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CHAPTER 1  

Introduction 

 

 

 

1.1. BACKGROUND 

Concrete as one of the most important construction materials has been studied for 

centuries. Especially since Reinforced Concrete (RC) was patented by Joseph Monier in 

1849, the development of concrete material has stepped into a new age. With the countries’ 

tremendous economic growth and rapid development, a large amount of RC bridges have 

been built since 1960s. As time went on, those RC bridges have been aging or deteriorated, 

which leads to an increase of the accident risks. Now, how to deal with these aging or 

deteriorated RC bridges becomes a very urgent issue. 

 

In recent decades, many researchers have been working on how to upgrade the 

capabilities of the aging or deteriorated RC bridges. Some methods have been proposed 

to strengthen the flexural capacity of RC bridges, such as strengthening with Fiber 

Reinforced Polymer (FRP)1-4. However, some of aging RC bridges were poorly designed 

and/or poorly constructed, and the concrete strength is comparatively low or even lower 
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than the design value. At the end of the bridge girder, since the rainwater can not be 

drained in short order, it is easy to cause the corrosion in the rebars there (especially 

stirrups), then the shear capacity and the bond performance of rebars may be degraded5. 

Considering both factors of the low concrete strength and the deteriorated rebars 

(especially stirrups) in the aging RC bridges, the possibility of shear failure would be 

higher than that of flexural failure. As a dangerous brittle failure mode, more attention 

should be paid on the shear failure, and the corresponding strengthening methods should 

be further investigated and developed. 

 

Fig. 1.1 shows one of the aging bridges built in 1960s in Japan. Due to the low concrete 

strength and the heavy load, the shear cracks have already occurred in the girder end of 

this bridge. To ensure the transportation security as well as to meet the transport demand, 

the shear capability of this aging bridge (shown in Fig. 1.1) should be strengthened. Till 

 

 

Fig. 1.1. Girder end of an aging bridge built in 1960s in Japan. 
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now, some materials have been investigated to be used to strengthen the shear capability 

in RC bridges, such as the steel plate6-10 and FRP11-15. The safety and effectiveness of the 

shear strengthening performance using these materials have also been evaluated on RC 

bridges. However, there exist some limitations of those materials. For example, the steel 

plate is low corrosion/chemical resistances and the workability is still insufficient due to 

the heavy weight. On the other hand, FRP is limited by its comparatively low 

strengthening effectiveness and the possibility of unpredictable debonding failure16. Thus, 

further investigation and improvement of the shear strengthening materials are still 

needed. An ideal shear strengthening material should be capable of overcoming these 

limits mentioned above and also meeting the requirements of high durability, workability, 

efficiency and reliability. Here, a substitute strengthening material, Ultra High 

Performance Fiber Reinforced Concrete (UHPFRC), was considered to improve the shear 

capability and safety of the aging RC bridges. 

 

1.2. OBJECTIVE 

In order to meet the requirements of high durability, efficiency, reliability, short-duration 

and low-cost, Ultra High Strength Fiber Reinforced Concrete (UFC), a type of UHPFRC 

products was developed in France in 1990s with the high compressive strength (up to 

750MPa) and high tensile strength (up to 100 MPa) 17 . In this study, a new shear 

strengthening method, bonding the panels made of UFC on the girder end of aging RC 

bridges, was proposed. The principle of the proposed shear strengthening method is to 

retard the opening and propagation of cracks around the ends of the RC beams by bonding 

UFC panels. There exist amounts of causes to rise worse structural performance for RC 

structures, such as physical damage and chemical deterioration. The strengthening 

effectiveness of bonding UFC panels on the RC structures with concrete degradation 

problem, such as the initial defect (low concrete strength), chloride attack and Alkali-

Silica Reaction (ASR) damage will be discussed in this study. 
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1.3. LITERATURE REVIEW 

Fiber Reinforced Concrete (FRC) as a type of modern reinforced concrete was proposed 

in the middle of last century, where uniformly dispersed and randomly oriented short 

discrete fibers were mixed, aiming at ameliorating either the brittle failure or shrinkage 

cracking18-20. Later, to find a proper mix and to achieve a high performance effect on the 

RC, different types of fiber, volume fraction and additive compositions were explored21-

26. Moreover, to find out a proper way to determine the FRC properties such as tensile, 

compressive and flexural behaviors, numerous types of testing methods were 

developed27-30. Based on the above fundamental studies, FRC has been applied in the 

structural practices as the supplementary structural members31. Also, FRC was considered 

to be used in the precast concrete to increase the strength and ductility in real 

structures32,33. 

 

Due to the excellent properties of FRC, such as high durability, workability, and corrosion 

resistance, FRC has been considered for repairing or strengthening the aging or damaged 

RC structures. Mesbah et al. applied FRC to strengthen the flexural behavior of RC beams, 

where RC beams were strengthened under different compositions and their flexure 

properties were tested34. The results showed that the load bearing capacity of damaged 

RC beams could be restored and the thinner cracks were observed in the repaired RC 

beams strengthened by FRC. More strengthening studies using FRC have been conducted 

on the low strength concrete beams and a remarkable improvement of strength and 

ductility have been demonstrated 35 , 36  (Boscato et al., 2009; Martinola et al., 2010; 

Rosignoli et al., 2012). On the other hand, FRC was also treated as a repair material to 

replace the damaged materials in the aging structures, such as the Ductile Fiber 

Reinforced Cementitious Composite (DFRCC), which is a high performance 

cementitious composite with superior strain capacity37. However, in Kim’s study37, the 

shear behavior of the RC specimens repaired by DFRCC had not been improved, as 

compared to the RC specimens without DFRCC strengthening. 

 

With the development of technology, a new type of FRC product named as UHPFRC is 

attracting high attention and has already been applied in some projects38-41. UHPFRC is 
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of good qualities in terms of compression, ductility and reliability42-50. Recently, based 

on the superior properties of UHPFRC, some researchers proposed some repairing 

methods by using UHPFRC products. Tayeh et al. used UHPFRC as newly overlay repair 

material for the interfacial bonding between the deteriorated concrete structures, and the 

results showed the overlay technique using UHPFRC gained high bond strength. In other 

words, UHPFRC could be a good alternative to the usual overlay materials51. Iskhakov et 

al. proposed a repairing method to raise the flexural capacity and the ultimate 

deformations by casting the Steel Fibered High Strength Concrete (SFHSC) in the 

compressed zone52. The experimental results showed an effective ductile behavior up to 

failure. However, the unexpected de-bonding between concrete layers led this method to 

be unreliable and to be hard to be applied in some existing RC structures. On the other 

hand, considering the ultra-high strength, UHPFRC was also expected to strengthen the 

RC structures. For example, UFC is a type of UHPFRC products, with a high compressive 

strength (up to 750 MPa) and high tensile strength (up to 100 MPa). Wang and Lee 

proposed to strengthen the interior RC beam-column joint sub-assemblages by using UFC, 

where the improvement of the ductility and the formation of plastic hinges in the beams 

were demonstrated53. In the case of strengthening RC beams, Martinola et al.54 and 

Wirojjanapirom et al.55 both pointed out that the strengthening technique using UHPFRC 

jacket can strengthen the shear capacity of RC members. But the UHPFRC jacket or the 

adhesive concrete has to be placed on the site and the concrete has to be cured when the 

UHPFRC jacket method is applied for the shear strengthening. Thus, the labor cost would 

increase and the progress would be delayed.  

 

A new shear strengthening method was proposed by bonding the panels made of UFC on 

the girder end of the aging RC bridges. Since the UFC was cast into a panel shape, the 

method of bonding UFC panels shows the outstanding characteristics of workability, 

efficiency, reliability, short-duration and low-cost. Other advantages of this product 

include outstanding corrosion resistance, reduced maintenance costs, chemical 

resistances and environmental resistances (such as freeze and thaw, salt water and so on) 

In this study, the proposed shear strengthening method through bonding UFC panels is to 

retard the opening cracks to propagate around the ends of the RC beams. Besides, a strong 

epoxy glue was used to bond UFC panels. 
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1.4. OUTLINE OF THE THESIS 

In Chapter 2, a new shear strengthening technique, bonding the UFC panels on the girder 

end of aging RC bridges, was proposed. Two groups of specimens, Group 1 and Group 

2, were used to evaluate the effects of the shear strengthening of UFC panels under 

different shear-span ratios (a/d = 2.5, 1.5). As there were many RC bridges reinforced 

with round rebars in 1960s, round rebars in tension were used and the influence of rebar 

type was investigated in this study. Besides, due to the poor design and/or construction, 

some of the aging RC bridges exists the problem of the initial defect (low concrete 

strength), thus the method of bonding UFC panels on RC beams with low concrete 

strength were conducted. In addition, the aim of this experiment is to evaluate the shear 

strengthening performance for aging or damaged RC bridges. For this objective, RC 

beams were designed to break down in shear failure and few shear reinforcement stirrups 

were set. In Group 1, one control beam and five strengthened beams were included, 

and two strengthened schemes (B type and DB type) were designed. Experimental 

investigations were implemented in terms of the upgrading of shear capacity and the 

failure mode. In Group 2, two control beams and two strengthened beams were 

included, and the strengthening effect with low shear span ratio was explored.  

 

In Chapter 3, to investigate the influence of UFC panel strengthening on the shear 

resisting mechanism and rebar bond-slip properties of RC beams with low shear-span 

ratio, experiments were conducted. For better understanding of the influence of UFC 

panel strengthening on the shear resisting mechanism in RC beams, the numerical 

analyses were also conducted. When analyzing the shear resisting mechanism of the 

strengthened RC beams, it is essential to investigate the material properties of UFC and 

the influence of UFC panel on the rebar bond-slip properties. So far, there are lots of 

investigations on the evaluation of the material properties of UFC. However, the influence 

of UFC panel on the rebar bond-slip properties has not been studied by now. According 

to the previous research results, the rebar bond-slip model affects the accuracy of 



7 

 

analytical results. Thus, in the investigations in this study, the rebar bond-slip properties 

was studied by conducting the rebar bond-slip tests. Furthermore, two types of rebar 

bond-slip models were compared through numerical analyses. 

 

In Chapter 4, the patch repair has been widely used to locally replace the deteriorated 

concrete, remove the rust and implement the corrosion protection, rehabilitating the 

pervious functions of repairing objects. The patch repair method was carried out on the 

RC beams to study its effects on the shear resisting mechanism. The strengthening 

effectiveness of bonding UFC panels on the patch repaired RC beams is evaluated. And 

the factors of shear-span ratio, patch repair and strengthening of UFC panels are also 

discussed in this chapter. RC beams were designed to fail in shear and few shear 

reinforcement stirrups were set. Two groups of specimens, Group 1 and Group 2, were 

used to evaluate the effects of the shear strengthening of UFC panels under different 

shear-span ratios (a/d = 2.5, 1.5). 

 

Chapter 5 presented how to evaluate the degradation states of RC members which were 

deteriorated by ASR for 1 year and 3 years exposure tests, and investigated the 

influence of the strengthening measures on the load-bearing capacity and failure mode. 

Two series (A and B) of RC beams were cast to simulate the ASR affected bridge 

girder and T-shaped RC pier beam, respectively. Except the control beams, the slow 

reactive aggregates and alkali additives were added to induce ASR. Also, they were 

exposed in exterior environment for years and watered regularly to keep the suitable 

humidity. In the T-shaped RC pier beam, the tensile rebars were located on the top 

which were easy to contact the rainwater. Thus, the beams in Series B were overturned 

to keep the tensile rebars on the top. As the accidents that the anchor of tensile rebars 

fractured due to ASR have been reported recently, the influence of fractured rebars on 

the load bearing of ASR affected structures was also investigated here. The non-

destructive inspections, loading tests, and strengthening evaluations were conducted 

to evaluate the influence of the ASR damage and the strengthening effects on the 

degradation states and load-bearing mechanism. Moreover, in order to investigate the 
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influence of those strengthening methods on the load bearing mechanism, some of the 

beams were strengthened by bonding CFRP sheets and some others were strengthened 

by bonding UFC panels. In addition, the nonlinear Finite Element (FE) analyses were 

used to help better understanding of the ASR damage, and an analysis model was 

proposed to simulate the expansion caused by ASR.  

 

In Chapter 6, the practical study on shear strengthening of RC beams using UFC 

panels was conducted. To evaluate the influence of concrete strength, tensile rebar 

type, shear-span ratio and patching repair on the strengthening effects and the shear 

resisting mechanism, the experimental investigations of the UFC panels strengthening 

on RC beams with 1/4 scale depth of real bridge girder were conducted in previous 

chapters. However, whether the similar shear strengthening effects can be gained on 

the existing bridge girder, becomes an important problem. To realize the practical 

application, the influence of the factors in terms of size effect and UFC panel thickness 

has to be evaluated. In this chapter, the experimental investigations were conducted 

to evaluate the strengthening performance of bonding UFC panels on the large 

specimens and to evaluate the influence of the factors in terms of size effect and UFC 

panel thickness. JSCE recommendation equation was verified to be able to give a 

reasonable prediction to the shear strength carried by UFC panels. 
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CHAPTER 2  

Basic Investigations on Shear Strengthening Effects of  

Bonding UFC Panels on RC Beams with Low Concrete Strength  

 

 

2.1. INTRODUCTION 

In this chapter, the strengthening issues using UFC panels were studied on the RC 

structures with the initial defect (low concrete strength). The proposed shear 

strengthening method through bonding UFC panels is to retard the opening cracks to 

propagate around the ends of the RC beams. Besides, a strong epoxy glue was used to 

bond UFC panels. The validity of the epoxy glue has been investigated in the previous 

researches1,2. Here, the proposed shear strengthening method was used to strengthen the 

low-strength RC beams. Two experimental groups were conducted to evaluate the 

strengthening performance and to analyze the influence of various factors such as rebar 

type, strengthening position, shear-span ratio (a/d) and UFC panel thickness.  
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2.2. METHODOLOGY 

2.2.1. Material properties 

In this chapter, a new shear strengthening method is proposed to reinforce low strength 

RC structures, aiming at retarding the extension of cracks around the ends of the RC 

beams by bonding with UFC panels. Two groups of specimens, Group 1 and Group 2, 

were used to evaluate the effects of the shear strengthening of UFC panels under different 

shear-span ratios (a/d = 2.5, 1.5). As there were many RC bridges reinforced with round 

rebars in 1960s, round tensile rebars were used and the influence of rebar type was 

investigated in this study. In addition, the emphasis of this experiment is placed on the 

evaluation of the shear strengthening performance for aging or damaged RC bridges. For 

this objective, RC beams were designed to fail in shear and few shear reinforcement 

stirrups were provided.  

 

The lists of specimens are shown in Table 2.1 and Table 2.2. Ten identical RC beams 

were used in the experiments, loading with a four point bending configuration. All the 

beams were cast in steel molds and were cured in the molds under a wet hessian for two 

days. To evaluate the strengthening performance after bonding UFC panels, two 

experimental groups were formed with different shear-span ratios. For Group 1, beams 

were designed to have a shear-span ratio of 2.5, since all sorts of failure modes would 

occur when the shear-span ratio is equal to 2.5. The purpose of this group was to 

investigate the strengthening effects under different UFC panels bonding schemes. For 

Table 2.1. List of specimens in loading tests (Group 1). 

Specimen 

Concrete 

strength 

(MPa) 

Tensile 

rebar 
UFC panel 

CFRP 

sheet 
a/d 

Beam depth 

(mm) 

2.5RNN 19.2 φ16 - - 2.5 240 

2.5RDN 19.2 φ16 DB type - 2.5 240 

2.5RBN 19.2 φ16 B type - 2.5 240 

2.5DDN 19.2 D16 DB type - 2.5 240 

2.5RNS 19.2 φ16 - O 2.5 240 

2.5RDS 19.2 φ16 DB type O 2.5 240 
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Group 2, beams were designed to have a shear-span ratio of 1.5, simulating the girder end 

of a strengthened RC bridge or the RC deep beam girder. The purpose of this group was 

to compare the strengthening influence under different shear-span ratios. In Group 2, the 

strengthening scheme selected from Group 1 was implemented. 

 

▪ Group 1: There were total six beams including one control specimen 2.5RNN and five 

strengthened beams by bonding the UFC panels or CFRP sheets. Fig. 2.1 shows the details 

of RC beams. In some of the RC beams, the round rebars φ16 were used as the tensile 

longitudinal bar. The longitudinal reinforcement consisted of three φ16 tensile bars and 

two D13 compressive bars. The tensile strength of them were 439 MPa and 587 MPa 

respectively, and the yield strength of them were 316 MPa and 406 MPa, respectively. 

The shear reinforcement consisted of φ6 (round bar) with the yield strength of 324 MPa. 

For the beam 2.5DDN, the tension part of RC beam was reinforced by deformed D16 

rebars with the tensile strength of 499 MPa and the yield strength of 359 MPa.  

 

▪ Group 2: There were total four beams including two control RC beams and two 

strengthened beams strengthened by bonding the UFC panels. All the beams had the same 

shear-span ratio (=1.5). Fig. 2.2 shows the details of RC beams. The longitudinal 

reinforcement consisted of three φ16 for tension and two D13 for compression. The 

tensile strength of them were 465 MPa and 564 MPa, and the yield strength of them were 

333 MPa and 385 MPa. The shear reinforcement consisted of φ6 with the yield strength 

of 548 MPa. 

  

 

Table 2.2. List of specimens in loading tests (Group 2). 

Specimen 
Concrete strength 

(MPa) 
Tensile rebar UFC panel a/d 

Beam depth 

(mm) 

1.5RNN 18.5  φ16 - 1.5 240 

1.5RDN 18.5  φ16 DB type 1.5 240 

1.5RN1/4 24.6  φ16 - 1.5 240 

1.5RDA 24.6  φ16 DB type 1.5 240 
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2.2.2. UFC properties 

In the experiment, the UFC was molded into panels. The volume of mixed steel fibers 

was set at around 5%, and the steel fibers had the diameter of 0.1~0.25 mm, the length of 

10~20 mm and the tensile strength of 2×103 MPa. The water-cement ratio was below 0.24. 

And other components were silica fume, ground quartz, super-plasticizer, and high 

amount of Portland cement (up to 1000 kg/m3). The thickness of UFC panels was set as 

7 mm. The reason is to ensure a good cohesion between concrete matrix and UFC panel. 

To prevent the stress concentration, the edge of UFC panel was molded to be a 45° taper. 

The properties of the UFC panel are specified in Table 2.3 and one of the used UFC panels 

is shown in Fig. 2.3. 

  

 

(a) 2.5RNN 

 

(b) 2.5RBN 

 

(c) 2.5RDN or 2.5DDN 

 

(d) 2.5RDS 

Fig. 2.1. Dimensions of RC beams and Locations of UFC panel (Group 1). 
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2.2.3. UFC panel bonding 

The surfaces of concrete matrix and UFC panel were polished and roughed by disk 

grinder firstly, and then the UFC panels were fixed by anchor bolts at the designed 

strengthening positions. Fig. 2.4 shows the positions of the anchoring holes where no 

rebar passes through. During anchoring, the washers of 3 mm thickness were interposed 

between concrete matrix and UFC panel. The gaps around the panels were sealed except 

the injection side (preparing for injection of the epoxy resin). Table 2.4 shows the material 

properties of the adhesive epoxy resin. 

  

 

(a) 1.5RNN & 1.5RN1/4 

 

(b) 1.5RDN 

 

(c) 1.5RDA 

Fig. 2.2. Dimensions of RC beams and Locations of UFC panel (Group 2). 
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Table 2.3. Material properties of UFC panel. 

Compressive strength 

(MPa) 

Flexural strength 

(MPa) 

Tensile strength 

(MPa) 

Elastic modulus 

(GPa) 

210 43 10.8 54 
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2.2.4. CFRP sheets bonding 

To study the shear strengthening effect on the loading-bearing capacity and to prevent the 

unexpected flexural failure, a flexural strengthening method was conducted by bonding 

the CFRP sheets. The procedure of bonding the CFRP sheets was explained below. 

Firstly, the bonding surface of RC beams was polished by the disc sander. Secondly, 

the putty with the thickness of 1 mm was applied after the day of the surface coating 

with epoxy primer. On the putty, CFRP sheet was impregnated and bonded with epoxy 

resin and deaerated by roller. Thirdly, the surface was covered with a release sheet and 

was flatted, and then was cured for days. The properties of CFRP sheet are given in 

Table 2.5. 

