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SUMMARY 

This dissertation presents an ocean wave remote sensing system by GPS that estimates 

the characteristics of ocean waves efficiently by receiving and processing the global 

navigation satellite system signals. This dissertation consists of five chapters in order to 

introduce the related theories, methods and practices. 

 Chapter 1 introduces the background of the ocean wave measurement and the remote 

sensing by the Global Positioning System (GPS). The purpose of this research is to measure 

ocean waves propagating from the open sea to local sea area, especially into harbor water 

area, since this can cause serous damages to the harbors and the vessels mooring or 

navigating in them. Recently developed GNSS-R techniques provide an efficient method to 

measure sea state by utilizing the Reflected Signals From Sea-surface (RSFS). The relative 

time delays of RSFS to Line-Of-Sight (LOS) signal connote much topographical 

information concerning the sea-surface. In order to retrieve detailed characteristics of ocean 

waves and provide real-time feedback to harbors and vessels for safety, the concept of 

ocean wave GPS remote sensing is defined. 

 Before the measuring of the characteristics of ocean waves, some knowledge of ocean 

wave is introduced. Ocean waves fluctuating with a period from 10s to 30s are targeted by 

the ocean wave remote sensing system. Moreover because the global navigation satellite 

system signals are utilized as signal sources for the ocean wave remote sensing system, its 

correlation property is also described. The knowledge of GPS multipath propagation and 

identification is introduced in chapter 2. The most important components of the GPS 

receiver, antenna and radio frequency (RF) front-end are also introduced. The 

cross-correlation and autocorrelation properties of C/A code are emphasized, from which 

satellite information can be acquired and the relative time delay of RSFS can be estimated. 

Specifically, the correlator and the Discrete Teager-Kaiser Energy Operator (TKEO) are 

combined to identify multipath efficiently. The wave characteristic estimator is designed 

and developed to estimate wave period, speed and length quantitatively. The wave 

characteristic estimator resolves the wave characteristics into several stages, such as the 

calculation of correlator and TKEO, and Fourier Transform (FT). The measurement 

methods of true wave characteristics are also explained. 



 

 

 

 

 The chapter 3 introduces in detail the system configuration. The array antenna is 

designed with a narrow fan beam directional pattern with which it only receives reflected 

signals from the objective sea-surface and suppresses signals from the side directions. Also 

the array antenna is constructed and its testing results are given with a narrow fan beam 

directional pattern. By evaluating the band-limited effects of RF front-end and the 

band-limited effects of TKEO, the bandwidth (BW) in the RF front-end must be determined 

to be 40 MHz in order to pass more reflected signal energy for the correlator and TKEO. 

The RF front-end based on the chip of GP2015 is used for the experimental evaluations. 

 The operation performance of the ocean wave remote sensing system was first of all 

evaluated with numerical simulation, as will be explained in chapter 4. According to a sea 

swell spectrum, a sea surface dominated by sea swell was generated. The amount of 

reflected signals arriving at an array antenna from a generated sea surface was determined 

by a scattering pattern. The relative time delays of RSFS are estimated successfully from 

output of Teager-Kaiser energy operator. It was validated that wavelength and wave period 

could be measured by the ocean wave remote sensing system efficiently. After that the 

system performance was also evaluated with a series of experiments after the construction 

of the whole system. The final prototype of the ocean wave remote sensing system was 

obtained after a series of basic testing and experiments. Finally, the GPS signals reflected 

from objective sea surface were detected and extracted successfully. The array antenna can 

receive reflected signals from specified directions and suppress reflected signals from side 

directions. The RSFS can be identified because of the application of 40MHz wideband RF 

front-end. The wave characteristic estimator yielded the wave period, wave speed and 

wavelength correctly. 

 Finally, some conclusions were draw according to the experimental evaluation of the 

prototype system. Moreover some considerations and proposals are also given to improve 

the performance of the system in the future. 

  With the propagation of long period gravity waves, it becomes difficult to keep and 

improve the harbor calmness and safety. At present, a lot of wave measurement systems 

have been applied but it is a hard and complicated task to measure the characteristics of 

long period gravity waves which might have the wave period from some ten seconds to 

some ten minutes and wave height less than 1 meter. The proposed ocean wave remote 



 

 

 

sensing system provides the possibility to measure the characteristics of long period gravity 

wave. Especially, the analysis of the characteristics of the disastrous waves only needs to 

observe in the time of several times the wave periods, and the ocean wave remote sensing 

system can work in the conditions of bad weather and low visibility. It is important to avoid 

the occurrence of disaster in time to protect people’s life and property. 
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CHAPTER 1                   

INTRODUCTION 

1.1 Background 

Ocean waves propagate in many forms. Surface waves fluctuating with a long period and 

containing tremendous energy threaten the safety of harbors and vessels navigating or 

mooring in them. Harbors are buried gradually by drifting sea-bottom sand driven by long 

water particle exercise orbit around harbor entrance neighborhood, and vessels also 

experience serious pitching and rolling movements once wave energy enters a harbor. The 

measurements of long period waves inside and outside of harbors have become an 

important research field of marine engineering. 

 At present, a lot of wave measurement instruments have been invented and developed 

to measure the ocean wave characteristics, such as high frequency radar, wave rider buoy 

and acoustic Doppler current profilers (ADCPs). Shore-based high frequency radar receives 

backscattered signals to retrieve sea surface waves for coastal monitoring, and high 

frequency radar system is usually built as a large-scale system operating on a wide coastal 

area over hundreds of square kilometers [1, 2, 3]. Wave rider buoys have been extensively 

applied in ocean observation to collect wave characteristics (e.g. National Data Buoy Center 

of U.S.A. and Nationwide Ocean Wave Information Network for Ports and Harbors of 

Japan) [4, 5, 6]. Doppler current profilers are deployed beneath the sea-surface to measure 

waves and the currents [7, 8]. Buoy system and ADCPs, however, suffer damage from 

floating debris or large waves, and maintenance always takes a lot of troubles. 

 With the developments of GPS technologies, GPS signals have already been considered 

to measure characteristics of ocean waves. It is known that GPS signal is usually used in 

positioning and navigation. However the LOS signal is always disturbed by multipath so 

that positioning accuracy decreases. There is much related research about how to immigrate 

multipath effects [9, 10]. On the contrary, the signals reflected from the Earth can be 

utilized for remote sensing. GNSS-Reflectometry is a kind of remote sensing technique that 
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takes advantage of GPS signals reflection from the sea surface to retrieve wave height, wind 

speed and so on [11, 12, 13]. However, it is not easy to measure detailed characteristics for 

wave in a local area, such as wave length, wave period and wave direction. 

 Multipath features relative time delays to LOS signal. The relative time delays of the 

RSFS contain wave propagation information with which wave characteristics can be 

estimated. Therefore, this research focuses on identifying the signals reflected from the 

objective sea surface especially inside and outside of harbors to extract detailed 

characteristics for ocean waves. 
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1.2 GPS Remote Sensing 

Usually GPS receiver’s position can be measured by the time required for the GPS signal to 

travel from the satellites to the receivers in its direct path. GPS signals also arrive at 

receivers in multipath channel reflected from nearby surface, which is considered as 

interference signals to the LOS signals. However, the signals reflected from ocean and land 

are used as a signal sources to measure characteristics of sea state, atmosphere, soil 

moisture and ice [14,15,16], known as GNSS- Reflectometry. Figure 1-1 shows one case of 

the GNSS-Reflectometry. 

 

Figure 1-1  One case of GNSS-Reflectometry 

 In the research field of ocean remote sensing, GNSS-Reflectometry (GNSS-R) is used 

to measure sea-surface height and sea surface roughness to obtain characteristics of surface 

wind. GNSS-R is a kind of passive sensing technique that needs separate active signal 

sources. Fortunately, the Global Positioning System is a free source of radio waves which 

can be utilized all the time on the planet. For example, sea-surface height can be measured 

using GPS reflected signals. The two antennae are installed in an airplane to receive L1 

signals, one is an up-looking Right-Hand Circular Polarized (RHCP) antenna to receive 

direct signal and the other is a down-looking Left-Hand Circular Polarized (LHCP) one to 

receive signals mainly reflected from the specular area on sea-surface. The aircraft flies at 

height of several kilometers. Using a complex correlation function, relative time delays of 

RSFS can be extracted. Based on the altimetric model composed of geometrical delay, 

scatteromeric delay and noise delay, variations of the sea surface height over several 

kilometers can be obtained.

GPS Satellite 

LOS Signal RSFS 

Sea 

Land 
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1.3 Ocean Wave Remote Sensing System 

We are devoted in the research of the ocean wave remote sensing system which possesses 

the following features and merits: 

(1) Be able to work in the conditions of bad weather and low visibility. Especially the ocean 

wave remote sensing system should not be affected by powerful winds and waves. 

(2) Be easy to build. It implys that the ocean wave remote sensing system is simple in 

structure and inexpensive in price. 

(3) Be easy to install and maintain. It is not necessary to conduct surface or under-water 

operations of installation and maintainance. 

 Naturally we choose the remote sensing techniques to measure wave characteristics. 

The goal of the research is to provide a new way to measure the characteristics of ocean 

waves and find the ones harmful to harbors and navigation and mooring of vessels. In 

accordance with the GPS remote sensing techniques mentioned in above, a new ocean wave 

remote sensing system is designed and built to measure the detailed characteristics of ocean 

waves falling within a certain period range to improve the safety of harbors and vessels. 

 

Figure 1-2  Ocean wave measurement using GPS signal. 

 Figure 1-2 shows the diagram of utilizing GPS signals to measure wave characteristics 

at the sea area of a harbor. In this figure, we can understand the information flow. In the 

GPS satellite 

LOS signal 

RSFS  
Measure system 

Harbor 

Data saving 

and analysis 

Wave 

Characteristics 

Feedback to Harbor 

Antennae 
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upper-left corner, the GPS satellite is transmitting signals to the sea-surface. These signals 

can be used all-weather and all time and they are definitely reflected to be multipath. The 

antennae receive GPS signals from not only the LOS channel but also the multipath 

channels. The RSFS in the multipath channel must contain the information of the ocean 

wave. The received RSFS are then saved and analyzed to extract wave characteristics, such 

as wave period, wave length and wave direction. The resultant wave characteristics are sent 

to harbors and vessels. Once dangerous waves occur, some countermeasures will be taken 

out to mitigate risks and damage. 

 Now we try to develop the ocean wave remote sensing system in this figure. Simply the 

system is divided into the signal receiving part and the signal processing part. The antennae 

are used to receive the LOS signal and the RSFS. The received RSFS should be from the 

objective sea-surface. Besides, the GPS front-end in which the received signals are 

transformed is considered as a component of the receiving part. The main task of the signal 

processing part is to analyze the received signals and estimate the characteristics of ocean 

waves. 

 One of the differences between the LOS signal and the RSFS is the arrival times to the 

antennae. It is known that the RSFS have relative time delays to the LOS signal because of 

its long propagation distance. The relative time delays of the RSFS are only decided by the 

geometrical relationships between antennae, satellites and reflection points on the objective 

sea-surface. On the other hand, the geometrical relationships are known if the relative time 

delays are given. Therefore, it is possible to obtain the positions of the reflection points by 

estimating the relative time delays of the RSFS. When big waves occur, the intensities of 

the RSFS will change with the propagation of the waves. Consequently, the characteristics 

of the wave propagation can be estimated when the intensity variation of the RSFS in a 

certain area of the objective sea-surface is obtained. As discussed above, the signal 

processing part should be able to calculate the relative time delays and the intensity 

variations of the RSFS to estimate the characteristics of ocean waves. 

 Based on this idea, we proposed the ocean wave remote sensing system [17, 18]. 

Figures 1-3 and 1-4 respectively show the outline and the signal flow diagrams of the ocean 

wave remote sensing system.  
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Figure 1-3  Outline of the ocean wave remote sensing system. 

 

Figure 1-4  Signal flow diagram of the prototype system. 

  There are four GPS antennae in Figure 1-3. The upper conventional antenna receive 

the LOS signal from the objective GPS satellite to obtain its azimuth, elevation angle, 

Doppler shift and the arrival time of the LOS signal. In the middle of the figure there is an 

array antenna mounted with two conventional GPS antennae on both ends. The array 

antenna is a uniform linear array which can receive RSFS from the objective sea-surface 

with its narrow fan beam directional pattern. The two conventional antennae are used as a 

GPS compass to measure the direction of the array antenna. The array antenna is set in the 
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direction of the objective satellite using the satellite azimuth from the upper conventional 

GPS receiver and the directional information of the array antenna from the GPS compass. 

 The LOS signal and the RSFS from the objective satellite are received with the upper 

antenna and the array antenna simultaneously. It is very important for calculating the 

relative time delays of the RSFS because the arrival time of the LOS signal is used as a time 

reference. In Figure 1-4, the LOS signal and the RSFS signals are analyzed with a wave 

characteristic estimator. The wave characteristic estimator calculates the relative time delays 

of the RSFS to determine where they are reflected and estimates the intensity variations of 

the RSFS to demonstrate the propagation of the ocean waves. And the characteristics of the 

ocean waves are output and sent to harbor or vessels. 
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CHAPTER 2                   

METHODOLOGY 

2.1 Ocean Wave 

2.1.1 Characteristics of Ocean Wave 

As we all know, oceans cover more than 70 percent of the earth. Ocean water is 

permanently in coexistence with various forces of nature so that many types of ocean waves 

are generated. Ocean waves oscillate not only on the sea surface but also in deep water. In 

general, ocean surface waves can be classified into capillary ripples, wind waves, sea swell, 

tsunamis, and tides. Any type of wave involves certain physical factors. Capillary ripples 

result from sea surface tension. Wind wave results from the wind blowing over sea surface. 

Sea swell is usually generated by distant storms. Tsunamis are long period oscillation 

caused by submarine earthquakes or landslides. Tides are caused by astronomical rotation. 

In this paper, sea swell that impacts the safety of harbor and ship navigation will be 

discussed and measured with the proposed measurement method. In this section, we will 

introduce the characteristics of ocean wave and the classic wave modelling. 

 Ocean waves have many characteristics. The characteristics of an ocean wave can be 

measured and used to describe that wave, as shown in Figure 2-1. 

 

Figure 2-1  Primary characteristics of ocean wave. 
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 The highest point of a wave is referred to as the crest and the lowest point of a wave is 

referred to as the trough. Wave height Hw is the vertical distance between crest and trough 

of wave. Wavelength λw is defined as the horizontal distance between two successive wave 

crests or wave troughs. Addition to wave height and wavelength, a wave is also described 

by the wave period Tw and the wave speed Vw. Wave period Tw is the time that two 

successive wave crests pass a fixed point, and wave speed Vw can be determined by dividing 

wavelength by wave period. Wave direction is the direction of wave propagation. The 

relationship between the wave period Tw, the wave speed Vw and wave length λw is 

well-known as follows, 

 ww TV w  (2.1) 

 The wave speed Vw and wave length λw can also be estimated with the dispersion 

relation [1, 2] in which  
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where g is the gravitational acceleration, k is the wave number (k = 2π/λw), and z is the 

water depth. From the dispersion relation, it is known that ocean waves of different 

wavelengths propagate at different wave speeds, and the wave speed Vw and wave length λw 

depend on the wave depth. 

