highly accurate recognition, which is true for almost all states of GMM

processing. Therefore, in this study, we compute all 1987 states for the maximum of 50

look-ahead frames. The number of look-ahead frames is variable to make an adjustment

between the delay and the memory bandwidth. This scheme requires 5 Mbit internal

memory for storing the GMM probabilities. However, the memory bandwidth for GMM

processing can be reduced to 13.3 MB/s at most. Because that can be accomplished for

all states of GMM computation, pipeline operation between GMM and Viterbi is readily

applicable.

28 Chapter 4 Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

4.2 Elastic Pipeline Architecture

The overall chip architecture is depicted in Fig. 4.1. The proposed architecture

comprises a global Sequencer, GMM-core, Viterbi-core, and double GMM result buffer

to support pipeline operation. Because of the all-state GMM computation and variable

50-frame look-ahead scheme, it is easy to apply elastic pipeline operation between the

Viterbi transition and GMM processing by 1–50 frames. Herein, we will explain why

the elastic pipeline architecture can reduce the memory bandwidth for Viterbi transition.

Figure 4.2 shows the memory bandwidth variety of Viterbi transition after applying the

two-stage language model search. The frames, when detailed search are used, have the

largest amount of data to be read. For conventional operation, these data must be read at

0.01 s, which yields the largest memory bandwidth (549.91 MB/s). By applying this

scheme, we can process several frames together, although the frames needing the largest

memory bandwidth can use the IDLE time of other frames to load data (Fig. 4.3), which

can reduce the peak memory bandwidth by 87.2% (70.86 MB/s). By changing the

number of look-ahead frames, we can readily adjust the delay and the memory

bandwidth and maximize the elastic pipeline operation efficiency.

VITERBI_COREGMM_CORE

Add Log

Processor

Gaussian

processor

mix0

GMM

Parameter

RAM

GMM Score RAM1

Add Log

Processor

Add Log

Table

1Mbit

GMM Score RAM0 2.5Mb 2.5Mb
GMM_SCORE_RAM

MFCC

RAM

40Kb

32bit

32bit

32bit

25bit

N-gram

Cache
Output

Buffer

Node_to_token_list

Trellis_information

Viterbi

Cache

33bit

Tree Dictionary

N-gram DB

Transition DB

REG

Gaussian

processor

mix1

REG

Gaussian

processor

mix15

REG

Viterbi_BUS

Active node

Information 0

Active node

Information 1

N-gram

shared

tree_DB

MUX

Internal WS

LSI

1.6Kb

GMM_BUS

25bit

14Kb
2Kb0.4Mbit

0.4Mbit

0.5Mb 0.5Mb

GMM

buffer

26Kb

16bit

32bit 32bit

32bit

8bit 8bit

32bit 32bit 32bit

MFCC

Internal Word Transition

& Cross Word Transition

32bit

G
lo

b
a

l

S
eq

u
en

cer

Fig. 4.1 The overall speech recognition architecture.

 4.2 Elastic Pipeline Architecture 29

Fig. 4.2 External memory bandwidth variety of Viterbi transition through frames after

the two-stage language model search.

IDLE

GMM Processing

Viterbi transition

Frame 4 Frame 5 Frame 6

Frame 3 Frame 5Frame 4

GMM Processing

Viterbi transition

Frame 23 Frame 24 Frame 25

Frame 3 Frame 5Frame 4

IDLE

Neck of memory bandwidth

……

……

1 Frame pipeline

Elastic pipeline (20-frame look-ahead)

Fig. 4.3 Elastic pipeline.

30 Chapter 4 Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

4.3 Highly Parallel GMM Architecture

Figure 4.4 shows the operation flow of the GMM calculation, which consists of data

loading, mixture computation and add-log processing. The GMM core has 16 mixture

processing blocks, each of which has a 1.6 Kb register to preserve the mixture

parameter (Fig. 4.1). All blocks are processed simultaneously for the look-ahead frames,

which are saved in the MFCC buffer. The parameters will be reused until all look-ahead

frames are processed. The mixture results will soon be calculated using the add-log

processor based on a look-up table. The mixture computation, add-log calculation, and

parameter reading are processed in the pipeline.

Add log

Finish

GMM computation flow

Subtraction

No

Yes

Add jw

Multiple

Multiple

Summation

Finish for all
feature vector
dimensions?

Start

Finish for all
Gaussian

distributions?

Yes

L
o

o
p

 B

No

L
o

o
p

 A

L
o

a
d

C
a
lc

Read GMM
parameters

Read feature
vector

Gaussian
processor

Add log
processor

Fig. 4.4 GMM computation flow.

 4.4 Viterbi Cache Architecture 31

4.4 Viterbi Cache Architecture

Fig. 4.5 shows the Viterbi transition flow. The Viterbi transition in a frame is divided

roughly into three steps; word-internal transition, trellis-word save, and cross-word

transition. The Viterbi transition is performed for all active state nodes left in the

previous frame. First, fetch an active state node from an active node queue. (1)

Word-internal transition: perform word-internal transition when the transition source

node and destination node belong in the same word. (2) Trellis save: save a trellis when

the active state node is the end of a word. The trellis is a dataset, which has a word

history and a score of the word-end node. It is used to determine the recognition result

in the last frame. (3) Cross-word transition: perform cross-word transition after trellis

save. In this step, the transition is performed from a word-end state node, to all

word-start state nodes.

The word-internal transition and cross-word transition can be expressed with the

same flow. (1.1) Calculate score: The transition probability from the HMM dictionary

and the GMM probability from the result buffer is added to the score of the active state

node. (1.2) Fetch transition destination node data: fetch the information of a transition

destination node from the active node work space. (1.3) Create active state node: create

an active state node when there is no active state node on the transition destination. (1.4)

Overwrite the active state node: overwrite the active state node at a destination node

when its score is lower.

Figure 4.7 shows the Viterbi cache architecture. Since it is apparent that the Active

Node, Active Node Map, and the Bi-gram account for 96% of the memory bandwidth

for Viterbi transition, as portrayed in Fig. 4.6, we introduce all the active node work

space and part of the bi-gram and active node map data into the cache memory using the

locality of speech recognition that some data which have been used for this frame might

be reused in the following frames. We employ some novel schemes for these caches to

achieve a higher hit rate.

32 Chapter 4 Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

Does Source node
have higher probability?

No

Yes

Yes

No

Start

1. Word-internal transition

3. Cross-word transition

2. Trellis-save

Word-end node?

Finish all active nodes?

Get active state node

End

1.1. Calculate score

1.3.
Create
active
node

Yes

1.4.
Overwrite

active node
No

Yes

1.2. Fetch transition
destination node data

No

Finish all
transition?

Is there an
active node on

destination?

No

Yes

Fig. 4.5 Viterbi computation flow.

Active Node

Active Node Map

Bi-gram

Others

37%

37%

22%

Total: 2581MB/s

Fig. 4.6 External memory bandwidth of Viterbi transition.

 4.4 Viterbi Cache Architecture 33

GMM RESULT RAM

A
D

D

Active node
Workspace RAM0

Active node
Workspace RAM1

A
D

D

HMM Tree Dictionary, N-gram DB, Transition DB

N-gram
Cache

N-gram
Shared
Tree DB

A
D

D

MUX

C
M

P

Divider

Beam
threshold

Active
Node Map

Cache

M
U

X

C
M

P Trellis
Buffer

Output
Buffer

Viterbi Core

Fig. 4.7 Viterbi cache architecture.

4.4.1 Bi-gram Cache

We try to retain the bi-gram data with higher scores in the cache because they have

higher probability to be reused in the subsequent frame. We set the timing of writing

new data to the cache as a previous node is overwritten whereas a higher score appears

in the cross-word transition. In doing so, a bi-gram probability with a higher score in

one frame tends to remain in the cache. However, one index of the bi-gram cache stands

for many bi-gram IDs. Therefore when a new bi-gram score is written to cache, a

high-score bi-gram for other nodes might be overwritten, which affects the hit-rate.

Therefore we proposed a specialized cache architecture as shown in Fig. 4.8, the

cache adopts a two-way set associative scheme for both tags and data. The lower bit of

bi-gram ID is used to create the index, and the whole bi-gram ID is used as the tag. The

data part has 20 bit for the destination node ID and 8 bit for bi-gram score. The two-way

cache has “two places” for each index. Therefore, when a miss-hit occurs, a new

bi-gram probability is written to the first way, whereas the previous score can be stored

to the second way. The hit rate is improved by 14.5% because two-way cache can retain

more high-score bi-gram data than a one-way cache.

34 Chapter 4 Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

Word ID

28bits

Index

Tag

High

CompareCompare

Selector

Tag

OR

Hit/Miss

28bits24bits 24bits

Low High
Data

Low

Bi-gram ID

Fig. 4.8 Two-way bi-gram cache.

4.4.2 Active node map Cache

The active node map is also called a “Token list,” which is used to check if an active

node exists in the transition destination. It must be checked every time a transition

occurs, thereby causing many memory accesses. We adopt a direct mapping cache for it.

As presented in Fig. 4.9, more than 60% of the node information accesses are

attributable to the start-state node because cross-word transitions must read them

frequently, however, one index of the cache stands for start-state node, word internal

node, terminal node and other nodes. The start node may be overwritten by other nodes

if they stay in the same cache. Therefore we divided the active node map cache into two

parts: one for the start-state node only, and the other nodes use the other part (Fig. 4.10),

thereby improving the hit rate by almost 20%.

 4.4 Viterbi Cache Architecture 35

Fig. 4.9 Memory accesses of active node.

Active node map

ID

Index

Tag

Compare

Tag

Hit/Miss

Data array(Cache)

Output

Active node map

ID

Index

Tag

Compare

Tag

Hit/Miss

Data array(Cache)

Output

Only start-state node

Cache

Except start-state node

Cache

Fig. 4.10 Active node map cache.

36 Chapter 4 Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

4.4.3 Hit rate

We maximize the cache memory size of bi-gram and active node map to 0.73 Mbit,

as portrayed in Fig. 22, which can produce a hit rate of 75%. Further increase of cache

memory size can hardly get a higher hit-rate.