Table 2.4. Material properties of adhesive epoxy resin. 

Compressive strength 

(MPa) 

Tensile strength 

(MPa) 

Tensile modulus 

(GPa) 

73.5 23.5 3.7 

 

Table 2.5. Material properties of CFRP sheet. 

Fiber weight per unit area Design thickness Tensile strength Tensile modulus 

(g/m2) (mm) (MPa) (GPa) 

600 0.333 4490 263 

 

 

Fig. 2.3. Photo of UFC panel used. 
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Fig. 2.4. Setting of UFC panel. 
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2.3. EXPERIMENTAL RESULTS (GROUP 1) 

2.3.1. Specimen conditions 

Total six specimens were tested in this group, which included the control beam 2.5RNN 

and the strengthening beams (2.5RDN, 2.5RBN and 2.5DDN). Below, the loading testing 

results were validated and discussed. To assess the strengthening effect by bonding the 

UFC panels, two strengthening schemes were proposed. One strengthening scheme was 

named as B type (tested in 2.5RBN as shown in Fig. 2.1(b)), and another scheme was 

named as DB type (tested in 2.5RDN and 2.5DDN as shown in Fig. 2.1(c, d)). In B type, 

the rectangle of UFC panels was bonded along the longitudinal steel bars so as to restrict 

the shear tension failure. In DB type, the UFC panels were bonded in the whole shear 

region of RC beam in order to obtain the deep beam effect upgrading the shear strength. 

Also, the influence of tensile rebar type on the load-bearing capacity was investigated. 

 

2.3.2. Investigations of strengthening schemes 

The loading testing results and the load-deflection relationships are shown in Table 

2.6 and Fig. 2.5, respectively. The shear strength and flexural strength were evaluated 

based on Standard Specifications for Concrete Structures. Pmax presents the applied 

maximum load, NV,cal indicates the load-bearing capacity based on the calculated shear 

strength, and NMu,cal indicates the load-bearing capacity based on the calculated 

flexural strength. As shown in Table 2.6, it is seen that the control beam 2.5RNN 

resulted in the shear tension failure, the strengthened beam 2.5RBN resulted in the 

shear compression failure, and the strengthened beam 2.5RDN failed in flexural 

failure. Furthermore, Fig. 2.5 shows a greater strengthening effect was gained in 

strengthened beams using the DB type. Due to the difference of the employed tensile 

rebars, different performances were observed in 2.5DDN and 2.5RDN. In beam 

2.5DDN, the load dropped immediately after the load reached at about 140kN. While 

in the beam 2.5RDN, the ductile failure was obtained in the beam with round rebars. 

It is considered that for 2.5RNN, the beam failed in the flexural failure when the load 

was raised beyond the flexural capacity of the substrate concrete. The loading testing 

results confirmed that the tensile rebar type would affect the load-bearing mechanism.  
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The observed crack patterns obtained during the loading testing are shown in Fig. 2.6. 

In the control beam 2.5RNN, the flexural cracks opened firstly. Then, the shear 

flexural cracks appeared and developed in two directions: toward the loading points 

and along the tensile rebar. Finally, the control beam broke down in the shear tension 

failure. On the other hand, in the strengthened beams, the cracks along tensile rebars 

were restrained because of the strengthening effect by bonding the UFC panels. In the 

strengthened beams, the main cracks were confined in the area between UFC panels. 

The beam 2.5RDN with round tensile rebars finally failed in flexural mode due to the 

main flexural crack. The beam 2.5DDN with deformed tensile rebars failed in shear 

 

Fig. 2.5. Load-deflection relationships. 
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Table 2.6. Loading test results. 

Specimen 

Calculated results 
Experimental results 

NV,cal 

(kN) 

NMu,cal 

(kN) 

Pmax 

(kN) 

Effective-

ness 

Stiffness 

at 30kN 

(kN/mm) 

Effective-

ness 
Failure mode 

2.5RNN 116.0 133.0 128.2 - 91.5 - 
Shear tension 

failure 

2.5RDN - 133.0 144.0 12.3% 94.3 3.1% Flexural failure 

2.5RBN - 133.0 133.4 4.1% 96.7 5.7% 
Shear compression 

failure 

2.5DDN - 146.0 143.4 - 105.1 - 
Shear compression 

failure 
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mode, where the flexural cracks were dispersed to lots of small cracks, and then the 

shear cracks dominated the failure. 

 

The results indicated that the failure mode and the load-bearing capacity were both 

improved with the strengthening effect by bonding the UFC panels. Comparing to the 

B type, a greater strengthening effects were gained in the strengthened beams by using 

DB type. One reason is that the cracks were restricted in the mid-span between the 

UFC panels in DB type strengthening scheme. Comparing different types of tensile 

rebars (2.5RDN and 2.5DDN), the results show that a greater strengthening effect and 

a significant ductility were obtained in the beam with round tensile rebars (2.5RDN). 

In summary, a good performance can be expected once the DB type strengthening 

scheme (bonding RC beams with round tensile rebars) is applied in the practical 

applications. But, the load-bearing capacity was raised beyond the flexural strength, 

so on earth how much the load-bearing capacity can be upgraded by UFC panels is 

unsure. The influence of flexural failure should be eliminated and the flexural 

strengthening was introduced.  

 

(a) 2.5RNN 

 

(b) 2.5RDN 

 

(c) 2.5RBN 

 

(d) 2.5DDN 

Fig. 2.6. Crack patterns. 
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2.3.3. Investigations of shear strengthening effect on load-bearing capacity 

To study the influence of flexural strengthening on the resisting mechanism of RC beams 

strengthened by UFC panels and to prevent the unexpected flexural failure, a flexural 

strengthening was introduced by bonding the CFRP sheets onto the bottom of RC beams. 

There were two beams (2.5RNS and 2.5RDS) which were strengthened by CFRP sheets. 

In 2.5RDS, the DB type scheme of bonding the UFC panels was implemented as well. 

 

The loading testing results were shown in Table 2.7. Compared with the control beam 

2.5RNN, the flexural strengthening method for 2.5RNS failed to upgrade the maximum 

load, where the maximum load was 127.1kN. In the beam 2.5RDS, the load-bearing 

capacity was significantly upgraded because of the strengthening effect by bonding the 

UFC panels. As the flexural capacity was improved by bonding the CFRP sheets, an 

approximated upgrading of the shear strength was inferred from the experiments (23%).  

 

The observed crack patterns obtained during the loading testing are shown in Fig. 2.7. 

In both of the beams 2.5RNN and 2.5RNS, the splitting cracks along the tensile rebars 

were observed. The failure mode did not change after bonding the CFRP sheets. On the 

other hand, as the splitting cracks along the tensile rebars were confined by bonding the 

UFC panels, the shear cracks in the mid-span of RC beam spread and led the beam to fail 

in shear compression.  

Table 2.7. Loading test results. 

Specimen 

Calculated results Experimental results 

NV,cal 

(kN) 

NMu,cal 

(kN) 

Pmax 

(kN) 

Effective-

ness 

Stiffness 

at 30kN 

(kN/mm) 

Effective-

ness 
Failure mode 

2.5RNN 116.0 133.0 128.2  - 91.5 - 
Shear tension 

failure 

2.5RNS 116.0 133.0 127.1  -0.9% 110.4 20.7% 
Shear tension 

failure 

2.5RDS - 133.0 157.6  22.9% 111.4 21.7% 
Shear compression 

failure 
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The relationships between load and deflection are illustrated in Fig. 2.8. Comparing the 

beams 2.5RNN and 2.5RNS, the stiffness of 2.5RNS was greater than that of 2.5RNN at 

the early stage. When the load reached at 90kN, the stiffness of 2.5RNS declined and 

dropped immediately, which showed the brittleness after bonding the CFRP sheets.  

While in beam 2.5RDS, a high stiffness was observed and the ductility was kept even 

after the maximum load reached.   

 

(a) 2.5RNN 

 

(b) 2.5RNS 

 

(c) 2.5RDS 

Fig. 2.7. Crack patterns. 

 

 

Fig. 2.8. Load-deflection relationships. 
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Fig. 2.9 shows the rebar strain distribution. Similar features can be seen in both of the 

beams 2.5RNN and 2.5RNS. The debonding occurred at the end of the tensile rebars and 

also occurred at a similar load value. But, the intense debonding in 2.5RNS occurred at 

about 120kN. The reason is that the splitting failure occurred and led to the failure of RC 

beam. On the other hand, in the beam 2.5RDS, the strain of the tension rebar was 

restrained at a low level until the concrete failed in compression. 

 

The results show that bonding CFRP sheets did not affect the load bearing capacity. In 

the beam 2.5RNS, the brittle failure occurred. On the contrary, for the beam 2.5RDS, 

because of the strengthening effect by bonding the UFC panel, the shear strength was 

upgraded (about 23%) and the ductile failure mode was obtained.  

  

(a) 2.5RNN                        (b) 2.5RNS 

 

(c) 2.5RDS 

Fig. 2.9. Rebar strain distribution. 
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2.4. EXPERIMENTAL RESULTS (GROUP 2) 

2.4.1. Specimen conditions 

In Group 1, the experimental results showed that the load-bearing capacity and the failure 

mode were significantly improved by bonding the UFC panels. By using the DB type 

strengthening scheme, the shear strength was improved by 23%. On the other hand, with 

a consideration of the RC deep beam girders or RC bridges suffering excessive shear 

force on the girder end (e.g., over-loading), the proposed strengthening method by 

bonding the UFC panels is also expected to raise the shear capacity or enhance the 

ductility. In Group 2, the strengthening effect on the RC beams with relatively small shear 

span ratio was evaluated. Moreover, the DB type strengthening scheme was also 

conducted in Group 2. 

 

2.4.2. Experimental results 

The loading testing results of Group 2 are given in Table 2.8. The shear strength and 

flexural strength were evaluated based on Standard Specifications for Concrete 

Structures. Pmax presents the applied maximum load, NV,cal indicates the load-bearing 

capacity based on the calculated shear strength, and NMu,cal indicates the load-bearing 

capacity based on the calculated flexural strength. For the RC beam 1.5RDN, the DB 

type strengthening scheme (bonding UFC panels) was applied only in the shear span 

region except the anchorage region of 1.5RDN (refer to Fig. 2.2(b)). In the loading testing 

results, an un-predictable failure mode, anchorage splitting failure, occurred in the beam 

1.5RDN. The reason is that the anchorage section cannot provide sufficient bond strength 

due to the low concrete strength. Fig. 2.10 shows the crack patterns obtained in specimens 

1.5RNN and 1.5RDN. For the control beam 1.5RNN, two main shear cracks occurred in 

each side. The first shear crack occurred near the mid-span, and then extended along the 

tensile rebars and formed splitting cracks. Due to the dominant shear crack occurred 

between the loading point and the end anchorage section, the beam finally broke down in 

the shear failure (arch action). For the strengthened beam 1.5RDN, the development of 

shear cracks in the shear region was restricted because of bonding the UFC panels. 

However, the dominant cracks in the end of anchorage section led the beam to fail in an 
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un-predictable anchorage splitting failure. Fig. 2.11 shows the load-deflection 

relationships. As shown in the figure and Table 2.8, the ultimate load and initial stiffness 

of 1.5RDN increased by only 5% and 6%, respectively, from those of 1.5RNN. The 

results showed that strengthening of the anchorage section should also be taken into 

account when strengthening the RC beams with round tensile rebars and small shear span 

ratio. Therefore, an anchorage reinforcement method was proposed. In this new method, 

the bonding region of UFC panel was extended to the anchorage section to prevent the 

anchorage splitting failure. Two beams (control beam 1.5RN1/4 and strengthened beam 

1.5RDA) were cast in this experiment to verify the improved strengthening method (refer 

to Fig. 2.2). 

 

The load-deflection relationships of 1.5RN1/4 and 1.5RDA are shown in Fig. 2.11(b). As 

shown in the figure, the brittle failure occurred in the control beam 1.5RN1/4 in which 

the load declined immediately after it reached at the peak. On the other hand, because of 

the anchor reinforcement and shear strengthening, a significant upgrading effect on the 

bearing capacity was obtained for 1.5RDA and the maximum load was enhanced by about 

40%. Moreover, the failure mode was also ameliorated, and the measured load-deflection 

curve demonstrated the outstanding ductility at the last stage.   

 

Table 2.8. Loading test results. 

Specimen 

Calculated 

results 

Experimental 

results 

NV,cal 

(kN) 

NMu,cal 

(kN) 

Pmax 

(kN) 

Effective-

ness 

Stiffness 

at 30kN 

(kN/mm) 

Effective-

ness 
Failure mode 

1.5RNN 147.7 236.6 196.1 - 124.6 - 
Shear compression 

failure 

1.5RDN - - 206.2 5.2% 132.4 6.3% 
Anchorage splitting 

failure 

1.5RN1/4 148.4 243.5 173.5 - 153.3 - 
Shear failure 

(arch action) 

1.5RDA - 243.5 242.9 40.0% 138.9 -9.4% Flexural failure 
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Fig. 2.12 shows the rebar strain distribution. For the control beam 1.5RN1/4, the 

debonding occurred at the early stage (load = 90kN). On the other hand, because of the 

UFC panels strengthening and the anchorage reinforcement, the strain value of end region 

of tensile rebars at ends of beam 1.5RDA stayed at a low level, and the debonding was 

restricted until the beam broke down. 

 

Fig. 2.13 shows the crack patterns. For the control beam 1.5RN1/4, the shear cracks and 

the compression cracks can be observed in the shear span region, and the beam resulted 

in the shear compression failure. On the contrary, because of the anchorage reinforcement, 

the anchorage splitting cracks did not occur in the beam 1.5RDA that failed in flexural 

failure. The experimental results demonstrated that the ultimate load-bearing capacity and 

the failure mode were ameliorated because of the anchorage reinforcement.  

  

 

(a)                         (b) 

Fig. 2.11. Load-deflection relationships. 
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Fig. 2.10. Crack patterns. 
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(a) 1.5RN1/4                       (b) 1.5RDA 

Fig. 2.13. Crack patterns. 
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Fig. 2.12. Rebar strain distribution. 
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2.5. DISCUSSION 

2.5.1. DB type strengthening scheme of UFC panels 

According to the loading test results, all the dominant cracks occurred in the region 

between the UFC panels. Fig. 2.14 shows the principal strain distribution at the load of 

50kN, where the principal strain value was calculated based on the data from the strain 

gauges. Compared with the control beam, the value of principal strain between the UFC 

panels increased significantly and the stress concentration formed in the mid-span. 

Consequently, bonding the UFC panels substantially relieved the stress in the shear region. 

In addition, since the round tensile rebars with low bond strength were used here, it was 

easy to form the arch mechanism to resist the shear. Due to the strengthening effect of 

bonding the UFC panels on the shear span section of RC beams, the sufficient tensile 

force in the rebar ends was sustained by UFC panels until the rebars yielded. Therefore 

the greater bearing capacities and the ductile failure mode were gained when the DB type 

strengthening method were adopted. 

 

2.5.2. Influence of shear span ratio on strengthening effects 

With respect to the normal shear span ratio (a/d = 2.5), the upgrading of bearing capacity 

(23% for 2.5RDS) and the ameliorating of failure mode were confirmed. However, in the 

case of low shear span ratio (a/d = 1.5), the intensive strengthening on the shear region 

caused the unexpected failure: the destruction of the anchorage section. Once the 

anchorage reinforcement that extends the bonding region of UFC panel to the anchorage 

section was applied, the desired results were gained. Fig. 2.15 shows the load-strain 

relationships of the anchorage section. L and R mean the left side and right side, 

respectively. For the control beam 1.5RN1/4, the strain started rising abruptly when the 

load reached at about 100kN. On the contrary, because of the anchorage reinforcement, 

the value of strain in beam 1.5 RDA was restricted until the load reached at 150kN and 

increased gradually. The strengthening effects of anchorage reinforcement were 

confirmed in the loading tests. At last, the strengthening by UFC panels raised the bearing 

capacity (40% for 1.5RDA). It demonstrated that the greater strengthening effects can be 

gained in RC beams with small shear span ratio.  
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Fig. 2.15. Load-strain relationships in the anchorage section. 

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

L
o

ad
 (

k
N

)

Rebar strain (μ)

1.5RDA(L)

1.5RDA(R)

1.5RN1/4(L)

1.5RN1/4(R)

 
(a) 2.5RNN 

 
(b) 2.5RDN 

Fig. 2.14. Principal strain distribution at the load of 50kN. 

0 800
（μ）

0 800
（μ）



34 

 

2.6. CONCLUSIONS 

This chapter proposed a strengthening method using UFC panels to upgrade the shear 

capacity and ameliorate the failure mode in the aging or damaged RC structures. Taking 

the factors of rebar type, strengthening position, shear-span ratio and anchorage 

reinforcement as main experimental variables, the experimental investigations were 

conducted. The results are summarized below. 

1. When a/d is equal to 2.5, the shear capacity of RC beams was enhanced and the 

failure mode was ameliorated by bonding the UFC panels. Especially when the DB type 

strengthening (bonding RC beams with round tensile rebars) was applied, the 

improvement of the structural performance of RC beams was confirmed. It is because the 

cracks in the shear zone were mostly restricted. Moreover, comparing different types of 

tensile rebars, the results showed that a greater strengthening effectiveness and significant 

ductility were obtained in the beam with round tensile rebars. A good performance can be 

expected when the DB type strengthening scheme is applied in the practical applications. 

2. The influence of CFRP sheet strengthening on the load bearing capacity was also 

investigated. The results presented that the bonding CFRP sheets could reduce the 

structural performance, especially the ductility. On the other hand, the combination of 

UFC panels and CFRP sheets did upgrade the shear capacity of RC beams (a/d = 2.5) by 

about 23%.  

3. When strengthening the RC beams with low shear span ratio, an un-predictable 

failure mode (anchorage splitting failure) was observed. Thus, the anchorage 

reinforcement method was necessary to extend the bonding region of UFC panel to the 

anchorage section. Based on the test results, the improvement on the shear strength (40%) 

and the destruction energy absorption were demonstrated, when the anchorage 

reinforcement method was applied. 

4. From the comparisons between Group 1 and Group 2, it is inferred that the 

strengthening effect varies with the shear span ratios. For Group 2, the strengthening 

method by bonding the UFC panels raised the shear capacity (40%). It demonstrated that 

greater strengthening effects can be gained in RC beams with small shear span ratio.   
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CHAPTER 3  

Investigations on Strengthening by UFC Panels on RC Beams 

with Low Shear-span Ratio 

 

 

3.1. INTRODUCTION 

In previous chapter, the strengthening issues using UFC panels were studied on the RC 

structures with the initial defect (low concrete strength). The influence on the 

strengthening effectiveness was also investigated in terms of the tensile rebar type, 

strengthening position, shear-span ratio (a/d) and flexural strengthening (bonding 

CFRP sheets). The test results demonstrated that this strengthening method achieved 

significantly positive effects. This chapter focuses on the strengthening of RC beams 

with low shear-span ratio (a/d = 1.5). 

 

For better understanding of the influence of UFC panel strengthening on the shear 

resisting mechanism in RC beams, the numerical analyses were also conducted. When 

analyzing the shear resisting mechanism of the strengthened RC beams, it is essential 

to investigate the material properties of UFC and the influence of UFC panel on the 

bond-slip properties of rebars. So far, there are lots of investigations on the evaluation 

of the material properties of UFC1-3. However, the influence of UFC panel on the bond-

slip properties of rebars has not been studied by now. According to the previous 
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research results, the bond-slip model affects the accuracy of analytical results. Thus, in 

this study, the bond-slip properties were evaluated by conducting the bond-slip tests of 

rebars. Furthermore, two types of bond-slip models were compared through numerical 

analyses. 

 

 

3.2. EXPERIMENTS (LOADING TEST) 

3.2.1. Material properties 

In this experiment, UFC was molded into panels. The volume of mixed steel fibers was 

set at about 5%, with the diameter of 0.1~0.25 mm, the length of 10~20 mm and the 

tensile strength of 2×103 MPa. In addition, the water-cement ratio was below 0.24, and 

the other components were silica fume, ground quartz, super-plasticizer, and high 

amount of Portland cement (up to 1000 kg/m3). According to the previous research 

results, the thickness of UFC panels was set as 7 mm to ensure the good cohesion 

between concrete matrix and UFC panel. To prevent the stress concentration, the edge 

of UFC panel was molded to be a 45° taper. The properties of the UFC panel are 

specified in Table 3.1 and Fig. 3.1 shows one of the used UFC panels.  

