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1. Introduction 
Collective behavior found in insect swarms, fish schools and mammal herds is a fascinating 

natural phenomenon [1-5]. Although only local communications are involved, collective animals exhibit 

rapidly synchronized movements, appearing to behave as if they were part of a single organism [6]. In 

other words, even though they are a collection of individuals, there is an emergent collectiveness as a 

whole group, such as a swarm found in an aggregation of insects. Collective behavior, therefore, is a 

striking example to consider a living system in the context of the relation between “parts and whole”.  
Regardless of the kind of species, the similarities in the behavior of different animals suggest 

that there is a simple rule underlying collective motion. In the study of collective behavior, to 

understand such the rule, a lot of theoretical models have been proposed. BOID (Bird-andrOID) is a 

pioneering model that was proposed in computer graphics [7]. An agent in BOID has a neighborhood 

with fixed radius in which the agent departs from its neighbor if it is too close to the neighbor (collision 

avoidance), aligns its velocity to those of neighbors by matching the their directions (velocity matching), 

and approaches to neighbors if it is too far from the neighbors (flock centering). BOID flocks formed 

from these rules can appear as if it were real to some extent, so that computer animation created with 

this model has been used in some films. 
Most important rule to create collectiveness, however, is considered to be “velocity matching” 

(VM). The model specialized in VM is so-called SPP (self-propelled particle) [8, 9]. In this model, each 

agent interacts with neighbors in neighborhood with a fixed radius by averaging the directions of 

motion of its neighbors (i.e., the velocity matching), coupled with “external noise” with a certain 

magnitude. On one hand, if there is no external noise, SPPs compose a perfectly aligned group. On the 

other hand, if there is too much external noise, SPPs create an aggregation of individuals that move 

randomly. Only with critical-tuned external noise SPP behave naturally. In short, SPP yields an idea 

that a swarm, herd and flock can be regarded as a critical phenomenon between order state as an entirely 

aligned group and disorder state as a random aggregation. There is an opposed relationship between 

velocity matching to create collective group and external noise to collapse the group. 
Is there such a conflicted coupling in real animal groups? Unfortunately, it seems not to be. 

Recent advances in image analysis have made it possible to obtain kinetic data on the movements of 

real organisms [10-16] and to compare that data with simulation models. These empirical studies 

reported that there are individuals’ movements and changes in the positional relations between 

neighbors in a coherent group. According to previous models such as SPP, these noisy movements of 

individuals on the inside of the group appear to collapse the collective motions, but real animal groups 

realize both coherent collective behavior and individuals’ movements. We call such diverse movements 

of individuals in coherent animal group as “inherent noise”. 
In the chapter 2, we show individuals’ movements of schooling ayu fish as an example of 

inherent noise. Recent experimental and observational data revealed that the internal structures of 

collective animal groups are not invariant through time. Rather, individuals can produce noise 

continuously within their group. These individuals’ movements within a group, which appear to 

collapse the global order and information transfer, can enable interactions with various neighbors. In 



 5 

this chapter, we show that noise generated inherently in a school of ayus (Plecoglossus altivelis) is 

characterized by various power-law behaviors. First, we show that individual fish move faster than 

Brownian walkers with respect to the center of the mass of the school as a super-diffusive behavior, as 

seen in starling flocks. Second, we assess neighbor shuffling by measuring the duration of pair-wise 

contact and find that this distribution obeys the power law. Finally, we show that an individual’s 

movement in the center of a mass reference frame displays a Lévy walk pattern. Our findings suggest 

that inherent noise (i.e., movements and changes in the relations between neighbors in a directed group) 

is dynamically self-organized in both time and space. In particular, Lévy walk in schools can be 

regarded as a well-balanced movement to facilitate dynamic collective motion and information transfer 

throughout the group. 

In chapter 3, we investigate whether inherent noise can contribute swarming behavior of 

soldier crabs, conducting an experiment with respect to emergent behavior. Emergent behavior that 

arises from a mass effect is one of the most striking aspects of collective animal groups. Investigating 

such behavior would be important in order to understand how individuals interact with their neighbors. 

Although there are many experiments that have used collective animals to investigate social learning or 

conflict between individuals and society such as that between a fish and a school, reports on mass 

effects are rare. In this study, we show that a swarm of soldier crabs could spontaneously enter a water 

pool, which are avoided by a solitary individual, by forming densely populated part of a swarm at the 

edge of the water pool. Moreover, we show that the observed behavior can be explained by the model of 

collective behavior based on inherent noise that is individuals’ different velocities in a directed group. 

Our results suggest that inherent noise, which is widely seen in collective animals, can contribute to 

formation and/or maintenance of a swarm and that the dense swarm can enter the pool by means of 

enhanced inherent noise. 

In chapter 4, we explain animal foraging strategy by our new foraging model, as an 

introduction for collective animal foraging that will be shown in the chapter 5. In intermittent random 

search in which slow motion to detect the target is discretely separated from the motion to migrate to 

another feeder, the high efficiency of Lévy strategy, i.e. time interval to switch these two phases is 

chosen from Lévy distribution, is generally found. While it is reported that Lévy strategy is consistent 

with searching behavior of real animals, some researchers claim that Levy-like distribution shown by 

animals is not necessarily produced by Levy process. We here propose an intermittent search model 

consisting of two phases that is not incorporated with Lévy process. In this model, agent is basically 

correlated random walker (CRW), but memorizes its trajectory and counts the number of crossover in a 

trajectory. If the number exceeds a threshold, the agent resets the memory of trajectories and makes 

ballistic movement in the direction uncorrelated to the past. We also show that this model can balance a 

trade-off between macro search (exploration) and micro one (exploitation), which is shown by CRW. 

Finally we demonstrate that another intermittent search model that is incorporated with ambiguity with 

respect to the rule to switch two phases, can show Lévy-like distribution of the time interval. 

In chapter 5, we investigate whether collective animal foraging behavior is driven by inherent noise 

or not. We here conducted an experiment with respect to collective foraging behavior of a swarm of 

soldier crabs Mictyris guinotae, which live in the tideland and can form large swarms. By using markers 
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attached to crabs’ shells and image-processing software, we obtained time series of individuals’ position 

during thirty minutes. To investigate the behavior, we created two experimental apparatus: ring- and 

round-shaped arenas. First, we checked basic behavior of soldier crab swarm in the round-shaped arena. 

Next, to examine characteristics of the behavior, and to simplify analysis, we used the ring-shaped arena. 

In the ring-shaped arena, the behavior of crabs would be regarded to be approximately one-dimensional. 

We here investigated whether soldier crabs formed denser swarm on the inside of the arena, and 

whether they showed collective foraging behavior. 

Finally, we summarize the thesis in the conclusion. 
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2. Inherent Noise can Appear as Several Power-law 

Behaviors in Fish School 

 
2.1. Background 

Although only local interactions are involved, collective animals (e.g., bird flocks and fish schools) 

exhibit rapidly synchronized movements, appearing to behave as if they were part of a single organism 

[6]. Information transfer through the entire group when it is exposed to predation is one of the most 

intriguing aspects of collective animal groups and has been observed, for example, as the propagation of 

a density wave within a group [17]. In theoretical studies, numerous simulation models have been 

proposed to understand the spontaneous emergence of the global order and information transfer in a 

group based on inter-individual interaction in a bottom-up manner [18-22]. In most models, the explicit 

alignment rule, according to which an agent matches its velocity with others in its neighborhood, is 

assumed, although the latest empirical research suggests that there is no evidence of direct matching of 

velocity and that global polarization results from interactions other than those that follow the explicit 

alignment rule [23]. 

It is clear, however, that information transfer is propagated by local interactions. Such information 

transfer can occur even if an individual does not change its relative position with respect to its neighbors, 

as with magnetic spin, but real animals in a collective group can change its relative position with their 

neighbors [24]. These individuals’ movements on the inside of the group, which appear to collapse the 

global order and information transfer, can enable interactions with various neighbors and contribute to 

dynamic collective behavior. 

Indeed, recent advances in image analysis have revealed that the internal structures of collective 

animal groups, in particular flocks and schools, are not fixed in time [15,16,25]. On one hand, when 

looking at an instant in time, individuals in a group can appear to be highly polarized and directed. 

Moreover, even velocity fluctuations of different individuals are correlated with each other [16]. On the 

other hand, in the long term, it has been observed that there is a noise generated inherently in collective 

animal groups, i.e., individuals travel in a directed group and perpetually replace their position with 

neighbors. Cavagna and others [24] investigated individual motions on the inside of starling flocks by 

identifying individual birds’ coordinates temporally and observing them in the center of a mass 

reference frame. In the center of a mass reference frame, one can obtain individuals’ coordinates with 

respect to the center of gravity and, hence, their relative movements with respect to the center of gravity. 

In their empirical research, Cavagna and colleagues estimated how much a bird moved within the group 

by calculating the mean-square displacement. They found that the mean-square displacement as a 

function against time was well described by a power-law dependence and that birds showed 

supper-diffusive behavior, i.e., they moved faster than Brownian walkers with respect to the center of 

the mass of the flock. Moreover, the researchers revealed that the remaining rate of a certain number of 

nearest neighbors exponentially decayed with time. In other words, the birds perpetually reshuffled their 
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neighbors.  

In this study, we investigate individuals’ movements on the inside of their group under controlled 

laboratory conditions using juvenile ayu schools (Plecoglossus altivelis) with 10, 20, 30, 40, 50 and 60 

individuals. By using video cameras with high temporal resolution (120 frames per second) and image 

processing software, we obtain identified individuals’ trajectories. Then, we investigate diffusion 

properties and find that ayu fish also move faster than Brownian walkers with respect to the center of 

the mass of the school, as seen in starling flocks. Next, we assess neighbors’ shuffling by measuring 

pair-wise contact duration and find that there is no characteristic time scale in which individuals remain 

neighbors. We show that the individuals’ movements within the group reveal a Lévy walk pattern with a 

power-law distribution of step length. Finally, we discuss whether inherent noise in the group [26,27] 

appearing as Lévy walk is well-balanced movement to facilitate dynamic collective motion and 

information transfer over the whole group rather than merely erroneous random motions derived from 

velocity matching among individuals. 

 

2.2. Materials and Methods 
 
2.2.1. Experimental Setup 

We studied ayu Plecoglossus altivelis, also known as sweetfish, which live throughout 

Japan and are farmed widely in Japan. Juvenile ayus (approximately 7-14 cm in body length) display 

typical schooling behavior, though adult ayus tend to show territorial behavior in environments where 

fish density is low [59]. We purchased juveniles from Tarumiyoushoku (Kasumigaura, Ibaraki, Japan) 

and housed them in a controlled laboratory. Approximately 150 fish lived in a 0.8 m3 tank with 

continuously filtered and recycled fresh water with a temperature maintained at 16.4 °C, and were fed 

commercial food pellets. Immediately before each experiment was conducted, randomly chosen fish 

were separated into each school size and moved to an experimental arena without pre-training.  

The experimental arena consisted of a 3 × 3 m white shallow tank. The water depth was 

approximately 8 cm so that schools would be approximately 2D. The fish were recorded with an 

overhead gray-scale video camera (Library GE 60; Library Co. Ltd., Tokyo, Japan) at a spatial 

resolution of 640 × 480 pixels and a temporal resolution of 120 frames per second. Schooling fish 

exhibit two typical ordered states. The first is a polarized state in which they exhibit a turning 

movement and in which individuals tend to be highly polarized through the group, and the second is a 

milling state in which individuals exhibit high polarization locally but the group conducts a rotating 

movement as a whole. In the school of ayus, both of these states were observed. The polarized and 

milling patterns can be distinguished by using two order parameters [29]—a polarization parameter 

OP=(1/N)|ΣN
i=1 ui| and a rotation parameter OR=(1/N)| ΣN

i=1 ui×qi|—where ui is the unit direction of fish 

number i and qi is the unit vector pointing from the school’s center of mass toward fish i. Each order 

parameter takes values of between 0 (no alignment or rotation) and 1 (strong alignment or rotation). 

Hence, we defined polarized patterns as those with high values of the polarization parameter and low 

values of the rotation parameter and milling patterns as those with high values of the rotation parameter 

and low values of the polarization parameter. In this study, we used 6 schools—with 10, 20, 30, 40, 50 
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and 60 individuals—for the polarization pattern and one school, with 40 individuals, for the milling 

pattern for a total of 7 schools (table 1). All experimental procedures were approved by the University 

of Tsukuba Animal Use and Care Committee. 

 

2.2.2. Tracking 

Time series of identified individuals’ positions were tracked using image-processing 

software (Library Move-tr/2D ver. 8.31; Library Co. Ltd., Tokyo, Japan) on gray-scale images. The 

shape of each fish and its geometric center were identified by the fact that the fish appear darker than 

the surrounding area, and the fish trajectories were constructed by tracking individuals from one frame 

to the next. When fish overlapped or made contact with others, we separated them using the manual 

tracking mode of the software. As a result, for each observed time duration T, we obtained all of the 

individuals’ x–y coordinates as a single pixel with a side length of 4.76 mm (table 1). In this study, the 

time interval between two consecutive reconstructions of individuals’ coordinates was dt=0.1 sec (12 

frames). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Data of analyzed schools. School size is defined as the maximum distance between two 

fish belonging to the school Op and Or indicate the order parameters for polarization and rotation, 

respectively. The state of the school is considered as polarized at a high value of Op and a low 

value of Or and as milling at a high value of Or and a low of Op. See also in the main text. 

