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1 Introduction 

 

Living systems, including human, show sometimes unpredictable behavior. We mainly 

focus on ant’s foraging navigation such as visual landmarks or random foragers’ movements, in 

which unpredictable phenomenon emerges. It is well known that these amazing behaviors play an 

important role for agents to maintain current situation on one hand, and adjust to unknown 

environments on the other hand. These behaviors are generally called flexible behaviors. In many 

researches, inserting external noises induce agents to realize those movements. However, inside or 

outside is completely distinguished from the other in these models. Sometimes their movements are 

deviated by noises, though. Agents only have to obey their own experienced memories or determined 

rules. Therefore, simple errors may be key points by tuning the parameters from outside, i.e. by 

experimenters in these models. 

How can we explain those animals’ behaviors without assuming any transcendent 

observations? Those movements would be naturally obtained by loosely connecting distinguished 

outside with inside, resulting in attaining a new behavior and at the same time persisting recurrent 

movements for agents. Agents might refer to global property and concurrently hold ambiguity with 

using local information, which contributes to achieve mentioned scenario. 

       In this paper, we describe three main topics with respect to ants’ foraging navigations or 

movement. Many ant species are known to form their own colonies. Ant foragers and colonies are 

well-often studied to investigate self-organized systems or adaptive modelling in order to solve 

complex cognitive tasks. Although there is no leader in ant colonies, they can show optimal 

strategies in order to survive. Here we examined whether or not their adaptive/optimal behaviors 

were achieved by confusing different level in mechanisms or materials. 

One is agent-based random walk simulation models (chapter 2). It is well discussed whether 

animals’ movements follow Lèvy walk or not. Lèvy foragers make step lengths on each time which 

have probability density distribution with power-law tail. Therefore, these foragers exhibit 

supper-diffusion property which is not observed in Brownian walkers. Many researchers have 

tackled on whether animals show Lèvy walk or not. However, it seems that it is difficult to strictly 

judge the properties of their movements, because animals show different movement properties 

depending on surrounding contexts. Here, we developed two different models to explain the origin 

of Lèvy walk in chapter 2. 

The first one is a single-agent random walk model in which an agent changes its directional 

rules in order to maintain unbiased movements. In our algorithm, the agent’s memory ability is 

restricted. Therefore, the agent can pursue only recent limited trajectories. Thus, the agent produces 

wrong interpretations regarding to biased movements, resulting in emergence of more biased 
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movements. We succeeded in inducing the agent to show power-law movements. 

Regarding to ants movement strategy, desert ants are known to show Brownian motion 

when they forage individually. However, as already mentioned, it is plenty room to investigate 

whether they show Lèvy walk or not when they swarm or interact with other agents. Therefore, we 

conducted foragers’ movement experiments using Japanese carpenter ants and obtained they showed 

Lèvy-like movements when they swarmed. We also conducted multi-agent model in which each 

agent interacted with each other by locally predicting other’s moving direction and changed 

directional rules with active deviations. Our results fitted to those of experimental analysis.  

For agents, in both algorithms, odd behaviors are induced thanks to referring to global 

properties based on local information and at the same time holding ambiguities due to their limited 

abilities. These ambiguities could be key roles to achieve flexible movements. 

Second, we conducted visual navigation experiments using Japanese carpenter ants (chapter 

3). Ant foragers use several navigation systems to locate profitable food locations or their nests. 

Recruitments using chemical pheromones are well known. In addition to that, foragers also use 

visual stimulus for their navigation. There are numerical studies to investigate how visual landmarks, 

panoramic views or celestial compasses are used for their orientations. Ant foragers do not appear to 

use cognitive maps (locale systems). Rather, they depend on taxon-like systems in which one-to-one 

correspondences between agents’ current position and next moving-direction are implemented.  

Thus, the matched direction is always the direction in which to travel. However, this inability does 

not exclude the possibility that ants cannot use map-like navigation. The idea of each 

navigate-system (locale or taxon) is an extreme case in navigation; thus, in identifying the role of the 

map, we assume that ants can identify a pair of visual and accessible cues (accessibility) from a 

common stimulus. 

 We here demonstrate that ants can use a local cognitive map in which logical operations 

with respect to accessibility are employed in navigation. We introduced several distinguishable 

visual stimuli for ant foragers. These stimuli leaded to several food locations or dead-ends. We could 

obtain that foragers could learn a set of accessible cues using logical operations (AND or XOR). 

More interestingly, foragers appeared to produce new symbols or landmarks to get rid of the 

inconsistences aroused from logical operations. Therefore, from interrnal noises, ants sometimes 

appear to directly go to unknown landmarks or panoramic directions, resulting in achievement of 

find new food locations during their homing trips. 

Finally, we examined whether ants show Kanizsa-triangle illusion or not (chapter 4). 

Kanizsa triangle figure, in which three Pac-Man-shaped figures are turned inside symmetrically, is 

well known as an illusion figure. Subjective contour is perceived although such contour actually 

never exists. Regarding to perceptions, it is well discussed whether animals, including human, 

perceive the whole pictures or just element part level. However, in any case, it seems that there is a 
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tendency to make judgment which level is true or not, in assuming that each level is independent of 

each other. Some studies reported that experimental subjects’ persistency to either level is 

changeable depending on situation contexts. Therefore, there is plenty of space to investigate new 

mechanism in order to explain above flexible decision making, i.e. employing local element 

information while concurrently referring to global properties. As already mentioned, ants appear to 

flexibly use local information. Therefore, tracking foragers’ trajectories by exposing them to 

Kanizsa-shaped solution food might be compared with an abstract model in which global properties 

(Kanizsa-triangle illusion) were produced based on bottom-up processes. When ants were exposed to 

Kanizsa-triangle shaped figures, triangle trajectories along each Pac-man’s mouths were obtained in 

our experiments. We also conducted cognitive experiments using human subjects in which 

obstructive stripe notches were equipped to each Pac-man to investigate whether or not subjects’ 

whole perceptions were affected by these notches. Illusion contour appeared to depend on the 

location and direction of the stripe notches. Therefore, also in human, local disturbed patterns may 

contribute to form the dynamic global perceptions. 

In summary, agents can achieve optimal searching or foraging when they confuse and 

identify different level mechanisms or materials such like a pair of others’ movement and 

movement-rule or a pair of visual cues and those meanings. Thanks to those identifications, agents 

might actively produce wrong and odd interpretations or landmarks. These errors or falsity would 

play an important role to maintain the balance between persistence of current situations 

(exploitation) and discovering new items (exploration) without inserting any external noises. 

Therefore, our researches would contribute to produce autonomous human-like agents which change 

the parameters by themselves without any coordinating by experimenters. 
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Chapter 2 

Random Walk Models: Emergence of Power-Law Movements 
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2-1 Emergence of optimal searching from Brownian 

walks 

 

2-1-1. BACKGROUND 

When agents can exploit previously acquired knowledge, such as profitable food locations or the 

cost required to reach those locations, selecting an effective route entails solving a so-called 

deterministic walk problem, such as the “travelling tourist problem” [1,2]. On the contrary, in the 

absence of prior knowledge, “chance” or “randomness” represents a more appropriate scenario for 

exploring an unknown environment, and many random search algorithms, such as the Lévy walk or 

the Brownian walk algorithm, are effective for random exploration and have been very well studied 

[3-7].  

The Lévy walk is defined as a process whereby an agent takes steps of length l at each time, and l 

shows a probability density distribution with a power-law tail: 

P(l)~l
-μ 

where 1<μ≦3. A Lévy walk with μ≈2 results in optimal random searches in environments with 

randomly distributed food sites [8]. For μ>3, the Lévy walk converges to Brownian motion. In 

environments with extremely abundant resources, the Lévy and Brownian walk food-searching 

algorithms result in similar exploration efficiencies. However, the Lévy walk is more suitable than 

the Brownian walk for searching in low-density environments, and Lévy foragers can survive for 

longer periods of time without extinction [9,10]. 

To determine which algorithm is more suitable for modeling animal movement behavior, recent 

analyses have made comparisons between an animal’s actual movements and model simulations and 

have attempted to determine whether the movements correspond to a Lévy walk [8,11] or to a 

Brownian walk [12]. However, it appears that, in searching for food, animals do not depend on a 

particular type of movement modeled by a certain algorithm, but rather, the rules guiding their 

movement change depending on the context [13,14]. 

Therefore, in determining an animal’s foraging behavior, its interactions with the environment 

and/or its effects on the surrounding world, the issue that arises is not only the determination of the 

optimal algorithm for a random walk but also the estimation of how these flexible behaviors arise 

from what that animal is doing [15].  

When an agent’s movement obeys a certain distribution, that agent behaves exclusively according 

to the probabilistic rule determining the distribution. From this perspective, the direction and step 

length are completely determined by a roll of the dice, which is independent of whether the dice are 

biased. 
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If an agent behaving according to a random movement rule sometimes alters the next step forward 

or the rule itself, then the resulting movement does not follow the distribution resulting from a 

random roll of the dice and the application of the abovementioned rule. Thus, a balancing of chance 

with necessity or of a passive with an active movement mode must be achieved by the agent’s 

interaction with its surroundings. 

Here, starting with a simple random walk with uniform step length and discrete angle distributions, 

we consider an agent who alters the rule that controls him based on his own experiences, and we 

propose an effective exploration algorithm (REV, a random walk algorithm) despite the fixed step 

lengths. In this study, the agent experiences random directional biases; based on these biases, he 

disregards the rule that he had been obeying until that time and changes the rule itself using his 

memory, which was obtained by chance, to implement an indeterminate forward step that is 

independent of the rule. There are few studies detailing agent movements for agents who proceed 

with unknown forward steps based on limited memories of their own experiences [16]. We also 

report the emergence of a power-law distribution that is independent of step length. 

 

Figure 1. Flow chart of the REV-Random algorithm. In each trial, the probability intervals Is(t) (s=0, 

1, 2, 3) were initially set to I0(0)=[0.0, 0.25], I1(0)=[0.25, 0.5], I2(0)=[0.5, 0.75] and I3(0)=[0.75, 1.0] 

until these intervals were changed. Therefore, each trial started with a simple random walk. R(t) 

indicates the random number at the tth step. Exp(t) indicates the experience number for directional 

moves, that is, the number of consecutive moves in the same direction, such as +x, +x, +x, +x. See 
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also the above text. 

 

2-1-2. MATERIALS & METHODS 

(a) 2D simple random walk 

Each trial is run for a maximum of 10,000 time steps. First, we use a simple two-dimensional (2D) 

random walk to set the simulation stage for each trial and set the agent at the origin. In this algorithm, 

a random number from 0.00 to 1.00 is selected at each time step. We assume that the agent moves in 

two-dimensional square lattices. The agent selects one direction among four discrete directions, +x, 

-x, +y or -y, depending on a random number classified to one of the following four intervals, [0.0, 

0.25], [0.25, 0.5], [0.5, 0.75] or [0.75, 1.0]. For example, if the random number is 0.23 at the tth step 

(i.e., R(t)=0.23), the agent steps forward +1 along the x axis. We create an agent that, depending on 

its experiences, alters the rule that controls that agent’s movement directions. 

  

(b) 2D REV-random walk (REV-Random) 

In our Re-valued (REV) random walk model, at the tth step, the agent has a memory that gives it 

access to four random numbers, from R(t) to R(t-3). This model implies that the agent has a limited 

memory. While the agent in the simple random walk has access to only one random number, R(t), 

and the interval controlling the agent’s move is fixed, the interval in the REV random walk, Is(t), s=0, 

1, 2, 3, is changed using the four random numbers when the succession of the agent’s directional 

moves exceeds a threshold number. The four intervals are initially set to I0(0)=[0.0, 0.25], 

I1(0)=[0.25, 0.5], I2(0)=[0.5, 0.75] and I3(0)=[0.75, 1.0]. The next walk is defined by the following 

equations: 

 

     (x(t+1), y(t+1)) = (x(t)+1, y(t)), if R(t)I0(t);    =(x(t)-1, y(t)), if R(t)I1(t); 

               =(x(t), y(t)+1), if R(t)I2(t);    =(x(t), y(t)-1), if R(t)I3(t), 

Thus, every trial starts as a simple random walk. 

A directional move that consists of a series of the same move, such as +x, +x, +x, … is counted as 

follows: 

 

Exp(t+1)=Exp(t)+1,   if R(t)Is(t), R(t-1)Is(t), R(t-2)Is(t), R(t-3)Is(t)  

for some s in {0, 1, 2, 3}; 

Exp(t+1)=Exp(t),  otherwise. 

For example, if the agent’s directional move from t-3 to t corresponds to a +y, +y, +y, +y series, it 

implies  

R(t)I2(t), R(t-1)I2(t), R(t-2)I2(t), R(t-3)I2(t) 

Therefore 
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Exp(t+1)=Exp(t)+1 

However, if the agent’s directional move from t-3 to t corresponds to +y, +x, +y, +y, then it implies 

R(t)I2(t), R(t-1)I0(t), R(t-2)I2(t), R(t-3)I2(t) 

Therefore 

Exp(t+1)=Exp(t) 

 

If Exp(t) exceeds a threshold number, , the four intervals are changed as follows: 

 

        I0(t)=[0.0, NR(t)],        I1(t)=[NR(t), NR(t)+NR(t-1)], 

I2(t)= [NR(t)+NR(t-1), NR(t)+NR(t-1)+NR(t-2)],   I3(t)=[NR(t)+NR(t-1)+NR(t-2), 1.0], 

 

where NR(t-k), k=0, 1, 2, 3, is defined by 

 

                                    3 

NR(t-k) = R(t-k)/ R(t-i). 
                           

i=0 

 

When Exp(t) exceeds , Exp(t) is reset to 0. 

