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Abstract 

 

This dissertation mainly contains two parts: one is the utilization of metal-organic 

framework (MOF) as a host matrice for immobilizing metal nanoparticles (MNPs) and 

the use of the fabricated MNP@MOF composites as catalysts for catalytic hydrogen 

generation from ammonia borane (AB), and the other is the utilization of MOF as a 

template/precursor for nanoporous carbon (NPC) material synthesis and the use of the 

resultant NPCs as supports of Pd electrocatalysts for methanol electrooxidation. 

Non-noble metal-based (AuCo) and non-noble bimetallic (CuCo) alloy nanoparticles 

were successfully encapsulated in the pores of MIL-101, a chromium-based MOF, which 

exhibit high catalytic activities for hydrolytic dehydrogenation of AB. Hierarchically 

porous carbon was synthesized by direct carbonization of assembled nanoparticles of 

zeolitic imidazolate framework (ZIF-8), which has been used as support for Pd 

electrocatalyst for methanol electrooxidation in alkaline media for the first time. The 

main research results of this dissertation are summarized as follows.  

(i) Highly active AuCo alloy nanoparticles encapsulated in the pores of 

metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane 

Ultrafine AuCo alloy nanoparticles were successfully encapsulated in the pores of 

MIL-101 without aggregation on the external surfaces of the host framework by using the 

double solvents method combined with the overwhelming reduction approach, as 

demonstrated by transmission electron microscopic (TEM) and high-angle annular 

dark-field scanning TEM (HAADF-STEM) analyses. The ultrafine AuCo alloy NPs 

inside the mesoporous MIL-101 exhibit much higher catalytic activity for hydrolytic 

dehydrogenation of AB in comparison with their monometallic Au and Co counterparts. 

To the best of our knowledge, this obtained activity is the highest for supported Co and 

Co-based catalysts ever reported for hydrolytic dehydrogenation of aqueous AB.  

(ii) Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of 

metal-organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane 

for hydrogen generation 



 III 

Non-noble bimetallic CuCo alloy nanoparticles were successfully encapsulated in 

the pores of MIL-101 by using the double solvents method combined with the 

overwhelming reduction approach, which display remarkably enhanced catalytic activity 

for hydrolytic dehydrogenation of AB to generate a stoichiometric amount of hydrogen at 

room temperature for chemical hydrogen storage, which presents the first example of 

MOF-supported non-noble bimetallic catalysts for the hydrogen generation from 

hydrolysis of AB. The synergetic effect between copper and cobalt species plays an 

important role for the improved performance in the catalytic hydrolysis of AB. 

(iii) Pd nanoparticles supported on hierarchically porous carbon derived from 

assembled nanoparticles of zeolitic imidazolate framework (ZIF-8) for methanol 

electrooxidation 

We, for the first time, use the hierarchically porous carbons with both micro- and 

mesopores obtained from direct carbonization of assembled nanoparticles of ZIF-8 

[Zn(MeIM)2; MeIM = 2-methylimidazole] as support for Pd electrocatalysts for methanol 

electrooxidation in alkaline media. At the carbonization temperature of 1000 °C, the 

highest surface area (1105 m
2
 g

-1
) and the largest pore volume (0.95 cm

3
 g

-1
) of 

ZIF-8-derived carbon (ZC) are achieved. The Pd/ZC-1000 catalyst is the most active and 

electrochemically stable among the Pd catalysts supported on ZCs prepared at 

800-1100 °C. Moreover, the catalytic activity of Pd/ZC-1000 is 5 times higher than that 

of Pd supported on the commercial carbon black Vulcan XC-72R at the same Pd loading. 

The ZC-1000 with unique physical properties and high electrochemical performance will 

be a promising catalyst support for the application of direct methanol fuel cell. 

In summary, this dissertation focuses on the fabrication of a series of MOF-based 

materials, that is, the composites of metal nanoparticles with MOFs and MOF-derived 

carbons, and their applications as heterogeneous catalysts for hydrolytic dehydrogenation 

of ammonia borane and methanol electrooxidation. 
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Chapter 1 

Introduction 

Metal-organic frameworks (MOFs), also known as porous coordination polymers 

(PCPs) have been developed for around 20 years.
1
 Starting from metal-organic 

coordination polymers developed by Robson et al.,
1-3

 Yaghi and O’Keffee introduced the 

concept of the metal-organic frameworks,
4,5

 which is an infinite network assembled by 

inorganic vertices/nodes (metal ions or clusters) and organic linkers/spacers (ligands). 

The two components are connected to each other by coordination bonds, together with 

other intermolecular interactions, to extend “infinitely” into one, two or three dimension 

networks with varieties of topologies (Fig. 1.1).
6
 In order to well understand and describe 

topologies of MOF structures, Yaghi group firstly proposed the concepts of reticular 

chemistry and secondary building units and applied them with great success to design and 

description of highly porous and rigid MOF structures (Fig. 1.2).
7,8

  

 

 

 

Fig. 1.1 A general scheme of MOF synthesis (from ref. 6). 
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Fig. 1.2 A typical strategy for constructing MOF-5 (A), IRMOF-6 (B), and IRMOF-8 (C) by 

changing the links to increase the pore size using the same secondary building units (SBUs) (from 

ref. 8). 

Emerging as a new class of porous crystalline materials, MOFs have shown high 

promising applications as functional physical or chemical materials.
9
 A key structured 

feature in MOFs is their high porosity as well as large surface areas, which plays a crucial 

role in their functional properties, such as magnetism,
10

 fluorescence,
11

 thin films,
12

 gas 

storage and separation,
13

 catalysis,
14

 sensing or recongnition,
15

 proton conduction,
16

 drug 

delivery,
17

 and so on. In this context, we focus on the recent developments concerning the 

following two functional applications of MOFs: as supports/host matrices for metal 

nanoparticles (MNPs) and as templates/precursors for porous carbon material syntheses 

and applications. 

 

1.1 MNP@MOF composites 

Over the past years, MNPs have been broadly investigated due to their extremely 

small size and wide range of potential applications in industry,
18

 information-storage,
19

 

biomedicine,
20

 catalysis,
21

 and so on. It is well known that MNPs have a much larger 

surface area to volume ratio than their bulk counterparts, which is the basis of their 

unique physicochemical properties, however, which results in the free MNPs having high 

surface energies and tending to aggregate.
22

 To solve this contradiction, one of the 

efficient ways is utilization of porous materials, such as metal oxides, zeolites, 

mesoporous silica and activated carbons as supports for MNP immobilization, which 

allows the generation of specific surfactant-free active sites with the merits of controlling 
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particle nucleation and growth to a nanosize region in the confined void spaces and 

preventing particle aggregation.
23,24

 

Given the similarity to zeolites, porous MOFs are a promising new class of matrice 

for hosting MNP catalysts due to their rationally designed framework structures with 

desired pore sizes, shapes and functionalities, and moderate electronic interaction 

between the MNPs and organic linkers, which is significantly important for controlling 

the limited growth of MNPs in their confined cavities and producing highly reactive 

MNPs for the final applications in heterogonous catalysis.
25

 During the last five years, a 

number of examples for a range of metals like Cu, Ni, Ru, Pd, Au, Ag and Pt supported 

on MOFs have been reported.
26

 

 

1.1.1 Preparation methods 

In general, embedding MNPs in a MOF matrix is achieved by the impregnation of 

metal precursors followed by reduction or decomposition of the precursors to metal 

atoms. It has been reported that gas-, solid- and solution-phase loading methods have 

been well carried out with different metal precursors by different research groups.
26-38

 

Gas-phase infiltration method or metal organic chemical vapor deposition (MOCVD) 

initially developed by Fischer and co-workers, in which volatile metal organic 

compounds, such as (η
3
-C3H5)Pd(η

5
-C5H5), (η5

-C5H5)Cu(PMe3) and (CH3)Au(PMe3), 

known as precursors were incorporated into the pores or channels of MOFs at an 

appropriate temperature depending on the vapor pressure of the metal precursor under a 

static vacuum by a sublimation process and subsequently reduced by hydrogen reduction 

or simple thermal decomposition. Since 2005, by using the highly porous MOF-5, 

MOF-177, ZIF-8 and ZIF-90, a series of MNP@MOF nanocomposites have been 

prepared.
 27-29

 

In contrast to gas-phase method, solid grinding is a very facile yet surprisingly 

effective method for depositing MNPs onto MOFs and was developed in 2008 by Haruta 

and co-workers.
30

 So far, this method was especially developed for supporting nanosized 

gold clusters on different MOF (MIL-53(Al), MOF-5, HKUST-1, and so on) matrice.
30-32

 

In this method, desolvated MOF and volatile Me2Au(acac) (acac = acetylacetonate) were 
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grinded in a mortar for several minutes at room temperature without using any solvent. 

Like the MOCVD strategy, the chosen precursors are volatile and may be absorbed from 

the gas phase infiltrates into the cavities of MOFs during the grinding process, leading to 

well-distributed deposition of the precursor. Then the adsorbed species were treated with 

H2 gas to form small MNPs. 

Generally speaking, the gas- and solid-phase infiltration methods have the merit of 

allowing particularly high loading amount of metal precursors. However, on other hand, 

such high loading degree sometimes leads to agglomeration of MNPs as well as 

partial/full degradation of the frameworks. In addition, the limited number of volatile 

metal organic compounds restricts the applications of these metholds. 

The simplest and most-used approach for the introduction of MNPs into MOFs is 

utilization of an aqueous solution of simple metal salts for liquid impregnation. Once the 

desolvated porous MOFs are soaked into the metal precursor solution, the precursors are 

infiltrated into the pores of MOFs by capillary force. After removal of solvents from the 

host framework, composites are reduced by a reducing agent, typically H2 gas or NaBH4, 

to obtain fine MNPs deposited in MOFs. 

Zlotea et al. reported the deposition of Pd NPs with a mean size of 2.5 nm into a 

MOF, MIL-100(Al) ([Cr3F(H2O)3O(btc)2], btc=1,3,5-benzenetricarboxylate) by using the 

tetrachloropalladinic acid solution for liquid impregnation.
33

 In order to facilitate the 

infiltration of the metal precursors, it is necessary to improve the interactions between the 

metal precursors and MOF supports. Férey and coworkers have successfully encapsulated 

effective noble metals into the pores of MIL-101 by pre-grafting an amine, 

ethylenediamine (ED), on its coordinatively unsaturated Cr (III) center. After 

neutralization of the surface amine groups with an aqueous HCl solution, ionic reactions 

between the positively charged surface ammonium groups and anionic noble metal salts 

([PdCl4]
2-

, [PtCl6]
2-

 and [AuCl4]
-
) took place by anionic exchange of the chloride anions 

(Fig. 1.3).
34

 In a same way, we successfully immobilized bimetallic Au-Pd NPs in the 

ED-grafted MIL-101.
35
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Fig. 1.3 Site-selective functionalization of MIL-101 with unsaturated metal sites: (a) perspective 

view of the mesoporous cage of MIL-101 with hexagonal windows; (b,c) evolution of 

coordinatively unsaturated sites from chromium trimers in mesoporous cages of MIL-101 after 

vacuum treatment; (d) surface functionalization of the dehydrated MIL-101 through selective 

grafting of amine molecules onto coordinatively unsaturated sites; (e) selective encapsulation of 

noble metals in the amine-grafted MIL-101 (from ref. 34).  

Compared to this simple liquid impregnation method, the incipient wetness method, 

one of the impregnation techniques, can feasibly control the loading amount of metals in 

the MOFs. In this method, a defined concentration of metal precursor solution with a 

volume equal to the total pore volume of the MOF support is impregnated, and the pores 

are filled by the capillary force. With this method, the introduction of 1 wt% of Pd into 

MOF-5 was performed by using a solution of [Pd(acac)2] (acac = acetylacetonate) in 

CHCl3 and subsequent thermal hydrogenolysis of the formed intermediate material.
36

  

One of the inevitable drawbacks of this method is the metal precursor compounds 

and products can actually deposit on the external surface of MOFs to form the MNPs 

with aggregation on the external surface of MOFs. Therefore, the development of a 

general and facile method to incorporate fine MNPs within the pores of MOFs remains a 

real challenge. Recently, we have developed a double solvents method (DSM), which can 
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introduce noble metal precursors into the pores of MOF without deposition on the 

external surface of the framework. After the treatment with hydrogen at a relatively low 

temperature, ultrafine MNPs within the pores of the MOFs can been obtained (Fig. 

