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Chapter 1  
 

 

Introduction 

 

1.1 Background 

The recent advancement in the field of printing and coating has promoted their 

application as a manufacturing technique. Some examples are inkjet printing, spin coating, 

spray coating etc. These are applied to the manufacturing of LEDs, solar cells etc. Inkjet 

printing has several advantages such as high speed, low cost etc. The complete coating 

process involves several steps such as injection of a fluid from a nozzle head, coating on a 

solid surface, drying of the fluid etc. The desired component for coating a surface is 

generally a solid or liquid with very high viscosity. Hence, the injection fluid is prepared by 

dissolving the component in a solvent to facilitate the use of inkjet. The component may act 

as a surface active agent affecting the bulk property of the injection fluid such as surface 

tension and the quality of the coating process. The problem is complicated by the presence 

of complex solid geometries such as coating objects and nozzle heads. The shape of nozzles 

is of vital importance since it affects the drop size as well as the stability and repeatability 

in the fluid injection. The droplets of interest are often of the sizes ranging from sub-mili to 

sub-micron meters. These demonstrate the complexity of the problem which involve gas-

liquid interface of sub-micron meter length scale in the presence of complicated solid 

geometry. Each stage in the coating process is affected by the motion of the gas-liquid 
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interface. Hence, the design and optimization of such processes require in-depth 

understanding of the dynamic behaviour of a droplet, especially on a solid surface. 

The dynamic motion of gas-liquid interface is affected by various factors such as surface 

tension force, viscous force etc. The surface tension force becomes more and more 

dominant as the length scale of gas-liquid interface becomes smaller and can be the most 

dominant force affecting the behaviour of sub-micron meter droplets. The wetting 

behaviour of a droplet on a solid surface is also affected by the motion of contact line, 

along which both fluid phases co-exist with the solid. The behaviour in the proximity of 

contact line is affected by the contact angle, which is the angle between the gas-liquid 

interface and the solid surface. This contact angle depends on the surface energy of gas-

liquid, solid-liquid, and gas-solid interfaces as well as surface roughness.  

Analytical solutions of droplet shapes on solid surfaces are available for a few simple 

cases where the motion of the gas-liquid interface has been neglected (Iwata et al., 2012). 

The complexity of the geometry, small length scale and current limitations in the 

measurement techniques often limit the amount of engineering information that is required 

for design and optimization of coating processes. The progress in the computer 

performance has enabled us to use computational fluid dynamics (CFD) to predict the 

behaviour of flows containing gas-liquid interface. Hence, CFD can be an alternative tool 

that can be used for the design and optimization of coating processes.  

Many numerical methods have been developed for simulating flows containing the gas-

liquid interface. The interface tracking method is a class of numerical methods that can 

directly simulate the dynamics of the gas-liquid interface and has been a popular choice for 

simulating wetting behaviour of a drop (Sikalo et al., 2005; Yokoi, 2009). This method 

requires the mesh size much smaller than the size of the bubbles/drops in order to be able to 

adequately resolve the gas-liquid interface, resulting in a high computational cost. The 

recent progress in the computer performance along with programming techniques such as 

parallel computing has made it possible to enhance the efficiency of the interface tracking 
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method in direct numerical simulations of various phenomena occurring around the gas-

liquid interface.  

Hence, the interface tracking method is appropriate for carrying out the design and 

optimization of coating processes since the dynamic behaviour of the gas-liquid interface, 

especially on the solid surface, can be predicted. There are various interface tracking 

methods such as VOF (Volume-of-Fluid) (Hirt and Nichols, 1981), Level Set (Sussman et 

al., 1994), Front tracking (Unverdi and Trygvasson, 1992), BFC (Boundary-fitted 

coordinate) (Ryskin and Leal, 1984) etc.  

Most of the experimental and numerical investigation of the dynamic behaviour of the 

gas-liquid interface has been restricted to millimeter size drops on a simple solid geometry 

(Sikalo et al., 2005; Yokoi, 2009). Some simulations (Wu et al., 2004(a) & (b)) of coating 

processes involving micron meter size droplets have been carried out in the literature using 

a conventional method for calculating surface tension force, continuum surface force (CSF) 

model (Brackbill et al. ,1992). This method has been reported to suffer from relatively large 

numerical errors (Rudman, 1998). Apart from the surface tension force calculation, errors 

are also introduced due to inappropriate handling of solid objects. For example, tapered 

nozzle head was generated using stair-step configuration in a structured orthogonal mesh 

such that the computational cells were either completely filled with solid or fluid as shown 

in Fig. 1.1. These are rough boundaries and would cause numerical errors. 

    

                             (a) Nozzle shape            (b) Nozzle in the simulation 

Fig. 1.1 Inkjet nozzle 
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A numerical method which can accurately predict the behaviour of sub-micron meter 

droplets in the presence of complex solid geometries is required to obtain useful 

information such as the effect of nozzle shape on the droplet size, dynamic wetting 

behaviour of sub-micron droplets on a solid surface etc. for design and optimization of 

coating processes. Hence, along with the ability to handle the presence of complex solid 

geometries, the method must accurately estimate the surface tension force and ensure a 

proper treatment at the contact line at such small length scales of the gas-liquid interface. 

