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ABSTRACT 

 

Mechanical properties of materials used in micro-electronic devices and Micro-Electro-Me-

chanical Systems (MEMS) should be evaluated for a practical usage because most properties 

are generally known as depending on the size and the fabrication processes as they define 

microscopic structures. Several evaluation techniques have so far been proposed to measure 

mechanical properties of micro-scale materials, such as an acoustic test, nano-indentation test, 

bending test, tensile test, and so on. Most of test techniques are available to mechanical char-

acterization for micron size materials, whereas there are some difficulties associated with de-

tecting very small material responses for submicron size materials. However, tensile test is ex-

cellently superior in accurate measurement of stress-strain relationship of submicron size 

specimen, if the elongation at the gauge section of a specimen can be measured accurately 

during the test. 

This thesis focuses on the establishment of experimental techniques for mechanical char-

acterization from submicron to several nanometer scale materials based on tensile test 

method using MEMS technology and the evaluation of their mechanical properties. The back-

ground and objective of this research are described at full length in cccchapter 1hapter 1hapter 1hapter 1. 

In cccchapter 2hapter 2hapter 2hapter 2, mechanical properties of silicon nitride compounds (SiNx) films, prepared by 

the plasma-enhanced chemical vapor deposition (PE-CVD) method, were evaluated by the ten-

sile testing technique built into the commercial AFM. The meaning of x in the SiNx is variable 

values by ratio of silicon to nitride. SiNx films are typically employed as an etching stop layer 

both for wet and dry etching of silicon in MEMS process due to their chemical inertness. SiNx 

films also possess excellent characteristics in an electrical isolation and a strong resistance to 

oxidation, so that they are suitable for a passivation coating materials in micro-electronic de-

vices and MEMS. The deposition condition determine the chemical composition of films that 

induce wide variations in material characteristics. This chapter investigated the gas flow ratio 

effects in the preparation of submicron thick SiNx films on their elastic properties. The SiNx 

films with a thickness ranging from 0.15 to 0.70 µm, which are the design dimensions, were 

deposited by PE-CVD onto the 10 µm thick single crystal silicon (SCS) specimens by changing 

the gas flow ratio of NH3 (ammonia) to SiH4 (mono-silane). Young’s modulus of the SiNx films 
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ranged from 102 to 143 GPa, which increased with an increase of the gas flow ratio, but was 

independent of the film thickness. Nano-indentation tests were also carried out to examine 

Poisson’s ratio of SiNx films in addition to the tensile tests. The ratio was found to be 0.20 to 

0.26 in average. To analyze the molecular intensity of film surface of SiNx, Auger spectroscopy 

was conducted. The analyzed data revealed that an increase of the atomic content ratio of N 

(nitrogen) to Si (silicon) in SiNx films yielded to higher elastic properties of the films and 

reached to the their values of polycrystalline silicon nitride. 

In cccchapter 3hapter 3hapter 3hapter 3, the MEMS-based electrostatically actuated nano-tensile testing device, which 

is named EANAT, has been developed in our laboratory and it has been applied to the Au thin 

films with thickness in the sub-100-nm regime, which is, for example, used for nano-transfer-

printing (n-TP) process. For predicting accurate dimensions in the printed pattern of n-TP in 

finite element analyses (FEA), the strain rate dependency on mechanical properties of Au films 

should be evaluated. Because the pattern dimensions could be changed during the fabricating 

procedure of Au film. The sub-100-nm-thick Au film was prepared in the course of fabrication 

of the MEMS-based tensile testing device. This device fabrication realized the precise loading 

direction without preloading before tensile tests. The loads were applied electrostatically by 

the electrostatically driving actuators. The obtained Young’s moduli were 29±3 GPa and was 

insensitive to the strain rate. The 0.2 % yield strength were in the range from 192 to 519 MPa 

with a trend of decrease with decreasing strain rate in the range from 5×10-5 s-1 to 5×10-2 s-1. 

These results have suggested that the loading condition to the substrate of n-TP process will 

affect printed pattern dimensions of Au film. 

In cccchapter hapter hapter hapter 4444, EANAT, and an in-situ scanning electron microscopy (SEM) nanomaterial ma-

nipulation system were developed to investigate the mechanical characteristics of multi-walled 

carbon nanotubes (MWCNTs) synthesized by atmospheric pressure-CVD (APCVD). MWCNTs 

are one of promising ultra-low-resistance interconnect materials for via structures in micro-

electronic devices. The EANAT can measure uniaxial tensile displacement of nanomaterial us-

ing a capacitive displacement sensor. The resolution of the measurement displacement was 

0.28 nm at the minimum. The nanomaterial manipulation system allows for an individual 

MWCNT to be picked up from a substrate and to be attached to an EANAT. The stress-strain 

relationships for the individual MWCNT were successfully obtained from the nano-tensile tests, 

and Young’s moduli were estimated to be in the range from 338 to 623 GPa. The deformation 
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of individual MWCNT under uniaxial loading was accompanied by repeated stick-slip and hard 

sticking events like telescopic motion. On the basis of the single-shot extraction model, the 

shear strength was estimated to be an average of 78 MPa greater than that for high quality 

crystalline graphite, which might be caused by the hard sticking between carbon nanotube 

layers. 

This research demonstrated MEMS was effective technology for accurate mechanical char-

acterization for sub-micron scale materials used in micro-electric devices and MEMS. Especially, 

MEMS-based tensile testing device can measure ultra-small load and displacement in the re-

spective resolutions of nN and pm for individually standing nano-materials. 
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Chapter 1 

Introduction 

 

1.1   Motivation: Why should we evaluate the mechanical properties of 

micro- and nano- scale materials? 

 

After the invention of electricity in the 19th century, the electronic devices started to make 

a rapid progress. Especially over the past several decades from now on, electronic devices used 

semiconductor components have been making accelerated progress in order to realize the high 

performance, miniaturization, multi-function, and even cost reduction. For example, a repre-

sentative personal portable electronic devices like laptop computer and smart phone (included 

mobile phone) have been fast evolved for only 20 years. For example, in the summer of 1995, 

it was a significant turning point in the history of personal laptop computer. MicrosoftTM Soft-

ware Company released Windows 95TM that is user friendly operation system. It made a great 

leap forward possibility in the technology. At that time, anyone could carry out the laptop com-

puter wherever he/she wanted to go, and they could do the business work using programs like 

WordTM, ExcelTM, and PowerPointTM. Comparing the averaging laptop computer selling nowa-

days, the weight has been reduced more the 3 times from 3.6 kg to under 1.0 kg, however the 

speed of CPU has been increased more than 100 times from 16 MHz to 1.6 GHz, and even the 

computational memory more than 4,000 times from 2 MB to 8 GB. Furthermore, it began to 

touch screen to control the computer and, due to development between the interfaces, USB 

version 3.0 is now 3,000 times faster than the USB version 1.0. Then various sensors are 

equipped in the devices to provide convenience to the users. It has been taken only 20 years, 

from 1994 to 2014, for these remarkable changes, and it was a major innovation in terms of 

technical progress. 

To achieve a technical progress of recent trend, it is required to put as much as electronic 

components like capacitors, inductors, resistors, diodes, and transistors in the same sized prod-

uct, also newly developed functions such as accelerometer, gyroscope, pressure sensor, micro-

phone, and others would be combined in the limited space inside the device. It means that the 

components need to decrease the size of all dimensions, development of new materials (alloys), 
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and additionally to evaluate the mechanical properties at the actual size. For example, GLOB-

ALFOUNDRIES Inc. suggested the relationship of device density and normalized power per gate 

that depends on the process. When the line width is decreased from 90 nm to 20 nm, the gross 

area of device is only 5 % than before, and normalized power per gate, which means consuming 

power, also dramatically down by 86 percent as shown in Fig. 1.1Fig. 1.1Fig. 1.1Fig. 1.1    [1][1][1][1]. 

Fuji Chimera Research Institute, Inc. in Japan proposed several kinds of promising prod-

ucts/systems among the recent electronic component industry [2][2][2][2]. These products/systems are 

CdS/CdTe [3[3[3[3----4444]]]], crystallization solar battery cell [5[5[5[5----11111111]]]] (single- and poly- crystal type), raw ma-

terials for lithium-ion battery [12[12[12[12----14141414]]]], smart meter [15, 16[15, 16[15, 16[15, 16]]]], aluminum electrolytic capacitor [17[17[17[17, , , , 

18181818]]]], AM-OLED [[[[19191919]]]], Thin-film Projected Capacitive Touch Panel [[[[20202020]]]]. To describe each item men-

tioned above in detail: solar cellsolar cellsolar cellsolar cell or so called a photovoltaic cell is an electrical device that con-

verts the energy of light into electricity directly by photovoltaic effect. Many researchers 

 

 

 

 

Fig. 1.1  The relationship of device density and normalized power per gate that 

depends on the process.  

90nm 

65nm 

40nm 

28nm 

20nm 
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have been pouring more effort into their work to develop the high performance battery cell 

than ever, just as Thomas Edison had done many trials and errors to invent and sell the first 

commercially light bulb [2[2[2[21111]]]]. There are many researchers that suggest way to improve the solar 

cell performance [2[2[2[22222----26262626]]]]. Also, lithiumlithiumlithiumlithium----ion batteryion batteryion batteryion battery is a series of rechargeable batteries, but that 

is one of the most promising battery because of the no memory effect, only a few loss of accu-

mulated charge when not in use. Hersam et al. informed ongoing efforts to utilize SWCNTs as 

conductive additives in nano-composite lithium ion battery electrodes [2[2[2[27777]]]]. Smart meterSmart meterSmart meterSmart meter, which 

sounds unfamiliar to hear, is an electronic device that reports the consumption of electric en-

ergy in intervals of certain time or real time and communicates the information to the utility 

for monitoring and billing purposes [[[[22228888----33333333]]]]. Of all smart meter technologies, one of the critical 

technological issues is an insufficient communication system. To solve this problem, the sending 

and receiving data should be compressed heavily and decompressed as soon as possible. Of 

course, sending time also should be reduced rapidly. However, it is not easy to communicate 

the system because of the technological limitations in the present. 

To exceed this critical point of promising products, these products should be reached a 

lower power consumption states, a lower unit cost of production, and a miniaturization as men-

tioned above. It should be developed the technology by the miniaturization of materials down 

to the micro- and nano- scale. To develop such products, it is inevitable that there would be 

experienced several trials and errors using these materials. Furthermore, to evolve these min-

iaturized products without any problems, first of all, we should study on the mechanical prop-

erties suit for the scale of material preferentially [3[3[3[34444]]]]. It is widely known that the characteristics 

of the material is changed when the size becomes small from bulk to atomic scale [[[[33335555]]]]. Conse-

quently, it is required to verify that the characteristics of bulk sized mechanical properties es-

tablished by many researchers remain in the micro-scale, nano-scale in the present, and even 

molecular scale in the future. 
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1.2   The history of evaluation method and results of mechanical 

properties of bulk material to thin film material 

 

Mechanical properties at each material show their own unique characteristics. Some prop-

erty may be a constant value or a function of independent variables, such as temperature and 

humidity. As we know, the types of mechanical properties are numerous. For example, com-

pressive strength, ductility, fatigue limit, flexural modulus, flexural strength, fracture toughness, 

hardness, plasticity, Poisson’s ratio, resilience, shear modulus, shear strain, shear strength, spe-

cific modulus, specific strength, specific weight, tensile strength, yield strength, Young’s modu-

lus, coefficient of friction, coefficient of restitution, roughness, and so on. Some material prop-

erties are calculated by simple relevant equations, but most mechanical properties are reliably 

measured by standardized test methods. Many researchers have been documented by their 

respective user communities and published through ASTM International. ASTM International, 

known until 2001 as the American Society for Testing and Materials, is an international stand-

ards organization that develops and publishes technical methods and standards for many ma-

terials properties. From founded in 1898, the society published the annual book of ASTM stand-

ards including measuring methods and results in books, CDs, and online publication. More than 

13,000 ASTM standards are widely used today to evaluate the new alloy metals and new com-

posited materials. For example, ASTM suggested many standard testing methods to measure 

the mechanical properties such as automated testing [[[[33336666]]]], impact testing [[[[33337777----44441111]]]], indentation 

hardness testing [[[[44442222----44448888]]]], micro-indentation hardness testing [[[[49494949]]]], and uniaxial testing [[[[55550000----66663333]]]], 

etcetera. 

Among these methods, tensile testing method [[[[66664444, , , , 66665555]]]], also known as tensile test and ten-

sion testing, is one of the most fundamental and basic material test method in which a sample 

is subjected to a controlled (generally uniaxial) tensile force until failure. Properties that are 

directly measured via the tensile test are ultimate tensile strength, maximum elongation, and 

reduction in area which depends on the materials. From this measurement, the following prop-

erties can be resolved like Young’s modulus, Poisson’s ratio, yield strength, and strain-hardening 

which means the strengthening of a metal by plastic deformation. Especially, uniaxial tensile 

testing method is the most commonly used for calculating the mechanical properties of iso-
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tropic material. At the bulk and thin film size scale, sample for tensile specimen is a standard-

ized by ASTM criteria. It has two grip parts and a gauge section in between. The radius of grip 

parts are larger than specimen part so they can be easily gripped, whereas the gauge has a 

smaller cross-section, which has various type of cross-section depend on the size, material on 

the specimen, and their own purpose. In order to perform these tensile tests, it is required to 

manufacture the tester by oneself at the laboratory or purchase the necessary equipment from 

manufacturing company. 

The tensile test machines have their testing capability like maximum force capacity, mini-

mum resolution capacity, strain rate, and data reliability. Before preparing the tensile test, the 

alignment of the test specimen in the uniaxial tensile testing machine is more critical than other 

tests. If the specimen is not aligned correctly, the specimen will be occurred the bending force, 

and impact on the error bound of data value directly [[[[66666666]]]]. In the brittle materials, these are 

especially distinguished from results of no bended specimens, because it will alter the results. 

These errors can be minimized by using spherical seals or U-joint [[[[67676767]]]] between the specimens. 

The various systems for gripping specimen in bulk in ASTM organization have been estab-

lished for a long period of time in order to get more precise results. For example, Table 1.1Table 1.1Table 1.1Table 1.1    [65[65[65[65]]]] 

show the typical dimension of the round and flat type test specimen. Especially, to align the 

specimen correctly with applied loads, gripping systems have been developed by adding a 

threaded grip, serrated wedges, split collar on the round type test specimen, and serrated 

wedges and pin on the flat type test specimen, which is shown in Fig. 1.3Fig. 1.3Fig. 1.3Fig. 1.3    [65[65[65[65]]]]. Also depending 

on the kind of materials, the specimens were to be manufactured by the standard roles pro-

vided in the ASTM criteria to reduce errors due to material characteristics. The official part 

names of test specimen and direction of the tensile test are shown as Fig. 1.4Fig. 1.4Fig. 1.4Fig. 1.4    [65[65[65[65]]]]. Still now, 

tensile tests using new alloy metals or new composited materials following the ASTM manual 

are widely used not only to produce big components used in airplane and vessel, but also to 

produce H-shape steel materials in the high-rise construction field to improve mechanical prop-

erties [[[[68686868, 69, 69, 69, 69]]]]. 

Next to the size of material from bulk to thin film, the definition of thin film, explaining in a 

brief way, is a thin layer of material. In other words, it means much thinner than the lateral 

dimensions of the substrate. But, depending on the academic fields, the range of size of thin  
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Table 1.1 The dimension of the round and flat type test specimen by ASTM. 

(a) round test specimen 

All values in inches 

Standard specimen  

at nominal diameter 
Small specimen at nominal diameter 

0.5 0.35 0.25 0.16 0.113 

Gauge length 2.00±0.005 1.400±0.005 1.000±0.005 0.640±0.005 0.450±0.005 

Diameter  

tolerance 
±0.010 ±0.007 ±0.005 ±0.003 ±0.002 

Fillet radius (min.) 3⁄8 0.25 5⁄16 5⁄32 3⁄32 

Length of reduced 

section (min.) 
2.5 1.75 1.25 0.75 5⁄8 

 

(b) flat test specimen 

All values in inches 
Plate type 

(1.5 in. wide) 

Sheet type 

(0.5 in. wide) 

Sub-size specimen 

(0.25 in. wide) 

Gauge length 8.00±0.01 2.00±0.005 1.000±0.003 

Width 
1.5 +0.125  

    -0.25 
0.500±0.010 0.250±0.005 

Thickness 0.25 < T < 3⁄16 0.005 ≤ T ≤ 0.25 0.005 ≤ T ≤ 0.25 

Fillet radius (min.) 1 0.25 0.25 

Overall length (min.) 18 8 4 

Length of reduced section (min.) 9 8 1.25 

Length of grip section (min.) 3 2 1.25 

Width of grip section (approx.) 2 0.75 3⁄8 

 

film could have a wide difference. In this thesis, the range of thin film is up to 1 mm, and the 

range lower than 1 mm is classified as micro- or nano-scale material. Among the material of 

mm-scale, a plating method becomes the best suitable case. The plating method is a surface 

coating in which a metal is deposited on a conductive surface. Plating is not a new technology, 

it has been done for hundreds of years. It was used to decorate the items, to coat for corrosion 

inhibition, to improve solderability and wearability. For example, Jewelry is typically plated by 

silver or gold in terms of price advantage. Some researchers have been studied about mechan-

ical properties of metal with plating [70[70[70[70]]]]. These results have been impacted the way we live 

though we rarely recognized the fact.  
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Fig. 1.3  Various kinds of methods for gripping tensile specimen : A. a threaded shoulder 

grips type, B. a serrated wedges type, C. a spilt collar butt end type, D. a serrated 

grips flat should type, E. a pinned grip flat shoulder with hole type. 

 

 

Fig. 1.4 The schematic of test specimen on bulk size and the direction of applied load to 

 the test specimen.  
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1.3   MEMS technology from 1990’s to present 

 

Since the 1990’s, MEMS technology has been rapidly growing by an academic point of view. 

The reason that the micron scale components which were partially fabricated until then were 

become to make a single device with electrical and mechanical components through integra-

tion. 

MEMS is a technology that can be defined as mechanical and electrical components in the 

same device using semiconductor device fabrication techniques in the similar way. The term 

“MEMS” is commonly used in USA and South Korea, whereas the system is referred to as MST 

in Europe, and Micro-machining or Micro-machines in Japan. Materials for MEMS device be-

come boundless. Silicon was mostly used in the fabrication of IC and MEMS because of signifi-

cant advantages of mechanical properties. In spite of material advantages of silicon, polymer 

such as PMMA, metals such as chrome (chromium), copper, aluminum, and gold, and ceramics 

such as silicon nitride became gradually adapted for MEMS material as suitable substitutes. 

Besides, new emerging materials like CNT and grapheme, which have good conductivity and 

reliability, are adopted for materials of MEMS.  

However, life cycle of the device which was made by MEMS technology was extremely 

shorter (only a couple of hours to days) than expected, it was not practicable to use conven-

iently. If once the problem of duration is solved and these products are commercialized, devices 

from micro- to even nano- scale using semiconductor processing technology would have ad-

vantages of miniaturization, weight lightening, and low production cost than bulk scale devices. 

For that reason, many national research institutions and academically renowned laboratories 

including Sandia National Laboratory. 

Researchers are continue to develop a device with excellent ideas and to try to success in 

commercialization. At present, application devices using MEMS technology are limited to car 

airbag sensor, inkjet cartridge, endoscopic microcapsule, pressure sensor, microphone, accel-

erometer, gyroscope, magnetometer, micro- dispensers and so on. However, these are not 

enough items than expected. Car airbag sensor is one of the first commercialized device using 

MEMS technology. It is widely used in the form of a single chip containing an accelerometer. 

Inkjet cartridge also by MEMS technology consists of IC and inkjet head, which has nozzle, holes, 

manifolds, and channel structures for high performance. Now, most of sensors used in smart-
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phones such as accelerometers, gyroscopes, pressure sensor, and microphone are fabricated 

by MEMS technology for miniaturization and cost advantages. 

Next, MEMS application is classified by type of usage this time and summarized in Table 1.2Table 1.2Table 1.2Table 1.2. 

There are sensor, actuator, Bio-MEMS, and Power-MEMS. To describe briefly, sensor, which is 

widely used in bulk size sensor, is one of the most designed and developed field among MEMS 

technology. There are semiconductor pressure sensor, chemical sensor, and inertia sensors (ac-

celerometer sensor, force sensor, gyroscope) to be manufactured using MEMS technology. 