45

50

55

60

65

70

75

80

0.23 0.33 0.43 0.53 0.63 0.73

Cache size [Mb]

H
it

 r
a
te

 o
f

c
a
c
h

e
 [

%
]

This chip : 0.73Mbit (75%)

Fig. 4.11 Cache hit rate.

 4.5 Implementation 37

4.5 Implementation

As described in the previous sections, we used software prototype profiling with

Julius 4.0 and Microsoft Visual C++ to analyze the accuracy tradeoff of the parameters

and the proposed schemes. We implement the referential hardware using hardware

description language (HDL) to check the required memory bandwidth and frequency for

real-time operation. After that, a VLSI chip was designed and fabricated. Its

performance was evaluated using a SoC logic tester. Table 4.1 shows the

implementation flow and the CAD tools.

Table 4.1 Implementation.

Implementation Tool
NC-verilog (Cadence)

Design Complier (synopsys)
Astro (Synopsys)

Virtuoso (Cadence)
Dracula (Cadence)

Calibre (Mentor Graphics)

Logic Synthesis

Implementation Flow
RTL Simulation

Placement and Routing
Layout Design

Design Rule Check
DRC / LVS

4.5.1 Chip layout

Fig. 4.12 shows a chip for the proposed SoC fabricated using 40 nm CMOS

technology. A summary of the chip statistics is shown in Table 4.2. It occupies 2.2 ×

2.5 mm
2
 containing 1.9 M transistors for the Logic and 7.8 Mbit on-chip SRAM. The

logic transistors are mainly used by the GMM core because of the highly parallel

architecture. The breakdown of the internal memory is shown in Table III. The

power was measured when performing real-time 60 kWord continuous speech

recognition. The clock gating is implemented in the GMM result RAM and GMM Core.

38 Chapter 4 Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

PLL

GMM Core

Viterbi Core

Controllers

G
M

M
 R

e
su

lt
 R

A
M G

M
M

 R
e
su

lt R
A

M

AddLog
Table

AddLog
Table

In
p
u
t

b
u
ff
e
r

2.2mm

2
.5

m
m

PLL

Active
Node

Work place

N-gram
Cache

N-gram
Cache

M
ap

 C
ac

h
e

M
ap

 C
ac

h
e

Fig. 4.12 Chip microphotograph.

Table 4.2 Summary of chip implementation.

40-nm CMOS
2.2 mm × 2.5 mm

5 mm × 5 mm
 GMM 1.1 M
 Viterbi 0.3 M
 Other 0.5 M
 Total 1.9 M

 7.8 Mbit
1.1V
3.3V

ADVAN SOC Tester System
126.5 MHz for 60 kWord real-time processing

144 mW
2.28 mALeakage current

Process Technology
Core area
Chip area

On-Chip Memory (SRAM)

Transister Count (Logic)

Supply voltage
I/O voltage
Evaluation environment
Operating Frequency
Measured Power (without IO)

 4.5 Implementation 39

Table 4.3 Breakdown of internal memory.

of SRAM Size of SRAM (Kb)
26 5000
1 26
1 8
3 993
6 1025
1 14
4 384
6 346
1 4
1 2
50 7802 (975kB)

output buffer
Total

add_log_table
active_node_work_space
shared Tree DB
bi-gram
active_node_map

Description
gmm_result_ram
gmm_buffer
MFCC_buffer

initial parameter

4.5.2 Required frequency and memory bandwidth

Fig. 4.13 presents the total memory bandwidth reduction when using all the proposed

schemes. The dynamic threshold-cut scheme reduces the memory bandwidth for sort

processing. The variable-frame look-ahead scheme can reduce memory bandwidth by

16.3% at most, whereas the two-stage language model search and the Viterbi cache can

provide reduction of 66.4%, with the default parameters and cache memory size of 0.73

Mbit. The total cycle time is reduced by 78%. This chip can process real-time 60-kWord

continuous speech recognition at the frequency of 126.5 MHz (Fig.4.14).

0

500

1000

1500

2000

2500

3000

3500

Proposed

W/O W/ W/ W/

549.91

E
x
te

rn
a
l m

e
m

o
ry

 b
a
n

d
w

id
th

 [
M

B
/s

] 3446.40

- 6.8 %

.Threshold-cut .Two-stage search

& Cache memory

.50 frames

look-ahead

.Elastic pipeline

-66.4 %

1112.64

70.86

-16.3 %

-14 %

W/

Sort

Viterbi

GMM

Fig. 4.13 Bandwidth reduction by the proposed schemes.

40 Chapter 4 Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

0

100

200

300

400

500

5,000-word 20,000-word 60,000-word

R
e
q

u
ir

e
d

 f
re

q
u

e
n

c
y
 [

M
ＩＰ

Ｓ
]

53 %

reduction

73 %

reduction

Sort
Viterbi

GMM

Proposed w/o w/ w/o w/ w/o w/

78 %

reduction

567.46

314.98

178.30

84.37

126.50

83.80

600

Fig. 4.14 Required frequency reduction for real-time processing.

4.5.3 Power consumption

Using the shmoo plot [18] presented in Fig. 4.15, we measured the power

consumption with the lowest operation voltage. Fig. 4.16 and Fig. 4.17 show measured

data of power consumption versus operating frequencies versus beam-width. As

described in section III, the larger beam-width can yield higher accuracy, but it will also

increase the computational workload. This chip can function at 126.5 MHz for a

beam-width of 3000. The power consumption is 144 mW with accuracy of 91.94%. It

can function at 140 MHz for a beam-width of 3800: the power consumption is 204.8

mW with accuracy of 91.89%.

We also measured power consumption for I/O and PLL as shown in Table 4.4, The

chip I/O consumes 58.2 mW at 31.625- MHz and it grows proportionally with the

increase of I/O frequency, it grows much faster than the core power because it works at

higher voltage . The I/O power consumption was reduced greatly by our proposed

schemes because it is mainly caused by external DRAM access.

 4.5 Implementation 41

1.16v 126.5MHz

7.500nS5.500nS 9.500nS 11.500nS 13.500nS 15.500nS

Fig. 4.15 Vdd versus period shmoo plot generated by SOC logic tester.

126.5MHz 148mW

0

20

40

60

80

100

120

140

160

180

200

20MHz 50MHz 80MHz 110MHz 140MHz

Frequency

P
o

w
e
r

126.5MHz,
144mW

• 最低動作電圧での消費電力

チップ 測定

Fig. 4.16 Power consumption with the lowest operation voltage.

42 Chapter 4 Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

140 MHz

0

40

80

120

160
Fr

eq
u

en
cy

 (
M

H
z)

126.5 MHz

112 MHz83.8 MHz

98 mW

144 mW(Vdd = 1.16V)

204.8 mW(Vdd = 1.32V)

Frequency

Power

0

100

200

300

400

P
o

w
er

 (m
W

)

Beam_width
1000 2000 3000 4000 5000

124.8 mW

Fig. 4.17 Measurement results of frequency versus power consumption versus beam

width.

Table 4.4 Summary of power consumption.

Frequency Supply Voltage Power consumption
126.5 MHz 1.16V 144 mW
31.625 MHz 3.3V 58.2 mW
126.5 MHz 1.1V 1.98 mW

Core
IO

Power type

PLL

4.5.4 Comparison with other works

We compared the performance of our chip with those of other recently reported

works (Table 4.5) in terms of the vocabulary size, GMM model, language model,

real-time factor, operation frequency, memory bandwidth and the logic element. The

real-time factor represents the system speed; for example, a real-time factor of “0.5”

corresponds to “×2” faster than real-time operation, which means that the recognizer

takes half the time of the input speech length to process it. The comparison reveals that

our chip achieves the lowest external memory bandwidth, even with the largest

vocabulary size of 60-kWord. Few reports of other studies presented the power

consumption because most of them are FPGA-based systems. However, the comparison

still proved that our chip is not only the first hardware-based recognizer able to process

60-kWord continuous speech recognition in real time; but also achieves the lowest

power consumption due to the great reduction of power for IO (Fig. 4.18).

 4.6 Summary 43

Table 4.5 Comparison with recently reported works.

This work This work
60 60

VLSI (40 nm)
 # of states 2,000
 # of distributions 16
 # of dimensions 25
 # of unigram 60,001 60,001
 # of bigram 4,000,273

3000
1 1x

126.5 126.5
70.86 70.86
5.5 5.5
144 144

 1.9 MTr. (25,108 slices) * 1.9 MTr.
975 975

LM

 GMM Module
NA 3,001 3,001 3,001
8 16 16 16

39
1,000

[7]

835,000 1,440,272

39

[4] [19] [12] [11]

39

2,385 835,000

 Technology FPGA VLSI (0.18 um) VLSI (0.18 um) FPGA

140.1 416

15.47 NA

NA 500
0.42
100 100
NA 800

0.66

Power consumption(mW)

Vocabulary (k)

Real-time factor
Internal Frequency (MHz)
External memory BW (MB/s)

Logic elements

Core area (mm2)
NA

1

NA

13,449 slices
138

20

133

Internal memory (KB)

NA

50
100
NA

2.3
Viterbi beam width

13,835 slices
416

530
8.78

NA
0.55

60.2

NA
NA NA 13,835 slices

5

5000 19,983

1.52x
100
800
NA

NA NA

5 20

5000
39

19,983

0

0.5

1

10

0 10,000 20,000 30,000 40,000 50,000 60,000

[8] CMU(2009)

5.000-words

FPGA 10[W]

[9] Hokkaido Univ

800-words

CMOS 0.18um

0.136[W](2006)

[7] Intel(2010)

20,000-words

Atom Z530 2.2[W] This chip (HMM1)

60,000-words

0.144[W]

P
o

w
e
r [W

]

[words]

Fig. 4.188 Power consumption comparison.

4.6 Summary

As described in this chapter, several schemes including highly parallel architecture

and cache architecture with high hit-rate are proposed to reduce the memory bandwidth

and the operating clock frequency for a large-vocabulary of 60,000 words.

1) a variable-50-frame look-ahead scheme;

2) elastic pipeline operation between the Viterbi transition and GMM processing.

