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Chapter 
   ONE 

1 General introduction and objectives  
 

 Introduction 1.1

The date palm (Phoenix dactylifera L.) is considered as one of the oldest cultivated fruit 

trees on earth. An earliest evidence of date palm cultivation goes back to 4000 BCE in 

Iraq (Wrigley, 1995) and 3000 BCE in the Nile Valley (Dowson, 1982). Date palm has 

significant agricultural and socio-economic importance for centuries in Middle East and 

North Africa (Morton, 1987) where date palm cultivation has been the main livelihood 

source for farmers. Beside a staple food for millions of people (Vayalil, 2012) dates have 

potential health benefits as dates are rich in nutrients and bioactive compounds (Vayalil, 

2012; Maier and Metzler, 1965; Al-Farsi et al., 2005). Date fruits are a high energy food 

containing carbohydrates, salts, minerals, dietary fiber, vitamins, fatty acids and amino 

acids (Al-Shahib and Marshall, 2003). The composition of date fruit comprises of 73-79% 

carbohydrates, 14-18% total dietary fibers, 2.0-3.2% fat, 2.5% ash, and 2.1-3.0 % protein 

(Elleuch et al., 2008; Al-Farsi et al., 2007) subjected to the variety/ cultivar.  Also, 

several studies have reported that dates have antioxidant, anti-mutagenic and antimicrobial 

properties (Saddiq and Bawazir, 2010; Vayalil, 2002). Several other medicinal uses of 

dates have also been reported such as curing intestinal ailments, colds, sore throat, 
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toothaches, fever, liver and abdominal pain, cystitis, gonorrhea, and cough (El-Hadrami 

and Al-Kjhayri, 2012; Vayalil, 2002; Vayalil, 2012). 

In addition, date palm is used as a wind breaker and inhibits soil degradation and 

desertification (EI-Mously, 1998). Date fruits, date palm trunk and leaves are the commonly 

used parts of the date palm that have several commercial and medicinal values. 

According to the recent FAO report, Egypt, Iran, Saudi Arabia, Algeria, Pakistan and Iraq 

are the five leading date producers and constitute about 71% of global dates production 

(FAO, 2012). There are about 3000 date palm varieties worldwide (Zaid, 2002) of which 

over 400 have been reported from Saudi Arabia (Anonymous, 2006). The annual 

production of dates in Saudi Arabia is 1050000 metric tons from 160000 hectares (FAO, 

2012). Dates have great importance in Judaism, Christianity and Islam, and are being used 

as a major breakfast food item during the fasting of Ramadan. Moreover, dates have high 

nutritional value, and long shelf life therefore, it was referred to as 'tree of life' in the Bible 

(UN, 2003).  

Unfortunately, a highly invasive pest, the red palm weevil (RPW) Rhynchophorus 

ferrugineus, is posing a severe threat to this important fruit crop. RPW has also been 

classified as a category-1 pest in the Middle-East by Food and Agriculture Organization of 

the United Nation (El-Sabea et al., 2009). Originally, RPW was described as a deadly pest 

of coconut palm in northern India (Lefroy, 1906) but later it was also reported as pest of 

date palms (Madan, 1917). The pest has spreaded rapidly and its invasion has been 

reported from 15% of the coconut growing and 50% in palm growing countries (Ju and 

Ajlan, 2011). RPW is attacking almost 26 palm species belonging to 16 different genera 
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worldwide (Dembilio and Jacas, 2012). Generally, RPW infests young palms below 20 

years (Faleiro, 2006). 

List of red palm weevil primary host plants 

S. No. Host Plants Technical Name 
1.  Date palm  Phoenix dactylifera 

2.  Canary island palm  Phoenix canariensis 

3.  East Indian wine palm  Phoenix sylvestris 

4.  Sago palm  Metroxylon sagu 

5.  Thorny palm  Oncosperma horrida 

6.  Queen palm  Arecastrum romanzoffianum 

7.  Toddy palm  Borassus flabellifer 

8.  Palasan  Calamus merrillii 

9.  Betelnut palm  Areca catechu 

10.  Sugar palm  Arenga pinnata 

11.  Fishtail palm  Caryota cumingii 

12.  Mountain fish tail palm  Caryota maxima 

13.  Chinese fan palm  Livistona chinensis var. Subglobosa 

14.  Nibung palm  Oncosperma tigillarium 

15.  Cuban royal palm  Roystonea regia 

16.  Coconut  Cocos nucifera 

17.  Gebang palm Corypha utan (= C. Gebanga and C. Elata) 

18.  African oil palm  Elaeis guineensis 

19.  Ribbon fan palm  Livistona decipiens 

20.  Chinese fan palm  Livistona chinensis 

21.  Chinese windmill palm  Trachycarpus fortunei 

22.  Washington palms  Washingtonia sp. 

23.  Regal palm  Roystonea regia 

24.  Hispaniola palm  Sabal blackburniana (= umbraculifera) 

(EPPO, 2008; Murphy and Briscoe, 1999) 

RPW is a strong flier that can cover up to one kilometer in a single attempt and up to 7 km 

in 3-5 days (Abbas et al., 2006). This characteristic enhances the RPW ability to disperse, 

colonize and breed at new host (Murphy and Briscoe, 1999). RPW very rapidly extended 

its westwards geographical distribution since its discovery in the Gulf in 1980s. It was 

reported from Saudi Arabia and the United Arab Emirates in 1985, and has rapidly 

spreaded throughout the Middle East and into the Egypt. In 1994, RPW was reported from 
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Spain, Israel, and Jordan. It reached to Palestine in 1999, Italy in 2004, Canary Islands in 

2005, whereas, RPW infestation was reported from Balearic Islands, France, and Greece 

in 2006, and Turkey in 2007 (Malumphy and Moran, 2007).  

 

Red palm weevil worldwide distribution map 

The neonate larvae of RPW feed on palm tissues inside the trunk and larval span 

completes in two months while pupal stage takes three weeks to adult emergence.  Adult 

stage lives for 2 to 3 months and having multiple mattings and laying 250 eggs on average 

that take about 3-days to hatch (Murphy and Briscoe, 1999).  

It is difficult to detect early RPW infestation symptoms because neither RPW larva nor 

damage can be observed. Generally, symptoms appear at later stage of infestation 

including: presence of tunnels in the trunk, oozing out of a brownish viscous liquid having 

distinctive fermented odor, protruding of chewed fibers from the holes around the trunk, 

gnawing sound caused by feeding grubs can be heard while placing the ear near the palm 
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trunk, empty pupal cocoons and dead adult weevils can be seen near the infested trees, and 

collapsing of the tree/ crown (Hussain et al., 2013). 

In Japan, RPW was recorded for the first time in 1975 in Okinawa damaging palm trees 

especially Canary Island date palm (P. canariensis ) and then  invaded southern Japan in 

1998 (Usui et al., 2006). Later, RPW has also been reported from other areas of Japan 

including Daito Islands, Okinawajima Islands, Kagoshima (mainland), Miyazaki, 

Kumamoto, Nagasaki (mainland), Fukuoka (mainland and Nokonoshima Islands), 

Hiroshima, Okayama, Awajishima Islands, Wakayama Prefectures and now extending to 

the northern part of Nagasaki (Yoshimoto, 2011). In southern Japan, RPW emerged from 

the host trees in March and revealed some population peaks in summer and autumn and 

ceased their activities in winter. RPW continues to multiply even in severe winter because 

of its concealed nature living inside the trunk protecting from life-threatening climatic 

conditions. In RPW, about 3-4 generations per year have been reported (Abe et al., 2009). 

Abe et al. (2010) reported that the temperature of RPW damaged palm tissues is much 

increased (30-40
o
C) even in cold winter and this raise in temperature is attributed to the 

microbial fermentation. He further pointed out that this increase in temperature favors 

RPW overwintering under extremely cold winter without any interruption in Japan. 

Larval stage of RPW is mainly responsible for causing damage to the date palm while 

feeding which makes tunnels and large cavities within date palm trunk. The concealed 

feeding behavior of the RPW larvae makes early detection very difficult. Often cutting 

and decaying of the vascular system leads to the death of the date palm tree (Abraham et 

al., 1998). RPW completes various generations per year within the same host until the tree 

collapses (Rajamanickam et al., 1995; Avand Faghih, 1996). 
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In Saudi Arabia, about 80,000 date palm trees have been infested with RPW, and pose a 

threat to other surrounding trees (Mukhtar et al., 2011). Although, it is difficult to estimate 

the actual loss caused by RPW to date palm growing community, yet, in Saudi Arabia, the 

annual loss solely for extermination of heavily infested date palms by this pest has been 

reported US$1.74 to 8.69 million at 1-5% infestation, respectively (El-Sabea et al., 2009).  

Although, applications of systemic pesticides through injection and spray to 

infested date palm tree have been partially effective in controlling RPW; however, an 

effective and efficient early detection methodology is urgently needed for the successful 

management of RPW. Scientists have tried to find and implement nondestructive methods 

for the early detection of RPW like insects having concealed feeding behavior (Mankin 

and Fisher, 2002; Mankin et al., 2002; Lemaster et al., 1997; Hagstrum et al., 1996; 

Shuman et al., 1993). Unfortunately, RPW infestation symptoms appear at later stages 

when it is too late to recover the palm tree. Therefore, failure in early detection of RPW 

infestation is the major obstacle in its successful management. Currently, some detection 

techniques, including visual inspections, acoustic sensors (Potamitis et al., 2009), sniffer 

dogs (Nakash et al., 2000), and pheromone traps (Faleiro and Kumar, 2008) have been 

tried out to detect RPW infestations at early stages; however, each technique has suffered 

certain logistic and implementation issues. Efforts to identify environmentally safe 

biological management of the RPW (Abdullah, 2009; Guerri-Agullo et a., 2009) are only 

in their early stages. 

Recently, proteomics techniques have been successfully used to diagnose infections/ 

diseases in humans. But their use in investigating plant responses against pathogenic 

infection and herbivores feeding is relatively minor. Some potential investigations on 
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plant proteomics encouraged us to explore proteomics methodologies to identify the 

differentially expressed protein moieties to be used for the early detection of RPW 

infestation in date palm. For example, comparison of proteome analysis of date palm 

leaves infected with brittle leaf disease with their healthy counterparts showed quantitative 

differences in several proteins (Marqués et al., 2011).  In another attempt, proteome 

analysis of date palm leaves infected with brittle leaf disease revealed differential 

expression at early disease stage and MSP-33 kDa subunit protein associated with Mn 

deficiency was taken as brittle leaf disease biomarker (Sghaier-Hammami, 2012). 

Moreover, Gómez‐Vidal et al. (2009) examined the plant defense/stress, photosynthesis 

and energy metabolism related proteins showed differential expression in the date palm 

(Phoenix dactylifera) leaves in response to the attack by entomopathogenic fungi 

(Beauveria bassiana, Lecanicillium dimorphum and L. cf. psalliotae) as compared to 

control samples. In another study, proteome analysis of date palm sap identified some 

proteins associated with Saccharomyces cerevisiae (Ben Thabet, 2010). 

Plants have evolved various direct and indirect defense mechanism against insect pests 

(Kessler and Baldwin, 2002). In direct defenses mechanism plants have developed special 

characteristics such as thorns, trichomes, and primary and secondary metabolites (Kessler 

and Baldwin, 2002). Herbivores induce proteinase inhibitors (PI) in plants which prevent 

digestive enzymes required for digestion in insects (Tamayo et al., 2000). Indirect 

defenses mechanisms facilitate the release of volatile organic compounds which attract 

herbivores predators and parasitoids to regulate their population (Dicke and Van Loon, 

2000). Herbivores regurgitates and other oral secretions released into the plant tissues 
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trigger the plant defense mechanism to  release volatile organic compounds (Korth and 

Dixon, 1997; Turlings et al., 1990; Felton and Tumlinson, 2008; Halitschke et al., 2001). 

Therefore, we plan to identify the differentially expressed peptides of date palm possibly 

associated with RPW infestation. This study may be helpful in developing some molecular 

marker(s) for the early detection of RPW. The objectives of our study are the molecular 

profiling of the date palm infested with RPW, and identification and characterization of 

differentially expressed peptides using MALDI-TOF. 
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Chapter 
   TWO 

2 Optimization of protein isolation from date palm plants and its 
utilization in differential proteomics associated with red palm 
weevil infestation  

 

 

 ABSTRACT 2.1

Differential proteomics is considered as one of the most powerful tools for evaluating 

relative expression of molecular moieties either in plants or animals. The present study 

focuses first on optimizing a rapid and sensitive protocol for the isolation of high quality 

protein to be used in two dimensional gel electrophoresis (2DE) from date palm samples, 

and then comparing differentially expressed peptides associated with RPW infestation of 

this plant using uninfested plants as control. Among the several methodologies we used 

for optimization, it was revealed that Phenol/ SDS extraction followed by methanolic 

ammonium acetate precipitation (designated as protocol 3 in this study) yielded high 

quality protein. Moreover, 2DE protein analysis demonstrated both qualitative and 

quantitative differences between control and infested date palm samples. Our differential 

proteomic methodologies showed 22 differential spots having modulation level ≥1.5 fold. 

Subsequently, these differentially expressed peptides were subjected to MALDI-TOF 

peptide mass fingerprinting analysis for their characterization. The 11 peptides identified 
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through these methodologies fall into three major functional groups including 

stress/defense (5), photosynthesis (2), ion transport (1) related proteins and three with 

other functions. Our data revealed that proteins related to date palm defense or stress 

response were up-regulated in infested samples while the proteins involved in 

photosynthetic activities were down regulated. The present results indicated that RPW 

infestation of date palm plants induced molecular changes manifested through differential 

expression of proteins. Differentially expressed peptides besides increasing our 

understanding relevant to RPW infestation will help us in developing methodologies for 

early detection of RPW infestation beneficial for curbing this problem in economically 

important date palm trees. 

 INTRODUCTION 2.2

The date palm, Phoenix dactylifera L. (Arecaceae, Arecales) is cultivated in tropical and 

subtropical regions of the world mainly in West Asia and North Africa between 10°N and 

39°N in North hemisphere and between 5°S to 33°-51°S in the Southern hemisphere 

(Al-Khalifah et al., 2013). About 3000 to 5000 date palm cultivars are planted in various 

parts of the world and serving people nutritional needs since times immemorial (Zaid, 

1999; Bashah, 1996; Chandrasekaran and Bahkali, 2013). 

The total world date palm production is 7.4 million tons and the Arab World is 

contributing 5.4 million tons annually (FAO, 2009). The Kingdom of Saudi Arabia is the 

third largest producer of fine quality dates (FAO, 2012) worldwide having 23 million date 

palm trees yielding about 970,488 tons of dates annually (Alhudaib et al., 2007). 

Unfortunately, this valuable fruit crop is under severe attack by RPW (Rhynchophorus 
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ferrugineus), the most destructive pest of the date palm tree (Phoenix dactylifera) 

(Aldawood and Rasool, 2011). According to an estimate, economic loss on the 

management and eradication of this deadly pest is up to $130 million annually in the 

Middle East at only 5% infestation in date palm plantation (El-Sabea et al., 2009). 

Moreover, millions of dollars losses have been reported on coconut and other palm species 

(Faleiro, 2006). 

In the past, several detection techniques, including visual inspections, acoustic sensors, 

sniffer dogs, and pheromone traps have been tested for the early detection of RPW 

infestations followed by removal of infested plants to curb further spread of this insect 

however, a quick and earliest detection procedure is still awaited. Recently, scientists are 

trying to identify the plant responses for detection of pathogenic infection or herbivore 

attack using proteomic approaches. For example, Plutella xylostella feeding on 

Arabidopsis thaliana leaves left proteins footprints on 2DE gel where 38 additional 

protein spots (out of 1100 spots) have been detected after infestation (Liu et al., 2010).   

Also, it has been reported that plants like humans have innate and adaptive defense 

responses when attacked by herbivore that induce direct and indirect damages (Kessler 

and Baldwin, 2002).  Even oral secretions released into plant tissues by plant feeding 

insects elicit special acquired defensive responses in the plants (Felton and Tumlinson, 

2008; Halitschke et al., 2001). Furthermore, insect regurgitates and other oral secretions 

also modulate plants defense proteins or stimulate release of volatile compounds (Korth 

and Dixon, 1997; Turlings et al., 1990). These volatile compounds help to protect infested 

plant against herbivores attacks through direct and indirect defense and tolerance reaction 

such as secretion of secondary metabolites (Kessler and Baldwin, 2002). Sometimes 
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herbivore feeding induces proteinase inhibitors (PI) in plants that inactivate insect 

digestive enzymes thus starving insects to death (Tamayo et al., 2000).   

Recently, proteomics approaches have been successfully used to investigate plant 

responses against pathogenic infection and herbivores feeding on them. Proteomic 

analysis of healthy and brittle leaf diseased date palm leaflets showed quantitative 

differences in many proteins. In differentially expressed proteins, Mn-binding PSBO and 

PSBP proteins were decreased, whereas, other proteins were increased in diseased samples 

(Marqués et al., 2011). Proteomic analysis of date palm responses to entomopathogenic 

fungi: Beauveria bassiana, Lecanicillium dimorphum and L. cf. psalliotae, was studied 

using 2D proteomic techniques. Results revealed that plant defense/ stress, photosynthesis 

and energy metabolism associated proteins were differentially expressed in 

entomopathogenic fungi affected date palm leaves as compared to healthy samples 

(Gómez-Vidal et al., 2009). Pea (Pisum sativum) responses to powdery mildew (Erysiphe 

pisi) were examined using 2DE and leaf proteins from control non-inoculated and 

inoculated susceptible (Messire) and resistant (JI2480) plants exhibited some quantitative 

and qualitative differences (Curto et al., 2006).  

Major objective of the present study was to optimize protein isolation methodology from 

date palm barely used for proteomic studies in the past and observe molecular changes in 

the plant subsequent to infestation with one of the highly damaging insect of this plant, the 

RPW. We firmly believe that protein isolation methodology developed in our laboratory 

will be beneficial for several molecular studies of this plant to be ensued in future. 

Optimized protein expression methodology developed in this study was used for 

differential proteomics of plants infested with RPW. We observed a highly intriguing 
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modulation of proteins associated with RPW infestation in date palm that could be utilized 

for early detection of infestation.   

 MATERIALS AND METHODS 2.3

2.3.1 Date palm plants and infestation with RPW  

Tissue cultured date palm plants of Khudry cultivar were obtained from Al Rajhi Tissue 

Culture Laboratory, Riyadh, Saudi Arabia and divided into 3 groups (each group having 

three replicates). Mechanical wounding and infestation with RPW to date palm was 

carried out as described previously (Lippert et al., 2007). Briefly, nine plants were divided 

into three groups each having 3 replicates. Group one was artificially infested with RPW 

larvae, second was artificially wounded whereas third was kept as control without any 

treatment. Artificial infestation of date palm was carried out by 5 second instar RPW 

healthy larvae introduced into the plant through making holes in the stem using drill 

machine with 6-mm size bit. Subsequently, the stem part of the plants was wrapped up 

with fine steel mesh.  

2.3.2 Protein extraction and SDS-PAGE 

Leave samples of above treated (infested, non-infested) and control (without treated) date 

palm plants were taken after 3-days for protein extraction. The leaves were cut from the 

plants and rinsed with distilled water. After getting dried with blotting paper, the leaves 

were cut into small pieces using clean scissor. Samples were weighed 6 gm each and 

grinded to fine powder in liquid nitrogen using pestle and mortar. The leave samples were 

also chopped in moulinex blender (LM 209) prior to grinding in liquid nitrogen. Five 
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existing protocols with some modifications were tried in order to identify a high protein 

yielding protocol with reduced number of steps. The protocols/ methods used in this study 

are provided in Table 1.  

2.3.3 Protocol 1. TCA-Acetone precipitation extraction 

This procedure was modified from a published TCA-acetone precipitation protocol 

(Damerval et al., 1988). Two hundred  mg ground tissue powder from date palm samples 

(leaves) was dissolved in 1 ml of TCA solution (10% w/v TCA in acetone with 0.07% 

2-mercaptoethanol) and incubated at -20°C for 1 hour. Pellet was recovered by 

centrifuging at 10,000 x g for 20 min at 4°C. The supernatant was removed, and proteins 

were washed by adding one ml of ice-cold acetone containing 0.07%, 2-mercaptoethanol 

(twice). Samples were stored at -20°C for at least 30 min. Pellet was recovered by 

centrifuging at 10,000 x g for 20 min between washes. Supernatants were discarded, and 

pellets were dried at room temperature. Dried pellet was solubilized in SDS buffer for 

SDS PAGE analysis.  

2.3.4 Protocol 2. Simple buffer extraction 

In this method, a total of 200 mg ground tissue powder was resuspended in 2 ml extraction 

buffer (50 mM Tris-Cl pH 8.8, 5 mM EDTA, 20 mM  DTT, 100 mM KCl). Each sample 

was grinded for 30 min to enhance the extraction of protein. Cell debris was removed by 

centrifuging at 10,000 x g for 20 min at 4°C. The supernatant was transferred to new 15 

ml falcon tube, and proteins precipitated by adding 5 volume of 100% ice-cold acetone. 

Samples were stored at -20°C for at least 2 hours and then centrifuged at -20°C for 20 

min. Pellets were washed twice with 5 volume of 80% acetone. Each time, sample was 
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kept at -20°C for 30 min and recovered by centrifuging at 10,000 x g for 20 min. After 

discarding supernatant, pellet was dried at room temperature and solubilized in SDS 

buffer. 

2.3.5 Protocol 3. Phenol-SDS extraction 

In this protocol, proteins were extracted using phenol/SDS extraction followed by 

methanolic ammonium acetate precipitation (Wang et al., 2003). For this, 200 mg powder 

was re-suspended in 1 ml phenol (Tris-buffered, pH 8.0) and 1 ml dense SDS buffer [30% 

w/v sucrose, 2% w/v SDS (Sigma), 0.1 M Tris-HCl, pH 8.0, 5% v/v 2-mercaptoethanol]. 