 However sea-surface waves are not composed of a single sinusoidal wave. The 

sea-surface is always composed of various waves with different frequencies and lengths. 

Therefore it is not suitable to describe the sea-surface by a single wave. The ocean waves on 

the sea-surface can be represented with an infinite sum of sine and cosine waves of different 

frequencies 
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where f is the fundamental frequency, an and bn are amplitudes of different wave 

components. 
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 We can obtain the spectrum of an ocean wave with the following computation [3], 

 
*)n( nnZZfS   (2.5) 
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and Z* is the complex conjugate of Z. Here the equation of Zn is called the Fourier 

transform which will be introduced in section 2.4.2 in detail. 

 

Figure 2-2   Wave spectra of a fully developed sea for different wind speeds. 

 The Pierson-Moskowitz Spectrum is a simplest spectrum of ocean waves on a fully 

developed sea on which the wind blows steadily for a long time over a large area so thus the 

waves could come into equilibrium with the wind. Figure 2-2 shows the wave spectra of a 

fully developed sea for different wind speeds found by Moskowitz. The empirical 

relationship that defines the ocean wave energy distribution with frequency is given by 

 ])
0

(exp[)( 4

5

2









 

g
S  (2.7) 

where ω=2πf and α = 8.1×10-3, β = 0.74, ω0 = g/U19.5 and U19.5 is the wind speed at a 
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height of 19.5 m above the sea surface. 

2.1.2 Sea swell 

There are various ways to classify the ocean waves, such as the wave period and the force 

which generates the ocean waves. The sea swell wave discussed here is classified by wave 

period range from 10 to 30 seconds. We propose the ocean wave remote sensing system to 

measure the ocean wave possessing the wave period from tens of seconds to minutes and 

the wave length from hundreds of meters to kilometers, especially the sea swell. 

 A swell is a train of waves of similar wavelengths, moving across the ocean in the same 

direction [4].  Sea swell occurs frequently and can be observed easily near a coast. Sea 

swell is generated by storms kilometers or even hundreds of kilometers away. The stronger 

the storm at the source area, the bigger will be the swell and the further it will travel. The 

wave period of swells ranges from 10 seconds to 30 seconds. The wavelength will be over 

200 meters and the wave height will be over 4 meters for long and heavy swell. The 

wavelength increases but the wave height decreases relatively slowly correlated with the 

distance away from the source area. Sea swell propagation features relatively regular wave 

motion. Also the wave spectrum of swell has been defined and we will use wave spectrum 

to generate sea-surface for the numerical simulation of the ocean wave remote sensing 

system. 

 Sea swells cause great disturbance of vessel motion and even cause unstable course 

deviation to vessels navigating along harbor entrance channels. Moreover the effectiveness 

of breakwaters and jetties to sea swell progressively decreases. Sea wells have seriously 

hampered the secure and efficient use of harbors. Therefore, various devices and 

instruments were invented to measure the characteristics of sea swells. 

Modelling 

The sea-surface with swell can be modelled as a narrow-band Gaussian process with the 

following spectrum [5]: 
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where <h2> is the variance due to swell, Kxm and Kym are the wavenumbers of the spectral 

peak, and σkx and σky are the spectrum widths in the x and y directions respectively. The 

wave spectrum widths σkx and σky are very small values to ensure that the sea-surface waves 

are regular and rounded but not monochromatic. In chapter 4, a sea-surface is generated 

with reference to this swell model. 

Propagation in shallow water 

The proposed ocean wave remote sensing system usually measures the sea swell near a 

harbor. It implies that the objective sea swell propagates in relatively shallow water. When 

sea swells travel from deep water to shallow water, wave characteristics will change. The 

wave speed is reduced because of the influence of the water bottom, and the wavelength is 

shortened correspondingly. However the wave period remains unchanged. Moreover, some 

phenomena will occur in the shallow water, such as refraction, diffraction [6]. 

 The refraction occurs because of the inhomogeneous water depth in shallow water. A 

wave will bend when its different parts move in different water depth. One part in deeper 

water than the adjacent parts will move rapidly. Therefore the wave trends to be aligned 

with the bottom contour. Figure 2-3 shows the refraction of swell waves. 

 

Figure 2-3  The refraction of swell waves. 

 The diffraction happens when the waves encounter an obstacle such as a jetty, 

breakwater and island. The waves will enter the shadow zone when they pass the obstacles. 
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It means the wave energy will be carried into the shadow zone. However the waves entering 

the shadow zone have relatively low wave height. The refraction will also occur if the 

bottom around the obstacle is sloping. Figure 2-4 shows the diffraction of swell waves. The 

numbers near the broken lines indicate how much the wave height can be remained after the 

wave diffraction occurs. 

 

Figure 2-4  The diffraction of swell waves. 

 It is obvious that the refraction and the diffraction can change the direction and the 

height of swell waves severely and can affect the results of wave measurements. Besides the 

refraction and the diffraction of ocean waves, some other phenomena also happen such as 

reflection and breaking. The reflection means that the waves can be bounded back by solid 

obstacle and the reflected waves interfere with the coming waves; and the breaking means 

the wave crest collapses because the wave steepness increases so that the wave can no 

longer support its own weight or the crest speed exceeds the speed of the wave. 

Scattering Pattern of sea-surface 

The proposed wave ocean wave remote sensing system is based on the bistatic reflection of 

the GPS signals off sea swell. Some scattering patterns of random rough surfaces have been 

studied [7], such as Kirchhoff approximation, small perturbation method and two-scale 
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composite model and so on. Each point on sea-surface is approximated by an infinitely 

extended tangent plane in the Kirchhoff approximation, but this approximation is only valid 

for a surface with an important horizontal roughness scale and average curvature radius 

compared to the electromagnetic wavelength [8]; for small slopes or small roughness scales, 

the small perturbation method is appropriate and accurate to estimate the diffuse 

components of the electromagnetic scattered waves; the two-scale model is a composite one 

that considers the large scale roughness and small scale effect. Because the scale of the 

swell waves is much larger than the wavelength of GPS signals, the bi-directional 

reflectance distribution function based on the Kirchhoff approximation will be used in the 

numerical simulation. 

2.1.3 Ocean Wave Measurement 

There are a lot of ocean wave measurement instruments and techniques such as wave rider 

buoy, high frequency radar, acoustic Doppler current profilers and the recently developed 

Global navigation satellite system Reflecmetery. All the techniques can be divided into two 

categories: in situ techniques and remote sensing techniques [9]. The in situ instruments are 

positioned at sea-surface or below sea-surface, such as floating surface buoy and pressure 

transducer. They try to measure the motions of the sea-surface but they are sensitive to 

aggressive marine environment. The remote sensing instruments are mounted above 

sea-surface on a fixed or a moving platform such as a tower at sea, a ship, an airplane or a 

satellite. They receive the visible or infra-red light or radar wave reflected from the 

sea-surface. They can cover a larger area or measure in a short period of time than the in 

situ instruments. The remote sensing instruments are not sensitive to the marine 

environment but sensitive to the atmospheric environment. 

 Here some examples of the applications are introduced. Figure 2-5 shows an arrayed 

buoy system developed by our Laboratory. A group of four-ball buoys are placed onto the 

several positions on the objective sea-surface to measure the wave movements by GPS. The 

3-D movement of each four-ball buoy is resolved and reordered. We consider the movement 

of buoy equivalent to the movement of water particles. The GPS data is sent to the land 

station through wireless transmission to be analyzed. The wave height, wave period, 

wavelength and direction can be estimated with the data of buoy movements [10]. In 
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particular, the long period wave can be measured well. However, because the precise 

wavelength could not be measured, we used a wavelength that was estimated by dispersion 

relation. 

 

Figure 2-5  Arrayed GPS buoy system. 

 High frequency Radar has been used to measure sea-surface for quite a long time to 

measure sea-surface currents and waves of the coastal ocean. The high frequency radar 

ocean wave measurement system usually consists of transmitters and receivers. The 

transmitters send electromagnetic waves in the high frequency band. If the currents or ocean 

waves occur on the sea-surface, the high frequency electromagnetic waves are scattered 

back towards the receiver. The transmitted electromagnetic wave is single-frequency but the 

backscattered waves possess a wider spectrum because the propagations of the currents and 

ocean waves change the frequencies of the backscattered waves, known as Doppler shift. 

Meanwhile, it is known that the Doppler shift is positive or negative when the wave is 

approaching the receiver or moving away from the receiver respectively. Consequently, the 

velocity of the sea-surface currents and waves can be resolved with the measured Doppler 

shift. Usually, two high frequency radar ocean wave measurement systems are used to 

estimate true parameters of currents and waves. The high frequency Radar is also used to 
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measure parameters of sea swell [11]. Figure 2-6 shows an example of sea swell 

measurement with two high frequency Radar systems. In Figure 2-6, the researchers used 

two stations deployed at Tweed Heads (Qld., Australia). The bore sights of the two stations 

at intersect almost orthogonally. 

 

Figure 2-6  Sea swell measurements with two high frequency Radar systems. 

  Synthetic Aperture Radar (SAR) [12] is mounted on an aircraft or spacecraft to 

generate high resolution remote sensing image which can be used to measure ocean waves. 

The antenna transmits a series of pulse to the objective area in a certain time interval. All 

the backscattered echoes are received in turn with the same antenna, and the magnitudes 

and phases are recorded during the objective area locating within the antenna beam. The 

objective area can be detected by summing the backscattered echoes from it and the image 

processing system of the SAR will illustrate the objective area. Therefore the SAR moving 

with a platform works as a synthesized antenna. SAR is a unique sensor for the ocean 

surface wave measurement since SAR is the only sensor that can provide images from 

space with high enough resolution, independent of cloud cover and light conditions, to 

detect ocean surface wave scales of interest. Figure 2-7 shows a SAR image of the 
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sea-surface waves at Point Reyes National Seashore. The wave propagation on the 

sea-surface can be obtained from this image. 

 

Figure 2-7  An SAR image of sea-surface waves (31.5km×31.5km). 
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2.2 GPS Signal 

2.2.1 Global Position System 

From the moment of its birth, GPS has gradually become an indispensable part of 

engineering and scientific researches in which positioning, surveying and real-time 

navigation are fundamental assignments. GPS is abbreviation of Global Positioning System 

[13] , and it consists of three parts: in the space, there is a constellation of 24 satellites and 

each satellite sends the universal time and navigation data using a spread spectrum Code 

Division Multiple Access (CDMA) technique; on the earth, five ground-based monitoring 

stations and one master control station are controlling the space part continuously; the third 

part is the user device; signal receiver, which can process GPS signals and calculate the 

receiver's location. For receivers on earth, high quality GPS signals from three satellites are 

required to determine the current time, latitude, and longitude, and four satellites to 

determine the current altitude. More GPS signals will increase the accuracy of positioning 

and navigation. 

 In the ocean wave remote sensing system, the GPS signal is utilized as an indirect tool 

to obtain wave characteristics. Here, the GPS signal and its components and prosperities 

will be introduced in detail. 

2.2.2 Signal Generation 

Every satellite is transmitting GPS signals continuously on two different radio frequencies 

in the Ultra High Frequency (UHF) band. These frequencies are known as L1 

(1575.42MHz) and L2 (1227.60MHz). L1 carries two unique spreading sequences or codes, 

including C/A code and an encrypted precision code (P(Y)). L2 only carries P code. The 

C/A code and P code carried on these two frequencies can be considered as pseudo random 

noises, which are modulated with navigation data. Thus GPS signals are also referred to as 

pseudo random noise spread spectrum signals. 

 During the generation of GPS signal, the C/A code and the P(Y) code should firstly be 

combined respectively with navigation data through modulo-2 adders. Then all the 
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combined signals, C/A code   data and P(Y) code   data, are modulated into the 

carrier signal using the Binary Phase Shift Keying (BPSK) method. The BPSK is the 

simplest form of phase modulation where the carrier is instantaneously phase shifted by 180 

degrees at the time of a bit change. Adding the two combined signals generates the resulting 

GPS signal. Consequently, the signal transmitted from satellite k can be described as  
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1,1, PLPLC PPP : Powers of signals with C/A or P(Y) code; 

kC : C/A code sequence assigned to satellite k; 

kP  : P(Y) code sequence assigned to satellite k; 

kD  : Navigation data sequence; 

2,1 LL ff  : Carrier frequencies of L1 and L2. 

 

Figure 2-8  Generation of GPS signal by BPSK modulation 

 In our research, we only discuss the L1 signal. Figure 2-8 describes the final GPS signal 

which is the product of the C/A code, navigation data and carrier signals. The carrier is 

instantaneously phase shifted by 180 degrees at the time of chip change. Also the phase of 

the GPS signal is also occurs phase shifted 180 degrees when a navigation data bit 
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transition occurs. 

Propagation of electromagnetic wave 

GPS signal is a kind of electromagnetic wave generated and transmitted by GPS satellite. 

As shown in Figure 2-9, the electromagnetic wave has two components: electric field (E) 

and magnetic field (M). They are perpendicular to each other and in phase. The dotted-line 

is variation of the magnetic field vector and the heavy line is variation of the electric field 

vector. The propagation direction of the electromagnetic wave is indicated with the arrow x. 

The electromagnetic wave propagates through a vacuum at a speed of 3×108m/s. The 

right-hand rule can be applied to the electromagnetic wave: Pointing your right thumb along 

the arrow x and pointing your right index finger in the direction of the electric field vector, 

your middle finger ought to point along the direction of the magnetic field vector. The 

energy of the electromagnetic wave propagate alone the direction x, therefore, the largest 

energy can be received in this direction and the no energy can be received in its vertical 

directions. 

 

Figure 2-9  Propagation of Electromagnetic wave. 

Polarization 

The electromagnetic wave does not always propagate in a sinusoidal manner in a plane, as 

shown in Figure 2-9. The direction of the electric field vector defines the polarization of the 

electromagnetic wave. In Figure 2-10, linear, circular and elliptical polarizations are shown. 
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Given a plane perpendicular to the diction of the propagation, the traces of the electric filed 

vectors on the plane are different. The linear polarization has a straight line on the plane (a); 

the circular polarization has a circular trance on the plane (b); and the elliptical polarization 

has an elliptical trance (c). The three electromagnetic waves have different polarizations but 

each of the electric field vectors can be resolved into two orthogonal sinusoidal components 

with equal frequency. 

 Circular polarization is most often employed in satellite communication, since circular 

polarized antennae transmit and receive radio waves in all directions, circularly polarized 

radio waves can be received regardless of the direction of the antenna [14]. The electric 

field vector rotates with the circular polarization. Form the point of the receiver, the 

circularly polarized electromagnetic wave is considered right-handed circular polarization if 

the rotation is counter-clockwise. Conversely, it is left-handed circular polarization if the 

rotation is clockwise. The GPS signal has right-hand circular polarization. The receivers on 

Earth should have same polarization with the signals. 