3) a highly parallel Gaussian Mixture Model (GMM) architecture based on the mixture

level;

4) The Viterbi cache architecture using locality of speech recognition: as some of the

44 Chapter 4 Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

data that has been used in the current frame may be reused in the following frames, on

chip caches are introduced for keeping some of them to reduce the external memory

access, the specialized cache architecture achieve a hit-rate of 75%;

Results show that our implementation achieves 95% bandwidth reduction (70.86

MB/s) and 78% of the required frequency reduction (126.5 MHz) for 60-kWord

real-time continuous speech recognition. We fabricated a VLSI test chip in 40 nm

CMOS technology and assessed its performance. Results show that this chip can

perform 60-kWord continuous real-time speech recognition at 126.5 MHz.

 5.1 Speech Recognition System 45

Chapter 5 2.4x-Real-Time 60-KWord

Continuous Speech Recognition VLSI

Processor

This chapter describes the second chip (HMM2) [15, 20] we implemented for

60-kWord real-time continuous speech recognition. Although the external memory

bandwidth was reduced adequately in the previous work, it needed a large amount of

on-chip memory and caused long latency. Therefore in HMM2, we try to find another

way to reduce the external memory bandwidth. The following techniques are proposed

to achieve a smaller chip area and higher processing speed .

1) Compression-decoding scheme

2) max-mixture approximation GMM calculation

3) 4-pass Viterbi transition unit

5.1 Speech Recognition System

The overall chip architecture, depicted in Fig. 5.1, comprises the GMM core, Viterbi

core, double buffer for the GMM result, and the memory interface. We use a

PowerMedusa [25] custom test board to construct a speech recognition system with a

test chip. The MFCC feature vectors are extracted using a PC. The reason why we

separate the feature extraction part from the recognizer is as follows:

1) Firstly, the use of fixed-point computation in the feature extraction part will cause

big degradation [26] [27] in recognition accuracy (3%-5%);

2) Secondly, the computation workload for feature extraction is small and can be easily

handled by PC or an embedded soft-core [4] [11] ;

3) Lastly, it is flexible for adopting other capabilities like noise reduction or speaker

adaptation [11].

The input speech data can either be recorded as an audio stream or with real-time

speaking. The database is set up at the beginning. The test chip accesses the DRAM

through an on-board FPGA. The data-path of the DRAM is 64 bit, but only 48pin is

available for the test chip according to the pin limitation. The data-path for GMM

computation (16pin) and Viterbi search (32pin) is separated to support pipeline

46 Chapter 5 2.4x-Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

operation.

GMM
Parameter MFCC

GMM BUS

READ BUFFER Decoder

GMM
BUFF

MFCC
BUFF

GMM Processor

DRAM I/F
Synchronization I/F

N-gram, HMM Tree Dictionary

VITERBI BUS

Viterbi Processor

DRAM I/F
Synchronization I/F

GMM Core

N-gram
Cache

GMM Result
buffer

GMM Result RAM2GMM Result RAM1

Viterbi Core

Chip area

Active
Node
Map

Cache

Active
Node
Cache

1 Mb0.4Mb0.4Mb

32bit16bit

1Mb1Mb

27Kb 16Kb

18Kb

Output
BUFF
2Kb

Fig. 5.1 Overall speech recognition architecture.

5.2 GMM Architecture with Compression-Decoding

The external memory bandwidth for GMM computation can be reduced by sharing

the parameters for several frames. We can use this scheme to reduce the memory access

as much as needed, theoretically. A variable 50-frame-look-ahead scheme was used in

HMM1 [13, 14], which reduced the external memory bandwidth to 13.3 MB/S for

GMM computation. However, it becomes cost-ineffective when the look-ahead frames

are numerous because the reduction efficiency becomes worse while the on-chip

memory for saving the GMM result is proportionally increased. For the proposed

method, we adjust the number of look-ahead frames to optimize the area.

The maximal IO frequency of the test chip is 50 MHz and the data pins for GMM

computation are 16pin. Therefore, the IO transfer capability is 100 MB/S. The GMM

parameters include 1987 states each with 16 mixtures. There are 52 parameters for

one mixture. The bit-width of one parameter is 32 bit. Therefore 2 IO cycles are

necessary to load one GMM parameter. There are 100 frames in 1S speech. Assuming n

frames look-ahead to support 2.4×-real-time processing (decided by Viterbi), n should

be 32 according to the following limitation:

 5.2 GMM Architecture with Compression-Decoding 47

4B × 52 × 16 × 1987 × 100/n × 2 × 2.4 MB/S < 100 MB/S,

which requires roughly 3.2 Mbit of result RAM and causes latency of 0.32 S. For

further optimization, We proposed a compression–decoding scheme. GMM parameters

saved in DRAM are compressed state-by-state to a smaller size using a lossless data

compression algorithm. When the chip starts processing, the compressed data are

transferred to a buffer inside the chip and then decoded. The parameters are rebuilt

completely and therefore have no degradation to recognition accuracy. Then the

compression-decoding scheme can reduce the required external memory bandwidth by

the compression ratio.

The GMM architecture and pipeline operation are portrayed respectively in Fig. 5.2

and Fig. 5.3 The GMM core comprise a MFCC buffer for feature vectors, two input

buffers for loading the compressed data, a GMM buffer for the decoded parameters, one

decoder and 20 GMM computation processors. As shown in Fig.5, the compressed data

of state n is loaded to the input buffer while the decoding and the computation for state

n-1 is treated.

Gaussian
Processor
Frame10

REG1.7Kb REG

Gaussian
Processor
Frame3

REG1.7Kb REG

Gaussian
Processor
Frame2

REG1.7Kb REG

Gaussian
Processor
Frame1

REG1.7Kb REG

Gaussian
Processor
Frame11

REG1.7Kb REG

Gaussian
Processor
Frame12

REG1.7Kb REG

Gaussian
Processor
Frame19

REG1.7Kb REG

Gaussian
Processor
Frame20

REG1.7Kb REG

buffer1

MFCC
BUFF

GMM Result Ram I/F

16Kb

……

……

GMM Result RAM2GMM CORE GMM Result RAM11Mbit 1Mbit

MFCC
 vectors

Decoder

buffer2
Input
buffer

GMM
BUFF
27Kb

GMM Bus

18Kb 18Kb

GMM
Parameter

GMM
Parameter

６.７MB

compress

4.2MB

Fig. 5.2 GMM architecture with compression-decoding scheme.

48 Chapter 5 2.4x-Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

Write to input_buffer

Decode to GMM
buffer

Write to register

Start GMM
Computation

State 1 (S1)

S1CG

Compute S1CG

Clock Gating (CG)

State 2 (S2)

CG CG

State 3 (S3) State 4 (S4)……

S2 CG S3

Compute S2 Compute S3 CG

S1 S2 S3

C

G

C

G

Fig. 5.3 Pipeline operation in GMM core.

c

compressFive “f” Six “0”
decode

f f f f f a c 4 0 0 0 0 0 8 40

4 6 0 8 45 f a

Fig. 5.4 Run Length Encoding (RLE) for GMM parameters.

0

decode five “0”

0 f c 0 b e f 4 7

b e f 4 7a c

Case1: Decode “f” Case2: Decode “0”

Case3: “0” means the following parameter need to stay the same

f f f f b a c 4

a c 44 f b

Step 1 Step 2

0 0 0 0 0 b a

a c5 0 b

Step 1 Step 2

c

decode

decodeStep 1

four “f”

Every parameter is 32-bit.

Fig. 5.5 Three cases for decoding operation.

 5.3 Max-Mixture Approximation GMM Calculation 49

Clock gating is implemented in the decoder and the GMM processors. After

decoding state n, the decoder will be clock gated until the loading for state n+1 is

accomplished. GMM processors are also clock gated in the same way. The power

consumption reduction by clock gating is measured by simulation with 40nm library

and power compiler. Because of the high leakage current in 40nm process, only 1.25%

power reduction is confirmed.

The decoding time for one-compressed-state parameters must be shorter than the

loading time for a complete state and the extra computation workload and logic

elements for decoder should be small. Therefore, we choose the run-length-encoding

(Fig. 5.4) algorithm for our decoder. To adopt the GMM parameter, we modified the

RLE operation, instead of compressing all bit, we merely compressed the top n bit for

one parameter. There are three cases for decoding as shown in Fig. 5.5. In Case one or

case two 2 steps are needed to generate one parameter while in case three only one step

is needed. As there are 832 parameters for one state, the total number of operation is

less than 832*2 = 1664. The average compression ratio is 37.5% with only 0.01% extra

computation workload and 0.005% area overhead of the GMM core. Consequently, the

number of look-ahead frames is reduced further to 20.

5.3 Max-Mixture Approximation GMM Calculation

According to the required processing speed of this chip, it is needed to increase the

degree of parallelism. However, mixture-level parallel implementation is not flexible

because only limited degrees can be utilized (16, 32 etc.), which will cause unnecessary

increment of logic elements. Therefore we need to implement the parallel architecture at

the frame level and it is just suitable for the 20-frame look-ahead scheme. As described

herein, we implement a 20-frame parallel architecture for GMM computation to reduce

the cycle count for the computation part. Figure 5.6 presents both the 16-parallel

processing at mixture level of the previous chip HMM1 and the 20-parallel processing

at frame level of this chip.

We calculate the log probability density function (PDF) by its max approximation

instead of the previous log-table based one, which saves about 1 Mbit of on-chip

memory while cause 049% degradation in regocnition accuracy.

50 Chapter 5 2.4x-Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor







D

d md

mdd
m

m
ts

x
CXb

1
2

2

}
)(

2

1
{max)(log





 (5.1)

Therein, logbs(Xt) represents the state output probability of a HMM state s for

feature vector Xt at time t; xd stands for the vector component of the feature vector Xt, D

is the feature dimension, and Cm, µmd, md respectively denote the constant, the mean,

and the standard deviation of Gaussian mixture model.

The GMM computation flow using the max-approximation algorithm is shown in

Fig. 5.7. As the value of one mixture is getting smaller with the calculation going on,

the computation for one mixture can be stopped when its value is less than the max

result of the previous mixtures. Around 40% cycle count reduction is achieved by the

above changes. The power consumption variety of 16-core and 20-core measured by

simulation are shown in Fig. 5.8. Power consumption for real-time processing is

reduced by 20%.