The blend was mixed thoroughly by vortexing and then centrifuged for 5 minutes at 10000 

xg at 4°C. The upper phenol phase was collected carefully without disturbing interphase 

and precipitated with five volumes of cold 0.1 M ammonium acetate in methanol. The 

mixture was incubated at -20°C for 30 min. Precipitated proteins were recovered by 

centrifugation at 1000 xg  for 5 min at 4°C and then washed  two times with cold 

methanol solution containing 0.1 M ammonium acetate and two times cold 80% v/v 

acetone. Each time, protein pellet was recovered by centrifugation at 8000 xg for 5 

minutes. Protein pellet was air-dried at room temperature for 1 hour.  

2.3.6 Protocol 4.  Phenol-simple buffer extraction 

 In this method proteins from date palm leave samples were extracted using 

phenol-simple buffer extraction followed by methanolic ammonium acetate precipitation. 

This method was described previously for proteomic studies by Hurkman and Tanaka 

(1986). For protein extraction, the 200 mg powder was resuspended in 1 ml phenol 

(Tris-buffered, pH 8.0) and 1 ml extraction buffer (50 mM Tris-Cl pH 8.8, 5 mM EDTA, 
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20 mM DTT, 100 mM KCl). The mixture was mixed thoroughly by vortexing and then 

centrifuged for 5 min at 10000 xg at 4°C. The upper phenol phase was transferred to new 

falcon tube and lower phase was again extracted with 1 ml phenol and 1 ml extraction 

buffer. The upper phase was again collected after centrifugation and mixed with above 

collected phenolic phase. Protein was precipitated with five volumes of cold 0.1 M 

ammonium acetate in 100% methanol. The mixture was incubated at -20°C for 1 hour. 

Precipitated proteins were recovered by centrifugation at 1000 xg  for 20 min at 4°C and 

then washed  two times with cold methanol solution containing 0.1 M ammonium acetate 

and two times cold 80% v/v acetone. Each time, protein pellet was kept at 20°C for 30 min 

and recovered by centrifugation at 8000 xg for 5 minutes.  Protein pellet was air-dried at 

room temperature for 1 hour.  

2.3.7 Protocol 5. TCA/ acetone/ phenol/ SDS buffer extraction 

Proteins from date palm leaves were extracted using TCA/acetone/ phenol/ SDS extraction 

with methanol/ ammonium acetate precipitation as previously described by Gomez et al. 

(2008). Before protein extraction, 200 mg ground tissue (three replicates) of each sample 

was re-suspended in 5 ml ice cold acetone and insoluble materials were recovered by 

centrifugation at 5000 xg at 4°C. The pellet thus obtained was sequentially rinsed with 

ice-cold 10% w/v TCA in acetone (five times), cold aqueous 10% w/v TCA (three times) 

and finally cold 80% v/v acetone (three times). Each time pellet was recovered by 

centrifugation at 5000 xg at 4°C for 5 min. The pellet was dried for at least 1 hour at room 

temperature and then used for protein extraction. For protein extraction, dried pellet was 

re-suspended in 1 ml phenol (Tris-buffered, pH 8.0; and 1 ml dense SDS buffer (30% w/v 
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sucrose, 2% w/v SDS (Sigma), 0.1 M Tris-HCl, pH 8.0, 5% v/v 2-mercaptoethanol. The 

blend was mixed thoroughly by vortexing and then centrifuged for 5 min at 10000 xg at 

4°C. The phenol phase was collected and precipitated with five volumes of cold methanol 

plus 0.1 M ammonium acetate at -20°C for 30 min. Precipitated proteins were recovered 

by centrifugation at 1000 xg for 5 min at 4°C and then washed three times with cold 

methanol solution containing 0.1 M ammonium acetate and cold 80% v/v acetone. Each 

time, protein pellet was recovered by centrifugation at 8000 xg for 5 min. Protein pellet 

was air-dried at room temperature for 1 hour. 

2.3.8 Sample preparation and SDS-PAGE analysis 

For total protein analysis on SDS-PAGE, aliquot of each sample was suspended on 100 mM 

Tris buffer (pH 8.0) and then mixed with equal volume 2X SDS-reducing buffer (100 mM 

Tris-Cl (pH 6.8), 4% SDS, 0.2% bromophenol blue, 20% glycerol and 200 mM 

mercaptoethanol). One dimension PAGE (12%) as described previously by Tufail et al. 

(2006) was employed to analyze the sample for total protein analysis. Mini VE (GE 

healthcare) apparatus was used for SDS-PAGE. 

2.3.9 Two-dimensional gel electrophoresis analysis 

Two-dimensional gel electrophoresis (2DE) was carried out as previously described by 

Gómez-Vidal et al. (2008). Dried protein samples were solubilized in rehydration buffer 

containing chaotropic agent urea, alongside surfactants CHAPS and thiourea (7 M urea, 2 

M thiourea, 2% CHAPS w/v, 2% DTT, 0.5% IPG buffer pH 3-11, 0.002% bromophenol 

blue) by shaking at 150 rpm for 1 h at 25°C. Protein concentration was measured using 

2-D Quant kit (GE Healthcare, Little Chalfont, UK) according to the manufacturer’s 
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protocol using bovine serum albumin (BSA) as a reference standard. The samples were 

further cleaned for 2D using the 2D Clean-Up Kit (GE Healthcare, Little Chalfont, UK). 

The 450 µg extracted protein was loaded on 24 cm, pH 3-11, immobilized pH gradient 

strips. These strips were rehydrated for 16 hours at 20°C
 
and then isoelectric focusing 

(IEF) was performed using Ettan IPGphor3 IEF unit (GE Healthcare, Bucks UK) at 50 µA 

per strip at 20°C according to following program: 1) step 400V for 1 hour, 2) Gradient 

1000V for 1 hour, 3) Gradient 3500V for 1 hour, 4) Step 3500 V for 3 hour. These strips 

were then equilibrated for 15 min at room temperature under gentle agitation in an 

equilibration buffer (0.05 M Tris–HCl (pH 8.8), 6 M urea, 30% (v/v) glycerol, 2% (w/v) 

SDS,) containing 20 mM DTT, followed by another 15 min equilibration in the same 

buffer containing 125 mM iodoacetamide. After equilibration, strips were then loaded on 

12.5% SDS-polyacrylamide gels and separated using Ettan DALT six electrophoresis Unit 

(GE Healthcare, Little Chalfont, UK). After electrophoresis, gels were removed and 

stained with Colloidal Coomassie Brilliant Blue G-250 (CCB), scanned, and analyzed 

using Progenesis SameSpots software version 3.3 (Nonlinear Dynamics Ltd, Newcastle 

upon Tyne, UK.). One way ANOVA was used to calculate the fold difference values and 

P-values. A threshold level was set of 1.5 fold up- or down-regulation, at p < 0.05 level. 

2.3.10  Protein identification by mass spectrometry 

Differentially expressed twenty two spots were cut, digested, analyzed by MALDI 

TOF-MS and identified by PMF, as previously described by Alfadda et al. (2013). In 

brief, excised protein spots were destained and digested with trypsin with 10 µl trypsin at 

a concentration of 2 ng/µl (Promega, USA) according to the recommended procedure by 
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the manufacturer. The resulting tryptic digests were extracted by adding 50% 

acetonitrile/0.1% Triflouroacetic acid followed by drying to 10 µl using vacuum 

centrifugation. The 0.5 µl peptides was mixed with matrix (10 mg 

α-Cyano-4-hydroxycinnamic acid in 1 ml of 30% acetonitrile containing 0.1% TFA) and 

applied on MALDI- target and dried before MS analysis and after that subjected to 

MALDI-TOF-MS (UltraFlexTrem, Bruker Daltonics, Germany). Peptide mass 

fingerprints were processed using flex analysis software (version 2.4, Bruker Daltonics, 

Germany). MS data were interpreted by BioTools3.2 (Bruker Daltonics, Germany) in 

combination with the Mascot search algorithm (version 2.0. 04) against Swiss-Prot 

database for green plants.  Protein spots were also counted manually and false 

background spots detected by software excluded from the analysis. 

 RESULTS AND DISCUSSION 2.4

Among the molecular techniques currently being used, proteomics has proved to be one of 

the most powerful and reliable for evaluating relative expression of molecular moieties in 

normal and diseased plants or animal tissues. Although proteomics and genomics in 

animal studies led to translational benefits, however, their usage in plant disease 

assessment have been relatively low. In the current study, we optimized protein isolation 

methodology from date palm tree followed by utilizing the highly quality isolated protein 

in evaluating differential proteomics responses in this fruit tree upon exposure with one of 

its highly injurious insect, the red palm weevil. The RPW is a very serious and rapidly 

spreading pest of the date palm trees in Gulf region and particularly in the Kingdom of 

Saudi Arabia that produces majority of export quality fruit from this tree. A bottleneck in 
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controlling RPW infestation has been the early detection methodology. The infestation 

symptoms in the tree appear at later stages when it is too late to save the infested plant. 

Our data provides differential proteomics information from the RPW infested plants that 

could be utilized for developing highly sensitive molecular techniques to identify infested 

plants at their early stage of infestation.  

2.4.1 Protein extraction optimization and protein yield 

Though an initial methodology for protein isolation from date palm has been described 

previously by Gómez-Vidal et al. (2008); however, differential proteomics need 

procedures that can provide high quality protein. Thus, firstly we optimized a rapid and 

high yielding protein extraction protocol from the date palm. To achieve the purpose, five 

previously existing protein extraction methods with some modification were used to 

extract and solubilize the date palm proteins for 2DE analysis. The extracted proteins were 

quantified using 2D quant kit (Table 1).  

Relative quality and quantity of proteins isolated through various extraction protocols was 

confirmed by SDS-PAGE analysis. The protein profiling on SDS-PAGE revealed an 

interesting pattern of isolated proteins. Total protein contents were either much low 

(designated as protocol 2 in this study) or yield of high molecular weight proteins was low 

(designated as protocol 1) and also protein profile was not promising comparing other 

protocols (Fig. 1). Protein quantification revealed that the other three methods (protocols 

3-5) yielded almost equal amount of protein from a plant sample of 200 mg. Relative 

amounts of protein from protocol 1 based on TCA acetone extraction and precipitation 

yielded almost 220 µg proteins/ 200 mg sample while protocol 2 based on simple buffer 
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extraction gave low yield (only 30 µg). Other three protocols yielded almost equal amount 

of proteins, ~800 µg/200 mg sample (Table 1). However, the protocols 3 and 4 yielded 

optimal protein and also had relatively reduced number of procedural steps and time. The 

main reason for low protein yield in protocol 1 (TCA-acetone method) compared to other 

phenol based methods (protocols 3, 4 and 5) could be due to the low solubility of protein 

pellet in SDS buffer as compared to phenol-based methods (Chen and Harmon, 2006). 

Furthermore, TCA-acetone protocol was suggested more effective with tissues from 

young plants and suitable for complex tissues (Saravanan and Rose, 2004; Carpentier et 

al., 2005; Wanget al., 2003). These quantitative results revealed that phenol-based 

methods gave higher protein yield as compared to TCA-acetone and simple buffer 

method. Of phenol-based methods, protocol 3 was finally chosen for further analysis 

because of its reduced number of steps and higher yield compared to others methods. 

 

  

http://www.ncbi.nlm.nih.gov/pubmed?term=Wang%20W%5BAuthor%5D&cauthor=true&cauthor_uid=12874872
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Table 1. Comparative efficiency of different protocols for protein extraction from 

the date palm samples  

Protocols used for date palm protein extraction Protein yield (µg/200mg) 

1 TCA/ acetone/ DTT extraction and precipitation 220 

2 

 

Simple extraction buffer/ DTT and acetone 

precipitation 
30 

3 

 

Phenol/ SDS extraction with methanolic 

ammonium acetate precipitation 
810 

4 

 

Phenol/ buffer with methanolic ammonium acetate 

precipitation 
792 

5 

 

Acetone/ TCA washing/ Phenol/ SDS extraction 

with methanolic ammonium acetate precipitation 
756 

  



29 

 

 

 

 

 

 
 

 Fig. 1. Comparative efficiency of five protocols (indicated in Table 1) for protein 

extraction from the date palm samples through SDS-PAGE. M stands for the 

protein molecular marker while lanes 1-5 indicate respective protocols used for the 

optimization of protein extraction.  
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2.4.2 Evaluation of protein profiling by SDS-PAGE and 2DE 

After optimization of protein extraction procedure, the best selected method (phenol-SDS 

extraction method, protocol 3) was used to isolate proteins from control, infested and 

wounded date palm samples for differential expression profiling analysis using 

SDS-PAGE. Approximately, 10 µg aliquots of each sample was solubilized in SDS 

loading buffer and separated on 12.5 % SDS-PAGE before staining. Protein profile after 

staining with Coomassie brilliant blue G250 showed good reproducibility among 

replicates, consistent solubilization and reproducible extraction (Fig. 2). Also, the 

SDS-PAGE data confirmed that protein profile isolated from different samples was 

consistent among the samples and replicates, however, SDS-PAGE failed to reveal the 

differential diagnostic bands (Fig. 2). 
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Fig. 2. Comparative protein expression profiling of the control, infested and wounded date 

palm samples using SDS-PAGE. Lanes 1-3 represent total cell proteins from 3-infested 

replicates, while lanes 4-6 represent proteins from wounded date palm samples, and lanes 

7-9, represent proteins from control date palm samples. 
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2.4.3 Differential proteomics analysis  

Protein expression profiles were compared in RPW infested date palm samples with 

uninfested controls (artificially wounded plants) and control. The extracted proteins were 

initially quantified using 2D quant kit after solubilizing in 2D-rehydration buffer. Each 

sample was evaluated by 2DE to compare differences among control, infested and 

wounded samples. The 2DE gels were scanned using Biometra Gel Documentation 

System (Biometra, Goettingen, Germany) and the protein spots were detected and 

analyzed using Progenesis Samespots software. On average, 227 proteins spots were 

detected in each gel using 24 cm IPG strip, pH 3-11 by image analysis. The statistical 

analysis of the gels was carried out between control vs infested, control vs the wounded 

and wounded vs infested. When proteins spots were compared in these combinations, 

majority of protein spots expression was unchanged as per threshold defined in our study. 

There were 22 spots showing statistically significant differences (p≤0.05) and showing 

more than1.5-fold modulation. Data generated is depicted in the Venn diagram (Fig. 3); 11 

spots appeared to be increased in abundance in infested in relation to the control and 

wounded. Five protein spots appeared to be increased in wounded samples compared to 

control and infested, 6 appeared to be increased in control compared to wounded and 

infested. According to our knowledge this report is highly unique in nature as far as date 

palm proteomics is concerned.  
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Fig. 3. Venn diagram for the relative distribution of proteins spots in control, mechanically 

wounded and RPW infested date palm samples. The non-overlapping segment of 

diagram represent the number of proteins which were significantly up-regulated 

(>1.5-fold) in the corresponding group when compared with the other two groups. 

The overlapping region between any two groups represents the number of proteins 

spots significantly up-regulated (>1.5-fold) compared to the third one. While the 

central overlapping region depicts the protein spots where no any statistically 

significant change in up or down regulation was observed. 
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2.4.4 Identification of differentially expressed peptides by mass 

spectrometry  

Basic proteomics coupled with mass spectrometry has helped to pinpoint exactly 

molecular moieties modulated subsequent to artificial intervention or infestation in plants. 

To proceed further with the identification of differentially expressed peptides according to 

our predefined threshold criterion preparative gel was run with equal quantity of each 

protein. The gel was subsequently stained with colloidal Coomassie blue G-250 and 

imaged. Differentially modulated 22-protein spots (with 1.5 fold change in intensity) were 

selected, manually excised very carefully from preparative gel followed by trypsin 

digestion before subjecting them to MS analysis (Fig.4).  

Data generated from MS of differentially expressed peptides was processed by BioTools 

3.2 (Bruker Daltonics, Germany) in combination with the Mascot search algorithm 

(version 2.0.04) against green plants database. Of the 22- differentially expressed spots 

analyzed by MS, we were able to match only 11-proteins (50%) in the existing protein 

dataset whereas for the remaining spots either low score or no hits were observed. This 

observation is quite intriguing and also expected as the date palm proteomics is in quite 

infancy and several new proteins will be added to the plant proteins database. Table 2 

provides complete information about the potentially identified protein spots including spot 

number, Uniprot accession number, protein description, function, theoretical pI, molecular 

weight, protein coverage (%), score, and matching organism for the differentially 

expressed proteins. All identified proteins have shown homology to other species mainly 

Zea mays (Maize), Oryza sativa (Rice), Solanum demissum, Solanum tuberosum L., Palm 

tree, Mesembryanthemum crystallinum, heterophylla  (White cedar), and A. thaliana. 

http://www.uniprot.org/taxonomy/3409
http://www.uniprot.org/taxonomy/3409


36 

 

 

 

 

 

 

Fig. 4.  Reference gel showing differentially expressed spots used for Mas Spectrometric 

analysis. 

  



37 

 

The percentages of sequence coverage of the identified proteins were 20-47%. Among 

11-proteins matched in the plants proteins database 10-proteins increased in infested 

compared to control. One heat shock protein, 2-Cys peroxiredoxin BAS1, chloroplastic, 

Oligopeptide transporter 3, and Ferredoxin-NADP reductase, chloroplastic were 

specifically increased in infested compared to control. Identified proteins were classified 

into three functional groups based on their main biological process: Stress and defense 

related protein (46%), proteins involved in Photosynthetic activities (18%), and ion 

transport proteins (9%), and others (27%) and have been shown in Fig. 5. 

2.4.5 Stress and defense associated proteins 

Among the eleven characterized proteins, 5 (46 %) were recognized as defense and stress 

response proteins based on gene ontology classification. The expression levels of these 

proteins in infested sample appeared to be increased compared to control. Relatively 

higher expression of proteins involved in defense and stress responses might be induced 

by the stresses associated with infestation. One of the stress-related proteins was 

heat-shock protein (Hsp) and coded by spot no.74, significantly accumulated in infested 

and wounded samples (2.15 and 1.38 folds in infested and wounded samples respectively). 

During stress the Hsps are usually up-regulated and their main function is to fold protein 

properly, and to stabilize proteins against heat or other stresses. The other stress 

responsive proteins were identified from four spots (spots No: 782, 488 508 and 361) 

(Table 2). Protein identified from spot 782 was 2-Cys peroxiredoxin BAS1, chloroplastic, 

associated with stress responses and cells detoxification, and had shown high expression 

both in infested as well as in wounded date palm samples. 
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Fig. 5. A Pie chart depicting the physiological classification of potentially identified 

proteins through Mass Spectrometry analysis. 
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Table 2. Differentially expressed proteins identified by Mass Spectrometry in date palm associated with RPW infestation 

S. 

No

. 

FC 

(I) 

FC 

(W) 

Accessio

n 

(Uniprot) 

Protein description Function pI MW 

Coverag

e 

% 

Scor

e 

 

Organism 

782 1.63↑ 0.92↓ Q6ER94 
2-Cys peroxiredoxin BAS1, 

chloroplastic 

Stress response 

detoxification 
5.67 28307 37 65 Oryza sativa (Rice) 

488 3.45↑ 2.45↑ P41343 
Ferredoxin--NADP 

reductase, chloroplastic 
Stress response 8.54 41322 32 93 

Mesembryanthemum 

crystallinum 

508 2.33↑ 1.62↑ O23482 Oligopeptide transporter 3 Stress response 6.31 140853 20 62 
Solanum demissum 

(wild potato) 

361 1.93↑ 1.55↑ Q60CZ8 

Putative late blight 

resistance protein homolog 

R1A-10 

Hyper sensitive 

response 

Defense 

5.78 15312 20 57 
Solanum demissum 

(wild potato) 

435 1.89↑ 1.53↑ P49087 
V-type proton ATPase 

catalytic subunit A 
Ion transport 5.89 62198 45 166 Zea mays (Maize) 

74 2.15↑ 1.38↑ P11143 Heat shock 70 kDa protein Stress response 5.22 70871 32 130 Zea mays (Maize) 

542 3.14↑ 1.32↑ Q42572 DNA ligase 1 DNA repair 8.20 88427 21 62 Arabidopsis thaliana 

206 1.69↑ 2.17↑ P31542 

ATP-dependent Clp 

protease ATP-binding 

subunit clpA homolog 

CD4B, chloroplastic 

Protease 

Protein metabolic 

process 

5.86 10246 34 128 
Solanum lycopersicum 

(Tomato) 

136 0.44↓ 0.41↓ Q37282 
Ribulose bisphosphate 

carboxylase large chain 

Photosynthesis 

Calvin cycle 
6.04 52482 27 72 

Tabebuia Heterophylla  

(White cedar) 

240 1.69↑ 0.74↓ P28259 
Ribulose bisphosphate 

carboxylase large chain 

Photosynthesis 

Calvin cycle 
6.33 52710 47 109 

Drymophloeus 

subdistichus  (Palm 

tree) 

346 2.57↑ 1.49↑ P54260 
Aminomethyltransferase, 

mitochondrial 

Plant metabolism 

Glycine cleavage 
8.77 44648 40 60 Solanum tuberosum L. 

Arrows indicate the proteins up (↑) and down (↓) regulations, FC = Fold change, I = RPW Infested samples, W = Mechanically Wounded samples,  

pI = Isoelectric point,  MW = Molecular Weight
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Hydrogen peroxide produced in chloroplast serves as a signaling molecule that takes part 

in cellular communication (Apel and Hirt, 2004; Foyer and Noctor, 2000), especially for 

long distance (Karpinski et al., 1999). When level of H2O2 enhanced in response to 

different abiotic and biotic stresses, it may pose an oxidation threat to plant cells (Mittler 

et al., 2004). In order to balance the toxic and signaling activities of hydrogen peroxide 

the chloroplasts are equipped with 2- Cys peroxiredoxins. The peroxiredoxin is 

thiol-based peroxidases which reduce hydrogen and organic peroxides. Moreover, when 

biotic agents elicit overproduction of reactive oxygen species, a corresponding 

overexpression of 2-Cys peroxiredoxins involved in the detoxification process 

anticipated. The second spot (no. 488) was identified as ferredoxin-NADP reductase, 

chloroplastic protein and related to stress response showed high expression in infested as 

well as wounded date palm samples. These proteins are located in the thylakoid 

membrane and their expression increases in response to oxidative stress. Upregulation of 

Ferredoxin in tobacco produces resistance to P. syringae and Erwinia carotovora (Huang 

et al., 2007). Ferredoxin-NADP reductase over-expression after biotic stress may predict 

their role in defense (Bilgin et al., 2010).  