Table 3.1. Material properties of UFC panel. 

Density 

(g/cm3) 

Compressive 

strength 

(N/mm2) 

Flexural 

strength 

(N/mm2) 

Tensile 

strength 

(N/mm2) 

Elastic 

modulus 

(kN/mm2) 

2.55 210 43 10.8 54 

 

 

Fig. 3.1. The photo of UFC panel used. 
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3.2.2. UFC panel bonding 

The surfaces of concrete matrix and UFC panel were polished and roughed by disk 

grinder firstly, and then the UFC panels were fixed to the designed strengthening 

positions. Fig. 3.2 shows the positions of the anchoring holes where no rebar passes 

through. During anchoring, the washers of 3 mm thickness were interposed between 

concrete matrix and UFC panel. The gaps around the panels were sealed except the 

injection side (preparing for the injection of the epoxy resin). Table 3.2 shows the 

material properties of the adhesive epoxy resin. 

3.2.3. Loading test introduction 

The details of specimens and the position of strain gauges are shown in Fig. 3.3, and 

the list of specimens is given in Table 3.3. In the experiments, six RC beams were 

divided into three groups based on the difference of concrete strength and tensile rebar 

type. For each group, one RC beam was kept as the control beam, and another RC beam 

was strengthened by UFC panels on the shear region. They were all cast in the same 

dimensions in 240mm height, in 150mm width and in 1500mm length.  

  

Table 3.2. Material properties of adhesive epoxy resin. 

Compressive strength 

(MPa) 

Tensile strength 

(MPa) 

Tensile modulus 

(GPa) 

73.5 23.5 3.7 

 

 

Fig. 3.2. Setting of UFC panel. 
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To evaluate the influence of concrete strength on the strengthening effect, the 

compressive strength was set at comparably low values, 10 MPa and 15 MPa (refer to 

Table 3.3). The specimens in Group 2 and in the bond-slip test (will be introduced in 

the later session) were designed with the same concrete strength (10 MPa) and were 

also cast together. On the other hand, the concrete strength of the specimens in Group 

1 and Group 3 was 15 MPa. To investigate the influence of rebar type, two types of 

tensile rebars (D16 and φ16) were used. In Group 1 and Group 2, the longitudinal 

reinforcement consisted of three D16 for tension, with the tensile strength of 516 MPa 

and the yield stress of 344 MPa, respectively. The shear reinforcement consisted of φ6 

with the yield stress of 415 MPa. As there were many RC bridges reinforced with round 

rebars in 1960s, three round rebars (φ16) were used as the tensile bars in Group 3. The 

tensile strength of φ16 was 465 MPa and the yield stress of φ16 was 333 MPa. To 

measure the strains, the strain gauges were attached in the tensile rebars.  

 

For concrete placing, high-early-strength Portland cement was used to shorten the 

curing duration. And river sand (density: 2.56g/cm3, water absorption: 1.50%, fineness 

modulus: 3.72) and crushed stone (density: 2.62g/cm3, water absorption: 0.83%, 

fineness modulus: 6.72) were mixed in as fine aggregate and coarse aggregate, 

 

Fig. 3.3. Dimensions of RC beams and Locations of UFC panel. 
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Table 3.3. List of specimens in loading tests. 

Group Specimen 
Concrete strength 

(N/mm2) 

UFC 

panel 

Tensile rebar 

type 

Group 1 
N15D 18.5 - D16 

U15D 18.5 O D16 

Group 2 
N10D 13.4 - D16 

U10D 13.4 O D16 

Group 3 
N15R 18.5 - φ16 

U15R 18.5 O φ16 
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respectively. AE water reducing agent and AE agent were also added to adjust the 

liquidity and air volume. Then, the specimens were cured under a wet environment for 

28 days. After that, the tests of material properties were conducted. Specimens were 

loaded with a four points bending configuration in the span of 1200 mm. To simulate 

the shear failure, the shear-span ratio (a/d) was set as 1.5 in the experiments. And to 

study the failure mechanism and process, the cracks were marked with load increasing. 

3.2.4. Loading test results 

The performance of UFC strengthening was evaluated with respect to load-deflection, 

crack pattern, and rebar strain distribution. Fig. 3.4 shows the photos of the strengthened 

beam after the loading test, where the red bold mark highlighted the dominant cracks 

(large width) which led to the failure. After removing the UFC panels along the 

dominant cracks, the UFC panel and the adjacent concrete were formed into a big block, 

which was a special failure mode and named as “UFC panel blocking failure” below.  

The testing results in terms of ultimate load, initial stiffness and failure mode are shown 

in Table 3.4. In Group 1, the beam U15D strengthened by UFC panels ended with the 

UFC panel blocking failure, instead of the shear failure which occurred in the un-

strengthened beam N15D. As compared to the control beam (N15D), the strengthened 

beam U15D carried higher ultimate load of 139% and initial stiffness of 115%. The 

results show that the strengthening technique using UFC panels can significantly 

enhance the bearing capacity of RC beams with deformed longitudinal rebars. In Group 

2, the strengthened beam U10D ended with the UFC panel blocking failure as well and 

the control beam N10D failed in the shear compression failure. As compared to Group 

1, much greater strengthening effect was obtained in the strengthened beam U10D in 

Group 2. The ultimate load and initial stiffness of beam U10D increased by 56% and 

24%, respectively. The results indicate that the concrete strength affects the 

strengthening performance. The lower the concrete strength is, the better the 

strengthening effect could be obtained. In Group 3, the strengthened beam U15R failed 

in an un-predictable anchorage splitting failure, due to the low bond strength. Thus, the 

expected strengthening results were not achieved. Here, the ultimate load and initial 

stiffness of beam U15R increased only by 5.2% and 6.3%, respectively. The results 

show that the anchorage section strengthening should also be taken into account when 

strengthening the RC beams with round tensile rebars.  
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Table 3.4. Loading test results. 

Group Specimen 

Maximum 

load 

Pmax (kN) 

Effective-

ness 

Stiffness at 

30kN 

(kN/mm) 

Effective-

ness 
Failure mode 

Group 

1 

N15D 189  - 140  - Shear failure 

U15D 262  38.6% 161  15.0%  UFC panel blocking 

Group 

2 

N10D 131  - 97  - Shear failure 

U10D 205  56.5% 120  23.7%  UFC panel blocking 

Group 

3 

N15R 196  - 125  - Shear failure 

U15R 206  5.2% 132  6.3% 
Anchorage splitting 

failure 

 

   

(a) Bottom of beam                    (b) Top of beam 

 

(c) UFC panel blocking 

Fig. 3.4. Photos after the loading tests. 
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The comparisons of the load-deflection relationships of specimens are shown in Fig. 

3.5. In Group 1, the beam U15D and N15D performed similarly in the early stage. When 

the load reached 120 kN, the stiffness of beam N15D decreased significantly, and the 

inducement can be found from the rebar strain distribution shown in Fig. 3.6. When the 

load reached at around 120 kN, the debonding occurred at the end of tension rebar of 

beam N10D as shown in Fig. 3.7. In contrast, the strain of the tension rebar of the 

strengthened beam U15D was restrained at a low level until the most part of tensile 

rebar yielded at the load of about 260kN. The experimental results show that, with the 

UFC panel strengthening, the bond failure along the tensile rebars was restrained and 

the stiffness and shear capacity were enhanced. In Group 2, different performances were 

found in beam U10D and N10D after the load reached at about 100 kN. Fig. 3.7 shows 

the comparison of the rebar strain distribution in Group 2. The debonding in beam 

N10D (occurred at 100 kN) resulted in the degradation in stiffness. However, the 

debonding did not occur in beam U10D, and the bond between rebar and concrete was 

sustained until the maximum load. Furthermore, different from Group 1, the most part 

of rebar in Group 2 did not yield when the load reached the maximum. Beyond the 

ultimate load, U10D stabilized at around 120 kN until the tensile rebar yielded finally. 

Comparing U15D in Group 1 and U10D in Group 2, different failure characteristics 

were found from the load-deflection relationship, even though they both failed in UFC 

panel blocking. For beam U15D in Group 1, the rebars yielded almost at the same time 

when the blocking formed. For beam U10D in Group 2, the most part of rebars didn’t 

 

(a) Specimens in Group 1 and Group 2    (b) Specimens in Group 1 and Group 3 

Fig. 3.5. The comparisons of Load-deflection relationship 

 

 

(a)グループ 2 とグループ 1 の比較       (b)グループ 3 とグループ 1 の比較 
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yield when the UFC panel blocking formed. One possible reason is the concrete 

strength of the beam U10D is lower than that of U15D. Thus, after reaching at the 

ultimate load, the U10D beam can still carry the load until the rebars yielded. In Group 

3, no difference was found except of the last stage (refer to Fig. 3.5b). For the 

strengthened beam U15R, the ductile behavior was observed.  

 

Fig. 3.8 shows the crack patterns in the loading tests. With the UFC panel strengthening 

effect, the crack patterns in the loading tests were different from that occurred in the 

control RC beams. The crack patterns on the bottoms of strengthened beams are also 

presented in Fig. 3.8, where the cracks on the beam bottom did not only develop in the 

transverse direction but also in the longitudinal direction along the edge of UFC panel. 

In Group 1, for the control beam N15D, the feature of shear compression failure was 

evident, and the shear cracks obviously appeared in the shear region. For the 

strengthened beam U15D, the bending cracks opened along the UFC panels after the 

load level reached at 70 kN and developed longitudinally on the bottom of beam. In 

Group 2, for the control beam N10D, the shear cracks were obvious between the loading 

point and the supports. For the strengthened beam U10D, just like what was found in 

beam U15D in Group 1, the cracks connected together and then the blocking of UFC 

panel and adjacent concrete formed. Fig. 3.4a shows the cracks on the bottom. From 

the photo, it can be observed that the longitude cracks led the UFC panel and the 

adjacent concrete to form into a block. Fig. 3.4b shows the cracks from the top. Similar 

as the cracks on the bottom, the cracks on the top and side also extended and connected 

 

(a) N15D                    (b) U15D 

Fig. 3.6. Rebar strain distribution (Group 1). 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-600 -400 -200 0 200 400 600

R
eb

ar
 s

tr
ai

n
 (

μ
)

Distance from midspan (mm)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-600 -400 -200 0 200 400 600

R
eb

ar
 s

tr
ai

n
 (

μ
)

Distance from midspan (mm)

20kN
40kN
60kN
80kN
100kN
120kN
140kN
160kN
180kN
200kN
220kN
240kN
260kN
Yielding



44 

 

together. Due to the low tensile strength, the RC beam fractured in the blocking of UFC 

panel and adjacent concrete. Because of the difference of the strength and good bond 

condition between UFC panel and concrete matrix, cracks tended to occur inside the 

concrete matrix instead of in the interface surface. Furthermore, due to the high strength 

of UFC, cracks in the concrete matrix propagated more easily than the shear cracks on 

the panels. Therefore, the beams did not fail in shear. In Group 3, for the control beam 

N15R, the crack patterns were very different from what were found in the other two 

groups. Firstly, the location of the first shear crack was closer to the mid-span, and the 

splitting cracks along the tensile rebars were more obvious because of the low bond 

strength of round rebars. Secondly, the dominant shear crack reached the end anchorage 

section. For the strengthened beam U15R, the UFC panels restricted the development 

of diagonal cracks. However, due to the insufficient bond strength of round rebars, the 

dominant cracks occurred in the anchorage section leading the beam U15R to fail in an 

un-predictable anchorage splitting failure. To avoid the unexpected anchorage splitting 

failure, an improved strengthening method was proposed where the UFC panel 

strengthening region was extended to the anchorage section (see chapter 2).  

  

 

(a) N10D                     (b) U10D 

Fig. 3.7. Rebar strain distribution (Group 2). 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-600 -400 -200 0 200 400 600

R
eb

ar
 s

tr
ai

n
 (

μ
)

Distance from midspan (mm)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

-600 -400 -200 0 200 400 600

R
eb

ar
 s

tr
ai

n
 (

μ
)

Distance from midspan (mm)

20kN

40kN

60kN

80kN

100kN

120kN

140kN

160kN

180kN

200kN

Yielding



45 

 

  

       

(a) N15D                         (b) U15D 

       

(c) N10D                         (d) U10D 

       

(e) N15R                         (f) U15R 

Fig. 3.8. Crack patterns. 
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3.3. DISCUSSION 

3.3.1. Additional experiment 

The anchor reinforcement had also been conducted to avoid the anchorage splitting 

failure in another series4, where the concrete compressive strength was designed as 20 

MPa. Two beams were cast under the same condition as Group 3: one beam was the 

control beam (N20R) and another one (U20R) was strengthened considering the anchor 

reinforcement (refer to Fig. 3.9). Fig. 3.10 shows the load-deflection relationships. 

Similar results were observed as Group 2. For the control beam N20R, the stiffness 

declined at an early stage and the beam failed in a brittle mode (shear failure). For the 

strengthened beam U20R, the load bearing capacity was enhanced by about 40% and 

the failure mode was changed to the ductile mode (similar as beam U10D). The crack 

patterns in the loading tests were shown in Fig. 3.11. It can be seen that the shear cracks 

 

Fig. 3.9. Reformed strengthening scheme. 
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Fig. 3.10. Load-deflection relationship 
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in the control beam appeared in the shear zone, while the dominant cracks in the 

strengthened beam occurred around the UFC panels. The experimental results 

demonstrated that the ultimate load and the failure mode were ameliorated if the 

bonding region of UFC panel was extended to the anchorage section. 

 

3.3.2. Influence of concrete strength 

When the UFC panel strengthening technique was applied to the low concrete strength 

beams (refer to Group 2), it was found that much greater strengthening effect can be 

gained. Especially, the failure mode was changed from the brittle failure to the ductile 

failure. One explanation for this effect could be that the cracks easily open and develop 

due to the low concrete strength and the connection of the cracks around the UFC panels 

tends to form before the tensile rebars yielded. Therefore, this significant strengthening 

effect on the failure mode can be expected when the UFC panel strengthening technique 

is applied in the aging RC bridges with low concrete strength or initial defect. 

 

3.3.3. Influence of rebar type 

Since the splitting cracks were restricted by UFC panels, the shear capacity and failure 

mode of the specimens in Group 1 and Group 2 with deformed rebars were improved. 

However, due to the poor bond of round rebars, the splitting failure occurred in the 

anchorage section in Group 3. Thus, when upgrading the shear capacity of aging RC 

 

 

(a) N20R                       (b) U20R 

Fig. 3.11. Crack patterns. 
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bridges with round rebars, the anchor reinforcement should be taken into account. As 

demonstrated in the additional experiment, by extending the strengthening region to the 

anchorage section, the anchorage splitting failure can be avoided and the strengthening 

effects of the bonding UFC panels be gained.  

 

3.3.4. Shear capacity shared by UFC panels 

In order to propose a proper design method for UFC panel strengthening, the calculation 

means was also investigated to estimate the shear capacity shared by UFC panels. Table 

3.5 shows the shear capacities of all the RC beams in the loading tests. It can be seen, 

except Group 3, all the control beams failed in shear failure and all the strengthened 

beams failed in the UFC panel blocking. The differences between the shear capacities 

of the control beam and the strengthened beam in each group were similar, even though 

the parameters such as the concrete strength and the rebar type were different. The 

results show that the shear capacity shared by UFC panels may depend on the 

dimensions of UFC panel and the failure mode, not on the concrete matrix. By far, there 

are a number of verified calculation formulas to evaluate the shear capacity of normal 

RC beams, which could be utilized to estimate the shear capacity of the concrete matrix. 

Here, only the shear capacity shared by UFC panels was investigated. An assumption 

was made that the difference between the shear capacities of the control beam and 

strengthened beam can represent the shear capacity shared by UFC panels. The shear 

Table 3.5. Shear capacities of specimens 

Specimen 

Concrete 

compressive 

strength 

(N/mm2) 

Shear 

capacity 

Vmax(kN) 

Difference of 

shear capacities 

(VU-VN) 

Vdif(kN) 

Failure mode 

Calculated 

Shear 

capacity 

Vufc(kN) 

N15D 18.5 94.6 - Shear failure - 

U15D 18.5 131.2 36.6 UFC panel blocking 30.9 

N10D 13.4 65.7 - Shear failure - 

U10D 13.4 102.3 36.6 UFC panel blocking 30.9 

N15R 18.5 98.0 - Shear failure - 

U15R 18.5 103.2 5.2 Anchorage splitting failure 30.9 

N20R 24.5 86.8 - Shear failure - 

U20R 24.5 121.5  34.7 UFC panel blocking 30.9 

 



49 

 

capacity shared by UFC panels was calculated based on JSCE Recommendations5.  

𝑣𝑢𝑓𝑐 = 𝑣𝑓𝑑 + 𝑣𝑟𝑝𝑐𝑑                                        (1) 

where 𝑣𝑢𝑓𝑐 is the shear capacity shared by UFC panels, 𝑣𝑓𝑑 is the shear capacity bore 

by the part of steel fiber (calculated by Eq. (2)), and 𝑣𝑟𝑝𝑐𝑑 is the shear capacity bore 

by the part except steel fiber (calculated by Eq. (3)). 

𝑣𝑓𝑑 = (𝑓𝑣𝑑/ tan 𝛽𝑢) ∙ 𝑏𝑤 ∙ 𝑧                                  (2) 

where 𝑓𝑣𝑑 is the tensile strength of UFC panel, 𝛽𝑢 is the angle of the diagonal crack 

and the axial direction, 𝑏𝑤 is the width of cross section of UFC panels, and 𝑧 is equal 

to d/1.15 

𝑣𝑟𝑝𝑐𝑑 = 0.18√𝑓′𝑐𝑑 ∙ 𝑏𝑤 ∙ 𝑑                                  (3) 

where 𝑓′𝑐𝑑 is the compressive strength of UFC panel, and 𝑑 is the effective height. 

 

The calculation results are specified in Table 3.5 where it can be found that the 

evaluation value was slightly less than the experimental value in all groups, except 

Group 3 where the anchorage failure occurred. But the small error (slightly less than 

the experimental value) is still in an acceptable range. Thus, this evaluation method of 

shear capacity can be used to guide the design of UFC panel strengthening method.  
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3.4. ANALYSIS 

3.4.1. Analysis preparation (Bond-slip test) 

So far, many researchers have investigated the material properties of normal concrete, 

UHPFRC and rebar. However, the bond-slip properties of the rebars, which were 

embedded inside the RC beam strengthened by bonding UFC panels, have not been 

studied yet. Here, to evaluate the influence of UFC panels bonding on the bond strength 

and bond-slip behavior of rebars in RC beams, the bond-slip tests were conducted on 

the specimens with and without the strengthening of UFC panels. 

 

According to the distance between the rebar and UFC panel and the presence of UFC 

panel strengthening, the specimens were separated into four groups. In each group, 

there were three specimens, and the list of specimens is shown in Table 3.6. The details 

of bond-slip tests are show in Fig. 3.12. The specimens in BN17 and BN42 were kept 

as the control specimens, where the numbers 17 and 42 mean the concrete cover. On 

the other hand, the specimens in BU17 and BU42 were strengthened by bonding UFC 

panels. Here, the compressive strength of concrete was 13.4 MPa which is the same as 

that of Group 2 in loading test. The bond-slip specimens were cast and cured 

simultaneously with the specimens in Group 2. So the bond-slip testing results could 

be used to analyze the specimens of Group 2 as well. Each bond-slip specimen was 

reinforced by a single deformed rebar (D16) as shown in Fig. 3.12. The length of the 

deformed rebar (D16) was designed at 1300 mm providing the adequate length for 

fixing the rebar in the tensile testing machine. To calculate the bond stress caused by 

rebars, the strain gauge was attached in the center of embedded part. After 28 days’ 

curing, the specimens were polished by the disk grinder, and half of them were roughed 

and bonded with UFC panel on the surface. Because of the confined surface of the 

Table 3.6. List of specimens in bond-slip tests 

Specimen 

Concrete 

compressive strength 

(N/mm2) 

UFC panel 

strengthening 

Concrete 

cover (mm) 

Dimensions 

(mm) 

BN17(-1,2,3) 13.4 - 17 100*100*150 

BU17(-1,2,3) 13.4 O 17 100*100*150 

BN42(-1,2,3) 13.4 - 42 100*100*150 

BU42(-1,2,3) 13.4 O 42 100*100*150 
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specimens, the anchoring method was not adopted here. Instead, the clamps and 

washers were used to fix the UFC panel and to control the gaps between the panel 

surfaces and concrete. Like the specimens in the loading test, the gaps around the panels 

were sealed except the injection side, and the same type of epoxy resin (shown in Table 

3.2) was used.  