     

(a)                 (b)                (c) 

Figure 2-10  Linear, circular and elliptical polarizations. 
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2.2.3 C/A Code and Correlation Properties 

The C/A code is also referred to as the PRN code or as the Gold codes; the non-encrypted 

portion of the GPS signal. It is a sequence of 1023 chips and repeats in 1ms. Each satellite 

has its own unique C/A code to be differentiated from others for coarse acquisition. 

 Here, two properties of C/A should be emphasized because they will be used in the 

ocean wave remote sensing system. One of the properties is that of nearly no cross 

correlation, meaning that all the C/A codes are nearly uncorrelated with each other. The 

other is that there is nearly no correlation except for zero lag, that is to say all C/A codes are 

nearly uncorrelated with themselves, except for zero lag. If given two C/A codes iC  and 

kC  for satellites i and k, these two properties can be expressed as follows [15, 16]: 
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The autocorrelation property makes it easy to find out when two similar codes are perfectly 

aligned. It means that a C/A code will be nearly uncorrelated with itself, unless two 

identical C/A codes are perfectly aligned. This property enables us to find out the code 

phase of a C/A code, which denotes the arrival time of the code sequence. Therefore, by 

searching and determining the time delays of the transmission of reflected signals from one 

satellite, we can take advantage of this autocorrelation property to calculate the code phase 

of C/A code modulated within each reflected signal. The autocorrelation function of one 

GPS C/A code sequence is given as: 
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where, )(ACF m  is the autocorrelation value for satellite i at m code phase difference; C(l) 

is C/A Code.  

 One C/A code is a repeating sequence with period of 1ms, and Figure 2-11 illustrates all 

the autocorrelation values if we calculate its C/A Code autocorrelations by each code phase. 
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As seen from Figure 2-11, only on the points where two similar C/A codes aligned perfectly 

will the autocorrelation calculation show obvious peaks. Therefore the autocorrelation 

property of C/A code is used to identify code phase of GPS signal. 

 

Figure 2-11  C/A code autocorrelation with different code phases 

2.2.4 Multipath Propagation 

A GPS antenna can receive not only LOS signal directly from satellite but also the reflected 

or diffracted signals from its surrounding environment [17]. It means that the GPS signals 

can arrival at the receiving antenna from more than one propagation path, referred to as 

multipath. The multipath has longer distance than the path of LOS signal so that the signals 

transmitted in multipath channels have relative time delays to the LOS signals. The signals 

in multipath channels feature different intensities and phases with the LOS signals. The 

intensities are related to the nature of the reflection surface.  

 

Figure 2-12  Multipath propagation from reflection. 
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Figure 2-13  Multipath propagation from diffraction. 

 Figure 2-12 and Figure 2-13 show the examples of multipath propagations. In Figure 

2-12, if the reflection surface is smooth, the antenna can only receive one reflected signal, 

i.e. specular reflection. However, in most cases, the reflection surfaces are rough so that the 

signals are scattered. In Figure 2-13, the signal cannot arrive at the antenna directly because 

of the obstructing object but the signal is diffracted to the area behind of the obstructing 

object in multipath channel and received by the antenna. In our search, we only study the 

signal multipath propagations caused by the scattering because the array antenna of the 

ocean wave remote sensing system mainly receives the reflected signals from sea-surface. 

signal phase 

 

Figure 2-14  Phase shift in the multipath propagation. 
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 Usually the signals in multipath channels have different polarities with the LOS signal. 

The LOS signal is right hand circularly polarized and the reflected signals may have 

reversed polarity which also induces phase to reverse. Figure 2-14 shows the simple 

example of the phase reversal of GPS signal with specular reflection. If the incidence signal 

is not reflected with the reflection surface, its phase is kept. However, with the specular 

reflection, the reflected signal has phase shift of 180 degrees which can be manifested with 

the opposite phases of two sinusoidal waves in the left of the normal. 

Multipath Correlation 

 It is necessary to examine the correlation of the signals transmitted in the multipath 

channel because the correlation is the method to detect the RSFS. The correlation is a 

triangular peak as shown in Figure 2-11. But there are the constructive interference if the 

multipath is in-phase and destructive interference if the multipath is out-of-phase. 

 

Figure 2-15  Constructive interference and destructive interference of multipath. 
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 Figure 2-15 shows the constructive interference and the destructive interference of 

multipath. Sub-figure (a) is the correlation peak without any multipath and it is an isosceles 

triangular. Sub-figure (b) shows the correlation with in-phase multipath, and the total 

correlation is the sum of the two individual correlations. The constructive interference 

amplifies the LOS signal equivalently. Sub-figure (c) shows the correlation with 

out-of-phase multipath and the total correlation is the difference of the two individual 

correlations. The deconstructive interference reduces the LOS signal. In a complex 

multipath environment, the antenna will receive much reflected signals including in-phase 

and out-of-phase. Especially the phases and the intensities of the reflected signal are 

varying relative to the LOS signal. Therefore the total correlation will be constructed and 

deconstructed severely, referred to as signal fading. 

Geometry 

The reflected signals travel longer distance than the LOS signal and have relative time 

delays. We discuss the geometry of multipath using the case of the ocean wave remote 

sensing system. When the ocean wave remote sensing system is installed near a harbor and 

its array antenna is adjusted to face the objective sea-surface, almost any point on the 

objective sea-surface can theoretically reflect GPS signal to ocean wave remote sensing 

system. Also the relative time delay tdelay of reflected GPS signal transmitted in multipath 

channel is determined by the geometrical relationship of reflection.  

 

 

Figure 2-16  Geometrical relationship of reflection. 
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Psv: position of GPS satellite; 

Pref: position of reflection point; 

PLOS: equivalent arriving position of LOS; 

Pant: position of array antenna / position of system; 

P’ant: projection of array antenna on sea-level; 

Hant: height of array antenna; 

αel: elevation of GPS satellite; 

βref: reflection angle of multipath. 

 Figure 2-16 gives an example of the geometrical relationship of one signal reflected 

from point Pref on target sea-surface. Generally, the geometry of RSFS is determined by the 

antenna height and satellite elevation angle. The geometrical relationship of reflection is 

explained with Figure 2-16. 

 In Figure 2-16, the lengths of LOS propagation and RSFS propagation from satellite to 

array antenna are defined as 

 LOSrefrefsvLOSsvLOS PPPPPPd   (2.11) 

 antrefrefsvRSFS PPPPd   (2.12) 

 Therefore, the delayed distance ddelay of RSFS propagation comparing with LOS signal 

is the difference of dLOS and dRSFS 

 LOSrefantrefLOSRSFSdelay PP-PPd-dd   (2.13) 

ddelay is always larger than zero because hypotenuse |PrefPant| is longer than right-angle side 

|PrefPLOS| in the right triangle △PrefPLOSPant. If c is speed of light, then time delay tdelay is 

expressed as 

 
ccc

LOSrefantrefLOSMPdelay
delay

PP-PPd-dd
t   (2.14) 

 During a long-term measurement for the objective sea-surface, the position of ocean 
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wave remote sensing system is fixed, i.e. the height of array antenna Hant is a constant value. 
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 It can be shown that the time delay of the RSFS is based on three parameters, namely, 

antenna height Hant, elevation of GPS antenna αel and reflection angle βref. Meanwhile, βref is 

also decided by antenna height Hant and the horizontal distance of reflection point Pref to 

ocean wave remote sensing system |PrefP’ant|. For this reason, the time delay of the RSFS is 

reformulated as 
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 Conversely, if the relative time delay of the RSFS is given, the horizontal distance of 

reflection point Pref can be calculated with the following equation. 
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where, 



  (
mc

f sh
)2 

2mc

f sh
sinE , fs is sampling frequency, m is the number of samples for relative 

time delay to LOS, m =tdelay/fs. 
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2.3 GPS Receiver 

2.3.1 GPS Antenna 

Antennae are the first components of a GPS receiver to tune the frequencies transmitted 

from the GPS satellites and pass the received signal energy to the subsequent components. 

The GPS antenna can be designed as a single-frequency (L1) or a double-frequency (L1/L2). 

It is best placed at position with an unobstructed view of the sky over the antenna for 

acquiring and tracking more satellites. 

 There are many types of GPS antennae such as monopole, dipole, quadrifilar helix, 

spiral helix, and microstrip antennae [18]. The rectangular microstrip antenna [19] referred 

to as the patch antenna is used as the element of the array antenna in the ocean wave remote 

sensing system.  

 

Figure 2-17  Side view of a patch antenna. 

 Figure 2-17 shows the basic design of a patch antenna. The top layer is a rectangular 

patch of metal (usually copper), and its length is approximately one-half of the wavelength 

of GPS signal. The substrate is dielectric and the ground plane is set on other side of it. 

 The center frequency (fc) of the patch antenna is approximately determined by its length 

(L) and permittivity (ε).  

 
L

c
fc

2
  (2.20) 

where c is the velocity of light in vacuum. 
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Figure 2-18  One of the polarization techniques of patch antennae. 

 A conventional GPS antenna has right-hand circular polarization because the signals 

transmitted by GPS satellites are right-hand circularly polarized. While the signal 

polarization is changed after the reflection, the GPS antenna used to receive reflected 

signals has to be designed with left-hand circular polarization. The received signal power 

will be attenuated significantly if the polarizations of an antenna and a signal are opposites. 

The polarization of patch antennae can be achieved using truncated corners in the patch. 

Figure 2-18 shows the rectangular top layer reshaped to achieve two kinds of polarization, 

RHCP and LHCP.  

 Combining the directivity of the patch antenna, we can obtain the gain of the patch 

antenna. The maximum gain of a patch antenna ranges from 6 dBi to 9 dBi and the beam 

width of them main lobe is over 60 degrees. In practical applications of the proposed ocean 

wave remote sensing system, the signal intensity reflected from sea-surface is weak and the 

signals reflected from side directions are undesirable. As a result, single patch antenna 

cannot be used to receive reflected signals from a specified sea-surface because of its low 

gain and wide beam width. Consequently, the antenna array composed of a series of patch 

antennae is used to obtain a high gain and a narrow beam width. The detailed configuration 

of array antenna will be described in the next chapter. 

2.3.2 RF Front-end 

The output of antennae are passed to a RF front-end [20, 21] to be processed for extracting 

and computing more information such as the visible satellite number, ephemeris data, 

  

LHCP RHCP 
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pseudoranges, positions of satellites, and the position of the receiver. The basic processing 

stages of a RF front-end are amplification, frequency down-conversion, and 

analog-to-digital conversion. Figure 2-19 shows the basic processing stages of a RF 

front-end. 

 

Figure 2-19  Basic processing stages of a RF front-end 

 The magnitude of the incoming signals of the RF front-end has to be increased because 

it is so weak that the following components cannot work properly. Therefore the gain of 

amplifier should be considered. 50 dB gain is usually selected to improve the incoming 

signal to an appropriate level for the frequency down-converter and Analog-to-Digital 

Converter (ADC). Then the amplified RF signal is down-converted into Intermediate 

Frequency (IF) signals. The down-converted IF signal can be sampled with the 

analog-to-digital converter with a low sampling frequency. The frequency down-conversion 

is usually handled with mixer and a crystal oscillator, and its processing can be expressed 

simply with the following equation. 
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 (2.21) 

where, A, C and D are the amplified signal amplitude, C/A code and navigation date 

respectively, fc is the center frequency of GPS signal and fco is the oscillator frequency. The 

difference frequency fc - fco is the resultant IF frequency which will be sampled with the 

analog-to-digital converter. The sampled signals will be processed by several channels of 

the GPS receiver to acquire and track the visible satellites. According to the sampling 

theorem, half of the sampling frequency should be larger than bandwidth of the GPS signal. 

Generally, the bandwidth of GPS signals is about 2 MHz [22, 23], so the sampling 

frequency is over 4 MHz. However, a 2 MHz bandwidth may not enough for identification 

of RSFS by the ocean wave remote sensing system. If the bandwidth of the RF front-end is 
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broadened, the sampling frequency of the analog-to-digital converter should be raised. The 

proper bandwidth of RF front-end will be discussed in section 3.2. And the sampling 

frequency is also related to the resolution on sea-surface. 
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2.4 Wave Characteristic Estimation 

In this section, estimation methods of wave characteristics are introduced according to the 

various properties of ocean wave and GPS signals. Here an estimation example is given to 

explain each necessary processing step. Figure 2-20 shows the situation of the signal 

receiving near the sea-surface. 

 

Figure 2-20  Signal receiving near sea-surface. 

 The array antenna is receiving three relatively strong RSFS from P1, P2 and P3 on the 

crest of ocean waves, and the conventional antenna is receiving the LOS signal. The 

received RSFS is a composite signal which can be expressed by the following equation 
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where, 

 x: Composite RSFS; 

 k: Satellite number; 

 Ai: Amplitude of the ith RSFS; 

 D: Navigation data; 

 C: C/A code; 
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 f0: L1 carrier frequency; 

 τi : Relative time delay of the ith RSFS to LOS; 

 vi: Frequency change of the ith RSFS; 

 φi: Carrier phase offset of the ith RSFS; 

 e: Noise. 

 The received signal x(t) is then processed by a RF front-end. Let y(t) denote the output 

of the mixer of the RF front-end, let Bi denote resultant amplitude of each received RSFS, 

then y(t) is expressed as 
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Then the digital output signal of the RF front-end is 
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with n in units of 1/fs seconds; n indicates the signal is discrete in time. mi is the number of 

samples for relative time delay to LOS signal, mi =τi/fs.  

 If the C/A code components are demodulated, the correlations between received C/A 

codes and the locally generated C/A code can be calculated. Let Ck(0), Ck(mi) denote a C/A 

code of LOS signal without time delay and a C/A code of ith RSFS with relative time delay 

mi respectively, and let Ck(m) denote a locally generated C/A code with time delay m. 

According to the correlation property of C/A code, the correlation between Ck(0) and Ck(m) 

is formulated as 
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and the correlations between Ck(mi) and Ck(m) are 
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where r denotes correlation of C/A code. 

 A high correlation value can be obtained when the locally generated C/A code is 

aligned perfectly with the C/A codes of RSFS because the sampling frequency fs is much 

larger than 1000. 

 In Figure 2-21, four broken-line equilateral triangle peaks with different magnitudes are 

used to illustrate the correlator outputs. Let a0, a1, a2, a3 denote coefficients to adjust the 

correlation values of LOS signal and the three reflected signals and a0>a1>a2>a3. 

Consequently the correlation between the C/A codes of LOS signal and the locally 

generated C/A code is 

 )(00 mrar kkkk

LOS   (2.27) 

and the correlation between C/A codes of RSFS and locally generated C/A code is 

 )()()()( 333222111MP mramramramr kkkkkkkk   (2.28) 

 If relative time delays to the LOS signal are shorter than the time length of one 

correlation peak, three correlation peaks are usually superimposed to be a polyline, shown 

as the solid lines in Figure 2-21. Three peak points are circled and m1, m2 and m3 are 

considered as relative time delays of RSFS to the LOS signal. 