The other important protein identified (spot no. 508) was oligopeptide transporter 3 

protein and upregulated both in infested and wounded date palm samples. In spruce Picea 

sitchensis genes associated with transportation processes oligopeptide transporter were 

up-regulated after weevil feeding (Ralph et al., 2006). Oligopeptide transporters are 

involved in the translocation of small peptides across cellular membranes including 

glutathione, glutamyl peptides, hormone-amino acid conjugates, peptide phytotoxins, and 

systemin inducing systemic signaling against herbivores attack (Stacey et al., 2002). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Huang%20HE%5BAuthor%5D&cauthor=true&cauthor_uid=20507485
http://www.ncbi.nlm.nih.gov/pubmed?term=Huang%20HE%5BAuthor%5D&cauthor=true&cauthor_uid=20507485
http://www.ncbi.nlm.nih.gov/pubmed?term=Ralph%20SG%5BAuthor%5D&cauthor=true&cauthor_uid=16898017
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Oligopeptide transporters were up regulated in grapes infested with leaf-galling 

phylloxera (Nabity et al., 2013). Moreover, differential expression pattern of oligopeptide 

transporters in rice seedlings exposed to abiotic and biotic stresses was also reported (Liu 

et al., 2012).  

Another pathogen resistance protein (spot 361) identified as putative late blight resistance 

protein homolog R1B-10 and was also found to be up-regulated both in infested and 

wounded samples as we expected and is again in agreement to the previously published 

reports (Poupard et al., 2003; Tarchevsky et al., 2010). This protein is involved in 

providing some safeguards to the plant against pathogen and eventually stops the 

pathogen growth. The overexpression of this protein indicated that this protein may 

activate the specific downstream genes, thus preparing the plant for upcoming 

encounters.  

Differentially expressed protein spots related to photosynthesis (spot No: 136 and 240) 

were identified as ribulose bis phosphate carboxylase large chain. These proteins have 

very close Mr and pI values or differ only very slightly and belong to the same functional 

family. The existence of such isoforms with slight difference in Mr and pI has been 

reported previously in date palm (Marqués et al., 2011; Sghaier-Hammami et al., 2009) 

and also in other species like Arabidopsis (Sghaier-Hammami et al., 2012). However, 

expression of these proteins is down-regulated in infested sample, as we expected, and 

this should not be surprising as many photosynthetic genes are reported to be 

down-regulated following insect or pathogen attacks and abiotic stresses (Bazargani et 

al., 2011; Bilgin et al., 2010; Nabity et al., 2009). The reduction of photosynthetic 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bazargani%20MM%5BAuthor%5D&cauthor=true&cauthor_uid=21621021
http://www.ncbi.nlm.nih.gov/pubmed?term=Bazargani%20MM%5BAuthor%5D&cauthor=true&cauthor_uid=21621021
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activity probably leads to trade off from growth to defense (Bilgin et al., 2008; Li et al., 

2011; Zou et al., 2005). 

Spots number 346 and 435 were identified as aminomethyltransferase, and mitochondrial 

and V-type proton ATPase catalytic subunit A proteins, respectively. 

Aminomethyltransferase, mitochondrial protein is also known as glycine cleavage system 

responsible for catalyzing glycine degradation (Walker and Oliver, 1986). V-type proton 

ATPase catalytic subunit A protein is responsible for acidifying a variety of intracellular 

compartments in eukaryotic cells (Persike et al., 2012). V-type ATPases are the large 

membrane protein complexes present in eukaryotic cells and acidify various intracellular 

compartments with the transport of protons across the membrane (Du et al., 2010). These 

ATPases generate a proton electrochemical gradient across vacuolar membrane 

Na+/H+antiporter, to compartmentalize Na+ into the vacuole (Chinnusamy et al., 2005), 

thus playing a key role in biological energy metabolism. 

Spot 206 was identified as ATP-dependent Clp protease ATP-binding subunit ClpA 

homolog CD4B, chloroplastic. These proteases involve in chloroplast biogenesis (Adam 

et al., 2006) and up regulation of this protein in infested samples lead to enhance the 

activity of this protease for the formation and maintenance of a functional thylakoid 

electron transport. Our results are in agreement with those previously described (Olinares 

et al., 2011).  

Date palm tree is mainly woody in nature and manifestation of stress responses 

associated with RPW infestation is opening new avenues of scientific research relevant to 

this historical plants mainly growing in Arabian Peninsula and several other parts of the 
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world. Proteomics/genomics strategies will help in future selective cultivation of date 

palms besides saving them from insects and pests. 

Overall, our study provides information regarding an optimized protocol for the isolation 

of high quality proteins from date palm tree to be used for proteomic studies and also set 

a paradigm for differential proteomics associated with infestation of this plant with highly 

injurious insect, the RPW. Among the proteins identified majority are stress related or 

involved in photosynthetic machinery. Limited proteomics data available from other 

plants also suggest similar changes in expression levels. It is quite possible that plant 

kingdom might have similar acquired defense response like in humans and observation 

still to be supported from future studies. 

 CONCLUSION 2.5

Our report is highly unique as being the first on optimization of protein isolation from the 

date palm trees. The results of the present study demonstrate that Phenol/SDS extraction 

with methanolic ammonium acetate precipitation is the best technique for rapid and better 

protein harvest from the date palm samples. Moreover, twenty two differentially 

expressed protein spots were recognized having intensity fold difference ≥1.5. The mass 

spectrometry analysis identified proteins related to stress/defense response, 

photosynthetic activity and some miscellaneous functions. Our results conclusively reveal 

that RPW infestation induce responses that regulate differential expression of proteins 

associated with defense, stress and photosynthetic systems of the palm tree. These 

differentially expressed proteins can be utilized for developing biomarkers for detection 

of RPW at an early stage of infestation. 
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Chapter 
   THREE 

3 Molecular profiling of the date palm, Phoenix dactylifera L. 
infested with RPW, Rhynchophorus ferrugineus (oliv.) 
(Curculionidae: Coleoptera) leave samples using 2D-DIGE 
analysis and MALDI-TOF 

 

 ABSTRACT 3.1

The RPW (Rhynchophorus ferrugineus) is damaging date palm trees in several regions of 

the World including Saudi Arabia. This insect infestation cycle is highly concealed in 

nature and early detection followed by destruction of the affected trees is the only viable 

strategy to control further spread. A highly sensitive and reliable early detection method 

of the infested plants is awaited to be applied in the field for removing infested plants 

thus curtailing further spread of this insect. Post-genomic era techniques have made 

possible to identify earlier responses of livings including plants to any injury/ infections. 

As such, we compared date palm protein expression differences of infested plants leaves 

with the healthy one by a highly sensitive two-dimensional differential gel 

electrophoresis (2D-DIGE) followed by Matrix-Assisted Laser Desorption/Ionization- 

Time of Flight (MALDI-TOF-TOF). The 2D-DIGE results revealed qualitative and 

quantitative proteome differences between control and RPW infested date palm samples. 

The RPW infestation induces injury to the plants and as such to identify infestation 
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specific responses artificially wounded trees were used as a control. Differential 

proteomics led to the identification of thirty two RPW infestation specific protein spots 

(p≤0.05 having ≥1.5 fold modulation) further subjected to mass spectrometric analysis 

for their identification and characterization. Protein involved in stress/defense related, 

photosynthetic, carbohydrate utilization system and protein degradation were mainly 

modulated in infested plants. These differentially expressed RPW infestation specific 

peptides can be used as biomarker for the identification of early infestation with this 

insect in date palm trees. 

 INTRODUCTION 3.2

Red Palm Weevil infestation have been reported in several parts of the World, however, 

the Kingdom of Saudi Arabia the second largest producer of fine quality dates (FAO, 

2011) is suffering major losses. Area under cultivation with date palm is 150,744 ha of 

land having over 23 million trees producing 970,488 tons of dates annually (Alhudaib et 

al. 2007). Unfortunately, this important fruit crop is under threat due to highly invasive 

pest, the red palm weevil (RPW), Rhynchophorus ferrugineus, first recorded in early 

1980’s(Abraham et al. 2001) in the Gulf.  

 It has been estimated that 80,000 palm trees in Saudi Arabia are infested with RPW 

posing a danger to surrounding plants (Mukhtar et al. 2011). Furthermore, infestation 

with RPW have been reported in over 50% of the date palm growing countries, sparing 

none in the Middle East (Faleiro, 2006), however, Saudi dates have special value as the 

pilgrimage on their return brings dates as gift, a Muslims tradition spanning over 

centuries. Damage to date palm trees is mainly caused by the insect larvae feeding within 
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the trunk of palms. This concealed feeding habit of the larvae, makes it extremely 

difficult to detect infestation at early stages. Often severe damage to the internal tissues 

leads to the death of the date palm tree (Abraham et al. 1998). The weevil completes 

several generations per year within the same host until the tree collapses (Rajamanickam 

et al. 1995; Avand Faghih, 1996). Yield loss due to infestation could be mild to severe 

(Gush, 1997). 

 Pesticides application to infested date palm tree have been partially successful in 

controlling RPW; however, there is still an urgent need for early detection and more 

effective environmentally safer control measure. Several detection methodologies, 

including visual inspections, acoustic sensors (Potamitis, et al., 2009), sniffer dogs 

(Nakash, 2000), and pheromone traps (Faleiro and Kumar, 2008) have been tested to 

assist quarantine efforts and identify infestations at early stages; however, each and every 

method has suffered certain logistic and implementation issues. Efforts to identify 

environmentally safe biological management of the RPW (Abdullah, 2009; 

Guerri-Agullo, et al. 2010) or early removal of infested plants thus curtailing further 

spread of this insect are the safest options to be applied in the field. 

In the post-genomic era proteomics methodologies provides a highly reliable differential 

responses towards any change in living organisms including plants. A number of proteins 

have been identified in Vitis vinifera, Acca sellowiana, and Cyclamen persicum using 

comparative proteomics which differentiate genotypes, organs, or involved in growth and 

development and responses to biotic and abiotic stresses (Winkelmann, et al. 2006; 

Marsoni, et al. 2008; Cangahuala-Inocente et al. 2009; Zhang et al. 2009). We selected 

improved version of two dimensional differential gel electrophoresis (2D-DIGE) for 
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differential proteomics study in RPW infested versus control plants. This highly sensitive 

fluorescence dye-based strategy increases the effectiveness of the proteomics technique 

by allowing multiplexing of different protein samples labeled with distinct fluorescent 

dyes and run on the same gel so as to avoid gel to gel variation (Timms, and Cramer, 

2008). Our results revealed significant and reproducible differences in date palm leaves 

peptides upon infestation with RPW that could be used to devise an early detection 

method for removing infested plant to control further spread of this insect. 

 MATERIALS AND METHODS 3.3

3.3.1 Mechanical wounding and infestation with RPW treatment 

Tissue cultured date palm plants of Khudry cultivar were obtained from Al Rajhi Tissue 

Culture Laboratory, Riyadh, Saudi Arabia and divided into 3 groups (each group having 

three replicates). Mechanical wounding and infestation with RPW of date palm cultivars 

were carried out as described previously (Lippert et al., 2007). Briefly, plants were 

separated into three groups. Group one was artificially infested with red palm weevil 

larvae, group two artificially wounded and third group without any treatment served as 

control. For artificial infestation each plant was infested with five 2
nd

 instar red palm 

weevil larvae by making holes in the stem using drill machine with 6-mm size bit. The 

wound was also created with same drill machine. These plants were then harvested after 

three days. Leaf tissues for differential proteomic study were taken from each tree and 

stored at -80
o
C. 
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3.3.2  Protein extraction and SDS-PAGE 

Leaves samples of infested, uninfested and artificially wounded date palm plants were 

taken after 3-days post-infestation for protein extraction. Leaves were removed with 

clean scissor from the plant and rinsed in distilled water. Proteins from control, infested 

and wounded date palm leaves (three replicate from each sample) were extracted using 

phenol/SDS extraction method as described by Gomez-Vidal et al. (2008) with minor 

modifications (Rasool et al. 2014). Briefly, leaves were ground into fine powder in liquid 

nitrogen using mortar and pestle and the 1.0 gram powder was subjected to protein 

extraction. The powder was suspended in 5 mL phenol and 5 ml dense SDS buffer (30% 

w/v sucrose, 2 % w/v SDS (Sigma), 0.1 M Tris-HCl, pH 8.0, 5 % v/v 

2-mercaptoethanol). The sample was mixed thoroughly by vortexing and then centrifuged 

for 5 minutes at 10,000 rpm at 4
o
C. The upper phenolic phase was collected carefully 

without disturbing interphase and precipitated with five volumes of cold 0.1M 

ammonium acetate in methanol. The mixture was incubated at -20
o
C for 30 min. 

Precipitated proteins were recovered by centrifugation at 1000 rpm  for 5 min at 4
o
C and 

then washed  two times with cold methanol solution containing 0.1 M ammonium 

acetate and then two times with cold 80% v/v acetone. Each time, protein pellet was 

recovered by centrifugation at 8000 rpm for 5 minutes. Protein pellet was air-dried at 

room temperature for one hour and aliquot of each sample was suspended in 100 mM 

Tris buffer  pH 8.0 and then mixed with equal volume of 2X SDS-reducing buffer (100 

mM Tris–Cl (pH 6.8), 4% SDS, 0.2 % bromophenol blue, 20% glycerol and 200 mM 

mercaptoethanol for SDS-PAGE analysis  exactly as described by Laemmle (1970). 

After, electrophoresis, gel was stained with Commassie brilliant blue G-250 with 
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constant and gentle agitation for overnight. Upon destaining resolved protein fraction 

were visible in the form of light and dark bands. 

3.3.3 Two dimensional (2D) differential gel electrophoresis 

Protein samples were quantified by 2D quant kit (GE Healthcare, Germany) and labeled 

with CyDye DIGE Fluor minimal dyes according manufactures’ recommendation (GE 

Healthcare, Germany) before electrophoresis.  Briefly, 50 µg protein of each sample 

was labeled with 400 pmol CyDye Fluor minimal dyes. The control, artificially wounded 

and infested samples were labeled alternatively with Cy3 or Cy5 (Table 1). The pooled 

internal standard, containing equal amount of protein amounts from all samples, was 

labeled with Cy2. After labeling, proteins samples were combined for electrophoresis 

according to experimental design as shown in Table 1. Five IPG Immobiline DryStrips 24 

cm pH 3-10  (GE Healthcare, Bucks UK) were rehydrated overnight in 450 µl 2DE 

rehydration buffer (7M urea, 2M thiourea, 2% CHAPS, 0.5 % pH 3-11 ampholytes (GE 

Healthcare, Bucks UK), 1% DTT, trace bromophenol blue). After rehydration, samples 

were focused using an Ettan IPGphor IEF unit (GE healthcare, Germany) according to 

manufacturer conditions. Further DryStrip cover oil was then pipetted across the surface 

to cover the IPG strip. Isoelectric focusing was performed using Ettan IPGphor IEF unit 

(GE Healthcare, Sweden) at 50µA per strip at 20
o
C. After IEF, strips were equilibrated in 

equilibration buffers (2% SDS, 75 mM Tris-HCl pH 8.8, 6 M urea, 30% (v/v) glycerol, 

0.002% bromophenol blue)  containing DTT (100mg/10ml buffer) or 2-iodoacetamide 

(250mg/10ml buffer), respectively, before second dimension separation of proteins on 

5-20% SDS polyacrylamide gels in low fluorescent glass plates. The equilibrated strip  
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Table 1. Experimental design for 2D-DIGE. Three replicate from each control, 

infested and wounded protein samples were labeled and combined for 

2D-DIGE. 

Gel No. Cy2 Cy3  Cy5  

1 Pooled sample Control  1 Wounded 1 

2 Pooled sample Control2 Wounded2 

3 Pooled sample Control3 Infested 3 

4 Pooled sample Infested 1 Wounded 3 

5 Pooled sample Infested 2   
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was placed on the 5-20% polyacrylamide gradient gel surface and sealed in place with 

molten agarose (1% (w/v) agarose, 0.002% (w/v) bromophenol blue in Tris-glycine SDS 

electrophoresis buffer). dd H2O was pipetted onto the gel up to the top of the glass 

cassette. Gels were run in a Hoefer DALT tank using the Ettan DALT six vertical unit 

(GE Healthcare, Little Chalfont, UK) at 15
o
C for 1W per gel for 1h and then 2W per gel 

until the bromophenol blue dye reached the end of gel. 

3.3.4 Image acquisition and analysis 

The 2D gels were scanned using fluorescence gel scanner, Typoon imager (Trio) (GE, 

Healthcare, Sweden), using appropriate wavelengths and filters for Cy2, Cy3 and Cy5 

dyes according to manufacturers’ recommended protocol. The 2D gels images were 

analyzed using Progenesis sameSpot software version 3.3 (Nonlinear Dynamics Ltd, 

Newcastle Upon Tyne, U.K.). Differentially expressed peptides were evaluated using 

normalized protein spots in the Cy5 and Cy3 channels compared to the internal standard 

(Cy2). Spots of infested and wounded date palm samples were compared to control 

samples. One way analysis of variance (ANOVA) was used to calculate the fold 

difference values. A threshold level was set at 1.5 fold up- or down-regulation, at p < 

0.05 level. Principal component analysis (PCA) was performed using Progenesis 

sameSpot software. 

3.3.5 Protein identification by mass spectrometry 

Differentially expressed peptides ascertained through 2D gel electrophoresis were 

identified and characterized by running a preparative gel using 700 µg total protein 

sample obtained by pooling all the samples present in the experimental design. The gel 
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was stained with colloidal Coomassie blue for 5 days followed by rinsing in Milli Q 

water and stored until spots were picked and identified by Mass spectrometry. The 

differential protein spot after matching with reference gel were manually excised form 

Comassie stained preparative gels and digested with trypsin for MALDI-TOF analysis 

according to previously described methods (Alfadda et al., 2013). Following trypsin 

digestion peptides were extracted by adding 50 % acetonitrile/0.1 % Triflouroacetic acid 

followed by drying. The 0.5 µl peptides was mixed with matrix (10 mg 

α-Cyano-4-hydroxycinnamic acid in 1 ml of 30 % acetonitrile containing 0.1% TFA and 

applied on MALDI- target and dried before subjected to MALDI-TOF-MS 

(UltraFlexTrem, Bruker Daltonics, Germany) as described previously by Alfadda et al. 

(2013). MS data were interpreted by BioTools 3.2 (Bruker Daltonics, Germany) in 

combination with the Mascot search algorithm (version 2.0. 04) againt Swiss-Prot 

database for green plants. The identified protein was not accepted as correct until Mascot 

score is above 60. 

 RESULTS AND DISCUSSIONS 3.4

3.4.1 Evaluation of protein profiling by 2D-DIGE 

Plants like humans are susceptible to pathogens like bacteria, mycoplasma, viruses, fungi, 

nematodes and protozoa. It has also been reported that phytopathogens elicit defense 

responses at molecular levels besides physiological and anatomical changes in plants 

(Jones and Dangl, 2006). This study was designed to investigate the date palm plant 

molecular responses subsequent to infestation with RPW. This pest severely damages the 
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date palm trees ultimately leading to the death of the plant if not managed properly 

(Abraham et al. 2001). 

 Briefly, 2D DIGE was used to identify differential proteome changes among control, 

infested and wounded date palm samples. This powerful technique by passes the 

limitation associated with conventional 2-DE by introducing fluorescent reagents for 

protein labeling (difference gel electrophoresis or DIGE) as they provide higher 

sensitivity compared to normal staining and furthermore spot volume quantification is 

much more improved by the addition of internal standard and running multiple samples 

in the same gel (Alban et al. 2003). We also compared protein expression profile of RPW 

infested date palm with uninfested controls to identify specificity of molecular changes 

associated with pest infestation. 

