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Abstract

We examine viscosity in self-gravitating planetary rings in Chapter 2 and also grav-

itational accretion of ring particles onto moonlets in Saturn’s rings in Chapter 3,

using local N-body simulation.

We investigate dependence of viscosity on various parameters in detail, including

effects of particles’ surface friction. We find that inclusion of surface friction changes

viscosity in dilute rings up to a factor of about two. In the case of self-gravitating

dense rings, viscosity is increased significantly due to effects of gravitational wakes,

and we find that varying restitution coefficients changes viscosity in such dense rings

also by a factor of about two. However, we find that a previously obtained formula

seems to overestimate viscosity in dense rings far from the central planet, where

temporary gravitational aggregates form. We derive semianalytic expressions that

well reproduce our numerical results for the entire range of parameters examined.

We find that gravitational accretion of ring particles onto moonlets is unlikely to

occur at radial locations interior to the outer edge of the C ring, unless the density of

the moonlet is much larger than that of solid water ice or non-gravitational cohesive

forces play a major role. We also examine accretion process of individual particles

onto moonlets in detail, and find that particle accretion onto the high-latitude regions

of the moonlet surface occurs even if the vertical thickness of the ring is much smaller

than the moonlet’s radius. Our results suggest that larger boulders recently indicated

by observations of transparent holes in the C ring are likely to be collisional shards,

while propeller moonlets in the A ring would be gravitational aggregates formed by

particle accretion.
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Chapter 1

Introduction

Saturn’s rings are composed of many icy particles. The optically thick regions of

Saturn’s rings are classified as main rings that consist of the A, B, and C rings (Figure

1.1). The C, B, and A rings are located in 74, 500 − 92, 000 km, 92, 000 − 118, 000

km, and 122, 000− 137, 000 km from the Saturn’s center, respectively (e.g., Colwell

et al. 2009). The optical depths of the C, B, and A rings are ∼ 0.1, 1−5, and ∼ 0.5,

respectively; they are obtained by the Voyager stellar (Holberg et al. 1982; Esposito

et al. 1983, 1987) and radio occultations (Tyler et al. 1983), the ground-based

observations of the occultation of the bright star 28 Sgr in July 1989 (Nicholson et

al. 2000), and the Cassini stellar and radio occultations (e.g., Cuzzi et al. 2009).

The vertical thickness of the main rings is ∼ 10 m given by the model, under the

assumption that random velocities are isotropic (Tiscareno et al. 2007). This shows

that the vertical thickness of the main rings is much smaller than the width of the

rings. Sizes of particles forming the main rings are estimated to be in the range of

about 0.1 cm − 10 m from results of the Voyager and the Cassini observations, and

the ground-based observations of stellar occultations (Marouf et al. 1983; Zebker et

al. 1985; French & Nicholson 2000; Cuzzi et al. 2009).

Four models for the origin of Saturn’s rings have been suggested as follows: (i) the

remnant from Saturn’s sub-nebula disk (Pollack 1975), (ii) the collisional disruption

of one or several moons (Pollack et al. 1973; Pollack 1975; Harris 1984; Charnoz et

al. 2009), (iii) the tidal disruption of one or several comets (Dones 1991; Dones et
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al. 2007; Charnoz et al. 2009), (iv) the stripping of the icy mantle of a Titan-sized

satellite (Canup 2010). The first, the second, and the third models are unlikely to

account for several characteristics such as almost pure icy composition of the rings

and nonexistence of prominent rings like Saturn’s rings with other giant planets. On

the other hand, the fourth model seems to be able to account for the characteristics

of Saturn’s rings and also consistent with the recent model for the origin of regular

satellites of giant planets (Canup & Ward 2002).

Dynamics of Saturn’s main rings are dominated by collision and gravitational

interaction between particles (Schmidt et al. 2009). The rings can be regarded as

particle disks with viscosity arising from such interactions between particles, and

the viscosity in Saturn’s rings is an important physical parameter determining the

rate of dynamical evolution and structure formation in the rings. For example, the

rate of viscous spreading of the rings is determined by the viscosity (Esposito 1986;

Salmon et al. 2010), and the formation of the complete and partial gaps in the rings

can be described by balance between viscous spreading and gravitational scattering

by an embedded body (e.g., Goldreich & Tremaine 1982; Spahn & Sremcevic 2000;

Sremcevic et al. 2002).

On the other hand, there are many moonlets and satellites in Saturn’s system.

Detailed data on shapes and densities of small moons orbiting within or near the

A ring have been obtained from observations by the Cassini spacecraft (Porco et al.

2007; Thomas 2010). While these moonlets are thought to be formed by gravitational

accretion of small ring particles onto larger fragments resulting from the breakup of

a bigger icy progenitor ring body (Porco et al. 2007; Charnoz et al. 2007), recent

studies suggest that some of these moonlets likely formed by accretion of parti-

cles radially spreading from the outer edge of the rings, due to angular momentum

transport caused by collisions and gravitational interactions between particles and

satellites (Charnoz et al. 2010; Canup 2010). Also, propeller-shaped structures have

been found in Cassini images of the A ring and indicate the existence of unseen
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embedded moonlets with sizes between tens and thousands of meters (Figure 1.2).

Some of these unseen embedded moonlets either may be collisional shards resulted

from disruption of the ring’s progenitor body or may have formed by accretion of

ring particles onto larger fragments. Furthermore, observations by the Cassini space-

craft show that some of the small moons have prominent equatorial ridges. Thus,

it is important to study viscosity and particle accretion in order to understand the

formation and the evolution of Saturn’s ring-moonlet system.

The viscosity in Saturn’s rings has been investigated with both observational (e.g.,

Tiscareno et al. 2007) and theoretical (e.g., Daisaka et al. 2001) studies, the latter

being only in limited cases. Comparison between observations and numerical studies

can provide constrains on ring particles’ properties (e.g., the restitution coefficient

and the surface state of the particles) and particle size distribution. These constrains

would be useful for a better understand of the formation and the evolution of the

ring-moonlet system. On the other hand, in addition to observations of small moons

(Porco et al. 2007), theoretical studies related to the formation of the small moons

have been carried out (Porco et al. 2007; Charnoz et al. 2007; Lewis & Stewart

2009), but accretion processes have not been studied in detail. By clarifying the

degree and the process of particle accretion onto moonlets in the rings, we can give

constrains on the origin and evolution of the ring-satellite system.

In this doctoral thesis, we study viscosity and gravitational accretion in Saturn’s

rings, using local N-body simulations. In Chapter 2, performing N-body simulations

for rings consisting of equal-sized particles, we examine the viscosity of planetary

rings consisting of spinning, self-gravitating particles. In Chapter 3, carrying out N-

body simulations of particle accretion onto a larger moonlet, we examine gravitational

accretion of particles onto moonlets embedded in Saturn’s rings. Our summary is

presented in Chapter 4.
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C B A

Cassini Division

Figure 1.1: An image of Saturn’s rings taken by the Cassini spacecraft. The characters ”C”, ”B”,
and ”A” in the image means the C ring, the B ring, and the A ring, respectively. The Cassini
Division is indicated by the arrow (NASA/PIA05410-516-548).

Figure 1.2: An image of the ”propeller” feature in Saturn’s rings obtained by the Cassini spacecraft.
Red arrows indicate the ”propeller” feature. The direction of Saturn and moonlet’s orbital motion
are illustrated at the lower right of the image (NASA/PIA07791).
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Chapter 2

Viscosity in Planetary Rings with
Spinning Self-Gravitating Particles

2.1 Introduction

Angular momentum transport is a key process that drives the large-scale structures of

planetary rings. It determines the timescale of radial spreading, the behavior of wave

structures, and the condition of gap formation in rings in the vicinity of embedded

moonlets, and it is also related to the stability of dense rings (see, e.g., Goldreich

& Tremaine, 1978; Stewart et al., 1984; Schmidt et al., 2009). Furthermore, recent

studies show that Saturn’s small moons orbiting just outside the main rings likely

formed by an accretion of radially spreading particles from the outer edge of the

ring (Charnoz et al., 2010; Canup, 2010); thus the spreading rate of the ring is also

related to the formation of these moons.

In planetary rings, angular momentum transport is caused by collisions and grav-

itational interactions between particles and satellites, and the rate of the transport is

expressed in terms of viscosity. In most previous works on the viscosity of planetary

rings, effects of the self-gravity of the rings were either neglected or only taken into

account in an approximate manner (e.g. Goldreich & Tremaine, 1978; Borderies et

The content of this chapter is an author-created, un-copyedited version of an article published in The Astronomi-
cal Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any
version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0004-6256/143/5/110.
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al., 1985; Araki & Tremaine, 1986). Wisdom & Tremaine (1988) performed local

simulation of planetary rings with nongravitating particles and studied their equilib-

rium properties, including viscosity. In addition to the local component of angular

momentum transport due to particle radial random motion examined by Goldreich &

Tremaine (1978), Wisdom & Tremaine (1988) also evaluated the non-local component

due to collision. They found that the nonlocal component dominates the viscosity

in dense rings, and they confirmed that the values of the viscosity agree well with

the result of Araki & Tremaine (1986). They also examined effects of self-gravity

in an approximate manner by enhancing the vertical frequency of particle orbital

motion, and they found that the viscosity is enhanced by a factor of five. Richardson

(1994) calculated ring viscosity using N -body simulation of self-gravitating rings, but

did not examine the angular momentum transport due to gravitational interactions

between particles.

On the other hand, Daisaka et al. (2001) studied viscosity in self-gravitating rings

using local N -body simulation. In addition to the local and nonlocal components

studied by Wisdom & Tremaine (1988), Daisaka et al. (2001) calculated the gravi-

tational component of viscosity based on the formulation of Takeda & Ida (2001),

who studied angular momentum transport in proto-lunar disks. Takeda & Ida (2001)

and Daisaka et al. (2001) found that the viscosity is strongly enhanced when parti-

cle disks become gravitationally unstable and gravitational wakes are formed. From

their numerical results, Daisaka et al. (2001) derived a formula of the viscosity in

self-gravitating dense rings given by ν ∼ CG2Σ2/Ω3, where G is the gravitational

constant, Σ and Ω are the surface density and angular velocity of the ring, respec-

tively, and C is a correction factor that depends on the ratio of the Hill radius of the

particles to their physical size (see Section 2.5). However, the range of parameters

studied by Daisaka et al. (2001) was somewhat limited; for example, they did not

examine viscosities in dense rings far from the planet, where temporary gravitational

aggregates can form. Also, they assumed that particles are smooth spheres, and did
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not examine the effects of surface friction of particles on the viscosity.

Spins of ring particles arise as a natural outcome of oblique impacts between par-

ticles with surface friction. Spin rate of ring particles is an important parameter in

modeling thermal emission from Saturn’s rings, and it has been studied in detail,

using analytic calculation, three-body orbital integration, and N -body simulation

(Salo, 1987; Richardson, 1994; Ohtsuki, 2005; Ohtsuki & Toyama, 2005; Ohtsuki,

2006a,b; Morishima & Salo, 2006). These studies show that the spin period of the

particles is on the order of their orbital period in rings of equal-sized particles, while

small particles spin faster than larger ones when size distribution is included. Consid-

ering energy balance between viscous gain and dissipation due to an inelastic collision

with surface friction, Morishima & Salo (2006) examined the effects of particle sur-

face friction on viscosity in rings consisting of non-gravitating particles, but such

effects on the viscosity in self-gravitating rings were not studied.

On the other hand, Tanaka et al. (2003) derived a new formulation for the cal-

culation of the total viscosity (i.e., the sum of the local, nonlocal, and gravitational

components) in particle disks. Under Hill’s approximations in the three-body prob-

lem, they derived an expression of angular momentum flux in terms of the changes

of orbital elements of constituent particles due to mutual collisions and gravitational

interactions. In the case of planetary rings with low optical depth, they showed that

viscosity can be evaluated by three-body orbital integration. They also derived a

formula to calculate viscosity in dense rings using N -body simulation. In this case,

viscosity in rings in a quasisteady state can be obtained from energy dissipation at

inelastic collisions between particles (see Section 2.2). In the case of rings with the

effect of vertical overall self-gravity, Salo et al. (2001) also found agreement between

viscous heating and energy dissipation due to inelastic collision using N -body simu-

lation. Tanaka et al. (2003) confirmed that viscosities in planetary rings calculated

using their new formula agree with those obtained by the method used by Daisaka

et al. (2001). This new method of viscosity calculation can also be used in the case
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of particles with surface friction, and the method is convenient when investigating

detailed parameter dependence of the total viscosity of the rings.

In the present work, we examine the viscosity of planetary rings consisting of

spinning, self-gravitating particles. Using an N -body simulation code similar to the

one developed by and used in Daisaka & Ida (1999) and Daisaka et al. (2001) and

on the basis of the above viscosity calculation formula derived by Tanaka et al.

(2003), we calculate ring viscosity for a wide range of parameters, including cases of

particles with surface friction. We also examine viscosities in dense rings far from

the central planet, where temporary gravitational aggregates can form. In Section

2.2, we describe our numerical methods. Numerical results of our N -body simulation

are presented in Sections 2.3 and 2.4. First, in Section 2.3, we describe the effects of

surface friction on viscosity in rings with low optical depth. Then, we show results

for dense rings of spinning self-gravitating particles in Section 2.4. In Section 2.5, we

derive semianalytic expressions of ring viscosity based on our numerical results. Our

conclusions are summarized in Section 2.6.
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2.2 Numerical Method

We adopt the method of local N -body simulation (e.g. Wisdom & Tremaine, 1988;

Richardson, 1994; Salo, 1995; Daisaka & Ida, 1999; Ohtsuki & Emori, 2000; Daisaka

et al., 2001), and use a code based on Daisaka & Ida (1999) and Daisaka et al.