The method should not be computationally intensive to ensure practical applicability to 

industrial problems.  

 

1.2 Interface tracking method 

Various numerical methods can be classified under the interface tracking method. 

Tomiyama et al. (2006) compared and summarized their respective characteristics as shown 

in Table 1.1. The details of these methods will be discussed in this section. 

Table 1.1 Comparison of different interface tracking methods 

A: Excellent, B: Good, C: Poor 

Requirements VOF Front tracking Level set BFC 

(a) Volume conservation B A C A 

(b) Interface sharpness B B B A 

(c) Surface tension force C A A A 

(d) Density ratio A C A C 

(e) Multiple interface A A C C 

 



                                

 

5 

 

1.2.1 BFC 

The BFC method has been used to study the motion of gas-liquid interface (Takagi et al., 

1997; Ponoth and Mclaughlin, 2000). An orthogonal mesh is generated such that the gas-

liquid interface coincides with one of the boundaries of the computational domain 

(Duraiswami and Properetti, 1992) as shown in Fig. 1.2. The governing equations for the 

motion, transformed into the orthogonal curvilinear coordinates, are solved over the 

generated mesh. The mesh points on the bubble surface are then transported using the 

calculated velocity in a Lagrangian way to determine the shape of the interface at the next 

time step. This method has good volume conservation and interface sharpness but is poor at 

handling systems consisting of high density ratio and multiple interfaces. It is also 

computationally intensive as the mesh has to be recalculated at each time step. 

 

Fig. 1.2 Grid in boundary-fitted coordinate (Takagi et al., 1997) 

 

1.2.2 Front tracking 

This method was first developed by Unverdi and Trygvasson (1992) and has been 

improved to deal with several problems involving the motion of gas-liquid interface. The 
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gas-liquid interface is marked with connected marker points as shown in Fig. 1.3. The 

marker points are connected using elements which is a line in two-dimensions and a 

triangular face in three-dimensions. These are advected in a Lagrangian way based on the 

velocity field obtained by solving the governing equations for the flow on a fixed grid. The 

location of marker points is updated by 

p

p
V

x


dt

d
          (1.1) 

where xp is the location of a marker point and Vp the velocity at that point. The front 

tracking method, while having good volume conservation and easiness of evaluation of 

surface tension force, cannot easily deal with fluid systems of high density ratios which are 

usually common in industrial problems. Also, the topological changes such as coalescence 

and breakup of bubbles and drops require special treatment in the front tracking method. 

 

Fig. 1.3 Gas-liquid interface marked by a front 

 

Gas

Liquid Marker
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1.2.3 Level set 

The level set method was originally introduced by Osher and Sethian (1988) and further 

developed by Sussman et al. (1994). The interface is represented using the level set 

function, ϕ. It is the signed normal distance, a, from the interface such that it is positive in 

the liquid phase and the negative in the gas phase: 

 








phase gas in the is  if     ,

 phase liquid in the is  if     ,
=

xa

xa
x       (1.2) 

where x is a point in space. The interface is represented by ϕ = 0 as shown in Fig. 1.4. The 

level set function is transported by 

0






V

t
         (1.3) 

where t is the time and V the velocity. ϕ has been reported to lose the property of the 

distance function after being transported for a couple of time steps (Prosperetti and 

Tryggvason, 2007) which results in an overall loss of accuracy such as volume 

conservation. Hence, it is necessary to reinitialize the level set function to keep ϕ as a 

signed distance function. Sussman et al. (1994) proposed an iterative approach to 

reinitialize ϕ using  

  






1sgn

τ
0

        (1.4) 

where τ is an artificial time, ϕ
0
 the initial ϕ at the beginning of the reinitialization, and sgn 

the sign function defined by 

 














0   1,-

0     ,0

0     ,1

=sgn

0

0

0

0







         (1.5) 
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The local interface curvature calculated using the level set function is accurate due to the 

continuous nature of the level set function. Hence, the level set method is able to accurately 

evaluate the surface tension force which is very important for accurate prediction of the 

motion of gas-liquid interface but suffers from errors in volume conservation as well as 

numerical diffusion of the interface. Several approaches have been proposed to solve these 

problems such as the use of a finer grid for the advection of the level set function as 

compared to the flow equations (Hermann, 2008), conservative level set methods (Olsson et 

al., 2007) etc. But these can also be considered to further increase the computational cost 

since they involve the iterative reinitialization or finer grids. 