 Date palm plant leaves from Control, infested and artificially wounded plants were 

alternatively labeled with either Cy3 or Cy5 dyes while internal standard was consistently 

labeled with Cy2 dye and internal standard contained equal amount of each sample 

present in the experimental design (Table 1). Five gels (a-e) were run by multiplexing the 

two samples in each gel along with internal standard except one gel contained single 

sample with internal standard. This multiplexing makes the sample comparison simpler 

by eliminating the variability of 2DE profile which was introduced by gel-to-gel rather 

that biological variation. Furthermore, incorporation of Cy2 labeled internal standard 

helps inter-gel matching and improves accuracy of quantitation thus minimizing the 

impact of gel-to-gel variation on quantification. The 2D-DIGE gels were scanned using 

fluorescence gel scanner, Typoon imager (Trio) (GE Healthcare). The gels of 2D-DIGE 

are shown in Figure 1 revealing date palm control sample, artificially wounded and RPW 
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infested samples labeled with Cy dyes as indicated in Table 1. Date palm sample pooled 

from all and labeled with Cy2 dye and overlay gel of control, infested and wounded along 

with internal standard. Relative protein expression levels were compared among control, 

infested and wounded samples. Differentially expressed protein spots were detected and 

analyzed using Progenesis SameSpots software. Our analyses revealed on the average, 

745 proteins spots in each gel using 24cm immobilized pH gradient (IPG) strip, pH 3-11 

by image analysis.  
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  B. Cy5 (wounded-1) A. Cy3 (control-1) 

C. Cy2 (Internal Standard) D. Merge Image 

2D-DIGE Gel-1 

Fig.1a. 2D-DIGE images of date palm proteins. The protein sample of control-1, 

wounded-1 and internal standard (pooled of all the samples) are individually 

labeled with Cy dyes, mixed together and separated by 2D-DIGE followed by 

image scanning.  A: image of date palm control sample and labeled with Cy3 

dye. B: image of date palm artificially wounded sample labeled with Cy5 dye. C: 

image of date palm sample pooled from all and labeled with Cy2 dye. D: 

Overlay gel of control, and wounded samples along with internal standard. 
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B. Cy5 (wounded-2) A. Cy3 (control-2) 

C. Cy2 (Internal Standard)  D. Merge Image 

2D-DIGE Gel-2 

Fig.1b. 2D-DIGE images of date palm proteins. The protein sample of control-2, wounded-2 

and internal standard (pooled of all the samples) are individually labeled with Cy dyes, 

mixed together and separated by 2D-DIGE followed by image scanning.  A: image of 

date palm control sample and labeled with Cy3 dye. B: image of date palm artificially 

wounded sample labeled with Cy5 dye. C: image of date palm sample pooled from all 

and labeled with Cy2 dye. D: Overlay gel of control, and wounded samples along with 

internal standard. 
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  B. Cy5 (Infested-3) A. Cy3 (control-3) 

C. Cy2 (Internal Standard) D. Merge Image 

2D-DIGE Gel-3 

Fig.1c. 2D-DIGE images of date palm proteins. The protein sample of control-3, Infested-3 and 

internal standard (pooled of all the samples) are individually labeled with Cy dyes, mixed 

together and separated by 2D-DIGE followed by image scanning.  A: image of date 

palm control sample and labeled with Cy3 dye. B: image of date palm infested sample 

labeled with Cy5 dye. C: image of date palm sample pooled from all and labeled with 

Cy2 dye. D: Overlay gel of control, and infested samples along with internal standard. 
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B. Cy5 (Wounded-3) A. Cy3 (Infested-1) 

C. Cy2 (Internal Standard) D. Merge Image 

2D-DIGE Gel-4 

Fig.1d. 2D-DIGE images of date palm proteins. The protein sample of Infested-1, Wounded-3 and 

internal standard (pooled of all the samples) are individually labeled with Cy dyes, mixed 

together and separated by 2D-DIGE followed by image scanning.  A: image of date palm 

infested sample and labeled with Cy3 dye. B: image of date palm wounded sample labeled 

with Cy5 dye. C: image of date palm sample pooled from all and labeled with Cy2 dye. D: 

Overlay gel of infested, and wounded samples along with internal standard. 
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A. Cy3 (Infested-2) B. Cy2 (Internal Standard) 

D. Merged Image 

2D-DIGE Gel-5 

Fig.1e. 2D-DIGE images of date palm proteins. The protein sample of Infested-2 and internal 

standard (pooled of all the samples) are individually labeled with Cy dyes, mixed 

together and separated by 2D-DIGE followed by image scanning.  A: image of date 

palm infested sample and labeled with Cy3 dye. B: image of date palm sample pooled 

from all and labeled with Cy2 dye. D: Overlay gel of infested, and with internal 

standard. 



65 

 

Figure (2) represents the reference gel showing differentially expressed spots used for 

Mass Spectrometric analysis.  

Statistical analysis of the gels was computed between Control vs infested, Control vs 

wounded and wounded vs infested. Figure 3 shows the distribution of protein spots in 

Venn diagram. In total, 745 spots were detected in each gel of control, wounded and 

infested samples. Among the 745 peptides, expression levels of 713 were unchanged at a 

predetermined threshold level (≥1.5 fold modulation) that we adopted in our study. Thirty 

two spots appeared to be differentially expressed in either control, infested and wounded. 

Non-overlapping segment of the Venn diagram reveals that the numbers of significantly 

up-regulated spots in the infested sample compared to both wounded and control samples 

are 13 whereas number of significantly up-regulated spots in the wounded date palm 

sample compared to both control and infested were 8. Similarly, the number of 

up-regulated spots in control sample compared to both wounded and infested were 11. 

The overlapping segment in both wounded and infested represented that the number of 

up-regulated spots in these samples compared to control are 12, whereas the number of 

up regulated spots in both control and wounded are 15 compared with infested. We 

observed that significantly up-regulated spots in both control and infested compared to 

wounded are 5. 
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Fig. 2. Reference gel showing differentially expressed spots used for Mass Spectrometric 

analysis. 
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Fig. 3. Venn diagram for the relative distribution of proteins spots in control, 

mechanically wounded and RPW infested date palm samples. The 

non-overlapping segment of diagram represent the number of proteins which were 

significantly up-regulated (>1.5-fold) in the corresponding group when compared 

with the other two groups. The overlapping region between any two groups 

represents the number of proteins spots significantly up-regulated (>1.5-fold) 

compared to the third one. While the central overlapping region depicts the 

protein spots where no any statistically significant change in up or down 

regulation was observed.  
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3.4.2 Protein identification by mass spectrometry 

For the identification and characterization of differentially expressed peptides, a 

preparative gel was run using equal amounts of each sample, and stained by Colloidal 

Comassie blue G-250 and imaged (Figure 2). The 32 differential spots were excised from 

preparative gels, digested enzymatically with trypsin and identified by mass 

spectrometry. The collected Mass Spectrometric (MS) data were processed by 

BioTools3.2 (Bruker Daltonics, Germany) in combination with the Mascot search 

algorithm (version 2.0. 04) against green plants database. Table 2 showed the spot 

number, Swiss-Prot accession number, protein description, function, theoretical pI, 

molecular weight, protein coverage (%), score, and matching organism for the 

differentially expressed proteins. All these differentially expressed peptides are to our 

great interest towards finding a highly reliable biomarker associated with RPW early 

infestation. To best of our knowledge, this is the first report of its type reporting 

differential protein in date palm after RPW infestation. Differentially expressed proteins 

were matched with specific proteins of Arabidopsis thaliana (20%), Zea mays (15%), 

Solanum lycopesicum (10%), Solanum demissum (10%), Oryza sativa subsp. Japonica 

(rice) (10%), Phaseolus vulgaris (bean) (5%), Triticum aestivum (wheat) (5%), Tabebuia 

heterophylla (Pink trumpet tree) (5%), Calamus usitatus (Palm tree) (5%), Larrea 

tridentate (Creosote bush), (5%), Deppea grandiflora (5%), Beta vulgaris(Sugar beet) 

(5%). The identified proteins were classified into following groups (showing number of 

proteins in parenthesis): Stress and defense (7), photosynthesis (6), carbohydrate 

biosynthesis (2), protein turnover (2), and peptides of unknown function (3) as depicted 

in Figure 4. Majority of differentially expressed proteins subsequent to infestation with 
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Table 2. Differentially expressed proteins between controls, wounded and infested date palm leaves by MALDI-TOF peptide mass 

fingerprinting after 2D-DIGE. 

Spot 

No. 

FC 

(I) 

FC 

(W) 

Accession 

(uniprot) 
Protein description Function pI MW 

Cover

% 

Score 

 
organism 

 

Stress and defense related proteins 35% 

 

461 1.63↑ 
    

1.53↑ 
Q01899 

Heat shock 70 kDa 

protein, mitochondrial 

Stress response 

 
5.95 72721 24 71 

Phaseolus vulgaris 

(Kidney bean) 

483 2.22↑  2.06↑ P42755 Em protein H5 Stress response 5.14 10054 68 60 
Triticum aestivum 

(wheat) 

437 1.68↑ 1.31↑ P11143 
Heat shock 70 kDa 

protein 

Stress response 

 
5.22 70871 35 133 Zea mays (Maiz) 

558 1.71↑ 1.53↑ Q6L3X3 

Putative late blight 

resistance protein 

homolog R1B-8 

Hyper sensitive 

response 

Defense 

6.31 140853 20 62 
Solanum demissum 

(wild potato) 

621 1.93↑ 1.65↑ Q60CZ8 

Putative late blight 

resistance protein 

homolog R1A-10 

Hyper sensitive 

response 

Defense 

5.78 153116 20 57 
Solanum demissum 

(wild potato) 

392 1.62↑ 1.47↑ Q69QQ6 Heat shock protein 81-2 Stress response 4.98 80435 27 92 
Oryza sativa subsp. 

Japonica (Rice) 

433 1.85↑ 1.5↑ P11143 
Heat shock 70 kDa 

protein 
Stress response 5.22 70871 32 130 Zea mays (Maize) 

 

Photosynthesis and Calvin cycle 30% 

702 2.19↓ 1.66↓ Q37282 
Ribulose bisphosphate 

carboxylase large chain 

Photosynthesis 

Calvin cycle 
6.04 52482 27 72 

Tabebuia 

heterophylla (Pink 

trumpet tree) 

528 1.36↓ 1.85↓ P25829 
Ribulose bisphosphate 

carboxylase large chain 
Photosynthesis 6.44 52236 55 202 

Calamus usitatus 

(Palm tree) 
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661 1.21↓ 1.89↓ Q7X999 

Ribulose bisphosphate 

carboxylase/oxygenase 

activase 2, chloroplastic 

Photosynthesis 6.62 51811 60 242 
Larrea tridentate 

(Creosote bush) 

1299 1.71↓ 1.54↓ Q0INY7 

Ribulose bisphosphate 

carboxylase small chain, 

chloroplastic 

Photosynthesis 9.04 19862 13 74 
Oryza sativa subsp. 

Japonica (Rice) 

635 1.97↓ 1.62↓ Q33406 
Ribulose bisphosphate 

carboxylase large chain 
Photosynthesis 6.33 52746 29 87 Deppea grandiflora 

438 1.68↑ 1.53↑ P49087 
V-type proton ATPase 

catalytic subunit A 
Ion transport 5.89 62198 45 166 Zea mays (Maize) 

 

Carbohydrate biosynthesis 10% 

627 1.66↑ 1.52↑ P55232 

Glucose-1-phosphate 

adenylyltransferase small 

subunit, chloroplastic/ 

amyloplastic 

Starch 

biosynthesis 

ATP binding 

5.59 54105 28 65 
Beta vulgaris 

(Sugar beet) 

955 1.70↓ 1.55↑ Q9SZL9 
Cellulose synthase-like 

protein D4 

Cellolose 

synthesis 
6.19 125713 14 60 

Arabidopsis 

thaliana 

 

Protein turnover 10 % 

347 1.77↑ 1.61↑ P31542 

ATP-dependent Clp 

protease ATP-binding 

subunit clpA homolog 

CD4B, chloroplastic 

Protease 

Protein metabolic 

process 

5.86 102463 34 128 

Solanum 

lycopersicum 

(Tomato) 

395 2.07↑ 1.65↑ Q9LZW3 
U-box domain-containing 

protein 16 
Protein turnover 6.82 74181 27 72 

Arabidopsis 

thaliana 
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Arrows indicate the proteins up (↑) and down (↓) regulations, FC = Fold change, I = RPW Infested samples, W = Mechanically Wounded samples,  

pI = Isoelectric point,  MW = Molecular Weight. 
 

 

Proteins related with other function 15% 

1200    1.42↓ 2.53↓ Q9ZS62 Phytochrome B1 

Transcription 

regulation 

 

5.78 126698 22 64 

Solanum 

lycopersicum 

(Tomato) 

833 1.75↑ 1.58↓ Q42572 DNA ligase 1 
DNA repair 

 

8.2

0 
88427 21 62 

Arabidopsis 

thaliana 

976 1.89↑ 1.59↑ Q9LZU9 

Putative respiratory 

burst oxidase homolog 

protein J 

Oxidase 
9.4

8 

10349

8 
21 65 

Arabidopsis 

thaliana 
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RPW were stress related, and several others could potentially be involved in the response 

to this damaging insect infestation (Table 2). Proteins significantly up-regulated in 

infested samples, as well as in wounded date palm samples while some other specially 

belonging to photosynthesis were down-regulated.   

The seven differentially expressed peptides associated with RPW infestation (spot no 

461, 483, 437, 558, 621, 392 and 433) fall in the category of stress related protein or 

related to plant defense (Table 2). A group of heat shock proteins were identified and 

these proteins protect plants against various stresses. i.e. high temperature and pathogens 

by folding and unfolding of other proteins. These heat shock proteins were recognized 

according to their molecular weight. In our case, two differentially expressed peptides 

upon RPW infestation are heat shock peptides, Hsp 70KDa and Hsp 81-2. Hsp81-2 is 

also named as Hsp90. HSP family modulated in infested date palm were Hsp70 (spots 

433,437 and 461) and Heat shock protein 81-2 also named as Hsp90 (392). The hsp70 is 

a ATP-dependent molecular chaperones mainly induced by heat or other abiotic stresses 

while others are not heat inducible and present under normal growth conditions in some 

tissues (Lee and Schöffl, 1996). They facilitate the folding process of newly synthesized 

proteins and minimize aggregation (Fink, 1999). A high level of HSP spot 461 spots 437 

and 433 were observed in infested samples. Similar findings have been reported in other 

plants also (DeRocher and Vierling, 1994; Fink, 1999). 

  



73 

 

 

 

 

 

 

Fig. 4. A Pie chart presenting the classification of identified proteins according to their 

biological functions and are expressed in percentage. 
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The heat shock proteins of 90 kDa (Hsp90) are also molecular chaperones that promote 

folding, structural maintenance, and regulation of a subset of proteins involved in 

transduction of signals, cell cycle control, etc. Hsp90 also trigger growth and 

development of organisms involving conformational regulation of many regulatory 

proteins and protecting cells under stress (Kozeko, 2010). Hsp90 may have some role in 

disease resistance (Lu et al., 2003). Some recent proteomics works also identified several 

Hsps modulation in response to different stress conditions pea (Curto et al., 2006; 

Castillejo  et al., 2010a) and triticale under a low N fertilization level (Castillejo  et al., 

2010b). 

RPW infestation led to upregulation of two pathogen resistance proteins (spot 558 and 

621) identified as putative late blight resistance protein homolog R1B-8 and putative late 

blight resistance protein homolog R1B-10. Previous reports have shown similar elevation 

of these proteins upon infestation/injury (Poupard et al., 2003; Tarchevsky et al., 2010). 

These are the resistance proteins that guard the plant against pathogen and ultimately stop 

the pathogen from inflicting damage. The up-regulation of defense-related disease 

resistance protein indicated that this protein may activate the specific downstream genes, 

thus preparing the date palm plant for upcoming deleterious challenges associated with 

RPW infestation. 

The proteins spots (702, 528, 635, 661 and 1299) modulated upon infestation with RPW 

are related to photosynthetic machinery and identified as Ribulose bisphosphate 

carboxylase large chain. These proteins have very close Mr and pI values. These slightly 

variation could be attributed to posttranscriptional modification suggesting that these 

different member belonging to same functional family. The existence of these isoforms 
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with slight difference molecular weight and pI has been reported previously in date palm 

(Sghaier-Hammami et al., 2009; Marqués, et al., 2011) and in other species like 

Arabidopsis (Sghaier-Hammami et al., 2012). However, the expression level of these 

proteins is reduced in infested date palm sample and it was expected. There are many 

photosynthetic peptides showing reduced expression following attack by insects or 

pathogens and abiotic stresses (Nabity et al., 2009; Bilgin et al., 2010; Bazargani, et al., 

2011) as reduction of photosyntetic activity lead to change resources from growth to 

defense (Bilgin et al., 2008). Another reason for this reduction is the hyper-response 

(HR) which leads to activation  of  numerous  defense  reactions as  repression of 

photosynthesis-related  genes during HR are also previously reported (Zou et al., 2005; 

Li et al., 2011). 

A unique differentially expressed peptide spot (438) associated with RPW infestation 

corresponds to vacuolar-type ATPases (V-type ATPases). These are the large membrane 

protein complexes in eukaryotic cells that acidify various intracellular compartments with 

the transport of protons through the membrane (Du et al., 2010). The ATPases generate a 

proton electrochemical gradient across vacuolar membrane Na +/H+antiporter, to 

compartmentalize Na+ into the vacuole (Chinnusamy et al., 2005), thus playing a key 

role in biological energy metabolism.  

The differentially expressed peptide spot 347 was characterized as ATP-dependent Clp 

protease ATP-binding subunit clpA homolog CD4B, chloroplastic. These proteases 

contribute in chloroplast biogenesis through the degradation of certain proteins during 

environmental changes (Adam et al., 2006). Up-regulation of this protein in infested 

samples suggested the important role for the photosystem complexes, as increased 
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activity of proteases is required for the formation and maintenance of a functional 

thylakoid electron transport. Our results are in agreement with those previously described 

(Olinares et al., 2011). 

 One of the differentially expressed peptide i.e. spot (395) matched with U-box 

domain-containing protein 16 found in Arabidopsis thaliana. This protein is the 

component of ubiquitin ligase that involve in regulatory mechanism of controlling 

various responses. Actually, ubiquitination is not only associated with 

proteasome-mediated protein degradation, but it also regulates protein function in a 

proteasome independent way. It changes protein localization, activity, and interactions 

(Schnell and Hicke, 2003). U-box domains look like the RING finger domain (Aravind 

and Koonin, 2000). The U-box domain is essential for the ubiquitin activity and 

significance of this has been shown in different ways. This domain interacts with E2 

proteins (Pringa et al., 2001), and lack of ubiquitination activity after the deletion of the 

U-box domain has also been reported (Ohi et al., 2003; Stone et al., 2003; Zeng et al., 

2004). In plants, ubiquitination play an important role to control environmental and 

endogenous signals, including responses to pathogen attack (Hare et al., 2003). Moreover 

the involvement of E3 ligase in plant pathogen response has been previously identified in 

Arabidopsis RING finger proteins RPM1-interacting protein2 (RIN2) and RIN3 

(Kawasaki et al., 2005) and in rice (Oryza sativa) U-box spotted leaf11 (SPL11) (Zeng et 

al., 2004). The up-regulation of this protein in response to infestation suggests the 

activation of date palm defensive role. This ubiquitin protein ligase also play vital role in 

the regulation of a variety of cellular functions including cell cycle, transcription 

development, signal transduction and nutrient sensing (Jonkers and Rep, 2009). In 
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addition to this, it has just been reported that the proteolytic function of the 

ubiquitin-proteasome system regulate the virulence of pathogenic fungi (Lue and Xue, 

2011). Therefore, appearance or up or down regulation of  Ubiqutitin ligase in infested 

and wounded proteins suggest its strong role in infestation and have potential to serve as 

biomarker in early detection. 

 The spot no 627 exhibited homology to Glucose-1-phosphate adenylyltransferase small 

subunit and is a regulatory role for the biosynthesis of starch. The spot no 955 showed 

homology to Cellulose synthase-like protein D4 of Arabidopsis thaliana (Q9SZL9) is a 

Golgi-localized beta-glycan synthase that polymerize the backbones of noncellulosic 

polysaccharides (hemicelluloses) of plant cell wall. 

The spot no 833 belong to DNA ligase 1 and matched with Arabidopsis thaliana, 

involves sealing nicks in double-stranded DNA during DNA replication, DNA 

recombination and DNA repair. Our proteomic study revealed that one protein matching 

with putative respiratory burst oxidase homolog protein J, a Calcium-dependent NADPH 

oxidase responsible for superoxide generation. We believe that upon pathogen attack,  

earliest cellular response in plants is  an  increase  in  reactive  oxygen  species 

(ROS), known as oxidative burst and this in turn lead to the activation of local  and  

systemic resistance  responses (Mendoza, 2011) resulted in cell wall reinforcement,  

programmed cell death and expression of defense  genes. The superoxide radicals that 

produced are converted into H2O2 that triggers the HR in plants to kill the pathogen and 

moreover it induces the transcription of various resistance genes (Mellersh et al. 2002). 



78 

 

 CONCLUSION 3.5

We provide first time a proof of concept that RPW infestation of date palm lead to 

molecular changes identified though proteomic methodology. Infestation with this highly 

damaging insect is a major threat in date palm growing countries including the Kingdom 

of Saudi Arabia where removal of infested trees has been recognized as the most 

effective strategies barring further spread. We have identified several molecular moieties 

to be used in future for developing a highly sensitive early infestation detection molecular 

test towards screening RPW infested date palm tree. Furthermore, our study has opened 

avenues for utilizing proteomic strategies in controlling phytopathogens, best varieties 

selection including several desirable traits identification in plant kingdom. 

  



79 

 

   LITERATURE CITED 3.6

Abdullah, M.A., 2009. Biological control of the red palm weevil, Rhynchophorus 

ferrugineus (Olivier) (Coleoptera: Curculionidae) by the parasitoid mite, 

Rhynchopolipus rhynchophori (Ewing) (Acarina: Podapolipidae). J. Egypt Soc. 

Parasitol. 39, 679-686. 

Abraham, V.A., Al-Shuaibi, M.A., Faleiro, J.R., Abuzuhairah, R.A., Vidyasagar, 

P.S.P.V., 1998. An integrated management approach for red date palm weevil, 

Rhynchophorus ferrugineus Oliv., a key pest of date palm in Middle East. Sultan 

Qaboos Univ. J. Scient. Res. Agric. Sci. 3, 77-84.  

Abraham, V.A., Faleiro, J.R., Al-Shuaibi, M.A., Al-Abdan, S., 2001. Status of 

pheromone trap captured female red palm weevils from date gradens in Saudi 

Arabia. J. Trop. Agric. 39, 197 -199.  

Adam, Z., Rudella, A., van Wijk, K.J., 2006. Recent advances in the study of Clp, FtsH 

and other proteases located in chloroplasts. Curr. Opin. Plant Biol. 9, 234-240.  

Alban, A., David, S.O., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S., Currie, I., 

2003. A novel experimental design for comparative two‐dimensional gel analysis: 

Two‐dimensional difference gel electrophoresis incorporating a pooled internal 

standard. Proteomics 3, 36-44.  

Alfadda, A.A., Benabdelkamel, H., Masood, A., Moustafa, A., Sallam, R., Bassas, A., 

Duncan, M., 2013. Proteomic analysis of mature adipo cytes from obese patients in 

relation to aging. Exp. Gerontol. 48,1196-203.  

Alhudaib K, Arocha, Y., Wilson, M., Jones, P., 2007. ``Al-Wijam'', a new phytoplasma 

disease of date palm in Saudi Arabia. B. Insectol. 60, 285.  

Aravind, L., Koonin, E.V., 2000. The U box is a modified RING finger a common 

domain in ubiquitination. Curr. Biol. 10, R132-R134.  

Avand Faghih, A., 1996. The biology of red palm weevil, Rhynchophorus ferrugineus 

Oliv.(Coleoptera, curculionidae) in Saravan region (Sistan & Balouchistan 

province, Iran). Appl. Entomol. Phytopathol. 63, 16-18.  