 However it is difficult to find out the peak points sometimes, especially since some 

noise components are included. If noise is included, many peaks occur in the correlation so 

that the RSFS cannot be identitied clearly. Therefore, the discrete time Teager-kaiser energy 

operator is utilized to identify RSFS from the outputs of correlator. The algorithm of the 

Teager-kaiser energy operator will be introduced in the next section. 
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Figure 2-21  Correlator outputs. 

2.4.1 Teager-Kaiser Energy Operator 

The Teager-Kaiser energy operator [24, 25] is used to estimate the instantaneous energy of a 

digital signal. At first, the definitions of the continuous time TKEO and the discrete time 

TKEO are given by 

 )()()()(TKEO 2 txtxtxt    (2.29) 

and 

 )1()1()()(TKEO 2  nxnxnxn  (2.30) 

 

Figure 2-22  An undamped spring-mass system. 
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 )cos()(   tAtx  (2.31) 

where A is the amplitude of the oscillation, mk /  is the frequency of the oscillation 

and φ is the initial phase of the mass.  

 Therefore, the total energy E of the spring-mass system is the sum of the potential 

energy of the spring and the kinetic energy of the mass, given by 
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where v=dx/dt is the speed of the mass. If the speed v(t) and position x(t) at time t are 

substituted, the energy E becomes 
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 It is obvious that the total energy of the spring-mass system is proportional to the 

product of the squares of the frequency ω and the amplitude A.  

 Next, the total energy of the spring–mass system is computed with continuous TKEO 

and discrete TKEO respectively. The continuous TKEO is expressed with equation 2.29 and 

the equation of the periodic oscillation x(t) is known, therefore  

 ))tcos()(-Atcos(A))tsin(-A()t(TKEO 22    

 
22222222 A)t(cosA)t(sinA)t(TKEO     (2.34) 

The continuous TKEO is just the product of the squares of the frequency ω and the 

amplitude A. As a result, the continuous TKEO can be used to express the total energy of 

the spring-mass system. 

 On the other hand, the total energy of the spring–mass system is computed with the 

discrete TKEO. The digital periodic oscillation of the spring-mass system is given by 

 )nAcos()( nx  (2.35) 

Where Ω=2πf/fs=ω/fs is the digital frequency, and f and fs are the analog frequency and the 

sampling frequency respectively. According to the expression of the discrete TKEO, we 

need 
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The produce of the x(n-1) and x(n+1) is  
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 )()1()1()()(sinA 222 nTKEOnxnxnx   (2.38) 

 If the digital frequency Ω small, then the sin(Ω) ≈ Ω, and the equation 2.38 can be 

written as 

 
22A)( nTKEO  (2.39) 

 Hence we know that the discrete TKEO is proportional to the product of the squares of 

the frequency ω and the amplitude A. Consequently, we can conclude that both the 

continuous TKEO and the discrete can express the energy of the spring-mass system. Now 

an example of computing the energy of a frequency modulated signal. 

 

Figure 2-23  TKEO output for frequency modulated signal. 
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with amplitude of 1 and increasing frequency, and the lower sub-figure shows the TKEO 

output of the frequency modulated sinusoidal signal with an increasing trend. It implies that 

the TKEO can track the variation of the signal frequency. This result also shows that the 

TKEO can work as a high-pass filter. 

 In the ocean wave remote sensing system, the discrete TKEO is applied onto correlator 

output to identify RSFS. The discrete time Teager-Kaiser energy operator for the output of 

correlator is expressed as 

 )1()1())(()( 2  mrmrmrmTKEO kkkkkk
 (2.40) 

 The TKEO is calculated for an equilateral triangle peak of the correlator output is 
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where δ is the magnitude of difference between two consecutive sampling instants on the 

correlation peak side, i.e. taken anywhere below the magnitude of the peak point. To 

compare TKEO values between peak point and peak side using 

 1-
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  (2.42) 

a large value is usually yielded so that an obvious impulse appears. 

 

Figure 2-24  Teager output for each signals. 
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RSFS, as shown in Figure 2-21, four outstanding peaks at 0, m1, m2 and m3 are obtained, as 

shown in Figure 2-24. 

 But the relative time delay of each RSFS is not enough to estimate the wave 

characteristics. The magnitude of each peak in TKEO output is not constant but fluctuating 

because of the propagation of the ocean waves. The fluctuation of the magnitude is related 

to the wave period. Therefore, we try to estimate the wave period from the fluctuation of the 

magnitude of each peak in TKEO output. 

2.4.2 Fourier Transform 

The Fourier transform [26, 27] is an operation which translates a signal from the time 

domain to the frequency domain. Given a signal x(t), its continuous Fourier transform and 

N-point discrete Fourier transform are given by 
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 In practical, the Fast Fourier Transform is used to compute the discrete Fourier 

transform efficiently, and we can obtain the frequency characteristics composed of 

amplitude characteristics |x(k)| and phase characteristics∠x(k). 

 Here an example of Fast Fourier Transform is given. The supposition is that there are 

two sinusoidal signals x1(t) and x2(t) with same frequency (f=0.1Hz).  Their phases and 

amplitudes are different, as shown in Figure 2-25. 

)2/2sin()(x1   ftt  and )4/2sin(5.0)(x2   ftt  

 With the Fourier transform, the amplitude characteristics and phase characteristics are 

shown in Figures 2-26 and 2-27. In Figure 2-26, the two peaks stand out at the same 

frequency of 0.1 Hz, and the phases of the two signals are π/2 and π/4 respectively in Figure 

2-27. If these two signals denote the magnitude variations of two peaks in TKEO output, the 

wave period, wave speed and wave length can be estimated. 
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Figure 2-25  Two sinusoidal signals.  

 

 

Figure 2-26  Amplitude characteristics.  
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Figure 2-27  Phase characteristics. 

 Concerning the amplitude characteristics, the frequency indicated by the significant 

amplitudes is considered as the frequency of big ocean wave. Therefore the wave period (Ts) 

can be obtained as the reciprocal of the remarkable frequency. On the other hand, the wave 

speed (Vs) can be estimated with the phase difference Δφ between the phase characteristics 

of two fluctuations of TKEO output. The propagation time Δt is proportional to phase 

difference (Δt = Ts×Δφ/2π) and the propagation distance Δd is the range between two 

reflection points. Therefore, the wave speed can be calculated as the Vs = Δd/Δt. Finally, the 

wave length (λS) is λS = Ts×Vs. 

2.4.3 Calculation of Wave Characteristics 

 In the ocean wave remote sensing system, the wave characteristic estimator is 

developed to estimate wave period, wave speed and wave length. Figure 2-28 shows the 

functional modules of the wave characteristic estimator. 

 The Doppler shift and the arrival times of the LOS signal are estimated with the 

software receiver. The arrival times of the LOS signal are then transferred to the wave 

characteristic estimator as a time reference to align the arrival times of reflected signals. 

The correlator resolves correlations for every millisecond RSFS according to the time 
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Figure 2-28  Functional modules of wave characteristic estimator. 

reference. However the RSFS cannot be identified from a single correlator output because 

of the low level of carrier-to-noise ratio (C/N0). After the arrival time correction, the 

averaging of correlator results can be used to reduce the noise. After that, the TKEO of the 

averaged correlator outputs are calculated to identify the RSFS. The Fourier transform is 

used to obtain the amplitude characteristics and phase characteristics. If sea swells exist, the 

fluctuation of the amplitude characteristics occurs and then the wave period (Ts) and phase 

difference (Δφ) can be estimated. Finally the wave speed (Vs) and wavelength (λS) are also 

resolved.  

 Another issue is how to select the objective satellite. Usually, during ocean wave 

measurement only one GPS satellite is selected, the one which is flying over the objective 

sea-surface. The satellite elevation impacts reflected signal intensity and measurement 

resolution. A higher satellite elevation results a lower reflected signal intensity and higher 

measurement resolution, on the other hand, a lower satellite elevation results a higher 

reflected signal intensity and lower measurement resolution. 
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2.5 True Wave Characteristics 

The wave characteristics measured in one direction on the objective sea-surface cannot be 

considered as the true values because the array antenna direction is must not always be in 

the direction of ocean waves. The direction of ocean waves is even unknown during 

measurement. Figure 2-29 shows the measurement errors of wave characteristics. The two 

parallel lines denote the crests of two waves; the arrow perpendicular to these two waves 

shows the wave direction; and the other arrow is the antenna direction pointing to the array 

antenna. The included angle θ is equal to the difference angle between the wave direction 

and the antenna direction. Therefore the true wavelength is |PO| and the measured 

wavelength is |PA|, and 

 |PO| = |PA|cos⁡(θ)  (2.45) 

 

Figure 2-29  Measurement errors of wave characteristics. 

Usually the difference angle is not zero so that the measurement error of wavelength is 

inevitable. It is obvious that the measured wavelength is longer than the true wavelength. 

Nevertheless, the measured wave period is almost the true wave period because the system 

observes the wave propagates from P to A during the wave propagates from P to O. As a 

result, the measured wave speed is not the true wave speed because the system observes the 

wave propagates a longer distance |PA| than |PO| in the same wave period, in other words 

the measured wave speed is larger than the true wave speed. 
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If the true wave direction is unknown, the difference angle θ cannot be determined. So 

the true wave speed and the true wave length cannot be estimated correctly. Hereon, two 

proposals are suggested to estimate the true values of wave characteristics. This first one 

uses two ocean wave remote sensing systems to measure the wave characteristics in two 

directions simultaneously, referred to as Double Systems Double Direction (DSDD); the 

second one uses only one system to measure wave characteristics in two directions 

separately, referred to as Single System Double Directions (SSDD). The detailed methods 

will be introduced in the following sub-sections. 

2.5.1 Double Systems Double Directions 

The Double Systems Double Directions is configured with two ocean wave remote sensing 

systems which have two intersecting bore sights on the objective sea-surface, as shown in 

Figure 2-30. Each array antenna denotes one ocean wave remote sensing system. P is the 

intersection point fixed by the bore sights. Although these two systems measure the 

identical sea-surface circled with a dashed line, the results of wavelength |PA| and |PB| are 

generally different because these two systems don’t necessarily measure the true wave 

direction.  

 

Figure 2-30  Double systems double directions. 

If a parallelogram PACB is established on the sea-surface with two adjacent sides |PA| 
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receive the RSFS from the identical objective sea-surface simultaneously and the true 
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wavelength can be estimated with two resultant wavelengths. Similarly, the true wave speed 

can also be estimated with two resultant wave speeds using the relationship of the vectors as 

shown in Figure 2-30. 

2.5.2 Single System Double Directions 

 

Figure 2-31  Single system double directions. 

 The Single System Double Directions uses one ocean wave remote sensing system to 

measure true values of wave characteristics, as shown in Figure 2-31. The system denoted 

by the array antenna measures two different wavelengths |AP| and |B’P’| in two directions 

on the objective sea-surface. A triangle APB is established by translating the vector B’P’ 

until point P’ and point P are combined. The perpendicular line |OP| points to the true wave 

direction and its length is the true wavelength. The single system can also measure the 

true wave speed if the relationship of the vectors in Figure 2-31 are used to the resultant 

wave speeds in two directions. 

Each of these proposals has its advantages and disadvantages. The DSDD has to be 

made with two systems but the wavelengths are measured from the same ocean wave 

propagations because the data recording can be performed simultaneously; the SSDD can 

work with only one system but the wavelengths have to be measured from different ocean 

waves. Moreover, the data recording time will be almost double that of DSDD. However, in 

any proposals, two objective satellites over the objective sea-surface are need when the 

measurements are performed.
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CHAPTER 3                           

SYSTEM CONFIGURATION 

The ocean wave remote sensing system estimates wave characteristics using two signal 

channels: LOS channel and multipath channel. The signals transmitted in these two 

channels are received simultaneously. As shown in Figure 1-3 in Chapter 1, the ocean wave 

remote sensing system contains two sub-systems to process these two signals. The 

sub-system processing the LOS signal includes the conventional antenna, the conventional 

GPS receiver and the software receiver. These three main components can be obtained from 

market. However the sub-system processing the RSFS has to be developed by ourselves 

because of the special characteristics of the array antenna and the RF front end, and the 

special processing steps of the wave characteristic estimator. Therefore, this chapter will 

focus on the configurations and developments of the array antenna, the RF front-end and the 

wave characteristic estimator. 

 Based on the development of these special equipment and software, we developed the 

prototype of the ocean wave remote sensing system. Then the ocean wave remote sensing 

system was evaluation with the numerical simulation and the experiments which will be 

introduced in next chapter. 

3.1 Array Antenna 

3.1.1 Directional Pattern 

GPS antennae are usually considered as a part of GPS receivers. A conventional GPS 

antenna for positioning and navigation has a wide directional pattern to receive information 

from as many satellites as possible. In general, the antenna gain towards the zenith is high 

while it gradually decreases towards the horizon, and the peak gain can reach several dBi. 

That kind of antenna can receive not only the GPS signals transmitted directly from 

satellites but also the reflected signals, i.e. multipath propagations of GPS signals. In the 
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proposed ocean wave remote sensing system, however, the desirable reflected signals 

should come from the objective sea-surface, that is to say, the reflected signals from other 

areas are undesired and should be removed or attenuated. Therefore, the array antenna [1, 2] 

which has a directional pattern has been decided to be utilized to receive signals from 

specified direction. 

 Here, we consider the Uniform Linear Array (ULA) in which the elements are identical 

and denoted with black points. They are aligned in a straight line with equal separations (d), 

as shown in Figure 3-1. 

  

Figure 3-1  Configuration of uniform linear array antenna. 

 According to the antenna theory, the receiving pattern of the uniform linear array 

antenna is expressed by the array pattern multiplication property, i.e. the array pattern is the 

product of the antenna element pattern multiplied with an array factor. 

 )(R)()(  AFF   (3.1) 

where θ is the signal reception angle relative to the array. F(θ) is the receiving pattern of the 

array antenna, AF(θ) is the array factor and R(θ) is the radiation pattern of single antenna 

element. In addition, the radiation pattern of antenna has identical shape to its receiving 

pattern according to the reciprocity [3 ,4]. Here the array factor of the uniform linear array 

is 
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the antenna pattern can be described as follows, 
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 If the distance d is set to be half of wavelength of electromagnetic wave and 16 patch 

antennae are aligned, the antenna pattern becomes 
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 Consequently, the ideal directional pattern of the array antenna is illustrated in Figure 

3-2. The directional pattern has a narrow fan-beam on the broadside with which the signals 

from the broadside are enhanced and the others from side directions are diminished. The 3 

dB beam width is about 10 degrees. 

 

Figure 3-2  Ideal directional pattern of the array antenna. 
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3.1.2 Antenna Construction 

The array antenna is designed and constructed to receive GPS signals reflected from the 

sea-surface. It is a uniform linear antenna array made up of 16 elements of LHCP GPS 

patch antennae spaced in half wavelengths (approximately 95.2 mm). Figure 3-3 shows the 

configuration details of the array antenna. The 16 patch antenna elements are fixed and 

aligned in a horizontal line. 

 

Figure 3-3  The construction of array antenna. 