Kobe University Integrated Silicon & Software architecture laboratory

(previous work [9]) mixture-level parallel

(This work) frame-level parallel

of frames

#
 o

f m
ix

tu
re

s

50

GMM
core1

GMM
core15

GMM
core16

・・・

1

GMM
core1

GMM
core15

GMM
core16

・・・

2

・・・

GMM
core1

GMM
core15

GMM
core16

・・・

1

15

16

16- parallel

Next step

of frames20

GMM
core1

1

GMM
core2

2

GMM
core20

GMM
core19

19

・・・

GMM
core1

GMM
core2

GMM
core20

GMM
core19

・・・

・
・
・

GMM
core1

GMM
core2

GMM
core20

GMM
core19

・・・

1

2

16

20-parallel

N
e

x
t s

te
p

#
 o

f m
ix

tu
re

s

Fig. 5.6 20-frame parallel processing versus 16-mixture parallel processing.

 5.3 Max-Mixture Approximation GMM Calculation 51

Finish

Subtraction

Yes

Read Gaussian
mixture model

parameters

Add jwAdd j
w

Read a feature
vectors

Multiple

Multiple

Summation

Finish all
feature vector?

Start

Finish for all
Gaussian

distributions?

No

Write Max Mixture

Yes

Mixture 1?
No

No

CMP

Larger than

Max

YES

YES
No

Fig. 5.7 Max-mixture approximation GMM computation flow.

20 Core

16 Core

126.5 MHz

125.93 mW

83.3MHz

100.17mW

P
o

w
e
r

c
o

n
s
u

m
p

ti
o

n
 (

m
W

)

Frequency (MHz)

Fig. 5.8 Power comsumption for real-time GMM computation of 16-core and 20-core

measured by simulation.

52 Chapter 5 2.4x-Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

5.4 4-Path Viterbi Transition Unit

The external memory bandwidth required in Viterbi processing has been reduced

greatly by two-stage language model (LM) search, the specialized cache memory, and

the elastic pipeline described in the previous Chapters. All GMM probabilities and

active node information can be read out from the internal RAM. However, when a

mis-hit occurs at the n-gram cache or active-node map during cross-word transition, it

will take two IO cycles, which is eight internal cycles to access the external database. In

the previous chip [9], the processing is stopped to wait until the required data is got

from the DRAM, this latency strongly delays the Viterbi processing. Although the

internal data-path to the caches are available at this time, it is impossible to process

the next transition. Consequently in this chip, we proposed a four-path

Viterbi-processing units to hide the latency as portrayed in Fig. 5.9. Figure 5.10 shows

the pipeline operation. When a mis-hit occurs at one of the transition paths, the other

units will access the cache memory and continue processing other transitions. This

scheme eliminates 34.2% of the cycle counts for the Viterbi transition. Because the

computation time for Viterbi is the neck of the GMM-Viterbi pipeline processing, the

total computation time is reduced by the same rate.

 5.4 4-Path Viterbi Transition Unit 53

GMM RESULT RAM

A
D

D

Active node
Workspace RAM0

Active node
Workspace RAM1

A
D

D

External Data base (HMM Tree Dictionary, N-gram Model)

N-gram
Cache

N-gram
Shared
Tree DB

A
D

D

MUX

C
M

P

Divider

Beam
threshold

Active
Node Map

Cache

M
U

X

C
M

P

Trellis
&

Token
Write

module

Output
Buffer

Viterbi Core

MUX

A
D

D
A

D
D

A
D

D

C
M

P
C

M
P

C
M

P

C
M

P
C

M
P

C
M

P

Fig. 5.9 4-path Viterbi transition architecture.

Path 1: N-hit

Path 2:

Path 3:

Path 4:

ADD CMP CMP writeMap-hit

N-hit ADD CMP CMP writeMap-hit

N-hit ADD CMP CMP writeMap-hit

N-hit ADD CMP CMP ...Map-hit

N-hit ADD ...
N-hit ...

...

Clock count 1 2 3 4 5 6 7 8 ...
Path 1: Miss-hit

Path 2:

Path 3:

Path 4:

N-hit ADD CMP CMP writeMap-hit

N-hit ADD CMP CMP writeMap-hit

N-hit ADD CMP CMPMap-hit

N-hit

Clock count 1 2 3 4 5 6 7 8

...

...

...

...

ADD

...

N-hit

write

9

Access external DRAM

N-hit : N-gram cache Map-hit : Active node map cache

Fig. 5.10 Pipeline operation for viterbi transition.

54 Chapter 5 2.4x-Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

5.5 Implementation

The chip, which was fabricated in 40 nm CMOS technology as shown in Fig. 5.11,

occupies 1.77×2.18
2mm containing 2.52 M transistors for Logic and 4.29 Mbit on-chip

SRAM. A summary of the chip statistics is shown in Table 5.1. The breakdown of the

internal memory is shown in Table 5.2.

PLL

Input

Buff

RAM

GMM

Result

RAM0

Active node

Map cache

RAM

Active node

Workspace

GMM

&

Viterbi

2.18mm

1
.7

7
m

m

N-gram

cache

GMM

Result

RAM1

Fig. 5.11 Chip layout.

Table 5.1 Summary of chip implementation.

40-nm CMOS
2.18 mm × 1.77 mm

5 mm × 2.5 mm
 GMM 1.58 M
 Viterbi 0.43 M
 Other 0.51 M
 Total 2.52 M

 4.29 Mbit
1.1V
3.3V

 SOC Tester System
83.3 MHz for 60 kWord real-time processing

74.14 mW
1.35 mA

Process Technology
Core area
Chip area

On-Chip Memory (SRAM)

Transister Count (Logic)

Supply voltage
I/O voltage
Evaluation environment
Operating Frequency
Measured Power (without IO)
Leakage current

 5.5 Implementation 55

Table 5.2 Breakdown of Internal memory.

of SRAM Size of SRAM (Kb)
10 2000
1 26
2 36
1 16
6 1248
1 14
4 468
6 476
1 4
1 2
50 4290 (536kB)

Description

bi-gram
active_node_map
initial parameter

Total

gmm_result_ram

active_node_work_space
shared Tree DB

gmm_buffer

MFCC_buffer

output buffer

Input_buffer

0

100

200

300

400

500

600

Base-line HMM_1 [9] HMM_2

R
e

q
u

ir
e

d
 f

re
q

u
e

n
c

y

fo
r

re
a

l-
ti

m
e

 [
M

H
z
]

Sort

Viterbi

GMM-77.7%

-85.3%

567.46

126.5

83.33

Fig. 5.12 Required frequency reduction for real-time processing.

56 Chapter 5 2.4x-Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

Fig. 5.13 Required memory bandwidth reduction & GMM result RAM reduction.

We implement a software prototype profiling with Microsoft Visual C++ and a

referential hardware using hardware descrption language (HDL) to check the required

memory bandwidth and frequency for real-time operation. The reduction of both

frequency and external memory bandwidth are presented in Fig. 5.12 and Fig. 5.13. The

required frequency for real-time processing is reduced by 34.2% compared to HMM1.

This rate is just the same as Viterbi part because the computation time for Viterbi

transition is the neck of the GMM-Viterbi pipeline operation. Although the external

memory bandwidth was reduced greatly in HMM1, it needed a large amount of SRAM

and caused long latency. Therefore in HMM2, we optimize the number of look-ahead

frames cooperating with a compression decoding scheme to reduce the external memory

bandwidth for GMM computation, which cuts down 3 Mbit of GMM result RAM as

shown in Fig. 5.13.

We evaluated the test chip with a logic tester. The generated Shmoo plot is presented

in Fig. 16. Figure 17 shows the power consumption at different frequency. This chip can

process real-time 60-kWord continuous speech recognition at 83.3 MHz and 0.84 V

with power consumption of 74.14 mW which is only half of the power consumed by

HMM_1. It can maximally process at 2.4× faster than real-time at 200 MHz with

 5.5 Implementation 57

standard voltage of 1.1 V while dissipating 168 mW (Fig. 18). Table 5.3 presents a

comparison between this work and some recently announced works in terms of the

vocabulary size, GMM model, language model, beam-width, recognition accuracy,

real-time factor, operation frequency, internal memory, external memory bandwidth,

area and the logic element. Power consumption of both core and IO are also included.

Figure 5.17 plots the vocabulary versus speed of the state of art hardware-based

recognizers.

The beam-width is the number of active node we treat every frame, as described in

the previous Chapters, larger beam-width can afford higher recognition accuracy while

increase the computation workload. Consequently, although the use of GMM

approximation computation cause 0.49% accuracy degradation comparing to HMM_1,

because of the performance-improvement, this chip can recognize speech with a larger

beam-width of 4000 which provide a better recognition accuracy of 91.45% as shown in

Table 3. In that case, the power consumption for real-time processing is increased to

97.4 mW and the max-performance is decreased from 2.4x to 2.08x.

Kobe University Integrated Silicon & Software architecture laboratory

300MHz

PASS

FAIL

170MHz 120MHz 90MHz

1.1v 200MHz

Fig. 5.14 Shmoo plot generated using a logic tester.

58 Chapter 5 2.4x-Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

Kobe University Integrated Silicon & Software architecture laboratory

83.33MHz@74.14mW

0

20

40

60

80

100

120

140

160

180

80MHz 100MHz 120MHz 140MHz 160MHz 180MHz 200MHz

消費電力HMM2

消費電力HMM1

200MHz@168.12mW

Frequency （ＭＨｚ）

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 （

ｍ
Ｗ

）

HMM_2

HMM_1 [9]

Fig. 5.15 Power consumption versus operation frequency.

Kobe University Integrated Silicon & Software architecture laboratory

Processing Speed

R
e
q

u
ir

e
d

 f
re

q
u

e
n

c
y
 [

M
H

z
]

0

50

100

150

200

250

300

x1 x1.1 x1.2 x1.3 x1.4 x1.5 x1.6 x1.7 x1.8 x1.9 x2

This work

[8]

200MHz

168mW@1.1V

126.5@1.12V

x2.1 x2.4

83.3MHz

74.14mW @0.84V

Fig. 5.16 Processing speed versus required frequency.

 5.5 Implementation 59

Table 5.3 Comparison with recently reported works.