(2001). We erect a rotating Cartesian coordinate system with origin at the center of

the square simulation cell that moves on a circular orbit with a semimajor axis a0

at the Keplerian angular velocity Ω = (GMc/a
3
0)

1/2
(Mc is the mass of the central

planet). The x-axis points radially outward, the y-axis points in the direction of the

orbital motion, and the z-axis is normal to the equatorial plane. In this case, the

equations of motion of particle i are written as

ẍi = 2ẏiΩ + 3xiΩ
2 +

N∑
j ̸=i

Gmj (xj − xi)

r3ij

ÿi = −2ẋiΩ +
N∑
j ̸=i

Gmj (yj − yi)

r3ij
(2.1)

z̈i = − ziΩ
2 +

N∑
j ̸=i

Gmj (zj − zi)

r3ij

where rij =
[
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2]1/2, N is the particle number, mj is

the mass of particle j, and the last terms on the right-hand side of Equation (2.1)

denote gravitational forces between particles. We directly calculate the gravita-

tional forces between particles using GRAPE-7, which is a special-purpose hardware

for calculating gravitational forces, and orbits of particles are integrated with the

second-order leapfrog method. In the present work, we assume that all particles

have identical sizes of 1m radius.

When collisions between particles are detected, velocity changes are calculated

based on the hard-sphere model including surface friction (e.g. Salo, 1987; Richard-

son, 1994; Ohtsuki & Toyama, 2005). Velocity changes are described in terms of

the normal and tangential restitution coefficients, εn and εt, where 0 ≤ εn ≤ 1 and

−1 ≤ εt ≤ 1. (Perfectly smooth spheres have εt = 1.) Let the normal and the tan-
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gential components of the relative velocity (v) of colliding particles to the tangent

plane be vn and vt, respectively, and the normal and the tangential components of

the relative velocity of the two contacting points at the time of impact be un and

ut, respectively. Then, the normal and the tangential components of the relative

velocity of the two contacting points after impact are given as

u′
n = v′

n = −εnvn,

u′
t = εtut.

(2.2)

Using these relations, we calculate changes in velocities and rotation the rates of

colliding particles (Appendix A). In the present study, we assume that εt is con-

stant and examine the dependence of viscosity on εt. As for the normal restitution

coefficient, in addition to cases with constant εn’s, we also examine cases with the

velocity-dependent coefficient based on laboratory impact experiments (Bridges et

al., 1984), which is given as

εn (v) = min
{
0.32 (v/vc)

−0.234 , 1
}

(2.3)

where vc = 1cms−1.

We calculate ring viscosities based on the formulation derived by Tanaka et al.

(2003). Deriving an expression for angular momentum flux in terms of changes in

particle orbital elements and assuming a quasisteady state in a local ring region,

Tanaka et al. (2003) showed that the averaged viscosity in the ring region can be

obtained by calculating energy dissipation due to inelastic collisions using N -body

simulation. In the case of N -body simulation using a square simulation cell of width

L, the viscosity averaged over the cell and a time interval T is written as (Tanaka et

al., 2003)

ν =
4

9Ω2ΣTL2

inside∑
j

all∑
k

bk>bj

∑
all collisions

∆Ecol,jk, (2.4)

where Σ is the averaged surface density and ∆Ecol,jk (> 0) is an amount of energy

dissipated at a collision between particle j and particle k. ∆Ecol,jk can be calcu-

lated, for example, from the change of the orbital elements for the relative motion of
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particles due to a collision (Appendix B). The first summation is taken over particle

j whose guiding center is inside the simulation cell, while the second summation is

over particle k, which have a semimajor axis of the guiding center (b) larger than

that of particle j. The above expression can also be obtained by assuming a balance

between energy loss due to inelastic collisions and the viscous gain due to the shear

motion (Tanaka et al. 2003; see also Salo et al. 2001).

In the case of nongravitating rings or self-gravitating rings with low optical depth,

N ∼ 103 or an even smaller number of particles is sufficient to examine such equi-

librium properties, e.g., velocity dispersion. However, in the case of self-gravitating

dense rings, a sufficiently large simulation cell (thus, a sufficiently large number of

particles) should be used to accurately obtain various dynamical quantities (Salo,

1995). Following Salo (1995), we set the size of the simulation cell so that L ≥ 4λcr,

where λcr = 4π2GΣ/Ω2 is the critical wavelength for axisymmetric gravitational in-

stability. We performed simulations for sufficiently long time periods to achieve a

quasisteady state; these were typically at least 20-50TK (TK is the Keplerian orbital

period) for dense rings (10TK for τ = 1 and rh = 1, where rh is defined by Equa-

tion (2.5)), and still longer periods in the case of dilute rings. The time average for

calculating viscosities from Equation (2.4) is carried out after a quasisteady state is

achieved.
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2.3 Effects of Surface Friction on Viscosity in Optically Thin
Rings

In this section, we first show results for nongravitating rings. Then, we describe in

detail results for self-gravitating rings with a low optical depth. Numerical results

for self-gravitating dense rings will be presented in Section 2.4.

Figure 2.1 shows numerical results for viscosity in the case of nongravitating rings

as a function of optical depth. First, to confirm the validity of our code for N -

body simulation and viscosity calculation, we compare our results with Wisdom &

Tremaine (1988) by performing simulations for the same parameters, i.e., smooth

particles (εt = 1) with εn = 0.5. In Figure 2.1(a), the crosses represent results

from Wisdom & Tremaine (1988), and the line shows our results. We find excellent

agreement between the two results. Figure 2.1(b) shows our numerical results for

the velocity-dependent normal restitution coefficient given by Equation (2.3) with

εt = 1, 0.5, and 0. We find that the dependence of viscosity on the value of εt is

different between the low and high optical depth cases, and this difference is related

to the behavior of particle random velocity. In the case of low optical depth, random

velocity is somewhat reduced with the increasing strength of surface friction (Salo,

1987; Ohtsuki & Toyama, 2005), and the reduced radial excursion of particles lowers

the rate of angular momentum transport and viscosity (Goldreich & Tremaine, 1978).

On the other hand, in the case of high optical depth, the dependence of random

velocity on τ or εt becomes rather weak (Wisdom & Tremaine, 1988). In this case,

viscosity becomes larger with decreasing εt, because viscous heating increases to

balance the additional energy dissipation due to surface friction.

Next, we examine the case of self-gravitating rings with a low optical depth. The

relative importance of self-gravity to mutual collision between particles depends on

the relative size of the Hill radius of the particles to their physical size (Ohtsuki, 1993,

1999; Salo, 1995; Daisaka et al., 2001). In the case of rings of equal-sized particles

(mass m, radius R, internal density ρ) at a distance a0 from the planet, the ratio of
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the mutual Hill radius RH

(
= a0 (2m/3Mc)

1/3
)
of colliding particles to the sum of

their radii is written as (Daisaka et al., 2001)

rh = RH/(2R)

= 0.82

(
Mc

5.7× 1029 g

)−1/3 (
ρ

0.9 g cm−3

)1/3 ( a0
1010 cm

)
.

(2.5)

Figure 2.2 shows the plots of rh as a function of the distance from Saturn, for several

values of ρ. When ρ = 0.9 g cm−3, rh = 0.5, 0.71, and 1 (see, e.g., Figure 2.3) corre-

spond to a/1010 cm = 0.61, 0.87, and 1.22, respectively. However, if ρ = 0.5 g cm−3,

the above three values of rh correspond to a/1010 cm = 0.74, 1.05, and 1.48, respec-

tively. Although the actual physical properties of ring particles are poorly known,

comparisons between the observations and dynamical studies suggest that it is likely

they are underdense (e.g., Schmidt et al., 2009).

Figure 2.3 shows the dependence of viscosity and random velocity on εn for low

optical depth rings (τ = 0.01) with four different values of rh, including the nongrav-

itating case (rh = 0). Figure 2.3(b) confirms the dependence of random velocity on

εn and rh (or the distance from the planet for a given density) obtained by previous

studies (e.g., Salo, 1995; Ohtsuki, 1999). In the case of no or weak gravity, random

velocity is determined by a mutual collision and the equilibrium random velocity

increases with increasing εn, while the εn-dependence becomes weak in the case of

larger rh, where gravitational encounters between particles become important. More

importantly, the random velocity significantly increases with increasing rh, i.e., the

increasing effect of gravitational encounters. The εn-dependence of viscosity shown

in Figure 2.3(a) is similar to but somewhat weaker than that of random velocity.

However, we find that the rh-dependence of the viscosity is similar to that of ran-

dom velocity, indicating that viscosity in self-gravitating rings with low optical depth

can be roughly expressed in terms of random velocity, as in the case of the dilute

nongravitating rings discussed above.

Figure 2.4 shows the dependence of viscosity and random velocity on εt in self-

gravitating rings with low optical depth. We also show the results for the nongravi-
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tating case (rh = 0) for comparison. The curves for the random velocity in the case

of weak gravity (rh = 0.5) are very close to those for the nongravitating case. In

these cases, energy dissipation due to surface friction is most effective at εt = 0;

thus, the random velocity becomes the smallest at εt ≃ 0 (Morishima & Salo, 2006).

Then, the reduced radial excursion of particles results in the reduction of viscosity

(Figure 2.4(a)), as mentioned above. The behavior in the case of rh = 0.71 is similar,

although the εt-dependence of the viscosity seems rather weak. In the case of rh = 1,

on the other hand, gravitational encounters between particles play a major role in

determining random velocity. As a result, the random velocity becomes almost in-

dependent of εt. In this case, impact velocity also becomes nearly independent of

εt, and energy dissipation at the collision is the largest when surface friction is the

strongest, i.e., at εt ≃ 0. Therefore, the viscosity in the case of rh = 1 becomes

larger when εt ≃ 0 by a factor of about two compared with the case of smooth par-

ticles (εt = 1). Here, we emphasize that both viscosity and random velocity increase

with increasing rh and, if we neglect the above rather weak εt-dependence, viscosity

in self-gravitating rings with low optical depth seems to be expressed in terms of

random velocity (Section 2.5).
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Figure 2.1: Viscosity in the case of nongravitating rings as a function of optical depth. (a) Solid line
shows our numerical results with εn = 0.5 and εt = 1, and the crosses are those obtained by Wisdom
& Tremaine (1988) for the same parameters. (b) Our numerical results with the velocity-dependent
normal restitution coefficient εn(v) given by Equation (2.3), with εt = 1 (circles), 0.5 (triangles),
and 0 (squares) (from Yasui et al. 2012).
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Figure 2.4: Scaled viscosity and random velocity as a function of εt obtained from N -body sim-
ulation

(
N = 103

)
. Symbols represent the results for different values of rh; rh = 0 (open circles),

0.5 (triangles), 0.71 (squares), and 1 (solid circles), respectively. Each line type represents a corre-
sponding combination of τ and εn used in the simulation; solid lines, dashed lines, and dot-dashed
lines represent τ = 0.01 with εn = εn (v), τ = 0.01 with εn = 0.5, and τ = 0.05 with εn = 0.5,
respectively (from Yasui et al. 2012).
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2.4 Viscosity in Dense Rings

Next, we examine the case of dense, self-gravitating rings. First, we show results for

smooth particles, to compare with cases with surface friction shown later. The solid

line with marks in Figure 2.5(a) shows the plots of the viscosity obtained by our

N -body simulation as a function of optical depth (rh = 0.82, εn = 0.5, εt = 1). In

the case of low optical depth, viscosity is proportional to the optical depth, because

angular momentum is transferred via successive binary collisions and gravitational

encounters between particles, and the frequency of interactions is proportional to

the particle surface number density. The coefficient of proportionality in the case of

self-gravitating rings with low optical depth can be obtained from results of three-

body orbital integration (Tanaka et al., 2003). In this case, equilibrium random

velocity for given parameters (i.e., rh, εn, and εt) is first calculated by solving the

velocity evolution equation with the velocity stirring rates obtained from the three-

body orbital integration (Ohtsuki, 1999). Then, we evaluate the coefficient for the

viscosity for this equilibrium velocity by also using the results of the three-body

orbital integration, and the result is shown in Figure 2.5(a) with the dotted line.

We find that the results obtained by the two different methods perfectly agree with

each other in the case of low optical depth. On the other hand, the results of N -

body simulation deviate from the three-body results for τ >∼ 0.2. This is because the

viscosity is dominated by the angular momentum transfer related to the gravitational

torques exerted by the wake structures formed in such dense, self-gravitating rings

(Figure 2.6; Daisaka et al., 2001).

In addition to the smooth particles case, we show the results of our N -body sim-

ulation for self-gravitating rings of particles with surface friction in Figure 2.5(b).

We find that the overall behavior in the case with surface friction is similar to the

case with smooth particles. Figure 2.5(b) shows the numerical results for four com-

binations of εn (0.5 or εn (v) given by Equation (2.3)) and εt (1, 0.5, or 0). Figure

2.5(c) is the same as Figure 2.5(b), but the viscosity values are scaled by those in
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the case of εn = 0.5 and εt = 1, to facilitate a comparison among the four cases. We

note that the viscosity values change systematically when the restitution coefficients

are varied. In dense rings where gravitational wakes are formed, the balance be-

tween gravitational heating by wakes and inelastic dissipation leads to a quasisteady

state with Q ≃ 1-2, where Q is the Toomre parameter, and the dependence of the

particle random velocity (thus their impact velocity) on elastic properties is rather

weak (Salo, 1995). In this case, the average energy dissipation rate is larger when

the effect of the surface friction is stronger, resulting in somewhat larger viscosity

values (Figures 2.5(b) and (c)). We also note that the slope of the curve for the case

with εn (v) in Figure 2.5(b) becomes somewhat steeper at τ >∼ 0.2. This is because

the increased impact velocities at a larger optical depth results in the increase in

energy dissipation and viscosity in the case with the velocity-dependent restitution

coefficient. Figure 2.5(c) shows that varying restitution coefficients can change the

viscosity in dense self-gravitating rings by a factor of about two.

Figure 2.7 shows the τ -dependence of viscosity for various values of rh, includ-

ing the nongravitating case (rh = 0; dashed line), with surface friction and the

velocity-dependent εn. As in the case shown in Figure 2.5, viscosity in dilute rings

is proportional to the optical depth, while it significantly increases at large τ in the

case with self-gravity. We confirmed that Q takes on values smaller than 2 - 3 when

viscosities begin to deviate from the linear τ -dependence. The deviation begins at

τ ∼ 0.1 in the case of strong gravity (rh = 1). On the other hand, in the case of

weak gravity (rh = 0.5), the deviation is very small and the viscosity values are close

to those for the non-gravitating case even at τ ≃ 1. In this case of weak self-gravity,

the tendency of wake formation is not strong even at τ ≃ 1 (Figure 2.8). The wake

structures for τ = 1 become notable with increasing rh; even temporary aggregates

can form in the case of rh = 1.