For example, if Exp(t) exceeds  and R(t-3)=0.20, R(t-2)=0.15, R(t-1)=0.10 and R(t-3)=0.20, then 

NR(t-k) for k=0, 1, 2, 3 is given as follows:  

          NR(t-3)=0.20/(0.20+0.15+0.10+0.20)=0.31 

NR(t-2)=0.15/(0.20+0.15+0.10+0.20)=0.23 

NR(t-1)=0.10/(0.20+0.15+0.10+0.20)=0.15 

NR(t)=0.20/(0.20+0.15+0.10+0.20)=0.31 

Thus, Is(t) for s=0,1,2,3 is given as follows: 

I0(t)=[0.0, 0.31] 

I1(t)=[0.31, 0.31+0.15]=[0.31, 0.46] 

I2(t)=[0.31+0.15, 0.31+0.15+0.23]=[0.46, 0.69] 

I3(t)=[0.31+0.15+0.23, 0.31+0.15+0.23+0.31]=[0.69, 1.00] 

Finally, Exp(t) is reset to 0. 

 

The flow chart of the REV-random walk algorithm is presented in Figure 1. 

In our simulations,  is set to 4, and we discuss the agent’s behavioral differences between =4 and 

=8, 64 and 128.  

In the simple random walk algorithm, the probability of a random number falling into a particular 

interval is 0.25, as the intervals are divided equally. Thus, the agent moves north, east, west or south 

with equal probability. In contrast, the intervals in the REV-random walk algorithm are divided 
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unequally, depending on the agent’s history. 

 

2-1-3. RESULTS 

(a) Threshold θ=4 

Figure 2 shows an example of an agent trajectory for each algorithm. Compared to a simple random 

walk, the agent can reach farther areas by following the REV-Random algorithm while spending 

longer amounts of time in certain areas.  

 

Figure 2. Example of an agent trajectory after 10,000 time steps of each algorithm. (a) REV-Random. 

(b) Random. 

 

In the simple random walk analysis, it is known that the mean squared distance and time step are 

related by the following relation [5,17]: 

 

<R
2
>~t

2H 

 

Parameter H is determined depending on the algorithm (H>1/2 for a Lévy walk (super-diffusion), 

H=1/2 for a correlated random walk with more than 10
2
 time steps or for a Brownian walk 

(diffusion)). Figure 3 shows the mean squared distance and the time step obtained from our 

algorithm (the averaged R
2
 was obtained from 1,000 trials at each discrete time step). The fit for 

parameter H according to the above model was H~0.61, indicating that super-diffusion was achieved 

(N=19, R-squared=0.99, F=2,109.00, P<1.0e-15). We also checked the degree of diffusion by 

restricting the fit to the largest five values of the time step because it appeared that H converged to 

H~1/2. However, we found that the fit was H~0.57 (N=5, R-squared=0.99, F=1,108.00, P<1.0e-4). 
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Figure 3. Log-scale plot of <R
2
> and t

2
. The inset is an expansion of the x-axis showing the five 

largest values (see also the text). 

 

To evaluate the exploration efficiency, we established four feeder sites consisting of 10×10 squares 

distributed as shown in Figure 4b. The agent is initially set at the center of the foraging region 

(starting point). If the agent reaches one of the four fixed sites, the time step required to reach the 

site is the output. We conducted 100 trials based on each algorithm and estimated how frequently the 

agent could reach an individual feeder in a limited period of 10,000 time steps. Figure 4a presents a 

comparison of the performance of the REV-Random and simple random walk algorithms. If the 

feeder sites are closely located, within 10 to 20 distance units from the starting point (Figure 4b), an 

agent can reach a feeder site in 10,000 steps under both algorithms. However, if the feeder sites are 

located farther away from the starting point, at 110 to 120 distance units, the performance of the 

REV-Random algorithm is better than that of the simple random walk algorithm (number of 

successes in 10,000 steps, REV-Random vs. Random, 10-20: 96 vs. 98, Fisher test, P=0.36, NS; 

60-70: 64 vs. 62, chi-squared test, χ
2
2=0.022, P=0.88, NS; 110-120: 32 vs. 13, chi-squared test, 

χ
2

2=9.29, P<0.001).  
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Figure 4. (a) Frequency of successfully reaching one of the feeder sites within 10,000 time steps for 

each algorithm run for 100 trials. (b) Example of feeder site locations. Here, the 10-20 version is 

sketched. The black dot in the center indicates the origin of the coordinates. The four grey zones 

indicate feeder sites. Each feeder site occupies a 10 ×10 grid size and is fixed on one of the two axes 

in each direction away from the origin. The notation 10-20 indicates that the distance from the origin 

to the feeder areas is 10 units. (c) Average number of time steps required to reach one of the four 

feeder sites in each trial for each algorithm run for 100 trials. Straight lines indicate error bars. 

**P<0.01, ***P<0.001, NS indicates not significant. 

 

We estimated not only whether an agent reaches the target but also the time required to reach the 

feeder (Figure 4c). There is no significant difference between the two algorithms when the feeder is 

10 to 20 distance units away from the center (REV-Random vs. Random, NREV-R=96, NR=98, 

MEANREV-R=303.7±753.2, MEANR=235.4±302.8, Mann-Whitney U test, U=4,592.0, p=0.69, NS) 

(Figure 4c). However, in the other cases, the agent following the REV-Random algorithm can reach 

the feeder site significantly faster than that following the random walk algorithm, even when the 

feeder is placed at a middle-range distance away from center (REV-Random vs. Random, 60-70: 

NREV-R=64, NR=62, MEANREV-R=2,589.0±2,239.4, MEANR=5,003.0±2,480.1, Mann-Whitney U test, 

U=761.00, P<0.001, 110-120: NREV-R=32, NR=13, MEANREV-R=3,596.0±2,467.6, 

MEANR=6,670.0±1,657.9, Mann-Whitney U test, U=761.00, P<0.001). Thus, the REV-Random 

algorithm is more efficient at exploring both nearby (but not very close) and distant areas within a 

certain limited time. 
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When considering the final location of the agent after 10,000 time steps for 100 trials using each 

algorithm, we found that there was no relationship between the x and y coordinates for either 

algorithm (REV-Random, R-squared=-0.01, F=0.0041, P=0.95, NS; Random, R-squared=-0.0057, 

F=0.44, P=0.51, NS) (Figure S1). 

Figure 5 provides a histogram of the time duration (in units of time steps) between rule change 

events. Interestingly, we found that the histogram shows a power-law distribution. (power-law vs. 

exponential, N=57, μ=1.85, λ=0.0063, wp=0.97, wexp=0.03, goodness of fit test: G=41.39, df=36, 

P=0.25) [18]. We discuss the significance of this finding in the next section.. 

 

Figure 5. Log-scale plot of the distribution of time intervals between rule change events. 

 

(b) Difference between =4 and other threshold values (8, 64 and 128) 

 We further investigated how  threshold values affect the exploration process. Here, we compare a 

threshold of 4 with a threshold of 8 using the same analytical process described above (i.e., based on 

the ability to reach a target within a certain distance or within a certain time limit). According to 

Figure 6a, the threshold 8 REV-Random algorithm is not as efficient as the threshold 4 version with 

respect to the exploration efficiency (number of successes in 10,000 steps for threshold 4 vs. 

threshold 8, 10-20: 96 vs. 92, chi-squared test, χ
2
2=0.80, P=0.37, NS; 60-70: 64 vs. 36, chi-squared 

test, χ
2

2=14.6, P<0.001; 110-120: 32 vs. 27, chi-squared test, χ
2
2=0.38 P=0.54, NS). We also 

evaluated the distance between the start and end points after 10,000 steps for four different threshold 

values (4, 8, 64 and 128). Figure 6b shows that the distance increases depending on the threshold 

values, suggesting that changing the current rule affects the agent’s bias towards movement in a 
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straight line (threshold 4 vs. threshold 8: N4=100, N8=100, MEAN4=246.0±149.5, 

MEAN8=295.6±174.5, Mann-Whitney U test, U=4122.5, P<0.05; threshold 4 vs. threshold 64: 

N4=100, N64=100, MEAN4=246.149.5±149.5, MEAN64=526.2±318.5, Mann-Whitney U test, 

U=2172.0, P<1.0E-11). However, we observed no significant difference between a threshold of 4 

and a threshold of 128 (threshold 4 vs. threshold 128: N4=100, N128=100, MEAN4=246.0±149.5, 

MEAN128=323.4±259.2, Mann-Whitney U test, U=4436.0, P=0.17, NS). As can be seen from Figure 

S2, the changing of the current rule occurs less often as threshold values increase, and the areas with 

a concentrated presence become larger until the first rule change. 

 

Figure 6. (a) Frequency of successfully reaching one of the feeder sites in 10,000 steps for each of 

the threshold values (θ=4, 8) when the REV-Random algorithm is run for 100 trials. (b) Average 

distances between the start point (origin) and end point in each trial for each threshold value (θ=4, 8, 

64 and 128) when the REV-Random algorithm is run for 100 trials. Straight lines indicate error bars. 

*P<0.05, **P<0.001, NS indicates not significant. 

 

2-1-4. DISCUSSION 

 Our results indicate that a flexible random walk similar to a Lévy walk will be achieved using 

probability intervals that change based on the agent’s history and that have a uniform step length 

distribution. As mentioned above, this algorithm results in super-diffusion. Therefore, it will be 

possible to attain long-range exploratory efficiency [5, 17]. Although we assumed a very low food 

density in our simulations, the important result is that efficiency was achieved through a balance 

between near and distant areas. Effective long-range models, such as the Lévy walk model, are not 

actually very suitable for searching high-target-density and range-limited areas [15]. 

In our algorithm, the current probability intervals change depending on an agent’s own experiences. 

The agent only knows its most recent four random numbers concretely. Based on this event history, 

the agent experiences directionally biased movement. If the number of consecutive steps in the same 

direction reaches the threshold value, the current probability intervals are changed. At this moment 

(the tth step), the values of R(t-3) to R(t-1) are based on the probability intervals defined by the 

previous rule, and only R(t) is free from these intervals (e.g., R(t-3)I0(t-1), R(t-2)I0(t-1), 
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R(t-1)I0(t-1) and R(t)I1(t-1)). Therefore, using these four numbers provided by chance, the agent 

takes a new step associated with new probability intervals. Thus, the agent’s move forward is biased. 

However, the accumulating directional bias causes the probability intervals to change at a higher 

frequency. When the direction of movement is biased, it implies that one of the four probability 

interval regions is larger than the others. Therefore, the range of random numbers that fall within that 

region is large. Thus, the avoidance of dominance of one region over the others is achieved upon the 

next interval change, which occasionally produces local areas of concentrated presence. We obtain a 

power-law distribution based on the distribution of time intervals between interval change events. By 

altering the rule and taking the next step with ambiguity, the agent can involve the world actively. 

However, the agent cannot change the rule with complete freedom. Instead, he produces directional 

inequality by choosing a direction using limited information provided by chance. Thus, having to 

take such an action as a result of chance might be associated with achieving effective exploration. 

In our algorithm, the agents only have knowledge of the most recent four random numbers 

determining their movement. Thus, the algorithm does not require agents to necessarily have 

high-performance memory abilities. By deviating from one-to-one behavior with respect to a certain 

fixed rule, i.e., a simple diffusion-predictive moving frame, it is possible for the agent to display 

behavior beyond a predictive frame, i.e., to achieve super-diffusion. Therefore, our algorithm could 

represent an abstract explanation for biological phenomena focusing on an agent’s degree of activity. 

It was recently reported that the nest-searching behavior of foraging ants corresponds to a Brownian 

walk [19]. However, in some species of insects and fishes, searching behavior changes in response to 

certain environmental alterations linked to extinction, e.g., the amount of available food [20,21]. In 

fact, ants show different searching behaviors depending on the relevance of the visual information 

provided to them [22]. Dramatic behavioral changes caused by the agent’s involvement and 

interactions with the environment and other agents, such as nestmates, might be possible [13,22,23]. 

Balancing an agent’s own degree of activity and passivity based on limited available information 

will achieve such flexible behaviors [24]. 
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2-2 The relationship between “randomness” and 

“power-law” on Lévy-like foraging 

 

2-2-1. BACKGROUND  

Two major issues in an agent’s moving strategies are commonly discussed. One is deterministic 

walk problems, which occur when the agent has complete location information, such as which 

position is suitable for establishing effective reach [1, 2]. The other type is known as random walk 

problems, in which the agent does not have any location information. Therefore, the problem is to 

determine which probability distribution, such as the Lévy or Brownian walk, can provide effective 

exploration in certain situations and empirical studies showing Levy and Brownian walks by 

individual animals are also conducted [3-11, 23]. 