 

Before the tensile testing, the set of two CDP displacement transducer was fixed on 

each side of the rebar. After the specimen was mounted in the tensile testing machine, 

the other side was pulled axially (refer to Fig. 3.13). The bond-slip testing was applied 

at a rate of no greater than 20 kN/min. The testing was continuously conducted until 

the rebars were yielded. The slip 𝑠 between the rebar and concrete was defined as 

𝑠 =  𝑥 −
𝑃

𝐸𝑠𝐴𝑠
× ℎ,                                          (4) 

where 𝑥 is the average value of displacements, 𝑃 is the applied load, 𝐸𝑠 is elastic 

modulus of rebar, 𝐴𝑠  is the cross-sectional area of rebar, and ℎ is the range from the 

fixed position of the displacement transducer to the surface of concrete block. 

The average bond stress 𝜏0 was calculated as 

𝜏0 =  
𝑃−𝐸𝑠𝐴𝑠𝜀

𝑢×
𝑙

2

,                                              (5) 

where 𝜀 is the value of the strain gauge in the center of rebar, 𝑢 is the circumference 

of rebar, and 𝑙 is the adhesive length.  

     

(a)BU42         (b)BU17 

Fig. 3.12. Details of specimen in bond-slip tests. 
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Table 3.7 shows the bond-slip testing results. For the case with the cover of concrete of 

17 mm, it was found that the bond strength increased by 17%. Fig. 3.14 shows the 

comparisons between the bond-slip relationship curves of BN17 and BU17. It was 

observed that the bond-slip curves showed similar tendencies at the beginning stage. 

 

Fig. 3.13. Bond-slip test. 

Table 3.7. Results of bond-slip tests 

Specimen 
Ultimate bond stress (MPa) Average value 

(MPa) 

Strengthening 

effect ① ② ③ 

BN17(-1,2,3) 0.93  0.83  0.83  0.86  - 

BU17(-1,2,3) 1.14  1.02  0.87  1.01  1.17  

BN42(-1,2,3) 1.01  0.74  0.87  0.87  - 

BU42(-1,2,3) 0.99  0.83  0.76  0.86  0.99  

 

 

(a) BN17                          (b) BU17 

Fig. 3.14. Bond-slip relationships. 
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After the bond stress reached at about 40% of the peak value, the stiffness of these 

curves continuously decreased along with the increase of load level. After reached at 

the maximum bond stress, different characteristics were observed from the diagram. 

For the curve of the control specimens (BN17-1.2.3),  the bond stress decreased after 

the peak stress. On the other hand, for the curve of the strengthened specimens (BU17-

1.2.3), the softening was restrained and the bond stress stayed at a high level until the 

rebars yielded. The obtained results show that the UFC panel strengthening method 

improved the bond strength of rebars and also significantly restrained the stress 

softening. 

 

Fig. 3.15 shows the photos of BN17 and BU17 after the bond-slip tests. For the control 

specimen (BN17), the dominant crack occurred in the surface where the cover was the 

minimum among the four side surfaces. For the strengthened specimen (BU17), the 

UFC panel bonding restricted the crack in that surface. As UFC panels can restrict 

cracks from opening and developing, its remarkable strengthening effect on the bond-

slip has been demonstrated. 

 

For the case with the cover of concrete of 42 mm (refer to Table 3.7), the bond strength 

was recorded at almost the same level. Moreover, there was no distinct difference 

between the bond-slip relationships of BN42 and BU42 (refer to Fig. 3.16). Along with 

the increase of load level, the slopes of the bond-slip curves decreased until the 

maximum bond stress reached. Beyond the peak, the curves descended and became 

parabola in form again. It was noted that there were some fluctuations of the bond stress, 

while the maximum bond stress for BN42 and BU42 were nearly at the same level. The 

 

(a)BN17                          (b)BU17 

Fig. 3.15. Photos after bond-slip tests. 
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results show that the UFC strengthening method has little influence on the bond-slip 

relationship at the concrete cover of 42 mm. Moreover, comparing to the results 

obtained in BU17, there exists an influence range of UFC panel strengthening with 

respect to the cover of concrete. 

 

3.4.2. Analysis introduction 

To estimate the bond-slip properties obtained from the bond-slip tests and to 

evaluate the shear resisting mechanism of beam N10D and U10D in Group 2, the 

nonlinear Finite Element (FE) analyses were conducted by using the program 

DIANA 96. The 3D model and boundary conditions are elaborated in Fig. 3.17. Due 

to the symmetry of RC beams, only half of RC beam was considered here, and the 

elements on mid-span cross section were bounded in the axis direction.  

 

The 8-node solid brick element was used for concrete. The stress-strain relationship 

in compression was modeled based on JSCE code7 (refer to Fig. 3.18). The tensile 

response was specified as a linear elastic relationship at the first stage. After the 

tensile stress reached at the maximum value, the softening branch and fracture 

energy were adopted to represent the post-peak tension, to consider the effect of 

micro cracks. The compressive strength and the tensile strength of concrete in the 

strength test were 13.4 MPa and 1.7 MPa, respectively. The fracture energy 𝐺𝑓 was 

calculated according to the JSCE code. 

 

(a) BN42                          (b) BU42 

Fig. 3.16. Bond-slip relationships. 
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𝐺𝑓 = 10(𝑑𝑚𝑎𝑥)1/3 ∙ 𝑓 ’
𝑐

1/3
                                (6) 

where 𝑑𝑚𝑎𝑥 is the maximum dimension of coarse aggregate (20 mm), and 𝑓 ’
𝑐
 is 

the compressive strength of concrete. 

 

The 8-node solid brick element was also used for UFC panel. The stress-strain 

relationship in compression was corresponding to JSCE Recommendations5 (refer to 

Fig. 3.19). The tensile properties were empirically determined from the tensile test 

whose results are shown in Fig. 3.20. Moreover, the peeling failure of the bonding 

surface of UFC panels has not been observed by now. Therefore an assumption can 

be made here as that the interface between UFC panel and concrete matrix was the 

perfect bond. 

 

The line truss element was used for rebars. Here, the young’s modulus was set as 

200 GPa, and the yield strength was measured in the tensile tests. The double line 

element was used to model the interface layer between the concrete and rebar. The 

bond-slip models of rebars used in the analyses are shown in Fig. 3.21. Beyond the 

maximum bond stress, the softening branch was referred to the CEB-FIP Model 

Code8, and the slip value at the softening ending (𝑆3,𝑁𝑜𝑛) was 1 mm. Before the 

maximum bond stress reached, the bond-slip model modified by Shima et al. was 

used to model the nonlinear relationship9. It is because that different from the CEB-

FIP Model Code, the factors of concrete cover, rebar’s diameter and concrete 

strength were concerned in Shima’s formula.  

 

Fig. 3.17. Details of analyses model. 
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Fig. 3.18. Stress-strain relationship in compression 

0

4

8

12

16

0 0.01 0.02 0.03

C
o

m
p
re

ss
iv

e 
st

re
n
g
th

 

(N
/m

m
2
)

ε

 

 

Fig. 3.19. Stress-strain relationship in compression 
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Fig. 3.20. Tensile test of UFC panel. 

 

0

4

8

12

16

20

0 1 2 3 4 5 6

T
en

si
le

 s
tr

en
g
th

 

(N
/m

m
2
)

Opening displacement (mm)



57 

 

The bond stress 𝜏 and the corresponding slip 𝑆1 were calculated as 

𝜏 = 0.4 × 0.9(𝑓’𝑐)2/3[1 − exp{(𝑆/𝐷)1/2}]                      (7) 

𝑆1 = 0.09 × (𝐶/𝐷)                                         (8) 

where 𝑓’𝑐  is the compressive strength of concrete, 𝑆 is slip, 𝐷 is the diameter of 

rebar, and 𝐶 is concrete cover. 

 

For the strengthened beam U10D, two bond-slip models were considered. One was 

the same as beam N10D with an assumption that there was no influence of UFC 

panels on the rebars embedded in concrete matrix. And another bond-slip model was 

the modified model. The bond-slip testing results show that the bond-slip properties 

would not be influenced by UFC panels when the distance between UFC panel and 

rebar exceeds about 50 mm. In the RC beams, except the center tensile rebar, all the 

other rebars were located in the distance of about 20 mm to the UFC panels (refer 

to the dimensions in Fig. 3.3). Therefore, the modified model was applied on all the 

rebars except the center tensile rebar. A comparison of the modified bond model 

and the original bond model is shown in Fig. 3.21. The modified points were the 

maximum bond stress and softening branch. According to the bond-slip testing 

results, the maximum value was increased to 1.17 times and the inhibitory effect of 

UFC panel on softening branch was also concerned in the modified model. 
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Fig. 3.21. Bond-slip model. 
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3.4.3. Analytical results 

For the control beam N10D, a comparison of the load-deflection relationship 

between the analytical and experimental results is shown in Fig. 3.22. It shows a 

good agreement between analytical result and experimental result, which indicates 

that the used models were capable of simulating the shear mechanism of the normal 

RC beams. Fig. 3.23 shows the crack patterns in experimental and analytical results. 

The analytical results show that the obtained feature was similar as that obtained in 

the experiments. For example, the shear cracks and splitting cracks appeared at 

almost the same area. Fig.3.23 also indicates that the constitutive models of concrete, 

rebars and UFC panel can capture the shear resisting behavior of RC beam. 

 

For the strengthened beam U10D, Fig. 3.24 shows the load-deflection curves of 

analytical (two types of models) and experimental results. From the comparison of 

load-deflection curves, the original model and the modified model both show a good 

agreements with the experimental result before the load reached at 120 kN. After 

the load exceeded 120 kN, the curve of original bond model started to diverge from 

the experimental curve, with a lower stiffness. On the other hand, as the maximum 

 

(a) Analytical result                    (b) Experimental result 

Fig. 3.23. Crack patterns of beam N10D. (Load=125kN) 

 

Fig. 3.22. Load-deflection relationship (N10D). 
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bond stress and softening branch in the modified bond model were refined, the result 

of modified bond model was in the similar trend as the experimental results, which 

captured the shear resisting behaviors of the strengthened RC beam. The difference 

between the two bond-slip models’ results demonstrates that the modified bond-slip 

model is capable of representing the bond-slip properties of rebars in the RC beam 

strengthened with UFC panels. 

 

Fig. 3.25 shows the crack patterns of the experiment and analysis. In the analytical 

results of the modified bond model, cracks around the UFC panels were represented 

well compared with experiment. For the distinct feature of cracks in the 

strengthened RC beams, the longitudinal cracks in the bottom were also well 

captured by FE analysis. From the comparisons between the analytical and 

experimental results, the validity of the modified bond model was verified, which 

implies that the modified bond model can represent the shear resisting behavior and 

the crack pattern in the strengthened RC beams.  

 

Fig. 3.24. Load-deflection relationship (U10D). 
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(a) Analysis (Lateral of beam)             (b) Experiment (Lateral of beam) 

    

(c) Analysis (Bottom of beam)             (d) Experiment (Bottom of beam) 

Fig. 3.25. Crack patterns of beam U10D. (Load=200kN) 
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3.5. CONCLUSIONS 

In this chapter, a new shear strengthening method was proposed to upgrade the shear 

capacity of the aging RC bridges. The experiments and analyses were conducted to 

investigate the strengthening effects using UFC panels on the shear resisting 

mechanism and bond-slip properties of RC members. Following conclusions can be 

drawn from this study described above. 

1. By using the proposed shear strengthening method (bonding the UFC panels), 

a very positive effect on the load bearing capacity was obtained in Group 1 and Group 

2. Furthermore, comparing to Group 1, a higher increase of the ultimate load (56%) and 

the initial stiffness (24%) were gained in Group 2, because of the lower concrete 

strength. And the brittle failure mode (shear failure) was also changed to the ductile 

mode (UFC panels blocking) in Group 2. Thus, a significant strengthening effect can 

be expected when using the proposed UFC panel strengthening method to strengthen 

the aging RC bridges with low concrete strength or initial defect.  

2. When strengthening the RC bridges with round rebars, both shear region and 

anchorage section should be concerned. In Group 3, the strengthening effect was not 

obtained in the strengthened beam due to the unpredictable anchorage splitting failure. 

After extending the strengthening region to the anchorage section, the desirable results 

were gained. The load bearing capacity and stiffness were enhanced and the failure 

mode was also changed to the ductile mode, like the beams in the other groups. 

3. From the experimental results, the shear capacity shared by UFC panels does 

not rely on the concrete matrix, which can be evaluated separately from the matrix. The 

evaluation result shows that the shear capacity shared by UFC panels can be estimated 

within an acceptable error range. Furthermore, more effort is still needed to verify and 

improve the design method of UFC panel strengthening on more specimens. 

4. According to the bond-slip testing results, it was found that the proposed UFC 

panel strengthening method affects the bond-slip properties of rebars. The maximum 

bond stress and softening behavior were both improved in case of small cover. 

Moreover, there exists an influence range of UFC panel strengthening on the bond-slip 

properties. 

5. From the comparison of experimental and analytical results, the validity of 

the modified bond model (modified according to the bond-slip tests) was verified. 
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The original model underestimated the stiffness, while the modified model well 

captured the shear resisting behavior measured in the tests.  
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CHAPTER 4  

Investigations on Strengthening by UFC Panels and  

Patch Repair on RC Beams affected by Chloride Attack 

 

 

4.1. INTRODUCTION 

Chloride attack is one of the most widespread causes of deteriorating the RC structure, 

which is usually caused by several reasons such as inadequate design and/or 

construction, lack of maintenance and/or severe environment. The chloride attack 

would lead to the destruction of passive film of rebars, the corrosion of rebars, the 

spalling of concrete cover and so on. Moreover, it would also lead to the loss of 

reliability, availability and serviceability of RC structures, and affect the load-bearing 

mechanism. The European Standard confirmed that the patch repair can be used to 

restore the original properties and the appearance of damaged RC structures1. Since 

then, the patch repair has been widely used to locally replace the deteriorated concrete 

and corroded reinforcement bars, and to rehabilitate the pervious functions of repairing 

objects2,3. On the other hand, Polymer Cement Mortar (PCM) has several outstanding 

attributes, such as low permeability and inhibiting effect on the drying shrinkage 

cracking. The PCM is widely used to replace the damaged concrete after the cleaning 

corroded reinforcement bars and the anti-corrosive coating4. 
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There exist amounts of existing RC structures with corrosion problem, which are 

needed to be replaced of the corroded rebars and to be upgraded in the load bearing 

capacity. In the past decades, many studies have been conducted to evaluate the 

repairing effectiveness using the patch repair method. Some of the results proved that 

the patch repair method does be beneficial to the flexural strengthening.5-13. However, 

there are few studies which also pointed out the influence of the patch repair method 

on the shear resisting mechanism. Moreover, the influence of the shear strengthening 

on the load bearing capacity of repaired RC structures is also needed to be further 

investigated. 

 

To investigate the influence of the patch repair method on the shear resisting mechanism, 

the patch repair was carried out on the RC beams in this chapter. Moreover, the 

strengthening effectiveness of bonding UFC panels on the patch repaired RC beams 

was evaluated. And the factors such as shear-span ratio, patch repair and the 

strengthening of UFC panels were also studied here. 
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4.2. METHODOLOGY 

4.2.1. Specimen details 

Six identical RC beams were cast in the experiments, which were loaded with a four 

point bending configuration, with 240mm in height, 150mm in width and 1500mm in 

length. The span was 1200mm, and the distance between the loads was specified by 

the shear-span ratio (a/d). The list of specimens is shown in Table 4.1. All the beams 

were cast in steel molds and were cured in the molds under a wet hessian for two days. 

As there were many RC bridges reinforced with round steel bars in 1960s, round rebars 

in tension were used and the influence of rebar type was investigated in this study. In 

addition, the aim of this experiment was to evaluate the shear strengthening 

performance for aging or damaged RC bridges with PCM repairs. For this purpose, RC 

beams were designed to break down in shear failure and a few shear reinforcement 

stirrups were set. Two groups of specimens, Group 1 and Group 2, were used to evaluate 

the effects of the shear strengthening of UFC panels under different shear-span ratios 

(a/d = 2.5, 1.5).  

 

▪ Group 1: Beams were designed to have a shear-span ratio of 2.5, since all sorts of 

failure modes would occur when the shear-span ratio is equal to 2.5. There were three 

beams including one control specimen N2.5, one repaired beam P2.5 and one repaired 

and strengthened beam P2.5UFC. To prevent flexural failure, all beams were further 

strengthened by using CFRP sheets. Fig. 4.1 shows the details of RC beams. The 

longitudinal reinforcement consisted of three φ16 for tension and two D13 for 

 

Table 4.1. List of specimens in loading tests. 

Group Specimen 
Concrete strength 

(MPa) 

Compressive strength 

of PCM (MPa) 
UFC CFRP a/d 

Group 1 

N2.5 18 - - O 2.5 

P2.5 18 20 - O 2.5 

P2.5UFC 18 20 O O 2.5 

Group 2 

N1.5 18 - - - 1.5 

P1.5 18 17 - - 1.5 

P1.5UFC 18 17 O - 1.5 
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compression. The yield strength of them were 320 MPa and 375 MPa, and the tensile 

strength of them were 465 MPa and 545 MPa. The patch repair was conducted on beams 

P2.5 and P2.5UFC, where PCM was adopted to replace the matrix concrete in the 

tension zone with 70mm depth. 

 

▪ Group 2:   Beams were designed to have a shear-span ratio of 1.5, simulating the 

girder end of a strengthened RC bridge or the RC deep beam girder. The purpose of this 

group was to compare the strengthening influence under different shear-span ratios. 

There were three beams including one control specimen N1.5, one repaired beam P1.5 

and one repaired and strengthened beam P1.5UFC. All the beams had the same shear-

span ratio (=1.5). Fig. 4.2 shows the details of RC beams. The longitudinal 

reinforcement consisted of three φ16 for tension and two D13 for compression. The 

tensile strength of them were 333 MPa and 335 MPa, and the yield strength of them 

were 465 MPa and 564 MPa. The patch repair by using PCM was also carried out in 

this group. 

  

 

Fig. 4.1. Dimensions of RC beams and Locations of UFC panel (Group 1). 
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Fig. 4.2. Dimensions of RC beams and Locations of UFC panel (Group 2). 
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4.2.2. UFC properties 

In the experiment, the UFC was molded into panels. The volume of mixed steel fibers 

was set at around 5%, the steel fibers had the diameter of 0.1~0.25 mm, the length of 

10~20 mm and the tensile strength of 2×103 MPa. The water-cement ratio was below 

0.24. And other components were silica fume, ground quartz, super-plasticizer, and 

high amount of Portland cement (up to 1000 kg/m3). The thickness of UFC panels was 

set as 7 mm. To prevent the stress concentration, the edge of UFC panel was molded to 

be a 45° taper. The properties of the UFC panel are specified in Table 4.2 and one of 

the used UFC panels is shown in Fig. 4.3. 

 

4.2.3. UFC panel bonding 

The surfaces of concrete matrix and UFC panel were polished and roughed by disk 

grinder firstly, and then the UFC panels were fixed by anchor bolts at the designed 

strengthening positions.  Fig. 4.4 shows the positions of the anchoring holes where no 

rebar passed through. During anchoring, the washers of 3 mm thickness were interposed 

between concrete matrix and UFC panel. The gaps around the panels were sealed except 

the injection side (preparing for the injection of the epoxy resin). Table 4.3 shows the 

material properties of the adhesive epoxy resin. 

  

Table 4.2. Material properties of UFC panel. 