1.4).
37-39

 By using this method, ultrafine Pt, Pd, Au and Rh NPs were also successfully 

encapsulated into the pores of MIL-101 without aggregation on the external surface of 

the framework.
37,39

 

 

 

Fig. 1.4 Schematic representation of synthesis of Pt nanoparticles inside the MIL-101 matrix 

using double solvents method (from ref. 37). 

In contrast to noble metals, non-noble metals need more drastic reduction conditions 

such as higher temperature for molecular H2 reduction, however, the limited thermal 

stabilities of MOFs do not allow this. To solve this problem, a strategy combined DSM 

and the liquid-phase concentration-controlled reduction (CCR) approach has been 

developed by us to immobilize non-noble metal based alloy NPs to MIL-101 with size 

and location control.
38

 This effective strategy represents a promising step toward the 

applications of porous MOFs as hosts for ultrafine non-noble metal NPs . 

 

1.1.2 Use as catalysts for catalytic hydrogen generation from ammonia 

borane 

Hydrogen has been considered as one of the best alternative energy carriers to 

satisfy the increasing demand for a sustainable and clean energy supply.
40

 The 

development of effective hydrogen-storage materials is imperative but challenging for 
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establishing a hydrogen-based energy system.
41

 Recently, liquid-phase chemical storage 

materials with high hydrogen contents, such as aqueous ammonia borane (NH3BH3, AB), 

hydrazine (N2H4) and formic acid (HCOOH, FA) with the hydrogen capacities of 19.6, 

12.6 and 4.4 wt%, respectively, have become the promising candidates for chemical 

hydrogen storage applications.
42-47

 Among them, AB has attracted much attention, which 

is not only due to its highest gravimetric hydrogen capacity (19.6 wt.%) and low 

molecular weight, but also because it is nontoxic, stable, environmental benign, and can 

safely handled under ambient conditions.
47

 

So far various catalyst systems have been tested in the hydrolysis of AB and rapid 

hydrogen generation has been achieved by using noble metals such as Pt, Ru and 

Rh.
37,47c,48

 In 2012, we reported ultrafine Pt NPs (1.8 ± 0.2 nm) successfully encapsulated 

into the pores of MIL-101 without aggregation on the external surfaces of framework by 

using a double solvents method combined with H2 reduction.
37

 The 2 wt% Pt@MIL-101 

catalyst exhibited extremely high catalytic activity for hydrolysis of AB, over which the 

dehydrogenation reaction can be completed (H2/AB = 3.0) within only 2.5 min at room 

temperature ((Pt/AB = 0.0029 in molar ratio), giving a rate of ∼1.0 × 10
4
 LH2 molPt

−1 

min
−1

. 

Although the noble metal catalysts show very high activities for hydrolysis of AB, 

the limited resource restricts their practical applications. Therefore, the development of 

cost-effective non-noble MNPs catalysts is very important. In 2012, we successfully 

prepared highly dispersed Ni NPs immobilized by ZIF-8, via chemical vapor deposition 

(CVD) and chemical liquid deposition (CLD) approaches followed by H2 reduction, 

which presents the first example of MOF-supported metal catalysts for the hydrogen 

generation from hydrolysis of AB.
49

 For the CVD-Ni/ZIF-8 with a small particle size of 

2.7 ± 0.7 nm, the hydrolytic dehydrogenation of AB can be completed (H2/AB = 3.0) in 

13 min (Ni/AB = 0.019), giving a turnover frequency (TOF) value of 14.2 molH2 molNi
−1

 

min
−1

.  

To improve the catalytic activity of non-noble metals, bimetallic alloy NPs as a class 

of very important nanomaterials have gained particular attention, which show a great 

enhancement in their specific physical and chemical properties owing to a synergetic 

effect.
44,50

 The addition of a second metal is an important method for tailoring the 
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electronic and geometric structures of NPs to enhance their catalytic activities. Very 

recently, we reported successful preparation and excellent catalytic activity of the 

ultrafine non-noble metal-based AuNi alloy NPs (1.8 ± 0.2 nm) encapsulated in the pores 

of MIL-101.
38

 The AuNi@MIL-101 with the Au/Ni atomic ratio of 7:93 is the most 

active owing to the synergistic effect between Au and Ni, giving a turnover frequency 

(TOF) value of 66.2 molH2 molcat
−1

 min
−1

, which is even higher than that of most Pt-, Rh 

and Ru-related catalysts.
48 

The highly efficient catalyst brings light to new opportunities 

in applications of MOF-supported non-noble metal-based alloy NPs catalysts in the 

catalytic hydrolysis of aqueous AB. 

 

1.2 Porous MOFs as templates/precursors for porous carbon syntheses 

Due to the high surface area, large pore volume and good electrochemical properties, 

porous carbons have been one of the most important and conventional porous materials, 

especially in the applications of gaseous or liquid adsorptions, catalyst supports, and 

electrode materials for electric double layer capacitors (EDLCs) and fuel cells.
51-53

 

Porous carbons can be prepared via several methods, including carbonization of 

polymeric aerogels, activation (physical or chemical) of carbon materials, nanocasting 

with hard-templates and so on.
51-54

 Recently, MOFs as a novel class of porous materials 

have gained particular attention due to high porosity, large surface area and chemical 

tunability. The various pore sizes and high thermal stability of MOFs make them feasible 

as templates/precursors to prepare porous carbons through thermal conversion.
55-66

 

Generally, MOF-derived carbon materials can be fabricated by means of two 

methods.
56

 One is employing MOFs as sacrificial templates and some organic compounds 

such as furfuryl alcohol (FA) or glucose impregnated in the pores of MOF as the carbon 

precursors. During the carbonization process, MOF frameworks are decomposed, while 

the precursors lead to the formation of the nanoporous carbon (NPC). Another approach 

is direct carbonization of MOFs which contain abundant organic species that could be 

used as carbon precursors. 

In 2008, we, for the first time, obtained the NPC material by employing the MOF-5 

as a sacrificial template and FA as the carbon source (Fig 1.5).
57

 The NPC obtained at 
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1000 °C exhibits a high BET surface area (2872 m
2
 g

-1
) and the H2 uptake as high as 2.6 

wt% at 77 K and 1 bar, twice of that of MOF-5. Moreover, the as-synthesized NPC 

material exhibits excellent electrochemical performance as an electrode material for 

electrical double-layer capacitors (EDLCs) (electrolyte, 1.0 M H2SO4). It showed a 

capacitance of 204 F g
-1

 at a sweep rate of 5 mV s
-1

, which is higher than those of carbon 

material synthesized from SBA-15. Even at a current density of 50 mA g
-1

, the specific 

capacitance was maintained as high as 258 F g
-1

. 

 

 

Fig. 1.5 A diagrammatic view of preparation of nanoporous carbon using MOF as a template 

(from ref. 57).  

In 2010, Hu et al. prepared porous carbon materials through the direct carbonization 

of MOF-5 without or with additional carbon sources such as phenolic resin, carbon 

tetrachloride and ethylenediamine, and then the porous carbon materials were activated 

by KOH to further tune the pore structures.
58

 The results of the electrochemical 

capacitance behavior of these carbon materials show that only the carbon materials 

obtained from MOF-5 with carbon tetrachloride and ethylenediamine after KOH 

activation exhibited the best capacitances of 271 and 156 F g
-1

 (at a current density of 250 

mA g
-1

) as well as the highest energy densities on a gravimetric basis of 9.4 and 31.2 W h 

kg
-1

 in aqueous and organic electrolytes, respectively. 

As another types of templates and/or precursors, highly porous ZIF-8 and its 
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derivative IRZIF (isoreticular zeolitic imidazolate framework) series were extensively 

investigated in the last two years.
59,60

 In 2011, we firstly utilized ZIF-8 as both a 

precursor and a template and furfuryl alcohol (FA) as the second carbon source to prepare 

the nanoporous carbon materials.
59

 By changing the calcination temperature from 800 to 

1000 °C, the surface areas of the resultant carbon materials increased from 2169 to 3405 

m
2
 g

-1
. As shown in Fig. 1.6, both carbon-based electrodes displayed regular rectangular 

shapes without any redox peaks and the specific capacitance is about 200 F g
-1

 for both 

carbons at a current density of 50 mA g
-1

. Recently, a series of carbon materials (C-68, 

C-69 and C-70) having increasing BET surface areas were prepared using IRZIFs 

(ZIF-68, ZIF-69 and ZIF-70) as templates and FA as the carbon source under thermolysis 

temperature at 1000 °C by Banerjee and co-workers.
60

  

 

 

Fig. 1.6 (a and b) CVs at different scan rates and (c and d) galvanostatic charge–discharge 

profiles at different current densities for (a and c) C800 and (b and d) C1000 samples (from ref. 

59). 

Chen and co-workers reported the nitrogen-doped porous carbon nanopolyhedra 

(N-PCNPs) with high surface area (2221 m
2
 g

-1
) and narrow pore-size distributions (3.7 

nm) through direct carbonization of lab-synthesized ZIF-8 nanopolyhedra without 

additional carbon sources.
61

 Such N-PCNPs were employed to electrochemically detect 



 

 11 

ascorbic acid (AA), dopamine (DA) and uric acid (UA) by modifying a glassy carbon 

electrode. The N-PCNPs/GC electrode exhibited the well-resolved oxidation peaks 

toward electrocatalytic oxidation of AA, DA and UA with the peak potentials at 40 mV, 

188 mV and 312 mV, respectively, and could sense three analytes simultaneously with 

the detection limits (S/N = 3) of 740 nM, 11 nM and 21 nM for AA, DA and UA, 

respectively. 

Al-based MOF is also an excellent candidate as a template/precursor to construct the 

nanostructured carbon material. In 2011, Yamauchi and co-workers used 

{Al(OH)(1,4-NDC)·2H2O}n (ref. 62) as a template/precursor with FA as an additional 

carbon source, which were carbonized at 1000 °C in an inert atmosphere to produce 

microporous carbon fibers.
63

 The BET surface area of the carbon fibers increased from 

178 to 513 m
2
 g

-1
 upon increasing the loading amount of FA. 

Besides these well-known MOFs, other MOFs such as [Ni3(btc)2·12H2O] (btc = 

benzene-1,3,5-tricarboxylato)
64

 and Fe-based MOFs
65

 have also been explored as 

templates and/or precursors to prepare carbon materials. 

Although there are more and more reports on MOF-derived porous carbons, the 

applications of them are still in infancy. More excellent results in this area could be 

expected in near future. 

 

1.3 Scope of the present work 

This work emphasizes on exploiting the applications of MOFs as host matrices for 

immobilizing metal nanoparticles (MNPs) and as templates/precursors for nanoporous 

carbon (NPC) syntheses and the applications to catalysis.  

(i) Highly active AuCo alloy nanoparticles encapsulated in the pores of 

metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane 

Ultrafine AuCo alloy nanoparticles were successfully encapsulated in the pores of 

MIL-101 without aggregation on the external surfaces of the host framework by using the 

double solvents method combined with the overwhelming reduction approach, as 

demonstrated by transmission electron microscopic (TEM) and high-angle annular 

dark-field scanning TEM (HAADF-STEM) analyses. The ultrafine AuCo alloy NPs 
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inside the mesoporous MIL-101 exhibit much higher catalytic activity for hydrolytic 

dehydrogenation of AB in comparison with their monometallic Au and Co counterparts. 

To the best of our knowledge, this obtained activity is the highest for supported Co and 

Co-based catalysts ever reported for hydrolytic dehydrogenation of aqueous AB. This 

part was described in chapter 2. 

(ii) Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of 

metal-organic frameworks: synergetic catalysis in the hydrolysis of ammonia 

borane for hydrogen generation 

Non-noble bimetallic CuCo alloy nanoparticles were successfully encapsulated in 

the pores of MIL-101 by using the double solvents method combined with the 

overwhelming reduction approach, which display remarkably enhanced catalytic activity 

for hydrolytic dehydrogenation of AB to generate a stoichiometric amount of hydrogen at 

room temperature for chemical hydrogen storage, which presents the first example of 

MOF-supported non-noble bimetallic catalysts for the hydrogen generation from 

hydrolysis of AB. The synergetic effect between copper and cobalt species plays an 

important role for the improved performance in the catalytic hydrolysis of AB. This part 

was described in chapter 3. 