 

Fig. 1.4 Level set function distribution for a gas bubble 

 

1.2.4 VOF 

The origin of this method can be traced back to the work of Noh and Woodward (1976) 

but has been popularized by Hirt et al. (1981). The interface is represented with the help of 

the volume fraction of a fluid phase, α, in the computational cell. As an example, α is 1 

Gas

ϕ = -1

ϕ = -2

ϕ = 0

ϕ = 1

ϕ = 2

ϕ = 3
Liquid

Interface
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when the cell is completely filled with the gas phase and 0 when it is completely filled with 

the liquid phase as shown in Fig. 1.5. A value between 0 and 1 denotes the presence of an 

interface. The volume fraction is advected based on the following transport equation: 

0α
α





V

t
         (1.6) 

The key point of this method is the accurate reconstruction/representation of the 

interface for accurate transport of the gas-liquid interface without causing numerical 

diffusion of the interface. Several schemes have been proposed to carry this out (Kunugi, 

1997; Rider and Kothe, 1998; Xiao et al., 2005; Yokoi, 2007). While none of them are 

iterative in nature as compared to the level-set method, they have their own limitations such 

as difficulty in extension to three-dimensions, shape preservation etc. The errors are also 

caused in the evaluation of surface tension force when using a conventional method 

(Brackbill et al., 1992) with the volume fraction. The VOF method is able to handle large 

density ratios with good volume conservation but requires a sufficient resolution. As an 

example, the number of cells required for reasonable prediction of bubbles or drops should 

be greater than 5 (Cerne et al., 2002). 

           

Fig. 1.5 Volume fraction distribution 
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0 1 1 1 1 0

0 0.8 1 1 0.8 0

0 0.3 0.8 0.8 0.3 0

0 0 0 0 0 0
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1.3 Treatment of complex solid geometries in the flow domain 

Many industrial problems also consist of complex geometries around or within the flow 

domain. Most of the methods, however, have been restricted to simple geometries such as 

rectangular and cylindrical domains. One of the reasons for this restriction is the use of a 

structured grid. Although it facilitates programming, it suffers from problems when dealing 

with complex geometries. Some of the methods for handling the complex geometries are 

shown in Fig. 1.6. The stair-step configuration for the complex boundary is easy to 

implement but yields inaccurate results especially when sharp changes in the topology is 

present. Commercial codes adopt unstructured grids. In lieu of the benefit of an accurate 

treatment of flow geometry, the code may suffer performance shortfalls with respect to (1) 

the degree of accuracy, (2) ease of programming, (3) memory size, and (4) CPU time. The 

other methods, such as boundary-fitted coordinates (Koshizuka et al., 1990) and block cells 

(Landsberg, 1997), were developed to deal with complex geometries by using the 

structured grids. However, they have their own limitations such as instability and high 

computational costs.  

         

        (a) Stair-step                (b) Boundary-fitted coordinates 

    

 (c) Unstructured grid                             (d) Immersed boundary 

Fig. 1.6 Numerical techniques for handling the presence of complex geometries in the flow 

domain 



                                

 

11 

 

The immersed boundary (IB) method deals with the shape of a solid body in an 

orthogonal structured grid. This method was developed by Peskin (1977), and recently has 

been actively pursued by many researchers. It can be further categorized based on 

differences in treatments of the solid geometry (Briscolini and Santangelo, 1989; Goldstein 

et al., 1993; Tuanya et al., 2009; Fadlun et al., 2000; Kim et al., 2001). The immersed 

boundary methods predict the flow consisting of complex solid geometries based on 

structured grids and hence do not suffer from the performance shortfalls mentioned above. 

Most of the studies based on immersed boundary methods are, however, limited to single 

phase flows.  

 

1.4 Objectives 

A versatile numerical method is necessary for a better understanding of phenomena 

associated with the motion of gas-liquid interface in the presence of complex solid 

geometries for better design and optimization of coating processes. The above discussion 

suggests VOF as a promising method for predicting the motion of gas-liquid interface if the 

errors in surface tension calculation that are found in conventional methods can be 

eliminated. Several numerical methods for surface tension force evaluation with low 

numerical errors have been proposed recently but their performance at sub-micron meter 

length scale and in the presence of solids is still unknown, and therefore, must be 

investigated to ensure applicability to coating processes. The immersed boundary method is 

suitable for the handling of the presence of complex solid geometries in and around the 

flow domain. Hence, the combination of VOF and immersed boundary method would be 

suitable to coating problems. In addition, the method must satisfy the following 

requirements for practical applicability: 

 (1) The numerical method should be easily programmed and with low computational cost. 

 (2) The volume conservation and the interface sharpness must be preserved. 
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 (3) Presence of complex solid geometries in two-phase flow problems must be handled. 

 (4) Behaviour of droplets of sub-micron sizes can be accurately predicted. 

 (5) Fluid systems contaminated with surface-active agents must be effectively handled. 

A new numerical method with the above mentioned features will be proposed in this 

study and its applicability to problems involving drops of sizes ranging from mili to sub-

micron meters as well as contamination will be checked by comparing the predicted results 

with experimental results.  

 

1.5 Preview 

In Chapter 2, a simple yet efficient interface tracking method is proposed which can 

predict the motion of gas-liquid interface. The accuracy of the proposed method is validated 

by carrying out one-, two- and three-dimensional advection tests. The results are also 

compared with the existing methods to demonstrate the performance of the proposed 

method. Then, simulations of a rising bubble and a drop on a solid surface are carried out 

and compared with the results reported in the literature. 

In Chapter 3, an immersed boundary method is implemented into the developed 

interface tracking method to enable it to handle the presence of complex solid geometries. 

