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Abstract

This thesis deals with several topics on the mixed Hodge structures of the moduli
spaces of parabolic connections, the moduli space of parabolic Higgs bundles and character
varieties. Since these moduli spaces are quasi-projective varieties, but never projective, it
is interesting to investigate the weights of these mixed Hodge structures and the invariance
of weights under smooth deformations.

By the nonabelian Hodge theory, the moduli spaces of parabolic connections and the
moduli space of parabolic Higgs bundles are diffeomorphic, and, by the Riemann–Hilbert
correspondence, the moduli spaces of parabolic connections and character varieties are
analytic isomorphic. Since those isomorphisms are not algebraic, relationships between
the mixed Hodge structures of those moduli spaces are not clear.

First, we investigate the mixed Hodge structures of the moduli spaces of parabolic
connections and the moduli space of parabolic Higgs bundles.

Second, we investigate the mixed Hodge structures of character varieties. We compute
a few examples. Moreover, we study the boundary components of compactifications of
character varieties. This study is motivated by a conjecture on the configurations of the
boundary components, due to C. Simpson.

This thesis presents the following two consequences:

• We show that the mixed Hodge polynomials (and the Poincaré polynomials)
of the moduli spaces of parabolic connections are independent of the choice of
generic eigenvalues. As a result, we have
(1) the mixed Hodge structures of the moduli spaces of parabolic connections

are pure;
(2) the Poincaré polynomials of character varieties of generic spectral types are

independent of the choice of generic eigenvalues by the Riemann–Hilbert
correspondence.

• We investigate a conjecture of C. Simpson on the boundary components of com-
pactifications of character varieties. We verify the conjecture for a few examples.
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Introduction

We fix integers n > 0, d and g ≥ 0. Let Σ be a smooth complex projective curve of genus
g. The nonabelian Hodge theory of Σ gives the equivalence of categories related to the
following three moduli spaces: the moduli space of semistable Higgs bundles of rank n and
of degree 0 on Σ (denoted by MDol(Σ)); the moduli space of (semistable) holomorphic
connections of rank n and of degree 0 on Σ (denoted by MDR(Σ)); and the character
variety Hom(π1(Σ),GL(n,C))/GL(n,C), whose points parametrize representations of the
fundamental group π1(Σ) into GL(n,C) (denoted by MB(Σ)). These moduli spaces
are related to each other in the following way. First, the moduli space of semistable
λ-connections MHod(Σ) gives the relationship between MDol(Σ) and MDR(Σ). Here,
we call (E,∇) a λ-connection if E is a vector bundle on Σ and ∇ : E → E ⊗ Ω1

Σ is a
homomorphism of sheaves satisfying ∇(ae) = a∇(e)+λd(a)⊗e where λ ∈ C, a ∈ OΣ and
e ∈ E. Then, we have the natural map λ :MHod(Σ) → C1 such that λ−1(0) =MDol(Σ)
and λ−1(1) =MDR(Σ). Finally, the Riemann–Hilbert correspondence gives an analytic
isomorphism betweenMDR(Σ) andMB(Σ).

In this thesis, we consider variants of those moduli spaces in the case of punctured
curves. We fix an integer k ≥ 0 and a k-tuple µ = (µ1, . . . , µk) of partitions of n, that is,
µi = (µi

1, . . . , µ
i
ri
) satisfies µi

1 ≥ µi
2 ≥ · · · and µi

1 + · · ·+ µi
ri
= n for i = 1, . . . , k. We take

k-distinct points p1, . . . , pk on Σ, and define a divisor by D := p1 + · · ·+ pk.

Definition (Parabolic Higgs bundles). We call (E,Φ, {l(i)∗ }1≤i≤k) a parabolic Higgs
bundle of rank n, of degree d, and of type µ if

(1) E is an algebraic vector bundle on Σ of rank n and of degree d,
(2) Φ: E → E ⊗Ω1

Σ(D) is an OΣ-homomorphism, and

(3) for each pi, l
(i)
∗ is a filtration E|pi = l

(i)
1 ⊃ l

(i)
2 ⊃ · · · ⊃ l

(i)
ri ⊃ l

(i)
ri+1 = 0 such that

dim(l
(i)
j /l

(i)
j+1) = µi

j and Φ|pi(l
(i)
j ) ⊂ l

(i)
j+1 ⊗Ω1

Σ(D)|pi for j = 1, . . . , ri.

The OΣ-homomorphism Φ is called a Higgs field.

Definition (Parabolic connections). We call (E,∇, {l(i)∗ }1≤i≤k) a (regular singular)
ξ-parabolic connection of rank n, of degree d, and of type µ if

(1) E is an algebraic vector bundle on Σ of rank n and of degree d,
(2) ∇ : E → E ⊗Ω1

Σ(D) is a connection, and

(3) for each pi, l
(i)
∗ is a filtration E|pi = l

(i)
1 ⊃ l

(i)
2 ⊃ · · · ⊃ l

(i)
ri ⊃ l

(i)
ri+1 = 0 such that

dim(l
(i)
j /l

(i)
j+1) = µi

j and (Respi(∇)− ξijidE|pi )(l
(i)
j ) ⊂ l

(i)
j+1 for j = 1, . . . , ri.
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Here, we put r :=
∑
ri and ξ := (ξij)

1≤i≤k
1≤j≤ri

∈ Cr satisfying d+
∑

i,j µ
i
jξ

i
j = 0 (see Remark

1.1.2).

We consider the following three moduli spaces: the moduli space of semistable parabolic
Higgs bundles on Σ of rank n, of degree d, and of type µ; the moduli space of semistable
ξ-parabolic connections on Σ of rank n, of degree d, and of type µ; and the (generic)
GL(n,C)-character variety, whose points parametrize representations of the fundamental
group of Σ\D into GL(n,C) with prescribed images in C1, . . . , Ck at the punctures. Here,
(C1, . . . , Ck) is a generic k-tuple of semisimple conjugacy classes of GL(n,C) such that,
for each i = 1, . . . , k, {µi

1, µ
i
2, . . .} is the set of the multiplicities of the eigenvalues of

any matrix in Ci. These moduli spaces are connected non-singular algebraic varieties of
dimension

n2(2g − 2 + k)−
∑
i,j

(µi
j)

2 + 2

(see [15], [16], [21], [22] and [29]). Note that, for any ξ, the moduli space of semistable
ξ-parabolic connections on Σ is non-singular by the parabolic structures and the stability.
On the other hand, only for generic (C1, . . . , Ck), the character variety is non-singular. We
denote the three moduli spaces by Mµ

Dol(0), M
µ
DR(ξ), and M

µ
B(ν), respectively. Here,

ν denotes the eigenvalues of the any matrix of each conjugacy class in (C1, . . . , Ck) and 0
means that Higgs fields have nilpotent residues at each puncture.

For the case of the punctured curve Σ\D, we study relationships between those moduli
spaces. We put

Ξµ,d
n :=

{(
λ, (ξij)

1≤i≤k
1≤j≤ri

)
∈ C× Cr

∣∣∣∣∣ λd+∑
i,j

µi
jξ

i
j = 0

}
.

Definition (Parabolic λ-connections). For (λ, ξ) ∈ Ξµ,d
n , we call (λ,E,∇, {l(i)∗ }1≤i≤k)

a ξ-parabolic λ-connection of rank n, of degree d, and of type µ if

(1) E is an algebraic vector bundle on Σ of rank n and of degree d,
(2) ∇ : E → E ⊗Ω1

Σ(D) is a λ-connection, that is, ∇ is a homomorphism of sheaves
satisfying ∇(fa) = λa⊗ df + f∇(a) for f ∈ OΣ and a ∈ E, and

(3) for each pi, l
(i)
∗ is a filtration E|pi = l

(i)
1 ⊃ l

(i)
2 ⊃ · · · ⊃ l

(i)
ri ⊃ l

(i)
ri+1 = 0 such that

dim(l
(i)
j /l

(i)
j+1) = µi

j and (Respi(∇)− ξijidE|pi )(l
(i)
j ) ⊂ l

(i)
j+1 for j = 1, . . . , ri.

We construct the moduli space of semistable parabolic λ-connections over Ξµ,d
n as a

subscheme of the coarse moduli scheme of semistable parabolic Λ1
D-tuples constructed in

[23], denoted by

π :Mµ
Hod −→ Ξµ,d

n .

We have π−1(1, ξ) = Mµ
DR(ξ) and π−1(0,0) = Mµ

Dol(0). On the other hand, by the
moduli theoretic description of the Riemann-Hilbert correspondence (see [23], [21] and
[22]), we obtain the analytic isomorphism Mµ

DR(ξ)
∼=Mµ

B(ν) where ν = rhd(ξ). Here,
rhd is the map defined by ξij 7→ exp(−2π

√
−1ξij) for i = 1, . . . , k and j = 1, . . . , ri.
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The mixed Hodge structures of the moduli space of parabolic connections
and character varieties. For smooth projective varieties, one can define the Hodge
structure on the cohomology groups of the smooth projective varieties. Deligne general-
ized the Hodge structure to any complex algebraic varieties, not necessarily smooth or
projective, i.e., one can define the mixed Hodge structure on the cohomology groups of
the varieties ([6], [7]). The moduli spaces Mµ

Dol(0), M
µ
DR(ξ), and M

µ
B(ν) are smooth.

However, these moduli spaces are not projective. The purpose of this thesis is to study
the mixed Hodge structures of these moduli spaces.

The first theorem of this thesis is the following

Theorem A ((Ch.V, Theorem.1.2.1), (Ch.V, Theorem.1.2.2), and (Ch.V, Corollary
1.2.3)). 　

(1) The ordinary rational cohomology groups of the fibers of π : Mµ
Hod → Ξµ,d

n are
isomorphic. Moreover, the isomorphism preserves the mixed Hodge structures on
the cohomology groups of the fibers.

(2) In particular, we have the isomorphism

Hk(Mµ
DR(ξ),Q) ∼= Hk(Mµ

Dol(0),Q)

which preserves the mixed Hodge structures.
(3) Since the mixed Hodge structure of Hk(Mµ

Dol(0),Q) is pure of weight k, the mixed
Hodge structure on Hk(Mµ

DR(ξ),Q) is pure of weight k.
(4) For µ = (µi

j) such that g.c.d.(µi
j) = 1, the Poincaré polynomials of character

varietiesMµ
B(ν) are independent of the choice of generic eigenvalues.

The proof of this theorem is done by constructing a relative compactification of π :
Mµ

Hod → Ξµ,d
n via a Simpson’s idea [48].

On the other hand, there are some interesting conjecture on the mixed Hodge structures
of character varieties, for example the Hausel-Letellier-Rodriguez-Villegas formula [15,
Conjecture 1.2.1]. (This is a conjecture on a combinatorial formula for the compactly
supported mixed Hodge polynomial of a character variety). In this thesis, we compute
the mixed Hodge structures of a few example of character varieties of genus 0. Then we
may verify this conjecture for these examples. The computation of the examples are done
by the explicit description of character varieties via the classical invariant theory. For
simplicity of descriptions of the invariant rings, we consider SL(n,C)-character varieties
of genus 0, that is,

{(M1, . . . ,Mk) ∈ C1 × · · · × Ck |M1M2 · · ·Mk = In}//SL(n,C)

which is the categorical quotient of the simultaneous SL(n,C)-action. Here, (C1, . . . , Ck)
is a tuple of semisimple conjugacy classes of SL(n,C) of type µ and In is the identity

matrix. We denote by M̂µ
B(ν) the SL(n,C)-character varieties of g = 0.

Remark. We can define character varieties whose the structure groups are GL(n,C),
PGL(n,C) and SL(n,C). However, for g = 0, those character varieties are the same.

11



In the case of g = 0 and dimM̂µ
B(ν) = 2, SL(n,C)-character varieties can be classified

into four cases, which can be listed as follows:

µ = ((1, 1), (1, 1), (1, 1), (1, 1)),

µ = ((1, 1, 1), (1, 1, 1), (1, 1, 1)),

µ = ((2, 2), (1, 1, 1, 1), (1, 1, 1, 1)),

µ = ((3, 3), (2, 2, 2), (1, 1, 1, 1, 1, 1)).

In the first and second types, the SL(n,C)-character varieties are known to be an affine
cubic surface by the classical invariant theory. ([10], [25], [26], [30]). Then we can
compute the mixed Hodge structures of the first and second types.

Compactifications of character varieties and the configurations of the bound-
ary divisors. The next purpose is to study the configuration of boundary divisor of
compactifications of character varieties. This study is motivated by a conjecture due to
Simpson [50], which is explained as follows. We choose a smooth compactificationMµ

B(ν)

ofMµ
B(ν) such that DB

g,µ =Mµ
B(ν) \M

µ
B(ν) is a divisor with normal crossings. We call

the divisor DB
g,µ a boundary divisor of the compactificationMµ

B(ν). Let N
B

g,µ be a small

neighborhood of DB
g,µ in Mµ

B(ν), and let NB
g,µ = N

B

g,µ ∩ M
µ
B(ν) = N

B

g,µ \ DB
g,µ. Let

∆(DB
g,µ) be a simplicial complex whose n-dimensional simplices correspond to the irre-

ducible components of intersections of k + 1 distinct components of DB
g,µ. This is called

the boundary complex or Stepanov complex of a compactification of Mµ
B(ν) (see [52],

[53], and [37]).

Theorem ([52], [53], and [37]). The homotopy type of boundary complex ∆(DB
g,µ) is

independent of the choice of compactifications.

We have a continuous map, well-defined up to homotopy,

NB
g,µ −→ ∆(DB

g,µ).

On the other hand, letMµ
Dol(0) → A

dg,µ
2 be the Hitchin fibration. We have a canonical

orbifold compactification ofMµ
Dol(0) via the relative compactification of the moduli space

of parabolic λ-connections (see Section 1 of Chapter V). The divisor at infinity is the
quotient

DDol
g,µ :=Mµ

Dol(0)
∗/C∗.

Here,Mµ
Dol(0)

∗ is the complement of the nilpotent cone. Let N
Dol

g,µ be a small neighbor-

hood of DDol
g,µ , and let NDol

g,µ = N
Dol

g,µ ∩M
µ
Dol(0) = N

Dol

g,µ \DDol
g,µ . The Hitchin fibration gives

us a continuous map to the sphere at infinity in the Hitchin base

NDol
g,µ −→ Sdg,µ−1.

Conjecture (C. Simpson [51]). (1) There exists a homotopy-commutative diagram

NDol
g,µ

∼=−−−→ NB
g,µy y

Sdg,µ−1
∼=−−−→ ∆(DB

g,µ).

12



(2) In particular, there exists a non-singular compactification of Mµ
B(ν) such that

the boundary complex is a simplicial decomposition of sphere Sdg,µ−1.

Remark (See [51]). The assertion (1) of this conjecture due to Simpson is true in the
case where µ = ((1, 1), (1, 1), (1, 1), (1, 1)).

The second theorem of this thesis is the following

Theorem B ((Ch.VI, Corollary 1.1.4 and Theorem 2.3.2)). The assertion (2) of this
conjecture due to Simpson is true in the following cases :

(1) g = 0, n = 3, k = 3,µ = ((1, 1, 1), (1, 1, 1), (1, 1, 1)), dg,µ = 2;
(2) g = 0, n = 2, k = 5,µ = ((1, 1), (1, 1), (1, 1), (1, 1), (1, 1)), dg,µ = 4.

We consider SL(n,C)-character varieties M̂µ
B(ν). The case (1) of Theorem B is verified

by the classical invariant theory [30]. However, it seems that the application of the classi-
cal invariant theory is difficult for general cases. Then, we construct compactifications of
SL(n,C)-character varieties as follows. Following [3], we can construct a compactification
of the representation variety [3]

Ûµ(ν) := {(A1, B1, . . . , Ag, Bg;M1, . . . ,Mk) ∈ SLn(C)2g × C1 × · · · × Ck
| (A1, B1) · · · (Ag, Bg)M1 · · ·Mk = In}.

Then, we take the GIT quotient of this compactification of Ûµ(ν), which gives a com-

pactification M̂µ
B(ν) of M̂

µ
B(ν). As special cases, we consider the cases where g = 0, n =

2, k ≥ 4,µ = ((1, 1), . . . , (1, 1)). For k = 4, we obtain the same result as the classical

invariant theory [10]. For k = 5 (i.e., the case (2) of Theorem B), M̂µ
B(ν) has singular

points. We show that a suitable blowing up of M̂µ
B(ν) has a boundary whose bound-

ary complex is a simplicial decomposition of S3. It seems that the configuration of the
boundary divisor DB

0,µ is rather complicated for k ≥ 6.

The conjecture due to Simpson is related to the P=W conjecture due to Hausel et al
([4]). First, we consider compact curve cases. The non-abelian Hodge theory for compact
curves states that character varieties MB are diffeomorphic to moduli spaces MDol of
semi-stable Higgs bundles. Then, we have the induced isomorphism between the rational
cohomology groups of MB andMDol . The P=W conjecture assert that the isomorphism
of the rational cohomology groups exchanges the weight filtration on the cohomology
groups of MB with the perverse Leray filtration associated with the Hitchin fibration
on the cohomology groups of MDol . The P=W conjecture is verified in the case where
n = 2 ([4]). We may extend the conjecture to punctured curve cases. On the other hand,
there exists a natural isomorphism from the reduced homology of the boundary complex
∆(DB

g,µ) to the 2l-th graded piece of the weight filtration on the cohomology ofMµ
B(ν):

H̃i−1(∆(DB
g,µ),Q) ∼= GrW2l H

2l−i(Mµ
B(ν)).

(For example, see [37, Theorem 4.4]). By the isomorphism, the assertion (2) of the
conjecture due to Simpson above implies that there exists only 1-dimensional weight
2dg,µ part in the middle degree dg,µ cohomology of the character variety, which is also a
consequence of the P=W conjecture.
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The organization of this thesis is as follows. From Chapter 1 to Chapter 4, we recall the
basic notations and basic results. In Chapter 1, we recall the basic facts on connections,
Higgs fields. The main reference is Sabbah’s book [39]. In Chapter 2, after recalling the
moduli problems and geometric invariant theory, we review the moduli problem of Λ1

D-
triples due to Inaba-Iwasaki-Saito [23]. Moreover the character varieties can be introduced
in the GIT setting. In Chapter 3, we recall basic results on Hodge theory and mixed Hodge
theory of open algebraic varieties or singular algebraic varieties due to Deligne [6], [7]. In
Chapter 4, nonabelian Hodge theory and Riemann-HIlbert correspndence are reviewed.
In last two chapters (Chapter 5 and 6), we will prove our main results.
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CHAPTER 1

Connections

In this chapter, we recall several well-known facts on holomorphic connections, mero-
morphic connections, and connections which have regular singularities. Our main refer-
ence is the book of Sabbah [39].

1. Holomorphic integrable connections and Higgs fields

Let X be a complex analytic manifold, and let π : E → X be a holomorphic vector
bundle on X. We use the same notation E for the locally free sheaf associated to the
vector bundle E. Let Ωi

X be the sheaf of holomorphic differential i-forms on X.

1.1. Holomorphic connections.

Definition 1.1.1. A holomorphic connection ∇ on a holomorphic vector bundle π : E →
X is a C-linear holomorphism of sheaves

∇ : E −→ Ω1
X ⊗ E

satisfying the Leibniz rule: for any open set U of X, any section s ∈ Γ(U,E) and any
holomorphic function f ∈ O(U)

∇(f · s) = f∇(s) + df ⊗ s ∈ Γ(U,Ω1
X ⊗ E).

In general, one can extend the holomrphic connection ∇ on the section of E as on the
section of Ω1

X ⊗ E (with values in Ω2
X ⊗ E):

∇(ω ⊗ s) = dω ⊗ s− ω ∧∇(s).

Then, we define the curvature R∇ of the connection ∇ as the following

R∇ := ∇ ◦∇ : E −→ Ω2
X ⊗ E,

which is an OX-linear homomorphism.

Definition 1.1.2. The connection ∇ : E → Ω1
X ⊗ E is said to be integral, or also flat,

if its curvature R∇ vanishes identically.

Remark 1.1.3. When dimX = 1, the sheaf Ω2
X is zero and therefore the integrability

condition is fulfilled by any connection.

Definition 1.1.4. A ∇-horizontal holomorphic section of E on an open set U of X is
a section s ∈ Γ(U,E) satisfying ∇(s) = 0. We denote by E∇ the sheaf of ∇-horizontal
holomorphic sections of E.

15



Theorem 1.1.5 (Cauchy–Kowalevski theorem). Let ∇ : E → Ω1
X⊗E be a holomorphic

integral connection on some bundle E of rank d. Then,

(1) The sheaf E∇ is a locally constant sheaf of C-vector space of rank d;
(2) The sheaf OX ⊗CX

E∇ is locally free sheaf of OX-modules, the connection on this
sheaf defined by ∇(f ⊗ s) = df ⊗ s is flat and (OX ⊗CX

E∇)∇ = E∇;
(3) The natural homomorphism OX ⊗CX

E∇ → E is an isomorphism of bundles with
connection.

Proof. For example, see [39, Ch.0, Theorem 12.8]. □

1.2. Higgs fields.

Definition 1.2.1. A Higgs field on a holomorphic bundle E is an OX-linear homomor-
phism

Φ: E −→ Ω1
X ⊗ E

which fulfills the condition Φ ∧ Φ = 0. We also say that (E,Φ) is a Higgs bundle.

Remark 1.2.2. When dimX = 1, the condition Φ∧Φ = 0 is fulfilled by any OX-linear
homomorphism Φ: E → Ω1

X ⊗ E.

2. Meromorphic connections

2.1. Meromorphic bundles, lattice. Let Z be a smooth hypersurface in a complex
anaytic manifold X. For the open set U of X, let f be a holomorphic function on U \Z∩U
and, for any chart V of X contained in U , in which Z ∩ V is defined by the vanishing if
some coordinate, z1 for instance, there exists an integer m such that zm1 f(z1, . . . , zn) is
locally bounded in the neighborhood of any point of Z ∩U , that is, can be extended as a
holomorphic function on V . We call the function f meromorphic function along Z.

Definition 2.1.1. Let OX(∗Z) be a sheaf of meromorphic functions along Z. A mero-
morphic bundle on M with pole along Z is a locally free sheaf of OX(∗Z)-module of
finite rank. A lattice of this meromorphic bundle is a locally free OX-submodules of this
meromorphic bundle, which has the same rank.

A meromorphic bundle M can contain no lattice at all, and can also contains some
lattice which are non-isomorphic each other. If there exists a lattice E for a meromorphic
bundle M with pole along Z, then E coincides with M on M \ Z and we have

M = OX(∗Z)⊗OX
E.

For the existence of lattices, we have the following

Proposition 2.1.2. Let X be a Riemann surface and let Z ⊂ X be a discrete set of
points. Then any meromorphic bundle on X with poles at the points of Z contains at least
a lattice.

Proof. For example, see [39, Ch.0, Propsition 8.4]. □

16



2.2. Meromorphic connections. LetM be a meromorphic bundle with pole along
a hypersurface Z. We define a connection on M as a C-linear homomorphism

∇ : M −→ Ω1
X ⊗OX

M

satisfying the Leibniz rule. Note that, in local basis of M over OX(∗Z), the matrix of the
connection has entries in OX(∗Z)⊗OX

Ω1
X = Ω1

X(∗Z).

We say that a connection on a meromorphic bundle is integral (or flat) if its restriction
to X \ Z is an integrable connection on the holomorphic bundle MX\Z . The horizontal
sections M∇

X\Z is then a locally constant sheaf of finite dimensional vector space. The

locally constant sheaf determine the linear representation of the fundamental group π1(X\
Z, ∗). The linear representation is called the monodromy representation attached to the
meromorphic bundle with connection (M,∇).