The τ -dependence of viscosity, often expressed in terms of β ≡ d ln ν/d ln τ , is

related to the condition for the onset of viscous overstability in dense rings; Salo et
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al. (2001) found that β > βcr ∼ 1 as a rough condition for the onset of overstability.

In the high-τ regime where viscosity is enhanced by the effect of self-gravity, the slope

of the curves shown in Figure 2.7 seems to change with increasing optical depth. For

example, in the case of rh = 0.82, viscosity increases more rapidly than the ν ∝ τ 2

dependence (i.e. β > 2) when the effect of gravitational wakes becomes important

at τ ≃ 0.2-0.3, then β ≃ 2 at τ ≃ 0.5-1. Similar behavior can be seen in the cases of

rh = 0.71 and 1. Figure 14.8 (upper right panel) of Schmidt et al. (2009), drawn by

Heikki Salo, shows the change of β in the case of rh = 0.82 in more detail, where β

increases from 1 to about 3 as τ increases from 0.1 to 0.5, then decreases to about 2

as τ further increases to ∼1. In the range of parameters shown here and studied in

other works (e.g., Daisaka et al., 2001; Schmidt et al., 2009), we find that 1 <∼ β <∼ 3

in self-gravitating dense rings, satisfying the condition for the onset of overstability.

Simulations of dense rings for much longer periods with a larger simulation cell are

necessary for a more detailed study of viscous overstability (Daisaka et al., 2001; Salo

et al., 2001).
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Figure 2.5: (a) Scaled viscosity as a function of optical depth. Solid line represents results of N -
body simulation, while the dotted line was drawn using a coefficient evaluated by the three-body
orbital integration (i.e., ν/

(
R2Ω

)
= 4.44τ). In both cases, rh = 0.82 (corresponding to a = 1010 cm

in Saturn’s rings if ρ = 0.9 g cm−3), εn = 0.5, and εt = 1 are used. In the N -body simulations,
N = 5000 for τ ≤ 0.5, while N = 36, 000 is used for τ = 1 so that L/λcr ≃ 4. (b) Same as (a),
but results of N -body simulation for four different combinations of εn and εt are shown. εn = 0.5
and εt = 1 (dashed line with circles); εn = 0.5 and εt = 0.5 (dot-dashed line); εn = 0.5 and εt = 0
(dotted line); and εn = εn (v) and εt = 0.5 (solid line). (c) Same as (b), but the viscosity values are
scaled by those for the case of εn = 0.5 and εt = 1 (from Yasui et al. 2012).
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Figure 2.6: Snapshots of the spatial distribution of particles for simulations with four different
values of τ (rh = 0.82, εn = 0.5, εt = 1). Particle radius is 1m, and the size of the simulation cell
for the cases shown here is about 340m. Note that in our simulations the size of the simulation cell
is varied depending on τ and rh. Here (and in Figure 2.8) we show snapshots with a common size
of the simulation cell to facilitate comparison between the panels (from Yasui et al. 2012).
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Figure 2.7: Dependence of viscosity on τ for five values of rh (εn = εn (v) , εt = 0.5). Solid lines
with marks represent results of N -body simulation for rh = 0.5 (open circles), 0.71 (solid circles),
0.82 (triangles), and 1 (squares). Dashed line represents the nongravitating case (rh = 0). In these
simulations, N = 5000 for cases of low optical depth, weak gravity (small rh), or both. The particle
number is increased in the cases of dense rings with self-gravity, so that L/λcr ≥ 4 is satisfied. For
example, in the case of τ = 1, particle numbers are N = 5000, 15,000, 36,000, 115,800 for rh = 0.5,
0.71, 0.82, 1, respectively (from Yasui et al. 2012).
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2.5 Semianalytic Expression

On the basis of our numerical results presented above, here we derive a semianalytic

expression for viscosity in rings of equal-sized particles. As we discussed above, ring

viscosity depends on various parameters. We have shown that varying restitution

coefficients can change ring viscosity for a given τ and rh by a factor of about two.

On the other hand, ring viscosity changes by orders of magnitude when τ , rh, or

both are varied. In the following, we will use our numerical results in the case of

εn = εn (v) and εt = 0.5 and derive semianalytic expressions that approximately

reproduce the dependence of these results on τ and rh.

First, in the case of low optical depth, viscosity is determined by particle velocity

dispersion c, as shown by Goldreich & Tremaine (1978) for nongravitating rings. We

also discussed this in Section 2.3 for the case of self-gravitating rings. Viscosity in

this case can be written as

νlow = αc2τ/Ω, (2.6)

where α is a constant. In optically thin rings, the velocity dispersion c can be written

as (e.g. Salo, 1995; Ohtsuki, 1999)

c ∼ max
{
2RΩ,

√
2Gm/R

}
, (2.7)

depending on either inelastic collisions or gravitational encounters dominate particle

velocity evolution. Substituting Equation (2.7) into Equation (2.6), viscosity in low

optical depth rings can be expressed in terms of optical depth, distance from the

planet, and particle internal density, as

νlow
R2Ω

∼ max

{
4, 15×

(
ρ

0.9 g cm−3

)( a

1010 cm

)3
(

Mc

5.7× 1029 g

)−1
}
ατ. (2.8)

We find that α ∼ 0.35 from the comparison with our numerical results, which is

roughly consistent with the nongravitating case (Goldreich & Tremaine, 1978).

Next, we examine the case of high optical depth. From a dimensional analysis (see

also Lynden-Bell & Kalnajs, 1972; Ward & Cameron, 1978), Daisaka et al. (2001)
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argued that the viscosity in dense rings is expected to be proportional to that of a

self-gravitating disk,

νGD = G2Σ2/Ω3, (2.9)

with a correction factor C (rh), which depends on the relative importance of inelastic

collisions to the self-gravity of a ring. In terms of τ and rh, Equation (2.9) can be

re-written as (Daisaka et al., 2001)

νGD/
(
R2Ω

)
= (144/π2)r6hτ

2. (2.10)

Daisaka et al. (2001) found C (rh) = 26r5h from a comparison with their numerical

results.

Although our results of N -body simulations show that the dependence of the

viscosity on optical depth is somewhat stronger than that given by Equation (2.9)

(i.e., d ln ν/d ln τ > 2) when viscosity begins to deviate from the ν ∝ τ relation with

increasing τ (Section 2.4), the τ -dependence of our numerical results for the high-

τ cases is roughly consistent with Equation (2.9). Therefore, following Daisaka et

al. (2001), we evaluate the correction factor C = ν/νGD using our numerical results

(Figure 2.9(a)). We find that a correction factor given by

Cwake (rh) ≃ 53r5h (2.11)

seems to well reproduce our numerical results for dense rings with gravitational wakes

(i.e., rh ∼ 0.7-0.8 and τ >∼ 0.5). The fifth-power dependence of the correction factor

on rh is consistent with Daisaka et al. (2001), but the numerical coefficient is a factor

of about two larger than Daisaka et al. (2001). This is due to the difference in

restitution coefficients adopted in these simulations. We used our numerical results

for the case with εn = εn (v) and εt = 0.5, while Daisaka et al. (2001) derived

their correction factor from their simulations with smooth particles with normal

restitution coefficients independent of impact velocity. In fact, we confirmed that

our numerical results as well as those obtained by Schmidt et al. (2009) for εn =
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0.5 and εt = 1 are consistent with Daisaka et al. (2001; Figure 2.9(b)). As we

discussed in Section 2.4, including surface friction as well as using the velocity-

dependent normal restitution coefficient somewhat increases the viscosity values,

which explains the above difference in the correction factor. Thus, it should be

noted that our semianalytic expressions shown below include uncertainty of a factor

of 2-3 due to uncertainty in elastic properties of ring particles.

Daisaka et al. (2001) argued that the rh-dependence of the correction factor is re-

lated to ”compressibility” of particle disks due to self-gravity. When rh is significantly

smaller than unity (e.g. rh ∼ 0.5), collisions suppress the tendency of formation of

gravitational wakes, thus the enhancement of viscosity due to self-gravity is insignif-

icant. This compressibility discussed in Daisaka et al. (2001) can be quantitatively

demonstrated by calculating the physical optical depth τphys using a spatial distri-

bution of particles obtained by N -body simulation; here, τphys is defined so that

exp(−τphys) is the average fraction of skewers that penetrate the ring without pierc-

ing any particles (Figure 2.10; Wisdom & Tremaine, 1988; Robbins et al., 2010).

In the case of large τ and rh, we confirm significant reduction in τphys compared

with the dynamical optical depth τ (= NπR2/L2); thus, there is a stronger tendency

of particle clumping and wake formation, which results in a significant increase in

viscosity.

Figure 2.11(a) shows the plots of our analytic results obtained by ν = max {νlow, CwakeνGD}

(Cwake is given by Equation (2.11)) together with numerical results of our N -body

simulation. We confirm excellent agreement in both low and high optical depth

regimes for rh = 0.5 - 0.82, as expected. On the other hand, the above analytic

expression significantly overestimates the numerical results for rh = 1, as can be pre-

dicted from the plots of the correction factor in Figure 2.9(a). In the cases of rh ≃ 1,

the relatively large size of the Hill sphere compared with the particle physical size

allows the formation of temporary aggregates rather than gravitational wakes (Salo,

1995), as we mentioned above (Figure 2.8). Therefore, the above disagreement be-
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tween the analytic result for the viscosity that is valid in the case of wake formation

and the numerical results for rh ≃ 1 is not surprising; viscosity in rings with tem-

porary aggregate formation, which likely corresponds to the outer A ring of Saturn,

should be treated separately from the case of rings with gravitational wakes. Our nu-

merical results show that the τ 2-dependence suggested by Equation (2.9) also seems

to be approximately valid in the case of rh = 1 and τ ≃ 1, but the correction factor

should be separately determined. Since our numerical results for rh ≃ 1 suggest that

the dependence of the correction factor on τ is rather weak (Figure 2.9(a)), here we

adopt

Cagg ≃ 30 (2.12)

as a simple remedy for the correction factor in the case of temporary aggregate

formation. Figure 2.11(b) shows a comparison between the results obtained from the

revised semianalytic expression with our results of N -body simulation, where we find

excellent agreement for the entire parameter regime examined here.

In summary, our numerical results can be well approximated by the following

expression:

ν = max {νlow, CνGD} , (2.13)

where νlow and νGD are given by Equations (2.8) and (2.9), respectively, and the

correction factor is C = min{Cwake (rh) , Cagg}, where Cwake (rh) and Cagg are given

by Equations (2.11) and (2.12), respectively. Again, it should be noted that viscosity

values obtained by the above expression include an uncertainty factor of about 2-3

due to uncertainty in the elastic properties of particles.
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Figure 2.8: Snapshots of the spatial distribution of particles in simulations for four different values
of rh in the case of τ = 1 (εn = εn (v) , εt = 0.5). Particle radius is 1 m, and the size of each panel
shown here is about 450 m (from Yasui et al. 2012).
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Figure 2.9: Correction factor C ≡ ν/
(
G2Σ2/Ω3

)
as a function of rh. (a) Solid lines with symbols

represent the results obtained from our N -body simulations (εn = εn (v), εt = 0.5) with τ =0.2
(crosses), 0.5 (triangles), 0.7 (circles), and 1 (squares). Dashed line represents the relation Cwake =
53r5h, which agrees well with our numerical results for the case of the dense rings with gravitational
wakes. Note that the tendency to form gravitational wakes is rather weak in the case of τ = 0.2;
thus, the values of the correction factor in this case deviate from the line for the semianalytic
expression even at rh = 0.8-1. (b) Comparison of our numerical result (circle) with the results
obtained by Daisaka et al. (2001) (triangles) and Schmidt et al. (2009) (squares) for εn = 0.5 and
εt = 1 with τ = 0.5. Dashed line is the same as the one shown in (a). Dot-dashed line represents
the relation C = 26r5h obtained by Daisaka et al. (2001) (from Yasui et al. 2012).
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Figure 2.11: (a) Comparison of results obtained by our semianalytic expression (dashed lines) with
the numerical results of our N -body simulation (solid lines) for εn = εn (v) and εt = 0.5. The four
lines correspond to the cases with rh =0.5, 0.71, 0.82, and 1, as in Figure 2.7. For the semianalytic
results shown here, we used Cwake = 53r5h given by Equation (2.11) for all the values of rh. (b)
Same as (a), but Cagg = 30 is used instead of Cwake = 53r5h to obtain the semianalytic results for
the case with rh = 1 (dot-dashed line) (from Yasui et al. 2012).
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2.6 Conclusions and Discussion

In the present work, using local N -body simulation, we examined viscosity in self-

gravitating rings for a wide range of parameters. We calculated ring viscosity based

on the formulation developed by Tanaka et al. (2003), in which viscosity is evaluated

by calculating the average energy dissipation rate due to inelastic collisions in N -

body simulation. We investigated the dependence of viscosity on various parameters

in detail, including the effects of particle surface friction.

In the case of self-gravitating rings with low optical depth, we found that viscosity

is determined by particle random velocity, as in the case of nongravitating rings with

low optical depth. The effects of surface friction on viscosity were found to depend

on the importance of the mutual gravity of the particles relative to collisions, which

can be expressed in terms of the ratio of the mutual Hill radius of colliding particles

to their physical size (rh). When the effects of gravitational encounters are unim-

portant (rh ∼ 0.5) and particle random velocity is determined by inelastic collisions,

the inclusion of surface friction slightly reduces both random velocity and viscos-

ity. On the other hand, when rh ∼ 1 and gravitational encounters do play a major

role in particle velocity evolution, the inclusion of surface friction results in the in-

crease of viscosity, since the viscous heating increases to balance the increased energy

dissipation at collisions due to surface friction. We found that varying restitution

coefficients can change the viscosity in dilute rings by a factor of about two.