  

Figure 3-4  Frequency characteristics of the pre-amplifier. 

 Considering the line loss of long cables connected with a receiver and the weak signals 

reflected from far away, a high gain pre-amplifier is mounted as a part of the array antenna. 

95.2mm 
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Figure 3-4 show the frequency characteristics of the pre-amplifier. The transmitter sends the 

signals with the level of -50 dBm. The intensity of the output signals of the pre-amplifier is 

-28 dBm. The total gain of the pre-amplifier is about 32.3 dBm if the 10.3 dBm loss of the 

testing system is considered. 

 The bandwidth of the pre-amplifier is estimated to be about 40 MHz. That means that 

the center frequency and the bandwidth of the output signal of the array antenna are 

1575.42 MHz and 40 MHz respectively. 

 Figure 3-5 and Figure 3-6 show the photos of the front and the rear of the array antenna 

with two conventional antennae of the GPS compass on its sides. The array antenna is 

installed on a rotatable tower with which the direction of the array antenna can be changed 

360 degrees in the horizontal direction and 90 degrees in the vertical direction. The 

direction of the array antenna should be adjusted smoothly according to the GPS compass 

when the azimuth of the objective satellite changes. The rear is covered with a piece of wire 

cloth to strengthen the electromagnetic shield and to mitigate reflected signals from its 

behind. 

 

Figure 3-5  Front of the array antenna. 
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Figure 3-6  Rear of the array antenna. 

3.1.3 Antenna Testing 

 

Figure 3-7  Array antenna test in the electromagnetic wave anechoic chamber. 
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 The directional pattern of the array antenna was tested in the electromagnetic wave 

anechoic chamber at the Furuno Electric Company, as shown in the Figure 3-7. In the 

electromagnetic wave anechoic chamber, the one patch antenna transmitter emitted LHCP 

110 dB (μV) 1575.5 MHz UHF signals. The array antenna was set 10 meters away from the 

transmitter. The walls of the room could absorb the reflections of electromagnetic waves 

completely. Therefore the signals received with the array antenna were considered as the 

signals transmitted by the patch antenna directly. During test, the array antenna turned 360 

degrees slowly to generate the 360-degree directional pattern or antenna' gain (dB) with and 

without wire cloth.  

 The measurements of the antenna' gains (dB) of a single LHCP GPS patch antenna was 

also made in the electromagnetic wave anechoic chamber under the same condition. The 

patch antenna has a gain of about 5dBi. Therefore, the gain (dBi) of the array antenna 

relative to isotropic antenna can be obtained using the measured antenna' gains (dB) of the 

arrayed antenna and the patch antenna.  

 𝐺𝐴𝑑𝐵𝑖 ⁡= ⁡𝐺𝐴𝑑𝐵 ⁡− ⁡𝐺𝑃𝑑𝐵 ⁡ + ⁡5dB (3.6) 

where GAdBi is the array antenna gain in dBi, GAdB is the array antenna gain in dB, and 

GPdB is the patch antenna gain in dB. It should be noted that the high gain of the array 

antenna is also contributed partially by the pre-amplfier mounted as a part of the antenna. 

 

Figure 3-8  Directional pattern of array antenna (without wire cloth). 
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Figure 3-9  Directional pattern of array antenna (with wire cloth). 

 Figure 3-8 and 3-9 shows the directional patterns of the array antenna in horizontal 

plane by the dBi with and without wire cloth. By comparing these two figures, we found 

that the side lobes of the directional pattern are diminished if the wire cloth covered. In 

particular, the back lobe is cut off by 10 dB. Therefore, the wire cloth is necessary and 

effective in order to achieve a narrow fan beam directional pattern of the array antenna. 
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3.2 RF Front-end 

3.2.1 Bandwidth Determination 

In the GPS applications of positioning and navigation, the bandwidth of the IF signals in the 

conventional GPS receiver is consistent with the transmitted signal bandwidth set to 2 MHz 

to attenuate noise. However, a bandwidth of 2 MHz is not sufficient to identify each RSFS. 

We need to determine an appropriate bandwidth for RSFS detection. The bandwidth effects 

are shown in two aspects. One is the band-limited effects of the RF front-end, and the other 

is the band-limited effects of the TKEO. The former explains how the bandwidth deforms 

the output of RF front-end and the latter shows whether the TKEO is able to identify each 

RSFS or not. 

 The signal bandwidth is limited by the bandwidths of elements in the array antenna and 

the RF front-end. As the bandwidth of the array antenna is 40 MHz, 40 MHz can be selected 

as the maximum signal bandwidth. 

Band-limited effects of RF front-end 

 

Figure 3-10  Band-limited effects of RF front-end 
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 The band-limited effects of RF front-end are demonstrated with the impulse responses 

[5] of an impulse series. We suppose that the input signals of the RF front-end include the 

LOS signal and several RSFS, as shown in Figure 3-10. The LOS signal is received at 0 and 

three RSFS are received at 14, 15 and 16 microseconds respectively, namely the time 

interval of each RSFS is 0.01 microseconds which is consistent with sampling period in the 

ocean wave remote sensing system. The vertical straight lines denote the impulse signals 

and other curves are the impulse responses for different bandwidths. 

 Firstly, a 2 MHz bandwidth is used but the impulse responses (heavy line) does not 

show any shape coincident with the input impulse series. The signals cannot be 

distinguished at all. Secondly, the bandwidth is broadened to be 10 and 20 MHz 

respectively. The signals can hardly be separated from each other in the impulse responses 

(dot line and fine line). Finally, the total bandwidth of 40 MHz is evaluated and there are 

several peaks in its impulse responses (dash line) so that the each RSFS can be easily 

identified. Therefore, 40 MHz is chosen as the bandwidth of RF front-end. 

 The RSFS ought to be detected with TKEO but not the output signals of the RF 

front-end. However it is still unknown whether the TKEO can identify each RSFS with 40 

MHz bandwidth or not. In the following discussions, the band-limited effects of TKEO are 

evaluated to show that 40 MHz is a proper bandwidth. 

Band-limited effects of TKEO 

 Here the four GPS signals at each impulse position as shown in Figure 3-11 are used to 

examine the band-limited effects of TKEO. The Figure 3-11 (a) shows the series of GPS 

signals. Figure 3-11 (b) ~ (e) shows the calculated TKEO outputs with 2, 10, 20, and 40 

MHz bandwidths respectively. The circles represent the TKEO outputs, and the black 

circles denote the TKEO outputs at signal positions.  

 In Figure 3-11 (b), there are no outstanding values because the TKEO outputs steadily 

increase. In Figure 3-11 (c) and (d), the black circles cannot be distinguished clearly from 

other while circles. In Figure 3-11 (e), the three outstanding black circles come out and can 

be identified from the white circles using 40 MHz bandwidth. Consequently, it is confirmed 

that the 40 MHz bandwidth is the appropriate selection for the RF front-end.  
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(a)  A series of GPS signals. 

 

(b)  TKEO outputs (BW=2MHz). 

 

(c)  TKEO outputs (BW=10MHz). 

 

(d)  TKEO outputs (BW=20MHz). 

 

(e)  TKEO outputs (BW=40MHz). 

Figure 3-11  Band-limited effects of TKEO. 
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3.2.2 Design of RF front-end 

The block diagram of RF front-end is shown in Figure 3-12. The incoming signal at the left 

side has the center frequency of 1575.42 MHz and the bandwidth of 40 MHz. The first 

component, an amplifier, is used to raise weak signals to an appropriate magnitude because 

the GPS signal power reflected from sea-surface is so weak that it is not strong enough to be 

processed by following components. The Voltage Controlled Oscillator (VCO) generates 

1400MHz oscillator signals for mixer in which the signal is down-converted to an IF with 

the center frequency of a 175.42MHz. The Analog-to-digital converter has up to a 100 MHz 

sampling frequency. 

 The down-converted IF signal has 175.42 MHz center frequency larger than the 100 

MHz sampling frequency, therefore the under-sampling frequency technique is utilized. The 

under-sampling [6] processing translates the all frequency components into the 1st Nyquist 

Zone from DC to 50 MHz (half of the sampling frequency) without aliasing, and the center 

frequency of the A/D converter output is translated from the 175.42 MHz to 24.58 MHz. 

 

Figure 3-12  RF front-end. 

3.2.3 GP2015 Based Front-end 

Usual commercial front-end cannot satisfy the desired conditions of a 40MHz bandwidth. In 

the ocean wave remote sensing system, the RF front-end GP2015 [7] made by Zarlink 

Semiconductor Inc. is chosen to provide the crucial functional unit of the designed RF 

front-end.  
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Figure 3-13  Part of the block diagram of GP2015. 

 Figure 3-13 shows a part of the block diagram of the RF front-end GP2015. The first 

down-conversion stage satisfies the design of our RF front-end. The 38th  pin provides the 

IF output with 175.42 MHz center frequency, especially the 40 MHz bandwidth of the 

incoming signal (RF input) is maintained. 

 

 

  Figure 3-14  Evaluation board of GP2015 
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 Figure 3-14 shows the evaluation board. This evaluation board is designed for common 

navigation applications so that that sampling frequency is low. Therefore, we have to 

connect the 38th pin with an external 100 MHz ADC. The NI PXI-5122 high-speed 

digitizers made by National Instruments converts the analog IF output of the mixer into 

digital signals with 100MHz sampling rate. 
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3.3 Wave Characteristic Estimator 

Until now the configurations of the array antenna and the RF front-end have been described 

in this chapter. During ocean wave measurements, the LOS signal and the reflected signals 

transmitted by the objective satellite are recorded synchronously, and the digitalized signals 

are recorded by a hard disc drive and processed in the off-line mode with the wave 

characteristic estimator. The detailed processing methods are discussed in this section. 

3.3.1 Processing of LOS signal 

The necessary information extracted from the LOS signal is the Doppler shift and the 

arrival time of the LOS signal, while the azimuth and the elevation of the satellite are 

provided with a conventional GPS receiver. The Doppler shift is a relative change of the 

center frequency of GPS signal. Before processing the massive signals continuously the 

shifted center frequency has to be obtained to avoid searching the center frequency at any 

single correlation calculation, which always exists and has an almost constant value over a 

short term. The arrival time of the LOS signal is used as a time reference to align the 

calculation results of correlator. The arrival time of LOS cannot be estimated precisely from 

RSFS because of the severe fading of the RSFS. The Doppler shift [8] fd is expressed as 

 cd f
c

v
f


   (3.7) 

where Δv is the velocity of the satellite with respect to the receiver, fc is the center frequency 

1575.42 MHz and c is the velocity of light.  

 In practice, the Doppler shift fd is not calculated with the above equation because the 

velocity which is Δv is unknown. The Doppler shift is estimated with correlation results 

calculated with different frequencies around fc. If the signals of objective satellite are 

contained in the received signals, the correlation will yield a remarkable value when the 

precise shifted center frequency is used. 

 The arrival time of the LOS is estimated with the LOS channel. Generally the position 

of the maximum value of the correlation result in the time length of one C/A code (1 ms) 
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indicates the arrival time of the LOS. But it is largely affected by the Doppler shift, unstable 

ionospheric delay and multipath so that a continuous series of arrival times of the LOS has 

an obvious decreasing or increasing trend caused by the Doppler shift and small 

disturbances caused by the ionospheric delay and multipath. Usually, the trend is corrected 

with the Least-Squares line method for a short term, and the small disturbances are removed 

with the Least-Squares higher degree polynomials. 

3.3.2 Processing of RSFS 

The calculation of correlation is the core function of the wave characteristic estimator. The 

estimations of the Doppler shift and the arrival time of the LOS are also based on the 

correlation results. For this reason, the calculation method of the correlator is introduced. 

There are several correlation algorithms we can choose. The processing of the efficient 

method referred to as Parallel Code Phase Search Acquisition [9] is chosen, as shown in 

Figure 3-15. 

 

Figure 3-15  Block diagram of the correlator. 

 The incoming signal is the output of ADC with a 100 MHz sampling frequency and the 

correlator output is the circular cross-correlation between the incoming signal and the 

corresponding PRN code.  
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sequence of the PRN code, X(k) and Y(k) are the discrete Fourier transform of x(n) and y(n) 

respectively, then the discrete Fourier transform Z(k) of the circular cross-correlation z(n) 

between x(n) and y(n) can be expressed simply as the following equation. 

 )()()( * kYkXkZ   (3.8) 

where * denotes complex conjugate. Consequently, the circular cross-correlation z(n) can be 

obtained through inverse Fourier transform of Z(k). 

 Before calculating the circular cross-correlation, the carrier wave of the incoming 

signal should be removed by the multiplication with the locally generated carrier signal. 

However not only the in-phase signal I but also the quadrature signal Q is necessary 

because the phase of the incoming signal is unknown. The I and Q signals are combined to 

become a complex signal and the discrete Fourier transform converts the complex signal 

into the frequency domain. The locally generated PRN code signal is also transformed into 

the frequency domain and complex conjugated. Consequently, the multiplication of 

equation 3.8 is calculated and the result is translated into time domain with the inverse 

Fourier transform, and the circular cross-correlation is generated as the absolute values of 

the output of the inverse Fourier transform. In order to identify RSFS, the TKEO should be 

calculated on the correlator output according to the TKEO algorithm introduced in Chapter 

2. The TKEO is usually performed on the correlator output averaged over a certain time 

length. 

 Figure 3-16 shows an example of the correlator output and TKEO output of a 

composite signal. The composite signal contains two signals and the sample difference is 40 

between the GPS signal at 0 and the GPS signal at 40. Applying the algorithm of Parallel 

Code Phase Search Acquisition, the correlator output is a curve with two obvious peaks, but 

it is difficult to tell the precise positions of the peaks. And it is also difficult to confirm 

whether any other peaks exist or not.  However the two remarkable peaks at 0 and 40 

illustrate the precise positions of the peaks. Consequently the relative time delay of the 

signal at 40 is estimated if the signal at 40 is considered as the RSFS. 

 Nevertheless, the wave characteristics cannot be estimated with only one result of the 

relative time delay. The relative time delay explains which area reflects the RSFS but does 

not contain the wave information. It is easy to understand that the intensities of the RSFS 
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are varying because of the ocean wave propagation. If the TKEO outputs can show the 

variation of the intensities of the RSFS, the wave period and wave speed may be estimated. 

Therefore, we examine the performance of the TKEO to present the variation of the 

intensities of RSFS. 

  

Figure 3-16  Example of outputs of correlator and TKEO. 

 

Figure 3-17  Amplitude variations of two RSFS. 
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 Here, an example is given to demonstrate how to use the TKEO output to estimate the 

wave characteristics. The RF front-end outputs a composite signal containing one LOS 

signal and two RSFS (RSFS1 and RSFS2) without noise, and let the amplitude of the LOS 

be 1, and the amplitudes A1 and A2 of two RSFS are fluctuating as 

 A1 = 0.6 + 0.3 cos(2πft) (3.9) 

 A2 = 0.4 + 0.2 cos(2πft − 3π/4) (3.10) 

where f = 0.05Hz, the frequency of the amplitude variation. The 3π/4 means the second 

amplitude variation of the RSFS has 17.5s = (3π/4) / (2πf) phase shift relative to the first 

RSFS. Figure 3-17 shows the amplitude variations of two RSFS. All the amplitudes of this 

two RSFS are less than the amplitude of the LOS signal. 