Definition 2.2.1. Let M be a meromorphic bundle with pole along a hypersurface Z.
Assume that there exists a lattice E of M . For a connection ∇ on M , we define the
meromorphic connection ∇ on E

∇ : E −→ Ω1
X(∗Z)⊗OX

E

by ∇(E) ⊂ ∇(M) ⊂ Ω1
X ⊗M = Ω1

X(∗Z)⊗OX
E.

We say that E is a logarithmic lattice of the meromorphic bundle with connection
(M,∇) if∇(E) ⊂ Ω1

X⟨logZ⟩⊗OX
E, i.e. the meromorphic connection on E is the following

∇ : E −→ Ω1
X⟨logZ⟩ ⊗OX

E.

3. Connections which have regular singularities

In this section, we treat the following topics

• the normal form of a connection on D which has regular singularity at 0 (Propo-
sition 3.2.5);
• the construction of the canonical logarithmic lattice for a connection on D which
has regular singularity at 0 (Proposition 3.2.6);
• the equivalence of the category of connections on D which have regular singu-
larity at 0 with some condition and the category of local systems on the disc D
(Theorem 3.2.8).

Here, we put D := {t ∈ C | |t| < r} where r is arbitrarily small.

3.1. Definition.

Definition 3.1.1. Let M be a meromorphic bundle with pole along a hypersurface Z
and ∇ be a connection on M . We say that (M,∇) has regular singular along Z if ∇ is a
flat connection and, in the neighborhood U of any point z ∈ Z, there exists a logarithmic
lattice EU of M|U .

The condition of regular singularity is local on Z and one does not ask for the existence
of a logarithmic lattice globally on M . Nevertheless, one can show this global existence.
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3.2. Local study for Riemann surfaces. In this section, we consider connections
which have regular singularities on the disc D := {t ∈ C | |t| < r} where r is arbitrarily
small, so that 0 is the only possible pole of the meromorphic function that we consider.
More precisely, we consider the germ (C, 0) of a Riemann surface.

We describe the germ of meromorphic bundle of rank d on the germ (C, 0) equipped
with the connection. The ring of germ of meromorphic functions with poles at 0 is the
field C{t}[1/t] of converging meromorphic Laurent series. For simplicity, we denote by k
this field. The natural action of the derivation makes it a differential field. Therefore, a
germ of meromorphic bundle with connection is nothing but a k-vector spaceM of rank d
equipped with a derivation ∇ compatible to the derivation of k, denoted by (M,∇). The
derivation ∇ is described as d + Ω where Ω = A(t)dt and the entries of A(t) are germs
of meromorphic functions with pole at 0. We call a germ of meromorphic bundle with
connection a (k,∇)-space.

Two (k,∇)-vector space with connection (M1,∇1) and (M2,∇2) are isomorphic if and
only if the corresponding matrices Ω1 and Ω2 are related by a meromorphic base change
P ∈ GL(d,k) via the relation

Ω2 = P−1Ω1P + P−1dP.

and the matrices A1 and A2 by the relation

(3.2.1) A2 = P−1A1P + P−1P ′

where Ωi = Ai(t)dt for i = 1, 2.

A (k,∇)-vector space (M,∇) of rank d defined by a matrix A1(t) has a regular singular
at 0, if there exists a matrix P ∈ GL(d,k) such that the matrix A2(t) obtained after the
base change (3.2.1) has at most a simple pole at t = 0. Otherwise, the singularity is called
irregular.

A lattice of the (k,∇)-vector space (M,∇) is a free C{t}-module E ⊂M such that

k ⊗C{t} E =M.

Example 3.2.1. We define an elementary regular model as a (k,∇)-vector space
equipped with a basis in which the connection matrix is written as

(3.2.2) Ω(t) = (αId +N)
dt

t

where α ∈ C and N is a nilpotent matrix. Suppose that N has a single Jordan block of
size d ≥ 0. Then, we have the following

(1) the horizontal sections s on any simply connected open set U of D \{0} is obtain
by taking the linear combinations with coefficients in C of the columns of the
matrix

t−(αId+N) := t−α

(
Id−N log t+N2 (log t)

2

2!
+ · · ·+ (−N)d

(log t)d

d!

)
;

(2) the monodromy representation defined by the horizontal sections is given by

T = exp(−2π
√
−1(αId +N));
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(3) the horizontal sections have moderate growth near the origin, that is, for any
horizontal section s on the neighborhood of a closed angular sector with angle
< 2π, there exists an integer n ≥ 0 and a constant C > 0 such that

∥s(t)∥ ≤ C|t|−n.

on this closed sector.

We show that any (k,∇)-vector space with regular singularity is isomorphic to a direct
sum of elementary regular models as follows.

Lemma 3.2.2. (1) Let C[[t]] be a field of formal power series, and let Ω̂ = Â(t)

has entries in C[[t]]. We assume that any two eigenvalues of the matrix Â(0) do

not differ by a nonzero integer. Then, there exists a matrix P̂ ∈ GL(d,C[[t]])
such that

P̂−1ÂP̂ + tP̂−1P̂ ′ = Â(0).

(2) Moreover, the matrix of the base change P̂ has converging entries.
(3) Therefore, let (M,∇) be (k,∇)-vector space with regular singularity. Let E be

a logarithmic lattice of M . If the eigenvalues of the residue ResE(∇) of the
connection on E do not differ by a nonzero integer, then there exists a basis of
E over C{t} such that the connection matrix takes the form A0dt/t where A0 is
constant.

Proof. We show the first assertion. Put Â(t) = A0 + A1t + · · · . We search for a

matrix P̂ ∈ GL(d,C[[t]]) satisfying

P̂−1ÂP̂ + tP̂−1P̂ ′ = A0.

One can regard this relation as a differential equation satisfying by P̂ :

(3.2.3) tP̂ ′ = P̂A0 − ÂP.

We set a priori P̂ = Id + tP1 + t2P2 + · · · where Pl are constant matrices. The term of
degree l is the following

lPl = PlA0 − A0Pl + Φl(P1, . . . , Pl−1;A0, . . . , Al)

where Φl is a matrix depending in a polynomial way on its variables. Hence, we have

(3.2.4) Pl(lId− A0)− (−A0)Pl = Φl(P1, . . . , Pl−1;A0, . . . , Al).

We determine the matrices Pl by the inductive way. We take an integer l ≥ 1. Let us
assume that we have determined the matrices Pk, (k ≥ l − 1). We apply the following
lemma to the equation (3.2.4).

Lemma 3.2.3 (For example, see [39, Ch.II, Lemma 2.16]). Let U ∈ M(p,C) and
V ∈ M(q,C) be two matrices. Then, the following properties are equivalent

(1) for any matrix Y of size q × p with entries in C, there exists a unique matrix X
of the same kind satisfying XU − V X = Y ;

(2) the square matrices U and V have no common eigenvalue.
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Then we can determine a matrix Pl.

We show the second assertion. Note that equation (3.2.3) defines P̂ as a horizontal
section of a differential linear system of rank d2 and that matrix of this system has at
most a simple pole at 0. Then the convergence follows from the following lemma.

Lemma 3.2.4 (For example, see [39, Ch.II, Lemma 2.18]). Let C{t} be the ring of
convergent power series, and let A(t) be a matrix in M(d,C{t}). Any vector u(t) with
entries in C[[t]] which is solution of the system tu′(t)+A(t)u(t) = 0 has converging entries.

By the first and second assertions, we obtain the third assertion. □

Then we have the normal form of a connection on D which has regular singularity at
0.

Proposition 3.2.5. Any (k,∇)-vector space with regular singularity is isomorphic to
a direct sum of elementary regular model.

Proof. Let Ω := A(t)dt/t which is a connection matrix of ∇. Here, A(t) has entries
in C[[t]] which is the field of formal power series

∑
n≥0 ant

n. Let A(t) := A0 +
∑

j≥1Ajt
j.

We can change the eigenvalues by the following transformation: First, by a base change
with constant matrix, we reduce to the case where the matrix A0 is blockdiagonal where
each block corresponds to some eigenvalue λi, (i = 1, . . . , p) of A0. Then, let us write

A(t) =

(
A

(1)
0 0

0 A
(2)
0

)
+
∑
j≥1

Ajt
j

where A
(1)
0 is the block corresponding to the eigenvalue λ1 and A

(2)
0 to the eigenvalues

λj, (j = 2, . . . , p). Secondary, we set

Q(t) :=

(
tId 0
0 Id

)
.

Then, the eigenvalues of the constant part B0 of the matrix B := Q−1AQ + tQ−1Q′ are
λ1+1, λ2, . . . , λp. By the finite sequence of such changes, we obtain a matrix B0 such that
the eigenvalues of the residue ResE(∇) of the connection on E do not differ by a nonzero
integer.

By Lemma 3.2.2 and normalization of a constant matrix, we have the assertion. □

For any (k,∇)-vector space with regular singularity, we construct the canonical loga-
rithmic lattice. We call the lattice the local Deligne lattice.

Proposition 3.2.6 (Local Deligne lattice). Let (M,∇) be (k,∇)-vector space with reg-
ular singularity. Let σ be a section of the natural projection C→ C/Z (so that two complex
numbers in the image Im(σ) of σ do not differ by a nonzero integer). Then, there exists a
unique logarithmic lattice σV(M,∇) of (M,∇) such that the eigenvalues of ResσV(M,∇)

(∇) are
contained in the region Im(σ). Moreover, for any homomorphism ϕ : (M,∇)→ (M ′,∇′),
we have

ϕ(σV(M,∇)) =
σV(Imϕ,∇) =

σV(M ′,∇′) ∩ Im(ϕ).
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Proof. There exists a logarithmic lattice E of M by definition of regular singularity.
We can change the eigenvalues by the transformation as in the the proof of Proposition
3.2.5. By the finite sequence of the transformations, we obtain the logarithmic lattice E
such that the eigenvalues of ResσV(M,∇)

(∇) are contained in Im(σ).

We show the uniqueness of the logarithmic lattices. If E and E ′ are two such lattice,
then there exists a basis e of E (resp. e′ of E ′) in which the matrix A0dt/t (resp. A

′
0dt/t)

of ∇ has eigenvalues in Im(σ) by Proposition 3.2.5. Here, the matrices A0 and A′
0 are

constant. We search for a matrix P ∈ GL(d,k) satisfying

P−1A0P + tP−1P ′ = A′
0.

One can regard this relation as a differential equation satisfying by P :

tP ′ = PA′
0 − A0P.

We set a priori P = t−nP−n + · · · + P0 + tP1 + · · · where Pl are constant matrices to be
determined and P−1

0 A′
0P0 = A0. The term of degree l is the following

lPl = PlA
′
0 − A0Pl where l ̸= 0.

Hence,

Pl(lId− A′
0)− (−A0)Pl = 0.

We have Pl = 0 (l ̸= 0) by the Lemma 3.2.3. Then, the matrix of the base change
P ∈ GL(d,k) from e to e′ is constant and conjugates A0 and A

′
0. We have the uniqueness.

We consider a homomorphism ϕ : (M,∇)→ (M ′,∇′). Since the image by ϕ of a lattice
is a lattice of the image of ϕ, the second assertion follows from uniqueness. □

Now, we consider the functor between the category of (k,∇)-vector spaces with reg-
ular singularity and the category of vector spaces equipped with the automorphism
T = exp(−2π

√
−1ResσV(M,∇)

∇):

(3.2.5) (M,∇) 7−→ (σH(M,∇), T )

where σH(M,∇) :=
σV(M,∇)/t

σV(M,∇) and T is the monodoromy representation.

We show the functor (3.2.5) is an equivalence of categories. By Proposition 4.2.2 as
below, we show the functor is fully faithful and essentially surjective. First, we show that
the functor is essentially surjective:

Lemma 3.2.7. Let T be a linear automorphism of Cd (defining a local system of rank
d on some disc punctured D∗). Then, there exists a unique (up to constant) bundle with
meromorphic connection on D with logarithmic pole at 0 for which

(1) the local system it defines on D∗ is that associated to T ;
(2) the residue at 0 of the connection has eigenvalues in the region Im(σ).

Proof. We consider a C-vector space Vd = Cd with the linear automorphism T . One
can decompose in a unique way Vd =

⊕
λ Fλ (Jordan decomposition of T ) where Fλ is a

direct sum of spaces C[T, T−1]/(T − λ)k. We put

E := Vd ⊗C OD.
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We endow the vector bundle associated to E with the meromorphic connection ∇ which
has a connection matrix having the k × k-matrix

(αId +N)
dt

t
.

Here, α is the unique logarithm of λ which belongs to Im(σ), N is a Jordan block of size
k, and t is a coordinate on D. The bundle with meromorphic connection (E ,∇) is desired
bundle (see Example 3.2.1 (2)).

We show the uniqueness. If we have two such bundles with connections (E,∇) and
(E ′,∇′), then the bundle with meromorphic connection HomOD

(E , E ′) also has a loga-
rithmic pole at 0 and eigenvalues of the residue of its connection are obtained as the
differences of the eigenvalues of Res∇ and Res∇′. Therefore, the only integral difference
is 0, by assumption. Since the bundles E and E ′ have same monodromy on D∗, there
exists an isomorphism of the associated locally constant sheaves on D∗. Hence, we get an
invertible horizontal section of HomOD

(E , E ′) on D∗. We extend the section on D∗ to the
section on D as follows. Since the singularity of Homk(M,M ′) is regular, this section has
moderate growth. Hence, this section is meromorphic at 0. We regard the the connection
on HomOD

(E , E ′) as a following differential linear system of rank d2:

tu′(t) + A(t)u(t) = 0

where u(t) ∈ kd2 and A(t) ∈ M(d2,C[[t]]). Since the unique integral eigenvalue of the
residue of the connection on HomOD

(E , E ′) is more than 0, this section is holomorphic.
In fact, if ul denotes the coefficient of tl in u(t), then the term (lId − A(0))ul can be
expressed in the term of the uj for j < l. Since lId − A(0) is invertible for l < 0, we
deduce that ul = 0 for l < 0 by induction. Therefore, we have the extended holomorphic
section of HomOD

(E , E ′) on D. The section determine the isomorphism between (E,∇)
and (E ′,∇′). □

Lastly, we show the functor (3.2.5) is fully faithful. We consider the map

(3.2.6) Hom((M,∇), (M ′,∇′))→ Hom((σV(M,∇), T ), (
σV(M ′,∇′), T

′)).

First, we show that the map (3.2.6) is injective. If φ ∈ Hom((M,∇), (M ′,∇′)) satisfying
φ(σV(M,∇)) ⊂ t · σV(M ′,∇), then we have σVφ((M,∇)) = t · σVφ((M,∇)) by Proposition 3.2.6.
Therefore, we have φ = 0. Second, we show that the map (3.2.6) is surjective. By
choosing suitable bases, we are reduced to showing that, if A0 and A′

0 are two square
matrices of size d and d′ respectively having eigenvalues on Im(σ), then any matrix P (t)
of size d′ × d satisfying PA0 −A′

0P = tP ′ is constant. This follows from Lemma 3.2.3, as
the only integral eigenvalue of the linear operator P 7→ PA0 − A′

0P is 0. Then we have
the following

Theorem 3.2.8. The functor

(M,∇) 7−→ σH(M,∇) :=
σV(M,∇)/t

σV(M,∇)

is an equivalence between the category of (k,∇)-vector spaces with regular singularity and
the category of the vector spaces equipped with the automorphism T = exp(−2π

√
−1ResσV(M,∇)

∇).
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4. Appendix: the language of categories

4.1. Definitions. Now, we recall the language of categories briefly. Let C and C ′ be
categories. A (covariant) functor from C to C ′ consists in given a mapping F : Ob(C) →
Ob(C ′) and, for any pair (X, Y ) of objects of C, of a mapping F : Hom(X,Y )→ Hom(F (X), F (Y ))
compatible with composition and preserving the identity morphism. A covariant functor
is called simply a functor.

Definition 4.1.1. Let C and C ′ be categories, and F and G be functors from C to C ′.
A natural transformation (or functorial morphism) ρ : F → G is a family

{ρ(X) : F (X)→ G(X)}X∈Ob(C)

such that, for a morphism f : X → Y of C, the following diagram commutes:

F (Y )
ρ(Y )

//

F (f)
��

G(Y )

G(f)
��

F (X)
ρ(X)

// G(X)

If there exist natural transforms ρ : F → G and τ : G → F satisfying τρ = idF and
ρτ = idG (where idF means that the natural transformation F → F which is the identity
mapping on any set), then the functor F, G are said to be isomorphic.

Definition 4.1.2. Let C and C ′ be categories, and F be a functor from C to C ′. For the
functor F , the functor F ′ is said to be inverse functor (resp. quasi-inverse functor), if
F ◦F ′ and F ′ ◦F are equal (resp. isomorphic) to the identity functors of each categories.

Let C and C ′ be categories, and F be a functor from C to C ′. The functor F is said to
be an isomorphism of category, if there exists an inverse functor F ′. On the other hand,
The functor F is said to be an equivalence of categories, if there exists a quasi-inverse
functor F ′.

4.2. criterion of equivalence. We explain the criterion of equivalence of categories.

Definition 4.2.1. We say that a functor F : C → C ′ is fully faithful if, for any pair
(X, Y ) of objects on C, the map F : Hom(X, Y )→ Hom(F (X), F (Y )) is a bijection. We
say that a functor F : C → C ′ is essentially surjective if, for any object X ′ of C ′, there
exists an object X of C such that F (X) is isomorphic to X ′.

We have the criterion:

Proposition 4.2.2. Let C and C ′ be categories, and F be a functor from C to C ′. The
functor F is an equivalence of categories if and only if it is fully faithful and essentially
surjective.

Proof. For example, see [33, IV, §4, Theorem 1]. □
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CHAPTER 2

Moduli Problems and Geometric Invariant Theory

The purpose of this chapter is the construction of the moduli space of semistable
parabolic Λ1

D-triples and character varieties via the geometric invariant theory (GIT).
The construction of the moduli space of semistable parabolic Λ1

D-triples is due to Inaba–
Iwasaki–Saito [23]. We construct the moduli space of semistable parabolic connections
and the moduli space of semistable parabolic Higgs bundles as the subvarieties of the
moduli space of semistable parabolic Λ1

D-triples in Chapter IV.

1. Moduli Problem

Let k be a field, let S be k-scheme of finite type. Let C be a category, Cop the opposite
category, i.e. the category with same objects and reversed arrows.

A moduli functor or moduli problem is a functor from the (opposite) category of S-
schemes to the category of sets which associates to an S-scheme X the equivalence classes
of families of geometric objects parametrized by X:

(Sch/S)op −→ (Sets)

X 7−→ {families of geometric objects over X}/ ∼= .

On the other hand, for a S-scheme X, we define the functor of points

X : (Sch/S)op −→ (Sets)

as follows. For a S-scheme Y , we put X(Y ) = HomS(Y,X) and, for a S-morphism
f : Y → Z, we give the map of set X(f) : HomS(Z,X)→ HomS(Y,X) by the composition
g ◦ f where g ∈ HomS(Z,X).

Now, any S-morphism f : X → Y induces a natural transformation f : X → Y . By
Yoneda’s Lemma, the functor of points X determines the S-scheme X. More precisely,
if two functor X and Y are isomorphic as functor, then X and Y are isomorphic as
S-scheme.

1.1. Fine Moduli. For a moduli problem F , a solution of F is an isomorphism of
the functor F with the functor X of some S-scheme X:

Definition 1.1.1. A functor F : (Sch/S)op → (Sets) is said to be representable, and to
be represented by a S-scheme X, if it is isomorphic to the functor X. The S-scheme X
is called a fine moduli space for the functor F .
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Example 1.1.2. Let k be a field, let V be a finite dimensional vector space and let r
be an integer where 0 ≤ r ≤ dimV . Let

Grass(V, r) : (Sch/k)op −→ (Sets)

be the functor which associates to any k-scheme T of finite type the set of all subsheaves
K ⊂ OT ⊗k V with the quotient F := OT ⊗k V/K which is locally free of rank r. Then the
functor Grass(V, r) is represented by a smooth projective variety Grass(V, r) (for example,
see [20, Example 2.2.2]).

Example 1.1.3. The previous example can be generalized to the case where V is
replaced by a coherent sheaf V on a k-scheme S of finite type. We define a functor

GrassS(V , r) : (Sch/S)op −→ (Sets)

as follows:

GrassS(V , r)(T ) := {[OT ⊗ V ↠ F ]|F : locally free on T of rank r} ,

which is the set of equivalence classes. Here, the equivalence relation is defined by the
isomorphism of the quotient including the surjective:

OT ⊗ V // //

$$ $$H
HH

HH
HH

HH
F

∼=
��
F ′.

Then the functor GrassS(V, r) is represented by a projective S-scheme π : GrassS(V, r)→
S (for example, see [20, Example 2.2.3]).

Example 1.1.4 (Quot-functor). Let k be a field, let S be k-scheme of finite type. Let
f : X → S be a projective morphism and OX(1) an f -ample line bundle on X. Let H be
a coherent OX-module and P ∈ Q[t] a polynomial. We define a functor

Q := Quot
X/S

(H, P ) : (Sch/S)op −→ (Sets)

as follows:

Q(T ) :=
{
[OT ⊗H↠ F ]

∣∣∣∣ F : coherent sheaf on XT which is flat over T and
χ(F (t)) = P for any t ∈ T

}
,

which is the set of equivalence classes. Here, XT is the pull-back of X and the equivalence
relation is defined by the isomorphism of the quotient including the surjective:

OT ⊗H // //

$$ $$I
II

II
II

II
F

∼=
��
F ′.

If g : T → S is an S-morphism, let Q(g) : Q(T )→ Q(T ′) be the map that sends OT⊗H↠
F to OT ′ ⊗H↠ g∗XF .

Theorem 1.1.5 (For example, see [20, Theorem 2.2.4]). The functor Quot
X/S

(H, P )
is represented by a projective S-scheme π : QuotX/S(H, P )→ S.
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Then we have a universal or tautological quotient

[ρ̃ : OQ ⊗H↠ F̃ ] ∈ Q(Q).
Any quotient [ρ : OT ⊗ H ↠ F ] is equivalent to the pull-back of ρ̃ under a uniquely
determined S-morphism ϕρ : T → Q, the classifying map associated to ρ.

In the case X = S, the polynomial P reduces to a number and QuotX/S(H, P ) is
GrassS(H, P ).

If S = Spec(k) and H = OX , then a quotient of H corresponds to a closed subscheme
of X. In this context, the Quot-scheme is usually called the Hilbert scheme of closed sub-
schemes of X of given Hilbert polynomial P and is denote by HilbP (X) = QuotX(OX , P ).

1.2. Coarse Moduli. Unfortunately, in many moduli problem one cannot expect to
have representable functors. For this reason, Mumford introduce the following notation
of coarse moduli.

Definition 1.2.1. Given a functor

F : (Sch/S)op −→ (Sets),

a S-scheme X is said to be a best approximation to F if it satisfies the following condition.

• There exists a natural transformation ρ : F → X which is universal among nat-
ural transformation from F to functors of points. In other wards, given any
τ : F → Y there exists a unique S-morphism f : X → Y making the following
commute:

F
ρ //

τ

��?
??

??
??

? X

f

��
Y .

A best approximation X is called a coarse moduli space for the functor F if it satisfies,
in addition:

• for every algebraically closed field k′ ⊃ k, the set map

ρ(Spec(k′)) : F (Spec(k′)) −→ X/S(Spec(k′))

is bijective.

Note that fine moduli implies coarse, and the coarse (or best approximation) implies
unique up to isomorphism by the universal property.

