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Abstract

This thesis deals with several topics on the mixed Hodge structures of the moduli
spaces of parabolic connections, the moduli space of parabolic Higgs bundles and character
varieties. Since these moduli spaces are quasi-projective varieties, but never projective, it
is interesting to investigate the weights of these mixed Hodge structures and the invariance
of weights under smooth deformations.

By the nonabelian Hodge theory, the moduli spaces of parabolic connections and the
moduli space of parabolic Higgs bundles are diffeomorphic, and, by the Riemann—Hilbert
correspondence, the moduli spaces of parabolic connections and character varieties are
analytic isomorphic. Since those isomorphisms are not algebraic, relationships between
the mixed Hodge structures of those moduli spaces are not clear.

First, we investigate the mixed Hodge structures of the moduli spaces of parabolic
connections and the moduli space of parabolic Higgs bundles.

Second, we investigate the mixed Hodge structures of character varieties. We compute
a few examples. Moreover, we study the boundary components of compactifications of
character varieties. This study is motivated by a conjecture on the configurations of the
boundary components, due to C. Simpson.

This thesis presents the following two consequences:

e We show that the mixed Hodge polynomials (and the Poincaré polynomials)
of the moduli spaces of parabolic connections are independent of the choice of
generic eigenvalues. As a result, we have

(1) the mixed Hodge structures of the moduli spaces of parabolic connections
are pure;

(2) the Poincaré polynomials of character varieties of generic spectral types are
independent of the choice of generic eigenvalues by the Riemann-Hilbert
correspondence.

e We investigate a conjecture of C. Simpson on the boundary components of com-
pactifications of character varieties. We verify the conjecture for a few examples.
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Introduction

We fix integers n > 0,d and g > 0. Let X be a smooth complex projective curve of genus
g. The nonabelian Hodge theory of X gives the equivalence of categories related to the
following three moduli spaces: the moduli space of semistable Higgs bundles of rank n and
of degree 0 on ¥ (denoted by Mpy(X)); the moduli space of (semistable) holomorphic
connections of rank n and of degree 0 on ¥ (denoted by Mpg(X)); and the character
variety Hom(m (2), GL(n, C))/GL(n, C), whose points parametrize representations of the
fundamental group m;(X) into GL(n,C) (denoted by Mpg(X)). These moduli spaces
are related to each other in the following way. First, the moduli space of semistable
A-connections Myoq(2) gives the relationship between Mp,(X) and Mpg(2). Here,
we call (E,V) a A-connection if E is a vector bundle on ¥ and V: F — E® QL is a
homomorphism of sheaves satisfying V(ae) = aV(e) + Ad(a) ® e where A € C,a € Oy, and
e € E. Then, we have the natural map A\: My,q(X) — C* such that A7*(0) = Mp,(2)
and A71(1) = Mpg(¥). Finally, the Riemann—Hilbert correspondence gives an analytic
isomorphism between M pp(3) and Mp(2).

In this thesis, we consider variants of those moduli spaces in the case of punctured
curves. We fix an integer k > 0 and a k-tuple pu = (u!, ..., u*) of partitions of n, that is,
pt = (py, ..., pl) satisfies pf > phy > -+ and pf +- -+l =nfori=1,... k. We take
k-distinct points pq, ..., p, on X, and define a divisor by D :=p; + -+ + pg.

Definition (Parabolic Higgs bundles). We call (E,(I),{lgf)}lgigk) a parabolic Higgs
bundle of rank n, of degree d, and of type p if

(1) E is an algebraic vector bundle on ¥ of rank n and of degree d,
(2) ®: E — E® 24(D) is an Ox-homomorphism, and
or each p;, Iy’ 1s a filtration = D D+ Dy DIy = 0 such that
(3) f h p;, 1 is a filtration E|, = 11" > 1Y 1) 51 = 0 such th
dim(1” /1)) = pit and @[, (1) € 11, @ QL(D)|,, for j =1,... 7.

The Ox-homomorphism ® is called a Higgs field.

Definition (Parabolic connections). We call (E,V,{lf)}lgigk) a (regular singular)
&-parabolic connection of rank n, of degree d, and of type p if

(1) E is an algebraic vector bundle on ¥ of rank n and of degree d,
(2) V: E— E® 24(D) is a connection, and
(3) for each p;, 1Y is a filtration El,, = ZY) D lg’) S5 21W 5 Z,E:)H = 0 such that

dim(I" /1),) = i and (Res,, (V) — €idg,,)(117) € 19, for j = 1,..., 7y,



Here, we put r := > r; and £ := (f;)g;é]f% € C satisfying d + ) _, (5 = 0 (see Remark
1.1.2).

We consider the following three moduli spaces: the moduli space of semistable parabolic
Higgs bundles on ¥ of rank n, of degree d, and of type u; the moduli space of semistable
&-parabolic connections on ¥ of rank n, of degree d, and of type w; and the (generic)
GL(n, C)-character variety, whose points parametrize representations of the fundamental
group of X\ D into GL(n, C) with prescribed images in Cy, ...,y at the punctures. Here,
(C1,...,Ck) is a generic k-tuple of semisimple conjugacy classes of GL(n,C) such that,
for each @ = 1,...,k, {ui,us,...} is the set of the multiplicities of the eigenvalues of
any matrix in C;. These moduli spaces are connected non-singular algebraic varieties of
dimension

n*(2g — 2+ k) — Z(M;)Q +2
2y}
(see [15], [16], [21], [22] and [29]). Note that, for any &, the moduli space of semistable
&-parabolic connections on ¥ is non-singular by the parabolic structures and the stability.
On the other hand, only for generic (Cy, ..., Cg), the character variety is non-singular. We
denote the three moduli spaces by M¥% (0), M¥%.(€), and M¥%(v), respectively. Here,

v denotes the eigenvalues of the any matrix of each conjugacy class in (Cy,...,C) and 0O
means that Higgs fields have nilpotent residues at each puncture.

For the case of the punctured curve ¥\ D, we study relationships between those moduli
spaces. We put

== {(ntzz) ecxe

Ad+Zu§£} = O} .
i,J

Definition (Parabolic A-connections). For (), €) € ¥4 we call (\, E,V, {l,(f)}lgigk)

—n

a &-parabolic A\-connection of rank n, of degree d, and of type p if

(1) E is an algebraic vector bundle on ¥ of rank n and of degree d,

(2) V: E — E® 2L(D) is a A-connection, that is, V is a homomorphism of sheaves
satisfying V(fa) = Aa® df + fV(a) for f € Oy and a € F, and

(3) for each p;, 1 is a filtration El, = l@ » lg) SR l,(,i)Jrl = 0 such that
dim(1”/1§),) = pit and (Res,, (V) — €iidgy, )(I1") < 1§), for j =1,... 7.

%

We construct the moduli space of semistable parabolic A-connections over =¥ as a

subscheme of the coarse moduli scheme of semistable parabolic AL-tuples constructed in
(23], denoted by

CAM =H,d
T My, :

—n

We have 771(1,€) = Mpp(€) and 771(0,0) = M4 ,(0). On the other hand, by the
moduli theoretic description of the Riemann-Hilbert correspondence (see [23], [21] and
[22]), we obtain the analytic isomorphism M%,(€) = M%(v) where v = rhy(€). Here,
rhq is the map defined by & — exp(—2rv/—=1&) fori=1,...,kand j =1,... 7.
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The mixed Hodge structures of the moduli space of parabolic connections
and character varieties. For smooth projective varieties, one can define the Hodge
structure on the cohomology groups of the smooth projective varieties. Deligne general-
ized the Hodge structure to any complex algebraic varieties, not necessarily smooth or
projective, i.e., one can define the mized Hodge structure on the cohomology groups of
the varieties ([6], [7]). The moduli spaces M¥%, ,(0), M¥% (), and M%(v) are smooth.
However, these moduli spaces are not projective. The purpose of this thesis is to study
the mixed Hodge structures of these moduli spaces.

The first theorem of this thesis is the following

Theorem A ((Ch.V, Theorem.1.2.1), (Ch.V, Theorem.1.2.2), and (Ch.V, Corollary
1.2.3)). O

(1) The ordinary rational cohomology groups of the fibers of ® : MY, , — =% qre
isomorphic. Moreover, the isomorphism preserves the mized Hodge structures on
the cohomology groups of the fibers.

(2) In particular, we have the isomorphism

HY(MR(€),Q) = H* (M,,(0),Q)

which preserves the mixed Hodge structures.

(3) Since the mized Hodge structure of H*(M, (0), Q) is pure of weight k, the mized
Hodge structure on HY (MY, r(&), Q) is pure of weight k.

(4) For p = (uj) such that g.c.d.(u;) = 1, the Poincaré polynomials of character
varieties M'%(v) are independent of the choice of generic eigenvalues.

The proof of this theorem is done by constructing a relative compactification of 7 :
MY, — R4 via a Simpson’s idea [48].

On the other hand, there are some interesting conjecture on the mixed Hodge structures
of character varieties, for example the Hausel-Letellier-Rodriguez-Villegas formula [15,
Conjecture 1.2.1]. (This is a conjecture on a combinatorial formula for the compactly
supported mixed Hodge polynomial of a character variety). In this thesis, we compute
the mixed Hodge structures of a few example of character varieties of genus 0. Then we
may verify this conjecture for these examples. The computation of the examples are done
by the explicit description of character varieties via the classical invariant theory. For
simplicity of descriptions of the invariant rings, we consider SL(n, C)-character varieties
of genus 0, that is,

{(M, ..., M) € Ci X+ X Cp | My My -+ My, = I, }//SL(n, C)

which is the categorical quotient of the simultaneous SL(n, C)-action. Here, (Cy,...,Cy)
is a tuple of semisimple conjugacy classes of SL(n,C) of type pu and I, is the identity
matrix. We denote by M’ (v) the SL(n, C)-character varieties of g = 0.

Remark. We can define character varieties whose the structure groups are GL(n, C),
PGL(n,C) and SL(n, C). However, for g = 0, those character varieties are the same.

11



In the case of g = 0 and dim M*(v) = 2, SL(n, C)-character varieties can be classified
into four cases, which can be listed as follows:

p=((1,1),(1,1),(1,1),(1,1)),
p=((1,1,1),(1,1,1),(1,1,1)),
w=1(02,2),(1,1,1,1),(1,1,1,1)),
w=1(033),(222),(1,1,1,1,1,1)).

In the first and second types, the SL(n, C)-character varieties are known to be an affine

cubic surface by the classical invariant theory. ([10], [25], [26], [30]). Then we can
compute the mixed Hodge structures of the first and second types.

Compactifications of character varieties and the configurations of the bound-
ary divisors. The next purpose is to study the configuration of boundary divisor of
compactifications of character varieties. This study is motivated by a conjecture due to
Simpson [50], which is explained as follows. We choose a smooth compactification M4 (v)
of M¥%(v) such that DJ, = M (v) \ MY (v) is a divisor with normal crossings. We call
the divisor D}, a boundary divisor of the compactification M’ (v). Let Nf,u be a small
neighborhood of Df, in Mf(v), and let N7, = Nﬁu NME ) = Nf# \ D, Let
A(DB ) be a simplicial complex whose n-dimensional simplices correspond to the irre-

ducible components of intersections of k£ + 1 distinct components of DB” This is called

the boundary complex or Stepanov complex of a compactification of M%(v) (see [52],
(53], and [37]).

Theorem ([52], [53], and [37]). The homotopy type of boundary complex A(DJ ) is
independent of the choice of compactifications.

We have a continuous map, well-defined up to homotopy,
NP, — A(D],).

On the other hand, let M% ,(0) — A™%* be the Hitchin fibration. We have a canonical
orbifold compactification of M¥ (0) via the relative compactification of the moduli space
of parabolic A-connections (see Section 1 of Chapter V). The divisor at infinity is the

quotient
DDol . MDOZ( )*/(C*
Here, M’ ,(0)* is the complement of the nilpotent cone. Let N be a small neighbor-

——=Dol ——=Dol

hood of D¢, and let N = N, n MY, (0) =N, ,\ D The Hltchm fibration gives

gk
us a continuous map to the sphere at infinity in the Hitchin base

NP —s Glw!
Conjecture (C. Simpson [51]). (1) There exists a homotopy-commutative diagram
Dol = B
Noon Noow

Slon=t —— A(D] ).

12



(2) In particular, there exists a non-singular compactification of M%(v) such that
the boundary complex is a simplicial decomposition of sphere S%or=1.

Remark (See [51]). The assertion (1) of this conjecture due to Simpson is true in the
case where g = (1, 1), (1,1), (1, 1), (1, 1))

The second theorem of this thesis is the following

Theorem B ((Ch.VI, Corollary 1.1.4 and Theorem 2.3.2)). The assertion (2) of this
conjecture due to Simpson is true in the following cases:

We consider SL(n, C)-character varieties M*(v). The case (1) of Theorem B is verified
by the classical invariant theory [30]. However, it seems that the application of the classi-
cal invariant theory is difficult for general cases. Then, we construct compactifications of
SL(n, C)-character varieties as follows. Following [3], we can construct a compactification
of the representation variety [3]

U*(v) == {(Ay, B1,..., Ay, ByiMy, ..., M) € SL,(C)% x Cy x -+ x Cy,
| (A1, B1) - (Ag, By)My -+ - My, = 1,,}.

Then, we take the GIT quotient of this compactification of Z]“(l/), which gives a com-

pactification /\;l’é(u) of ./\;l’é(u) As special cases, we consider the cases where g = 0,n =
2k >4,p=((1,1),...,(1,1)). For k = 4, we obtain the same result as the classical

invariant theory [10]. For k = 5 (i.e., the case (2) of Theorem B), M*(v) has singular

points. We show that a suitable blowing up of Mg(ll) has a boundary whose bound-
ary complex is a simplicial decomposition of S3. It seems that the configuration of the
boundary divisor D(f .. 1s rather complicated for k > 6.

The conjecture due to Simpson is related to the P=W conjecture due to Hausel et al
([4]). First, we consider compact curve cases. The non-abelian Hodge theory for compact
curves states that character varieties Mp are diffeomorphic to moduli spaces Mp,; of
semi-stable Higgs bundles. Then, we have the induced isomorphism between the rational
cohomology groups of Mpg and Mp,. The P=W conjecture assert that the isomorphism
of the rational cohomology groups exchanges the weight filtration on the cohomology
groups of Mp with the perverse Leray filtration associated with the Hitchin fibration
on the cohomology groups of Mp,. The P=W conjecture is verified in the case where
n =2 ([4]). We may extend the conjecture to punctured curve cases. On the other hand,
there exists a natural isomorphism from the reduced homology of the boundary complex
A(D},) to the 2I-th graded piece of the weight filtration on the cohomology of M (v):

Hi(A(Dg,), Q) = Gry H*' /(M (v)).

(For example, see [37, Theorem 4.4]). By the isomorphism, the assertion (2) of the
conjecture due to Simpson above implies that there exists only 1-dimensional weight
2d, ,, part in the middle degree d,, cohomology of the character variety, which is also a
consequence of the P=W conjecture.

13



The organization of this thesis is as follows. From Chapter 1 to Chapter 4, we recall the
basic notations and basic results. In Chapter 1, we recall the basic facts on connections,
Higgs fields. The main reference is Sabbah’s book [39]. In Chapter 2, after recalling the
moduli problems and geometric invariant theory, we review the moduli problem of AkL-
triples due to Inaba-Iwasaki-Saito [23]. Moreover the character varieties can be introduced
in the GIT setting. In Chapter 3, we recall basic results on Hodge theory and mixed Hodge
theory of open algebraic varieties or singular algebraic varieties due to Deligne [6], [7]. In
Chapter 4, nonabelian Hodge theory and Riemann-HIlbert correspndence are reviewed.
In last two chapters (Chapter 5 and 6), we will prove our main results.

14



CHAPTER 1

Connections

In this chapter, we recall several well-known facts on holomorphic connections, mero-
morphic connections, and connections which have regular singularities. Our main refer-
ence is the book of Sabbah [39].

1. Holomorphic integrable connections and Higgs fields

Let X be a complex analytic manifold, and let 7: £ — X be a holomorphic vector
bundle on X. We use the same notation E for the locally free sheaf associated to the
vector bundle E. Let 2% be the sheaf of holomorphic differential i-forms on X.

1.1. Holomorphic connections.

Definition 1.1.1. A holomorphic connection V on a holomorphic vector bundle 7: E —
X is a C-linear holomorphism of sheaves

V:E—Q2y®F

satisfying the Leibniz rule: for any open set U of X, any section s € I'(U, F) and any
holomorphic function f € O(U)

V(f-5)=fV(s)+df @ s € '(U 2% E).
In general, one can extend the holomrphic connection V on the section of F as on the
section of 2% ® F (with values in 2% @ E):
Viw®s)=dw®s—wAV(s).

Then, we define the curvature Ry of the connection V as the following
Ry =VoV:E— 0% ®F,
which is an Ox-linear homomorphism.

Definition 1.1.2. The connection V: E — 2} ® E is said to be integral, or also flat,
if its curvature Ry vanishes identically.

Remark 1.1.3. When dim X = 1, the sheaf 2% is zero and therefore the integrability
condition is fulfilled by any connection.

Definition 1.1.4. A V-horizontal holomorphic section of E on an open set U of X is
a section s € ['(U, E) satisfying V(s) = 0. We denote by EV the sheaf of V-horizontal
holomorphic sections of F.

15



Theorem 1.1.5 (Cauchy-Kowalevski theorem). Let V: E — 2% ® E be a holomorphic
integral connection on some bundle E of rank d. Then,

(1) The sheaf EV is a locally constant sheaf of C-vector space of rank d;

(2) The sheaf Ox Q¢ EY is locally free sheaf of Ox-modules, the connection on this
sheaf defined by V(f @ s) = df @ s is flat and (Ox ®c, EV)V = EV;

(3) The natural homomorphism Ox Qc, EY — & is an isomorphism of bundles with
connection.

PRrOOF. For example, see [39, Ch.0, Theorem 12.8]. O

1.2. Higgs fields.

Definition 1.2.1. A Higgs field on a holomorphic bundle F is an O x-linear homomor-
phism
d:F— X QF
which fulfills the condition ® A & = 0. We also say that (E, ®) is a Higgs bundle.

Remark 1.2.2. When dim X = 1, the condition ® A ® = 0 is fulfilled by any Ox-linear
homomorphism ®: £ — 2% @ E.

2. Meromorphic connections

2.1. Meromorphic bundles, lattice. Let Z be a smooth hypersurface in a complex
anaytic manifold X. For the open set U of X let f be a holomorphic function on U\ ZNU
and, for any chart V' of X contained in U, in which Z NV is defined by the vanishing if
some coordinate, z; for instance, there exists an integer m such that z7"f(z,...,2,) is
locally bounded in the neighborhood of any point of Z N U, that is, can be extended as a
holomorphic function on V. We call the function f meromorphic function along Z.

Definition 2.1.1. Let Ox(*Z) be a sheaf of meromorphic functions along Z. A mero-
morphic bundle on M with pole along Z is a locally free sheaf of Ox(*Z)-module of
finite rank. A lattice of this meromorphic bundle is a locally free Ox-submodules of this
meromorphic bundle, which has the same rank.

A meromorphic bundle M can contain no lattice at all, and can also contains some
lattice which are non-isomorphic each other. If there exists a lattice F for a meromorphic
bundle M with pole along Z, then E coincides with M on M \ Z and we have

M = Ox(xZ) ®p, E.
For the existence of lattices, we have the following

Proposition 2.1.2. Let X be a Riemann surface and let Z C X be a discrete set of
points. Then any meromorphic bundle on X with poles at the points of Z contains at least
a lattice.

PRrOOF. For example, see [39, Ch.0, Propsition 8.4]. O
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2.2. Meromorphic connections. Let M be a meromorphic bundle with pole along
a hypersurface Z. We define a connection on M as a C-linear homomorphism

VM — 2% o, M

satisfying the Leibniz rule. Note that, in local basis of M over Ox (xZ), the matrix of the
connection has entries in Ox(xZ) ®o, 2% = 2% (x2).