Bazargani, M.M., Sarhadi, E., Bushehri, A.A.S., Matros, A., Mock, H.P.,  Naghavi, 

M.R., Hajihoseini, V.,  Mardi, M   Hajirezaei, M.R.,   Bahman, .M.,  Ghasem, E.,  

Salekdeh, H.,  2011. A proteomics view on the role of drought-induced senescence 

and oxidative stress defense in enhanced stem reserves remobilization in wheat. J. 

Proteomics 74, 1959-1973.  

http://yadda.icm.edu.pl/yadda/contributor/381555fae547fdbb9d0607f9bcf252fe
http://yadda.icm.edu.pl/yadda/contributor/76975b4608bdc3a0d5c48abeeb08bea7
http://yadda.icm.edu.pl/yadda/contributor/ecd7c2b082809eac9b9b47c81d82c70c
http://yadda.icm.edu.pl/yadda/contributor/b1ec5a8dc5b31df3c578578b898b9286
http://yadda.icm.edu.pl/yadda/contributor/fdcf9170b46dd2a79b9699c89cb822c7
http://yadda.icm.edu.pl/yadda/contributor/ae8b3c06fbe124a9a3628a2f06172939
http://yadda.icm.edu.pl/yadda/contributor/ae8b3c06fbe124a9a3628a2f06172939


80 

 

Bilgin, D.D., Aldea, M., O'Neill, B.F., Benitez, M., Li, M., Clough, S. J., DeLucia, E. H., 

2008. Elevated ozone alters soybean-virus interaction. Mol. Plant Microbe. In. 21, 

1297-1308.  

Bilgin, D.D., Zavala, J.A., Zhu, J., Clough, S.J., Ort, D.R., DeLucia, E.H., 2010. Biotic 

stress globally downregulates photosynthesis genes. Plant Cell Environ. 33, 

1597-1613.  

Cangahuala-Inocente, G.C., Villarino, A., Seixas, D., Dumas-Gaudot, E., Terenzi, H., 

Guerra, M. P., 2009. Differential proteomic analysis of developmental stages of 

Acca sellowiana somatic embryos. Acta. Physiol. Plant 31, 501-514.  

Castillejo, M.A., Curto, M., Fondevilla, S., Rubiales, D., Jorrin, J.V., 2010a. 

Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum 

sativum) in response to Mycosphaerella pinodes. J. Agric. Food Chem. 58, 

12822-12832. 

Castillejo, M.A., Kirchev, H.K., Jorrín, J.V., 2010b. Differences in the Triticale (X 

Triticosecale Wittmack) flag leaf 2-DE protein profile between varieties and 

nitrogen fertilization levels. J. Agric. Food Chem. 58, 5698-5707.  

Chinnusamy, V., Jagendorf, A., Zhu, J.K., 2005. Understanding and improving salt 

tolerance in plants. Crop Sci. 45, 437-448.  

Curto, M., Camafeita, E., Lopez, J.A., Maldonado, A.M., Rubiales, D., Jorrín, J.V., 2006. 

A proteomic approach to study pea (Pisum sativum) responses to powdery mildew 

(Erysiphe pisi). Proteomics 6, S163-S174.  

DeRocher, A.E., Vierling, E., 1994. Developmental control of small heat shock protein 

expression during pea seed maturation. Plant. J. 5, 93-102.  

Du, C.X., Fan, H.F., Guo, S.R., Tezuka, T., Li, J., 2010. Proteomic analysis of cucumber 

seedling roots subjected to salt stress. Phytochemistry 71, 1450-1459.  

Faleiro, J.R., 2006. A review of the issues and management of the red palm weevil 

Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date 

palm during the last one hundred years. Int. J. Trop. Insect Sci. 26, 135-154.  

Faleiro, J.R., Kumar, J.A., 2008. A rapid decision sampling plan for implementing 

area-wide management of the red palm weevil, Rhynchophorus ferrugineus, in 

coconut plantations of India. J. Insect Sci. 8, 15.  

FAO, 2011. FAO Statistical Yearbook.  Agricultural Production, available at: 

http://faostat.fao.org/site/339/default.aspx.  

Fink, A.L., 1999. Chaperone-mediated protein folding. Physiol. Rev. 79, 425-449.  



81 

 

Gómez‐Vidal, S., Tena, M., Lopez‐Llorca, L.V., Salinas, J., 2008. Protein extraction 

from Phoenix dactylifera L. leaves, a recalcitrant material, for two‐dimensional 

electrophoresis. Electrophoresis. 29(2):448-456.  

Guerri-Agullo, B., Gomez-Vidal, S., Asensio, L., Barranco, P., Lopez-Llorca, L.V., 2010. 

Infection of the Red Palm Weevil (Rhynchophorus ferrugineus) by the 

entomopathogenic fungus Beauveria bassiana: A SEM study. Microsc. Res. Tech. 

73,714–725.  

Gush, H., 1997. Date with disaster. The Gulf Today, September 29, pp.16.  

Hare, P.D., Seo, H.S., Yang, J.Y., Chua, N.H., 2003. Modulation of sensitivity and 

selectivity in plant signaling by proteasomal destabilization. Curr. Opin. Plant Biol. 

6, 453-462.  

Jones, J.D. Dangl, J.L., 2006. The plant immune system. Nature 444: 323–329.  

Jonkers, W., Rep, M., 2009. Lessons from fungal F-box proteins. Eukaryot cell 8, 

677-695.  

Kawasaki, T., Nam, J., Boyes, D.C., Holt, B.F., Hubert, D.A., Wiig, A., Dangl, J. L., 

2005. A duplicated pair of Arabidopsis RING‐finger E3 ligases contribute to the 

RPM1‐and RPS2‐mediated hypersensitive response. Plant J. 44, 258-270.  

Kozeko, L., 2010. Heat shock proteins 90 kDa: diversity, structure, functions. Tsitologiia 

52, 893.  

Kreutz, C., Timmer, J., 2009. Systems biology: experimental design. FEBS J. 276, 

923-942.  

Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of 

bacteriophage T4. Nature, 227,680-685.  

Lee, J.H., Schöffl, F., 1996. AnHsp70 antisense gene affects the expression of 

HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in 

transgenic Arabidopsis thaliana. Mol. Gen. Genet. 252, 11-19.  

Li, H., Wei, G., Xu, J., Huang, L., Kang, Z., 2011. Identification of wheat proteins with 

altered expression levels in leaves infected by the stripe rust pathogen. Acta 

Physiol. Plant 33, 2423-2435.  

Lippert, D., Chowrira, S., Ralph, S.G., Zhuang, J., Aeschliman, D., Ritland, C., Ritland, 

K., Bohlmann, J., 2007. Conifer defense against insects: Proteome analysis of Sitka 

spruce (Picea sitchensis) bark induced by mechanical wounding or feeding by white 

pine weevils (Pissodes strobi) Proteomics 7,248–270.  



82 

 

Liu, T.B., Xue, C., 2011. The ubiquitin-proteasome system and F-box proteins in 

pathogenic fungi. Mycobiology 39, 243-248. 

Lu, R., Malcuit, I., Moffett, P., Ruiz, M.T., Peart, J.,  Wu, A, Rathjen, 

J.P.,  Bendahmane, A., Day, L.,  Baulcombe, D.C., 2003. High throughput 

virus-induced gene silencing implicates heat shock protein 90 in plant disease 

resistance. EMBO J. 22, 5690-5699.  

Marqués, J., Duran-Vila, N., Daròs, J.A., 2011. The Mn-binding proteins of the 

photosystem II oxygen-evolving complex are decreased in date palms affected by 

brittle leaf disease. Plant Physiol. Biochem. 49, 388-394.  

Marsoni, M., Bracale, M., Espen, L., Prinsi, B., Negri, A.S., Vannini, C., 2008. 

Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep. 27, 

347-356.  

Mellersh, D.G., Foulds, I.V., Higgins, V.J., Heath, M.C., 2002. H2O2 plays different roles 

in determining penetration failure in three diverse plant–fungal interactions. Plant J. 

29, 257-268.  

Mendoza, M., 2011. Oxidative burst in plant-pathogen interaction. Biotecnol. Veg. 11, 

67-75.  

Mukhtar, M., Rasool, K.G., Parrella, M.P., Sheikh, Q.I., Pain, A., LopezLlorca, L.V., 

Aldryhim, Y.N., Mankin, R.W., Aldawood, A.S., 2011. New initiatives for 

management of red palm weevil threats to historical Arabian date palms. Fla. 

Entomol. 94, 733-736.  

Nabity, P.D., Zavala, J.A., DeLucia, E.H., 2009. Indirect suppression of photosynthesis 

on individual leaves by arthropod herbivory. Ann. Bot .103, 655-663.  

Nakash, J., Osem, Y., Kehat, M., 2000. A suggestion to use dogs for detecting red palm 

weevil (Rhynchophorus ferrugineus) infestation in date palms in Israel. 

Phytoparasitica 28, 153-155.  

Ohi, M.D., Vander, K.C.W., Rosenberg, J.A., Chazin, W.J., Gould, K.L., 2003. Structural 

insights into the U-box, a domain associated with multi-ubiquitination. Nat. Struct. 

Mol. Biol. 10, 250-255.  

Olinares, P.D.B., Kim, J., van Wijk, K.J., 2011. The Clp protease system; a central 

component of the chloroplast protease network. Biochem. Biophys. Acta 1807, 

999-1011.  

Potamitis, I., Ganchev, T., Kontodimas, D., 2009. On automatic bioacoustic detection of 

pests: the cases of Rhynchophorus ferrugineus and Sitophilus oryzae. J. Econ. 

Entomol. 102, 1681-1690.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Wu%20AJ%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rathjen%20JP%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bendahmane%20A%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Day%20L%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Baulcombe%20DC%5Bauth%5D


83 

 

Poupard, P., Parisi, L., Campion, C., Ziadi, S., Simoneau, P., 2003 A wound and 

ethephon inducible PR-10 gene subclass from apple is differentially expressed 

during infection with a compatible and an incompatible race of Venturia inaequalis. 

Physiol. Mol. Plant Path. 62, 3-12.  

Pringa, E., Martinez-Noel, G., Müller, U., Harbers, K., 2001. Interaction of the ring 

finger-related U-box motif of a nuclear dot protein with ubiquitin-conjugating 

enzymes. J. Biol. Chem. 276, 19617-19623.  

Rajamanickam, K., Kennedy, J.S., Christopher, A., 1995. Certain components of 

integrated management for red palm weevil, Rhynchophorus ferrugineus F. 

(Coleoptera, Curculionidae) on coconut. Meded. Fac. Landbouwkd Toegep. Biol. 

Wet. 60, 803-805.  

Rasool, K.G., Khan, M.A., Aldawood, A.S., Tufail, M., Mukhtar, M., Takeda, M., 2014. 

Comparative Proteomic Analysis of Red Palm Weevil Infested Date Palm with 

Healthy Normal Plants. Pak. J. Agri. Sci. (In Press).  

Schnell, J.D., Hicke, L., 2003. Non-traditional functions of ubiquitin and 

ubiquitin-binding proteins. J. Biol. Chem. 278, 35857-35860.  

Sghaier-Hammami, B., Drira, N., Jorrín-Novo, J.V., 2009. Comparative 2-DE proteomic 

analysis of date palm ( Phoenix dactylifera L.) somatic and zygotic embryos. J. 

Proteomics 73, 161-177.  

Sghaier-Hammami, B., Redondo-López, I., Maldonado-Alconada, A.M., 

Echevarría-Zomeño, S., Jorrín-Novo, J.V., 2012. A proteomic approach analysing 

the Arabidopsis thaliana response to virulent and avirulent Pseudomonas syringae 

strains. Acta Physiol. Plant 34, 905-922.  

Stone, S.L., Anderson, E.M., Mullen, R.T., Goring, D.R., 2003. ARC1 is an E3 ubiquitin 

ligase and promotes the ubiquitination of proteins during the rejection of 

self-incompatible Brassica pollen. Plant Cell 15, 885-898.  

Tarchevsky, I., Yakovleva, V., Egorova, A., 2010. Proteomic analysis of 

salicylate-induced proteins of pea (Pisum sativum L.) leaves. Biochem. (Mosc) 75, 

590-597.  

Timms, J.F., Cramer, R., 2008. Difference gel electrophoresis. Proteomics 8, 4886-4897.  

Valledor, L., Jorrin, J., 2011. Back to the basics: maximizing the information obtained by 

quantitative two dimensional gel electrophoresis analyses by an appropriate 

experimental design and statistical analyses. J. Proteomics 74, 1-18.  



84 

 

Winkelmann, T., Heintz, D., Van Dorsselaer, A., Serek, M., Braun, H.P., 2006. 

Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. 

reveal new insights into seed and germination physiology. Planta 224, 508-519.  

Zeng, L.R., Qu, S., Bordeos, A., Yang, C., Baraoidan, M., Yan, H., Xie, Q., Nahm, B.H., 

Leung, H., Wang G.L., 2004. Spotted leaf11, a negative regulator of plant cell death 

and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin 

ligase activity. Plant Cell 16, 2795-2808.  

Zhang, J., Ma, H., Chen, S., Ji, M., Perl, A., Kovacs, L., Chen, S., 2009. Stress response 

proteins’ differential expression in embryogenic and non-embryogenic callus of 

Vitis vinifera L. cv. Cabernet Sauvignon—A proteomic approach. Plant. Sci. 177, 

103-113.  

Zou, J., Rodriguez-Zas, S., Aldea, M., Li, M., Zhu, J. Gonzalez, D. O., Vodkin, L.O., 

DeLucia, E., Clough, S. J., 2005. Expression profiling soybean response to 

Pseudomonas syringae reveals new defense-related genes and rapid HR-specific 

down regulation of photosynthesis. Mol. Plant Microbe In. 18, 1161-1174.  

  



85 

 

Chapter 
 FOUR 

4 Molecular profiling of the date palm, Phoenix dactylifera L. 
infested with RPW, Rhynchophorus ferrugineus (Oliv.) 
(Curculionidae: Coleoptera) stem samples using 2D-DIGE 
analysis and MALDI-TOF 

 

 

 ABSTRACT 4.1

Plants like humans respond to wide range of biotic and abiotic stresses by developing 

different acquired defense mechanisms besides their innate defensive structures. 

Deciphering of earlier responses have the potential to be disease biomarkers in plants. 

Date palm mainly grown in the Gulf region is significantly threatened by infestation with 

RPW (Rhynchophorus ferrugineus). Concealed infestation cycle hinders quarantine 

measures and earlier molecular detection can help for removing infested plants to avoid 

further spread. This study explores differentially expressed proteins in the date palm stem 

tissues on infestation with RPW. A state of the art Two Dimensional Difference Gel 

Electrophoresis (2D-DIGE) and Matrix Assisted Laser Desorption/Ionization-Time of 

Flight (MALDI-TOF) Mass Spectrometry has been employed to characterize peptides 

modulated in the date palm stem subsequent to infestation with RPW. Our analyses 

revealed 32 differentially expressed peptides associated with RPW infestation in date 

palm stem. Of importance, to identify RPW infestation specific peptides (I), artificially 
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wounded plants (W) were used as additional control besides uninfested plants, a 

conventional control (C). A constant unique pattern of differential expression in infested 

(I), wounded (W) stem samples compared to control (C) was observed.  The 

up-regulated proteins showed relative fold intensity in order of I>W>C and down 

regulated spots trend as C>W>I, a quite intriguing pattern. Relatively, significant 

modulated expression pattern of a number of peptides in infested plants predicts the 

possibility of developing a quick and reliable molecular methodology for detecting plants 

infested with RPW. This study also reveals that artificially wounding of date palm stem 

almost affect the same proteins as infestation however relative intensity is quite lower 

than infested samples both in up and down regulated molecular peptide moieties. All 32 

differentially expressed spots were subjected to MALDI-TOF analysis for their 

identification and we were able to match 21 proteins in the already existing databases. 

Furthermore, modulated proteins functionally belong to different physiological groups 

including: ion transport (33%), lipid biosynthesis (9%), protein folding (5%), plant 

defense (4%), ethylene signaling pathway (5%), protein folding (5%), carbohydrate 

metabolism (5%), proteolysis (5%), S-adenosylmethionine biosynthetic process (5%), 

nitrate assimilation (5%), porphyrin biosynthesis (5%), transcription (5%), lignin 

biosynthesis (4%) and unknown (5%) categories. 

We believe that the protein molecules displaying modulated responses and especially 

those with up-regulated expression pattern in infested date palm samples will be helpful 

in developing diagnostic molecular markers for early detection of RPW infestation in 

date palm plants. 
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 INTRODUCTION 4.2

The RPW (Rhynchophorus ferrugineus) has become the most destructive pest of date 

palm trees in several regions of the world including Saudi Arabia. Since its discovery in 

the Gulf region in 1980s, the insect is spreading rapidly and has been reported from 

almost every palm growing country in the World (Aldawood and Rasool, 2011). Bulk 

movement of date palm offshoots for planting is blamed to be the source of RPW 

invasion in the Middle East (Abraham et al., 1998). According to recent reports, RPW 

has been reported to infest 26 palm species belonging to 16 different genera worldwide 

(Dembilio and Jacas, 2012). Although, it is difficult to evaluate the overall actual global 

damages caused by RPW, however, only in Saudi Arabia just at 5% infestation, 

management and eradication of RPW in date plantation causes more than 8.69 Million 

USD, economic losses (El-Sabea et al., 2009). 

It is also worth mentioning that RPW larval stage is most destructive and responsible for 

damaging the palm consuming date palm trunk tissue thus making it hollow (Faleiro, 

2006; Kaakeh, 2005). This insect completes several generations within the same palm 

without any obvious symptoms until the tree collapses due to weakened stem 

(Rajamanickam et al., 1995; Avand Faghih, 1996). This cryptic infestation cycle of the 

RPW makes it difficult to detect diseased plants at earlier stages and severe decaying of 

the internal tissues lead to the death of the tree (Abraham et al., 1998; Gadelhak and 

Enan, 2005). 

In Saudi Arabia, Ministry of Agriculture has launched a national campaign for 

controlling RPW to avoid losses inflicted on the production of dates. The campaign 
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includes removal of infested plants, pesticide application through injection and spraying 

in severely infested and newly infested areas, and the use of pheromone traps for 

monitoring and decreasing RPW populations (Mukhtar et al., 2011). It has been observed 

that infested plants can be recovered if infestation is detected at earlier stages however 

concealed infestation cycle of RPW is a major hindrance. Currently, available detection 

techniques including visual inspections, acoustic sensors (Mankin et al., 2011; Potamitis 

et al., 2009), sniffer dogs (Nakash et al., 2000), and pheromone traps (Faleiro and 

Kumar, 2008) are in practice to identify infestations at early stages. However, an 

effective and efficient technique with high throughput capability is still needed for the 

early detection of RPW. 

We employed optimized proteomic methodology to identify earlier responses associated 

with RPW infestation in date palm based on scanty data utilizing plant genomics. Plants 

have evolved various innate and acquired defense mechanisms against visible/invisible 

injuries afflicted by insect pests. Innate or direct defense mechanisms in plants are 

specialized characteristics like thorns, trichomes, and primary and secondary metabolites 

(Kessler and Baldwin, 2002). Some herbivores feeding induce proteinase inhibitors in 

plants that prevent digestive enzymes required for insect’s proper digestion (Tamayo et 

al., 2000). Acquired defenses involve release of volatile organic compounds (VOCs) that 

attract arthropod predators and parasitoids to control herbivore populations Dicke and 

van Loon, 2000). Especially herbivores oral secretions discharged into plant tissues 

during feeding induce specialized responses (Felton and Tumlinson, 2008; Halitschke et 

al., 2001). The herbivores regurgitates and other oral secretions trigger plant defense 

related proteins (parallel to acquired immune system of mammals) or activate the plant 
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defense system  releasing volatile compounds to attract predators (Korth and Dixon, 

1997; Turlings et al., 1990). As the plant genomics/proteomics is in its earlier stages 

however, data started to emerge about this aspect (Bricchi et al., 2010). The insect plant 

interactions itself have great impact on plant defense responses (Kessler and Baldwin, 

2002; Mewis et al., 2006). 

Proteomics strategies have been extensively used for identifying infections/diseases 

among humans; however, its uses for plants have been relatively lesser. A few molecular 

studies involving plants encouraged us to embark on proteomics methodologies for 

saving beneficial date palm plant from RPW infestation. For example, proteome analysis 

of brittle leaf diseased date palm leaves when compared with that of their normal 

counterpart revealed quantitative differences in several proteins (Marqués et al., 2011). In 

another study, proteome analysis of brittle leaf disease affected date palm leaves 

indicated changes in the proteome at early disease stage where the decrease in Mn 

deficiency associated with MSP-33 kDa subunit protein was considered as brittle leaf 

disease biomarker (Sghaier-Hammami et al., 2012). Moreover, Gómez‐Vidal et al., 

(2009) have evaluated the plant defense/stress, photosynthesis and energy metabolism 

related proteins, using 2-dimensional electrophoresis (2DE) proteomic techniques, that 

were differentially expressed in the date palm (Phoenix dactylifera) leaves in response to 

the attack by entomopathogenic fungi (Beauveria bassiana, Lecanicillium dimorphum 

and L. cf. psalliotae) as compared to control samples. In another study, 2DE of date palm 

sap revealed more than 100 protein spots of which 52 spots were identified. Some of the 

identified proteins were associated with Saccharomyces cerevisiae while others were 

related to vegetable proteins (Ben Thabet et al., 2010). Up to now, very few attempts 
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have been made on proteomics studies in the date palm. To our knowledge, the proteome 

analysis of the date palm in relation to changes induced by mechanical wounding and 

RPW infestation is conducted for the first time. 

As such the objective of present study is to characterize the proteome changes occurring 

in date palm stem infested with RPW using 2D-DIGE and mass spectrometry for 

identifying the biomarker to be used in early detection of RPW for its effective 

management. 