On the other hand, viscosity is significantly enhanced in dense self-gravitating

rings where gravitational wakes are formed (Daisaka et al., 2001). We found that

viscosity in dense rings with a given τ and rh is larger when collisions are more

dissipative, for example, by the inclusion of surface friction, and the enhancement

of viscosity due to this effect can be a factor of about two. Following Daisaka et

al. (2001), we assumed that the dependence of viscosity on the optical depth can be

approximated by that for a self-gravitating disk (Equation (2.9)), so we evaluated a

correction factor using our numerical results of N -body simulation. We found that
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the expression for the correction factor of the dense rings with gravitational wakes is

similar to the one obtained by Daisaka et al. (2001), the difference of a factor two in

the numerical coefficient can be explained by the difference in restitution coefficients

that were adopted. On the other hand, in the case of the outer rings where temporary

aggregates form due to self-gravity, the above expression overestimates the viscosity

values; thus, we derived a revised expression for such a case. We confirmed that the

semianalytic expressions we obtained well reproduce our numerical results for the

entire range of parameters examined here.

The expression we obtained for the viscosity in the case with low optical depth is

consistent with previous theoretical works for nongravitating rings (e.g. Goldreich &

Tremaine, 1978). However, the expressions for the viscosity (or the expression for the

correction factor) for dense rings were empirically obtained by comparing numerical

results. Although the strong rh-dependence of the viscosity in the case of the rings

with gravitational wakes has been explained by ring compressibility (i.e., the degree

of density contrast created as a result of the formation of gravitational wakes), more

detailed theoretical modeling of viscosity in self-gravitating collisional disks would

be useful for a better understanding of the dynamics in dense planetary rings.
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Chapter 3

Gravitational Accretion of
Particles onto Moonlets Embedded
in Saturn’s Rings

3.1 Introduction

Collision and gravitational accretion of particles is an important issue related to the

origin of ring-satellite systems of giant planets in the solar system. In contrast to

accretion of planetesimals in circumstellar disks, tidal forces cannot be ignored in

circumplanetary disks and gravitational accretion of particles is prohibited in the

inner part of the disk closer to the central planet. When a small particle and a large

one with identical density ρ are in contact and in synchronous rotation with their

line of centers pointing to the planet, they become gravitationally bound if they are

located outside the critical distance defined as (Weidenschilling et al., 1984)

a

Rc

= 1.44

(
ρc
ρ

)1/3

, (3.1)

where a is the distance from planet, and Rc and ρc are the mean radius and density

of the central planet, respectively. For the case of identical particles, the critical

distance is given by

a

Rc

= 2.29

(
ρc
ρ

)1/3

. (3.2)

On the other hand, a synchronously rotating, self-gravitating liquid satellite can-

not maintain hydrostatic equilibrium due to tidal and centrifugal forces within the
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classical Roche limit (Chandrasekhar, 1969) given by

aR
Rc

= 2.456

(
ρc
ρ

)1/3

. (3.3)

Note that Equations (3.1) and (3.2) are similar to Equation (3.3), but the numerical

coefficients are different.

Probability of gravitational accretion of colliding ring particles depends on their

impact velocity and impact orientation, and are studied using three-body orbital

integration (Ohtsuki, 1993; Morishima & Salo, 2004; Ohtsuki et al., 2013). It has

been shown that the ratio of the physical size of colliding particles to their mutual Hill

radius is an important parameter describing the efficiency of gravitational accretion

(Ohtsuki, 1993; Ohtsuki et al., 2013). In rings at a radial distance a from the planet,

the ratio of the sum of the physical radii of colliding particles R1+R2 to their mutual

Hill radius, RH (= {(m1 +m2)/3Mc}1/3a), can be written as

r̃p ≡ R1 +R2

RH

=

(
9

4π

)1/3

ρ−1/3
p M1/3

c a−1 1 + µ1/3

(1 + µ)1/3
, (3.4)

where ρp is the density of the particles, Mc is the mass of the central planet, m1

and m2 are the mass of colliding particles, and µ (= m2/m1) is their mass ratio

(0 < µ ≤ 1). Equations (3.1) and (3.2) are equivalent to r̃p = 1 with R1 ≫ R2

and with R1 = R2, respectively. The semi-axis of the Hill sphere in the azimuthal

direction is (2/3)RH, while its vertical semi-axis is czRH with cz = 32/3−31/3 ≃ 0.638

(Appendix C). Ohtsuki (1993) showed that the gravitational capture probability

decreases abruptly when r̃p >∼ 0.7 because particles overflow their mutual Hill sphere

in such a case. Using local N-body simulation, Salo (1992, 1995) and Kaljalainen &

Salo (2004) investigated gravitational accretion between particles in Saturn’s rings,

and showed that aggregates can be formed via gravitational sticking of particles in

the outer part of the A ring, if the density of particles is not much smaller than

the density of water ice. Furthermore, Kaljalainen (2007) performed simulations of

impacts between aggregates in the tidal environment, and showed that outcomes

of collisions depend on the distance from Saturn and the mass ratio of colliding
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aggregates.

On the other hand, detailed observations of shapes and densities of small ( <∼ 100

km mean radius) satellites in Saturn’s system have been carried out by the Cassini

spacecraft, and the results suggest that these satellites were formed by gravitational

accretion (Porco et al., 2007). Aggregates formed by gravitational accretion are

expected to shape into the Hill sphere in the region if accretion takes place under

strong tidal force, while they take more spherical shapes in regions sufficiently far

from the planet (Salo, 1995; Kaljalainen & Salo, 2004). When a satellite or an

aggregate entirely fills its Hill sphere, it cannot accrete particles anymore by its

gravity alone. In this case, the critical density ρcrit at the distance a is defined as

(Porco et al., 2007)

ρcrit =
3Mc

γa3
, (3.5)

where γ is a dimensionless shape parameter so that γa3sat is the volume of the satellite

with asat being the long semi-axis of the satellite (γ = 4π/3 for a spherical satellite

with radius asat). In the case of the Hill sphere, we numerically obtain γ ≃ 1.509

(Leinhardt et al., 2012). The Hill radii of Pan, Daphnis, Atlas, and Prometheus are

found to be within 15 % of the observed long axes of these satellites given by the

best-fit model ellipsoids. Also, the densities of these satellites (0.4− 0.6 g cm−3) are

very low compared to the density of water ice and all approximately equal to the

critical density at that distance. From these results, the small satellites within the

orbit of Pandora are thought to be formed by accretion of small porous ring particles

onto large dense cores, and further accretion seems to have been suppressed when

the density of the satellite reaches the critical density at that distance (Porco et al.,

2007). Using local N-body simulations, Porco et al. (2007) also demonstrated that a

Hill sphere-filling body is produced by accretion of small porous particles onto a large

dense core. However, it has not been studied how the degree of particle accretion

onto moonlets in the inner parts of Saturn’s rings depends on the distance from

Saturn.
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The shapes of these small ringmoons would also provide clues to the dynamical

evolution of Saturn’s rings. The fact that the shapes of these ringmoons approxi-

mately match those of their associated Hill sphere suggests that the moonlet cores

were surrounded by a number of particles when they were formed. On the other

hand, Pan and Atlas have the characteristic shapes with equatorial ridges, and are

thought to be formed by two stages (Charnoz et al., 2007). First, their precursors

whose shapes are similar to their Hill sphere without equatorial ridges were formed

when the rings were thick. Then, equatorial ridges were formed through particle ac-

cretion onto the equatorial planes of the above formed objects after the rings became

sufficiently thin and also before ring particles diffused (Porco et al., 2007; Charnoz

et al., 2007). However, effects of dynamical properties of the rings on the shaping of

moonlets formed by particle accretion have not been examined in detail.

Sufficiently massive moonlets embedded in rings can alter the structures of the

rings. Pan and Daphnis open the Encke and the Keeler gaps in the outer A ring,

respectively. Propeller-shaped structures have also been found in Cassini images

of Saturn’s rings (e.g., Tiscareno et al., 2006, 2008, 2010; Sremčević et al., 2007).

These propeller-shaped features are explained by gravitational interaction between

ring particles and unseen embedded moonlets. From these observations, the sizes

and orbital distributions of these unseen embedded moonlets are obtained, and such

information provide us with clues to the evolution of the ring-satellite system. The

propeller-shaped structures are mainly observed in the A ring, and the sizes of these

embedded moonlets are estimated between tens and thousands of meters. Recently,

observations of similar structures have also been reported for the Cassini Division,

and the B and C rings (Sremčević et al., 2011; Baillié et al., 2013). From these

observations, the existence of a moonlet with size of 1.5 km has been suggested in

the B ring, while the existence of boulders with radii <∼ 10 m and <∼ 50 m has

been inferred for the C ring and the Cassini Division, respectively. Although some

of these moonlets either may be collisional shards resulting from the breakup of a
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bigger icy progenitor ring body or may have formed by accretion of small low-density

ring particles onto larger dense fragments, the origin of these moonlets is not clear.

By clarifying the critical radial distance for particle accretion onto moonlets and the

dependence of the degree of particle accretion on various parameters (e.g., distance

from Saturn, particle density, etc.), we can also give constrains on the origin of these

propeller moonlets.

In the present work, we carry out local N-body simulations and study the process

of particle accretion onto moonlets in Saturn’s rings in detail. We examine the

dependence of the degree of particle accretion on the distance from Saturn, and also

investigate the effects of dynamical properties of rings on the process of particle

accretion. Numerical methods and parameters used in this work are described in

Section 3.2. We confirm the validity of our numerical code in Section 3.3. Section

3.4 looks at results of our numerical simulation examples and the dependence of

particle accretion on radial distance. In Section 3.5, we examine effects of ring

thickness on the process of particle accretion, and Section 3.6 describes effects of

other parameters. Our conclusions are presented in Section 3.7.
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3.2 Numerical Methods

We perform local N-body simulations, using a code based on our previous works

(Daisaka et al., 2001; Yasui et al., 2012). We erect a rotating Cartesian coordi-

nate system with origin at the center of the rectangular simulation cell that moves

on a circular orbit with semi-major axis a0 at the Keplerian angular velocity Ω =

(GMc/a
3
0)

1/2
around Saturn. The x-axis points radially outward, the y-axis points

in the direction of the orbital motion, and the z-axis is normal to the equatorial

plane. As in previous works on propeller structures around moonlets in rings (e.g.,

Seiß et al. 2005; Sremčević et al. 2007; Lewis & Stewart 2009; Michikoshi & Kokubo

2011) or particle accretion onto moonlets (Porco et al., 2007), a moonlet is set at the

origin of the coordinate system (Ohtsuki et al., 2013). Periodic boundary conditions

in the radial direction are adopted, taking account of the shear motion of adjacent

copied cells (e.g., Wisdom & Tremaine, 1988). However, we do not use the azimuthal

periodic boundary conditions so that those particles perturbed by the moonlet do

not re-enter the simulation cell through the azimuthal boundaries. Instead, for each

time step, particles not yet perturbed by the moonlet are added to the cell from

the azimuthal boundaries (Seiß et al. 2005; Sremčević et al. 2007). We assume

that particles entering the cell are uniformly distributed in the radial direction. In

order to obtain equilibrium velocity in a ring without the moonlet, we perform a

separate simulation with periodic boundary conditions without the moonlet. Or-

bital eccentricities and inclinations of the fresh particles to be added through the

azimuthal boundaries are assumed to have Rayleigh distribution (Ohtsuki & Emori,

2000) with r.m.s. values obtained from the above separate simulation. In the sim-

ulations presented in Section 3.5, where we examine the effects of ring thickness on

particle accretion, eccentricities and inclinations of particles to be added are assumed

to have Rayleigh distribution with given r.m.s. values. Particles are removed from

the simulation cell when their guiding centers cross the x- or y-axis at least once and

then leave the cell through the azimuthal boundaries. On the other hand, particles
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can gravitationally accumulate on the moonlet’s surface. Thus, the number of parti-

cles in the cell is not constant in our simulations. We take the size of the simulation

cell to be large enough to neglect effects of the boundaries on the process of particle

accretion onto the moonlet (typically, ∼ 30RH,m and ∼ 80RH,m in the azimuthal and

radial directions, respectively, where RH,m is the moonlet’s Hill radius).

The equations of motion of particle i are written as

ẍi = 2ẏiΩ + 3xiΩ
2 − Gmm (xi − xm)

r3im
−

N∑
j ̸=i

Gmj (xi − xj)

r3ij

ÿi = −2ẋiΩ − Gmm (yi − ym)

r3im
−

N∑
j ̸=i

Gmj (yi − yj)

r3ij
(3.6)

z̈i = − ziΩ
2 − Gmm (zi − zm)

r3im
−

N∑
j ̸=i

Gmj (zi − zj)

r3ij
,

where xi = (xi, yi, zi) and xm = (xm, ym, zm) are the coordinates of the parti-

cle and the moonlet, respectively, rim = [(xi − xm)
2 + (yi − ym)

2 + (zi − zm)
2]1/2,

rij = [(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2]1/2, mm is the mass of moonlet, mj is the

mass of particle j, and N is the particle number. The moonlet is initially placed

at the origin at rest in the rotating coordinate system. However, particles hit the

moonlet and some of them accumulate on it. Especially, in the case of simulations

for the outer part of Saturn’s main rings, many particles accrete onto the moonlet,

and mass shedding from the aggregate occurs in the sub- and anti-Saturn directions

asymmetrically (Section 3.4). This changes the moonlet’s orbital angular momentum

significantly and causes its radial drift (Lewis & Stewart, 2009). In order to simulate

such behavior accurately, we also integrate the equations for the motion of the moon-

let in simulations for the outer rings. In such a case, in order to keep the moonlet

near the center of the simulation cell, we carry out coordinate transformation each

time step so that the guiding center of the moonlet always stays at the center of

the cell. Motion of the moonlet is also integrated for the cases with particle size

distribution (Section 3.6.2), because the assumed mass of the largest ring particles

is not negligible compared to the mass of the moonlet (mp,max/mm = 0.064 in our
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simulations with particle size distribution, where mp,max is the mass of the largest

ring particles). On the other hand, in the cases of simulations with identical ring

particles and in inner parts of Saturn’s main rings (from the C ring to the Cassini

Division), the assumed mass of particles is small enough compared to the mass of

moonlet (mp/mm ≤ 3.375 ×10−3, where mp is the mass of particles), and also the

total mass of particles that accrete onto the moonlet is much smaller than the moon-

let mass. In this case, particles accrete onto the moonlet on the sub- and anti-Saturn

sides almost symmetrically, and the net angular momentum given to the moonlet

during mass shedding is very small. For these reasons, the moonlet is fixed at the

origin of the simulation cell in simulations for such cases. We confirmed the validity

of this assumption by comparing with results of simulations that allow the moonlet’s

motion. Gravitational forces are directly calculated using GRAPE-7 or GRAPE-9,

which is a special-purpose hardware for calculating gravitational forces, and orbits

are integrated with the second-order leap-frog method. When moonlet-particle or

particle-particle collisions are detected, velocity changes are calculated based on the

hard-sphere model with the normal restitution coefficient εn given as a parameter,

assuming that moonlet and particles are smooth spheres. In the cases of dilute rings,

N ∼ 103 is used in our simulations, while we use 104 − 105 particles in the cases of

dense rings (τ ≥ 0.1) or rings with particle size distribution.