These sensors are mostly made using the principle of piezo effect, which means transferring 

mechanical change amount from mechanical elongation to electronic signal, to the materials 

of semiconductors. Therefore, it is very important to improve elongation sensitivity of sensors 

to commercialize as soon as possible. These sensors are now used for the tire, fuel, oil, air flow, 

and absolute air pressure in the car. Actuator is a significant element to miniaturization and 

high performance for MEMS device. The driving systems of Micro Actuator are electro-static 

force, electro-magnetic force, photo-effect, piezo-electric effect, shape memory alloy, thermal 

expansion, and etc. These systems should be chosen considering user conditions. Bio-MEMS is 

a technology to apply on the medical field using semiconductor processing technology, and it 

is one of the most promising MEMS applications at this time. Because µ-TAS technology, one 

of the representative in Bio-MEMS technology, could be a precise dispensing for small amount 

of liquids found in needleless drug delivery system [71, 7[71, 7[71, 7[71, 72]2]2]2]. Also endoscopic microcapsule is 

one of the most exciting items on this technology. Power-MEMS means a small combustion 

facility using semiconductor processing technology. There are micro-scale gas turbine and mi-

cro-scale rocket which are fabricated from 6 individually processed silicon wafers from Power-

MEMS technology. The both of devices have thermal deformation of materials due to a rapid 

temperature rise, it is necessary to evaluate the mechanical properties at high temperature. 
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Table 1.2 Categorization of MEMS application 

Categories MEMS application 

MEMS 

Sensor 

Pressure sensor 

Chemical sensor 

Inertia sensor 

(accelerometer sensor, force sensor, gyroscope) 

Actuator 

Electro-static force 

Electro-magnetic force 

Photo-Effect 

Piezo-electric effect 

Shape memory alloy 

Thermal expansion 

Bio-MEMS µ-TAS 

Power-MEMS 
Micro-scale gas turbine 

Micro-scale rocket 
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1.4   The evaluation method and the results of mechanical properties 

of micro- and nano-material using MEMS technology by other 

researchers 

 

Despite the fact that MEMS devices have been introduced on the market about 40 years 

ago, the industry has not reached to certain degree of advancement and is still increasing grad-

ually. However, new emerging MEMS devices that could be the killer application for the future 

trend such as thermopiles [[[[77773, 3, 3, 3, 77774444]]]], micro-display [[[[77775, 5, 5, 5, 77776666]]]], micro-mirrors for mobile phone and 

tablet embedded pico-projectors [[[[77777]7]7]7], Auto focus [[[[77778888]]]] are continuously introduced in the mar-

ket. Especially RF MEMS switches are partially developed and commercialized as a prototype 

version and still under development. Fig. 1.Fig. 1.Fig. 1.Fig. 1.5555 [[[[79797979] ] ] ] shows the period for Research & Development 

to commercial ramp-up. It took 36 years for pressure sensor, but auto focus only 17 years. Re-

cently, Yole Development Company predicted that MEMS market is expected to reach extra 

growth in the future shown in Fig. 1.Fig. 1.Fig. 1.Fig. 1.6666 [[[[79797979]]]]. 

MEMS is produced using similar method used in the fabrication of semiconductor, Silicon is 

definitely the most widely used substrate material in MEMS. In addition, the alloy metals and 

pure metals like Au which is related to chapter 3chapter 3chapter 3chapter 3, ceramics like silicon nitride which is related to 

chapter 2chapter 2chapter 2chapter 2, polymers, and allotropes of carbon like carbon nanotube which is related to chapter chapter chapter chapter 

4444 are gradually used for special purpose. To manufacture the MEMS devices that have high 

 

 

Fig. 1.5 The graph related to development time about each item. 
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Fig. 1.6 Emerging MEMS market 2012-2018. 

 

performance and reliability, it is necessary to fully understand these mechanical properties until 

the nano-scale materials. As the scale of the material is reduced to reach the nano-scale regime, 

it is possible that the same material will show you the totally different properties (Young’s mod-

ulus, Fracture strength, and so on) [[[[80808080]]]]. 

This was a matter at the nano-scale no longer follows Newton physics but rather quantum 

mechanics. For example, T. Namazu et al. [[[[81818181]]]] reported that comparisons of Young’s modulus 

and bending strength, of Si among the nano-, micro-, and mm-scales showed that specimen 

size produced a large effect on the bending strength. This thesis showed a method to evaluate 

the mechanical properties of micro- and nano-scale materials by micro- and nano-scale tensile 

testing systems which were developed in the laboratory. 

This was a matter at the nano-scale no longer follows Newton physics but rather quantum 

mechanics. For example, T. Namazu et al. [[[[81818181]]]] reported that comparisons of Young’s modulus 

and bending strength, of Si among the nano-, micro-, and mm-scales showed that specimen 

size produced a large effect on the bending strength. This thesis showed a method to evaluate 

the mechanical properties of micro- and nano-scale materials by micro- and nano-scale tensile 

testing systems which were developed in the laboratory. 

The methods to measure the mechanical properties of MEMS materials are classified not 

only tensile test, but also compression test, micro-beam bending test, bulge test, M-test, dy-

namic (resonant) test, nano-indentation, and etc. In this thesis, as mentioned earlier, tensile 

0

500

1000

1500

2000

2500

2012 2013 2014 2015 2016 2017 2018

in
 $

M



１３ 

 

test for evaluating the mechanical properties will be mainly discussed. Tensile test is a uniaxial 

extension until failure, and can characterize the Young's modulus, yield strength, fracture 

strength, and so on. A uniaxial, tensile load is applied to a specimen with a gauge section of 

uniform geometry, and the extension of the gauge is recorded as a function of the applied load. 

Given the dimensions of the beam, it is straightforward to obtain a stress-strain graph, and to 

extract E, σY, and σf . 

The direction of compression test is opposite to tensile test, and mainly used to study plas-

ticity [[[[82828282]]]]. The first compression test at the micro-scale [[[[83838383]]]] was performed in micro-pillar. From 

a technical point of view, it is easy to measure the data than tensile test because the gripping 

technique could not be need. Micro-beam bending test [[[[81818181]]]] is easy to set-up the specimen and 

equipment for testing. But, it allow one to determine a few of mechanical properties such as 

Young’s modulus, Poisson’s ratio, and residual stresses. Bulge test was proposed by Vlassax & 

Nix in 1992 [[[[84848484]]]]. The specimen is a membrane bonded along the supporting frame. Pressure is 

applied to one side of membrane, the resulting deflection is recorded. From this test, the biaxial 

stress-strain curve and the yield strength, and plasticity size effects are resolved [[[[85858585]]]]. M-test is 

a micro-beam, loaded by an electrostatic force until the onset of instability. By this test, Young’s 

modulus and the residual stress can be only derived. The principal difficulty associated with 

this technique is the handling and mounting of the test structures. In the case of brittle mate-

rials, fracture induced by gripping presents an additional problem. One solution adopted by 

many researchers is to fabricate the test structure in a protective frame, and to sever the frame 

mechanically after mounting, [86[86[86[86, , , , 87878787]]]] Electrostatic gripping techniques [[[[88888888, , , , 89898989]]]] and pull tests 

inside a scanning electron microscope [[[[89898989, , , , 90909090]]]] have also been demonstrated. Materials that 

have been characterized using the micro tensile test include single-crystal silicon [[[[91919191]]]], poly-

silicon [[[[92929292]]]], and aluminum [[[[93939393]]]]. 

As described in the previous section, mechanical properties can be changed into micro-and 

nano-scale. Therefore we have to measure the mechanical properties using various test meth-

ods for design from 3-dimensional simulation first to finally manufacturing the MEMS devices 

without any problem. Among the values of the mechanical properties, modulus of elasticity 

(=Young’s modulus), Poisson’s ratio, and fracture strength are essentially using the mechanical 

design. Table 1.Table 1.Table 1.Table 1.3333 [94] summarizes the general mechanical properties at macro-scale. It is clear 

that silicon is very attractive material for general use because of high fracture strength than 
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Table 1.3 Mechanical properties of representative MEMS materials 

at macro-scale. 

Material 
Density, ρ Modulus, E Fracture Strength, σf 

kg/m3 GPa  MPa 

Silicon 2,330 129-187 4000 

Silicon oxide 2,200 73 1000 

Silicon nitride 3,300 304 1000 

Aluminum 2,710 69 300 

Aluminum oxide 3,970 393 2000 

Gold 19,320 79 - 

Chromium 7,200 279 - 

 

other materials. However, Silicon nitride and aluminum oxide could be suitable for devices in 

which specific stiffness is needed. 

In this thesis, chapter 2 to 4 carried on tensile test of each material: 

 

A. Selecting the material mainly using MEMS technology. 

B. Deciding the dimensions of specimen. 

C. After that, tensile testing system is designed and self-developed.  

D. Device is fabricated by myself in our laboratory or co-worked. 

E. Tensile test is carried out at various conditions such as changing the strain rate, pres-

sure, and temperature. 

F. The result data are calculated and analyzed. 

 

Until micro-scale tensile test, test system composed of an actuator, load cell, displacement 

sensor like macro-scale tensile testing system. To decrease the scale of specimen, EANAT, which 

is designed and self-developed, consisted of an electrostatically driven actuator and a cantile-

ver beam used as a gauge to measure tensile displacement with an optical microscope. This all-

in-one fabrication does not require the specimen fixation procedure, and enables the high pre-

cision in the specimen alignment direction, which therefore could easily carry out the tensile 

test. Since fixation procedure of specimen influence the accuracy of result data, the accuracy 

was increased. In order to measure the MWCNTs which has around 100 nm of a diameter, this 
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research has integrated a circular motion capacitive displacement sensor into an EANAT to re-

alize more precise calibration of the sensor. Also, In-situ SEM nano-tensile testing using a nano-

manipulation system was carried out for direct observations of the deformation behavior of 

samples during testing. This thesis reports the design and functions of the newly developed 

EANAT, as well as details of the mechanical characteristics of individual MWCNTs. 
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1.5   Objectives and organization of this thesis 

 

This doctoral dissertation is composed of totally five chapters, and the contents of each 

chapter are organized as follows. 

Chapter 1Chapter 1Chapter 1Chapter 1 raised a question on why we should evaluate the mechanical properties of micro- 

and nano- scale materials, and explained the history of evaluation method and results of me-

chanical properties of bulk material to thin film material. Next, MEMS technology from 1990’s 

to present was illustrated. Finally, the evaluation method and the results of mechanical prop-

erties of micro- and nano-material using MEMS technology by other researchers was described 

into details. 

Chapter Chapter Chapter Chapter 2222 investigated the effect of deposition condition on the mechanical properties of 

submicron thick PE-CVD silicon nitride film (SiNx) on the SCS specimens that is depending on 

the gas flow ratio of mono-silane to ammonia to nitrogen. This study showed that elastic prop-

erties of PE-CVD SiNx films were greatly influenced by the gas flow ratio of NH3 to SiH4. 

Chapter Chapter Chapter Chapter 3333 developed the tensile testing device for Au thin films in the thickness of sub-100-

nm. The obtained mechanical properties showed that apparent differences from those of the 

bulk Au. Thus, direct tensile test of extremely thin Au films revealed the strong influence of 

material fabrication process on the mechanical properties. 

Chapter 4Chapter 4Chapter 4Chapter 4 showed the stress-strain relations, the interlayer sliding deformation behavior 

and the breaking mechanism of individual MWCNTs by newly designed EANAT. A tensile testing 

methodology was established on the in-situ SEM nano-manipulation system. Accurate load-

displacement curves are successfully obtained in this study. However, for estimating the inter-

layer shear strength based on quasi-static friction of single-shot extraction of MWCNTs, further 

investigation of cyclic tensile loading testing with an ultra-low strain rate oscillation and small 

displacement need to be carried out. 

Finally, cccchapter hapter hapter hapter 5555 shows the summarized conclusion of this thesis.  
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Chapter 2 

Influence of Gas Flow Ratio in PE-CVD Process on Mechanical Prop-

erties of Silicon Nitride Film 

 

2.1   Introduction 

 

Silicon nitride is a chemical compound of silicon (Si) and nitrogen (N), and the combination 

of the formula is Si3N4. This material has lots of other silicon nitride phases which could be 

determined by time, temperature, and many conditions. More accurately, the silicon nitride 

films are found to contain atoms of Si, N, hydrogen (H), oxygen (O), and carbon (C). In this 

chapter, silicon nitride film varies due to the ratio of Si and N, and it will be referred and repre-

sented as SiNx. 

SiNx films are typically employed as an etching stop layer both for wet and dry etching of Si 

in MEMS fabrication processes due to their chemical inertness [1, 2][1, 2][1, 2][1, 2]. SiNx films also possess 

excellent electrical isolation and strong resistance to oxidation, so that they are suitable for a 

passivation coating in MEMS [3, 4][3, 4][3, 4][3, 4]. SiNx films can be deposited on a substrate by the PE-CVD 

and low-pressure chemical vapor deposition (LP-CVD). Each deposition method and condition 

determines the composition of films that induce wide variations in material characteristics. 

Mechanical properties of SiNx films prepared at each deposition condition should be, then, 

evaluated before a practical usage of the films as a mechanical component in MEMS compo-

nent. 

Several evaluation techniques have so far been proposed to measure the mechanical prop-

erties of thin films, such as nano-indentation test [5][5][5][5], tensile test [6[6[6[6----8]8]8]8], bending test [9][9][9][9], acoustic 

test [10][10][10][10], bulge test [8, 11][8, 11][8, 11][8, 11],    and etc. Each test technique is available to mechanical characteri-

zation for submicron films. However, the mechanical characterization for submicron films using 

bulge and bending methods should be carefully performed because of a geometrical large de-

formation of sample under loading. The nano-indentation test can evaluate only plane-strain 

modulus of the films. In the acoustic test, density and Poisson’s ratio of the films are required 

for estimating Young’s modulus before the test. On the other hand, tensile test is superior as 
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an easy and accurate measurement of stress-strain relation of submicron films, if the longitu-

dinal elongation at the gauge section of a specimen can be measured precisely during the test. 

Our laboratory have, so far, developed the Atomic Force Microscope (AFM) tensile tester for 

direct measurement of stress-strain curve for the diamond-like carbon (DLC) film on the coated 

single crystal silicon (SCS) specimens (DLC/SCS specimens) in the previous work [12][12][12][12]. Here, we 

succeeded in evaluating Young’s modulus of the submicron DLC film by measuring longitudinal 

elongation at the gauge section of the specimen during tensile loading. Nano-indentation test, 

in addition to the tensile test, was also performed to determine Poisson’s ratio of the submicron 

DLC film. 

The objective of this research is to investigate the effect of deposition condition on the 

mechanical properties of submicron PE-CVD SiNx films, in order to guarantee the performance 

and life extension of SiNx coated in MEMS. The submicron SiNx films were deposited on the 

micro-scale SCS specimens by changing the gas flow ratio of mono-silane (SiH4) to ammonia 

(NH3) to nitrogen gas (N2). The uniaxial tensile tests were carried out to evaluate Young’s mod-

ulus and fracture strength using the AFM tensile test technique established in the previous 

work [12][12][12][12]. Poisson’s ratio of SiNx films was also evaluated by assistance of nano-indentation 

tests. Finally, Auger spectroscopic analysis clarifies the influence of the atomic content ratio on 

elastic properties of SiNx films. 
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2.2   Specimen Preparation and AFM Based Tensile Testing System 

 

Fig. 2.1Fig. 2.1Fig. 2.1Fig. 2.1 shows the SiNx film coated on the SCS specimen (SiNx/SCS specimen) along with a 

close-up view of the gauge section, which consists of a gauge section, two square holes (hook-

ing holes), an outside frame for easy handling and three supporting strips to prevent the spec-

imen from fracturing before tensile test. All SiNx/SCS specimens were fabricated by depositing 

submicron SiNx films on the SCS specimens using two kinds of PE-CVD machines (PE-CVD ma-

chine #1 and #2). The PE-CVD machine #1 installed a larger electrode plate of 617 cm2, whereas 

the machine #2 had an electrode plate of 205 cm2. The fabrication process as shown in Fig. 2.2Fig. 2.2Fig. 2.2Fig. 2.2 

started with oxidation of a silicon-on-insulator (SOI) wafer composed of 10 µm SCS device layer 

with the (001) plane and 1 µm SiO2 buried oxide (BOX) layer on 380 µm SCS carrier wafer. Wet 

thermal oxidation was employed to form SiO2 layer with a thickness of 0.7 µm used as an etch-

ing mask on the entire surface of the wafer. First, the square holes were fabricated from the 

topside of the specimen by anisotropic wet etching with 20 % tetra-methyl ammonium hydrox-

ide (TMAH) solution at 363 K. Simultaneously, the 380 µm SCS substrate beneath the gauge 

section was etched from the backside. Chromium (Cr) film was deposited on the topside of the 

wafer by thermal vacuum evaporation, followed by patterning the specimen shape. The reac-

tive ion etching (RIE) process formed the gauge section of the specimen using the Cr film as an 

etching mask for SF6 gas, and subsequently the Cr film was removed. Here, the gauge section 

 

 

Fig. 2.1 Photograph of SiNx/SCS specimen for tensile test, along with a close-up view of the 

gauge section. (unit: mm).  

Support strips

Hooking holes

Cantilever
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Fig. 2.2 Process chart of SiNx/SCS specimen (continued). 

Process Name: Specimen for silicon nitride film 
Name: HYUN-JIN OH

Isono Lab.

# Process Figure Condition Comment

Si

SiO2

Si3N4

Dicing Sheet

Photoresist

Cr

Photo Mask

Spin coating of P.R.

-P.R. : OFPR800 50cp

-Rotation Speed : 3000rpm

-Time : 25sec

Baking in Oven

-Temperature : 110℃
-Time : 50min

2)     Dicing Wafer

1)     Thermal Oxidation

① Spin coating of P.R.

0)     SOI Wafer

③ Dicing Wafer

② Pasting of Dicing Sheet

A-A’ cross-section

Top View Bottom View

Wet Etching P.R ;

-Etchant : Acetone

-Time : 3min

Rinsing

-Ethanol Rinsing : 3min

-Pure Water Rinsing : 30min

1st Cleaning ;

-H2O2 : H2SO4 = 1 : 2

-Time : 10min

-Pure Water Rinsing : 10min

2nd Cleaning ;

-H2O : H2O2 : NH3 = 5 : 1 : 1

-Time : 10min

-Temperature : 80℃
-Pure Water Rinsing : 30min

④ Striping of Dicing Sheet

And Cleaning
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Fig. 2.2 Process chart of SiNx/SCS specimen (continued). 

Process Name: Specimen for silicon nitride film 
Name: HYUN-JIN OH

Isono Lab.

# Process Figure Condition Comment

Si

SiO2

Si3N4

Dicing Sheet

Photoresist

Cr

Photo Mask

3)     Photolithography

(1)Dehydration Bake in Oven

-Temperature : 110℃
-Time : 10min

(2) Spin coating of P.R.

-P. R. : OFPR800 50cp

-Rotation speed : 1st 500rpm

2nd  2500rpm 

-Time : 1st 5sec

2nd 25sec

(3) Pre-Baking in Oven

-Temperature : 90℃
-Time : 10min

(4) Exposure

-Alignment Gap : 100μm

-Print Gap : 0μm

-Time : 4sec

(5) Development

-TMAH2.38% NMD-3

-Time : 60sec

-Pure Water Rinsing : 10min

(6) Post-Baking in Oven

-Temperature : 110℃
-Time : 50min

-TMAH 20%

-Temperature : 90℃
-Time : 20 min

-Pure Water Rinsing : 30 min

4)     RIE for 

SiO2 removal

5)     Wet Etching for 

Si  removal

6)     Photolithography

-Etchant : CHF3

-RF Power  : 100 W (519)

-Vaccum : 0.05 Torr

-Flow Rate : 20 sccm

-Etching Time : 20 min

(1)Dehydration Bake in Oven

-Temperature : 110℃
-Time : 10min

(2) Spin coating of P.R.

-P. R. : OFPR800 50cp

-Rotation speed : 1st 500rpm

2nd  2500rpm 

-Time : 1st 5sec

2nd 25sec

(3) Pre-Baking in Oven

-Temperature : 90℃
-Time : 10min

(4) Exposure

-Alignment Gap : 100μm

-Print Gap : 0μm

-Time : 4sec

(5) Development

-TMAH2.38% NMD-3

-Time : 60sec

-Pure Water Rinsing : 10min

(6) Post-Baking in Oven

-Temperature : 110℃
-Time : 50min
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Fig. 2.2 Process chart of SiNx/SCS specimen (continued). 

Process Name: Specimen for silicon nitride film 
Name: HYUN-JIN OH

Isono Lab.

# Process Figure Condition Comment

Si

SiO2

Si3N4

Dicing Sheet

Photoresist

Cr

Photo Mask-Etchant : BHF 14%

-Etching Time : 30min

Pure Water Rinsing : 10min

7)     Wet Etching for 

SiO2 removal

TMAH 20%

Temperature : 90℃
Time : 20min

Pure Water Rinsing : 20 min

8)     Wet Etching for 

Si  removal

(1)Dehydration Bake in Oven

-Temperature : 110℃
-Time : 10min

(2) Spin coating of P.R.

-P. R. : OFPR800 50cp

-Rotation speed : 1st 500rpm

2nd  2500rpm 

-Time : 1st 5sec

2nd 25sec

(3) Pre-Baking in Oven

-Temperature : 90℃
-Time : 10min

(4) Post-Baking in Oven

-Temperature : 110℃
-Time : 50min

9)     Photolithography

10)     Photolithography

(1)Dehydration Bake in Oven

-Temperature : 110℃
-Time : 10min

(2) Spin coating of P.R.

-P. R. : OFPR800 50cp

-Rotation speed : 1st 500rpm

2nd  2500rpm 

-Time : 1st 5sec

2nd 25sec

(3) Pre-Baking in Oven

-Temperature : 90℃
-Time : 10min

(4) Exposure

-Alignment Gap : 100μm

-Print Gap : 0μm

-Time : 4sec

(5) Development

-TMAH2.38% NMD-3

-Time : 60sec

-Pure Water Rinsing : 10min

(6) Post-Baking in Oven

-Temperature : 110℃
-Time : 50min

11)     Wet Etching for

SiO2 removal

-Etchant : BHF 14%

-Etching Time : 30min 

-Pure Water Rinsing : 30min
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Fig. 2.2 Process chart of SiNx/SCS specimen.  

Process Name: Specimen for silicon nitride film 
Name: HYUN-JIN OH

Isono Lab.

# Process Figure Condition Comment

Si

SiO2

Si3N4

Dicing Sheet

Photoresist

Cr

Photo Mask
-TMAH 20%

-Temperature : 90℃
-Time : 11hr 30min

-Pure Water Rinsing : 20 min

12)     Wet Etching for 

Si  removal

13)     Wet Etching for 

SiO2 removal

-Etchant : BHF 14%

-Etching Time : 30min 

-Pure Water Rinsing : 30min

14)     Photolithography

(1)Dehydration Bake in Oven

-Temperature : 110℃
-Time : 10min

(2) Spin coating of P.R.