The occurrence of errors in advection due to the presence of solid in the computational cell 

is checked by carrying out advection tests. Next, the proper implementation of the 

immersed boundary method in the flow calculation is checked by carrying out simulation of 

single phase flow past a staggered arrangement of cylindrical tubes and comparing the 

pressure drop across the tube bundles obtained from the simulation with the results reported 

in the literature. Finally, simulation of two-phase flow past the same staggered arrangement 

of cylindrical tubes and the dam-break problem in the presence of a triangular dyke is 
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carried out to demonstrate the ability of the method to predict the motion of gas-liquid 

interface in the presence of complex solid geometries. 

In Chapter 4, the effect of numerical treatments for evaluation of surface tension force 

on the prediction of gas-liquid interface motion is investigated. The effect of drop size and 

wall treatment on the errors is also investigated to ensure the applicability to processes 

involving sub-micron droplets by carrying out numerical tests on neutrally buoyant droplets 

and droplets adhering to walls. Next, the motion of a clean water drop on a solid surface is 

predicted using the method for surface tension force with the lowest errors and compared 

with the experimental results. Finally, the motion of a sub-micron meter clean water droplet 

on a solid surface is also predicted to check the applicability to droplets in practical coating 

processes.  

In Chapter 5, the developed numerical method is applied to problems containing 

contamination. Falling contaminated drop experiments are carried out and data such as 

contact angle are obtained using image processing. The reliability of the experimental data 

is also checked. The contact angle obtained from the experiment is modelled using a 

dynamic contact angle model. The motion of contaminated drops on a solid surface is 

predicted and compared with the experimental results. Finally, a simulation of a coating 

process is carried out to demonstrate the applicability of the proposed method to practical 

problems. 

In Chapter 6, the concluding remarks of this study are summarized. 
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Chapter 2  
 

 

Development of a simple interface tracking method based on 

VOF 

 

2.1 Introduction 

The VOF method is suitable for prediction of the dynamic motion of gas-liquid interface 

and various phenomena affected by it. The method requires modelling of the gas-liquid 

interface within a computational cell for which several schemes have been proposed. 

Methods such as multi-interfaces advection and reconstruction (MARS) (Kunugi, 1997) 

and piecewise linear interface calculation – VOF (PLIC-VOF) (Rider and Kothe, 1998) 

carry out a geometric reconstruction of the interface within a cell by assuming the interface 

to be a straight line or a plane, in the case of two-dimensions or three-dimensions 

respectively. These methods are able to well preserve the sharpness of the interface but are 

difficult to program and extend to three-dimensional problems. The other methods such as 

solution algorithm – VOF (SOLA-VOF) (Hirt and Nichols, 1981), cubic-interpolated 

pseudo particle (CIP) (Takewaki and Yabe, 1987), tangent of hyperbola for interface 

capturing (THINC) (Xiao et al., 2005) use a mathematical function to reconstruct the gas-

liquid interface. These methods are easier to program and can be very easily extended to 

three-dimensions but suffer from problems such as numerical diffusion of the gas-liquid 

interface, artificial distortion of the shape etc. 
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In this chapter, a new method, tangent of hyperbola with adaptive slope for interface 

capturing (THAINC), is developed for tracking the gas-liquid interface. This method 

employs a mathematical function similar to THINC (Xiao et al., 2005) for interface 

reconstruction. Hence, it possesses all the preferable characteristics of THINC such as 

excellent volume conservation, no overshooting (α>1)/under shooting (α<0) as well as easy 

programmability and extension to three-dimensions. The method is also able to well 

preserve the sharpness of the interface. The problems with THINC such as shape distortion 

etc. are overcome with this method. Its performance is evaluated based on (1) advection 

tests, (2) simulation of a rising bubble, and (3) simulation of dynamic wetting behaviour of 

a drop. 

  

2.2 Numerical method 

2.2.1 Transport equation of gas-liquid interface 

The motion of gas-liquid interface is tracked by carrying out the transport of a phase-

indicator function. The phases are assumed to be immiscible with no phase change and the 

computational cell is completely occupied by fluid. The volume of a computational cell is 

therefore given by 

LG θ+θ=θ          (2.1) 

where θ is the volume of the computational cell and the subscripts G and L denote the gas 

and liquid phases, respectively. The volume fraction, α, of a fluid phase used as the phase-

indicator function is defined by 

θ

θ
α K

K    (K = G, L)       (2.2) 

and α
G
 and α

L
 satisfy 
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1=αα LG           (2.3) 

Since the phases are treated as continuous materials with no phase change, the transport 

of the volume fraction is then governed by    

0
α


Dt

D KK           (2.4) 

where D
K
 /Dt is the material derivative defined by 





 .