 [13] (HMM_1)
60

VLSI (40 nm)
 # of states 2,000
 # of distributions 16
 # of dimensions 25
 # of unigram 60,001
 # of bigram 4,000,273

3000
91.39

1x 1x 2.4x 1x 2.08x
126.5 83 200 96 200

IO Frequency (MHz) 31.625 21 50 24 50
70.86 83 198 96 199

Power Core (mW) 144 74 168 97 172
consumptionIO (mW) 58.2 39 94 45 94

5.5
 1.9 MTr

975

NA 3.86
2.52 MTr.

NA NA

91.45

100 100

NA

This work (HMM_2)
60

VLSI (40 nm)
2,000

NA

500
90.9

[11]

1.51x

Internal memory (KB) 140.1 416
Logic elements NA 13,835 slices
Core area (mm2) 15.47

3000

16
25

60,001
4,000,273

4000

100

External memory BW (MB/s) NA 800

Internal Frequency (MHz) 100

LM
5000

Viterbi beam width NA
Accuracy (%) 89 88

Vocabulary (k) 5 20
[12]

536

GMM Module
3,001 3,001

Technology VLSI (0.18 um)

16 16
39 39

FPGA

19,983
835,000 1,440,272

Real-time factor 2.38x

0

1

2

10

0 10,000 20,000 30,000 40,000 50,000 60,000

CMU [8]

5,000-words

FPGA 100 MHz 10x

CMU [4]

1,000-words

FPGA 50 MHz 0.7x

SNU [11]

20,000-words

FPGA 100 MHz 1.52x

This work

60,000-words

VLSI 2.4x

168 mW @ 200 MHz

X
 R

e
a

l-tim
e

Break through power

[words]

60,000-words [13]

VLSI 1x

144 mW @ 126.5 MHz

Fig. 5.17 Vocabulary versus speed.

60 Chapter 5 2.4x-Real-Time 60-KWord Continuous Speech Recognition VLSI

Processor

5.6 Summary

As described in this chapter, several schemes are proposed to achieve a smaller area

and higher processing speed.

1) a compression–decoding scheme to reduce the external memory bandwidth for GMM

computation, which reduce the result ram;

2) max-mixture approximation GMM calculation, which reduce the add-log table.

3) a 4-path Viterbi transition unit to hide the DRAM latency when a mis-hit occurs.

The measured results show that our implementation achieves 34.2% required

frequency reduction (83.3 MHz) , 48.5% power consumption reduction (74.14 mW) and

30% area reduction compared to the previous work for 60 k-Word real-time continuous

speech recognition with recognition accuracy of 90.9%. This chip can maximally

process 2.4× faster than real-time at 200 MHz and 1.1 V with power consumption of

168 mW. By increasing the beam width, better accuracy (91.45%) can be achieved. In

that case, the power consumption for real-time processing is increased to 97.4 mW and

the max-performance is decreased to2.08x. because of the increased computation

workload.

61

Chapter 6 3x-Real-Time 60-KWord

Continuous Speech Recognition VLSI

Processor

This chapter describes the third chip (HMM3) [21, 22] we implemented for

60-kWord real-time continuous speech recognition. As the “on-chip” latency (stop

processing until the data come to the compute unit) and the “off-chip” latency (loading

latency caused by DRAM) strongly delay the processing speed. We try to reduce the

“off-chip latency” by implementing a two-level cache architecture and propose a 8-path

Viterbi transition unit to reduce the “on-chip latency”, which maximize the processing

speed. Furthermore, we adopts tri-gram language model to improve the recognition

accuracy. The following techniques are explained in detail.

1) Level-2 Cache

2) 8-path Viterbi transition unit

3) Simplified 3-gram transition

6.1 Speech Recognition System

The overall speech recognition system architecture is depicted in Fig. 6.1, The

MFCC feature vectors are extracted using a PC, we separate the feature extraction

from the chip because the use of fixed-point computation in the feature extraction part

would cause big degradation in recognition accuracy and the computation workload for

feature extraction is small thus can be easily handled by PC or an embedded soft-core.

The input speech data can either be recorded as an audio stream or with real-time

speaking. Before start working, the language and acoustic models are transferred from

PC to SDRAM through USB to construct the database. The test chip accesses the

DRAM through an on-board FPGA. The data-path of the SDRAM is 64 bit, The

data-path for GMM computation (32pin) and Viterbi search (32pin) is separated to

support pipeline operation. We implement a 20-frame parallel architecture for GMM

computation to support 3× real-time processing (decided by Viterbi). In the previous

chip HMM2, we suffered from the pin limitation that only 16 data-pin are available

for GMM part. We optimize the pin-placement in this chip by sharing the output pin

with Viterbi part because we don’t need to output result in GMM computation except

the initial test. Therefore the available data-pin for GMM is increased to 32 which is

62 3x-Real-Time 60-KWord Continuous Speech Recognition VLSI Processor

enough to support the required speed . There are two GMM result buffer to support the

GMM-Viterbi pipeline operation, each of the result buffers will be accessed by GMM

core and Viterbi core respectively.

SDRAM
(HMM lexicon,

Acoustic model,

language model)

FPGA

USB

I/F

SDRAM

Controller

External Sequencer

8bit

64bit

64bit

MFCC
Vectors

Word
ID

L2 Cache

GMM BUS

MFCC
BUFF

GMM Processer

Memory I/F

VITERBI BUS

Viterbi Processor

GMM Core

N-gram
Cache

GMM Result buffer GMM Result RAM2GMM Result RAM1

Viterbi Core

VLSI

Active
Node
Map

Cache

Active
Node
Cache

1 Mb0.4Mb0.4Mb

32bit32bit

1Mb1Mb

16Kb

Output
BUFF

2Kb

GMM
BUFF

buffer2
27Kb

buffer1
27Kb

Custom Test-board

(PowerMedusa [11])

PC

(Feature

extraction)

Speech input

Display word

Fig. 6.1 Overall speech recognition system architecture.

6.2 Level-2 Cache

A two-level cache architecture is implemented to reduce the “off-chip latency” for

accessing SDRAM. The Level-1 cache is the specialized caches we proposed in HMM1

which are implemented inside the chip and can offer a high hit-rate of 75%. However,

when miss-hit occurs, the chip has to access the external SDRAM which causes long

latency. In Image and Vidio processing system, the DRAM only acts as a buffer

between camera and chip, the pixels are read from DRAM orderly and saved to the

on-chip memory. Therefore the max length of burst mode for DRAM access can be

utilized. However, in LVCSR system, the DRAM functions as a data-base which saves

63

the dictionary parameters and language models. These data will be accessed randomly

during the processing. According to the characteristics of DRAM , there are several

cycles of latency caused by pre-charge every time before we read from the DRAM,

therefore if the required data are not accessed sequentially, the efficiency is bad.

Index

CacheTag

Direct mapping L2 Cache

Index = DRAM_address – start_address

DATAADD

SDRAM DATA BASE

Start address

End address

Load to L2

Fig. 6.2 Level-2 Cache architecture.

Cross word transition begin:

Get the start address

from a word-end node

Load all the Language

model from this

word-end node using

max length of

burst mode to L2 Cache

Fast L2 loading Flow

Continue processing with

L1/L2 instead of DRAM

Whether a Detailed or Simple

Search should be served

Fig. 6.3 L2 cache data loading flow .

As described herein, a Level-2 cache is created in the host FPGA as shown in Fig.

64 3x-Real-Time 60-KWord Continuous Speech Recognition VLSI Processor

6.1 . The possible required data are loaded to the L2 Cache during processing as shown

in Fig. 6.2. If the required data is found in L1 cache, it will not be transferred to the

chip. When the required data is not saved in L1 cache, There’s no need to access the

SDRAM because the data can be read immediately from the L2 cache. The data

loading flow is described in Fig. 6.3. This scheme is effective for many kind of data for

speech recognition include the N-gram model for cross-word transition and destination

node information for internal-word transition, which account for a big amount of

DRAM access.

6.3 8-Path Viterbi Transition Unit

The architecture of Viterbi core is shown in Fig. 6.4. It comprises two active node

workspace, an output buffer, a threshold calculator, trellis & token write module and the

specialized cache consist of N-gram cache and active node map cache. During

transition processing, the active node information and the GMM probabilities can be

read from the on-chip memory immediately without miss-hit. However, the N-gram data

and active node map data may not be found in the caches. Even the hit-rate of the

proposed cache reach 75%, the miss-hit still cause big latency because the Viterbi

processing will have to stop to wait until the required data is read from the external

data-base, which strongly delays the Viterbi processing. Increasing the number of

transition-path can hide the miss-hit latency, which improve the processing speed of the

recognition system because the computation time for Viterbi transition is the bottle neck

of the GMM-Viterbi pipeline operation. To maximize the utilization ratio of the internal

data-path to caches and the external data-path to the SDRAM data-base, we analyze the

tradeoff between the number of gates, the number of transition-path and processing

speed at 200MHz as presented in Fig. 6.5. 200MHz is the maximum operating

frequency of the test chip. Few speed improvement can be achieved while

increasing the number of paths from 8 to 10. This means eight paths is enough to

process most of the transitions in pipeline, as caches and external data-base has already

been occupied, the extra paths will be in the waiting state most of the time during

processing. Consquently, We choose to implement a 8-path Viterbi transition

architecture, which offers a processing speed of 3.02×.

65

Viterbi Core

A
D

D

A
c
tive

 n
o
de

W
o
rkspac

e
 R

A
M

0
A

c
tive

 n
o
de

W
o
rkspac

e
 R

A
M

1

External Data base (HMM Tree Dictionary, N-gram Model)

N-gram
Cache

N-gram
SharedTree
DB Cache

MUX

C
M

P

Divider

Beam
threshold

Active
Node Map

Cache

M
U

X

Trellis
&

Token
Write

module

Output
Buffer

・
・
・
・
・

・
・
・
・
・ ・

・
・
・
・

A
D

D

A
D

D
A

D
D

A
D

D
A

D
D

C
M

P
C

M
P

C
M

P

C
M

P
C

M
P

C
M

P
C

M
P

MUXG
M

M
 R

E
S
U

L
T
 R

A
M

 1

Viterbi Bus

G
M

M
 R

E
S
U

L
T
 R

A
M

 2

Fig. 6.4 8-path Viterbi transition architecture.