 

2.3. Results 
 
2.3.1. Diffusion in the Fish School 

 We first investigated diffusive behavior in the polarized schools, a behavior that has been 

observed in starling flocks [24]. The center of the mass reference frame is useful for observations of 

Number of 

individuals 

State of 

school 

School 

size (mm) 

Total time 

interval (sec) 

Op Or 

10 polarized 414.6 141.5 0.869 0.111 

20 polarized 720.16 41.6 0.823 0.183 

30 polarized 1232.0 36.0 0.858 0.147 

40 polarized 1560.3 19.1 0.799 0.106 

50 polarized 1513.4 16.7 0.800 0.263 

60 polarized 1557.1 10.0 0.905 0.212 

40 milling 1557.7 52.1 0.139 0.849 
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individuals’ movements on the inside of their group. To quantify how much individuals move on the 

inside of their group, one can use the mean-square displacement in the center of the mass reference 

frame as a function of time (i.e., at the average amount of distance travelled in a time t):  

 

δr2 (t) = 1
T − t

1
N

[ri (t0 + t)− ri (t0 )]
2

i=1

N

∑
t0=0

T−t−1

∑

        (1) 

where Ri(t) indicates the position of i at time t, RCM(t) indicates the position of the center of the mass of 

the school at time t, and ri(t)=Ri(t)−RCM(t) therefore represents the position of fish i in the center of the 

mass reference frame. We averaged over all N fish and over all time lags of duration t in the interval [0, 

T], where T is the total time interval. In figure 1, we show some trajectories of the school in the 

camera’s reference frame and in the center of the mass reference frame. We estimated δr2(t) with 1.5 

orders of magnitude for time (this value is longer than the duration observed in starling flocks [24]), i.e., 

from 0.1 to 3.2 seconds (see figure 2). This approach was taken because although we can estimate how 

much individuals move by calculating the mean-square displacement in the center of the mass reference 

frame, the area where fish can move is, of course, restricted in the interior of school.  

Figure 1. 2D reconstruction of some trajectories of a school. (a) Laboratory reference frame. (b) 

Center of mass reference frame. All the axes are in millimeters. 

 

By computing δr2(t) for schools, we observed that the mean-square displacement in the 

center of the mass reference was well-described by the following power-law equation:  

 

δr2(t)=Dtα            (2) 

 

where α is the diffusion exponent, falling between 0 and 2, and D is the diffusion coefficient. Brownian 
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random walkers diffuse with α=1, corresponding to normal diffusion [44,60]. If α>1, walkers or 

particles show faster diffusion, which is called super-diffusion. If α=2, particles show ballistic diffusion. 

We found that the diffusion of fish in each school size fits the equation (2) well, with each exponent 

being larger than 1 (10 individuals: α=1.34, D=0.0054; N=32, R2=0.99, F=41.2, P<10-18; 20 individuals: 

α=1.52, D=0.0099; N=32, R2=0.99, F=186.2, P<10-28; 30 individuals: α=1.57, D=0.013; N=32, R2=0.99, 

F=700.7, P<10-36; 40 individuals: α=1.63, D=0.017; N=32, R2=0.99, F=3315.7, P<10-47; 50 individuals: 

α=1.75, D=0.012; N=32, R2=0.99, F=1084.9, P<10-39; 60 individuals: α=1.73, D=0.016; N=32, R2=0.99, 

F=24543.3, P<10-60). Hence, fish display super-diffusive behavior in the center of the mass reference 

frame. Figure 2 shows the mean-square displacement in the center of the mass reference frame against 

time for four schools. 

 

 

Figure 2. Mean-square displacement in the center of the mass reference frame for four schools. (a) 

20 individuals. (b) 30 individuals. (c) 50 individuals. (d) 60 individuals. 

 

2.3.2. Contact Duration as an Estimation of Neighbor Shuffling 

Next, we investigated neighbor shuffling in schools. Cavagna and colleagues [24] assessed 

neighbor changing in bird flocks by calculating the proportion of birds that remained as one of a number 

of nearest neighbors of focal birds, indicating that neighbor changing declined exponentially against 
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time. The authors concluded that neighbor reshuffling does occur and that there was no indication of a 

preferred structure of neighbors in the flock. Instead of computing such proportions, in this study, we 

estimate neighbor shuffling by investigating contact duration time.  

 Recently, by using mobile devices that can assess mutual proximity in a distributed manner, 

person-to-person interactions in various human communities (e.g., offices, hospitals, conferences and so 

on) have been analyzed systematically [61-63]. In such empirical research, it has been revealed that the 

contact duration time of pairs within a 1-2 m detection range exhibited a power-law distribution. 

Because this type of analysis indicates how long individuals interact with their neighbors, we can apply 

it to fish schools to quantify neighbor shuffling using individuals’ temporal coordinates. When we 

define two fish as a pair if they are within the detection range rd=60 (mm), we find that the contact 

duration of pairs of fish shows a power-law distribution in each polarized school (power-law vs. 

exponential [49]; 10 individuals: N=690, the scaling exponent µc=−1.96, AIC weights of power-law 

w(p)=1.00; 20 individuals: N=383, µc=−1.92, w(p)=1.00, 30 individuals: N=221, µc=−2.10, w(p)=1.00, 

40 individuals: N=137, µc=−1.91, w(p)=1.00, 50 individuals: N=231, µc=−1.89, w(p)=1.00, 60 

individuals: N=127, µc=−1.94, w(p)=1.00). Interestingly, the power-law distribution is also found in the 

milling school (40 individuals: N=171, µc=−1.89, w(p)=0.95). These results indicate that neighbor 

shuffling estimated by contact duration in both the polarized and milling schools has a similar structure 

in time, which agrees with results observed in human communities. Figure 3 shows the cumulative 

distribution of the contact duration of three polarized schools and one milling school. 

Figure 3. Cumulative distributions of contact duration for four schools. (a) Polarized school with 

30 individuals. (b) Polarized school with 40 individuals. (c) Polarized school with 50 individuals. 

(d) Milling school with 40 individuals. 
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2.3.3. Lévy Walk in Fish Schools 

 The super-diffusive movement described above is one of the characteristics of the Lévy 

walk [44]. The Lévy walk describes a pattern composed of small-step clusters separated by longer 

relocations [52], in which the distribution of step-length l is as follows: 

 

P(l) ~ l-µ with 1<µ≤3,         (3) 

 

where µ represents the power-law exponent. Here, we show that fish behave as Lévy walkers on the 

inside of schools. 

 The step length can be defined in different ways, such as the distance between consecutive 

landings on the sea surface for albatross [44,50] and the saccade interval length for fruit flies [64]. To 

investigate whether the fish log-scale movement lengths in the schools followed power-law 

distributions, we define the step-length as the intermittent interval length [65] in the trajectories in the 

center of the mass reference frame as follows: If dr<|ri(t)−ri(t−dt)|, i.e., if the distance between 

consecutive positions of i in the center of the mass reference are closer than dr, ri(t) is considered to be 

a pausing point. Here, we set dr=20(mm). When we calculate turning angle per dt at both pausing and 

non-pausing points for all polarized schools (figure 4A), we find that turning angle at pausing points is 

significantly larger than that at non-pausing points (T-test; pausing points (N = 4156, Mean ± SD = 

46.91 ± 45.79 (degree)) vs non-pausing points (N = 3341, Mean ± SD = 17.63 ± 22.82 (degree)); 

p<10-232, T-value=76.18) (figure 4B), where non-pausing point is defined as a position that is not 

pausing point and whose one next and one before positions are also not pausing point. 

Figure 4. Turning angle at pausing points and non-pausing points. (a) Schematic diagram of 

turning angle. (b) Mean turning angle at pausing points (dark grey) and non-pausing points (pale 

grey). Error bars are SDs. 
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 The step-length l (>dr) is then considered as the distance between any two successive 

pausing points. We find that the step lengths of each polarized school follow a power-law distribution 

(power law vs. exponential; 10 individuals: N=1171, µ=2.97, w(p)=1.00; 20 individuals: N=621, µ=2.49, 

w(p)=1.00, 30 individuals: N=769, µ=2.11, w(p)=1.00, 40 individuals: N=624, µ=2.18, w(p)=1.00, 50 

individuals: N=546, µ=2.53, w(p)=1.00, 60 individuals: N=489, µ=2.43, w(p)=1.00). Because each 

exponent µ systematically ranges in the interval 1<µ≤3, these results indicate that fish behave as Lévy 

walkers on the inside of schools. Moreover, when we check an individual’s trajectory, its step lengths 

also show a power-law distribution (power law vs. exponential; one individual: N=102, µ=2.78, 

w(p)=1.00) (for more data of each fish belonging to schools with 10, 20 and 30 individuals see section 

2.3.4). Figure 5 shows the cumulative distributions of the step lengths of three polarized schools and of 

an individual. 
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Figure 5. Cumulative distributions of step length in the center of the mass reference frame. (a) 10 

individuals. (b) 40 individuals. (c) 60 individuals. (d) One individual. 
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 In figure 6, we present a longer trajectory of an individual in the center of the mass 

reference frame (for four more samples see section 2.3.4). It is easy to see that there are step clusters 

separated by longer relocations, which is a characteristic of the trajectory described by a Lévy walk. 

 

 

Figure 6. Longer trajectories of an individual in the center of the reference frame. The axes are in 

millimeters. 
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2.3.4. Additional Data of Lévy Walk Shown by Individual Fish 

 In this section, we supply more data of each fish belonging to schools with 10, 20 and 30 

individuals with respect to Lévy walk in schools, and four more samples of longer trajectory of an 

individual in the center of the mass reference frame. 

 

 

Figure 7. Cumulative distributions of step-lengths in the center of mass reference frame, displayed 

by each individual fish belonging to 10 individuals school. Number i in each plot indicates 

individual number that corresponds as in table 2. 
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Figure 8. Cumulative distributions of step-lengths in the center of mass reference frame, displayed 

by each individual fish belonging to 20 individuals school. Number i in each plot indicates 

individual number that corresponds as in table 3. 
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Figure 9. Cumulative distributions of step-lengths in the center of mass reference frame, displayed 

by each individual fish belonging to 30 individuals school. Number i in each plot indicates 

individual number that corresponds as in table 4. 
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Figure 10. Trajectories of four individual fish in the center of reference frame. The axes are in 

millimeters. 
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Table 2. Data for distributions of step-lengths in the center of mass reference frame, displayed by 

each individual fish belonging to 10 individuals school, where i indicates individual number that 

corresponds as in figure S1, N represents the total number of step-lengths, w(p) is AIC weights of 

power-law and µ is power-law exponent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

i N w(p) µ 

1 99 1.00 2.99 

2 96 1.00 2.93 

3 104 1.00 3.06 

4 137 1.00 3.07 

5 129 1.00 2.84 

6 110 1.00 3.08 

7 132 1.00 3.12 

8 144 1.00 2.87 

9 106 1.00 2.98 

10 102 1.00 2.78 
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Table 3. Data for distributions of step-lengths in the center of mass reference frame, displayed by 

each individual fish belonging to 20 individuals school, where i indicates individual number that 

corresponds as in figure S2, N represents the total number of step-lengths, w(p) is AIC weights of 

power-law and µ is power-law exponent. 

 

 

 

 

 

i N w(p) µ 

1 26 0.99 2.16 

2 43 0.99 2.64 

3 24 0.99 3.13 

4 24 0.99 2.27 

5 39 0.99 2.27 

6 43 1.00 2.71 

7 23 0.99 3.04 

8 20 0.89 2.94 

9 19 0.99 1.88 

10 20 0.99 2.22 

11 38 0.99 2.34 

12 35 1.00 2.30 

13 25 0.97 2.05 

14 31 0.99 2.18 

15 34 1.00 2.76 

16 26 0.99 2.33 

17 30 0.99 2.66 

18 32 0.93 3.88 

19 41 0.99 2.56 

20 48 1.00 2.69 
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Table 4. Data for distributions of step-lengths in the center of mass reference frame, displayed by 

each individual fish belonging to 30 individuals school, where i indicates individual number that 

corresponds as in figure S3, N represents the total number of step-lengths, w(p) is AIC weights of 

power-law and µ is power-law exponent. 