K

k

tDt

D
V          (2.5) 

where V
K
 is the velocity of the phase K. The transport equation for the gas phase can be 

written by substituting K = G into Eq. (2.4) to obtain 

  GGGG
G αα

α
VV 





t
       (2.6) 

Taking the volume average over the computational cell for Eq. (2.6) and using the volume 

averaged value of α within the computational cell gives 

  θ
θ

α
θα

θ

1α

θ

G
G

θ

GG
G

 



dd

t
VV       (2.7) 

Applying the divergence theorem 

SBB
S

  ddθ
θ

        (2.8) 

where B is a vector field and S the surface element vector of θ, to Eq. (2.7) yields 

  SVSV
SS

 



dd

t
G

G
GG

G

θ

α
α

θ

1α
      (2.9) 
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The gas-liquid interface is tracked by solving Eq. (2.9). A similar equation can be obtained 

for the liquid phase as well. Since both phases satisfy Eq. (2.3), only the transport equation 

for the dispersed phase is solved. For the sake of simplicity, α
G will be replaced with α. The 

discretization is carried out over a staggered grid arrangement, as shown in Fig. 2.1, with 

scalars, such as α, at the cell center and vectors, such as velocity and flux of α, at the cell 

faces. The subscripts i, j, and k are indexes for the x, y, and z coordinates, respectively. The 

cell sizes in the x, y, and z directions are Δx, Δy, and Δz, respectively. The six cell faces for 

the computational cell at (i, j, k) are located at (i+1/2, j, k), (i−1/2, j, k), (i, j+1/2, k), (i, 

j−1/2, k), (i, j, k+1/2), and (i, j, k−1/2).   

 

Fig. 2.1 Computational cell 

The transport of α is carried out in one direction at a time to ensure that no 

undershooting or overshooting of α occurs. This is known as directional splitting and is 

carried out as 
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where the superscript n denotes the value at the current time step, n+1 the value at the new 

time step, * and ** the intermediate values; J
x
, J

y
, and J

z
 the fluxes of α through the cell 

faces; and  Ω
x
, Ω

y
, and Ω

z
 the fluid volumes transported through the cell faces.  

J
x
 is calculated as 

 


 

 

kji

kjikji

x

tux

iDkjix zdxyxJ

,,2/1

,,2/1,,2/1 Δ

,,2/1, ΔΔα        (2.13) 

where Δt is the time step, u the x-component of the velocity vector, and the subscript iD 

denotes the donor cell location: 
















0,1

0,

,,2/1

,,2/1

kji

kji

ui

ui
iD         (2.14) 

Ω
x
 is calculated as 




 

 

kji

kjikji

x

tux

kjix zdxy

,,2/1

,,2/1,,2/1 Δ

,,2/1, ΔΔΩ        (2.15) 

J
y
, J

z
, Ω

y
, and Ω

z can be similarly computed. The distribution of α in the donor cell, α
iD

(x), 

must be considered to accurately calculate the flux of α at a cell face, i.e. J in Eq. (2.13). 

The volume averaged value of α at the cell center is available and the reconstruction of the 

interface has to be carried out by using this information.  
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2.2.2 Interface reconstruction 

One-dimensional distribution of α is obtained by using a tangent hyperbolic function as 

proposed by Xiao et al. (2005): 

 



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
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



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


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


 

iD
iD

xiD x
x

xx
x ~tanh1

2

1
α 2/1      (2.16) 

where γ, iDx~ , and β
x
 are parameters required to define the distribution inside the cell. γ is 

given by 


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
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ααif,1 11 iDiD
γ         (2.17) 

The average value of distribution of α within the computational cell is equated to the 

discrete value of α at the cell center as follows: 
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iDx~ is computed by re-arranging the above equation:  
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where 

 







 




 12α
exp1

iDxa         (2.20) 

The parameter, β
x
, controls the slope of distribution of α within the cell as shown in Fig. 2.2.  

 

Fig. 2.2 Effect of β
x
 on the distribution of α 

Xiao et al. (2005) used a constant value of β
x
 irrespective of orientations of the interface. It 

was fixed at an ad hoc value of 3.5 to ensure numerical stability, where as in this study β
x
 is 

made a function of the inclination of the interface. This would allow a more accurate 

reconstruction of the interface. The slope of the tangent hyperbolic function, defined by Eq. 

(2.16), at iDx~  can be computed by 
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Assuming the interface to be linear within a cell with the slope, which can be computed 

using the interface normal vector, and equating it to the above equation gives the following 

relation between β
x
 and the interface normal vector 

















D
NN

N

D
N

N

zy

x

y

x

x

3,
2

2,
2

22

         (2.22) 

where N
x
, N

y
, and N

z
 are the x, y, and z components of the vector normal to the interface, N, 

respectively.  N is computed by using the Arbitrary Lagrangian-Eulerian (ALE) like 

scheme as described by Brackbill et al. (1992). Equation (2.22) is for interface 

reconstruction in the x-direction. A more general function for β is given by 
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








min
2

max ,
2

max,min β
N

N
ββ

lj

j

l

l   (l = x, y, z)   (2.23) 

where the subscript l is the direction in which the interface is being reconstructed i.e. the 

direction of advection and N
l
  the l component of the normal to the interface. The range of β 

is fixed between β
min

 and β
max

. β
min

 is set at 0.001 and β
max

 at 10. These values are sufficient 

to represent a horizontal and a vertical interface w.r.t to the direction of advection.  