From one point of view, the former indicates a closed world for the agent in terms of the knowledge 

that is already acquired by the agent and the one-to-one correspondence between the position of the 

agent and every fixed location; this information comprises the inner map of the agent. There is no 

interaction between the agent and unknown environments. In contrast, the latter indicates an open 

world for the agent in terms of its absolute acceptance of the direction or move length of the next 

time step. The agent has no location information available about its own relative position and must 

therefore accept the direction or move length defined by a given fixed probability distribution for 

each time step. Thus, for each time step, there is a one-to-one correspondence between the position 

of the agent and next move position. Repeating this simple action, the agent could arrive at its 

destination, such as a feeder site or its own nest [25, 26]. These two main issues (deterministic and 

random walk algorithms) are therefore mutually exclusive. 

In a recent study, we proposed an effective new random walk algorithm, called the REV algorithm, 

in which the agent alters the next moving direction and the rule that controls the agent's movement 

based on its own biases in its moving direction [27]. 

In the REV algorithm, the agent changes the current rule using the most recent four random numbers 

if it experiences directional biases in its movement, such as “+x, +x, +x, +x”, and if this bias exceeds 

the threshold value (see [27] for more details). Of the four random numbers, (R(t), R(t-1), R(t-2), 

R(t-3)), only R(t) is independent of the previous random region when the rule changes; thus, only 

R(t) is a non-bounded number. Therefore, the agent changes the rule using these four random 

numbers. On the one hand, as the current rule is changed, the agent accepts this non-bounded R(t) to 

some degree. On the other hand, however, the agent does not accept R(t) absolutely; instead, the 

agent moves in a new direction that combines this non-bounded number “R(t)” with the three 
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bounded numbers from R(t-1) to R(t-3). Therefore, the REV algorithm balances “activeness and 

passiveness” or “a closed world and an open world”. 

In this paper, we investigated the power of adding a non-bounded number to change the rule. We 

used two algorithms, the REV algorithm and the REV-bounded algorithm. In the REV-bounded 

algorithm, all four random numbers that are used to change the rule are bounded. We showed that the 

REV-bounded algorithm did not have more super-diffusion properties or power-law distributed move 

lengths than did the REV algorithm and showed the importance of a non-bounded random number in 

the rule change. 

 

2-2-2. MATERIALS & METHODS 

1. Model description 

We propose two random algorithms: the REV algorithm and the REV-bounded algorithm. First, we 

describe the fundamental model of each algorithm. 

Figure 1. (a). Flow chart of the REV algorithm and the REV-bounded algorithm. The bold arrows 

and letters indicate the REV algorithm. The thin arrows and letters indicate the REV-bounded 

algorithm. “Experience(t)” indicates the number of experienced directional movements, such as “-x, 

-x, -x, -x”. (b) and (c). Schematic of four random numbers in the two algorithms. Each arrow 

represents the movement direction for each time step. “R(t), R(t-1), R(t-2), R(t-3)” indicate the four 

random numbers used for the rule change. (b). REV algorithm. R(t) is not bound by the movement 

directions of the other three random numbers. (c). REV-bounded algorithm. All of four random 

numbers are bounded regarding the movement directions. 
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1-1. re-valued (REV) algorithm 

In our re-valued (REV) random walk model, the agent has a memory at the tth step that allows the 

agent to access four random numbers, R(t) to R(t-3). The interval in the REV random walk, Is(t) for 

s=0, 1, 2, 3, is changed using the four random numbers when the accumulation of the agent’s 

directional moves exceeds a threshold number. The four intervals are initially set to I0(0)=[0.0, 0.25], 

I1(0)=[0.25, 0.5], I2(0)=[0.5, 0.75] and I3(0)=[0.75, 1.0]. The next walk is defined by the following 

equations: 

 

     (x(t+1), y(t+1)) = (x(t)-1, y(t)), if R(t)I0(t);    =(x(t)+1, y(t)), if R(t)I1(t); 

               =(x(t), y(t)-1), if R(t)I2(t);    =(x(t), y(t)+1), if R(t)I3(t), 

Thus, every trial starts as a simple random walk. 

A directional move that consists of a series of the same move, such as -x, -x, -x, …, is counted as 

follows: 

 

Experience(t+1)=Experience(t)+1,   if R(t)Is(t), R(t-1)Is(t), R(t-2)Is(t), R(t-3)Is(t)  

for some s in {0, 1, 2, 3}; 

Experience(t+1)=Experiene(t), otherwise. 

For example, a directional move by the agent from t-3 to t that corresponds to a -y, -y, -y, -y series 

implies the following: 

 

R(t)I3(t), R(t-1)I3(t), R(t-2)I3(t), R(t-3)I3(t) 

Therefore, 

 

Experience(t+1)=Experience(t)+1 

However, a directional movement by the agent from t-3 to t that corresponds to +x, +y, +y, +y 

implies the following: 

 

R(t)I3(t), R(t-1)I1(t), R(t-2)I3(t), R(t-3)I3(t) 

 

Therefore, 

 

Experience(t+1)=Experience(t) 

If Experience(t) exceeds a threshold number, , the four intervals are changed as follows: 

 

        I0(t)=[0.0, NR(t)],        I1(t)=[NR(t), NR(t)+NR(t-1)], 
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I2(t)= [NR(t)+NR(t-1), NR(t)+NR(t-1)+NR(t-2)],   I3(t)=[NR(t)+NR(t-1)+NR(t-2), 1.0], 

 

where NR(t-k), k=0, 1, 2, 3, is defined by 

 

                                   3 

NR(t-k) = R(t-k)/ R(t-i). 
                           

i=0 

When Experience(t) exceeds , Experience(t) is reset to 0. 

For example, if Experiences(t) exceeds threshold number  and recent four random numbers are 

given like followings, 

 

R(t-3)=0.10,  

R(t-2)=0.20,  

R(t-1)=0.20,  

R(t)=0.10 

Then, Is(t), s=0,1,2,3 are changed to following equations. 

 

I0(t)=[0.0, 0.17] 

I1(t)=[0.17, 0.50] 

I2(t)=[0.50, 0.83] 

I3(t)=[0.83, 1.00] 

Therefore, if R(t+1)=0.20 on next time, the agent can go forward along +x. 

In our simulations,  is set to 4 in both algorithms. 

 

1-2. REV-bounded algorithm 

The description of the REV-bounded algorithm is the same as that for the REV algorithm except for 

the timing of “t=t+1” (Figure 1a). In the REV algorithm, R(t) is independent of the previous random 

regions. For example, the following could occur when the current rule is changed. 

 

R(t)Ir(t), R(t-1)Is(t), R(t-2)Is(t), R(t-3)Is(t) 

 

where r ≠ s 

 

Therefore, R(t) could be bigger or smaller value extremely than the other three numbers. 

In the REV-bounded algorithm, however, the following must occur when the current rule is changed. 

 

R(t)Is(t), R(t-1)Is(t), R(t-2)Is(t), R(t-3)Is(t) 
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In this regard, R(t) is non-bounded in the REV algorithm but bounded in the REV-bounded algorithm 

(Figure 1b and 1c). 

 

2-2-3. RESULTS 

It appears that both algorithms show directionally biased movement while also forming local spots 

to some degree (Figures 2a and 2b).  

 

Figure 2. Example of the trajectories in the two algorithms. (a). REV algorithm. (b). REV-bounded 

algorithm. The agent starts at the origin in each trial. 

 

We evaluated whether the food exploration efficiencies differ between the algorithms. We set four 

fixed food locations with a size of 10×10 grids that were located at the 10-20, 60-70 and 110-120 

positions on each of the axes. The 10-20 position indicates that each of the four food areas was 

located between 10 and 20 units from the origin on one of the axes. Figure 3 shows the similar 

results of the two algorithms regarding the success frequencies for finding one of the food locations 

(Figure 3a). The success of finding food is defined by the agent’s arrival at one of the food locations 

(REV vs. REV-bounded, 10-20; n=97 vs. n=98 out of 100 trials, Fisher’s Exact Test, P=1.00, NS, 

60-70; n=52 vs. n=55 of 100 trials, chi-squared test, χ2
2
=0.08, P=0.78, NS, 110-120; n=36 vs. n=24 

of 100 trials, chi-squared test, χ2
2
=2.88, P=0.09, NS). However, the REV algorithm searched more 

efficiently in terms of the time to reach the food (Figure 3b) (REV vs. REV-bounded, 10-20; 

MEANREV=218.8±558.63, MEANbounded=220.10±353.79, Mann-Whitney U test, U=4410.00, P=0.38, 

NS, 60-70; MEANREV=2835.00±2248.32, MEANbounded=3650.00±2135.73, Mann-Whitney U test, 

U=1025.00, P<5.00E-02, 110-120; MEANREV=3896.00±2102.64, MEANbounded=5897.00±2304.52, 

Welch Two Sample t-test, t=-3.41, df=46.26, P<5.00E-03). The agent can reach food areas faster 

using the REV algorithm than using the REV-bounded algorithm for food that is far from the starting 
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point, indicating REV algorithm is more suitable for food searching at least when resources are 

sparsely distributed. The mean squared displacement and the time step of the REV algorithms follow 

a super-diffusion process, i.e., the following relation is achieved [27]. 

<R
2
> ~ t

2H
, H>0.5 

H=0.5 corresponds to a Brownian walk [15, 17]. 

Figure 3. Success frequencies and time steps to reach one of four food locations within 10,000 time 

steps. (a). Frequencies for three versions. The 10-20 designation indicates that each of the 10×10 

grid-sized four food areas is located between 10 and 20 units from the origin on one of the axes. (b). 

Time steps used to reach one of the food locations within 10,000 time steps for the three versions. (c) 

Schematic of four food locations. Here, the 10-20 versions are plotted. Gray squares indicate food 

areas. The black dot located at the center indicates the origin. The size of each lattice is 10×10. 

*P<0.05, **P<0.01, NS: non-significant. The vertical lines indicate error bars. 

 

Figure 4 shows that the REV-bounded algorithm does not show any super diffusion 

(R-squared=0.99, slope=0.29<0.50, we obtained each value at time points of 500, 1000, 1500, … 

using 1,000 trials). This finding is opposite to that of the REV algorithm, which shows super 

diffusion [27]. We also evaluated whether the agent’s log-scale move lengths followed power-law 

distributions or exponential-law distributions (Figures 5 and 6). In this paper, the move step lengths 

were defined as follows. Any 180° turn that occurred within 2.5 distances was considered a saccade 

turn. The step length (>1.00) was considered the shortest distance between any two sequential 

saccade turns (Figure 5d). Figures 5a and 5b show examples of log-scale plots of the step lengths 
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and cumulative distributions from one trial of each algorithm. We conducted 20 trials for each 

algorithm and obtained the average slopes (μ). Figure 5c shows that the μ of the REV algorithm is 

closer to 2.00 than that of the REV-bounded algorithm, indicating that the REV algorithm is more 

suitable for food searching (mean μREV=2.68±0.068, mean μbounded=2.88±0.069, Welch Two Sample 

t-test, t=-9.44, df=37.99, P<1.0E-10) [28]. Figure 6a shows the frequencies of the AIC weights of 

power-law, here we denoted it as “w(p)” values. We could determine the frequencies of each 

algorithm by conducting 20 trials for each. As seeing in figure 6a, there were significant differences 

of the values of w(p)’s variances between two algorithms (σ
2
REV=0.050, σ

2
boudned=0.166, Bartlett's 

test, χ2
2
=6.39, df=1.00, P<5.0E-2.0). Moreover, the w(p) values are higher in the REV algorithm than 

in the REV-bounded algorithm (Figure 6b) (mean w(p)REV= 0.95±0.22, mean w(p)non-ref=0.79±0.41, 

Mann-Whitney U test, U=149.00, P<5.0E-2). G-test was used to check whether each trial data was 

fitted to the best model and each data was fitted to the model, excepting two trials from 

REV-bounded algorithm (G=53.62, df=2, P<1.00E-11, G=27.42, df=2, P<1.0E-5). These results 

indicate that the w(p) of the REV algorithm appears to be more consistent and reach higher 

amplitudes than that of the REV-bounded algorithm. 

 

Figure 4. Log-scale plot of the mean squared displacement and the squared time of the 

REV-bounded algorithm 

 

 We also calculated step lengths defined as displacements between any consecutive trajectory points 

from 1 trial in REV algorithm [29]. We obtained each trajectory point at 10 time step intervals for 

each direction (X and Y) and estimated whether step lengths followed power-law distributions or 

exponential ones. Results are shown in Table S1. We could obtain that only step lengths regarding to 

Y direction showed power-law distributions (w(p)X=0.00, λX=0.70, w(p)Y=1.00, μY=2.76). 
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Figure 5. Log scale of the step lengths and the cumulative distributions for each algorithm from one 

trial. (a). REV algorithm. (b). REV-bounded algorithm. (c). Mean μ values of each algorithm from 

20 trials. (d). Schematic of the definition of step length. The bold black line indicates the step length. 

Each circle indicates a saccade turn region, which has 2.5 distances. Each arrow indicates the agent’s 

trajectory for a time step. ***P<0.001. The vertical lines indicate error bars. 