 

 

 

 

 

 

 

 

 

 

 

i N w(p) µ i N w(p) µ 

1 33 0.70 1.95 16 16 0.64 2.03 

2 21 0.99 1.89 17 22 0.99 2.77 

3 34 0.99 2.49 18 19 0.33 1.82 

4 17 0.99 1.89 19 29 0.99 3.04 

5 24 0.99 2.31 20 26 0.97 2.16 

6 33 0.99 2.36 21 28 0.97 1.79 

7 19 0.99 1.90 22 35 0.99 2.53 

8 19 0.58 2.22 23 19 0.99 2.33 

9 19 0.99 2.14 24 24 0.99 2.71 

10 26 0.99 2.02 25 22 0.99 2.07 

11 24 0.99 2.54 26 26 0.77 2.06 

12 29 0.46 2.00 27 29 0.99 2.33 

13 26 0.99 2.39 28 18 0.99 1.88 

14 22 0.89 2.14 29 38 0.99 2.13 

15 26 0.99 2.27 30 27 0.99 1.85 
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2.4. Discussion 
We conducted three investigations on the inherent noise in schools of ayus that show 

polarized and milling patterns and exhibit individual temporal coordinates. First, we calculated the 

mean-square displacement in the center of the mass reference frame, as seen in starling flocks, and 

observed that there were super-diffusive behaviors in polarized schools with exponents of α>1. This 

result indicates that fish in schools diffuse faster than Brownian motion. Although model simulations 

have predicted two-dimensional super-diffusion with an exponent of α=4/3 [66], diffusion in real 

schools occurs faster than predicted, except for schools with 10 individuals. Moreover, we observed the 

trend that the larger the school size is, the higher the diffusion exponent will be. This relation may be 

caused by an effect of the area in which the fish can travel, i.e., on the domain covered by a school. If a 

fish moves beyond the domain, it would be separated from its school. We might, therefore, consider that 

the smaller the school size is, the more constraints there will be on an individual’s diffusion and that the 

exponent would reach a certain value in larger schools. 

 The polarized and milling patterns are known as emergent collective ordered states in fish 

schools, which co-exist for the same individual behaviors [23]. One can discriminate these two 

self-organized patterns by using two order parameters: polarization parameters and rotation parameters. 

This condition raises the question as to what type of properties would be commonly observed in both 

polarized and milling states. For these two states, we calculated pair-wise contact duration, which 

allows us to quantify neighbor shuffling because it measures how long individuals interact with 

neighbors. We found that the distributions of contact duration in polarized schools followed a power 

law, as has been observed in various human communities. This result indicates the absence of a 

characteristic scale with respect to how long individuals interact with neighbors. Similarly, we observed 

a power-law distribution in contact duration in the milling school. Therefore, this property of neighbor 

changing with respect to time is considered to be common both in polarized and milling patterns in fish 

schools. Note that the way we quantified neighbor shuffling here is different from the method employed 

by Cavagna and others for starling flocks. They defined neighbors as a number of individuals nearest to 

a focal individual, whereas we defined neighbors as individuals in the neighborhood of the focal 

individual within detection range rd. In other words, whereas Cavagna and others used topological 

neighborhoods in their studies, we used metric neighborhoods to estimate neighbor shuffling [14]. 

It seems that if individuals behave ideally, there is no inherent noise and hence no position 

changing in the collective group. The results discussed above, however, indicate that individuals exhibit 

super-diffusive behavior within the group, leaving neighbors with no characteristic time scale. Such 

inherent noise, which might be expected to be detrimental for collectivity, plays an important role in 

facilitating interactions with various neighbors and thereby robust collective motion and information 

transfer. Is there a balance between excessive movement that is detrimental to the maintenance of the 

group and movement that is too slight to contribute to collectivity?  

In considering this question, our results show that fish movement lengths in schools follow a 

power-law distribution, i.e., a Lévy walk. In a study on foraging strategy, a Lévy walk with the 

power-law exponent µ ranging from 1<µ≤3 was considered to be important in a natural environment in 

which resources are unpredictably distributed [44]. A Lévy walk with µ=2 indicates optimal searching 
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behavior in such an environment. For the exponent µ≈1, movement patterns are close to ballistic motion. 

This movement is useful to a foraging animal that is exploration foraging if resources are 

homogeneously distributed far from an animal’s location. For µ>3, the walk is approximated as 

Brownian motion. This motion is applicable for exploitation foraging if resources are abundantly 

distributed near an animal’s location. A Lévy walk with the exponent µ ranging from 1<µ≤3, therefore, 

indicates a foraging pattern that balances exploitation and exploration foraging. 

We can paraphrase these explanations regarding individual movements within a group with an 

analogy. If the step lengths of individuals in the center of the reference frame follow the power-law 

distribution with the exponent µ≈1, they might move with much longer step lengths that might be 

detrimental to collective motion and information transfer through the group. If µ>3, individuals might 

stay in a local region within the group, and it would be difficult for individuals’ movements within the 

group to contribute to dynamic collective behavior. A Lévy walk with exponent µ ranging from 1<µ≤3 

was observed in schooling ayus, which can be regarded as a well-balanced movement to facilitate 

dynamic collective motion and information transfer throughout the group. 
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3. Emergent Behavior in a Swarm of Soldier Crabs 

Described by Inherent Noise 
 
3.1 Background 
 Emergent behavior that brings about a mass effect is one of the most striking aspects of 

collective animal groups. In recent years, developments in image analysis have made it possible to 

obtain kinetic data on the movements of real organisms [15,16,24,25] and to compare that data with 

simulation models [28,29]. In contrast, there are few comparisons between these models and data 

obtained using behavioral experiments [26,30]. Rather, many behavioral experiments that have used 

animal groups were conducted in the context of social learning and/or the opposed relationship between 

an individual and society, such as that between a fish and a school [31-33]. Investigating such a 

behavior, however, must help to find new mechanisms underlying interactions between individuals.  

 Berdahl and colleagues [30] used schooling fish, taking advantage of the avoidance of light 

areas (or preference for darker area such as the habitat under the lee of a rock) as one approach to the 

problem of linking experimental behavior results to modeled behavior. In this experiment, a temporally 

changing light field that controlled the mean light level was projected onto a tank in which the fish were 

swimming. They found that if the size of the school became larger, the level of performance in a dark 

area increased. In short, collective sensing against light areas was enhanced in larger schools. Moreover, 

by comparing this with the model, they concluded that this situation arose from the rule of attraction 

that has been proposed in some theoretical models such as BOIDS [7] and the zone-based model [18] by 

which an agent approaches neighbors if they are separated from each other. This raises the question of 

cases of spontaneously invading an avoidance area, which are frequently found in biology. [34,35] In 

this case, it would be expected that a different rule from the attractive explanation is required.  

 In this study, we conducted an experiment with respect to invading avoidance areas using a 

swarm of soldier crabs, Mictyris guinotae [36-39], which live in the tideland and can form large swarms. 

Through numerous field surveys of soldier crabs, we found the following observations to be 

characteristic of soldier crab general swarming behavior: (i) A swarm moving in the tideland has 

inherent noise. In other words, crabs have different velocities in maintaining a directed swarm, which 

reveals the local turbulent flow in a swarm. (ii) When a swarm faces a pool that has been naturally 

generated on a tideland, it does not enter this avoidance area if the swarm is small or sparse. In contrast, 

if the swarm becomes bigger and forms a dense region, this part of the swarm rushes into the pool 

without pausing. In other words, turbulent motion results in part of the swarm becoming highly 

concentrated, and this part enters and crosses the water due to the effect of the group. (iii) Individuals in 

other parts of the swarm follow their predecessors. 

 Based on these observations, in particular observation (ii), we designed an experiment for 

the water crossing behavior of soldier crabs, M. guinotae. To investigate the behavior, we created an 

apparatus with a water pool sandwiched between two shore areas under semi-natural conditions and 

made comparisons between small (5 individuals) and large (15 individuals) swarms with respect to the 
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performance of water crossing behavior. Then, we estimated whether the performance changed 

depending on the size of the swarm concentrated at the edge of the water pool. Finally we compared the 

experimental results with a swarm model based on inherent noise that was proposed in our previous 

study [22, 40-42].   

 

3.2. Materials and Methods 
 

3.2.1. Soldier Crabs Mictyris guinotae 

We studied M. guinotae living in Funaura Bay on Iriomote Island, Okinawa Prefecture, 

Japan. Soldier crabs, whose carapace sizes are approximately 15 mm, are among the few crabs adapted 

to walking forwards, rather than sideways [36-39]. Although they burrow tunnels and live under 

substrate at higher tidal levels, they emerge and feed on detritus on the lagoon surface in swarms at the 

lower tidal level. During the breeding season (from December to March), their behavior differs 

depending on mating [67]. To avoid these effects, our experiment was conducted in the daytime during 

the 4 hours around ebb tide on fine weather days in October 2013. Crabs were collected in plastic 

containers that contained mud substrate and were separated into each swarm size in the 5 minutes before 

each trial. For each trial different swarm composed of different crabs were used without pre-training, 

with a total of nine hundred crabs used throughout the experiment. Crabs were immediately released 

after the experiment. No specific permits were required for the described field studies and the locations 

are not privately-owned or protected in any way. M. guinotae is not endangered or protected species. 

 

3.2.2. Experimental Setup 

A simple apparatus was constructed on the tideland (figure 10). We formed a rectangle by 

inserting plastic plates vertically, 100 mm deep into a flat area on the tideland (300×900 mm, 100 mm 

height). To make a pool (300×300 mm, 15 mm depth) sandwiched between two shore areas, we dug out 

the central part of the tideland surrounded by the plates and covered the rectangular area with a vinyl 

sheet onto which some mud was added. The pool was then filled with water obtained from a naturally 

generated pool. The vinyl sheet was used to inhibit crabs from burrowing tunnels and to keep the water 

in the pool. The crabs did not burrow tunnels during any trials and the water level changed little. Before 

each trial, we leveled the shore areas and resupplied water to the pool to maintain conditions.  

 Each swarm was gently thrown onto one side of the shore area apparatus, and swarm 

behavior was recorded for three minutes with a video camera (Panasonic HDC-TM700, 1920×1080 

pixels). We used image-processing software (ImageJ; Rasband, W.S., National Institutes of Health, 

Bethesda, Maryland, USA) to calculate inter-individual distances (at 3 seconds intervals). We obtained 

x–y coordinates for each crab as a single pixel whose side length was 0.56 mm. 
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Figure 10. (A) Experimental apparatus for water crossing behavior. Plastic plates surround the 

tidal land to form a rectangular shape. The pale grey areas represent the water pool. (B) Cross 

section of apparatus. The water pool is sandwiched between two shore areas. 

 

3.2.3. Swarm Model 

Here we describe our swarm model in detail. We present a rough idea of the model in the 

results section. 

Firstly, we describe basic behavior of the model. 

Our swarm model consists of N individuals moving in discrete time and in a discrete S × S  
space where S = {1, 2,  ... , sMAX} . The location of the k-th individual at the t-th step is given by 

 
P(k, t) = (x, y)  , (1) 

 
where x ∈ S, y ∈ S,k ∈ K = {1, 2,  ... ,N} , and the boundary condition is given as wrapped fashion. 

Each k-th individual at the t-th step has P number of potential vectors v(k, t;i)  with 

i ∈ I = {0,1,  ... ,P −1} . If i = 0 , the vector v(k, t;0) , called the principal vector, is represented by 

the angle θk,t, such that 
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v(k, t;0) = (Int(Lcosθk,t ), Int(Lsinθk,t ))  , (2) 

 

where for any real number x, Int(x) represents integer X such that X < x < X +1 . L is the length of 

principal vector. Because of the wrapped fashioned boundary condition, X ∈ S . If i ≠ 0 , the vector 

is defined using a random value, η, selected with equal probability from [0.0, 1.0] and a random value 

(radian), ξ, selected with equal probability from [-απ, απ], as 

 

v(k, t;i) = (Int(Lη cos(θk,t +ξ )), Int(Lηsin(θk,t +ξ )))  . (3) 

 
The principal vector v(k, t;0)  is a special case where η =1.0  and ξ = 0.0 . For each v(k, t;i) , 

the target of the vector is represented by τ (k, t;i)  such that 

 
τ (k, t;i) = P(k, t)+v(k, t;i)  . (4) 

 

To implement mutual anticipation, we define the popularity of the targets of the vectors. The popularity 
is defined for each site at the t-th step, (x, y) with x ∈ S, y ∈ S , by 

 

ζ (x, y;t) =

{τ (k, t;i),k ∈ K, i ∈ I |τ (k, t;i) = (x, y)∧ ∀(k ∈ K )P(k, t) ≠ (x, y)}
 .

        (5)  

 

Before updating the location, for any (x, y) at the t-th step, we set 

 
ω(x, y;t) = 0  . (6) 

 

Updating the location of individuals is asynchronously executed. The order of updating is randomly 

determined independent of the number of individuals, k. If there exists i ∈ I  such that  

 
ζ (τ (k, t;i))>1 , (7) 

 

the next site for the k-th individual is defined by 

 
P(k, t +1) = τ (k, t;s)  , (8) 

 

where s satisfies the condition such that for any i ∈ I , 

 
ζ (τ (k, t;s)) ≥ζ (τ (k, t;i))  . (9) 
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In other words, an individual moves to the target of its own potential vector that has maximum 

popularity. If there multiple sites satisfy condition (9), one of them is chosen randomly. 

 Because updating is asynchronous, a set of sites updated by equation (8) is gradually grows. 

A set of updated sites is represented by UN = {(x, y)∈ S × S | P(k, t +1) = (x, y)} . 