Using the normalized coordinate  

x

xx
s

kji

Δ

,,2/1
          (2.24) 

instead of x yields  
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    iDxiD xsβγs ~Γtanh1
2

1
α        (2.25) 

where Γ is defined by  

x

xx kjiDkji

Δ
Γ

,,2/1,,2/1  
         (2.26) 

and takes the value zero or one: 






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
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



0,0

0,1
Γ

,,2/1

,,2/1

kji

kji

u

u
        (2.27) 

Substituting Eqs. (2.24) and (2.25) into Eq. (2.13) yields  

 


 

0

,,2/1, ΔΔΔα

xC

iDkjix zdsyxsJ                                                      

 




0

αθ

xC

iD dss                                                    

  




0

~Γtanh1
2

1
θ

xC

iDx dsxsβγ                   

  
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2

θ
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β

γ
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







     
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x

x
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xCβ

β

γ
C ~Γcosh

~Γcosh
ln

2

θ
    (2.28)  

where C
x
 is the Courant number in the x-direction defined by  

x

tu
C

kji

x
Δ

Δ,,2/1
          (2.29) 
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Applying the variable transformation to Eq. (2.15) yields 




 

0

,,2/1, ΔΔΔΩ

xC

kjix zdsyx    

 xCθ          (2.30) 

The numerical method is named THAINC and summarized in Fig. 2.3 and can be similarly 

applied to the y and z directions. 

 

Fig. 2.3 Calculation procedure 

 

 

Read αn

Calculate Jx using Eq. (2.28)

Calculate α(x) using Eq. (2.16)

Calculate the coefficients γ, β, and xiD

using Eq. (2.17) etc.

For each direction

Calculate Ωx using Eq. (2.30)

Calculate α using Eq. (2.10) etc.

˜
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2.2.3 Implementation of interface tracking method to two–phase flow  

In this section, the method for solving the flow field is described. 

 

2.2.3.1 Governing equation for two-phase flow 

The fluid phases are assumed to be incompressible and one-fluid formulation is applied 

to them. Hence, the velocities of the gas and liquid phases are given by the one-fluid 

velocity V = V
G
 = V

L
. The governing equations for the motion of incompressible fluids, the 

continuity and momentum equations, are therefore given by  

0 V           (2.31) 

STFgV
V

 ρμρ 2P
Dt

D
       (2.32) 

where ρ is the density, P the pressure, μ the viscosity, g the acceleration due to gravity, and 

F
ST

 the surface tension force acting on the gas-liquid interface. The surface tension force is 

calculated based on the continuum surface force (CSF) model proposed by Brackbill et al. 

(1992): 

δσκnF ST          (2.33) 

where σ is the surface tension between the gas and liquid phases, κ the mean curvature of 

the interface, n the unit normal to the interface, and δ the delta function. Equation (2.33) 

can be written as 

NF σκST           (2.34) 

where 

αN           (2.35) 
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The curvature is given by 

nκ           (2.36) 

The density and viscosity are given by 

GGLL ραραρ           (2.37) 

GGLL μαμαμ           (2.38) 

The velocity and pressure fields are obtained by solving Eqs. (2.31) and (2.32) using the 

SMAC (simplified marker and cell) method (Amsden and Harlow, 1965).  

 

2.3 Advection tests 

Several advection tests as will be discussed in the following sections were carried out to 

check the accuracy of the proposed method. Its performance was compared to some of the 

existing numerical schemes for estimating the distribution of α.  

 

2.3.1 Advection in one-dimension 

The effect of an adaptive β, THAINC, as compared to a constant one, THINC, on the 

accuracy of advection was investigated. The first test was a one-dimensional wave being 

advected at a velocity of 1 m/s. The mesh size was 1 mm. As shown in Fig. 2.4, the wave 

was initialized as 

 



 


otherwise,0

1910for,1
α

i
       (2.39) 
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The Courant number was set at 0.5. The wave was advected for 100 time steps and the 

results obtained with THINC and THAINC are shown in Fig. 2.4. 

 

Fig. 2.4 α distribution of one-dimensional wave after advection over 100 time steps 

The results for THINC and THAINC were found to be exactly the same with no 

undershooting (α<1) or overshooting (α>1) since a one-dimensional wave can be accurately 

represented by a constant value of β. 

Next, the advection of a fluid square in the x-direction with a velocity of 1 m/s was 

carried out. A 200×200 mesh was used with the mesh size set at 1 mm. The fluid square 

was initialized as 
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as shown in Fig. 2.5(a). The fluid square is shown using contours for α with values between 

0 and 1 at an interval of 0.05. The Courant number was set at 0.1 and the fluid square was 

transported over a distance of 5 times its length. THINC was found to have artificial 

wrinkling at horizontal sides, i.e. the top and the bottom edges, as compared to vertical 

sides, i.e. the left and the right edges as shown in Fig. 2.5(b). The reason for this is the use 

of a constant value of β. β with a value of 3.5 is able to represent an interface which is 

perpendicular to the direction of the advection. But an interface which is more horizontally 

aligned in the direction of advection needs to have a more horizontal one dimensional 

reconstruction, i.e. lower value of β (Fig. 2.5). This could be the cause of artificial 

wrinkling of the interface only at the horizontal sides which were being reconstructed 

inappropriately. This problem was reasonably eliminated as shown in Fig. 2.5(c) by 

adjusting the value of β, according to Eq. (2.23), to ensure a more horizontal interface for 

the top and bottom edges.  