We say that a connection on a meromorphic bundle is integral (or flat) if its restriction
to X \ Z is an integrable connection on the holomorphic bundle My z. The horizontal
sections MX\Z is then a locally constant sheaf of finite dimensional vector space. The
locally constant sheaf determine the linear representation of the fundamental group 7 (X'\
Z, ). The linear representation is called the monodromy representation attached to the
meromorphic bundle with connection (M, V).

Definition 2.2.1. Let M be a meromorphic bundle with pole along a hypersurface Z.
Assume that there exists a lattice £ of M. For a connection V on M, we define the
meromorphic connection V on E

V:E— 2y(x2) ®o, E
by V(E) C V(M) C 2% @ M = Q% (xZ) ®o, E.

We say that E is a logarithmic lattice of the meromorphic bundle with connection
(M,V)if V(E) C 2%(log Z)®e, E, i.e. the meromorphic connection on E is the following

V:E— 2y{log Z) ®o, E.
3. Connections which have regular singularities

In this section, we treat the following topics

e the normal form of a connection on D which has regular singularity at 0 (Propo-
sition 3.2.5);

e the construction of the canonical logarithmic lattice for a connection on D which
has regular singularity at 0 (Proposition 3.2.6);

e the equivalence of the category of connections on D which have regular singu-
larity at 0 with some condition and the category of local systems on the disc D
(Theorem 3.2.8).

Here, we put D := {t € C | |[t| < r} where r is arbitrarily small.

3.1. Definition.

Definition 3.1.1. Let M be a meromorphic bundle with pole along a hypersurface Z
and V be a connection on M. We say that (M, V) has regular singular along Z if V is a
flat connection and, in the neighborhood U of any point z € Z, there exists a logarithmic
lattice By of M, .

The condition of regular singularity is local on Z and one does not ask for the existence
of a logarithmic lattice globally on M. Nevertheless, one can show this global existence.

17



3.2. Local study for Riemann surfaces. In this section, we consider connections
which have regular singularities on the disc D := {t € C | |t| < r} where r is arbitrarily
small, so that 0 is the only possible pole of the meromorphic function that we consider.
More precisely, we consider the germ (C,0) of a Riemann surface.

We describe the germ of meromorphic bundle of rank d on the germ (C,0) equipped
with the connection. The ring of germ of meromorphic functions with poles at 0 is the
field C{¢}[1/t] of converging meromorphic Laurent series. For simplicity, we denote by k
this field. The natural action of the derivation makes it a differential field. Therefore, a
germ of meromorphic bundle with connection is nothing but a k-vector space M of rank d
equipped with a derivation V compatible to the derivation of k, denoted by (M, V). The
derivation V is described as d + Q where 2 = A(t)dt and the entries of A(t) are germs
of meromorphic functions with pole at 0. We call a germ of meromorphic bundle with
connection a (k, V)-space.

Two (k, V)-vector space with connection (M, V1) and (Ms, Va) are isomorphic if and
only if the corresponding matrices (2; and €)y are related by a meromorphic base change
P € GL(d, k) via the relation

Q=P 'O P+ PldP.
and the matrices A; and A, by the relation
(3.2.1) Ay =P AP+ PP
where Q; = A;(t)dt for i = 1, 2.
A (k, V)-vector space (M, V) of rank d defined by a matrix A, (¢) has a regular singular
at 0, if there exists a matrix P € GL(d, k) such that the matrix A (¢) obtained after the

base change (3.2.1) has at most a simple pole at t = 0. Otherwise, the singularity is called
wrreqular.

A lattice of the (k, V)-vector space (M, V) is a free C{t}-module £ C M such that
k Qc{ty E =M.

Example 3.2.1. We define an elementary regular model as a (k,V)-vector space
equipped with a basis in which the connection matrix is written as
dt
t
where a@ € C and N is a nilpotent matrix. Suppose that N has a single Jordan block of
size d > 0. Then, we have the following

(3.2.2) Q(t) = (ald + N)

(1) the horizontal sections s on any simply connected open set U of D\ {0} is obtain
by taking the linear combinations with coefficients in C of the columns of the
matrix

logt)? log t)*
tf(aIdJrN) — (Id-NlOgt+N2(O§'> ++(_N)d(0§'> ),

(2) the monodromy representation defined by the horizontal sections is given by

T = exp(—2mv/—1(add 4+ N));

18



(3) the horizontal sections have moderate growth near the origin, that is, for any
horizontal section s on the neighborhood of a closed angular sector with angle
< 2m, there exists an integer n > 0 and a constant C' > 0 such that

sl < CPe[™"

on this closed sector.

We show that any (k, V)-vector space with regular singularity is isomorphic to a direct
sum of elementary regular models as follows.

Lemma 3.2.2. (1) Let C[[t]] be a field of formal power series, and let Q= A(t)

has entries in Cl[t]]. We assume that any two eigenvalues of the matriz A(0) do

not differ by a nonzero integer. Then, there exists a matriz P € GL(d, C[[t]])
such that

P1AP 4 PP — A(0).

(2) Moreover, the matriz of the base change P has converging entries.

(3) Therefore, let (M,V) be (k,V)-vector space with reqular singularity. Let E be
a logarithmic lattice of M. If the eigenvalues of the residue Resg(V) of the
connection on E do not differ by a nonzero integer, then there exists a basis of
E over C{t} such that the connection matric takes the form Aydt/t where Ay is
constant.

PROOF. We show the first assertion. Put A\(t) = Ayg+ Ayt + ---. We search for a
matrix P € GL(d, C|[t]]) satisfying

P1AP 4 1P 1P — A,
One can regard this relation as a differential equation satisfying by P
(3.2.3) tP' = PAy — AP,

We set a priori P=1d +tP, +t?P, + - -- where P, are constant matrices. The term of
degree [ is the following

[P, = PAy— AP+ Q(Py, ..., Py Ao, ., Ay
where ®; is a matrix depending in a polynomial way on its variables. Hence, we have
(324) B(lld - Ao) - (_AO)PI = (bl(Ph e ,Pl,1; Ao, Ce >Al)-

We determine the matrices P, by the inductive way. We take an integer [ > 1. Let us
assume that we have determined the matrices Py, (k > | — 1). We apply the following
lemma to the equation (3.2.4).

Lemma 3.2.3 (For example, see [39, Ch.II, Lemma 2.16]). Let U € M(p,C) and
V € M(q,C) be two matrices. Then, the following properties are equivalent

(1) for any matriz Y of size ¢ X p with entries in C, there exists a unique matriz X

of the same kind satisfying XU — VX =Y
(2) the square matrices U and V' have no common eigenvalue.
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Then we can determine a matrix P.

We show the second assertion. Note that equation (3.2.3) defines P as a horizontal
section of a differential linear system of rank d? and that matrix of this system has at
most a simple pole at 0. Then the convergence follows from the following lemma.

Lemma 3.2.4 (For example, see [39, Ch.Il, Lemma 2.18]). Let C{t} be the ring of
convergent power series, and let A(t) be a matriz in M(d, C{t}). Any vector u(t) with
entries in Cl[t]] which is solution of the system tu'(t)+A(t)u(t) = 0 has converging entries.

By the first and second assertions, we obtain the third assertion. 0

Then we have the normal form of a connection on D which has regular singularity at

0.

Proposition 3.2.5. Any (k, V)-vector space with reqular singularity is isomorphic to
a direct sum of elementary reqular model.

PROOF. Let € := A(t)dt/t which is a connection matrix of V. Here, A(t) has entries
in C[[t]] which is the field of formal power series 3, . ant". Let A(t) := Ao+ 3,5, At

We can change the eigenvalues by the following transformation: First, by a base change
with constant matrix, we reduce to the case where the matrix A is blockdiagonal where
each block corresponds to some eigenvalue \;, (i =1,...,p) of Ag. Then, let us write

AP0 A
0 Al

Jj=21

where A(()l) is the block corresponding to the eigenvalue A\; and A(()z) to the eigenvalues
Aj, (j=2,...,p). Secondary, we set

Q) = (t%)d 1(31) :

Then, the eigenvalues of the constant part By of the matrix B := Q1AQ + tQ Q' are
A +1, g, ..., A, By the finite sequence of such changes, we obtain a matrix By such that
the eigenvalues of the residue Resg(V) of the connection on £ do not differ by a nonzero
integer.

By Lemma 3.2.2 and normalization of a constant matrix, we have the assertion. U

For any (k, V)-vector space with regular singularity, we construct the canonical loga-
rithmic lattice. We call the lattice the local Deligne lattice.

Proposition 3.2.6 (Local Deligne lattice). Let (M, V) be (k,V)-vector space with reg-
ular singularity. Let o be a section of the natural projection C — C/Z (so that two complex
numbers in the image Im(o) of o do not differ by a nonzero integer). Then, there exists a
unique logarithmic lattice “ Vi vy of (M, V) such that the eigenvalues of Resoy,,, o, (V) are
contained in the region Im(o). Moreover, for any homomorphism ¢: (M,V) — (M', V'),
we have

¢("Varw)) = “Vime,w) = “Viar vy N Im(¢).
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PROOF. There exists a logarithmic lattice E of M by definition of regular singularity:.
We can change the eigenvalues by the transformation as in the the proof of Proposition
3.2.5. By the finite sequence of the transformations, we obtain the logarithmic lattice F
such that the eigenvalues of Resoy;,, (V) are contained in Im(o).

We show the uniqueness of the logarithmic lattices. If E and E’ are two such lattice,
then there exists a basis e of F (resp. €' of E’) in which the matrix Aodt/t (resp. Ajdt/t)
of V has eigenvalues in Im(o) by Proposition 3.2.5. Here, the matrices A, and Aj, are
constant. We search for a matrix P € GL(d, k) satisfying

P 'AgP +tP 1P = Aj.
One can regard this relation as a differential equation satisfying by P:
tP'= PAy — AoP.
We set a priori P=t"P_,+---+ Py+tP; +--- where P, are constant matrices to be
determined and Py 'AjPy = Ag. The term of degree [ is the following
IP, = P A, — AgF, where [ # 0.
Hence,
Pi1d — 4y) — (~Ag) P, = 0.
We have P, = 0 (I # 0) by the Lemma 3.2.3. Then, the matrix of the base change

P € GL(d, k) from e to €’ is constant and conjugates Ay and Aj. We have the uniqueness.

We consider a homomorphism ¢: (M, V) — (M’,V'). Since the image by ¢ of a lattice
is a lattice of the image of ¢, the second assertion follows from uniqueness. 0J

Now, we consider the functor between the category of (k, V)-vector spaces with reg-
ular singularity and the category of vector spaces equipped with the automorphism

T = exp(—2mv—1Resoy,, o, V):
(325) (M, V) — (O'H(Myv),T)
where “H vy := “Viu,v)/t”Viu,v) and T' is the monodoromy representation.

We show the functor (3.2.5) is an equivalence of categories. By Proposition 4.2.2 as
below, we show the functor is fully faithful and essentially surjective. First, we show that
the functor is essentially surjective:

Lemma 3.2.7. Let T be a linear automorphism of C¢ (defining a local system of rank
d on some disc punctured D*). Then, there exists a unique (up to constant) bundle with
meromorphic connection on D with logarithmic pole at O for which

(1) the local system it defines on D* is that associated to T}
(2) the residue at O of the connection has eigenvalues in the region Im(o).

PRroor. We consider a C-vector space V; = C? with the linear automorphism 7". One
can decompose in a unique way Vy = €, F) (Jordan decomposition of T') where F) is a
direct sum of spaces C[T,T~']/(T — \)*. We put

8 = V;l@(} OD.
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We endow the vector bundle associated to £ with the meromorphic connection V which
has a connection matrix having the k£ x k-matrix

dt

.

Here, a is the unique logarithm of A which belongs to Im(o), N is a Jordan block of size

k, and t is a coordinate on D. The bundle with meromorphic connection (£, V) is desired
bundle (see Example 3.2.1 (2)).

(ald + N)

We show the uniqueness. If we have two such bundles with connections (F,V) and
(E',V'), then the bundle with meromorphic connection Home, (€,£’) also has a loga-
rithmic pole at 0 and eigenvalues of the residue of its connection are obtained as the
differences of the eigenvalues of ResV and ResV’. Therefore, the only integral difference
is 0, by assumption. Since the bundles £ and E’ have same monodromy on D*, there
exists an isomorphism of the associated locally constant sheaves on D*. Hence, we get an
invertible horizontal section of Home, (E,E’) on D*. We extend the section on D* to the
section on D as follows. Since the singularity of Homy (M, M’) is regular, this section has
moderate growth. Hence, this section is meromorphic at 0. We regard the the connection
on Home, (€,E') as a following differential linear system of rank d?:

tu'(t) + A(t)u(t) =0

where u(t) € k% and A(t) € M(d? CJ[t]). Since the unique integral eigenvalue of the
residue of the connection on Home,(£,£’) is more than 0, this section is holomorphic.
In fact, if u; denotes the coefficient of #' in u(t), then the term (/Id — A(0))u; can be
expressed in the term of the w; for j < . Since {Id — A(0) is invertible for [ < 0, we
deduce that u; = 0 for [ < 0 by induction. Therefore, we have the extended holomorphic
section of Home,(E,E’) on D. The section determine the isomorphism between (F, V)

and (E', V). O

Lastly, we show the functor (3.2.5) is fully faithful. We consider the map
(326) HOHI((M, V), (M/, V/)) — HOIH((U‘/(M’v), T), (U‘/(M/’V/), T/))

First, we show that the map (3.2.6) is injective. If ¢ € Hom((M, V), (M’,V’)) satisfying
©(“Vimyw)) C t- Vi vy, then we have “Vi vy = t - “Via,v)) by Proposition 3.2.6.
Therefore, we have ¢ = 0. Second, we show that the map (3.2.6) is surjective. By
choosing suitable bases, we are reduced to showing that, if Ay and A{ are two square
matrices of size d and d' respectively having eigenvalues on Im(c), then any matrix P(t)
of size d’' x d satisfying PAy — AjP = tP’ is constant. This follows from Lemma 3.2.3, as
the only integral eigenvalue of the linear operator P — PAy — AP is 0. Then we have
the following

Theorem 3.2.8. The functor
(M, V) — "Hw) = "Viarw) /1" Viarw)

is an equivalence between the category of (k, V)-vector spaces with regular singularity and
the category of the vector spaces equipped with the automorphism T = exp(—2m+/ —1ResaV(M7V)V).
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4. Appendix: the language of categories

4.1. Definitions. Now, we recall the language of categories briefly. Let C and C’ be
categories. A (covariant) functor from C to C’ consists in given a mapping F': Ob(C) —
Ob(C’) and, for any pair (X, Y") of objects of C, of a mapping F': Hom(X,Y) — Hom(F(X), F(Y))
compatible with composition and preserving the identity morphism. A covariant functor
is called simply a functor.

Definition 4.1.1. Let C and C’ be categories, and F' and G be functors from C to C’.
A natural transformation (or functorial morphism) p: F' — G is a family

{p(X): F(X) = G(X)}xeon()
such that, for a morphism f: X — Y of C, the following diagram commutes:

FY) "2 ay)

lF(f) lG(f)
F(x) 2 ax)

If there exist natural transforms p: F' — G and 7: G — F satisfying 7p = idr and
pT = idg (where idp means that the natural transformation F' — I’ which is the identity
mapping on any set), then the functor F, G are said to be isomorphic.

Definition 4.1.2. Let C and C’ be categories, and F' be a functor from C to C’. For the
functor F, the functor F” is said to be inverse functor (resp. quasi-inverse functor), if
FoF’'and F’ o F are equal (resp. isomorphic) to the identity functors of each categories.

Let C and C’ be categories, and F' be a functor from C to C'. The functor F' is said to
be an isomorphism of category, if there exists an inverse functor F’. On the other hand,
The functor F' is said to be an equivalence of categories, if there exists a quasi-inverse
functor F”.

4.2. criterion of equivalence. We explain the criterion of equivalence of categories.

Definition 4.2.1. We say that a functor F': C — C' is fully faithful if, for any pair
(X,Y) of objects on C, the map F': Hom(X,Y) — Hom(F(X), F(Y)) is a bijection. We
say that a functor F': C — C' is essentially surjective if, for any object X’ of C’, there
exists an object X of C such that F(X) is isomorphic to X"

We have the criterion:

Proposition 4.2.2. Let C and C' be categories, and F be a functor from C to C'. The
functor F s an equivalence of categories if and only if it is fully faithful and essentially
surjective.

PROOF. For example, see [33, IV, §4, Theorem 1]. O
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CHAPTER 2

Moduli Problems and Geometric Invariant Theory

The purpose of this chapter is the construction of the moduli space of semistable
parabolic A} -triples and character varieties via the geometric invariant theory (GIT).
The construction of the moduli space of semistable parabolic AL-triples is due to Inaba—
Iwasaki—Saito [23]. We construct the moduli space of semistable parabolic connections
and the moduli space of semistable parabolic Higgs bundles as the subvarieties of the
moduli space of semistable parabolic Al-triples in Chapter TV.

1. Moduli Problem

Let k be a field, let S be k-scheme of finite type. Let C be a category, C°? the opposite
category, i.e. the category with same objects and reversed arrows.

A moduli functor or moduli problem is a functor from the (opposite) category of S-
schemes to the category of sets which associates to an S-scheme X the equivalence classes
of families of geometric objects parametrized by X:

(Sch/S)? — (Sets)
X — {families of geometric objects over X}/ = .

On the other hand, for a S-scheme X, we define the functor of points
X: (Sch/S)? — (Sets)

as follows. For a S-scheme Y, we put X(Y) = Homg(Y,X) and, for a S-morphism
f:Y — Z we give the map of set X(f): Homg(Z, X) — Homg(Y, X) by the composition
go f where g € Homg(Z, X).

Now, any S-morphism f: X — Y induces a natural transformation f: X — Y. By
Yoneda’s Lemma, the functor of points X determines the S-scheme X. More precisely,
if two functor X and Y are isomorphic as functor, then X and Y are isomorphic as
S-scheme.

1.1. Fine Moduli. For a moduli problem F, a solution of F' is an isomorphism of
the functor F with the functor X of some S-scheme X:

Definition 1.1.1. A functor F': (Sch/S)° — (Sets) is said to be representable, and to
be represented by a S-scheme X, if it is isomorphic to the functor X. The S-scheme X
is called a fine moduli space for the functor F.

25



Example 1.1.2. Let k be a field, let V' be a finite dimensional vector space and let r
be an integer where 0 < r < dim V. Let

Grass(V,r): (Sch/k)°? — (Sets)

be the functor which associates to any k-scheme T of finite type the set of all subsheaves
K C Or®y;V with the quotient F' := Or ®; V/K which is locally free of rank r. Then the
functor Grass(V,r) is represented by a smooth projective variety Grass(V,r) (for example,
see [20, Example 2.2.2]).

Example 1.1.3. The previous example can be generalized to the case where V' is
replaced by a coherent sheaf V on a k-scheme S of finite type. We define a functor

Grassg(V,r): (Sch/S)? — (Sets)
as follows:
Grassg(V,r)(T) :={[Or ® V — F]|F: locally free on T of rank r},

which is the set of equivalence classes. Here, the equivalence relation is defined by the
isomorphism of the quotient including the surjective:

Or®@V—F

N

F'.

Then the functor Grassg(V,r) is represented by a projective S-scheme m: Grassg(V,r) —
S (for example, see [20, Example 2.2.3]).