 

2-2-4. DISCUSSION 

 We proposed two random walk algorithms. Both algorithms clearly exhibited directional biases in 

the movements. Actually, there was no difference in the number of successful arrivals to food sites 

between these two algorithms. However, our results indicate that not only the change in the current 

rule but also partial randomness are important to achieve effective food searching distributed 

sparsely in terms of the time spent to reach food areas and the emergence of consistent power-law 

distributions. An agent using the REV algorithm could reach a feeder site faster than one using the 

REV-bounded algorithm. The log-scale move lengths and the cumulative distributions of the REV 
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algorithm also showed more reliable power-law distributions than those of the REV-bounded 

algorithm. By conducting another method, we could obtain power-law distributed step lengths 

regarding to only Y direction in 1D. Perhaps, the agent’s fixed and discrete movement step and speed 

might affect our results regarding to step lengths calculation methods [29]. 

 

Figure 6. Distribution of AIC power-law weights (w(p)) and AIC exponential-law weights from 20 

trials. (a). Frequencies of w(p) distributions for 20 trials. Note that the frequencies of w(p) from 

0.10-0.80 were 0 in both algorithms. (b). Mean w(p) values from 20 trials of the two algorithms. 

*P<0.05. The vertical lines indicate error bars. 

 

 In both algorithms, the agent changes the rule using the most recent four random numbers, R(t) to 

R(t-3), if it experiences directional biases in its movement and if those biases exceed a threshold 

value. In the REV algorithm, R(t) is non-bounded, i.e., the following could occur: 

R(t)Ir(t), R(t-1)Is(t), R(t-2)Is(t), R(t-3)Is(t),  

where r ≠ s. 

Therefore, R(t) provides agents with absolute “randomness” in their movement directions because 

R(t) differs from the other three bounded numbers, R(t-1), R(t-2) and R(t-3). Agents accept this 

number to a certain degree, and an agent could then change the rule by combining this number with 

the other bounded numbers. Thus, a balance between passive and active and between a topological 

or flexible map must be achieved in this algorithm. 

 In contrast to the REV algorithm, the REV-bounded algorithm only provides bounded numbers to 

agents. In this case, the power-law distributions of log-scale step lengths are inconsistent, and the 

variances are high. Sometimes, the weight of the exponential law exceeded the weight of the power 

law. Thus, adding a random number to the rule change appears to play an important role in the 

emergence of consistent power-law distributions. All four bounded numbers in REV-bounded 

algorithm indicate the past numbers. Therefore, the rule would be determined by established 

numbers. In this sense, this algorithm might be considered as Monrovian process, differing from 

REV algorithm in which non-bounded number is used to change the rule.  

Recently, animal moving strategies were reported to differ based on the context [13, 14 and 23]. 

However, little is known about the origin of power-law movements, such as the Lévy walk [23 27, 
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30-32]. Our models might be applied to animal searching behavior in complex environments, for 

example, in which obstacles are installed. The agent must produce unpredictable movements by 

interacting outside environments. Previously acquired knowledge and ignorance about food 

locations or unknown environments are generally considered to be mutually exclusive. However, 

these factors could coexist while also showing power-law distributions.  
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2-3 Weber-Fechner relation derived from 

interactions in random walk strategy 

 

2-3-1. BACKGROUND  

The analysis of the random strategies of animals is often studied with algorithms by matching  

their living movements and to the results of simulations [4-7,9,10,17]. Some studies have reported 

that  animals have exhibited a Lévy Walk rather than a Brownian Walk [23, 33-36]. However, 

animal  movement might be context-dependent [13, 14].  

The fundamental problem with studying animal foraging behavior is how to achieve optimal 

searching without assuming a power-law distribution. A robust algorithm should not only optimize a 

random walk, but should also estimate how these flexible behaviors arise from the individual 

activities of each agent [15].  

A Lévy distribution is defined as a process whereby an agent takes steps of length l at each time, 

where l is a probability density distribution with a power-law tail:  

          P(l)~l
-μ                                                                                              

 

with 1<µ≦3. A Lévy walk with µ≈2 shows effective random searching in environments with 

randomly distributed food sites which are non-destructive [5, 28]. For µ>3, the Lévy walk converges 

to Brownian motion. 

The Weber-Fechner relation is the linear relation between physical magnitudes of input stimulus 

and subjective perceived intensity and sometimes discussed as one of origin of power-law 

distributions [37-40]. However, no studies have reported how these two equations would be emerged 

together. How can we achieve the Weber-Fechner equations related to power-law distributions? Here, 

we describe how these two equations are obtained on agent simulations. Subjective perceptions 

depending on physical magnitude of input information might be produced by agents’ subjective 

interpretations. Therefore, deviation of Gaussian distributed errors of input information would 

emerge as subjective output. We developed a random walk algorithm using multi-agent model and 

tackled on the origin of Lévy walk which had power-law tailed distribution. The relationship 

between the Weber-Fechner law and Lévy movement is also studied as random walk problems [40]. 

Recently, we proposed a random walk algorithm called re-valued algorithm, in which the agent has 

a limited memory capacity (i.e., only a memory of four recent random numbers) [27, 41]. Using 

these random numbers, the agent changes its directional rule if the agent experiences moving 

directional biases. If the agent could observe its entire trajectory while maintaining unbiased random 

searching, then there would be no need to change the rule because some directional biases only 

occur probabilistically. However, in a re-valued algorithm, the agent is not able to observe its entire 
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trajectory but is only aware of a limited trajectory. Therefore, to modify directional biases which are 

occupied by its current rule, the agent changes its directional rule by producing a correct or 

erroneous directional interpretation of a few random numbers, resulting in more biased movements 

that deviate from Brownian motion.  

Here, we introduce a new multi-agent random walk algorithm by using a re-valued algorithm as a 

base simulation model. In this paper, the limitation number of recent random numbers varies 

depending on the interactions between agents. Through local interactions, agents change their 

limitation number as well as their directional rule as in the original re-valued algorithm. We show 

that in our new algorithm, the Weber-Fechner law and a power-law distribution would be driven as a 

consequence of the step lengths. Later, we discuss the implications of our results.  

 

2-3-2. MATERIALS & METHODS 

1. Model description 

We propose new random walk algorithm based on original re-valued (REV) algorithm [27, 41]. In 

our new model, multi agents are in the same simulation field and through local interactions, every 

agent changes its own directional bias length. We describe the details of our new algorithm as 

followings. 
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Figure 1. Flowchart of our algorithm and explanation of rule change events. A. Flowchart of our 

algorithm. I0,k, I1,k I2,k, I3,k are directional rules for k’th agent. R
k
(t) indicates the random number at 

the tth step for kth agent. Experience
k
(t) indicates the experience number for directional biases for 

kth agent. Note that grey zones indicate the zones in which agents must determine the choice 

depending on situations. B. Schematic explanation of rule change events in case of MAX_u = 3 as an 

example. Note that time step value is changed before rule change events. 

 

1-1.multi- re-valued (multi-REV) algorithm 

In our multi- re-valued (multi-REV) random walk model, we set 500 agents in 500×500 grid size 

field. Each agent moves on two dimensional lattices with step length 1 on each time step. The kth 

agent has a memory at the tth step that allows the agent to access four random numbers, R
k
(t) to 

R
k
(t-3), and updates the interval in the multi-REV random walk, I

k
s(t) for s=0, 1, 2, 3, which is 

employed to a weighted dice. The I
k
s(t) is changed using the four random numbers when the 

accumulation of the agent’s directional moves exceeds a threshold number. The four intervals are 

initially set to 

 

I
k
0(0)=[0.0, 0.25], I

k
1(0)=[0.25, 0.5], I

k
2(0)=[0.5, 0.75] and I

k
3(0)=[0.75, 1.0],            

for all kth agents 

The next walk is defined by the following equations: 

 

     (x
k
(t+1), y

k
(t+1)) = (x

k
(t)-1, y

k
(t)), if R

k
(t)I

k
0(t);    =(x

k
(t)+1, y

k
(t)), if R

k
(t)I

k
1(t); 

               =(x
k
(t), y

k
(t)-1), if R

k
(t)I

k
2(t);    =(x

k
(t), y

k
(t)+1), if R

k
(t)I

k
3(t),        

 

Thus, every trial starts as a simple random walk. 

A directional move that consists of a series of the same move, such as -x, -x, -x, …, is counted as 

follows: 

 

Experience
k
(t+1)=Experience

k
(t)+1,  if there exists s in {0, 1, 2, 3}such that 

R
k
(t-m)I

k
s(t) for all m in {0,1,…, MAX

k
_u}; 

Experience
k
(t+1)=Experiene

k
(t),     otherwise.                               

 

MAX
k
_u is assigned to every agent as initial condition by choosing one value randomly such as 

 

MAX
k
_u

 
{2,3,4,5}                                                      

 

For example, if MAX
k
_u

 
= 5 and directional move by that agent from t-5 to t that corresponds to a -y, 



29 

 

-y, -y, -y, -y, -y series implies the following: 

 

R
k
(t)I

k
3(t), R

k
(t-1)I

k
3(t), R

k
(t-2)I

k
3(t), R

k
(t-3)I

k
3(t), R

k
(t-4)I

k
3(t), R

k
(t-5)I

k
3(t)    

 

which results in 

 

Experience
k
(t+1)=Experience

k
(t)+1.                                          

 

In contrast, a directional movement by that agent from t-5 to t that corresponds to +y, +x, +y, +y, +y, 

+y implies the following: 

 

R
k
(t)I

k
3(t), R

k
(t-1)I

k
1(t), R

k
(t-2)I

k
3(t), R

k
(t-3)I

k
3(t), R

k
(t-4)I

k
3(t), R

k
(t-5)I

k
3(t)    

 

which results in, 

 

Experience
k
(t+1)=Experience

k
(t).                                            

 

If Experience
k
(t) exceeds a threshold number, , the four intervals are changed as follows: 

 

        I
k
0(t)=[0.0, NR

k
(t)],         

I
k
1(t)=[NR

k
(t), NR

k
(t)+NR

k
(t-1)], 

I
k
2(t)= [NR

k
(t)+NR

k
(t-1), NR

k
(t)+NR

k
(t-1)+NR

k
(t-2)],    

I
k
3(t)=[NR

k
(t)+NR

k
(t-1)+NR

k
(t-2), 1.0],                                  

 

where NR
k
(t-v), v=0, 1, 2, 3, is defined by 

 

                                     3 

NR
k
(t-v) = R

k
(t-v)/ R

k
(t-i).                                    

                           
 

i=0 

 

When Experience
k
(t) exceeds , Experience

k
(t) is reset to 0. In our simulations,  is set to 4 for all 

agents. 

In addition to individual directional bias experiences, every agent updates its own MAX_u value, 

which is the length of trail regarded as “one step”, through local interaction. If the MAX_u value 

increases with local interactions, the agent could hold current directional rule. In our model, every 

agent has visual detection filed which has 6.0 diameters. If other agents are within kth agent’s visual 

field (< 6.0), then kth agent change its own MAX_u value by: 
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                    MAX
k
_u = MAX

p
_u, if MAX

k
_u <MAX

p
_u                         

 for every pth agent detected by kth agent 

 

Thus, if more than single agent is detected by kth agent, then, MAX
k
_u value is reset to other agent’s 

value which has maximum MAX_u value among detected agents for kth agent. We defined each trial 

state as a steady state if all agents have same MAX_u value, i.e., all agents have MAX_u = 5. On each 

trial, simulation state converged to steady state by approximately 3,000 time steps. See also Figure 

1A and 1B for flowchart of our model. 

 

2-3-3. RESULTS 

Figure 2 indicates some agents’ trajectories from 1 trial. It seems that agents tend to show deviated 

movements from Brownian motions. First we investigated whether step lengths exhibit 

Weber-Fechner relation or not. In this paper, we defined the step lengths as the shortest distances 

between consecutive two saccade turns. We regarded turns as saccade turns if agents make 180°turn 

within 5.0 diameters. Thus we regarded step lengths at the distance of 5.00 as the smallest step 

lengths in this paper. Figure 3 shows that relation of mean lengths, ln, (>= 5.00) and mean absolute 

differences between consecutive step lengths, |ln+1 - ln|. We obtained mean absolute differences by 

setting the bin width as 50.00 conducting 2 trials until steady states. According to Figure 3, there is a 

linear relation between them. The more step lengths ln are longer, the more absolute differences 

between consecutive step lengths are longer (y=0.92x-2.17, R-squared = 0.98). This result indicates 

that Weber-Fechner law is achieved in our simulation regarding to step lengths.  
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Figure 2 Example of agents’ trajectories from 1 trial. Here three agents’ trajectories are plotted. Each 

number indicates each agent’s trajectory.  

 

Figure 3. The relation of mean lengths, ln, (>= 5.00) and mean absolute differences between 

consecutive step lengths, |ln+1 - ln|. We obtained mean absolute differences by setting the bin width as 

(0-50,50-100,…). These data were obtained and summed up from 2 trials. 