      

                 (a) Initial                                (b) THINC                             (c) THAINC 

Fig. 2.5 Shape of the fluid square after transport in x-direction 

 

2.3.2 Advection in multi-dimensions 

Finally, advection tests in multi-dimensions were carried out and the results obtained 

from THAINC were compared with some of the existing numerical schemes.  The first test, 

Test A, was that of a fluid circle rotating about the centre of the grid as shown in Fig. 2.6. 

The diameter of the circle was set at 20Δx with Δx = 1 mm. The circle was advected for 5 

revolutions with an angular velocity of 1 rad/s. The Courant number for two-dimensional 

flow, C
O
, is defined by 
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y

tv

x

tu
C

jiji

O
Δ

Δ

Δ

Δ 2/1,,2/1 
          (2.41) 

where u and v are the x and y components of the velocity, respectively. 

 

Fig. 2.6 Advection test of rotating fluid circle, Test A 

The schemes selected for comparison were the 1
st
 order upwind; donor-acceptor (DA) (Hirt 

& Nichols, 1981); tangent of hyperbola for interface reconstruction/weighted linear 

interface calculation (THINC/WLIC) (Yokoi, 2007) and THINC. The difference in the 

schemes is in the reconstruction of the interface and is explained for advection in the x-

direction with the help of Fig. 2.7. α
iD

(x) in calculation of J using Eq. (2.13) is fixed at a 

constant value equal to the cell centre value of the donor cell in the 1
st
 order upwind. This 

effectively results in a horizontal interface reconstruction advection w.r.t the direction of 

transport, as can be seen in Fig. 2.7(b), irrespective of the actual inclination of the interface 

and causes numerical diffusion of the initially sharp interface as shown in Fig. 2.8(b). DA 

calculates J by assuming either a vertical or a horizontal interface w.r.t the direction of 

advection depending on the orientation of the interface. The interface reconstruction in 

THINC is close to vertical w.r.t the direction of advection as can be seen in Fig. 2.2. Fig. 

2.8(c) and (d) show that both DA and THINC cause large shape distortion and this is due to 

α = 1

α = 0
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inaccurate interface reconstruction. J in THINC/WLIC is calculated by taking a weighted 

average of the flux calculated with THINC, i.e. based on vertical interface, and 1
st
 order 

upwind, i.e. based on horizontal interface, by 

 
upwindorder  1THINCTHINC/WLIC stω1ω JJJ         (2.42) 

where ω is the weight calculated using the components of the normal vector by 

yx

x

NN

N


ω           (2.43) 

     

        (a) Original interface             (b) 1
st
 order upwind             

   

                (c) DA (Hirt and Nichols, 1981)            (d) THINC/WLIC (Yokoi, 2007) 

Fig. 2.7 Illustration of interface reconstruction in different schemes 

Hence, even though THINC/WLIC does not attempt to reconstruct the interface directly, 

the calculation of J incorporates the inclination of the interface which leads to a much 

Advection in x-direction



                                

 

34 

 

improved shape preservation as compared with THINC as can be seen in Fig. 2.8(e). The 

interface reconstruction based on the interface inclination as is done in THAINC gives a 

more accurate calculation of J, leading to the best shape preservation as shown in Fig. 

2.8(f). 

A quantitative comparison was carried out by comparing the error in the predicted shape 

evaluated over the whole domain at the end of the simulation by  



 



kji
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Ci,j,ki,j,k
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,,

,

,,

,

S
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αα

         (2.44) 

and the error in total volume conservation in the computational domain evaluated by 
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
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,

,,
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α

αα

         (2.45) 

where the subscript C denotes the correct value. The results of E
S
 and E

V
 for C

O
 = 0.125 are 

shown in Table 2.1. The comparison shows that THAINC yields the best results in terms of 

conservation of shape and volume.  

Table 2.1 Comparison of E
V
 and E

S
 for different schemes (Test A) 

Numerical scheme E
V
 [%] E

S
 [%] 

1
st
 order upwind 3.4×10

-2 
69.1 

DA (Hirt & Nichols, 1981) 1.7×10
-2

 25.3 

THINC (Xiao et. al, 2005) 1.0×10
-11

 14.9 

THINC/WLIC (Yokoi, 2007) 4.5×10
-11

 2.5 

THAINC (Present) 2.1×10
-11

 1.9 
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         (a) Initial                        (b) 1
st
 order upwind                        (c) DA 

                                                                            

          (d) THINC                                 (e) THINC/WLIC                                   (f) THAINC 

Fig. 2.8 Comparison of shapes obtained after rotating the circle by five revolutions 

Apart from THAINC, THINC/WLIC also gave reasonably good results and hence a 

more detailed comparison only with THINC/WLIC was carried out. Diagonal advection 

shown in Fig. 2.9 was carried out for a fluid square in two-dimensions (Test B) and a fluid 

cube in three-dimensions (Test C). The length of the square and cube was kept same at 

20Δx with Δx = 1 mm. The components of the velocity were set at 1 m/s.  