Example 1.1.4 (Quot-functor). Let k be a field, let S be k-scheme of finite type. Let
f: X — S be a projective morphism and Ox (1) an f-ample line bundle on X. Let H be
a coherent O x-module and P € Q[t] a polynomial. We define a functor

Q :=Quot_,.(H,P): (Sch/S)? — (Sets)

xS

as follows:

. F': coherent sheaf on X7 which is flat over T" and
QAT) '_{[OT@)H_»F]’ X(F(t))=Pforany t € T }’

which is the set of equivalence classes. Here, Xt is the pull-back of X and the equivalence
relation is defined by the isomorphism of the quotient including the surjective:

Or@H—=F
F'.

If g: T — Sis an S-morphism, let Q(g): Q(T') — Q(T”) be the map that sends Or@H —
Fto Op @ H — gxF.

Theorem 1.1.5 (For example, see [20, Theorem 2.2.4]). The functor Quot

1s represented by a projective S-scheme : Quotx/s(’H, P)—S.
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Then we have a universal or tautological quotient
[p: Og @ H — F] € Q(Q).

Any quotient [p: Or ® H — F| is equivalent to the pull-back of p under a uniquely
determined S-morphism ¢,: T" — @, the classifying map associated to p.

In the case X = S, the polynomial P reduces to a number and QuotX/S(’H,P) is
Grassg(H, P).

If S = Spec(k) and H = Oy, then a quotient of H corresponds to a closed subscheme
of X. In this context, the Quot-scheme is usually called the Hilbert scheme of closed sub-
schemes of X of given Hilbert polynomial P and is denote by Hilb” (X) = Quot v (Ox, P).

1.2. Coarse Moduli. Unfortunately, in many moduli problem one cannot expect to
have representable functors. For this reason, Mumford introduce the following notation
of coarse moduli.

Definition 1.2.1. Given a functor
F: (Sch/S)°" — (Sets),

a S-scheme X is said to be a best approximation to F' if it satisfies the following condition.

e There exists a natural transformation p: F© — X which is universal among nat-
ural transformation from F' to functors of points. In other wards, given any
7: F' — Y there exists a unique S-morphism f: X — Y making the following
commute:

F-ro X

\ !

Y.

A best approximation X is called a coarse moduli space for the functor F' if it satisfies,
in addition:

e for every algebraically closed field k' D k, the set map
p(Spec(k')): F(Spec(k')) — X/S(Spec(k'))
is bijective.
Note that fine moduli implies coarse, and the coarse (or best approximation) implies

unique up to isomorphism by the universal property.

2. Geometric Invariant Theory

The geometric invariant theory (GIT) is a method of constructing quotients by a group
action in algebraic geometry. In this thesis, we use this method to construct the moduli
space of semistable parabolic AL,-triples (Section 3) and character varieties (Section 4).

Let k£ be an algebraically closed field of characteristic zero.
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2.1. Group action and the linearization. An algebraic group over k is a k-scheme
G of finite type together with morphism

p: GxG— G, e:Spec(k) — G and : G — G

defining the group multiplication, the unit element and taking the inverse, and satisfying
the usual axioms for groups. Since we assume that the characteristic of k is zero, any
algebraic group is smooth. An algebraic group is affine if and only if it is isomorphic to
a closed subgroup of some GL(N, C).

A (left) action of an algebraic group G on a k-scheme X is a morphism
o:GxX —X

which satisfies the usual associativity rules. A morphism ¢: X — Y of k-schemes with
G-actions ox and oy, respectively, is G-equivariant, if oy o (idg X ¢) = @ 0 ox.

Let 0: G x X — X be a group action as above, and let x € X be a closed point. The
orbit of x is the image of the composite

0,0 G2 {1} xG— X xG -5 X.

It is a locally closed smooth subscheme of X, since GG act transitively on its closed points.
We put G, := o, (x) C G, which is a subgroup of G. We call G, the isotropy subgroup
or the stabilizer of x in G. If V is a G-representation space, let V¢ denote the linear
subspace of invariant elements.

Definition 2.1.1. Let 0: G x X — X be a group action of an algebraic group G on a
k-scheme X. A categorical quotient for o is a k-scheme that is a best approximation of
the functor

X/G: (Sch/k)® — (Sets), T — X(T)/G(T).
Moreover, let Y be a categorical quotient. The object Y is said to be universal categorical
quotient if for any morphism g: U — Y where U € Ob(Sch/k)°P, the object U is a best
approximation of the fiber product U = U xy (X/G).

Even if a categorical quotient exists, it can be far from being an “orbit space”. For
example, let the multiplicative group G = Spec(k[T, T~']) act on the affine space A™ by
homothetic. Then, the projection A™ — Spec(k) is a categorical quotient. However, it is
not really an an orbit space. We need notions which are closer to the intuitive idea of a
quotient.

Definition 2.1.2. Let G an affine algebraic group over k acting on a k-scheme X. A
morphism ¢: X — Y is a good quotient, if

(1) ¢ is affine and invariant;

(2) ¢ is surjective, and U C Y is open if and only if ¢='(U) C X is open;

(3) the natural morphism Oy — (¢.Ox)¢ is an isomorphism;

(4) if W is an invariant closed subset of X, then ¢(V) is a closed subset of Y. If W)
and W5 are disjoint invariant closed subsets of X, then o(W7) N o(Ws) # 0.

If a good quotient exists, we denote Y by X//G. The morphism ¢ is said to be a geometric
quotient if the geometric fibers of ¢ are the orbits of geometric points of X. Finally, ¢ is
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a universal good (geometric) quotient if Y' Xy X — Y” is a good (geometric) quotient for
any morphism Y’ — Y of k-schemes.

Remark 2.1.3. e Any (universal) good quotient is a (universal) categorical quo-
tient.
o If o: X — X//G is a good quotient and if X is irreducible, reductive, integral,
or normal, then the same holds for X//G.

When we consider a quotient of a projective scheme by an action of an algebraic group,
we need linearize the action. Then we give the precise definition for a group action on
invertible sheaf that is compatible with a given group action on the supporting scheme.

Definition 2.1.4. Let X a k-scheme of finite type, G an algebraic k-group and o: G x
X — X a group action. A G-linearization of a invertible sheaf £ is an isomorphism of
Ogy« x-sheaves

b: 0" L — piL,
where py: G x X — X is the projection such that
(1 xidx)*® = p3;P o (idg x 0)* P

where p is the group multiplication and po3: G X G x X — G x X is the projection onto
the last two factors.

Remark 2.1.5. The tensor product of two G-linearized invertible sheaves, and the
inverse of a G-linearized invertible sheaf both carry canonical G-linearization.

There are three ways to consider this definition. First, if g and x are k-rational points
in G and X, respectively, and if we write gz for o(g, x), then the G-linearization ® provide
an isomorphism of fibers of £

Sy Logg — Ly
And the cycle condition translates into
(I)g@ o (I)h,gz = (I)hg,m: Ehgac — Ew

Second, we consider the G-linearization ® by the line bundle L corresponding to the
invertible sheaf £. More precisely, we lift the action of G on X to a bundle action of G
on L as follows. The G-linearrization ¢ induces a morphism

0 LxyG=LXx, (GXxX)—=>Lxx,(GxX)—1L
such that the diagram
GxL-"~1L

.

GxX-—2-X

commutes. The cocycle condition for ® implies that o, is group action of G on L, and
the commutativity of the diagram says that the projection w: L — X is equaivariant.
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Third, we consider a dual action of G on H°(X, L) induced by a G-linearization, which
is the most important. This action is given by the composition:

P

H(X, L)~ H°(G x X, 0" L) H(G x X,pi*L)

l~

HY(G,0q) ® H'(X, L)

where the last isomorphism follows from Kiinneth formula. The conditions for a dual
action result from the cocycle condition on ®. We denote by H°(X, £)¢ the set of invariant
global sections of L.

Example 2.1.6 (PGL(n, k)-action on P*). Let P* := Proj k[ Xy, ..., X,]. The algebraic
group PGL(n, k) is the open subset of

P +2n o Proj klago, - -, @005 Q105 - -+ Q1ns - -3 Qo - - - 5 Q)
where det(a;;) # 0. Then, the morphism
(2.1.1) o: PGL(n,k) x P* — P"

can be define by the condition
0" (Opn(1)) = pi[Opnz120 (1)] @ p3[Opn (1)]

o (X;) = Zpi(aij) ® p3(X).

Unfortunately, Op,2.2. (1) is not trivial on PGL(n, k), since its order on Pic[PGL(n, k)] is
n + 1. Therefore, Opn (1) admits no PGL(n, k)-linearization.

On the other hand, Opr(n + 1) admits a PGL(n)-linearization. In fact, the line bundle
corresponding to Opn(n + 1) is the n-th exterior power of the cotangent bundle on P".
Any action on P" lifts to an an action on the cotangent bundle, hence to this n-th exterior
power.

Example 2.1.7 (SL(n + 1, k)-action on P"). Let @w: SL(n + 1,k) — PGL(n, k) be the
canonical isogeny and consider the induced action 7 = ¢ o (W X 1pn) of SL(n+ 1, k) on P"
where o is the PGL(n, k)-action (2.1.1). Then Opn (1) admits a SL(n + 1, k)-linearization.
It is well-known that SL(n + 1,k) acts on the affine cone A™™! over P", so that the
projection

o A"\ {0} — P"
is SL(n+1, k)-linear. On the other hand, let L be the line bundle corresponding to Opn (1).
The line bundle L is obtained from A"*! by blowing up at 0, and the projection L — P" is
obtained by . Therefore, SL(n+ 1, k) acts on L, compatibly with the projection L — P".
The invertible sheaf Opn (1) is the dual of the invertible sheaf corresponding to L.

2.2. GIT quotient.

Definition 2.2.1. An algebraic group G is called reductive, if its unipotent radical (i.e.
its maximal connected unipotent subgroup) is trivial.

For example, all tori GY and groups GL(n, C), SL(n,C), PGL(n,C) are reductive.
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Theorem 2.2.2 (Affine GIT quotient). Let G be a reductive group acting on an affine
k-scheme X of finite type. Let A(X) be the affine coordinate ring of X and we put
Y = Spec(A(X)%). Then, A(X)% is finite generated over k, so that Y is of finite type,
and the natural map m: X — Y s a uniwversal good quotient for the action G.

PROOF. See [35, Theorem 1.1] or [36, Theorem 3.4 and Theorem 3.5]. O

Assume that X is a projective scheme with an action of a reductive group G and that
L is G-linearized ample line bundle on X. For example, the reductive group G acts on X
through SL(n + 1, k)-transformation of the projective space:

GxX X

| I

SL(n + 1, k) x P? —P".

Then Ox (1) is a G-linearized ample line bundle on X.

Let R := €P,-, H(X, L®") be the associated homogeneous coordinate ring. Then
R :=@,., HO(X, L&")C is a finitely generated Z-graded k-algebra (see [36, Proposition
3.4]). For r > 0, the variety Proj (R%) is just the image of X under the linear system
HO (X, £®T)G:

X - P((H(X, L5)%)),

2.2.1
( ) T — ev,
where ev,(s) := s(z), s € HY(X,L®"). We fix a basis for H°(X,L®"), denoted by
S0, - .-, Sk. Then we can consider the rational map (2.2.1) as
T [so(x) ... sp(w)] € PP

The rational map (2.2.1) is defined on points for which ev, # 0 (equivalently the s;(z)
are not all zero).

Definition 2.2.3. A point z € X is semistable with respect to a G-linearized ample
line bundle £ if there is an integer r and an invariant global section s € H?(X, L®")¢
with s(x) # 0.

A point which is not semistable is called unstable.

We denote by X**(L) the set of all semistable points on X. Then we can define the
map

(2.2.2) X(L) — P((H(X, LE)E)").

Theorem 2.2.4 (GIT quotient). Let G be a reductive group acting on a projective
scheme X with G-linearized ample line bundle L. We put Y = Proj (R%). Then the
natural morphism m: X**(L) — Y is a universal good quotient for the action.

PROOF. See [35, Theorem 1.10] or [36, Theorem 3.21]. O
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The universal good quotient
m: X*(L) — Proj (R%)
is clearly constant on G-orbits, i.e. it factors through the set-theoretic quotient X**(L)/G.

However, the universal good quotient m may constant on more than just G-orbits. Then
we need another definition.

Definition 2.2.5. Let z € X be a semistable point with respect to a G-linearized
ample line bundle £. The point x € X is stable if in addition the stabilizer G, is finite
and G-orbit of x is closed in the open set of all semistable points in X.

A point is called properly semistable if it is semistable which is not stable.

We denote by X*(L) the set of all stable points on X. Let x € X be a stable point.
Then, for any y € X \ Gz, there exists a invariant global section s € H°(X, L") such
that s(z) # s(y). In fact, if s(z) = s(y) for any s € H(X, £LZ")¢ then the intersection of
the closures of the orbits Gz and Gy is nonempty, i.e. Gz NGy # () (see [36, Proposition
3.11]). Since the orbit G is closed set, we have Gz C Gy. On the other hand, since the
stabilizer G, is finite, we have dim Gz = dim G. Then, we have Gz = Gy. We consider
the restriction map of (2.2.3)

(2.2.3) X*(L) — Proj (R%) C P((H°(X, LE)%)").
The map only contracts single orbit. More properly, we have the following

Theorem 2.2.6. Let G be a reductive group acting on a projective scheme X with
G-linearized ample line bundle L. Let m: X**(L) — X//G be a universal good quotient
for the action. We denote the image n(X*(L)) by (X//G)*. Then, the restriction map
m: X°(L) = (X//G)*® is a universal geometric quotient.

PROOF. See [35, Theorem 1.10] or [36, Theorem 3.21]. O

2.3. Mumford—Hilbert criterion. Let \: G,, — G be a non-trivial one-parameter
subgroup of G. Then the action of G on X induces an action of G,, on X. Since X
is projective, the orbit map G,, — X; t — o(z, A(t)) extends in an unique way to a
morphism f: A! — X such that the diagram

Gm4/\>G7

L,

Al x

commutes, where G,, = A'\ {0} — A® is the inclusion, and G — X is the orbit map,
that is, g — o(x, g). We put

11_{% o(z,A(t)) :== f(0).

The point f(0) is a fixed point of the action of G,, on X via A. In particular, G,, acts
on the fiber of L(f(0)) with a certain weight r, that is, ® is the linearization of L, then
O(f(0),A(t)) =t" - idr(¢()). Define the number

pr(z, N) = —r.
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Theorem 2.3.1 (Mumford-Hilbert criterion). A point x € X is semistable (resp.
stable) if and only if for all non-trivial one-parameter subgroups \: G,, — G, one has

pE(z,A) >0 (resp. >).

PROOF. See [35, Theorem 2.1] or [36, Theorem 4.9]. O

3. Moduli problem for parabolic AL-triples

3.1. Definitions. We recall the definition of a parabolic Al -triple defined in [23].
Let D be an effective divisor on a nonsingular curve ¥.. We define AL as Oy ® 24(D)Y
with the bimodule structure given by

fla,v) = (fa, fv) (f,a € Os, ve 24(D)Y),
(a,v)f = (fa+v(f), fv) (f.a€ Og, ve (D))

Definition 3.1.1. We say (Ey, Ey, ®, F.(E})) a parabolic A&-triple on ¥ of rank n and
of degree d if

(1) Ey and E, are vector bundles on ¥ of rank n and of degree d,

(2) @: A, ® By — Fy is a left Og-homomorphism, and

(3) By = Fi(E1) D Fy(Ey) D -+ D Fi(Ey) D Fi11(Ey) = Ei(—D) is a filtration by
coherent subsheaves.

Note that to give a left Os-homomorphism ® : A}, ® E; — F, is equivalent to give
an Osx-homomorphism ¢ : E; — Fy and a morphism V : F; — FEy ® 2%(D) such that
V(fa) = ¢(a) @ df + fV(a) for f € Ox and a € E;. We also denote the parabolic
Ajp-triple (Ey, By, ®, F.(Ey)) by (En, Bz, ¢, V, Fu(Ey)).

We take positive integers (1, 2,7 and rational numbers 0 < o} < --- < a; < 1. We
assume v > 0. Set o’ := (af,...,q)) and B = (S, f2).

Definition 3.1.2. A parabolic AL-triple (E1, Ey, ¢, V, F.(Ey)) is (o, B)-stable (resp.
(a/, B)-semistable) if for any subbundle (Fi, Fy) C (E1, Es) satisfying (0,0) # (Fy, Fy) #
(Ey, Ey) and ®(AL ® Fy) C Fh, the inequality
61 deg Fl(—D) + ﬁz(deg F2 — vrankFQ) + 51 23:1 a;length(F](El) N Fl)/(Fj+1(E1) N Fl))

[y rankFy + fa rank Fy
_ Bideg Ei(—D) + Ba(deg Ey — yrankFs) + B, 22':1 olength((Fj(E1))/(Fji(Er)))
(resp. <) Bl rankE1 + 62 rankEg
holds.

Let S be a connected noetherian scheme and wg: X — S be a smooth projective
morphism whose geometric fibers are curves of genus g. Let D C X be an effective
Cartier divisor which is flat over S. We can consider the Ox-bimodule structure on

Ap s = Ox ® (2 15p))"-

Fix a positive integers n, d, and {d;}1<i<;-
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Definition 3.1.3. We define the moduli functor M}"?/Og’ﬁﬁ(n, d,{d;}) of the category
of locally noetherian scheme over S to the category of sets by

MFR[s " (0, dAd})(T) = {(Ey, B>, @, F.(E0))}/ ~

where T is a locally noetherian scheme over S and

(1) Ei, Ey are vector bundle on X xg T such that for any generic point s of T,
rank(F})s = rank(FEs)s = n, deg(F1)s = deg(Fs)s = d,

(2) &: A%)/s ®o, E1 — Es is a homomorphism of left Oy r-modules,

(3) E = Fl(El) D) FQ(El) D e D .FZ(E1> D) E—i—l(El) = E1<—DT> is a filtration
of E; by coherent subsheaves such that E;/F;1(F;) is flat over T' and for any
geometric point s of T, length((Ey/Fii1(E1))s) = d;,

(4) for any geometric point s on S, the parabolic Ap, -tuple ((E1)s, (F2)s, s, Fu(E1)s)
is (o, B)-stable.

Here, (E1, B9, @, FL.(Ey)) ~ (B}, EY, @' F.(E])) if there exist a line bundle £ on T and
isomorphisms o;: E; = E!® L for i = 1,2 such that oy (Fj;1(Ey)) = Fi1(F)) @ L for any
7 and the diagram

@

Alp/s ®o, E1 E,

Ziid@aj = |02

AL ®o, B1® L 72 By @ £

commutes.

3.2. Construction of the moduli space. We recall the construction of the moduli
space of M]-“X/?; Bv(n, d,{d;}) due to Inaba—Iwasaki-Saito [23]. Let P(m) := ndym +
d+1r(1— g) where dy = Oy,(1) for s € S and g is genus of X;. Fix a integer mg. The

family of geometric points of M}"ZZ; - "(n,d,{d;}) is bounded (see [23, Proposition 5.1]).
Then, by replacing mg, we may assume that for any m > my,

o hI(Fi(E1)(m)) = h
o Ey(m —7), Fi(E)

I(Ey(m )):Oforj>0,z'zl,...,H—l7
(m), (i=1,...,1+ 1) are generated by their global sections
for any geometric point (Ey, Ey, ®, F.(E7)) of Mff(;‘;f’ﬁ”(n, d,{d;}).