-P. R. : OFPR800 50cp

-Rotation speed : 1st 500rpm

2nd  2500rpm 

-Time : 1st 5sec

2nd 25sec

(3) Pre-Baking in Oven

-Temperature : 90℃
-Time : 10min

(4) Exposure

-Alignment Gap : 100μm

-Print Gap : 0μm

-Time : 4sec

(5) Development

-TMAH2.38% NMD-3

-Time : 60sec

-Pure Water Rinsing : 10min

(6) Post-Baking in Oven

-Temperature : 110℃
-Time : 50min

15)     ICP for Si removal

-Etching Gas : SF6 130sccm

-Passivation Gas : C4F8 130sccm

-RF Power : 200 W

-RF Pressure : 0.20  torr

16)     Deposition of Si3N4
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of the specimen was oriented along the [110] direction in the (001) plane. The top and BOX 

layers of SiO2 on the specimen were removed by hydrofluoric (HF) acid, and SiNx thin film was 

deposited from the top surface of the specimen using two kinds of PE-CVD machines. Here, 

NH3, SiH4 and N2 gases went around the backside of SCS layer, so the films were deposited at 

top and backside surfaces of the gauge section. Finally, a grid pattern made of photoresist was 

formed on the topside and at the center of the gauge section to measure longitudinal elonga-

tion with AFM during tensile loading. 

Table 2.1Table 2.1Table 2.1Table 2.1 lists the deposition conditions for the SiNx films and average dimensions of SiNx

/SCS specimens. Three samples of each kind of film were prepared (a total of 27 samples for S

iNx/SCS specimen). During the deposition, the gas flow ratios of SiH4 to NH3 to N2 were set to 

be 1 : 1.5 : 281 (case 1) for the PE-CVD machine #1, 1 : 2.2 : 50 (case 2) and 1 : 5.0 : 169 (case 

3) for the PE-CVD machine #2. RF powers, deposition temperatures and chamber pressures 

were 50 W, 523 K and 93 Pa for case 1, 20 W, 518 K and 90 Pa for case 2 and 40 W, 573 K 

and 90 Pa for case 3, listed in Table 2.2Table 2.2Table 2.2Table 2.2. 

The film thickness was measured at the cross section of SiNx/SCS specimens using a field-

emission type scanning electron microscope (FE-SEM, HITACHI S-4800), as listed in Table 2.3. Table 2.3. Table 2.3. Table 2.3. 

Here, SiNx layer on the sidewall was not clearly observed in this research. Even if SiNx were 

coated on the sidewall with the same thickness of the topside, the stress calculated from the 

 

Table 2.1 Deposition parameters and nominal dimensions of specimens [unit: µm] 

Specimen No. 
Thickness Width 

w 
Length 

l SCS, t1 SiNx,t2 

SiNx / 

SCS 

CASE 1 (PE-CVD #1) 

Gas flow ratio 

NH3/SiH4 : 1.5 

A 

9.52 

±0.1 

0.14±0.1 

290 

±5 

3000 

±10 

B 0.38±0.1 

C 0.69±0.1 

CASE 2 (PE-CVD #2) 

Gas flow ratio 

NH3/SiH4 : 2.2 

A 0.14±0.1 

B 0.38±0.1 

C 0.69±0.1 

CASE 3 (PE-CVD #2) 

Gas flow ratio 

NH3/SiH4 : 5.0 

A 0.14±0.1 

B 0.38±0.1 

C 0.68±0.1 



３２ 

 

Table 2.2 Conditions of each part of specimen. 

Specimen No. CASE 1 CASE 2 CASE 3 

Gas flow ratio of  

SiH4 to NH3 to N2 
1:1.5:281 1:2.2:50 1:5:169 

RF Power (W) 50 20 40 

Deposition temperature (K) 523 518 573 

Chamber pressure (Pa) 93 90 90 

 

 

Table 2.3 FE-SEM photographs of cross section of SiNx/SCS substrate. 

 

 

cross sectional area would show only 4 to 5 % error. This research, then, neglected the exist-

ence of SiNx layer on the sidewall. All the deposition parameters were kept constant until the 

film thicknesses reached to around 0.15, 0.40 and 0.70 µm in the process. The film thickness 

on the backside of the specimen was about half of that on the topside because of the lower 

deposition rate on the backside. Nine kinds of SiNx films were prepared for tensile tests, and 

only specimens having dimensional tolerances within ±5 % of all dimensions were used in the 

tests. 

Uniaxial tensile tests were performed using a compact tensile tester built into the commer-
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cial AFM (Seiko Instruments Inc., NPX100), as shown in Fig. 2.3Fig. 2.3Fig. 2.3Fig. 2.3    (a(a(a(a----b)b)b)b). The tensile tester com-

posed of a piezoelectric actuator, actuator case, load cell, linear variable displacement trans-

ducer (LVDT), and specimen holders, as shown in Fig. 2.3 (cFig. 2.3 (cFig. 2.3 (cFig. 2.3 (c----d)d)d)d), is set under the AFM head, and 

is installed in a shield box on a vibration absorption system. The load cell and LVDT, having 

resolutions of 0.38 µN and 10 nm, respectively, measure the tensile force and relative displace-

ment between the specimen holders. Fig. 2.4 (a) Fig. 2.4 (a) Fig. 2.4 (a) Fig. 2.4 (a) shows the AFM image of the resist grid pattern 

fabricated on the topside of the gauge section for SiNx/SCS specimen. AFM can observe the 

profile of the grid pattern under the tensile loading. The grid pattern consists of four lines with 

a width of 20 µm and a height of 200 nm, which are parallelized at a pitch of 45 µm shown in 

Fig. 2.4 (b)Fig. 2.4 (b)Fig. 2.4 (b)Fig. 2.4 (b). The distance between the left side edge of the first line and the right side edge of 

the fourth line (155 µm in the design) is defined as the gauge length of the SiNx/SCS specimens 

and the change of the gauge length is measured by AFM during tensile loading as the longitu-

dinal elongation. By comparing the grid pattern profile measured before tensile loading with 

that after tensile loading as the left side edge of the first line is set as the origin in the x-axis, 

the elongation is measured from the difference in the position of the right side edge in the 

fourth line between before and after tensile loading (See, Fig. 2.4 (c)Fig. 2.4 (c)Fig. 2.4 (c)Fig. 2.4 (c)). The AFM image of the 

pattern has pixels of 512 x 512 at the observation area of 200 µm x 200 µm, so one pixel rep-

resents 0.391 µm. The pixel size is very large as a resolution for longitudinal elongation in the 

135 µm gauge length. In this research, Boltzmann function has been used to compensate the 

AFM data to improve the measurement resolution of elongation. After fitting the AFM data by 

the function, elongation was calculated from the changes of intersections between the grid 

profile line and the horizontal line of 100 nm in the z-direction, as also shown in Fig. 2.4 (d)Fig. 2.4 (d)Fig. 2.4 (d)Fig. 2.4 (d). 

This method enabled us to evaluate Young’s modulus of the micron scale SCS specimen with 

very small deviation within 0.1 % from the analytical value based on anisotropic theory in the 

previous work [12][12][12][12]. 
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(a) Micro-scale tensile tester built in AFM         (b) Close-up view of tensile tester 

 

 
 

(c) Experimental model of tensile test 

 

 
 

(d) Schematic of AFM tensile tester 

 

 

Fig. 2.3 Schematic and photographs of the tensile tester operating with AFM.  
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(a)  (c) 

 

   (b)                                 (d) 

Fig. 2.4 3D (a) and sectional (b) AFM images of a grid pattern on the tensile specimen, (c) 

change of the gauge pattern profile with increasing tensile load, and (d) Boltzmann 

functions to improve the resolution. 
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2.3   Evaluation Techniques of Mechanical Properties for PE-CVD 

SiNx Film 

 

Young’s modulus of submicron SiNx/SCS substrates can be estimated from the effective 

elastic modulus, E1+2, of SiNx/SCS laminated specimens. The longitudinal strain of the SiNx film 

can be regarded as being equal to that of the SCS substrate in Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5, because of the fixed 

boundary condition of SiNx and SCS layers, without due consideration of difference in Poisson’s 

ratio between the film and substrate. Then, E1+2 is roughly given by: 

���� = �	
	���
�
�	���       (2.1) 

where, E is Young’s modulus, t is thickness, and the subscripts 1 and 2 indicate SCS substrate 

and SiNx film, respectively. Even if Poisson’s ratio of the film takes into account the calculation 

of Young’s modulus, E2, of the film, uncertainty of only 5 to 6 % is produced in the calculation 

[12][12][12][12]. For simple and easy evaluation of Young’s modulus of the film, Eq. (2.1)Eq. (2.1)Eq. (2.1)Eq. (2.1) was used in this 

research. 

To estimate E2 using Eq. (2.1)Eq. (2.1)Eq. (2.1)Eq. (2.1), the film thickness, t2, and the effective elastic modulus, E1+2, 

have to be measured precisely. The film thickness, t2, is not a topside of but a sum of both side 

of SiNx film, described in the Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5. The value can be measured precisely with a calibration of 

dimensional measurement using a commercial sample of line patterns with a regular interval 

inside the FE-SEM. Even if 10 % error was produced in the measurement of thickness from the 

real value, E2 calculated from Eq. (2.1)Eq. (2.1)Eq. (2.1)Eq. (2.1) would have only uncertainty less than 5 % for the sam-

ples used here. The effective elastic modulus, E1+2, was derived from the gradient of stress-

strain curve, where the gradient was calculated by the least squares method. The least squares 

method and the data fitting of AFM image in Fig. 2.4Fig. 2.4Fig. 2.4Fig. 2.4 make a fine measurement of E1+2, so that 

E2 can be precisely determined by Eq. (2.1)Eq. (2.1)Eq. (2.1)Eq. (2.1) regardless of the small value of t2/(t1+t2) [12][12][12][12]. 

To evaluate Poisson’s ratio of SiNx film, a nano-indentation test was performed in addition 

to the tensile test. The nano-indentation test is able to directly measure the reduced modulus, 
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Fig. 2.5 Schematic of SiNx/SCS laminated specimen for tensile test. The thickness of SiNx film, 

t2, is composed of the top and back side film layer. 

 

Er, from the unloading stiffness in the load-penetration depth curve. The indentation tests for 

2 µm SiNx films coated on 400 µm SCS substrate were carried out on a basis of the theory 

proposed by W. C. Oliver et al. [13][13][13][13]. The unloading stiffness, S, corresponding to the slope of 

the unloading curve is expressed as: 

�
� = � + √�

�
�
�
√�         (2.2) 

where Cf is the compliance of the load frame in the nano-indentation tester, and A is the con-

tact area between the film and the indenter. Cf needs to be calibrated before the indentation 

test. Er can also be expressed as the sum of the plane-strain moduli of the SiNx film and an 

indenter: 

�

� = �����


� + �����
�       (2.3) 

where ν2 is Poisson’s ratio of the SiNx film, and Ei and νi are Young’s modulus and Poisson’s 

ratio of a diamond indenter used in the test, respectively. The plane-strain modulus of the in-

denter, (1-νi
2)/Ei, in Eq. (2.3)Eq. (2.3)Eq. (2.3)Eq. (2.3) was calibrated by indentation test using a material having known 

mechanical properties. If Er is determined experimentally, ν2 can be calculated by applying E2 

l
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F w
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t2b

t2 = t2a+t2b

l
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and (1-νi
2)/Ei into Eq. (2.3)Eq. (2.3)Eq. (2.3)Eq. (2.3). 

In the nano-indentation test using a thin film deposited on a substrate, the maximum pen-

etration depth should be ordinarily set to be less than 1/10 of the film thickness in order to 

exclude the influence of elastic deformation of the substrate on the load-penetration depth 

curve of the film [13][13][13][13]. We carried out indentation tests with a commercial indentation tester 

(ELIONIXTM, ENT-1100a) at the maximum penetration depth ranging from 0.05 to 0.14 µm, in-

dicating that the maximum depths were within the range from 1/40 to 7/100 times on 2 µm Si

Nx film. 
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2.4   Results of AFM Tensile Testing 

 

Fig. 2.6Fig. 2.6Fig. 2.6Fig. 2.6 shows typical tensile stress-strain curves of SiNx/SCS specimens deposited with NH3-

to-SiH4 ratios of (a) 1.5 (PE-CVD machine #1), (b) 2.2 (PE-CVD machine #2) and (c) 5.0 (PE-CVD 

machine #2). The longitudinal strain of closed plots is directly measured by the AFM. The solid 

lines are drawn using the strain estimated from the relative displacement between specimen 

holders by LVDT, where the displacement has been simultaneously corrected by the finite ele-

ment analysis (FEA) in Fig. 2.7Fig. 2.7Fig. 2.7Fig. 2.7. This is because the longitudinal elongation at the gauge section 

was analyzed to be 0.58 times the displacement applied to the entire specimen due to the 

strain distribution on the x-y plane of specimen. Initial loads in Fig. 2.6Fig. 2.6Fig. 2.6Fig. 2.6 was applied before all 

tensile tests to remove the gap between the square holes of specimen and the specimen hold-

ers. If the gap exists, the relative displacement between two specimen holders measured by 

LVDT is different from the entire elongation of specimen. The friction force between the grip 

areas of specimen and the specimen holders will also be generated.  

All the SiNx/SCS specimens have shown a linear stress-strain relation and failed in a brittle 

manner. Effective elastic moduli, E1+2
LVDT, of SiNx/SCS specimens estimated by LVDT are each 

lower than those by AFM. A narrow gap between the specimen and holder could have under 

estimated the elastic moduli in LVDT measurement even after correction by FEA. Therefore, the 

AFM direct tracing for elongation on the gauge section is appropriate for accurate evaluation 

of elastic modulus in this paper. Effective elastic moduli, E1+2
AFM, of the SiNx/SCS specimens 

calculated by AFM are 166.57, 166.41 and 167.93 GPa, for case 1, 2 and 3, respectively. Sub-

stituting E1+2
AFM, E1, t1 and t2 into Eq. (2.1)Eq. (2.1)Eq. (2.1)Eq. (2.1), Young’s moduli, E2, of the SiNx films are calculated 

to be 109.7, 104.0 and 143.6 GPa, respectively. 

Fig. 2.8Fig. 2.8Fig. 2.8Fig. 2.8 shows a typical load-penetration depth curve obtained in the nano-indentation test 

using the 2 µm SiNx film. Applied load was set from 4.41 to 6.37 µN, so that the penetration 

depth was less than 0.2 µm. The reduced modulus, Er, was calculated from the tangential line 

of unloading curve using Eq. (2.3)Eq. (2.3)Eq. (2.3)Eq. (2.3). Table 2.4Table 2.4Table 2.4Table 2.4 summarizes averaged mechanical properties ob-

tained from AFM tensile and nano-indentation tests, as average value of three specimens in 

each deposition condition. Young’s moduli for only SiNx films, E2, obtained from tensile tests 

were approximately 3.2 to 5.6 % higher than reduced moduli, Er, because of the plane-strain 
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modulus of the indenter, (1-νi
2)/Ei. Poisson’s ratios, ν2, of the SiNx films, calculated by Eq. (2.3)Eq. (2.3)Eq. (2.3)Eq. (2.3), 

are in the range of 0.19 to 0.27. 

 

 

 

 

 

Fig. 2.6  Typical stress-strain curves of SiNx/SCS laminated specimens. The gas flow ratio 

of NH3 to SiH4 during deposition were (a) 1.5, (b) 2.2, (c) 5.0. 
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Fig. 2.7 Longitudinal elastic strain distribution obtained by FEA under application of the 1 % 

elongation of the gauge length to the entire specimen model. 

 

 

 

Fig. 2.8 Typical load vs. penetration depth curves of the SiNx/SCS specimen. 
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Table 2.4 Summary of the mechanical properties for SCS and SiNx thin films. 

Specimen group 

Thickness AFM tensile test 

SiNx SCS 
Resultant modulus 

of specimen 

Young's modulus 

of SiNx film 

Fracture strength 

of specimen 

t2 [µm] t1 [µm] E1+2
AFM [GPa] E2 [GPa] σf 1+2 [GPa] 

SiNx/ 

SCS 

Case 1 

A 0.14 9.52  168.053 109.0  0.54  

B 0.38 9.52  166.576 108.9  0.44  

C 0.69 9.52  164.936 109.8  0.41  

Case 2 

A 0.14 9.50  167.968 103.0  0.70  

B 0.38 9.51  166.376 103.2  0.43  

C 0.69 9.52  164.275 99.52  0.40  

Case 3 

A 0.14 9.51  168.527 143.2  0.46  

B 0.38 9.52  167.896 142.5  0.48  

C 0.68 9.52  167.245 144.3  0.32  

 

Specimen group 

AFM tensile +  

Nano-indentation test 

Nano- 

indentation test 

Poisson's ratio 

of SiNx film 

Reduced 

modulus 

ν2 Er [GPa] 

SiNx/ 

SCS 

Case 1 

A 0.25  

B 0.26 105.83 

C 0.24  

Case 2 

A 0.19  

B 0.19 97.96 

C 0.27  

Case 3 

A 0.25  

B 0.27 135.65 

C 0.25  
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2.5   Mechanical Properties of PE-CVD SiNx Films Deposited at  

Several Gas Flow Ratios 

 

Fig. 2.9(a)Fig. 2.9(a)Fig. 2.9(a)Fig. 2.9(a) depicts Young’s moduli of SiNx films as a function of film thickness. Young’s mod-

uli of SiNx film deposited at each NH3-to-SiH4 ratio are independent of film thickness, with av-

erage value of 109.2, 102.6 and 143.2 GPa, for case 1, 2 and 3, respectively. These are compa-

rable to PE-CVD SiNx films in previous works, listed in Table 2.5Table 2.5Table 2.5Table 2.5 [11, 16[11, 16[11, 16[11, 16----20]20]20]20]. Young’s moduli of 

PE-CVD SiNx films listed are ranging of 97 to 221 GPa. Since deposition conditions such as gas 

flow ratio, substrate temperature, electric discharge power and vacuum condition are different 

one another, Young’s moduli would have varied widely. Sputtered SiNx film also has a similar 

value to PE-CVD films, but SiNx films deposited by the LP-CVD in Table 2.5Table 2.5Table 2.5Table 2.5 exhibit higher moduli 

ranging of 202 to 370 GPa. LP-CVD SiNx film coated at a high temperature has minimal hydro-

gen present in the films, whereas hydrogen atoms are easily incorporated into PE-CVD SiNx 

films because of a low deposition temperature [21, 22][21, 22][21, 22][21, 22]. The LP-CVD SiNx films would have re-

sulted in larger Young’s modulus due to a lower incorporation of hydrogen atoms. 

On the assumption that Poisson’s ratio of SiNx films has no correlation with the film thick-

ness, as well as the Young’s moduli, this research has also estimated Poisson’s ratio from Eq. Eq. Eq. Eq. 

(2.3)(2.3)(2.3)(2.3) using the reduced moduli obtained from 2 µm SiNx films. Fig. 2.9 (b)Fig. 2.9 (b)Fig. 2.9 (b)Fig. 2.9 (b) shows Poisson’s ratios 

of SiNx films at each film thickness. Poisson’s ratios estimated by SiNx films with thicknesses 

about 0.14 µm are scattered in a wide range of 0.13 to 0.37. But, the data scatter decreases 

with an increase of the film thickness. This is because standard deviations of Young’s modulus, 

E2, used in Eq. (2.3)Eq. (2.3)Eq. (2.3)Eq. (2.3) are inversely proportional to the film thickness. For example, the deviations 

are found to be 3.02, 1.76 and 0.25, for 0.14, 0.38 and 0.69 µm films in case 1, respectively. 

The wide scatter of Poisson’s ratio in the thinner films has been directly affected by the scatter 

of E2. 

Fig. 2.9 (c)Fig. 2.9 (c)Fig. 2.9 (c)Fig. 2.9 (c) correlates the fracture strength of SiNx/SCS specimens with film thickness. The 

fracture strength is inversely proportional to the film thickness at each specimen group, with a 

scattering of several data. The maximum fracture strength was about 0.72 GPa, which was 

smaller than that of 10 µm SCS specimen [12][12][12][12]. This might be caused by a crack initiation and 

propagation of the SiNx films at the top surface, inside, or the film-substrate interface. The SiN
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x films would have fractured first, and the substrates broken immediately due to the impact of 

the film breaking. However, the essence of fracture behavior in the SiNx/SCS specimens cannot 

be concluded until further observations have been performed. 

 

(a) Young’s modulus vs. thickness 

 

(b) Poisson’s ratio vs. thickness 
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(c) Fracture strength vs. thickness 

Fig. 2.9 (a) Young’s modulus, (b) Poisson’s ratio and (c) Fracture strength vs. film thickness  

for the SiNx/SCS specimens prepared under the different gas flow ratios. Lines in (a)  

show the average of Young’s modulus at each gas flow ratio. 

 

 

 

Table 2.5 Literature value of SiNx material properties. 

 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Thickness of SiN film t2, μm

F
ra

ct
u

re
 s

tr
en

g
th

 o
f

S
iN

/S
i s

p
ec

im
en

 
σ

f1
+

2,
 G

P
a

Thickness of SiNx film t2, µm

F
ra

ct
u

re
 s

tr
e

n
g

th
 o

f 
S

iN
x/

S
C

S
 s

p
e

ci
m

e
n

 σ
1

+
2,

 G
P

a

CASE 1 (Gas flow ratio : 1.5) ○, ●, ●
CASE 2 (Gas flow ratio : 2.2) □, ■, ■
CASE 3 (Gas flow ratio : 5.0) △, ▲, ▲

○

□

△

A   B   C

Reference
Year

Published

Coating

Method

Test

Method

Young's moulus

E (GPa)
Film Thickness

t (nm)
Depositon Temp.