2. Geometric Invariant Theory

The geometric invariant theory (GIT ) is a method of constructing quotients by a group
action in algebraic geometry. In this thesis, we use this method to construct the moduli
space of semistable parabolic Λ1

D-triples (Section 3) and character varieties (Section 4).

Let k be an algebraically closed field of characteristic zero.
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2.1. Group action and the linearization. An algebraic group over k is a k-scheme
G of finite type together with morphism

µ : G×G −→ G, ϵ : Spec(k) −→ G and ι : G −→ G

defining the group multiplication, the unit element and taking the inverse, and satisfying
the usual axioms for groups. Since we assume that the characteristic of k is zero, any
algebraic group is smooth. An algebraic group is affine if and only if it is isomorphic to
a closed subgroup of some GL(N,C).

A (left) action of an algebraic group G on a k-scheme X is a morphism

σ : G×X −→ X

which satisfies the usual associativity rules. A morphism φ : X → Y of k-schemes with
G-actions σX and σY , respectively, is G-equivariant, if σY ◦ (idG × φ) = φ ◦ σX .

Let σ : G×X → X be a group action as above, and let x ∈ X be a closed point. The
orbit of x is the image of the composite

σx : G ∼= {x} ×G ↪→ X ×G σ−−→ X.

It is a locally closed smooth subscheme of X, since G act transitively on its closed points.
We put Gx := σ−1

x (x) ⊂ G, which is a subgroup of G. We call Gx the isotropy subgroup
or the stabilizer of x in G. If V is a G-representation space, let V G denote the linear
subspace of invariant elements.

Definition 2.1.1. Let σ : G×X → X be a group action of an algebraic group G on a
k-scheme X. A categorical quotient for σ is a k-scheme that is a best approximation of
the functor

X/G : (Sch/k)op −→ (Sets), T 7−→ X(T )/G(T ).

Moreover, let Y be a categorical quotient. The object Y is said to be universal categorical
quotient if for any morphism g : U → Y where U ∈ Ob(Sch/k)op, the object U is a best
approximation of the fiber product U = U ×Y (X/G).

Even if a categorical quotient exists, it can be far from being an “orbit space”. For
example, let the multiplicative group G ∼= Spec(k[T, T−1]) act on the affine space An by
homothetic. Then, the projection An → Spec(k) is a categorical quotient. However, it is
not really an an orbit space. We need notions which are closer to the intuitive idea of a
quotient.

Definition 2.1.2. Let G an affine algebraic group over k acting on a k-scheme X. A
morphism φ : X → Y is a good quotient, if

(1) φ is affine and invariant;
(2) φ is surjective, and U ⊂ Y is open if and only if φ−1(U) ⊂ X is open;
(3) the natural morphism OY → (φ∗OX)

G is an isomorphism;
(4) if W is an invariant closed subset of X, then φ(W ) is a closed subset of Y . If W1

and W2 are disjoint invariant closed subsets of X, then φ(W1) ∩ φ(W2) ̸= ∅.

If a good quotient exists, we denote Y by X//G. The morphism φ is said to be a geometric
quotient if the geometric fibers of φ are the orbits of geometric points of X. Finally, φ is
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a universal good (geometric) quotient if Y ′×Y X → Y ′ is a good (geometric) quotient for
any morphism Y ′ → Y of k-schemes.

Remark 2.1.3. • Any (universal) good quotient is a (universal) categorical quo-
tient.
• If φ : X → X//G is a good quotient and if X is irreducible, reductive, integral,
or normal, then the same holds for X//G.

When we consider a quotient of a projective scheme by an action of an algebraic group,
we need linearize the action. Then we give the precise definition for a group action on
invertible sheaf that is compatible with a given group action on the supporting scheme.

Definition 2.1.4. Let X a k-scheme of finite type, G an algebraic k-group and σ : G×
X → X a group action. A G-linearization of a invertible sheaf L is an isomorphism of
OG×X-sheaves

Φ: σ∗L −→ p∗2L,

where p2 : G×X → X is the projection such that

(µ× idX)
∗Φ = p∗23Φ ◦ (idG × σ)∗Φ

where µ is the group multiplication and p23 : G×G×X → G×X is the projection onto
the last two factors.

Remark 2.1.5. The tensor product of two G-linearized invertible sheaves, and the
inverse of a G-linearized invertible sheaf both carry canonical G-linearization.

There are three ways to consider this definition. First, if g and x are k-rational points
in G and X, respectively, and if we write gx for σ(g, x), then the G-linearization Φ provide
an isomorphism of fibers of L

Φg,x : Lgx −→ Lx.

And the cycle condition translates into

Φg,x ◦ Φh,gx = Φhg,x : Lhgx −→ Lx.

Second, we consider the G-linearization Φ by the line bundle L corresponding to the
invertible sheaf L. More precisely, we lift the action of G on X to a bundle action of G
on L as follows. The G-linearrization Φ induces a morphism

σL : L×k G = L×X,p2 (G×X)→ L×X,σ (G×X)→ L

such that the diagram

G× L σL //

��

L

��
G×X σ // X

commutes. The cocycle condition for Φ implies that σL is group action of G on L, and
the commutativity of the diagram says that the projection π : L → X is equaivariant.
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Third, we consider a dual action of G on H0(X,L) induced by a G-linearization, which
is the most important. This action is given by the composition:

H0(X,L) σ∗
// H0(G×X, σ∗L) Φ // H0(G×X, p1∗L)

∼=
��

H0(G,OG)⊗H0(X,L)

where the last isomorphism follows from Künneth formula. The conditions for a dual
action result from the cocycle condition on Φ. We denote byH0(X,L)G the set of invariant
global sections of L.

Example 2.1.6 (PGL(n, k)-action on Pn). Let Pn := Proj k[X1, . . . , Xn]. The algebraic
group PGL(n, k) is the open subset of

Pn2+2n ∼= Proj k[a00, . . . , a0,n; a10, . . . , a1n; . . . ; an0, . . . , ann]

where det(aij) ̸= 0. Then, the morphism

(2.1.1) σ : PGL(n, k)× Pn −→ Pn

can be define by the condition

σ∗(OPn(1)) ∼= p∗1[OPn2+2n(1)]⊗ p∗2[OPn(1)]

σ∗(Xi) =
n∑

j=0

p∗1(aij)⊗ p∗2(Xj).

Unfortunately, OPn2+2n(1) is not trivial on PGL(n, k), since its order on Pic[PGL(n, k)] is
n+ 1. Therefore, OPn(1) admits no PGL(n, k)-linearization.

On the other hand, OPn(n+1) admits a PGL(n)-linearization. In fact, the line bundle
corresponding to OPn(n + 1) is the n-th exterior power of the cotangent bundle on Pn.
Any action on Pn lifts to an an action on the cotangent bundle, hence to this n-th exterior
power.

Example 2.1.7 (SL(n+ 1, k)-action on Pn). Let ω : SL(n+ 1, k)→ PGL(n, k) be the
canonical isogeny and consider the induced action τ = σ ◦ (ω× 1Pn) of SL(n+1, k) on Pn

where σ is the PGL(n, k)-action (2.1.1). Then OPn(1) admits a SL(n+1, k)-linearization.
It is well-known that SL(n + 1, k) acts on the affine cone An+1 over Pn, so that the
projection

π : An+1 \ {0} −→ Pn

is SL(n+1, k)-linear. On the other hand, let L be the line bundle corresponding to OPn(1).
The line bundle L is obtained from An+1 by blowing up at 0, and the projection L→ Pn is
obtained by π. Therefore, SL(n+1, k) acts on L, compatibly with the projection L→ Pn.
The invertible sheaf OPn(1) is the dual of the invertible sheaf corresponding to L.

2.2. GIT quotient.

Definition 2.2.1. An algebraic group G is called reductive, if its unipotent radical (i.e.
its maximal connected unipotent subgroup) is trivial.

For example, all tori GN
m and groups GL(n,C), SL(n,C), PGL(n,C) are reductive.
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Theorem 2.2.2 (Affine GIT quotient). Let G be a reductive group acting on an affine
k-scheme X of finite type. Let A(X) be the affine coordinate ring of X and we put
Y = Spec(A(X)G). Then, A(X)G is finite generated over k, so that Y is of finite type,
and the natural map π : X → Y is a universal good quotient for the action G.

Proof. See [35, Theorem 1.1] or [36, Theorem 3.4 and Theorem 3.5]. □

Assume that X is a projective scheme with an action of a reductive group G and that
L is G-linearized ample line bundle on X. For example, the reductive group G acts on X
through SL(n+ 1, k)-transformation of the projective space:

G×X //

��

X

∩
��

SL(n+ 1, k)× Pn // Pn.

Then OX(1) is a G-linearized ample line bundle on X.

Let R :=
⊕

n≥0H
0(X,L⊗n) be the associated homogeneous coordinate ring. Then

RG :=
⊕

n≥0H
0(X,L⊗n)G is a finitely generated Z-graded k-algebra (see [36, Proposition

3.4]). For r ≫ 0, the variety Proj (RG) is just the image of X under the linear system
H0(X,L⊗r)G:

(2.2.1)
X 99K P((H0(X,L⊗r)G)∗),

x 7−→ evx

where evx(s) := s(x), s ∈ H0(X,L⊗r). We fix a basis for H0(X,L⊗r), denoted by
s0, . . . , sk. Then we can consider the rational map (2.2.1) as

x 7−→ [s0(x) : . . . : sk(x)] ∈ Pk.

The rational map (2.2.1) is defined on points for which evx ̸≡ 0 (equivalently the si(x)
are not all zero).

Definition 2.2.3. A point x ∈ X is semistable with respect to a G-linearized ample
line bundle L if there is an integer r and an invariant global section s ∈ H0(X,L⊗r)G

with s(x) ̸= 0.

A point which is not semistable is called unstable.

We denote by Xss(L) the set of all semistable points on X. Then we can define the
map

(2.2.2) Xss(L) −→ P((H0(X,L⊗r)G)∗).

Theorem 2.2.4 (GIT quotient). Let G be a reductive group acting on a projective
scheme X with G-linearized ample line bundle L. We put Y = Proj (RG). Then the
natural morphism π : Xss(L)→ Y is a universal good quotient for the action.

Proof. See [35, Theorem 1.10] or [36, Theorem 3.21]. □
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The universal good quotient

π : Xss(L) −→ Proj (RG)

is clearly constant on G-orbits, i.e. it factors through the set-theoretic quotient Xss(L)/G.
However, the universal good quotient π may constant on more than just G-orbits. Then
we need another definition.

Definition 2.2.5. Let x ∈ X be a semistable point with respect to a G-linearized
ample line bundle L. The point x ∈ X is stable if in addition the stabilizer Gx is finite
and G-orbit of x is closed in the open set of all semistable points in X.

A point is called properly semistable if it is semistable which is not stable.

We denote by Xs(L) the set of all stable points on X. Let x ∈ X be a stable point.
Then, for any y ∈ X \ Gx, there exists a invariant global section s ∈ H0(X,Lr)G such
that s(x) ̸= s(y). In fact, if s(x) = s(y) for any s ∈ H0(X,L⊗r)G, then the intersection of
the closures of the orbits Gx and Gy is nonempty, i.e. Gx∩Gy ̸= ∅ (see [36, Proposition
3.11]). Since the orbit Gx is closed set, we have Gx ⊂ Gy. On the other hand, since the
stabilizer Gx is finite, we have dimGx = dimG. Then, we have Gx = Gy. We consider
the restriction map of (2.2.3)

(2.2.3) Xs(L) −→ Proj (RG) ⊂ P((H0(X,L⊗r)G)∗).

The map only contracts single orbit. More properly, we have the following

Theorem 2.2.6. Let G be a reductive group acting on a projective scheme X with
G-linearized ample line bundle L. Let π : Xss(L) → X//G be a universal good quotient
for the action. We denote the image π(Xs(L)) by (X//G)s. Then, the restriction map
π : Xs(L)→ (X//G)s is a universal geometric quotient.

Proof. See [35, Theorem 1.10] or [36, Theorem 3.21]. □

2.3. Mumford–Hilbert criterion. Let λ : Gm → G be a non-trivial one-parameter
subgroup of G. Then the action of G on X induces an action of Gm on X. Since X
is projective, the orbit map Gm → X; t 7→ σ(x, λ(t)) extends in an unique way to a
morphism f : A1 → X such that the diagram

Gm
λ //

��

G,

��
A1 f // X,

commutes, where Gm = A1 \ {0} → A1 is the inclusion, and G → X is the orbit map,
that is, g 7→ σ(x, g). We put

lim
t→0

σ(x, λ(t)) := f(0).

The point f(0) is a fixed point of the action of Gm on X via λ. In particular, Gm acts
on the fiber of L(f(0)) with a certain weight r, that is, Φ is the linearization of L, then
Φ(f(0), λ(t)) = tr · idL(f(0)). Define the number

µL(x, λ) := −r.
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Theorem 2.3.1 (Mumford–Hilbert criterion). A point x ∈ X is semistable (resp.
stable) if and only if for all non-trivial one-parameter subgroups λ : Gm → G, one has

µL(x, λ) ≥ 0 (resp. >).

Proof. See [35, Theorem 2.1] or [36, Theorem 4.9]. □

3. Moduli problem for parabolic Λ1
D-triples

3.1. Definitions. We recall the definition of a parabolic Λ1
D-triple defined in [23].

Let D be an effective divisor on a nonsingular curve Σ. We define Λ1
D as OΣ ⊗ Ω1

Σ(D)∨

with the bimodule structure given by

f(a, v) = (fa, fv) (f, a ∈ OΣ, v ∈ Ω1
Σ(D)∨),

(a, v)f = (fa+ v(f), fv) (f, a ∈ OΣ, v ∈ Ω1
Σ(D)∨).

Definition 3.1.1. We say (E1, E2,Φ, F∗(E1)) a parabolic Λ1
D-triple on Σ of rank n and

of degree d if

(1) E1 and E2 are vector bundles on Σ of rank n and of degree d,
(2) Φ: Λ1

D ⊗ E1 → E2 is a left OΣ-homomorphism, and
(3) E1 = F1(E1) ⊃ F2(E1) ⊃ · · · ⊃ Fl(E1) ⊃ Fl+1(E1) = E1(−D) is a filtration by

coherent subsheaves.

Note that to give a left OΣ-homomorphism Φ : Λ1
D ⊗ E1 → E2 is equivalent to give

an OΣ-homomorphism ϕ : E1 → E2 and a morphism ∇ : E1 → E2 ⊗ Ω1
Σ(D) such that

∇(fa) = ϕ(a) ⊗ df + f∇(a) for f ∈ OΣ and a ∈ E1. We also denote the parabolic
Λ1

D-triple (E1, E2,Φ, F∗(E1)) by (E1, E2, ϕ,∇, F∗(E1)).

We take positive integers β1, β2, γ and rational numbers 0 < α′
1 < · · · < α′

l < 1. We
assume γ ≫ 0. Set α′ := (α′

1, . . . , α
′
l) and β = (β1, β2).

Definition 3.1.2. A parabolic Λ1
D-triple (E1, E2, ϕ,∇, F∗(E1)) is (α′,β)-stable (resp.

(α′,β)-semistable) if for any subbundle (F1, F2) ⊂ (E1, E2) satisfying (0, 0) ̸= (F1, F2) ̸=
(E1, E2) and Φ(Λ1

D ⊗ F1) ⊂ F2, the inequality

β1 degF1(−D) + β2(degF2 − γ rankF2) + β1
∑l

j=1 α
′
jlength(Fj(E1) ∩ F1)/(Fj+1(E1) ∩ F1))

β1 rankF1 + β2 rankF2

<
(resp. ≤)

β1 degE1(−D) + β2(degE2 − γ rankE2) + β1
∑l

j=1 α
′
jlength((Fj(E1))/(Fj+1(E1)))

β1 rankE1 + β2 rankE2

holds.

Let S be a connected noetherian scheme and πS : X → S be a smooth projective
morphism whose geometric fibers are curves of genus g. Let D ⊂ X be an effective
Cartier divisor which is flat over S. We can consider the OX -bimodule structure on
Λ1

D/S := OX ⊗ (Ω1
X/S(D))

∨.

Fix a positive integers n, d, and {di}1≤i≤l.
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Definition 3.1.3. We define the moduli functorMFD,α′,β,γ

X/S (n, d, {di}) of the category
of locally noetherian scheme over S to the category of sets by

MFD,α′,β,γ

X/S (n, d, {di})(T ) := {(E1, E2,Φ, F∗(E1))}/ ∼

where T is a locally noetherian scheme over S and

(1) E1, E2 are vector bundle on X ×S T such that for any generic point s of T ,
rank(E1)s = rank(E2)s = n, deg(E1)s = deg(E2)s = d,

(2) Φ: Λ1
D/S ⊗OX E1 → E2 is a homomorphism of left OX×ST -modules,

(3) E1 = F1(E1) ⊃ F2(E1) ⊃ · · · ⊃ Fl(E1) ⊃ Fl+1(E1) = E1(−DT ) is a filtration
of E1 by coherent subsheaves such that E1/Fi+1(E1) is flat over T and for any
geometric point s of T , length((E1/Fi+1(E1))s) = di,

(4) for any geometric point s on S, the parabolic Λ1
Ds
-tuple ((E1)s, (E2)s,Φs, F∗(E1)s)

is (α′,β)-stable.

Here, (E1, E2,Φ, F∗(E1)) ∼ (E ′
1, E

′
2,Φ

′, F∗(E
′
1)) if there exist a line bundle L on T and

isomorphisms σi : Ej

∼=−→ E ′
i⊗L for i = 1, 2 such that σ1(Fi+1(E1)) = Fi+1(E

′
1)⊗L for any

i and the diagram

Λ1
D/S ⊗OX E1

Φ //

id⊗σ1
∼=

��

E2

σ2∼=
��

Λ1
D/S ⊗OX E1 ⊗ L

Φ′⊗id // E ′
2 ⊗S L

commutes.

3.2. Construction of the moduli space. We recall the construction of the moduli

space of MFD,α′,β,γ

X/S (n, d, {di}) due to Inaba–Iwasaki–Saito [23]. Let P (m) := ndXm +
d + r(1 − g) where dX = OXs(1) for s ∈ S and g is genus of Xs. Fix a integer m0. The

family of geometric points ofMFD,α′,β,γ

X/S (n, d, {di}) is bounded (see [23, Proposition 5.1]).
Then, by replacing m0, we may assume that for any m ≥ m0,

• hj(Fi(E1)(m)) = hj(E1(m− γ)) = 0 for j > 0, i = 1, . . . , l + 1,
• E2(m− γ), Fi(E1)(m), (i = 1, . . . , l + 1) are generated by their global sections

for any geometric point (E1, E2,Φ, F∗(E1)) ofMF
D,α′,β,γ

X/S (n, d, {di}).

Put n1 = P (m0) and n2 = P (m0 − γ). Let V1 and V2 be free OS-modules of rank n1

and rank n2, respectively. Let Q1 be the Quot-scheme QuotX/S(V1 ⊗ OX (−m0), P (m))
and

V1 ⊗OXQ1
(−m0) −→ E1

be the universal quotient sheaf. Similarly, let Q2 be the Quot-scheme QuotX/S(V2 ⊗
OX (−m0 + γ), P (m)) and

V2 ⊗OXQ2
(−m0 + γ) −→ E2
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be the universal quotient sheaf. We put Q
(i)
1 := QuotXQ1

/Q1
(E1, di) and we denote by

Fi+1(E1) ⊂ (E1)Q(i)
1

be the universal subsheaf. Let Q be the maximal closed subscheme of

Q
(1)
1 ×Q1 · · · ×Q1 Q

(l)
1 ×Q2 such that there are factorizations

(E1)Q ⊗OXQ
(−DQ) −→ Fi+1(E1)Q ↪→ F1(E1)Q ⊂ (E1)

for i = 1, . . . , l where F1(E1) = E1. Since (E2)Q is flat over Q, there is a coherent sheaf H
on Q such that there is a functorial isomorphism

HomXT
(Λ1

D/S ⊗OX (E1)T , (E2)T ⊗ L) ∼= Hom(H⊗OT ,L)

for any noetherian scheme T over Q and any quasi-coherent sheaf L on T (see [1, Section
1]). Put V∗(H) := SpecS(H) where S(H) is the symmetric algebra of H over OQ. Note
that the scheme V∗(H) represents a functor

(Sch/Q) ∋ T 7−→ HomXT
(Λ1

D/S ⊗OX (E1)T , (E2)T ).
Let

Φ̃ : Λ1
D/S ⊗OX (E1)V∗(H) −→ (E2)V∗(H)

be the universal homomorphism. Then, we define the open subscheme Rs of V∗(H) by

Rs :=


s ∈ V∗(H)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1) (V1)s → H0((E1)s(m0)), (V2)s → H0((E2)s(m0 − γ))
are bijective,

(2) Fi(E1)s(m0), (E2)s(m0 − γ) are generated by their
global sections,

(3) hj(Fi(E1)s(m0)) = hj((E2)s(m0 − γ)) = 0
for j > 0, 1 ≤ i ≤ l + 1,

(4) ((E1)s, (E2)s, Φ̃s, F∗(E1)s) is (α′,β)-stable.


.

Note that the openness of stability is shown in [23, Proposition 5.3].

We construct the immersion of the open subscheme Rs into a projective scheme as
follows. Fix a integer m1 which is large enough (see [23, p.1035–p.1036]). The composite

V1 ⊗ Λ1
D/S ⊗OX (−m0)Rs −→ Λ1

D/S ⊗ (E1)Rs
Φ̃−−→ (E2)Rs

induces a homomorphism

(3.2.1) V1 ⊗W1 ⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs)

whereW1 := (πS)∗(OX (m0+m1−γ)⊗Λ1
D/S⊗OX (−m0)), πS : X → S, and πRs : XRs → Rs.

The quotient V2 ⊗OX (−m0 + γ)→ E2 induces a homomorphism

(3.2.2) V2 ⊗W2 ⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs)

where W2 := (πS)∗(OX (m1)). Those homomorphism induce a quotient bundle

(3.2.3) (V1 ⊗W1 ⊕ V2 ⊗W2)⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs)

Moreover, we have the canonical quotient bundles

(3.2.4) V1 ⊗W2 ⊗ORs = V1 ⊗ (πS)∗(OX (m1))⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs)

and

(3.2.5) V1 ⊗ORs −→ (πRs)∗(E1/Fi+1(E1)(m0)Rs) (i = 1, . . . , l).
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We put

Gr1 :=GrassS(V1 ⊗W1 ⊕ V2 ⊗W2, r2),

Gr2 :=GrassS(V1 ⊗W2, r1), and

Gri3 :=GrassS(V1, di)

where r1 := h0(E1(m0 +m1)s), r2 := h0(E2(m0 +m1− γ)s) for any point s ∈ Rs. Then we
obtain the following morphism

(3.2.6) ι : Rs −→ Gr1 ×Gr2 ×
l∏

i=1

Gri3.

We may check that ι is an immersion.

Put

(3.2.7) G := (GL(V1)×GL(V2))/(Gm × S)

where Gm×S is contained in (GL(V1)×GL(V2)) as scalar matrices. Then G acts canon-
ically on Rs and on Gr1 ×Gr2 ×Gr3. We may show that ι is a G-equivariant immersion.
We construct a G-linearized S-ample line bundle on Rs as follows. There are S-ample line
bundles OGri(1) on Gri and OGrj3

(1) on Grj3 induced by Plücker embedding for i = 1, 2,

j = 1, . . . , l. We define positive rational numbers ν1, ν2, ν
(i)
1 (1 ≤ i ≤ l) by

ν1 :=β1(β1P (m0) + β2P (m0 − γ)−
l∑

i=1

β1ϵidi),

ν2 :=β2(β1P (m0) + β2P (m0 − γ)−
l∑

i=1

β1ϵidi),

ν
(i)
1 :=(β1 + β2)β1ndXm1ϵi.