Put ny = P(mg) and ny = P(mgy — 7). Let Vi and V4 be free Og-modules of rank n4
and rank ng, respectively. Let @ be the Quot-scheme Quoty,s(Vi ® Ox(—my), P(m))
and

Vl X OXQl (—mo) — 81

be the universal quotient sheaf. Similarly, let ()2 be the Quot-scheme Quot;(/s(vz ®
Ox(—mo + 7), P(m)) and

Va® OXQ2 (—mo+7v) — &
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be the universal quotient sheaf. We put Qgi) = Quot Xo, /@1 (&1,d;) and we denote by
Fii(&) C (&) o be the universal subsheaf. Let ) be the maximal closed subscheme of
1

le) XQy X, le) X ()2 such that there are factorizations

(€1)q ® Oxo(=Dq) — Fii(&1)q = Fi(&1)q C (&1)
for i =1,...,1 where F(&;) = & . Since (&)q is flat over @, there is a coherent sheaf H
on () such that there is a functorial isomorphism

HomXT<A1D/S ®oy (E1)7, (E2)7 @ L) = Hom(H @ Or, L)

for any noetherian scheme T over () and any quasi-coherent sheaf £ on T' (see [1, Section
1]). Put V*(H) := SpecS(#H) where S(H) is the symmetric algebra of H over Og. Note
that the scheme V*(H) represents a functor

(Sch/Q) > T — HomXT(A%/S ®o. (1)1, (E2)1)-
Let N
®: Apys Qoy (E1)veay — (E2)ve)
be the universal homomorphism. Then, we define the open subscheme R* of V*(H) by

' (1) () = (&) (mo)). (2): = H((Ex)(rm =) )
are bijective,
(2) Fi(&1)s(mo), (E2)s(mo — ) are generated by their
R :=<(seV*(H) global sections, '
(3) B (Fi(&1)s(mo)) = W ((E2)s(mo — 7)) =0
for j>0,1<i<l+1,
(4) ((&1)s, (E2)s, Ps, Fiu(&E1)s) 1s (e, B)-stable.

Note that the openness of stability is shown in [23, Proposition 5.3].

\

We construct the immersion of the open subscheme R® into a projective scheme as
follows. Fix a integer m; which is large enough (see [23, p.1035-p.1036]). The composite
Vi ® AL s ® Ox(—mo)ge — Abys @ (E1)ge — (E2)re

induces a homomorphism
(321) VieW;® ORS — <7TRs>*<52(m0 +mq — ’Y)Rs)

where Wy 1= (WS)*(OX(m0+m1—7)®A%/S®(’)X(—mo)), mg: X — S, and s : Xps — RS,
The quotient Vo ® Ox(—mg + v) — & induces a homomorphism

(3.2.2) Vo @ Wo @ Ops — (mgs)«(E2(mo + my — Y)rs)

where Wy := (75)+(Ox(my)). Those homomorphism induce a quotient bundle

(3.2.3) (V1@W,®Va®@Ws) @ Ops — (TRs )« (E2(mo + m1 — ¥) gs)

Moreover, we have the canonical quotient bundles

(3.24) Vi@ Wy® Ops = V1 ® (15)+(Ox(m1)) @ Ops — (g )«(Ea(mo + my — 7)ps)
and

(325) ‘/1 (059 ORS — (WRS)*(&/FZ-H(&)(mO)Rs) (Z = 17 ey l)
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We put

Gry :=Grassg(V; @ Wy & Vo @ Wa, 1),
Gry :=Grassg(V; ® Wa, ), and
(
(

Grly :=Grassg(V1, d;)

where ry := h°(&E(mg +my)s), 7o := RO
obtain the following morphism

Ey(mo +my — 7)) for any point s € R°. Then we

!
(3.2.6) t: R® — Gry x Gry X HGrg.
i=1
We may check that ¢ is an immersion.
Put
(3.2.7) G := (GL(V}) x GL(W%))/(G,, x S)

where G,, x S is contained in (GL(V}) x GL(V4)) as scalar matrices. Then G acts canon-
ically on R® and on Gr; x Gry X Grg. We may show that ¢ is a G-equivariant immersion.
We construct a G-linearized S-ample line bundle on R* as follows. There are S-ample line
bundles Og;,, (1) on Gr; and (’)Gré(l) on Gr} induced by Pliicker embedding for i = 1,2,

j=1,...,1. We define positive rational numbers v, s, V{i) (1<i<l) by

vy =B1(B1P(mg) + B2 P(mg — 25161 i

vy :=Pa(B1P(mo) + B2 P(mo — Z/alez ;

) =(B1 + B2) Bindxmie;.
Let us consider the Q-line bundle
!
(3.2.8) L = *(Ocr, (1) ® O, (1) @ X) Gry(11"))
i=1

on R*. Then for some positive integer N, L®N becomes a G-linearized S-ample line bundle
on R®.

By hard computation of the Mumford-Hilbert criterion, we have the following propo-
sition

Proposition 3.2.1 ([23, Proposition 5.4]). All points of R® are stable (in the sense of
the GIT) with respect to the action of G and the G-linearized S-ample line bundle LN

Then we have the following theorem

Theorem 3.2.2 ([23, Theorem 5.1]). The scheme Mi’;”ﬁ”(n, d,{d;}) == R°/G is a
coarse moduli scheme of J\/l}"g/(; ﬂw(n,d, {d;}).
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4. Character varieties

4.1. Character varieties. We fix integers ¢ > 0,k > 0 and n > 0. We also fix a
k-tuple of partition of n, denoted by p = (u',...,u*), that is, p' = (ui, ..., pk) such
that i > pb > -+ are non-negative integers and Zj ,u§ =n. Let X be a smooth complex

projective curve of genus g. We fix k-distinct points pq, ..., py in X and we define a divisor
by D:=p;+ -+ pp. Weput X9 =%\ D.

We now construct a variety, called a character variety, whose points parametrize rep-
resentation of the fundamental group of ¥ into GL(n,C) with prescribed images in

semisimple conjugacy classes Cy, . ..,C; at each puncture. Assume that
k

(4.1.1) [ detc;i=1
i=1

and that (Cy,...,Cy) has type pu = (u!, ..., p*); that is, C; has type p' for each i = 1,..., k,
where the type of the semisimple conjugacy class C; C GL(n, C) is defined as the partition
pt = (p, - .., pt.,) describing the multiplicities of the eigenvalues of any matrix in C;. Let

vi=(vi,...,v.) € (C*)" be the eigenvalues of C;. We denote the k-tuple (v',... %) by

V.

Definition 4.1.1. The k-tuple (Cy,...,Cy) is generic if the following holds. If V' C C”
is a subset which is stable by some X; € C; for each 7 such that

k
[T det(xilv) =1,

i=1

then either V =0or V = C".

Lemma 4.1.2 ([15, Lemma 2.1.2]). For any p, there exists a generic k-tuple of
semisimple conjugacy classes (Cy,...,Cx) of type p over C.

Definition 4.1.3. For a k-tuple of generic semisimple conjugacy classes (Cy, ..., Cg) of
type p, we define a subvariety of GL(n,C)%™ by

UP (V) :={(A, By,..., Ay, By X1,..., X}) € GL(n,C)* x C; X - -+ x
| (A1, B1) -+ (Ag, Bg) Xy -+ Xip = I},

where (A, B) := ABA™'B~!. The group GL(n,C) acts by conjugation on GL(n,C)?9™™.
As the center acts trivially, the action induces that of PGL(n,C). The action induces
that of PGL(n,C) on U*(r). We call the affine GIT quotient

Mi(v) :=U*(v)//PGL(n,C)
a generic character variety of type p. We denote by 7, the quotient morphism
(4.1.2) T UF (V) — MG (v).

Proposition 4.1.4 ([15, Proposition 2.1.4]). If (Cy,...,Cx) is generic of type w, then
the group PGL(n,C) acts set-theoretically freely on UM (v) and every point of U (v) cor-
responds to an irreducible representation of w(Xo).
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Theorem 4.1.5 ([15, Theorem 2.1.5]). If (Cy,...,Cx) is a generic type p, then the
quotient
T UH (V) — My (v)
is a geometric quotient and a principal PGL(n, C)-bundle.

Theorem 4.1.6 ([16, Theorem 1.1.1]). If non-empty, the generic character variety
MUE (V) is a connected non-singular variety of dimension

n’(2g—2+k) = > (i)’ +2.

.3
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CHAPTER 3

Hodge Theory

We recall topics of the Hodge theory which are variations of Hodge structures and mized
Hodge structures. In Chapter V, we compute the types of the mixed Hodge structures
of the moduli space of semistable parabolic Higgs and the moduli spaces of semistable
parabolic connections. In Chapter VI, we compute the mixed Hodge structures of a few
examples of character varieties. Those moduli spaces are open smooth varieties, and there
are compactifications whose boundaries are varieties with normal crossing. Therefore, in
this chapter, we give a detailed description of mixed Hodge structures of varieties with
normal crossing and open smooth varieties. Main references are Deligne’s papers [6], [7]
and Griffiths-Schmid’s paper [14].

1. Variation of Hodge structure

1.1. Hodge structure. Let X be a compact Kahler manifold. Then, the cohomology
of X carries a Hodge structure of weight k:

HYX,C)= @ H(V)

where HP4 = H%P and HP? = HY(V,(2%). Alternatively, the Hodge structure on
H*(X,C) is determined by the Hodge filtration

{F'} = {F"H"(X,C)}
which is a decreasing filtration satisfying
F°=H"X,C), F*=H"X,0%)=H"X)

and

Fr'= @ H"X).
ptq=k,pzr
The FP satisfy in addition:

FP @ Fk—r+l = g*(X,C), HP? = FP N Fk-p,

One way to obtain the Hodge filtration on H*(X, C) as follows: let £2% be the complex
of sheaves
Ox — 2% — 0% — -
By the holomorphic Poincaré lemma, the complex (2% is a resolution of the constant sheaf
Cx on X [5]. Hence, we have

HF(X, 2%) = H*(X,C).
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There is an associated spectral sequence, the Hodge-de Rham spectral sequence:
HP = HI(X, (%) = H""9(X,C),
which degenerates at E; term by classical Hodge theory. Hence, there exists a filtration

on H*(X,C) whose associated graded space is D, - H?(V) and this filtration is {F7}.

1.2. Polarization of Hodge structure. Let X be a compact Kahler manifold.
The cohomology ring H*(X,C) has a non-degenerate pairing defined over the integers
and unimodular on H*(X,Z) mod torsion via

(z,y) — (z Uy)[X]

where [X] is the positively oriented fundamental class of X.

We polarize the Hodge structure of X as follows: let [w] be the cohomology class
associated to a Kéhler metric on X. The class [w] lives in H*(X, C).

Remark 1.2.1. If X is a smooth projective variety, then [w] is the first Chern class of
some ample line bundle on X. Hence, the class [w] lives in H?(X,Z).

We define the Lefschetz operator as follows:
L: H*(X,C) — H*™(X,C)
a— [w]Ua.

If dim X = n, the Hard Lefschetz theorem asserts the isomorphism
LF: H"F(X,C) — H" (X, C).
We define the primitive cohomology Hy"(X,C) by
Hy™"(X,C) = Ker{L*"*: H"*(X,C) — H"™ (X, C)}.
and similarly for H"?(X). Then, we have
Hy "(X,C)= @ H"(V).

pra=n—k

Given a choice of [w], define the following modified intersection pairing on H (X, C)
Q: H "(X,C) x H %(X,C) — C
(z,y) — (W]* Uz Uy)[X].

The pairing () is non-degenerate, symmetric or alternating as n — k is even or odd, and
defined over Q if [w] € H?*(X,Q). Moreover, the pairing @ satisfies the Hodge—Riemann
bilinear relation, that is, satisfies

(1) first bilinear relation: HP9 is Q-orthogonal to H?*¢ unless p’ = ¢ (and hence
p=4q);
(2) second bilinear relation: if x # 0, x € HY, p+ q = k, then

V=D (=) QD) > 0.

A reference for these facts is, for example, [13]. We call the paring @ a polarization of
the Hodge structure of X.
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1.3. Variation of Hodge structure. Let 7: X — S be a smooth proper map if
complex manifold with fibers X; = 7 !(¢). Assume that 7 is projective, that is, there
exists an embedding X < PV x S for some N such that the following diagram commutes:

X —PVx§S

N

The higher direct image sheaves associated to 7 yield a formalism for fitting together the
cohomology group H*(X;, C) and HP?(X;) to obtain global object over S.

The higher direct image R*m,Cx is a local system of complex vector space. We put
Hk = RkW*CX R Os,

which is a locally free sheaf of germs of holomorphic sections of R*7,Cx. The inclusion
of sheaves

Rkﬂ' LC x CH k
determines an unique connection VY on H*, the Gauss—Manin connection, by decreeing
that the local sections of R¥m,Cx shall be annihilated by V&M,

We ask how the Hodge structures vary with t. Let H* be the holomorphic vector
bundle associated to H*. It turns out that the subbundles { H""},cs = { H??(X}) hes do
not in general come from holomorphic subbundle of H*, but only C* subbundle. On the
other hand, the subbundle {F¥};cs = {FP(X;) }ies are holomorphic subbundle of H* (see
[12]).

Theorem 1.3.1 (Griffiths transversality).
VM(FPYy c 2L ® FP~! for any 0 < p < k.

The general set-up of the period map is as follows. Let HY be the primitive cohomology
bundle. Here, primitive means with respect to the metric induced by X — P¥ x S. We
only consider primitive variations of Hodge structure. Let S be a universal covering of \S.
The bundle HY can be trivialized after lifting it to S denoted by H . We fix points t € S

andf € S lifting t. We have canonically identification of fibers
(13.1) (Hy)s = (Hy);

for any point § € S. By the identification (1.3.1), the Hodge bundle {(ﬁé’)s}seg lifted to

S may be viewed as a filter of the fixed vector space H¥(X,, C) (22 (HF);). Then we have
the following holomorphic map

(1.3.2) S — F:= {{FP}E_ | F? € Grass(f?, HY(X,,C)), F' D F? > ... > F*}
where fP := dim HP. By the two bilinear relations, we put
D:={{FP} e F|Q(F,FF"™1) =0, 1 <p <k}

and

[y ep| (VDD Q) > 0,
D_{{F}GD‘Va:er’q(x%O?erq:k) }
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We call D a Griffiths period domain. Let I' be the arithmetic subgroup of G defined as
follows:

I' = {y € Auty H*(X,,Z) | 7 fixes the polarization}.

Then I" acts properly discontinuously on D and hence I'\ D is naturally a complex analytic
space. Then the period map is defined by the induced map

(1.3.3) ¢: S —s T\D.

We consider the derivation of the period map:

k
(1.3.4) dos: ToS — Ty)(T\D) = TyyD C @ Hom(F?, Hy(X,,C)/F?).
p=1
By the Griffiths transversality, we may show that the image of d¢, is contained in the
subspace @@_, (F?/Frtt FP=1/F?) of @F_ (F?, HE(X,,C)/F?), ie.,

k
(1.3.5) dos: ToS — (TyD) N @ Hom(F?/FrH FP=! /F?).

p=1

We recall the relation between the derivation of the period map and the Kodaira—
Spenser map. Let © x be the tangent bundle of X. The Kodaira—Spenser map 0: Og —
H'(X,,Oy,) is described as follows. We consider the extension of Ox-module

(1.3.6) 0 — 7*(s) — 2% — 2%/ — 0.

We have the element of Ext' (2} ¢, 7%(£2§)) = H'(M, Hom(£2Y ;5,7 (£2§))) which is the
class of the extension (1.3.6). We take the image of this element via the edge homomor-
phism of the Leray spectral sequence of 7

H1<X, GX/S' X W*(Qé)) —
H(S, R'm.(©x/s @ 7*(125))) = H°(S, 2¢ ® R'm.(Ox/5s)),

denoted by px/s € H°(S, 2% @ R'm,(Ox/s)). The class py/s is viewed as the element of
Hom(Og, R'm.(Ox/s)). Then, for any s € S, we obtain the map

px/ss: Oss — H' (X5, Ox,),
which is called the Kodaira—Spenser map.

Note that F?/FPtt = HI(X,, %) where p + ¢ = k. Therefore, for any £ € T,S, the
image of the derivation of the period map d¢4(§) is view as the element of

k
@ HOH](Hg(Xt, Q?{)? Hg+1(Xt7 “Q_I;{_l))
p=1
We put
d¢s(£) = (d¢s(§>17 d¢5<§>2, v 7d¢s(§)k)

Then we have the following theorem

42



Theorem 1.3.2. The element doy(€), € Hom(H{(X,, 2%), HI (X, 2% 1)) coincides
with the map

HY(X,, %) — HM(X,, 0, @ 2%) — HT(X,, %)

where the first map is the cup-product of px;s+(§) and the second map is the contraction.

2. Mixed Hodge structure

2.1. Definition and Properties.
Definition 2.1.1. A Hodge structure of weight k consists of:
(1) a finitely generated free Z-module HZ and
(2) a decreasing filtration F? D FP*lof H® = H? ®; C, satisfying
F? @ Fh-r+ = [T,
Example 2.1.2 (Tate twist). We put Z(k) := (2mrv/—1)¥Z is a Hodge structure of

weight —2k and of pure Hodge type (—k, —k), that is, F~* N F—* = Z(k)¢. We call Z(k)
the Tate twist. Note that H?(P{,Z) = Z(—1).

Definition 2.1.3. A mized Hodge structure consists of:
(1) a finitely generated free Z-module HZ;
(2) an increasing filtration W), C Wyy1 of H2 = HZ @ Q

2
(3) a decreasing filtration F? D FP*! of HC such that the filtration induced by F*®
on Gr*W, := Wy /W;_1 is a Hodge structure of weight k.

The mixed Hodge structure arises in natural is shown by the next basic result.

Theorem 2.1.4 ([6], [7]). Let X be a complex algebraic variety. Then, there exists a
mized Hodge structure on H?(X, Q). Moreover, the weight filtration satisfies

0=W_1 CWyC--- C Wy =H(X,Q)
and the Hodge filtration satisfies
H/(X,C)=F'DF'D2...DF"DF"! =0
Moreover, the structure is functorial.

Remark 2.1.5. If X is smooth and projective, the above mixed Hodge structure on
H(X,Q) agrees the usual Hodge structure.

One can define a mixed Hodge structure on the compactly supported cohomology
HI(X) = HI(X,Q).

Definition 2.1.6. The mized Hodge number h?#(X) is defined by dime (Grj, Griy “HY (X)©).

The compactly supported mized Hodge number h297 is defined by lelc(Grfj Grﬁf{ THI(X)T).
We call the polynomials

(2.1.1) H(X;z,y,t) = th’q;j(X)xpyqtj and
(2.1.2) H.(X;x,y,t) th‘“ )aPyt!
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the mized Hodge polynomial and the compactly supported mized Hodge polynomial, re-
spectively.

We consider the two especially cases of Theorem 2.1.4 where X is a variety with normal
crossing and where X is a open smooth variety.

2.2. Varieties with normal crossing. Let X = U§:1 X; be a union of smooth
projective varieties meeting transversally; And locally X is defined by a single equation
of the form

{z1-+2, =0}
Definition 2.2.1. The dual graph T" of X is a simplicial complex defined as follows:
e the point p; of I' correspond to components X;;

e there exists a 1-simplex 0;; connecting p; and p; if and only if X; N X, # 0;
® 0;j, Ojk, O bounded a 2-simplex if and only if X; N X; N X}, # (), and so on.

We put X1 := ][, X; and in general
k. — H X, N---NX;

1k
i1 < <ip,

so that X is smooth for all & > 1.

Consider the double complex
@ J = @ Qe
P P

with the following differentials:

e the de Rham d
. +1,
d: Q) — Vs
e the Cech boundary operator (an alternating sum of restriction maps)

J: Q1

q
Y — 2

p+1] ;

e D:=d+9.

We put

7= e

pt+g=k
Then (F*) is a complex.

Proposition 2.2.2. The complex (F*) is resolution of the locally constant sheaf Cx
on X. Hence HF(F*) = H*(X,C) where H*(F*) is a hypercohomology of (F*).

There is then a spectral sequence associated to HF(F*):

EP = HY(XP C) = H"M(X,C).
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We have an increasing filtration

WieE = @ EP.
q<k
Theorem 2.2.3. (1) EP9 degenerates at the r = 2 term, i.e. EY? = EP4;

(2) Wy induce a filtration on Es and hence on H*(X,C) defined over Q. Moreover
W,H"(X,C) = H"(X,C) for all n;

(3) The natural Hodge filtrations on HY(X"P), C) induce a decreasing filtration {FP}
of HPT1(X, C);

(4) the filtrations {Wy} and {F?P} on H?T(X,C) are a mized Hodge structure.