(iii) Pd nanoparticles supported on hierarchically porous carbon derived from 

assembled nanoparticles of zeolitic imidazolate framework (ZIF-8) for methanol 

electrooxidation 

To the best of our knowledge, the NPCs derived from MOFs as catalyst supports are 

rare reported in the studies of the fuel cells.
66

 We, for the first time, use the hierarchically 

porous carbons with both micro- and mesopores obtained from direct carbonization of 

assembled nanoparticles of ZIF-8 [Zn(MeIM)2; MeIM = 2-methylimidazole] as support 

for Pd electrocatalysts for methanol electrooxidation in alkaline media. At the 

carbonization temperature of 1000 °C, the highest surface area (1105 m
2
 g

-1
) and the 

largest pore volume (0.95 cm
3
 g

-1
) of ZIF-8-derived carbon (ZC) are achieved. The 

Pd/ZC-1000 catalyst is the most active and electrochemically among the Pd catalysts 

supported on ZCs prepared at 800-1100 °C. Moreover, the catalytic activity of 

Pd/ZC-1000 is 5 times higher than that of Pd supported on the commercial carbon black 
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Vulcan XC-72R at the same Pd loading. This part was described in chapter 4. 

In summary, this dissertation focuses on the fabrication of a series of MOF-based 

materials, that is, the composites of metal nanoparticles with MOFs and MOF-derived 

carbons, and their applications as heterogeneous catalysts for hydrolytic dehydrogenation 

of ammonia borane and methanol electrooxidation. 
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Chapter 2 

Highly active AuCo alloy nanoparticles encapsulated in the 

pores of metal-organic frameworks for hydrolytic 

dehydrogenation of ammonia borane 

Ultrafine AuCo alloy nanoparticles were successfully encapsulated in the pores of 

MIL-101 without aggregation on the external surfaces of the host framework by using the 

double solvents method combined with the overwhelming reduction approach, as 

demonstrated by transmission electron microscopic (TEM) and high-angle annular 

dark-field scanning TEM (HAADF-STEM) analyses. The ultrafine AuCo alloy NPs 

inside the mesoporous MIL-101 exhibit much higher catalytic activity for hydrolytic 

dehydrogenation of AB in comparison with their monometallic Au and Co counterparts. 

To the best of our knowledge, this obtained activity is the highest for supported Co and 

Co-based catalysts ever reported for hydrolytic dehydrogenation of aqueous AB. 

 

2.1 Introduction 

The search for safe and efficient hydrogen storage materials remains one of the most 

difficult challenges for the transformation to a hydrogen-powered society as a long-term 

solution to the current energy problems.
1
 Ammonia borane (NH3BH3, AB) has a 

hydrogen capacity as high as 19.6 wt%, exceeding that of gasoline and making it an 

attractive candidate for chemical hydrogen storage applications.
2
 So far various catalyst 

systems have been tested for hydrogen generation from the hydrolysis of AB,
3
 among 

which platinum based catalysts show the highest activities,
3d

 while the limited resource of 

platinum restricts their practical applications. Therefore, the development of efficient and 

economical catalysts and further improvement of the kinetic properties by controlling the 

particle size of acquired non-noble metal or non-noble metal-based catalysts are very 

important.
4
  

Due to large surface area, high porosity and chemical tunability, metal-organic 

frameworks (MOFs) have emerged as a new class of very promising functional porous 
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materials,
5
 especially in the applications of gas storage and separation, sensing, optics, 

and drug delivery.
6
 By serving as unique host matrices, the MOFs could be applied for 

heterogeneous catalysis by encapsulating metal nanoparticles (MNPs) within the 

frameworks.
7
 Loading of MNPs inside the porous matrices of MOFs is of current interest. 

General synthetic methods to embed MNPs in a MOF matrix entail the impregnation of 

metal precursors with several approaches, for example metal organic chemical vapor 

deposition, solid grinding, and conventional solution infiltration, followed by reduction 

of the metal precursors to metal atoms.
7,8

 However, with these methods, it seems difficult 

to completely avoid the precursor compounds and product aggregation on the external 

surface of MOFs. Therefore, the development of a general and facile method to 

incorporate fine metal nanoparticles within the pores of MOFs remains a real challenge. 

Currently, we have developed a double solvents method (DSM) which introduced noble 

metal precursors into the pores of MOF without MNP aggregation on the external surface 

of the framework after the precursors were treated by the hydrogen reduction at a 

relatively low temperature.
3d

 However, the hydrogen reduction method is not suited for 

non-noble metal precursors because of contradictions between the high reduction 

temperatures of non-noble metals and the limited thermal stabilities of MOFs. To solve 

this problem, very recently, we exploited an overwhelming reduction (OWR) approach in 

solution at room temperature, which can encapsulate the metal NPs, especially the 

non-noble metal-based NPs, within the pores of MOFs with the sufficient reduction of the 

metal precursors.
9
  

In this work, the ultrafine AuCo alloy NPs were successfully encapsulated in the 

pores of MOF without aggregation on the external surfaces of the host framework by 

using the DSM in combination with the OWR approach, which exhibit remarkably 

enhanced catalytic activity for hydrolytic dehydrogenation of AB in comparison with 

their monometallic Au and Co counterparts. 

 

2.2 Experimental section 

2.2.1 Materials and general methods 

Chromic nitrate nonahydrate (Cr(NO3)3·9H2O, Sigma-Aldrich, 99%), hydrogen 
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tetrachloroaurate (III) tetrahydrate (HAuCl4·4H2O, Wako Pure Chemical Industries, 

Ltd., >99%), cobalt (II) chloride hexahydrate (CoCl2·6H2O, Wako Pure Chemical 

Industries, Ltd., >99%), ammonium fluoride (NH4F, Kishida Chem. Co., >97%), sodium 

borohydride (NaBH4, Aldrich, 99%), aqueous hydrofluoric acid (HF, Kishida Chemical 

Co. Ltd., 46%), ammonia borane (NH3BH3, JSC Aviabor, >97%), terephthalic acid 

(HOOCC6H4COOH, Tri Chemical Laboratories Inc., 99%), anhydrous n-hexane 

(Sigma-Aldrich) and ethanol (C2H5OH, Kishida Chem. Co., >99.8%) were used as 

received. All reagents were commercial and used without further purification. De-ionized 

water with the specific resistance of 18.2 MΩ·cm was obtained by reversed osmosis 

followed by ion-exchange and filtration (RFD 250NB, Toyo Seisakusho Kaisha, Ltd., 

Japan). The surface area measurements were performed with N2 adsorption/desorption 

isotherms at liquid nitrogen temperature (77 K) after dehydration under vacuum at 

150 °C for 12 h using automatic volumetric adsorption equipment (Belsorp-max). The 

pore volume was calculated by a single point method at P/P0=0.99. Powder X-ray 

diffraction (PXRD) measurements were carried out on a Rigaku RINT-2000 X-ray 

diffractometer with Cu Kα source (40 kV, 40 mA). Transmission electron microscope 

(TEM, TECNAI G
2
 F20) equipped with energy dispersed X-ray detector (EDX) was 

applied for the detailed microstructure and composition information for the prepared 

samples. X-ray photoelectron spectroscopic (XPS) measurements were performed on a 

Shimadzu ESCA-3400 X-ray photoelectron spectrometer using an Mg Kα source (10 kV, 

10 mA). The Ar sputtering experiments were carried out under the conditions of 

background vacuum of 3.2 × 10
-6

 Pa, sputtering acceleration voltage of 2 kV and 

sputtering current of 10 mA.  

 

2.2.2 Synthesis of MIL-101 

MIL-101 was synthesized according the reported procedure.
10

 Terephthalic acid 

(1.661 g, 10.0 mmol), Cr(NO3)3·9H2O (4.002 g, 10.0 mmol), aqueous HF (0.5 mL, 46 

wt%) and de-ionized water (70 mL) were mixed in a 100 mL Teflon-liner autoclave and 

heated at 220 °C for 8 h. After cooling, the resulting green powder of MIL-101 with 

formula Cr3F(H2O)2O[(O2C)C6H4(CO2)]3·nH2O (n ≈ 25) were filtered off using two glass 
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filters with pore sizes between 40 and 100 μm to remove the unreacted crystals of 

terephthalic acid, and subsequently centrifuged and further purified by solvothermal 

treatment in ethanol at 80 °C for 24 h. In order to eliminate the terephthalic acid inside 

the pores of MIL-101, the resulting green solid was soaked in NH4F (1.0 M) solution at 

70 °C for 24 h and immediately filtered, washed with hot water several times, and finally 

dried overnight at 150 °C under vacuum for further use. 

 

2.2.3 Preparation of Au@MIL-101, Co@MIL-101 and AuCo@MIL-101 

The double solvents method was used in this work to encapsulate Au
3+

 and/or Co
2+

 

precursors.
3d

 Typically, 100 mg of green MIL-101 powder with a pore volume of 1.72 

cm
3
 g

−1
 as determined by N2 sorption isotherm activated by heating at 150 °C for 12 h 

under dynamic vacuum was suspended in 20 mL of dry n-hexane as hydrophobic solvent 

and the green suspension was sonicated for 15 min until it became homogeneous. After 

stirring for 2 h, 0.15 mL of aqueous HAuCl4·4H2O and/or CoCl2·6H2O solution with 

desired concentrations as the hydrophilic solvent was added dropwise over a period of 15 

min with constant vigorous stirring, and then the resulting solution was continuously 

stirred for 2 h. After filtration, the green powder was dried in air at room temperature. 

These synthesized samples were further dried overnight at 150 °C under vacuum. The 

molar ratio of Au
3+

/(Au
3+

+Co
2+

) were varied with several values (0, 0.015, 0.03, 0.06, 

0.075, 0.09, 0.125, 0.25 and 1.00), while the molar contents of (Au
3+

+Co
2+

) added to 100 

mg MIL-101 matrix were kept to be 0.034 mmol. After dehydration of the 

Au
3+

Co
2+

@MIL-101 with different molar ratios of Au
3+

 to Co
2+

, an overwhelming 

reduction approach
9
 was carried out by using 3.5 mL freshly prepared 0.6 M aqueous 

NaBH4 solution while vigorous shaking (220 rpm), resulting in the generation of catalysts 

as a dark green suspension. Finally, the synthesized samples were collected by 

centrifuging, and used for the catalytic reactions. 

 

2.2.4 Catalytic hydrolysis of ammonia borane 

The hydrolysis of ammonia borane (NH3BH3, AB) can be briefly expressed as the 
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formula: NH3BH3 + 4H2O → NH4
+
 + B(OH)4

-
 + 3H2. Reaction apparatus for measuring 

the hydrogen evolution from the aqueous AB solution is the same as previously 

reported.
2b

 Typically, a mixture of catalyst (50 mg) and distilled water (4.8 mL) was 

placed in a two-necked round-bottomed flask (30 mL), which was placed in a water bath 

at room temperature under ambient atmosphere. In order to measure the volume of 

hydrogen, a gas burette filled with water was connected to the reaction flask. When 

aqueous AB solution (1 mmol in 200 μL water) was injected into the mixture using a 

syringe, the reaction started. The volume of the evolved hydrogen gas was monitored by 

recording the displacement of water in the gas burette and the reaction was completed 

when there was no more gas generation. Moreover, corresponding to 50 mg catalysts, the 

molar ratios of (Au+Co)/AB were theoretically fixed at 0.017 for all the catalytic 

reactions.  

After the hydrogen generation reaction was completed, another aliquot of AB (1.0 

mmol in 200 μL water) was added into the reaction system and the released gas was 

monitored by the gas burette. After the reaction, the as-synthesized AuCo@MIL-101 was 

separated from the reaction solution by centrifugation and dried under vacuum at room 

temperature. The obtained sample after hydrolysis of AB was used for PXRD and TEM 

analyses. 