Let us consider the Q-line bundle

(3.2.8) L := ι∗(OGr1(ν1)⊗OGr2(ν2)⊗
l⊗

i=1

Gri3(ν
(i)
1 ))

on Rs. Then for some positive integer N , L⊗N becomes a G-linearized S-ample line bundle
on Rs.

By hard computation of the Mumford–Hilbert criterion, we have the following propo-
sition

Proposition 3.2.1 ([23, Proposition 5.4]). All points of Rs are stable (in the sense of
the GIT ) with respect to the action of G and the G-linearized S-ample line bundle L⊗N .

Then we have the following theorem

Theorem 3.2.2 ([23, Theorem 5.1]). The scheme MD,α′,β,γ

X/S (n, d, {di}) := Rs/G is a

coarse moduli scheme of MFD,α′,β,γ

X/S (n, d, {di}).
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4. Character varieties

4.1. Character varieties. We fix integers g ≥ 0, k ≥ 0 and n > 0. We also fix a
k-tuple of partition of n, denoted by µ = (µ1, . . . , µk), that is, µi = (µi

1, . . . , µ
i
ri
) such

that µi
1 ≥ µi

2 ≥ · · · are non-negative integers and
∑

j µ
i
j = n. Let Σ be a smooth complex

projective curve of genus g. We fix k-distinct points p1, . . . , pk in Σ and we define a divisor
by D := p1 + · · ·+ pk. We put Σ0 = Σ \D.

We now construct a variety, called a character variety, whose points parametrize rep-
resentation of the fundamental group of Σ0 into GL(n,C) with prescribed images in
semisimple conjugacy classes C1, . . . , Ck at each puncture. Assume that

(4.1.1)
k∏

i=1

det Ci = 1

and that (C1, . . . , Ck) has type µ = (µ1, . . . , µk); that is, Ci has type µi for each i = 1, . . . , k,
where the type of the semisimple conjugacy class Ci ⊂ GL(n,C) is defined as the partition
µi = (µi

1, . . . , µ
i
ri
) describing the multiplicities of the eigenvalues of any matrix in Ci. Let

νi = (νi1, . . . , ν
i
ri
) ∈ (C×)ri be the eigenvalues of Ci. We denote the k-tuple (ν1, . . . , νk) by

ν.

Definition 4.1.1. The k-tuple (C1, . . . , Ck) is generic if the following holds. If V ⊂ Cn

is a subset which is stable by some Xi ∈ Ci for each i such that

k∏
i=1

det(Xi|V ) = 1,

then either V = 0 or V = Cn.

Lemma 4.1.2 ([15, Lemma 2.1.2]). For any µ, there exists a generic k-tuple of
semisimple conjugacy classes (C1, . . . , Ck) of type µ over C.

Definition 4.1.3. For a k-tuple of generic semisimple conjugacy classes (C1, . . . , Ck) of
type µ, we define a subvariety of GL(n,C)2g+n by

Uµ(ν) :={(A1, B1, . . . , Ag, Bg;X1, . . . , Xk) ∈ GL(n,C)2g × C1 × · · · × Ck
| (A1, B1) · · · (Ag, Bg)X1 · · ·Xk = In},

where (A,B) := ABA−1B−1. The group GL(n,C) acts by conjugation on GL(n,C)2g+n.
As the center acts trivially, the action induces that of PGL(n,C). The action induces
that of PGL(n,C) on Uµ(ν). We call the affine GIT quotient

Mµ
B(ν) := U

µ(ν)//PGL(n,C)

a generic character variety of type µ. We denote by πµ the quotient morphism

(4.1.2) πµ : Uµ(ν) −→Mµ
B(ν).

Proposition 4.1.4 ([15, Proposition 2.1.4]). If (C1, . . . , Ck) is generic of type µ, then
the group PGL(n,C) acts set-theoretically freely on Uµ(ν) and every point of Uµ(ν) cor-
responds to an irreducible representation of π1(Σ0).
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Theorem 4.1.5 ([15, Theorem 2.1.5]). If (C1, . . . , Ck) is a generic type µ, then the
quotient

πµ : Uµ(ν) −→Mµ
B(ν)

is a geometric quotient and a principal PGL(n,C)-bundle.

Theorem 4.1.6 ([16, Theorem 1.1.1]). If non-empty, the generic character variety
Mµ

B(ν) is a connected non-singular variety of dimension

n2(2g − 2 + k)−
∑
i,j

(µi
j)

2 + 2.
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CHAPTER 3

Hodge Theory

We recall topics of the Hodge theory which are variations of Hodge structures andmixed
Hodge structures. In Chapter V, we compute the types of the mixed Hodge structures
of the moduli space of semistable parabolic Higgs and the moduli spaces of semistable
parabolic connections. In Chapter VI, we compute the mixed Hodge structures of a few
examples of character varieties. Those moduli spaces are open smooth varieties, and there
are compactifications whose boundaries are varieties with normal crossing. Therefore, in
this chapter, we give a detailed description of mixed Hodge structures of varieties with
normal crossing and open smooth varieties. Main references are Deligne’s papers [6], [7]
and Griffiths-Schmid’s paper [14].

1. Variation of Hodge structure

1.1. Hodge structure. LetX be a compact Kähler manifold. Then, the cohomology
of X carries a Hodge structure of weight k:

Hk(X,C) =
⊕

p+q=k

Hp,q(V )

where Hp,q = Hq,p and Hp,q ∼= Hq(V,Ωp
X). Alternatively, the Hodge structure on

Hk(X,C) is determined by the Hodge filtration

{F p} = {F pHk(X,C)}
which is a decreasing filtration satisfying

F 0 = Hk(X,C), F k = H0(X,Ωk
X) = Hk,0(X)

and

F r =
⊕

p+q=k,p≥r

Hp,q(X).

The F p satisfy in addition:

F p ⊕ F k−p+1 = Hk(X,C), Hp,q = F p ∩ F k−p.

One way to obtain the Hodge filtration on Hk(X,C) as follows: let Ω•
X be the complex

of sheaves

OX −→ Ω1
X −→ Ω2

X −→ · · · .
By the holomorphic Poincaré lemma, the complex Ω•

X is a resolution of the constant sheaf
CX on X [5]. Hence, we have

Hk(X,Ω•
X)
∼= Hk(X,C).
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There is an associated spectral sequence, the Hodge-de Rham spectral sequence:

Hp,q
1 = Hq(X,Ωp

X) =⇒ Hp+q(X,C),
which degenerates at E1 term by classical Hodge theory. Hence, there exists a filtration
on Hk(X,C) whose associated graded space is

⊕
p+q=kH

p,q(V ) and this filtration is {F p}.

1.2. Polarization of Hodge structure. Let X be a compact Kähler manifold.
The cohomology ring H∗(X,C) has a non-degenerate pairing defined over the integers
and unimodular on H∗(X,Z) mod torsion via

(x, y) 7−→ (x ∪ y)[X]

where [X] is the positively oriented fundamental class of X.

We polarize the Hodge structure of X as follows: let [ω] be the cohomology class
associated to a Kähler metric on X. The class [ω] lives in H2(X,C).

Remark 1.2.1. If X is a smooth projective variety, then [ω] is the first Chern class of
some ample line bundle on X. Hence, the class [ω] lives in H2(X,Z).

We define the Lefschetz operator as follows:

L : H∗(X,C) −→ H∗+2(X,C)
α 7−→ [ω] ∪ α.

If dimX = n, the Hard Lefschetz theorem asserts the isomorphism

Lk : Hn−k(X,C)
∼=−−→ Hn+k(X,C).

We define the primitive cohomology Hn−k
0 (X,C) by

Hn−k
0 (X,C) = Ker{Lk+1 : Hn−k(X,C)→ Hn+k+2(X,C)}.

and similarly for Hp,q
0 (X). Then, we have

Hn−k
0 (X,C) =

⊕
p+q=n−k

Hp,q
0 (V ).

Given a choice of [ω], define the following modified intersection pairing on Hn−k
0 (X,C)

Q : Hn−k
0 (X,C)×Hn−k

0 (X,C) −→ C
(x, y) 7−→ ([ω]k ∪ x ∪ y)[X].

The pairing Q is non-degenerate, symmetric or alternating as n − k is even or odd, and
defined over Q if [ω] ∈ H2(X,Q). Moreover, the pairing Q satisfies the Hodge–Riemann
bilinear relation, that is, satisfies

(1) first bilinear relation: Hp,q is Q-orthogonal to Hp′,q′ unless p′ = q (and hence
p = q′);

(2) second bilinear relation: if x ̸= 0, x ∈ Hp,q
0 , p+ q = k, then

(
√
−1)p−q(−1)

k(k−1)
2 Q(x, x) > 0.

A reference for these facts is, for example, [13]. We call the paring Q a polarization of
the Hodge structure of X.
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1.3. Variation of Hodge structure. Let π : X → S be a smooth proper map if
complex manifold with fibers Xi = π−1(t). Assume that π is projective, that is, there
exists an embedding X ↪→ PN ×S for some N such that the following diagram commutes:

X //

π

##H
HH

HH
HH

HH
H PN × S

��
S.

The higher direct image sheaves associated to π yield a formalism for fitting together the
cohomology group Hk(Xt,C) and Hp,q(Xt) to obtain global object over S.

The higher direct image Rkπ∗CX is a local system of complex vector space. We put

Hk := Rkπ∗CX ⊗C OS,

which is a locally free sheaf of germs of holomorphic sections of Rkπ∗CX . The inclusion
of sheaves

Rkπ∗CX ⊂ Hk

determines an unique connection ∇GM on Hk, the Gauss–Manin connection, by decreeing
that the local sections of Rkπ∗CX shall be annihilated by ∇GM .

We ask how the Hodge structures vary with t. Let Hk be the holomorphic vector
bundle associated to Hk. It turns out that the subbundles {Hp,q

t }t∈S = {Hp,q(Xt)}t∈S do
not in general come from holomorphic subbundle of Hk, but only C∞ subbundle. On the
other hand, the subbundle {F p

t }t∈S = {F p(Xt)}t∈S are holomorphic subbundle of Hk (see
[12]).

Theorem 1.3.1 (Griffiths transversality).

∇GM (F p) ⊂ Ω1
S ⊗ F p−1 for any 0 ≤ p ≤ k.

The general set-up of the period map is as follows. Let Hk
0 be the primitive cohomology

bundle. Here, primitive means with respect to the metric induced by X ↪→ PN × S. We

only consider primitive variations of Hodge structure. Let S̃ be a universal covering of S.

The bundle Hk
0 can be trivialized after lifting it to S̃, denoted by H̃k

0 . We fix points t ∈ S
and t̃ ∈ S̃ lifting t. We have canonically identification of fibers

(1.3.1) (H̃k
0 )s̃
∼= (H̃k

0 )t̃

for any point s̃ ∈ S̃. By the identification (1.3.1), the Hodge bundle {(F̃ p
0 )s̃}s̃∈S̃ lifted to

S̃ may be viewed as a filter of the fixed vector space Hk
0 (Xt,C) (∼= (H̃k

0 )t̃). Then we have
the following holomorphic map

(1.3.2) S̃ −→ F := {{F p}kp=1 | F p ∈ Grass(fp, Hk
0 (Xt,C)), F 1 ⊃ F 2 ⊃ · · · ⊃ F k}

where fp := dimHp. By the two bilinear relations, we put

Ď := {{F p} ∈ F | Q(F p, F k−p+1) = 0, 1 < p < k}
and

D :=

{
{F p} ∈ Ď

∣∣∣∣ (
√
−1)p−q(−1)

k(k−1)
2 Q(x, x̄) > 0,

∀x ∈ Hp,q (x ̸= 0, p+ q = k)

}
.
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We call D a Griffiths period domain. Let Γ be the arithmetic subgroup of G defined as
follows:

Γ = {γ ∈ AutZH
k(Xt,Z) | γ fixes the polarization}.

Then Γ acts properly discontinuously on D and hence Γ\D is naturally a complex analytic
space. Then the period map is defined by the induced map

(1.3.3) ϕ : S −→ Γ\D.

We consider the derivation of the period map:

(1.3.4) dϕs : TsS −→ Tϕ(s)(Γ\D) = Tϕ(s)D ⊂
k⊕

p=1

Hom(F p, Hk
0 (Xt,C)/F p).

By the Griffiths transversality, we may show that the image of dϕs is contained in the
subspace

⊕k
p=1(F

p/F p+1, F p−1/F p) of
⊕k

p=1(F
p, Hk

0 (Xt,C)/F p), i.e.,

(1.3.5) dϕs : TsS −→ (Tϕ(s)D) ∩
k⊕

p=1

Hom(F p/F p+1, F p−1/F p).

We recall the relation between the derivation of the period map and the Kodaira–
Spenser map. Let ΘX be the tangent bundle of X. The Kodaira–Spenser map θ : ΘS,s →
H1(Xs,ΘXs) is described as follows. We consider the extension of OX-module

(1.3.6) 0 −→ π∗(Ω1
S) −→ Ω1

X −→ Ω1
X/S −→ 0.

We have the element of Ext1(Ω1
X/S, π

∗(Ω1
S))
∼= H1(M,Hom(Ω1

X/S, π
∗(Ω1

S))) which is the

class of the extension (1.3.6). We take the image of this element via the edge homomor-
phism of the Leray spectral sequence of π

H1(X,ΘX/S ⊗ π∗(Ω1
S)) −→

H0(S,R1π∗(ΘX/S ⊗ π∗(Ω1
S)))
∼= H0(S,Ω1

S ⊗R1π∗(ΘX/S)),

denoted by ρX/S ∈ H0(S,Ω1
S ⊗ R1π∗(ΘX/S)). The class ρX/S is viewed as the element of

Hom(ΘS, R
1π∗(ΘX/S)). Then, for any s ∈ S, we obtain the map

ρX/S,s : ΘS,s → H1(Xs,ΘXs),

which is called the Kodaira–Spenser map.

Note that F p/F p+1 ∼= Hq
0(Xt, Ω

p
X) where p + q = k. Therefore, for any ξ ∈ TsS, the

image of the derivation of the period map dϕs(ξ) is view as the element of

k⊕
p=1

Hom(Hq
0(Xt, Ω

p
X), H

q+1
0 (Xt, Ω

p−1
X )).

We put

dϕs(ξ) = (dϕs(ξ)1, dϕs(ξ)2, . . . , dϕs(ξ)k).

Then we have the following theorem
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Theorem 1.3.2. The element dϕs(ξ)p ∈ Hom(Hq
0(Xt, Ω

p
X), H

q+1
0 (Xt, Ω

p−1
X )) coincides

with the map

Hq
0(Xt, Ω

p
X) −→ Hq+1(Xt,ΘXt ⊗Ω

p
X) −→ Hq+1(Xt, Ω

p−1
X )

where the first map is the cup-product of ρX/S,t(ξ) and the second map is the contraction.

2. Mixed Hodge structure

2.1. Definition and Properties.

Definition 2.1.1. A Hodge structure of weight k consists of:

(1) a finitely generated free Z-module HZ and
(2) a decreasing filtration F p ⊃ F p+1of HC = HZ ⊗Z C, satisfying

F p ⊕ F k−p+1 ∼= HC.

Example 2.1.2 (Tate twist). We put Z(k) := (2π
√
−1)kZ is a Hodge structure of

weight −2k and of pure Hodge type (−k,−k), that is, F−k ∩ F−k = Z(k)C. We call Z(k)
the Tate twist. Note that H2(P1

C,Z) = Z(−1).
Definition 2.1.3. A mixed Hodge structure consists of:

(1) a finitely generated free Z-module HZ;
(2) an increasing filtration Wk ⊂ Wk+1 of HQ = HZ ⊗Q
(3) a decreasing filtration F p ⊃ F p+1 of HC such that the filtration induced by F •

on GrkW• := Wk/Wk−1 is a Hodge structure of weight k.

The mixed Hodge structure arises in natural is shown by the next basic result.

Theorem 2.1.4 ([6], [7]). Let X be a complex algebraic variety. Then, there exists a
mixed Hodge structure on Hj(X,Q). Moreover, the weight filtration satisfies

0 = W−1 ⊆ W0 ⊆ · · · ⊆ W2j = Hj(X,Q)

and the Hodge filtration satisfies

Hj(X,C) = F 0 ⊇ F 1 ⊇ · · · ⊇ Fm ⊇ Fm+1 = 0

Moreover, the structure is functorial.

Remark 2.1.5. If X is smooth and projective, the above mixed Hodge structure on
Hj(X,Q) agrees the usual Hodge structure.

One can define a mixed Hodge structure on the compactly supported cohomology
H∗

c (X) := H∗
c (X,Q).

Definition 2.1.6. Themixed Hodge number hp,q;j(X) is defined by dimC(GrFp Grp+q
W Hj(X)C).

The compactly supported mixed Hodge number hp,q;jc is defined by dimC(GrFp Grp+q
W Hj

c (X)C).
We call the polynomials

H(X;x, y, t) :=
∑

hp,q;j(X)xpyqtj and(2.1.1)

Hc(X;x, y, t) :=
∑

hp,q;jc (X)xpyqtj(2.1.2)
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the mixed Hodge polynomial and the compactly supported mixed Hodge polynomial, re-
spectively.

We consider the two especially cases of Theorem 2.1.4 where X is a variety with normal
crossing and where X is a open smooth variety.

2.2. Varieties with normal crossing. Let X =
∪l

i=1Xi be a union of smooth
projective varieties meeting transversally; And locally X is defined by a single equation
of the form

{z1 · · · zk = 0}.

Definition 2.2.1. The dual graph Γ of X is a simplicial complex defined as follows:

• the point pi of Γ correspond to components Xi;
• there exists a 1-simplex σij connecting pi and pj if and only if Xi ∩Xj ̸= ∅;
• σij, σjk, σki bounded a 2-simplex if and only if Xi ∩Xj ∩Xk ̸= ∅, and so on.

We put X [1] :=
⨿

iXi and in general

X [k] :=
⨿

i1<···<ik

Xi1 ∩ · · · ∩Xik

so that X [k] is smooth for all k ≥ 1.

Consider the double complex ⊕
p,q

Fp,q =
⊕
p,q

Ωq

X[p]

with the following differentials:

• the de Rham d

d : Ωq

X[p] −→ Ωq+1

X[p] ;

• the Čech boundary operator (an alternating sum of restriction maps)

δ : Ωq

X[p] −→ Ωq

X[p+1] ;

• D := d+ δ.

We put

Fk :=
⊕

p+q=k

Fp,q.

Then (F•) is a complex.

Proposition 2.2.2. The complex (F•) is resolution of the locally constant sheaf CX

on X. Hence Hk(F•) = Hk(X,C) where Hk(F•) is a hypercohomology of (F•).

There is then a spectral sequence associated to Hk(F•):

Ep,q
1 := Hq(X [p+1],C) =⇒ Hp+q(X,C).
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We have an increasing filtration

WkE1 =
⊕
q≤k

Ep,q
1 .

Theorem 2.2.3. (1) Ep,q
r degenerates at the r = 2 term, i.e. Ep,q

2 = Ep,q
∞ ;

(2) Wk induce a filtration on E∞ and hence on H∗(X,C) defined over Q. Moreover
WnH

n(X,C) = Hn(X,C) for all n;
(3) The natural Hodge filtrations on Hq(X [p],C) induce a decreasing filtration {F p}

of Hp+q(X,C);
(4) the filtrations {Wk} and {F p} on Hp+q(X,C) are a mixed Hodge structure.

Proof. For example, see [14, §4]. □

Example 2.2.4 (Curves). Let C =
∪
Ci be a curve with normal crossing. Everything

still work if we drop the requirement of global normal crossings. We will only assume
that locally X looks like {z1z2 = 0}. A double point on an irreducible component of C
contributes to a loop in the dual graph Γ. We consider the mixed Hodge structure on

H1(C,C). The part of pure weight 0 is the following. We put C̃ := C [1] :=
⨿
Ci and

C [2] :=
⨿
Ci ∩ Cj = {the double points on C}. We have

W0H
1(C,C) = Coker{H0(C̃,C) −→ H0(C [2],C)}

∼= H1(Γ,C).

On the other hand, by the Mayer-Vietoris exact sequence, we have

W0H
1(C,C) = Ker{H1(C,C) −→ H1(C̃,C)}.

Hence,

W0
∼= H1(Γ,C)

W1/W0
∼= H1(C̃,C),

which is a pure Hodge structure of weight one.

Example 2.2.5 (Surfaces). Let X =
∪
Xi be a surface with normal crossing. We put

We put X [1] :=
⨿
Xi and X

[2] :=
⨿
Xi ∩Xj. Then, for H

2(X,C) we have

W2/W1 = Ker{H2(X [1],C) −→ H2(X [2],C)},
W1/W0 = Coker{H1(X [1],C) −→ H1(X [2],C)},

W0 = H2(Γ,C).

2.3. Open smooth varieties. Let X be a smooth quasi-projective variety. By reso-
lution of singularities, we can assume that X ⊂ X where X is a smooth projective variety
and the divisor D := X \X is a normal crossing divisor. We put j : X ↪→ X which is the
natural inclusion.

We put

Ω1
X
(logD) :=

{
ϕ ∈ j∗Ω1

X | IDϕ, IDdϕ ⊂ Ω1
X

}
.

45



We call a section of this sheaf a logarithmic differential form of degree 1 along D. The
condition means that ϕ and the exterior differential ϕ have at worst simple poles along
D. Moreover, we define the sheaf of logarithmic differential form of degree p along D by

Ωp

X
(logD) :=

k∧
Ω1

X
(logD).

If the divisor D is defined by {z1 · · · zm = 0} in some neighborhood of a point of D, then
the element ϕ ∈ Ωp

X
(logD) is represented by

ψ ∧ dzi1
zi1
∧ · · · ∧ dzik

zik
, ψ ∈ Ωp−k

X

locally. Exterior differential makes Ω•
X
(logD) into a complex, called log complex.

Theorem 2.3.1. (1) Hk(X,Ω•
X
(logD)) = Hk(X,C);

(2) the associated spectral sequence

FE
p,q
1 := Hq(X,Ωp

X
(logD)) =⇒ Hp+q(X,C)

is degenerate at the E1 term, and induce a decreasing filtration {F p} on Hk(X,C).

Proof. See [6, (3.2.2) and (3.2.13)]. □

To describe the weight filtration, we put

WlΩ
p

X
(logD) := Ωp−l

X
∧Ωl

X
(logD).

Locally, we can define the Poincaré residue operator as

ψ ∧ dzi1
zi1
∧ · · · ∧ dzil

zil
7−→ ψ|Di1

∩...∩Dil

where Di is defined by zi = 0, Di ⊂ D = {z1 · · · zk = 0}. By the operator, we have
the homomorphism WlΩ

•
X
(logD) −→ Ω•−l

Di1
∩...∩Dil

locally. To obtain the global Poincaré

residue operator, we introduce the following local system ϵl: We put D[l] :=
⨿

i1<···<il
Xi1∩

· · · ∩Xil and D
[0] := X. Let il be the natural map D[l] → X. For each p ∈ D[l], we take

the set of l-th components of D which contain the image in X of an open neighborhood
of p in D[l] locally. Then, we define the local system El over D

[l] such that each fiber is
this set of l-th elements. The local system of orientation of the set of l-th components
is a Z/(2)-torsor over D[l]. The Z/(2)-torsor defines, via the inclusion of Z/(2) in C∗, a
complex local system ϵl of rank 1 over D[l] with the isomorphism (ϵl)⊗2 ∼= C. We have

ϵl ∼=
l∧
CEn .