The criteria for gravitational accretion of colliding two bodies was derived based

on the Hill approximation in the three-body problem (Ohtsuki, 1993). The criteria

state that they can become gravitationally bound if they are within their mutual Hill

radius and E < 0 after inelastic collisions, where E is the sum of the relative kinetic

energy and tidal potential energy of colliding particles. However, when particles

accrete on a moonlet to form an aggregate, the above criteria cannot be used for

the gravitational accretion of particles by the moonlet, because the effect of the self-

gravity of the particles accreted onto the moonlet becomes significant but is not taken

into account in the above criteria. Therefore, as an alternative criterion, we regard a
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particle as a member of the aggregate if it is in contact with the aggregate including

the moonlet. Using this criterion, we examine evolution of the mass of aggregates.

Following three factors are important in particle accretion onto moonlets: size

of the moonlet’s Hill sphere, the ratio of the particle’s physical size to that of the

moonlet, and the self-gravity of particles accreted onto the moonlet. In this work,

we use the following three non-dimensional parameters describing the importance of

the above factors:

r̃h,m ≡ RH,m/Rm, r̃ ≡ Rp/Rm, ρ̃ ≡ ρp/ρm. (3.7)

In the above R and ρ are the radius and the density, with subscripts m and p

representing moonlet and particle, respectively, and RH,m = a (mm/ (3Mc))
1/3 is

the Hill radius of the moonlet. Figure 3.1 shows the plots of r̃h,m as a function

of the distance from Saturn for several values of ρm. The moonlet’s Hill sphere

covers the entire surface of the moonlet for r̃h,m ≥ c−1
z ≃ 1.57 (Figure 3.1). In

our simulations with identical particles, we use r̃ = 0.05 and 0.15 in the cases of

r̃h,m < c−1
z and r̃h,m ≥ c−1

z , respectively. We confirmed the dependence of the final

mass of aggregates on r̃ is negligible as long as we use such small values of r̃. On the

other hand, Rp,max/Rm = 0.4 is used in cases with particle size distribution following

Porco et al. (2007), where Rp,max is the radius of the largest particle. In order to

study effects of ring thickness on particle accretion, we also define the ring thickness

normalized by the moonlet’s radius;

h̃ ≡ a⟨i2p⟩1/2/Rm, (3.8)

where ip is the orbital inclination of the particles. Furthermore, we give the dynamical

optical depth τ (= NπR2
p/LxLy, where Lx and Ly are the radial and azimuthal

lengths of the simulation cell) and the normal restitution coefficient εn as parameters,

and also examine the effects of these parameters on particle accretion. We assume

uniform particle sizes in Sections 3.4, 3.5 and 3.6.1, and particle size distribution

is taken into account in Section 3.6.2. The list of the above parameters and their
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definitions are summarized in Table 3.1.

Table 3.1: Definition of symbols used in the present paper

Symbol definition meaning
r̃h,m RH,m/Rm Hill radius of the moonlet relative to its physical radius
r̃ Rp/Rm Size of a ring particle relative to the moonlet
ρ̃ ρp/ρm Internal density of ring particles relative to the moonlet

h̃ ⟨i2p⟩1/2a/Rm Vertical thickness of the ring relative to the moonlet radius
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Figure 3.1: Dependence of r̃h,m on the radial distance from Saturn for several values of moonlet
internal density. Cases for ρm = 0.3−0.9 g cm−3 are shown with an interval of 0.1 g cm−3. Dashed
line represents r̃h,m = c−1

z ≃ 1.57 (from Yasui et al. 2014).
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3.3 Test Simulation: Comparison with Three-Body Calcu-
lations

Here, we perform N-body simulations of accretion of small ring particles by an em-

bedded moonlet, and compare collision and accretion rates with those obtained by

the three-body calculations obtained by Ohtsuki et al. (2013) in order to confirm

the validity of our N-body code.

The rates of collision and gravitational capture are defined as follows. We use

scaled orbital elements ẽ, ĩ, b̃, where ẽ and ĩ are the eccentricity and inclination for

the relative motion scaled by h ≡ [(mp +mm) / (3Mc)]
1/3, and b̃ ≡ (a2 − a1)/RH is

the difference in semimajor axes of the moonlet and a particle scaled by their mutual

Hill radius. For each orbit with initial orbital elements ẽ, ĩ, b̃, τ , and ϖ (τ and ϖ

are horizontal and vertical orbital phases for the relative motion, respectively), we

define pcol as pcol = 1 for collision orbits and zero otherwise. Similarly, we define

pcap as pcap = 1 for collision orbits that lead to accretion after impact(s), and zero

otherwise. Using pcol, the collision rate per unit surface number density of particles

is defined as (Nakazawa et al. 1989)

Pcol(ẽ, ĩ) ≡
∫

pcol(ẽ, ĩ, b̃, τoe, ϖ)
3

2
|b̃|db̃dτdϖ

(2π)2
. (3.9)

The rate of gravitational capture within the Hill sphere can be defined similarly as

(Ohtsuki 1993)

Pcap(ẽ, ĩ) ≡
∫

pcap(ẽ, ĩ, b̃, τoe, ϖ)
3

2
|b̃|db̃dτdϖ

(2π)2
. (3.10)

Then, the probability of gravitational capture for colliding particles with a given pair

of ẽ and ĩ can be defined as C(ẽ, ĩ) = Pcap(ẽ, ĩ)/Pcol(ẽ, ĩ) (Ohtsuki 1993).

Using the non-dimensional collision rate, the number of particles that undergo

their first impact onto the moonlet per unit time can be written as NsR
2
H⟨Pcol⟩Ω,

where Ns is the surface number density of the small particles. The number of such

collisions in one orbital period can be written as Ncol ≡ 2τ⟨Pcol⟩R2
H/R

2
p. In order to

facilitate comparison between numerical results for different values of τ , we define
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N∗
col ≡ Ncol/τ , which we call the normalized collision rate. Similarly, we define

the normalized accretion rate N∗
cap ≡ Ncap/τ , where Ncap ≡ 2τ⟨Pcap⟩R2

H/R
2
p is the

number of particles gravitationally captured by the moonlet in one orbital period.

First, we compare results of N-body simulations with three-body results, neglect-

ing the effect of aggregate formation. A 20m-radius moonlet is embedded in a low-

optical-depth swarm (τ = 10−3 or 10−2) of 1m-radius particles orbiting about a

Saturn-mass central planet. Their densities are assumed to be 0.9 g cm−3, and two

cases of different radial locations are considered, i.e., a = 8.06×109 cm and 1.15×1010

cm, so that the value of r̃p for each case is 1 and 0.7, respectively; gravitational ac-

cretion is prohibited in the former case. In the first set of simulations, in order to

neglect the effect of aggregate formation, particles that become gravitationally bound

to the moonlet (i.e., those have negative energy after impact(s) with the moonlet) are

removed from the system. With this treatment, r̃p for moonlet-particle collisions is

kept constant. Also, in order to be consistent with the definition of the collision rate

given by Equation (3.9), only each particle’s first impact onto the moonlet is counted

in the calculation of N∗
col. Smooth particles are used in the N-body simulation while

three-body results for the case with weak friction are used for the comparison, but

this effect is negligible (Ohtsuki et al. 2013).

Figure 3.2 shows the plots of the normalized collision and accretion rates defined

above, as a function of the normalized time (tτ). The three horizontal dotted lines

represent the collision and accretion rates calculated from the three-body results. The

top horizontal line represents the collision rate in the case of r̃p = 0.7; the middle

one represents the accretion rate also for r̃p = 0.7; and the bottom one represents the

collision rate in the case of r̃p = 1. These are calculated using the three-body results

of the collision and accretion rates with the value of the unperturbed steady-state

velocity dispersion and the given value of r̃p. The solid lines with marks and error

bars represent the results of N-body simulation for dilute rings (τ = 10−3 or 10−2).

These results show that collision and accretion rates in optically thin rings can be
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well approximated by the results of three-body orbital integration when the effect of

aggregate formation can be neglected and the assumption of a constant r̃p is valid.

Next, we examine the effect of aggregate formation. We consider the case with the

same parameter values as in the r̃p = 0.7 case in Figure 3.2. In this simulation, we

do not remove those particles which become gravitationally bound to the moonlet.

Figure 3.3(a) shows the plots of the normalized accretion rate in this case, as a

function of the normalized time. At the initial stage of accretion, the surface of the

moonlet is not covered by particles, and the particles can collide directly onto the

surface of the moonlet. As a result, the accretion rate calculated from the results

of N-body simulation agrees with the three-body results very well. As accretion of

particles proceeds and they gradually fill the remaining space within the moonlet’s

Hill sphere (at the normalized time ∼ 0.1− 0.3), accretion rates calculated from the

N-body results slightly increase, because those particles accreted onto the moonlet

effectively increase the collision cross section of the moonlet. Then, the accretion

rate is significantly reduced as compared to the three-body results. After that, the

accretion rates show both positive and negative values; negative values take place

when the number of particles that form the aggregate is decreased compared to the

number at the previous sampling time, and the change of the particle number reaches

a quasi-steady state (Figure 3.3(b)). Figure 3.4 is a snapshot of the simulation at

this stage. We can see that the shape of the aggregate is similar to that of the Hill

sphere, as demonstrated by previous studies of accretion in the Roche zone (Salo

1995; Karjalainen & Salo 2004; Porco et al. 2007). We will describe our numerical

results in more detail in Sections 3.4 to 3.6.
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Figure 3.2: Normalized collision rate (N∗
col) and accretion rate (N∗

cap) as a function of the normalized
time (tτ), in the case where the effect of aggregate formation is neglected (see text). Thin horizontal
dotted lines represent the results obtained from the three-body calculations: collision rate for
r̃p = 0.7 (top), accretion rate for r̃p = 0.7 (middle), and collision rate for r̃p = 1 (bottom).
Solid lines with marks and error bars represent the results of N-body simulation: lines with open
squares (colored blue) and filled squares (colored magenta) represent collision and capture rates,
respectively, for r̃p = 0.7 and τ = 10−2; and ines with circles (colored red) and triangles (colored
green) represent collision rates for τ = 10−3 and 10−2, respectively, with r̃p = 1 (εn = 0.5) (from
Ohtsuki, Yasui, & Daisaka 2013).
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Figure 3.3: Numerical results of N-body simulation for the case with the effect of aggregate forma-
tion (r̃p = 0.7, εn = 0.5, τ = 10−2). (a) Normalized accretion rates as a function of the normalized
time. The horizontal dotted line represents the results based on the three-body calculations, while
the circles represent the results of N-body simulation. Open circles represent negative values of the
accretion rate. (b) Number of particles contained in the aggregate formed on top of the moonlet,
as a function of the normalized time (from Ohtsuki, Yasui, & Daisaka 2013).
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Figure 3.4: Snapshot of the N-body simulation shown in Figure 3.3, at the normalized time 0.45.
In this simulation, a 20m-radius moonlet is embedded in a swarm of 1m-radius ring particles, and
the radial location from the central planet corresponds to r̃p = 0.7 for moonlet-particle collisions
(εn = 0.5, τ = 10−2) (from Ohtsuki, Yasui, & Daisaka 2013).
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3.4 Numerical Results: Degree of Particle Accretion

As we have mentioned above, the entire surface of the moonlet is within its Hill sphere

when r̃h,m ≥ c−1
z ≃ 1.57, while part of its surface overflows the Hill sphere when r̃h,m <

c−1
z . In this section, we first present numerical results for typical cases of partial

coverage (r̃h,m = 1.5; Section 3.4.1) and complete coverage (r̃h,m = 1.69; Section

3.4.2) of moonlet surface by particles, as examples of our numerical simulations.

When ρm = 0.9 g cm−3, r̃h,m = 1.5 and 1.69 correspond to a/105 km = 1.15 and 1.3

in the Saturnian system, respectively. However, if ρm = 0.4 g cm−3, the above two

values of r̃h,m correspond to a/105 km = 1.4 and 1.58, respectively. In Section 3.4.3,

we describe the dependence of particle accretion on radial distance from Saturn.

3.4.1 Case of Partial Coverage of Moonlet Surface

The solid line in Figure 3.5 shows the mass of the aggregate formed around the

moonlet as a function of time in the case of r̃h,m = 1.5. The aggregate mass magg

includes both the moonlet and particles accreted, thus the surface of the moonlet

is not covered by any particles when magg/mm = 1. Accretion of particles onto

the moonlet proceeds at nearly constant accretion rate until t ≃ 40TK, because the

surface of the moonlet is not yet covered by particles significantly at this stage and

the accretion rate is determined by two-body collision between the moonlet and

individual particles (Ohtsuki et al., 2013). At t ≃ 40TK, accreted particles nearly

fill the moonlet’s Hill sphere and the aggregate mass reaches an equilibrium value of

magg/mm ≃ 1.3− 1.4. Then, shedding of particles occurs from the vicinity of the L1

and L2 Lagrange points of the aggregate (Lewis & Stewart, 2009) and, after that,

the aggregate repeats accretion and shedding of particles.