 Let the relative time delays of these two RSFS be 0.2μs and 0.25μs respectively. If the 

sampling frequency is 100MHz, the sample differences are 20 samples and 25 samples 

relative to the LOS signal. And we also consider the bandwidth of the composite signals to 

be 40MHz corresponding to the bandwidth of the RF front-end. One of correlator output 

and its TKEO output are shown in Figure 3-18.  

 

Figure 3-18  Correlator output and its TKEO output.  
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Figure 3-19  Top view of the aligned results of the TKEO output.  

 The correlator output is the total correlation of the composite signal, and the LOS signal 

can be identified from the correlator output but the two RSFS cannot be identified. However 

the two RSFS are identified obviously with two peaks at in the TKEO output. According to 

the amplitude variations of two RSFS shown in Figure 3-17, a series of TKEO out can be 

obtain, as shown in Figure 3-19. 

 

Figure 3-20  Magnitudes of two RSFS peaks. 
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Aligning all the results of the TKEO output using the reference position of the LOS peaks, 

we can obtain the top view of the aligned results of the TKEO output. The magnitude 

variations of the RSFS peaks can be seen and the magnitude of the LOS peak also varies 

slightly because of the signal fading. Figure 3-20 show the magnitudes of two RSFS peaks 

in the aligned results of the TKEO output. Comparing the Figure 3-20 with the Figure 3-17, 

it is found that the magnitudes of the RSFS peaks vary correspondingly with the amplitudes 

of the RSFS. Therefore, the magnitude variations of the RSFS peaks can reflect the 

intensity variations of the RSFS. Based on this, the wave period first can be estimated with 

FFT, and the wave speed can also be estimated if the phase difference between the two 

RSFS is calculated and the distance between two reflection areas is known. 

 

Figure 3-21  Amplitude characteristics.  
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is also resolved. Finally, wavelength is estimated as the multiplication of the estimated wave 

period and wave speed. 

  

Figure 3-22  Phase characteristics.  
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CHAPTER 4                           

SYSTEM EVALUATION 

The prototype of the ocean wave remote sensing system has already been designed and 

constructed according to the methodology and the system configuration expatiated in 

chapter 2 and 3. After that we tried to evaluate the performance of the prototype system 

with numerical simulation and coastal experiments. In this chapter, the numerical 

simulation and costal experiments will be introduced. 

 In the numerical simulation, we configure the simulation conditions based on the 

practical conditions of the system applications. Concerning the objective satellite, the 

elevation angle is set to be 25 degrees with which the proper intensities of the RSFS are 

able to be received and the distance resolution on the sea-surface is about 50 meters; the 

wave period is also selected according to sea swell which is destructive and frequently 

occurs near coasts. With the numerical simulation, we evaluate the prototype system and we 

can conclude that the measurement methods are reasonable and practical. 

 The numerical simulation is not sufficient to confirm that the whole system can work 

well to measure the characteristics of ocean waves. Therefore the experimental evaluation 

became the necessary way to measure ocean waves in a real environment where big waves 

are coming from the open sea. The processing of system evolution is also introduced. 

Thereby, we can understand how the design of the system was improved gradually and how 

the prototype system came out. With the prototype system, the wave characteristics of sea 

swell were measured successfully. Before the experiments, the 3rd typhoon named 

“MAWAR” developed on the west pacific near the Philippines on June 1st and then it moved 

toward Japan and slowing dissipated to the southeast of Japan in early morning of June 6th. 

Therefore the sea-surface was almost smooth during the morning of June 6th but the sea 

swells occurred in the afternoon on that day. So we were able to measure the ocean waves 

with two types of sea-states on the same objective sea-surface in one day. Also we were able 

to compare the measurement results from two types of sea-state and further confirm the 

measurement performance of the prototype system. 
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4.1 Simulation 

4.1.1 Simulation Processing 

The numerical simulation mainly processes three parts, GPS satellites, ocean wave and the 

ocean wave remote sensing system. In the first part, GPS signals transmitted from the 

objective satellites are generated.  The generated GPS signals will be received with the 

conventional antenna, and they will also be reflected from sea-surface and received with the 

array antenna. In the second part, ocean waves with given wavelength and period are 

generated near the ocean wave remote sensing system. The sea-surface with propagation of 

the generated ocean waves reflects the GPS signals generated in the first part. In the last 

part, the LOS signal and the RSFS are received and processed with the ocean wave remote 

sensing system. At last the characteristics of the generated ocean waves are estimated. 

Through comparing the estimated characteristic and the given characteristics, we can 

evaluate the measurement methods we proposed. Figure 4-1 shows the main functional 

models of the simulation processing. According to the sequence of the simulation 

processing, the main functional models are listed from top to bottom in the figure. The three 

parts of the processing are also shown. The arrows in the figure only denote the sequence 

order. 

 The upper functional model is to set simulation conditions which include the satellite 

status, the GPS signal parameters, the characteristics of ocean waves, and the installation of 

array antenna and so on. The L1 GPS signals are generated and the white noise is added in 

because the thermal noise of the environment exists. And here we only consider the C/A 

code and the carrier wave, and we ignore the navigation data. The powers of the signals and 

the noise are determined with the usual values on the Earth’s surface. 

 On the objective sea-surface, three things should be considered, i.e. wave form on the 

sea-surface, the intensities of the RSFS and the relative time delay of the RSFS. We use a 

spectrum model of sea swell to generate ocean waves on the sea-surface with certain 

wavelength and significant wave height. If we have the sea-surface with sea swell, the 

intensities of the RSFS are calculated with the scattering pattern of the reflection point, and 

the relative time delays of the RSFS are calculated with the geometrical relationship of the 
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satellites, the reflection points and the array antenna.  

 

Figure 4-1  Functional models of simulation processing. 
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output of the wave characteristic estimator indicates that the proposed ocean wave remote 

sensing system is possible to measure wavelength and wave period theoretically. 

4.1.2 Simulation Conditions 

Table 4-1  Simulation conditions. 

 Characteristic Value 

Simulation time resolution 0.25 ns 

Sea-surface facet 1 m2 

GPS satellite 
elevation 25 deg. 

azimuth 180 deg. 

Ocean wave 

(Sea swell) 

water depth 10 m 

period 20 s 

length 200 m 

significant height 2 m 

direction 0 deg. 

Array antenna 
antenna height 50 m 

direction face to satellite 

 

Table 4-1 shows the conditions of the numerical simulation, such as the status of satellites, 

the characteristics of ocean wave, and the installation of the antenna. The ocean wave 

characteristics are selected from a relatively long period sea swell [1]. The relationship of 

water depth, period and length can be validated using the dispersion relation mentioned in 

section 2.1.1. 

 According to the Nyquist sampling theorem, the representative frequency of the GPS 

signals is set to be 4 GHz (simulation time = 0.25 ns) more than twice the frequency L1 is 

1575.42. Higher representative frequency can also be used to generate GPS signals but the 

final estimation results are almost same because the RSFS will be resampled with frequency 

100MHz. The size of the grid on the sea-surface is 1 square meter which is much shorter 

than the wave length. Meanwhile, it is easy to calculate the intensity because the unit of the 

signal intensity is watt per square meter. The 25-degree satellite elevation is reasonable to 

ensure the enough intensity of the RSFS and about 33-meter distance resolution on 

sea-surface when the array antenna is installed 50-meter height over the sea-surface. The 
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array antenna is facing the objective satellite because the 180-degree satellite azimuth and 

the 0-degree direction of the array antenna. The wave period of the sea swell is set to be 20 

seconds because usually the periods of sea swell ranges from 10 seconds to 30 seconds. 

 

Figure 4-2  Distance resolution. 
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conditions of the GPS satellite and the array antenna, the distribution of the relative time 
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away from the array antenna. The reflected signals from the farther sea-surface have the 

longer relative time delays. The distribution has a step shape because some RSFS have 
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frequency is 100 MHz. Therefore, the distance resolution of 33-meter can be obtained from 

the step-shape. And we also know that the resolution is not uniform. 

4.1.3 Signal generation 

The generation of GPS signal is the multiplication of the C/A code and the carrier wave. 
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Figure 4-3  GPS signal generation. 

Figure 4-3 shows a 0.01μs segment of GPS signal. The bold line is C/A and it jumps 

from 1 to -1 at the 22th sample. It is also found that the phase of the carrier is shifted by 180 

degrees at the same position. 

 

Figure 4-4  Frequency spectrum of the generated noise-free GPS signal. 
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The thermal noise is indispensable in a practical measurement environment. Therefore, 

the intensity of the RSFS should be strong enough otherwise the correlator cannot detect 

any signals. The intensity of GPS signals is descripted with the carrier to noise ratio. In the 

numerical simulation, the C/N0 should be determined since it varies due to channel 

conditions. Here, the C/N0 is calculated as follows, 

 )(log10C/N 100

n

s

P

P
  (4.1) 

where Ps and Pn are the RSFS power received by the array antenna and the noise power 

respectively. Usually -160 dBW carrier power at the Earth's surface [2] and -204 dBW noise 

power are used to generate GPS signals and white Gaussian noise [3]. The value of the 

C/N0 is not constant because of the fading of the RSFS. 

 

Figure 4-5  Noise spectrum and signal spectrum. 
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4.1.4 Wave Model 

As introduced in section 2.1.1, the sea-surface ocean wave can be descripted with various 

wave spectrums. Here, the wave spectrum model of sea swell is calculated using the 

following spectrum [4, 5], 

 























 


2
2

2

1
exp

216
)(

l

peak

l

s
kkH

kF


 (4.2) 

where Hs is a significant wave height, kpeak is the wave number of the spectral peak and σl is 

the spectrum width. 

 

Figure 4-6  The modeled objective sea-surface. 
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be included and the intensities of RSFS are strong enough for receiving and processing. 
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color areas are the crests of the sea swells and the cool color areas are the troughs of the sea 

swells. The shapes of the sea swells are regular. As a result, we can image that the stronger 

reflection areas also distribute regularly and are moving towards the array antenna. The 

arrow indicates the wave direction and the black point mark is the position of the array 

antenna. The signals reflected from the area between the specular reflection point and the 

array antenna are masked because they have the same relative time delays as the signals 

reflected from the modeled sea-surface. 

 

 

Figure 4-7  Relative time delay distribution of the objective sea-surface. 

 With the generated sea-surface with big waves, the relative time delays of all points on 

the sea-surface can be calculated according to the geometrical relationships. Figure 4-7 

shows the relative time delay distribution of the sea-surface in front of array antenna. The 

size of the sea-surface is about 200m × 900m, where is the main reflection area for the array 

antenna. The warm color areas have longer relative time delays than the cool color areas. 
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We can find three facts about the relative time delay distribution. Firstly, the relative time 

delays increase with the increase of the distances away from the array antenna. Secondly, a 

series of ring-shaped areas exist, in which the relative time delays are homogeneous. It also 

means that all the signals reflected from the same ring-shaped areas will be regarded as one 

RSFS. Meanwhile, the distance resolution on the objective sea-surface is also demonstrated 

obviously. Finally, the boundaries of each ring-shaped area are not circle because the 

existence of big wave has redistributed the relative time delays. 

4.1.5 Scattering Pattern 

Only parts of RSFS can reach the array antenna. The amount of the RSFS reaching the array 

antenna is related to the scattering pattern of the modeled objective sea surface because the 

scattering pattern determines the signal intensity reflected from the modeled sea-surface in 

any scattering direction. According to the practical remote sensing environment on a rough 

sea-surface, a scattering pattern is defined by the bi-directional reflectance distribution 

function as follows [6]. 
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where, )cos(sinsincoscoscos 011010   , and 

 θ0: incidence angle, [0,π/2]; 

  θ1: scattering angle, [0,π/2]; 

 k: factor of intensity along normal direction, [1,∞]; 

 g: anisotropy factor, (-1, 1); 

 Θ: scattering phase angle; 

 φ0: azimuth angle of satellite, [0,π]; 

 φ1: azimuth angle of reflection, [0,π]. 

 Figure 4-8 shows a scattering pattern from the reflected point P. The scattering pattern 

calculated with equation 4.3 is shown by dashed lines which are set by setting the 
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coefficients “k” and “g” to be 2 and 0.7, φ1－φ0 and θ0 to be π and 7π/18 respectively.  The 

incidence signal is “I”, the normal direction of the scattering surface is “N”, the direction to 

the antenna point is “S”. These three vectors locate in the same plane which is 

perpendicular to the sea-surface. We suppose that the energy of incidence signals is totally 

scattered into the air. The scattering coefficient “R” is decided by the magnitude of the 

scattering pattern from point “P” on the sea-surface. The magnitude is scaled with the 

length between point “p” and each point of the scattering pattern, and it is found that the 

scattering magnitude in the specular reflection direction obtain its maximum. 

  

Figure 4-8  Scattering pattern. 

4.1.6 Received Signals 

Three characteristics of the signals received by the array antenna should be considered, 

signal intensities, relative time delays and polarization. The received signal intensities are 

determined by the distance between the refection points and the array antenna, the 

scattering pattern of the sea-surface and the directional pattern of the antenna; the relative 

time delay can be calculated using the geometrical relationship of reflection introduced in 

section 2.2.4.  

 After each RSFS with a relative time delay has been generated, the received signal at 

the array antenna is calculated according to the next equation [7]. Let (i, j) be the 

N 

I 

S 

P 

θ1 

Rough sea-surface 

θ0 

(Reflection point ) 



 Simulation 93 

 

 

coordinates of the reflected point on the sea-surface. 
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where attenuation factors di,j(t) is the distance from the reflection point coordinate (i, j) to 

the array antenna, Ri,j(t) is the scattering coefficient at the reflection point, and Ei,j(t) is the 

electric field intensity of the incident wave at the array antenna from the coordinate (i, j). τi,j 

is a time delay, and RSFS(t - τi,j) is the reflected signal from the sea surface with time delay 

τi,j.  

  

Figure 4-9  Normalized reflected signal intensities. 

 The normalized intensities of the received signal calculated with equation 4-4 without 

time delay τi,j can be illustrated on the modeled sea-surface in Figure 4-9. From this figure, 
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measured. Note that the received signal at the array antenna should be calculated by 

considering the relative time delay of the reflected signal.  

 

Figure 4-10  Normalized intensities of RSFS from ring-shaped areas. 

 According to the ring-shaped areas in the relative time distribution shown in Figure 4-7, 

the RSFS reflected from same ring-shape can be regarded as one signal. The intensities of 

received signals reflected from the series of ring-shaped areas can be illustrated in Figure 

4-10. We can find that the fluctuation of the intensity is corresponding to the wave forms of 

the generated sea swell in Figure 4-6. With the propagation of the sea swell, the received 

signal intensity in a ring-shaped area is varying, and the distance between the stronger 

intensity areas is approaching to the wavelength. 