 MATERIALS AND METHODS 4.3

4.3.1 Date palm material and infestation with RPW larvae 

Tissue cultured date palm plants of Khudry cultivar were obtained from Al Rajhi Tissue 

Culture Laboratory, Riyadh, Saudi Arabia. These plants were divided into 3 groups, with 

three replicates each, and were then used for mechanical wounding and infestation with 

RPW as described previously (Lippert et al., 2007). Briefly, plants were separated into 

three experimental groups. Group one was artificially infested (I) with RPW larvae, 

group two artificially wounded (W) and third group was kept without any treatment as 

control (C). For artificial infestation each plant was introduced with 5 second instar RPW 

larvae by making holes in the stem using drill machine with 6-mm size bit. After 

treatment the stem part of the plants were wrapped up with fine steel mesh. The stem 

samples were taken after 3-days of infestation and stored at -80
o
C until use. 
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4.3.2 Protein extraction and SDS-PAGE 

Total proteins from control, infested and wounded date palm stem samples (three replicate 

from each sample) were extracted using phenol/SDS extraction method as described by 

Gomez-Vidal et al (2008) with minor modification  leading to optimized protein isolation 

from date palm (Rasool et  al., 2014). Briefly, stem tissues (one gram) were ground to fine 

powder in liquid nitrogen with pestle/mortar and suspended in 5 ml phenol and 5 ml dense 

SDS buffer (30% w/v sucrose, 2% w/v SDS, 0.1 M Tris-HCl, pH 8.0, 5% v/v 

2-mercaptoethanol). After mixing and vortexing, mixture was centrifuged for 5 minutes at 

10,000 rpm at 4
o
C. The upper phenolic phase was collected and precipitated with five 

volumes of cold 0.1 M methanolic ammonium acetate. After incubating at -20
o
C for 30 

min, precipitated proteins were recovered by centrifugation at 1000 rpm  for 5 min at 4
o
C 

and then washed  two times with cold methanol solution containing 0.1 M ammonium 

acetate and then two times with cold 80% v/v acetone. Protein pellet was recovered each 

time by centrifugation at 8000 rpm for 5 minutes. The final protein pellet was air-dried at 

room temperature and suspended in 100 mM Tris buffer  pH 8.0 and the then added equal 

volume of 2X SDS-reducing buffer (100 mM Tris–Cl (pH 6.8), 4% SDS, 0.2% 

bromophenol blue, 20% glycerol) containing 200 mM mercaptoethanol. SDS-PAGE 

analysis was carried out as described by Laemmle (1970). The gel was stained with 

Commassie brilliant blue G-250 with constant and gentle agitation for overnight. 

4.3.3 Two dimensional difference gel electrophoresis (2D-DIGE) 

The dried protein sample for 2D-DIGE was solubilized in rehydration buffer containing 

the chaotropic agent urea, alongside surfactants CHAPS and thiourea (7 M urea, 2 M 
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thiourea, 2% CHAPS w/v, 2% DTT, 0.5% IPG buffer, 0.002% bromophenol blue) by 

shaking at 150 rpm for 1 h at 25
o
C. The insoluble residue was removed by centrifugation 

at 12,000 rpm for 10 minutes. The protein-containing supernatants were separated from 

insoluble debris. Protein concentration was measured using 2-D Quant kit (GE 

Healthcare, Little Chalfont, U.K.) according to the manufacturer’s protocol and using 

bovine serum albumin (BSA) as a reference standard. The samples were further cleaned 

for 2D using the 2D Clean-Up Kit (GE Healthcare, Little Chalfont, U.K.) and solubilized 

in buffer (7M urea, 2M thiourea, 2% CHAPS, 30 mM Tris-Cl, pH 8.5)  without DTT 

and IPG buffer  and quantified again using 2-D Quant kit (GE healthcare). Protein was 

aliquoted to required amount (300 µg) and frozen. 

After adjusting pH to 8.5, each protein sample was labeled with CyDye Flour minimal 

dyes (GE healthcare) according to manufacturer’s recommendation. Briefly, 50 µg each 

protein sample was incubated with 400 pmol CyDye Flour minimal dyes on ice for 30 

min in the dark. The control, wounded and infested samples were labeled alternatively 

with Cy3 or Cy5 (Table 1). Internal standard containing equal amount of proteins from 

each sample was labeled with Cy2. The reaction was stopped by adding 1.0 µl of 10 mM 

lysine solution and incubated 10 min on ice and proteins samples were combined 

according to experimental design as shown in Table 1. 

For 2D-DIGE, IPG strip (24 cm. GE Healthcare) were rehydrated for 16 hours with 

rehydration buffer (7 M urea, 2 M thiourea, 2% CHAPS w/v, 0.2% DTT, 0.5% IPG 

buffer, 0.002% bromophenol blue) containing the protein samples for each gel. 

Isoelectric focusing was performed with Ettan IPGphor3 IEF unit (GE Healthcare, Bucks 

UK) at 50µA per strip at 20°C according to following programme:1) 500V for 1 hour, 2) 
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1000V for 1h, 3) 8000V for 3h, 4) 8000 V for 45,000Vh. Strips were immediately 

equilibrated after Isoelectric focusing for 15 min in equilibration buffer 1 (50 mM 

Tris-HCl, pH 8.8; 6 M urea; 20% [v/v] glycerol and 2% [w/v] SDS) containing 2% DTT 

at room temperature under gentle agitation, and then by equilibration buffer 2 (50 mM 

TrisHCl, pH 8.8; 6 M urea; 20% [v/v] glycerol and 2% [w/v] SDS) containing 2.5% 

iodoacetamide. Second-dimension sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) was performed on 5-20% polyacrylamide gradient gels 

using the Ettan DALT six vertical unit (GE Healthcare, Little Chalfont, U.K.) at 15
o
C for 

1W per gel for 1h and then 2W per gel until the bromophenol blue dye reached the end of 

gel. Polyacrylamide gradient gels were prepared on low fluorescence glass using 2D 

Optimizer (Nextgen Sciences). 

4.3.4 Image acquisition and analysis 

The 2D gels were scanned using fluorescence gel scanner, Typoon imager (Trio) (GE, 

Healthcare, Sweden), using appropriate wavelengths and filters for Cy2, Cy3 and Cy5 

dyes according to manufacturer’s recommended protocol. The 2D gels images were 

analyzed using Progenesis sameSpot software version 3.3 (Nonlinear Dynamics Ltd, 

Newcastle upon Tyne, U.K.). The differential expression was ascertained using 

normalized protein spots in the Cy5 and Cy3 channels compared to the internal standard 

(Cy2). The spots of infested and wounded date palm samples were compared to control 

samples. One way ANOVA was used to calculate the fold difference values and P-values. 

A threshold level was set at 1.5 fold up or down-regulation, at p ≤ 0.05 level. 
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Table 1. Experimental design for 2D-DIGE. Three replicates from each control, infested 

and wounded protein samples were labeled and combined for 2D-DIGE. 

Gel No. Cy2 Cy3 Cy5 

1 pooled sample Infested R1 Control R3 

2 pooled sample Infested R2 Wounded R1 

3 pooled sample Infested R3 Wounded R2 

4 pooled sample Control R1 Wounded R3 

5 pooled sample    Control R2 
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4.3.5 Protein identification by mass spectrometry 

Preparative 2D gel was run using 700 µg total protein sample obtained by pooling all the 

samples present in the experimental design. The gel was fixed in ethanol (35%v/v), with 

phosphoric acid (2%v/v) for overnight and then washed three times with water for 30 min 

each time. Then the gels were incubated for 1 hour in methanol (34% v/v) containing 

ammonium sulphate (17%w/v) and phosphoric acid (3% v/v) for I hour and after that 

0.5% g/L Commassie G-250 were added. The gels were stained for 5 days followed by 

rinsing in Milli Q water and stored until spots were picked and identified by mass 

spectrometry. Corresponding differential spots were matched to a colloidal commassie 

stained image of the preparative gel, which was first mapped to the reference image. 

The differential protein spots were manually excised form commassie stained preparative 

gels and washed with solution containing 50 mM Ammonium bicarbonate. Then, the gels 

pieces were destained with 50 mM ammonium bicarbonate and 50 % acetonitrile 

followed by 100 % acetonitrile. After destaining, gels pieces were dried using vacuum 

centrifugation at 40
o
C for 5 minutes. Dried Gel pieces were rehydrated and digested with 

10 µl trypsin at a concentration of 2ng/µl (Promega, USA) in 25 mM NH4HCO3 pH 8.0 

at 4
0
C for 60 minutes and digestion was continued for an additional 16-24 hours at 37

o
C. 

The digestion was stopped and digest mixtures was transferred to 0.5 ml tube and the 

peptides were extracted by adding 50% acetonitrile having 0.1% Triflouroacetic acid 

followed by drying to 10 µl using vacuum centrifugation. The 0.5 µl peptides was mixed 

with matrix (10 mg α-Cyano-4-hydroxycinnamic acid in 1 ml of 30% acetonitrile 

containing 0.1% TFA) and applied on MALDI- target and dried before MS analysis and 

after that, subjected to MALDI-TOF-MS (UltraFlexTrem, Bruker Daltonics, Germany) in 
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a positive mode. Peptide mass fingerprints were processed using flex analysis software 

(version 2.4, Bruker Daltonics, Germany). MS data were interpreted by BioTools3.2 

(Bruker Daltonics, Germany) in combination with the Mascot search algorithm (version 

2.0. 04) against Swiss-Prot database for green plants. The validity/accuracy of identified 

proteins was only accepted when the mascot score was ≥ 60. 

 RESULTS AND DISCUSSION 4.4

4.4.1 Date palm proteome analysis by 2D-DIGE 

Plants respond to injuries/infestations and others abiotic stresses by activating a broad 

range of  acquired defense system, including activation of pathogenesis-related (PR) 

genes both at local and systemic sites (Kessler and Baldwin, 2002), crosslinking of cell 

wall proteins, generation of reactive oxygen species (ROS) and local programmed cell 

death. This study reports the first proteomic analysis of date palm stem defense response 

against RPW infestation as well as mechanically wounded stem as the artificial 

infestation involves wounding experimental plants. The 2D-DIGE was used to explore 

the response of RPW infestation in date palm stem. For evaluating differential proteomic 

responses subsequent to infestation stem samples from infested control and artificially 

wounded plants were subjected to protein isolation followed by differential expression 

analyses. Proteins were extracted from stem samples using phenol-SDS extraction 

method (Gómez‐Vidal et al., 2008). To minimize internal variations three replicates for 

each sample were used. The extracted proteins were quantified using 2D quant kit after 

solubilizing in 2D-rehyration buffer. Approximately 10 µg aliquots of each sample was 

solubilized in SDS loading buffer and separated on 12.5 % SDS-PAGE before staining. 
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Protein profile after staining with Commassie showed good reproducibility among 

replicates, consistent solubilization and reproducible extraction methods (Figure 1). 

Proteins extracted using this method was then evaluated by mini 2DE to assess 

reproducibility, isoelectric point and percentage of acrylamide selection of isolated 

proteins. A 125 µg of lysis buffer solubilized protein was used for mini 2DE experiments.  
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Fig. 1 Comparative protein expression profiling of the control, infested and wounded date 

palm samples using SDS-PAGE. Lanes 1-3 represent total cell proteins from 

3-infested replicates, while lanes 4-6 represent proteins from wounded date palm 

samples, and lanes 7-9, represent proteins from control date palm samples.  
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For determining isoelectric point (pI) ranging of isolated proteins, broad range 

immobilized pH gradient  (IPG) strips pH 3-11 were used in the first dimension 

followed by separation with 12.5 % acrylamide second dimension gels. After separation 

in the second dimension, protein gels were stained with Commassie dye. Figure 2 shows 

protein profiles of stem with control and infested respectively. 

Moreover, 2D DIGE (GE Healthcare, Bucks UK) was run to compare differences among 

control, infested and wounded samples. These samples were labeled with either Cy3 or 

Cy5 dyes while internal standard was consistently labeled with Cy2. Experimental design 

for 2D-DIGE experiment is shown in (Table 1). After labeling with Cy dyes, two samples 

were mixed with different combination along with internal standard and electrophoresed 

on the same gel except one gel contained single sample with internal standard. The 

representative gels of 2D-DIGE after scanning with fluorescence gel scanner, Typoon 

imager (Trio) (GE Healthcare) are shown in Figure 3. Progenesis Samespots software 

version 3.3 (Nonlinear Dynamics Ltd., UK) was used to statistically analyze the protein 

expression among control, infested and wounded samples. A total of 522 well-resolved 

protein spots were observed on each gel, out of them 32 spots showed statistically 

significant differences (p≤0.05, and intensity fold change ≥1.5) among expressions of 

proteins in either of this combination. Out of these 32 spots, 13 were found to be up 

regulated in the infested compared to control while 19 spots found to be down regulated 

in the infested samples compared with control (Figure 4). Interestingly, spots from the 

wounded samples showed the same trend of up or down regulation compared to control 

but fold change intensity is lower than the infested samples. However, some contrasting 

patterns were also observed in the infested and wounded samples that are of our interest. 
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Fig. 2. Evaluation of protein samples isolated from date palm stem by mini 2D gels. 

2D-PAGE of proteins from date palm stem. 7 cm IPG strip was used to separate 

the proteins solubilized in 2DE buffer in first dimension. 12.5 % acrylamide was 

performed to separate focused proteins. After separation, gel was stained with 

Coomassie. A: Proteins separated by 2D gel from control sample, B: protein 

separated by 2D from infested sample. 
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A. Cy-3 (Infested-1)  B. Cy5 (Control-3)  

D. Merged Image C. Cy2 (Internal Standard) 

C. Cy2 (Pooled)  

Fig.3a. 2D-DIGE images of date palm proteins. The protein sample of Infested-1, Control-3 and 

internal standard (pooled of all the samples) are individually labeled with Cy dyes, mixed 

together and separated by 2D-DIGE followed by image scanning.  A: image of date palm 

infested sample and labeled with Cy3 dye. B: image of date palm control sample labeled with 

Cy5 dye. C: image of date palm sample pooled from all and labeled with Cy2 dye. D: Overlay 

gel of infested, and control samples along with internal standard. 

2D-DIGE Gel-1 
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A. Cy3(Infested-2) B. Cy5 (Wounded-2) 

D. Merged Image C. Cy2 (Internal Standard) 

C. Cy2 (Pooled (Cy2)  

Fig.3b. 2D-DIGE images of date palm proteins. The protein sample of Infested-2, Wounded-1 and 

internal standard (pooled of all the samples) are individually labeled with Cy dyes, mixed 

together and separated by 2D-DIGE followed by image scanning.  A: image of date palm 

infested sample and labeled with Cy3 dye. B: image of date palm wounded sample labeled 

with Cy5 dye. C: image of date palm sample pooled from all and labeled with Cy2 dye. D: 

Overlay gel of infested, and wounded samples along with internal standard. 

2D-DIGE Gel-2 
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A. Cy3 (Infested-3) B. Cy5 (Wounded-3) 

D. Merged Image C. Cy2 (Internal Standard) 

Fig.3c. 2D-DIGE images of date palm proteins. The protein sample of Infested-3, Wounded-2 

and internal standard (pooled of all the samples) are individually labeled with Cy dyes, 

mixed together and separated by 2D-DIGE followed by image scanning.  A: image of 

date palm infested sample and labeled with Cy3 dye. B: image of date palm wounded 

sample labeled with Cy5 dye. C: image of date palm sample pooled from all and 

labeled with Cy2 dye. D: Overlay gel of infested, and wounded samples along with 

internal standard. 

2D-DIGE Gel-3 
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A. Cy3 (Control-1) B. Cy5 (Wounded-1) 

D. Merged Image C. Cy2 (Internal Standard) 

Fig.3d. 2D-DIGE images of date palm proteins. The protein sample of Control-1, Wounded-3 and 

internal standard (pooled of all the samples) are individually labeled with Cy dyes, mixed 

together and separated by 2D-DIGE followed by image scanning.  A: image of date palm 

control sample and labeled with Cy3 dye. B: image of date palm wounded sample labeled 

with Cy 5 dye. C: image of date palm sample pooled from all and labeled with Cy 2 dye. D: 

Overlay gel of control, and wounded samples along with internal standard. 

2D-DIGE Gel-4 
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A. Cy5 (Control-2) 

D. Merged Image 

B. Cy2 (Internal Standard) 

Fig.3e. 2D-DIGE images of date palm proteins. The protein sample of Control-3 and 

internal standard (pooled of all the samples) are individually labeled with Cy dyes, 

mixed together and separated by 2D-DIGE followed by image scanning.  A: image 

of date palm control sample and labeled with Cy 5 dye. B: image of date palm 

sample pooled from all and labeled with Cy 2 dye. D: Overlay gel of control and 

internal standard. 

2D-DIGE Gel-5 
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Fig. 4 Normalized spot volume occupied by differential protein spots of control (C), 

wounded (W) and infested (I) date palm stem samples. 
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Majority of the up regulated spots (spot no 414 243,554, 300, 447, 994, 1281, 1073, and 

438) followed unique trend of up regulation like (I>W>C) except two spots (1308 and 

1287) where the pattern was observed like (I>C>W). Similar to up regulation, almost the 

same trend was observed among majority of down regulated spots in reverse order 

C>W>I (spots nos. 1027, 987,976, 781, 798, 1023, 951, 1020, 683, 1086, 1163, and 884). 

However, some deviations were noticed in some spots (like 221, 235, 234, 506, 822, 318) 

where the expression pattern was observed as W>C>I except two spots (137 and 313) 

this pattern was like W>I>C. Our data clearly demonstrates that RPW infestation induces 

stronger defense responses in date palm than mechanical wounding, and these (stronger) 

responses could be exploited as molecular indicators for ascertaining infestation in date 

palm plants. The relative expression patterns are quite intriguing and previous reports 

also reports such trends in plants (Turlings et al., 1998; Duceppe et al., 2012). 

4.4.2 Protein identification by mass spectrometry 

Proteomic methodologies for differential expression is quite tedious in nature, however, it 

provides highly reliable information once a modulated peptide has been identified. Final 

identification subsequent to proteomic methodology involves identification procedures 

involving mass spectrometric analyses. A state of the art proteomic methodology 

MALDI-TOF used for the identification of proteins by peptide mass fingerprinting was 

employed to characterize peptides modulated in date palm stem subsequent to infestation 

with RPW. The above described 32 differentially expressed spots were excised from 

preparative gels, digested enzymatically with trypsin and subjected to MS analysis. Data 

were examined using BioTools3.2 (Bruker Daltonics, Germany) in combination with the 
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Mascot search algorithm (version 2.0. 04) against green plants database. Table 2 showed 

the spot number, their Swiss-Port accession numbers, protein description, function, 

theoretical pI, molecular weight, protein coverage (%), score, and matching organism for 

the differentially expressed proteins. MS results showed that identified 21 spots were 

matched to previously reported proteins found in databases. We were unable to 

characterize 11 protein spots as there was no protein matching proteins in the database. It 

is quite possible that date palm plant has some unique proteins not found in other plants. 

Once date palm genome is deciphered, these unique proteins will be of quite interest. In 

protein identification a small number of different spots showed the same identified 

proteins, indicating the presence of isoforms of specific gene or these were emerged due 

to post-translational modifications (PTMs) differing in molecular weight and pI. In our 

case V-type proton ATPase catalytic subunit A (spot no 221, 243), and probable 

glycerol-3-phosphate acyltransferase 8 (spot no 683 and 781) belong to these categories. 

The identified proteins had shown a high homology especially with specific proteins of 

Arabidopsis thaliana (33%), whereas this homology ratio was 14.2% and 9.5% as 

compared to those of  Oryza sativa (subspecies Japonica) (rice) and Sorghum bicolor 

(Sorghum), respectively. While a relatively low homology ratio (4.7%) was observed 

with each of Zea mays, Solanum lycopesicum, Eucalyptus gunnii (Cider gum), Hevea 

brasiliensis (Para rubber tree), Citrus unshiu (Satsuma mandarin), Carica papaya 

(papaya), Medicago truncatula (Barrel medic), Spinacia oleracea (Spinach), and 

Hordeum vulgare (Barley). 
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Table 2. Differentially expressed proteins between control, wounded and infested date palm stem samples by MALDI-TOF peptide mass 

fingerprinting after 2D-DIGE. 