PROOF. For example, see [14, §4]. O

Example 2.2.4 (Curves). Let C' = JC; be a curve with normal crossing. Everything
still work if we drop the requirement of global normal crossings. We will only assume
that locally X looks like {2122 = 0}. A double point on an irreducible component of C
contributes to a loop in the dual graph I'. We consider the mixed Hodge structure on
H'(C,C). The part of pure weight 0 is the following. We put C' := Cl! := [[C; and
CP:=1]C; N C; = {the double points on C'}. We have

WoH'(C,C) = Coker{H°(C,C) — H°(C®,C)}
~ HYT,C).

On the other hand, by the Mayer-Vietoris exact sequence, we have

WoH'(C,C) = Ker{H*(C,C) — H(C,C)}.
Hence,

Wo = HY(T',C)
Wl/WO = H1<57 (C)a

which is a pure Hodge structure of weight one.

Example 2.2.5 (Surfaces). Let X = (J X, be a surface with normal crossing. We put
We put X! :=[[X; and X2 :=[] X; N X;. Then, for H?(X,C) we have
Wy /Wi = Ker{ H*(XW, C) — H*(X®,C)},
W1 /Wy = Coker{ H(XW C) — HY(XP C)},
Wy = H*(T,C).

2.3. Open smooth varieties. Let X be a smooth quasi-projective variety. By reso-
lution of singularities, we can assume that X C X where X is a smooth projective variety
and the divisor D := X \ X is a normal crossing divisor. We put j: X <+ X which is the
natural inclusion.

We put
25(log D) := {¢ € ju2x | Ipo, Ipdep C 25} .
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We call a section of this sheaf a logarithmic differential form of degree 1 along D. The
condition means that ¢ and the exterior differential ¢ have at worst simple poles along
D. Moreover, we define the sheaf of logarithmic differential form of degree p along D by

(2% (log D) /\ Ql (log D).
If the divisor D is defined by {z; - - - z,, = 0} in some neighborhood of a point of D, then
the element ¢ € pr(log D) is represented by

dzZl

Ziq

dzik p—k
AN , YEeSs

Zik

» A
locally. Exterior differential makes 2% (log D) into a complex, called log complex.

Theorem 2.3.1. (1) H*(X, 2%(log D)) = H*(X, C);

(2) the associated spectral sequence
pEV = HIY(X, 22 * (log D)) = H""(X,C)
is degenerate at the Ey term, and induce a decreasing filtration { F?} on H*(X, C).

PROOF. See [6, (3.2.2) and (3.2.13)]. 0

To describe the weight filtration, we put
W22 (log D) := 227 A (2% (log D).
Locally, we can define the Poincaré residue operator as
oA dz“ . dzzl
i1 i

where D; is defined by z; = 0, D; € D = {z;---2z, = 0}. By the operator, we have
the homomorphism W;(2%(log D) — Q'D;lm”nDil locally. To obtain the global Poincaré

residue operator, we introduce the following local system €': We put Dl .= ]_L.l <oy XN

--NX;, and DU':= X Let 4; be the natural map D — X. For each p € DY, we take
the set of [-th components of D which contain the image in X of an open neighborhood
of p in DM locally. Then, we define the local system E; over DI such that each fiber is
this set of [-th elements. The local system of orientation of the set of I-th components
is a Z/(2)-torsor over D[l] The Z/(2)- torsor defines, via the inclusion of Z/(2) in C*, a
complex local system ¢ of rank 1 over D with the isomorphism (€')®? = C. We have

el /\CE".

Locally, €' has the two isomorphism +a: € = C which are opposites of one another. We
put

e = a ' ((2mV~1)7'Z).
The tuple (€}, €) is a local system of Z(—I), the Tate Hodge structure. We define the
Poincaré residue operator

PRy: Wil (log D) — i1, (20 @ ')

Dl
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via

Dy, N..nD;, ® (orientation {iy,...,4})

dz; dz;
PR, <¢A N Zl):w

Ziy i
where D; is defined by z; = 0, D; C D = {z;---2; = 0}. Then PR, is well-defined
globally.

Lemma 2.3.2. The Poincaré residue operator PR, induce the following isomorphism
of the complezxes

Gr)" 2%(log D) — z’l*(rz;;[lf ® ).
PROOF. See [6, (3.1.5)]. O

Moreover, since D is proper and smooth, we have Cppy = 2 Then, the morphism

DU
Grl" 2%(log D) — e [—1] := iy (") [-]]
is a quasi-isomorphism.
Proposition 2.3.3. The spectral sequence defined by Q‘Y(log D) with the filtration W,
wE M =T X, Grl" 2%(log D))
~ gDl ¢y — H*(X,C)
1s degenerate at Ey term. Then we have

GrVHY(X,C) = @5 wE"

q—l=k

PROOF. See [6, (3.2.13)]. O

Theorem 2.3.4. (1) The weight filtration W, of H*(X,C) is defined over Q;
(2) the weight range from 0 = Wy, C --- C Wy, = H¥(X,C);
(3) the filtration {F*} and {W,} define a mized Hodge structure on H*(X,C);
(4) the resulting mized Hodge structure is independent of the choice of X and func-
torial.

PROOF. For example, see [14, §5]. O

Example 2.3.5. Let C be a smooth complete curve, S C C a finite set of points, and
cC=C\S.

The weight filtration on H'(C,C) is as follows:
Wy = Ker{H(SY, %) — HY(SW ')}
= Image{H'(C,C) — H'(C,C)},
Wy /Wi = Coker{ H(S"", *) — HO(SW )}
= {divisor of degree 0 supported on S},
where Wy /W, has dimension £S5 — 1.
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To describe the Hodge filtration, let (%(S ) be the sheaf of holomorphic 1-form on C
with at worst simple poles along S. The short complex

C* ={0gz — 25(9)}
fits into an exact sequence

2myv/—1Res (CS [1]

0—>Q5—>C' —0

where Cg is a skyscraper sheaf of C concentrated at the points of S and Cg[1] means that
the complex consists of the single term Cg in dimension 1. Now, we have

F'=H°(C, (%(S)) c H'(C,C).
It is a standard fact that ¢ € F! can have arbitrary residues at p € S, subject only to
the condition
Z Res,(¢) =0

peES

(for example, see [13, p.233]). Thus, F! 2my—1Res, Wy /Wy is surjective. In fact, the
condition that H'(C,C) is a mixed Hodge structure means that

F'NFL = W,y /Wy.

Classically, this is the statement that, given two points p and ¢ on the complex Riemann
surface C, there exists a differential of the third kind with residue ﬁ at p and —%—\1@

at ¢ which is regular elsewhere and has real periods on C (see [43, vol2, p.104]).

48



CHAPTER 4

Nonabelian Hodge theory and Riemann-Hilbert correspondence

In this chapter, we describe relationships between the moduli space of semistable para-
bolic Higgs bundles, the moduli space of semistable &-parabolic connections, and character
varieties.

1. Nonabelian Hodge theory

The nonabelian Hodge theory for noncompact curve is due to Simpson [44]. The non-
abelian Hodge theory gives a natural one-to-one correspondence between stable parabolic
Higgs bundles, and stable &-parabolic connections. This correspondence arises from the
fact that both sides are shown to correspond to rreducible tame harmonic bundles.

Here, we consider (parabolic) A-connections due to Deligne. We construct the moduli
space of semistable parabolic A-connection. By the moduli space, we have the deformation
between the moduli space of semistable parabolic Higgs bundles and the moduli space of
semistable &-parabolic connections.

1.1. Parabolic A-connection. We fix integers ¢ > 0,k > 0 and n > 0. We also fix
a k-tuple of partition of n, denoted by p = (u',..., "), that is, p' = (uf, ..., pl ) such
that s > py > - -+ are non-negative integers and ),y = n. Let X be a smooth complex
projective curve of genus g. We fix k-distinct points pyq, ..., pr in X and we define a divisor
by D :=p; + -+ pg. We put £y =X\ D. For integer d, we put

Ad+zu§§§:0}

1]

Zped = {(A (5;1)}32;) €eCxC

where r := > r;. We take (), €) € 24 where € = (fj)gégn

Definition 1.1.1. For (\,&) € Z*9 we call (), E,V,{lg)}lgigk) a &-parabolic \-
connection of rank n, of degree d, and of type p if

(1) E is an algebraic vector bundle on ¥ of rank n and of degree d,

(2) V: E — E® L(D) is a A-connection, that is, V is a homomorphism of sheaves
satisfying V(fa) = da @ df + fV(a) for f € Ox and a € E, and

(3) for each p;, 1Y is a filtration E|, = 11" 1) 5 ... 1% > lr(’li)—ﬁ-l = 0 such that
dim(lj(-l)/lﬁl) =y and (Res,, (V) — f;idmpi)(léz)) C lj(-il forj=1,... 7.

For A = 1, this is a &-parabolic connection of spectral type p (defined in the introduc-
tion). For A = 0 and & = 0, this is a parabolic Higgs bundle (defined in the introduction).
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Remark 1.1.2. For A # 0, we have

i
L

Mw

deg £ = deg(det(FE)) Z Res,, (A™'V) det 1)

=1 =1

> |@:.

.
Il
o

We take rational numbers

0<al! <al’l <. <ald <1

fori =1,..., k satisfying ay) # aéf/) for (i,7) # (¢',7"). We choose a = (ay)) sufficiently
generic.

We define the parabolic degree and pambolz’c slope of E by

pardeg(FE) := deg(F +ZZQ dim(l )/53(21)7

i=1 j=1
pardeg(F)

par,u(E) = l"k(E)

Definition 1.1.3. A parabolic A-connection (A, E, V, {l£i)}1§i§k) is ac-stable (resp. a-
semistable) if for any proper nonzero subbundle F' C E satisfying V(F) C F @ 24(D),
the inequality

pary(F) < parp(E)  (resp. <)
holds.

Remark 1.1.4 ([21, Remark 2.2]). We chose a@ = (&g-i)) sufficiently generic. Then,

a parabolic A-connection (A, E, V,{I"}) is a-stable if and only if (A, E,V,{I?}) is a-
semistable.

1.2. Construction of the moduli space. The argument in this subsection is al-
most the same as in [21]. The difference from [21] is that we fix the k-distinct points

{p1,....px}, the flag {l 2 } is not necessarily full flag, and we construct the moduli space
of a-semistable parabolic A\-connections instead of a-semistable parabolic connections.
Definition 1.2.1. We put C = ¥ x Z¢4 § = Z#4 p = p; x Z¥4 (for i = 1,...,k)
and D = p; + -+ + pr. We define a functor M}"?/";’Hod(n,d, p) of category of locally
noetherian schemes to the category of sets by
D, . 7
MJ:C/S,HOd(”? d, p)(T) = {(A7E7V7 {lg)}gz‘gk)} / ~,

for a locally noetherian scheme 7" over S where

(1) E is a vector bundle on Cr of rank n,
2) V:E = E® 2, ((Dr)) is a relative (\)p-connection,
Cr

(3) for each p; x T 1% is a filtration Elgyr = 195 lg) 5. 1% 5 liz)ﬂ = 0 such
that dim(i{" /1)) = & and (Resg,), (V) — (€)7) € I, for j=1,...,7,, |
(4) for any geometric point t € T', dim (1% /1%, ,)®k(t) = p} for any i, j and (A, E, V, {L@})@
k(t) is a-stable.
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Proposition 1.2.2. There exists a relative coarse moduli scheme

. w =u,d
m: MYy,

(N E, VAl cicr,) — (M €)

of a-stable parabolic A-connections of rank r, of degree d, and of type p. For simplicity,
we drop a and d from the notation of the moduli space.

If n and d are coprime, then MY, , is a relative fine moduli scheme, that is, there is a
universal family over MY, ..

PROOF. Fix a weight a which determines the stability of parabolic A-connections. We

take p081tlve 1ntegers B1, B2, and rational numbers 0 < a(l) - < dg) < 1 satisfying

(B1 + B ) 6104 for any 7,j. We assume v > 0. We take an increasing sequence
0<af<---<dal <1suchthat

{af]1<i<r}={a"|1<i<k1<j<n)

where we put 7 = 32 ;. We take any member (\, E, V, {lﬁ")}lgign) € M}"?/’g‘ Hoa (M d, ) (T).

For each 1 < p < r, there exist i, j satisfying déi) = . We put F1(E) := E and define
inductively
(ﬁz‘)T/lp)

for p = 1,...,r. Here, we put [, = l](-i) satisfying p = j + Z;j r;. We also put d, :=
length((E/Fy1(E)) ® k(t)) and t € T. Then, (A, E,V,{I"}) — (E,E,)id,V, F.(E))
determines the morphism

——=D,a',3,
L: /\/l]-"C/SHod(n d,p) — MF¢)s’ (n,d, {d;})

F,(E) := Ker(F,_1(E) — E

where ./\/l}_?/’g/ﬁn(n,d, {d;}) is the moduli functor of (e, 3,7)-stable AL-triples whose

coarse moduli scheme exists by Theorem 3.2.2 of Chapter II. Then we have that a

certain subscheme M¥ . of M?/g ﬂﬁy(n, d,{d;}) is just the coarse moduli scheme of

./\/l]:C/S’HOd(n, d, i) in the same way as in [23, Theorem 2.1] and [21, Theorem 2.1].

If n and d are coprime, then there is a universal family on M¥, , x ¥ (see [20, Theorem
4.6.5] and the proof of [21, Theorem 2.1]). O

We denote the fibers of M%,_, over A =0 and A = 1 by M%, and M¥% . respectively.
Let Mk (X, €) be the fiber of (A, &). Let M, (&) and MY, (0) be the fibers of (1, £) and
(0,0), respectively. The fiber M%,(€) is the moduli space of a-semistable &-parabolic
connections of spectral type p (constructed in [22]), and the fiber M*_(0) is the moduli
space of a-semistable parabolic Higgs bundles of rank n and of degree d (constructed as
a hyperkéhler quotient using gauge theory in [29] or as a closed subvariety of the moduli
space of parabolic Higgs sheaves constructed in [54]).

Proposition 1.2.3. The morphism
. MHod =

—n

(/\7 E.V, {Z*Z }1Si§n‘) — ()‘7 é)

51



is smooth. Moreover, MY, , is nonsingular.

PROOF. ([21, Theorem 2.1] and [22]). At first, we prove that 7 : M, , — Z&7 is
smooth. Let M}, , be the moduli space of tuples (\, L, V) where L is a line bundle of
degree d on ¥ and Vi: L — L ® QL(D) is a A-connection. We put

Fhd . {()\, (€1) € C x C*

k
Ad+25i:o}.
i=1

Let Eiﬁl be the subset of Z*¢ where A = 1 and let M1}, be the inverse image of the
subset Z5¢,. Since ML, — =5 is smooth (see [21] and [22]), ML, — Z¢ is smooth
(see [49, Lemma 6.1]). We consider the morphism

det: Mllflod — M}Iod X zk,d EHd

n

A\ B,V {171) s (A, det(E), det(V)), (X, B, V, {I{"1)).

It is sufficient to show that the morphism det is smooth. Let A be an artinian local
ring over M}, Xzra 24 with the maximal ideal m and I be an ideal of A such that
mlI =0. Let (\,L,V) € M} ,(A) and (), &) € =+9(A) be the elements corresponding to
the morphism

1 —u,d
SpecA — Mg Xzka 2.

We take any member (/\,E,V,{lj(.i)}) e M% (A/I) such that det(\, E,V,{lﬁi)}) =
(N, L, V), (N €)@ AJI. Tt is sufficient to show that (A, E,V, {lj(l)}) may be lifted to
a flat family (S\,E’,@,{éi)}) over A such that det(\, E,V, {l;(l)}) = (N L, V), (N\E)).

The obstructions lie in the hypercohomology H?(X%, 7§ ® I). Here, F3 is the complex of
sheaves defined by F¢ = 0 for i # 0,1,

.7-"8 = {s € End(E® A/m)

Tr(s) = 0 and .
S'pi®A/m<l;>A/m C (%) aym for any i,j [’

Flo— {s € End(E @ AJm) ® QL(D) ‘ Tr(s) = 0 and } |

Resy,g4/m(5) (l;‘)A/m - (l;'Jrl)A/m for any i, j

and d : F — F; maps s to sV — Vs. From the spectral sequence HY(Fy) = HPT(Fy),
there is an isomorphism

H2(F2) & Coker (Hl (FO) L, (fg)) .
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Since (F)¥ @ QL = F) and (F)Y @ QL = FY, we have

H2(F2) = Coker <H1(fg) RNy (fo))

1 %
~ Ker (Hl(fg)v £, Hl(Fg)V)

vV
= Ker ( (7)o 08) <% 1) 0 ) )
\%
~ Ker (Ho(fo) LN Ho(f1)> .
We take any element s € Ker (H O(F) ——— HO(F 1)), which may be regarded as an

element of End((\, E, V, {lj(z)})) Since (A, E, V, {ljz)}) is a-stable, the endmorphism s is
a scalar multiplication. By Tr(s) = 0, we have s = 0. Hence, H?(Fg) = 0.

Secondly, we prove that M¥% . is nonsingular. (see [23, Remark 6.1]). It is enough

to show A : M¥ =~ — C given by ()\,E,V,{l,(f)}) — A is smooth. In this case, the
obstructions of the extensions lie in the hypercohomology H? (3, Fy T ®1I). Here, IS s
the complexes of sheaves defined by ]-" =0 for?+# 0,1, ]-'g’Jr = F,

Tr(s) =0,

(@) (@)
Fit = s € End(E® Afm) @ (D) | omeream(ly Jajm € () A for a0y
and the element of End((l )asm/( g+1)A/m)

induced by Res,, (s)o4/mis a scalar.

and d* : Fo'" — Fy't maps s to sV — Vs. We put 75! = Fo " /F} and T = [0 — T3],

Then, we have the following exact sequence of the complex on X:

9

0—=F) —=F —=T5 —0.

Note that 7' is a skyscraper sheaf. We consider the long exact sequence. Since H?(Fy)
H2(Ty) = 0, we obtain H?(F3™) =0

Ol

2. Riemann-Hilbert correspondence

2.1. Riemann Problem. We fix integers ¢ > 0, £k > 0 and n > 0. Let X be a
smooth complex projective curve of genus g, and let D := p; + - - - 4+ pi be a divisor on X
where pq, ..., p. are discrete points on X.

We fix a point * € ¥\ D. The fundamental group of 3\ D is described as follows:

Wl(E\Dv*) = <a17517"'7059759771%"7,}% | (ahﬁl)"'(agaﬁg)’)q ,7k>
where (o, 8) := afBa~!371. Let us consider a representation

p:m(X\ D,*x) — GL(n,C).

We put A; = p(a), B; := p(B;) and X; := p(~;) fori =1,...,9, 5 =1,..., k. These
matrices satisfy the relation (A, By)--- (Ay, By) X1+ Xy = I,. There exists a locally
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constant sheaf F on X\ D corresponding to the representation p. Moreover, there is
a holomorphic bundle with connection (F,V) on X\ D such that EV = F, namely
E = Ox\p ®c F. Here, EV is the sheaf of V-horizontal holomorphic sections of E.

Problem. Does there exist a meromorphic bundle (M, V) with flat connection on M
which has a regular singularity at each point py, ..., py and whose restriction to ¥\ D is
isomorphic to (E,V)?

Theorem 2.1.1. Given a locally constant sheaf F on M\ %, there ezists a holomorphic
bundle E on M and a connection V: E — 2},(%) ®0,, E with logarithmic poles, such
that the locally constant sheaf EV is isomorphic to F on X\ D.