 

Figure 4A shows log-log scale cumulative distribution of step lengths obtained from all agents. We 

stopped the simulation to obtain the step lengths when the simulation reached to steady state and 

obtained agents’ trajectories every 10 time steps. These data were obtained from 10 agents from 1 

trial. Agents in our algorithm show power-law tailed movements with scale of almost two-decades 

(Figure 4A, N of data=54, AIC weight of power-law =1.00 against AIC weight of exponential-law 

(=0.00). μ=1.90. G-test: G-squared = 0.93, df = 4, P= 0.92, NS). We also evaluated whether 

super-diffusion property is maintained or not. Log-log scale plot of <R
2
> and t

2
 are shown in Figure 

4B, indicating that property is achieved. We obtained the data every 100 time steps by conducting 6 

trials. The inset is an expansion graph showing the ten largest values (slope=0.85, R-squared=0.99 

(slope=0.55, R-squared=0.97 in case of inset data)).  
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Figure 4. A. Log-scale plots of step lengths (>= 5.00) and that of cumulative distribution by 

conducting interacting algorithm until steady state. Step lengths were defined as shortest distances 

between consecutive saccade turns. Here, saccade turn was regarded as agents made 180°turn within 

5.00 diameters. We obtained agents’ trajectories every 10 time steps. These data were obtained from 

10 agents from 1 trial. We stopped calculation when state reached to steady state. N of data=54, AIC 

weight of power-law =1.00 against AIC weight of exponential-law (=0.00). μ=1.90. G-test: 

G-squared = 0.93, df = 4, P= 0.92, NS. Dashed line indicates best-fit power-law distribution. B. 

Log-scale plot of <R
2
> and t

2
. We obtained data every 100 time steps from 1 trial. The inset is an 

expansion of the x-axis showing the ten largest values. R-squared=0.99 (0.97 in case of inset data). 

 

In our algorithm, it seems that agents sometimes make longer step lengths. It will contribute to 

obtain power-law tailed behaviors. Therefore we evaluated the relationship between velocity and its 

increment to check how making longer step lengths influenced ensuing moving properties. Recently, 

it suggests that Langevin equation might contribute to the power-law tailed movements regarding to 

velocity of simulated agents [30, 42-44]. To estimate the influence of Langevin relation to our 

algorithm, we show the relation between velocity and velocity increment for x-direction and 

y-direction respectively (Figure 5A: x-direction, 5B: y-direction). Here, we defined velocity as 

[displacement / (5 time steps)] and obtained these values from single agent by conducting 1 trial 

until steady state. There were negative relations between velocity, u, and velocity increment, du, in 

both directions (x-direction: r-squared = 0.98, y-direction: r-squared = 0.98). 
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Figure 5. The relation between velocity and velocity increment from single agent by conducting 1 

trial until steady state. Here, we defined velocity as [displacement/ (5 time steps) ]. A. x-direction. B. 

y-direction. Averaged data is shown. Bin width is set to 1.00. 

. 

 

Figure 6. Log-scale plot of step lengths between consecutive velocities’ sing change turns for each 

direction from single agent by conducting simulation run until that state reaching to steady state. A. 

x-direction. N of data=106, AIC weight of power-law =1.00 against AIC weight of exponential-law 

(=0.00), μ=1.94. G-test: G-squared = 1.71, df = 4, P= 0.79, NS. B. y-direction. N of data=167, AIC 

weight of power-law =1.00 against AIC weight of exponential-law (=0.00), μ=2.17. G-test: 

G-squared = 5.44, df =4, P= 0.24, NS. 

 

Therefore, we also checked whether step lengths, which were defined as distances between 

consecutive velocities’ sing change points, followed power-law distribution. Figure 6 shows 

log-scale plot of step lengths between consecutive velocities’ sing change turns for each direction 

from all agents by conducting simulation run until that state reaching to steady state. We could 

obtain that in both direction, power-law distributed step lengths were achieved (Figure 6A: 

x-direction. N of data=106, AIC weight of power-law =1.00 against AIC weight of exponential-law 
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(=0.00), μ=1.94. G-test: G-squared = 1.71, df = 4, P= 0.79, NS. Figure 6B: y-direction. N of 

data=167, AIC weight of power-law =1.00 against AIC weight of exponential-law (=0.00), μ=2.17. 

G-test: G-squared = 5.44, df =4, P= 0.24, NS). In our simulation the slope value (μ) is close to that of 

step lengths. 

Lastly, we checked whether we obtained similar results regarding to power-law distributed step 

lengths if no agents update MAX_u values. We used same algorithm for each agent (500 workers, 

within 500×500 grid simulation filed) except that MAX_u values were fixed to initial values for all 

agents and no interaction occurred until each trial finished. We set 3,000 time steps as 1 trial because 

each trial started as steady state. As shown in Figure 7, power-law distribution were no longer 

achieved regarding to step lengths (N of data=63, AIC weight of power-law =0.00 against AIC 

weight of exponential-law (=1.00). λ=0.055. G-test: G-squared = 1.026, df = 4, P= 0.91, NS).  

 

Figure 7. Log-scale plots of step lengths (>= 5.00) and that of cumulative distribution by conducting 

non-interacting algorithm until 3,000 time steps. Step lengths were defined as shortest distances 

between consecutive saccade turns. Here, saccade turn was regarded as agents made 180°turn within 

5.00 diameters. We obtained agents’ trajectories every 10 time steps. These data were obtained from 

10 agents from 1 trial. N of data=63, AIC weight of power-law =0.00 against AIC weight of 

exponential-law (=1.00). λ=0.055. G-test: G-squared = 1.026, df = 4, P= 0.91, NS). Dashed line 

indicates best-fit power-law distribution. 

 

2-3-4. DISCUSSION 

We proposed a new random walk algorithm in which multiple agents interact with each other in a 

limited local visual field, which is based on the original re-valued algorithm for a single agent [27, 

41]. If an agent detects some other agents in its own detection field in our algorithm, then that agent 
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changes MAX_u values, directional bias numbers which are employed for the agent, in addition to a 

rule change occurrence. Power-law distributed step lengths with optimal slope values emerged in our 

algorithm. There were linear relations between step lengths and absolute differences between those 

lengths and consecutive ones. Therefore, this relation would follow the Weber-Fechner equation [37, 

38].  

We also evaluated whether step lengths, which were defined as distances between the change points 

of consecutive velocities, followed a power-law distribution. We found that viscous-like flows were 

achieved in our simulation because there were negative linear relationships between velocities and 

the increments in both directions. The slope values of distances between consecutive turns were 

close to those of step lengths defined by distances between two saccade turns. Therefore, it seems 

that super-diffusion movements were achieved while behaving like viscous materials. Agents might 

modulate viscous parameters by themselves as such materials [25, 45]. 

We could not obtain any power-law tailed movements when we used a non-interacting algorithm to 

obtain step lengths. Therefore, it seems that increasing MAX_u values is effective for obtaining 

optimized power-law tailed movements. 

 In our model, agents use past experiences and recent random numbers to change their behaviors. 

Depending on bias-experiences, interpretation of measured metric distances would be changed by 

each agent through rule-change events and biased movements would emerge as a result. In that 

respect, it might be somewhat related to Bayesian estimation method. Bayesian estimator model is 

often used to psychological phenomena in which prior distribution and internal measurement are 

combined to estimate posterior displacement [46-49]. Human behavior approximately follows 

Weber-Fechner relation [46, 47, 49-51]. Logarithmic internal representation of measured 

displacement i.e. Weber-Fechner relation is sometimes assumed in this method in order to duplicate 

experimental results. Further, it seems that power-law equation is also achieved [49].  

Without such an assumption, we proposed a model describing micro-level movements, which 

resulting in achieving Weber-Fechner relation and power-law equation. Why did these results 

appear? When rule change occurs for an agent, the agent holds ambiguity as to whether the 

experienced biases should be taken into consideration for a rule change or not. In other words, it 

might be possible for other agents not to change directional rules depending on their MAX_u values 

even though they experienced the same directional biases as that agent. Therefore, finding other 

agents in its own detection field and increasing MAX_u values would prompt the agent to refine its 

trajectory and result in the coexistence of subjective and objective biases. Thus, confusing others 

with it might play an important role [41]. Recently, we proposed a multi-agent model and 

investigated a possibility of occurrence a cognitive visual illusion. We regarded each agent as each 

retinal cell or neuron in that paper. Each agent predicted ambiguous global properties through local 

interactions, resulting in changing its behaviors. Also in this paper, each agent changes its rules by 
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identifying others into its own past trajectories. Therefore, our model might contribute to explain 

high-order cognitive phenomena from a micro-level view point. 

Agents in our model might always be exposed to uncertainty whether it is right to change rule with 

experienced series of movement biases or not. The uncertainty of movement biases presented as 

MAX_u values must be modulated through interaction with others. These events could occur 

independent from a rule change. Therefore, it is possible for some agents to increase their MAX_u 

values before the initial rule change occurs. Thus, the important feature is that agents do not intend 

to deviate from their initial searching tendencies, i.e., Brownian motion; instead, the agents correct 

their directional biases to maintain their unbiased searching with respect to direction. However, 

because their memories are limited, more biased movement would emerge as a result. Agents might 

achieve flexible behavior by altering the rules in their swarm of local interactions, resulting in 

emergence of not only a power-law distribution but also an optimized one. 
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2-4 Lévy-like movements in Japanese carpenter ants 

 

2-4-1. BACKGROUND 

It is very important for many animals to achieve a balance between resource exploitation and 

exploration. This problem has been discussed with respect to ant navigation [24, 52 and 53]. Many 

ant species recruit their nest-mates using chemical pheromones. Others use tandem or group running. 

Do followers simply obey recruiters? If this were the case, they would not be able to find new 

available food. Recruitment would be specialized to exploitation. External noise is known to play a 

role in new location exploration while specific food locations are being exploited [24]. Without 

external noise, how can we achieve the necessary flexible balance using internal noise?  

Ants appear to lack the ability to use global cognitive maps or locale systems for navigation [26, 

54]. Therefore, other local agents’ information must contribute in obtaining globally profitable 

information. It has been shown recently that garden ants might refer to surrounding spaces using 

other local agents, resulting in global illusion figures [55]. Here, we approach these issues by 

comparing experiments using Japanese carpenter ants in a random walk model in which agents 

weakly refer to their surrounding places using other agents’ movements and inner noise. 

A primary theme of random walk problems is how to achieve Lévy-like movements without 

assuming power-law tailed distributions, because actual animals show different movement properties 

depending on environmental contexts [15, 27, 30, 41 and 42]. For example, they might show Lévy 

walking on one occasion and Brownian walking on another [11-14]. 

In a Lévy walk, agents show power-law distributed step lengths (l), as described by the following 

equation:  

 

P(l)~l
-μ

,   1<μ<3                                                                                                                                                                                                                

 

resulting in long-range exploration and effective searching for agents, when available food is scarce 

or food locations are far from their current positions [1-7, 9, 10, 17 and 56]. Many researchers focus 

on whether actual animals follow a Lévy walk, because foragers obeying this movement can survive 

for a long period without extinction. 

Isolated desert ants are known to show Brownian or composite Brownian walking [19, 22, 57 and 

58]. We conducted experiments using Japanese carpenter ants and examined the possibility of 

emergence of Lévy-like movements while swarming as compared with isolated foraging. We also 

conducted simulation analysis, examining whether power-law tailed properties could be achieved 

through interactions between Brownian walkers. We developed a random walk model that 
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occasionally produces long step lengths by considering the thickness of metric spaces. Agents in our 

model change directional rules by anticipating other local agents’ moving directions. Thus, agents 

can increase the probability of directly going to location-bounded food. However, agents in our 

model are random walkers. Therefore, they do not know what profitable locations they can reach 

merely by obeying others’ information. Consequently, we introduced a modulation effect in which 

agents modulate changed rule intervals depending on the number of other local agents. Agents 

would be able to produce internal noise, i.e. deviations in unknown goals, by increasing the 

probability of moving in specific directions. In this paper, we examine how this internal noise could 

contribute to obtaining power-law tailed step lengths. 

 

2-4-2. MATERIALS & METHODS 

EXPERIMENTAL MATERIALS 

We used Japanese carpenter Ants, Camponotus japonicus, which are known to use tandem running 

rather than chemical pheromones, for recruitment. We collected 40 workers from Kobe University 

and housed them in a plastic box (62.5 × 43.5 × 32.0 cm high) into which a smaller plastic box 

covered by a red plastic sheet was introduced for their nest. Honeydew solutions were provided 

regularly, and fresh water was always available. We applied talcum powder on the walls to prevent 

workers from escaping. The colony was maintained at room temperature (21 ± 2°C) and regularly 

moistened. 

 

Figure 1. Experimental set up. An acrylic bowl serving as a test field is introduced into the 

experimental chamber, which is supported by frames. The experimental chamber is equipped to 

prevent visual surroundings from influencing ants’ behaviours. 