 

2.3 Results and discussion 

2.3.1 Preparation 

MIL-101, a chromium-based MOF with themolecular formula 

Cr3F(H2O)2O[(O2C)C6H4(CO2)]3·nH2O (where n is ~25), was chosen as a host matrix for 

this study to encapsulate metallic particles not only because of its higher stability than 

most of MOFs in water or high temperature, but also its large cavity sizes (2.9 to 3.4 nm) 

and window sizes (1.2 to 1.4 nm), large surface area, and hybrid pore surface, which may 

facilitate the encapsulation of MNPs and the adsorption of catalytic substrate AB and 

reductant NaBH4 into the pores.
10

 The double solvents method (DSM) was used in this 

work for avoiding the deposition of the precursors on the outer surface of MIL-101.
3d

 In 

this method, the aqueous precursor solution as a hydrophilic solvent with a volume set 
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equal to or less than the pore volume of the adsorbent can be absorbed within the 

hydrophilic adsorbent pores of MIL-101, which was suspended in a large amount of 

n-hexane. Since the inner surface area of MIL-101 is much larger than the outer surface 

area, the small amount of aqueous precursor solution can readily go inside the 

hydrophilic pores, and the deposition of metal precursors on the outer surface can be 

minimized. After drying the metal precursor/MOF composite, the overwhelming 

reduction (OWR) approach was used to reduce the precursors.
9
 In this approach, a 

pore-volume amount of NaBH4 solution with a high concentration (0.6 M) incorporated 

into the pores by capillary force can reduce the metal precursors deposited in the pores of 

MIL-101 completely, and the aggregation of MNPs on the external surfaces of MOF will 

be avoided. 

 

2.3.2 Characterization 

10 20 30 40 50 60

(d)

(c)

(b)

(a)

2 theta / degree

 

 

 

Fig. 2.1 Powder XRD patterns of (a) as-synthesized MIL-101, (b) AuCo@MIL-101 (Au/Co = 

6:94), (c) Co@MIL-101 and (d) Au@MIL-101. 

The powder X-ray diffraction (PXRD) patterns of all the prepared samples exhibited 
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that the main diffractions were well consistent with those of pristine MIL-101 reported by 

Férey et al.,
10

 suggesting that the framework of MIL-101 was maintained well in the 

whole process of catalyst preparation (Fig. 2.1). In addition, no diffractions were detected 

for MNPs in M@MIL-101, suggesting the formation of very small MNPs. 

 

 

Fig. 2.2 XPS spectra for (a) Au@MIL-101, (b) Co@MIL-101 and (c, d) AuCo@MIL-101 

(Au/Co = 6:94) before and after Ar etching for 60 min (Au 4f7/2 and 4f5/2 peaks, and Co 2p3/2 and 

2p1/2 peaks). 

X-Ray photoelectron spectroscopy (XPS) with Ar etching was applied to 

Au@MIL-101, Co@MIL-101 and AuCo@MIL-101 at the Au 4f and Co 2p levels. After 

Ar etching for 60 min, well-defined peaks corresponding to both metallic Au and Co 

species can be detected, indicating that both elements are in their zero-valent states. The 

observed Co 2p3/2 and Co 2p1/2 binding energies at 777.9 and 793.0 eV correspond to Co
0
, 

and the Au 4f7/2 and Au 4f5/2 binding energies at 84.1 and 87.8 eV correspond to Au
0
. 
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However, before Ar sputtering, peaks were observed for Co@MIL-101 and 

AuCo@MIL-101 with binding energies at 781.2 and 795.8 eV corresponding to Co 2p3/2 

and Co 2p1/2, respectively,
 
of CoO formed during the exposure of samples to air, which 

were readily removed by Ar etching. The metallic Au and Co peak intensities changed 

synchronously during the Ar etching in AuCo@MIL-101, indicating the homogeneity of 

the AuCo alloy particles (Fig. 2.2). The intensities of Au 4f peaks were weak (Fig. 2.2c) 

due to the low Au content of AuCo@MIL-101 (Au/(Au + Co) = 0.06 (molar ratio)). 
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Fig. 2.3 N2 sorption isotherms of (a) as-synthesized MIL-101, (b) AuCo@MIL-101 (Au/Co = 

6:94) and (c) Au
3+

Co
2+

@MIL-101 at 77 K. The BET surface areas of the three samples are 3452, 

1930 and 1455 m
2
/g, respectively. Filled and open symbols represent adsorption and desorption 

branches, respectively. 
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Fig. 2.4 N2 sorption isotherms of (a) MIL-101, (b) Co@MIL-101, (c) AuCo@MIL-101 (Au/Co = 

6 : 94) and (d) Au@MIL-101. Filled and open symbols represent adsorption and desorption 

branches, respectively. 

The surface area decreased obviously after HAuCl4 and/or CoCl2 loading, while the 

reduction of Au
3+

 and Co
2+

 by NaBH4 solution resulted in increase of surface area (Fig. 

2.3). The BET surface areas of MIL-101, Co@MIL-101, Au@MIL-101 

AuCo@MIL-101 and Au
3+

Co
2+

@MIL-101 are 3452, 2080, 1920, 1930 and 1455 m
2
 g

-1
, 

respectively. Appreciable decreases in N2 sorption compared with pristine MIL-101 were 

observed for all the samples (Fig. 2.4), indicating that MNPs were highly dispersed in the 

framework of MIL-101. 

The uniformity of the AuCo alloy NPs in the MIL-101 framework was displayed by 

the TEM, high-angle annular dark-field scanning TEM (HAADF-STEM) and 

energy-dispersive X-ray spectroscopy (EDX) analyses (Fig. 2.5 and 2.6). Both TEM and 

HAADF-STEM images exhibited that the average sizes of the AuCo alloy NPs were 1.8 

± 0.2 nm (Fig. 2.7), which are small enough to be encapsulated in the two mesoporous 

cavities of MIL-101, and no big particle aggregation occurred, which is in good 

agreement with PXRD observations, providing evidence that the highly dispersed AuCo 

alloy NPs have been effectively encapsulated into the pores of MIL-101 with small sizes. 
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Fig. 2.5 TEM and HAADF-STEM images of AuCo@MIL-101 (Au/Co = 6:94). 
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Fig. 2.6 EDX spectrum for the as-synthesized AuCo@MIL-101 (Au/Co = 6:94). The copper 

signal originates from Cu grid. 
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Fig. 2.7 Size distribution of AuCo alloy nanoparticles in AuCo@MIL-101 sample (Au/Co = 

6:94). 

 

2.3.3 Catalytic activity and durability 

The catalytic activities on hydrolysis of aqueous AB were tested for the prepared 

samples. Among the samples of M@MIL-101 with various Au/Co compositions, the 

AuCo@MIL-101 catalysts exhibits much higher catalytic activity for hydrolysis of AB 

compared with its monometallic counterparts, indicating a synergetic effect between the 

binary components (Fig. 2.8a). Under our evaluation conditions, the AuCo@MIL-101 

with the Au/Co atomic ratio of 6 : 94 is the most active, over which the AB hydrolysis 

reaction can be completed (H2/AB = 3.0) in 7.5 min with a 72 mL H2 release at room 

temperature ((Au+Co)/AB = 0.017 in molar ratio), giving a turnover frequency (TOF) 

value of 23.5 molH2 molcat
−1

 min
−1 

(Fig. 2.8b and c). To the best of our knowledge, this 

obtained activity is the highest for supported Co and Co-based catalysts ever reported for 

hydrolytic dehydrogenation of aqueous AB.
4a,11

 Reasonably, the remarkably high 

catalytic activity is attributed to the synergetic effect between Au and Co. 
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Fig. 2.8 (a) Plots of time vs volume of hydrogen generated from AB (1 mmol in 5 mL water) 

hydrolysis at room temperature catalyzed by the Au@MIL-101, Co@MIL-101, and 

AuCo@MIL-101 catalysts (50 mg, Au/Co = 6:94), (b) Plots of time versus volume of hydrogen 

generated from AB (1.0 mmol, 5 mL) by AuCo@MIL-101 catalysts with different Au molar 

contents ((Au+Co)/AB＝ 0.017), and (c) plots of time for reaction completion and the 

corresponding TOF value versus Au molar content in AuCo@MIL-101 ((Au+Co)/AB＝0.017). 

The durability/stability is the key point for the practical application of catalysts. We 

tested the durability of AuCo@MIL-101 by adding additional equivalents (1.0 mmol, 200 

mL) of AB under an ambient atmosphere. As shown in Fig. 2.9, the activity of the 

as-prepared AuCo@MIL-101 catalyst has no significant decrease in catalytic activity 

even after five-time recycle of hydrolysis reactions, indicating the high durability in AB 

hydrolysis. There is no significant change in the morphologies of AuCo NPs with 

retention of the MIL-101 framework after catalysis showed by PXRD (Fig. 2.10) and 

TEM (Fig. 2.11) measurements, which further confirms the merit of the confinement 

effect of the MOF matrice. 
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Fig. 2.9 Durability characterization of AuCo@MIL-101 in five runs for hydrogen generation 

from hydrolysis of aqueous AB solution (1.0 mmol, Au/Co = 6:94, (Au+Co)/AB＝0.017). 
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Fig. 2.10 Powder XRD patterns of (a) as-synthesized MIL-101 and AuCo@MIL-101 (Au/Co = 

6:94) (b) before and (c) after the catalytic hydrolysis of AB. 
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Fig. 2.11 TEM image of AuCo@MIL-101 after AB hydrolysis (Au/Co = 6:94). 

 

2.4 Conclusion 

In summary, we have successfully encapsulated the ultrafine AuCo alloy NPs in the 

pores of MIL-101 by using the DSM in combination with the OWR approach, which 

display excellent catalytic activity for hydrolytic dehydrogenation of aqueous AB, 

surpassing over their monometallic Au and Co counterparts. The present results not only 

bring light to new opportunities in the fabrication of ultrafine non-noble metal-based NPs 

as high performance heterogeneous catalysts throughout the interior pores of MOFs, but 

also represent a promising step toward developing AB as a viable on-board hydrogen 

storage and supply material. 
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Chapter 3 

Non-noble bimetallic CuCo nanoparticles encapsulated in the 

pores of metal-organic frameworks: synergetic catalysis in the 

hydrolysis of ammonia borane for hydrogen generation 

Non-noble bimetallic CuCo alloy nanoparticles were successfully encapsulated in 

the pores of MIL-101 by using the double solvents method combined with the 

overwhelming reduction approach, which display remarkably enhanced catalytic activity 

for hydrolytic dehydrogenation of ammonia borane (AB) to generate a stoichiometric 

amount of hydrogen at room temperature for chemical hydrogen storage, which presents 

the first example of MOF-supported non-noble bimetallic catalysts for the hydrogen 

generation from hydrolysis of AB. The synergetic effect between copper and cobalt 

species plays an important role for the improved performance in the catalytic hydrolysis 

of AB. 

 

3.1 Introduction 

Hydrogen has been considered as one of the best alternative energy carriers to 

satisfy the increasing demand for a sustainable and clean energy supply.
1
 The 

development of effective hydrogen-storage materials is imperative but challenging for 

establishing a hydrogen-based energy system.
2 

Ammonia borane (NH3BH3, AB) has 

become an attractive candidate for chemical hydrogen storage applications due to its high 

gravimetric hydrogen capacity (19.6 wt.%) and low molecular weight (30.86 g mol
-1

).
3
 

However, one of the major obstacles for the practical application of this system is to 

develop low-cost and highly efficient catalysts for improving the kinetic properties under 

moderate conditions.
4
 

So far various catalyst systems have been tested in the hydrolysis of AB and rapid 

hydrogen generation has been achieved by using noble metals such as Pt, Ru and Rh, 

while the limited resource restricts their practical applications.
5
 Alternatively, 

cost-effective non-noble metals such as Co, Ni, Fe, have been developed.
6,7 

However, 
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these materials tend to be fairly unstable in solution and air atmospheres due to 

magnetism-induced agglomeration and easy oxidation. To circumvent the drawback, 

several strategies, including fabricating non-noble metal based alloys
8
 or core-shell

9
 

nanoparticls (NPs), and structured Co-B film catalysts
10

, have been explored. Although 

great efforts have been made in this field, development of high-performance catalysts 

towards AB dehydrogenation with high activity and desired durability simultaneously 

remains a huge challenge. 

In the design and fabrication of highly efficient catalysts for AB dehydrogenation, 

the dispersion and stabilization of active metal nanoparticls (MNPs) are two key factors. 