Proor. We put E' = Os\p ®c F, and we define V' by the condition (E’)V/ =
F. We take a sufficiently small open neighborhood U; of p; such that U; N D = {p;}
where ¢ = 1,...,k. Then, by Lemma 3.2.7 in Chapter I, there exists a holomorphic
bundle (E;, V;) with meromorphic connection on U; with logarithmic pole at p; such
that (E;|uap)Y" = Flupp, namely E; = Oy, @c F; where t is a point of U; \ p;. We
glue the bundle with connections (E', V'), (E1, V1), ..., (Ek, Vi). Then we have a desired
bundle. O

We put M := Ox(xD) ®o,, E where (E, V) is given by Theorem 2.1.1. Then (M, V)

is a desired meromorphic bundle with connection.

2.2. Riemann-Hilbert correspondence as a functor. We consider the correspon-
dence

(2.2.1) (M, V) — M, .

Here, (M, V) is a meromorphic bundles with connection having poles at the points of D
and having regular singularity at any point of >, and M, E\D is the constant sheaf of hori-

zontal sections. We call the correspondence (2.2.1) the Riemann—Hilbert correspondence.
The Riemann—Hilbert correspondence is functorial, that is, we have a functor from the
category of meromorphic bundles with connection having poles at the points of D and
having regular singularity at any point of D to the category of locally constant sheaves
of C-vector space on ¥\ D. We recall the following theorem due to Deligne.

Theorem 2.2.1 (Curve case of [5, II, Theorem 5.9]). The functor induced by the
Riemann—Hilbert correspondence is equivalence.

PRrROOF. We obtain already that the functor is essentially surjective. We show that
it is fully faithful, that is, for ¢: M|Z\D — M’ ‘VE,\D, there exists a unique homomorphism
v (M, V) — (M’', V') which induces the homomorphism . The homomorphism ¢ can
be viewed as a horizontal section of the bundle (Homos,ar)s, V). We show that this
horizontal section is the restriction to X\ D of a unique meromorphic horizontal section of
(Homo,mnys, V). Since (M, V) and (M’, V') have regular singularity, (Homo,ays, V)
has regular singularity. The problem of the existence of a unique meromorphic horizontal
section is local We may show the existence by Proposition 3.2.5 and Example 3.2.1 in
Chapter 1. 0
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3. Moduli theoretic Riemann-Hilbert correspondence. We put

(2.3.1) ged(p)=ged(ul,... ,uil,p%, . ,,ui, ok ,,uffk).
We take an integer d such that d and g.c.d.(u) are coprime. For an integer d, we put

d+Zu§€§=0}

i?j

—ud i rinI<i<k
Bt = {E = (§)izzr, €C

where r := )" r;.

Definition 2.3.1. Take an element £ € =7°\_,. We call £ generic if

(1) & — & & Z for any i and j # k, and
(2) there exist no integer s with 0 < s < n, integers s; with 1 <'s; < r;, and subsets
{73, gty c{1,...,r} for each 1 < i < k such that

k S;
> D vk ¢ L,

i=1 [=1

for any tuple of integers v = (U;) with 0 < U} < /J} where U; 4o+ U; = s for
1 S5
i=1,.. k.

—pd,
Let =¢ " ”"1’“ be the locus of generic elements in =¥ /\ 1, and let M%7 KT he the inverse
—p,dirr —p,d
image of Z "7} via MPr — E0521-

Remark 2.3.2. If d and g.c.d.(u) have the greatest common divisor r’ # 1, then

—p,d, .
BRI =0, since

Wi __d
Z?fj:_;ez
i,J
foranyEEHn/\ 1

Conversely, if d and g.c.d.(u) are coprime, then = L s non-empty. (see Remark

2.3.4 as below and the proof of [15, Lemma 2.1.2]).

Remark 2.3.3 (see [21, Section 2]). For generic £, any &-parabolic connection (E, V, {I})
is irreducible. Here, we call (E,V, {ly)}) reducible if there is a non-trivial subbundle
0 # F C E such that V(F) C F ® QL(D). We call (E V. {I"}) irreducible if it is not
reducible. In particular, for generic &, any (E, V, {l }) is semistable.

We construct a family of all generic character varieties of type p. We put r := > r;

and
HVZNJ _ 1}

S G

55



which is the set of eigenvalues of k-tuple of semisimple conjugacy classes (Cy,...,Cx). We
denote by U* the following subvariety of N#* x GL(n,C)%*"

(1) (A1, B) - (g B)X, - X = T,
(2) For each i, there is a filtration
(I/,Al,B17...,Ag,Bg,Xh...,Xk) Cr = le D) W2z D‘ AD Wzifl =0

such that dim W}/Wi, | = u}

and (X; — vjid)(W}) € Wj,, for any i, j

where (v, A1, B,..., Ay, By, X1,..., Xi) € NF¥ x GL(n,C)?™. The group PGL(n,C)
acts on N#* x GL(n, C)?9™™ which is trivial on N* and conjugation on GL(n,C)29™™. We
take the categorical quotient of U* by the PGL(n, C)-action;

My =U*//PGL(n,C)
— Spec(C[yrPELmO)),

The map
Ml — NE
(v,A1,B,..., Ay, By, X1,..., X)) — v
is well-defined. Let N*"" C NH be the set of generic eigenvalues in the sense of Definition

4.1.1. Then, we take the base change of M% — NF via inclusion map N < NH/
denoted by

Mg,irr N N#,irr7
which is a family of any generic character varieties of type p. We denote the fiber of v
by M¥%(v), which is a generic character variety of type p.
We define the morphism

—
rhe: 2\, 2 E— v € NI

n

by vl = exp(—2m/—1¢&}) for any 1, j.

Remark 2.3.4 (see the proof of [15, Lemma 2.1.2]). Let (Cy,...,Cx) be a k-tuple of
semisimple conjugacy classes such that the eigenvalue of any matrix in C; is

(exp(—2mv/—1€0), ... ,exp(—27T\/—_1§il_))

where the multiplicity of exp(—27r\/—1£§) is ,ué If € is generic, then (Cy,. .., Cy) is generic
in the sense of Definition 4.1.1.

For each member (E,V, {l'}) € M Ker(V®™5,) becomes a local system on Y,
where V* means the analytic connection corresponding to V. The local system Ker(V*|s,)
corresponds to a representation of w1 (). Let 7; be a loop around p;. The representation

of v; is semisimple for ¢ = 1,..., k, and the eigenvalues of the representation of v, are
exp(—2mv/—1&1), ..., exp(—2mV —15;_)
where the multiplicities are ut, ..., uii, respectively. Then, we can define the morphism

RH¢: Mpp(§) — Mi(v)
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where v = rhq(€). Then, {RH¢} induces a morphism
(2.3.2) RH: MY —s MM
which gives the commutative diagram

wirr RH ,irr
MEp" ——= M

L

=H,dirr rha Lirr
—n, =1 Nn .

The following theorem follows from the result of Inaba [21, Theorem 2.2] and Inaba-
Saito [22].

Theorem 2.3.5 ([21, Theorem 2.2] and [22]). The morphism
RH¢: Mpp(§) — Mi(rha(§))

. . . —11.doi
is an analytic isomorphism for any & € ="

PrOOF. We take any point p € M¥%(rha(€)) where £ is generic. By [21, Proposition
3.1], we obtain the following isomorphism,

Mr(&) = MPpR(E)

where 0 < Re(¢)') < 1 for any 4,j. Hence, we assume that & satisfy 0 < Re(£}) < 1
for any ¢,7. By Corollary 2.2.1 in Chapter 4, there is a unique pair (E,Vg) where E
is a vector bundle on ¥ and Vg: E — F ® QL(D) is a logarithmic connection, such
that the local system Ker(VE')|s\(p.,....pe} corresponds to the representation p and all the
eigenvalue of Res,,(Vg) lie in {z € C | 0 < Re(z) < 1}. Since & is generic, we can
define a parabolic structure of (E, V), uniquely. Therefore RH¢ gives a one to one
correspondence between the points of M!55E"(£) and the points of M (rhy(£)). We
can define this correspondence between flat families. Hence,

RH: MPpp(8) — Mi(rha(§))

is an analytic isomorphism. 0

Remark 2.3.6. For any generic v, and vy € N#’””’, there exist integers d; and dy with
0 < dj,dy < g.c.d.(p) such that v, and vy are contained in the images of the morphisms

. =idyirr Qirr . om,dairr Qyirr
Thg, Eoner NEST and rhg,: Eoner NET

respectively, that is, v € Im(rhg, ) and vy € Im(rhg,).
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CHAPTER 5

Mixed Hodge structures of the moduli spaces of parabolic
connections

In this chapter, we prove Theorem A in the introduction.

1. Relative compactification of moduli spaces

1.1. Relative compactification. We consider the natural C*-action on M¥%_,
C* x Mllli'fod — Mllsod
(t. (N B VALY = (A, B4V, {11}).
Since the relation between A and & is A\d + ) ,u;§; = 0, the following C* action on ZH¢
is well-defined,

C* x 2kt —
(t, (A, €)) = (tA. 18).

Clearly, 7: M¥,  — E#4 is a C*-equivariant morphism.

Lemma 1.1.1. The fized point set (MY, )" is proper over 4, and for any (\, E, V, {liz)})
the limit limy_,ot - (A, E, V, {L(f)}) exists in (M )C".

PROOF. The fixed point set lies over the origin (0,0) € Z#<. Therefore, this fixed
point is just the fixed point set of the moduli space of semistable parabolic Higgs bundles,
which is a closed subvariety of the moduli space of parabolic Higgs sheaves. Then, the
fixed point set is proper by [54, Theorem 5.12].

The second part follows from Langton’s type theorem [23, Proposition 5.5] in the
same way as in [48, Corollary 10.2]. (also see [50, Lemma 4.1 and Section 6] and [32,
Proposition 4.1]) O

We construct a relative compactification of M¥%, , over =47, Let C* act on C x =4
by ¢+ (2, (A €)) = (tz, (A,€)). Then, C x 2 — 20 given by (z, (A, €))  (x),€) is
C*-equivariant with the standard action on C. Let M’ denote the base change of M% .
via this map; in other wards,

()‘7 E7 V? {ZS)}) € M%od’
(z,(N,€)) € C x E#4 and
A,

M/ == (()\7 E,V,{lf)}%l’, (>‘/7€)) ) ? .
(A B, V,{I"}) = (a), 2€)
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Then, M’ inherits the C*-action given by
t- (0B VALY, 2, (N, €) = (0, BtV {10)), b, (N, €),

and 7 induces the map 7’: M’ — Z#4 by

(N B, VALY, 2, (N, €) = (X, €),
which is equivarinat with respect to the trivial action on the base. By [48, Theorem 11.2],

the set U C M’ of points u € U such that lim; ot - (A, E,V, {lf)}) does not exist is
open, and there exists a geometric quotient M := U//C*, which is proper over Z¥¢ via

the induce map 7: M — =4 Indeed, it is a relative compaetlﬁcatlon of MY, over Zd
by the embedding

()‘v E7 Va {liZ)}) — C*. (()‘7 Ea V> {ly)})? 17 (AI, E))

1.2. Main results. The following theorems are our main Theorem A.

Theorem 1.2.1. There are isomorphisms between rational cohomology groups with
compact support of fibers of m: Mk, — =& which preserve the mized Hodge structures.
The mized Hodge structures on these cohomology groups of the fibers are pure.

PROOF. Let us show that for any non-empty fiber M%_ (X, €) of (X, &) € Z# via 7,
there exists an isomorphism

HE(Mloa(A. §), Q) = HE(M7,,(0), Q),

and this isomorphism preserves the mixed Hodge structures. First, for the pair (A, &) €
=4 we consider the following subset of ZH-4

E(Aé) = {(tA,tg) | t e (C} ~C.
Let
M:()\ P (>\:€)

be the base change of M via E(,\,g) =id. Let M(EN, t€) be the fiber of (A, t€) via 7y ).
The map 75 ¢) is a proper surjective morphism. Moreover, () ¢) is topologically trivial (see
[15, Theorem B.1] or [18, Lemma 6.1]). Then, the map H*(HE(A’@) — H*(M(t),t€)) is
an isomorphism. On the other hand, the boundary

Z = M\M = {(CX(()\ B,V {193),0,(X,€)) | Jim t - (A, B, V, {I{}) exists }

is trivial over Z#4. Let T\ g)lz: Z= — Z0¢ be the restriction. Then, we have

=76
H*(Zz,,) = H*(Z(tAt§)). Here, Z(tA,t§) is the fiber of (I t€) via 7 )\5 |z. Ap-

plying the five Lemma to the long exact sequences of the pairs (Mz )
(Mt t€), Z(t),t€)), we obtain the isomorphism

HY Mz, o), Zz, o)) = H(M(ENE), Z(tN 1€)) = HY (Mi,q(tN, EE))
for any ¢ € C. Thus,

(kg)) and

En,

HE(Mloa(A, €)) = HZ (M,(0)),

and this isomorphism preserves the mixed Hodge structures.

Next, we show that H*(M?% (0)) has the pure mixed Hodge structure. We may
show that the mixed Hodge structure of H*(M,;(0)) is pure and the restriction map
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H*(M%,,(0)) — H*(M*¥ (0)) is surjective in the same way as in [15, Theorem B.1].
Here, M,,(0) is the fiber of (0,0) via 7(y¢). Thus, for any fiber of 7, the mixed Hodge
structure of the cohomology group of the fiber is also pure. OJ

Theorem 1.2.2. With the notation of the proof of Theorem 1.2.1, we put Mz, . =
Mz

The restriction map of the ordinary rational cohomology groups

H.(ME(A,5)> — H.(MH0d< 75))

s an isomorphism. In particular, the ordinary rational cohomology groups of the fibers of
7 MY — =24 are isomorphic.

(X.8) \ SWIN

ProoF. By the Gysin map and the Poincaré duality, we have
H.<MHod()‘7 £),Q —— ]—Icﬂ_2 (ME(A,g) ,Q)

l% lg

HQdu—O(MlIflod(/\7 E)’ Q) - Hde—O(ME(A,g) ) @>

where d,, := dim M¥%_,(X, €). The top map is an isomorphism, since the map is given by
the composition

HE P ( Mz, o, Q) = HIH(MY0(N, €) x e, Q) = H(Mig,4(), €), Q).

Then, the bottom map He(M¥,,(A,€),Q) — He(Mz, ,,, Q) is an isomorphism. We take

the dual of the map. Then, the corollary follows. O

By the Riemann-Hilbert correspondence, we obtain the following corollary:

Corollary 1.2.3. For pu = () such that g.c.d.(u}) = 1, the Poincaré polynomials of
character varieties M'%(v) are independent of the choice of generic eigenvalues.

ProoFr. It follows from Theorem 1.2.2 and Theorem 2.3.5 of Chapter 4. O

2. An example: The moduli space of Type ((11), (11), (11), (11))

Inaba-Iwasaki-Saito [24] proved that the moduli space of a-stable parabolic connec-
tions of rank 2 degree —1 over P! with type p = ((11),(11),(11),(11)) is isomorphic to

an open part of Okamoto-Painlevé pair of type Dfll) ([40]) or generalized Halphen surface
(1)
of type D, ([41]).

This was done by an explicit description of the moduli space as follows.

Let p1,pa, p3, ps be distinct points on P! and we normalize them as (py, pa, p3, p1) =
(0,1,¢,00). We denote by M’ .(&,¢) the fine moduli space of the a-stable parabolic
connections (F, V,l,) of rank 2 and degree —1 with 4-regular singular points (0, 1,¢, c0)
with the data & of eigenvalues of the residues of V at p;. We can normalize them as

€= (£&, 16, 163,84, 1 — &4).

Let 7 : Fy = P(O @ O(—2)) — P! be the ruled surface of degree 2 and let C' be a
unique section whose self-intersection number is —2. Let us take the fibers F; = 7= (p;),
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B K By F

—O0—O0—0—0—
0 1 t 00
FIGURE 1

then we can take two distinct points on F; determined by the eigenvalue ;. Blowing up
these two points on each fiber Fj, then we obtain the 8-times blowing up h : S¢; — Fo.
Let us denote by F/the proper transform of F; by the blowing up h. Then it is easy to
see that the anti-canonical divisor —Kg of the projective surface S = Sg; is given by
—Kg =Y =2C + F| + Fy + Fj + F; such that (S,Y) satisfy the condition of Okamoto-
Painlevé pair, that is, —Kg-C = —Kg - F] = 0. Note that the configuration of —K¢ =Y

is a tree of smooth rational curves of type Dfll).

Inaba-Iwasaki-Saito [24] showed that there exists an isomorphism
(2.0.1) ME L (E,1) = Sei \ Yiea.

Moreover a natural compactification M*4, (&, t) of M¥, (&, ) is given by the coarse moduli
space of stable parabolic ¢-connections and moreover we have an isomorphism

(2.0.2) MBR(ED) = Se

The second homology group of M¥% . (€,t) ~ Se; \ Yieq fits into the exact sequence of
mixed Hodge structure ([41, Section 5))

0 — H'(Yyea, Q) — H*(Ses \ Yreas Q) —> Ha(Ser, Q) —> H?(Yrea, Q) —
It is easy to see that H'(Y;eq, Q) = 0 and Hy(Se s, Q) ~ Q'°, so hence
HQ(SE,t \ K‘eda Q) ~ ker (Hé(sﬁ,ta Q) — H2(K“eda Q)) = QS'

This isomorphism shows that the mixed Hodge structure on H?(Sg; \ Yyea, Q) is pure of
weight 2 and of type (1,1) (Theorem A). On the other hand, the complex deformations of
Okamoto-Painlevé pair (Sg;, V') have 5 parameters which correspond to € and ¢. Moreover
the mixed Hodge structure does not depend on the parameters £ and t. Note that this ¢
is the time variable of Painlevé equaions of type VI.
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CHAPTER 6

Mixed Hodge structures of character varieties

In this chapter, we compute the mixed Hodge structures of certain character varieties.
It is done by explicit descriptions of the character varieties by the classical invariant
theory [10], [25], [26], [30]. Next, we construct compactifications of character varieties
and investigate the configurations of their boundaries. As the result, we obtain Theorem
B in the introduction.

1. Explicit descriptions of certain character varieties

Let (Cy,...,Ck) be a k-tuple of generic semisimple conjugacy classes of SL(n, C) of type
p. We put
L?M(V) I:{(Al, By, ... ,Ag, Bg, Xq,... ,Xk) S SL(TZ, C>2g XCp X+ XCp
| (A1, Br) -+ (Ag, Bg) Xy -+ Xy = In},
where (A, B) := ABA™'B~!. The group SL(n,C) acts by conjugation on SL(n,C)**".
The action induces that of SL(n,C) on U*(v). We call the affine GIT quotient
Mi(v) = U*(v)//SL(n,C)

a generic SL(n, C)-character variety of type p. Note that for g = 0, GL(n, C)-character
varieties and SL(n, C)-character varieties are same. We consider SL(n, C)-character vari-
eties of g = 0, since the description of the invariant rings is simple.

In the following, we only consider the following types

p=(1....1),....(1,...,1).

We denote by R}, be the affine coordinate ring of SL(n, C)*~! on which SL(n, C) acts by

simultaneous adjoint action. Let (R?_,)3L(C) be the invariant subring of R? ;. Moreover
let us fix a data v of eigenvalues in (Cy,...,Cy) of type p = ((1,...,1),...,(1,...,1)).

Let ( Z_I)EL(H’C) denote the affine coordinate ring of M%(v), i.e.,
M (v) = Spec(Ry_y ), ™).
Note that we have the natural surjective homomorphism (R} _,)St0) — (RZ,l)EL(n’C).