Locally, ϵl has the two isomorphism ±α : ϵl ∼= C which are opposites of one another. We
put

ϵlZ := α−1((2π
√
−1)−lZ).

The tuple (ϵlZ, ϵ
l) is a local system of Z(−l), the Tate Hodge structure. We define the

Poincaré residue operator

PRl : WlΩ
•
X
(logD) −→ il∗(Ω

•−l
D[l] ⊗ ϵl)
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via

PRl

(
ψ ∧ dzi1

zi1
∧ · · · ∧ dzil

zil

)
= ψ|Di1

∩...∩Dil
⊗ (orientation {i1, . . . , il})

where Di is defined by zi = 0, Di ⊂ D = {z1 · · · zk = 0}. Then PRl is well-defined
globally.

Lemma 2.3.2. The Poincaré residue operator PRl induce the following isomorphism
of the complexes

GrWl Ω
•
X
(logD) −→ il∗(Ω

•−l
D[l] ⊗ ϵl).

Proof. See [6, (3.1.5)]. □

Moreover, since D[l] is proper and smooth, we have CD[l]
∼= Ω•

D[l] . Then, the morphism

GrWl Ω
•
X
(logD) −→ ϵl

X
[−l] := il∗(ϵ

l)[−l]

is a quasi-isomorphism.

Proposition 2.3.3. The spectral sequence defined by Ω•
X
(logD) with the filtration W•:

WE
−l,k+l
1 := Hk(X,GrWl Ω

•
X
(logD))

∼= Hk−l(D[l], ϵl) =⇒ Hk(X,C)

is degenerate at E2 term. Then we have

GrWl H
k(X,C) =

⊕
q−l=k

WE
−l,q
∞ .

Proof. See [6, (3.2.13)]. □

Theorem 2.3.4. (1) The weight filtration W• of Hk(X,C) is defined over Q;
(2) the weight range from 0 = Wk−1 ⊂ · · · ⊂ W2k = Hk(X,C);
(3) the filtration {F •} and {W•} define a mixed Hodge structure on Hk(X,C);
(4) the resulting mixed Hodge structure is independent of the choice of X and func-

torial.

Proof. For example, see [14, §5]. □

Example 2.3.5. Let C be a smooth complete curve, S ⊂ C a finite set of points, and
C = C \ S.

The weight filtration on H1(C,C) is as follows:

W1 = Ker{H1(S[0], ϵ0) −→ H1(S[1], ϵ1)}
= Image{H1(C,C) −→ H1(C,C)},

W2/W1 = Coker{H0(S[0], ϵ0) −→ H0(S[1], ϵ1)}
∼= {divisor of degree 0 supported on S},

where W2/W1 has dimension ♯S − 1.
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To describe the Hodge filtration, let Ω1
C
(S) be the sheaf of holomorphic 1-form on C

with at worst simple poles along S. The short complex

C• = {OC −→ Ω1
C
(S)}

fits into an exact sequence

0 −→ Ω•
C
−→ C• 2π

√
−1Res−−−−−−→ CS[1] −→ 0

where CS is a skyscraper sheaf of C concentrated at the points of S and CS[1] means that
the complex consists of the single term CS in dimension 1. Now, we have

F 1 = H0(C,Ω1
C
(S)) ⊂ H1(C,C).

It is a standard fact that φ ∈ F 1 can have arbitrary residues at p ∈ S, subject only to
the condition ∑

p∈S

Resp(φ) = 0

(for example, see [13, p.233]). Thus, F 1 2π
√
−1Res−−−−−−→ W2/W1 is surjective. In fact, the

condition that H1(C,C) is a mixed Hodge structure means that

F 1 ∩ F 1 ∼= W2/W1.

Classically, this is the statement that, given two points p and q on the complex Riemann
surface C, there exists a differential of the third kind with residue 1

2π
√
−1

at p and − 1
2π

√
−1

at q which is regular elsewhere and has real periods on C (see [43, vol2, p.104]).
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CHAPTER 4

Nonabelian Hodge theory and Riemann-Hilbert correspondence

In this chapter, we describe relationships between the moduli space of semistable para-
bolic Higgs bundles, the moduli space of semistable ξ-parabolic connections, and character
varieties.

1. Nonabelian Hodge theory

The nonabelian Hodge theory for noncompact curve is due to Simpson [44]. The non-
abelian Hodge theory gives a natural one-to-one correspondence between stable parabolic
Higgs bundles, and stable ξ-parabolic connections. This correspondence arises from the
fact that both sides are shown to correspond to irreducible tame harmonic bundles.

Here, we consider (parabolic) λ-connections due to Deligne. We construct the moduli
space of semistable parabolic λ-connection. By the moduli space, we have the deformation
between the moduli space of semistable parabolic Higgs bundles and the moduli space of
semistable ξ-parabolic connections.

1.1. Parabolic λ-connection. We fix integers g ≥ 0, k ≥ 0 and n > 0. We also fix
a k-tuple of partition of n, denoted by µ = (µ1, . . . , µk), that is, µi = (µi

1, . . . , µ
i
ri
) such

that µi
1 ≥ µi

2 ≥ · · · are non-negative integers and
∑

j µ
i
j = n. Let Σ be a smooth complex

projective curve of genus g. We fix k-distinct points p1, . . . , pk in Σ and we define a divisor
by D := p1 + · · ·+ pk. We put Σ0 = Σ \D. For integer d, we put

Ξµ,d
n :=

{(
λ, (ξij)

1≤i≤k
1≤j≤ri

)
∈ C× Cr

∣∣∣∣∣ λd+∑
i,j

µi
jξ

i
j = 0

}
where r :=

∑
ri. We take (λ, ξ) ∈ Ξµ,d

n where ξ = (ξij)
1≤i≤k
1≤j≤ri

.

Definition 1.1.1. For (λ, ξ) ∈ Ξµ,d
n , we call (λ,E,∇, {l(i)∗ }1≤i≤k) a ξ-parabolic λ-

connection of rank n, of degree d, and of type µ if

(1) E is an algebraic vector bundle on Σ of rank n and of degree d,
(2) ∇ : E → E ⊗Ω1

Σ(D) is a λ-connection, that is, ∇ is a homomorphism of sheaves
satisfying ∇(fa) = λa⊗ df + f∇(a) for f ∈ OΣ and a ∈ E, and

(3) for each pi, l
(i)
∗ is a filtration E|pi = l

(i)
1 ⊃ l

(i)
2 ⊃ · · · ⊃ l

(i)
ri ⊃ l

(i)
ri+1 = 0 such that

dim(l
(i)
j /l

(i)
j+1) = µi

j and (Respi(∇)− ξijidE|pi )(l
(i)
j ) ⊂ l

(i)
j+1 for j = 1, . . . , ri.

For λ = 1, this is a ξ-parabolic connection of spectral type µ (defined in the introduc-
tion). For λ = 0 and ξ = 0, this is a parabolic Higgs bundle (defined in the introduction).
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Remark 1.1.2. For λ ̸= 0, we have

degE = deg(det(E)) = −
k∑

i=1

Respi((λ
−1∇)detE) = −

k∑
i=1

n−1∑
j=0

ξij
λ

= d.

We take rational numbers

0 < α
(i)
1 < α

(i)
2 < · · · < α(i)

ri
< 1

for i = 1, . . . , k satisfying α
(i)
j ̸= α

(i′)
j′ for (i, j) ̸= (i′, j′). We choose α = (α

(i)
j ) sufficiently

generic.

We define the parabolic degree and parabolic slope of E by

pardeg(E) := deg(E) +
k∑

i=1

ri∑
j=1

α
(i)
j dim(l

(i)
j /l

(i)
j+1),

parµ(E) :=
pardeg(E)

rk(E)
.

Definition 1.1.3. A parabolic λ-connection (λ,E,∇, {l(i)∗ }1≤i≤k) is α-stable (resp. α-
semistable) if for any proper nonzero subbundle F ⊂ E satisfying ∇(F ) ⊂ F ⊗ Ω1

Σ(D),
the inequality

parµ(F ) < parµ(E) (resp. ≤)
holds.

Remark 1.1.4 ([21, Remark 2.2]). We chose α = (α
(i)
j ) sufficiently generic. Then,

a parabolic λ-connection (λ,E,∇, {l(i)∗ }) is α-stable if and only if (λ,E,∇, {l(i)∗ }) is α-
semistable.

1.2. Construction of the moduli space. The argument in this subsection is al-
most the same as in [21]. The difference from [21] is that we fix the k-distinct points

{p1, . . . , pk}, the flag {l(i)∗ } is not necessarily full flag, and we construct the moduli space
of α-semistable parabolic λ-connections instead of α-semistable parabolic connections.

Definition 1.2.1. We put C = Σ × Ξµ,d
n , S = Ξµ,d

n , p̃i = pi × Ξµ,d
n (for i = 1, . . . , k)

and D = p̃1 + · · · + p̃k. We define a functor MFD,α
C/S,Hod(n, d,µ) of category of locally

noetherian schemes to the category of sets by

MFD,α
C/S,Hod(n, d,µ)(T ) :=

{
(λ,E,∇, {l(i)∗ }1≤i≤k)

}
/ ∼,

for a locally noetherian scheme T over S where

(1) E is a vector bundle on CT of rank n,
(2) ∇ : E → E ⊗Ω1

CT ((DT )) is a relative (λ)T -connection,

(3) for each pi × T, l(i)∗ is a filtration E|(p̃i)T = l
(i)
1 ⊃ l

(i)
2 ⊃ · · · ⊃ l

(i)
ri ⊃ l

(i)
ri+1 = 0 such

that dim(l
(i)
j /l

(i)
j+1) = µi

j and (Res(p̃i)T (∇)− (ξij)T ) ⊂ l
(i)
j+1 for j = 1, . . . , ri,

(4) for any geometric point t ∈ T , dim(lij/l
i
j+1)⊗k(t) = µi

j for any i, j and (λ,E,∇, {l(i)∗ })⊗
k(t) is α-stable.
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Proposition 1.2.2. There exists a relative coarse moduli scheme

π :Mµ
Hod −→ Ξµ,d

n

(λ,E,∇, {l(i)∗ }1≤i≤ri) 7−→ (λ, ξ)

of α-stable parabolic λ-connections of rank r, of degree d, and of type µ. For simplicity,
we drop α and d from the notation of the moduli space.

If n and d are coprime, thenMµ
Hod is a relative fine moduli scheme, that is, there is a

universal family overMµ
Hod .

Proof. Fix a weight α which determines the stability of parabolic λ-connections. We

take positive integers β1, β2, γ and rational numbers 0 < α̃
(i)
1 < · · · < α̃

(i)
ri < 1 satisfying

(β1 + β2)α
(i)
j = β1α̃

(i)
j for any i, j. We assume γ ≫ 0. We take an increasing sequence

0 < α′
1 < · · · < α′

r < 1 such that

{α′
i | 1 ≤ i ≤ r} = {α̃(i)

j | 1 ≤ i ≤ k, 1 ≤ j ≤ ri}

where we put r =
∑k

i=1 ri. We take any member (λ,E,∇, {l(i)∗ }1≤i≤ri) ∈MF
D,α
C/S,Hod(n, d,µ)(T ).

For each 1 ≤ p ≤ r, there exist i, j satisfying α̃
(i)
j = α′

p. We put F1(E) := E and define
inductively

Fp(E) := Ker(Fp−1(E) −→ E|(p̃i)T /lp)
for p = 1, . . . , r. Here, we put lp = l

(i)
j satisfying p = j +

∑i−1
l=1 rl. We also put dp :=

length((E/Fp+1(E)) ⊗ k(t)) and t ∈ T . Then, (λ,E,∇, {l(i)∗ }) 7→ (E,E, λid,∇, F∗(E))
determines the morphism

ι :MFD,α
C/S,Hod(n, d,µ) −→MF

D,α′,β,γ

C/S (n, d, {di})

where MFD,α′,β,γ

C/S (n, d, {di}) is the moduli functor of (α,β, γ)-stable Λ1
D-triples whose

coarse moduli scheme exists by Theorem 3.2.2 of Chapter II. Then we have that a

certain subscheme Mµ
Hod of MD,α′,β,γ

C/S (n, d, {di}) is just the coarse moduli scheme of

MFD,α
C/S,Hod(n, d,µ) in the same way as in [23, Theorem 2.1] and [21, Theorem 2.1].

If n and d are coprime, then there is a universal family onMµ
Hod×Σ (see [20, Theorem

4.6.5] and the proof of [21, Theorem 2.1]). □

We denote the fibers ofMµ
Hod over λ = 0 and λ = 1 byMµ

DR andMµ
Dol , respectively.

LetMµ
Hod(λ, ξ) be the fiber of (λ, ξ). LetM

µ
DR(ξ) andM

µ
Dol(0) be the fibers of (1, ξ) and

(0,0), respectively. The fiber Mµ
DR(ξ) is the moduli space of α-semistable ξ-parabolic

connections of spectral type µ (constructed in [22]), and the fiberMµ
Dol(0) is the moduli

space of α-semistable parabolic Higgs bundles of rank n and of degree d (constructed as
a hyperkähler quotient using gauge theory in [29] or as a closed subvariety of the moduli
space of parabolic Higgs sheaves constructed in [54]).

Proposition 1.2.3. The morphism

π :Mµ
Hod −→ Ξµ,d

n

(λ,E,∇, {l(i)∗ }1≤i≤ri) 7−→ (λ, ξ)
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is smooth. Moreover,Mµ
Hod is nonsingular.

Proof. ([21, Theorem 2.1] and [22]). At first, we prove that π : Mµ
Hod → Ξµ,d

n is
smooth. LetM1

Hod be the moduli space of tuples (λ, L,∇L) where L is a line bundle of
degree d on Σ and ∇L : L→ L⊗ Ω1

Σ(D) is a λ-connection. We put

Ξk,d :=

{
(λ, (ξi)) ∈ C× Ck

∣∣∣∣∣ λd+
k∑

i=1

ξi = 0

}
.

Let Ξk,d
λ=1 be the subset of Ξk,d where λ = 1 and let M1

DR be the inverse image of the

subset Ξk,d
λ=1. SinceM1

DR → Ξk,d
λ=1 is smooth (see [21] and [22]),M1

Hod → Ξk,d is smooth
(see [49, Lemma 6.1]). We consider the morphism

det :Mµ
Hod −→M

1
Hod ×Ξk,d Ξµ,d

n

(λ,E,∇, {l(i)j }) 7−→ ((λ, det(E), det(∇)), π(λ,E,∇, {l(i)j })).

It is sufficient to show that the morphism det is smooth. Let A be an artinian local
ring over M1

Hod ×Ξk,d Ξµ,d
n with the maximal ideal m and I be an ideal of A such that

mI = 0. Let (λ, L,∇) ∈M1
Hod(A) and (λ, ξ) ∈ Ξµ,d

n (A) be the elements corresponding to
the morphism

SpecA −→M1
Hod ×Ξk,d Ξµ,d

n .

We take any member (λ,E,∇, {l(i)j }) ∈ M
µ
Hod(A/I) such that det(λ,E,∇, {l(i)j }) ∼=

((λ, L,∇), (λ, ξ)) ⊗ A/I. It is sufficient to show that (λ,E,∇, {l(i)j }) may be lifted to

a flat family (λ̃, Ẽ, ∇̃, {l̃(i)j }) over A such that det(λ̃, Ẽ, ∇̃, {l̃(i)j }) ∼= ((λ, L,∇), (λ, ξ)).
The obstructions lie in the hypercohomology H2(Σ,F•

0 ⊗ I). Here, F•
0 is the complex of

sheaves defined by F i
0 = 0 for i ̸= 0, 1,

F0
0 :=

{
s ∈ End(E ⊗ A/m)

∣∣∣∣ Tr(s) = 0 and
s|pi⊗A/m

(lij)A/m ⊂ (lij)A/m for any i, j

}
,

F1
0 :=

{
s ∈ End(E ⊗ A/m)⊗ Ω1

Σ(D)

∣∣∣∣ Tr(s) = 0 and
Respi⊗A/m(s)(l

i
j)A/m ⊂ (lij+1)A/m for any i, j

}
,

and d : F0
0 → F1

0 maps s to s∇−∇s. From the spectral sequence Hq(Fp
0 )⇒ Hp+q(F•

0 ),
there is an isomorphism

H2(F•
0 )
∼= Coker

(
H1(F0

0 )
H1(d)−−−→ H1(F1

0 )

)
.
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Since (F0
0 )

∨ ⊗ Ω1
Σ
∼= F1

0 and (F1
0 )

∨ ⊗ Ω1
Σ
∼= F0

0 , we have

H2(F•
0 )
∼= Coker

(
H1(F0

0 )
H1(d)−−−→ H1(F1

0 )

)
∼= Ker

(
H1(F1

0 )
∨ H1(d)−−−→ H1(F0

0 )
∨
)∨

∼= Ker

(
H0((F1

0 )
∨ ⊗ Ω1

Σ)
−H1(d)−−−−→ H0((F0

0 )
∨ ⊗ Ω1

Σ)

)∨

∼= Ker

(
H0(F0

0 )
−H1(d)−−−−→ H0(F1

0 )

)∨

.

We take any element s ∈ Ker

(
H0(F0

0 )
−H1(d)−−−−→ H0(F1

0 )

)
, which may be regarded as an

element of End((λ,E,∇, {l(i)j })). Since (λ,E,∇, {l
(i)
j }) is α-stable, the endmorphism s is

a scalar multiplication. By Tr(s) = 0, we have s = 0. Hence, H2(F•
0 ) = 0.

Secondly, we prove that Mµ
Hod is nonsingular. (see [23, Remark 6.1]). It is enough

to show λ : Mµ
Hod → C given by (λ,E,∇, {l(i)∗ }) 7→ λ is smooth. In this case, the

obstructions of the extensions lie in the hypercohomology H2(Σ,F•,+
0 ⊗ I). Here, F•,+

0 is
the complexes of sheaves defined by F i,+

0 = 0 for i ̸= 0, 1, F0,+
0 := F0

0 ,

F1,+
0 :=

s ∈ End(E ⊗ A/m)⊗ Ω1
Σ(D)

∣∣∣∣∣∣∣∣
Tr(s) = 0,

Respi(s)⊗A/m(l
(i)
j )A/m ⊂ (l

(i)
j )A/m for any i, j

and the element of End((l
(i)
j )A/m/(l

(i)
j+1)A/m)

induced by Respi(s)⊗A/mis a scalar.

 ,

and d+ : F0,+
0 → F1,+

0 maps s to s∇−∇s. We put T 1
0 = F1.+

0 /F1
0 and T •

0 = [0 → T 1
0 ].

Then, we have the following exact sequence of the complex on Σ:

0 // F•
0

// F•,+
0

// T •
0

// 0.

Note that T 1
0 is a skyscraper sheaf. We consider the long exact sequence. Since H2(F•

0 ) =
H2(T •

0 ) = 0, we obtain H2(F•,+
0 ) = 0. □

2. Riemann-Hilbert correspondence

2.1. Riemann Problem. We fix integers g ≥ 0, k ≥ 0 and n > 0. Let Σ be a
smooth complex projective curve of genus g, and let D := p1 + · · ·+ pk be a divisor on Σ
where p1, . . . , pk are discrete points on Σ.

We fix a point ∗ ∈ Σ \D. The fundamental group of Σ \D is described as follows:

π1(Σ \D, ∗) = ⟨α1, β1, . . . , αg, βg, γ1, . . . , γk | (α1, β1) · · · (αg, βg)γ1 · · · γk⟩
where (α, β) := αβα−1β−1. Let us consider a representation

ρ : π1(Σ \D, ∗) −→ GL(n,C).
We put Ai := ρ(αi), Bi := ρ(βi) and Xj := ρ(γj) for i = 1, . . . , g, j = 1, . . . , k. These
matrices satisfy the relation (A1, B1) · · · (Ag, Bg)X1 · · ·Xk = In. There exists a locally
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constant sheaf F on Σ \ D corresponding to the representation ρ. Moreover, there is
a holomorphic bundle with connection (E,∇) on Σ \ D such that E∇ = F , namely
E = OΣ\D ⊗C F . Here, E∇ is the sheaf of ∇-horizontal holomorphic sections of E.

Problem. Does there exist a meromorphic bundle (M,∇) with flat connection on M
which has a regular singularity at each point p1, . . . , pk and whose restriction to Σ \D is
isomorphic to (E,∇)?

Theorem 2.1.1. Given a locally constant sheaf F onM \Σ, there exists a holomorphic
bundle E on M and a connection ∇ : E → Ω1

M(Σ) ⊗OM
E with logarithmic poles, such

that the locally constant sheaf E∇ is isomorphic to F on Σ \D.

Proof. We put E ′ = OΣ\D ⊗C F , and we define ∇′ by the condition (E ′)∇
′
=

F . We take a sufficiently small open neighborhood Ui of pi such that Ui ∩ D = {pi}
where i = 1, . . . , k. Then, by Lemma 3.2.7 in Chapter I, there exists a holomorphic
bundle (Ei,∇i) with meromorphic connection on Ui with logarithmic pole at pi such
that (Ei|Ui\pi)

∇i = F|Ui\pi , namely Ei = OUi
⊗C Ft where t is a point of Ui \ pi. We

glue the bundle with connections (E ′,∇′), (E1,∇1), . . . , (Ek,∇k). Then we have a desired
bundle. □

We put M := OΣ(∗D) ⊗OΣ
E where (E,∇) is given by Theorem 2.1.1. Then (M,∇)

is a desired meromorphic bundle with connection.

2.2. Riemann-Hilbert correspondence as a functor. We consider the correspon-
dence

(2.2.1) (M,∇) 7−→M∇
|Σ\D

.

Here, (M,∇) is a meromorphic bundles with connection having poles at the points of D
and having regular singularity at any point of Σ, and M∇

|Σ\D
is the constant sheaf of hori-

zontal sections. We call the correspondence (2.2.1) the Riemann–Hilbert correspondence.
The Riemann–Hilbert correspondence is functorial, that is, we have a functor from the
category of meromorphic bundles with connection having poles at the points of D and
having regular singularity at any point of D to the category of locally constant sheaves
of C-vector space on Σ \D. We recall the following theorem due to Deligne.

Theorem 2.2.1 (Curve case of [5, II, Theorem 5.9]). The functor induced by the
Riemann–Hilbert correspondence is equivalence.

Proof. We obtain already that the functor is essentially surjective. We show that

it is fully faithful, that is, for φ : M∇
|Σ\D
→ M ′∇′

|Σ\D
, there exists a unique homomorphism

ψ : (M,∇) → (M ′,∇′) which induces the homomorphism φ. The homomorphism φ can
be viewed as a horizontal section of the bundle (HomO(M,M ′)Σ\D ,∇). We show that this

horizontal section is the restriction to Σ\D of a unique meromorphic horizontal section of
(HomO(M,M ′)Σ ,∇). Since (M,∇) and (M ′,∇′) have regular singularity, (HomO(M,M ′)Σ ,∇)
has regular singularity. The problem of the existence of a unique meromorphic horizontal
section is local We may show the existence by Proposition 3.2.5 and Example 3.2.1 in
Chapter I. □
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2.3. Moduli theoretic Riemann-Hilbert correspondence. We put

(2.3.1) g.c.d.(µ) := g.c.d.(µ1
1, . . . , µ

1
r1
, µ2

1, . . . , µ
2
r2
, . . . , µk

1, . . . , µ
k
rk
).

We take an integer d such that d and g.c.d.(µ) are coprime. For an integer d, we put

Ξµ,d
n,λ=1 :=

{
ξ = (ξij)

1≤i≤k
1≤j≤ri

∈ Cr

∣∣∣∣∣ d+∑
i,j

µi
jξ

i
j = 0

}

where r :=
∑
ri.