Density 

(g/cm3) 

Compressive 

strength 

(N/mm2) 

Flexural 

strength 

(N/mm2) 

Tensile 

strength 

(N/mm2) 

Elastic 

modulus 

(kN/mm2) 

2.55 210 43 10.8 54 

 

 

Fig. 4.3. The photo of UFC panel used. 
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4.2.4. CFRP sheets bonding 

The procedure of bonding the CFRP sheets was explained below. Firstly, the 

bonding surface of RC beams was polished by the disc sander. Secondly, the putty 

with the thickness of 1 mm was applied after the day of surface coating with epoxy 

primer. On the putty, the CFRP sheet was impregnated and bonded with epoxy resin 

and deaerated by roller. Thirdly, the surface was covered with a release sheet and 

was flatted, and then was cured for days. The properties of CFRP sheet are given in 

Table 4.4. 

  

Table 4.3. Material properties of adhesive epoxy resin. 

Compressive strength 

(N/mm2) 

Tensile strength 

(N/mm2) 

Tensile 

modulus 

(kN/mm2) 

73.5 23.5 3.7 

 

Table 4.4. Material properties of CFRP sheet. 

Fiber weight per unit area Design thickness Tensile strength Tensile modulus 

(g/m2) (mm) (MPa) (GPa) 

600 0.333 4490 263 

 

 

Fig. 4.4. Setting of UFC panel. 



69 

 

4.2.5. Patch repair 

The patch repair has been widely used to locally replace the deteriorated concrete, 

remove the rust and implement the corrosion protection, rehabilitating the pervious 

functions of repairing objects. In this chapter, the depth of repairing layer was set 

as 70mm, so as to expose the tensile rebars out. The matrix concrete was cast to the 

location designed. Then, 2 hours later, the retardant was used to prolong the concrete 

setting time. On the second day, after cleaning the surface of matrix concrete, the 

repairing layer was cast with PCM. 

 

 

4.3. EXPERIMENTAL RESULTS (GROUP 1) 

The test results in terms of ultimate load, initial stiffness and failure mode are given in 

Table 4.5. Compared with the control beam N2.5, the maximum load and initial 

stiffness of P2.5 were increased slightly by 7% and 10%, respectively. Furthermore, the 

greater strengthening effectiveness was observed in P2.5UFC. The maximum load 

(51%) and initial stiffness (35%) were upgraded significantly by bonding UFC panels. 

In addition, the PCM interfacial debonding occurred in P2.5. It showed that the integrity 

between the matrix concrete and repairing layer is still a problem when implementing 

the patch repair. On the contrary, for the strengthened beam P2.5UFC, the interfacial 

debonding was restricted and the beam finally failed in shear compression failure. 

 

The load-deflection relationships of Group 1 are shown in Fig. 4.5. For P2.5, a high 

stiffness was observed at the early stage. However, when the load reached at 80kN, the 

stiffness dropped. On the other hand, the great stiffness was obtained in P2.5UFC.  

Table 4.5. Loading test results. 

Specimen 

Maximum 

load 

Pmax (kN) 

Effective- 

ness 

Stiffness 

at 50kN 

(kN/mm) 

Effective- 

ness 
Failure mode 

N2.5 104.7 - 67.9 - Shear tension failure 

P2.5 112.5 7% 74.4 10% PCM interfacial debonding 

P2.5UFC 157.6 51% 91.8 35% Shear compression failure 
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Fig. 4.6 shows the rebar strain distribution. For the control beam N2.5, the debonding 

occurred at the early stage (load = 80kN). For the repaired beam P2.5, the debonding 

was delayed, which occurred at 100kN. In previous studies, as compared with the plain 

concrete, the relatively good bond with rebars was observed in PCM specimens from 

the pull-out testing, which was considered as the reason of the difference between N2.5 

and P2.5. By comparison, due to the UFC panels strengthening, the strain value of end 

region of tensile rebars in P2.5UFC was kept at a low level, and the debonding was 

restricted. 

 

Fig. 4.7 shows the crack patterns. For the control beam N2.5, due to poor bonding of 

round rebars, the splitting cracks occurred along the tensile rebars, and the beam 

resulted in shear tensile failure. For the beam P2.5, the cracks occurred on the interface 

of matrix concrete and repairing layer, which led the beam to break down. On the 

contrary, due to the benefits of bonding UFC panels, the splitting cracks and interfacial 

layer cracks were restrained. The beam resulted in shear compression failure. 

  

 

Fig. 4.5. Load-deflection relationships. 
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(a) N2.5                             (b) P2.5 

 

(c) P2.5UFC 

Fig. 4.6. Rebar strain distribution. 
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(a) N2.5 

 

(b) P2.5 

 

(c) P2.5UFC 

Fig. 4.7. Crack patterns. 
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4.4. EXPERIMENTAL RESULTS (GROUP 2) 

The testing results of Group 2 are shown in Table 4.6. It was found that the control 

beam N1.5 resulted in the shear compression failure (with arch mechanism), the 

repaired beam P1.5 resulted in the shear compression failure (without arch 

mechanism), and the strengthened beam P1.5UFC failed in flexure. The results 

showed that the strengthening method by bonding the UFC panels would affect the 

failure mode of RC beams. In addition, compared with the control beam N1.5, the 

minus strengthening effect was observed in repaired beam P1.5. The maximum load 

was decreased by 14%. It was noticed that the patch repair with improvement of bond 

strength of rebars, might reduce the shear strength of RC beams due to change in failure 

mode, especially the beams with the low shear-span ratio. On the contrary, the obvious 

improvement was obtained in P1.5UFC. 

 

Fig. 4.8 shows the load-deflection relationships. For the repaired beam P1.5, the higher 

stiffness was observed at the early stage. However, after the load reached at about 70kN, 

the stiffness declined and the load sharply decreased after reached at the peak. It showed 

the highly brittle behavior. The minus effects of patch repair on load-bearing capacity 

and failure mode should be paid attention to when designing. For the strengthened 

beams P1.5UFC, it can be seen that the failure mode was ameliorated by using the UFC 

panels strengthening method. The beam failed in ductile flexure. Fig. 4.9 shows the 

rebar strain distribution. For the control beam N1.5, the debonding at the end of the 

tensile rebars occurred at 120kN. For the beam P1.5, the abrupt debonding at one side 

occurred. On the other hand, in the beam P1.5UFC, the strain of the tension rebar was 

restrained at a low level.  

  

Table 4.6. Loading test results. 

Specimen 

Maximum 

load Pmax 

(kN) 

Effective- 

ness 

Stiffness 

at 50kN 

(kN/mm) 

Effective- 

ness 
Failure mode 

N1.5 196.1 - 108.5 - 
Shear compression failure  

(arch) 

P1.5 169.2 -13.7% 177 63.1% Shear compression failure 

P1.5UFC 273.6 39.5% 173 59.4% Flexural failure 
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Fig. 4.10 shows the crack patterns. For the control beam N1.5, the first shear crack 

occurred close to the mid-span, and extended along the tensile rebars. It was because of 

the low bond strength of the round rebars. Then, the dominant shear crack reached the 

end anchorage section, and the arch mechanism was formed. For the beam P1.5, due to 

the good bonding of PCM and rebars, the splitting cracks were restricted. Consequently, 

the arch mechanism did not form, and the beam broke down abruptly due to the 

dominant shear crack occurred at about 150kN. For the strengthened beam P1.5UFC, 

the beam resulted in the flexural failure. 

  

 

Fig. 4.8. Load-deflection relationships. 
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(a) N1.5                      (b)P1.5 

 
(b) P1.5UFC 

Fig. 4.9. Rebar strain distribution. 
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Fig. 4.10. Crack patterns. 
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4.5. DISCUSSION 

4.5.1. Influence of PCM on the shear resisting mechanism 

With respect to the normal shear-span ratio (a/d = 2.5), the patch repair slightly 

improved the load bearing capacity and initial stiffness, and restricted the debonding of 

tensile rebars. However, the PCM interfacial debonding occurred in the repaired RC 

beam, which implied that the integrity between the matrix concrete and repairing layer 

was hard to be secured for the patch repair. Moreover, in the case of low shear-span 

ratio (a/d = 1.5), shear flexural cracks and splitting cracks were restricted. Consequently, 

the arch mechanism was not formed, and the beam failed in a brittle manner. Therefore, 

the strengthening effectiveness of patch repair should not be expected, especially for 

the beams with low shear-span ratio. 

 

4.5.2. Influence of bonding UFC panels on repaired beams 

When implementing the patch repair on the beams with normal shear-span ratio (a/d = 

2.5), the integrity between the matrix concrete and repairing layer was insufficient in 

the loading test results. Due to the UFC panels strengthening, the interfacial failure was 

restricted. The UFC panels improved the integrity of repaired RC beams. In the case of 

the beams with low shear-span ratio (a/d = 1.5), the load-bearing capacity of the 

repaired beam by PCM dropped, and the beam resulted in the brittle failure. On the 

contrary, for the strengthened beam by UFC panels, the improvement of the load-

bearing capacity and stiffness were obtained, and the beam resulted in the ductile failure. 

The great effectiveness of bonding UFC panels on repaired RC beams were gained.  
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4.6. CONCLUSIONS 

This chapter experimentally investigated the influence of the patch repair on the shear 

resisting mechanism of RC beams, and evaluated the effectiveness of bonding UFC 

panels on the patch repaired RC beams. The results are summarized below. 

1. When a/d was equal to 2.5, the load bearing capacity and stiffness were 

enhanced by applying the patch repair. The concrete splitting around tensile rebars was 

delayed due to the relatively good bonding of PCM and rebars. However, the beam 

broke down in the interfacial debonding, which showed the integrity between the matrix 

concrete and PCM was hard to be secured. 

2. When repairing the RC beams with low shear span ratio (1.5) using PCM, an 

un-predictable brittle failure occurred. Besides, the decrease in load bearing capacity 

was observed. The side effect of applying patch repair on the structural performance 

should be paid attention to especially for the RC beams with low shear span ratio. 

3. Due to the strengthening effect of bonding UFC panels, the shear capacity and 

stiffness of RC beams were enhanced and the failure mode was ameliorated. Especially 

the problems such as the interfacial debonding, the decrease in shear capacity and the 

brittle failure observed in the repaired RC beams were all prevented. It can be said that 

the integrity and safety of repaired RC beams can be secured by bonding UFC panels. 
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CHAPTER 5  

Introduction Investigations on Shear Behavior and Strengthening 

by UFC Panels of RC Beams Affected by Alkali-Silica Reaction 

 

 

5.1. INTRODUCTION 

Alkali-Silica Reaction (ASR), a heterogeneous chemical reaction between the highly 

alkaline cement paste and reactive non-crystalline silica, is one of the most recognized 

deleterious phenomena in concrete and will lead to the premature deterioration such 

as serious expansion and deleterious cracking. ASR was recognized as a durability 

challenge. Now, how to maintain the RC structure subjected to ASR damage has 

gained more and more attention. Since ASR problem was first pointed out in 19401, 

many RC structures affected by ASR had been reported around the world2-4. In the 

past decades, to evaluate the ASR problem, several international committees and some 

researchers have proposed various evaluation methods based on the surface cracking, 

expansion amount, aggregate ingredient and so on. For instance, the crack width and 

crack distribution investigation were implemented as one of the fundamental 

inspections to assess the ASR damage5,6. In the expansion evaluation method, the ASR 

deterioration level was analysed by measuring the expansion amount 7. In another 
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research, the stiffness damage test8,9 and the damage rating index10 were adopted to 

evaluate the expansion in the concrete affected by ASR damage 11 . Moreover, to 

evaluate the concrete cores with ASR damage, Rivard et al.12 compared the effects of 

ultrasonic wave velocities 13 , dynamic Young modulus measured with resonant 

frequency14 and electrical resistivity15. With the development of technology, some 

new techniques have been introduced to assess the ASR deterioration of RC structures. 

For example, Scanning Electron Microscopy Image Analysis (SEM-IA) was one of 

the newly introduced techniques, which quantified the ASR degree in affected micro 

bars, mortar and concrete prisms, and investigated the correlation between the ASR 

degree and macroscopic expansion16. Image analysis techniques were also introduced 

to facilitate the assessment of the reactivity of aggregates17. For better differentiating 

various aggregates with similar levels of reactivity, a novel Nonlinear Impact 

Resonance Acoustic Spectroscopy (NIRAS) was introduced to identify the reactivity 

of aggregates. The performance of NIRAS has been demonstrated in a certain 

samples18. Due to the complexity and diversity of the environment (the locations of 

the ASR affected structures), how to choose suitable evaluation methods, which can 

meet the requirements in terms of cost, time-consuming, and precision, is very 

important. In this chapter, some of those non-destructive inspections were used to 

characterize the ASR deterioration in RC beams before loading tests, which were 

designed to simulate the bridge girder and T-shaped RC pier beam. 

 

The influence of ASR damage on the load bearing mechanism of RC structures is also 

an important issue in ASR researches. In Monette et al.’s research, the material tests 

and loading tests were carried out, where the testing results demonstrated that the 

stiffness and load-bearing capacities of the beams with ASR damage were not 

obviously lower than that of the control beam even though the compressive stiffness 

and flexural strength of the concrete decreased as ASR developed19. With respect to 

the shear capacities, some research findings indicated that there is no significant 

difference between the RC beams with ASR damage and the normal ones, as long as the 

stirrup reinforcing ratio is greater than 0.2%20. However, it does not mean that there is no 

need to concern about the potential accidents in the RC structures subjected to ASR. There 

still exist amounts of existing ASR affected structures needed to be repaired or 
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strengthened due to the poor design and/or construction. In the past years, the main way 

to strengthen the structures damaged by ASR is to demolish and reconstruct a portion of 

the whole structure21. With the development of the strengthening techniques, such as 

bonding the steel plates22-26, bonding Carbon Fiber Reinforced Plastic (CFRP) sheets27-31 

and retrofitting with Ultra high strength Fiber reinforced Concrete (UFC)32 -34, the newly 

developed techniques have been also applied in the ASR affected structures. For 

example, M.E. Williams evaluated and repaired the substructures of a 10 years old 

highway bridge subject to ASR problem by using the CFRP composite for 

confinement and anchorage 35 . However, there are few studies to point out the 

influence of the flexural strengthening (bonding CFRP sheets) on the load bearing 

mechanism of RC beams with comparatively low shear-span ratio (a/d), like the beam 

part of T-shaped pier. Here, the influences of some strengthening methods on the load 

bearing mechanism of ASR affected RC beams (bridge girder and T-shaped RC pier 

beam) were investigated in this chapter. 

 

In addition, an appropriate numerical analysis method is an important factor to guide 

the maintenance and strengthening of ASR affected structures. When conducting the 

numerical analyses, it is essential to investigate the material properties of concrete 

deteriorated by ASR. So far, various material tests have been conducted to investigate 

the properties of ASR affected concrete. It was found that different signs would appear 

when ASR occurred, such as the changes in the elastic properties due to alkali-silica 

gel36. From another perspective, the behaviors of structural materials would also be 

affected by ASR damage. Currently, some studies have been conducted on the 

variation of structural material properties of concrete with the development of ASR. 

At an early stage, Swamy and AI-Asali conducted a detailed concrete characteristic 

study on the compressive and tensile strength, elastic modulus and pulse velocity, 

using a naturally occurring Beltane opal and a synthetic fused silica37. Later, Jones 

and Clark explored the concrete properties such as compressive strength, Young’s 

modulus and tensile strength38. To measure the influence of the internal crack pattern 

caused by ASR on the strength and rheological properties, Giaccio et al. conducted 

comparisons between the mechanical response of a reference concrete at different ages 
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(without reactive aggregates), where concretes were prepared with three different 

types of reactive aggregates (with the same mixture proportions)39. The stress strain 

behavior in compression and the load-deflection response in flexure were measured. 

Those properties of concrete damaged by ASR in terms of the concrete strength, 

elastic modulus, ultrasonic pulse velocity and the stress strain behavior, were also 

tested and similar results were found by the authors 40. On the other hand, due to the 

uncertainty and complexity of ASR, it is not sufficient to represent the ASR in the 

experiments by using those material properties. In this paper, the expansion feature of 

ASR deterioration is considered as a breakthrough point to set up an appropriate analysis 

model. 

 

In this chapter, two series (A and B) of RC beams were cast to simulate the ASR 

affected bridge girder and T-shaped RC pier beam, respectively. Except the control 

beams, the slow reactive aggregates and alkali additives were added to induce ASR. 

Also, they were exposed in exterior environment for years and watered regularly to 

keep the suitable humidity. In the T-shaped RC pier beam, the tensile rebars were 

located on the top which were easy to contact the rainwater. Thus, the beams in Series 

B were overturned to keep the tensile rebars on the top. As the accidents that the 

anchor of tensile rebars fractured due to ASR have been reported recently, the 

influence of fractured rebars on the load bearing of ASR affected structures was also 

investigated here41 (refer to Fig. 5.1).  

 

Fig. 5.1. Fracture of tensile rebar anchor 
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Before the loading tests, the non-destructive inspections (crack investigation, 

expansion amount measurement and ultrasonic wave inspection) were adopted to 

evaluate the differences between the different ASR deterioration states. Moreover, in 

order to investigate the influence of several strengthening methods on the load bearing 

mechanism, some of the beams were strengthened by bonding CFRP sheets and the 

others were strengthened by bonding UFC panels. In addition, the nonlinear Finite 

Element (FE) analyses were conducted to help better understanding of the ASR 

damage, and an analysis model was proposed to simulate the expansion caused by 

ASR.  
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5.2. BEAM GEOMETRY AND DESCRIPTION 

Eleven identical RC beams were used in the experiments, which were loaded with a 

four point bending configuration, with 240-mm of height, 150-mm of width and 1200-

mm of length. The span was 1000 mm, and the distance between the loads was 200 

mm. The longitudinal reinforcement consisted of three D16 rebars for tension with 

yield strength of 342 MPa, and two D13 rebars for compression with yield strength of 

359 MPa. The shear reinforcement consisted of D6 rebars with yield strength of 347 

MPa. Two experimental series (A and B) were conducted to evaluate the influence of 

different exposure conditions and alkali additives on the degradation state and shear 

behavior of ASR affected RC beams. The lists of specimens in series A and B are 

shown in Table 5.1 and Table 5.2, respectively. Fig. 5.2 shows the dimensions of RC 

beams. The shear span ratio is 2.0.  

Table 5.1. List of specimens in Series A. 

Specimen Simulated Objects 
ASR 

damage 

Exposure 

 time 

CFRP 

sheet 

UFC 

panel 

GN Bridge girder - - - - 

GA1(-a) Bridge girder O 1 year - - 

GA1(-b) Bridge girder O 1 year - - 

GA1(-c) Bridge girder O 1 year   

GA3_Cs Bridge girder O 3 years O - 

GA3_CsUp Bridge girder O 3 years O O 

 

Table 5.2. List of specimens in Series B. 

Specimen 
Simulated  

Objects 

ASR 

damage 

Exposure 

 time 

CFRP 

sheet 

UFC 

panel 

Rebar 

anchor 

TN_Cs T-shaped pier - - O - O 

TA1_Cs T-shaped pier O 1 year O - O 

TA1_Cs_Ft T-shaped pier O 1 year O - - 

TA1_CsUp T-shaped pier O 1 year O O O 

TA1_CsUp_Ft T-shaped pier O 1 year O O - 
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(a) GN, GA1(-a,-b,-c). 

 

(b) GA3_Cs, TN_Cs, TA1_Cs.  

 

(c) GA3_CsUp. 

 

(d) TA1_CsUp. 

 

(e) TA1_CsUp_Ft. 

Fig. 5.2. Dimensions of RC beams. 
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Series A was designed to simulate the bridge girder affected by ASR damage. It 

consisted of six RC beams: one control RC beam and five deteriorated RC beams. The 

ends of tensile rebars were bended to be 90° hooks and additional stirrups were used in 

the anchorage region. Table 5.3 shows the specific mix proportion of Series A. NaOH 

was added for ASR triggering with 8.45 kg/m3, and 50% mixture ratio of reactive 

aggregate to total aggregate quantity including non-reactive aggregate was used. For 

all the beams, they were cast in the steel molds and cured under a wet hessian for four 

weeks. Five beams, which were added the ASR reactive aggregate, have been exposed 

in exterior environment for one year and three years, respectively. The influence of 

strengthening techniques on the load-bearing capacity and mechanism was 

investigated in Series A.  