Metal-organic frameworks (MOFs) synthesized by assembling metal ions with organic 

ligands have emerged as a new class of porous materials due to their high porosity, large 

surface area and chemical tenability.
11

 Given the similarity to zeolites, depositing MNPs 

to MOFs could afford heterogeneous catalysts.
12

 It is expected that the crystalline porous 

structures of MOF limit the migration and aggregation of the active components and thus 

enhance the long-term stability. There were some reports of MOF-supported non-noble 

metal NPs as catalysts for heterogeneous reactions, while it was difficult to completely 

avoid MNPs aggregation on the external surface of MOFs.
13

 Therefore, it is a big 

challenge to develop a general and facile method to incorporate fine MNPs within the 

pores of MOFs. Very recently, we exploited an approach via overwhelming reduction 

(OWR) approach combined with a double solvents method (DSM), which can 

encapsulate the non-noble metal-based NPs (AuNi and AuCo) in the pores of MOF 

without MNPs aggregation on the external surface of framework.
14

 

In this work, we report successful preparation and excellent catalytic activity of the 

ultrafine CuCo alloy NPs encapsulated in the pores of MOF without aggregation on the 

external surfaces of host framework by using the DSM in combination with the OWR 

approach, which presents the first example of MOF-supported non-noble bimetallic 

catalysts for the hydrogen generation from hydrolysis of AB. 
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3.2 Experimental section 

3.2.1 Materials and general methods 

Vulcan XC-72R (Carbon, specific surface area = 240 m
2
 g

-1
, Cabot Corp., USA), 

anhydrous n-hexane (Sigma-Aldrich), terephthalic acid (HOOCC6H4COOH, Tri 

Chemical Laboratories Inc., 99%), ethanol (C2H5OH, Kishida Chem. Co., >99.8%), 

ammonia borane (NH3BH3, JSC Aviabor, >97%), sodium borohydride (NaBH4, Aldrich, 

99%), ammonium fluoride (NH4F, Kishida Chem. Co., >97%), aqueous hydrofluoric acid 

(HF, Kishida Chemical Co. Ltd., 46%), cobalt (II) chloride hexahydrate (CoCl2·6H2O, 

Wako Pure Chemical Industries, Ltd., >99%), copper (II) nitrate trihydrate 

(Cu(NO3)2·3H2O, Kishida Chem. Co., >99.5%) and chromic nitrate nonahydrate 

(Cr(NO3)3·9H2O, Sigma-Aldrich, 99%) were used as received. All reagents were 

commercial and used without further purification. De-ionized water with the resistivity of 

18.2 MΩ·cm was obtained by reversed osmosis followed by ion-exchange and filtration 

(RFD 250NB, Toyo Seisakusho Kaisha, Ltd., Japan). Powder X-ray diffraction (PXRD) 

measurements were carried out on a Rigaku UItima IV X-ray diffractometer with Cu Kα 

source (40 kV, 40 mA). The surface area measurements were performed with N2 

adsorption/desorption isotherms at liquid nitrogen temperature (77 K) after dehydration 

under vacuum at 150 °C for 12 h using automatic volumetric adsorption equipment 

(Belsorp-max). The pore volume was calculated by a single point method at P/P0=0.99. 

Transmission electron microscope (TEM, TECNAI G
2
 F20) equipped with energy 

dispersed X-ray detector (EDX) was applied for the detailed microstructure and 

composition information for the prepared samples. X-ray photoelectron spectroscopic 

(XPS) measurements were performed on a Shimadzu ESCA-3400 X-ray photoelectron 

spectrometer using an Mg Kα source (10 kV, 10 mA). The Ar sputtering experiments 

were carried out under the conditions of background vacuum of 3.2 × 10
-6

 Pa, sputtering 

acceleration voltage of 2 kV and sputtering current of 10 mA.  

 

3.2.2 Synthesis of MIL-101 

MIL-101 was synthesized according the reported procedure.
15

 Cr(NO3)3·9H2O 
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(4.002 g, 10.0 mmol), terephthalic acid (1.661 g, 10.0 mmol), aqueous HF (0.5 mL, 46 

wt%) and de-ionized water (70 mL) were mixed in a 100 mL Teflon-liner autoclave, 

which was held in an oven at 220 °C for 8 h. After natural cooling, the resulting green 

powder of MIL-101 with formula Cr3F(H2O)2O[(O2C)C6H4(CO2)]3·nH2O (n ≈ 25) were 

filtered off using two glass filters with pore sizes between 40 and 100 μm to remove the 

unreacted crystals of terephthalic acid, and subsequently centrifuged and further purified 

by solvothermal treatment in ethanol at 80 °C for 24 h. In order to eliminate the 

terephthalic acid inside the pores of MIL-101, the resulting green solid was soaked in 

NH4F (1.0 M) solution at 70 °C for 24 h and immediately filtered, washed with hot water 

several times, and finally dried at 150 °C under vacuum for 12 h. 

 

3.2.3 Preparation of Cu@MIL-101, Co@MIL-101 and CuCo@MIL-101 

The double solvents method was used in this work to encapsulate Cu
2+

 and/or Co
2+

 

precursors.
5f

 Typically, 100 mg of green MIL-101 powder with a pore volume of 1.72 

cm
3
 g

−1
 as determined by N2 sorption isotherm activated by heating at 150 °C for 12 h 

under dynamic vacuum was suspended in 20 mL of dry n-hexane as hydrophobic solvent 

and the green suspension was sonicated for 15 min until it became homogeneous. After 

stirring for 2 h, 0.15 mL of aqueous Cu(NO3)2·3H2O and/or CoCl2·6H2O solution with 

desired concentrations as the hydrophilic solvent was added dropwise over a period of 15 

min with constant vigorous stirring, and then the resulting solution was continuously 

stirred for 2 h. After filtration, the green powder was dried in air at room temperature. 

These synthesized samples were then dried overnight at 150 °C under vacuum. The molar 

ratio of Cu
2+

:(Cu
2+

+Co
2+

) were varied with several values (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 

0.8 and 1.00), while the molar contents of (Cu
2+

+Co
2+

) added to 100 mg MIL-101 matrix 

were kept to be 0.034 mmol. After dehydration of the Cu
2+

Co
2+

@MIL-101 with different 

molar ratios of Cu
2+

 to (Cu
2+

+Co
2+

), an overwhelming reduction approach
14

 was carried 

out by using 5 mL freshly prepared 0.6 M aqueous NaBH4 solution while vigorous 

stirring, resulting in the generation of catalysts as a dark green suspension. Finally, the 

synthesized samples were collected by centrifuging, and used for the catalytic reactions. 
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3.2.4 Preparation of CuCo/XC-72R and CuCo/MIL-101 

For comparison, CuCo/XC-72R and CuCo/MIL-101 catalysts were prepared. 100 

mg of XC-72R carbon powder or activated MIL-101 was dispersed in 4.5 mL of aqueous 

Cu(NO3)2∙3H2O and CoCl2∙6H2O solution. The molar ratio of Cu
2+

:(Cu
2+

+Co
2+

) were 

fixed at 0.3, while the molar contents of (Cu
2+

+Co
2+

) added to 100 mg XC-72R or 

MIL-101 were kept to be 0.034 mmol. The resulted aqueous suspension was further 

homogenized under sonication for 0.5 hr. Then, 20 mg of NaBH4 dissolved in 0.50 mL 

water was added to the above obtained solution with vigorous shaking. The mixture was 

further shaked for 0.5 hr at room temperature to fully deposit the metallic nanoparticles 

onto the support. Finally, the desired catalyst was collected by centrifuging and used for 

the catalytic reaction. 

 

3.2.5 Catalytic hydrolysis of ammonia borane 

The catalytic hydrolysis of AB was performed following our procedure reported 

previously.
4
 Typically, a mixture of catalyst (100 mg) and distilled water (5 mL) was 

placed in a two-necked round-bottomed flask (30 mL), which was placed in a water bath 

at room temperature under ambient atmosphere. In order to measure the volume of 

hydrogen, a gas burette filled with water was connected to the reaction flask. When 

aqueous AB solution (1 mmol in 200 μL water) was injected into the mixture using a 

syringe, the reaction started. The volume of the evolved hydrogen gas was monitored by 

recording the displacement of water in the gas burette and the reaction was completed 

when there was no more gas generation. 

For the durability test, catalytic reactions were repeated by injecting another aliquot 

of AB (1.0 mmol in 200 μL water) into the mixture after the previous cycle. After the 

reaction, the as-synthesized CuCo@MIL-101 was separated from the reaction solution by 

centrifuging and washed with de-ionized water and then dried under vacuum at room 

temperature for the PXRD and TEM analyses. 
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3.3 Results and discussion 

3.3.1 Preparation 

Chromium (III) terephthalate MIL-101 with molecular formula 

Cr3F(H2O)2O[(O2C)C6H4(CO2)]3·nH2O (n ≈ 25), was chosen as a host matrix for this 

study to encapsulate metallic particles not only because of its higher stability than most of 

MOFs in water or high temperature, but also its large cavity sizes (2.9 to 3.4 nm) and 

window sizes (1.2 to 1.4 nm), large surface area, and hybrid pore surface, which may 

facilitate the encapsulation of MNPs and the adsorption of catalytic substrate AB and 

reductant NaBH4 into the pores.
15

 The double solvents method (DSM) was carried out in 

this work to impregnate the metal precursors (Cu(NO3)2 and/or CoCl2) into the 

preactivated MIL-101 in order to avoid the precursors deposition on the outer surface of 

MOF.
5f

 This method is based on a hydrophilic solvent containing the metal precursors 

and a hydrophobic solvent suspending the adsorbent, the former with a volume set equal 

to or less than the pore volume of the adsorbent, which can be readily adsorbed within the 

hydrophilic pores of adsorbent by the capillary force. Then, the overwhelming reduction 

(OWR) approach was used to reduce the precursors after the metal precursor/MOF 

composite was dried.
14

 In this approach, a pore-volume amount of NaBH4 solution with a 

high concentration (0.6 M) incorporated into the pores by capillary force can reduce the 

metal precursors deposited in the pores of MIL-101 completely, and the aggregation of 

MNPs on the external surfaces of MOF will be avoided. 

 



 

 43 

3.3.2 Characterization 

 

Fig. 3.1 Powder XRD patterns of (a) as-synthesized MIL-101, (b) CuCo@MIL-101 (Cu/Co = 

3:7), (c) Co@MIL-101 and (d) Cu@MIL-101. 

 

Fig. 3.2 N2 sorption isotherms of (a) MIL-101, (b) Co@MIL-101, (c) CuCo@MIL-101 (Cu/Co = 

3:7) and (d) Cu@MIL-101. Filled and open symbols represent adsorption and desorption 
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branches, respectively. 

After the impregnation and reduction processes, there was no loss of the crystallinity 

in powder X-ray diffraction (PXRD) patterns for M@MIL-101, suggesting that the 

framework of MIL-101 was maintained
15 

(Fig. 3.1). Moreover, the PXRD pattens of 

M@MIL-101 did not exhibit the characteristic diffractions for MNPs, indicating the 

formation of very small MNPs. The BET surface areas of MIL-101, Co@MIL-101, 

Cu@MIL-101 and CuCo@MIL-101 are 3450, 2154, 2052 and 2125 m
2
 g

-1
, respectively. 

The appreciable decreases in the amount of N2 sorption of M@MIL-101 indicated that 

MNPs were highly dispersed to the framework of MIL-101 (Fig. 3.2). 

 

 

Fig. 3.3 XPS spectra for (a) Cu@MIL-101, (b) Co@MIL-101 and (c, d) CuCo@MIL-101 (Cu/Co 

= 3:7) before (0 min) and after (10–60 min) Ar etching (Cu 2p3/2 and 2p1/2 peaks, and Co 2p3/2 and 

2p1/2 peaks). 

To obtain further insights into the structure-function correlations, X-ray 
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photoelectron spectroscopy (XPS) with Ar etching was applied to Cu@MIL-101, 

Co@MIL-101 and CuCo@MIL-101 at the Cu 2p and Co 2p levels. Before Ar sputtering, 

broad peaks of Co 2p3/2 and Co 2p1/2 for Co@MIL-101 and CuCo@MIL-101 were 

observed with binding energies at 781.2 and 795.8 eV corresponding to Co 2p of CoO
16

, 

which were caused by oxidation during the exposure of samples to air. After Ar etching 

for 60 min, well-defined peaks corresponding to metallic Cu and Co species both can be 

detected, suggesting both of two elements are in their zero-valent states. The peaks at 

932.6 and 952.4 eV are attributed to Cu 2p3/2 and Cu 2p1/2 of Cu
0
, and the peaks at 777.9 

and 793.0 eV correspond to Co 2p3/2 and Co2p1/2 of Co
0
.
16 

The metallic Cu and Co peak 

intensities changed synchronously during the Ar etching in CuCo@MIL-101, indicating 

the homogeneity of the CuCo alloy NPs and excluding the possibility of core-shells (Fig. 