Figure 3.6 shows snapshots of the aggregate at different times. From Figure 3.6(c),

one can see that the aggregate is shedding a number of particles from the sub-Saturn

side of the aggregate, while releasing of a small number of particles is also taking place

at the opposite side. In the quasi-steady state, the aggregate repeats the states (b) to
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(d). The amount of shed particles is different at each event and their fraction to the

total mass of accreted particles in the aggregate just before the event is about 1− 10

%. The mass shedding does not occur at both sides simultaneously but takes place

at each side at different times. Figure 3.7(a) shows the snapshot of the aggregate in

the quasi-steady state. One can see that the shape of the aggregate extends in the

radial direction due to the effect of mutual gravity between accreted particles, and

particles cover the moonlet surface only partially.

Particles accreting on the moonlet surface form layered structure, and clarification

of the accretion process would be important for the understanding of the origin of

the ringmoons. We examined the accretion process of individual particles onto the

moonlet by detailed analysis of snapshots. The first stage of particle accretion is

the formation of the bottom layer, mainly by the following three mechanisms. (1a)

Particles become gravitationally bound to the moonlet through energy dissipation at

direct collision with the moonlet, (1b) energy dissipation at collision on the moonlet

surface with other particles already accreted, and (1c) particles hit the first layer and

start rolling over it, and then fall to the moonlet surface to be added to the edge of

the first layer. We found that the first layer is formed mainly by the mechanisms

(1a) and (1b). While the bottom layer is still forming, the second layer begins to

form. There are four mechanisms for forming the second layer. (2a) Particles accrete

on top of the first layer directly, (2b) particles bounce on the moonlet surface and

land on top of the first layer to form the second layer, (2c) particles forming the edge

of the first layer are raised to the second layer by oblique impacts of other particles,

and (2d) particles forming upper layer(s) roll and fall to be added to the edge of the

second layer (similar to (1c)). The second layer is formed mainly by the mechanisms

(2a) and (2b). Similarly, while the second layer is still forming, the third layer begins

to form. Although mechanisms for forming the third layer are almost the same, it is

also formed by particles that bounce on the first layer and then accrete on top of the

second layer. Upper layers continue forming through processes similar to (2a), (2c)
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and (2d), mainly through (2a).

Although the thickness of the ring in the present case is one-tenth of the moon-

let’s radius (h̃ = 0.1), Figure 3.7(a) shows that particles accrete onto the region of

high latitude on the moonlet surface. From detailed analysis of snapshots, we found

that mechanisms for placing particles to high latitudes depend on whether the bot-

tom layer is already formed. When the bottom layer is not developed significantly,

the dominant mechanism for placing particles to high latitudes is collision between

unbound particles on the moonlet surface. Such collisions can place particles that

were originally in the region of low latitude on the moonlet surface to high latitudes.

When the formation of the bottom layer proceeds, collisions that involve already

bound particles at the edge of the first layer often result in placing one of collid-

ing particles to high latitudes. Because the ring thickness is small compared to the

moonlet radius in the present case, direct accretion onto the region of the high lat-

itudes did not occur. Effects of ring thickness will be discussed in detail in Section

3.5.

We also examine cases with various values of εn. The accretion rate of particles in

the initial phase of aggregate growth increases with decreasing εn, because the larger

energy dissipation facilitates particle accretion (Ohtsuki, 1993; Ohtsuki et al., 2013).

However, differences in the equilibrium aggregate mass and subsequent evolution

were found to be negligible. The dependence of the aggregate’s shape on εn was also

found to be rather weak. Particle accretion is somewhat enhanced near the equator

of the moonlet when εn is small, but the difference was rather small.
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Figure 3.5: Evolution of the mass of the aggregate (i.e, moonlet plus particles accreted onto it)
normalized by the moonlet mass (TK = 2π/Ω is the orbital period). The solid and dashed lines
show the results for r̃h,m = 1.5 (r̃ = 0.05, ρ̃ = 1) and r̃h,m = 1.69 (r̃ = 0.13, ρ̃ = 0.44), respectively.

We assumed τ = 0.01, εn = 0.5, and h̃ = 0.1− 0.2 in these cases (from Yasui et al. 2014).

(a) (b)

(c) (d)

Figure 3.6: Snapshots of particle distribution around the moonlet for four different times in the case
of r̃h,m = 1.5 (r̃ = 0.05, ρ̃ = 1, h̃ = 0.1, τ = 0.01, εn = 0.5). A large white object is the moonlet.
Blue particles are those regarded as members of the aggregate, while red ones are not. Panels (a),
(b), (c), and (d) are the snapshots at t ≃ 30, 51, 53, and 55 TK, respectively (from Yasui et al.
2014).
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Figure 3.7: Snapshots of the distribution of particles accreted on the moonlet in the quasi-steady
state, viewed from three directions as shown on the top of the figure. Panel (a) shows the case with
r̃h,m = 1.5, r̃ = 0.05, and ρ̃ = 1, while Panel (b) shows the case with r̃h,m = 1.69, r̃ = 0.13, and
ρ̃ = 0.44. A large white object is the moonlet and blue particles are those regarded as members of
the aggregate. We assumed τ = 0.01, εn = 0.5, and h̃ = 0.1− 0.2 in these cases (from Yasui et al.
2014).

3.4.2 Case of Complete Coverage of Moonlet Surface

Next, we examine the case with r̃h,m = 1.69, where the moonlet surface is completely

covered by its Hill sphere. The dashed line in Figure 3.5 represents the growth of the

aggregate mass in this case. After the quasi-steady state is achieved, the aggregate

repeats accretion and shedding of particles, as in the case of r̃h,m = 1.5. Also, as in

the previous case, particles are released from the vicinity of the Lagrangian points

of the aggregate. The equilibrium mass of the aggregate in the present case is larger

and is about 1.5− 1.6 times the moonlet mass.

Figure 3.7(b) shows the shape of the aggregate in the quasi-steady state for the

present case, where we find that particles cover the entire surface of the moonlet.

Although the thickness of the ring is much smaller than the radius of the moonlet,

particles completely cover the top and bottom of the moonlet. In the present case, in

the early stage of accretion, particles accrete to high latitudes of the moonlet surface
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by the same mechanisms as in the case of r̃h,m = 1.5. However, when particles com-

pletely cover the equator of the moonlet, a different mechanism becomes important.

At such a stage, particles colliding on top of the bottom layer slip into the layer by

themselves or aided by further collisions with other particles, shoving the edge of

the layer towards the region of high latitude. In this way, particles can accrete to

high latitudes of the moonlet surface, even though the thickness of the ring is much

smaller than the radius of the moonlet.

3.4.3 Dependence of Degree of Particle Accretion on Radial Distance

Next, we investigate how the degree of particle accretion depends on the distance

from Saturn. Here we calculate the equilibrium value of the aggregate mass from

its time average after the aggregate reaches the quasi-steady state. Figure 3.8 shows

the equilibrium mass of aggregates as a function of the distance from Saturn. The

vertical dotted line represents the semi-major axis corresponding to r̃h,m = c−1
z ≃ 1.57

assuming ρm = 0.9 g cm−3. When the density of the moonlet is given by this value,

accretion of particles over the entire surface of the moonlet is possible beyond this

critical semi-major axis. Assuming that the final shape of the aggregate becomes its

Hill sphere, Porco et al. (2007) derived an analytic expression for the final semi-axis

Ragg of the aggregate formed in such an outer region as

Ragg

Rm

=

(
4π

3γ
× ρm − ρmantle

ρcrit − ρmantle

)1/3

, (3.11)

where ρmantle is the bulk density of the mantle of the aggregate, which is given by

the internal density of the particles times their filling factor in the mantle, and

ρcrit is given by Equation (3.5). Note that the above expression is valid only for

ρcrit > ρmantle. From Equation (3.11), the final mass of aggregates can be obtained

as
magg

mm

=
ρcrit
ρm

× ρm − ρmantle

ρcrit − ρmantle

. (3.12)

The dashed line in Figure 3.8 is drawn for the outer region using Equation (3.12)

for ρmantle = 0.28 g cm−3, where we assumed that ρp = 0.4 g cm−3 and the filling
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factor is 0.7. We confirm that our numerical results are consistent with the analytic

expression given by Equation (3.12).

In the region with r̃h,m < 1.57, where particles can accrete the surface of the

moonlet partially, the degree of particle accretion decreases and the mass of the

aggregate approaches that of the moonlet with decreasing radial distance. When

ρp = 0.4 g cm−3, particle accretion onto a moonlet with ρm = 0.9 g cm−3 becomes

negligible at the inner B ring (open circles). If particles’ internal density is as high as

that of water ice (ρp = 0.9 g cm−3), the increased effect of self-gravity of accreted par-

ticles facilitates particle accretion (solid marks), and the critical distance for particle

accretion becomes near the outer edge of the C ring. However, comparison between

photometric modeling and observations of brightness asymmetry in the A ring (Salo

et al., 2004) as well as observations of the densities of small ringmoons (Porco et al.,

2007) suggest that ring particles are rather underdense, thus the above high density

for ring particles seems unlikely. We will further examine effects of particle density

in Section 3.6.1. We find that the degree of mass increase of the moonlet by particle

accretion (i.e., magg/mm) in the region between the B ring and the Cassini Division

is 1 − 1.5 and 1 − 1.3 for the cases of ρp = 0.9 g cm−3 and 0.4 g cm−3, respectively

(Figure 3.8). In the mid-A ring, it is ∼ 3 and ∼ 1.5 for the cases of ρp = 0.9 g cm−3

and 0.4 g cm−3, respectively (Figure 3.8).
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Figure 3.8: Dependence of equilibrium mass of aggregate on the radial distance from Saturn. Circles,
triangles, and the square represent results with r̃ = 0.05, 0.13, and 0.15, respectively. Open and
solid symbols show the results with ρp = 0.4 g cm−3 and 0.9 g cm−3, respectively. We assumed

ρm = 0.9 g cm−3, h̃ = 0.1 − 0.2, τ = 0.01, and εn = 0.5. The vertical dotted line indicates the
semi-major axis corresponding to r̃h,m = c−1

z ≃ 1.57 assuming ρm = 0.9 g cm−3. The dashed line
is drawn by Equation (3.12) for ρmantle = 0.28 g cm−3 (from Yasui et al. 2014).
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3.5 Effects of Ring Thickness on Particle Accretion

Next, we examine effects of ring thickness on the degree of particle accretion. As

we described in Section 3.2, orbital inclinations of particles added to the simulation

cell each timestep are assumed to follow Rayleigh distribution with a given value of

r.m.s. inclinations, which is treated as a parameter, and orbital eccentricities are

also given in a similar manner so that ⟨e2p⟩1/2 = 2⟨i2p⟩1/2.

Figure 3.9 illustrates the mass of the aggregate for the case of the partial cover-

age of the moonlet surface (r̃h,m = 1.5) as a function of time. The red, green and

blue lines represent results with h̃ = 0.1, 0.5 and 1, respectively. We find that the

accretion rates increase with decreasing h̃ (i.e., decreasing ⟨e2p⟩1/2 and ⟨i2p⟩1/2) at the

initial stage of t ≃ 20− 40 TK, because the lower impact velocities facilitate gravita-

tional accretion at moonlet-particle collisions (Ohtsuki, 1993; Ohtsuki et al., 2013).

However, the values of aggregate mass in the quasi-steady state is rather insensitive

to ring thickness. Particles can accrete onto the high-latitude region of the moonlet

surface directly when the ring thickness or the particle velocity dispersion is larger,

but this does not lead to significant increase in the equilibrium mass of the aggregate,

because impact velocities are large in this case and larger energy dissipation at colli-

sions is required for accretion. Furthermore, because the high-latitude region of the

moonlet surface overflows the Hill sphere in this case of r̃h,m = 1.5, particles cannot

accrete on such areas and the mass and shape of the aggregate hardly depends on h̃.

Figure 3.10 shows aggregate mass growth in the case of r̃h,m = 1.67, where the

entire surface of the moonlet is within the Hill sphere. First, we show the results

for dilute rings with τ = 0.01 (Figure 3.10(a)). In this case, when the ring is rather

thin (h̃ = 0.2, 0.5), the behavior of aggregate mass growth is similar to the case

for r̃h,m = 1.5 (Figure 3.9), although the aggregate mass in the quasi-steady state

is larger in the present case (2 <∼magg/mm
<∼ 4) because of the larger Hill sphere.

In such cases with h̃ < 1, impacts mainly occur near the equatorial plane of the

moonlet (Charnoz et al., 2007), and the aggregate near the equatorial plane grows
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significantly, while particle accretion to the high-latitude region of the moonlet is

inefficient. As a result, the aggregate tends to have a flattened shape. On the other

hand, when the ring thickness is comparable to or larger than the moonlet radius

(h̃ = 1, 2), the aggregate grows significantly larger, with magg/mm ∼ 7 − 9 at

most. In this case, particles can directly accrete to the high-latitude region of the

moonlet surface. In many cases, we find that particles accumulate near either sub-

or anti-Saturn side of the moonlet by the aid of the moonlet. Once such a temporary

aggregate is formed around the moonlet, effective collision cross section is increased

and the aggregate grows much larger than the moonlet, although it is not stable and

large-scale mass shedding eventually takes place. In both cases of small and large

ring thickness, significant radial shift (∆a) of the aggregate was observed; ∆a <∼ 5Rm

for h̃ = 0.2− 0.5, and ∆a <∼ 20Rm for h̃ = 1− 2

If the rings are located sufficiently far from Saturn and their optical depth is

sufficiently large, gravitational wakes or temporary gravitational aggregates can be

formed (Salo, 1995; Kaljalainen & Salo, 2004), and it would also affect particle ac-

cretion onto moonlets. Figure 3.10(b) shows the growth of the aggregate mass in

the case of r̃h,m = 1.67 and τ = 0.1. One can see that the aggregate in the case

of h̃ = 0.2 significantly grows compared to the cases of h̃ = 0.5 and 1. Figure 3.11

shows ring structures around the moonlet for the cases of various h̃ with τ = 0.1.