 

In Series B, the beams with reactive aggregates were exposed in exterior environment 

for one year under the condition that the tension sides were turned up. The aim is to 

simulate the ASR affected beam member of T-shaped pier. There were one control 

RC beam and four deteriorated RC beams. Table 5.4 shows the specific mix proportion 

of Series B. Different from Series A, NaCl was added as alkali additives with 12.4 

Table 5.3. Specified mix proportion (Series A). 

Unit Quantity(kg/m3) AE 

additive 

(kg/m3) 

NaOH 

(kg/m3) Water Cement 
Sand 

(Noreactive) 

Sand 

(reactive) 

Gravel 

(Noreactive) 

Gravel 

(reactive) 

183 290 399 411 495 493 2.9 8.5 

 

 

 

Table 5.4. Specified mix proportion (Series B). 

Unit Quantity(kg/m3) AE 

additive 

(kg/m3) 

NaCl 

(kg/m3) Water Cement 
Sand 

(Noreactive) 

Sand 

(reactive) 

Gravel 

(Noreactive) 

Gravel 

(reactive) 

181 287 423 462 431 474 5.7 12.4 
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kg/m3, and 50% mixture ratio of reactive aggregate to total aggregate quantity was 

used for the four deteriorated beams. Recently, the fracture of the tensile rebar anchor 

due to ASR expansion was reported. Thus, in Series B, the tensile rebars without 90° 

hooks were used in the anchorage region of beams TA1_Cs_Ft and TA1_CsUp_Ft. The 

purpose is to simulate the fracture damage of the tensile rebar anchor (see Fig. 5.2). 

Also, the strengthening investigations were carried out in Series B. 

 

5.3. NON-DESTRUCTIVE TESTING 

5.3.1. Crack investigation 

To study the deterioration state, the crack investigation was conducted. The cracks 

were traced using magic markers. The width of cracks was measured by the crack 

scale, and the length of cracks was processed by image analysis software. A 

comparison based upon the crack properties and the area density of cracks along the 

tensile rebar was conducted between Series A and Series B (see Fig. 5.3 and Table 

5.5).  

 

Similar tendency was found in the two Series. Due to the state of ASR expansion, the 

extending crack was along the axial direction and tended to develop in the direction 

with small restraint effect by rebars. On the other hand, for the cracks on the side, the 

positions were different in the two experimental Series. For Series A, cracks occurred 

where there was no longitudinal rebar. For Series B, cracks appeared directly above 

the rebar. Moreover, comparing the area density of cracks along the tensile rebar, the 

area densities of cracks along the tensile rebar in Series B were significantly larger 

than that in Series A (see Table 5.5). There are two possible reasons to explain this 

difference. One is that the side of tensile rebars was turned up in Series B, which 

resulted that the tensile rebar was easier to contact the rainwater and sunlight. Another 

reason is because of the ASR alkali additives. In Series A, NaOH was used, which 

would delay the hydration reaction. While in Series B, NaCl was used, which would 

promote the hydration reaction.   
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(a) GA1(-a) 

 

(b) TA1_Cs 

Fig. 5.3. Crack condition due to ASR. 
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Table 5.5. Crack area density of surface concrete at tensile rebars. 

 Specimen 
Exposure 

time 

Area density of cracks 

(mm2/mm2) 

Series A 

GA1(-a) 1 year 0.00128 

GA1(-b) 1 year 0.00171 

GA1(-c) 1 year 0.00083 

GA3_Cs 3 years 0.00175 

GA3_CsUp 3 years 0.00174 

Series B 

TA1_Cs 1 year 0.00342 

TA1_Cs_Ft 1 year 0.00212 

TA1_CsUp 1 year 0.00385 

TA1_CsUp_Ft 1 year 0.00331 
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5.3.2. Expansion amount investigation 

The expansion amount was measured by contact gauge in different directions: vertical 

direction, upper axial direction and lower axial direction. Fig. 5.4 shows the positions 

of contact tips. The results of expansion amount are shown in Table 5.6. For the 

specimens GA1(-a, -b, -c), it can be seen that the degradation level differs greatly 

from each other, even if they were cast and cured under the same conditions. 

Furthermore, the greatest values were obtained in the vertical direction. It is because 

that the restraint of rebars was weakest in that direction.   

 

Fig. 5.4. Positions of contact tips. 
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Table 5.6. Expansion amount. 

 Specimen 
Expansion amount (μ) 

Vertical Upper axial Lower axial 

Series A 

GA1(-a) 4325 2550 1050 

GA1(-b) 5055 1060 745 

GA1(-c) 2330 895 355 

GA3_Cs 3325 1050 930 

GA3_CsUp 3465 1295 1340 

Series B 

TA1_Cs 5632 2645 1417 

TA1_Cs_Ft 5117 1431 1187 

TA1_CsUp 6074 2605 571 

TA1_CsUp_Ft 6867 786 924 
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5.3.3. Ultrasonic wave velocities 

The ultrasonic investigations were carried out to evaluate the degradation state and 

concrete strength. The ultrasonic wave velocities were measured in two directions: 

transverse direction and longitudinal direction. The measurement positions are shown 

in Fig. 5.5. The results of ultrasonic wave velocities are given in Table 5.7. The results 

indicated that the values in the longitudinal direction were greater than that in the 

transverse direction. It is because that the constraint effect of rebars in the transverse 

direction is lower than that in the longitudinal direction. 

  

 

Fig. 5.5. Measuring positions of ultrasonic wave velocities. 
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Table 5.7. Expansion amount. 

 Specimen 
Ultrasonic wave velocities (m/s) 

Longitudinal direction Transverse direction 

Series A 

GA1(-a) 3853 3420 

GA1(-b) 3800 3331 

GA1(-c) 3934 3682 

GA3_Cs 3893 3400 

GA3_CsUp 3465 3550 

Series B 

TA1_Cs 4350 3831 

TA1_Cs_Ft 4485 3953 

TA1_CsUp 4436 3960 

TA1_CsUp_Ft 4449 3898 
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Furthermore, the fluctuation was found among GA1(-a,-b,-c), even though they were 

exposed in the same environment. Therefore, considering the different restraint 

conditions of rebars in beams and cylinders, the strength testing based on the cylinder 

specimens is not reliable. According to the previous research (a large amount of 

concrete core tests and ultrasonic wave investigations were conducted), the 

relationship between the ultrasonic wave velocity and concrete strength was modeled 

by the Morikawa et al40. Here, the material properties of specimens in this study were 

estimated by the ultrasonic wave velocities. Compressive strength and ultrasonic wave 

velocity relationship is shown in Fig. 5.6. The compressive strength 𝑓𝑐
′
 and the elastic 

modulus 𝐸𝑐 are calculated as 

𝑓𝑐
′ = 0.5494 × 𝑒0.9873×𝑉𝑢                                  (1) 

𝐸𝑐 = 0.951 × 𝑒0.814×𝑉𝑢                                    (2) 

where 𝑉𝑢 is the ultrasonic propagation velocity (m/s). 

  

  

 

 

Fig. 5.6. Compressive strength and ultrasonic wave velocity relationship 
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5.4. LOADING TESTS 

5.4.1. Influence of ASR damage on the bearing mechanism 

The loading tests were conducted in Series A (consisting of the control beam GN and 

ASR affected beams GA1(-a,-b,-c)). Table 5.8 and Fig. 5.7 show the loading test results 

and the load-deflection relationship, respectively. In Table 5.8, the evaluation values 

were calculated according to Strut-tie theory and JSCE Specification 42 . In the 

experiments, the control beam resulted in the diagonal tension failure, while the ASR 

affected beams resulted in the flexural failure. It is inferred that, the opening and 

development of loading cracks were easy to be affected by the preceding cracks 

Table 5.8. Loading tests results. 

Specimen 

Concrete  

strength 

(MPa) 

Evaluation 

Shear 

strength 

 (JSCE) (kN) 

Evaluation 

Strut-tie 

strength 

(Strut-tie) (kN) 

Maximum 

load 

(kN) 

Stiffness 

(load=40kN) 

(kN/mm) 

Failure mode 

GN 36.5 137.2 -  155.6 108.9  
Diagonal 

tensile failure 

GA1(-a) 24.7 (128.0)  239.4 203.8 109.0  
Flexural 

failure 
GA1(-b) 23.4 (126.9)  237.6 223.1 131.6  

GA1(-c) 26.7 (129.8)  248.5 222.6 112.7  

 

 

Fig. 5.7. Load-deflection. 
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caused by ASR, which accelerated the flexural cracks and bond-split cracks 

development at the early stage. When the slipping of rebar occurred, the bond stress 

of tensile rebar decreased and the load-bearing mechanism changed to arch 

mechanism. As shown in Table 5.8, the results demonstrated that the maximum loads 

of GA1 (-a,-b,-c) were much greater than the evaluation values of shear strength by 

JSCE, but were close to the evaluation values of strut-tie strength. It is because that 

the change of load bearing system from the diagonal tensile resisting mechanism to 

the arch mechanism significantly raised the load bearing strength. Besides, due to the 

concrete expansion cause by ASR, the pre-stress occurred inside the beams with ASR 

damage, which influenced the resisting mechanism and led to the increase of the load 

bearing capacity. In addition, even though the three beams of GA1 were cast and 

exposed in the same conditions, different maximum load and stiffness were obtained 

in the loading tests. The uncertainty and complexity of ASR damage were confirmed.  

 

Fig. 5.8 shows crack patterns. The diagonal cracks were observed between the loading 

point and the support in GN. On the other hand, due to the influence of preceding 

cracks caused by ASR, the load bearing mechanism was different from the control 

beam. In GA1(-a,-b,-c), the dominant cracks occurred in the mid-span and did not 

extend to the supports.   

 

(a) GN                              (b) GA1(-a) 

 

(c) GA1(-b)                              (d) GA1(-c) 

 

Fig. 5.8. Crack patterns. 

 

Cracks due to Loading testsPreceding cracks due to ASR
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5.4.2. Influence of strengthening by bonding CFRP sheets on ASR affected beams 

Due to the poor design and/or construction, sometimes the existing ASR affected 

structures are needed to be repaired or strengthened to upgrade the design load and 

avoid the accident events. Therefore, in this chapter, the influence of strengthening by 

bonding CFRP sheets on flexural bearing mechanism was also investigated. The 

properties of CFRP sheet are given in Table 5.9. 

 

(1) Bonding CFRP sheets 

The procedure to bond the CFRP sheets was explained below. Firstly, the bonding 

surface of RC beams was polished by the disc sander. Secondly, the putty with the 

thickness of 1 mm was applied after the day the surface coated with epoxy primer. On 

the putty, the CFRP sheet was impregnated and bonded with epoxy resin, and 

deaerated by roller. Thirdly, the surface was covered with a release sheet and was 

flattened, and then was cured for days.  

 

(2) Experimental results in Series A 

In Series A, the ASR affected beam GA3_Cs was strengthened by CFRP sheets. The 

influence of CFRP sheet on the bearing mechanism in the bridge girder with ASR 

damage was investigated. The testing results in terms of maximum load, initial stiffness 

and failure mode are shown in Table 5.10. 

 

It can be seen that the strengthened RC beam resulted in diagonal tensile failure, while 

the un-strengthened beams GA1(-a,-b,-c) resulted in flexural failure. For the stiffness, 

the initial stiffness of strengthened beam was much greater than that of un-

Table 5.9. Material properties of CFRP sheet. 

Fiber weight per unit area Design thickness Tensile strength Tensile modulus 

(g/m2) (mm) (MPa) (GPa) 

600 0.333 4490 263 
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strengthened beams due to the strengthening of CFRP sheets. However, the maximum 

load was even lower than the weakest one among GA1(-a,-b,-c), that is, the maximum 

load was not raised.  

 

Fig. 5.9 shows the load-deflection relationships of specimens. At the early stage, the 

great stiffness can be seen on the strengthened beam. When the load reached at 150 kN, 

the stiffness of strengthened beam decreased significantly, and ended up in the brittle 

failure. The inducement can be found from crack patterns shown in Fig. 5.10. Comparing 

the crack patterns of the un-strengthened beams and the strengthened beam, it can be 

found that the flexural cracks were restrained by CFRP sheet. While, the preceding cracks 

in the shear region significantly developed along the diagonal direction. Due to the 

strengthening effect using CFRP sheets, the stiffness of ASR affected RC beam was 

enhanced and the flexural cracks were restrained obviously. In addition, the shear cracks 

along the diagonal direction developed and led the beam to fail in a brittle manner. Thus, 

when strengthening the RC structures with ASR damage, the secondary effect of flexural 

strengthening should be paid more attention. 

 

(3) Experimental results in Series B 

In Series B, the normal RC beam and ASR affected beams were all strengthened by CFRP 

sheets. The influence of CFRP sheet on the bearing mechanism in the T-shaped pier 

beam with ASR damage was investigated. In addition, the artificial fracture damage 

of the tensile rebar anchor was introduced in TA1_Cs_Ft. 

  

The experimental results are shown in Table 5.11. The control beam (TN_Cs) resulted 

in the diagonal tensile failure. Both of the ASR affected RC beams (TA1_Cs and 

TA1_Cs_Ft) resulted in the bond-split failure. The maximum loads of ASR affected 

beams were higher than that of the control beam, while the initial stiffness of ASR 

affected beams was much lower than that of the control beam. To explore the reasons, 

the load-deflection relationships and crack patterns were studied as shown in Fig. 5.11 

and Fig. 5.12. 
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Table 5.10. Loading tests results. 

Specimen 

Compressive 

strength 

(MPa) 

Maximum 

load 

(kN) 

Stiffness 

(load=40kN) 

(kN/mm) 

Failure mode 

GA1(-a) 24.7 203.8 109.0  

Flexural failure GA1(-b) 23.4 223.1 131.6 

GA1(-c) 26.7 222.6 112.7  

GA3_Cs 25.7 212.5 156.9  Diagonal tensile failure 

 

 
Fig. 5.9. Load-deflection.  
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Fig. 5.10. Crack patterns (GA3_Cs) 

Cracks due to Loading testsPreceding cracks due to ASR
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From the load-deflection relationships, it can be seen that the stiffness of the control beam 

was greater than that of the other two beams, especially at the early stage. The RC beam 

with fracture damage of the tensile rebar anchor showed the lowest stiffness. As the 

specimens in Series B were designed to simulate the T-shaped RC pier beam and the 

bottom surface close to tensile rebar was exposed to sunshine and rainwater, the preceding 

cracks were easy to occur along the tensile rebars. Moreover, due to the preceding cracks, 

the bond-split cracks occurred at the early stage, and leaded to a lower stiffness comparing 

to the control beam. On the other hand, the features of brittle failure were observed on the 

all three beams.  

Table 5.11. Loading tests results. 

Specimen 

Concrete  

strength 

(MPa) 

Maximum load 

(kN) 

Stiffness 

(load=60kN) 

(kN/mm) 

Failure mode 

TN_Cs 46.9 238.4  247.7 Diagonal tensile failure 

TA1_Cs 40.3 259.5  182.6 
Bond-split failure 

TA1_Cs_Ft 46.0 245.0  140.5 

 

 
Fig. 5.11. Load-deflection. 
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For the crack patterns, the dominant cracks can be seen in the diagonal direction in the 

control beam. In the ASR affected beams, the obvious bond-split cracks can be seen along 

the tensile rebars. The results showed that, even though the exposure time and 

strengthening method were the same, different bearing characteristics were obtained from 

Series A and B. When strengthening the RC structures with ASR damage, diagonal cracks 

for bridge girder and bond-split cracks for T-shaped RC pier beam should be noticed. 

 

  

 

(a) TN_Cs 

 

(b) TA1_Cs                      (c) TA1_Cs_Ft 

 

Fig. 5.12. Crack patterns. 

 

Cracks due to Loading testsPreceding cracks due to ASR
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5.5. FINITE ELEMENT ANALYSIS 

For better understanding of the strengthening influence of CFRP sheets on the shear 

resisting mechanism in RC beams, the numerical analyses were also conducted in the 

beams of TN_Cs and TA1_Cs. An analysis method was proposed in this study to 

represent the experimental results of ASR affected RC beams. To measure the pre-

strain generated in the rebar caused by ASR expansion, a survey of the rebar strain 

was conducted in the two RC beams. The boundary conditions and FEM model used 

in this study are illustrated in Fig. 5.13.  

 

5.5.1. Material Properties 

(1) Concrete 

To model the concrete behavior, an elastic plastic model was used with an assumption 

that the two main failure modes were tensile cracking and compressive crushing. 

Under uni-axial tension, the stress-strain response was a linear elastic relationship, 

until the failure stress value was reached. Considering the post-peak tension failure 

behavior of the concrete, the fracture energy method (the area under the softening 

curve) was employed. In the experiments, the fracture energy was given as 98 J/m2 

and 87 J/m2, and Poisson's ratio was 0.2. For the concrete failure, The Mohr-Coulomb 

 

 

Fig. 5.13. Boundary conditions and FEM model 
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yield criterion was adopted. Also, the stress-strain relationship was used to stimulate the 

uni-axial compressive stress-strain curve. Fig. 5.14 shows the stress-strain relationship 

for concrete, and Fig. 5.15 shows the tension softening model.  

 

Based on the experimental results, the tensile strength of TN_Cs and TA1_Cs was 3.3 

MPa and 2.3 MPa, respectively. For the compressive strength, the differences of the 

states of degradation between the cylinder (without the restraint of rebars) and the RC 

beams (the concrete expansion was constrained by the steel bars) were considered. 

Here, the material properties were estimated from the ultrasonic propagation velocity.  

(2) Steel reinforcement 

The rebar was assumed as an elastic–perfectly plastic material and was identical in 

tension and compression. The elastic modulus 𝐸𝑠  and the yield stress 𝑓𝑦  were 

measured in the experimental study. The bond law according to CEB-FIP Model Code 

9043 was used.  

 

(3) CFRP 

Considering the CFRP material was linear elastic isotropic until failure, the elastic 

modulus was specified as 262 GPa and the tensile strength in the fiber direction of the 

unidirectional CFRP material was specified as 3.8 GPa. 

A cohesive zone model was used to model the interface between the concrete and 

CFRP. Fig. 5.16 shows a graphic interpretation of a simple bilinear bond stress-slip 

  

Fig. 5.14. Stress–strain relationship for concrete Fig. 5.15. Tension softening model (1/4) 
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law in terms of the effective traction and effective opening displacement 44. More 

modeling details of the interface are available in Guo et al.’s publication45.  

 

(4) Considering of ASR deterioration  

ASR deterioration was considered in the thermal strain model corresponding to the 

chemical pre-strain. To measure the pre-strain generated in rebar caused by ASR 

expansion, a survey of rebar strain was conducted. Here, a thermal strain analysis 

method was proposed to simulate the concrete expansion caused by ASR degradation. 

This method utilized the linear thermal expansion coefficient of concrete element. A 

series of temperature values were used as the inputs, which would be the factors of 

the expansion of concrete elements. A group of outputs of the pre-strain of rebars was 

obtained. Comparing to the experimental data, the equivalent thermal strain 

corresponding to the chemical pre-strain was specified as about 500µ. On the other 

hand, the FE analysis was conducted on the loading test to assess the shear mechanism 

and shear resisting performance of the concrete members due to the initial defect and 

ASR. For further comparison, the normal FE analysis without consideration of 

concrete expansion was also conducted here. 

  

 

Fig. 5.16. Bond slip law of CFRP sheet. 
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5.5.2. Analytical results 

(1) Load-Deflection Relationship 

The compared load-deflection curves of the analytical and experimental results 

between TN_CS and TA1_Cs are compared in Fig. 5.17.  

 

For TN_CS, there was a good agreement between analytical and the experimental 

results, especially the maximum load value. This good agreement indicated that the 

constitutive models used for concrete and reinforcement can well capture the fracture 

behavior. The predicted stiffness value in FE analysis was slightly lower than the 

experimental result after the load reached at 150 kN. It is considered that the error was 

caused by the accuracy of the ultrasonic propagation velocity. For TA1_Cs, the no 

expansion model significantly underestimated the stiffness and load-bearing capacity. 

As the concrete expansion was not considered, the stiffness and load-bearing capacity 

in the analysis was lower than the experimental results. However, the chemical pre-

stress model showed a good agreement with the experimental results, as the chemical 

pre-stress due to ASR was considered.  