 An individual that satisfies condition (7) and moves by equation (8) is called a wanderer. 

The vacated site generated by a moving wanderer is recorded in memory by 

 

ω(x, y;t) =1,  if P(k, t) = (x, y)∧P(k, t +1)∈UN  . (10) 

 

After all wanderers have been updated, an individual which does not satisfy condition (7) moves to the 

vacated site in follower-neighborhood, Nf, by 

 

P(k, t +1) = Rd{(x, y)∈ N f |ω(x, y;t) =1},

if {(x, y)∈ N f |ω(x, y;t) =1} ≥1
 , (11) 

 

where RdJ represents an element randomly chosen from set J. An individual whose movement is 

determined by equation (11) is called a follower. 

 If an individual is neither wanderer nor a follower, it moves by 

 

P(k, t +1) =
Rd{τ (k, t;i) | ∀( j ∈ #K )P( j, t) ≠ τ (k, t;i)∧τ (k, t;i)∉UN}

 , (12) 

 

where K’ is an index set of individuals that are not updated.  

 Finally, principal vectors are locally matched with each other in the neighborhood through 

velocity matching, M. This matching operation is expressed as 

 

θk,t+1 = θk,t M
 . (13) 

 

The bracket with M represents the average velocity direction in the neighborhood, M. The parameters in 

our model are listed below. 

 

  L : the length of principal vector  

  P : number of potential vectors  

  α : angle derived from the principal vector  
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  Rf : radii of the follower-neighborhood  

  RM : radii of the neighborhood of velocity matching 

 

Secondly, we define water crossing behavior in our model. 

 In the simulation introducing the pool, we define a specific area Up ⊆ S × S  in which the 

condition (7) that allows mutual anticipation (equation (8)) is replaced by 

 
ζ (τ (k, t;i))> c . (14) 

 

In the simulation, we set at c = 2 . Hence, it is more difficult for individuals to go through the area Up, 

which mimics a water pool that an individual soldier crab does not enter. Only by introducing the 

specific area Up, can we simulate the water crossing behavior. 

Finally, we show tendency to walk along a wall in our model. 

 We first define the wall state for any lattice (x, y) such that 

 

w(x, y) =1,  if the site is the wall state;
0, otherwise

 . (15) 

 
In the simulation of water crossing behavior, an agent can be located only at a site where w(x, y) = 0 . 

The angle of tangential direction is defined for each wall state site (x, y) and is represented by θw(x, y). 

The tendency of walking along a wall is defined by 

 

θk,t = Rd{β,β +π}  , (16) 

β = Rd{θw (x, y) | d(P(k, t), (x, y)) ≤ d(P(k, t), (u,v)),
w(x, y) = w(u,v) =1, (x, y), (u,v)∈ NW }

 , (17) 

 

where d((p, q), (x, y)) represents the metric distance between two sites (p, q) and (x, y), and NW 

represents the neighborhood of wall-monitoring for each agent with a radii Rw = 2 . If an agent is 

close to the wall with respect to NW, the agent’s velocity, θk,t is parallel to the tangential direction of the 

wall. After this operation, velocity matching (equation (13)) is applied to all agents. Only from (16) and 

(17) can agents close to the wall walk along the wall. 

 

3.3. Results 
 

3.3.1. Experimental Results 
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To investigate whether the water crossing behavior was caused by mass effect, we compared 

small swarms (5 individuals) with large swarms (15 individuals) with respect to the performance of 

water crossing behavior. Each trial was conducted for three minutes and a total of 40 trials were 

performed for each swarm size. For each trial, the success rate φ was defined by the number of 

individuals that completely walked across the water pool, normalized by the total number of individuals. 

The success rate φ was zero if no crabs completely walked across the pool, while it was one if all of the 

crabs finished crossing to the opposite shore. According to field observations of naturally generated 

water crossing behavior, there were some crabs left in the water pool, so not all individuals composing 

the swarm finished crossing to the other shore. Hence, we defined a success trial by φ> 0.5, a failure by 

φ≤ 0.5, and the performance of water crossing behavior by the number of success trials normalized by 

the total number of trials. 

 Figure 11 shows the performance of water crossing behavior and the frequency of 

successful and unsuccessful trials. The performance differed significantly between small and large 

swarms (performance: 30/40 (large swarm) vs. 10/40 (small swarm), Fisher exact test: P < 0.001). The 

number of failed trials performed by small swarms was significantly larger than the number of 

successful trials (failure trial: 30 out of 40 swarms, binomial test: P <0.01). The number of successful 

trials performed by large swarms was significantly larger than the number of failures (success trial: 30 

out of 40 swarms, binomial test: P <0.01). These results indicate that while small swarms avoid entering 

the water, large swarms cross over the water pool. This can be interpreted as emergent behavior caused 

by a mass effect.  

 

fr
eq

ue
nc
y�

perform
ance�

large/swarm/small/swarm/

��	��	������

 
 

Figure 11. Frequency of success and failure as well as performance of each water crossing 

behavior. Large swarm, N = 40; small swarm, N = 40. 

 

 Detailed results of the above analysis that show the success rate φ and NI of each trial are 

provided in Table 1. NI indicates the number of individuals that eventually crossed the pool during a 

trial. Between small and large swarms, we found a significant difference in the number of trials in 
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which no crab crossed the river (0/40 (large swarm) vs. 14/40 (small swarm), Fisher exact test: P < 

0.001). This result shows that small swarms avoid the water. There is, however, no significant 

difference in the number of trials in which all crabs finish crossing to the opposite shore (7/40 (large 

swarm) vs. 2/40 (small swarm), Fisher exact test: P > 0.05, NS), which means that crabs composing the 

swarm do not always finish crossing, independent of swarm size, as seen in natural conditions. 

 

Small swarms  Large swarms 

Trial ϕ NI Trial ϕ NI  Trial ϕ NI Trial ϕ NI 
1 0 0 21 0.2 1  1 0.6 9 21 0.73 11 

2 0.8 4 22 0 0  2 0.87 13 22 0.87 13 

3 1 5 23 0 0  3 0.67 10 23 0.93 14 

4 0.2 1 24 0.6 3  4 0.67 10 24 0.67 10 

5 0.6 3 25 0.4 2  5 0.87 13 25 0.87 13 

6 0.8 4 26 0.2 1  6 1 15 26 0.27 4 

7 0.6 3 27 0.2 1  7 1 15 27 0.33 5 

8 0.8 4 28 0.4 2  8 1 15 28 0.2 3 

9 0.2 1 29 0.4 2  9 1 15 29 1 15 

10 0 0 30 0 0  10 0.93 14 30 0.93 14 

11 0 0 31 0.2 1  11 1 15 31 0.73 11 

12 0 0 32 0.6 3  12 0.2 3 32 0.73 11 

13 0.2 1 33 0 0  13 1 15 33 0.67 10 

14 0.2 1 34 0 0  14 0.73 11 34 0.07 1 

15 0.4 2 35 0 0  15 0.6 9 35 0.4 6 

16 0.2 1 36 0 0  16 0.6 9 36 0.27 4 

17 0 0 37 0.4 2  17 0.67 10 37 0.73 11 

18 0.2 1 38 0 0  18 0.8 12 38 0.4 6 

19 0 0 39 0.2 1  19 0.47 7 39 0.87 13 

20 1 5 40 0.8 4  20 0.33 5 40 0.87 13 

 

Table 5. Detailed results for the analysis shown in figure 11. The success rate ϕ was defined by the 

number of individuals that completely walked across the water pool during each trial, normalized 

by the total number of individuals. NI indicates the number of individuals that eventually crossed 

the pool during each trial. 

 

 To estimate the contribution of the density effect on the water crossing behavior in detail, 

we investigated whether the performance depended on the size of the swarm concentrated at the edge of 

the water pool. First, to equalize the conditions when the swarm entered the water, we defined the initial 

condition such that there was no crab in either the pool or on the opposite shore area at a certain time 
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step and that in the next time step a crab entered the pool. Note that we only used crab positional data at 

each of the time steps, which were separated by three seconds intervals, and ignored crab behavior 

between time steps. Second, to calculate the size of the swarm concentrated at the edge of the pool, we 

defined the swarm network as a swarm that consisted of individuals within 50 mm of another 

individual; such individuals were connected to each other as the nodes of the network. We calculated 

the size of the swarm network that a crab entering into the pool belonged to and checked the 

performance for each swarm network. As long as it satisfied the initial condition, we continued to check 

the performance for each swarm network until each trial finished. In this analysis, we defined a failure 

trial as a trial in which all individuals comprising a network did not finish crossing the pool and a 

successful trial as a trial in which at least one individual within the network completely walked across 

the water pool. The performance of water crossing behavior was defined as the number of successful 

trials normalized to the total number of trials. Figure 12A and B show the performance of water 

crossing behavior and frequency of success as well as the failure of small and large swarms, 

respectively. It is easy to see that the smaller network size was (in particular when the network size was 

one), the smaller the performance was for both small and large swarms. When the network size was 

more than six, every swarm successfully crossed the water. When we compiled the data sets for both 

large swarms and small swarms, we found significant differences in the performance between solitary 

crabs (i.e., network size is one) and swarms with network sizes that were greater than two (performance; 

53/76 (swarm) vs. 22/70 (solitary crab), Chi-square test: χ2
1 = 19.900, P < 0.001) (figure 12C).  

 

 

Figure 12. (A) Frequency of success and failure of each network size as well as the performance 

of small swarm trials, N =81. (B) Frequency of success and failure of each network size as well as 

the performance of large swarm trials, N = 65. (C) Frequency of success and failure as well as the 

performance of solitary crabs (i.e., network size is one) (N = 70) and a swarm whose network size 

was more than two (N = 76). 
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 Figure 13 shows typical snapshots of the water crossing behaviors with some trajectories. 

Each crab is represented by a different color. Trajectories are composed of small squares representing 

each crab’s location and dashed lines that connect the locations at one time with those at the next time. 

The number next to each square represents the order of time, with a time interval of three seconds. The 

blue vertical line in figure 13A,B represents the border between the shore area and the pool area. Figure 

13A provides examples of successful water crossings. It shows the effect of gathering at the edge of 

pool; once a swarm composed of six crabs entered into the pool, it crossed over the pool without 

stopping. Figure 13B provides an example of failure of the behavior. Although the crab entered the pool 

at least once, it hesitated in the water and left the pool. In addition, even though other crabs crossed over 

the pool, a crab was left in the pool, as was seen in natural conditions (figure 13C). 

 

Figure 13. Typical snapshots of water crossing behavior with several trajectories. Different colors 

correspond to different crabs. Trajectories are composed of small squares that represent the 

location of each crab and dashed lines that connect its location at a certain time with its location at 

the next time. The number next to each square represents the order of time, with a time interval of 

three seconds. The shore area and pool area are divided by a blue vertical line. (A) Example of a 

successful water crossing. (B) Example of a failed behavior. (C) Example of a crab being left in 

the pool despite the crossing of the other crabs. 
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3.3.2. Swarm Model Based on Inherent Noise 

Here, we show a swarm model to explain emergent water crossing behavior. As mentioned 

in the introduction section, using numerical field observations and experimental results we found the 

following characteristics of general swarming behavior in soldier crabs: (i) a swarm moving in a lagoon 

has inherent noise and maintains coherence; (ii) turbulent motion results in part of the swarm becoming 

highly concentrated, and this part enters and crosses the water through an effect of the group; and (iii) 

individuals in other parts of the swarm follow their predecessors. Characteristic (i) suggests perpetual 

negotiation among individuals with respect to direction. Characteristic (ii) reveals that density affects 

the mechanism to generate a swarm. Such an inherent noise has been found not only in the swarming of 

soldier crabs but also in other animal groups. For example, in a starling flock each bird continuously 

changes its neighbors and reveals supper-diffusive behavior in the center of the mass reference frame of 

the flock [24]. Moreover, it has been reported that a noise inherently generated within a locust-march 

plays an essential role in the collective change of direction [26]. When considering (i) combined with 

(ii), it is suggested that inherent noise positively contributes to generate and maintain a swarm.  

 To incorporate these soldier crab swarm behaviors into a model, we introduced several 

potential transitions for each individual that allowed the individual to anticipate the movements of other 

individuals within the swarm (figure 14A). Each individual has its own principal vector (velocity) 

accompanied by a number of potential transitions (P) in a range restricted by the angle (α) and the 

length (L). If the targets of any potential transitions overlap at a certain site (lattice), the number of 

potential transitions to that site is counted as the site’s “popularity”. If there are multiple sites with a 

popularity larger than 1 (threshold value) among an individual’s potential transitions, it is assumed that 

the individual moves to the site with the highest popularity. If several individuals intend to move to the 

same site, one individual is randomly chosen to move there and the others move to their second most 

probable site. This rule represents the mutual anticipation of the individuals. For example, people often 

manage to avoid collisions and walk in a crowd of others using anticipation [68,69]. Therefore, we 

implement this type of behavior into our model. If there is no site with a popularity exceeding the 

threshold value in the neighborhood of an individual, and if others within a radius Rf move due to 

mutual anticipation, the individual moves to occupy the absent site generated by mutual anticipation. 