(°C)

C. T. Lynch [15] - Crystal - 317 - -

M. Vila et al. [5] 2003 Sputtered Indentation 100~210 - (1750)

O. Tabata et al. [3] 1989 LP-CVD Membrane 290 200 790

Tetsuo Yoshioka et al. [6] 2000 LP-CVD Tension 370 100 750

T.Y. Zhang et al. [7] 2000 LP-CVD Tension 202.57±15.80 760 840

D.M.Profunser et al. [10] 2004 LP-CVD BAW
* 260 520 700

Yeon-Gil Jung et al. [16] 2004 LP-CVD Indentation 266±4 50~1500 830

R.L. Edwards et al. [8] 2004 LP-CVD Tension 257 500 -

Wen-Hsien Chuang et al. [9] 2004 LP-CVD Bending 260.5 450 -

O. Tabata et al. [3] 1989 PE-CVD Membrane 210 500 300

J. Ashley Taylor [1] 1991 PE-CVD Indentation 178~221
** - 400

Torsten Kramer et al. [17] 2002 PE-CVD Bulge 150±7 1900 300

Torsten Kramer et al. [11] 2003 PE-CVD Bulge 160 500 300

Yeon-Gil Jung et al. [16] 2004 PE-CVD Indentation 119±3 500 100

H Huang et al. [18] 2005 PE-CVD Indentation 97±1.6 300~1200 125

This work 2005 PE-CVD Tension 102.6~143.2 100~700 -

* BAW : bulk acoustic waves ** values were calculated from the equation of E/(1-v 2
)
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2.6   Effect of Film Composition on Elastic Properties 

 

The gas flow ratio of NH3 to SiH4 in PE-CVD will determine the film composition of SiNx, which 

can affect its mechanical properties. In this research, Auger spectroscopy investigates atomic 

content of the SiNx films in order to reveal the effect of the film composition on mechanical 

properties. Fig. 2.10Fig. 2.10Fig. 2.10Fig. 2.10 shows typical Auger spectra of the SiNx films deposited with NH3-to-SiH4 

ratios of 1.5 (CASE 1), 2.2 (CASE 2) and 5.0 (CASE 3). The SiNx films are found to mainly contain 

atoms of N, Si, O, and C. Hydrogen atom is also probably contained in the films, but Auger 

spectroscopy cannot detect it because of the light atomic weight. Auger spectra have two ob-

vious peaks corresponding to N and Si atoms. This indicates that N and Si are the dominant 

atoms as compared with other atoms. The N-to-Si ratio equivalent to the peak intensity ratio is 

calculated to be 1.11, 0.96 and 1.15 for cases 1, 2 and 3, respectively. Although the atomic 

content ratio (N-to-Si ratio) of case 1 is expected to be the minimum from the viewpoint of gas 

flow ratio (NH3-to-SiH4 ratio), the N-to-Si ratio of case 2 is smaller than that of case 1. This is 

because the PE-CVD machines used are different in case 1 and 2; therefore, the atomic content 

ratio doesn’t always directly relate to the gas flow ratio during deposition. 

 

 

Fig. 2.10 Typical Auger spectra of SiNx films. 
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Fig. 2.11 Young’s modulus and Poisson’s ratio of SiNx films 

 as a function of the atomic content ratio. 

 

 

Fig. 2.11Fig. 2.11Fig. 2.11Fig. 2.11 relates Young’s modulus and Poisson’s ratio with the atomic content ratio. Young’s 

modulus and Poisson’s ratio of the SiNx films increase with an increase of the atomic content 

ratio. An estimate of elastic properties for the SiNx films is possible based on the atomic content 

ratio rather than the gas flow ratio, even if different PE-CVD machines deposit the films. The 

variation of elastic properties with increasing the atomic content ratio shows a tendency to 

reach into poly-crystalline Si3N4, since Young’s modulus and Poisson’s ratio of Si3N4 are about 

317 GPa and 0.27 at the atomic content ratio of 1.33 [14][14][14][14]. The gas flow rate of NH3 and SiH4, 

which can lead to the atomic content ratio of 1.33, should be employed in PE-CVD to deposit S

iNx films with higher elastic constants. 
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2.7   Conclusions 

 

In this research, submicron PE-CVD SiNx films were characterized using the handmade uni-

axial tensile tester built in AFM, in order to examine the influence of the gas flow ratio of NH3 

to SiH4 on the elastic properties. The nano-indentation tests were also carried out for the esti-

mation of Poisson’s ratio for the SiNx films. The AFM tensile tester accurately measured effec-

tive elastic modulus of SiNx/SCS specimens, and we have succeeded in separating Young’s mod-

ulus for only PE-CVD SiNx films. Young’s modulus ranged from 99.5 to 149.3 GPa, which were 

lower than that of LP-CVD SiNx films due to low process temperature. Poisson’s ratio of the 

films was also estimated as 0.13 to 0.37 from reduced modulus. The elastic properties of PE-

CVD SiNx films were greatly influenced by the gas flow ratio of NH3 to SiH4, regardless with film 

thickness. Fracture strength of the SiNx/SCS specimens had in the range of 0.31 to 0.72 GPa, 

which is decreased with increasing film thickness. Auger spectroscopy was employed to reveal 

the film composition of the PE-CVD SiNx films. Nitrogen and silicon atoms were dominant, con-

tained more than 90 % in the films. Young’s modulus and Poisson’s ratio of the SiNx films cor-

related with the atomic content ratio rather than the gas flow ratio. The SiNx films with an 

atomic content ratio being close to that in crystalline Si3N4 yielded higher elastic constants. 

  



４９ 

 

References 

 

[1] A.S. Ergun, Y. Huang, X. Zhuang, O. Oralkan, G.G. Yaraloiglu, and B.T. Khuri-Yakub: Capacitive 

Micromachined Ultrasonic Transducers: Fabrication Technology, IEEE Transactions of Ultra-

sonics, Ferroelectrics, and Frequency control, vol. 52, no. 12, pp. 2242-2258, 2005. 

[2] A. Trautmann, P. Ruther, and O. Paul: Microneedle arrays fabricated using suspended etch 

mask technology combined with fluidic through wafer vias, IEEE The 16th Annual Interna-

tional Conference on Micro Electro Mechanical Systems, Kyoto, pp. 682–685, 2003. 

[3] E. Sarajlic, M. J. de Boer, H. V. Jansen, N. Arnal, M. Puech, G. Krijnen, and M. Elwenspoek: 

Advanced plasma processing combined with trench isolation technology for fabrication and 

fast prototyping of high aspect ratio MEMS in standard silicon wafers, Journal of Microme-

chanics and Microengineering, vol. 14, pp. S70-S75, 2004. 

[4] Y. Xu, C.W. Chiu, F. Jiang, Q. Lin, and Y.C. Tai: A MEMS multi-sensor chip for gas flow sensing, 

Sensors and Actuators A, vol. 121, pp. 253-261, 2004. 

[5] M. Villa, D. Caceres, and C. Prieto: Mechanical properties of sputtered silicon nitride thin 

films, Journal of Applied Physics, vol. 94, no. 12, pp. 7868-7873, 2003. 

[6] T. Yoshioka, T. Ando, M. Shikida, and K. Sato: Tensile testing of SiO2 and Si3N4 films carried 

out on a silicon chip, Sensors and Actuators A, vol. 82, pp. 291-296, 2000. 

[7] T.Y. Zhang, Y.J. Su, C.F. Qian, M.H. Zhao, and L.Q. Chen: Microbridge testing of silicon nitride 

thin films deposited on silicon wafers, Acta Materialia, vol. 48, pp. 2843-2857, 2000. 

[8] R.L. Edwards, G. Coles, and W.N. Sharpe: Comparison of tensile and bulge tests for thin-film 

silicon nitride, Experimental Mechanics, vol. 44, no. 1, pp. 49-54, 2004. 

[9] W.H. Chuang, T. Luger, R.K. Fettig, and R. Ghodssi: Mechanical Property Characterization of 

LPCVD Silicon Nitride Thin Films at Cryogenic Temperatures, Journal of Micromechanics and 

Microengineering, vol. 13, no. 5, pp. 870-879, 2004. 



５０ 

 

[10] D.M. Profunser, J. Vollmann, and J. Dual: Determination of the material properties of mi-

crostructures by laser based ultrasound, Ultrasonics, vol. 42, pp. 641-646, 2004. 

[11] T. Kramer and O. Paul: Mechanical properties of compressively prestressed thin films ex-

tracted from pressure dependent ripple profiles of long membranes, Proc. of MEMS 2003 

Kyoto, IEEE the sixteenth annual international conference, pp. 678-681, 2003. 

[12] Y. Isono, T. Namaze, and N. Terayama: Development of AFM Tensile Test Technique for 

Evaluating Mechanical Properties of Sub-Micron Thick DLC Films, Journal of Microelectro-

mechanical Systems, vol.15, no.1, pp.169-180, 2006. 

[13] W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic 

modulus using load and displacement sensing indentation experiments, Journal of Mate-

rials Research, vol. 7, no. 6, pp. 1564-1583, 1992. 

[14] J.D.J. Ross, H.M. Pollock, J.C. Privin, and J. Takadoum: Limits to the hardness testing of 

films thinner than 1μm, Thin Solid Films, vol. 148, no. 2, pp. 171-180, 1987. 

[15] C.T. Lynch: Practical Handbook of Materials Science, p. 321, 1989. 

[16] Y.G. Jung, B.R. Lawn, M. Martyniuk, H. Huang, and X.Z. Hu: Evaluation of elastic modulus 

and hardness of thin films by nano-indentation, Journal of Materials Research, vol. 19, No. 

10, pp. 3076-3080, 2004. 

[17] T. Kramer and O. Paul: Postbuckled micromachined square membranes under differential 

pressure, Journal of Micromechanics and Microengineering., vol. 12, pp. 475-478, 2002. 

[18] H. Huang, K. Winchester, Y. Liu, X.Z. Hu, and C.A. Musca: Determination of mechanical 

properties of PECVD silicon nitride thin films for tunable MEMS Fabry-Perot optical filters, 

Journal of Micromechanics and Microengineering, vol. 15, pp. 608-614, 2005. 

[19] J.A. Taylor: The mechanical properties and microstructure of plasma enhanced chemical 

vapor deposited silicon nitride thin films, Journal of Vacuum Science & Technology A, vol. 

9, no.4, pp. 2464-2468, 1991. 

[20] O. Tabata, K. Kawahata, S. Sugiyama, and I. Igarashi: Mechanical Property Measurements 



５１ 

 

of Thin Films Using Load-Deflection of Composite Rectangular Membranes, Sensors and 

Actuators, vol. 20, pp. 135-141, 1989. 

[21] A. Stoffel, A Kovacs, W. Kronast, and B. Muller: LPCVD against PECVD for micromechanical 

applications, Journal of Micromechanics and Microengineering, vol. 6, pp. 1-13, 1996. 

[22] J. Yota, J. Hander, and A.A. Saleh: A comparative study on inductively-coupled plasma 

high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition sili-

con nitride films, Journal of Vacuum Science & Technology A, vol. 18, pp. 372-376, 2000. 

  



５２ 

 

Chapter 3 

Strain Rate Dependence of Mechanical Properties for Sub 100 nm-

Thick Au Film Using EANAT 

 

3.1 Introduction 

 

Focuses on the material properties depend on the actual situations of their use. Au thin 

films have been used in electronic industries typically as wires on the devices for electric circuits. 

Hence, the use of Au thin films is ubiquitous in the broad range of applications. Although Au 

itself is not intrinsically a new material, mechanical properties of materials generally depend 

on the fabrication processes as they define the microscopic structures. Conventional fabrica-

tion of the metallic wires on the substrate has been either thermal evaporation or sputtering 

process. Recent advances in the technologies related to micro- and nano-electromechanical 

systems (MEMS/NEMS) have provided new opportunities for the miniaturization of not only 

the mechanically moving part of MEMS/NEMS themselves but also the electronic circuits. In 

particular, the novel method, called “nano-transfer printing (n-TP)”, has been developed [1-5]. 

In this method, the patterns of wires of Au films are printed on the substrate to be used for 

devices. The film thickness of Au in the devices can be less than 100 nm. The consequence of 

applied stress in the contact process of n-TP needs to be clarified for the full industrial use. The 

fundamental understanding based on the materials mechanics is necessary to enable the pre-

diction essential for device design. Furthermore, the tolerance of loading conditions in n-TP 

while in use is of primary importance in order to ensure the device performance and reliability. 

The wide-spread method for the mechanical characterization at device design stages is the nu-

merical analysis based on the continuum mechanics such as finite element method (FEM). This 

is now part of the ordinary procedure of industrial designing due to the relatively good cost 

performance. However, the reliability of such analysis is obviously affected by the precision of 

basic material properties used as the input parameters, which are obtained from direct meas-

urements in the experiments. Once the basic mechanical properties are determined, it be-

comes feasible to predict the mechanical properties affected by the specific situations of n-TP. 

Therefore, the direct measurement on the mechanical properties of sub-100-nm Au films 
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is important for the reliable applications of n-TP. The question is how to test the specimens with 

such an extremely small size. Although the basic concept is the same as macroscopic tensile 

tests, the mechanical characterization of sub-100-nm specimen accompanies difficulties to 

overcome. First, the fixation of specimen needs high precision. Second, the preloading before 

the test has to be avoided. Third, the magnitude of the applied load and the resolution of load 

and displacement have to be small enough. In this study, we have measured the tensile prop-

erties of the Au thin films with the thickness of sub-100-nm regime. In the previous study, we 

developed the tensile testing system based on the MEMS technology. Here, we have modified 

the design of our system, fabricated the device, and realized the tensile tests of such Au thin 

films. In our system, the specimen is fabricated during the device fabrication process. This all-

in-one fabrication does not require the specimen fixation procedure, and enables the high pre-

cision in the specimen alignment direction. It also circumvents the possible preloading in the 

specimen fixation. The electrostatic actuation provides the fine tuning of the applied load, and 

the high resolution of the displacement is realized by the lever motion amplification mecha-

nism. We show the results of tensile tests and discuss the obtained mechanical properties with 

an emphasis on the impact of material fabrication process. 
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3.2   Specimen Preparation and AFM Based Tensile Testing System 

 

The schematic of our tensile testing device is shown in Fig. 3.1Fig. 3.1Fig. 3.1Fig. 3.1. The device consists of the 

specimen part, actuator part, and measurement part. The specimen part consists of the spec-

imen of Au thin film in the form of the doubly-clamped beam. The actuator part consists of the 

comb drive actuators that are electrostatically actuated. The number of comb drive actuators 

can be roughly calculated and determined by the cross section of specimen. The actuator part 

is not in contact with the specimen part at the neutral position, i.e., without the applied voltage 

for the test. They are in contact with each other after the 4 µm displacement (ds) of the actua-

tor part (Fig. 3.1Fig. 3.1Fig. 3.1Fig. 3.1). This gap avoids the preloading of specimen before loading for tensile test. 

The measurement part consists of the lever-motion amplification system, where the displace-

ment caused by the specimen elongation is amplified to realize the measurement of high res-

olution. The actuator part and the measurement part have a 3 µm gap between each other (dm) 

(Fig. 3.1Fig. 3.1Fig. 3.1Fig. 3.1). This gap is designed to be smaller than that between the actuator part and specimen 

part in order to ensure that the displacement of the actuator part first causes the contact with 

the measurement part and subsequently with the specimen part, thereby the displacement of 

the measurement part captures the specimen elongation from the beginning of the tensile 

loading on it. During the fabrication process, dry etching method by ICP-RIE was used to etch 

the silicon comb drive and measurement parts. In theory, dry etching direction is perpendicular 

to the plasma, however, the condition is not always ideal. So in case of Fig. 3.1Fig. 3.1Fig. 3.1Fig. 3.1, when actuator 

part contacts measurement part, it is more likely to be a point contact instead of a line contact. 

In this case the measurement part will be impacted the substrate by torsion, eventually stiction 

can arise in the lower applied voltage rather than the designed voltage. Therefore, this led to 

the nonzero displacements in the direction perpendicular to the tensile direction. In this study, 

we re-designed the symmetric configuration to avoid this problem and improved the precision 

of the measurement. Here, two cantilevers play a role of geometric amplification system for a 

deflection of the doubly-clamped beam, where the cantilevers are symmetrically placed on the 

doubly-clamped beam at the distance of L/4 from its fixed ends since the bending moment of 

the doubly-clamped beam at the L/4 is 0. All of the movable components of specimen, actuator, 

and measurement parts are supported by the beams, and the mechanical contributions in the 



５５ 

 

tensile tests is considered and calibrated. In our system, the displacements were monitored by 

optical microscope (Olympus Co., SZX12) coupled to a charge coupled device (CCD) camera 

(Hitachi, KP-F120CL). The resolution of the CCD camera was 6.45 µm/pixel and had 1392 × 1040 

pixels. The maximum frame rate was 30 fps. The block matching and linear compensation 

method was used for the image analysis, which improves the resolution 25 times from the CCD 

[8, 9][8, 9][8, 9][8, 9]. In combination with these setups, we use the lever-motion amplification at the meas-

urement part shown in Fig. 3.2 (a)Fig. 3.2 (a)Fig. 3.2 (a)Fig. 3.2 (a). The amplification factor of the system was calculated from 

Euler-Bernoulli equation and FEA. Fig. 3.2 (b)Fig. 3.2 (b)Fig. 3.2 (b)Fig. 3.2 (b) shows the equivalent strain distribution of the 

doubly-clamped beam, when the displacement of 1 µm in the y-direction is given at the point 

A in the figure. The equivalent strain at the point B was not produced practically since the mo-

ment at the L/4 from the fixed end is 0, which can guarantee the face angle of the cantilevers 

are kept at 90 degree against the face of the doubly-clamped beam at the L/4. Table 3.1Table 3.1Table 3.1Table 3.1 lists 

the coordinates of the point A, B, and C shown in Fig. 3.2 (b)Fig. 3.2 (b)Fig. 3.2 (b)Fig. 3.2 (b) before and after the deflection of  

 

 

Fig. 3.1 Schematic diagram of the MEMS-based tensile testing device. 
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the doubly-clamped beam, which were calculated from the linear elastic deformation theory 

and FEA. The differences in the coordinates between the linear elastic theory and FEA are very 

small at each point, although the x-coordinate of the point C was underestimated from FEA 

with 0.1 % error. Thus, this research employs 20.1 as an amplification factor of the actuator 

displacement from the FEA. Consequently, the total resolution in the displacement of our sys-

tem reached 0.65 nm.  

The device fabrication was realized by the typical techniques used in MEMS, which is based on 

the semiconductor processing (Fig. 3.3Fig. 3.3Fig. 3.3Fig. 3.3). The device was fabricated from a SOI wafer (100) con-

sisting of 400 µm of substrate, 3 µm of BOX, and 35 µm of active layer. First, thermal oxidation 

 

 

(a) Schematic of the lever-motion amplification system at the measurement part. 
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(b) Equivalent strain distribution of doubly-clamped beam calculated from FEA. 

Fig. 3.2 Schematic of the lever-motion amplification system used for the magnification of 

the actuator displacement. Specification of l = 2000 mm and L = 300 mm leads to 

the 20.1 times of amplification factor. 

 

Table 3.1Table 3.1Table 3.1Table 3.1 Coordinates at Point A, B and C of the measurement part, when the displacement of 

1 µm is applied to Point A. 

 
Neutral coordinates, (x, 

y), without displacement 
Coordinates after the de-

flection of beam 
(the linear elastic theory) 

Coordinates after the 

deflection of beam 

 (FEA) 

Point A (0, 0) (0, 1) (0, 1) 

Point B (75, 0) (75, 0.5) (75.015, 0.5000) 

Point C (75, 2000) (95, 2000.5) (95.097, 2000.5) 
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layer with a thickness of 800 nm was grown on the top. Then, Cr was deposited on the SiO2 

layer of the substrate by the thermal evaporation as a seed layer for Au film. The measured 

thickness of Cr layer was 3 nm at most. This Cr layer was removed by O2 plasma treatment 

method which inductively coupled plasma reactive ion etching (ICP-RIE) later, not by wet etch-

ing method because of the high risk of breakdown of Au specimen. The 15-nm-thick Au layer 

was deposited on the Cr layer using the same apparatus using an Au wire with a volume of 1.96 

mm3, and the 70-nm-thick Au thin film was continuously fabricated by the RF-sputtering pro-

cess for 25 seconds, which becomes the major part of the Au film specimen. The specimen 

shape was patterned by the photolithography. The comb structures of the actuator part and 

cantilever structure of the measurement part were also fabricated with photolithography after 

the deposition of Cr film by thermal evaporation. This Cr film also played a good role as a pro-

tective film of Au specimen. The Cr was etched by the wet process after the photoresist pat-

terning. In order to make the suspended structure of the specimen part, the silicon on the 

bottom side of the substrate was removed by the ICP-RIE after the masking with Cr and Al films 

for the irrelevant part by photolithography. Finally, the SiO2 layers of the top and bottom sur-

faces and the BOX layer were removed by vapor HF. This process makes the comb drive struc-

ture movable by the input of voltage.  
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 

Process number

Fabrication process chart of the EANAT device for gold thin film
Name: Oh, Hyun-Jin (091t851t@stu.kobe-u.ac.jp)

MNML Process sheet

September 28, 2011

Si SiO2 Cr P.R. Al Au

Figure

Condition

Process number

Figure

Condition

[Specification of Wafer]

• Diameter : 100 mm (4 inch) , 150 mm (6 inch)

• The thickness of  active layer : 35 μm (4 inch, 6 inch)

• The thickness of Buried Oxide(BOX) layer : 3 μm (4 inch), 2 μm (6 inch)

• The thickness of Substrate : 400 μm (4 inch, 6 inch)

• Total thickness : 438 μm (4 inch), 439 μm (6 inch)

• Dopant : Phosphorus (Type : P) 

(1) Dehydration bake on a hot-plate

5 min @ 110 ºC

(2) Spin coating of photoresist (OFPR800 23 or 54cp)

Rotation speed & time

1st : 5 sec @ 500 rpm

2nd : 30 sec @ 3000 rpm

(3) Bake on a hot-plate

10 min @ 110 ºC

(4) Adhere a dicing sheet to the reverse side of SOI wafer 

Thickness : 80 μm

A-A cross-section

Bottom viewTop view

# 01  Specification for silicon on insulator (SOI) wafer

# 02  SOI wafer cutting (Half size)

(5) Cut SOI wafer

Blade speed : 5.0 mm/s

(6) Rinse in acetone : 10 min (two times)

(7) Rinse in ethyl alcohol : 10 min

(8) Rinse in pure water : 10 min

A

A
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 

Process number

Fabrication process chart of the EANAT device for gold thin film
Name: Oh, Hyun-Jin (091t851t@stu.kobe-u.ac.jp)

MNML Process sheet

September 28, 2011

Si SiO2 Cr P.R. Al Au

Figure

Condition

Process number

Figure

Condition

[Conditions of oxidation]

• Time : 6 hours

• Oxidation furnace temperature : 1000 deg.