 

(a) TN_Cs                         (b) TA1_Cs 

 

Fig. 5.17. Load-deflection curves of beams. 
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(2) Rebar Strain Distribution 

The rebar strain distributions of analytical and experimental results of TN_CS and 

TA1_Cs are shown in Fig. 5.18. In the experimental results of TN_CS, the bond at the 

ends of rebars was secured until 120kN. Then, the bond-slip failure occurred at the 

edge of tensile rebar. Similar results were obtained in the FE analysis, which predicted 

that the bond in the rebar end zone of the RC beam was secured with a load of 120kN. 

  

                                

                (a) Analytical result (TN_Cs).             (b) Experimental result (TN_Cs). 

 

                                          

             (c) Analytical result of no expansion model. (d) Analytical result of chemical pre-strain model. 

                (TA1_Cs)                           (TA1_Cs) 

 

(e) Experimental result (TA1_Cs). 

Fig. 5.18. Rebar strain distribution. 
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In the experimental results of TA1_Cs, the slipping occurred at the end of the tensile 

rebar at a load of 160kN, which further expanded until the beam broke down. On the 

other hand, in the no expansion model, different load values of bond-slip failure were 

obtained. The load value 120kN obtained in FE analysis is much lower than the load 

value 160kN obtained in the experimental results. It showed that the strain of the 

tensile rebar was overestimated, when the concrete expansion was not considered. 

Conversely, when the chemical pre-stress was considered, the analytical results well 

captured the timing when the bond-slip failure occurred. 

 

(3) Crack Patterns 

Fig. 5.19 shows the crack patterns obtained in the experimental results of RC beams. 

In the experiment of TN_Cs, after the flexural/shear cracks occurred, the shear cracks 

expanded to connect the supports with the loading points, leading to a collapse in 

diagonal tensile failure. The analytical result showed similar crack behavior as in the 

experiments, where the opening of the crack started in the same location and finally 

the stirrup yielded after the flexural/shear cracks expanded. 

 

In the experiment of TA1_Cs, the RC beams broke down and resulted in bond-split 

failure due to the flexural/shear and bond-slip cracks. However, the no expansion 

model showed different behaviors compared with the experimental results. In the no 

expansion model, the diagonal cracks were obviously observed. In the analytical 

results of the chemical pre-stress model, the cracks obtained in the experiment and in 

the simulation were similar, which proved that the model can well capture the 

mechanisms of fracture in the beams. Considering the chemical pre-stress induced by 

the expansion in concrete due to ASR, the FE analysis was adopted to simulate one of 

the experimental results. The analysis results showed a good agreement with the 

experimental data with respect to the load-deflection response, crack pattern and rebar 

strain distribution. 
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(a) Analytical result (TN_Cs).         (b) Experimental result (TN_Cs). 

            

(c) Analytical results of no expansion model. (d) Analytical result of chemical pre-stress model. 

             (TA1_Cs)                            (TA1_Cs) 

 

(e) Experimental result s (TA1_Cs) 

Fig. 5.19. Crack patterns. (Load=200kN). 
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5.6. SHEAR STRENGTHENING BY UFC PANELS 

In the experimental results, the degradation states were different in terms of the bridge 

girder (Series A) and T-shaped RC pier beam (Series B) with ASR damage, which 

resulted in different bearing mechanisms formed. For example, the dominant cracks 

were diagonal cracks in Series A, while the fatal cracks were the bond-slip cracks in 

Series B. Then, a shear strengthening method, bonding the panels made of UFC on the 

RC beams, was proposed. Moreover, two different strengthening schemes were adopted 

in this study to restrict the shear cracks in both Series A and B (see Fig. 5.2). 

 

5.6.1. Material properties of UFC 

In this experiment, UFC was molded into panels. The volume of mixed steel fibers was 

set at about 5%, with the diameter of 0.1~0.25mm, the length of 10~20mm and the tensile 

strength of 2×103 MPa. In addition, the water-cement ratio was below 0.24, and the other 

components were silica fume, ground quartz, super-plasticizer, and high amount of 

Portland cement (up to 1000 kg/m3). According to the previous research results, the 

thickness of UFC panels was set as 7mm in the experiments to ensure the good cohesion 

between concrete matrix and UFC panel. To prevent the stress concentration, the edge of 

UFC panel was molded to be a 45° taper. The properties of the UFC panel are specified 

in Table 5.12.  

 

5.6.2. UFC panel bonding 

The surfaces of concrete matrix and UFC panel were polished and roughed by disk 

grinder firstly, and then the adhesive surfaces were coated with epoxy resin. After that, 

the bracket was used to fix UFC panels in the designed strengthening positions, and the 

specimens were cured for two weeks. Table 5.13 shows the material properties of the 

adhesive epoxy resin and the photo of UFC panel bonding is shown in Fig. 5.20. 
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5.6.3. Experimental results in Series A 

To restrict the diagonal cracks, the UFC panel was designed to strengthen the stirrups as 

shown in Fig. 5.2 (c). The ASR affected beam GA3_CsUp was strengthened by CFRP 

sheets and UFC panels simultaneously. 

 

The results of loading tests are shown in Table 5.14. Compared with beam GA3_Cs, 

the maximum load and initial stiffness of GA3_CsUp were enhanced by using UFC 

panels strengthening method. On the other hand, the failure mode was still the same 

as GA3_Cs.  

Table 5.13. Material properties of adhesive epoxy resin. 

Compressive strength 

(N/mm2) 

Tensile strength 

(N/mm2) 

Tensile 

modulus 

(kN/mm2) 

73.5 23.5 3.7 

 

 

Fig. 5.20. The photo of UFC panel bonding. 

Table 5.12. Material properties of UFC panel. 

Compressive 

strength 

(MPa) 

Flexural 

strength 

(MPa) 

Tensile 

strength 

(MPa) 

Elastic 

modulus 

(GPa) 

210 43 10.8 54 
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The load-deflection relationships of specimens are shown in Fig. 5.21. Due to the 

strengthening effect of UFC panels, the stiffness was kept at a comparatively higher value. 

In addition, at the last stage, the ductile failure was observed in GA3_CsUp. From the 

crack patterns shown in Fig. 5.22, it is found that the diagonal cracks on one side were 

significantly restrained by UFC panels. However, the diagonal cracks on the other 

side led to the failure finally. 

 

Therefore, for the bridge girder affected by ASR damage, the strengthening method, 

which restrains the diagonal cracks, can upgrade the load bearing capacity and 

stiffness, and to some extent, can prevent the brittle failure.  

  

Table 5.14. Loading tests results. 

Specimen 
Concrete  

strength (MPa) 

Maximum 

load 

(kN) 

Stiffness 

(load=40kN) 

(kN/mm) 

Failure mode 

GN 36.5 155.6 108.9  
Diagonal 

tensile failure 
GA3_Cs 25.7 212.5 156.9  

GA3_CsUp 16.8 240.3 164.0  

 

 
Fig. 5.21. Load-deflection. 
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5.6.4. Experimental results in Series B 

The strengthening scheme of restricting the bond-split cracks was adopted (refer to 

Fig. 5.2 (d, e)). The ASR affected beams TA1_CsUp and TA1_CsUp_Fc were bonded 

with UFC panels. The experimental results are given in Table 5.15. Fig. 5.23 shows 

the load-deflection relationships. It can be seen that the stiffness dropped significantly 

when the load reached at about 220 kN. The insufficient bond strength between 

concrete and CFRP sheet should be considered as the main reason. 

 

From the crack patterns shown in Fig. 5.24, the peeling failure of CFRP sheet on one 

side can be observed in both of two beams. The results showed that the UFC panel 

can restrict the bond-split cracks. But the failure occurred in the weak part where the 

enough bond was not provided by CFRP sheet.  

 

 

Fig. 5.22. Crack patterns. 

Cracks due to Loading testsPreceding cracks due to ASR

Table 5.15. Loading tests results. 

Specimen 

Concrete  

strength 

(MPa) 

Maximum load 

(kN) 

Stiffness 

(load=60kN) 

(kN/mm) 

Failure mode 

TA1_Cs 40.3 259.5  182.6 

Bond-split failure 
TA1_Cs_Ft 46.0 245.0  140.5 

TA1_CsUp 43.8 273.6  173.9 

TA1_CsUp_Ft 44.4 263.3  192.1 
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Fig. 5.23. Load-deflection. 
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Fig. 5.24. Crack patterns. 
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5.7. CONCLUSIONS 

This chapter describes ASR related studies on two experimental series, including 

different exposure methods, different exposure times and different strengthening 

methods. The influences of ASR deterioration on shear failure mechanism and the 

shear resisting performance of RC beams were evaluated.  Following conclusions 

can be drawn: 

1. According to the non-destructive testing, it is found that the rebar restraint 

ratio and the exposure condition affected the degradation state in RC structures with 

ASR damage, which led to the different failures in loading tests. 

2. In the loading tests, due to the influence of preceding cracks and pre-stress, 

the load bearing mechanism changed from the diagonal tensile resisting mechanism 

to the arch mechanism, and the bearing capacity was enhanced consequently. In 

addition, even though some specimens were cast and exposed in the same conditions, 

different maximum load and stiffness were obtained in the loading tests. The 

uncertainty and complexity of ASR damage were confirmed.  

3. When repairing or strengthening the ASR affected RC beams with CFRP 

sheets, an increase of bearing capacities may not be obtained, since the specimens 

failed in shear failure.  

4. Comparing the experimental and analytical results, the validity of FE analysis 

method proposed for ASR was verified. For ASR affected specimen, the no expansion 

model significantly underestimated the stiffness and load-bearing capacity. 

Conversely, the chemical pre-stress model showed a good agreement with the 

experimental results, in which the chemical pre-stress due to ASR was considered. 

5. Based on the different failure modes in Series A and Series B, different 

strengthening schemes were proposed to restrain the diagonal cracks or bond-split cracks. 

Using the proposed shear strengthening method (bonding the UFC panels) led to a very 

positive effect on the load bearing capacity in both Series A and Series B. Furthermore, 

the brittle failure mode was also changed to the ductile mode. 
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CHAPTER 6  

Size Effect on Shear Strengthening of RC Beams by 

Bonding UFC Panels for Practical Study 

 

 

6.1. INTRODUCTION 

In order to meet the requirements of high durability, efficiency, reliability, short-duration 

and low-cost, the authors proposed a shear strengthening method by bonding the UFC 

panels on RC beams1-4. To evaluate the influence of concrete strength, tensile rebar type, 

shear-span ratio and patching repair on the strengthening effects and the shear resisting 

mechanism, the experimental investigations of the UFC panels strengthening on RC 

beams with 1/4 depth of real bridge girder were conducted in previous chapters1-3. The 

experimental results demonstrated that the shear resisting capacity of RC beams and 

bond-slip properties of rebars were both improved by bonding UFC panels. Moreover, to 

better understand the influence of UFC panel strengthening on the shear resisting 

mechanism in RC beams, the numerical analyses were also conducted4. Based on the 

discussion on the bond-slip behaviors of concrete and rebars, the analytical results of the 

modified bond-slip model showed the good agreement with the experimental results in 

terms of load-deflection and crack pattern. However, whether the similar shear 
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strengthening effects can be gained on the existing bridge girder, becomes an important 

problem. To realize the practical application, the influence of the factors in terms of size 

effect and UFC panel thickness has to be evaluated. In this chapter, the experimental 

investigations were conducted to evaluate the strengthening performance of bonding UFC 

panels on the large specimens and to evaluate the influence of the factors in terms of size 

effect and UFC panel thickness. And JSCE recommendation equation was verified to 

evaluate the shear carried by UFC panels5. 

 

 

6.2. METHODOLOGY 

6.2.1. Material properties 

In this thesis, the proposed shear strengthening method is to retard the development of 

shear cracks around the ends of the RC beams by bonding UFC panels. As there were 

many RC bridges reinforced with round steel bars in 1960s, round rebars in tension were 

used in this chapter. In addition, the aim of this experiment is to evaluate the shear 

strengthening performance in the aging or damaged RC bridges. For this objective, RC 

beams were designed to break down in shear failure and a few shear reinforcement 

stirrups were set.  

 

The list of specimens is shown in Table 6.1. Five identical RC beams were used in the 

experiments, loading with a four point bending configuration. All the beams were cast in 

steel molds and were cured in the molds under a wet hessian for two days. The beams 

were designed to have a shear-span ratio of 1.5. Fig. 6.1 shows the shear damage in the 

girder end of an aging bridge that was built in 1960s in Japan. Due to the low concrete 

strength and the excessive load in the girder end, the shear cracks already occurred. 

Therefore the experiments were designed to evaluate the strengthening influence on the 

RC beams with low shear-span ratio and to investigate the size effect on the strengthening 

performance.  
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There were total five beams including two control RC beams and three beams 

strengthened by bonding the UFC panels. To investigate the size effect of RC beams on 

the strengthening performance, two types of size were used. One was 1/4 depth of real 

bridge girder, and another was 1/2 depth. All the beams were with the same shear-span 

ratio (=1.5). For the 1/4 size beams (see Fig. 6.2),  the longitudinal reinforcement 

consisted of three φ16 for tension and two D13 for compression. The tensile strength of 

φ16 and D13 was 465 MPa and 564 MPa, and the yield strength of φ16 and D13 was 333 

MPa and 385 MPa. The shear reinforcement consisted of φ6 with a yield strength of 415 

MPa. For the 1/2 size beams (see Fig. 6.2), the longitudinal reinforcement consisted of 

four φ28 for tension and two φ19 for compression. The tensile strength of φ28 and φ19 

was 472 MPa and 464 MPa, and the yield strength of φ28 and φ19 was 333 MPa and 337 

MPa. The shear reinforcement consisted of φ12 with a yield strength of 333 MPa.  

  

 

Fig. 6.1. Girder end of an aging bridge built in 1960s in Japan. 

 

Table 6.1. List of specimens in loading tests. 

Specimen 
Concrete strength 

(MPa) 

Tensile 

rebar 

UFC 

panel 
a/d 

Beam depth 

(mm) 

1.5RN1/4 24.6  φ16 - 1.5 240 

1.5RDA 24.6  φ16 7mm 1.5 240 

1.5RN1/2 24.0  φ28 - 1.5 500 

1.5RD14A 24.0  φ28 14mm 1.5 500 

1.5RD28A 24.0  φ28 28mm 1.5 500 
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(a) 1.5RN1/4 

 

(b) 1.5RDA 

 

 

(c) 1.5RN1/2 

 

(d) 1.5RD14A & 1.5RD28A 

 

Fig. 6.2. Dimensions of RC beams and Locations of UFC panel. 
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6.2.2.  UFC properties 

In the experiments, the UFC was molded into panels. The volume of mixed steel fibers 

was set at around 5%, with the diameter of 0.1~0.25 mm, the length of 10~20 mm and 

the tensile strength of 2×103 MPa. The water-cement ratio was below 0.24. And other 

components were silica fume, ground quartz, super-plasticizer, and high amount of 

Portland cement (up to 1000 kg/m3). For the 1/4 size RC beams, the thickness of UFC 

panels was set as 7 mm. The reason is to ensure a good cohesion between concrete matrix 

and UFC panel. For the 1/2 size RC beams, an investigation of the thickness of UFC 

panels was conducted to evaluate the beam size effect. Here, two types of UFC panel 

thickness were considered. One was 14mm (1.5RD14A), and another was 28mm 

(1.5RD28A). To prevent the stress concentration, the edge of UFC panel was molded to 

be a 45° taper. The properties of the UFC panel are specified in Table 6.2 and one of the 

used UFC panels is shown in Fig. 6.3. 

 

6.2.3. UFC panel bonding 

The surfaces of concrete matrix and UFC panel were polished and roughed by disk 

grinder firstly, and then the UFC panels were fixed to the designed strengthening 

positions as shown in Fig. 6.2. During anchoring, the washers of 3 mm thickness were 

interposed between concrete matrix and UFC panel. The gaps around the panels were 

sealed except the upper side preparing for the injection of the epoxy resin. Table 6.3 

shows the material properties of the adhesive epoxy resin. Fig. 6.4 shows the setting of 

strengthened RC beam. 

  

Table 6.2. Material properties of UFC panel. 

Density 

(g/cm3) 

Compressive 

strength (MPa) 

Elastic 

modulus (GPa) 

Splitting tensile 

strength (MPa) 

Uniaxial tensile 

strength (MPa) 

2.55 210 54 10.8 16.7 
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Fig. 6.3. The photo of UFC panel used. 

 

 

Fig. 6.4. Setting of strengthened RC beam. 

Table 6.3. Material properties of adhesive epoxy resin. 

Compressive strength 

(MPa) 

Tensile strength 

(MPa) 

Tensile modulus 

(GPa) 

73.5 23.5 3.7 
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6.3. EXPERIMENTAL RESULTS 

6.3.1. Experimental results of 1/4 size beams 

In chapter 3, the anchorage splitting failure was observed in specimen with low shear-

span ratio. Thus an anchorage reinforcement method that the bonding region of UFC 

panel was extended to the anchorage section, was proposed to prevent the anchorage 

splitting failure. Two beams (control beam 1.5RN1/4 and strengthened beam 1.5RDA) 

were cast in this study to verify the improved strengthening method (refer to Fig. 6.2(b)). 

The loading test results of 1/4 size beams are given in Table 6.4. The load-deflection 

relationships of 1.5RN1/4 and 1.5RDA are shown in Fig. 6.5. From the figure, the brittle 

failure occurred in the control beam 1.5RN1/4, where the load declined immediately after 

Table 6.4. Loading test results. 

Specimen 

Maximum 

Load 

(kN) 

Concrete 

Strength 

(MPa) 

Effective- 

ness 

Stiffness 

at 30kN 

(kN/mm) 

Effective- 

ness 
Failure mode 

1.5RN1/4 173.5 24.6 - 153.3 - Shear compression 

failure 

1.5RDA 242.9 24.6 40.0% 138.9 -9.4% 
UFC panel peeling 

failure 

 

  

(a) 

Fig. 6.5. Load-deflection relationships. 
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it reached at the peak. On the other hand, due to benefits of the anchorage reinforcement 

and shear strengthening, a significant upgrading effect on bearing capacity was obtained 

and the maximum load was enhanced by about 40%. Moreover, the failure mode was also 

ameliorated, and the curve demonstrated the outstanding ductility at the last stage.  

 

Fig. 6.6 shows the crack patterns, where the cracks on the bottom of strengthened beam 

are also presented. For the control beam 1.5RN1/4, the shear cracks and the compressive 

splitting cracks can be seen in the shear region, and the beam resulted in the shear 

compression failure. On the contrary, due to the benefits of the anchorage reinforcement, 

the anchorage splitting cracks did not occur in beam 1.5RDA. Due to the strengthening 

effect by bonding the UFC panel, the crack patterns in 1.5RDA were different from that 

occurred in 1.5RN1/4. The cracks on the beam bottom developed not only in the 

transverse direction but also in the longitudinal direction along the edge of UFC panel. 

The beam 1.5RDA resulted in partially peeling failure of UFC panel (refer to Fig. 6.7). 

The experimental results demonstrated that the ultimate load and the failure mode were 

ameliorated by implementing the anchorage reinforcement in which the bonding region 

of UFC panel was extended to the anchorage section.  

  

 
(a) 1.5RN1/4                       (b) 1.5RDA 

Fig. 6.6. Crack patterns. 
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6.3.2. Experimental results of 1/2 size beams 

Considering the influence of beam size effect, the thickness of UFC panels was also 

investigated in this study. Two types of UFC panel thickness were adopted to strengthen 

the RC beams. The strengthened RC beams were 1.5RD14A and 1.5RD28A, and the 

thickness of the bonding UFC panel in those specimens was 14mm and 28mm, 

respectively.  

 

The loading test results are shown in Table 6.5. The shear strength and flexural strength 

were evaluated based on Standard Specifications for Concrete Structures. NV,cal indicates 

the load-bearing capacity based on the calculated shear strength, and NMu,cal indicates the 

load-bearing capacity based on the calculated flexural strength. The anticipated load-

bearing capacities based on the calculated shear strength for strengthened beams 

(1.5RD14A and 1.5RD28A) are also given in the parentheses. The calculating method for 

the anticipated load-bearing capacities will be explained in 6.4.3. From the loading test 

results, the real shear capacity is inferred as about 763.1 kN according to 1.5RN1/2 result 

(failed in shear failure), and the real flexural capacity is inferred as about 1161.4 kN 

according to 1.5RN28A result (failed in flexural failure). It is noted that there exist some 

errors between the calculated results and the experimental results. For the beam 

1.5RD14A, the maximum load of the strengthened beams was upgraded significantly. It 

is because bonding with UFC panels enhanced the shear strength. For the beam 

1.5RD28A in which the thicker UFC panels (28mm) were used, higher shear strength was 

anticipated. However, the beam failed in the flexural failure when the load was raised 

 

Fig. 6.7. Photo of UFC panel partially peeling failure (1.5RDA). 
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beyond the flexural capacity of the substrate concrete. The maximum loads for 1.5RD14A 

and 1.5RD28A were 45% and 52% higher, respectively, than that for control beam 

1.5RN1/2. Their initial stiffness increased by 23% and 66%, respectively. The control 

beam failed in diagonal tension, but the strengthened RC beams demonstrated a better, 

relatively ductile failure mode. More significant strengthening effects were obtained with 

the thicker UFC panels. 