 Now, we have obtained the received GPS signals of only one millisecond. Accordingly, 

one correlator output and TKEO output can be computed. However it is not enough to 

estimate the characteristics of the sea swell. Here are three reasons. Firstly, the correlator 

outputs include so much noise that averaging the correltor outputs over a certain time length 

become necessary; secondly, sometimes the RSFS cannot be detected because of the signal 

fading, this is to say, sometime the RSFS is detectable and sometime not so that long time 

signals are necessary; thirdly, the wave period calculation with FFT needs a series of 

continuous signals of TKEO outputs. 
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4.1.7 Simulation Results 

The wave characteristic estimator is used to estimate the wavelength, the wave period and 

the wave speed of waves moving in the direction of the antenna array. In the numerical 

simulation, the computation of the Doppler shift of RSFS and that of the arrival time 

correction are not necessary because the Doppler shift and the arrival time of the RSFS are 

given. 

 50-second received signals are generated and input into the correlator. The time length 

is over twice the wave period of the sea-swell and the waves will be propagating 500 meters 

towards the array antenna. The correlations between the received signals and the locally 

generated C/A code are calculated and the TKEO outputs are also calculated. Figure 4-11 

show one correlator output averaged over 1 second and its TKEO output. In the TKEO 

output, some remarkable peaks can be found to be corresponding to waveforms of the sea 

swell. The averaged TKEO for the 50-second received signals is shown in Figure 4-12. The 

warm color areas denote remarkable peaks in TKEO outputs. The traces of these remarkable 

peaks are descending gradually alone with time. This implies that the stronger reflection 

areas are propagating to the array antenna because of movements of sea swells. This is the 

reason why the movements of ocean waves can be measured by means of the measurements 

of the variations of the RSFS. 

 

Figure 4-11  Correlator and TKEO output signals.  
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Figure 4-12  Top view of aligned results of averaged TKEO. 

  

 

Figure 4-13  Variations of three TKEO time signals. 
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out a series of TKEO outputs along the time axis to estimate the wave period, which has the 

same horizontal distance from the array antenna. In other words, the selected TKEO outputs 

represent the RSFS which have the same relative time delay. These TKEO outputs are 

referred to as TKEO time signals (TKEOt). Here several TKEOt are selected to estimate the 

wave period. If the sea swells exist, the remarkable frequency component is considered as 

the wave period of the sea swells. 

 In Figure 4-12 three horizontal distances to the array antenna (d1=307.0, d2=415.0 

d3=518.0 meter on the vertical axis) are selected to estimate the wave period at first. Figure 

4-13 shows three variations of three TKEOt along the horizontal axis. It is easy to find the 

wave period of the three TKEOt using the Fourier transform. Firstly, the wave period near 

the reflected sea surface is estimated using the amplitude characteristics of the Fourier 

transform, and after that the wave speed is estimated using the phase characteristics of the 

Fourier transform. 

 Figure 4-14 and Figure 4-15 show the amplitude characteristics and the phase 

characteristics of the three TKEOt. In Figure 4-14, the amplitude characteristics of the three 

TKEOt have remarkable frequency component at same frequency. The remarkable 

frequency component with the maximum amplitude of the three TKEOt is obtained at 0.05 

Hz (fs), and the significant period of the wave is reciprocal of the frequency, 20.0 seconds 

(Ts).  

 In Figure 4-15, three phase values (φd1, φd2 and φd3) of the three TKEOt on the 

remarkable frequency 0.05Hz are shown. One wavelength (λs) of the signal at 0.05 Hz 

corresponds to 2π radians and 20.0 seconds, therefore the phase difference (Δφd1,d2) between 

two adjacent phases of the TKEOt is equivalent to the propagation time (ts) that the ocean 

wave moves the distance from d1 to d2 (Δd). Figure 4-16 shows the phase change of the 

three TKEOt. The wave speed can be estimated with the phase change. 

 In Figure 4-16, the vertical axis is the horizontal distance from the array antenna. The 

upper horizontal axis is the phase value (φ) of the TKEOt, and the lower horizontal axis is 

the propagation time (t) of the sea swells. There are three points for the phase values of the 

three TKEOt. The heavy line in this figure is the regression line of the three phase values, 

and the gradient of this line shows the wave speed (Vs=9.1 m/s) near the reflected surface. 

The relationship between wave speed (Vs), wave period (Ts) and wavelength (λs) is shown 
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by the equation, λs = Vs × Ts = 9.1 × 20.0 = 182.0 meters, thus the wavelength is obtained. 

From the simulation results, it is clear that the wave characteristics estimator is functioning 

well. 

 

Figure 4-14  Amplitude characteristics of TKEO time signals. 

 

Figure 4-15  Phase characteristics of TKEO time signals. 

 Table 4-2 shows the wave conditions and estimation results. The wave period is 
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There are several reasons affecting the accuracy. The main reason is that the generated 

sea-surface contains a lot of frequency components which also affects the reflection of 

RSFS. The waveforms of sea swells cannot be generated with same wave height and same 

wavelength. 

 

Figure 4-16  Phase change at three points of TKEO time signals. 

Table 4-2  Simulation conditions and results 

Characteristics Set value Estimated value 

Wave period [s] 20.0 20.0 

Wavelength [m] 200.0 182.0 

Wave speed [m/s] 10.0 9.1 
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4.2 Experiments 

4.2.1 System Evolution 

The current ocean wave remote sensing system was not built in a short term but went 

through a long evolution. The whole system was improved gradually through practicing 

with various testing and experiments. These testing or experiments deepened our 

understanding of the theories and techniques of ocean wave remote sensing. Wide 

bandwidth signal was needed to identify RSFS in the correlator output; the GPS compass 

was equipped to adjust the array antenna to aim at the objective satellite and the wire cloth 

was cover the back of the array antenna to cut off the reflected signals from behind; the 

array antenna was set to look up slightly to avoid the undesired signals from the area 

between the array antenna and the specular reflection point; TKEO was applied to identify 

RSFS in the correlator output. FFT was used in the wave characteristic estimator to 

calculate wave period and speed quantitatively. In this sub-section, some testing and 

experiments will be introduced to show the evolution process of the ocean wave remote 

sensing system. 

Initial design of the ocean wave remote sensing system 

 

Figure 4-17  Initial design of the ocean wave remote sensing system. 

 Figure 4-17 shows the initial design of the ocean wave remote sensing system [9]. 

There were two sub-systems. The upper one had a conventional RHCP antenna for 
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receiving the LOS signal and the lower one had a LHCP array antenna for receiving the 

RSFS. The two sub-systems had the same type of RF front-ends to sample GPS data 

simultaneously. The software receiver was used to calculate correlation. We expected the 

RSFS could be identified in the correlator output, and the wavelength could be estimated 

with single correlator output. 

 We built up the whole system through constructing the array antenna, selecting the RF 

front-end and programming the correlator in software receiver. And then some testing and 

experiments were conducted to validate the system and measurement method. 

  

 

Figure 4-18  Front and rear of the array antenna. 

 

Figure 4-19  Evaluation board of GPS front-end chip set ATR0603. 
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 Figure 4-18 shows the front and the rear of the array antenna. The uniform linear array 

is composed of 16 LHCP patch antennae and the center black box in the rear contains the 

pre-amplifier. The output of the pre-amplifier is passed to the RF front-end which is an 

evaluation board of GPS front-end chip set ATR0603. Figure 4-19 is the photo of 

theevaluation board. The array antenna is connected to the port in the right side of the board 

with a long cable and the analogue IF signals have the center frequency of 102.32997MHz. 

The analogue signals are under-sampled with 100MHz sampling frequency. The center 

frequency of the digital IF signals becomes 2.32997MHz (102.32997MHz – 100MHz). The 

bandwidth of the digital IF signal is 2MHz. 

 System testing 

 We did a testing of the array antenna and the front-end evaluation board. This testing 

was done on the roof of a tall building and the array antenna looked down to the ground, as 

shown in Figure 4-20. The height of the array antenna was about 14 meters over the ground 

and the depression angle of the array antenna was set to be 60 degrees to receive the signals 

     

Figure 4-20  Installation of the array antenna and the reflection ground. 

reflected from the ground. The elevation angle of the objective satellite was 45 degrees. The 

60-degree depression angle of the array antenna and the 45-degree elevation angle of the 

satellite could eliminate more energy of the LOS signals. 
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Figure 4-21  The correlation peak of the correlator output. 

 Figure 4-21 illustrates the correlation peak of the correlator output. It implies that the 

reflected signals of the objective satellites had been received successfully with the array 

antenna. 

 First sea-side experiment 

 After the testing on the roof, a sea-side experiment was conducted at Awajishima, 

Hyogo Prefecture of Japan. Figure 4-22 shows the wave conditions on the objective 

sea-surface and Figure 4-23 shows the array antenna installed on a tall building, about 25 

meters over sea level. The depression angle was adjusted to be 20 degrees. The direction of 

the array antenna was measured with a magnetic compass. The objective satellite was 

search with a conventional GPS receiver. The azimuth and elevation of the satellite were 

210 degrees and 27 degrees respectively. 
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Figure 4-22  wave condition on the objective sea-surface. 

 

Figure 4-23  Installation of the antennae. 

The correlation peak of the correlator output had almost same smooth curve as shown 

in Figure 4-21. This experiment validated that the GPS signals reflected from sea-surface 

could be received with the array antenna and detected with the correlator. However any 
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RSFS could not be identified from the correlation peak at all, and we even could not tell 

how much the correlation peak represented the RSFS because the array antenna also 

received LOS signal possibly with the 20-degree depression angle of the array antenna and 

the 27-degree elevation angle of the objective satellite. According to the experiment 

conditions, the relative time delay of the RSFS of the specular reflection area was about 

0.08μs. We believed that the RSFS could not be separated from LOS signal in the correlator 

output because of the short relative time delay. Therefore, we were prepared to conduct next 

experiment in a height site. 

 Sea-side experiment in a high site 

 A wave measurement experiment was conducted near the seaside of Japanese sea area 

of Kyotango, Kyoto, Japan. Figure 4-24 shows the wave conditions and Figure 4-25 shows 

the installation of the array antenna. The height of the array antenna was about 80 meters 

above the sea level. The elevation angle of the objective satellite was 27 degree. According 

to the geometrical relationship, the relative time delay of the RSFS of the specular reflection 

area was about 0.24μs. The position of the maximum value of the correlator output was 

1.26μs in Figure 4-26. Comparing the correlator output in Figure 4-21, another peak near 

1.50μs could also be detected [10]. Therefore we could confirm that the array antenna 

received a composite signal which included the LOS signal and the RSFS of the specular 

reflection area. The high experiment site lengthened the relative time delay of the RSFS. 

 

Figure 4-24  Wave condition on the objective sea-surface. 
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Figure 4-25  Installation of the array antenna. 

 

Figure 4-26  The correlation peak of the correlator output. 

  With the system testing and the sea-side experiments, we realized some constraints 

of the system. Firstly, the correlator output was seemed to be smooth because of the narrow 

bandwidth of the digital IF output of the RF front-end. More sharp peaks in the correlator 
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output could be obtained using adequate bandwidth of the RF front-end. Secondly, the peak 

near 1.50μs might represent the RSFS or the reflected signals from the back side of the 

array antenna. Thirdly, the signals reflected from the area between the array antenna and the 

specular reflection point should be mitigated because this area not only reflected strong 

signals but also they had same relative time delays with the signals reflected from the 

sea-surface far away from the specular reflection area. Additionally, the array antenna 

direction measured with the magnetic compass was not precise to aim at the objective 

satellite. 

Experiment with the improved system 

 We made some improvements on the system and the experiments. A new RF front-end 

was used (Figure 3-13 and Figure 3-14), which could output wide bandwidth IF output to 

obtain sharp correlation peaks; the back side of the array antenna was shielded with a wire 

cloth to cut off the reflected signals from behind (Figure 3-6); the array antenna was 

adjusted to look up slightly to avoid the undesired signals when receiving the RSFS in 

experiments; A GPS compass was used to measure the array antenna direction precisely to 

receive more RSFS from objective satellite (Figure 3-5). Figure 4-27 shows an averaged 

correlator output over 1 second with the improved system. There were several sharp peaks 

in the correlator output. Roughly the LOS signals and the RSFS could be identified. 

However it is impossible to pick out the LOS signal and separate one RSFS from the others. 

 

Figure 4-27  Correlator output.  
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Figure 4-28  TKEO output.  

 Finally the TKEO introduced in section 2.4.1 was used to identify each RSFS [11, 12] 

and the 40MHz bandwidth of the RF front-end was also determined using the band-limited 

effects of TKEO. The LOS signal could be identified but the RSFS were a group of peaks 

with which the wave characteristics could not be estimated because of the noise, as shown 

in Figure 4-28. Moreover, the peak for the LOS signal did not always appear because of the 

severe signal fading. 

 Consequently, we took two measures. On the one hand, the LOS signal was received 

with a 2MHz bandwidth RF front-end and processed with software receiver to calculate the 

precise arrival time of the LOS signals. On the other hand, the LOS signal and the RSFS 

were sampled simultaneously and the time length of the sampling was extended from 1 

second to 24 seconds. The FFT was also applied to analyze the 24-second TKEO output and 

estimate the characteristics of ocean wave. Finally, we designed the wave characteristic 

estimator to execute the correlator, TKEO, FFT and the calculations of wave characteristic. 

4.2.2 Experimental Evaluation 

 The current system is demonstrated in Figure 1-3, composed of the array antenna, the 

40MHz bandwidth RF front-end, the wave characteristic estimator, the GPS compass 

conventional receiver, the software receiver and so on. When the prototype of the whole 
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system was built completely, an experimental evaluation was carried out. 

 

Figure 4-29  Experiment site located on SUSAMI-coast. [Google Earth V7.0.3.8542. (March 28 

2011). SUSAMI, WAKAYAMA Japan.  33°33’3.22”N, 135°28’39.15”E, Eye alt 2.5 km.]. 

 Experimental conditions 

 The experiment was carried out on June 6th, 2012 with adequate wind and wave 

propagation from an approaching typhoon. Figure 4-29 shows the experiment site located 

on the SUSAMI-coast of WAKAYAMA Prefecture in Japan. The ocean waves come from 

the open sea into the objective sea-surface. The measurable direction of the antenna ranges 

from 20 to 50 degrees. The depth of the reflected sea area is about 10 meters. The ocean 

wave remote sensing system was set on the hillside 110 meters above sea level, which is 

marked by the white circle. 

 Figure 4-30 shows the distance resolution away from the specular reflection point. The 

small circle is the specular reflection point about 302 meters from the array antenna. We can 

know that the distance resolution was about 100 meters near the specular reflection point. 

During experiment, the array antenna was adjusted to look up slight to avoid the area 

between the array antenna and the specular reflection area. Theoretically, each step in the 

step-shape distance resolution had the RSFS with same relative time delay, which would be 

one peak in the TKEO output. 

<050> deg. 

<020> deg. 

N 

Sea-surface 

1000 m 



 Experiments 111 

 

 

  

Figure 4-30  Distance resolution. 