3.3). 

 

Fig. 3.4 Representative (a) HAADF-STEM and (b) TEM images, (c) EDX spectrum, and (d) 
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CuCo alloy nanoparticle size distribution histogram of CuCo@MIL-101 (Cu/Co = 3:7). The 

signal of Mo was from the TEM grid. 

The morphologies of MIL-101 immobilized CuCo alloy NPs were further 

characterized by transmission electron microscopic (TEM), high-angle annular dark-field 

scanning TEM (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDX) 

analyses (Fig. 3.4). Both TEM and HAADF-STEM images showed that the CuCo alloy 

NPs were highly dispersed. The mean diameters were 2.0 ± 0.4 nm (Fig. 3.4d), which are 

small enough to be encapsulated in the two mesoporous cavities of MIL-101. No obvious 

particle aggregation occurred, which is in good agreement with the PXRD observations. 

3.3.3 Catalytic activity and durability 

To study the catalytic behavior, the as-synthesized M@MIL-101 composites have 

been applied as catalysts for hydrolysis of AB. Reaction was initiated by introducing 

aqueous AB solution into the reaction flask containing M@MIL-101 catalyst with 

vigorous shaking at room temperature. The catalytic hydrolysis of AB reaction can be 

briefly expressed as follows (Equation 1). 

NH3BH3 + 4H2O → NH4
+
 + B(OH)4

-
 + 3H2                       (1) 

 

Fig. 3.5 Plots of time versus volume of hydrogen generated from AB (1 mmol in 5 mL water) 
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hydrolysis at room temperature catalyzed by the Cu@MIL-101, Co@MIL-101, and 

CuCo@MIL-101 (Cu/Co=3:7) catalysts (100 mg, (Cu+Co)/AB (molar ratio) ＝0.034). 

 

Fig. 3.6 Plots of time for reaction completion and the corresponding TOF value versus Cu molar 

content (Cu/(Cu+Co)) in CuCo alloy NPs ((Cu+Co)/AB＝0.034). 



 

 48 

 

Fig. 3.7 Plots of time versus volume of hydrogen generated from AB (1 mmol in 5 mL water) 

hydrolysis at room temperature catalyzed by CuCo@MIL-101, CuCo/MIL-101, and 

CuCo/XC-72R (Cu/Co=3:7) catalysts (100 mg, (Cu+Co)/AB (molar ratio) ＝0.034). 

As displayed in Fig. 3.5, the CuCo@MIL-101 catalyst exhibits much higher 

catalytic activity for hydrolysis of AB compared with its monometallic counterparts, 

indicating a synergetic effect between the binary components.
17

 Fig. 3.6 shows the Cu 

content dependence of reaction times and corresponding TOF values for the 

dehydrogenation of AB. It is clear that, compared to pure Co, the presence of Cu can 

significantly improve the catalytic activity. For example, when the Cu molar ratio is as 

low as 0.1, the reaction time decreases from 17.5 min to 7.5 min. Moreover, with the 

increase in Cu molar ratio, the activity change of the CuCo system is in the shape of “V”. 

The CuCo@MIL-101 with the Cu/Co atomic ratio of 3:7 is the most active, over which 

the AB hydrolysis reaction can be completed (H2/AB = 3.0) in 4.5 min with a 72 mL H2 

release at room temperature ((Cu+Co)/AB = 0.034 in molar ratio), giving a turnover 

frequency (TOF) value of 19.6 molH2 molcat
−1

 min
−1

. Reasonably, the remarkably high 

catalytic activity is attributed to the synergetic effect between Cu and Co. For alloy 

nanoparticles, synergetic effects may mainly ascribed to electronic effects, which are 
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important when the metal atoms have significant differences in electronegativity,
18

 and 

geometric effects. In the present case, the observed synergetic effects in catalysis might 

be mainly due to the geometric effects, not electronic effects, because the 

electronegativities of Cu (1.9) and Co (1.88) are very close. It is confirmed by the XPS 

measurements as no significant changes in the electronic states were observed between 

the CuCo alloy NPs and the monometallic Cu or Co NPs.
18

 As a control experiment, 

CuCo/MIL-101 and CuCo/XC-72R (Cu/Co=3:7) were prepared by a conventional 

impregnation-reduction method, over which the evolution of 72 mL and 63 mL of 

hydrogen was completed in 8.5 min and 11.5 min, respectively, under the same reaction 

conditions (Fig. 3.7). Moreover, it is noteworthy that the TOF (19.6 molH2 molcat
−1

 min
−1

) 

for CuCo@MIL-101 (Cu/Co=3:7) is the highest one among the MOF supported 

non-noble metal catalysts ever reported for this reaction.
4a,19

 

 

Fig. 3.8 Durability characterization of CuCo@MIL-101 in five runs for hydrogen generation 

from hydrolysis of aqueous AB solution (1.0 mmol, Cu/Co = 3:7, (Cu+Co)/AB＝0.034). 
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Fig. 3.9 Powder XRD patterns of (a) as-synthesized MIL-101 and CuCo@MIL-101 (Cu/Co = 3:7) 

(b) before and (c) after the catalytic hydrolysis of AB (Cu/Co = 3:7). 

 

Fig. 3.10 TEM image of CuCo@MIL-101 after AB hydrolysis (Cu/Co = 3:7). 
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The durability/stability is the key point for the practical application of catalysts. In 

this sense, the durability of CuCo@MIL-101 catalyst was tested by adding additional 

aliquots (1.0 mmol, 200 µL) of AB under ambient atmosphere. As shown in Fig. 3.8, the 

activity of the as-prepared CuCo@MIL-101 catalyst has no significant decrease after a 

five-time recycle test, which denotes its high durability in AB hydrolysis. The long 

durability of the catalyst should be attributed to the fact that the ultrafine CuCo alloy NPs 

have been effectively encapsulated in the pores of MIL-101 for avoiding aggregation. 

PXRD and TEM measurements of CuCo@MIL-101 after catalysis revealed no obvious 

changes in the morphologies of CuCo NPs with retention of the MIL-101 framework (Fig. 

3.9 and Fig. 3.10), which further confirms the advantage of the confinement effect of the 

MOF matrices. 

 

3.4 Conclusion 

In summary, the ultrafine CuCo alloy NPs have been successfully encapsulated in 

the pores of MIL-101 by using the DSM in combination with the OWR approach, which 

display excellent catalytic activity for hydrolytic dehydrogenation of aqueous AB, 

surpassing over their monometallic Cu and Co counterparts. This is the first example of 

MOF-supported non-noble bimetallic catalysts for hydrogen generation from hydrolysis 

of AB. The highly efficient catalyst represents a promising step toward the practical 

applications of MOF-supported non-noble metal catalysts in the catalytic hydrolysis 

reaction system. 
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Chapter 4 

Pd nanoparticles supported on hierarchically porous carbon 

derived from assembled nanoparticles of zeolitic imidazolate 

framework (ZIF-8) for methanol electrooxidation 

Hierarchically porous carbons with both micro- and mesopores have been 

synthesized by direct carbonization of assembled nanoparticles of zeolitic imidazolate 

framework (ZIF-8) at different temperatures (800, 900, 1000 and 1100 °C). At the 

carbonization temperature of 1000 °C, the highest surface area (1105 m
2
 g

-1
) and the 

largest pore volume (0.95 cm
3
 g

-1
) of ZIF-8-derived carbon (ZC) were achieved. The 

resultant porous ZCs have been used as supports for Pd electrocatalysts for methanol 

electrooxidation in alkaline media for the first time. Pd/ZC-1000 catalyst is the most 

active and electrochemically stable among the Pd catalysts supported on ZCs prepared at 

800-1100 °C. Moreover, the catalytic activity of Pd/ZC-1000 is 5 times higher than that 

of Pd supported on the commercial carbon black Vulcan XC-72R at the same Pd loading. 

 

4.1 Introduction 

In recent years, enormous attention has been paid to the development of the direct 

methanol fuel cell (DMFC) as a promising power source for portable devices and electric 

vehicles due to its low-cost, high power density and low operating temperature.
1-4

 Up to 

date, Pt and Pt-based catalysts are generally considered to be the most common 

electrocatalysts for methanol electrooxidation reaction (MOR).
1-3

 However, Pt-based 

catalysts suffer from some disadvantages such as high cost, readily CO poisoning and 

still slow kinetics of methanol electrooxidation, which severely restrict their commercial 

applications for DMFCs.
1-3

 Therefore, it is urgent to develop low-cost electrocatalysts 

with highly improved kinetics toward MOR. Recently, Pd is considered to be a promising 

alternative to Pt since Pd or Pd-based electrocatalysts exhibit extremely high activity for 

electrooxidation of alcohols (e.g. methanol and ethanol) with low CO poisoning in 

alkaline medium.
4,25

 Moreover, Pd is much cheaper and is at least 50 times more 
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available in the earth than Pt.
5
 

In the view of the electrocatalysts used in the fuel cells, the high surface areas and 

large pore volumes of the support materials are required due to the fact that higher 

surface areas and larger pore volumes allow a better dispersion for the metal catalysts and 

provide an open network around the active catalysts for facile diffusion of fuels and 

products.
6-8 

Recently, highly nanoporous carbons (NPCs) have attracted considerable 

attention due to their high surface area, large pore volume and good electrochemical 

properties.
9-11

 Generally, NPCs can be prepared via several methods, such as 

carbonization of polymeric aerogels, activation (physical or chemical) of carbon 

materials, nanocasting with hard-templates, and so on.
9-12

 Owing to the highly ordered 

porous structures with abundant organic struts, and high surface areas and large pore 

volumes,
13-15

 metal-organic frameworks (MOFs) would be promising candidates for 

applications as templates/precursors to prepare porous carbon materials through thermal 

conversion. Currently, several MOF-derived carbons have been reported, which present 

large surface area and high porosity, and show outstanding properties especially in the 

applications of gaseous or liquid adsorptions, catalyst supports, and electrode materials 

for electric double layer capacitors (EDLCs) and fuel cells.
16-19

 

In this work, we report the synthesis of hierarchically porous carbons with both 

micro- and mesopores through direct carbonization of assembled nanoparticles of zeolitic 

imidazolate framework (ZIF-8) at different temperatures (800, 900, 1000 and 1100 °C), 

which have been used as supports for Pd electrocatalysts for methanol electrooxidation in 

alkaline media for the first time. The Pd catalyst supported on the ZIF-8-derived carbon 

(ZC) prepared by carbonization at 1000 °C was found to display an extremely high 

catalytic activity and electrochemical stability for methanol electrooxidation. 

 

4.2 Experimental section 

4.2.1 Materials and general methods 

Methanol (CH3OH, Tokyo Chemical Industry Co., Ltd., >99.8%), ethanol (C2H5OH, 

Kishida Chem. Co., >99.8%), hydrochloric acid (Wako Pure Chemical Industries, Ltd., 

35.0-37.0%), triethylamine (EA, Chameleon reagent), 2-methylimidazole (MeIM, Tokyo 
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Chemical Industry Co., Ltd.), 5% Nafion
®
 Dispersion solution DE 520 CS type (Wako 

Pure Chemical Industries, Ltd.), Vulcan XC-72R (Carbon, specific surface area = 240 m
2
 

g
-1

, Cabot Corp., USA), zinc nitrate (Zn(NO3)2∙6H2O, Wako Pure Chemical Industries, 

Ltd.), sodium hydroxide (NaOH, Chameleon Reagent, >98%), potassium hydroxide 

(KOH, Kishida Chem. Co., >85.0%), sodium borohyride (NaBH4, Sigma-Aldrich, 99%), 

potassium tetrachloropalladate (K2PdCl4, Wako Pure Chemical Industries, Ltd., >97%) 

were used as received. All reagents were commercial and used without further 

purification. De-ionized water with a resistivity of 18.2 MΩ⋅cm was obtained by reverse 

osmosis followed by ion-exchange and filtration (RFD 250NB, Toyo Seisakusho Kaisha, 

Ltd., Japan). Powder X-ray diffraction (PXRD) measurements were carried out on a 

Rigaku UItima IV X-ray diffractometer with Cu Kα source (40 kV, 40 mA, λ= 0.154 nm). 