Definition 2.3.1. Take an element ξ ∈ Ξµ,d
n,λ=1. We call ξ generic if

(1) ξij − ξik ̸∈ Z for any i and j ̸= k, and
(2) there exist no integer s with 0 < s < n, integers si with 1 ≤ si ≤ ri, and subsets
{ji1, . . . , jisi} ⊂ {1, . . . , ri} for each 1 ≤ i ≤ k such that

k∑
i=1

si∑
l=1

υijil
ξijil
̸∈ Z,

for any tuple of integers υ = (υij) with 0 ≤ υij ≤ µi
j where υ

i
ji1
+ · · ·+ υijisi

= s for

i = 1, . . . , k.

Let Ξµ,d,irr
n,λ=1 be the locus of generic elements in Ξµ,d

n,λ=1, and let Mµ,irr
DR be the inverse

image of Ξµ,d,irr
n,λ=1 viaMµ

DR → Ξµ,d
n,λ=1.

Remark 2.3.2. If d and g.c.d.(µ) have the greatest common divisor r′ ̸= 1, then

Ξµ,d,irr
n,λ=1 = ∅, since ∑

i,j

µi
j

r′
ξij = −

d

r′
∈ Z

for any ξ ∈ Ξµ,d
n,λ=1.

Conversely, if d and g.c.d.(µ) are coprime, then Ξµ,d,irr
n,λ=1 is non-empty. (see Remark

2.3.4 as below and the proof of [15, Lemma 2.1.2]).

Remark 2.3.3 (see [21, Section 2]). For generic ξ, any ξ-parabolic connection (E,∇, {l(i)∗ })
is irreducible. Here, we call (E,∇, {l(i)∗ }) reducible if there is a non-trivial subbundle

0 ̸= F ⊊ E such that ∇(F ) ⊂ F ⊗ Ω1
Σ(D). We call (E,∇, {l(i)∗ }) irreducible if it is not

reducible. In particular, for generic ξ, any (E,∇, {l(i)∗ }) is semistable.

We construct a family of all generic character varieties of type µ. We put r :=
∑
ri

and

Nµ
n :=

{
ν = (νij)

1≤i≤k
1≤j≤ri

∈ Cr

∣∣∣∣∣ ∏
i,j

νij
µi
j = 1

}
,
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which is the set of eigenvalues of k-tuple of semisimple conjugacy classes (C1, . . . , Ck). We
denote by Uµ the following subvariety of Nµ

n ×GL(n,C)2g+n(ν, A1, B1, . . . , Ag, Bg, X1, . . . , Xk)

∣∣∣∣∣∣∣∣∣∣
(1) (A1, B1) · · · (Ag, Bg)X1 · · ·Xk = In,
(2) For each i, there is a filtration

Cn =W i
1 ⊃ W i

2 ⊃ · · · ⊃ W i
ri+1 = 0

such that dimW i
j/W

i
j+1 = µi

j

and (Xi − νijid)(W i
j ) ⊂ W i

j+1 for any i, j


where (ν, A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ Nµ

n × GL(n,C)2g+n. The group PGL(n,C)
acts on Nµ

n ×GL(n,C)2g+n which is trivial on Nµ
n and conjugation on GL(n,C)2g+n. We

take the categorical quotient of Uµ by the PGL(n,C)-action;

Mµ
B : = Uµ//PGL(n,C)

= Spec(C[Uµ]PGL(n,C)).

The map

Mµ
B −→ Nµ

n

[(ν, A1, B1, . . . , Ag, Bg, X1, . . . , Xk)] 7−→ ν

is well-defined. Let Nµ,irr
n ⊂ Nµ

n be the set of generic eigenvalues in the sense of Definition
4.1.1. Then, we take the base change of Mµ

B → Nµ
n via inclusion map Nµ,irr

n ↪→ Nµ
n ,

denoted by

Mµ,irr
B −→ Nµ,irr

n ,

which is a family of any generic character varieties of type µ. We denote the fiber of ν
byMµ

B(ν), which is a generic character variety of type µ.

We define the morphism

rhd : Ξ
µ,d
n,λ=1 ∋ ξ 7−→ ν ∈ Nµ

n

by νij = exp(−2π
√
−1ξij) for any i, j.

Remark 2.3.4 (see the proof of [15, Lemma 2.1.2]). Let (C1, . . . , Ck) be a k-tuple of
semisimple conjugacy classes such that the eigenvalue of any matrix in Ci is

(exp(−2π
√
−1ξi1), . . . , exp(−2π

√
−1ξiri))

where the multiplicity of exp(−2π
√
−1ξij) is µi

j. If ξ is generic, then (C1, . . . , Ck) is generic
in the sense of Definition 4.1.1.

For each member (E,∇, {lij}) ∈ M
µ,irr
DR , Ker(∇an|Σ0) becomes a local system on Σ0,

where∇an means the analytic connection corresponding to∇. The local system Ker(∇an|Σ0)
corresponds to a representation of π1(Σ0). Let γi be a loop around pi. The representation
of γi is semisimple for i = 1, . . . , k, and the eigenvalues of the representation of γi are

exp(−2π
√
−1ξi1), . . . , exp(−2π

√
−1ξiri)

where the multiplicities are µi
1, . . . , µ

i
ri
, respectively. Then, we can define the morphism

RHξ :Mµ
DR(ξ) −→M

µ
B(ν)
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where ν = rhd(ξ). Then, {RHξ} induces a morphism

(2.3.2) RH :Mµ,irr
DR −→Mµ,irr

B ,

which gives the commutative diagram

Mµ,irr
DR

RH //

��

Mµ,irr
B

��
Ξµ,d,irr
n,λ=1

rhd // Nµ,irr
n .

The following theorem follows from the result of Inaba [21, Theorem 2.2] and Inaba-
Saito [22].

Theorem 2.3.5 ([21, Theorem 2.2] and [22]). The morphism

RHξ :Mµ
DR(ξ) −→M

µ
B(rhd(ξ))

is an analytic isomorphism for any ξ ∈ Ξµ,d,irr
n,λ=1 .

Proof. We take any point ρ ∈ Mµ
B(rhd(ξ)) where ξ is generic. By [21, Proposition

3.1], we obtain the following isomorphism,

Mµ
DR(ξ)

∼=Mµ
DR(ξ

′)

where 0 ≤ Re(ξ′ij ) < 1 for any i, j. Hence, we assume that ξ satisfy 0 ≤ Re(ξij) < 1
for any i, j. By Corollary 2.2.1 in Chapter 4, there is a unique pair (E,∇E) where E
is a vector bundle on Σ and ∇E : E → E ⊗ Ω1

Σ(D) is a logarithmic connection, such
that the local system Ker(∇an

E )|Σ\{p1,...,pk} corresponds to the representation ρ and all the
eigenvalue of Respi(∇E) lie in {z ∈ C | 0 ≤ Re(z) < 1}. Since ξ is generic, we can
define a parabolic structure of (E,∇E), uniquely. Therefore RHξ gives a one to one

correspondence between the points of Mµ,irr
DR (ξ) and the points of Mµ,irr

B (rhd(ξ)). We
can define this correspondence between flat families. Hence,

RHξ :Mµ
DR(ξ) −→M

µ
B(rhd(ξ))

is an analytic isomorphism. □
Remark 2.3.6. For any generic ν1 and ν2 ∈ Nµ,irr

n , there exist integers d1 and d2 with
0 ≤ d1, d2 < g.c.d.(µ) such that ν1 and ν2 are contained in the images of the morphisms

rhd1 : Ξ
µ,d1,irr
n,λ=1 −→ Nµ,irr

n and rhd2 : Ξ
µ,d2,irr
n,λ=1 −→ Nµ,irr

n ,

respectively, that is, ν1 ∈ Im(rhd1) and ν2 ∈ Im(rhd2).
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CHAPTER 5

Mixed Hodge structures of the moduli spaces of parabolic
connections

In this chapter, we prove Theorem A in the introduction.

1. Relative compactification of moduli spaces

1.1. Relative compactification. We consider the natural C×-action onMµ
Hod

C× ×Mµ
Hod −→M

µ
Hod

(t, (λ,E,∇, {l(i)∗ })) 7−→ (tλ, E, t∇, {l(i)∗ }).

Since the relation between λ and ξ is λd +
∑
µi
jξ

i
j = 0, the following C× action on Ξµ,d

n

is well-defined,

C× × Ξµ,d
n −→ Ξµ,d

n

(t, (λ, ξ)) 7−→ (tλ, tξ).

Clearly, π :Mµ
Hod → Ξµ,d

n is a C×-equivariant morphism.

Lemma 1.1.1. The fixed point set (Mµ
Hod)

C×
is proper over Ξµ,d

n , and for any (λ,E,∇, {l(i)∗ })
the limit limt→0 t · (λ,E,∇, {l(i)∗ }) exists in (Mµ

Hod)
C×

.

Proof. The fixed point set lies over the origin (0,0) ∈ Ξµ,d
n . Therefore, this fixed

point is just the fixed point set of the moduli space of semistable parabolic Higgs bundles,
which is a closed subvariety of the moduli space of parabolic Higgs sheaves. Then, the
fixed point set is proper by [54, Theorem 5.12].

The second part follows from Langton’s type theorem [23, Proposition 5.5] in the
same way as in [48, Corollary 10.2]. (also see [50, Lemma 4.1 and Section 6] and [32,
Proposition 4.1]) □

We construct a relative compactification ofMµ
Hod over Ξµ,d

n . Let C× act on C × Ξµ,d
n

by t · (x, (λ, ξ)) = (tx, (λ, ξ)). Then, C × Ξµ,d
n → Ξµ,d

n given by (x, (λ, ξ)) 7→ (xλ, xξ) is
C×-equivariant with the standard action on C. LetM′ denote the base change ofMµ

Hod

via this map; in other wards,

M′ =

((λ,E,∇, {l(i)∗ }), x, (λ′, ξ))

∣∣∣∣∣∣
(λ,E,∇, {l(i)∗ }) ∈Mµ

Hod,
(x, (λ′, ξ)) ∈ C× Ξµ,d

n and

π((λ,E,∇, {l(i)∗ })) = (xλ′, xξ)

 .
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Then,M′ inherits the C×-action given by

t · ((λ,E,∇, {l(i)∗ }), x, (λ′, ξ)) = ((tλ, E, t∇, {l(i)∗ }), tx, (λ′, ξ)),
and π induces the map π′ :M′ → Ξµ,d

n by

π′((λ,E,∇, {l(i)∗ }), x, (λ′, ξ)) = (λ′, ξ),

which is equivarinat with respect to the trivial action on the base. By [48, Theorem 11.2],

the set U ⊂ M′ of points u ∈ U such that limt→∞ t · (λ,E,∇, {l(i)∗ }) does not exist is
open, and there exists a geometric quotientM := U//C×, which is proper over Ξµ,d

n via
the induce map π̄ :M→ Ξµ,d

n . Indeed, it is a relative compactification ofMµ
Hod over Ξ

µ,d
n

by the embedding

(λ,E,∇, {l(i)∗ }) 7−→ C× · ((λ,E,∇, {l(i)∗ }), 1, (λ′, ξ)).

1.2. Main results. The following theorems are our main Theorem A.

Theorem 1.2.1. There are isomorphisms between rational cohomology groups with
compact support of fibers of π :Mµ

Hod → Ξµ,d
n which preserve the mixed Hodge structures.

The mixed Hodge structures on these cohomology groups of the fibers are pure.

Proof. Let us show that for any non-empty fiberMµ
Hod(λ, ξ) of (λ, ξ) ∈ Ξµ,d

n via π,
there exists an isomorphism

H•
c (M

µ
Hod(λ, ξ),Q) ∼= H•

c (M
µ
Dol(0),Q),

and this isomorphism preserves the mixed Hodge structures. First, for the pair (λ, ξ) ∈
Ξµ,d
n , we consider the following subset of Ξµ,d

n

Ξ(λ,ξ) := {(tλ, tξ) | t ∈ C} ∼= C.
Let

π̄(λ,ξ) :MΞ(λ,ξ)
−→ Ξ(λ,ξ)

be the base change ofM via Ξ(λ,ξ) ↪→ Ξµ,d
n . LetM(tλ, tξ) be the fiber of (tλ, tξ) via π̄(λ,ξ).

The map π̄(λ,ξ) is a proper surjective morphism. Moreover, π̄(λ,ξ) is topologically trivial (see

[15, Theorem B.1] or [18, Lemma 6.1]). Then, the map H∗(MΞ(λ,ξ)
)→ H∗(M(tλ, tξ)) is

an isomorphism. On the other hand, the boundary

Z := M̄ \M =
{
C×((λ,E,∇, {l(i)∗ }), 0, (λ′, ξ))

∣∣∣ lim
t→∞

t · (λ,E,∇, {l(i)∗ }) exists
}

is trivial over Ξµ,d
n . Let π̄(λ,ξ)|Z : ZΞ(λ,ξ)

→ Ξ(λ,ξ) be the restriction. Then, we have

H∗(ZΞ(λ,ξ)
) ∼= H∗(Z(tλ, tξ)). Here, Z(tλ, tξ) is the fiber of (tλ, tξ) via π̄(λ,ξ)|Z . Ap-

plying the five Lemma to the long exact sequences of the pairs (MΞ(λ,ξ)
, ZΞ(λ,ξ)

) and

(M(tλ, tξ), Z(tλ, tξ)), we obtain the isomorphism

H•(MΞ(λ,ξ)
, ZΞ(λ,ξ)

) ∼= H•(M(tλ, tξ), Z(tλ, tξ)) ∼= H•
c (M

µ
Hod(tλ, tξ))

for any t ∈ C. Thus,
H•

c (M
µ
Hod(λ, ξ))

∼= H•
c (M

µ
Dol(0)),

and this isomorphism preserves the mixed Hodge structures.

Next, we show that H•(Mµ
Dol(0)) has the pure mixed Hodge structure. We may

show that the mixed Hodge structure of H•(Mµ

Dol(0)) is pure and the restriction map
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H•(Mµ

Dol(0)) → H•(Mµ
Dol(0)) is surjective in the same way as in [15, Theorem B.1].

Here,Mµ

Dol(0) is the fiber of (0,0) via π̄(λ,ξ). Thus, for any fiber of π, the mixed Hodge
structure of the cohomology group of the fiber is also pure. □

Theorem 1.2.2. With the notation of the proof of Theorem 1.2.1, we put MΞ(λ,ξ)
:=

MΞ(λ,ξ)
\ ZΞ(λ,ξ)

. The restriction map of the ordinary rational cohomology groups

H•(MΞ(λ,ξ)
) −→ H•(Mµ

Hod(λ, ξ))

is an isomorphism. In particular, the ordinary rational cohomology groups of the fibers of
π :Mµ

Hod → Ξµ,d
n are isomorphic.

Proof. By the Gysin map and the Poincaré duality, we have

H•
c (M

µ
Hod(λ, ξ),Q)

∼=
��

// H•+2
c (MΞ(λ,ξ)

,Q)

∼=
��

H2dµ−•(Mµ
Hod(λ, ξ),Q) // H2dµ−•(MΞ(λ,ξ)

,Q)

where dµ := dimMµ
Hod(λ, ξ). The top map is an isomorphism, since the map is given by

the composition

H•+2
c (MΞ(λ,ξ)

,Q) ∼= H•+2
c (Mµ

Hod(λ, ξ)× Ξ(λ,ξ),Q) ∼= H•
c (M

µ
Hod(λ, ξ),Q).

Then, the bottom map H•(Mµ
Hod(λ, ξ),Q)→ H•(MΞ(λ,ξ)

,Q) is an isomorphism. We take
the dual of the map. Then, the corollary follows. □

By the Riemann-Hilbert correspondence, we obtain the following corollary:

Corollary 1.2.3. For µ = (µi
j) such that g.c.d.(µi

j) = 1, the Poincaré polynomials of
character varietiesMµ

B(ν) are independent of the choice of generic eigenvalues.

Proof. It follows from Theorem 1.2.2 and Theorem 2.3.5 of Chapter 4. □

2. An example: The moduli space of Type ((11), (11), (11), (11))

Inaba-Iwasaki-Saito [24] proved that the moduli space of α-stable parabolic connec-
tions of rank 2 degree −1 over P1 with type µ = ((11), (11), (11), (11)) is isomorphic to

an open part of Okamoto-Painlevé pair of type D
(1)
4 ([40]) or generalized Halphen surface

of type D
(1)
4 ([41]).

This was done by an explicit description of the moduli space as follows.

Let p1, p2, p3, p4 be distinct points on P1 and we normalize them as (p1, p2, p3, p4) =
(0, 1, t,∞). We denote by Mµ

DR(ξ, t) the fine moduli space of the α-stable parabolic
connections (E,∇, l∗) of rank 2 and degree −1 with 4-regular singular points (0, 1, t,∞)
with the data ξ of eigenvalues of the residues of ∇ at pi. We can normalize them as
ξ = (±ξ1,±ξ2,±ξ3, ξ4, 1− ξ4).

Let π : F2 = P(O ⊕ O(−2)) → P1 be the ruled surface of degree 2 and let C be a
unique section whose self-intersection number is −2. Let us take the fibers Fi = π−1(pi),
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F1 F2 F3 F4

C

0 1 t ∞
Figure 1

then we can take two distinct points on Fi determined by the eigenvalue ξi. Blowing up
these two points on each fiber Fi, then we obtain the 8-times blowing up h : Sξ,t −→ F2.
Let us denote by F ′

i the proper transform of Fi by the blowing up h. Then it is easy to
see that the anti-canonical divisor −KS of the projective surface S = Sξ,t is given by
−KS = Y = 2C + F ′

1 + F ′
2 + F ′

3 + F ′
4 such that (S, Y ) satisfy the condition of Okamoto-

Painlevé pair, that is, −KS ·C = −KS ·F ′
i = 0. Note that the configuration of −KS = Y

is a tree of smooth rational curves of type D
(1)
4 .

Inaba-Iwasaki-Saito [24] showed that there exists an isomorphism

(2.0.1) Mµ
DR(ξ, t) ≃ Sξ,t \ Yred.

Moreover a natural compactificationMµ
DR(ξ, t) ofM

µ
DR(ξ, t) is given by the coarse moduli

space of stable parabolic ϕ-connections and moreover we have an isomorphism

(2.0.2) Mµ
DR(ξ, t) ≃ Sξ,t

The second homology group ofMµ
DR(ξ, t) ≃ Sξ,t \ Yred fits into the exact sequence of

mixed Hodge structure ([41, Section 5])

0 −→ H1(Yred,Q) −→ H2(Sξ,t \ Yred,Q) −→ H2(Sξ,t,Q) −→ H2(Yred,Q) −→
It is easy to see that H1(Yred,Q) = 0 and H2(Sξ,t,Q) ≃ Q10, so hence

H2(Sξ,t \ Yred,Q) ≃ ker
(
H ′

2(Sξ,t,Q) −→ H2(Yred,Q)
)
≃ Q5.

This isomorphism shows that the mixed Hodge structure on H2(Sξ,t \ Yred,Q) is pure of
weight 2 and of type (1, 1) (Theorem A). On the other hand, the complex deformations of
Okamoto-Painlevé pair (Sξ,t, Y ) have 5 parameters which correspond to ξ and t. Moreover
the mixed Hodge structure does not depend on the parameters ξ and t. Note that this t
is the time variable of Painlevé equaions of type VI.
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CHAPTER 6

Mixed Hodge structures of character varieties

In this chapter, we compute the mixed Hodge structures of certain character varieties.
It is done by explicit descriptions of the character varieties by the classical invariant
theory [10], [25], [26], [30]. Next, we construct compactifications of character varieties
and investigate the configurations of their boundaries. As the result, we obtain Theorem
B in the introduction.

1. Explicit descriptions of certain character varieties

Let (C1, . . . , Ck) be a k-tuple of generic semisimple conjugacy classes of SL(n,C) of type
µ. We put

Ûµ(ν) :={(A1, B1, . . . , Ag, Bg;X1, . . . , Xk) ∈ SL(n,C)2g × C1 × · · · × Ck
| (A1, B1) · · · (Ag, Bg)X1 · · ·Xk = In},

where (A,B) := ABA−1B−1. The group SL(n,C) acts by conjugation on SL(n,C)2g+n.

The action induces that of SL(n,C) on Ûµ(ν). We call the affine GIT quotient

M̂µ
B(ν) := Û

µ(ν)//SL(n,C)

a generic SL(n,C)-character variety of type µ. Note that for g = 0, GL(n,C)-character
varieties and SL(n,C)-character varieties are same. We consider SL(n,C)-character vari-
eties of g = 0, since the description of the invariant rings is simple.

In the following, we only consider the following types

µ = ((1, . . . , 1), . . . , (1, . . . , 1)).

We denote by Rn
k−1 be the affine coordinate ring of SL(n,C)k−1 on which SL(n,C) acts by

simultaneous adjoint action. Let (Rn
k−1)

SL(n,C) be the invariant subring of Rn
k−1. Moreover

let us fix a data ν of eigenvalues in (C1, . . . , Ck) of type µ = ((1, . . . , 1), . . . , (1, . . . , 1)).

Let (Rn
k−1)

SL(n,C)
ν denote the affine coordinate ring of M̂µ

B(ν), i.e.,

M̂µ
B(ν) = Spec(Rn

k−1)
SL(n,C)
ν .

Note that we have the natural surjective homomorphism (Rn
k−1)

SL(n,C) → (Rn
k−1)

SL(n,C)
ν .

1.1. Classical invariant theory. Now, we recall the explicit description of the in-
variant ring (Rn

k−1)
SL(n,C) for the two cases n = 2, k = 4 and n = 3, k = 3. The following

proposition follows from the fundamental theorem for matrix invariants. (See [9] or [38]).
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Proposition 1.1.1.

(Rn
k−1)

SL(n,C) = C[Tr(Mi1Mi2 · · ·Mik) | 1 ≤ i1, . . . , ik ≤ n− 1].

In particular, for n = 2, the elements Tr(Mi1Mi2 · · ·Mik) of degree k ≤ 3 generate the
invariant ring, that is,

(R2
k−1)

SL(2,C) = C[Tr(Mi),Tr(MiMj),Tr(MiMjMk) | 1 ≤ i, j, k ≤ n− 1].

First, we consider the case where n = 2, k = 4, namely µ = ((1, 1), (1, 1), (1, 1), (1, 1)).
We denote by (i, j, k) a cyclic permutation of (1, 2, 3). Put

(1.1.1) xi := Tr(MkMj) (i = 1, 2, 3), ai := TrMi (i = 1, 2, 3), a4 := Tr(M3M2M1).

The following proposition is due to Frike-Klein, Iwasaki, and Jimbo ([10], [25], [26]).

Proposition 1.1.2. The invariant ring (R2
3)

SL(2,C) is generated by seven elements
x1, x2, x3, a1, a2, a3, a4 and there exists a relation

fa(x) := x1x2x3 + x21 + x22 + x23 − θ1(a)x1 − θ2(a)x2 − θ3(a)x3 + θ4(a) = 0,

where

θi(a) = aia4 − ajak (i, j, k),

θ4(a) = a1a2a3a4 + a21 + a22 + a23 + a24 − 4.

Therefore we have an isomorphism

(R2
3)

SL(2,C) ∼= C[x1, x2, x3, a1, a2, a3, a4]/(fa(x)).

Hence, the SL(2,C)-character variety M̂µ
B(ν) of type µ = ((1, 1), (1, 1), (1, 1), (1, 1)) is

an affine cubic hypersurface on C3. Here, νi1 + νi2 = ai for i = 1, . . . , 4. The affine cubic
hypersurface is called a Fricke-Klein cubic surface.