Spot No. 
FC  

(I/C) 

FC 

(W/C) 

Accession 

(uniprot) 

Protein 

description 
Function pI MW Coverage Score organism 

1308  1.60↑  3.03↓ P27161 Calmodulin 
M: Calcium ion 

binding 
4.18 16950 69 229 

Solanum 

lycopersicum 

(Tomato) 

781 2.42↓ 1.67↓ Q5XF03 

Probable 

glycerol-3-phosphate 

acyltransferase 8 

Lipid biosynthesis 9.14 56345 25 60 
Arabidopsis thaliana 

(Mouse-ear cress) 

221 1.50↓ 1.17↑ P49087 
V-type proton ATPase 

catalytic subunit A 
Ion transport 5.89 62198 25 62 Zea mays (Maize) 

798 2.08↓ 1.48↓ O04854 
Caffeoyl-CoA 

O-methyltransferase 
Lignin biosynthesis 5.02 28010 12 72 

Eucalyptus gunnii   

(Cider gum) 

414 2.77↑ 1.28↑ P29685 
ATP synthase subunit 

beta, mitochondrial 

ATP hydrolysis 

coupled proton 

transport 

5.98 60335 35 75 
Hevea brasiliensis  

(Para rubber tree) 

994 1.68↑ 1.56↑ Q94FT8 
Non-symbiotic 

hemoglobin 3 

Iron and oxygen 

transport 
9.83 18614 65 65 

Oryza sativa subsp. 

japonica (Rice) 

1281 1.76↑ 1.58↑ Q94FT8 
Non-symbiotic 

hemoglobin 3 

Iron and oxygen 

transport 
9.83 18614 83 62 

Oryza sativa subsp. 

japonica (Rice) 

137 1.66↑ 1.99↑ P22953 
Heat shock 70 kDa 

protein 1 

Stress response, plant 

defense, 
5.03 71712 38 88 

Arabidopsis thaliana 

(Mouse-ear cress)) 

1073 2.07↑ 1.50↑ Q9SVQ0 

Ethylene-responsive 

transcription factor 

ERF062 

Ethylene  signaling 

pathway 
9.46 44283 37 68 

Arabidopsis thaliana 

(Mouse-ear cress)) 

243 5.31↑ 1.77↑ Q9SM09 
V-type proton ATPase 

catalytic subunit A 
Hydrogen ion transport 5.29 68923 34 70 

Citrus unshiu  

(Satsuma mandarin) 

554 1.99↑ 1.39↑ Q1PFG1 
F-box protein 

At1g66490 
Uncharacterized 8.75 43577 26 65 

Arabidopsis thaliana 

(Mouse-ear cress)) 



110 

 

300 2.98↑ 2.13↑ Q39251 
Actin-depolymerizing 

factor 2 
Cytoskeletal protein 5.24 15963 36 65 

Arabidopsis thaliana 

(Mouse-ear cress) 

447 2.36↑ 1.17↑ B1A986 

NAD(P)H-quinone 

oxidoreductase subunit 

4L, chloroplastic 

Oxidoreductase 

activity, ATP synthesis 

coupled electron 

transport 

9.65 11327 54 67 
Carica papaya  

(papaya) 

1020 2.81↓ 2.35↓ Q9SKQ0 

Peptidyl-prolyl 

cis-trans isomerase 

CYP19-2 

B: protein folding 8.33 1868 48 63 
Arabidopsis thaliana 

(Mouse-ear cress) 

683 2.58↓ 1.69↓ Q5XF03 

Probable 

glycerol-3-phosphate 

acyltransferase 8 

Lipid biosynthesis 9.14 56345 29 60 
Arabidopsis thaliana 

(Mouse-ear cress)) 

506 1.36↓ 1.65↑ Q8W0A1 Beta-galactosidase 2 
Carbohydrate 

metabolic process 
5.59 92630 19 62 

Oryza sativa subsp. 

japonica (Rice) 

822 1.92↓ 1.06↑ C5X3M7 

Putative 

uncharacterized protein 

Sb02g009233 

Nucleic acid binding 5.6 14533 88 73 
Sorghum bicolor 

(Sorghum) 

318 1.48↓ 1.62↑ A5C9D0 
Putative 

uncharacterized protein 
Proteolysis 9.41 119434 20 71 

Sorghum bicolor 

(Sorghum) 

438 2.24↑ 1.02↑ A4PU48 
S-adenosylmethionine 

synthase 

Adenosylmethionine 

biosynthesis 
5.59 43708 29 63 

Medicago truncatula 

(Barrel medic)) 

884 1.61↓ 1.45↓ P23312 
S Nitrate reductase 

[NADH] 
Nitrite assimilation 6.25 104703 68 62 

Spinacia oleracea 

(Spinach)) 

313 2.44↑ 2.47↑ Q42836 

Delta-aminolevulinic 

acid dehydratase, 

chloroplastic) 

Porphyrin biosynthesis 6.05 46639 46 80 
Hordeum vulgare 

(Barley) 

Arrows indicate the proteins up (↑) and down (↓) regulations, FC = Fold change, I = RPW Infested samples, W = Mechanically Wounded samples,  

pI = Isoelectric point,  MW = Molecular Weight. 



 

Moreover, differentially expressed proteins had been characterized as: ion transport 

(33%), lipid biosynthesis (9%), protein folding (5%), plant defense (4%), ethylene 

signaling pathway (5%), protein folding (5%), carbohydrate metabolism (5%), proteolysis 

(5%), S-adenosylmethionine biosynthetic process (5%), nitrate assimilation (5%), 

porphyrin biosynthesis (5%), transcription (5%), lignin biosynthesis (4%) and unknown 

(5%) and were shown in Figure 5. 

It is to be worth mentioning that a large number of proteins identified in this study belong 

to ion transport family of proteins that are stress related, while several others could 

potentially be involved in response to RPW infestation. These were V-type proton 

ATPase catalytic subunit A (Zea mays (Maize) (spot no 221 and 243). The spot 221 were 

suppressed 1.5 fold in the infested samples relative to control. However, spot 243 was 

much higher in infested samples (5.3 fold) compared to control. V-type proton ATPase is 

a proton pump present inside plant vacuole which plays an important role in plant salinity 

tolerance (Kluge et al., 2003; Barkla et al., 2009). V-type proton ATPase plays a crucial 

role in maintenance of ion homeostasis inside plant cells, acidifying compartments of the 

vacuole (Schnitzer et al., 2011; Silva and Gerós,  2009). It maintains electrochemical 

H
+
-gradient to drive the transport of Na

+
 into the vacuole lumen, compartmentalizing this 

toxic ion from the cytoplasm and maintaining low cytoplasmic Na
+
 concentrations.  Up 

regulation of this enzyme was also reported in response to stress in other plants as well 

(Silva et al., 2010; Qiuet et al., 2007; Kabala and Klobus, 2008; Otoch et al., 2001). The 

up regulation of enzyme V-type proton ATPase might provide insights into 

understanding the infestation of date palm and could be a useful marker for early 

diagnosis of RPW. 

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006508
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006556
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0042128
http://www.uniprot.org/keywords/KW-0627
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Fig. 5. A pie chart depicting the physiological classification of potentially identified 

proteins through Mass Spectrometry analysis. 
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Another spot (spot no 414) corresponded to ATP synthase subunit beta, mitochondrial 

identified as differential protein and up regulated in infested samples. 

The expression of calcium binding protein, calmodulin (spot no 1308) increased (1.6 

fold) in response to the infestation of RPW. Calmodulin is a calcium-binding messenger 

protein and regulates downstream functions in response to Ca2
+
. It has several targets 

including ion channels, a large number of enzymes i.e. kinases, phosphatases, 

cytoskeletal proteins, synaptic proteins, cell cycle proteins (Yap et al., 2000; Hoeflich 

and Ikura, 2002; Kahl and Means, 2003; Calabria et al., 2008). Calcium activated 

calmodulin is reported to be involved in heat-shock signal transduction (Borisjuk et al., 

1998). 

Protein belonging to S-adenosylmethionine synthase (spot no 438) showed increased 

expression (2.2 fold) in infested sample relative to control. This enzyme catalyzes the 

synthesis of S-adenosylmethionine from methionine and ATP. Also, expression was 

up-regulated by 2.4 fold in spot no 313, a homologous to Delta-aminolevulinic acid 

dehydratase, chloroplastic) as compared to control. This enzyme is involved in the 

formation of porphobilinogen (von Wettstein et al., 1995). The expression of the spot 

number 137, homologous to heat shock 70 KDa proteins (HSP 70), was increased (1.66 

fold) in the infested samples as compared to control. However, its expression was 

increased more in the wounded (~2 fold) relative to control. HSP 70 protein is a 

chaperone that assists the folding process of newly synthesized proteins and minimizes 

aggregation (Fink, 1999). A high expression of this protein under stress conditions has 

also been reported previously by other workers (Fink, 1999; De Rocher and Vierling, 

1994). Several other HSPs have also been reported in response to different stress 
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conditions like because of pea and Erysiphe pisi interaction (Curto et al., 2006), pea and 

Mycosphaerella pinodes interaction (Castillejo et al., 2010a), or triticale under low N 

fertilization level (Castillejo et al., 2010b). The over-expression of these stress responsive 

proteins should not be surprising, is a natural defence mechanism that responds, as 

mentioned above, to any outer biotic/abiotic stress. The over expression of HSP 70 in 

present study could be a useful marker against RPW infestation. 

The two spots (781 and 683) matching glycerol-3-phosphate acyltransferase, an essential 

enzyme for glycerolipid biosynthesis, were found to be down regulated in infested 

samples. Another down regulated spot (506) matched with protein Beta-galactosidase 2 

was identified. This enzyme is responsible for non-reducing beta-D-galactose residues in 

beta-D-galactosides. Furthermore, the spot 1073 was identified as ethylene response 

factor (ERF1) and its expression was up-regulated (2.07 fold) in infested date palm 

sample relative to control. ERF1 is a member of novel family of plant-specific 

transcriptional factors in Arabidopsis thaliana (Nakano et al., 2006), and is activated by 

either ethylene (ET) or jasmonate (JA) and also activated synergistically by both 

hormones (Lorenzo 2003). ERF1 regulates defense response genes to the necrotrophic 

fungi B. cinerea and P. cucumerina by integrating ET and JA defense responses in 

Arabidopsis (Berrocal-Lobo et al., 2002; Lorenzo et al., 2003). ERFs have been reported 

to affect a number of developmental processes, and are also differentially adapted to 

biotic or abiotic stresses such as pathogen attack, wounding, extreme temperature, and 

drought (Ecker, 1995; Penninckx et al., 1996; O’Donnell et al., 1996). Our results 

suggest that ERF1 could be a key element in defense against RPW attack. 



115 

 

Another spot 884 matching to nitrate reductase was suppressed (1.6 fold) in date palm 

infested sample compared to control. This enzyme plays a key role in the synthesis of 

nitric oxide (NO) (Rockel et al., 2002), an important signaling molecule mediating 

physiological and developmental processes. Also, NO plays an important role in plant 

responses to biotic and abiotic stresses (Qiao and Fan, 2008; Corpas et al., 2011; Moreau 

et al., 2010).  Furthermore, NO was also reported to modulates ethylene, salicylic acid, 

and jasmonic acid-signaling pathways and abscisic acid (ABA)-induced stomatal closure 

(Lamattina et al., 2003; Wendehenne et al., 2004). 

Another important protein identified as Nonsymbiotic hemoglobins 3 (spots no, 994 and 

1281) found to be up-regulated in infested and wounded samples which are known to be 

induced in plants during hypoxic stress. Nonsymbiotic hemoglobin AHb1 plays an 

important role in NO detoxification in Arabidopsis by scavenging NO and reducing its 

emission under hypoxic stress. These proteins were reported to protect plants during 

hypoxia or other similar stresses (Hunt et al., 2002; Dordas et al., 2003a) and scavenge 

NO produced in stress conditions (Dordas et al., 2003b). Nonsymbiotic hemoglobin 

AHb1 plays an important role in NO detoxification in Arabidopsis thaliana by 

scavenging NO and reduces NO emission under hypoxic stress (Perazzolli et al., 2004). 

A significant increase (2.98 fold) of actin depolymerizing factors (ADFs) (spot 300) was 

found in infested samples compared to control. ADF is a small actin-binding protein and 

involved in plant growth, development stress response and pathogen defense (Drobak et 

al., 2004; Staiger and Blanchoin, 2006; Hussey et al., 2006). The role of actin had also 

been reported in response to plant hormones and biotic or abiotic stresses (Solanke and 

Sharma, 2008; Drobak et al., 2004). The ADFs have been found related to plant 
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resistance to various pathogens in Arabidopsis and barley (Miklis et al., 2007; Clement et 

al., 2009; Tian et al., 2009). The energy produced by the depolymerization and 

polymerization of actin is used for the directional movement of cells which is necessary 

for wound healing, immune response, embryonic development and development of 

tissues (Pollard and Borisy, 2003). In this process a number of actin binding proteins such 

as profillin, actin depolymerizing factor (ADF)/cofilin, myosin, fibrin and villin are also 

involved. 

Spot no 447 corresponding to NAD (P) H-quinone oxidoreductase subunit 4L, 

chloroplastic showed a significant increase (2.34 fold) in infested date palm samples as 

compared to control. NAD (P) H quinone oxidoreductase is an important enzyme that is 

involved in the detoxification of quinones and their derivatives (Radjendirane et al., 

1998; Schuler et al., 1999; Gaikwad et al., 2001). Taken together, this enzyme increased 

to reduce oxidative stress and to detoxify toxic molecules produced by the stress. 

The spot (1020) corresponded to peptidyl-prolyl cis-trans isomerase (PPIase) CYP19-2 

was down regulated (2.8 fold) in the infested samples. This enzyme catalyses the 

cis-trans isomerisation process of proline residues during protein folding (Reimer and 

Fischer 2002). There are important groups of proteins, cyclophilin proteins  which have 

this PPIase domains. Cyclophilins have been shown to involve  in a wide range of 

cellular processes like stress tolerance (Andreeva et al., 1999), cell division (Schreiber, 

1991), transcriptional regulation (Shaw, 2002), protein trafficking (Price et al., 1994), 

cell signaling (Freeman et al., 1996), pre-mRNA splicing (Horowitz et al., 2002) and  

molecular chaperoning (Weisman et al., 1996). Taken together, majority of identified 
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proteins was directly or indirectly related to defense of date palm and could be exploited 

for the early diagnosis of RPW infestation.  

 CONCLUSION 4.5

The date palm infestation with RPW is a key threat to date palm trees in the Kingdom of 

Saudi Arabia and other Gulf countries that could potentially wipe out this historical plant 

from this region. Our study is the first of its kind utilizing state of the art proteomic 

techniques to decipher molecular changes associated with RPW infestation to this plant, 

the date palm. Though our interest is to identify RPW specific molecular responses, 

however, it was intriguing to note that similar molecular moieties are up-regulated in 

artificial wounding as well as RPW infestation. However, relative modulation 

(down-regulation/up-regulation) is quite differential. We have also to go with further 

characterization of these responses. As both mechanical injury and RPW infestation are 

impinges upon the same molecular moieties of date palm stem. We have to establish 

certain baselines of proteomic changes for characterizing RPW specific molecular 

changes. This study mainly provides a proof of concept that stem, the hard part of date 

palm tree, is amenable to molecular analytical procedures for understanding infestation 

with RPW. Furthermore, it has opened new avenues for understanding proteome of this 

important tree. Techniques established and data generated will be crucial for date palm 

scientists in understanding diseases/infestation associated physiological process in this 

plant besides developing new cultivars. 

 



118 

 

 LITERATURE CITED 4.6

Abraham, V.A., Al Shuaibi, M.A., Faleiro, J.R., Abuzuhairah, R.A., Vidyasagar, P.S.P.V., 

1998. An integrated management approach for red palm weevil, Rhynchophorus 

ferrugineus Oliv., a key pest of date palm in the Middle East. Sultan Qaboos Univ. J. 

Scient. Res. Agric. Sci. 3,77-84. 

Aldawood, A.S., Rasool, K.G., 2011. Rearing Optimization of Red Palm Weevil: 

Rhynchophorus ferrugineus Olivier on Date Palm: Phoenix dactylifera. Fla. Entomol. 

94(4): 756-760. 

Andreeva, L., Heads, R., Green, C.J., 1999. Cyclophilins and their possible role in the stress 

response. Int. J. Exp. Pathol. 80, 305-315. 

Avand Faghih, A., 1996. The biology of red palm weevil, Rhynchophorus ferrugineus Oliv. 

(Coleoptera, Curculionidae) in Saravan region (Sistan &Balouchistan Province, Iran). 

Appl. Entomol. Phytopathol. 63, 16-18. 

Barkla, B.J., Vera-Estrella, R., Hernández-Coronado, M., Pantoja, O., 2009. Quantitative 

proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. 

Plant Cell 21, 4044–4058. 

Ben Thabet,  I., Francis, F., de Pauw, E., Besbes, S., Attia, H., Deroanne, C., Blecker, C., 

2010. Characterisation of proteins from date palm sap (Phoenix dactylifera L.) by a 

proteomic approach. Food Chem. 123, 765–770. 

Berrocal-Lobo, M., Molina, A., Solano, R., 2002. Constitutive expression of 

ethylene-response-factor1 in Arabidopsis confers resistance to several necrotrophic 

fungi. Plant J. 29, 23–32. 

Borisjuk, N., Sitailo, L., Adler, K., Malysheva, L., Tewes, A., Borisjuk, L., Manteuffel, R., 

1998. Calreticulin expression in plant cells: developmental regulation, tissue 

specificity and intracellular distribution. Planta 206, 504–514.  

Bricchi, I., Leitner, M., Foti, M., Mithofer, A., Boland, W., Maffei, M.E., 2010. Robotic 

mechanical wounding (MecWorm) versus herbivore-induced responses: early 

signaling and volatile emission in Lima bean (Phaseolus lunatus L.). Planta 232, 

719–729. 

Calabria, L.K., Garcia Hernandez, L., Teixeira, R.R., Valle de Souza, M., Espindola, F.S., 

2008. Identification of calmodulin binding proteins in brain of worker bees. Comp. 

Biochem . Physiol. Part B: Biochem. Mol. Biol. 15, 41−45. 

Castillejo, M.A., Kirchev, H., Jorrı´ın, J.V., 2010a. Differences in the Triticale 

(3Triticosecale Wittmack) flag leaf 2-DE protein profile between varieties and 

nitrogen fertilization levels. J. Agric. Food Chem. 58, 5698–5707. 



119 

 

Castillejo, M.A., Curto, M., Fondevilla, S., Rubiales, D., Jorrı´ın, J.V., 2010b. 

Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum 

sativum) in response to Mycosphaerella pinodes. J. Agric. Food Chem. 58, 12822–

12832. 

Clement, M., Tijs, K., Natalia, R., Mohamed, Y.B., Andrei, S., Gilbert, E., Pierre, A., 

Patrick, J.H., de Janice, A.E., 2009. Actin-depolymerizing factor 2-mediated actin 

dynamics are essential for root-knot nematode infection of Arabidopsis. Plant Cell 21, 

2963–2979. 

Corpas, F.J., Leterrier, M., Valderrama, R., Airaki, M., Chaki, M., Palma, J.M., Barroso, 

J.B., 2011. Nitric oxide imbalance provokes a nitrosative response in plants under 

abiotic stress. Plant Sci. 181, 604–611. 

Curto, M., Camafeita, L.E., Lo´pez, J.A., Maldonado, A.M., Rubiales, D., Jorrı, J.V. 2006. A 

proteomic approach to study pea (Pisum sativum) responses to powdery mildew 

(Erysiphe pisi). Proteomics 6,S163–S174. 

De Rocher, A.E., Vierling, E., 1994. Developmental control of small heat shock protein 

expression during pea seed maturation. Plant J. 5, 93–102. 

Dembilio, O., Jacas,  J.A., 2012. Bio-ecology and integrated management of the red palm 

weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in the region of 

Valencia (Spain). Hellenic Plant Prot. J. 5,1-12 

Dicke M, van Loon JJA: Multitrophic effects of herbivore-induced plant volatiles in an 

evolutionary context. Entomol Exp Appl 2000, 97(3):237-249. 

Dordas, C., Hasinoff, B.B., Igamberdiev, A.U., Manac’h, N., Rivoal, J., Hill, R.D. 2003. 

Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root 

cultures under hypoxic stress. Plant J. 35, 763–770. 

Dordas, C., Rivoal, J., Hill, R.D., 2003. Plant haemoglobins, nitric oxide and hypoxic stress. 

Ann. Bot. 91, 173–178. 

Drobak, B.K., Franklin-Tong, V.E., Staiger, C.T., 2004. The role of the actin cytoskeleton in 

plant cell signaling. New Phytol. 163, 13–30. 

Duceppe, M.O., Cloutier, C., Michaud, D., 2012. Wounding, insect chewing and phloem sap 

feeding differentially alter the leaf proteome of potato, Solanum tuberosum L. 

Proteome Sci. 10,73. 

Ecker, J.R., 1995. The ethylene signal transduction pathway in plants. Science  268, 667–

675. 

El-Sabea, A.M.R., Faleiro, J.R., Abo El Saad, M.M., 2009. The threat of red palm weevil 

Rhynchophorus ferrugineus to date plantations of the Gulf region of the Middle East: 

an economic perspective. Outlook Pest Manag. 20,131–134. 



120 

 

Faleiro, J.R., 2006.  A review of the issues and management of red palm weevil, 

Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm 

during the last one hundred years. Int. J. Trop. Insect Sci. 26,135–154. 

Faleiro, J.R., Kumar, J.A., 2008. A rapid decision sampling plan for implementing area-wide 

management of red palm weevil, Rhynchophorus ferrugineus, in coconut plantations 

of India. J. Insect Sci. 8(15): 9. 

Felton, G.W., Tumlinson, J.H., 2008.  Plant–insect dialogs: complex interactions at the 

plant–insect interface. Curr. Opin. Plant Biol. 11(4): 457-463. 

Ferry, M., Gómez, S., 2002.  The red palm weevil in the Mediterranean area. J. Int. Palm. 

Soc. 46 (4). http://www.palms.org/palmsjournal/2002/redweevil.htm 

Fink, A.L., 1999. Chaperone-mediated protein folding. Physiol. Rev. 79, 425–449. 

Freeman, B.C., Toft, D.O., Morimoto, R.I., 1996. Molecular chaperone machines: chaperone 

activities of the cyclophilin Cyp-40 and the steroid aporeceptor-associated protein 

p23. Science  274, 1718-20. 

Gadelhak, G.G., Enan, M.R., 2005. Genetic diversity among populations of Red Palm 

Weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae), determined 

by random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). 

Int. J. Agric. Biol. 7, 395-399. 

Gaikwad, A., Long II, J.D., Stringer, J.L., Jaiswal, A.K., 2001. In Vivo Role of 

NAD(P)H:Quinone Oxidoreductase 1 (NQO1) in the regulation of intracellular redox 

state and accumulation of abdominal adipose tissue.  J. Dial. Chem. 276, 22559 

22564. 

Gómez‐Vidal, S., Salinas, J., Tena, M., Lopez‐Llorca,  L.V., 2009. Proteomic analysis of 

date palm (Phoenix dactylifera L.) responses to endophytic colonization by 

entomopathogenic fungi. Electrophoresis 30(17): 2996-3005. 

Gómez‐Vidal, S., Tena, M., Lopez‐Llorca, L.V., Salinas, J., 2008. Protein extraction from 

Phoenix dactylifera L. leaves, a recalcitrant material, for two‐dimensional 

electrophoresis. Electrophoresis 29(2): 448-456 

Halitschke, R., Schittko, U., Pohnert, G., Boland, W., Baldwin, I.T., 2001. Molecular 

interactions between the specialist herbivore Manduca sexta (Lepidoptera, 

Sphingidae) and its natural host Nicotiana attenuata. III. fatty acid-amino acid 

conjugates in herbivore oral secretions are necessary and sufficient for 

herbivore-specific plant responses. Plant Physiol. 125(2): 711-717. 

Hoeflich, K.P., Ikura, M., 2002. Calmodulin in action: diversity in target recognition and 

activation mechanisms. Cell 108, 739−742. 