Namely, it follows its predecessor. If an individual’s movements are not based on mutual anticipation or 

the actions of a predecessor, it moves in the direction of a randomly chosen potential transition. This 

type of individual is called a “free wanderer” (see further details in Materials and Methods). 

 We implemented these rule in an asynchronous updating model in a lattice space coupled 

with velocity matching (VM) of principal vectors (figure 14A). VM is implemented in a neighborhood 

with a radius RM. By assuming a maximum of one individual per lattice, the model implements collision 

avoidance (CA). The predecessor-following rule is also an example of flock centering (FC) (also known 

as attractive rule). The rules of VM, CA, and FC constitute BOIDS. BOIDS has recently been expanded 

to model more realistic characteristics of flocks and schools [18-21,70]. Thus, the introduction of 

mutual anticipation to our model is a natural extension of BOIDS. Figure 14B demonstrates how 

various swarming patterns in the model with rapped boundary conditions depend on the parameters α 

and P with Rf = 2 and RM = 3. If P is 1, the model mimics BOIDS. If P is 2, multiple potential transitions 
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break out in collective motion because two transitions contribute not to make a popular site, but to make 

a random transition. If P exceeds 2, mutual anticipation contributes to swarm formation, especially if α 

is large. It is easy to see that a swarm contains turbulent motion despite maintaining a highly dense 

whole when P is larger. Furthermore, if there is a solitary individual, it is regarded as a free wanderer 

and moves by choosing randomly from potential transitions. Therefore, the larger P is, the more random 

an individual’s move is. In this sense, we can regard potential transitions as inherent noise. In our 

previous study, we showed that this model could explain several phenomena exhibited by animal groups 

[22, 40-42]. 
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Figure 14. Schematic diagram of the model and the behavior of a model simulation. (A) 

Illustration of a transition of a swarm in lattice space. Each individual is represented by a blue cell 

and their potential transition is represented by a red arrow. The principal vector is represented by a 

thick red arrow. First, velocity matching is applied to the principal vectors (upper left). Next, the 

mutual anticipation is estimated. The amount of overlap between targets of potential transitions is 

calculated and sites with an overlap larger than 1 (threshold) are obtained (pink site). For example, 

the popularity of the highest pink site is 2 (upper center). An individual whose potential transitions 

reach some popular sites moves to the most popular site (black arrow in the upper right). After that, 

followers (lower left) and free wanderers (lower center) move, which results in the final 

distribution (lower right). (B) How changing P and α affects the patterns of a swarm composed of 

100 individuals in a 50×50 lattice. Each individual is represented by a square and a trajectory tail, 

where L=4, Rf = 2, and RM = 3. 

 

3.3.3. Water Crossing Behavior in the Swarm Model 

In this section, we show the water crossing behavior performed by our swarm model, setting 

the parameters at P =10, α =0.5, L = 4, Rf = RM = 2. Emulating the experiment conducted with real 

swarms, we set the bounded space to consist of 90×30 lattices in which the pool area (30×30 lattices) 

was sandwiched between the shore areas (each 30×30 lattices). The pool, as an avoidance area, was 

defined as a specific area in which the condition allowing mutual anticipation of potential transitions 
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were overlapped larger than two (see Materials and Methods). Hence it was more difficult for 

individuals to go through the specific area, which mimics a natural pool that an individual soldier crab 

does not enter. In this simulation, individuals could not go outside the bounded space, emulating the 

wall of the experimental apparatus, even though potential transitions overlapped with the area outside of 

the space. In addition, individuals were given the tendency to walk along the boundary of the space 

because it has been reported that real solder crabs tend to walk along the wall (see Materials and 

Methods).  

 In each simulation, individuals were randomly allocated to one of the shore areas with 

random directions of principal vectors. We conducted each trial for 250 time steps and ran 100 trials for 

swarms with 3, 5, …, 21 individuals. Successful trials, failures, and the performance of water crossing 

behavior were defined by using the success rate φ along with the experiment conducted with real crabs. 

Figure 15 shows the performance of water crossing behavior and the frequency of success and failure 

for each swarm size. It is easy to see that the bigger the swarm size, the more success in water crossing. 

When we compared the performance between swarms composed of five (small) and fifteen (large) 

individuals that were compared in the real soldier crab experiment, there were significant differences 

between these swarms (performance: 68/100 (fifteen individuals) vs. 19/100 (five individuals), 

Chi-square test: χ2
1 = 39.872, P < 0.001).  

In the experiment, because of difficulty in collecting a huge number of fresh crabs, we only tested two 

sizes of swarms (i.e., 5 and 15 individuals) with real crabs. However, we can predict the behavior of 

intermediary size of swarm by using our swarm model. In figure 15, it can be observed that the 

performance of water crossing behavior of our model exceeds 0.5 i.e., the number of successes is over 

the number of failures when the swarm size is more than nine. Hence it would be expected that if we 

test a swarm composed of over nine real crabs, the swarm success the water crossing behavior on more 

than half of trials. 

Figure 15. Frequency of success and failure as well as the performance of each swarm size (N = 

100 for each swarm size). It is clear that if the swarm is bigger, the success rate of crossing the 

water increases. 
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 Figure 16 shows snapshots of the time development of swarm trajectories in a model 

simulation. Each agent is represented with its 10-step trajectories. The pale grey area located in the 

center indicates the pool area in which the threshold to allow mutual anticipation is heightened. In the 

case of a swarm whose size is five, solitary or few individuals do not enter into the pool, even though 

the swarm walks along the marginal area of the pool. On the other hand, in the case of a swarm whose 

size is fifteen, dense swarm is formed at the edge of pool, and once individuals enter into the pool they 

cross over the pool without stopping. Moreover, we observed that some individuals remained in the 

pool despite the crossing over of the others, which is frequently observed with real soldier crabs 

(indicated by red circle in figure 16). Therefore, the simulated swarm appropriately mimics the behavior 

of real soldier crabs as shown in the experiment and natural conditions.  
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Figure 16. Snapshots of the time development of swarm trajectories in a model simulation. The 

pale grey area located in the center indicates the pool area. An individual left in the pool is 

indicated by a red circle. 
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3.4. Discussion 
In this study, we first conducted an experiment with respect to water crossing behavior of 

soldier crab swarms. We observed that when a small swarm confronted a waterfront, it could not enter a 

water pool. Hence, when a swarm was small or sparse, they regarded the water pool as an area to avoid 

entering. In contrast, when the swarm became bigger and a highly concentrated part was created inside 

the swarm, they could then enter and cross the water. Therefore, by creating a large and dense region, 

the swarm could overcome the water pool as an avoidance area. Although spontaneous invading 

behaviors into an avoided area have been reported for several animals, in most cases, animals have 

some motivation such as rich food sources to encourage entrance into an avoidance area [34,35]. Our 

experimental results indicate that the behavior of overcoming the avoidance area observed in soldier 

crab swarming is obviously an emergent behavior because, while small swarms passively responds to a 

water pool as a noxious stimulus, if the swarm becomes bigger they spontaneously enters to the pool. 

Some examples of emergent behavior of collective animals were presented previously [10,30]. In 

particular, Berdahl and others [30] revealed that greater group-level responsiveness to the environment 

arises spontaneously as group size increases. For example, a fish school stays away from the light as an 

avoidance area more sensitively if it is bigger in size. They explain this emergent behavior by the 

simple rule of attraction such that an agent approaches its neighbors if they separate from each other.  

The water crossing behavior can be explained by our model, which incorporated inherent 

noise and mutual anticipation. Inherent noise in the model created diverse potentials for each individual 

and the swarm collapsed if each individual chose potential transitions randomly. In contrast, if the 

diversity of moves is used for other individuals’ anticipation, this results in a densely collective motion. 

Mutual anticipation may be affected by each individual crab’s sensitivity to the moves of other 

individuals and by the asynchronous movements of the individuals in a swarm. This sensitivity allows 

crabs to detect the site to which many individuals could move toward. Because of asynchronous 

updating, crabs can move in various directions without collision and overcrowding.  

 By considering the water pool to be an area where it is difficult for mutual anticipation to 

occur, the water crossing behavior is easily simulated in our model. In simulations with small swarms, 

even if it is faced with the marginal area of the pool, it cannot enter the pool because potential 

transitions are not overlapped enough for mutual anticipation of the swarm to occur in the pool. For a 

large swarm, however, after regions of high concentration are formed, the swarm can enter the pool and 

make mutual anticipation at sites in the pool due to highly concentrated potential transitions. Then, even 

when an individual cannot occur due to mutual anticipation in the pool, it is not separated from swarm 

as long as it can follow the predecessor, and hence the swarm crosses over the pool without stopping. 

However, if the individual cannot use either mutual anticipation or follow its neighbors, it is separated 

from swarm and left in the pool, as was seen in the experiment. In this way, our swarm model can 

emulate the behavior of real soldier crabs to some extent. It is difficult to explain the behavior of 

entering an avoidance area only with the simple attraction rule because when a local part of a swarm 

enters into the water pool and the greater part of it stays on the shore around the pool, the local part is 

brought back to the greater part by following the attraction rule. 

 Inherent noise can be widely seen in animal groups [24,26,65,71]. By using mutual 
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anticipation, inherent noise that could be expected to negatively impact the swarm, makes a positive 

contribution to the collective motion and can explain the water crossing behavior of a soldier crab 

swarm. These results suggest that inherent noise and mutual anticipation play an important role in 

understanding collective behavior. 
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4. Animal Foraging Strategy 
 
4.1 Background 

It has been intriguing question how living orgasms behave to get targets in natural 

environment where resources are usually unpredictably distributed and thus orgasms have limited 

information about locations of them [43]. Lévy walk (LW) is considered to be the most important model 

of such the random search, which is a special random walk where each step length is chosen from a 

power-low distribution with heavy tail (so called Lévy distribution) [44,45]. Therefore, LW shows all 

scale step length l such that P(l) ~ l-µ with 1 < µ < 3, where µ represents the power-low exponent. In the 

foraging simulations, if prey is abundant and thus probably predictable, it is known that classical 

random walks such as Brownian motion can yield higher encounter rate than LW. On the other hand, 

against sparsely and unpredictable located prey, LW is more efficiently than classical random walks.  

In this sense, LW has reliable theoretical advantage, yet how about the consistency with 

empirical data? Indeed, it is reported that among diverse organisms experimental evidences of LW are 

found [44,46,47]. Of all organisms compared with LW the most noticeable is wandering albatross. In 

first pioneering work of Viswanathan et al., albatross behavior was followed by a humidity sensor 

attached to one of its legs [48]. Flight-time intervals were measured by wet periods, and dry points were 

considered to be landings on the water to catch the fishes. Following research reinvestigating by means 

of GPS, however, showed that all most long flights were in fact rest time the bird was in its nest, and 

concluded that the power-low distributed step length is absent in wandering albatross [49]. Though, the 

latest study which used same method above but examined birds one by one, probed that individuals 

foraging at sparsely feeder exhibited certain Lévy movement pattern, eventually [50]. 

A trajectory of LW describes a search pattern composed of many small step clusters 

interspersed by longer relocations also known as “saltation” [51]. This pattern is provided simple 

intuitively description using intermittent random search strategy in which slow motion to detect the 

target is discretely separated from the motion to migrate to another feeder [52]. For example, if we lost 

a tinny object (e.g. a key) in a huge field (e.g. a beach), we first can consider two simple ways to detect 

the key. These are slowly careful search and roughly fast one. On the former one, we can make 

correctly search, but would spend very long time in the beach. On the latter one, we may detect the key 

speedy, but in many cases its lack of accuracy would result in long search time as same as former one. 

This is nothing but a trade-off between the exploitation of old certainties and the exploration of new 

possibilities frequently found in biology [53]. Eventually, to balance this dilemma we would choice the 

combined one, i.e., intermittent strategy.  

In the study of intermittent strategy, it becomes a problem what optimal way to switch the 

deferent two motions is. Lévy strategy also plays an important role. Bartumeus and his colleague 

compared correlated random walk (CRW) [54], which is known as a natural way to model the 

emergence of angular correlations in animal trajectories coming from local scanning, with an 

intermittent model that is based on CRW but incorporated uncorrelated reorientations with time interval 

whose length is chosen from Lévy distribution [55]. Then, they showed higher efficiency of this Lévy 
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intermittent model than non-intermittent one.  

Through these theoretical and empirical researches, Lévy strategy has been considered as a 

key to understand a way of animal search behavior. Consequently, it has been proposed that Lévy 

strategy has must be strong target for natural selection, so called Lévy foraging hypothesis [43]. Yet, 

some researchers claim that Lévy-like distribution shown by animals is not necessarily produced by 

Lévy process. Indeed, few models in which agent walks deterministically and interacts with complex 

distributed targets, can show LW pattern [56]. Moreover Benhamou, in his confrontational study, 

suggested by means of combined exponential distributions that there is no guarantee that Lévy-like 

distribution is based on Lévy process [57]. 