In the case of h̃ = 0.2 shown in Figure 3.11(a), random velocity of particles is small

enough to allow formation of gravitational wakes, and the wakes formed near the

sub- and anti-Saturn sides of the moonlet help the formation of temporary particle

aggregates there. Then, these accreted particles are shoved to the high-latitude re-

gion of the moonlet, resulting in the significant growth of the aggregate around the

moonlet. Figure 3.12(a) shows a snapshot of the aggregate in the case of h̃ = 0.2.

One can see that a number of particles accumulate on the moonlet’s surface and the

temporary aggregate forms around the moonlet. In the cases of h̃ = 0.5 and 1, no-

table gravitational wakes do not form because of higher random velocity of particles,
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thus the growth of the aggregate is limited (Figures 3.10(b), 3.11(b), 3.11(c), and

3.12(b)). In the case of h̃ = 2, on the other hand, the aggregate mass significantly

increases, and then it reaches the quasi-steady state, repeating accretion and shed-

ding of particles (Figure 3.10(b)). The moonlet can significantly grow in this case,

because particles have sufficiently high orbital inclinations and can accrete directly

onto the high-latitude region of the moonlet.
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Figure 3.9: Evolution of the mass of the aggregate for the cases of r̃h,m = 1.5 with three different

values of h̃. Red, green, and blue lines represent results with h̃ = 0.1, 0.5 and 1, respectively. We
assumed r̃ = 0.05, ρ̃ = 1, εn = 0.5, and τ = 0.01 (from Yasui et al. 2014).
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Figure 3.10: Evolution of the mass of the aggregate for the cases of r̃h,m = 1.67 with four different

values of h̃. Panels (a) and (b) represent results with τ = 0.01 and 0.1, respectively. Red, green,
blue, and purple lines represent results with h̃ = 0.2, 0.5, 1 and 2, respectively. We assumed
r̃ = 0.15, ρ̃ = 1, and εn = 0.5 (from Yasui et al. 2014).

(a) (b)

(c) (d)

Figure 3.11: Snapshots of the spatial distribution of ring particles in the vicinity of the moonlet in
the case of r̃h,m = 1.67 for four different values of h̃. Panels (a), (b), (c) and (d) show results with

h̃ = 0.2, 0.5, 1 and 2, respectively (τ = 0.1). The rings are seen from the vertical direction against
the plane of orbital motion. Saturn is to the left, and orbital motion is upward. A large white
object at the center of each panel is the moonlet (which can be hardly seen because it is covered by
particles). Blue particles are those regarded as members of the aggregate, while red ones are not
(from Yasui et al. 2014).

59



(a)

(b)

(c)

z

y

z

x

y

x

Figure 3.12: Snapshots of the distribution of particles accreted around the moonlet in the case of
r̃h,m = 1.67 (εn = 0.5). (a) ρ̃ = 1, h̃ = 0.2, and τ = 0.1 (r̃ = 0.15). (b) ρ̃ = 1, h̃ = 1, and τ = 0.1

(r̃ = 0.15). (c) ρ̃ = 0.33, h̃ = 0.2, and τ = 0.01 (r̃ = 0.1) (from Yasui et al. 2014).
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3.6 Dependence on Other Parameters

3.6.1 Particle Density

Comparison between photometric modeling and observations of brightness asymme-

try in Saturn’s rings (e.g., Salo et al., 2004) and observations of the densities of small

moons orbiting within or near the A ring (Porco et al., 2007) suggest that the in-

ternal density of ring particles is significantly smaller than the density of water ice

(0.9 g cm−3). However, actual densities of moonlets and ring particles are largely

unknown. We performed simulations with several values of ρ̃ and examined effects of

particle density on accretion. First, we describe the case of partial coverage of moon-

let surface (r̃h,m = 1.5). Figures 3.13(a) and (b) show snapshots of the aggregates for

the cases of ρ̃ = 0.33 and 0.56 (see also Figure 3.7(a) for the case of ρ̃ = 1). When

ρ̃ is larger, particles can accrete even outside of the moonlet’s Hill sphere due to the

effect of mutual gravity between particles, and the aggregate tends to have a shape

extended toward the x-axis (Figure 3.7(a)). At the time of mass shedding in this

case, a number of particles are removed together in a form of elongated aggregate

due to the effect of self-gravity of leaving particles, thus particles accreted near the

equatorial plane or at the high-latitude region are replaced repeatedly. On the other

hand, when particles’ internal density is smaller, the tendency of particle accumula-

tion near the sub- and anti-Saturn sides of the moonlet is weakened, and the shape

of the equator of the aggregate becomes rounder (Figure 3.13(a)). Particles tend

to leave the aggregate as individual particles rather than a group when ρ̃ is small.

In spite of such differences in aggregate shape and mass shedding, the number of

particles in an aggregate in the quasi-steady state was found to be approximately

the same, and the mass of the mantle (i.e., magg −mm) was nearly proportional to

ρ̃. This reflects the fact that the volume of the moonlet’s Hill sphere outside the

moonlet surface is rather small in the present case, and the effect of self-gravity of

accreted particles on mass accretion is limited.

Next, we examine the dependence of ρ̃ in the case of complete coverage of moonlet
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surface. Figure 3.14 shows the evolution of the mass of the aggregate and particle

number in the aggregate in the cases of r̃h,m = 1.67 for four values of ρ̃. We find that

both aggregate mass and particle number in the aggregate are larger when ρ̃ is large,

and that significant mass shedding takes place for large values of ρ̃. The snapshot of

the aggregate in the case of r̃h,m = 1.67 and ρ̃ = 0.33 in Figure 3.12(c) shows that

the shape of the equatorial plane of the aggregate is rounder compared to the cases

shown in Figures 3.12(a) and (b), because of the weaker effect of the self-gravity of

accreted particles. These results show that the internal density of accreting particles

would significantly affect the shape of aggregates.

(a)

(b)
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x

Figure 3.13: Snapshots of the distribution of particles accreted around the moonlet in the case of
r̃h,m = 1.5 for two different values of ρ̃. Panels (a) and (b) represent cases with ρ̃ = 0.33 and 0.56,

respectively. We assumed r̃ = 0.05, h̃ = 0.1, τ = 0.01, and εn = 0.5 (from Yasui et al. 2014).
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Figure 3.14: Evolution of the mass of the aggregate (Panel (a)) and the number of particles in the
aggregate (Panel (b)) in the case of r̃h,m = 1.67 for four values of ρ̃. Red, green, blue and purple

lines indicate results with ρ̃ = 0.33, 0.56, 0.78, and 1, respectively. We assumed r̃ = 0.15, h̃ = 0.2,
τ = 0.01, and εn = 0.5 (from Yasui et al. 2014).
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3.6.2 Particle Size Distribution

So far we have assumed that ring particles have identical sizes, but actual ring parti-

cles have a size distribution. Here we examine the effect of particle size distribution

on accretion onto moonlets. We assume that particles have a differential power-law

size distribution with an exponent of −3, which is suggested by observations (Zebker

et al., 1985; French & Nicholson, 2000). In our simulations, particle sizes are given

ranging from 30 cm (Rmin) up to 5 m (Rmax) following Porco et al. (2007), where Rmin

and Rmax denote the radii of the smallest and largest particle, respectively (Appendix

D). We assume Rm = 1250 cm for the radius of the moonlet.

Figure 3.15 shows the mass of the aggregate as a function of time, for four com-

binations of r̃h,m and τ : (a) r̃h,m = 1.5 with τ = 0.1, (b) r̃h,m = 1.5 with τ = 0.5,

(c) r̃h,m = 1.69 with τ = 0.1, and (d) r̃h,m = 1.69 with τ = 0.5, respectively. In

these figures, red and green lines indicate results with a uniform particle and those

with the particle size distribution, respectively. Although the difference between the

two results is rather small in the case of Panel (d), we find that the degree of par-

ticle accretion tends to be smaller when particle size distribution is included. This

seems to be explained by the following three reasons. (1) Because the size of the

largest particle in the size distribution is significant compared to the moonlet size

(Rmax/Rm = 0.4), impacts of such larger particles often disrupt the mantle of the

aggregate; (2) When a large particle is leaving the aggregate at the time of mass

shedding, it is accompanied by many other particles because of its strong gravity;

and (3) Mechanisms of particle migration and accretion to the high-latitude region

on the moonlet surface become inefficient, because larger particles in the size dis-

tribution have small orbital inclinations and cannot accrete onto the high-latitude

region. Accretion of smaller particles onto the high-latitude region still takes place

but becomes difficult, because now there are less particles at the high-latitude regions

that could hold these small ones there.

The snapshots of the aggregate in the quasi-steady state for each case are shown in
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Figure 3.16. One can see that smaller particles tend to accrete to the high-latitude

region of the moonlet (see also Porco et al., 2007). In the case with high optical

depth, the mantle of the aggregate is connected with the ring around the aggregate

and extended in the shear direction (Lewis & Stewart, 2009). In the case with high

optical depth, collisions of large particles onto the aggregate occur frequently, and

collisions of a group of particles often shove already-accreted particles to the high-

latitude region. Through such mechanisms, larger particles sometimes migrate to

the high latitude region of the moonlet surface.
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Figure 3.15: Comparison between results with and without particle size distribution for the evolution
of the mass of the aggregate. Red and green lines represent the results with identical particles
(Runi = 167 cm; Appendix D) and including a particle size distribution (q = 3, Rmax = 500 cm,
and Rmin = 30 cm), respectively. Four cases with different combinations of r̃h,m and τ are shown:
(a) r̃h,m = 1.5 with τ = 0.1, (b) r̃h,m = 1.5 with τ = 0.5, (c) r̃h,m = 1.69 with τ = 0.1, and (d)
r̃h,m = 1.69 with τ = 0.5. We assumed ρ̃ = 0.44, Rm = 1250 cm, and εn = 0.5 (from Yasui et al.
2014).
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(a) (b)

(c) (d)

Figure 3.16: Snapshots of the spatial distribution of particles in the vicinity of the moonlet in the
case with particle size distribution. Panels (a) to (d) represent results for the cases shown in Panels
(a) to (d) in Figure 3.15, respectively. The rings are seen from the vertical direction against the
plane of orbital motion. Saturn is to the left, and orbital motion is upward. A large white object is
the moonlet. Blue particles are those regarded as members of particles in the aggregate, while red
ones are not (from Yasui et al. 2014).
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3.7 Conclusions and Discussion

In the present work, using local N-body simulation, we studied gravitational accre-

tion of ring particles onto moonlets in Saturn’s rings. If the internal density of a

moonlet is that of water ice, the moonlet overflows its Hill sphere at radial loca-

tions interior to the Cassini Division. In this case, particles can accrete only part of

the moonlet surface, and the degree of particle accretion decreases with decreasing

distance from Saturn. We found that accretion of porous particles onto moonlets

with density of water ice becomes negligible within the radial location of the inner

B ring. Although the critical distance shifts to the outer edge of the C ring if the

density of ring particles is as high as that of water ice, modeling and observations

of the rings’ brightness asymmetry as well as observations of the densities of small

ringmoons suggest that such a high density is unlikely. Thus, our results suggest that

gravitational accretion of ring particles onto moonlets is unlikely to occur at radial

locations interior to the outer edge of the C ring, unless the density of the moon-

lets is much larger than that of water ice or non-gravitational cohesive forces play

a major role. We examined accretion process of individual particles onto moonlets

from detailed analysis of snapshots of our numerical results, and found that particle

accretion onto the high-latitude regions of the moonlet occurs even if the vertical ex-

tent of particle motion is much smaller than the moonlet’s radius. In the inner rings

where a moonlet’s Hill sphere partially covers its surface, particles can accrete onto

the high-latitude regions of the moonlet through migration on the surface caused by

collisions of other particles. In the outer region of the rings where particles can cover

the entire surface of the moonlet, those particles already accreted near the equator

of the moonlet are shoved to the high-latitude regions by further accretion. In the

case of the inner rings, the degree of particle accretion hardly depends on the ring

thickness because the volume of its Hill sphere within which particles can accrete is

rather limited. On the other hand, in the case of outer rings with low optical depth

(τ ∼ 0.01), large temporary aggregates tend to be formed around moonlets when
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the vertical thickness of the ring is large and particles can accrete directly onto the

high-latitude region of moonlets. If the rings are vertically thin and have larger opti-

cal depth (τ ∼ 0.1), gravitational wakes or temporary particle aggregates are formed

and particles tend to accumulate either sub- or anti-Saturn side of a moonlet to form

large temporary aggregates. On the other hand, if such rings with larger optical

depth have large vertical thickness, gravitational wakes or temporary aggregates do

not form because of high random velocity, and particles accrete onto moonlets nearly

symmetrically to form large aggregates. We also found that the shape of moonlets’

equatorial plane becomes rounder when the particle density is low, and that the de-

gree of particle accretion including particle size distribution is smaller than the case

with identical particles.

Pan and Daphnis form gaps in the outer A ring, and the cores of these moons

may be large collisional shards created when rings were formed. The cores would

have grown by accretion of ring particles and formed gaps, which then would have

stopped further particle accretion onto the cores (Porco et al., 2007). It has been

suggested that these small moons (Pan, Daphnis and Atlas) would have had shapes

similar to the Hill sphere when the ring thickness was large, and then their equatorial

ridge would have been formed by particle accretion after the rings became thin before

complete gaps were formed (Porco et al., 2007; Charnoz et al., 2007). However, our

results in the present work show that particles can accrete onto the high-latitude

region of moonlets, even if the thickness of the rings is much smaller than the radius

of the moonlet. This implies that the main bodies of Pan, Daphnis and Atlas with

a Hill-sphere shape might have been formed in rather thin rings.

On the other hand, impacts of particles onto the equatorial plane are important to

form the equatorial ridges of Pan and Atlas (Charnoz et al. 2007). Observations show

that the equatorial planes of Pan and Atlas are rounder than that of the Hill sphere.