We consider the natural compactification C3 ↪→ P3 as follow, setting x1 = X/W, x2 =
Y/W, x3 = Z/W , then we obtain the following homogeneous polynomial,

XY Z +X2W + Y 2W + Z2W − θ1(a)XW 2 − θ2(a)YW 2 − θ3(a)ZW 2 + θ4(a)W
3 = 0.

Substitute W = 0 to this equation, then we obtain the equation XY Z = 0. Hence, the
boundary components consist of three lines. The dual graph is the following. The dual
graph is a simplicial decomposition of S1.

Next, we consider the case where n = 3, k = 3, namely µ = ((1, 1, 1), (1, 1, 1), (1, 1, 1)).
We describe generators and defining relations for the invariant ring (R3

2)
SL(3,C). The

following proposition is due to Lawton [30].
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X3 + Y 3 −XY Z = 0

complex

Figure 2

Proposition 1.1.3. The invariant ring (R3
2)

SL(3,C) is generated by

a1 := Tr(M1) a2 := Tr(M−1
1 )

b1 := Tr(M2) b2 := Tr(M−1
2 )

c1 := Tr(M−1
1 M−1

2 ) = Tr(M3) c2 := Tr(M1M2) = Tr(M−1
3 )

x1 := Tr(M1M
−1
2 ) x2 := Tr(M−1

1 M2)

x3 := Tr(M1M2M
−1
1 M−1

2 ).

and there exist a relation

x23 − fx3 + g = 0.

where f, g are polynomials of x1, x2 over C[a1, a2, b1, b2, c1, c2], more precisely,

f = x1x2 − a2b1x1 − a1b2x2 + (constant terms in x1, x2)

g = x31 + x32 + (terms that order is at most 2 in x1, x2).

Hence, the SL(3,C)-character variety M̂µ
B(ν) of type µ = ((1, 1, 1), (1, 1, 1), (1, 1, 1)) is

an affine cubic hypersurface on C3. Here,

ν11 + ν12 + ν1i = a1,
1

ν11
+

1

ν12
+

1

ν1i
= a1,

ν21 + ν22 + ν2i = b1,
1

ν21
+

1

ν22
+

1

ν2i
= b1,

ν31 + ν32 + ν3i = c1,
1

ν31
+

1

ν32
+

1

ν3i
= c1.

We consider the compactification C3 ↪→ P3 as follow, setting x1 = X/W, x2 = Y/W, x3 =
Z/W , then, we obtain the following homogeneous polynomial

X3 + Y 3 −XY Z + (term containing W ) = 0.

We substituteW = 0 to this equation. Then we obtain the equation X3+Y 3−XY Z = 0.
This equation define a plane cubic curve having a node.

Corollary 1.1.4. The dual graph of the boundary divisor of M̂µ
B(ν) is a simplicial

decomposition of S1. The dual graph is the following.

1.2. Mixed Hodge structure of the two examples. First, we consider the case
where µ = ((11), (11), (11), (11)). The character variety M̂µ

B(ν) is a nonsingular affine

cubic surface in C3. Let M̂µ
B(ν) be a natural compactification of M̂µ

B(ν) in P3, which is
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a blowing up 6-points in P2. Put D := M̂µ
B(ν) \ M̂

µ
B(ν), which is triangle of P1. From

M̂µ
B(ν) ↪→ M̂

µ
B(ν)←↩ D, we obtain the following spectral sequence:

H1(MB)→ H1(MB)

→ H2(MB,MB)
φ−→H2(MB)→ H2(MB)

→ H3(MB,MB)→H3(MB) = 0.

Then we have the following extension

0→ Cokerφ→ H2(MB)→ H3(MB,MB)→ 0.

By the Poincaré duality

Hk(MB,MB)⊗H4−k(D)→ C(−4),

the rank of Cokerφ is 4 and the weight of elements of Cokerφ are type (1, 1), and the
rank of H3(MB,MB) is 1 and the weight of elements of H3(MB,MB) are type (2, 2).
The weight filtration is as follows

0 ⊂ W2 = W3 ⊂ W4 = H2(M̂µ
B(ν))

where W2 = Cokerφ.

Second, we consider the case where µ = ((111), (111), (111)). The character variety

M̂µ
B(ν) is a nonsingular affine cubic surface in C3. Let M̂µ

B(ν) be a natural compactifi-

cation of M̂µ
B(ν) in P3, which is a blowing up 6-points in P2. Put D := M̂µ

B(ν)\M̂
µ
B(ν),

which is nodal P1. By the same way as above, we obtain the following weight filtration:

0 ⊂ W2 = W3 ⊂ W4 = H2(M̂µ
B(ν))

where the rank of W2 is 6, elements of W2 are type (1, 1), and elements of W4/W3 are
type (2, 2).

2. Certain compactifications of character varieties and their boundaries

2.1. Construction of a compactification of the character varieties. We con-
struct a compactification of the SL(2,C)-character variety M̂µ

B(ν) of type µ = ((1, 1), . . . , (1, 1)).

For ν = (νij)
1≤i≤k
j=1,2 , we put

κi := νi1 + νi2 for i = 1, . . . , k

and κ := (κ1, . . . , κk). We may denote by M̂µ
B(κ) the SL(2,C)-character variety of type

µ = ((1, 1), . . . , (1, 1)) instead of M̂µ
B(ν).

The construction of the compactification is done by the geometric invariant theory for
a compactification of the following variety

Definition 2.1.1. We put

(2.1.1)
Ûµ(κ) := {(M1, . . . ,Mk−1) ∈ C1 × · · · × Ck−1|M−1

k−1 · · ·M
−1
1 ∈ Ck}

= {(M1, . . . ,Mk−1) ∈ C1 × · · · × Ck−1|Tr(M−1
k−1 · · ·M

−1
1 ) = κk}
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where Ci = {M ∈ SL(2,C) | Tr(M) = κi} and κ = (κ1, . . . , κk) ∈ Ck. The affine variety
Repk,κ is said to the SL(2,C)-representation variety of type µ = ((1, 1), . . . , (1, 1)).

We will introduce a compactification of the representation variety due to Benjamin [3].
First, we consider a construction of a compactification of the algebraic group SL2(C).
We pick an embedding α : SL(2,C) ↪→ PGL(3,C). Such an embedding always exists: we
consider the natural embedding SL(2,C)→ GL(2,C) and we take the composition of the

embedding and the map GL(2,C) ξ−→ GL(3,C)→ PGL(3,C) where

ξ(A) =

(
A

1

)
and the second arrow is the canonical projection. We regard PGL(3,C) as an open

subvariety of P(M(3,C)), and define the compactification SL(2,C) of SL(2,C) as the
closure of α(SL(2,C)) in P(M(3,C)), that is,

SL(2,C) =


 a b
c d

e

 ∈ P(M(3,C))

∣∣∣∣∣∣ ad− bc = e2

 .

Then, we obtain a compactification of the semisimple conjugacy class Ci, denoted by Ci,
that is,

Ci =


 a b
c d

e

 ∈ P(M(3,C))

∣∣∣∣∣∣ ad− bc = e2, a+ d = κie

 .

Lemma 2.1.2.
Ci ∼= P1 × P1

Proof. By the equations ad− bc = e2 and a+ d = κie, we obtain the equation

(−a2 + κiae− e2)− bc = 0.

Note that the equation define a hypersurface of degree 2 in P3, which is isomorphic to
P1 × P1. We put the coordinate ([S : T ], [U : V ]) ∈ P1 × P1 such that

(SU)(TV ) = −a2 + κiae− e2 = −(a− νi1e)(a− νi2e)
SV = b

TU = c

where νi1, ν
i
2 are eigenvalues of a matrix of the semisimple conjugacy class Ci. Then, we

obtain the following transformation from P1 × P1 to the hypersurface of degree 2 on P3:

(2.1.2)

a =
νi2SU + νi1TV

νi1 − νi2
, b = SV,

c = TU, di =
νi1SU + νi2TV

νi1 − νi2
,

e =
SU + TV

νi1 − νi2
.

□
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We can define a compactification of the representation variety.

Definition 2.1.3. We put

(2.1.3) Ûµ(κ) := {(M1, . . . ,Mk−1) ∈ C1 × · · · × Cn−1 | Tr(A1 · · ·Ak−1) = κke1 · · · ek−1}
where

M1 =

(
A1

e1

)
, . . . ,Mk−1 =

(
Ak−1

ek−1

)
.

Remark 2.1.4. In general, for X ∈ SL(2,C), there is no inverse. Since

Tr(A−1
k−1 · · ·A

−1
1 ) = Tr(A1 · · ·Ak−1)

for ∀Ai ∈ SL(2,C), we use the condition Tr(A1 · · ·Ak−1) = κk, instead of Tr(A−1
k−1 · · ·A

−1
1 ) =

κk.

We have the following action of SL(2,C) on Ûµ(κ), which is compatible with the

simultaneous action of SL(2,C) on Ûµ(κ)

(2.1.4)

P ↷
((

A1

e1

)
, . . . ,

(
Ak−1

ek−1

))
7−→

((
PA1P

−1

e1

)
, . . . ,

(
PAk−1P

−1

ek−1

))
.

We regard Repk,κ ⊂ C1 × · · · × Ck−1 as the closed subset in P4 × · · · × P4. Then, we
obtain an embedding in the projective space by the Segre embedding. Let L be an ample
line bundle associated with this embedding, that is,

L =
k−1⊗
i=1

p∗i (OP4(1))

where pi : Repk,κ → P4 is the i-th projection. Then, L admits the SL(2,C)-linearization
with respect to the action.

For x = (M1, . . . ,Mk−1) ∈ Ûµ(κ), we put

Inil := {i ∈ {1, . . . , k − 1} |Mi is nilpotent i.e. ei = 0 }.
If Inil is not empty, we decompose

(2.1.5) Inil = Inil1 ∪ · · · ∪ Inilr

where the index set Inill ⊂ Inil (1 ≤ l ≤ r) consists of indexes of same matrices, that
is, matrices indexed by elements of Inill are same each other and two matrices which
respectively have indexes in Inill and Inill′ where l ̸= l′ are not equal. Let ♯Inill be the
cardinality of Inill , and let m1 be a maximum value in ♯Inil1 , . . . , ♯Inilr . We put

Jl := {j ∈ {1, . . . , k − 1} |Mj is not nilpotent, Mj ∗Mi =Mi ∗Mj =Mi, i ∈ Inill }.
Here, we define the product ∗ as

M ∗M ′ :=

(
AA′

e

)
∈ PM(3,C) for M :=

(
A

e

)
and M ′ :=

(
A′

e′

)
.
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Note that the product ∗ is well-defined in the case where M (resp. M ′) is nilpotent and
M ′ (resp. M) is not nilpotent where M ∈ C and M ′ ∈ C ′. Let m2 be a maximum value
in {♯Jl | l is satisfied ♯Inill = m1, 1 ≤ l ≤ r}. If Inil is empty, then we put m1 = m2 = 0.

Remark 2.1.5. Let (M1, . . . ,Mk−1) ∈ Ûµ(κ). Suppose that i ∈ Inil. We normalize the
nilpotent matrix Mi:

(2.1.6) Mi =

 0 1
0 0

0

 .

For a matrix Mj (j ̸= i), the condition which, by this transformation, the matrix Mj is
transformed to the following form (

aj bj
0 di

)
is equivalent to the condition Mj ∗Mi =Mi ∗Mj =Mi.

Proposition 2.1.6. The point x = (M1, . . . ,Mk−1) is semi-stable (resp. stable) point
if and only if x is satisfied the following condition,

(2.1.7) k − 1 ≥ 2m1 +m2 (resp. > ).

Proof. For any integerm > 0, let λm be the 1-parameter subgroup (1-PS) of SL(2,C)
given by

(2.1.8) λm : t 7−→
(
tm 0
0 t−m

)
, t ∈ C×.

The matrix λr(t) acts on Ûµ(κ) as follows.(
tm 0
0 t−m

)
↷

 a1 b1
c1 d1

e1

 , . . . ,

 ak−1 bk−1

ck−1 dk−1

ek−1


7−→

 a1 t2mb1
t−2mc1 d1

e1

 , . . . ,

 ak−1 t2mbk−1

t−2mck−1 dk−1

ek−1

 .

We put k′ := 5k−1. Let Ak′ be the affine cone over the projective space Pk′−1 which is
the target space of the Segre embedding. We take a base change of the affine cone Ak′

via Ûµ(κ) ↪→ Pk′−1, denoted by the same notation Ak′ . Let x∗ = (M∗
1 , . . . ,M

∗
k−1) be the

closed point of Ak′ lying over x ∈ Ûµ(κ), that is, x∗ ̸= 0 and x∗ projects to x. The action
(2.1.4) and the linearization L define a linear action of SL(2,C) on Ak′ . In particular, the

matrix λm(t) acts on Ak′ as follows. For each i = 1, . . . , k − 1, let e
(i)
1 , . . . , e

(i)
5 be a basis

of A5 such that the matrix

M∗
i =

 ai bi
ci di

ei


is describe by

M∗
i = aie

(i)
1 + bie

(i)
2 + cie

(i)
3 + die

(i)
4 + eie

(i)
5 .
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Let ei1,...,ik−1
be the base e

(1)
i1
⊗ · · · ⊗ e(n−1)

ik−1
of Ak′ where i1, . . . , ik−1 ∈ {1, . . . , 5}. Then,

the action of λr(t) on A5 is given by

λm(t) · ei1,...,ik−1
= t

2m(m+
i1,...,in−1

−m−
i1,...,in−1

)
ei1,...,ik−1

where i1, . . . , in−1 ∈ {1, . . . , 5} and m+
i1,...,ik−1

(resp. m−
i1,...,ik−1

) is the number of 2 (resp.

3) in the index set {i1, . . . , ik−1}. For x∗ ∈ Ak′ lying over x ∈ Repk,κ, we write x∗ =∑
x∗i1,...,ik−1

ei1,...,ik−1
, so that

λm(t) · x∗ =
∑

t2mmi1,...,ik−1x∗i1,...,ik−1
ei1,...,ik−1

where mi1,...,ik−1
= m+

i1,...,ik−1
−m−

i1,...,ik−1
, and we put

(2.1.9)

µL(x, λm) := max{−mi1,...,ik−1
| i1, . . . , ik−1 such that x∗i1,...,ik−1

̸= 0}

= ♯

{
i

∣∣∣∣ Mi =

(
ai bi
ci di

)
, ci ̸= 0

}
− ♯
{
i

∣∣∣∣ Mi =

(
0 1
0 0

)
, ei = 0

}
.

On the other hand, we have

♯

{
i

∣∣∣∣ Mi =

(
ai bi
ci di

)
, ci ̸= 0

}
= (k − 1)− ♯

{
i

∣∣∣∣ Mi =

(
0 1
0 0

)
, ei = 0

}
− ♯
{
i

∣∣∣∣ Mi =

(
ai bi
0 di

)
, ei ̸= 0

}
.

Then, we have

(2.1.10)

µL(x, λr)

= (k − 1)− 2♯

{
i

∣∣∣∣ Mi =

(
0 1
0 0

)
, ei = 0

}
− ♯
{
i

∣∣∣∣ Mi =

(
ai bi
0 di

)
, ei ̸= 0

}
.

By the Hilbert-Mumford criterion (see [35, Theorem 2.1] or [36, Proposition 4.11]), the
point x is stable (resp. semi-stable) for this action if and only if µL(g · x, λm) > 0 (resp.
≥ 0) for every g ∈ SL(2,C) and every 1-PS λm of the form (2.1.8). If the point x satisfies
the condition 2m1 < ♯Inil, then we have µL(g · x, λm) > 0 for any g ∈ SL(2,C). On the
other hand, we consider the case where the point x satisfies the condition 2m1 ≥ ♯Inil.
There are at most two components of the decomposition (2.1.5) of Inil such that the
cardinalities are m1. We denote by Inilmax the union of the components. If the index set
Inil \ Inilmax is nonempty, then we have µL(g · x, λm) > 0 for g ∈ SL(2,C) such that gMig

−1

is the matrix (2.1.6) where i ∈ Inil\Inilmax. For g ∈ SL(2,C) such that gMig
−1 is the matrix

(2.1.6) where i ∈ Inilmax, we have

(2.1.11) µL(g · x, λr) ≥ (k − 1)− (2m1 +m2).

If the index i ∈ Inilmax of the normalized matrix is a element of Inill such that ♯Inill = m1

and ♯Jl = m2, then the equality of (2.1.11) holds. For the other matrix g ∈ SL(2,C), we
have µL(g · x, λm) > 0. We have thus proved the proposition. □

We obtain a compactification of the character variety M̂µ
B(κ).

Definition 2.1.7.

M̂µ
B(κ) := Proj H0(Ûµ(κ), L⊗r)SL(2,C).
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The variety M̂µ
B(κ) is a projective algebraic variety. This variety may have singular

points on the boundary. Then, we should take a resolution of singular points of M̂µ
B(κ).

In general, it is not easy to give a systematic resolution of singularities for any n. On

the following sections, we treat the cases for n = 4, 5. We will show that M̂µ
B(κ) is

non-singular and the boundary divisor is a triangle of P1. On Section 2.3, we will treat
the case for n = 5.

2.2. Type µ = ((1, 1), (1, 1), (1, 1), (1, 1)). Let

(2.2.1)

 a1 b1
c1 d1

e1

 ,

 a2 b2
c2 d2

e2

 ,

 a3 b3
c3 d3

e3

 ∈ Ûµ(κ).

The compactification Ûµ(κ) is defined by the following equations in P4 × P4 × P4

(2.2.2) ai + di = κiei, (i = 1, 2, 3),

(2.2.3) aidi − bici = e2i , (i = 1, 2, 3),

(2.2.4) Tr

((
a1 b1
c1 d1

)(
a2 b2
c2 d2

)(
a3 b3
c3 d3

))
= κ4e1e2e3.

We analyze the stability. If ei = 0 and ejek ̸= 0 (j, k ∈ {1, 2, 3} \ {i}), then x is an
unstable point if and only if x is a point of the orbit of (M1,M2,M3) where

Mi =

 0 1
0 0

0

 ,Mj =

 aj bj
0 dj

ej

 ,Mk =

 ak bk
0 dk

ek

 .

If ei = 0, ej = 0, then x is an unstable point if and only if x is a point of the orbit of
(M1,M2,M3) where two matrices in M1,M2,M3 are 0 1

0 0
0

 .

Lemma 2.2.1. The point x ∈ Ûµ(κ) where µ = ((1, 1), (1, 1), (1, 1), (1, 1)) is stable if
and only if x is semistable.

Proof. The point x = (M1,M2,M3) is not stable if only x is normalized as follows.

Mi =

 0 1
0 0

0

 ,Mj =

 aj bj
cj dj

ej

 ,Mk =

 ak bk
0 dk

ek

 , where cj ̸= 0,

or

Mi =

 0 1
0 0

0

 ,Mj =

 0 0
1 0

0

 ,Mk =

 ak bk
0 dk

ek

 .

However, the matrices do not satisfied the equation (2.2.4). Then, there are no strictly
semistable points. □
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The following theorem shows that our compactification M̂µ
B(κ) of M̂

µ
B(κ) has the same

configuration of the boundary divisor as the natural compactification of the Fricke-Klein
cubic surface.

Theorem 2.2.2. The boundary divisor of the compactification M̂µ
B(κ) where µ =

((1, 1), (1, 1), (1, 1), (1, 1)) is a triangle of three projective lines.

Proof. We describe the boundary divisor explicitly. Let Ei be the image of the

divisor [ei = 0] on Ûµ(κ) by the quotient Ûµ(κ) → M̂µ
B(κ) (i = 1, 2, 3). First, we

describe [e1 = 0]. We normalize M1 by the SL(2,C)-conjugate action as the matrix

(2.1.6). The stabilizer subgroup of the matrix is

{(
a b
0 1/a

)}
.

By the stability, we obtain c2 ̸= 0 and c3 ̸= 0. Since c2 ̸= 0, the matrices of the
component [e1 = 0] are normalized by the action of this stabilizer subgroup:

(2.2.5)

 0 1
0 0

0

 ,

 0 −e22
c22 k2c2e2

c2e2

 ,

 a3 b3
c3 d3

e3

 .

The stabilizer subgroup of the normalized matrices is the torus group

{(
a 0
0 a−1

)}
.

Before we consider the quotient by the torus group, we consider the normalized matrices
(2.2.5). The normalized matrices are defined by the following equations

(2.2.6)


a3 + d3 = κ3e3,

a3d3 − b3c3 = e23,

c2a3 + k2e2c3 = 0

in the Zariski open set c2c3 ̸= 0 of P1×P4. By Lemma 2.1.2, the normalized matrices are
defined by

(2.2.7) c2(ν
3
2S3U3 + ν31T3V3) + κ2(ν

3
1 − ν32)e2(T3U3) = 0

in the Zariski open set c2T3U3 ̸= 0 of P1 × (P1 × P1).

We consider the quotient by the torus group. The torus action on P1 × (P1 × P1) is(
a 0
0 a−1

)
↷([c2 : e2], [S3 : T3], [U3 : V3])

7−→ ([a−1c2 : ae2], [aS3 : a
−1T3], [a

−1U3 : aV3]).

We consider the SL(2,C)-linearization L =
⊗3

i=1 p
∗
i (OP4(1)) on Ûµ(κ). We take a pull-

back of L via the embedding

(2.2.8) pe1 : P1 × (P1 × P1) ↪→ Ûµ(κ)

defined by the matrices (2.2.5) and the transform (2.1.2). Let Le1 be the pull-back of L on
P1×(P1×P1). We obtain the T -linearization on Le1 induced by the SL(2,C)-linearization
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L on Ûµ(κ). We consider the dual action onH0(P1×(P1×P1), Le1). We have the following
basis of the subspace consisting of invariant sections:

(2.2.9)
s1 = b1 ⊗ c22 ⊗ S3U3, s2 = b1 ⊗ c22 ⊗ T3V3,
s3 = b1 ⊗ c2e2 ⊗ T3U3

where b1 ∈ H0(P1× (P1×P1), (pe1 ◦ p1)∗(OP4(1))) corresponding to the (1, 2)-entry of the
matrix M1. The sections have the relation

ν32s1 + ν31s2 + κ2(ν
3
1 − ν32)s3 = 0

by the equation (2.2.7). Therefore, we obtain E1
∼= P1. In the same way, we also obtain

Ei
∼= P1 (i = 2, 3).

We show that E1 and E2 intersect at one point. We substitute e2 = 0 for (2.2.6). Then,
we have the following equations 

a3 + d3 = κ3e3,

a3d3 − b3c3 = e23,

a3 = 0.

The locus defined by the equations above is a quadric curve in P2, which is isomorphic
to P1. There are two unstable points in the locus, [b3 : c3 : e3] = [0 : 1 : 0] and
[b3 : c3 : e3] = [1 : 0 : 0]. The intersection is the quotient of P1 minus the two points by
the torus action. Then, the intersection is a point. In the same way, the intersection of
E2 and E3 (resp. E3 and E1) is a point. □

2.3. Type µ = ((1, 1), (1, 1), (1, 1), (1, 1)). Let a1 b1
c1 d1

e1

 ,

 a2 b2
c2 d2

e2

 ,

 a3 b3
c3 d3

e3

 ,

 a4 b4
c4 d4

e4

 ∈ Rep5,κ.

The compactification Ûµ(κ) is defined by the following equations in (P4)4

(2.3.1) ai + di = κiei, (i = 1, 2, 3, 4),

(2.3.2) aidi − bici = e2i , (i = 1, 2, 3, 4),

(2.3.3) Tr

((
a1 b1
c1 d1

)(
a2 b2
c2 d2

)(
a3 b3
c3 d3

)(
a4 b4
c4 d4

))
= κ5e1e2e3e4.

We consider the stability condition.