 Here, we will show a simple intermittent model that is not incorporated with Lévy distribution 

but equipped with principal features of intermittent strategy, i.e., different two phases. In this model, the 

number of crossovers in a trajectory is regarded as the extent to which agent implements local search 

and also as a threshold to switch two phases. We demonstrate how this model can balance a trade-off 

between macro search (exploration) and micro one (exploitation), comparing with CRW. Finally we 

show that another intermittent search model that is incorporated with an ambiguity with respect to a rule 

to switch two phases. Such the ambiguity results from a stochastically generated long trail and a search 

in which agent spends too much times. Moreover, We demonstrate that our model can exhibit efficiency 

comparable to that of a CRW in an environment with low prey density. By investigating the distribution 

of switching time intervals, we show that the agent can change foraging strategy depending on prey 

density. Finally, we discuss how the Lévy distribution can emerge from our model.   

 

4.2. Materials and Methods 
 
4.2.1. Basic Model 

First, we present a simple model incorporate main factor of intermittent search in which 

agent iterate to form local scanning behavior (here we call this exploitation phase) interspersed by 

longer relocation or saltations (exploration phase) in continuous space and discrete time. Now we call 

this model EERW in short. 

 In exploitation phase, agent basically moves as CRW. Here angular correlations are 

introduced on the basis of circular Gaussian distribution (-1.0 ≤ g ≤ 1.0) centered at the value g = 0 

(maximum probability), although other distributions (e.g. wrapped Cauchy distribution) might be as 

good [57]. Turning angle is represented by θ = gπ. At each step, angle of agent is decided by coupling 

turning angle with previous angle. Standard deviation (SD) of Gaussian distribution controls directional 

persistence or correlation length of the random walk [60,72].  

 In intermittent models, agent should migrate to another feeder if local scanning is 

sufficiently finished. Hence, in EERW, the number of crossovers in a trajectory is regarded as the extent 

to which agent has searched neighbor area, although switching two phases has usually been 

implemented by means of stochastic process such as Lévy distribution in previous models [57]. In other 

words, agent memorizes its trajectory and counts the number of crossovers in the trajectory. A threshold 

of the number of crossovers to switch two phases is represented by NC. Note that NC can be estimated 
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sufficiently as the extent of local search as we discuss later. If the number exceeds a threshold NC, the 

agent makes ballistic movement in the direction uncorrelated to the past, i.e., turning angle is chosen 

from a uniform distribution θ ∈ [-π, π]. Ballistic movement is continued until time-steps that are 

proportional to the steps spent in exploitation phase. Because the longer time agent spent in exploitation 

phase, the larger area it would searches, agent should make enough length movement matched with the 

time spent locally search as relocation. Proportional constant is represented by P. And then, because of 

its finite capacity of memory, agent resets the memory of trajectories, returns to exploitation phase and 

restarts to walk as CRW at relocated place. 

     The parameters in our model are listed below: 

 SD: standard deviation of Gaussian distribution with respect to directional persistency 

 NC: threshold value of crossover in a trajectory 

 P: proportional constant with respect to distance in exploration phase 

 l: step length 

 

 In this paper, we fixed the parameter at l =0.5. 

 

 Fig. 17a shows the procedure of from exploitation phase to exploration phase. In this case, 

agent implements exploitation phase as CRW, crossing trajectory three times, i.e., NC =3. Then it transit 

to exploration phase, making ballistic movement composed of three steps, so P is about 0.33 here 

because the steps is spent nine times at exploitation phase. 

 

Figure 17. Schematic diagram of phase 

transition of EERW: (a) Steps of 

Exploitation phase are represented by 

black arrows and crossovers are 

surrounded by blue circles. (b) Steps of 

Exploration phase are represented by red 

arrows, and steps of previous and 

following Exploitation phase are 

represented by dashed and solid black 

arrows respectively. 
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 Fig. 18 shows a series of snapshots of total trajectories of CRW and EERW at T = 

1000-100000 with SD = 0.3 and l = 0.5, NC =10 and P = 0.3. These simulations are implemented in 

continuous 2D space with no boundary condition, but are displayed as if it were in space of 200×200 

with wrapped boundary condition in Fig. 18. It is easy to see that search area of EERW is broader than 

one of CRW in spite of same search steps. In many cases, agent imposed search tasks has perceptual 

range with certain radius, in which agent can detect a target [43]. Then the search efficiency is estimated 

by number of targets captured in this range. Hence we may partially regard the search areas as 

alternative for search efficiency. However, if the search area were the most important factor in random 

search, it holds a strange result such that ballistic movement would become the most optimal strategy. 

In the next section, we show that EERW can balance a trade-off between macro search (exploration) 

and micro one (exploitation), which is shown by CRW. 

 

 
 

Figure 18. Snapshot of time development of trajectories of CRW (upper side) and EERW (lower 

side) in a continuous two-dimensional space of 200×200 with wrapped boundary condition. Time 

proceed from left to right. For both simulations, SD = 0.3 and l = 0.5, and for EERW, NC =10 and 

P = 0.3. While trajectory of CRW concentrates and overlaps at center of the field, that of EERW 

sparsely distributes but covers over the field.  

 

4.3. Results 
 

4.3.1. A Trade-off between Macro Search and Micro One 

 Biological systems, from unit organism to collective animals, are exposed to the trade-off 

between exploitation and exploration in various levels. Especially the trade-off in open environments 

biology is dilemmatic decision making of biological systems whether they stay old well-known 
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environment or they explore new possible environment [52-53,73]. In the case of random (intermittent) 

search, agent would move to another field if local search were implemented enough. Therefore the 

exploitation-exploration dilemma would correspond to the relation between micro and macro search. In 

fact, as mentioned above, if agent moves by means of a strategy leaning to micro search, it would spend 

long search time in a huge field. Moreover, even if agent detects some targets, there cannot be the most 

abundant resource. On the other hand, if agent moves by means of a strategy leaning to macro search, it 

also spends long time to detect targets due to its lack of correctness. Hence, there is a dilemma between 

micro search and macro one.  

 

 
Figure 19. Performance of the CRW (red points) compared with EERW (green points) with 

respect to the closure areas and the number of crossovers. Snapshots of trajectories of CRW when 

SD is 0.0 and 1.0 are represented by top box and bottom box, respectively. Also that of EERW 

when SD is 0.5 is represented by box connected to black circle, which indicates EERW can 

balance the trade-off. 

 

 In this sense, classical random walk is the most biased strategy against micro search, while 

ballistic movement is that against macro search. Now, we show that CRW displays micro-macro search 

trade-off, because if the parameter SD approaches zero, behavior of CRW gets closer to ballistic 

movement, on the other hand, the larger SD is, the closer behavior gets to classical random walk. Here, 

we estimate the extent to which agent implements micro search by means of the number of total 

crossovers in a trajectory of 5000 time steps simulation, and the extent to which agent implements 
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macro search by means of closure areas. The closure areas are measured by total neighborhoods areas 

with radii r = 1.0 where each arrival point of agent is centered. Overall, the trade-off between the micro 

search represented by the total number of crossovers and the macro search represented by the closure 

areas is easy to see in Fig. 19, in which patterns of CRW are generated with no boundary condition as 

varying the parameter SD from 0.01 to 1.0 in increments of 0.01. By comparing the patterns of CRW 

with those of EERW, EERW can balance exploitation with exploration, in which the patterns of EERW 

are generated under the same conditions as that for CRW except that NC=15 and P=0.3. 

 Bartumeus and colleague showed that Lévy intermittent model could display higher 

efficiently than CRW [55]. In their study, Lévy intermittent model were compared with CRW with two 

deferent values of parameter that controls directional persistency of the model. However CRW can 

display various behaviors from ballistic movement as extremely directional persistent move to classical 

random walk as extremely uncorrelated move. Here we examined CRW with all most possible SD, 

revealing that EERW that is the intermittent model without Lévy process can balance trade-off of CRW 

between exploitation and exploration calculated by two quantities, i.e., closure areas and number of 

crossovers.  

 

4.3.2. Another Intermittent Search Model  

 In the study of random search, some models have supposed the presence of memory or 

learning skills of agent [74,75]. These memory and learning capability also are restricted to be finite. 

Yet, there is no attempt to assume ambiguity of memory or misunderstanding of learning. In this section, 

we first introduce ambiguity and/or misunderstanding with respect to a rule to switch two search phases 

into EERW. Second, we show that such a modified EERW (MEERW, in short) results in Lévy-like 

distribution of time interval to switch two phases. Finally, we discuss the difference between LW and 

MEERW. 

 In EERW, the number of crossovers in a trajectory was regarded as the extent to which 

agent implements local search. Hence, there was a rule in which if the number exceeds the threshold NS, 

agent switched the phases. On the other hand, in MEERW, though basically same as EERW (Fig.20a), 

the value of threshold NS is dynamically varied by two kinds of misunderstanding of the rule.  

 As one of such misunderstandings, if a long trail is stochastically generated without enough 

crossovers, we regarded it as a ballistic movement (Fig. 20b). In the other words, if such the long trail is 

generated, it is considered that exploitation phase were already implemented even though the number of 

crossovers did not exceed the threshold NS, and exploration phase is regarded as such the trail, entailing 

reset of the memory of trajectory. Then, NS is decremented by one, because agent misunderstands such 

a shorter local search (and generated trail) as a rule. We here define such a long trail as a series of tracks 

composed of over Nt tracks, in which inner product of each track and next one is larger than IP.  

 As the other, we introduce further memory restriction, i.e., agent can memorize only Nm 

number of tracks as trajectory, so can make crossovers only with memorizing tracks (Fig. 20c). 

Moreover, if agent spends Ns steps without switching two phases, then NS is incremented by one, 

because agent misunderstands such a longer local search as a rule. 

 In this section, we fixed the parameters at Nt = 15, IP = 0.85, Nm = 10, Ns= 100. 
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Figure 20. Schematic diagram of MEERW. (a) MEERW is basically same as EERW where NC 

means how long agent searches local area. (b) A long trail stochastically generated decreases NC. 

(c) A search overspent times increases NC.  

 

 Now, we demonstrate the Lévy-like distribution of time interval to switch two phases, 

comparing EERW and MEERW. For EERW, we measured the time steps spent in the exploitation 

phase as the time interval because the proportion of time steps spent in the exploitation phase to that in 

the exploration phase is constant. For MEERW, basically we measure time steps by same manner for 

EERW, but if the stochastic long trail is generated, we also measure time steps from start of exploitation 

phase until this trail is generated. Fig. 21 shows frequency distributions of time interval which is 

observed in one million time steps simulation with SD = 0.2 and P = 0.3. The exponent µ is computed 

by a slope of a regression line for the range of values where power law behavior (straight line in a 

log-log plot) is observable. The exponent µ of EERW is 5.81 with R2 = 0.957, while that of MEERW is 

2.38 with R2 = 0.943. 
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Figure 21. Power law distributions of EERW and MEERW. 

 

 In the Lévy strategy, also including the Lévy intermittent model, the exponent µ of the tail 

of power law distribution should lie in the interval 1 < µ < 3. For 1 ≥ µ, the distribution is not defined. 

For µ ≥ 3, provided the conditions of the Generalized Central Limit Theorem, the tail converges to a 

Gaussian distribution. In the latter case, the time interval will show an intrinsic characteristic scale. In 

this sense, distribution of MEERW is considered to be Lévy-type, but that of EERW is not. 

Table 6. Estimation of the exponent µ of EERW with the parameters NC and SD. 
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 Indeed, the distribution of EERW cannot be Lévy-type. In table 6, we estimated the 

exponent µ of EERW, varying the parameter NC from 1 to 20 and SD from 0.1 to 0.9. The result shows 

that at all combinations of NC and SD, the exponent µ is bigger than 3 with high correlation (R2 > 0.9). 

What is the difference between LW and MEERW? It is hard to distinguish the both LW and MEERW, 

when we set the step length l as very small against the parameter P (Fig. 22).  

 

 

 

Figure 22. Snapshot of a trajectory of MEERW with l =0.005 and P = 3.0. 

 

4.3.3. Search strategies depending on prey density  

 In this section, we investigate the prey-detecting efficiency of our model with P=0.4 and 

l=0.1 in two environmental contexts - low and high prey density - compared to a CRW. Furthermore, by 

examining the distribution of switching time intervals, we show how agents in our model can change 

foraging strategy depending on prey density.  

 To examine the behavior’s dependence on prey density, we used a simple search scenario 

where prey is located at each vertex of a lattice in a 2D, continuous, 400×400 space with wrapped 

boundary conditions. The prey density λ is defined by the side length of the lattice; we set λ=3 for high 

density and λ=10 for low density. The detection range is defined as twice the step length, i.e., the agent 

can detect the target if the distance between the agent and target is less than 2l (Figure 23). After the 

agent detects the target, reorientation takes place as in [55], i.e., the agent chooses its next turning angle 

from a uniform distribution in both our model and the CRW, and the agent in our model restarts the 

exploitation phase, resetting the number of crossovers to zero. 