Our numerical results show that the equatorial planes of aggregates become rounder

in cases with the lower internal density of particles, because of the reduced effects
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of particles’ mutual gravity. If such equatorial ridges were formed by gravitational

accretion of particles before the moonlet’s Hill sphere was filled by accreting particles,

formation of the ridges and their rounder shapes may be explained by accretion of

low-density particles. On the other hand, if particles already filled most part of

the aggregate’s Hill sphere before ridge formation, the ridges cannot be formed by

gravitational accretion. In this case, we need to consider non-gravitational adhesive

forces (e.g., Albers & Spahn, 2006) for the formation of the equatorial ridges.

Observations of Saturn’s rings by the Cassini spacecraft revealed the existence

of boulders and moonlets that are much larger than the background particles (e.g.,

Tiscareno et al. 2006, 2008, 2010; Sremčević et al. 2007, 2011; Esposito et al. 2008;

Meinke et al. 2012; Baillié et al. 2013). Most of them were inferred from observations

of propeller structures found in the A ring, and also from the recent report on the

detection of a similar structure in the B ring (Sremcevic et al. 2011). On the other

hand, the existence of boulders in the C ring has also been recently suggested from

the observations of transparent holes (Baillie et al. 2013). Our numerical results show

that gravitational accretion of particles onto moonlets is negligible at radial locations

interior to the outer edge of the C ring, unless the density of the moonlets is much

larger than that of water ice. This implies that these boulders might be the largest

collisional shards placed in such locations when or after the rings formed, although

their growth by particle accretion due to non-gravitational cohesive forces cannot be

ruled out. Furthermore, the observations of transparent holes infer the existence of

boulders in the Cassini Division. From our results, if dense cores (ρm ∼ 0.9 g cm−3)

exist in the Cassini Division, the aggregate mass can become at most twice as much

as the moonlet’s mass by gravitational accretion of small ring particles, although the

final mass depends on the density of particles. Thus, large boulders (∼ 10 m) in

the Cassini Division may be gravitational aggregates formed by particle accretion

onto dense cores. Also in the A ring many propeller moonlets are found, which may

be gravitational aggregates formed by particle accretion as well. The results of our

69



present work combined with more detailed observations about the number and radial

distribution of moonlets and boulders in Saturn’s rings would provide constrains on

the rings’ history, such as breakup events of the rings’ progenitor bodies and their

subsequent evolution.
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Chapter 4

Summary

We examined viscosity in self-gravitating planetary rings in Chapter 2 and also grav-

itational accretion of ring particles onto moonlets in Saturn’s rings in Chapter 3,

using local N-body simulation.

In Chapter 2, we examined viscosity in self-gravitating planetary rings. We inves-

tigated dependence of viscosity on various parameters in detail, including effects of

particles’ surface friction. In the case of self-gravitating rings with low optical depth,

we found that viscosity is determined by particles’ random velocity. Inclusion of

surface friction slightly reduces both random velocity and viscosity when particles’

random velocity is determined by inelastic collisions. On the other hand, surface

friction slightly increases viscosity when gravitational encounters play a major role

in particle velocity evolution, so that viscous heating balances with increased energy

dissipation at collisions due to surface friction. We found that inclusion of surface

friction changes viscosity in dilute rings up to a factor of about two. In the case

of self-gravitating dense rings, viscosity is increased significantly due to effects of

gravitational wakes (Daisaka et al. 2001), and we found that varying restitution

coefficients changes viscosity in such dense rings also by a factor of about two. We

confirmed that our numerical results for viscosity in dense rings with gravitational

wakes can be well approximated by a semianalytic expression that is consistent with

a previously obtained formula. However, we found that this formula seems to over-

estimate viscosity in dense rings far from the central planet, where temporary gravi-
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tational aggregates form. Thus, we derived a revised expression for such a case. We

confirmed that the semianalytic expressions we obtained reproduce our numerical

results well for the entire range of parameters examined here. On the other hand,

temporary aggregates are likely to be formed in the outer A ring (e.g., Salo, 1995;

Kaljalainen & Salo, 2004). Recent models of the formation of Saturn’s small moons

orbiting just outside the main rings suggest that these small moons likely formed by

accretion of particles radially spreading from the ring (Charnoz et al., 2010; Canup,

2010). Thus, it is important to clarify viscosity in rings with temporary aggregates.

In Chapter 3, we examined gravitational accretion of ring particles onto moon-

lets in Saturn’s rings. We found that gravitational accretion of ring particles onto

moonlets is unlikely to occur at radial locations interior to the outer edge of the C

ring, unless the density of the moonlet is much larger than that of solid water ice

or non-gravitational cohesive forces play a major role. We found that the degree of

mass increase of moonlets (magg/mm) by accretion of particles with ρp = 0.4 g cm−3

is <∼ 1.3 in the outer B ring and ∼ 1.5 in the mid-A ring., the latter being consistent

with the previous study (Porco et al., 2007). We also examined accretion process of

individual particles onto moonlets in detail, and found that particle accretion onto

the high-latitude regions of the moonlet surface occurs even if the vertical thickness

of the ring is much smaller than the moonlet’s radius. In inner rings where a moon-

let’s Hill sphere partially covers its surface, migration of particles to the high-latitude

regions is caused by collisions of other particles, while in the case of outer regions

of the rings where particles can cover the entire surface of the moonlet, particles

already accreted near the equator of the moonlet can be shoved to the high-latitude

regions by further accretion. The degree of particle accretion in outer rings is found

to depend significantly on ring’s vertical thickness and optical depth. We also exam-

ined effects of the internal density of accreting particles, and found that the shape

of moonlets’ equator becomes rounder when particle density is lower. Furthermore,

we found that the degree of particle accretion including particle size distribution
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is smaller than the case with identical particles. Our results imply that the main

bodies of Pan, Daphnis and Atlas with a Hill-sphere shape might have been formed

in rather thin rings. Our results suggest that larger boulders recently inferred from

observations of transparent holes in the C ring are likely to be collisional shards,

while propeller moonlets in the A ring would be gravitational aggregates formed by

particle accretion. The results of our present work combined with more detailed

observations about the number and radial distribution of moonlets and boulders in

Saturn’s rings would provide constrains on the rings’ history, such as breakup events

of the rings’ progenitor bodies and their subsequent evolution.
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Appendix

Appendix A
Changes in Particle Velocity and Rotation Rate Due to Col-
lision

When two particles, i and j, collide with each other, the changes of their velocities and

rotation rates are calculated as follows. We assume that ring particles are spheres,

and we let the mass, radius, and spin angular velocity vector of particle j be given

by mj, Rj, and ωj, respectively. Suppose that two particles, i and j, collide with

each other with relative velocity of the centers of the two bodies in the rotating

coordinate system, v, and that their relative position at impact is given by r. Let vn

and vt denote the normal and the tangential component of v to the tangent plane,

respectively. In this case, the normal and the tangential components of the relative

velocity of the two contacting points at the time of impact can be written as (e.g.,

Araki & Tremaine, 1986; Richardson, 1994; Ohtsuki, 2006a,b)

un = vn = (v · λ)λ,
ut = vt +Ω× r + λ× (Riωi +Rjωj),

(A1)

where λ ≡ r/|r| is the unit vector pointing from the center of particle i to that of

particle j, and Ω ≡ (0, 0,Ω) is the Keplerian angular velocity vector of the coordinate

system. In the above equation, we used the relation r = (Ri + Rj)λ at impact. In

terms of the normal and the tangential restitution coefficients, εn and εt, the normal

and the tangential components of the relative velocity of the two contacting points

after impact are given by Equation (2.2). From Equation (2.2) and the conserva-

tion of linear and angular momenta, the change of the normal and the tangential
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components of the relative velocity of the centers of the two spheres are given as

∆vn = −(1 + εn)vn,

∆vt = − K
K + 1

(1− εt){vt +Rpλ× (ω −Ω)},
(A2)

where Rp ≡ Ri +Rj and

ω ≡ (Riωi +Rjωj)/(Ri +Rj). (A3)

In the above, K is the coefficient of the moment of inertia, e.g., Ij = KmjR
2
j . In the

present work, we set K = 2/5, assuming a homogeneous sphere. The change of spin

angular velocity of particle j due to the collision is written as

∆ωj =
µ(1− εt)

(K + 1)mjRj

λ× {vt +Rpλ× (ω −Ω)}, (A4)

where µ is the reduced mass.

Appendix B
Energy Dissipation Due to an Inelastic Collision Between Par-
ticles

When a local ring region is in a quasisteady state, its average viscosity can be cal-

culated by summing up the amount of energy dissipated at collisions that occur

in the region during a certain time interval (Equation (2.4)). Following Tanaka et

al. (2003, their Equation (43)), we calculate the amount of energy dissipated at a

collision between particles j and k as

∆Ecol,jk = −1

2
µh2a20Ω

2

(
∆ẽ2col,jk +∆ĩ2col,jk −

3

4
∆b̃2col,jk

)
. (B1)

In the above, µ = (1/mj + 1/mk)
−1 (mj is the mass of particle j, and mj = m in the

equal-sized case studied in the present work); h = (2m/3Mc)
1/3; and ∆ẽ2col,jk, ∆ĩ2col,jk

and ∆b̃2col,jk are the changes in the square of the scaled relative orbital elements ẽ,

ĩ, and b̃ due to the collision, where ẽ and ĩ are the eccentricity and the inclination

of the relative motion scaled by h (see Ohtsuki, 1999), and b̃ is the difference in the

semimajor axes of the two particles scaled by ha0. Note that the effects of time
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variation of the total self-gravitational energy, random kinetic energy, or rotational

energy of particles do not appear in Equation (B1) because we assume the region is

in a quasisteady state.

Appendix C
The axial ratios of the Hill sphere

Under Hill’s approximation, the potential U for the relative motion of two bodies

in orbit about the central body with orbital angular frequency Ω can be written as

(e.g., Nakazawa & Ida, 1988; Ohtsuki, 2012)

U = −Ω2

2

(
3x2 − z2

)
− G (m1 +m2)

r
+

9

2
R2

HΩ
2, (C1)

where r = (x2 + y2 + z2)
1/2

, and RH is the mutual Hill radius of the two bodies. In

the above, the first term accounts for the tidal potential, the second term represents

the mutual gravity between the two bodies, and the constant (9/2)R2
HΩ

2 has been

added so that U = 0 at the Lagrangian points (x, y, z) = (±RH, 0, 0). Thus, the

Hill sphere represents the region surrounded by the U = 0 contour surface. If the

radial, azimuthal, and vertical semi-axes of the Hill sphere are denoted by cxRH,

cyRH and czRH, cx = 1 as mentioned above, and we can easily obtain cy = 2/3 by

substituting x = z = 0 and U = 0 into Equation (C1). In order to obtain cz, on the

other hand, we have to solve a cubic equation as follows. Substituting x = y = 0,

z = czRH, and U = 0 into Equation (C1), we have

c3z + 9cz − 6 = 0. (C2)

This can be solved by Cardano’s method, as follows. Letting cz = u + v, where u

and v are new variables, Equation (C2) can be rewritten as

u3 + v3 + 3 (u+ v) (uv + 3)− 6 = 0. (C3)

Equation (C3) is satisfied when

u3 + v3 = 6 and (uv + 3) (u+ v) = 0. (C4)
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Because cz = u + v ̸= 0, we have v = −3/u from the second equation of (C4).

Substituting this into the first equation of (C4), we have

u6 − 6u3 − 27 = 0. (C5)

Setting X = u3, Equation (C5) becomes a quadratic equation for X, which can be

easily solved to obtain the positive solution X = 9. Therefore, we finally obtain

u = 32/3 and v = −31/3, i.e.,

cz = 32/3 − 31/3 ≃ 0.638. (C6)

Therefore, the axial ratios of the Hill sphere are given by

cx : cy : cz = 1 :
2

3
:
(
32/3 − 31/3

)
≃ 1 :

2

3
: 0.638. (C7)

Appendix D
Particle size distribution used in numerical simulation

In our simulations with particle size distribution, we assumed the following power

law distribution;

n (R) dR = C0R
−qdR, (D1)

where n (R) is the number of particles with radius between R and R + dR, and C0

is a constant. Spacecraft and ground-based observations (e.g., Zebker et al., 1985;

French & Nicholson, 2000) suggest that q ≃ 3, Rmin ≃ 0.1 cm, and Rmax ≃ 20 m in

Saturn’s main rings. However, the width of the above actual size distribution is too

large for N-body simulations, and we need to truncate it to a narrow width. In the

present work, we adopt q = 3, Rmin = 30 cm, and Rmax = 5 m, following Porco et al.

(2007). In order to examine effects of including size distribution, we compare results

with the case of particles with a uniform radius Runi, where Runi is determined so

that the optical depth and the surface density become equal to the case with size

distribution (Morishima & Salo, 2006). When q = 3, the surface density of a system

including the size distribution is given as

Σsize =
4

3
ρpτRmax

1−W−1

ln W
, (D2)
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where W = Rmax/Rmin. Because the surface density in the case of a uniform size is

Σuni = 4ρpτRuni/3, we have Σuni = Σsize when Runi = Rmax (1−W−1) /ln W . In the

present case, we obtain Runi ≃ 167 cm.

78



Acknowledgments

First of all, I wish to thank my supervisor, Prof. Keiji Ohtsuki, for a lot of helpful

advice and fruitful discussions during my thesis work. I would also like to thank

my collaborator, Prof. Hiroshi Daisaka for his help in numerical simulations. I

also thank Prof. Yoshitsugu Nakagawa and Yuri Aikawa, and other members of the

Planetary Astrophysics Group at Kobe University for their discussion. A portion

of the numerical simulations presented in Chapters 2 and 3 was performed using

the GRAPE-7 system at the Center for Computational Astrophysics of the National

Astronomical Observatory of Japan. I greatly appreciate the Research Fellowship

from the Japan Society for the Promotion of Science (JSPS) for Young Scientists.

79



Bibliography

Albers, N., & Spahn, F., 2006. The influence of particle adhesion on the stability of

agglomerates in Saturn’s rings. Icarus 181, 292-301.

Araki, S., & Tremaine, S., 1986. The dynamics of dense particle disks. Icarus 65,

83-109.
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Sremčević, M., Schmidt, J., Salo, H., Seis, M., Spahn, F., & Albers, N. 2007. A belt

of moonlets in Saturn’s A ring. Nature 449, 1019-1021.
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