121 

 

Horowitz, D.S., Lee, E.J., Mabon, S.A., Misteli, T., 2002. A cyclophilin functions in 

pre-mRNA splicing. EMBO J. 21, 470-80. 

Hunt, P.W., Klok,  E.J., Trevaskis, B., Watts, R.A., Ellis, M.H., Peacock, W.J., Dennis, 

E.S., 2002. Increased level of hemoglobin 1 enhances survival of hypoxic stress and 

promotes early growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci.  USA. 99, 

17197–17202. 

Hussey, P.J., Ketelaar, T., Deeks, M.J., 2006. Control of the actin cytoskeleton in plant cell 

growth. Annu. Rev. Plant Biol. 57, 109–125. 

Kaakeh, W., 2005. Longevity, fecundity, and fertility of the red palm weevil, Rynchophorus 

ferrugineus Olivier (Coleoptera: Curculionidae) on natural and artificial diets. Emir. 

J. Agric. Sci. 17(1):23-33.  

Kabala, K., Klobus, G., 2008. Modification of vacuolar proton pumps in cucumber roots 

under salt stress. J. Plant Physiol. 165, 1830–1837. 

Kahl, C.R., Means, A.R., 2003. Regulation of cell cycle progression by 

alcium/calmodulin-dependent pathways. Endocr. Rev. 24,719−736. 

Kessler, A., Baldwin. I.T., 2002.  Plant responses to insect herbivory: the emerging 

molecular analysis. Annu. Rev. Plant Biol. 53(1): 299-328. 

Kluge, C., Lahr, J., Hanitzsch, M., Bolte, S., Golldack, D., 2003. New insight into the 

structure and regulation of the plant vacuolar H
+
-ATPase. J. Bioenerg. Biomembr. 35, 

377–388. 

Korth, K.L., Dixon, R.A., 1997. Evidence for chewing insect-specific molecular events 

distinct from a general wound response in leaves. Plant Physiol. 115(4):1299-1305. 

Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of 

bacteriophage T4. Nature, 227, 680-685. 

Lamattina, L., Garcia-Mata, C., Graziano, M., Pagnussat, G., 2003. Nitric oxide: the 

versatility of an extensive signal molecule. Annu. Rev. Plant Biol. 54,109–136. 

Lippert,  D., Chowrira, S., Ralph, S.G., Zhuang, J., Aeschliman, D., Ritland, C.,  Ritland, 

K., Bohlmann, J., 2007. Conifer defense against insects: Proteome analysis of Sitka 

spruce (Picea sitchensis) bark induced by mechanical wounding or feeding by white 

pine weevils (Pissodes strobi).  Proteomics 7, 248–270. 

Lorenzo, O., Piqueras, R., Sánchez-Serrano, J.J., Solano, R., 2003. Ethylene response factor1 

integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 

15, 165–178. 



122 

 

Lorenzo, O., Piqueras, R., Sánchez-Serrano, J.J., Solano, R., 2003. Ethylene response factor1 

integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 

15, 165–178. 

Mankin, R.W., Hagstrum, D.W., Smith, M.T., Roda, A.L., Kairo, M.T.K., 2011. Perspective 

and promise: a century of insect acoustic detection and monitoring. Am. Entomol. 57, 

30-44. 

Marqués, J., DuranVila, N., Daròs, J.A.,2011. The Mn-binding proteins of the photosystem II 

oxygen-evolving complex are decreased in date palms affected by brittle leaf disease. 

Plant Physiol. Biochem. 49(4):388-394. 

Mewis, I., Tokuhisa, J.G., Schultz . J.C., Appel, H.M., Ulrichs, C., Gershenzon, J., 2006. 

Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response 

to generalist and specialist herbivores of different feeding guilds and the role of 

defense signaling pathways. Phytochemistry 67(22):2450-2462. 

Miklis, M., Consonni, C., Bhat, R.A., Lipka, V., Schulze-Lefert, P., Panstruga, R., 2007.  

Barley MLO modulates actin-dependent and actin-independent antifungal defense 

pathways at the cell periphery. Plant Physiol. 144, 1132–1143. 

Moreau, M., Lindermayr, C., Durner , J., Klessig, D.F., 2010. NO synthesis and signaling in 

plants where do we stand? Physiol. Plant 138, 372–383. 

Mukhtar, M., Rasool, K.G., Parrella, M.P., Sheikh, Q.I., Pain, A., Lopez-Llorca, L.V., 

Aldryhim, Y. N., Mankin, R.W., Aldawood, A.S., 2011. New initiatives for 

management of red palm weevil threats to historical Arabian date palms.  Fla. 

Entomol. 94(4): 733-736. 

Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H., 2006. Genome-wide analysis of the ERF 

gene family in Arabidopsis and rice. Plant Physiol. 40, 411–432. 

Nakash, J., Osem, Y., Kehat, M., 2000. A suggestion to use dogs for detecting 

Rhynchophorus ferrugineus infestation in date palms in Israel. Phytoparasitica 28, 

153-155. 

O’Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O., Bowles, D.J., 

1996. Ethylene as a signal mediating the wound response of tomato plants. Science 

274,1914–1917. 

Otoch, M.L.O., Sobreira, A.C.M., Aragão, M.E.F., Orellano, E.G., Lima, M.G.S., 2001. Salt 

modulation of vacuolar H
+
-ATPase and H

+
-Pyrophosphatase activities in Vigna 

unguiculata. J. Plant Physiol. 158, 545–551. 

Penninckx, I.A., Eggermont, K., Terras, F.R., Thomma, B.P., De Samblanx, G.W., Buchala, 

A., Métraux, J.P., Manners, J.M., Broekaert, W.F., 1996. Pathogen induced systemic 

activation of a plant defensin gene in Arabidopsis follows a salicylic 

acid-independent pathway. Plant Cell 8, 2309–2323. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Mewis%20I%5BAuthor%5D&cauthor=true&cauthor_uid=17049571
http://www.ncbi.nlm.nih.gov/pubmed?term=Tokuhisa%20JG%5BAuthor%5D&cauthor=true&cauthor_uid=17049571
http://www.ncbi.nlm.nih.gov/pubmed?term=Appel%20HM%5BAuthor%5D&cauthor=true&cauthor_uid=17049571
http://www.ncbi.nlm.nih.gov/pubmed?term=Ulrichs%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17049571
http://www.ncbi.nlm.nih.gov/pubmed?term=Gershenzon%20J%5BAuthor%5D&cauthor=true&cauthor_uid=17049571


123 

 

Perazzolli, M., Dominici, P., Romero-Puertas, M.C., Zago, E., Zeier, J., Sonoda, M., Lamb, 

C., Delledonne, M., 2004. Arabidopsis non symbiotic hemoglobin AHb1 modulates 

nitric oxide bioactivity. Plant Cell 16, 2785–2794. 

Pollard, T.D., Borisy, G.G., 2003. Cellular motility driven by assembly and disassembly of 

actin filaments. Cell 112(4):453-65. 

Potamitis, I., Ganchev, T., Kontodimas, D., 2009. On automatic bioacoustic detection of 

pests: the cases of Rhynchophorus ferrugineus and Sitophilus oryzae. J. Econ. 

Entomol. 102, 1681-1690. 

Price, E.R., Jin, M., Lim, D., Pati, S., Walsh, C.T., McKeon, F.D., 1994. Cyclophilin B 

trafficking through the secretory pathway is altered by binding of cyclosporin. Proc. 

Natl. Acad. Sci. USA 91, 3931-5. 

Qiao, W., Fan, L.M., 2008. Nitric oxide signaling in plant responses to abiotic stresses. J. 

Integr. Plant Biol. 50, 1238–1246. 

Qiu, N., Chen, M., Guo, J., Bao, H., Ma, X., 2007. Coordinate up-regulation of 

V-H
+
-ATPase and vacuolar Na

+
/H

+
 antiporter as a response to NaCl treatment in a C3 

halophyte Sueda salsa. Plant Sci. 172, 1218–1225. 

Radjendirane, V., Joseph, P., Lee, Y.H., Kimura, S., KleinSazanto, A.J.P., Gonzalez, F.J., 

Jaiswal, A.K., 1998. Disruption of the DT diaphorase (NQO1) gene in mice leads to 

increased menadione toxicity. J. Biol. Chem. 273, 7382–7389. 

Rajamanickam, K., Kennedy, J.S., Christopher, A., 1995. Certain components of integrated 

management for red palm weevil, Rhynchophorus ferrugineus F. (Curculionidae: 

Coleoptera) on coconut. Meded. Fac. Landbouwkd. Toegep. Biol. Wet. 60, 803-805. 

Rasool, K.G., Khan, M.A., Aldawood, A.S., Tufail, M., Mukhtar, M., Takeda, M., 2014. 

Comparative analysis of red palm weevil infested date palm with healthy normal 

plants.  Pak. J. Agri. Sci. (In Press) 

Reimer, U., Fischer, G., 2002.  Local structural changes caused by peptidyl-prolyl cis/trans 

isomerization in the native state of proteins. Biophys. Chem. 96, 203-212. 

Rockel, P., Strube, F., Rockel, A., Wildt, J., Kaiser, W., 2002.  Regulation of nitric oxide 

(NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 53, 103–

110. 

Schnitzer,  D., Seidel, T., Sander, T., Golldack, D., Dietz, K.J., 2011. The cellular 

energization state affects peripheral stalk stability of plant vacuolar H
+
-ATPase and 

impairs vacuolar acidification. Plant Cell Physiol. 52, 946–956. 

Schreiber, S.L., 1991. Chemistry and biology of the immunophilins and their 

immunosuppressive ligands. Science  251, 283-287. 



124 

 

Schuler, F., Yano, T., Bernardo, S.D., Yagi, T., Yankovskaya, V., Singer, T.P., Casida, J.E., 

1999. NADH-quinone oxidoreductase: PSST subunit couples electron transfer from 

iron–sulfur cluster N2 to quinine. Proc. Natl. Acad. Sci. USA 96, 4149–4153. 

Sghaier-Hammami, B., Redondo-López, I., Maldonado-Alconada, A.M., 

Echevarría-Zomeño, S., Jorrín-Novo, J.V., 2012.  A proteomic approach analysing 

the Arabidopsis thaliana response to virulent and avirulent Pseudomonas syringae 

strains. Acta Physiol. Plant 34(3):905-922. 

Shaw, P.E., 2002. Peptidyl-prolyl isomerases: a new twist to transcription. EMBO Rep. 3, 

521-526. 

Silva, P., Façanha, A.R., Tavares, R.M., Gerós, H., 2010. Role of tonoplast proton pumps 

and Na
+
/H

+
 antiport system in salt tolerance of Populus euphratica Oliv. J. Plant 

Growth Regul.  29, 23–34. 

Silva, P., Gerós, H., 2009. Regulation by salt of vacuolar H
+
-ATPase and 

H
+
-pyrophosphatase activities and Na

+
/H

+
 exchange. Plant Signal Behav. 4, 718–726. 

Solanke, A.U., Sharma, A.K., 2008. Signal transduction during cold stress in plants. Physiol. 

Mol. Biol Plants 14, 69-79 

Staiger, C.J., Blanchoin, L., 2006. Actin dynamics: old friends with new stories. Curr. Opin. 

Plant Biol.  9, 554–56.2. 

Tamayo, M.C., Rufat, M., Bravo, J.M., San Segundo, B., 2000. Accumulation of a maize 

proteinase inhibitor in response to wounding and insect feeding, and characterization 

of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 

211(1): 62-71. 

Tian, M., Chaudhry, F., Ruzicka, D.R., Meagher, R.B., Staiger, C.J., Day, B., 2009.  

Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal 

transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol. 

150, 815–824. 

Turlings,  T.C.J.,  Bernasconi,  M.,  Bertossa,  R.,  Bigler,  F.,  Caloz,  G.,  Dorn,  

S., 1998.  The  induction  of  volatile  emission  in  maize by  three  

herbivores  species  with  different  feeding  habits:  Possible consequences for 

their natural enemies. Biol. Control  1, 122-129. 

Turlings, T.C., Tumlinson , J.H., Lewis, W., 1990.  Exploitation of herbivore-induced plant 

odors by host-seeking parasitic wasps. Science  250(4985):1251-1253 

von Wettstein, D., Gough, S., Kannangara, C.G., 1995.  Chlorophyll Biosynthesis. The 

Plant Cell  7, 1039-1057. 



125 

 

Weisman, R., Creanor, J., Fantes, P., 1996. A multicopy suppressor of a cell cycle defect in 

S. pombe encodes a heat shock-inducible 40 kDa cyclophilin-like protein. EMBO J. 

15, 447-56. 

Wendehenne, D., Durner, J., Klessig, D.F., 2004.  Nitric oxide: a new player in plant 

signaling and defence responses. Curr. Opin. Plant Biol. 7, 449–455. 

Yap, K.L., Kim , J., Truong, K., Sherman, M., Yuan, T., Ikura, M., 2000. Calmodulin target 

database. J. Struct. Funct. Genomics 1, 8−14. 

  



126 

 

Chapter 
   FIVE 

5 General summary/ Future Plan/ Acknowledgements 
 

 General summary 5.1

The red palm weevil (RPW), Rhynchophorus ferrugineus (Oliv.) (Curculionidae : 

Coleoptera) is damaging date palm trees in several regions of the world. Infestation is 

highly concealed in nature. Applications of systemic pesticides through injection and 

spray to infested date palm trees have been partially effective in controlling RPW. 

However, after RPW infestation, destruction of the palm trees is the routine strategy to 

control spread of this insect. Presently, some detection techniques, including visual 

inspections, acoustic sensors, sniffer dogs, and pheromone traps have been tried out to 

detect RPW infestations at early stages; however, each technique has suffered certain 

logistic and implementation issues. A highly sensitive and reliable detection method of 

the infested plants is awaited to be applied in the field for early cure or removal of 

infested plants thus cur tailing further spread of this insect. Plants like other livings 

responds to external stimuli and as such RPW infestation associated responses of the host 

plant can be used for detection of pest infestation. 

Therefore, we planned to identify the differentially expressed peptides of date palm 

possibly associated with RPW infestation. The study might be helpful in developing 

some molecular marker(s) for the early detection of RPW or its infestation. The 

objectives of our study were the molecular profiling of the date palm infested with RPW, 
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and identification and characterization of differentially expressed peptides using 

MALDI-TOF mass spectrometry analysis. 

To achieve the purpose, efforts were first made to optimize a rapid and sensitive protocol 

for the isolation of high quality protein to be used in 2DE and 2D-DIGE from date palm 

samples, and then comparing differentially expressed peptides associated with RPW 

infestation of this plant using un-infested plants as control. Among several protocols we 

used for optimization phenol-simple buffer extraction with methanolic ammonium 

acetate precipitation (designated as protocol 3 in this study) yielded high quality protein.  

In first experiment, 2DE protein analysis demonstrated both qualitative and quantitative 

differences between control and infested date palm leaves samples. To identify 

infestation specific responses artificially wounded trees were also used. Our differential 

proteomic methodologies showed 22 differential spots having modulation level ≥1.5 fold. 

Subsequently, these differentially expressed peptides were subjected to MALDI-TOF 

peptide mass fingerprinting analysis for their characterization. The peptides identified 

through these methodologies fall into three major functional groups including 

stress/defense (5), photosynthesis (2), ion transport (1) related proteins and three with 

other functions. Our data revealed that proteins related to date palm defense or stress 

response were up-regulated in infested samples while the proteins involved in 

photosynthetic activities were down regulated. The present results indicated that RPW 

infestation of date palm plants induce molecular changes manifested through differential 

expression of proteins.  

In second experiment, RPW infestation-associated molecular changes were investigated 

in date palm leave samples i.e. protein expression differences were compared with the 
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healthy plants using highly sensitive 2D- DIGE followed by MALDI-TOF-TOF analysis. 

The 2D-DIGE results revealed qualitative and quantitative differences between control 

and RPW infested date palm samples. To identify infestation specific responses 

artificially wounded trees were also included in comparative expression profiling. Thirty 

two differential spots (p≤0.05 having ≥1.5 fold modulation) were subjected to mass 

spectrometry analysis and among these 22 spots were completely characterized. A 

detailed analysis revealed 7 as stress/defense related, 6 photosynthetic, 2 each from 

carbohydrate utilization system and protein degradation. Three peptides with other 

functions are also modulated. Proteins involved in date palm defense and stress response 

were up-regulated in infested and wounded sample while photosynthetic and other 

proteins were down regulated. This study suggests that RPW infestation modulate the 

plant defense responses through differential expression of proteins associated with 

defense, stress and photosynthesis and these proteins could help to identify RPW 

infestation at early stages.  

In third experiment, we tried to explore differentially expressed proteins in the date palm 

stem tissues on infestation with the RPW. Our analyses revealed 32 differentially 

expressed peptides associated with RPW infestation in date palm stem. Of importance, to 

identify RPW infestation associated peptides (I), artificially wounded plants (W) were 

also used as additional control besides un-infested plants, a conventional control (C). A 

constant unique pattern of differential expression in infested (I), wounded (W) stem 

samples compared to control (C) was observed. The up-regulated proteins showed 

relative fold intensity in order of I >W>C and down regulated spots trend as C>W>I, a 

quite intriguing pattern. Relatively significant modulated expression pattern of a number 
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of peptides in infested plants predicts the possibility of developing a quick and reliable 

molecular methodology for detecting plants infested with date palm. This study also 

reveals that artificially wounding of date palm stem almost affect the same proteins as 

infestation however relative intensity is quite lower than infested samples both in up and 

down regulated spots. All 32 differentially expressed spots were subjected to 

MALDI-TOF analysis for their identification and we were able to match 21 proteins 

already existing in the databases. Furthermore, modulated proteins functionally belong to 

different physiological groups including: ion transport (33%), lipid biosynthesis (9%), 

protein folding (5%), plant defense (4%), ethylene signaling pathway (5%), carbohydrate 

metabolism (5%), proteolysis (5%), S-adenosylmethionine biosynthetic process (5%), 

nitrate assimilation (5%), porphyrin biosynthesis (5%), transcription (5%), lignin 

biosynthesis (4%) and unknown (5%) categories. 

We believe that the protein molecules displaying modulated response and especially 

those with up-regulated expression pattern in infested date palm samples will be helpful 

in developing some diagnostic molecular markers for early detection of RPW infestation 

beneficial for manipulating this crucial problem of date palm wreckage. 
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 Future Plan 5.2

 

We plan to design sequence-specific PCR primers based on promising differentially 

expressed peptide(s) identified by MALDI TOF. Then validation of the differentially 

expressed gene(s) will be done by PCR/ Quantitative RT PCR using cDNA as a 

template from the control and infested date palms, grown in the lab as well as in the 

field. Ultimately, we wish to develop a molecular marker associated with RPW for 

early detection of this date palm killing pest. 

  



131 

 

 Acknowledgements  5.3

All the acclamations and appreciations are for Almighty Allah, the compassionate and 

benevolent that knows better the mysteries and secrets of the universe and his Holy 

Prophet (Peace Be Upon Him) whose blessings enable me to perceive and pursue 

higher goals of life. 

I would like to express my sincere and warm gratitude to Professor Dr. Makio Takeda 

(My Supervisor) for letting me fulfill my dream of being a student at Kobe University, 

strong support, cooperation, intellectual guidance, reviewing manuscript and precious 

time during my study under his kind supervision.  

I would like to express my sincere gratitude to Professor Dr. Kaoru Maeto (My 

Co-supervisor), Kobe University for reviewing this dissertation and providing several 

valuable comments that improved the contents of this dissertation. 

I owe my deepest gratitude to Professor Dr. Takashi Nanmori (My Co-supervisor), Kobe 

University for his valuable suggestions and concise comments that greatly improved the 

quality of this dissertation. 

I have absolutely no words to express my deep sense of gratitude and respect for   

Professor Dr. Abdulrahman S. Aldawood (My Co-supervisor), King Saud Unversity for 

permitting me to pursue my PhD beside my official obligations at the King Saud 

University, providing well equipped lab facilities, technical guidance, continuous 

support, moral boosting and encouragement.  

I express my heartfelt gratitude to Professor Dr. Muhammad Tufail (My Co-supervisor) , 

King Saud Unversity for his technical guidance at each step, reviewing manuscripts, 

continuous support and encouragement.  

My cordial thanks are due to Dr. Muhammad Altaf Khan for providing me technical 

guidance and support during my research. 



132 

 

I am extremely grateful and indebted to Professor Dr. Muhammad Mukhtar for reviewing 

manuscripts and moral boosting.  

The author feels great pleasure and honor to acknowledge all faculty members of the 

Department of Plant Protection, College of Food and Agricultural Sciences including: Dr. 

Yousif N. Aldryhim, Dr. Azzam Alahmed, Dr. Ali M. Alsuhaibani, Dr. Ahmed Alkhazim 

Alghamdi, Dr. Abdulaziz S. M. Alqarni, Dr. Fahad Jaber Alatawi, Dr. Mohammed A. 

AL-Saleh, Dr. Hathal Mohammed AL-Dhafer, Dr. Ibrahim M. Alshahwan, Dr. 

Fahad Abdullah Ali Al-Yahya, Dr. Younes Y. Molan and Dr. Saleh A. A. Aldosari for 

their encouragement and kind cooperation.  

I gratefully acknowledge support from Dr. Assim A. Alfadda, Dr. Hicham Benabdelkamel 

and Dr. Afshan Masood Obesity Research Center, College of Medicine, King Saud 

University for mass spectrometry facilities. 

I have no words to extend my sincere thanks to Economic Entomology Research Unit 

(EERU) members who supported for RPW rearing and other technical assistance. 

My deepest gratitude is due to my loving and dearest wife Khalida Rasool, son Adil Rasool 

Khawaja and daughters Mahnoor Rasool Khawaja, Fatima Rasool Khawaja and Rania 

Rasool Khawaja for their love, patience, understanding, and sacrifices that greatly 

constituted to the successful completion of my doctoral studies.  

This research was supported by the National Plan for Sciences and Technology program, 

King Saud University, Riyadh, Saudi Arabia (Project No. 09-BIO900-02).  

 

 

http://king-saud.academia.edu/DrAliMAlsuhaibani