• Estimated thickness : about 800 nm

• Gas flow of oxide gas : 1.2 liter/min

• steamed water temperature  : 90 deg. (measured using a thermometer) 

(1) SPM cleaning : 5 min

H2SO4 : H2O2 = 2 : 1

(2) Pure wafer rinse : 10 min

(3) APM cleaning : 5 min @ 110 ºC  (hotplate temp.) 

NH3 : H2O2 : H2O = 1 : 1 : 5 ~ 1 : 1 : 10

(4) Pure wafer rinse : 10 min

(5) HPM cleaning : 5 min @ 110 ºC (hotplate temp.)

HCl : H2O2 : H2O = 1 : 1 : 5 ~ 1 : 1 : 10

(6) Pure wafer rinse : 10 min

(7) BHF etching : 10 sec (etching speed : 1 nm / sec)

(8) Pure wafer rinse : 10 min

# 03  SOI wafer cleaning

# 04  Wet oxidation on SOI wafer
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 

Process number

Fabrication process chart of the EANAT device for gold thin film
Name: Oh, Hyun-Jin (091t851t@stu.kobe-u.ac.jp)

MNML Process sheet

September 28, 2011

Si SiO2 Cr P.R. Al Au

Figure

Condition

Process number

Figure

Condition

(1) Gold sputtering

Time : 25 sec

Pressure : 0.8 Pa

RF Power : 150 W

Estimated thickness : about 50 nm

(1) Chromium deposition

Time : 60 sec

Pressure : 1.0×10-3 Pa

Current : 65 A

Estimated thickness :  10 nm

(2) Gold deposition

Time : 120 sec

diameter = 0.5 mm & length = 10 mm

Pressure : 1.0×10-3 Pa

Current : 65 A

Estimated thickness : 15 nm

# 05  Chromium (Cr) & gold (Au) thin film deposition

# 06  Gold sputtering

Measure the thickness of chromium & gold layer by AFMMeasure the thickness of chromium & gold layer by AFMMeasure the thickness of chromium & gold layer by AFMMeasure the thickness of chromium & gold layer by AFM

The thickness of each chromium & gold layer should be below 15nm & 80nmThe thickness of each chromium & gold layer should be below 15nm & 80nmThe thickness of each chromium & gold layer should be below 15nm & 80nmThe thickness of each chromium & gold layer should be below 15nm & 80nm
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 

Process number

Fabrication process chart of the EANAT device for gold thin film
Name: Oh, Hyun-Jin (091t851t@stu.kobe-u.ac.jp)
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September 28, 2011

Si SiO2 Cr P.R. Al Au

Figure

Condition

Process number

Figure

Condition

(1) Dehydration bake in the oven

5 min @ 110 ºC 

(2) Spin coating of OAP

Rotation speed & time

1st : 5 sec @ 1000 rpm

2nd : 30 sec @ 5000 rpm

(3) Bake for drying OAP in the oven

3 min @ 110 ºC

(4) Spin coating of Photoresist (OFPR800 23cp)

Rotation speed & time

1st : 5 sec @ 1000 rpm

2nd : 30 sec @ 5000 rpm

(1) Gold thin film etching (using new gold etchant)

Time : ~ 2 min.2 min.2 min.2 min.

depending on the thickness of gold layer

(2) Pure wafer rinse : 10 min

(3) Photoresist removal (remover 104)

5 min @ 110 ºC  (hotplate temp.)

(4) Pure wafer rinse : 10 min

(5) Check the unnecessary gold layers by optical microscopy. And 

totally remove the gold layers.

# 07  Photolithography (1st )

# 08  Wet gold thin film etching & photoresist removal

(5) Pre-bake in the oven

2 min @ 110 ºC 

(6) Exposure

Time : 1.8 sec

(7) Development (TMAH 2.38% NMD-3)

Time : 30~40 min

(8) Pure wafer rinse : 10 min

(9) Post-bake on a hot-plate

10 min @ 110 ºC
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Fabrication process chart of the EANAT device for gold thin film
Name: Oh, Hyun-Jin (091t851t@stu.kobe-u.ac.jp)
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Si SiO2 Cr P.R. Al Au

Figure

Condition

Process number

Figure

Condition

(1) SPM cleaning : 5 min

H2SO4 : H2O2 = 2 : 1 ~ 4 : 1

(2) Pure wafer rinse : 10 min

(1) Deposition of Chromium : 3 min3 min3 min3 min

Pressure : 1.0×10-3 Pa

Current : 65 A

# 09  SPM cleaning

# 10  Chromium thin film deposition

Measure the thickness of chromium layer by AFMMeasure the thickness of chromium layer by AFMMeasure the thickness of chromium layer by AFMMeasure the thickness of chromium layer by AFM

Chromium layer should be below Chromium layer should be below Chromium layer should be below Chromium layer should be below 10 10 10 10 nmnmnmnm
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 

Process number

Fabrication process chart of the EANAT device for gold thin film
Name: Oh, Hyun-Jin (091t851t@stu.kobe-u.ac.jp)
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September 28, 2011
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Figure

Condition
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Figure

Condition

(1)(1)(1)(1) CoolingCoolingCoolingCooling thethethethe specimens for 2 ~ 3 hoursspecimens for 2 ~ 3 hoursspecimens for 2 ~ 3 hoursspecimens for 2 ~ 3 hours

(2) Chromium etching (Chromium etchant)

Time : 30 ~ 60 sec.

(3) Pure wafer rinse : 10 min

# 11  Photolithography (2nd )

# 12  Wet Chromium thin film etching

(1) Dehydration bake in the oven

5 min @ 110 ºC 

(2) Spin coating of OAP

Rotation speed & time

1st : 5 sec @ 1000 rpm

2nd : 30 sec @ 5000 rpm

(3) Bake for drying OAP in the oven

3 min @ 110 ºC

(4) Spin coating of Photoresist (OFPR800 23cp)

Rotation speed & time

1st : 5 sec @ 1000 rpm

2nd : 30 sec @ 5000 rpm

(5) Pre-bake in the oven

2 min @ 110 ºC 

(6) Exposure

Time : 1.8 sec

(7) Development (TMAH 2.38% NMD-3)

Time : 30~40 min

(8) Pure wafer rinse : 10 min

(9) Post-bake on a hot-plate

10 min @ 110 ºC
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 

Process number

Fabrication process chart of the EANAT device for gold thin film
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Figure

Condition
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Figure

Condition

(1) Photoresist removal (remover 104)

5 min @ 110 ºC (hotplate temp.)

(2) Pure wafer rinse : 10 min

(3) SPM cleaning : 10 min

(4) Pure wafer rinse : 10 min

# 13  Photoresist removal & SPM cleaning

(1) Deposition of Chromium : 10 min

Pressure : 1.0×10-3 Pa

Current : 65 A

# 14  Deposition of Chromium thin film
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Figure

Condition
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Figure

Condition

(1) Dehydration bake on a hot-plate

5 min @ 110 ºC

(2) Spin coating of photoresist (OFPR800 23cp) – without using OAPwithout using OAPwithout using OAPwithout using OAP

Rotation speed & time

1st : 5 sec @ 1000 rpm

2nd : 30 sec @ 3333000000000000 rpmrpmrpmrpm

(3) Post-bake on a hot-plate : 10 min @ 110 ºC 

# 15  Coating P.R. for protecting the comb drivers

# 16  Photolithography (3rd – both side alignment)

(1) Spin coating of OAP

Rotation speed & time

1st : 5 sec @ 1000 rpm

2nd : 30 sec @ 5000 rpm

(2) Bake for drying OAP in the oven

3 min @ 110 ºC

(4) Spin coating of Photoresist (OFPR800 23cp)

Rotation speed & time

1st : 5 sec @ 1000 rpm

2nd : 30 sec @ 5000 rpm

(5) Pre-bake in the oven

2 min @ 110 ºC 

(6) Exposure

Time : 6 sec

(7) Development (TMAH 2.38% NMD-3)

Time : 15 min

(8) Pure wafer rinse : 10 min

(9) Post-bake on a hot-plate

10 min @ 110 ºC



６７ 

 

 

Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Figure

Condition
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Figure

Condition

(1) Coating of photoresist by brush for protecting the comb drive

(2) Post-bake on a hot-plate

10 min @ 110 ºC

(3) CoolingCoolingCoolingCooling thethethethe specimens for 2~3 hoursspecimens for 2~3 hoursspecimens for 2~3 hoursspecimens for 2~3 hours

(4) Chromium etching (Chromium etchant)

Time : 60 sec (Not dipping)(Not dipping)(Not dipping)(Not dipping)

(5) Pure wafer rinse : 10 min

# 17  Wet etching for Cr thin film

(1) BHF etching for SiO2 layer : 15 min

(2) Pure wafer rinse : 10 min

(3) Photoresist removal (Remover 104)

5 min @ 110 ºC

(4) Pure wafer rinse : 10 min

(5) SPM cleaning : 10 min

(6) Pure wafer rinse : 10 min

# 18  Wet etching for SiO2 layer
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Figure
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Figure

Condition

(1) Photoresist removal (remover 104)

5 min @ 110 ºC (hotplate temp.)

(2) Pure wafer rinse : 10 min

(3) SPM cleaning : 10 min

cleaning dummy chip also

(4) Pure wafer rinse : 10 min

# 19  Photoresist removal & SPM cleaning

(1) Deposition of Aluminum : 5 min

Pressure : 1.0×10-3Pa

Current : 50 A50 A50 A50 A

Al wire (φ = 0.5 mm – l = 50mm)

# 20  Deposition of Aluminum thin film
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Figure
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(1) Dehydration bake on a hot-plate

5 min @ 110 ºC

(2) Spin coat of photoresist (OFPR800 23cp)  – without using OAPwithout using OAPwithout using OAPwithout using OAP

Rotation speed & time

1st : 5 sec @ 1000 rpm

2nd : 30 sec @ 3000 rpm

(3) Post-bake on a hot-plate : 10 min @ 110 ºC 

# 21  Photoresist coating

# 22  Photolithography (4th – back-side alignment)

(1) Dehydration bake in the oven

5 min @ 110 ºC 

(2) Spin coating of OAP

Rotation speed & time

1st : 5 sec @ 1000 rpm

2nd : 30 sec @ 5000 rpm

(3) Bake for drying OAP in the oven

3 min @ 110 ºC

(4) Spin coating of Photoresist (OFPR800 23cp)

Rotation speed & time

1st : 5 sec @ 1000 rpm

2nd : 30 sec @ 5000 rpm

(5) Pre-bake in the oven

2 min @ 110 ºC 

(6) Exposure

Time : 1.8 sec

(7) Development (TMAH 2.38% NMD-3)

Time : 30~40 min

Also etching the aluminum layerAlso etching the aluminum layerAlso etching the aluminum layerAlso etching the aluminum layer

(8) Pure wafer rinse : 10 min

(9) Post-bake on a hot-plate

10 min @ 110 ºC
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Figure

Condition
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Figure

Condition

(1) Aluminum etching (Aluminum etchant) : 2 min

(2) Pure wafer rinse : 10 min

(1) Photoresist removal (remover 104)

10 min @ 110 ºC (hotplate temp.)

(2) Pure wafer rinse : 10 min

# 23  Wet etching for Aluminum thin film

# 24  Photoresist removal



７１ 

 

 

Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Figure
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Figure
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(1) Dehydration bake on a hot-plate

5 min @ 110 ºC

(2) Spin coating of photoresist (OFPR800 23 or 54cp)

Rotation speed & time

1st : 5 sec @ 500 rpm

2nd : 30 sec @ 3000 rpm

(3) Bake on a hot-plate

10 min @ 110 ºC

(4) Adhere a dicing sheet to the reverse side of SOI wafer 

Thickness : 80 μm

# 25  Specimen cutting by dicing saw machine

# 26 Photoresist coating

(5) Cut SOI wafer

Blade speed : 5.0 mm/s

Pitch : 11 mm (both)

(6) Rinse in acetone : 10 min (two times)

(7) Rinse in ethyl alcohol : 10 min

(8) Rinse in pure water : 10 min

(1) Spin coat of photoresist (OFPR800 54cp)  – without OAPwithout OAPwithout OAPwithout OAP

Rotation speed & time

1st : 5 sec @ 500 rpm

2nd : 15 sec @ 1000 rpm

(2) Post-bake on a hot-plate : 10 min @ 110 ºC 

(3) Repeat the procedure  of (1-2)
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Etching time : 12 sec / cycle

Etching pressure :  3 Pa3 Pa3 Pa3 Pa

Passivation gas & flow rate  : CCCC4444FFFF8 8 8 8 45454545 sccmsccmsccmsccm

Passivation time : 5 sec / cycle

Passivation pressure :  2.26 Pa

Helium pressure : 1333 Pa

Coil power : 600 W

Platen power : 15 W

Chiller temperature : 30 deg.

Etching cycles : 300 cycles300 cycles300 cycles300 cycles

(1) Photoresist removal (remover 104)

10 min @ 110 ºC (hotplate temp.)

(2) Pure wafer rinse : 10 min

(3) SPM cleaning : 10 min

(4) Pure wafer rinse : 10 min
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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# 29 Photoresist coating 

# 30  Dry etching for Silicon by ICP-RIE (2nd ICP)

(1) Etching gas & flow rate : SF6 130 sccm

Etching time : 12 sec / cycle

Etching pressure :  3 Pa

Passivation gas & flow rate  : C4F8 45 sccm

Passivation time : 5 sec / cycle

Passivation pressure :  2.26 Pa

Helium pressure : 1333 Pa

Coil power : 600 W

Platen power : 15 W

Chiller temperature : 30 deg.

Etching cycles : 300 + 20 + 10 + 300 + 20 + 10 + 300 + 20 + 10 + 300 + 20 + 10 + aaaa

(1) Spin coat of photoresist (OFPR800 54cp)  – without OAPwithout OAPwithout OAPwithout OAP

Rotation speed & time

1st : 5 sec @ 500 rpm

2nd : 15 sec @ 1000 rpm

(2) Post-bake on a hot-plate : 10 min @ 110 ºC 

(3) Repeat the procedure  of (1-2)
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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(1)SiO2 Etching (HF HF HF HF not BHF)

Time : 5 min for 6 inch.

6 min for 4 inch.

(2) Pure wafer rinse : 10 min

# 31  Wet etching for SiO2 Buried oxide layer

(1) Photoresist removal (remover 104)

10 min @ 110 ºC (hotplate temp.)

(2) Pure wafer rinse : 10 min

# 32 Photoresist removal

≤ 30 um
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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# 34  Dry etching for Silicon by ICP-RIE (3rd ICP) & Chromium etching by ICP-RIE

(1) Etching gas & flow rate : SF6 130 sccm

Etching time : 12 sec / cycle

Etching pressure :  3 Pa

Passivation gas & flow rate  : C4F8 45 sccm

Passivation time : 5 sec / cycle

Passivation pressure :  2.26 Pa

Helium pressure : 1333 Pa

Coil power : 600 W

Platen power : 15 W

Chiller temperature : 30 deg.

Etching cycles : 70707070

# 33  Photoresist coating

(2) Cr etching : 5 min

Etching gas : O2

RF Power : 600 W

(1) Spin coat of photoresist (OFPR800 54cp)  – without OAPwithout OAPwithout OAPwithout OAP

Rotation speed & time

1st : 5 sec @ 500 rpm

2nd : 15 sec @ 1000 rpm

(2) Post-bake on a hot-plate : 10 min @ 110 ºC 
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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# 37  Dry etching for Silicon by ICP-RIE (4th ICP) 
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# 38 O2 cleaning by ICP-RIE

(1) Etching gas & flow rate : SF6 130 sccm

Etching time : 12 sec / cycle

Etching pressure :  3 Pa

Passivation gas & flow rate  : C4F8 45 sccm

Passivation time : 5 sec / cycle

Passivation pressure :  2.26 Pa

Helium pressure : 1333 Pa

Coil power : 600 W

Platen power : 15 W

Chiller temperature : 30 deg.

Etching cycles : 70707070

(1) Cr etching : 5 min

Etching gas : O2

RF Power : 600 W
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Fig. 3.3 Schematic diagram of the device fabrication process (continued). 
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Fig. 3.3 Schematic diagram of the device fabrication process. 
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# 43 Tensile Test
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3.3   Evaluation Technique of the Mechanical Properties for Au Films  

Using MEMS 

Our scheme of tensile tests does not require the manipulation of the sub-100-nm thick 

specimens for alignment and fixation as they are already located on the device in the fabrica-

tion process. The tensile load on the specimens is applied by voltage on the comb drive actua-

tors. As mentioned above, the preloading of the specimen is prevented by the gaps between 

the three parts of the device. As a consequence, the gradual increase of the applied voltage 

shows three stages of the load-displacement relation in the system. 

The first stage starts just after the voltage application and it is defined in the period when 

the actuator part is not in contact with measurement and specimen part. The force f1 on the 

actuator part is expressed by the displacement d1 starting from the beginning of voltage appli-

cation and the net spring constant k1 originating from the suspended beams that support the 

actuator part as 

 

�� = ����        (3.1) 

 

The displacement at the first stage is not explicitly detected as the measurement part is away 

from the actuator part. The second stage starts when the actuator part gets in contact with the 

measurement part while it is not in contact with the specimen part yet. The force f2 by the 

actuator is described as 

 

�� = ���� +	��� + �����      (3.2) 

 

where dm is the initial gap (3 µm on the specification) between the actuator part and the meas-

urement part defined at the neutral position of the parts of the system, k2 is the spring constant 
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by the suspended beams that support the measurement part, and d2 is the displacement start-

ing from the point where the gap between the actuator and the measurement part vanishes. 

Note that the origins of d1 and d2 are different. In other words, dm + d2 is the displacement of 

the actuator when the origin is defined at the neutral position of the actuator. The third stage 

starts when the actuator part gets in contact with the specimen part. The actuator part is in 

contact with both of the measurement and specimen parts and the elongation of the specimen 

starts. The force f3 of actuator is described as 

 

�� = ���� +	��� + ������ − ��� + ��� + �� + ����� + �� 

          (3.3) 

where ds is the initial gap (4 µm on the specification) between the actuator part and the spec-

imen part at the neutral position of the system configuration, k3 is the spring constant by the 

suspended beams that support the specimen part, d3 is the displacement of the actuator part 

starting from the beginning of the third stage, and fs is the tensile load acting on the specimen 

itself. Note that the origin of d3 is different from that of d2 or d1. The initiation of the second 

and third stage can be read from the curve indicating the relation between the displacement 

of the cantilever edge and the applied voltage, which will be shown in the next section. In the 

actual measurement, d3 is extracted from the displacement D of the cantilever edge of the 

lever-motion amplification system. Then, when the amplification factor is C, f3 can be re-ex-

pressed as 

 

�� = ���� +	��� + �����! − ��� + ��� + �� + ���"# ⁄ −
�!% + �!  

(3.4) 
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The factor C was designed to be 20.1 as mentioned above. After the fracture of specimen, fS 

vanishes from f3. The force on the actuator by the voltage corresponding to the third stage after 

the specimen fracture leads to 

 

 �& = ���� +	��� + �����! − ��� + ��� + �� +
���"#' ⁄ − �!% 

(3.5) 

where D' is the displacement of cantilever edge after failure. Because simply f3 = f4 for the 

same voltage, 

 

�! = ��� + �� + ��� �#' − #� ⁄      (3.6) 

 

Thus, the relation between the force on the specimen and the applied voltage can be deter-

mined from the voltage applications on the actuator firstly for the tensile test and secondly 

after that.  