 

EXPERIMENTAL METHODS 
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A cylindrical chamber (80 cm in diameter, 57 cm high) was set in a square-shaped frame support 

(Figure 1). The chamber was covered with a wooden lid (90 × 90 cm). Three LED light bulbs 

(LDA6D-H-E17, 6.1 W) were symmetrically set on the inside of the cover having a hole at its centre 

through which a camera (HDC-TM700, Panasonic) could be inserted. An acrylic bowl (27.00 cm 

diameter) was introduced in the middle of chamber to be used as a test field. We set two test 

conditions: a swarm condition in which ten agents were placed together into the acrylic bowl and a 

single condition in which only a single agent was placed into the acrylic bowl. One trial was 

conducted under the swarm condition, and three were conducted under the single condition, because 

it was difficult to obtain trajectories of agents under the swarm condition during which agents 

occasionally overlapped. In order to evaluate step length distribution using Akaike weights, the 

number of data points should be more than twenty or thirty. Consequently, we were able to obtain 

not trajectories of all of the agents but four ants’ trajectories from the swarm condition [34]. To 

match the number of data under both conditions, three ants’ trajectories were obtained from control 

experiments by conducting three trials. Each trial lasted for one hour under both conditions. We 

obtained trajectories of the agents using image-processing software (Library Move-tr/2D ver. 8.31; 

Library Co. Ltd., Tokyo, Japan) set to one frame/sec. Each worker was used only once in our 

experiments, and the acrylic bowl was cleaned after each trial using ethanol solutions. 

 

RULE CHANGE WITH INTERACTION (RCWI) MODEL 

We randomly placed ten agents on a one-dimensional field (50 length field size with periodic 

boundaries. Each agent moved on the field by one length at each time step. We calculated 3,600 time 

steps as one trial. Each agent’s movement began as Brownian motion. Therefore, the two intervals 

were initially set to 

 

I0,k(0) = [0.00, 0.50], I1,k(0) = [0.50, 1.00]                                                 

 

for all k agents. The next walk is defined by the following equations: 

 

        xk(t+1) = xk(t) - 1, if Rk(t)  I0,k(t) 

= xk(t) + 1, if Rk(t)  I1,k(t),  

 

where Rk(t) specifies a random number (0.00 ≤ Rk(t) ≤ 1.00) at time t. 

If agents detect other agents within their own visual detection fields (2.00 radius), they change the 

directional rule as follows: 

 

I0,k(t) = [0.0, N0,k(t)],            
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I1,k(t) = [N0,k(t), N0,k(t) + N1,k(t)],  

 

where Ni,k(t), i = 0, 1 is defined by 

                  
1
 

Ni,k(t) = ni,k(t)/ nj,k(t)       

                 
j = 0

 

Here, ni,k(t) is the sum of the following two values: 

 

ni,k(t) = base + (number of agents that are going to move *) = base + sum(*) 

* = -x(i=0), + x(i = 1)   

 

If thresholdk ≤ (Total number of agents detected by k
th

 agent), 

then 

base = 0.01 

else 

base = 1.00 

 

We introduce the following values for all agents: 

 

thresholdk  {1, 2, 3}         

 

Therefore, agents modulate the rule interval deviations on the basis of the number of other agents 

locally detected by changing the base from 1.00 to 0.01. Refer to Figure 2 for a flowchart of our 

model. Later, we discuss the reason for defining the detection field as 2.00 radii. 
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Figure 2. Flowchart of RCWI model. I0,k, I1,k are directional rules for the k
th
 agent and initially set to 

I0,k = [0.00, 0.50], I1,k = [0.50, 1.00] for all agents. ni,k is the sum of two values: base and sum(*) . 

sum(*) is the total number of agents that are going to * detected by the k
th
 agent. * is–x if i = 0 and 

+x if i = 1. The base is set to 1.00 for all agents initially. Depending on Thresholdk, the base is 

changed to 0.01. Thresholdk is assigned randomly to every agent for k = 1, 2 and 3. Please refer to 

the text also. 

 

2-4-3. RESULTS 

EXPERIMENTAL RESULT 

First, we show our experimental results. Figure 3 shows an agent’s trajectory obtained under the 

swarm condition. As seen in this figure, agents tend to rotate within the test field.  
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Figure 3. Experimental example of an agent’s trajectory under the swarm condition. 

 

Consequently, we defined a step length as the total length until both the x- and y-movement 

directions were changed, such as changing from clockwise to anticlockwise. Figure 4 illustrates step 

length results under both conditions. Combined data, i.e. stacking of several agents’ data, were 

plotted here. In the swarm condition case, agents appear to show power-law tailed movements. In 

contrast, in the single condition case, they show exponential-tailed movements (Swarm: AIC weights 

of power-law = 1.00 against exponential-law (= 0.00), μ = 1.50, n of data = 56, N of ants = 4, G-test: 

G-squared = 0.77, df = 3, P = 0.86, NS; Single: AIC weights of power-law = 0.00 against 

exponential-law (= 1.00), λ = 0.0054, n of data = 34, N of ants = 3, G-test: G-squared = 1.03, df = 3, 

P = 0.79, NS). We also evaluated what time property would emerge when the ants swarmed. Here, 

time durations for a single pair of agents were defined as they approached each other by 2.00 radii. 

Figure 4. Log-log plots of experimental step lengths and cumulative distribution. A. Swarm 

condition (four ants). B. Single condition (three ants). 

 

According to Figure 5A, an ant occasionally moves or stays together with a specific other agent for 

a long time as a result of power-distributed time durations (AIC weights of power-law = 1.00 against 

exponential-law (= 0.00), μ = 1.65, n of data = 28, G-test: G-squared = 3.88, df = 3, P = 0.27, NS). 
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Furthermore, we checked the relation between time durations and migration lengths of one pair. 

Here, the definition of migration lengths was similar to that of step lengths. Each pair’s 

displacements continue to increase until both the x and y movement directions of that pair are 

changed. If agents stay close to each other for a long time, the migration lengths of the pair of agents 

would become short displacements. However, if they actively move together, they travel longer 

distances. As shown in Figure 5B, there appears to be a weak linear relation between the 

displacements and time durations (y = 0.11x + 2.09, R-squared = 0.52). Consequently, they might 

move or stay together for specific durations. 

 

Figure 5. A. Log-log plots of experimental time duration and cumulative distribution. Time durations 

for a pair of agents are defined to ensure that they are no more than 2.00 cm apart. B. Relation 

between time duration and displacement of that pair. 

 

MODEL RESULT 

Second, we describe our simulation results. Figure 6 shows a single agent’s trajectory from one trial. 

The agent moves straight and occasionally stands still while going back and forth. To evaluate the 

similarity between the experimental and simulation results, we defined step lengths as the total 

lengths until both the x and y movement directions are reversed. This definition is the same as the 

experimental definition. Similar to the experiments, agents in our simulation show power-law tailed 

movements, even though their initial movements were set to Brownian motion (Figure 7) (AIC 

weights of power-law = 1.00 against exponential-law (0.00), μ = 1.70, n of data = 154, N of ants = 4, 

G-test: G-squared = 4.78, df = 3, P = 0.19, NS). We also checked the time duration distributions of 

pairs of agents and the relation between time durations and migration lengths of pairs. The definition 

of migration lengths in our model was the same as that for the experiment. As shown in Figure 8A, 

similar results were obtained compared to those of the experiment. Though the relation between 

displacements and time durations varies depending on the pairs, pairs of agents appear to move or 

stay together for specific time durations (Figure 8A: AIC weights of power-law = 1.00 against 

exponential-law (0.00), μ = 1.47, n of data = 54, G-test: G-squared = 4.54, df = 3, P = 0.21, NS, 

Figure 8B: y = 0.85x + 0.037, R-squared = 0.94, Figure 8C: y = 0.27x + 9.95, R-squared = 0.31. 
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Figure 8C is the relation graph for the pair whose time distribution is shown in Figure 8A). 

  

Figure 6.  Simulation example of an agent’s trajectory for one trial. 

 

In both the experimental and simulation analyses, we defined the detection field as 2.00 radii. 

Figure S1 shows the relation between step lengths and cumulative distribution with respect to 

different detection field values (1.00 and 3.00 radii, respectively). If the detection field is set to 1.00, 

power-law tailed movement is achieved, but the slope value appears to be higher than both the 

experimental and default simulation values (Figure S1A: AIC weights of power-law = 1.00 against 

exponential-law (0.00), μ = 2.14, n of data = 157, G-test: G-squared = 2.69, df = 5, P = 0.75, NS). If 

the detection field is set to 3.00, an unstable distribution appears to emerge (Figure S1B: AIC 

weights of power-law = 0.55 against exponential-law (0.45), μ = 1.66, μ = 0.014, n of data = 152). 

Consequently, we defined the detection field as 2.00 radii in our analysis. 

Now, we show how modulation effects are important in obtaining results similar to the 

experimental results with respect to step length distributions. To this end, we set a fixed model as a 

control model in which no modulation effect exists. We set the base as 0.01 for all agents in this 

model. We conducted 11 trials for both models (RCWI model and fixed model) and evaluated the 

trial numbers that show power-law tailed rather than exponential distributions. There was a 

significant difference in the case of the RCWI model (Power-law distribution: ten out of 11 trials, 

binomial test: P < 0.05). However, in the fixed model case, both power-law tailed and 

exponential-tailed distributions were obtained equally (Power-law distribution: six out of 11 trials, 

binomial test: P = 1.00, NS). Consequently, we conclude that the modulation effect is crucial in 

achieving power-law distributed step lengths. 
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Figure 7. Log-log plots of simulation step lengths and cumulative distribution (four agents).

 

Figure 8. A. Log-log plots of simulation time duration and cumulative distribution. Time durations 

for pairs of agents are defined to ensure that they are no more than 2.00 cm apart. B, C. Examples of 

the relationship between time duration and displacement of each pair. The data used for the pair in C 

are used for it also in A. 
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2-4-4. DISCUSSION 

We were able to observe Japanese carpenter ants showing Lévy-like movements when swarming, 

occasionally moving or staying together with other agents for a long time. These typical behaviours 

were observed also in our proposed multi-agent model. In our model, agents locally interact with 

each other by anticipating other agents’ moving directions and changing their own directional rules. 

Agents appear to remain within small regions or move forward together with a specific agent while 

detecting the latter’s movement and incorporating it back into their rules. In addition, deviations in 

changed rule intervals produced by modulation might occasionally be the key to achieving long step 

lengths, apparently contributing to obtaining power-law tailed walks in our simulation.  

Desert ants are generally believed to follow Brownian-like walking [22, 57], occasionally showing 

composite Brownian walks, when searching their nest in unfamiliar environments [19, 58]. hey 

appear to follow a composite Brownian walk based on a composite correlated random walk 

mechanism and occasionally produce long-scale step lengths [59]. The composite correlated models 

could be the origin of Lévy walking. Recently, it has been reported that mussels follow Lévy-like 

movements, as composite correlated random walks, with a tri-exponential step length distribution 

[60, 61]. Their characteristic movements might be explained by mutual interactions as they detect 

two different population density scales, although the relation between a tri-exponential step length 

distribution and a two-difference scale model is obscure [34, 62].  

Using a multi-agent model, we investigated how long-scale step lengths emerged through 

interactions. Agents identify a gap in limited surrounding spaces by modulating rule intervals, 

resulting in various-scale step lengths. Consequently, identifying different scale spaces would 

contribute to emergence of power-law distributions.  

Agents relatively change their rules by simultaneously averaging others’ moving directions by 

weighting the averaged directions relatively depending on the number of others. Therefore, they can 

occasionally follow specific agents for a long time. On the other hand, they move apart or stay in a 

limited number of regions for a while at other times. Interestingly, if we fixed the base to 0.01 

(control model), we could not obtain reliable power-law tailed movements. This is perhaps because 

the ants might keep moving forward separately or together with others. In the control model, they 

appeared not to stay in restricted regions for a while, thereby missing wandering behaviour locally. 

These follower and parting behaviours might achieve a balance between resource exploitation and 

exploration. 
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Chapter 3 

Logical Foraging and Visual Navigation in Foraging Ants 
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3-1 Visual learning and foraging in Japanese 

carpenter ants 

 

3-1-1. BACKGROUND 

Ant visual navigation is well studied and known to involve taxon-like processes, which orient 

foragers only in the forward direction and do not reveal so-called map-like navigation [63, 64 and 

26]. Thus, the matched direction is always the direction in which to travel [65, 66]. Several studies 

have attempted to investigate the existence of mapping. However, it appears that ants cannot directly 

return home from far areas [54]. However, this inability does not exclude the possibility that ants 

cannot use map-like navigation. If an ant gives meaning, such as “accessibility” to landmarks or 

panoramic views, its relative location with respect to access locations may be achieved in the local 

area, indicating the use of local, map-like navigation. While oriented by taxon-like navigation, ant 

foragers must also simultaneously navigate by maps in local areas. 

Here, using visual landmarks attached on the wall in test field, we investigated the possible 

existence of landmark meaning in ant navigation. As a result, we could obtain that Japanese 

Carpenter ants could attach meaning such as “accessibility” to landmarks and utilize them well. 

Moreover, they could use landmarks based on logical operations (AND / XOR). Therefore, we also 

investigated how agents solved the problem when logical contradictions arose.  

 

3-1-2. MATERIALS & METHODS 

We studied a Camponotus japonicus colony with 50 workers and a queen. The colonies were 

collected from Kobe University and housed in plastic foraging boxes (62.5 × 43.5 × 32.0 cm high). 