P
ro

c
e
s
s
in

g
 s

p
e
e
d

#
 o

f G
a
te

s

Fig. 6.5 # of paths versus # of logic elements versus processing speed at 200MHz.

66 3x-Real-Time 60-KWord Continuous Speech Recognition VLSI Processor

6.4 Simplified 3-gram Transition

Both bigram and trigram are available in this chip. The 60k-word bigram language

model consists of 60,001 unigram and 4,000,273 bigram transitions while the trigram

language model (3-gram) consists of 60,001 unigram, 2,420 231 bigram and 8,368,507

trigram transitions. To adopt trigram transition, we need to treat much more transitions

and remain a large network for the history of the two preceding words as shown in Fig.

6.6, which is too costly. Therefore we utilize a simplified trigram transition [11] which

only consider the best predecessor word. After bigram transition is applied, the best

predecessor word can be decided, then the trigram transition from this word is treated.

In case of Fig. 6.6, after treating the bi-gram transitions, word B1 is chosen as the best

word. Therefore only the tri-gram transitions from B1 is applied, the other tri-gram are

not considered. The recognition accuracy for our test patterns is improved by 1.4%

when the trigram restrict is added. In that case, the processing speed is decreased to

2.25× as shown in Fig. 6.7.

Word C2First
state

 Word A1 Last
state

Word C1First
state

Word C3First
state

 Word A2 Last
state

Predecessor word B1

Predecessor word B2

Predecessor word Bn

…
 …

…
 …

…
 …

P(A1|B1)

P(A2|B1)

P(An|B1)

…
 …

P(A1|B2)

P(A2|B2)

P(An|B2)

…
 …

P(C1|A1)

P(C2|A1)

P(Cn|A1)

…
 …

P(C1|A2)

P(C2|A2)

P(Cn|A2)

Bi-gram Tri-gram

…
 …

P(C1|A1B1)

P(C2|A1B1)

P(Cn|A1B1)

…
 …

P(C1|A2B1)

P(C2|A2B1)

P(Cn|A2B1)

…
 …

…

 …

…
 …

P(C1|A1B2)

P(C2|A1B2)

P(Cn|A1B2)

…
 …

P(C1|A2B2)

P(C2|A2B2)

P(Cn|A2B2)

…
 …

… …

… …

… …

…
 …

P(C1|A1Bn)

P(C2|A1Bn)

P(Cn|A1Bn)

…
 …

P(C1|A2Bn)

P(C2|A2Bn)

P(Cn|A2Bn)

…
 …

Best

Fig. 6.6 Cross-word transition using bi-gram and tri-gram.

67

A
c
c
u

ra
c
y
 (

%
)

P
e
rf

o
rm

a
n

c
e
 (
x
)

Fig. 6.7 Performance and recognition accuracy for bi-gram and tri-gram (Test speech

pattern: 172Japanese sentences).

6.5 Implementation

We implement a software prototype profiling with Microsoft Visual C++ and a

referential hardware using hardware description language (HDL) to check the required

memory bandwidth and operating frequency for real-time operation. The required

frequency reduction for real-time processing is reduced by 88.9% compared to the

base-line system and 25% compared to our previous work HMM2 as shown in Fig.

6.8. The layout of the chip, which was fabricated in 40 nm CMOS technology is shown

in Fig. 6.9. It occupies 1.77×2.18
2mm containing 2.98 M transistors for Logic and 4.29

Mbit on-chip SRAM. The logic part is placed in the center area and the cache memory

is placed around. We evaluated the test chip with a logic tester. The generated Shmoo

plot is presented in Fig. 6.10. The green area of the Shmoo plot shows the available

frequency and operation voltage with which the chip can function correctly. 200MHz is

the maximum operation frequency of the test chip under the standard operating voltage

(1.1V).

68 3x-Real-Time 60-KWord Continuous Speech Recognition VLSI Processor

0

100

200

300

400

500

600

Base-line HMM1 [13] HMM2 [15]

R
e
q

u
ir

e
d

 f
re

q
u

e
n

c
y

fo
r

re
a
l-

ti
m

e
 [

M
H

z
]

Sort

Viterbi

GMM-77.7%

-85.3%

567.46

126.5

83.33

This work (HMM3)

-88.9%

62.5

Fig. 6.8 Required frequency reduction for real-time 60k-word continuous speech

recognition.

Fig. 6.9 Chip layout.

69

Table 6.1 Summary of chip implementation.

40-nm CMOS
2.18 mm × 1.77 mm

5 mm × 2.5 mm
 GMM 1.58 M
 Viterbi 0.89 M
 Other 0.51 M
 Total 2.98 M

 4.29 Mbit
1.1V
3.3V

 SOC Tester System
62.5 MHz for 60 kWord real-time processing

54.8 mW
1.32 mALeakage current

Process Technology
Core area
Chip area

On-Chip Memory (SRAM)

Transister Count (Logic)

Supply voltage
I/O voltage
Evaluation environment
Operating Frequency
Measured Power (without IO)

PASS

FAIL

1.1v 200MHz

200MHz 177MHz 133MHz145MHz160MHz

Fig. 6.10 Shmoo plot generated by a logic tester.

Processing speed versus required frequency and the measured power are presented

in Fig. 6.11 and Fig. 6.12. This chip can process real-time 60-kWord continuous

speech recognition with bi-gram model at 62.5 MHz while consumes 54.8 mW and

maximally function 3.02× faster than real-time at 200MHz while consumes 177.4 mW.

26% power consumption reduction for real-time processing is achieved compared to

HMM2. When tri-gram is used, HMM3 can process real-time operation at 88.9 MHz

70 3x-Real-Time 60-KWord Continuous Speech Recognition VLSI Processor

with power consumption of 76.7 mW and maximally function 2.25× faster than

real-time at 200 MHz with power consumption of 165 mW. Table 1 presents a

comparison between this chip and some recently announced works in terms of the

vocabulary size, GMM model, language model, beam-width, real-time factor, operation

frequency, external memory bandwidth , area , logic element and power consumption.

Figure 6.13 plots the vocabulary versus speed of the state of art hardware-based

recognizers.

Fig. 6.11 processing speed versus frequency.

Fig. 6.12 Measured data of processing speed versus power consumption.

71

0

1

2

10

0 10,000 20,000 30,000 40,000 50,000 60,000

CMU [8]

5,000-words

FPGA 10x

CMU [4]

1,000-words

FPGA 0.7x

SNU [11]

20,000-words

FPGA 1.52x

This work (HMM3)

60,000-words

VLSI 3x

X
 R

e
a

l-tim
e

Break through power

[words]

HMM1 [13]

60,000-words

VLSI 1x

SNU [12]

5000-words

VLSI 1.8x

HMM2 [15]

60,000-words

VLSI 2.4x

Fig. 6.13 Measured data of processing speed versus power consumption.

Table 6.2 Comparison with recently reported works.

HMM1 [13]
60

VLSI (40 nm)
 # of states 2,000
 # of distributions 16
 # of dimensions 25
 # of unigram 60,001
 # of bigram 4,000,273
 # of trigram NA

3000 3000 3000
1 1 2.4 1 3.02 2.25

126.5 83.3 200 62.5 200 200
70.86 82.6 198 82.6 250 264
5.5

 1.9 MTr.
975

LM

Real-time factor
Viterbi beam width

 GMM Module

 Technology
Vocabulary (k)

Core area (mm2)

External memory BW (MB/s)
Internal Frequency (MHz)

Internal memory (KB)
Logic elements

HMM2 [15]
60

VLSI (40 nm)
2,000

16
25

60,001

536

60,001
4,000,273

NA

3.86
 2.52 MTr.

3.86
 2.98 MTr.

536

117

25
60,001

1
88.9

4,000,273
NA

3000

2,420,231
8,368,507

3000

This work
60

VLSI (40 nm)
2,000

16

6.6 Summary

As described in this chapter, several schemes are proposed to achieve higher

processing speed. As the “on-chip” latency (stop processing until the data come to the

compute unit) and the “off-chip” latency (loading latency caused by DRAM) strongly

delay the processing speed. We try to reduce the “off-chip latency” by implementing a

two-level cache architecture and propose a 8-path Viterbi transition unit to reduce the

“on-chip latency”, which maximize the processing speed. Furthermore, we adopts

72 3x-Real-Time 60-KWord Continuous Speech Recognition VLSI Processor

tri-gram language model to improve the recognition accuracy. The measured results

show that our implementation achieves 25% required frequency reduction (62.5 MHz)

and 26% power consumption reduction (54.8 mW) for 60 k-Word real-time continuous

speech recognition compared to the previous work. This chip can maximally process

3.02× and 2.25× times faster than real-time at 200 MHz using the bigram and trigram

language models, respectively.

73

Chapter 7 Conclusion

This dissertation reports VLSI designs for large vocabulary real-time continuous

speech recognition based on context-dependent Hidden Markov Model (HMM). As the

background of this research area, the objective of this study and an overview of this

dissertation are presented in Chapter 1. Then issues related to the VLSI implementation

for real-time continuous speech recognition are noted in Chapter 2. The main issues are

explained as four parts: 1) large-vocabulary are needed to support a higher word-cover

rate. 2) low-power is required for longer working time and lower temperature, 3)

high-speed is demanded for a more comfortable human interface, and 4) small area

which means less recourse would be cost. In this study, the solutions to these issues are

presented in Chapter 3 to Chapter 6 as shown in Table. 7.1.

In Chapter 3, some algorithm optimizations are presented: beam pruning using a

dynamic threshold to cut the workspace and memory bandwidth for sort processing; the

modified unigram language model which eliminated the updata process for

word-internal transitions; two-stage language model searching to reduce cross-word

transitions which reduce the memory access greatly. The accuracy degradation of the

important parameters in Viterbi computation is strictly discussed. These optimizations

are utilized in all the three chips introduced in the following chapters.