 Figure 4-31 shows the installation of the antennae. The upper photo (a) illustrates that 

the conventional antenna receiving the LOS signals was tilted toward the objective satellite 

to achieve high CN0 and located near to the array antenna. Its signals would be processed 

with a software receiver to estimate the arrival time of LOS signal which was used to align 

the arrival time of the RSFS. In the lower photo (b), the array antenna was also looking up 

slightly to avoid the reflected signals from near sea-surface and the hillside because they 

had the same relative time delays with the RSFS away from the specular reflection point. 
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(b) Looking-up array antenna. 

Figure 4-31  Photos of installation of the antennae. 

 

Figure 4-32  Moderate wave condition near the objective sea-surface. 

 In the morning, there was a smooth sea but it became a moderate sea because the sea 

swells generated by the 3rd typhoon “MAWAR” came into the objective sea-surface. Figure 

4-32 shows the wave conditions of moderate sea state on the objective sea-surface. Some 

big waves can be seen. The sea states were very different in the morning and in the 

afternoon. Therefore, three experiments, one in the morning on smooth sea-surface, and two 

in the afternoon on moderate sea-surface were carried out using different satellites. 

 The conditions of the satellites and the ocean waves are shown in Table 4-3. The first 

wave conditions were smooth, but in the second experiment the wave heights were 1.5 

115.5 m 

Wave 

direction 

Antenna 

direction 

10 deg. 



 Experiments 113 

 

 

meters, as estimated by sight, and the wave period of 11.5 seconds and the wavelength of 

13.7 meters were measured from an image grab from the video footage of the experiment. 

The wavelength in the direction of the antenna was calculated using the difference angle 

between wave propagation and the direction of the antenna. The wavelength in the antenna 

direction was calculated to be 115.5 meters according to the cosine relation as 115.5 = 113.7 

÷ cos(10) because of the 10- degree difference angle. The direction of the array antenna was 

measured with the GPS compass and adjusted to the objective satellite. In the experiments, 

20-degree satellites were used to receive strong RSFS. The output signals from the 

front-end were sampled and recorded for 24 seconds. Next the wave characteristics were 

estimated with the wave characteristic estimator. 

 

Table 4-3  Experimental conditions 

 experimental No. 1 2 3 

time recording time [s] 24 24 24 

data No. of samples [×109] 2.4  2.4  2.4 

satelite 

SV No. 21 22 22 

azimuth [deg.] 223 202 203 

elevation [deg.] 20 20 20 

sea 

state smooth moderate moderate 

height [m] - 1.5 1.5 

period [s] - 11.5 11.5 

 

 Estimation of wave characteristics 

 The LOS signals and the RSFS were sampled with 100MHz sampling frequency 

simultaneously. The sampled data of the LOS signals and the RSFS were stored in the 

mass-storage Hard Disk Diver (HDD). The data type of the samples was 8-bit integer. 

Because of the 100 MHz sampling frequency, 200 MB data per second have to be saved in 

the HDD for two sampling channels.  

 The sampled data were stored with individual files for every observation. The file was 
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named with sampling time and some basic information of the objective satellite and array 

antenna.  For example, 2012_06_06_15_20_05_SV01_EL20_AZ215_HI110_DG10.bin 

was the name of one data file. The number series at the beginning was the time when the 

sampling was started. The number, elevation and azimuth of the objective satellite and the 

height and degree of the array antenna were also recorded in the name of the data file. It 

was a convenient method for programs to read the satellite conditions. The recorded data 

was processed with the functional modules of the wave characteristic estimator shown in 

Figure 2-22. The correlations were computed with the correlator, and then the arrival times 

of the RSFS were corrected with the arrival time of LOS estimated by the software receiver.  

 However the arrival time of the LOS signals are not able to align the RSFS directly 

because it includes two much uncertain results of the arrival times, as shown in the upper 

sub-figure in Figure 4-33. The vertical axis is the code phase of the LOS signals with unit of 

sample, which can be converted into arrival times. The horizontal axis is the 24-second 

recording time. There is a descending trend and some arrival times are displaced from the 

trend line. The descending trend originates from the Doppler shift, and the displaced points 

occur because of the noise and multipath disturbance. The lost arrival time should be 

removed and an estimated value should be given. The lower sub-figure shows the estimated 

arrival times of LOS signals in 24 seconds with a straight descending trend line. 

 

Figure 4-33  Estimation of the arrival time of the LOS signals. 
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Figure 4-34  arrival time correction of the RSFS. 

 

 

Figure 4-35  Correlator and TKEO output signals (smooth). 
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arrival time of the signals received with the array antenna. A 2-second segment of the 
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 After arrival time correction of all the correlator outputs for RSFS, the TKEO were 

executed. Following that, the wave characteristics were estimated for the smooth sea state 

and the moderate sea state respectively. Figure 4-35 shows the correlator and TKEO outputs 

of smooth sea state. The strong TKEO signal near the zero sample point of the vertical axis 

is the LOS signal, and the next strong TKEO signal near the 26th and 27th sample points 

are the RSFS. 

 Figure 4-36 shows the top view of the aligned results of the averaged TKEO. In order 

to analyze the TKEO signals more fully, the signals at the 28th sample point is also 

considered. The horizontal distances at the 26th, 27th and 28th sample points are d1 = 348.0, 

d2 = 444.0 and d3 = 531.0 meters from the array antenna position. 

 Figure 4-37 shows three variations of each TKEOt along the horizontal axis for the 

smooth sea state. Figure 4-38 shows the amplitude characteristics of the TKEOt by the 

Fourier transform. In this figure, since there is no significant component, we cannot find the 

remarkable wave period from these experimental results. Therefore, the wave speed and 

wavelength cannot be estimated. 

 

Figure 4-36  Top view of the aligned results of averaged TKEO (smooth). 
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Figure 4-37  Time variations of TKEOt (smooth). 

  

 

Figure 4-38  Amplitude characteristics of TKEOt (smooth).  

 On the other hand, the correlator and TKEO output signals for the moderate sea 

condition are calculated and shown in Figure 4-39. Figure 4-40 shows the top view of the 

aligned results of the averaged TKEO. In these figures, three horizontal distances to the 
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Figure 4-39  Correlator and TKEO output signals (moderate). 

 .  

 

Figure 4-40  Top view of the aligned results of averaged TKEO (moderate). 

 Figure 4-41 shows three variation of each TKEOt along the horizontal axis in moderate 

sea conditions, after that the variations of three TKEOt are analyzed using the Fourier 

transform. Figure 4-42 shows the amplitude characteristics of the TKEOt, and the 

remarkable frequency of the wave is f0 = 0.083 Hz (wave period is TS = 12.0 seconds). 

Figure 4-43 shows the phase characteristics of the TKEOt. 
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Figure 4-41  Time variations of TKEOt (moderate). 

 Figure 4-44 shows the phase change at three points of TKEOt. In this figure, the three 

phase values of the TKEOt of the remarkable frequency (f0 = 0.083Hz) are drawn with three 

dots and the solid line is the regression line of the three points. The gradient of this line is 

the wave speed (Vs = 10.6 m/s). The wavelength (λS) is estimated to be 127.2 meters (λS = 

10.6 × 12.0). Moreover, the 12.0-second wave period and 114.1-meter wavelength were 

also calculated for the third experiment. 

 

Figure 4-42  Amplitude characteristics of TKEOt (moderate). 
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Figure 4-43  Phase characteristics of TKEOt (moderate).  

  

Figure 4-44  Phase change at three points of TKEOt (moderate). 

 On the other hand from the dispersion relation, the wave speed and wavelength can be 

calculated using the wave period and the depth of water. The depth of the reflected sea area 

is about 10 meters. Hence in the experimental results, another estimation value of the wave 

speed and the wavelength can be calculated from the dispersion relation. From the wave 

period (TS = 12.0 seconds) and the water depth (z =10.0 meters), the wave speed (VS) is 9.4 

m/s and the wavelength (λS) becomes 113.2 meters. 
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 Table 4-4 shows the experimental results for the moderate sea state. In this table, the 

measurement values were obtained from the video grab, the estimation values were 

estimated by the prototype system and the calculation values were obtained from the 

dispersion equation. 

 The prototype system estimated the wave period, wavelength and speed in values 

virtually consistent with the measurement values and calculation values. The measurement 

values are not precise enough to analyze the estimation error, but the purpose of our 

research was to evaluate the usefulness of the prototype system and compare it with 

previous simulation results. From the experimental results, it is clear that our prototype 

system can be used to estimate ocean wave characteristics. 

 Next some factors affecting the estimation values are considered. The recording time of 

the experiments was too short to estimate the wave period precisely; as ocean waves have a 

lot of frequency components, the interference between the RSFS caused errors in the 

measurement phase; and as the signals from the specular reflection point to the array 

antenna had the same relative time delays of the RSFS, the signals having the same relative 

time delay, interfered with each other. 

 

 

Table 4-4  Experimental results for moderate sea state 

Wave 

characteristics 

Measurement 

from video 

grab 

Estimation 

by prototype 

system 

Calculation 

from 

dispersion 

relation 

Experimental No. - 2 3 - 

Period [s] 11.5 12.0 12.0 - 

Wavelength [m] 115.5 127.2 114.1 113.2 

Speed [m/s] 10.0 10.6  9.5 9.4 
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CHAPTER 5                                 

CONCLUSIONS 

The ocean wave remote sensing system using the GPS signals reflected from the sea-surface 

was proposed in this dissertation. Its prototype was constructed and then evaluated with the 

numerical simulation and the coastal experiments. From the researches on the designs, 

constructions and evaluations of the ocean wave remote sensing system, we can draw some 

of the following conclusions. 

 The ocean wave remote sensing system was designed to make use of the RSFS to 

measure the characteristics of ocean wave. The system is mainly composed of the array 

antenna, RF front-end and wave characteristic estimator. The array antenna is utilized 

because it can only receive the GPS signals reflected from the objective sea-surface and 

suppresses others from side directions, which would become interference with same relative 

time delays. In the prototype system, a uniform linear array antenna with 16 patch antenna 

elements was constructed and its narrow fan beam directional pattern was realized. The 

narrow fan beam ensures that the received signals come from the objective sea-surface and 

the signals from side directions can be reduced greatly. In addition, the wire cloth covered 

on the back of the array antenna cuts off the intensity of signals from behind by about 10dB. 

As a necessary part of the array antenna, the pre-amplifier was mounted to improve the 

signal intensity to a proper level for the components of the following RF front-end. 

 The RF front-end converts the analogue RF signals into the IF digital ones.  The 

band-limited effects of the RF front-end were also evaluated and then 40 MHz was chosen 

as the bandwidth of the RF front-end. Furthermore, 40MHz was also proven to be an 

appropriate bandwidth for the TKEO to identify each RSFS. For this reason, a 100 MHz 

ADC was used to sample the 40 MHz bandwidth signals. The 40 MHz bandwidth RF 

front-end is implemented with the first down-conversion stage on the chip of GP2015. The 

mixer outputs the signals with the center frequency of 175.42 MHz, and the digital output of 

the ADC has the center frequency of 24.58 MHz because of the under-sampling that occurs 

without any aliasing. 
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 The modules of the wave characteristic estimator were also developed to estimate wave 

period, wave speed and wave length through the algorithmic combination of the correlator 

and TKEO. The correlator calculates the correlation between the output signal of the RF 

front-end and the locally generated C/A code to indicate the RSFS, and the TKEO is applied 

to the output of the correlator to identify each RSFS clearly. The Doppler shift of the 

objective satellite and the precise arrival time of LOS provided by the software receiver are 

the information necessary to calculate the correlation efficiently and accumulate the 

correlator outputs along the correct reference time respectively. The wave period is 

estimated from the amplitude characteristics of the TKEO time signal and the wave speed is 

estimated from its phase characteristics, which are processed with the FFT quantitatively. 

 The prototype system is evaluated with the numerical simulation and the costal 

experiments. The numerical simulation showed the reasonableness of the ocean wave 

remote sensing system system and its measurement method, and the estimation results of 

the costal experiments showed that the prototype could receive the RSFS and estimated the 

wave period and wavelength in the direction of the array antenna. The measurement from 

video grab, the estimation by prototype system and the calculation from dispersion relation 

are fairly consistent with each other. It should be emphasized that the experiments can be 

performed under conditions of bad weather and low visibility. 

 In the experimental evaluations, we were able to apply the constructed prototype 

system to estimate the wave period, wave speed and wavelength of sea swells successfully. 

The successful measurements also provide the possibility to measure the characteristics of 

long period gravity wave. And furthermore, the performance of the ocean wave remote 

sensing system can be improved if some considerations and proposals are implemented in 

the future research; these are described as follows: 

(1) Distance resolution 

The distance resolution on the objective sea-surface is related to the sampling frequency of 

RF front-end. This means that the propagation distance between two adjacent TKEO time 

signals is shortened if the sampling frequency is increased. Therefore, the resolution of the 

distance scale of the ocean wave remote sensing system is increased by broadening the 

bandwidths of the array antenna pre-amplifier and the RF front-end amplifier, and then by 

raising the sampling frequency of the A/D converter in RF front-end. 
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(2) Time resolution 

The continuous outputs of TKEO have to be averaged over a certain time to increase the 

CN0. The averaging time is equal to the time resolution. If the CN0 is increased by using a 

more suitable amplifier, correspondingly the averaging time will be reduced so that the 

resolution of time scale can be increased. 

(3) Frequency resolution 

In the experimental evaluations of the prototype system, as the recording time was set to 24 

seconds, the resolution of frequency scale was limited to 1/24 Hz. Accordingly by making 

the recording time 60 seconds, the resolution of frequency scale can be improved up to 1/60 

Hz. 

(4) Undesired signal 

At the same distance from the border of the specular reflection point, the close range area 

and the long range area have the same delay time to the LOS signal. The reflected signals 

from the close range area contaminate the reflected signals from the long rage area. If the 

reflected signals from the close range area can be attenuated or removed, the interference 

from the close range area will be reduced greatly. In the future, the undesired signals 

reflected from close range area could be suppressed by connecting several sets of array 

antennae vertically to reduce the vertical beam-width. 

(5) Wave height 

The wave height isn’t discussed in this dissertation. In the next step, wave height will be 

obtained using the amplitude frequency characteristics of the TKEO from pre-simulation 

and comparing the pre-simulation results with the experimental results. In order to compare 

the estimated wave height with the actual wave height more precise measurements will be 

required. 

(6) Comparative wave characteristics 

Because the comparative wave characteristics were measured by means of a video grab 

taken near the coast, the accuracy of them was less than perfect. In the near future, the GPS 

buoys will be used to measure more accurately the wave characteristics, and the accuracy of 

the comparative wave characteristics will be dramatically improved. The performance of 

the ocean wave remote sensing system can be verified by comparing it with the 
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measurement results of GPS buoy system. 

(7) True wave characteristics 

The measurement of true wave characteristics will be conducted in a future study. 

According to the methods discussed in chapter 2, the true wave characteristics can be 

measured with double systems double directions or single system double directions. In 

particularly, the true values of the wave length and the wave speed can be obtained. 

 

 

 

 



 

 

 

 