 We first examine the behavior of our model in different environments with non-destructive 

search to maintain a uniform density condition. Figure 24a,b show snapshots of trajectories in the high- 

and low-density conditions, respectively. It is easy to see that the agent can implement a smaller range 

of saltation lengths in the lower density condition compared to the higher density condition. This results 

from refreshing the number of crossovers, i.e., in the higher density condition, because the agent 

frequently contacts prey, the misunderstanding of the rule to switch phases can only rarely occur; 

therefore, the threshold NC tends to be fixed. On the other hand, in the higher density condition, the 
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agent rarely contacts prey and can move more freely. Therefore, the misunderstanding is implemented, 

and a greater variety of search times in the exploitation phase and of saltation lengths is observed (see 

later in this section for a more detailed discussion). 

 

��

��
l�

2l�

 
Figure 23. Schematic diagram of detecting behavior in our model. Target prey represented by grey 

squares is arranged with spacing λ on a continuous, two-dimensional space of size 400×400 with 

wrapped boundary conditions. The agent moves from the previous location (dashed circle) to the 

present location (black full circle) with step length l. If the agent enters the perception range with 

radius of 2l, represented by a blue circle, it can capture the prey. 

 

 Next, we examine the distributions of time intervals for phase switching (which is also 

proportional to the saltation length) in the low- and high-density condition (Figure 24c,d). The 

distribution in the low-density case displays a power-law decay (power-law versus exponential [49], 

N=44, µ=2.45, λ=0.0023, wp= 0.93, wexp = 0.07), whereas the distribution in the high-density case 

displays an exponential decay (power-law versus exponential, N=44, µ=2.43, λ=0.0063, wp= 0.0, wexp = 

1.0). In the Lévy strategy with the Lévy intermittent model, the exponent µ of the power-law 

distribution should be in the interval 1 < µ < 3. For µ ≤ 1, the distribution is not defined. For µ ≥ 3, 

provided the conditions of the Generalized Central Limit Theorem, the tail converges to a Gaussian 

distribution. In the latter case, the time interval will show an intrinsic characteristic scale. In this sense, 

the distribution in the low-density case is Lévy but that in high-density case is Brownian. Furthermore, 

we estimate the search efficiency both in low- and high-density environment with destructive conditions, 

compared to the CRW model. We ran 30 trials in a limited period of 30 000 time steps. Figure 25a,b 

show the performance of both our model and the CRW at high- and low-density, respectively. In 

low-density condition, the number of captured prey for our model is significantly larger than for the 
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CRW (t-test, p < 10-5). On the other hand, there is no significant difference in the number of captured 

prey between our model and the CRW in the high-density condition (t-test, p = 0.485, n.s.). It could be 

concluded that in this case, because of its Brownian-type saltation, the behavior of our model is little 

different than CRW. However, when the agent searches for a longer time (60 000 and 90 000 time 

steps), our model captures significantly more prey than the CRW (T=60 000: t-test, p = 0.0022; T=90 

000: t-test, p < 10-8) (Figure 25c). The longer the agent searches, the fewer prey remain. Thus, prey 

density gradually decreases, which would create conditions allowing misunderstanding of the rule. 

 

Figure 24. Autonomous change of behavior depending on environmental context. (a) Snapshot of 

the trajectories after 300 000 time steps in the higher density condition (λ = 3) (b) Snapshot of the 

trajectories after 300 000 time steps in the lower density condition (λ = 10). (c) Log-log plot of the 

distribution of time intervals for phase switching at higher density. (d) Log-log plot of the 

distribution of time intervals for phase switching at lower density. 
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Figure 25. The search efficiency of the CRW (pale grey bar) and our model (dark grey bar) with 

respect to search efficiency. (a) The lower density case. The vertical axis represents the mean 

value for 30 trials of the number of captured prey during 30 000 time steps. (b) As in A, for the 

higher density case. (c) A longer search time at higher density with T = 60 000 (left) and 90 000 

(right). Error bars are standard deviations. ** p < 0.01, *** p < 0.001, n.s. indicates not significant. 

 

 Furthermore, to investigate how the degree of NC change relates to prey density, we set a 

smaller space (100×100) and higher density (λ=2) with destructive conditions and ran one million time 

steps. Figure 26 shows the normalized change of NC at each time interval, with bin size T’=100 000 

(ΔNC), and the proportion of remaining prey (R) at each time step versus time step. Note that the 

change in NC at each bin ΔNC is defined by ΣT’
t’=0 |NCt’’-NCt’-1|, where NCt’ represents NC at each time 

step, and this is normalized such that max(ΔNC) = 1.0. It is easy to see that the smaller R, the greater 

ΔNC is, indicating that the agent uses a greater variety of search strategies at low-density than at 
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high-density. 
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Figure 26. The relationship between the prey density and the change in NC. ΔNC (red points) and 

R (blue points) are plotted against time step, where ΔNC represents the normalized change in NC 

at each time interval with bin size T’=100 000, and R represents the percentage of prey remaining . 

 

 These results indicate that our model can efficiently change search strategy from 

Brownian-type to Lévy-type depending on the prey density. In the next section, we discuss how the 

Lévy distribution can emerge from our model. 

 

4.3.4. Lévy distribution without Lévy process  

 The Lévy strategy has been established as a key to understand animal search behavior using 

both theoretical and empirical studies. Consequently, it has been proposed that the Lévy strategy must 

be a strong target for natural selection. This is the so-called Lévy foraging hypothesis (Viswanathan et 

al., 2011). Still, some researchers claim that the Lévy distribution exhibited by animals is not 

necessarily produced by a Lévy process. Indeed, few models in which an agent walks deterministically 

and interacts with complex distributed targets can show an LW pattern [56]. Moreover, Benhamou used 

a composition of exponential distributions to suggest that there is no guarantee that the Lévy 

distribution exhibited by an animal is based on a Lévy process [57]. 

 In the case of our model, the Lévy distribution appears to arise from a superposition of 

several distributions caused by a varying value of NC, similar to a Cox process, which is a mixed 

Poisson process. It is known that the Cox process can generate heavy-tailed and power-law distributions 

[79]. We previously showed that if NC is fixed to a certain value, the time intervals do not exhibit a 

Lévy-type distribution, which is similar to the high-density prey condition described above. Therefore, 

to determine whether such a mixed distribution creates the Lévy distribution in our model, we 
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investigated whether the Lévy distribution can emerge when we forcibly rearrange the value of NC in 

descending order. First, we obtained distributions of time intervals for phase switching in a field with no 

prey (power-law versus exponential, N=38, µ=2.43, λ=0.0019, wp= 0.94, wexp = 0.06) (Figure 27a), 

checking the value of NC at each time step. At this time, because NC is not related to the agent’s 

behavior in exploration phase, we set P = 0.0, i.e., there is only an exploitation phase. Figure 27b shows 

the ratio of NC at each time step. When we forcibly rearranged the value of NC in descending order, we 

could observe a Lévy distribution (power-law versus exponential, N=43, µ=2.39, λ=0.0018, wp= 0.92, 

wexp = 0.08) (Figure 27c). In Figure 27d, a distribution with NC=1 is shown, which is clearly 

distinguishable from that for NC≠1. It is clear that the tail part of the original distribution matches the 

distribution with NC≠1, and the rest of the original distribution matches that with NC=1. 
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Figure 27. Lévy distribution as a mixed distribution. (a) Log-log plot of the distribution of time 

intervals for phase switching without prey. Because NC is not related to the agent’s behavior in the 

exploration phase, we set P = 0.0. (b) The ratio of the distribution for NC = 1 to that for the simulation 

in Figure 27a. (c) Log-log plot of the distribution with the values of NC obtained by the simulation in 

Figure 27a forcibly rearranged in descending order. (d) Log-log plot of the distribution for NC =1 

(green points), distinguishing it from that for NC>1 (pale grey points). 
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4.4. Discussion 
 The Phenomenon that local clusters are connected by the saltations in animal search and/or 

LW, suggests that there are some sort of rules with respect to detection for targets [52]). The 

intermittent search strategy explain that agent to have a rule that agent move to another field if local 

search were implemented enough, so as to be consistent with this phenomenon. Then agent has two 

deferent phases. However, time interval to switch two phases has eventually been given by some 

stochastic process such as Lévy process rather than a rule.  

 In this chapter, we started with the simple intermittent model EERW that was not 

incorporated with Lévy process but equipped with principal features of intermittent strategy (i.e., 

different two phases). In EERW, the switch of two phases is provided as a rule that if the number of 

crossovers exceeds a threshold NC, the agent resets the memory of trajectories and makes ballistic long 

trails in the direction uncorrelated to the past. We demonstrated that EERW could balance a trade-off 

between macro search (exploration) and micro one (exploitation), comparing with CRW. 

 We constructed MEERW by incorporating ambiguity or misunderstanding of the rule, in 

which a threshold NC is dynamically varied by the stochastically generated long trail and the search 

spent too much times. As a result, MEERW showed Lévy-like distribution. Moreover, depending on the 

parameter l and P, MEERW could behave as if it were just LW. 

 Already LW has been constructed without Lévy process, yet there must have been 

deterministic walks and interactions with complex distribution of targets [56]. So our model is the first 

attempt to investigate hypothesis that LW can be generated with the absence of Lévy process as well as 

of deterministic walks. 

 While optimal change of search strategy has long been predicted [77], empirical evidence has 

only recently been reported. This evidence of a change in strategy depending on environmental context 

implies that animal movement does not obey one single distribution. In this paper, we began with a 

simple model that possesses the principal features of an intermittent strategy, i.e., careful local searches 

separated by longer steps or saltations, such as relocation, where the agent follows a rule to switch 

between the two phases, but it could misunderstand this rule, i.e., the agent follows an ambiguous 

switching rule.  

 This ambiguity of the rule gives rise to continual changes in the agent’s foraging strategy. We 

showed that an agent of our model can exhibit different types of search strategies depending on 

environmental context, changing from Brownian-type in high-density conditions to Lévy-type in 

low-density conditions. Furthermore, our model can exhibit higher efficiency than a CRW in both 

environmental contexts. In this way, the change in foraging strategy of our model agrees with recent 

empirical results [78]. The most important point is that depending on prey density, the agent can change 

its foraging strategy autonomously without any concrete information with respect to environmental state. 

All that is required is the condition that if the agent makes contact with prey, then it refreshes its state 

and restarts its search.  

 Moreover, we investigated the relationship between prey density and the change in NC, where 

NC is the extent to which the agent has searched the surrounding area. As a result, we observed that the 

lower the prey density, the greater the change in NC. This implies that while many changes of strategy 
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occur in the scarce resources environment, the agent tends to fix its strategy in an abundant environment. 

In the previous section, we illustrated how the Lévy distribution in our model emerges without a Lévy 

process. Such a Lévy distribution without a Lévy process has already been constructed, but this required 

deterministic walks and interactions with a complex distribution of targets [56], as well as the 

assumption that the agent must have information of target locations, no matter how great the distance 

between the agent and a target. On the other hand, an agent in our model has neither this information 

nor a Lévy process. Instead, our model generates a Lévy distribution by composing the various 

distributions arising from different values of NC, as seen in Figure 27d. 

 The fact that local clusters are connected by saltations in animal searches suggests that there 

are rules for the detection of targets [52]. Our model is the first attempt to introduce ambiguity in the 

rule for switching between such saltations and the small steps characterizing local exploitation. In this 

way, an agent in our model can adopt a flexible search strategy. Therefore, this model may provide key 

insight into how animals can flexibly respond to the environment. 
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5. Collective Animal Foraging Driven by Inherent Noise 

 
5.1 Background 

In study of collective behavior, both escapes from predatory attacks and collective foraging 

against surroundings of animal groups are mainly considered as collective response to external 

environment. Recently the former has been investigated in detail by using starling flocks [e.g., 17,58]. 

For example, density wave within the flock, which can transfer information derived from external 

perturbation (e.g. predations by falcons) faster than their flight speed, is found [58]. On the other hand, 

although the latter is referred in introduction of many papers regarding collective behavior, related 

experiment is rare.  

We here conducted an experiment with respect to collective foraging behavior of a swarm of 

soldier crabs Mictyris guinotae, which live in the tideland and can form large swarms. We collected 

them in two hours before ebb tide and conveyed to the laboratory. By using markers attached to crabs’ 

shells and image-processing software, we obtained time series of individuals’ position during thirty 

minutes. 

To investigate the behavior, we created two experimental apparatus: ring- and round-shaped 

arenas. First, we checked basic behavior of soldier crab swarm in the round-shaped arena. Next, to 

examine characteristics of the behavior, and to simplify analysis, we used the ring-shaped arena. In the 

ring-shaped arena, the behavior of crabs would be regarded to be approximately one-dimensional.  

Buhl et al. [10] conducted an experiment with respect to one-dimensional behavior of 

aggregating locusts in the ring-shaped arena, and observed that phase transition from disordered state to 

ordered state with respect to direction of locusts is dependent on this density. In their experiment, they 

simply considered “swarm” to be an aggregation of locusts that distributed in the arena. On the other 

hand, we here investigated whether soldier crabs formed denser swarm on the inside of the arena, and 

whether they showed collective foraging behavior. 