The relation between the voltage and displacement at the third stage of the tensile test is 

also used for the extraction of the strain of the specimen. The cross section and length of the 

specimen obtained from the scanning electron microscope (SEM) images are used for the con-

version from the tensile load and elongation to the stress and strain, respectively. Thus, the 

stress-strain relation can be derived once the total spring constant of k1 + k2 + k3 are calculated 

also using the SEM images of the cross sections of the beams that supports the three parts of 

the tensile testing device. 
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3.4   Results of Tensile Testing for Au Films Using MEMS 

 

Fig. 3.4Fig. 3.4Fig. 3.4Fig. 3.4 shows the fabricated tensile testing device. The mean thickness and width of the six 

specimens were 88.3 ± 10.0 nm and 1.78 ± 0.31 μm, respectively. The details of the specimens 

are summarized in Table 3.2Table 3.2Table 3.2Table 3.2. As mentioned in the previous section, the tensile test consists of 

three stages from the viewpoint of the tensile loading and displacement detection. Fig. 3.5Fig. 3.5Fig. 3.5Fig. 3.5 

shows an example of the displacement of the edge of cantilever that constitutes the lever-

motion amplification system, as a function of the voltage applied on the comb-drive actuator. 

At the first stage, the voltage does not lead to the deflection of the cantilever. This range cor-

responds to the state where the actuator edge approaches the measurement part. The second 

stage of the tensile loading begins when the actuator reaches the measurement part. Initiation 

of the third stage can be observed by the discontinuous change of gradient in the deflection-

voltage curve. The existence of these distinctive stages ensures the assumption of no preload-

ing on the specimen by the geometric interference between the specimen, actuator, and meas-

urement parts. A set of the two deflection-voltage curves, i.e., one is for the tensile loading on 

the specimen and the other is after the fracture of the specimen, is used for the derivation of 

the stress-strain curve of a specimen. 

 

 
Fig. 3.4 SEM images of the fabricated device. The center figure is the overall view, and 

the both sides are specimen part, measurement part, and actuator part. 
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Table 3.2 Conditions and characteristics of the specimens. 

Specimen 

Label Strain rate (s-1) Width (µm) Length (µm) Thickness (nm) 

A 5×10
-5 1.70±0.03 11.25 80.5±8.9 

B 1×10
-4 2.20±0.03 9.10 100.6±19.3 

C 1×10
-3 1.66±0.02 8.80 93.5±24.8 

D 2×10
-3 1.94±0.03 8.50 94.5±13.3 

E 1×10
-2 1.88±0.02 8.86 84.7±19.0 

F 5×10
-2 1.31±0.03 10.67 75.8±37.0 

 

 

 

 

Fig. 3.5 Displacement of the cantilever edge of lever-motion amplification system as a 

function of the applied voltage in a tensile test. 
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Thus, a single tensile test consists of the loading procedure with and without a specimen. 

The obtained stress-strain relations of the Au thin films under different strain rates ranging from 

5 × 10-5 s-1 to 5 × 10-2 s-1 are shown in Fig. 3.6Fig. 3.6Fig. 3.6Fig. 3.6. In order to derive these relations using Eq. (3.6)Eq. (3.6)Eq. (3.6)Eq. (3.6), 

total spring constants of the devices were obtained from the lengths, widths and cross sections 

of the supporting beams with elastic constant 169 GPa of the bulk single crystal silicon [10][10][10][10]. 

The cross section of the specimen necessary for the conversion of the force into the stress was 

measured by the SEM and AFM. The definition of strain was not a trivial problem. One of the 

specimens after the fracture by the tensile test is shown in Fig. 3.7Fig. 3.7Fig. 3.7Fig. 3.7. It can be observed that the 

both edge of the specimen have noticeable radius of curvature. The curvature was caused by 

the inherent limitation of the wet etching process in the specimen fabrication. This shape leaves 

an ambiguity in the length of specimen. Therefore, we defined the initial specimen length as 

the length of the part with the uniform width. Then, the relation between the elongation at the 

part with the uniform width and the directly measured total elongation in the tensile test was 

estimated by FEM. The computational model of FEM was based on the linear elastic model, 

and only the strain distribution was used for this estimation. We extracted the Young’s modulus 

of each specimen from the linear regime of the deformation and plastic properties from the 

nonlinear regime shown in Fig. 3.6Fig. 3.6Fig. 3.6Fig. 3.6. In order for the strain to be defined uniquely in the stress-

strain curves, the relation between the cantilever deflection and the elongation at the part of 

uniform width was assumed to be constant throughout the tensile test. 

Defining the stress and strain in this way, the Young’s modulus was determined to be 28±3 

GPa. This is less than 40 % of the 79 GPa of the bulk Au and was insensitive to the strain rate 

[11][11][11][11]. In fact, the small Young’s modulus of Au thin films compared to the bulk has been reported 

previously by several groups [12[12[12[12----17]17]17]17]. For example, Haque and Saif conducted the tensile tests 

of an Au film with a thickness of 350 nm fabricated by sputtering method [14][14][14][14]. They obtained 

the Young’s modulus of 52 GPa. The elastically softer nature of grain boundary region com-

pared to the grain interior was attributed to the main origin of such characteristics. The nature 

of grain boundary as well as their concentration or density depends on the material fabrication 

process. Thus, it is important to directly test such characteristics. Chasiotis et al. have con-

ducted the tensile tests of Au films with thickness of 500 nm and 650 nm [15][15][15][15]. They obtained 

the Young’s modulus of 35 GPa without any trend with strain rate or film thickness. They con-

sidered after the careful comparison with the existing reports that the small Young’s modulus 
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Fig. 3.6 Stress-strain relations of the specimens tested under the conditions of 

 various strain rates. 

 

 
 

Fig. 3.7 SEM images of the specimen after the tensile test.  
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of their specimen was not due to the inelastic deformation mechanism but rather likely to be 

caused by the density lower than the bulk material. The lower density is related to the higher 

volume percentage of grain boundaries where the interatomic distances are longer than regu-

lar crystal structure. This can be related to the discussion by Haque and Saif [14][14][14][14]. In fact, the 

Young’s modulus of an Au thin film can be different depending on the measurement methods. 

Emery and Povirk investigated the tensile properties of Au films with thickness ranging from 

200 to 2000 nm [12][12][12][12]. They found that the Young’s moduli obtained from the repeated loading 

were smaller than those obtained from repeated unloading.  

Furthermore, they also found that the first loading process showed remarkably smaller 

Young’s moduli compared to those obtained from the repeated loading after that. The Young’s 

moduli of the films with thickness of 230 and 700 nm were in the range from 39 to 50 GPa 

when obtained from the first loading. The substantially smaller Young’s modulus of sub-100-

nm-thick Au films compared to the bulk is in qualitative agreement with the trend that have 

been reported on the thicker films. However, our result indicates even smaller value. The de-

posited metal thin films are not suitable for masking against wet etching process. This implies 

the existence of interstitial voids or pores which act as channels for etchants. As mentioned 

above, some of the existing studies point out the important role of grain boundaries in the soft 

elastic properties of the Au thin films. Therefore, a possible analogy with the property of nano-

porous Au is worth some attention. The reported Young’s modulus of the nano-porous Au is in 

the range from 5 to 40 GPa depending on the so-called ligament sizes [18[18[18[18----24]24]24]24]. Mathur and 

Erlebacher showed that the Young’s modulus of nano-porous Au increases with decreasing lig-

ament size, and obtained 40 GPa for the ligament size of 3 nm [22][22][22][22]. Although the texture is 

fundamentally different, these reports support the hypothesis that the vacancies between the 

grains of Au thin films plays some role in the Young’s modulus substantially smaller than the 

bulk Au. 

From above discussions, this research also observed the grain size of the Au thin films by 

SEM (Hitachi, S4800) and AFM (SII, SPM-HV-300) in the deposition process sequence. TaTaTaTable 3.3ble 3.3ble 3.3ble 3.3 

lists SEM and AFM images of the Au thin films, which were deposited by the thermal evapora-

tion and the RF-sputtering after the evaporation. Specific conditions are explained in Fig 3.3Fig 3.3Fig 3.3Fig 3.3    #5 #5 #5 #5 

and #6and #6and #6and #6. The Au thin film deposited by the thermal evaporation using the Au wire with a volume 

of 0.39 mm3 has the grain size of 10 to 20 nm, and the grains were not combined each other in 
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the SEM image. The ligament grains are observed in the SEM image of the Au thin film depos-

ited using the Au wire with a volume of 0.98 mm3. This was caused by that the tiny grains would 

have partially connected to the neighboring grains during the evaporation, but there are still a 

lot of vacancies between the ligaments. The surface of the Au film deposited by the RF-sput-

tering for 5 seconds, after the evaporation using the Au wire with a volume of 1.96 mm3, shows 

again the spherical grains with the size of around 30 nm. The vacancies are also observed in the 

AFM image. In SEM and AFM images of the Au film after the RF-sputtering for 10 seconds, the 

grain size becomes 30 to 50 nm, and the vacancies are still observed in places although it re-

duces. Thus, the Au thin films prepared in this research would have consisted of small Au grains 

with the size ranging from 10 to 50 nm including several vacancies. These microstructures of 

the Au films caused the remarkably smaller Young’s moduli in this research. 

The actual tensile testing of the material provides the information of the plastic properties 

as well as the elastic property. Fig. 3.7Fig. 3.7Fig. 3.7Fig. 3.7 shows that the normal direction of the fractured cross 

section is tilted against the tensile direction (Fig. 3.7 (a)Fig. 3.7 (a)Fig. 3.7 (a)Fig. 3.7 (a)). This feature was noticeable in all of 

the six specimens although the angles were difficult to determine because of the curl of frac-

tured specimens except for the one shown in Fig. 3.7.Fig. 3.7.Fig. 3.7.Fig. 3.7. Chasiotis et al. observed that the strain 

rate of 10-4 s-1 led to the shear failure for the Au thin film having thickness of 500 to 650 nm 

after the tensile test [15][15][15][15]. They also observed the Lüders band on the surface of the shear fail-

ure. On the other hand, we did not find Lüders band in the SEM image of fractured specimens.  

In contrast to the Young’s modulus, the yield strength defined as the 0.2 % offset yield 

strength depended on the strain rate of the tensile test because of deciding the exact yield 

strength. The yield strength decreased with decreasing strain rate as shown in Fig. 3.8Fig. 3.8Fig. 3.8Fig. 3.8. The yield 

strength suddenly decreased in the range of strain rate smaller than 10-3 or 10-4 s-1. This would 

be caused by the effect of creep deformation of Au thin film. The specific values are summa-

rized in Table 3.Table 3.Table 3.Table 3.4444.... Compared to other researches, the yield strength by Emery and Povirk also 

depended on the strain rate while the film thickness was larger and the strain rate range was 

lower than this study [12][12][12][12]. Using the film with a thickness of 230 nm, they obtained 236, 360, 

and 455 MPa at the strain rates of 7 × 10-6 s-1, 6 × 10-5 s-1, 6 × 10-4 s-1, respectively. In fact, the 

360 MPa at 6 × 10-5 s-1 is equal to our result at 1 × 10-4 s-1. On the other hand, Chasiotis et al. 

have obtained the 0.2 % yield stress of the 500-nm-thick Au films ranging from 140 to 240 MPa,  
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Table 3.3 SEM and AFM images of Au film surfaces deposited by thermal evaporation and 

sputtering process. 
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where the lower strain rates in the range of 10-6 s-1 to 10-3 s-1 led to lower strengths [15][15][15][15]. Jon-

nalagadda et al. report the yield stress of 575 to 895 MPa for the Au films having thickness of 

850 to 1760 nm, and the yield stress decreased with decreasing strain rate [16][16][16][16]. They concluded 

that the range from 10-5 to 10-4 s-1 of strain rate is pivotal in the inelastic mechanical response. 

Lee et al. reports the 0.2 % yield strength of 361 to 402 MPa for the Au films having 1000 to 

2000 nm [17][17][17][17]. The texture of the film determined in the fabrication process is likely to be the 

origin of these differences in the reported values of yield strengths of Au thin films. 

The variations of fracture and tensile strengths with decreasing strain rate also show similar 

trends to the yield strength-strain rate relation, as shown in Fig. 3.9Fig. 3.9Fig. 3.9Fig. 3.9. Besides the 0.2 % yield 

strength, tensile strength, fracture strength and fracture strain obtained from all the specimens 

are also summarized in Table 3.4Table 3.4Table 3.4Table 3.4. Although there seems to be the trend of smaller strength 

values with smaller strain rates, the strain-rate dependences were less clear than the 0.2 % 

yield strength. This is because the fracture strength and strain of the specimen are strongly 

affected by the presence of notch shapes that act as the source of crack. Fig. 3.7 (b) and Fig. 3.7 (b) and Fig. 3.7 (b) and Fig. 3.7 (b) and (c)(c)(c)(c) 

show the enlarged views of fracture. It can be seen that the crack propagation was initiated 

from the part of notched points unless this feature was generated in the course of plastic de-

formation itself. Fig. 3.6Fig. 3.6Fig. 3.6Fig. 3.6 indicates the large variation in the fracture strain. This is because the 

notch structures are stochastically formed in the film fabrication process. In this sense, this 

unclear trend itself also reflects the intrinsic nature of the extremely thin films. 
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Fig. 3.8 Strain-rate dependence of the yield strength. 

 

 

Fig. 3.9 Strain-rate dependence of the tensile and fracture strength. 
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Table 3.4 Mechanical properties obtained from the tensile tests. E : Young’s modulus, σy: 

0.2% yield strength, σT : tensile strength, σF : fracture strength, εF : fracture 

strain. 

Specimen 
Label E (GPa) σy 

(MPa) σT (MPa) σF (MPa) σF (%) Thickness (nm) 

A 24.3 192 198 191 1.01 80.5±8.9 

B 29.3 360 383 370 2.21 100.6±19.3 

C 27.0 351 357 357 1.60 93.5±24.8 

D 24.8 432 579 523 4.86 94.5±13.3 

E 29.5 519 586 587 3.56 84.7±19.0 

F 35.0 477 507 507 1.94 75.8±37.0 
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3.6   Conclusions 

 

In this study, we have developed the tensile testing device for Au thin films in the thickness 

regime of sub-100-nm. The obtained mechanical properties showed marked differences from 

those of the bulk Au. The Young’s modulus was 28 ± 3 GPa, which is less than 40 % of that of 

the bulk Au. The 0.2 % yield strength was 192 to 519 MPa with a trend of decrease with de-

creasing strain rates in the range from 5 × 10-5 s-1 to 5 × 10-2 s-1. The tensile strength was in the 

range from 198 to 519 MPa, and the fracture strength was 191 to 587 MPa. The small Young’s 

modulus was attributed to the existence of voids in the material characterized by the fabrica-

tion process of vapor deposition and RF sputtering method. The consequent lumpy surface also 

leads to the large variation of fracture strain because the initiation points of cracks are the 

notched parts which are stochastically determined by the fabrication process. Thus, the direct 

tensile tests of extremely thin Au films revealed the strong influence of material fabrication 

process on the mechanical properties. 

  



９５ 

 

References 

 

[1] S. Oleksandrov, J. Lee, S. Lee, M. Lee, H. Y. Choi, C. Chung: Fabrication of Micro- and Nano-

Scale Gold Patterns on Glass by Transfer Printing, Journal of Nanoscience and Nanotech-

nology, vol. 9, no. 12, pp. 7481-7484, 2009. 

[2] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides: New Approaches 

to Nanofabrication: Molding, Printing, and Other Techniques, Chemical Reviews, vol. 105, 

no. 4, pp. 1171-1196, 2005. 

[3] K. Ojima, Y. Otsuka, T. Matsumoto, T. Kawai: Printing electrode for top-contact molecular 

junction, Applied Physics Letters, vol. 87, 234110, 2005. 

[4] Y. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu: Electrical Contacts to Molecular Layers by 

Nanotrasfer Printing, Nano Letters, vol. 3, no.7, pp. 913-917, 2003. 

[5] Y. Loo, R. L. Willet, K. W. Baldwin, J. A. Rogers: Additive, nanoscale patterning of metal 

films with a stamp and a surface chemistry mediated transfer process: Applications in 

plastic electronics, Applied Physics Letters, vol. 81, no. 3, pp. 562-564, 2002. 

[6] M. Kiuchi, S. Matsui, Y. Isono: Mechanical Characteristics of FIB Deposited Carbon Nan-

owires Using an Electrostatic Actuated Nano Tensile Testing Device, Journal of Microelec-

tromechanical Systems, vol. 16, no. 2, pp. 191-201, 2007. 

[7] M. Kiuchi, S. Matsui, Y. Isono: The piezoresistance effect of FIB-deposited carbon nan-

owires under severe strain, Journal of Micromechanics and Microengineering, vol. 18, 

065011, 2008. 

[8] C. Q. Davis, D. M. Freeman: Statistics of subpixel registration algorithms based on spatio-

temporal gradients or block matching, Optical Engineering, vol. 37, no. 4, pp. 1290-1298, 

1998. 

[9] C. Q. Davis, D. M. Freeman: Using a light microscope to measure motions with nanometer 

accuracy, Optical Engineering, vol. 37, no. 4, pp. 1299-1304, 1998. 

[10] W. A. Brantley: Calculated elastic constants for stress problems associated with semicon-

ductor devices, Journal of Applied Physics, vol. 44, no. 1, pp. 534-535, 1973. 

[11] S. Lapman: ASM handbook vol.2 (ASM International,cleveland,1990) 

[12] R. D. Emery, G. L. Povirk: Tensile behavior of free-standing gold films. Part II. Fine-grained 



９６ 

 

films, Acta Materialia, vol. 51, pp. 2079-2087, 2003. 

[13] H. D. Espinosa, B. C. Prorok: Size effects on the mechanical behavior of gold thin films, 

Journal of Materials Science, vol. 38, pp. 4125-4128, 2003. 

[14] M. A. Haque, M. T. A. Saif: Deformation mechanisms in free-standing nanoscale thin films: 

A quantitative in situ transmission electron microscope study, Proceeding on National 

Academy of Sciences, vol. 101, no. 17, pp. 6335-6340, 2004. 

[15] I. Chasiotis, C. Bateson, K. Timpano, A. S. McCarty, N. S. Barker, J. R. Stanec: Strain rate 

effects on the mechanical behavior of nanocrystalline Au films, Thin Solid Films, vol. 515, 

pp. 3183-3189, 2007. 

[16] K. Jonnalagadda, N. Karanjgaokar, I. Chasiotis, J. Chee, D. Peroulis: Strain rate sensitivity 

of nanocrystalline Au films at room temperature, Acta Materialia, vol. 58, pp. 4674-4684, 

2010. 

[17] S. J. Lee, J. M. Park, S. W. Han, S. M. Hyun, J. H. Kim, H. J. Lee: Electromechanical Charac-

terization of Au Thin Films using Micro-tensile Testing, Experimental Mechanics, vol. 50, 

pp. 543-649, 2010. 

[18] J. Biener, A. Hodge, A. Hamza, L. Hsiung, J. Satcher Jr.: Nanoporous Au: A high yield 

strength material, Journal of Applied Physics, vol. 97, 024301, 2005. 

[19] C. Volkert, E. Lilleodden, D. Kramer, J. Weissm¨uller: Approaching the theoretical strength 

in nanoporous Au, Applied Physics Letters, vol. 89, 061920, 2006. 

[20] E. Seker, J. Gaskins, H. Barth-Smith, J. Zhu, M. Reed, G. Zangari, R. Kelly, M. Begley: The 

effects of post-fabrication annealing on the mechanical properties of freestanding na-

noporous gold structures, Acta Materialia, vol. 55, pp. 4593-4602, 2007. 

[21] J. Zhu, E. Seker, H. Bart-Smith, M. Begley, R. Kelly, G. Zangari, W. Lye, M. Reed: Mitigation 

of tensile failure in released nanoporous metal microstructures via thermal treatment, 

Applied Physics Letters, vol. 89, 133104, 2006. 

[22] A. Mathur, J. Erlebacher: Size dependence of effective Young’s modulus of nanoporous 

gold, Applied Physics Letters, vol. 90, 061910, 2007. 

[23] D. Lee, X. Wei, X. Chen, M. Zhao, S. C. Jun, J. Hone, E. G. Herbert, W. C. Oliver, J. W. Kysar: 

Microfabrication and mechanical properties of nanoporous gold at the nanoscale, Scripta 

Materialia, vol. 56, pp. 437-440, 2007. 



９７ 

 

[24] E. Seker, M. L. Reed, and M. R. Begley: Review: Nanoporous Gold: Fabrication, Character-

ization, and Applications, Materials, vol. 2, pp. 2188-2215, 2009 

  



９８ 

 

Chapter 4 

Characterization of Interlayer Sliding Deformation for Individual 

Multi-Walled Carbon Nanotubes Using Electrostatically Actuated 

Nano Tensile Testing Device 

 

4.1   Introduction 

 

One-dimensional nanowires of carbon, silicon and compounds such as ZnO are attractive 

functional nano-materials for novel MEMS and NEMS devices because of specific physical prop-

erties attributable to their nanometer size and low structural dimensions. For example, silicon 

nanowires and single-walled carbon nanotubes are expected to be used as highly sensitive pi-

ezo-resistance elements for mechanical force sensors [1[1[1[1----4]4]4]4]. This is because one-dimensional 

semiconducting nanowires show a drastic change in the electronic structural features such as 

their band gap and effective mass under enormous mechanical strain, which can be used to 

determine the electron mobility [5, 6][5, 6][5, 6][5, 6]. Quantitative evaluation of the mechanical and electrical 

properties of individual semiconducting nanowires under loading is very important for their 

application to high-sensitivity mechanical sensors.  

MWCNTs are also representative nanowires that were discovered in the early 1990s [7, 8][7, 8][7, 8][7, 8], 

and they have been recently used as ultralow-resistance interconnect materials for via struc-

tures in microelectronic devices [9, 10][9, 10][9, 10][9, 10]. This technology is effective for highly reliable intercon-

nect for the half-pitch 32 nm fabrication node and beyond because MWCNTs do not have prob-

lems associated with the electro-migration often observed in metallic interconnections. The 

lower electrical resistance and higher strength of MWCNTs are also excellently suitable for in-

terconnect materials. However, via structures formed by MWCNTs have to withstand thermal 

stresses generated during the operation of microelectronic devices, which can lead to inter-

layer sliding deformation of MWCNTs resulting in changing electrical resistance. For reliable 

design of MWCNT interconnects, basic information is required on the mechanical and electrical 

characteristics of individual MWCNTs. 