 

Fig. 6.8 shows the load-deflection relationships. For the control beam 1.5RN1/2, the low 

stiffness can be seen from the graph, and the load sharply decreased after reached at the 

peak. It showed the highly brittle behavior. For the strengthened beams 1.5RD14A and 

1.5RD28A, it can be seen that the failure mode was ameliorated by using the UFC panels 

strengthening method. Especially in 1.5RD28A, the beam resulted in flexural failure. For 

the beam 1.5RD14A, although it broke down in shear failure, the panels relieved the drop 

of load and stiffness and withheld relatively ductility due to the steel fiber mixed in UFC 

panels. Fig. 6.9 shows the rebar strain distribution. For the control beam 1.5RN1/2, the 

de-bonding occurred at the early stage (load = 400kN). On the other hand, due to the UFC 

panels strengthening and the anchorage reinforcement, the strain value of end region of 

tensile rebars in 1.5RD14A and 1.5RD28A were kept at a low level (load = 400kN). For 

the beam 1.5RD14A, the de-bonding at the ends of rebars occurred at 500kN. For the 

beam 1.5RD28A, since the double thick panels were used, the restraint on the de-bonding 

was sustained until 600kN.  

Table 6.5. Loading test results. 

Specimen 

Calculated results Experimental results 

NV,cal 

(kN) 

NMu,cal 

(kN) 

Pmax,exp 

(kN) 

Effective- 

ness 

Stiffness at  

100kN 

(kN/mm) 

Effective- 

ness 
Failure mode 

1.5RN1/2 850.2 1049.8 763.1 - 524.8 - 
Diagonal tension 

failure 

1.5RD14A (1122.2) 1049.8 1109.2 45.4% 643.1 22.5% 
Shear compression 

failure 

1.5RD28A (1394.2) 1049.8 1161.4 52.2% 869.6 65.7% 
Flexural  

failure 
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(a) 1.5RN1/2                                (b) 1.5RD14A 

 

(c) 1.5RD28A 

Fig. 6.9. Rebar strain distribution. 
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Fig. 6.8. Load-deflection relationships. 
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Fig. 6.10 shows the crack patterns. In the case of the control beam 1.5RN1/2, shear cracks 

occurred when the load reached at about 300kN, which caused the decline of stiffness. 

Then the dominant diagonal cracks spread, and the beam broke down abruptly. For the 

strengthened beam 1.5RD14A, when the load reached at about 500kN, the shear cracks 

were observed on UFC panels. Then the dominant shear cracks were formed when the 

load reached at 1000kN, and the beam finally resulted in the shear compression failure. 

Compared with the beam 1.5RD14A, the shear cracks were not observed in the beam 

1.5D28A that broke down in the flexural mode.  

  

A B

CD

 

(a) 1.5RN1/2 

A B

CD

 

A B

CD

 
(b) 1.5RD14A                       (c) 1.5RD28A 

Fig. 6.10. Crack patterns. 
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6.4. DISCUSSION 

6.4.1. Influence of size effect and UFC panel thickness 

In the loading tests results, the improvements of the maximum load and failure mode 

observed in the 1/4 size RC beams were also found in the 1/2 size RC beams. The 

maximum load of the 1/4 size RC beams was upgraded by 40%, while that of the 1/2 size 

RC beams was raised by 45%. Moreover, the failure modes in the two beams were both 

ameliorated, and the ductility properties were also gained. On the other hand, a significant 

enhancement in the stiffness was only observed in the 1/2 size RC beams, and then, 

showed similar strengthening effects can be expected in the real size bridge girder, 

especially in the stiffness.  

 

For the thickness of UFC panels, the integrity of matrix concrete and UFC panels was 

investigated. Fig. 6.11 shows the photos after removing the UFC panels. In the beam 

1.5RD14A, several shear cracks were observed in the bonding area during loading tests. 

 
(a) 1.5RD14A 

 
(b) 1.5RD28A 

Fig. 6.11. Photos after removing the UFC panels. 
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On the contrast, in the beam 1.5RD28A, there were no obvious shear crack occurred in 

the bonding area. Furthermore, it was more difficult to detach the UFC panels from 

1.5RD28A than from 1.5RD14A. And an outstanding integrity was observed in the RC 

beam bonding with 28mm thickness UFC panels. It shows that a proper thickness of UFC 

panels should be chosen to upgrade the performance of RC beams. 

 

6.4.2. Influence of anchorage reinforcement 

According to the experimental results described in Chapter 3, the intensive strengthening 

on the shear region caused an unexpected failure: the destruction of the rebar anchorage 

section. Once the anchorage section was also reinforced by extending the region bonded 

to the UFC panels to the anchorage section, more desirable results were achieved. Fig. 

6.12 shows the load strain relationships of the anchorage section. L and R mean the left 

side and right side respectively. In the control beam, the strain started rising abruptly 

when the load reached at about 300~400kN. On the contrary, because of the anchorage 

reinforcement, the value of strain was restricted because of the anchorage reinforcement 

effect. Until the load reached at 500~600kN, the value of strain increased gradually. Thus, 

the strengthening effects of the anchorage reinforcement were demonstrated in the 

loading tests.   

 
Fig. 6.12. Load strain relationships in the anchorage section. 
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6.4.3. Evaluation of shear capacity 

To propose a proper design method for UFC panels strengthening, a calculation means 

which will be used to estimate the shear capacity of strengthened RC beams, was 

investigated. In the plain RC beams, the shear capacities are based on Standard 

Specifications for Concrete Structures 6 . In regard to the strengthened beams, an 

assumption will be made that the shear carried by the concrete matrix can approximate 

the shear capacity of the plain RC beam. Then, the ultimate shear capacity 𝑣𝑢 can be 

calculated as follow: 

𝑉𝑢 = 𝑉𝑚𝑎𝑡 + 𝑉𝑈𝐹𝐶                                           (1) 

where 𝑉𝑢 is the ultimate shear capacity, 𝑉𝑚𝑎𝑡 is the shear carried by concrete matrix, 

and 𝑉𝑈𝐹𝐶 is the shear carried by UFC panels. The shear carried by UFC panels was 

calculated by Eq. (2) according to JSCE Recommendations5. 

𝑉𝑈𝐹𝐶 = 𝑉𝑓𝑑 + 𝑉𝑟𝑝𝑐𝑑                                          (2) 

where 𝑉𝑓𝑑 is the shear carried by the part of steel fiber (calculated in Eq. (3)), and 𝑉𝑟𝑝𝑐𝑑 

is the shear carried by the part except steel fiber (calculated in Eq. (4)). 

𝑉𝑓𝑑 = (𝑓𝑣𝑑/ tan 𝛽𝑢) ∙ 𝑏𝑤 ∙ 𝑧                                    (3) 

where 𝑓𝑣𝑑 is the tensile strength of UFC panel (discussed below), 𝛽𝑢 is the angle of the 

diagonal crack and the axial direction, 𝑏𝑤 is the width of cross section of UFC panel, 

and 𝑧 is equal to d/1.15 

𝑉𝑟𝑝𝑐𝑑 = 0.18√𝑓′𝑐𝑑 ∙ 𝑏𝑤 ∙ 𝑑                                    (4) 

where 𝑓′𝑐𝑑 is the compressive strength of UFC panel, and 𝑑 is the effective height. 

 

Since the UFC was cast into a panel shape, the real tensile strength is difficult to determine 

when evaluating the shear force carried by the UFC panels. As is well known, there are 

two main types of tensile tests: uniaxial tensile tests (𝑓𝑡,𝑢𝑛) and splitting tensile tests (𝑓𝑡,𝑠𝑝). 

Neither of these can represent the real tensile strength of the UFC panels due to 

differences in the orientation of the steel fibers. The orientation of the steel fibers is 

neither three-dimensional as in the cylinder in splitting tensile tests, nor uniaxial as in 

specimens used in uniaxial tensile testing. The real value should be between the two types 

of tensile tests.   
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The calculation results are given in Table 6.6. 𝑉𝑢,1 and 𝑉𝑢,2 are the evaluation values 

of the ultimate shear capacity based on 𝑓𝑡,𝑢𝑛  and 𝑓𝑡,𝑠𝑝, respectively. Since the beam 

1.5RD28A resulted in the flexural failure, the shear capacity was not evaluated here. For 

the shear carried by UFC panels (𝑉𝑈𝐹𝐶), the evaluation value 𝑉𝑈𝐹𝐶,1 calculated by 𝑓𝑡,𝑢𝑛 

significantly overestimated the shear capacity of UFC panels (𝑉𝑈𝐹𝐶,𝑒𝑥𝑝). On the other 

hand, the evaluation value 𝑉𝑈𝐹𝐶,2 calculated by 𝑓𝑡,𝑠𝑝 estimated the shear capacity of 

UFC panels within an acceptable error.  

 

Comparing the experimental results with the evaluation results of the control beams, the 

shear capacity of 1.5RN1/4 was estimated on the conservative side, while the evaluation 

value of 1.5RN1/2 was beyond the experimental value. Consequently the ultimate shear 

capacity of 1.5RD14A was overestimated slightly. 

 

The results demonstrated that, based on the splitting tensile strength, the shear force 

carried by UFC panels can be estimated within an acceptable error. Thus, this evaluation 

method of shear capacity can be expected to guide the design of UFC panel strengthening 

method. From the evaluation results, it can be seen that there exists some deviation 

between the evaluation value and the experimental value. The reason is that the changes 

of the failure mode and shear resisting mechanism due to the UFC panels strengthening 

were not considered. Thus, adding a safety coefficient would be a practical means to 

involve the influence from those unconcerned factors.  

Table 6.6. Shear capacities of specimens. 

Specimen 

Experimental results Evaluation results 

Vmax,exp 

(kN) 

VUFC,exp 

(kN) 

Vmat 

(kN) 

VUFC,1 

(by ft,un) 

(kN) 

Vu,1 

(kN) 

VUFC,2 

(by ft,sp) 

(kN) 

Vu,2 

(kN) 

1.5RN1/4 86.8  - 82.1  - -  - -  

1.5RDA 121.5  34.7  82.1  44.7  126.8  30.9  113.0  

1.5RN1/2 381.6  - 425.1  - -  - -  

1.5RD14A 554.6  173.1  425.1  196.8  621.9  136.0  561.1  

1.5RD28A 580.7  N/A N/A N/A N/A N/A N/A 
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6.5. CONCLUSIONS 

The experimental investigations were conducted in terms of strengthening position, size 

effect and UFC panel thickness, and the loading test results demonstrated that this 

strengthening method achieved significantly positive effects. More summarized results 

are reported below. 

 

1. When strengthening the RC beams with low shear span ratio, an un-predictable 

failure mode (anchorage splitting failure) was observed. Thus, an anchorage 

reinforcement method was proposed, which extended the bonding region of UFC panel 

to the anchorage section. The strengthening results with the proposed anchorage 

reinforcement method demonstrated that the shear strength has been upgraded by 40% in 

the loading tests. 

2. The investigation of the size effect influence in the strengthening method is an 

important step in the practical applications. In this chapter, the strengthening effects on 

two different sizes beams were discussed. Comparing the 1/2 size and 1/4 size beams, 

similar strengthening improvements on shear capacity and ductility were obtained in the 

experimental results. But for the stiffness, the upgrading effect was only observed in the 

1/2 size beams. Moreover, the experimental results proved that the shear strengthening 

effects by bonding UFC panels could be expected in the real size bridge girder. 

3. The JSCE recommendation equation was used to evaluate the shear force carried 

by UFC panels. The evaluation results showed good agreement with the experimental 

results. Based on the splitting tensile strength of UFC, the shear carried by UFC panels 

can be estimated with an acceptable error. This evaluation means of shear capacity of 

UFC panles can be expected to guide the design of the UFC panel strengthening. 

Moreover, adding a safety coefficient would be a practical means to involve the influence 

from the changes of the failure mode and shear resisting mechanism. 
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CHAPTER 7  

Conclusion and Future Work 

 

 

 

7.1. CONCLUSION OF THE THESIS 

In order to meet the requirements of high durability, efficiency, reliability, short-duration 

and low-cost, in this study, a new shear strengthening method, bonding the panels made 

of UFC on the girder end of aging RC bridges, was proposed. The principle of the 

proposed shear strengthening method is to retard the opening and propagation of cracks 

around the ends of the RC beams by bonding UFC panels. There exist amounts of causes 

to rise the loss of structural performance for RC structures, such as physical damage and 

chemical deterioration. The strengthening effectiveness of bonding UFC panels on the 

RC structures with concrete degradation problem, such as the initial defect (low concrete 

strength), chloride attack and Alkali-Silica Reaction (ASR) damage will be discussed in 

this study. The conclusions of this thesis are given as follows. 

In Chapter 2 (Basic Investigations on Shear Strengthening Effects of Bonding UFC 

Panels on RC Beams with Low Concrete Strength), when the shear-span ratio (a/d) is 
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equal to 2.5, the shear capacity of RC beams was enhanced and the failure mode was 

ameliorated by bonding the UFC panels. Especially when the DB type strengthening 

(bonding RC beams with round tensile rebars) was applied, the improvement of the 

structural performance of RC beams was confirmed. Moreover, comparing different types 

of tensile rebars, the results showed that a greater strengthening effectiveness and 

significant ductility were obtained in the beam with round tensile rebars. It is considered 

that a good performance can be expected when the DB type strengthening scheme is 

applied in the practical applications. When strengthening the RC beams with low shear 

span ratio, an un-predictable failure mode (anchorage splitting failure) was observed. 

Thus, an anchorage reinforcement method was proposed to extend the bonding region of 

UFC panel to the anchorage section. Based on the loading test results, the improvement 

on the shear strength (40%) and the destruction energy absorption were demonstrated, 

when the anchorage reinforcement method was applied. From the comparisons between 

the different shear-span ratios, it is inferred that the strengthening effect varies with the 

shear span ratios. It demonstrated that greater strengthening effects can be gained in RC 

beams with low shear span ratio. 

 

In Chapter 3 (Investigations on Strengthening by Bonding UFC Panels on RC Beams with 

Low Shear-Span Ratio), by using the proposed shear strengthening method (bonding the 

UFC panels), a very positive effect on the load bearing capacity was obtained. Comparing 

to Group 1 (concrete strength is 18.5 MPa), a higher increase of the ultimate load (56%) 

and the initial stiffness (24%) were gained in Group 2 (concrete strength is 13.4 MPa) 

because of the lower concrete strength. And the brittle failure mode (shear failure) was 

also changed to the ductile mode (UFC panels blocking) in Group 2. Furthermore, from 

the experimental results, the shear capacity shared by UFC panels does not rely on the 

concrete matrix configuration, which can be evaluated separately from the matrix. The 

evaluation result shows the shear capacity shared by UFC panels can be estimated within 

an acceptable error range. Furthermore, more effort is still needed to verify and improve 

the design method of UFC panel strengthening on more specimens. According to the 

bond-slip testing results, it was found that the proposed UFC panel strengthening method 

affects the bond-slip properties of rebars. The maximum bond stress and softening 

behavior were both enhanced in case of small cover. Moreover, from the comparison of 
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experimental and FE analyses results, the validity of the modified bond model 

(modified according to the bond-slip tests) was verified. The original model 

underestimated the stiffness, while the modified model well captured the shear 

resisting behavior in the experimental results. 

 

In Chapter 4 (Investigations on Strengthening by UFC Panels and Patch Repair on RC 

Beams Affected by Chloride Attack), two groups of specimens, Group 1 and Group 2 

(with different shear-span ratio a/d), were used to evaluate the effects of the shear 

strengthening of UFC panels under different shear-span ratios (a/d = 2.5, 1.5). When a/d 

was equal to 2.5, the load bearing capacity and stiffness were enhanced by applying the 

patch repair. The concrete splitting around tensile rebars was delayed due to the relatively 

good bonding of PCM and rebars. However, the beam broke down in the interfacial 

debonding, which showed the integrality between the matrix concrete and PCM was hard 

to be secured. When repairing the RC beams with low shear-span ratio (a/d = 1.5) using 

PCM, an un-predictable brittle failure occurred. Besides, the decrease in load bearing 

capacity was observed. The side effect of applying patch repair on the structural 

performance should be paid attention especially for the RC beams with low a/d. Due to 

the strengthening effect of bonding UFC panels, the shear capacity and stiffness of RC 

beams were enhanced and the failure mode was ameliorated. Especially the problems 

such as the interfacial debonding, the decrease in shear capacity and the brittle failure 

observed in the repaired RC beams were all restricted. It can be said that the integrality 

and safety of repaired RC beams can be secured by bonding UFC panels. 

 

In Chapter 5 (Investigations on Shear Behavior and strengthening by UFC Panels of RC 

beams affected by Alkali-Silica Reaction), two series of RC beams were cast to simulate 

the bridge girder (Series A) and T-shaped RC pier beam (Series B), respectively. The 

rebar restraint ratio and the exposure condition affected the degradation state in RC 

structures with ASR damage, which leaded to the different failures in loading tests. Due 

to the influence of preceding cracks and pre-stress, the load bearing mechanism changed 

from the diagonal tensile resisting mechanism to the arch mechanism, and the bearing 

capacity was enhanced consequently. In addition, even though some specimens were cast 

and exposed in the same conditions, different maximum load and stiffness were obtained 
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in the loading tests. The uncertainty and complexity of ASR damage were confirmed. 

Comparing the experimental and FE analytical results, the validity of analysis method 

proposed for ASR was verified. For ASR affected specimen, the no expansion model 

significantly underestimated the stiffness and load-bearing capacity. Conversely, the 

chemical pre-stress model showed a good agreement with the experimental results, in 

which the chemical pre-stress due to ASR was considered. Based on the different failure 

modes in Series A and Series B, different strengthening schemes were proposed to 

restrain the diagonal cracks or bond-split cracks. Using the proposed shear strengthening 

method (bonding the UFC panels) leaded to a very positive effect on the load bearing 

capacity in both Series A and Series B. Furthermore, the brittle failure mode was also 

changed to the ductile mode. 

 

In Chapter 6 (Practical Study on Shear Strengthening of RC Beams by Bonding UFC 

Panels), the investigation of the size effect influence in the strengthening method is an 

important step in the practical applications. In this chapter, the strengthening effects on 

two different sizes beams were discussed. Comparing the 1/2 size and 1/4 size beams, 

similar strengthening improvements on shear capacity and ductility were obtained in the 

experimental results. But for the stiffness, the upgrading effect was only observed in the 

1/2 size beams. Moreover, the experimental results proved that the shear strengthening 

effects by bonding UFC panels could be expected in the real size bridge girder. The JSCE 

recommendation equation was used to evaluate the shear force carried by UFC panels. 

The evaluation results showed a good agreement with the experimental results. Based on 

the splitting tensile strength of UFC, the shear carried by UFC panels can be estimated 

within an acceptable error. This evaluation means of shear capacity of UFC panles can be 

expected to guide the design of the UFC panel strengthening. Moreover, adding a safety 

coefficient would be a practical means to involve the influence from the changes of the 

failure mode and shear resisting mechanism. 
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7.2. FUTURE RESEARCH DIRECTIONS 

More work can be pursued along the directions of this research. Currently only the FE 

analyses under static loading was conducted. The influence of cyclic loading on RC 

members strengthened by bonding UFC panels is still needed to be studied. For example, 

the tests under cyclic loading can be carried out, then the proper analysis method will be 

investigated. The critical shear-span ratio and the maximum strengthening effectiveness 

of bonding UFC panels can be found out. Furthermore, the cyclic loading tests can be 

conducted on the existing RC bridge. The test data is useful to improve the analysis 

method. 
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