1.1. Classical invariant theory. Now, we recall the explicit description of the in-
variant ring (R}_,)S“™©) for the two cases n = 2,k = 4 and n = 3,k = 3. The following
proposition follows from the fundamental theorem for matrix invariants. (See [9] or [38]).
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boundary

7-0 complex v
Y =0

XYZ =0
FIGURE 1

Proposition 1.1.1.
(RZ_I)SL(H’(C) = (C[rI‘I"(]\4“.Z\4Z2 tee Mzk) | 1< il, e ,ik <n-— 1]

In particular, for n = 2, the elements Tr(M; M,, --- M, ) of degree k < 3 generate the
mvariant ring, that s,

(R}_)SMO = C[Tr(M;), Te(M; M), Te(M; M M) | 1<, 5,k <n—1].

First, we consider the case where n = 2,k = 4, namely p = ((1,1),(1,1),(1,1),(1,1)).
We denote by (i, j, k) a cyclic permutation of (1,2,3). Put

(1.1.1) x; = Tr(MM;) (i =1,2,3),a; :=TeM; (i =1,2,3), a4 := Tr(MsMyM;).
The following proposition is due to Frike-Klein, Iwasaki, and Jimbo ([10], [25], [26]).

SL(2,C)

Proposition 1.1.2. The invariant ring (R2) is generated by seven elements

T1,To, T3, a1, a9, a3, ay and there exists a relation
fa(®) = 12023 + 27 + 25 + 25 — 01(a)z) — O3(a)zy — O3(a)xs + O4(a) = 0,
where
0i(a) = aaq — aja, (i, 7,k),
04(a) = arazazay + ai + a3 + a3 + aj — 4.
Therefore we have an isomorphism
(RSO = Clay, w9, 23, a1, a3, ag, aa] /(fa()).

Hence, the SL(2,C)-character variety M%) of type w = ((1,1),(1,1),(1,1),(1,1)) is
an affine cubic hypersurface on C3. Here, Vi + v = a; fori=1,...,4. The affine cubic
hypersurface is called a Fricke-Klein cubic surface.

We consider the natural compactification C* < P3 as follow, setting 1 = X/W, 2o =
Y/W,x3 = Z/W, then we obtain the following homogeneous polynomial,
XYZ+XW + YW + Z°W — 01(a) XW? — 05(a)YW? — 05(a) ZW? 4 04(a)W? = 0.

Substitute W = 0 to this equation, then we obtain the equation XY Z = 0. Hence, the
boundary components consist of three lines. The dual graph is the following. The dual
graph is a simplicial decomposition of S*.

Next, we consider the case where n = 3,k = 3, namely p = ((1,1,1),(1,1,1),(1,1,1)).
We describe generators and defining relations for the invariant ring (R3)S“®C). The
following proposition is due to Lawton [30].
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Proposition 1.1.3. The invariant ring (R3)S*3©) is generated by
= Tr(M,)

= Tr(M,)

= Tr(M; My )
= Tr(M My )
= Tr(My Mo M M),

45]
by
C1
T

T3

X3 4y?

boundary
complex Q

—XYZ =0

FIGURE 2

= Tr(Ms)

and there exist a relation

where f, g are polynomials of x1,x9 over Clay, as, by, be, ¢y, Ca], more precisely,

ag = Tr(M; ")

2 = Tl"( )

Cy = TI'(M )

To = TI'( 1M2>
— frs+g9=0.

Tr(My

f = ximo — asbyzy — arbazs + (constant terms in x1, xs)

g = % + a5 + (terms that order is at most 2 in w1, Ty).

Y

Hence, the SL(3,C)-character variety M™(v) of type p = ((1,1,1),(1,1,1),(1,1,1)) is

an affine cubic hypersurface on C3. Here,

We consider the compactification C* — P3 as follow, setting z;

1 1 1 __
V1+V2+VZ—CL1,
2 2 2
vi + vy + v =by,

3 3 3 _
vy + vy v =cy,

1 1 1
Attt
1 1 1
y_12+y_22+y_i2:bl’
1 1 1
V_f+u_§+y_§zcl'

Z /W, then, we obtain the following homogeneous polynomial

X34+Y3

— XY Z + (term containing W) = 0.

:X/VVa@

We substitute W = 0 to this equation. Then we obtain the equation X3 +Y?3 —
This equation define a plane cubic curve having a node.

Corollary 1.1.4. The dual graph of the boundary divisor of M¥(v) is a

decomposition of S'. The dual graph is the following,.

:Y/W,Z)’Jg:

XYZ =0.

simplicial

2. Mixed Hodge structure of the two example§. First, we consider the case
where p = ((11), (11),(11),(11)). The character variety M’ (v) is a nonsingular affine

cubic surface in C3. Let M*%(v) be a natural compactification of M*¥ () in P?, which is
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a blowing up 6-points in P2 Put D := M*(v) \ M*(v), which is triangle of P*. From
ME (W) = ME(v) <= D, we obtain the following spectral sequence:
H'(Mp) — H'(Mp)
— H*(Mp, Mp) SH*(Mp) — H*(Mp)
— H*(Mgp, Mp) -H*(Mz) = 0.
Then we have the following extension
0 — Coker p — H*(Mp) — H* (Mg, Mp) — 0.
By the Poincaré duality

H"(Mp, Mp) @ H**(D) — C(-4),

the rank of Coker ¢ is 4 and the weight of elements of Coker ¢ are type (1,1), and the
rank of H*(Mp, Mp) is 1 and the weight of elements of H*(Mp, Mp) are type (2,2).
The weight filtration is as follows

0C Wy =Wy C W, = H*(M:(v))
where Wy = Cokerp.
Second, we consider the case where p = ((111),(111),(111)). The character variety

M (v) is a nonsingular affine cubic surface in C*. Let M (v) be a natural compactifi-

cation of MY (v) in P3, which is a blowing up 6-points in P2. Put D := M*(v)\ M4 (v),

which is nodal P!. By the same way as above, we obtain the following weight filtration:
0C Wy =Wy C W, = H} (MK (v))

where the rank of Ws is 6, elements of W; are type (1,1), and elements of W,/W3 are
type (2,2).

2. Certain compactifications of character varieties and their boundaries

2.1. Construction of a compactification of the character varieties. We con-

struct a compactification of the SL(2, C)-character variety M* () of type = ((1,1),...,(1,1)).

_(,iI<i<k
For v = (v}),Z15 , we put

ki=v,+vy fori=1,...k

and k == (ky,...,K;). We may denote by M (k) the SL(2, C)-character variety of type
p=((1,1),...,(1,1)) instead of M*(v).

The construction of the compactification is done by the geometric invariant theory for
a compactification of the following variety

Definition 2.1.1. We put
UH(K) = {(My,...,My_y) €Cy X --- X Coq | MY - MY € G}

(2.1.1) . =
={(My,...,My_1) €Cy x -+ x Cpy|Te(M; ', - M]) = Ky}
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where C; = {M € SL(2,C) | Ttr(M) = k;} and k = (ky, ..., k) € C¥. The affine variety
Repy, . is said to the SL(2, C)-representation variety of type p = ((1,1),...,(1,1)).

We will introduce a compactification of the representation variety due to Benjamin [3].
First, we consider a construction of a compactification of the algebraic group SLo(C).
We pick an embedding a:: SL(2,C) — PGL(3,C). Such an embedding always exists: we
consider the natural embedding SL(2,C) — GL(2,C) and we take the composition of the

embedding and the map GL(2,C) N GL(3,C) — PGL(3,C) where

- (1)

and the second arrow is the canonical projection. We regard PGL(3,C) as an open

subvariety of P(M(3,C)), and define the compactification SL(2,C) of SL(2,C) as the
closure of a(SL(2,C)) in P(M(3,C)), that is,

a b
SL(2,C) = c d € P(M(3,C)) | ad — be = €

e

Then, we obtain a compactification of the semisimple conjugacy class C;, denoted by C;,
that is,

a
c

b
d € P(M(3,C)) | ad —bc =€, a+d= ke

A
I

Lemma 2.1.2.
C, 2P x P!

PROOF. By the equations ad — bc = €? and a + d = k,e, we obtain the equation
(—a® + kiae — €*) — be = 0.

Note that the equation define a hypersurface of degree 2 in P?, which is isomorphic to
P! x P!. We put the coordinate ([S: T], [U : V]) € P! x P! such that

(SU)TV) = —a* + kae — € = —(a — vie)(a — vie)
SV =1»
TU =c¢
where vi, V4 are eigenvalues of a matrix of the semisimple conjugacy class C;. Then, we
obtain the following transformation from P* x P! to the hypersurface of degree 2 on IP3:
vsSU + viTV

@=————— b=5V,
vy — Vs
(2.1.2) c=TU, g, = AU BTV
ST )
SU+TV
cC = ————.
v — s
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We can define a compactification of the representation variety.

Definition 2.1.3. We put
(213) Z/?“(K;) = {(Ml, R Mk—l) S 81 X e X En—l ’ TI"(Al s Ak—l) = Rg€1 - €k_1}

where
_ Ay _ Ak;—l
Ml—( 61),...,Mk_1—( ol )

Remark 2.1.4. In general, for X € SL(2,C), there is no inverse. Since
Tr(A - AN = Tr(Ay -+ Ay )

for VA; € SL(2,C), we use the condition Tr(A; - - - Ay_) = kg, instead of Tr(A; 1, -+ A7Y) =
K.

We have the following action of SL(2,C) on U(k), which is compatible with the
simultaneous action of SL(2,C) on U*(k)

() ()
(A (PRt )

We regard Repy, , C Cy X -+ X Cp_1 as the closed subset in P* x --- x P*. Then, we
obtain an embedding in the projective space by the Segre embedding. Let L be an ample
line bundle associated with this embedding, that is,

(2.1.4)

L= @pi(0n(1)

where p;: Repy,,, — P* is the i-th projection. Then, L admits the SL(2, C)-linearization
with respect to the action.

For x = (My,..., My_1) € U*(K), we put
"= {ie{l,...,k—1} | M; is nilpotent i.e. ¢; =0 }.
If 1™ is not empty, we decompose
(2.1.5) mt=gqrty..oy

where the index set Il”“ c I (1 <1 < r) consists of indexes of same matrices, that
is, matrices indexed by elements of I/ are same each other and two matrices which
respectively have indexes in I/ and I! where | # ' are not equal. Let #I be the
cardinality of I and let m; be a maximum value in $17" ... $I™. We put

Jyi={j€{l,...,k — 1} | Mj is not nilpotent, M, x M; = M; x M; = M;,i € I]"'}.

Here, we define the product * as

Mt = (AL ) epne.o) torar (A ) adar = (4).
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Note that the product * is well-defined in the case where M (resp. M’) is nilpotent and
M’ (resp. M) is not nilpotent where M € C and M’ € C'. Let my be a maximum value
in {#.J; | [ is satisfied #1" = my, 1 <1 < r}. If I" is empty, then we put m; = my = 0.

Remark 2.1.5. Let (M, ..., My_,) € Ur(k). Suppose that i € I™%. We normalize the
nilpotent matrix M;:

01
(2.1.6) M,=(0 0
0

For a matrix M; (j # i), the condition which, by this transformation, the matrix M; is
transformed to the following form

aj b;

0 d;

is equivalent to the condition M; * M; = M; x M; = M;.

Proposition 2.1.6. The point © = (M, ..., My_1) is semi-stable (resp. stable) point
if and only if x 1s satisfied the following condition,

(2.1.7) k—12>2my+mg (resp. > ).

PROOF. For any integer m > 0, let \,,, be the 1-parameter subgroup (1-PS) of SL(2, C)
given by

(2.1.8) A £ s (to t0m> teCx.
The matrix \,(¢) acts on U#(k) as follows.

" ap by ag—1 br1

t y e d ¢ d

0 +m N 1 1 Yoy k-1 Ok—1

el ‘ Ck—1
ay t2mb1 A1 tzmbk_l
— t_2m61 dy e t_2ka_1 di_1

‘ €1 ‘ €k—1

We put k' := 5571, Let A¥ be the affine cone over the projective space P! which is
the target space of the Segre embedding. We take a base change of the affine cone A¥

via Uk (k) — P¥ !, denoted by the same notation A¥. Let * = (M7, ..., M;_,) be the

closed point of A¥ lying over z € Z;[“(IQ), that is, z* # 0 and x* projects to z. The action

(2.1.4) and the linearization L define a linear action of SL(2,C) on A¥. In particular, the

matrix A, (t) acts on A¥ as follows. For each i =1,...,k—1, let egi), cee eéi) be a basis

of A% such that the matrix

is describe by
Mi* = aiegz) -+ bieg) + Ciei(’,Z) + diez(f) + 6i6§)2)'

69



be the base eﬁj) - @e" Y of A¥ where i1y yik—1 € {1,...,5}. Then,

1k—1

Let e,
the action of \.(t) on A® is given by

7777 lk—1

2m(m; ; —m;_ .
Am(t) "€y =t ( Hinsd e 1"71)67;1

,,,,, lg—1
where iy,..., 4,1 € {1,...,5} and m ; (vesp. m; ) is the number of 2 (resp.
3) in the index set {iy,...,i,_1}. For z* € A¥ lying over x € Repy, ., we write 2* =

*
Z'Til ..... ik_leil ----- lk—1> S0 that

§ : 2mmy;
— Toeees ’Lk 1 . .
ZE 13 le ..... T 1611 ~~~~~ k-1

esin = My e — My, and we put

pE (2, M) 1= max{—my, iw_1 | 715, k1 such that xj ., # 0}

(2.1.9) :ﬁ{i :@' Zi),ci#()}—ﬁ{z' M; = (8 (1)) —0}.

On the other hand, we have

ﬂ{i M:(i Obli),cﬁéo}
:(k—l)—ﬁ{i Mi:(g é),eiZO}—ﬂ{i Mi:(%" di)”#o}

Then, we have
01 . a; i

UL(% Ar)
=(k—1)—2f {z

By the Hilbert-Mumford criterion (see [35, Theorem 2.1] or [36, Proposition 4.11]), the
point z is stable (resp. semi-stable) for this action if and only if u”(g - x, A,,) > 0 (resp.
> 0) for every g € SL(2,C) and every 1-PS A, of the form (2.1.8). If the point « satisfies
the condition 2m; < $I™! then we have u’(g -z, \,,) > 0 for any g € SL(2,C). On the
other hand, we consider the case where the point x satisfies the condition 2m; > 1.
There are at most two components of the decomposition (2.1.5) of I"" such that the
cardinalities are m;. We denote by I™ the union of the components. If the index set

maw

I\ 1™ is nonempty, then we have ul(g -z, \,,) > 0 for g € SL(2,C) such that gM;g!

max

is the matrix (2.1.6) where i € ™\ I" . For g € SL(2, C) such that gM;g~" is the matrix
(2.1.6) where i € I™  we have

(2.1.10)

(2.1.11) p(g -z, M) > (k—1) — (2mq + mo).

If the index ¢ € I of the normalized matrix is a element of I7*! such that $I = m,
and fJ; = my, then the equality of (2.1.11) holds. For the other matrix g € SL(2,C), we
have ul(g -z, \,,) > 0. We have thus proved the proposition. O

We obtain a compactification of the character variety ./\;lg(n)

Definition 2.1.7.

~

M (k) := Proj HO(L{N( ), L&7)SLEC)
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The variety M’é(l‘-‘,) is a projective algebraic variety. This variety may have singular

points on the boundary. Then, we should take a resolution of singular points of /\;l’é(m)
In general, it is not easy to give a systematic resolution of singularities for any n. On

the following sections, we treat the cases for n = 4,5. We will show that ./\;l‘é(n) is
non-singular and the boundary divisor is a triangle of P!. On Section 2.3, we will treat
the case for n = 5.

2.2. Type p = ((1,1),(1,1),(1,1), (1, 1)). Let

a; by as by asz bs
(221) C1 dl R Co d2 , C3 d5
€1 ‘ (&) ‘ €3

e UH(R).

The compactification U# (k) is defined by the following equations in P* x P4 x P*
(222) a; + dz = K;€;, (l = 1, 2, 3),

(223) aidi — biCi = 6?, (Z = 1, 2, 3),

a, by as by as b3 _
(2.2.4) Tr((c1 d1) <02 d2) (03 dg))—melegeg.

We analyze the stability. If e; = 0 and eje, # 0 (4,5 € {1,2,3} \ {4}), then z is an
unstable point if and only if x is a point of the orbit of (M, My, M3) where

0 1
Mi: 00 y

If e, = 0,e; = 0, then z is an unstable point if and only if z is a point of the orbit of
(M, My, M3) where two matrices in My, My, M; are

01
0 0
0

Lemma 2.2.1. The point x € Ur(k) where pn = ((1,1),(1,1),(1,1),(1,1)) is stable if
and only if x is semistable.

PROOF. The point = (M, My, M3) is not stable if only z is normalized as follows.

01 Q; bj ar bk
M;=10 0 M=\ ¢ di| |, M,=10 dy , where ¢; # 0,
0 e ek

or

M;=10 0 Mi=110 Me=1 0 dg

0 0 €k

However, the matrices do not satisfied the equation (2.2.4). Then, there are no strictly
semistable points. 0
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The following theorem shows that our compactification M (k) of MY (k) has the same
configuration of the boundary divisor as the natural compactification of the Fricke-Klein
cubic surface.

Theorem 2.2.2. The boundary divisor of the compactification ./\;l’é(h‘,) where p =
((1,1),(1,1),(1,1),(1,1)) is a triangle of three projective lines.

PrROOF. We describe the boundary divisor explicitly. Let E; be the image of the
divisor [e; = 0] on UH(k) by the quotient Ur(k) — M*™(k) (i = 1,2,3). First, we
describe [e; = 0]. We normalize M; by the SL(2,C)-conjugate action as the matrix

(2.1.6). The stabilizer subgroup of the matrix is { (8 1?@) }

By the stability, we obtain ¢, # 0 and c¢3 # 0. Since ¢y # 0, the matrices of the
component [e; = 0] are normalized by the action of this stabilizer subgroup:

01 0 —83 as b3
(225) 0 0 s C% k?QCQGQ s C3 d3
0 | o6y | e3

The stabilizer subgroup of the normalized matrices is the torus group { (8 agl) }

Before we consider the quotient by the torus group, we consider the normalized matrices
(2.2.5). The normalized matrices are defined by the following equations

az + d3 = Kzes,
(226) a3d3 - b303 = 63,

caas + koeocs =0

in the Zariski open set cocs # 0 of P! x P4, By Lemma 2.1.2, the normalized matrices are
defined by

(227) CQ(V%SgUg + V%Tg‘/z),) + I{Q(V? - I/S)BQ(Ty,Ug) =0
in the Zariski open set coT3Us # 0 of P! x (P! x P).

We consider the quotient by the torus group. The torus action on P! x (P! x P!) is

(8 Cﬁl) ~([ez t eo], [S5: T3], [Us : V3])

— ([a eyt aey), [aSs : a 5], [a Us : aV3)).

We consider the SL(2, C)-linearization L = ®_, pi(Ops(1)) on Ur(k). We take a pull-
back of L via the embedding

(2.2.8) Pe, s P! x (P! x PY) — Ur(k)

defined by the matrices (2.2.5) and the transform (2.1.2). Let L., be the pull-back of L on
P! x (P! x P'). We obtain the T-linearization on L., induced by the SL(2, C)-linearization
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L on U+ (k). We consider the dual action on HO(P!x (P! xP'), L, ). We have the following
basis of the subspace consisting of invariant sections:

51=b0® C% ® S3U3, 89 =b® Cg ® T5V3,
53 = b1 @ caea @ T3U3

where by € HY(P! x (P! x P1), (pe, 0 p1)*(Opa(1))) corresponding to the (1,2)-entry of the
matrix M;. The sections have the relation

(2.2.9)

Vas1 + 1Visy + ko(Vy — v3)s3 =0
by the equation (2.2.7). Therefore, we obtain E; = P!. In the same way, we also obtain
E =P (i=2,3).
We show that £ and Fs intersect at one point. We substitute eo = 0 for (2.2.6). Then,

we have the following equations

az + dz = Kses,

azds — bzcz = 637

as = 0.
The locus defined by the equations above is a quadric curve in P?, which is isomorphic
to P1. There are two unstable points in the locus, [bs : ¢3 : e3] = [0 : 1 : 0] and
[b3 : c3 : e3] = [1:0:0]. The intersection is the quotient of P! minus the two points by

the torus action. Then, the intersection is a point. In the same way, the intersection of
E; and Ej3 (resp. E3 and Ej) is a point. O

2.3. Type p=((1,1),(1,1),(1,1),(1,1)). Let

ap by
c dy

Qo bg as b3 Ay b4
Co dg s C3 dg 5 Cq d4
g o B e

€ Reps .-

Y

The compactification U#(k) is defined by the following equations in (P*)*

(231) a; + dz = K;€;, (Z = ]_, 27 3, 4),
(232) a,-di — bici = 62, (Z = 1, 2, 3, 4),

7

aq b1 a9 b2 as b3 ay b4 o
(2.3.3) Tlr((c1 d1) <02 d2) (Cs d3> <c4 d4)>—/<o561626364.