To characterize the mechanical and electrical properties of nanowires under uniaxial load-

ing, several types of MEMS-based nano-scale tensile testing devices have been proposed in the 
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last decade [11[11[11[11----18]18]18]18]. Most include two functions at least: electrostatically or thermally driven 

actuators to produce a tensile force, and sensing elements for tensile displacement such as a 

capacitive displacement sensor or a gauge structure. The EANATs previously consisted of an 

electrostatically driven actuator and a cantilever beam used as a gauge to measure tensile dis-

placement with an optical microscope. The displacement resolution was 0.29 nm with the as-

sistance of image analysis. This device was successfully used for the investigation of stress-

strain relations and the piezo-resistance effect of focused ion beam-deposited carbon nan-

owires with a diameter of around 100 nm, but it was still not suitable for direct observations of 

the deformation behavior of nanowires during tensile loading. 

Other MEMS-based tensile testing devices have realized automatic measurement of tensile 

displacement by integrating a capacitive displacement sensor into the devices [16, 17][16, 17][16, 17][16, 17], which 

is effective for observation of sample deformation during tensile testing. Most capacitive dis-

placement sensors installed into devices have a parallel plate structure, the scale factor of 

which have small values of less than 1 fF/nm depending on the dimensions and the number 

of plates. These types of sensors have difficulty in measuring displacement directly at sub-na-

nometer resolution for their calibration. Even if SEM were to be used for the calibration, precise 

calibration of the displacement is not easy because of the uncertainties caused by drift and 

distortion of SEM images. Thus, a larger scale factor and a better structure of the capacitive 

displacement sensor are essential for accurate measurement of displacement as well as its pre-

cise calibration. 

The present research focuses on clarifying the stress-strain relations, the interlayer sliding 

deformation behavior and the breaking mechanisms of individual MWCNTs using the newly 

designed EANAT. As a solution to the above-mentioned problems of MEMS-based tensile test-

ing devices, this research has integrated a circular motion capacitive displacement sensor into 

an EANAT to realize precise calibration of the sensor. In-situ SEM nano-scale tensile testing us-

ing a nano-manipulation system was carried out for direct observations of the deformation be-

havior of samples during testing. This paper reports the design and functions of the newly de-

veloped EANAT, as well as details of the mechanical characteristics of individual MWCNTs.  
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4.2   DESIGN OF NANOTENSILE TESTING DEVICE 

 

4.2.1   Experimental Methodology 

The basic structure of the EANAT is the same as that of the previously proposed device [11, [11, [11, [11, 

12]12]12]12]; however a capacitive displacement sensor incorporated into the cantilever motion ampli-

fication system and thermally driven actuators used for stopping the movable frame are newly 

integrated into the device. Fig. 4Fig. 4Fig. 4Fig. 4.1.1.1.1 shows a schematic of the new EANAT and its lumped me-

chanical model. An individual MWCNT is made to bridge the 5-µm-gap in the specimen area 

using the in-situ SEM nano-manipulation system. Thermally driven actuators are installed on 

the left- and right-sides of the movable frame in the specimen area to avoid vibrations of the 

frame when an individual MWCNT is implanted in the EANAT. An electrostatically driven comb 

actuator is separately arranged at an interval of 4 µm (= g1) from the movable portion of the 

specimen area. Capacitive displacement sensors are set at an interval of 3 µm (= g2) from the 

lower part of the electrostatically driven comb actuator employed for the tensile loading system. 

The movable portion of the specimen, the comb actuator and the displacement sensors are 

suspended by each supporting beam from fixed anchor parts. 

In the lumped mechanical model, the force, F, generated by the comb actuator deflects 

the supporting beams of the comb actuator with a total stiffness of Ka at the beginning of 

device operation. This force is continually applied for elastic deformation of the sensor struc-

tures with a total stiffness of Kds, the supporting beams of the specimen area with a total stiff-

ness of Ks, and an individual MWCNT bridged at the specimen area. Therefore, F is expressed 

by the following equation [11][11][11][11], 

 

( = )*g� + �)* + ),-��g� − g�� + �)* + ),- +
)-�./*01�231 − g�4 + 5	,        

(4.1) 
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where /*01�231 is the displacement produced by the comb actuator before the failure of the 

sample, and P is the tensile force of the MWCNT. Because F before the failure of the MWCNT 

is equal to that after failure for the same applied voltage to the comb actuator, P is described 

as 

 

5 = �)* + ),- + )-�7/**��13 − /*01�2318  (4.2) 

 

/**��13 is the actuator displacement of the device without the sample after the failure. This 

equation indicates that the measurement resolution for the tensile force depends on the meas-

urement resolution for the displacement and the values of Ka, Kds and Ks. 

The doubly-clamped beams used as the supporting beams at the actuator and the speci-

men areas show the nonlinearity of stiffness caused by tensile stress induced in the longitudinal 

direction of the beams under a large deformation. The stiffness of doubly-clamped beam hav-

ing a trapezoidal cross-section with an upper width of a, a lower width of b, and a height of h, 

is given by 

 

) = 9 �:�;&< =
>7*
?�*�0�*0��0?8

@? A + 9 �:�BC< =
>�*�0�@? A /*�	,  

         (4.3) 

where E is the Young’s modulus of the beam, l is the beam length, and /a is the actuator 

displacement. The stiffness calculated by Eq. (Eq. (Eq. (Eq. (4444.3).3).3).3) has agreed with that obtained from FEA, 

although it is omitted here.  
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Fig. 4.1 Schematic of Newly designed EANAT 
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4.2.2   Comb Drive Actuator 

The dimensions of the comb actuator were designed on the basis of the required force for 

the tensile test, considering the stiffness of each supporting beam and the test sample. The 

force, Fa, produced by the comb actuator at a displacement of δa from the initial position has 

been predicted in the design by the following equation, 

 

(* = DEFℎ H �,	 + I
�,��JK��L M*�	,    (4.4) 

 

where N is the number of combs, ε0 is the dielectric constant in a vacuum, and h and w are 

the height and width of the comb, respectively. d1 is the gap distance between contiguous 

combs, and d2 is the distance from the tip of the comb to the opposite comb electrode in the 

initial state. Va is the voltage applied to the actuator. 
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4.2.3   Capacitive Displacement Sensor on Cantilever Motion  

Amplification System 

In order to realize a capacitive displacement sensor with a scale factor larger than 1 fF/nm, 

we have newly developed differential capacitors with arc shaped combs incorporated into the 

cantilever motion amplification system [19][19][19][19] as shown in Fig. 4Fig. 4Fig. 4Fig. 4.2.2.2.2. The cantilever is bent by con-

tact with the comb actuator part. The cantilever deflection, δi, at an arbitrary position between 

the bending point and the free end of the cantilever is given by  

 

/N = /� + ON sin S	.      (4.5) 

 

Here, δ1 is the displacement at the bending point, θ is the angle of the deflected cantilever, and 

li is the length from the bending point to the arbitrary position on the cantilever. Since δ1 is the 

actuator displacement after contact with the cantilever (=δa-δ2), the cantilever can mechani-

cally amplify the actuator displacement. According to Eq. (Eq. (Eq. (Eq. (4444.5).5).5).5), the mechanical amplification 

factor in the area of the capacitive displacement sensor ranges from 11.4 to 30.0, and the am-

plification factor at the free end of the cantilever is 32.5 in the present design. The amplification 

system carries the advantage of accurate calibration of the capacitive displacement sensor 

since the amplified displacement by the cantilever motion can be easily captured at the free 

end of the cantilever using an optical microscope with the assistance of image analysis [11, 1[11, 1[11, 1[11, 12]2]2]2]. 

The arc shaped combs of the differential capacitors were designed on the assumption that the 

cantilever motion can be equivalent to circular motion around a virtual pivot on the cantilever 

if the angle of the cantilever deflection is small [20][20][20][20]. The radius of circular motion can be ex-

pressed as 

 

U� = /� × �
V = W@	?

�
X × �
X
W@	� =

�
� O�		,     (4.6) 
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where F is the bending load, l1 is the distance from the fixed end of the cantilever to the bend-

ing point, and I is the momentum of inertia. Therefore, the position of the virtual pivot is lo-

cated at l1/3 from the fixed end of the cantilever. Eq. (4Eq. (4Eq. (4Eq. (4.5).5).5).5) can then be rewritten as 

 

/Y ≅ /� + ONS = /� + ON �J	�@	 = �@	��@�
�@	 /�	.  (4.7) 

 

The capacitances of the differential capacitors have been estimated in the design of the 

EANAT. The capacitances at the upper and lower sides of the differential capacitors are repre-

sented by C1 and C2, and those at the initial state are defined as C0, as shown in Fig. Fig. Fig. Fig. 4444....2222. Since 

C1 decreases and C2 increases with increasing δ1, each capacitance during operation of the 

EANAT is the sum of C0 and the respective capacitance changes, ∆C1 and , ∆C2, as shown in 

the following equations, 

 

� = F + ∆� = F + ∆!Y\]\]^+∆_Y`\]^	,   (4.8) 

and 

� = F + ∆� = F + ∆!Y\]Ya^ + ∆_Y`Ya^   (4.9) 

 

∆!Y\]\]^  and ∆_Y`\]^ are capacitance changes at the side- and tip-walls of the comb structure 

when the capacitance decreases, whereas ∆!Y\]Ya^  and ∆_Y`Ya^ are those when the capacitance 

increases, respectively. If the gap between the combs in the differential capacitors is equal to 

the width of the comb in the present design as shown in Fig. Fig. Fig. Fig. 4444....2222, C0 is described by 

 

F = ∑ cde>93f�gh�3fijkh<�le�me�, + 2 de>,of pqrs�   

= de>q=�@���?@	����&q�,A�le�me�, + ∑ ��de>,
tC@���@	��,�;r�u�v�we�le�

qrs� .  

(4.10) 
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The first term of the equation is the total capacitance between the fixed and movable 

combs at their sidewalls, and the second is the capacitance at the tip walls of the combs. n is 

the number of arc shaped combs on the cantilever, and d is the gap between the combs (= 

width of the comb in the present design). UrNq- and Ur2x�- are the lengths along the cantilever 

from the virtual pivot to the inside- and outside-walls of the kth comb counted from the pivot, 

respectively. Dk is the initial distance from the tip-wall to the opposite wall of the kth movable 

comb. 

   ∆!Y\]\]^  and ∆!Y\]Ya^  are geometrically given by 

 

∆!Y\]\]^ = ∑ y�de>Jf�gh, + �de>Jfijkh, zqrs�   

= ∑ c�de>9�@	��@f�gh<�,@	 /� − �de>7�@	��@fijkh8�,@	 /�pqrs�   

= −9de>q"�t�@���&q���,v�&@	%J	�,@	 <	,     (4.11) 

and 

∆!Y\]Ya^ = −∆!Y\]\]^ 	,       (4.12) 

 

as a function of the displacement, δ1, at the bending point. Here, /rNq- and /r2x�- are canti-

lever deflections at the inside- and outside-walls of the kth movable comb, respectively. ∆_Y`\]^ 
and ∆_Y`Ya^ are also expressed by 

 

∆_Y`\]^ = 2∑ EFℎ� 9 �
of�3fV − �

of<	,qrs�     (4.13) 

and 

∆_Y`Ya^ = 2∑ EFℎ� 9 �
of�3fV − �

of<qrs� 	,    (4.14) 
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respectively. rk is the length along the cantilever from the pivot to the center of the kth movable 

comb. ∆_Y`\]^ and ∆_Y`Ya^ show nonlinear variations with increasing δ1 as expressed above; 

however these variations is extremely small because the ratio of ∆_Y`\]^	{|	Ya^ to ∆!Y\]\]^	{|	Ya^ 
is less than 0.0006 % for a δ1 of 1 µm. Consequently, we designed the differential capacitors 

with a scale factor of 1.26 fF/nm in this research. 

A schematic diagram of the electrical circuit for the EANAT is depicted in Fig. Fig. Fig. Fig. 4444....3333. The charge 

amplifier circuit board manufactured by the authors has been connected to the common elec-

trode of the differential capacitors with arc shaped combs. Fig. 4Fig. 4Fig. 4Fig. 4....4444 shows a schematic block 

diagram of the charge amplifier circuit. Modulation pulses of ± 5 V are applied at 1 MHz from 

the synchronous modulator to the fixed electrodes with the arc shaped comb structure oppo-

site to the movable cantilevers. Manual adjustors for the offset voltage, the gain, and the phase 

are also installed in the amplifier circuit. 

 

Fig. 4.2 Schematic diagram of the cantilever motion amplification system 
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Fig. 4.3 Schematic diagram of the electrical circuit for the EANAT 

 

 

 

 

 

 

Fig. 4.4 schematic block diagram of the charge amplifier circuit. 
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4.2.4   Thermally Driven Actuator 

The EANAT used in this work has a newly integrated thermally driven actuators used as a 

stopper for the movable frame of the specimen area when an individual MWCNT is implanted 

in the device. Fig. Fig. Fig. Fig. 4444....5555 shows a schematic of the thermal actuator with the main shaft, the actu-

ator beams and the supporting beams. The actuator beams are thermally expanded by Joule 

heating to apply a bias voltage between the fixed ends of the beams. The force generated by 

the actuator can be roughly estimated from the one-dimensional steady state heat conduction 

model. If the calorific value of the joule heat per unit length and the electrical resistance of the 

beam are described as 

 

} = N�~
��	 ,			� = � ��	� ,       (4.15) 

 

respectively, the force is described as 

 

( = �
�m !Ya�
&�� M�        (4.16) 

 

L1 is the beam length, i is the electrical current, ρ is the resistivity, and A is the cross sectional 

area of the actuator beam. φ is the angle of the actuator beam from the perpendicular line to 

the main shaft, M is the number of actuator beams at one side, α is the thermal expansion 

coefficient of the beam, λ is the thermal conductivity of the beam, and V is the bias voltage 

applied to the actuator beams. 

The stiffness of the thermal actuator is derived from simple beam theory as 

 

��� = 2� 9
>I	�	 sin� � + 
>I	?
�	? cos��< + 2� 
>I�?

��? 	,  

         (4.17) 
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where w1 and w2 are the widths of the actuator and supporting beams, respectively. m is the 

number of supporting beams on one side, and L2 is the length of the supporting beam. The 

first term of the equation represents the stiffness of the actuator beams and the second term 

is for the supporting beams. 

 

 

Fig. 4.5 Schematic of the thermal actuator 
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4.3 Fabrication 

 

Fig. Fig. Fig. Fig. 4.64.64.64.6    (a) (a) (a) (a) ----    (f)(f)(f)(f) show the fabrication process of the EANAT. The starting substrate was a 

silicon (Si)-on-insulator wafer with a 35-µm-thick single crystal Si device layer and a 3-µm-thick 

buried oxide layer on a 400-µm-thick single crystal Si substrate, which was covered by a 400-

nm-thick SiO2 layer on the top and the backside (see Fig. Fig. Fig. Fig. 4.64.64.64.6    (a)(a)(a)(a)). First, the areas of the electro-

statically driven comb actuator, the thermal actuator and the capacitive displacement sensor 

were doped by a diffusion process using boron as the dopant (see Fig. Fig. Fig. Fig. 4.6 4.6 4.6 4.6 (b)(b)(b)(b)). The device struc-

ture was patterned on the device layer side after Cr film deposition. The back-side patterning 

was also performed in a similar manner (see Fig. Fig. Fig. Fig. 4.6 4.6 4.6 4.6 (d)(d)(d)(d)). The substrate layer was etched by 

deep-reactive ion etching (D-RIE), followed by etching of the device layer (see Fig. Fig. Fig. Fig. 4.6 4.6 4.6 4.6 (e)(e)(e)(e)). A 

vaporized hydrofluoric solution removed the buried oxide layer to release the movable parts of 

the device (see Fig. Fig. Fig. Fig. 4.64.64.64.6    (f)(f)(f)(f)). Gold electrodes were prepared in the device by a stencil mask tech-

nique. The device was finally set on the printed circuit board with wire bonding between the 

board and the device, and an MWCNT was fixed in the specimen area by the nano-manipulation 

system in SEM. 

   Two kinds of design dimensions for the EANAT were employed as Design A and B according 

to the above-mentioned design rules, and three devices (Device No. 1, No. 2 and No. 3) were 

fabricated. Table Table Table Table 4444.1.1.1.1 gives the design and measured values of the dimensions and stiffness for 

each beam used in the EANATs after fabrication. The cross-sectional geometries of the beams 

were measured at 10 different points for all of the EANAT from the top and the back sides to 

estimate the stiffness [12][12][12][12]. The lengths and diameters of MWCNTs tested in this work are also 

listed in the table. Figs. Figs. Figs. Figs. 4.74.74.74.7    (a)(a)(a)(a)----(e)(e)(e)(e) show SEM images of a typical fabricated EANAT. Each func-

tional element was successfully fabricated on the device according to the design. 
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Fig. 4.6 Fabrication process of the EANAT. 

 

Fig. 4.7 SEM images of a typical fabricated EANAT. 
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Table 4.1 The dimensions and stiffness for each beam used in the EANATs. 
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4.4 Device Characterization 

 

4.4.1 Comb Drive Actuator 

The travel distance of the comb drive actuator was easily and precisely measured as the 

cantilever position at the free end of the capacitive displacement sensor using a CCD camera 

system mounted on an optical microscope [11][11][11][11], because the cantilever motion amplified the 

actuator distance by as much as 32.5 times. Fig. 4.Fig. 4.Fig. 4.Fig. 4.8888 shows variations in the displacement at the 

free end of the cantilever with an increase in the applied voltage to the actuator for Device No. 

1 listed in Table Table Table Table 4.14.14.14.1. The displacement was not only measured in air but also in a SEM system 

(Hitachi S4800) in a vacuum of less than 1×10-3 Pa for in-situ SEM nano-tensile testing. For the 

calculation curves in Fig. Fig. Fig. Fig. 4.84.84.84.8, we took account of the nonlinearity of stiffness for Ka at the ac-

tuator area in Eqs. (Eqs. (Eqs. (Eqs. (4.4.4.4.1) 1) 1) 1) and    ((((4444.2).2).2).2) owing to a larger deformation, and the linear stiffness for Ks 

at the specimen area because of a small displacement less than 1 µm in the present design. 

   There are no clear distinctions between the measured data in air and in a vacuum. The 

voltages when the cantilever displacement begins to increase in both environments are larger 

than the estimated voltage in the design. This is caused by fabrication variations which have led 

to widening the gap distance between the comb actuator and the displacement sensors. The 

increasing trend of displacement calculated using the deign dimensions of the supporting 

beams is totally different from the measured data, even if the nonlinearity of stiffness at the 

actuator area has been considered. The increasing rate of displacement calculated using the 

measured dimensions to the voltage is entirely consistent with the measured data, although 

the gap distances in the design have been employed in the calculation. If the calculation curve 

is simply shifted to the experimental curve as shown in the small graph attached to Fig. Fig. Fig. Fig. 4.84.84.84.8, the 

maximum error of the calculation from the experiment is 5.0 % at 50 V. Thus, the stiffness 

based on the measured dimensions of the beams has been estimated well in this research. 
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Fig. 4.8 Displacement of the cantilever edge of lever-motion amplification system as a function 

 of the applied voltage in a tensile test. 

 

4.4.2 Capacitive Displacement Sensor 

The trajectory of the edge of the movable comb capacitor built in the cantilever at the left 

side of the EANAT was observed by the CCD camera system as shown in Fig. Fig. Fig. Fig. 4.94.94.94.9. The moving 

positions of the edge are consistent with the trajectory of the circular motion of the cantilever 

assuming the pivot as the circle origin, within an error of 0.16 µm; thus, the arc shaped comb 

can maintain the gap distance between the movable and fixed combs during operation. 

   Fig. 4.Fig. 4.Fig. 4.Fig. 4.10101010 shows the typical sensitivity of the charge amplifier circuit connected to the ca-

pacitive displacement sensor, which was employed for Sample No. 6 on Device No. 1. The ac-

tuator displacement was converted from the deflection of the free end of the cantilever ob-

tained from the CCD camera system that can capture images of about 5 frames for 1 second in 

the average. The bias voltage was applied to the actuator at 0.1 V for 0.1 second. These condi-
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tions have led to the practical resolution in displacement of about 10 nm. The linear relation-

ship between the output voltage and the actuator displacement is recognized as a function of 

Vout =2.139 da in the figure. The output voltage increased smoothly and linearly from the initial 

stage of the increase of the actuator displacement. This result suggests that there is no remark-

able difference in the gap distance at the contact point between both sides produced by fabri-

cation variations. The output signals were recorded in the memory with a 14 bit-AD convertor 

working in the range of ±	5 V at a period of 10 msec. Consequently, the theoretical resolution 

of the displacement was 0.28 nm in this case.  

   The measurement resolution of the force was 27 nN, which was derived from the total 

stiffness of the supporting beams in the displacement range less than 1 µm. The practical meas-

urement resolution of the force depends not only on the measurement resolution of the dis-

placement and the stiffness, but also on the increment of the applied bias voltage to the comb 

actuator. In this research, the bias was applied from a DC supply unit to the actuators with a 

step rate of 0.1 V per 0.125 sec. Twelve or thirteen data (≅ 0.125/0.01) points from the charge 

amplifier were approximately stored in memory for each voltage step. Thus, we employed a 

thirteen point moving average for a smoothing of experimental data [22][22][22][22]. 