 

5.2. Materials and Methods 
 
5.2.1. Experimental Setup 

Here we used soldier crab M. guinotae. We presented a detailed description of this specie in 

the section 3.2.1, so see further details in the section. Although M. guinotae burrows tunnels and lives 

under substrate at higher tidal levels, they emerge and feed on detritus on the lagoon surface in swarms 

at the lower tidal level. Through numerous field surveys of soldier crabs, we found that they search and 

wander on the lagoon surface during the two hours around ebb tide, keeping densely swarm to some 

extent and feeding on detritus. We collected them in plastic containers that contained mud substrate in 

two hours before ebb tide on fine weather days in July and August 2014 and conveyed to the laboratory. 

Our experiment was conducted in the daytime during the 3 hours around ebb tide. For each trial 

different swarm composed of different crabs were used. All crabs used in a trial were individually 



 58 

marked with paper triangle prisms on the shell. Crabs were immediately took off the markers and 

released after the experiment. 

 

5.2.2. Marking 

To simplify the tracking of identified individual movement of animal group, marking or 

tagging have been frequently used methods [8,9]. 

Immediately before each trial we attached markers, which were shaped in the form of triangle prisms 

whose side length are 5 mm and were made of thick white paper, on each individual crabs’ shells by 

using gum arabic paste (Fig. 28). After that marked crabs were separated into each size swarm and 

moved to each experimental arena without pre-training. 

 

Figure 28. Marked crab. Side length of marker, 5mm. 

 

5.2.3. Experimental Arena 

We designed two kinds of experimental arenas: ring- and round-shaped arenas (both outside 

diameters, 120 cm; inside diameter of ring-shaped arena, 60 cm; both heights, 10 cm). Both arenas were 

composed of plastic cardboards (wall) and styrene board (floor), and covered by black tapes to make a 

contrast with crabs’ white markers. We recorded behaviors of soldier crab swarms with 10, 20, 30, 40 

individuals in each experimental arena by using overhead video camera (Panasonic HDC-TM700, 1920

×1080 pixels). 
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Figure29. Illustration of ring-shaped arena. Round-shaped arena has the same outside diameter 

and height as ring-shaped one. 

 

5.2.4. Tracking 

Time series of identified individuals’ positions were tracked using image-processing 

software (Library Move-tr/2D ver. 8.31; Library Co. Ltd., Tokyo, Japan) in the same manner described 

in the section 2.2.2. The geometric center of markers of each crabs were identified by the fact that the 

marker appears lighter than the surrounding area, and the crab trajectories were constructed by tracking 

individuals from one frame to the next. When crabs fell down and thereby its marker was concealed, we 

identified its position using the manual-tracking mode of the software. As a result, we obtained all of 

the individuals’ x–y coordinates during thirty minuets. In this study, the time interval between two 

consecutive reconstructions of individuals’ coordinates was dt=0.2 sec. 

 

5.3. Results 
 

5.3.1. Collective Foraging Behavior of Soldier Crab Swarm in the Arena 

In the case of behavior of crabs in round-shaped arena, we observed that (i) crabs basically 

moved around or along the wall of the arena; (ii) the movement of the swarm along the wall was 

occasionally changed its direction with respect to the center of arena (iii) crabs formed dense swarm to 

some extent. To observe above behaviors in detail, we here investigate the behavior of the swarm in the 

ring-shaped arena.  

We here show the behavior of soldier crab swarm in the ring-shaped arena. Previous 

experiment regarding collective behavior in ring-shaped arena revealed that, in aggregating desert 

locusts, a one-dimensional phase transition from disorder to order occurs, as the density of locusts in the 

arena increases. In this case, an aggregation of locusts distributed in the arena is considered as a single 
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group. On the other hand, we here investigated if crabs formed a densely swarm in local area of the 

arena and that there were some foraging patterns in the behavior of the swarm. 

 

5.3.2. Do Crabs Swarm to What Extent? 

To estimate to what extent crabs swarm, we defined an individual position as a radial 

position with respect to the center of the arena, i.e., we obtained it as one-dimensional position as in the 

case of locust experiment. In the other words, individual radial position xt,i is defined as 

one-dimensional coordinate ranging from 0≤xt,i<360(degree). In the same way, we acquired 

one-dimensional radial position of the center of the mass of swarm with respect to the center of arena, Xt. 

Then individual relative position with respect to the center of the mass was calculated as rxt,i =Xt − xt,i, 

where |rxt,i|>π.  

rxt,i may indicates to what extent crab i is far from or near the center of the mass. So if the 

dispersion of the distribution of rxt,i throughout the trial is small enough, the swarm can be considered to 

be dense to some extent. When we compared the dispersion of real swarm with control where 

individuals’ positions were randomly distributed in the arena, real one was significantly smaller than 

control one (Fig. 30) (Bartlett's test; 10 individuals: real (N=90000, variance=1.67) vs control (N=90000, 

variance=2.22): χ2
1=1817.3, P<2.2e-16; 20 individuals: real (N=180000, variance=1.73) vs control 

(N=180000, variance=2.52): χ2
1=6329.3, P<2.2e-16; 30 individuals: real (N=270000, variance=2.12) vs 

control (N=270000, variance=2.66): χ2
1=3468.0, P<2.2e-16; 40 individuals: real (N=720000, 

variance=2.18) vs control (N=720000, variance=2.75):, χ2
1=9658.0, P<2.2e-16). Fig. 31 presents the 

frequency distribution of rxt,i. 
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Figure 30. Comparison between the dispersion of real swarms and control where 

individuals’ positions were randomly distributed in the arena. 
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Figure 31. frequency distribution of rxt,i. 

 

5.3.3. Durations of Direction Changes of the Center of the Mass of Swarm Show Power-law 

Distribution 

For the swarm discussed above (i.e., swarm that is dense to some extent), investigation of 

the behavior of the radial position of the center of the mass may be meaningful in investigating of the 

collective foraging. Fig. 32 shows time transition of radial position of the center of the mass. 

We defined the direction change of the center of the mass by examining whether it switched its head 

direction from clockwise to anticlockwise or vice versa between time steps. When we calculated the 

time between direction changes, we found that it followed power-law distribution (power-law vs 

exponential (ref. [49]); 10 individuals: N=313, µ=−1.49, w(p)=1.00; 20 individuals: N=157, µ=−1.39, 

w(p)=1.00; 30 individuals: N=174, µ=−1.44, w(p)=1.00; 40 individuals: N=237, µ=−1.50, w(p)=1.00) 

(Fig. 33). 

 

5.4. Discussion 
In this chapter, with respect to the behavior of soldier crab swarm in the experimental arenas, 

we found the following observations: (i) the swarm of soldier crabs forms densely swarm to some extent. 

(ii) We calculated the time between direction changes of the swarm, and found that it followed 

power-law distribution, containing very long moves (of greater than 100 sec). Such movement pattern is 

better described by means of Lévy walk than Brownian walk. Indeed, the power-law exponent µ 

systematically ranges in the interval 1<−µ≤3, which is a signature of Lévy pattern [44]. For predatory 
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animals, Lévy pattern is a foraging pattern that balances exploitation and exploration foraging. While 

there are many movement data of single predatory animals, our result is the first example of Lévy walk 

exhibited as collective foraging. 

 

Figure 32. Time transition of radial position of the center of the mass of the swarm with 40 

individuals in the ring-shaped arena. 

 

Figure 33. Cumulative distribution of duration between consecutive direction changes of the 

center of the mass of the swarm with 40 individuals in the ring-shaped arena. 
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How does the soldier crab swarm carry out this emergent pattern? The swarm of the species has 

inherent noise that is individuals’ different velocities in maintaining a densely and directed swarm. Such 

an inherent noise has been found not only in the swarming of soldier crabs but also in other animal 

groups (e.g., [24,26]). Hence, the coexistence between the group as a whole and diversity of 

individuals’ movements may be a common trait of collective animal groups. According to theoretical 

models [76], animal group can make changes of its direction by making noise. It can be considered that 

the swarm of soldier crabs realizes the Lévy pattern strategy by taming the inherent noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 64 

6. Conclusion 
In previous simulating study of collective behavior, most important rule to create collectiveness is 

regarded as “velocity matching” by which individual agent interacts with its neighbors in neighborhood 

with a fixed radius by averaging the directions of motion of its neighbors. In addition to this rule, 

“external noise” selected from equal probability with certain magnitude is coupled with agent’s velocity, 

by which agent’s movement is added some randomness. In this framework, collective behavior such as 

one-directional and coherent motion is achieved by velocity matching, having lack individuality. On the 

contrary, diversity of individual movement is acquired by external noise, neglecting the collectiveness. 

There is, therefore, an opposed relationship between velocity matching to create collective group and 

external noise to collapse the group. Recent empirical studies, however, suggest that it is doubtful 

whether such relationship is in real collective animals. In this thesis, we defined such diverse 

movements of individuals in coherent group with one-directional movement as “inherent noise”.  

In chapter 2, we firstly investigated “inherent noise” in schooling ayu fish. Here we showed that 

noise generated inherently in a school of ayu fish is characterized by various power-law behaviors in 

contravention of the prediction of previous models. First, we showed that individual fish move faster 

than Brownian walkers with respect to the center of the mass of the school as a super-diffusive behavior, 

as seen in starling flocks. Second, we assessed neighbor shuffling by measuring the duration of 

pair-wise contact and find that this distribution obeys the power law. Finally, we showed that an 

individual’s movement in the center of a mass reference frame displays a Lévy walk pattern. This fact 

may mean that by inherent noise each individual searches “communication” among other individuals; 

new communication is explored, and familiar communication among neighbors is exploited. In 

conclusion, our findings in this chapter suggest that inherent noise (i.e., movements and changes in the 

relations between neighbors in a directed group) is co-exist with coherent and one-dimensional motion 

of schooling fish, and is dynamically self-organized in both time and space. In particular, Lévy walk in 

schools can be regarded as a well-balanced movement to facilitate dynamic collective motion and 

information transfer throughout the group.  

In chapter 3, we presented an emergent behavior driven by inherent noise. Emergent behavior that 

results from a mass effect is one of the most striking aspects of collective animal groups. Investigating 

such behavior would be important in order to understand how individuals interact with their neighbors. 

We showed that a swarm of soldier crabs, Mictyris guinotae, could spontaneously enter a water pool, 

which are usually avoided, by forming densely populated part of a swarm at the edge of the water pool. 

Moreover, we showed that the observed behavior can be explained by the model of collective behavior 

based on inherent noise and mutual anticipation. Inherent noise in the model created diverse potentials 

for each individual. By using the diversity of moves for other individuals’ anticipation, a densely 

collective swarm emerges. In our model, after regions of high concentration are formed, the swarm can 

enter the pool and make mutual anticipation at sites in the pool due to highly concentrated potential 

transitions. In conclusion, our results in this chapter suggest that inherent noise can contribute to 

formation and/or maintenance of a swarm and that the dense swarm can enter the pool by means of 

enhanced inherent noise. 
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In the chapter 4, we explained animal foraging strategy through our new foraging model, as an 

introduction for collective animal foraging shown in the chapter 5. We here began with a simple model 

that possesses the principal features of an intermittent strategy, i.e., careful local searches separated by 

longer steps or “saltations”, as a mechanism for relocation, where the agent follows a rule to switch 

between two phases, but it could misunderstand this rule, i.e., the agent follows an ambiguous switching 

rule. Thanks to this ambiguity, the agent’s foraging strategy can continuously change. First, we showed 

that this model could balance a trade-off between macro search (exploration) and micro one 

(exploitation), which is shown by CRW. We demonstrated that another intermittent search model that is 

incorporated with ambiguity with respect to the rule to switch two phases, counld show Lévy-like 

distribution of the time interval. Next, we demonstrated that our model can exhibit an optimal change of 

strategy from Brownian-type to Lévy-type depending on the prey density, and we investigated the 

distribution of time intervals for switching between the phases. Moreover, we shoed the model can 

display higher search efficiency than a correlated random walk. Finally, we discussed how a Lévy 

distribution can emerge from our model. 

In chapter 5, we investigated whether collective animal foraging behavior is driven by inherent 

noise. We here conducted an experiment with respect to collective foraging behavior of a swarm of 

soldier crabs. To investigate the behavior, we mainly used ring-shaped experimental apparatus by which 

the behavior of crabs would be regarded to be approximately one-dimensional. We here investigated 

whether soldier crabs formed denser swarm on the inside of the arena, and presented they showed 

Lévy-like behavior as collective foraging behavior. In conclusion, our results in this chapter suggest that 

the swarm of soldier crabs realizes the Lévy pattern strategy by taming the inherent noise. 

A summary of conclusion of this thesis is as follows. (i) “Inherent noise” is co-exist with coherent 

and one-dimensional motion of schooling fish, and is used for searching “communication” in collective 

animal group (chapter 2). (ii) “Inherent noise” can contribute to formation and/or maintenance of a 

swarm, and make it possible to carry out some kind of emergent behavior (chapter 3), (iii) “Inherent 

noise” can promote collective foraging behavior such as the Lévy pattern (chapter 4,5). We think that 

the co-existence between diversity of individuality and collectiveness as a whole, by which collective 

groups establish the robust system, will be broadly found in most nature systems. 
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