Chapter 4 describes the first chip (HMM1) we implemented for 60-kWord real-time

continuous speech recognition. It includes a cache architecture using locality of speech

recognition, as some of the data that has been used in the current frame may be reused

in the following frames, on chip caches are introduced for keeping some of them to

reduce the external memory access, the specialized cache architecture achieve a hit-rate

of 75%; a highly parallel Gaussian Mixture Model (GMM) architecture based on the

mixture level; a variable-50-frame look-ahead scheme; and elastic pipeline operation

between the Viterbi transition and GMM processing. Results show that our

implementation achieves 95% bandwidth reduction (70.86 MB/s) and 78% required

frequency reduction (126.5 MHz) comparing to the referential Julius system. The test

chip, fabricated using 40 nm CMOS technology, contains 1.9 M transistors for logic and

7.8 Mbit on-chip memory. It dissipates 144 mW at 126.5 MHz and 1.1 V for 60 kWord

real-time continuous speech recognition.

74 Conclusion

Chapter 5 describes the second chip (HMM2) we designed for 60-kWord real-time

continuous speech recognition. It features a compression–decoding scheme to reduce

the external memory bandwidth for Gaussian Mixture Model (GMM) computation and

a 4-path Viterbi transition units. We optimize the internal SRAM size using the

max-approximation GMM calculation and adjusting the number of look-ahead frames.

The test chip, fabricated in 40 nm CMOS technology, occupies 1.77 mm × 2.18 mm

containing 2.52 M transistors for logic and 4.29 Mbit on-chip memory. The measured

results show that our implementation achieves 34.2% required frequency reduction

(83.3 MHz), 48.5% power consumption reduction (74.14 mW) for 60 k-Word real-time

continuous speech recognition compared to the previous work while 30% of the area is

saved with recognition accuracy of 90.9%. It can maximally process 2.4× faster than

real-time at 200 MHz and 1.1 V with power consumption of 168 mW.

Chapter 6 describes the third chip (HMM3) we designed for 60-kWord real-time

continuous speech recognition. It includes a 8-path Viterbi transition architecture to

maximize the processing speed by cutting the on-chip latency and adopts tri-gram

language model to improve the recognition accuracy. A two-level cache architecture is

implemented for the demo system to cut the off-chip latency. Measured results show

that our implementation achieves 25% required frequency reduction (62.5 MHz) and

26% power consumption reduction (54.8 mW) for 60 k-Word real-time continuous

speech recognition compared to the previous work. The chip can maximally process

3.02× and 2.25× times faster than real-time at 200 MHz using the bigram and trigram

language models, respectively.

The conclusion of this study is presented in this Chapter. This thesis presents the

VLSI designs for low-power speak-independent large vocabulary real-time continuous

speech recognition based on context-dependent Hidden Markov Model (HMM). The

work contributes to achieve a comfortable human interface for mobile systems and

robotics.

75

Table 7.1 Mapping of the proposed techniques in Chapter 3-6 for the four issues.

3.2 Beam Pruning ○ ○
3.3 Modif ied Unigram ○ ○
3.5 Two-stage LM Search ○ ○
4.1 50-frame Look Ahead scheme ○ ○
4.2 Elastic Pipeline Operation ○ ○
4.3 Highly Paralle l GMM Architecture ○ ○
4.4 Viterbi Cache Architecture ○ ○
5.2 Compression-Decoding scheme ○
5.3 Max-Mixture GMM Calculation ○ ○
5.4 4-path Viterbi Transition unit ○ ○
6.2 Level-2 Cache ○ ○
6.3 8-path Viterbi Transition unit ○ ○

Proposed techniques
Issue of

Large Vocabulary
Issue of

Low Power
Issue of

High Speed
Issue of

Small Area

76 Conclusion

77

References

[1] A. Lee, T. Kawahara and K. Shikano, “Julius – an open source real-time large

vocabulary recognition engine,” in Proc. Eur. Conf. Speech Communication

Tech. (EUROSPEECH), Aalborg, Denmark, pp. 1691-1694, Sep. 2001.

[2] K. Yu, and R. Rutenbar, “Profiling Large-Vocabulary Continuous Speech

Recognition on Embedded Device: A Hardware Resource Sensitivity

Analysis,” in Proc. 10th Conf. Interspeech, Brighton, UK, pp. 995-998, Sep.

2009.

[3] E. C. Lin, K. Yu., R. Rutenbar, and T. Chen, “In silico Vox: Towards Speech

Recognition in Silicon” in “HOTCHIPS”, August, 2006.

[4] E. C. Lin, K. Yu. R. Rutenbar, and T. Chen, “ A 1000-Word Vocabulary,

Speaker-Independent, Continuous Live-Mode Speech Recognizer Implemented

in a Single FPGA,” in Proc. 15th ACM/SIGDA Int. Symp. FPGA, Monterey,

CA, Feb. 2007.

[5] U. Pazhayaveetil, D. Chandra, and P. Franzon, “Flexible low power probability

density estimation unit for speech recognition,” in Proc. IEEE ISCAS,

Honolulu, HI, 2007, pp. 1117-1120.

[6] B. Mathew, A. Davis, and Z. Fang, “ A low-power accelerator for the SPHINX

3 speech recognition system,” in Proc. Int. Conf. CASES, San Jose, CA, 2003,

pp. 210-219.

[7] T. Ma and M. Deisher, “Novel ci-backoff scheme for real-time embedded

speech recognition,” in Proc. IEEE ICASSP, Dallas, USA, Mar. 2010, pp.

1614-1617.

[8] E. C. Lin, and R. A. Rutenbar, “A Multi-FPGA 10x-Real-Time High-Speed

Search Engine for a 5000-Word Vocabulary Speech Recognizer,” in Proc. 17th

ACM/SIGDA Intl. Symp FPGA, Montery, CA, pp.83-92, Feb. 2009.

[9] S. Yoshizawa, N. Wada, N. Hayasaka, and Y. Miyanaga, “Scalable architecture

for word HMM-based speech recognition and implementation in complete

system,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 1, pp. 70-77,

Jan. 2006

[10] Y. Choi, K. You and W. Sung, “FPGA-based implementation of a real-time

78 References

5000-word continuous speech recognizer,” in Proc. 16
th
 Eur. Signal Process.

Conf, Lausanne, Switzerland, Aug. 2008.

[11] Y. Choi, K. You, J. Choi, and W. Sung, “A Real-Time FPGA-based

20,000-Word Speech Recognizer with optimized DRAM Access,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp.2119-2131, Aug. 2010.

[12] K. You, Y.Choi, J. Choi, and W. Sung, “Memory Access Optimized VLSI for

5000-Word Speech Recognition,” JOURNAL OF SIGNAL PROCESSING

SYSTEMS, vol.63, no. 1, pp. 95-105, Apr. 2011.

[13] G. He, T. Sugahara, T. Fujinaga, Y. Miyamoto, H. Noguchi, S. Izumi, H.

Kawaguchi, and M. Yoshimoto, “A 40 nm 144 mW VLSI processor for

Realtime 60 kWord Continuous Speech Recognition,” in Proc. IEEE Custom

Integrated Circuits Conference (CICC), pp.1-4 Sep. 2011.

[14] G. He, T. Sugahara, T. Fujinaga, Y. Miyamoto, H. Noguchi, S. Izumi, H.

Kawaguchi, and M. Yoshimoto, “A 40 nm 144 mW VLSI processor for

Realtime 60 kWord Continuous Speech Recognition,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 59, no. 8, pp.1656-1666, Aug. 2012.

[15] G. He, T. Sugahara,Y. Miyamoto, S. Izumi, H. Kawaguchi, and M. Yoshimoto,

“A 40-nm 168-mW 2.4×-Real-Time VLSI Processor for 60-kWord Continuous

Speech Recognition,” in Proc. IEEE Custom Integrated Circuits Conference

(CICC), Sep. 2012.

[16] H. Ney and S. Ortmanns, “Dynamic programming search for continuous

speech recognition,” IEEE Signal Process. Mag., vol. 16, no. 5, pp. 64-83, Sep.

1999.

[17] B. H. Jeong et al., “A 1.35 V 4.3 Gb/s 1 Gb LPDDR2 DRAM with

controllable repeater and on-the-fly power-cut scheme for low-power and

high-speed mobile application,” in IEEE int. Solid-State Circuits Conf. Dig.

Tech. Papers, Feb. 2009, pp. 132-133.

[18] K. Baker, E. Philips, and T. Eindhoven, “Shmoo plotting: The black art of IC

testing,” in Proc. IEEE Int. Test Conf., Washington, DC, pp. 132-133, Oct.

1996.

[19] Y. Choi, K. You, J. Choi, and W. Sung, “VLSI for 5000-word continuouse

speech recognition,” in Proce. IEEE ICASSP, Taipei, Taiwan, Apr. 2009, pp.

79

557-560

[20] G. He, T. Sugahara, Y. Miyamoto, S. Izumi, H. Kawaguchi, and M. Yoshimoto,

"A 168-mW 2.4x-Real-Time 60-kWord Continuous Speech Recongnition

Processor VLSI," IEICE Transactions on Electronics, Vol. E96-C, No. 4, pp.

444-453, Apr. 2013.

[21] G. He, Y. Miyamoto, K. Matsuda, S. Izumi, H. Kawaguchi, M. Yoshimoto, " A

40-nm 54-mW 3×-Real-time VLSI Processor for 60-KWORD Continuous

Speech Recognition, " Proceedings of IEEE Workshop on Signal Processing

Systems (SiPS), pp.147-152, Oct. 2013.

[22] G. He, Y. Miyamoto, K. Matsuda, S. Izumi, H. Kawaguchi, and M. Yoshimoto,

"A 54-mW 3x-Real-Time 60-kWord Continuous Speech Recongnition

Processor VLSI," IEICE Electronics Express, vol. 11, no.2, Jan. 2014.

[23] X. Huang, A. Acero, and H. W. Hon, Spoken Language Processing-A Guide

to Theory, Algorithm, and System Development. Englewood Cliffs, NJ:

Prentice Hall, 2001.

[24] H. Ney and S. Ortmanns, “ Dynamic programming search for continuous

speech recognition,” IEEE Signal Process. Mag,. Vol. 16, no.5, pp. 64-83, Sep.

1999.

[25] “Power medusa custom test board,” MMS, Amagasaki, Japan [Online]

Available: http://www.mms.co.jp/powermedusa/concept/index.htl.