The wall of the foraging box was coated with talcum powder to prevent the ants from escaping. The 

foraging boxes were regularly moistened, and the colonies were maintained at room temperature (21 

±3°C). All experiments were conducted in an experimental chamber set in a frame. We fed the 

colonies two times per week with honeydew and once per week with mealworms. Fresh water was 

always available. Before the experiments, the colonies were starved for four to six days to ensure 

high foraging motivation. 

 

EXPERIMENTAL APPARATUS 

A cylindrical chamber (80 cm in diameter, 57 cm high) was set in a square-shaped frame support 

(Figure 1A, 2A). The chamber was covered with a wooden lid (90 × 90 cm). Three LED light bulbs 
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(LDA6D-H-E17, 6.1 W) were set symmetrically on the inside of the cover, and the center of the 

cover had a hole through which a camera (HDC-TM700, Panasonic) could be inserted. A circle hole 

(48 cm diameters, and 28.5 cm high) was installed in the chamber (Figure 1B, 2B). This hole was 

used as test filed. We introduced two different shaped landmarks into test field by attaching them on 

the wall. One is square landmark (9.5 × 7 cm) made from black copy paper. The other is circle 

landmark (3 cm diameters) made from black copy paper. These landmarks were attached to the wall 

from the ground at the distance of 2 cm. In each trial, the chamber was covered by the lid; thus, the 

only dominant visual cue was the equipped landmarks to test field wall. Acid-tracing paper was 

placed under the test field to prevent pheromone effects, and the paper was replaced before every 

test.  

 

EXPERIMENTAL PROCEDURES 

We defined 1 trial as the set of training phases and test phase for single agent. 

 

AND/XOR CONDITIONS 

TRAINING 

We picked a forager from the colony and settled it on the center of test field gently. Each forager 

could move on field freely in training phase. Here, feeder or empty places were aluminum sheets (1 

cm × 1 cm). A droplet of honey dew solution was put on the sheets in case of feeder places. No 

solutions were put on the sheets in case of empty places, on the other hand. In this condition, each 

agent was assigned to AND conditions or XOR conditions. No agent was used in both conditions. 

In AND training phase, one feeder place and one empty place were introduced in front of a 

landmark. Each landmark (square or circle) were introduced to each agent randomly (See Figure 

1C-i).The distance between feeder and empty places was approximately set as 9 cm. We defined 

agents’ experiences of feeder or empty places as they attached the aluminum sheets physically within 

the angle observed through the CCD camera. We conducted training phases twice for single agent by 

switching feeder and empty places. 

In XOR training phase, two feeder places were introduced in front of a landmark (square or circle) 

and the agent foraged freely. After consuming both honey dew solutions, two empty places were 

introduced in front of that landmark. Therefore, the agent experienced feeder sites (two feeder sites 

equipped to a landmark) and empty sites (two empty sites equipped to the same landmark) after that 

independently (Figure 1C-i). 

 

TEST 

Afterward, test phase followed. 

In AND test phase (for agents trained in AND conditions), two empty places were introduced in 
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front of the same landmark used in training phase for that agent. It took approximately 30-40 

minutes to conduct 1 trial for single agent (AND training – test). In XOR test phase (for agents 

trained in XOR conditions), two empty places were introduced in front of the same landmark used in 

training phase for that agent. It took approximately 30-40 minutes to conduct 1 trial for single agent 

(XOR training – test) (See Figure 1C-ii). 

 

Figure 1. Experimental set up. A. The experimental chamber and a frame that supports the chamber. 

B. The schematic of experimental chamber and inserted test filed hole. C. The schematic of training 

or test. C-i. Training phase. C-ii. test phase. C-iii. Frequency of agents which showed each category 

(both/either). Grey squared figures indicate empty places and light grey dots indicate honey dew 

solutions (feeder sites). 

 

GENERATION CONDITIONS 

TRAINING 

We picked a forager from the colony and settled it on the center of test field gently. Each forager 

could move on field freely in training phase. We stopped training when she experienced both feeder 

and empty places. Here, feeder or empty places were aluminum sheets (1 cm × 1 cm). A droplet of 

honey dew solution was put on the sheets in case of feeder places. No solutions were put on the 

sheets in case of empty places, on the other hand. In training phase, one feeder place and one empty 



51 

 

place were introduced in front of either each landmark at a distance of 4 cm respectively (See Figure 

2C-i). We defined agents’ experiences of feeder or empty places as they attached the aluminum 

sheets physically within the angle observed through the CCD camera. We conducted training phases 

twice for single agent.  

 

TEST 

Afterward, test phase followed. We conducted two test conditions. One is generation condition in 

which both landmarks (square and circle) were set on side by side as one landmark. Two empty 

places were introduced in front of both landmarks (See Figure 2C-ii). The other condition is named 

control condition in which landmarks were set on separately as same as that of training phases 

excepting that two aluminum sheets were introduced in front of each landmark as empty places (See 

Figure 2C-iii). In test phases, two aluminum sheets were lined side by side at a distance of 

approximately 9 cm in front of the landmark and no feeder places were used in both conditions. It 

took approximately 30-40 minutes to conduct 1 trial for single agent (two training phases and one 

test phase (either generation condition or control condition). The combination of landmarks (square 

or circle)×places (feeder or empty)×test condition (generation or control) were chosen randomly on 

each trial. 

 

Figure 2. Experimental set up. A. The experimental chamber and a frame that supports the chamber. 

B. The schematic of experimental chamber and inserted test filed hole. C. The schematic of training 

or test situations from top view of test field. C-i. Training phase. C-ii. Generation condition of test 

phase. C-iii. Control condition of test phase. Grey squared figures indicate the feeder or empty 

places. 

 

3-1-3. RESULTS 

AND/XOR CONDITIONS 

Figure 1C-iii indicates the frequency of experiences of both/either empty place(s). In case of both 
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situation, ants experiences both empty places lined side by side without more than 90° turns. In case 

of either situation, ants show more than 90° turn after experiences of either empty place lined side 

by side. It appears that no significant differences were found in this condition (binomial test, both: 7 

out of 13, P=1.00, NS). Contrary to that, agents appeared to go to only one site in case of XOR 

conditions. Thus, significant differences were found (binomial test, both: 11 out of 39, P<0.05). It 

appears that agent could attach the meaning to landmarks and logically learnt them. 

 

GENERATION CONDITION 

First, we examined ants could learn feeder or empty locations in connection with the visual 

landmarks separately. Here we checked how many numbers of experiences were counted in response 

to the number of visit to calculation regions. We defined the calculation regions as the square regions 

(13 × 9 cm) between two aluminum sheets (Figure 3A). Ants sometimes come in this region to find 

feeder. It is reported that ants can detect two landmarks as different ones in case of they are close to 

the landmarks. Therefore, it is expected that they reach this region occasionally in our test phases. If 

they can detect the differences between two landmarks visually, they would turn or escape from the 

region without experiences of empty places in case of making for empty landmark. Contrary to that, 

in case of making for feeder landmark they would stay or search within that region with experiences 

of empty places. Figure 3B indicates the mean percentage of experiences of empty places against 

total number of visit to calculation regions. It seems that ants can detect the differences between two 

separate landmarks visually and learn feeder or empty places in connection with visual shapes 

(Welch Two Sample t-test, t = 2.77, df = 5.469, P<0.05). 

Figure 4 indicates the frequency of experiences of both/either empty place(s). In case of both 

situation, ants experiences both empty places lined side by side without more than 90° turns. In case 

of either situation, ants show more than 90° turn after experiences of either empty place lined side 

by side. In follower case therefore, ants would go away from the landmark after checking only one 

aluminum sheet. According to Figure 4, ants would go to both empty places consecutively if two 

landmarks were lined (generation condition) (generation condition: binomial test, both: 5 out of 13, 

P=0.58, NS, control condition: binomial test, both 0 out of 10, P<0.01, generation vs. control: 

fisher’s exact test, P<0.05). We discuss the significance of our results in next session. 
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Figure 3. A. Schematic of calculation region indicated by deep grey squares. Small grey square 

figures indicate empty places. B. Average-percentage of experiences. Feeder indicates the landmark 

which agents learned they could find feeder in front of that landmark. Empty indicates opposite 

landmark for feeder landmark.  

 

Figure4. Frequency of empty places-experiences in respect to both and either situations. **P<0.01, 

*P<0.05. 

 

3-1-4. DISCUSSION 

 Our results indicate that ants can learn visual landmarks by associating to accessibility from that 

stimulus. Therefore, perhaps, they can attach meaning to each landmark. Moreover, they change 

their behaviors based on logical foraging (AND/XOR). However, using different levels of navigation 

mechanisms (meaning and landmark itself) would result in contradictions occurred. To overcome 

these problems, they might manipulate different two landmarks as novel one. Our LM generation 

test suggests those results. Therefore, when experimenters observe these results, they may come to 

the conclusion that simple error occurs. However, our results indicate the possibility of internal noise 

produced by each agent. Agents might confuse different levels of navigation mechanisms, which 
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results in producing novel landmarks. These behaviors would contribute to achieve the balance 

between exploitation and exploration for visual navigations.  
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Chapter 4 

Kanizsa Triangle Illusion: Weak Cognition 
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4-1 Human perception formed and destroyed by 

local obstacles or foraging ants 

 

4-1-1. BACKGROUND 

Regarding to perceptions, it’s well discussed whether animals, including human, perceive the 

whole pictures or just element part level [67-70]. However, in any case, it seems that there is a 

tendency to make judgment which level is true or not, in assuming that each level is independent of 

each other. Some studies reported that experimental subjects’ persistency to either level is 

changeable depending on situation contexts. [71]. Therefore, there is plenty of space to consider new 

mechanism to explain of above flexible decisions i.e. employing local element information with 

referring global property.  

Kanizsa triangle figure, in which three Pac-Man are directed inside symmetrically, is well known as 

illusion that subjective contour is perceived although such contour never exists actually and well 

referred as good example of gestalt perception [72, 73]. In the transcendence perspectives, the 

apparent triangle appears as a perceptive object based on perceptual processing in visual cortex. 

Gaetano Kanizsa reported in his own work that these subjective contours might appear from 

imperfective property which element of this contour (each Pac-man) had [73]. He said that because 

we had such intrinsic tendency, contour would be formed as prospect objects which could fill the 

chipped actual objects. 

What it is like to perceive the subjective contour which is actual non-existence? Can we explain 

this without assuming transcendence perspectives?  

We assume that perceiving the functional whole as a result which attributes to implication of 

elements is illusion perception. In other words, we assume that Kanizsa triangle illusion aroused 

from the two different levels’ interaction of part i.e. each Pac-Man in visual field. Each Pac-Man 

exists as an object on one hand. On the other hand, however, the global property or meaning of those 

inducers must be referred as different level. Therefore, introducing the stripe notches which indicate 

another possibility of parts’ global property or meaning, subjective ambiguous might be produced 

and affect the reliable establishment of contours. Actually, it is reported the possibility of gestalt 

grouping in unconsciousness [74]. We discuss consistency of our assumption by introducing the 

perception difference of subjective contour between two visual stimuli which have same 

imperfective property and tackle to the origin of Kanizsa triangle illusion.  

In our working hypothesis, apparent pattern is produced spatially accelerated or inhibited, 

dependent on a local pattern which serves as bias. We here argue the relationship between the 

imperfective property mentioned by Kaniza and pattern formation in a bottom up fashion. Especially, 
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we introduced Kanizsa triangle figures equipped with some stripe notches to experimental subjects. 

To evaluate how much these notches affected establishing relevant clear contour, we investigated 

whether notches’ inserted positions or directions affected contour establishment or not. If 

implication of inducers (Pac-man) has something ambiguous directional information, positions or 

directions of stripe notches influence expectation based on local information i.e. inducers. Later, we 

discuss the consistency between our obtained results and above mentioned assumption. In addition to 

human experiments, we also conducted investigation whether garden ant Lasius. niger drives whole 

perception (kanizsa triangle illusion) or not. Here, exposing ant Lasius. niger colony to kanizsa 

triangle figure made of honeydew solutions, we discussed origin of this illusion occurrence as whole 

from part, excluding transcendence perspectives. In ant studies, it is suggested that various 

interactions of agent levels effect colony decision-making [24, 75]. Ant foragers can consume 

additional food even after consuming a certain amount of food [76]. So it is not strange to discuss 

foragers’ moving trajectories between some food regions i.e. Pac-Man shaped food sources.   

 

4-1-2. MATERIALS & METHODS (Human experiments) 

Stimulus materials 

We made five special Kanizsa triangles. These five figures were named vertical, horizontal (edge), 

slant, top and hollow, respectively (Figure 1). 

 

 

Figure 1. Five special kanizsa triangles. 

 

The diameter of the circles which form triangles were 3.4mm. The distance between any two 

inducers was 6.8mm. The width of the stripe notches (white bars) were 0.4mm. 

After that, We selected two figures from five figures, and made four combinations (Figure 2). 

 

Figure 2. Four combinations. 

 

Here, we made mirrored figures of vertical, horizontal(edge) and slant respectively (Figure 3). 
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Figure 3. Mirrored figures. 

 

The reason why we made mirrored figures is to check whether there are differences about vision 

between original triangles and mirrored triangles. Mirrored triangles also made some combinations. 