The surface area measurements were performed with N2 adsorption/desorption isotherms 

at liquid nitrogen temperature (77 K) after dehydration under vacuum at 150 °C for 12 h 

using automatic volumetric adsorption equipment (Belsorp-max). The pore volume was 

calculated by a single point method at P/P0 = 0.99. Scanning electron microscopic (SEM) 

analyses were carried with a Hitachi S-5000 field emission scanning electron microscope. 

Transmission electron microscope (TEM, TECNAI G
2
 F20) equipped with energy 

dispersed X-ray detector (EDX) was applied for the detailed microstructure and 

composition information for the prepared samples. X-ray photoelectron spectroscopic 

(XPS) measurements were performed on a Shimadzu ESCA-3400 X-ray photoelectron 

spectrometer using an Mg Kα source (1253.6 eV) operating at 10 kV and 10 mA. 

 

4.2.2 Synthesis of ZIF-8 

A methanolic solution (500 mL) of zinc nitrate (Zn(NO3)2∙6H2O, 7.4350 g) was 

added into a methanolic solution (500 mL) of 2-methylimidazole (4.1040 g) and 

triethylamine (9 mL) with ultrasonication for 30 min at room temperature. After that, the 

turbid solution was centrifuged to give a white solid, which was washed carefully with 

methanol and then dried at 80 °C for 12 h.  
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4.2.3 Preparation of ZIF-8-derived carbon (ZC) 

The ZIF-8 sample (2.0 g) was transferred into a ceramic boat and placed into a 

temperature-programmed furnace under flowing Ar for 3 h to exclude air. Subsequently, 

the sample was heated from room temperature to 800, 900, 1000, or 1100 °C in 1.5 h, and 

then kept at the temperature for 8 h. After cooled down to room temperature under an 

argon flow, the resultant black materials were washed several times with a HCl (10 vol % 

in water) solution, then washed with de-ionized water and dried at 80 °C for 12 h to 

afford ZIF-8-derived carbon (denoted as ZC-800, ZC-900, ZC-1000, and ZC-1100). 

 

4.2.4 Syntheses of Pd/ZC and Pd/XC-72R catalysts 

The Pd catalyst supported by ZC or XC-72R was synthesized by a facile sodium 

hydroxide-assisted reduction method reported recenty.
20

 Generally, 50 mg of ZC or 

XC-72R carbon powder dispersed in 1.25 mL of water was mixed with an aqueous 

solution of K2PdCl4 (0.30 M, 0.15 mL) and subsequently the aqueous suspension was 

further homogenized under ultrasonication for 30 min. Then 10 mg of NaBH4 dissolved 

in 0.25 mL of 2.0 M NaOH solution was added into the above obtained suspension with 

vigorous shaking. In order to fully deposit the metallic nanoparticles onto the support, the 

mixture was shaken for another half an hour. Finally, the desired catalyst Pd/ZC or 

Pd/XC-72R was collected by centrifuging and washed with de-ionized water for several 

times and then dried under vacuum at 80 °C. 

 

4.2.5 Electrode preparation and electrochemical performance test 

Electrochemical properties of the catalysts were measured on a Solartron 

electrochemical workstation (SI1287) using a conventional three-electrode system with a 

catalyst modified glassy carbon (GC, Ф = 3 mm) working electrode, a platinum wire 

counter electrode and a saturated calomel reference electrode (SCE). Before the surface 

coating, the GC electrode was polished with 0.5 and 0.05 µm alumina suspensions, 

followed by washing ultrasonically with HNO3-H2O (1:1, v/v ratio) solution, ethanol and 

deionizer water sequentially. 15 mg of carbon-supported Pd catalyst, 0.8 mL of H2O, 0.2 
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mL of ethanol and 24 µL of Nafion solution (5 wt%) were mixed under ultrasonication 

for 1 h. Then 3 µL of the homogeneously mixed catalyst ink was dropped on the surface 

of the GC electrode by using a micropipette and dried at room temperature for 4 h. The 

Pd loading on the electrode was controlled at 0.054 mg cm
-2

. Before measurement, the 

electrolyte (1 M KOH or 1 M KOH + 1 M CH3OH solution) was first de-aerated with 

highly pure N2 for half an hour. All electrochemical measurements were performed at 

ambient temperature (~25 °C).  

 

4.3 Results and discussion 

4.3.1 ZIF-8 template/precursor 

The highly porous zeolite-type MOF, ZIF-8, was chosen as both precursor and 

template in this work to afford the porous carbon by carbonization. The ZIF-8 framework 

[Zn(MeIM)2; MeIM = 2-methylimidazole],
21

 involving the N-containing methylimidazole 

ligand, may effectively functionalizes the resultant carbon with the N element, which is 

beneficial to the improvement of adsorption and electrochemical catalysis performance.
22

 

Considering the fact that the pore texture of the resultant porous carbon is crucially 

determined by the pore characteristics of a MOF template, in this work we used 

ultrasonication to prepare assembled nanoparticles of ZIF-8, between which the voids 

correspond to mesopores.
23

 In this method, methanolic solutions of precursors zinc nitrate, 

MeIM and triethylamine were mixed under ultrasonication for 30 min to give a white 

ZIF-8, which has well-defined XRD patterns with sharp peaks characteristic of a 

crystalline solid (Fig. 4.1). The nitrogen sorption isotherms of ZIF-8 exhibit a BET 

specific surface area of 1378 m
2
 g

-1
 and a pore volume of 1.14 cm

3
 g

-1
 (Fig. 4.2). The 

pore size distribution (PSD) derived by using the non-local density functional theory 

(NL-DFT) method displays the presence of both micropores (1.2 nm) and mesopores 

(3-20 nm) (Fig. 4.3). The scanning electron microscopic (SEM) images (Fig. 4.4) display 

that the particle size of ZIF-8 is 30-50 nm. 
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Fig. 4.1 Powder XRD patterns of ZIF-8. 

 

Fig. 4.2 N2 sorption isotherms of the assembled nanoparticles of ZIF-8 at 77 K. Filled and open 

symbols represent adsorption and desorption branches, respectively. 
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Fig. 4.3 The NL-DFT pore size distribution of the assembled nanoparticles of ZIF-8. 

 

 

 

Fig. 4.4 The SEM images of the assembled nanoparticles of ZIF-8. 
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4.3.2 ZIF-8-derived carbon 

Interestingly, hierarchically porous carbons are obtained with high yields by direct 

carbonization of the synthesized assembled nanoparticles of ZIF-8 at different 

temperatures (800, 900, 1000 and 1100 °C) in an argon flow. Fig. 4.5 shows the PXRD 

patterns of the carbon samples prepared at various carbonization temperatures. Two 

broad diffraction peaks located at around 25 and 44º, corresponding to (002) and (101) 

diffractions of graphitic carbon, can be observed. The broad nature of the diffraction 

bands suggests that the ZIF-8-derived carbon (ZC) materials are essentially amorphous. 

The increase in the intensity of the diffraction band at 2θ = 44º with increasing 

carbonization temperature indicates that more graphitic carbons can be generated at 

higher carbonization temperatures. 

 

Fig. 4.5 Powder XRD patterns of carbon materials prepared by carbonization of assembled 

nanoparticles of ZIF-8 at various temperatures. 

Nitrogen sorption experiments were performed to examine the surface areas and 

pore size distribution of these carbon materials. As shown in Fig. 4.6a, all of ZCs exhibit 

combined-characteristics of type I and IV isotherms, indicating that there are mesopores 
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in addition to micropores. Moreover, the ZCs have relatively comparable porosity with 

the BET surface areas in the range of 914-1105 m
2
 g

-1
 and pore volumes between 0.73 

and 0.95 cm
3
 g

-1
 (Fig. 4.6a, Table 4.1). When the carbonization temperature increases to 

1000 °C, the highest surface area (1105 m
2
 g

-1
) and the largest pore volume (0.95 cm

3
 g

-1
) 

were achieved, which are much higher than those of carbon black Vulcan XC-72R (240 

m
2
 g

-1
, 0.28 cm

3
 g

-1
). The PSD of all ZIF-derived carbon materials demonstrates their 

hierarchical pore structure with both micro (1-2 nm) and mesopores (10-25 nm) (Fig. 

4.6b), which is associated with the pore size distribution of their parent ZIF-8. The 

carbonization temperature appears to have some effect on the pore size distribution; with 

the increase of the temperature from 800 to 1000 °C, the higher proportion of the 

mesopore and higher surface area can be obtained. However, when the temperature 

increased from 1000 to 1100 °C, the surface area of ZC decreased, which may be due to 

the high degree of graphiticity at this high temperature (Fig. 4.5). The TEM images 

further confirm the uniqueness of the hierarchical pore structure of ZC-1000, which 

possesses 3D frameworks with micro (≤ 2 nm) and mesopores (10-25 nm) (Fig. 4.7). The 

PSD of carbon Vulcan XC-72R displays the presence of micro- and mesopores; the voids 

between the aggregated nanosized (30-60 nm) carbon particles, as observed by TEM 

(vide infra), account for the observed mesopores in PSD (Fig. 4.6b, Table 4.1).
24

 

 

 

Fig. 4.6 (a) Nitrogen sorption isotherms at 77 K (Filled and open symbols represent adsorption 

and desorption branches, respectively), and (b) NL-DFT pore size distribution of ZCs and 

XC-72R.  
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Table 4.1. Summary of the surface areas and pore volume distributions for the carbons 

 

Sample 
Specific surface 

area
[a]

 
(m

2
 g

-1
) 

Total pore 

volume
[b]

 
(cm

3
 g

-1
) 

Mesopore 

volume
[c]

 
(cm

3 
g

-1
) 

Micropore 

volume
[d]

 
(cm

3
 g

-1
) 

ZC-1100 1029 0.8512 0.4872 0.3640 

ZC-1000 1105 0.9524 0.5832 0.3692 

ZC-900 1020 0.8715 0.5314 0.3401 

ZC-800 914 0.7259 0.3763 0.3496 

XC-72R 240 0.2781 0.2257 0.0524 

 

[a] Calculated from the BET surface area analysis. 

[b] Calculated by a single point method at P/P0 = 0.99. 

[c] Calculated using a t-plot method. 

[d] Calculated by subtracting the total pore volume with the mesopore volumes. 

 

 

Fig. 4.7 TEM images of ZC-1000 at different magnifications. 
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4.3.3 Pd catalyst supported on carbons 

Due to its unique structure, ZC-1000 offers high surface area, large mesopore 

volume, and highly graphitic degree, which make it a potential candidate as the support 

material for fuel cell electrocatalysts. We, for the first time, loaded the Pd nanoparticles 

on ZC-1000 as electrocatalyst for methanol oxidation. For comparison, Pd nanoparticles 

were also supported on the well-used commercial carbon black Vulcan XC-72R with the 

same loading. Fig. 4.8 shows the XRD patterns of catalysts Pd/ZC-1000 and Pd/XC-72R. 

It should be noted that the two broad peaks are located at around 25 and 44º, 

corresponding to (002) and (101) diffractions of graphitic carbon (Fig. 4.9). The 

diffraction peaks at the 2θ of 39.78º, 46.26º and 67.58º correspond to the (111), (200) and 

(220) facets of Pd nanocrystals. The BET surface areas of ZC-1000 and Pd/ZC-1000 are 

1105 and 953 m
2
 g

-1
, respectively. The decreases in the amount of N2 sorption of 

Pd/ZC-1000 indicate that the pores of the host framework of ZC-1000 are partially 

occupied by highly dispersed Pd NPs and/or blocked by the NPs located on surface (Fig. 

4.10). 

 

Fig. 4.8 Powder XRD patterns of Pd/ZC-1000 and Pd/XC-72R.  



 

 66 

 

Fig. 4.9 Powder XRD patterns of ZC-1000 and XC-72R. 