[26] T.W. Kohler, C. Fugen, S. Stuker and A. Waibel, “Rapid porting of

ASR-systems to mobile devices,” in Proc. Interspeech, pp. 233-236. Sep. 2005.

[27] D. Huggins-Daines, K. Mohit, C. Arthur, “Pocketsphinx: A Free, Real-Time

Continuous Speech Recognition System for Hand-Held Devices,” in Proc.

ICASSP, pp. 185-188. May. 2006.

http://www.mms.co.jp/powermedusa/concept/index.htl

80 References

81

List of Publications and Presentations

Publications in journals and transactions

1) G. He, Y. Miyamoto, K. Matsuda, S. Izumi, H. Kawaguchi, and M. Yoshimoto,

"A 54-mW 3x-Real-Time 60-kWord Continuous Speech Recongnition Processor

VLSI," IEICE Electronics Express, vol. 11, no.2, Jan. 2014.

2) G. He, T. Sugahara, Y. Miyamoto, S. Izumi, H. Kawaguchi, and M. Yoshimoto,

"A 168-mW 2.4x-Real-Time 60-kWord Continuous Speech Recongnition

Processor VLSI," IEICE Transactions on Electronics, vol. E96-C, no. 4, pp.

444-453, Apr. 2013.

3) G. He, T. Sugahara, T. Fujinaga, Y. Miyamoto, H. Noguchi, S. Izumi, H.

Kawaguchi, and M. Yoshimoto, " A 40 nm 144 mW VLSI Processor for Realtime

60 kWord Continuous Speech Recognition," IEEE Transaction on Circuits and

Systems I, Regular Papers, vol. 59, no. 8, pp.1656-1666, Aug. 2012.

4) K. Mizuno, H. Noguchi, G. He, Y. Terachi, T. Kamino, T. Fujinaga, S. Izumi, Y.

Ariki, H. Kawaguchi and M. Yoshimoto, "A Low-power Real-Time SIFT

Descriptor Generation Engine for Full-HDTV Video Recognition," IEICE

Transaction on Electronics, vol. E94-C, no. 4, pp. 448-457, Apr. 2011.

Presentations at international conferences

1) G. He, Y. Miyamoto, K. Matsuda, S. Izumi, H. Kawaguchi, M. Yoshimoto, " A

40-nm 54-mW 3×-Real-time VLSI Processor for 60-KWORD Continuous

Speech Recognition, " Proceedings of IEEE Workshop on Signal Processing

Systems (SiPS), pp.147-152, Oct. 2013.

2) G. He, T. Sugahara, T. Fujinaga, Y. Miyamoto, H. Noguchi, S. Izumi, H.

Kawaguchi and M. Yoshimoto, "A 40-nm 144-mW VLSI Processor for Realtime

60k Word Continuous Speech Recognition," Proceedings of IEEE Asia and

South Pacific Design Automation Conference (ASP-DAC) University LSI Design

Contest, pp. 71-72, Jan. 2013. (University LSI Design Contest Best Design

Award)

3) G. He, T. Sugahara, Y. Miyamoto, S. Izumi, H. Kawaguchi, and M. Yoshimoto,

82 List of Publications and Presentations

"A 40-nm 168-mW 2.4×-Real-Time VLSI Processor for 60-kWord Continuous

Speech Recognition," Proceedings of IEEE Custom Integrated Circuits

Conference(CICC), Sep. 2012.

4) G. He, T. Sugahara, T. Fujinaga, Y. Miyamoto, H. Noguchi, S. Izumi, H.

Kawaguchi, M. Yoshimoto, "A 40 nm 144 mW VLSI Processor for Realtime 60

kWord Continuous Speech Recognition," Proceedings of IEEE Custom

Integrated Circuits Conference (CICC), Sep. 2011.

5) K. Mizuno, H. Noguchi, G. He, Y. Terachi, T. Kamino, H. Kawaguchi and M.

Yoshimoto, "Fast and Low-Memory-Bandwidth Architecture of SIFT Descriptor

Generation with Scalability on Speed and Accuracy for VGA Video,"

Proceedings of 20th International Conference on Field Programmable Logic and

Applications (FPL), pp. 608-611,Milano, ITALY, Aug. 2010.

Presentations at domestic conferences

1) 何 光霽, 宮本優貴, 松田 薫平, 和泉慎太郎, 川口 博, 吉本雅彦 "3 倍速

実時間 6万語彙連続音声認識のための 40-nm, 54-mW音声認識専用プロセ

ッサ" 信学技報, vol. 113, no. 235, ICD2013-76, pp. 29-34, 2013年 10月, 弘前．

2) 何 光霽, “6万語彙実時間連続音声認識のための 40nm, 144mW 音声認識

専用プロセッサ” VDECデザイナーズフォーラム, 2013年 8月. （VDEC デ

ザインアワード優秀賞）

3) 宮本優貴, 何 光霽, 和泉慎太郎, 川口 博, 吉本雅彦 "2.4 倍速実時間 6

万語彙連続音声認識プロセッサの開発" 信学技報 , vol. 112, no. 365,

ICD2012-101, pp. 49-53, 東京, 2012年 12月．

4) 何光霽, 菅原隆伸, 藤永剛史, 宮本優貴, 野口紘希, 和泉慎太郎, 川口博,

吉本雅彦, "6 万語彙実時間連続音声認識のための 40nm, 144mW 音声認識

専用プロセッサの開発 ," LSI とシステムのワークショップ 2012, pp.

189-191, 北九州市, 2012年 5月.

5) 菅原 隆伸，何 光霽，藤永 剛史，宮本 優貴，野口 紘希，和泉 慎太郎，

川口 博，吉本 雅彦，”6万語彙実時間連続音声認識のための 40nm,144mW

音声認識専用プロセッサの開発," 信学技報, vol. 111, no. 327, ICD2011-96,

83

pp. 79-84, 2011年 11月.

6) 寺地 陽祐，水野 孝祐，何 光霽，川口 博，吉本 雅彦，"フル HDTV 実

時間動画像認識のための低消費電力 SIFT 特徴量抽出プロセッサ," LSI と

システムのワークショップ 2011, pp.209-211, 北九州市, 2011年5月. （ICD

最優秀ポスター受賞）

84

85

Acknowledgement

I would like to express my deepest appreciation to Professor Masahiko Yoshimoto of

Kobe University for offering me the great chance to study in this laboratory, his

invaluable suggestions, appropriate guidance and enthusiastic encouragement helped me

having a wonderful research life in Japan. I am grateful as well to Associate Professor

Hiroshi Kawaguchi of Kobe University for providing me constructive comments and

warm encouragement related to this research. My deepest appreciation goes to them.

I also would like to thank Professor Makoto Nagata, Professor Yasuo Ariki and

Professor Osamu Matoba for giving me helpful suggestions for this dissertation.

I would like to express my deepest gratitude to my colleagues of the hyper project: Dr.

Hiroki Noguchi, Dr. Kosuke Mizuno, Mr. Tetsuya Kamino, Mr. Junichi Tani, Mr. Kazuo

Miura, Mr. Mitsuhiko Kuroda, Mr. Yusuke Shimai, Mr. Tomoya Takagi, Mr. Tsuyoshi

Fujinaga, Mr. Koji Kugata, Mr. Takanobu Sugahara, Mr. Yosuke Terachi, Mr. Masanori

Nishino, Mr. Yuki Miyamoto, Mr. Kenta Takagi, Mr. Kumpei Matsuda, Mr. Kotaro

Tanaka. I owe my deepest gratitude to Assistant Professor Shintaro Izumi for giving me

advices in many aspects of this research. I would like to thank Dr. Shusuke Yoshimoto

for spending time in the laboratory for 5 years and giving me many help.

During the time I spent in the laboratory, I was fortune to meet so many nice

members, with whom I spent a great time. I would like to thank all of them: Dr.

Hidehiro Fujiwara, Dr. Shunsuke Okumura, Dr. Keita Konishi, Dr. Yohei Nakata, Dr.

Takashi Takeuchi, Dr. Takashi Matsuda, Dr. Takashi Takeuchi, Mr. Hyeokjong Lee, Mr.

Yu Otake, Mr. Yusuke Iguchi, Mr. Yoshinori Sakata, Mr. Koh Tsuruda, Mr. Akihisa Oka,

Mr. Yukihiro Takeuchi, Mr. Masahiro Yoshikawa, Mr. Kosuke Yamaguchi, Ms. Mari

Masuda, Mr. Keisuke Okuno, Mr. Takuro Amashita, Mr. Yuki Kagiyama, Mr. Masaharu

Terada, Mr. Jung Jinwook, Mr. Koji Yanagida, Mr. Yusuke Takeuchi, Mr. Shimpei Soda,

Mr. Masanao Nakano, Mr. Asuka Fujikawa, Mr. Yohei Umeki, Mr. Yuki Kitahara, Mr.

Ken Yamashita, Mr. Yuta Kimi, Mr. Tomoki Nakagawa, Mr. Song Dae-Woo, Mr.

Takahide Fujii, Mr. Go Matsukawa, Mr. Yozaburo Nakai, Ms. Kana Masaki Mr. Naoki

Okawa, Mr. Yuta Kawamoto, Mr. Haruki Mori and Mr. Shuhei Yoshida. I would like to

express my appreciation to Ms. Emi Go, Ms. Keiko Matsuoka, Ms. Aya Tsuboi, and Ms.

Yurie Izumi for their kindless.

86 Acknowledgement

This work was supported by VLSI Design and Education Center (VDEC), the

University of Tokyo in collaboration with Cadence Design Systems Inc., Mentor

Graphics Corp., and Synopsys Inc. The VLSI chips used in this study was fabricated in

the chip fabrication program of VDEC, the University of Tokyo in collaboration with

Renesas Electronics. This development was performed by the author for STARC as part

of the Japanese Ministry of Economy, Trade and Industry sponsored “Silicon

Implementation Support Program for Next Generation Semiconductor Circuit

Architectures”.

I would like to appreciate SENSHUKAI CO. LTD for supply me scholarship during

my doctoral course.

Finally, I would like to express my deepest gratitude to my parents, my aunt, my

cousin for their plentiful support and encouragement.

Guangji He