Lemma 2.3.1. The closures of orbits of properly semistable points contain the point

(2.3.4) s1 =

 0 1
0 0

0

 ,

 0 1
0 0

0

 ,

 0 0
1 0

0

 ,

 0 0
1 0

0


or

(2.3.5) s2 =

 0 1
0 0

0

 ,

 0 0
1 0

0

 ,

 0 0
1 0

0

 ,

 0 1
0 0

0

 .
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Expect for the points of the orbits of s1 and s2, the stabilizer groups of every points are
finite. Each stabilizer group of the orbits of s1 and s2 is conjugate to the torus group

T =

{(
a 0
0 a−1

)}
.

Proof. Let x = (M1, . . . ,M4) be a property semistable point. By Proposition 2.1.6,
we have 2m1 +m2 = 4. First, we consider the case where m1 = 1,m2 = 2. We put
(2.3.6)

Mi1 =

 0 1
0 0

0

 ,Mi2 =

 ∗ ∗0 ∗
∗

 ,Mi3 =

 ∗ ∗0 ∗
∗

 ,Mi4 =

 ∗ ∗
ci4 ∗

∗


where {i1, . . . , i4} = {1, . . . , 4} and ci4 ̸= 0. However, by the condition ci4 ̸= 0, the
matrices do not satisfy the equation (2.3.3).

Second, we consider the case where m1 = 2,m2 = 0. We put
(2.3.7)

Mi1 =

 0 1
0 0

0

 ,Mi2 =

 0 1
0 0

0

 ,Mi3 =

 ∗ ∗
ci3 ∗

∗

 ,Mi4 =

 ∗ ∗
ci4 ∗

∗


where {i1, . . . , i4} = {1, . . . , 4}, ci3 ̸= 0, and ci3 ̸= 0. If (i1, i2) = (1, 3) or (2, 4), then
the matrices do not satisfy the equation (2.3.3). Therefore, we consider the case where
(i1, i2) = (1, 2), (2, 3), or (3, 4). The 1-parameter subgroup (2.1.8) acts on the matrices
(2.3.7). For the matricesMi1 andMi2 , the action is trivial. The actions of the 1-parameter
subgroup λm(t) on Mi3 and Mi4 are

(2.3.8)

λm(t) ·Mi3 =

 ∗ t2m∗
t−2mci3 ∗

∗

 λm(t) ·Mi4 =

 ∗ t2m∗
t−2mci4 ∗

∗


=

 t2m∗ t4m∗
ci3 t2m∗

t2m∗

 , =

 t2m∗ t4m∗
ci4 t2m∗

t2m∗

 .

Then, the limit limm→0 λr ·M is the matrix (2.3.4) or (2.3.5).

Since the orbits of the points s1 and s2 are closed, the orbits have the maximum
dimension of the stabilizer group, which is one dimension. □

We consider a resolution of properly semistable points. We take the blowing up along
the orbits of s1 and s2:

(2.3.9)
˜̂
Uµ(κ) −→ Ûµ(κ).

The simultaneous action of SL(2,C) on Ûµ(κ) induces an action on
˜̂
Uµ(κ). By taking

the blowing up (2.3.9), the condition for stability and unstability is unchanging. On
the other hand, the points of the exceptional divisors are stable points. The points of
orbits which are not closed are unstable points. Hence, there is no properly semistable

point in
˜̂
Uµ(κ). (See [27, Section 6]). We will show that the quotient of the blowing
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up is non-singular. First, we describe the blowing up of Ûµ(κ) along the orbit of s1.
Let U1 and U2 be the Zariski open sets U1 = [b1 ̸= 0, b2 ̸= 0, c3 ̸= 0, c4 ̸= 0] and

U2 = [c1 ̸= 0, c2 ̸= 0, b3 ̸= 0, b4 ̸= 0] of Ûµ(κ) ⊂ C1 × · · · × C4. Note that the orbit of s1
is contained in U1 ∪U2. Since Ci ∼= P1× P1 for i = 1, . . . , 4 by the transformation (2.1.2),
we have

(2.3.10) Ui ⊂ Ûµ(κ) ⊂ (P1 × P1)4 for i = 1, 2.

In the open sets U1 and U2, we put the following affine coordinates

([1 : x1], [y1 : 1]), ([1 : x2], [y2 : 1]), ([x3 : 1], [1 : y3]), ([x4 : 1], [1 : y4]),

and
([z1 : 1], [1 : w1]), ([z2 : 1], [1 : w2]), ([1 : z3], [w3 : 1]), ([1 : z4], [w4 : 1]),

respectively. In the open set U1, the ideal of the orbit of s1 is (X1, X2, X3, X4, X5) where

X0 := e1 =
y1 + x1
ν11 − ν12

, X1 := e2 =
y2 + x2
ν21 − ν22

,

X2 := e3 =
y3 + x3
ν31 − ν32

, X3 := e4 =
y4 + x4
ν41 − ν42

,

X4 := x1 − x2, X5 := x3 − x4.

We can extend the torus action on Ûµ(κ) to the torus action on
˜̂
Uµ(κ) by(

a 0
0 a−1

)
↷ [X0 : X1 : X2 : X3 : X4 : X5] 7−→ [a−2X0 : a

−2X1 : a
2X2 : a

2X3 : a
−2X4 : a

2X5].

On the other hand, in the open set U2, the ideal of the orbit of s1 is (Y1, Y2, Y3, Y4, Y5)
where

Y0 := e1 =
z1 + w1

ν11 − ν12
, Y1 := e2 =

z2 + w2

ν21 − ν22
,

Y2 := e3 =
z3 + w3

ν31 − ν32
, Y3 := e4 =

z4 + w4

ν41 − ν42
,

Y4 := z1 − z2, Y5 := z3 − z4.

We can extend the torus action on Ûµ(κ) to the torus action on
˜̂
Uµ(κ) by(

a 0
0 a−1

)
↷ [Y0 : Y1 : Y2 : Y3 : Y4 : Y5] 7−→ [a2Y0 : a

2Y1 : a
−2Y2 : a

−2Y3 : a
2Y4 : a

−2Y5].

Hence, we have

˜̂
Uµ(κ)s1 ↪→ (Ûµ(κ) \ U1 ∪ U2) ∪ (U1 × P5) ∪ (U2 × P5)

where
˜̂
Uµ(κ)s1 is the blowing up along the orbit of s1. The stabilizer group of any point

in the exceptional divisor is {(
1 0
0 1

)
,

(
−1 0
0 −1

)}
.

This action is trivial. In the same way, we can describe the blowing up along the orbit of
s2.
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Theorem 2.3.2. In the case of n = 5, there exists a non-singular compactification of
M̂µ

B(κ) where µ = ((1, 1), (1, 1), (1, 1), (1, 1), (1, 1)) such that the boundary complex is a
simplicial decomposition of sphere S3.

Proof. The outline of the proof is as follows. We put

˜̂
Mµ

B(κ) :=
˜̂
Uµ(κ)//SL(2,C).

We have the six components of the boundary divisor of
˜̂
Mµ

B(κ): the quotients of the

proper transformations of the divisors [e1 = 0], [e2 = 0], [e3 = 0], [e4 = 0] of Ûµ(κ)
and the quotients of the exceptional divisors associated with blowing up along s1 and
s2. We denote by E1, E2, E3, E4 and ex1, ex2 each component. In Step 1, we describe
the components E1, E2, E3 and E4 explicitly. In Step 2, we describe the intersections
Ei ∩ Ej, i ̸= j. In particular, the intersections Ei ∩ Ei+1, i = 1, 2, 3, 4 (where E5 implies
E1) are nonempty and irreducible. On the other hand, the intersections Ei∩Ei+2, i = 1, 2
are not irreducible. The intersection Ei ∩ Ei+2 consists of two components, denoted by
E+

i,i+2, E
−
i,i+2. Then, we take the blowing up along the components E+

1,3, E
−
1,3, E

+
2,4, E

−
2,4:

(2.3.11) X̃ −→ X :=
˜̂
Mµ

B(κ).

We use the same notation Ei which is the proper transform of Ei. We denote by
ex+1,3, ex

−
1,3, ex

+
2,4, ex

−
2,4 the exceptional divisors associated with the blowing up (2.3.11).

Consequently, the components of the boundary divisor of the compactification X̃ of
M̂µ

B(κ) are

E1, E2, E3, E4, ex1, ex2, ex
+
1,3, ex

−
1,3, ex

+
2,4, ex

−
2,4.

Next, we see how exi and the other components intersect. In Step 3, we describe the
2-dimensional simplices and the 3-dimensional simplices. Finally, we can describe the
boundary complex of the boundary divisor of the compactification of the character variety.

Step 1. We describe the component Ei (i.e. [ei = 0]//SL(2,C)) explicitly. We consider

the case where e1 = 0. Let Di be the divisor [ei = 0] on Ûµ(κ) for i = 1, . . . , 4. Let
(M1, . . . ,M4) be a point on D1. We normalize the matrix M1 by the SL(2,C)-conjugate
action as the matrix (2.1.6). The stabilizer subgroup of the matrix is the group of upper
triangular matrices. From the stability, we obtain c2 ̸= 0, c3 ̸= 0 or c4 ̸= 0. In the case
of c2 ̸= 0, the matrices of the divisor D1 are normalized by the action of this stabilizer
subgroup:

(2.3.12)

 0 1
0 0

0

 ,

 0 −e22
c22 k2c2e2

c2e2

 ,

 a3 b3
c3 d3

e3

 ,

 a4 b4
c4 d4

e4

 .
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Then, we have the locus defined by the following equations

(2.3.13)



a3 + d3 = κ3e3

a3d3 − b3c3 = e23
a4 + d4 = κ4e4

a4d4 − b4c4 = e24
c2a3a4 + κ2e2c3a4 + c2b3c4 + κ2e2d3c4 = 0

in (P1 × (P4 × P4)) ∩ [c2 ̸= 0]. The locus defined by ai + di = κiei and aidi − bici = e2i
in P4 is isomorphic to P1 × P1. We put the coordinates S3, T3, U3, V3 and S4, T4, U4, V4 of
(P1 × P1)2 in the same way as in Section 2.2. Then, the locus of the normalized matrices
is defined by the following equation

c2(ν
3
2S3U3 + ν31T3V3)(ν

4
2S4U4 + ν41T4V4)

+ κ2e2(ν
3
1 − ν32)(T3U3)(ν

4
2S4U4 + ν41T4V4)

+ c2(ν
3
1 − ν32)(ν41 − ν42)(S3V3)(T4U4)

+ κ2e2(ν
4
1 − ν42)(ν31S3U3 + ν32T3V3)(T4U4) = 0

in (P1)5 ∩ [c2 ̸= 0]. Let Dc2 ̸=0
1 be the Zariski open set of the hypersrface in (P1)5. The

torus action on Dc2 ̸=0
1 is the following action:(

a 0
0 a−1

)
↷ ([c2 : e2], [S3 : T3], [U3 : V3], [S4 : T4], [U4 : V4])

7→ ([a−1c2 : ae2], [aS3 : a
−1T3], [a

−1U3 : aV3], [aS3 : a
−1T3], [a

−1U3 : aV3]).

In the same way as in the case c2 ̸= 0, we have the Zariski open sets of the hypersurfaces
in (P1)5 corresponding to c3 ̸= 0 and c4 ̸= 0, denoted by Dc3 ̸=0

1 and Dc4 ̸=0
1 . We glue Dc2 ̸=0

1 ,

Dc3 ̸=0
1 and Dc4 ̸=0

1 , denoted by D′
1. We take the blowing up (2.3.9). Let D̃′

1 be the proper

transform of D′
1. Then, the component of the boundary divisor E1 is the quotient of D̃′

1

by the torus action. Similarly, we may describe the components Ej (j = 2, 3, 4).

Step 2. We denote by Di,j the intersection of the divisors [ei = 0] and [ej = 0] on

Ûµ(κ). First, we consider the intersection of E1 and E2. We substitute e2 = 0 for (2.3.13).
Then, we have the locus defined by the following equations

a3 + d3 = κ3e3

a3d3 − b3c3 = e23
a4 + d4 = κ4e4

a4d4 − b4c4 = e24
a3a4 + b3c4 = 0

in (P1 × (P4)2) ∩ [c2 ̸= 0]. By the transformation (2.1.2), we have the Zariski open set of

the hypersurface in (P1)5, denoted by Dc2 ̸=0
12 . Next, we consider the case where c3 ̸= 0.

In the same way as in the case where c2 ̸= 0, we have the locus defined by the following
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equations 

a2 + d2 = 0

a2d2 − b2c2 = 0

a4 + d4 = κ4e4

a4d4 − b4c4 = e24

d2c
2
3a4 − c2e23c4 + κ3d2c3e3c4 = 0

in (P1 × (P4)2) ∩ [c3 ̸= 0]. Since we may put

(
a b
c d

)
=

(
st s2

−t2 −st

)
where a + d =

0, ad− be = 0, we have 
a4 + d4 = κ4e4

a4d4 − b4c4 = e24

t(sc23a4 − te23c4 + κ3sc3e3c4) = 0.

By the transform (2.1.2), we have the Zariski open set of the hypersurface in (P1)5, denoted

by Dc3 ̸=0
1,2 . The locus Dc3 ̸=0

1,2 is not irreducible. Now, we take the blowing up along the

orbits of s1 and s2. Let D̃
c3 ̸=0
1,2 be the proper transform of Dc3 ̸=0

1,2 . Since an orbit of a point
of

(2.3.14) [t = 0] \ ([t = 0] ∩ [sc23a4 − te23c4 + κ3sc3e3c4]) ⊂ Dc3 ̸=0
1,2

are not closed, the points of the inverse image of (2.3.14) on D̃c3 ̸=0
1,2 are unstable (see [27,

Lemma 6.6]). Then, the quotient of D̃c3 ̸=0
1,2 by the torus action is irreducible. Next, we

consider the case where c4 ̸= 0. In the same way as in the case where c3 ̸= 0, we have the
Zariski open set of the hypersurface in (P1)5, denoted by Dc4 ̸=0

1,2 . We glue Dc2 ̸=0
1,2 , Dc3 ̸=0

1,2

and Dc4 ̸=0
1,2 , denoted by D′

1,2. We take the proper transform of D′
1,2 of the blowing up

along the orbits of s1 and s2, denoted by D̃′
1,2. Then, the intersection of E1 and E2 is the

quotient of D̃′
1,2 by the torus action, denoted by E1,2. The intersection E1,2 is irreducible.

Second, we consider the intersection of E1 and E3. We substitute e3 = 0 for (2.3.13).
Then, we have the locus defined by the following equations

a3 + d3 = 0

a3d3 − b3c3 = 0

a4 + d4 = κ4e4

a4d4 − b4c4 = e24
c2a3a4 + κ2e2c3a4 + c2b3c4 + κ2e2d3c4 = 0

in (P1× (P4)2)∩ [c2 ̸= 0]. We put a3 = st, b3 = s2, c3 = −t2, d3 = −st. Then, we have the
equations

(2.3.15)


a4 + d4 = κ4e4

a4d4 − b4c4 = e24

(ta4 + sc4)(c2s− κ2e2t) = 0.
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We denote the two components [ta4 + sc4 = 0] and [c2s − κ2e2t = 0] by Dc2 ̸=0,+
1,3 and

Dc2 ̸=0,−
1,3 .

Remark 2.3.3. Any point (M1,M2,M3,M4) on D
c2 ̸=0,+
1,3 is conjugate to the following

matrices

(2.3.16)

 0 1
0 0

0

 ,

 a2 b2
c2 d2

e2

 ,

 0 0
1 0

0

 ,

 0 b4
c4 d4

e4

 .

In fact, we normalize the third matrix M3 instead of M2. Then, we have

M3 =

 0 1
0 0

0

 or

 0 0
1 0

0

 .

In the former case, by the stability, we have c4 ̸= 0. However, the matrices do not satisfy
the condition (2.3.3). In the latter case, the equation ta4 + sc4 = 0 implies that a4 = 0.

On the other hand, any point on Dc2 ̸=0,−
1,3 is conjugate to the following matrices

(2.3.17)

 0 1
0 0

0

 ,

 a2 b2
c2 0

e2

 ,

 0 0
1 0

0

 ,

 a4 b4
c4 d4

e4

 .

We consider the cases where c3 ̸= 0 and c4 ̸= 0. In the same way as in the case where
c2 ̸= 0, we have the Zariski open sets

Dc3 ̸=0,+
1,3 , Dc3 ̸=0,−

1,3 , Dc4 ̸=0,+
1,3 , Dc4 ̸=0,−

1,3

of the hypersurfaces in (P1)5. We glue Dc2 ̸=0,+
1,3 , Dc3 ̸=0,+

1,3 and Dc4 ̸=0,+
1,3 (resp. Dc2 ̸=0,−

1,3 ,

Dc3 ̸=0,−
1,3 and Dc4 ̸=0,−

1,3 ), denoted by ′D+
1,3 (resp. ′D−

1,3). We take the blowing up (2.3.9).

Let ′D̃+
1,3 and ′D̃−

1,3 be the proper transforms of ′D+
1,3 and ′D−

1,3, respectively. Then, the

intersections of E1 and E3 are the quotients of
′D̃+

1,3 and
′D̃−

1,3 by the torus action, denoted

by E+
1,3 and E−

1,3.

We consider the intersections E2 ∩E3, E3 ∩E4 and E1 ∩E4. In the same way as in the
case E1 ∩ E2, the intersections are irreducible, denoted by E2,3, E3,4 and E1,4.

We consider the intersection of E2 and E4. In the same way as in the case E1∩E3, the
intersection E2 ∩E4 is not irreducible. The intersection has two components, denoted by
E+

2,4 and E
−
2,4. Here, the components E+

2,4 and E
−
2,4 correspond respectively to the following

matrices  a1 b1
c1 d1

e1

 ,

 0 1
0 0

0

 ,

 a3 b3
c3 0

e3

 ,

 0 0
1 0

0


and  0 b1

c1 d1
e1

 ,

 0 1
0 0

0

 ,

 a3 b3
c3 d3

e3

 ,

 0 0
1 0

0

 .
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Now, we take the blowing up along the components E+
1,3, E

−
1,3, E

+
2,4, E

−
2,4:

X̃ −→ X :=
˜̂
Mµ

B(κ).

We use the same notation Ei which is the proper transforms of Ei. We denote by
ex+1,3, ex

−
1,3, ex

+
2,4, ex

−
2,4 the quotients of the exceptional divisors associated with this blowing

up. Consequently, we have the ten components of the boundary divisor of the compacti-

fication X̃ of M̂µ
B(κ)

E1, E2, E3, E4, ex1, ex2, ex
+
1,3, ex

−
1,3, ex

+
2,4, ex

−
2,4,

and we obtain that the intersections

E1 ∩ E2, E2 ∩ E3, E3 ∩ E4, E4 ∩ E1

and
E1 ∩ ex±1,3, E3 ∩ ex±1,3, E2 ∩ ex±2,4, E4 ∩ ex±2,4

are nonempty and irreducible.

We describe the intersections of the other pairs. We consider the intersection of ex+1,3
and E4. If we substitute e4 = 0 for the matrix (2.3.16), then we have d4 = 0. Moreover,
we have b4 = 0 or c4 = 0. Then, we obtain that

′D+
1,3 ∩ [e4 = 0] = {s1, s2} ∪ [points whose orbits are not closed].

By the blowing up along s1 and s2, we obtain that the intersection of E+
1,3 and E4 is empty

(see [27, Lemma 6.6]). Then, the intersection of ex+1,3 and E4 is empty. In the same way
as above, the intersections

ex−1,3 ∩ E2, ex+2,4 ∩ E3, ex−2,4 ∩ E1

are empty. On the other hand, the intersections

ex+1,3 ∩ E2, ex
−
1,3 ∩ E4, ex

+
2,4 ∩ E1, ex

−
2,4 ∩ E3, ex

+
1,3 ∩ ex−1,3, ex

+
2,4 ∩ ex−2,4

are nonempty and irreducible. Next, we consider the intersections of the pairs containing
ex1 or ex2. The orbit of the point s1 (resp. s2) is contained in the components D1, . . . , D4

and D±
1,3, D

±
2,4, respectively. Here, D±

1,3 and D±
2,4 are the irreducible components of D1,3

and D2,4. Then, the intersections exi ∩Ej and exi ∩ ex±k,k+2 are nonempty and irreducible
for i = 1, 2, j = 1, . . . , 4 and k = 1, 2. On the other hand, the orbits of the point s1 and
s2 are not intersect. Then, the intersection of ex1 and ex2 is empty.

Step 3. We draw the vertexes and the 1-dimensional simplices except ex1 and ex2.
Then, we obtain the following figure We consider the following sphere

R4 ⊃ S3 = {(x, y, z, w) ∈ R4 | x2 + y2 + z2 + w2 = 1}.
We arrange the vertexes except ex1 and ex2 on S2 = S3 ∩ [w = 0] and arrange the
vertexes ex1 and ex2 at (0, 0, 0, 1) and (0, 0, 0,−1) respectively. We glue together the
vertex exi (i = 1, 2) and each vertex on S2 = S3 ∩ [w = 0].

Next, we describe the 2-dimensional simplices. First, we consider the intersections
E1∩E2∩ ex+1,3 and E2∩E3∩ ex+1,3. The intersection E1∩E2∩E3 = E+

1,3∩E2 is nonempty

and irreducible in
˜̂
Mµ

B(κ). We take the blowing up along E+
1,3. Then, the intersections

E1 ∩ E2 ∩ ex+1,3 and E2 ∩ E3 ∩ ex+1,3 are irreducible. Second, we consider the intersections
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E1

E2

E3

E4

ex+1,3

ex−1,3

ex−2,4

ex+2,4

Figure 3

E1 ∩ ex+1,3 ∩ ex−1,3 and E3 ∩ ex+1,3 ∩ ex−1,3. We substitute d2 = 0 for the matrices (2.3.16).

Then, we have that Dc2 ̸=0,+
1,3 ∩ [d2 = 0] is irreducible. Therefore, the intersection E+

1,3∩E−
1,3

is irreducible. We take the blowing up along E+
1,3. Then, the intersections E1∩ex+1,3∩ex−1,3

and E3 ∩ ex+1,3 ∩ ex−1,3 are irreducible. Then, we glue together the triangles

(E1, E2, ex
+
1,3), (E2, E3, ex

+
1,3), (E1, ex

+
1,3, ex

−
1,3) and (E3, ex

+
1,3, ex

−
1,3)

in the graph of Figure 3. In the same way as above, we glue together each triangle. Then,
we obtain that the complex of Figure 3 is a simplicial decomposition of S2. Third, we
consider the intersection of 3-tuple of components of the boundary divisor containing ex1
or ex2. The divisors ex1 and ex2 are the exceptional divisors of the blowing up along the
orbits of s1 and s2. The orbits of s1 and s2 are contained in Di∩Di+1 (i = 1, . . . , 4), D+

1,3,

D−
1,3, D

+
2,4 and D

−
2,4, respectively. Then, the intersections Ei ∩Ei+1 ∩ exj, E+

k,k+2 ∩ exj and
E−

k,k+2∩ exj are nonempty and irreducible for i = 1, . . . , 4, j = 1, 2, and k = 1, 2. We take

the blowing up along E+
1,3 and E−

1,3. Then, we can glue together the 3-tuples which have
either exi or exi in the graph.

Lastly, we describe the 3-dimensional simplices. We can glue together the 4-tuples
of components of the boundary divisor such that the 4-tuples have either exi or exi and
3-tuples expect exi or exi are glued together. On the other hand, the intersections of the
4-tuples which have the vertexes expect exi or exi are empty. Then, we obtain that the

boundary complex of the compactification X̃ of M̂µ
B(κ) is a simplicial decomposition of

S3. □
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