The offset voltage, the gain and the phase tuners in the charge amplifier circuit were regu-

lated in each experiment. Table Table Table Table 4.24.24.24.2 lists the measurement resolutions for the displacement and 

force after tuning the charge amplifier circuit for each sample. 
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Fig. 4.9 Trajectory of the edge of the movable comb capacitor 

 

 

 

Fig. 4.10 Typical sensitivity of the charge amplifier circuit 
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Table 4.2 Measurement resolutions for the displacement and force. 

Device No. 1 No. 2 No. 3 

Sample No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 

Sensitivity of Charge Amp. 

(V/µm) 
0.66 1.58 1.55 1.22 1.86 2.14 

Resolution of Displacement 

(nm) 
0.93 0.39 0.39 0.50 0.33 0.28 

Resolution of Load (nN) 42.0 38.2 38.7 47.5 31.1 27.0 
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4.4.3 Thermally Driven Actuator 

   Fig. Fig. Fig. Fig. 4.114.114.114.11 shows the relationship between the displacement of the thermally driven actuator 

observed by the optical microscope and its applied voltage. Optical microscopy images of the 

actuator before and after this operation are also shown in the figure. The solid line indicates 

the calculation data for Design A using the measured dimensions listed in Table Table Table Table 4444.1.1.1.1. The meas-

ured displacement is saturated at 4.4 µm because of the contact between the actuator and the 

movable frame of the specimen area; thus, the actuator can play the role of a gripper to prevent 

the movable frame from vibrating. However, the measured displacement is approximately 44 % 

smaller than the calculation at each applied voltage: i.e., the generated force in the experiment 

is 56 % of the force estimated in the design. The electric current necessary for heating would 

have been short in the actuator since the Au wire was bonded to a point the slightly remote 

from the actuator beam. Furthermore, heat generated at the actuator beam would be spread 

through the main shaft and the supporting beams [17][17][17][17]. 

 

Fig. 4.11 Relationship between the displacements of the thermally driven actuator. 
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4.5 Nano-manipulation of Individual MWCNT 

 

We have developed an in-situ SEM nano-manipulation system to pick up an individual 

MWCNT from a substrate and to fix it to an EANAT. The MWCNTs were synthesized by atmos-

pheric-pressure chemical vapor deposition (APCVD) using acetylene and hydrogen gases under 

200 Pa at 973 K. We employed titanium-binding-peptide ferritin molecules including 7 nm-

diameter iron compound nanoparticles as catalysts for the MWCNTs growth; the synthesis de-

tails are reported in reference [23][23][23][23].  

   Fig. Fig. Fig. Fig. 4.124.124.124.12 shows photographs of the nano-manipulation system including two probe stages 

and one sample stage. Each of the probe stages has 3 degrees of freedom (DOF) and the sample 

stage has 2 DOF. A PZT actuator installed in each stage for fine displacement control allows for 

a positioning resolution of 0.1 nm, and the successive stepping motion of the PZT for long stroke 

movement uses a working space of the probe stages of 10 mm (± 5 mm) in one direction. The 

charge amplifier circuit board for the differential capacitors of EANATs is also set on the system 

on the side of the sample stage in order to reduce electrical noise as much as possible. 

   The manipulation technique for an individual MWCNT has been established as shown in 

Figs. Figs. Figs. Figs. 4.134.134.134.13    (a) (a) (a) (a) ----    (d)(d)(d)(d). First, we search for a straight MWCNT on the substrate, and the probe is then 

placed below the free end of the MWCNT. The MWCNT is fixed on the probe by electron beam 

induced contamination in the SEM with a higher emission current, i.e. the deposition of carbo-

naceous material over the sample surface (see Figs. Figs. Figs. Figs. 4.134.134.134.13    (a)(a)(a)(a)). The vicinity of the fixed end of 

the MWCNT is cut by a focused electron beam with relatively low emission current and low 

accelerating voltage in high magnification mode (see Figs. Figs. Figs. Figs. 4.134.134.134.13    (b)(b)(b)(b)). The MWCNT is moved to 

the test position previously marked by photolithography on the specimen area of the EANAT 

and is attached to the device by the electron beam induced carbon-based-contamination (see 

Figs. Figs. Figs. Figs. 4.134.134.134.13    (c), (d)(c), (d)(c), (d)(c), (d)). In this research, individual MWCNTs were completely covered in the diamet-

rical direction by the contamination accumulated to a depth of 70 nm at least. 

Any perceptible vibrations of the device during the probe manipulation were not observed 

in the SEM, and we have successfully implanted individual MWCNTs on the device once without 

breaking the samples and the supporting beams at the specimen area because of the thermal 

actuator. Any distinct distortions of the MWCNTs and the test position at the specimen area 
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were not also observed during the operation of the thermal actuator, although the tempera-

ture around the position was not measured. Since the test position is far from the thermal 

actuator at a distance of 1.01 mm in the present design, the temperature change at the position 

caused by the heat conduction would be small so as to be negligible. 

 

 

 

Fig. 4.12 Photographs of the nano-manipulation system. 
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Fig. 4.13 SEM images of the specimen after the tensile test 
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4.6 Results 

 

4.6.1 Tensile Testing Results 

The EANATs were successfully used for tensile testing of six samples of the APCVD-synthe-

sized individual MWCNTs listed in Table Table Table Table 4.4.4.4.1111. Although the outer diameters were measured by 

the SEM, the mean-innermost diameter of MWCNTs was estimated at about 7 nm from trans-

mission electron microscope (TEM) observations in the previous report [23][23][23][23]. This was con-

sistent with the mean size of iron compound nanoparticles in ferritin molecules used as cata-

lysts for the APCVD. This research, therefore, calculated the stress from the outer and the 

mean-innermost diameters as nominal dimensions. 

Fig. Fig. Fig. Fig. 4.144.144.144.14 shows the typical relationship between the displacement converted from the out-

put voltage of the capacitive displacement sensor and the voltage applied to the comb actuator 

for Sample No. 1. The sample had an average external diameter of 51.5 nm. The displacement 

increases above the applied voltage of 23 V because of the gaps between the comb actuator 

and the sensor cantilever. In the voltage range from 27.5 to 30.7 V, there is a distinct difference 

in the displacement before and after failure of the sample. This difference corresponds to the 

tensile force used only for deformation of the sample. The abrupt increase in the displacement 

at 30.7 V suggests initiation of fracture of the sample since the exact agreement of the dis-

placements before and after the failure is observed again beyond 31 V. From the difference in 

the displacement, we can obtain the tensile load-displacement curve of the sample. 

   Fig. Fig. Fig. Fig. 4.154.154.154.15 shows tensile load-displacement curves for all MWCNTs tested in this work. Non-

linear deformation behaviors followed by a linear decrease in load with a gentle slope after 

breaking were observed for all samples. Although the tensile load increases with an increase in 

tensile displacement, regions of saturation and decrease exist in the curves before failure of 

the samples. Fig. Fig. Fig. Fig. 4.164.164.164.16 shows the stress-strain curves estimated from the geometric properties 

of the samples. The stress drop regions after breaking are omitted for an easy understanding 

of the figure. Linear increases in stress are observed at the initial tensile deformation stage for 

all samples owing to their elastic deformation. In the case of Samples No. 3 and No. 4, the stress 

fluctuates slightly and reduces above ε = 0.003 with an increase in strain, respectively, and they 

linearly increase again with the same slope as the initial deformation regions. Sample No. 3 

again shows a decrease in stress followed by a third linear increase. For the other samples, 
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saturated stresses are observed in the curves regardless of the increase in strain at higher stress 

levels. Some samples also show an increase in stress again with the similar ratio of stress to 

strain to that in the initial deformation. This trend in the load-displacement curve has already 

been reported by M-F. Yu et al. [24][24][24][24]. They clarified that individual MWCNTs showed interlayer 

sliding deformation behavior with stick-slip events between interlayers when the stress satu-

rated or reduced during tensile loading. 

   From the slopes of the regions of linearly increasing of stress, Young’s modulus was esti-

mated to be in the range from 338 to 623 GPa; these results are close to or lower than the 

previously reported values [24[24[24[24----26]26]26]26]. The tensile strength of the MWCNTs also showed lower 

values of 2.22 to 3.25 GPa. The varied mechanical properties obtained are expected to be af-

fected by various topological defects in the MWCNTs such as vacancies, Stone-Wales defects 

and adatoms, which are inevitably introduced during their synthesis [27[27[27[27----29]29]29]29]. Table Table Table Table 4.34.34.34.3 summa-

rizes the mechanical properties of the MWCNTs tested in this research. Fracture strains of the 

MWCNTs varied widely from 0.01 to 0.033 depending on the deformation behavior of the sam-

ples, and they were also lower than previously reported values [24, 25][24, 25][24, 25][24, 25]. 

 

 

 

Fig. 4.14 Typical relationship between the displacements converted from the output voltage 

 of the capacitive displacement sensor and the voltage 
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Fig. 4.15 Tensile load-displacement curves for all MWCNTs 

 

Fig. 4.16 Stress-strain curves estimated from the geometric properties of the samples. 
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Table 4.3 Mechanical properties of the MWCNTs. 

Sample No.1 No.2 No.3 No.4 No.5 No.6 

Young's Modulus (GPa) 
the 1st increment 

the 2nd increment 

the 3rd increment 

 

609 

623 

- 

 

557 

486 

- 

 

338 

340 

379 

 

379 

510 

- 

 

492 

431 

453 

 

418 

- 

- 

Tensile strength (GPa) 3.25 2.22 2.61 2.65 2.81 3.02 

Fracture strain (%) 1.02 1.36 3.29 2.80 1.05 1.78 

Elongation (µm) 0.174 0.179 0.168 0.198 0.062 0.083 
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4.6.2. Interlayer Sliding and Fracture Mechanisms of MWCNTs 

   In order to examine the fracture mechanism of the MWCNTs, all samples were subjected 

to observations after failure. SEM images of a typical fractured sample (Sample No. 4) are ex-

hibited in Figs. Figs. Figs. Figs. 4.174.174.174.17. The sample broke in the vicinity of its fixed point in the specimen area. The 

inner layers seemed to be pulled up from the cylindrical MWCNT in the image in Figs. Figs. Figs. Figs. 4.174.174.174.17    (a)(a)(a)(a). 

The fractured edge of the outer layers shows a cleavage surface without remarkable plastic 

deformation as shown in Figs. Figs. Figs. Figs. 4.174.174.174.17    (b)(b)(b)(b), and the sample after failure maintained a straight ex-

ternal form. These observations suggest that the outer layers fractured in a brittle manner. The 

two-tier appearance of the inner-layer fractures are also shown in Figs. Figs. Figs. Figs. 4.174.174.174.17    (a) and (c(a) and (c(a) and (c(a) and (c)))). These 

images indicate that at least three layers in the sample broke separately. 

   Considering the stress-strain curve for Sample No. 4, the stick-slip event between the layers 

could have occurred twice followed by the final fracture event. The number of times the stick-

slip event occurred agrees with the number of fracture points in the SEM images. At the stick-

slip events in the stress reduction regions of the curve, interlayer sliding like telescopic motion 

would have been produced after breaking one or more layers. After these events, the sample 

again deformed elastically due to hard sticking based on the interaction force between the slid-

ing layers [30][30][30][30], since a linear increase in stress was induced with the similar gradient to the 

initial stress increment in the curve. A small number of breaking layers would have led to a 

negligible change in the gradient of stress increment after the events.  

The interaction force of dangling bonds on the fractured edge of the outer layer with the 

inner layer surface might also induce the hard sticking, which acted as an “edge effect” [31][31][31][31]. 

Repeating the stick-slip and hard sticking events after partial breaking of layers in the MWCNTs 

resulted in fracture. 
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Fig. 4.17 SEM images of a typical fractured sample. 

 

4.6.3. Interlayer Shear Strength 

Interlayer sliding models of individual MWCNTs under tensile loading have been proposed 

for evaluating the interlayer shear strength, τs, from the interlayer force for an ultra-small stick-

slip event. A. Kis et al. expressed the force expected during ultralow interlayer sliding between 

neighboring MWCNT layers to be the sum of the shear interlayer force and the cohesive force, 

based on cyclic loading tests [31]. M-F. Yu et al. also proposed a single-shot extraction model 

to determine the shear interlayer force experimentally from simple tensile tests on MWCNTs 

[30][30][30][30]. These models impose the test condition of displacement control loading with an ultra-low 

strain rate to estimate the interlayer force; however, in the current work, we performed tensile 

tests with a high loading rate without displacement control. Then, the present research focused 

only on obvious stick-slip events in the load-displacement curves, and roughly estimated the 

interlayer shear strength in the events on the basis of the single-shot extraction model. 

Under the assumption that the saturated or reduced stress region in the load-displacement 

curves is caused by pulling out the inner layers from the outer layers of an individual MWCNT, 



１２９ 

 

that is the stick-slip event, the tensile force during the event can be expressed as the sum of 

the shear interaction force between layers, Fs, and the interface force, Fi, which is given by 

 

( = (- + (N = �#�-���� + (N 	.    (4.18) 

 

D is the diameter of the inner layers shell and L(x) is the sliding distance between the layers. 

The shear interaction force attributed to friction can be derived from the slope (=πDτs) of the 

linear fit to the data points at the stick-slip event. The interface force consists of the capillary 

interface force and the cohesion force at the fractured edge of the outer layers to the inner 

layer surface; these two cannot be distinguished from each other experimentally [30][30][30][30]. 

   We estimated the interlayer shear strength from the load-displacement curves for Samples 

No. 3 and No. 4 in Fig. Fig. Fig. Fig. 4.184.184.184.18 because of their obvious stick-slip events. Compared with the sliding 

distance of Sample No. 4 observed in Fig. Fig. Fig. Fig. 4.174.174.174.17, the sliding distance at each stick-slip event in 

Fig. Fig. Fig. Fig. 4.184.184.184.18 is about 65 % of the SEM observations. A stretch of the inner layers in the longitudinal 

direction might be produced by the impact of breaking; however, the positive cause of the 

difference is unclear until further observations of the fractured samples are carried out using a 

high-resolution TEM. For the present, the sliding distance was employed as the displacement 

at the stick-slip events in Fig. Fig. Fig. Fig. 4.184.184.184.18 in the shear strength estimation. 

   The shear interaction forces at the first and second events for Sample No. 3 were estimated 

as 5.10 and 6.70 nN/µm, respectively, using geometrical properties of the fractured MWCNTs 

observed by SEM; thus, the average interlayer shear strength was 82.5 MPa. The average in-

terlayer shear strength for Sample No. 4 was also 72.7 MPa estimated from the shear interac-

tion force of 5.78 and 2.20 nN/µm. These values are significant larger than the shear strength 

of high-quality crystalline graphite of 0.25-0.75 MPa [32][32][32][32] and the previous reported values for 

MWCNTs [30, [30, [30, [30, 31]31]31]31]. The larger shear strength might be caused by the hard sticking between 

layers. The hard sticking is possibly due to the edge effect of the outer layers that would also 

have led to larger shear strength. Therefore, the fracture of MWCNTs synthesized by APCVD 

was frequently accompanied by interlayer sliding deformation with hard sticking between lay-

ers, and such deformation behavior may cause an electrical resistance change of the MWCNTs. 

However, to clarify the quasi-static friction properties of single-shot extraction of individual 

MWCNTs in detail, cyclic loading tests need to be performed at an ultra-low rate of oscillation. 
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Fig. 4.18 Load-displacement curves of the interlayer shear strength. 
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4.7 Conclusions 

 

Newly developed electrostatically actuated nano-tensile testing devices have successfully 

clarified the mechanical properties and fracture mechanisms of individual MWCNTs synthe-

sized by APCVD. A capacitive displacement sensor with a scale factor of 1.26 fF/nm was de-

signed using an arc shaped comb structure incorporated into a cantilever motion amplification 

system, which achieved a minimum resolution of 0.28 nm. We confirmed that the characteris-

tics of the electrically and thermally driven actuators fabricated in the EANATs were according 

to their design. A tensile testing methodology for individual MWCNTs was established on the 

in-situ SEM nano-manipulation system. The Young’s modulus of individual MWCNTs ranged 

from 338 to 623 GPa, and their tensile strength was in the range from 2.22 to 3.25 GPa. The 

fracture of individual MWCNTs was accompanied by repeated stick-slip and hard sticking events. 

SEM observations demonstrated that interlayer sliding, like telescopic motion, would have 

been produced after breaking one or more layers. The interlayer shear strength during the slid-

ing was estimated to have large values of 82.5 and 72.7 MPa from obvious stick-slip events in 

the load-displacement curves, which might be caused by the hard sticking between layers. 

We thus successfully obtained accurate load-displacement curves including stick-slip events 

for individual MWCNTs using the nano-tensile testing devices. However, for estimating the in-

terlayer shear strength based on quasi-static friction of single-shot extraction of MWCNTs, fur-

ther investigation of cyclic tensile loading testing with an ultra-low strain rate oscillation and 

small displacement need to be carried out.  
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Chapter 5 

Conclusions 

 

This thesis investigates the mechanical properties of representative MEMS materials on the 

micro- and nano-scale. The study results are published based on the tests from various mate-

rials and conditions by many researchers. In this study of mine, I have also tried to get the result 

from various materials and conditions, there were a few of difficulties: (a) The time limit to 

prepare for manufacturing a specimen, (b) difficulty of specimen development, (c) long time to 

complete the overall specimen process, (d) material restrictions due to semi-conductor process, 

i.e., silicon nitride film etched by vapor HF, (f) quality of process room, (g) self-development of 

micro- and nano-scale tensile testing system and so on. However, these results from chapter 2, 

3, and 4 only can help someone design MEMS devices or IC circuits with these materials. The 

conclusion of each chapter is summarized as below. 

In chapter 2, submicron PE-CVD SiNx films were characterized using the handmade uniaxial 

tensile tester built in AFM, in order to examine the influence of the gas flow ratio of NH3 to SiH4 

on the elastic properties. The nano-indentation tests were also carried out for the estimation 

of Poisson’s ratio for the SiNx films. The AFM tensile tester accurately measured effective elastic 

modulus of SiNx/SCS specimens, and we have succeeded in separating Young’s modulus for 

only PE-CVD SiNx films. Young’s modulus ranged from 99.5 to 149.3 GPa, which were lower 

than that of LP-CVD SiNx films due to low process temperature. Poisson’s ratio of the films was 

also estimated as 0.13 to 0.37 from reduced modulus. The elastic properties of PE-CVD SiNx 

films were greatly influenced by the gas flow ratio of NH3 to SiH4, regardless with film thickness. 

Fracture strength of the SiNx/SCS specimens had in the range of 0.31 to 0.72 GPa, which is 

decreased with increasing film thickness. Auger spectroscopy was employed to reveal the film 

composition of the PE-CVD SiNx films. Nitrogen and silicon atoms were dominant, contained 

more than 90 % in the films. Young’s modulus and Poisson’s ratio of the SiNx films correlated 

with the atomic content ratio rather than the gas flow ratio. The SiNx films with an atomic 

content ratio being close to that in crystalline Si3N4 yielded higher elastic constants. 

In chapter 3, we have developed the tensile testing device for Au thin films in the thickness 

regime of sub-100-nm. The size of the device is 10 mm by 10 mm, and it contains the specimen, 
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actuator, measurement part. EANAT act as electrostatic force between opposite comb drive 

area. The obtained mechanical properties showed marked differences from those of the bulk 

Au. The Young’s modulus was 28 ± 3 GPa, which is less than 40 % of that of the bulk Au. The 

0.2 % yield strength was 192 to 519 MPa with a trend of decrease with decreasing strain rates 

in the range from 5 × 10-5 s-1 to 5 × 10-2 s-1. The tensile strength was in the range from 198 to 

519 MPa, and the fracture strength was 191 to 587 MPa. The small Young’s modulus was at-

tributed to the existence of voids in the material characterized by the fabrication process of 

vapor deposition. The consequent lumpy surface also leads to the large variation of fracture 

strain because the initiation points of cracks are the notched parts which are stochastically de-

termined by the fabrication process. Thus, the direct tensile tests of extremely thin Au films 

revealed the strong influence of material fabrication process on the mechanical properties.  

In Chapter 4, newly developed electrostatically actuated nano- tensile testing devices have 

successfully clarified the mechanical properties and fracture mechanisms of individual 

MWCNTs synthesized by APCVD. A capacitive displacement sensor with a scale factor of 1.26 

fF/nm was designed using an arc shaped comb structure incorporated into a cantilever motion 

amplification system, which achieved a minimum resolution of 0.28 nm. We confirmed that the 

characteristics of the electrically and thermally driven actuators fabricated in the EANATs were 

according to their design. A tensile testing methodology for individual MWCNTs was established 

on the in-situ SEM nano-manipulation system. The Young’s modulus of individual MWCNTs 

ranged from 338 to 623 GPa, and their tensile strength was in the range from 2.22 to 3.25 GPa. 

The fracture of individual MWCNTs was accompanied by repeated stick-slip and hard sticking 

events. SEM observations demonstrated that interlayer sliding, like telescopic motion, would 

have been produced after breaking one or more layers. The interlayer shear strength during 

the sliding was estimated to have large values of 82.5 and 72.7 MPa from obvious stick-slip 

events in the load-displacement curves, which might be caused by the hard sticking between 

layers. We thus successfully obtained accurate load-displacement curves including stick-slip 

events for individual MWCNTs using the nano-tensile testing devices. However, for estimating 

the interlayer shear strength based on quasi-static friction of single-shot extraction of MWCNTs, 

further investigation of cyclic tensile loading testing with an ultra-low strain rate oscillation and 

small displacement need to be carried out. 
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