We consider the stability condition.

Lemma 2.3.1. The closures of orbits of properly semistable points contain the point

01 01 00 0 0
(2.3.4) ss;=[[0 0 oo 1o 1o
0 0 0 0
or
0 1 00 00 01
(2.3.5) ss= [0 0 1o 10 oo
0 0 0 0
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Expect for the points of the orbits of s; and s, the stabilizer groups of every points are
finite. FEach stabilizer group of the orbits of s1 and ss is conjugate to the torus group

()

PROOF. Let o = (M, ..., M,) be a property semistable point. By Proposition 2.1.6,
we have 2my + mo = 4. First, we consider the case where m; = 1, my = 2. We put
(2.3.6)

M, =

11

where {iy,...,i4} = {1,...,4} and ¢;; # 0. However, by the condition ¢;, # 0, the
matrices do not satisfy the equation (2.3.3).

Second, we consider the case where m; = 2, my = 0. We put
(2.3.7)

M;, =

11

where {i1,...,0} = {1,...,4}, ¢y # 0, and ¢;; # 0. If (i1,i2) = (1,3) or (2,4), then
the matrices do not satisfy the equation (2.3.3). Therefore, we consider the case where
(11,12) = (1,2), (2,3), or (3,4). The 1-parameter subgroup (2.1.8) acts on the matrices
(2.3.7). For the matrices M;, and M;,, the action is trivial. The actions of the 1-parameter
subgroup A.,,(t) on M;, and M;, are

29

* 12 * 12
An(t) - My, = [ t727¢;, % An(t) - My, = [ t727¢;,
E E
(238) 12y Ay 12y Ay
— Cis tQm* , — Ci, t?m
R R

Then, the limit lim,, 0 A, - M is the matrix (2.3.4) or (2.3.5).

Since the orbits of the points s; and sy are closed, the orbits have the maximum
dimension of the stabilizer group, which is one dimension. O

We consider a resolution of properly semistable points. We take the blowing up along
the orbits of s; and ss:

—~——

(2.3.9) Ur(k) — UM (k).

e~

The simultaneous action of SL(2,C) on U*(k) induces an action on U#(k). By taking
the blowing up (2.3.9), the condition for stability and unstability is unchanging. On
the other hand, the points of the exceptional divisors are stable points. The points of
orbits which are not closed are unstable points. Hence, there is no properly semistable

—_—

point in UH(k). (See [27, Section 6]). We will show that the quotient of the blowing

74



up is non-singular. First, we describe the blowing up of L?“(n) along the orbit of sy.
Let U; and U, be the Zariski open sets Uy = [by # 0,by # 0,¢3 # 0,¢4 # 0] and

Uy = [c1 # 0,c0 # 0,b3 # 0,b4_7é 0] of Z;l“(l@) C C; x --- x Cy. Note that the orbit of s
is contained in U; U Us,. Since C; & P* x P! for s = 1,...,4 by the transformation (2.1.2),
we have

(2.3.10) U; C Ur(k) C (P! x PY)* for i = 1,2.
In the open sets U; and Us, we put the following affine coordinates
(L @], fyn 2 1)), (12 @2l [yo < 1)), ([ws 2 1], (12 ws)), ([wa = 1, [1 2 wa]),

and

(s 1, 015 wn]), (22 0 1010 wal), (11 28], L 10), ([ 24, s 1)),
respectively. In the open set Uy, the ideal of the orbit of s1 is (X7, Xo, X3, X4, X5) where

Y1+ Y2 + T2
X()Z:el:ﬁ, X12:62:ﬁ7

vy — UV vy — UV

1 2 1 2

Yz + T3 Ya + Ty
X2 = €3 = 3 3 X3::€4: 1 1

b — 1y vy — 1y
X4 =T — To, X5 = T3 — X4.

—_——

We can extend the torus action on U#(k) to the torus action on U/#(k) by

0 a”

On the other hand, in the open set U, the ideal of the orbit of s; is (Y7, Ys, Ys, Yy, Ys)
where

(a 01) A[Xo: X1 Xyt Xa o Xy Xs — [072 X0t a2 X, a® Xy a® X5 a2 Xy 0 a® X5).

Z1 + ws Z9 + Wo
Yoizelzﬁ, Ylizezzﬁ;
Vi =V, Vi — 1,
Z3 + w3 Z4 + Wy
}/2::63:ﬁ7 }%:264: 4 4
vy — 5 Vi =V

Yy =21 — 29,

Y5 = 23— 24.

—_——

We can extend the torus action on U#(k) to the torus action on UH (k) by

0 a”

(a 01>m[YozYl:Y'g:}/},:n:Yg]r—>[a2K):a2Y1:a_2§/2:a_2Y;3:a2}/21:a_2Y},].

Hence, we have

Ur (k)

S1

—~—

— (UH(k) \ Uy UT,) U (U x P*) U (U x P9)

where L?“(n)51 is the blowing up along the orbit of s;. The stabilizer group of any point

in the exceptional divisor is
10 -1 0
0 1/)°\0 —-1)["

This action is trivial. In the same way, we can describe the blowing up along the orbit of
So.
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~Theorem 2.3.2. In the case of n =5, there exists a non-singular compactification of
MUE (k) where p = ((1,1),(1,1),(1,1),(1,1),(1,1)) such that the boundary complex is a
simplicial decomposition of sphere S3.

PROOF. The outline of the proof is as follows. We put

—_——

M (k) = Uk (k) //SL(2,C).

We have the six components of the boundary divisor of Mg(h:): the quotients of the

proper transformations of the divisors [e; = 0],[es = 0],[es = 0],[es = 0] of UH(k)
and the quotients of the exceptional divisors associated with blowing up along s; and
ss. We denote by FEi, Fs, E3, Fy and ex;, exs each component. In Step 1, we describe
the components Ey, Fy, F5 and E4 explicitly. In Step 2, we describe the intersections
E;NE;, i # j. In particular, the intersections E; N E;1q,7 = 1,2,3,4 (where E5 implies
Ey) are nonempty and irreducible. On the other hand, the intersections F; N E;o,i = 1,2
are not irreducible. The intersection E; N E;.o consists of two components, denoted by

E;LHQ, E; . 5. Then, we take the blowing up along the components Eff3, Eis, EQLA, Ey 4

(2.3.11) X — X = M(k).

We use the same notation FE; which is the proper transform of F;. We denote by
ez’f3, ety 3, ex{ 4, €Ty 4 the exceptional divisors associated with the blowing up (2.3.11).

Consequently, the components of the boundary divisor of the compactification X of
MUE(K) are

+ ~ + ~
Ey, By, Es, Ey, exy, exs, €Ly 3, €T) 3, €T 4, €1 4.

Next, we see how ex; and the other components intersect. In Step 3, we describe the
2-dimensional simplices and the 3-dimensional simplices. Finally, we can describe the
boundary complex of the boundary divisor of the compactification of the character variety.

Step 1. We describe the component E; (i.e. [e; = 0]//SL(2, C)) explicitly. We consider

the case where e; = 0. Let D; be the divisor [e; = 0] on U#(k) for i = 1,...,4. Let
(M, ..., My) be a point on D;. We normalize the matrix M; by the SL(2, C)-conjugate
action as the matrix (2.1.6). The stabilizer subgroup of the matrix is the group of upper
triangular matrices. From the stability, we obtain ¢y # 0, ¢c3 # 0 or ¢4 # 0. In the case
of ¢o # 0, the matrices of the divisor D; are normalized by the action of this stabilizer
subgroup:

(2.3.12)
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Then, we have the locus defined by the following equations

(a3 + d3 = Kses

Cl3d3 — bgCg = 6?))
(2.3.13) as + dy = Kaey

a4d4 — b4C4 = 62
4

| C2a304 + Kae€aC304 + cabscy + Koeodscy = 0

in (P! x (P* x P*)) N [cy # 0]. The locus defined by a; + d; = k;e; and a;d; — bc; = €?
in P* is isomorphic to P! x P'. We put the coordinates Ss, T, Us, Vs and Sy, Ty, Uy, Vi of
(P! x P')? in the same way as in Section 2.2. Then, the locus of the normalized matrices
is defined by the following equation

o (V3 S3Us + viTyVs) (v SulUy + ViTL V)
+ kgeo (V3 — v3)(T3Us) (vy Sy + ViTLV)
+ (1) — vy (v — 1) (Ss Vi) (TyUy)
+ koea (Vi — vy) (V3 SsUs + va TsVa) (TyU,) = 0

in (PY) N [cy # 0]. Let D7 be the Zariski open set of the hypersrface in (P')5. The
torus action on D27 is the following action:

(g a(_’l) A ([ea: ea),[Ss = T3], [Us : VA], [Sa = Tul, [Us : Vi)

= ([a eyt aeg], [aSs : a T3], [a ' Us = aVs), [aSs : a T3], [a*Us : aVi)).

In the same way as in the case ¢y # 0, we have the Zariski open sets of the hypersurfaces
in (P') corresponding to c3 # 0 and ¢4 # 0, denoted by D$**° and D**°. We glue D7,
D#7% and D$7° | denoted by D). We take the blowing up (2.3.9). Let 5’1 be the proper
transform of D}. Then, the component of the boundary divisor F; is the quotient of 15’1
by the torus action. Similarly, we may describe the components E; (j = 2,3,4).

Step 2. We denote by D, ; the intersection of the divisors [e; = 0] and [e; = 0] on

Ur(k). First, we consider the intersection of By and E,. We substitute ey = 0 for (2.3.13).
Then, we have the locus defined by the following equations

(a3 + ds = K3es
a3d3 — b363 = 6%
ay + dy = Kyey

a4d4 — b4C4 = 62
4

L asay + b364 =0

in (P! x (P*)?) N[z # 0]. By the transformation (2.1.2), we have the Zariski open set of
the hypersurface in (P!)?, denoted by D7, Next, we consider the case where ¢z # 0.
In the same way as in the case where ¢y # 0, we have the locus defined by the following
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equations

(ay +dy =0
aody — bacy = 0

{ as+dy = Kyey

a4d4 — b4C4 = 62
4

2 2
L dQC3CL4 — C2€3Cy + /{3d263€364 =0

. . : a b st s?
in (P' x (P*)?) N[cs # 0]. Since we may put e a) = e _g4) wherea+d=

0,ad — be = 0, we have

as + dy = Kgey

a4d4 — b4C4 = ei

t(sciay — teseq + Kzsczescy) = 0.
By the transform (2.1.2), we have the Zariski open set of the hypersurface in (P')?, denoted
by D?f 0. The locus Df‘"’f % is not irreducible. Now, we take the blowing up along the
orbits of s; and s,. Let D‘f”f % be the proper transform of Df’; 0. Since an orbit of a point

of

(2.3.14) [t =0]\ ([t = 0] N [sciay — teses + Kzsezescy]) C Df’fo

are not closed, the points of the inverse image of (2.3.14) on 5;3275 O are unstable (see [27,
Lemma 6.6]). Then, the quotient of ﬁ?f % by the torus action is irreducible. Next, we
consider the case where ¢4 # 0. In the same way as in the case where c3 # 0, we have the
Zariski open set of the hypersurface in (P!)3, denoted by Df“f . We glue D?f 0, Df‘"’f 0
and Di“f 0 denoted by D} ,. We take the proper transform of Dj, of the blowing up
along the orbits of s; and s,, denoted by 13’12 Then, the intersection of E; and Fs is the

quotient of l~)'12 by the torus action, denoted by E; 5. The intersection F 5 is irreducible.

Second, we consider the intersection of E) and E3. We substitute ez = 0 for (2.3.13).
Then, we have the locus defined by the following equations

( as —|—d3 =0
a3d3 - b3€3 =0
as + d4 = R4€4

CL4d4 — b4C4 = 6?1

| C2a304 + Koe2C304 + cabscy + Koeodscy = 0

in (P! x (P*)?)N[cy # 0]. We put az = st, by = s%,c3 = —t?,d3 = —st. Then, we have the
equations

ay + dy = Kyey
(2315) &4d4 — b4C4 = ei
(tag + scy)(cas — Koeat) = 0.
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We denote the two components [tas + scy = 0] and [cas — Kaeat = 0] by D'ff 0% and
D

Remark 2.3.3. Any point (M;, My, M3, M,) on D(f?féo’Jr is conjugate to the following
matrices

o O

asg bg 00 0 b4
R Cy d2 5 Cq d4
0 ‘ €9 ‘ 0 ‘ €4

O =

(2.3.16)

In fact, we normalize the third matrix M; instead of Ms. Then, we have

01 00
Mz;=10 0 or |1 0
0 0

In the former case, by the stability, we have ¢4 # 0. However, the matrices do not satisfy
the condition (2.3.3). In the latter case, the equation tay + scy = 0 implies that as = 0.

On the other hand, any point on szf 0~ is conjugate to the following matrices

0 1 a9 b2 0 0 ay b4
(2.3.17) 0 0 e 0 110 e dy
0 ‘62 ‘0 ‘64

We consider the cases where c3 # 0 and ¢4 # 0. In the same way as in the case where
co # 0, we have the Zariski open sets

C3?é07+ 037507_ ca#0,+ 04?507_
D1,3 7D1,3 7D1,3 7D1,3

of the hypersurfaces in (P')°. We glue ngﬁO’Jr, Df?fo”L and Df‘ffo’Jr (resp. foo’_,
foo: and ngﬁo’*), denoted by 'Diy (resp. 'Di3). We take the blowing up (2.3.9).
Let ‘D and D75 be the proper transforms of 'Di; and ‘D7, respectively. Then, the

intersections of F; and E3 are the quotients of / 5;“3 and’ 151_ 5 by the torus action, denoted
by Ej; and Ef .

We consider the intersections Es N E3, E3N Ey and E; N Ey. In the same way as in the
case [J; N Ej, the intersections are irreducible, denoted by Fs 3, Es4 and F 4.

We consider the intersection of Fy and Fj4. In the same way as in the case £ N Es, the
intersection Ey N Ey is not irreducible. The intersection has two components, denoted by
E;’ 4 and Ej . Here, the components E;“ 4 and Fjy 4 correspond respectively to the following
matrices

aq bl 0 1 as bg 0 0
C1 dl , 0 0 , C3 0 , 10
€1 0 ‘ €3 ‘ 0
and
0 b 01 as bs 00
C1 dl , 0 0 R C3 dg , 10
€1 ‘ 0 ‘ €3 ‘ 0
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Now, we take the blowing up along the components Efs, By 3, By, Eg -

X — X = M(K).

We use the same notation F; which is the proper transforms of E;. We denote by
exfg, ety 3, exéF 1, €15 4 the quotients of the exceptional divisors associated with this blowing
up. Consequently, we have the ten components of the boundary divisor of the compacti-

fication X of M (k)
By, By, Es, Ey, exy, ey, exf s, eay s, €ty ,, €25 4,
and we obtain that the intersections
EiNEy,y, EsNEs;, FEsNEy, FE,NE;
and
EiN ezjt’g), EsN ez’fg, Ey N 6.%;2':74, EiN 61';4
are nonempty and irreducible.

We describe the intersections of the other pairs. We consider the intersection of exfg
and Fy. If we substitute e4 = 0 for the matrix (2.3.16), then we have dy = 0. Moreover,
we have by = 0 or ¢4, = 0. Then, we obtain that

"D 3N ey = 0] = {s1, 52} U [points whose orbits are not closed].

By the blowing up along s; and s,, we obtain that the intersection of Efr 5 and Ey is empty
(see [27, Lemma 6.6]). Then, the intersection of exfg and F, is empty. In the same way
as above, the intersections

er; s N By, exg,NEs, ery, NE)
are empty. On the other hand, the intersections
+ - + — + — + -
exi 3 N Ea, e 3 N By, exg N Ey, eryy N B3, exy3Nexys, e, Ner,

are nonempty and irreducible. Next, we consider the intersections of the pairs containing
exr; or exy. The orbit of the point s; (resp S9) is contained in the components Dy, ..., Dy
and Di, Di, respectively. Here, D 13 and DF 5.4 are the irreducible components of D1 3
and Dy 4. Then, the intersections ez; N E; and ex; N elf 4o are nonempty and irreducible
fort=1,2,j=1,...,4and k =1,2. On the other hand the orbits of the point s; and
S9 are not intersect. Then, the intersection of er; and ez, is empty.

Step 3. We draw the vertexes and the 1-dimensional simplices except exr; and exs.
Then, we obtain the following figure We consider the following sphere

R*D S = {(z,y,z,w) € R*| 2? +9* + 22 +w® = 1}.

We arrange the vertexes except ex; and er, on S? = S3N [w = 0] and arrange the
vertexes exr; and exy at (0,0,0,1) and (0,0,0,—1) respectively. We glue together the
vertex er; (i = 1,2) and each vertex on S? = S3 N [w = 0].

Next, we describe the 2- dimensional simplices. First, we consider the intersections
EiNEyNex 3 and EyN EsNexf 3 The intersection E; N E2 NE; = B 5N E5 is nonempty

and irreducible in M‘é(fc). We take the blowing up along EfL 5. Then, the intersections
EiNE;N e:z;f’i,; and Fy N EsN e:cf?) are irreducible. Second, we consider the intersections
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FIGURE 3

EyNexfyNer;y and E3N exfy N erpy. We substitute dy = 0 for the matrices (2.3.16).
Then, we have that ngf 9% N [dy = 0] is irreducible. Therefore, the intersection Ef sNE;
is irreducible. We take the blowing up along Ef5. Then, the intersections Ey N ez 3N ez,
and E3 N exfg, N ex; 5 are irreducible. Then, we glue together the triangles

(Er, B, eafs), (Es, Es, e y), (Ey, eaf s, eay ) and (Es, exf s, eaqs)

in the graph of Figure 3. In the same way as above, we glue together each triangle. Then,
we obtain that the complex of Figure 3 is a simplicial decomposition of S?. Third, we
consider the intersection of 3-tuple of components of the boundary divisor containing ex;
or exy. The divisors ex; and ez, are the exceptional divisors of the blowing up along the
orbits of s; and s,. The orbits of s; and sy are contained in D;ND; 1 (i =1,...,4), Df?),
Dy, D;f 4 and Dy 4, respectively. Then, the intersections £; N E; 1 N ex;, E,jk o Ner; and
By 1o N ex; are nonempty and irreducible for ¢t = 1,...,4, j = 1,2, and k = 1,2. We take
the blowing up along Efr 3 and Fy 3. Then, we can glue together the 3-tuples which have
either ex; or ex; in the graph.

Lastly, we describe the 3-dimensional simplices. We can glue together the 4-tuples
of components of the boundary divisor such that the 4-tuples have either ex; or ez; and
3-tuples expect ez; or ez; are glued together. On the other hand, the intersections of the
4-tuples which have the vertexes expect ez; or ex; are empty. T hen we obtain that the

boundary complex of the compactification X of M~ (k) is a simplicial decomposition of
S3. O
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