 

Fig. 4.10 Nitrogen sorption isotherms of (a) ZC-1000 and (b) Pd/ZC-1000. Filled and open 

symbols represent adsorption and desorption branches, respectively. 
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The Pd/ZC-1000 catalyst was further characterized by transmission electron 

microscopic (TEM), high-angle annular dark-field scanning TEM (HAADF-STEM) and 

energy-dispersive X-ray spectroscopy (EDX) analyses (Fig. 4.11). Compared to the Pd 

NPs (average particle size, 3.0 nm) immobilized on the surface of XC-72R carbon 

particles (30-60 nm) (Fig. 4.12), the Pd NPs are uniformly dispersed into the highly 

porous framework of ZC-1000 with a smaller average particle size of 2.4 nm (Fig. 4.11), 

which will lead to a higher surface area of the Pd catalysts and subsequently a better 

electrocatalytic activity (vide infra). 

 

 

Fig. 4.11 Representative (a) TEM and (b) HAADF-STEM images, (c) EDX spectrum, and (d) Pd 

nanoparticle size distribution histogram of Pd/ZC-1000. The signal of Cu in (c) was from the 

TEM grid.  
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Fig. 4.12 (a) TEM image and (b) the corresponding particle size distribution histogram of 

Pd/XC-72R. 

 

To obtain further insights into the structure-function correlations, X-ray 

photoelectron spectroscopy (XPS) was applied to Pd/ZC-1000 at the Pd 3d and N 1s 

levels (Fig. 4.13). Well-defined peaks are observed at 335.5 and 341.0 eV for Pd 3d3/2 

and 3d5/2, corresponding to metallic Pd
0
. In addition, the N 1s spectrum of Pd/ZC-1000 

(Fig. 4.13b) suggests the incorporation of nitrogen into the carbon material, which further 

confirms that the N-doped carbon has been derived from ZIF-8.  
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Fig. 4.13 XPS spectra for Pd/ZC-1000 at (a) Pd 3d3/2 and 3d5/2 and (b) N 1s levels. 
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4.3.4 Electrooxidation of methanol over Pd catalyst supported on 

carbons 

The electrochemical activities of the catalysts were tested by cyclic voltammogram 

(CV) for the methanol electrooxidation reaction (MOR) as the anodic half-cell reaction in 

DMFCs. The corresponding CV curves of catalysts Pd/carbons are shown in Fig. 4.14, 

where the current density has been defined as the current for the specific area of the 

working electrode. The electrooxidation of methanol is characterized by two well-defined 

current peaks: one in the forward scan corresponds to the oxidation of freshly 

chemsorbed methanol species, and the other one in the reverse scan is primarily 

associated with the removal of carbonaceous species that have not been completely 

oxidized in the forward scan.
25

 Therefore, the higher oxidation peak current density in the 

forward scan (If) indicates the higher electrocatalyic activity of the catalysts for the 

methanol oxidation reaction. It is obvious that after excluding the double layer currents, 

Pd/ZC-1000 displays much higher If for methanol oxidation compared to Pd/ZC-800, 

Pd/ZC-900 and Pd/ZC-1100 under the same conditions (Fig. 4.14, Fig. 4.15 and Table 

4.3), which may be contributed by the combined total effects of the high graphitic degree 

(Fig. 4.5) and high surface area (Fig. 4.6) of ZC-1000. Specifically, the increase in the 

graphitic degree of carbon can not only enhance the conductivity but also decrease the 

carbon corrosion at the high potential and oxidizing environment.
26

 In addition, a large 

surface area can improve the dispersion of the catalyst with a narrow size distribution.  

It is noteworthy that the catalytic activity of Pd/ZC-1000 (45.20 mA cm
-2

) is 5 times 

higher than that of Pd/XC-72R (9.36 mA cm
-2

) at the same Pd loading (Fig. 4.14, Fig. 

4.15 and Table 4.3). This significantly enhanced electrocatalytic activity of Pd/ZC-1000 

can be attributed to the higher surface area and the hierarchically porous network of 

ZC-1000. The higher surface area can facilitate the dispersion of Pd catalyst on the 

surface or in the pores of the support with a small size, as confirmed by the TEM 

observations (Fig. 4.11 and 4.12). The hierarchically porous 3-dimensional (3D) network 

of ZC-1000 is favorable for the good conductivity compared with the aggregation of 

carbon particles of Vulcan XC-72R, which are poorly connected.
24

 In addition, the 

nitrogen atoms doped in the ZC-1000 structure (Fig. 4.13b) may interact with the 



 

 71 

methanol molecules via hydrogen bonds, which can accelerate the charge transfer 

kinetics of the methanol at Pd/ZC-1000 as previously reported.
22

 To the best of our 

knowledge, the mass activity (jf) of Pd/ZC-1000 in this work is the highest among those 

of Pd NPs supported on other carbon materials for methanol electrooxidation in alkaline 

media in previous work (Table 4.2). Therefore, ZC-1000 is a promising catalyst support 

for the direct methanol fuel cell applications. 

 

Fig. 4.14 Cyclic voltammograms of Pd/ZC and Pd/XC-72R electrodes in 1 M KOH solution 

containing 1 M CH3OH with sweep rate of 50 mV s
-1
 at room temperature. Pd loading: 0.054 mg 

cm
-2

. Inset is the CVs of ZC electrodes in 1 M KOH solution containing 1 M CH3OH with sweep 

rate of 50 mV s
-1

 at room temperature.  
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Fig. 4.15 Cyclic voltammograms of Pd/ZC and ZC electrodes in 1 M KOH solution containing 1 

M CH3OH with sweep rate of 50 mV s
-1
 at room temperature. Pd loading: 0.054 mg cm

-2
. 
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Table 4.2. The forward anodic peak current density (mass activity jf) in CVs of the Pd 

catalyst supported on different carbon materials for methanol electrooxidation in alkaline 

media 

 

Catalyst electrodes Solutions Scan rate (mV s-1) jf (mA mg-1) Ref. 

Pd/CMSa/CREb 1.0 M MeOH + 1.0 M KOH 5 500 25a 

Pd/graphite block 1.0 M MeOH + 0.5 M NaOH 50 80 25b 

Pd/PVP-graphene/GCEc 0.5 M MeOH + 1.0 M NaOH 100 250 25c 

Pd/CNTsd/GCE 0.5 M MeOH + 1.0 M KOH 50 274.5 25d 

Pd/VrGOe/GCE 1.0 M MeOH + 1.0 M KOH  50 620.1 25e 

Pd/ZC-1000/GCE 1.0 M MeOH + 1.0 M KOH 50 837.0 This work 

Pd/XC-72R/GCE 1.0 M MeOH + 1.0 M KOH 50 173.3 This work 

a carbon microspheres.  b carbon rod electrode.  c glassy carbon electrode.  d carbon naotubes.  
e vertically oriented reduced graphene oxide. 

 

The electrochemical stability of Pd-based catalysts for methanol oxidation was then 

investigated by chronoamperometric experiments at -0.25 V. As displayed in Fig. 4.16, 

Pd/ZC-1000 exhibits a slower current decay over time and the highest current at the time 

of 3000 s in comparison with other Pd/carbon catalysts (Table 4.3), proving a higher 

tolerance to the carbonaceous species generated during methanol oxidation. 
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Fig. 4.16 Chronoamperometric curves of methanol oxidation on Pd/ZC electrodes and 

Pd/XC-72R electrode in 1 mol KOH containing 1 M CH3OH at -0.25 V.  

 

Table 4.3. The forward anodic peak current density in CVs (specific activity If and mass 

activity jf) and the current density at the time of 3000 s in chronoamperometry (Is) for the 

methanol electrooxidation over different catalysts 

 

Catalysts 
Specific activity If 

(mA cm
-2

) 
Mass activity jf  

(mA mg
-1

) 
Is  

(mA cm
-2

) 

Pd/ZC-1100 37.86 701.1 2.09 

Pd/ZC-1000 45.20 837.0 4.36 

Pd/ZC-900 28.42 526.3 1.75 

Pd/ZC-800 7.64 141.5 1.28 

Pd/XC-72R 9.36 173.3 0.13 
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4.4 Conclusion 

The hierarchically porous carbons with both micro- and mesopores have been 

synthesized by direct carbonization of assembled nanoparticles of ZIF-8 at different 

temperatures (800, 900, 1000 and 1100 °C). At the carbonization temperature of 1000 °C, 

the highest surface area (1105 m
2
 g

-1
) and the largest pore volume (0.95 cm

3
 g

-1
) of 

ZIF-8-derived carbon (ZC) can be achieved. For the first time, the porous ZCs have been 

used as supports for Pd electrocatalyst for methanol electrooxidation in alkaline media. 

Pd/ZC-1000 catalyst shows the highest electrochemical activity and stability among the 

ZC-supported Pd catalysts. Furthermore, the catalytic activity of Pd/ZC-1000 is 5 times 

higher than that of Pd/XC-72R at the same Pd loading. The unique performance of 

Pd/ZC-1000 represents a promising step toward the practical applications of 

MOF-derived carbons as support materials for electrocatalysts in fuel cells. 
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Chapter 5 

Conclusion 

Research on metal-organic frameworks (MOFs) is a rapidly developing field. The 

purpose of the research work presented in this dissertation is exploring the applications of 

MOF materials based on their high porosity, large surface area and chemical tunability. 

Especially, MOF was used as a host matrice for immobilizing metal nanoparticals (MNPs) 

and the fabricated MNP@MOF composites were used as catalysts for catalytic hydrogen 

generation from ammonia borane (AB). In addition, MOF was used as template/precursor 

for nanoporous carbon material synthesis and the MOF-derived carbons were employed 

as supports of Pd electrocatalyst for methanol electrooxidation for the first time. The 

main research results of this dissertation are summarized as follows. 

(i) Highly active AuCo alloy nanoparticles encapsulated in the pores of 

metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane 

Ultrafine AuCo alloy nanoparticles were successfully encapsulated in the pores of 

MIL-101 without aggregation on the external surfaces of the host framework by using the 

double solvents method combined with the overwhelming reduction approach, as 

demonstrated by transmission electron microscopic (TEM) and high-angle annular 

dark-field scanning TEM (HAADF-STEM) analyses. The ultrafine AuCo alloy NPs 

inside the mesoporous MIL-101 exhibit much higher catalytic activity for hydrolytic 

dehydrogenation of AB in comparison with their monometallic Au and Co counterparts. 

To the best of our knowledge, this obtained activity is the highest for supported Co and 

Co-based catalysts ever reported for hydrolytic dehydrogenation of aqueous AB.  

(ii) Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of 

metal-organic frameworks: synergetic catalysis in the hydrolysis of ammonia 

borane for hydrogen generation 

Non-noble bimetallic CuCo alloy nanoparticles were successfully encapsulated in 

the pores of MIL-101 by using the double solvents method combined with the 

overwhelming reduction approach, which display remarkably enhanced catalytic activity 
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for hydrolytic dehydrogenation of AB to generate a stoichiometric amount of hydrogen at 

room temperature for chemical hydrogen storage, which presents the first example of 

MOF-supported non-noble bimetallic catalysts for the hydrogen generation from 

hydrolysis of AB. The synergetic effect between copper and cobalt species plays an 

important role for the improved performance in the catalytic hydrolysis of AB. 

(iii) Pd nanoparticles supported on hierarchically porous carbon derived from 

assembled nanoparticles of zeolitic imidazolate framework (ZIF-8) for methanol 

electrooxidation 

We, for the first time, use the hierarchically porous carbons with both micro- and 

mesopores obtained from direct carbonization of assembled nanoparticles of ZIF-8 

[Zn(MeIM)2; MeIM = 2-methylimidazole] as support for Pd electrocatalysts for methanol 

electrooxidation in alkaline media. At the carbonization temperature of 1000 °C, the 

highest surface area (1105 m
2
 g

-1
) and the largest pore volume (0.95 cm

3
 g

-1
) of 

ZIF-8-derived carbon (ZC) are achieved. The Pd/ZC-1000 catalyst is the most active and 

electrochemically stable among the Pd catalysts supported on ZCs prepared at 

800-1100 °C. Moreover, the catalytic activity of Pd/ZC-1000 is 5 times higher than that 

of Pd supported on the commercial carbon black Vulcan XC-72R at the same Pd loading. 

The ZC-1000 with unique physical properties and high electrochemical performance will 

be a promising catalyst support for the application of direct methanol fuel cell. 

In summary, this dissertation focuses on the fabrication of a series of MOF-based 

materials, that is, the composites of metal nanoparticles with MOFs and MOF-derived 

carbons, and their applications as heterogeneous catalysts for hydrolytic dehydrogenation 

of ammonia borane and methanol electrooxidation. 
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