Thus, we had total twelve combinations including mirrored combinations. For example, there are 

four combinations which are related to vertical and horizontal. 

 

 

Figure 4. Four combinations related to vertical and horizontal. 

 

In addition, we prepared four simple Kanizsa triangles (Figure 5). 

 

    

 

Figure 5. Four simple Kanizsa triangles. 

 

We also selected two figures from four figures, and made eight combinations excepting 2-4, 4-2, 

3-4, 4-3 configurations. So, we have total twenty combinations. We printed those twenty figures 

individually on the twenty high-quality cards which were postcard-sized.  

 

Procedure 

Participants were fourteen university students. First, they were instructed about procedure of this 

experiment. After that, they were shown normal Kanizsa triangles and asked whether illusory figures 

could be seen. If a participant could not see illusion at this stage, then we excluded his or her data. 

Second, participants were given the twenty cards which were explained above. In addition, they 

were given the question and answer sheets. Those sheets had two questions per one combination of 

figures. And two questions were same in all twenty combinations.  

Participants turned the twenty cards one by one and answered the questions. Eight combinations of 

1      2      3      4   
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the simple Kanizsa triangles were printed on first eight cards, and twelve combinations of the special   

Kanizsa triangles followed those. It is because we thought it was very hard for participants to answer 

the questions about the special Kanizsa triangles without preparations. So we prepared the eight 

exercises using the simple Kanizsa triangles. 

By the way, participants had to have intervals of two seconds between twenty tests to rest their eyes 

and brains. 

 

Questions 

1 st question: intentisity 

The first question which was asked about combinations of figures was ‘Which figure has the more 

clear outline of the triangle?’ To answer this question, participants were given the following four 

choices.  

 

1. The left figure has the more clear outline. 

2. The right figure has the more clear outline. 

3. Both figures have clear outlines. (I can’t choose one.) 

4. Both figures don’t have outlines. 

 

2 nd question: deformation 

The second question was ‘Do you see a triangle which outline is distorted?’ To answer this 

question, participants were given the four choices again. 

 

1. The left figure has the more distorted triangle. 

2. The right figure has the more distorted triangle. 

3. Both figures have a distorted triangle. (I can’t choose one.) 

4. Both figures don’t have a distorted triangle. 

 

From the above, the flow of the experiment was following. 

 

1. We instruct about procedure of this experiment. 

2. Participants are shown normal Kanizsa triangles and are checked whether they have competence 

to participate in our experiment. 

3. Competent participants are given the twenty cards and the question and answer sheets. 

4. Participants turn the card one by one answering the two questions at their own pace, but they have 

to have two seconds intervals between tests. 

5. When the twentieth card is turned and participants finish answering the two questions, this 
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experiment is finished. 

 

4-1-3. RESULTS (Human experiments) 

We formed the results of the above experiment into the four groups. The four groups correspond to 

four combinations of Figure 2. In the combinations of vertical and horizontal, the vertical, horizontal 

and both rates for the first question were almost same. (Fisher’s.test : vertical 19 out of 54, 

horizontal 17 out of 54 and both 18 out of 54, p=0.946, Figure 6-1.) The neither rate for the second 

question was reasonably high. (Fisher’s.test : vertical 1 out of 56, both 1 out of 56 and neither 54 out 

of 56, p<0.001, Figure 6-2.) 

 

Figure 6. Experimental results of vertical vs. horizontal (1). intensity. (2) deformation 

 

In the combinations of top and slant, the top, slant and both rates for the first question were divided 

(Fisher’s.test : top 9 out of 28, slant 5 out of 28 and both 14 out of 28, p=0.1132, Figure 7-1). 

The neither rate for the second question was reasonably high (binomial.test: slant 1 out of 28 and 

neither 27 out of 28, p<0.001, Figure 7-2).  
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Figure 7. Experimental results of top vs. slant. (1). intensity. (2) deformation 

 

In the combinations of slant and edge, participants selected the slant at a high rate in the first 

question (Fisher’s.test : slant 38 out of 56, edge 6 out of 56 and both 12 out of 56, p<0.001, Figure 

8-1). 

The neither rate for the second question was reasonably high (Fisher’s.test : edge 1 out of 56, both 1 

out of 56 and neither 54 out of 56, p<0.001, Figure 8-2). 
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Figure 8. Experimental results of slant vs. edge. (1). intensity. (2) deformation. 

 

In the combinations of hollow and top condition, participants selected the top at a high rate in the 

first question (binomial.test: top 25 out of 29 and both 4 out of 29, p<0.001, Figure 9-1).  

And, participants selected the hollow at a high rate in the second question (binomial.test: hollow 20 

out of 28 and neither 8 out of 28, p<0.001, Figure 9-2). 
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Figure 9. Experimental results of hollow vs. top. (1). intensity. (2) deformation. 

 

Finally, we checked whether there is consistency in the individual participant’s answers among four 

combinations related to vertical and horizontal (See Figure 4). 

 The result is the Figure 10, and consistency was very high (binomial.test: consistency 43 out of 56 

and inconsistency 7 out of 56, p<0.001). 

 

 

Figure.10. Consistency of individual participant’s answers in vertical vs. horizontal 
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4-1-4. MATERAILS & METHODS (Ant experiments) 

 Rearing conditions 

We studied a Lasius niger queen-less colony with 500-600 workers. This colony was collected on 

the Kobe University and housed in plastic foraging boxes (35.1 × 25.5 × 6.1 cm in height). This box 

contained a plastic nest-box (5.1 × 5.5 × 1.1 cm in height) covered with clear red plastic sheets. The 

wall of the foraging box was coated with talcum powder to prevent the ants from escaping. All 

experiments were conducted in a room (26.1±C) with artificial room light. We fed the colony two 

times per week with honeydew and once per week with mealworms. Fresh water was always given. 

Before the experiments, the colony was starved for four-five days to ensure high ants swarm.  

 

Experimental set-up 

We made kanizsa triangle shaped food with honeydew solution (50% w/w) on cardboard by 

brush-painting. We hollowed out OHP sheets in the form of kanizsa triangle figure and laid 

cardboards under that in order to paint honeydew. The figure consists of three Pac-Man disposed 

symmetrically whose diameter were 1.4 cm. The distance between the centres of a Pac-Man was 4.0 

cm. Then, subjective contour’s side lines were set to 4.0 cm long (Figure 11-1). We set control 

experiments using three dots figure instead of Kanizsa triangle figure. Each dot consisting of three 

dots figure had 1.4 cm diameter and disposed in the same way as kanizsa triangle figure (Figure 

11-2).   

 

Figure 11. Schematic examples of experimental stimulus. (1). Kanizsa trialnge illusion figure. (2). 

Figure for control experiments. 

 

The cardboard, on which a honeydew kanizsa triangle or three dots figure was painted, was installed 
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in a plastic foraging box. Swarm patterns of agents were recorded with video camera (SONY). For 

each version (Kanizsa triangle version, control -three dots- version), only one trial was conducted on 

each experimental day. One trial took approximately 10-20 minutes. The trial sequences (1st kanizsa 

and 2nd control or 1st control and 2nd kanizsa) were conducted evenly. Four trials were conducted 

for each version. To track ant trajectories and obtain x-y coordinate (5 frames per second), we used 

image-processing software (ImageJ: Rasband WS, National Institutes of Health, Bethesda, Maryland, 

USA). The density of the ants was then calculated (R, version 2.15.0). To smooth the analysis and 

eliminate unnecessary dense peak, unchanged x-y values through one frame to next were excluded 

from analysis. 

 

4-1-5. RESULTS (Ant experiments) 

Analysis 

We set the analysis area in the range which had 2.45 cm long and 1.68 cm wide from an 

intersection point of perpendicular lines (light grey zone in Figure 12-1). Then, we calculated the 

mean position (bold line in light grey zone in Figure 12-1) by setting the calculate area (deep grey 

zone above light grey zone in Figure 12-1) which was defined as dense regions above threshold 

dense (> 60 %). 

These mean positions were obtained every 0.025 cm. We excluded honeydew regions because these 

areas were too dense to detect ants’ moving trajectories (Figure 13 and 14). 

 

Figure 12. Average position of agents’ trajectories. (1). Schematic figure of analysis. Light grey 

indicates calculation areas. Dark grey region indicates detected densities. Grey bold line indicates 

average position of detected densities. Bold vertical arrow indicates Y-axis and horizontal line 

indicates X-axis respectively. (2). Average position with respect to swarm trajectories.  
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 Experimental results 

Considering honeydew arrangements, it is obvious that ants’ dense peaks concentrate on the 

honeydew areas and form Pac-Man or dot shapes on each version respectively (Figure 13).  

Figure 12(2) shows that dense mean positions on each version. In kanizsa triangle versions, the 

positions were lower than control versions’ position and nearer to side line i.e. a side line between 

two vertexes, indicating that agents’ moving directions biased to edge-point directions (kanizsa vs. 

control: Mann-Whitney U test: P<1.0E-15). Actually, the dense position peak near triangle centre 

regions was lower in kanizsa triangle versions than control’s one in which ants’ trajectories formed 

Y-shaped ones (Figure 14).  

Figure 13. Example of swarm densities before peak positions removed. (1). Kanizsa version. (2). 

Control version. 

Figure 14. Example of swarm densities after peak positions were removed. Note that these figures 

were directly used to analysis. (1). Kanizsa version. (2). Control version. 

 

4-1-6. DISCUSSION 

Our results show that inserted notches position (whether these are added on top or edge of each 

Pac-man) influences subjective contours. It seems that if stripe notches are inserted on edge of 

inducers, perceived contour intensity is relatively less than that of slant versions. There was no 
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insistency difference between top and slant versions. In addition to that, hollow versions’ perceived 

intensity is less than that of top versions.  

Therefore, it might be possible that edge or inner part of inducers relatively contribute to contour 

perception compared with the Pac-Man with notches in outer part. These illusion figures which have 

relatively less contour intensity seem to crimp formation of relevant contour between any pair of 

inducers, perhaps because they let agents to find another possibility as a result of ambiguous 

exploration from local implicated information. 

Our results suggest that local projecting part formed by concave triangle in the Pac-man could be 

spatially accelerated and connected with each other, which could produce contour perception. 

Notches near the projecting part (edge, hollow) could disturb producing subjective contour, 

compared with the Pac-Man with notches in outer part. 

We found that there was no intensity difference between horizontal and vertical versions. It is 

unlikely that dominant eye effects influence that result because of our experimental conditions. Plus, 

we could obtain that individual perception had consistency regarding vertical and horizontal versions. 

Therefore, there must be higher-order cognitive processes about that. It’s interesting that perceived 

intensity is different depending on the person. However, it’s difficult for us to determine that reason 

and is needed more investigations.  

Agents might perceive illusion contour as objects while finding or detecting new possibility and 

stimuli with active expectation which has been passively triggered by local information. Thus, 

balancing between activeness and passiveness would play an important role in illusion perception.  

According to [77], Y-shaped trajectories formed in control versions might be obtained from 

random exploration after feeding on a food site, here, it was each honeydew dot [77]. Then, each 

honeydew dot appeared to be treated separately and independently. Lasius.niger foragers are well 

known to use chemical pheromones to recruit their nest mates [78, 79]. As a sequel to such random 

exploration and pheromone effects, Y-shaped dense peak was built. Contrary to the control versions, 

“subjective” contour was built in kanizsa triangle versions. Thus, whether or not there are edges 

formed by foragers would appear to contribute to foragers’ moving directions. Ant’s visual ability is 

limited. So they get information from limited local areas around them. From our experiments, it 

appears that edge of Pac-Man might give foragers directional biases and navigate them. 

Regarding to occurrence of kanizsa illusions, it is possible that human subjects might produce 

some prediction and discover the predicted sources such like another edge of other Pac-Man. As a 

sequel to that consistency, subjective contour will be perceived. In this sense, it is possible that 

weakened contour is produced in case of inconsistency [80-82]. 

As considering diversity at micro-level, foragers might actively produce ambiguous information 

by local cues. Then, ambiguity and uncertainty may cause many explorative possibilities and play an 

essential role to flexible navigation and foraging [24, 52 and 53]. 
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Appendix - Supporting materials 

 2-1   Emergence of optimal searching from Brownian walks 

 

Figure S1. Distribution of end location along x-y coordinates after 10,000 steps (100 trials). (a). 

REV-Random. (b). Random. 

 

 

Figure S2. Example of agent trajectories over 10,000 time steps for various threshold values (θ) 

using the REV-Random algorithm. (a). Threshold value=8. (b). Threshold value=64. (c). Threshold 

value=128. 
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2-2   The relationship between “randomness” and “power-law” on Lévy-like 

foraging 

 

Table S1. Results of AIC weights for each directional step lengths calculation from 1 trial in REV 

algorithm. Step lengths were defined as displacement between any consecutive trajectory points. We 

obtained trajectory points at 10 time step intervals. N indicates the number of trajectory points for 

each direction. If step length’s value was 0, that value was excluded from analysis. 
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2-4   Lévy-like movements in Japanese Carpenter Ants 

 

 

Figure S1. Log-log plots of simulation step lengths and cumulative distribution with respect to 

detection values different from the default value (2.00 radii). A. 1.00 radii. B. 3.00 radii. 
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