Since E
V
 in both THAINC and THINC/WLIC were negligibly small, only the effect of 

C
O
 on E

S
, which represents the amount of shape distortion, was investigated for C

O
 = 0.125, 

0.25, and 0.5. The results are shown in Fig. 2.10.  
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      (a) Test B                                             (b) Test C 

Fig. 2.9 Diagonal advection tests 
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(b) Test B 

 

(c) Test C 

Fig. 2.10 Comparison of E
S
 between THINC/WLIC and THAINC 

The proposed method had lower errors as compared to THINC/WLIC for all the tests. The 

difference in the errors was found to be prominent in the case of three-dimensional 

advection test, Test C. THAINC was also able to preserve the interface sharpness better 
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than THINC/WLIC as can be seen from Fig. 2.11. The shapes are shown using contours of 

α with values between 0 and 1 at an interval of 0.05 

   

   (a) THINC/WLIC                                  (b) THAINC 

Fig. 2.11 Comparison of final shape in Test C (C
O
 = 0.25) 

 

2.4 Simulation of a rising bubble 

Two dimensional simulation of a rising air bubble of diameter 2 cm in stagnant water 

was carried out. A calculation domain of size 30 cm×10 cm was used as shown in Fig. 2.12. 

The physical properties of water and air at 25 °C and 1 atm were used, i.e. ρ
L
 = 1000 kg/m

3
, 

ρ
G
 = 1.25 kg/m

3
, μ

L
 = 1×10

-3
 Pa·s, μ

G
 = 1.82×10

-5
 Pa·s and σ = 0.072 N/m. The mesh size 

was set at Δx = Δy = 1 mm and the time step was 10
-4

 s. Tracer was used to visualize the 

development of the wake under the bubble. The tracer was imitated by using a 

dimensionless scalar C which was set at 1 in the desired location of the tracer as shown in 

Fig. 2.13(a). The scalar C was transported by solving 

  0. 



VC

t

C
         (2.46) 

The motion of the rising bubble was simulated. The results are shown in Fig. 2.13.  
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Fig. 2.12 Schematic of the computational domain 

             

              (a) 0 s              (b) 0.10 s        (c) 0.25 s            (d) 0.50 s             (e) 0.75 s              

Fig. 2.13 Motion of single bubble in stagnant water 
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(a) Transient behaviour of the total bubble volume 

 

 (b) Distribution of α at vertical section passing through the center of the bubble 

Fig. 2.14 Simulation of rising single bubble 

The terminal velocity, V
T
, of a two-dimensional air bubble is given by 

gdV λT            (2.47) 

where g is the magnitude of g and d the diameter of the bubble. The value of λ has been 

investigated in various studies (Collins, 2005; Grace and Harrison, 1967; Maneri and 
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Mendelson, 1968) and is reported to be between 0.59 and 0.632. The value of V
T
 is 

calculated to be between 0.26−0.28 m/s by applying the reported values of λ to Eq. (2.45). 

The value of V
T
 calculated from the simulation was 0.275 m/s and is in the estimated range. 

The effect of implementation of two-phase flow algorithm on the volume conservation was 

also checked by the total volume of the bubble as shown in Fig. 2.14(a). E
V
 was 0.57% 

which is higher than the values reported in the advection tests but still significantly low for 

practical applications. The increase in E
V
 can be attributed to the error in the divergence of 

velocity. It was zero in the case of the advection tests but depends on the convergence 

criterion in the solution of the Poisson’s equation used for the pressure. A stricter 

convergence criterion will lower the value E
V
 but will also cause an increase in the 

computational cost. The α distribution, 0.5 s after the bubble begins to rise, along a vertical 

cross-section passing through the center of gravity of the bubble is shown in Fig. 2.14(b). 

The ability of THAINC to capture the interface within two cells with no over or 

undershooting can also be confirmed. The same method can also be applied to simulate 

drops by making the liquid as the dispersed phase. 

 

2.5 Wetting of a solid plate by a drop 

Simulation of motion of a drop on a solid plate was carried out. This phenomenon is 

governed by the dynamic contact angle. Several empirical models for the dynamic contact 

angle (Tanner, 1973; Jiang et al., 1979; Kistler, 1993) have been proposed. They are based 

on the equilibrium contact angle and the Capillary number, Ca, 

σ

μ CLU
Ca           (2.48) 

where U
CL

 is the velocity of contact line. The dynamic contact angle model employed in 

this study is the one proposed by Yokoi et al. (2009), which is a combination of Tanner’s 

law (Tanner, 1973) and constant angles for wetting and dewetting phases, i.e. 
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    (2.49) 

where Φ
D
 is the dynamic contact angle, Φ

E
 the equilibrium contact angle, and Φ

mda
, Φ

mdr
, l

a
, 

and l
r
 are the model parameters.  

A falling drop experiment conducted by Yokoi et al. (2009) was simulated for 

validation. A clean water drop of R = 1.14 mm was used with an impact velocity of 1 m/s. 

The physical properties of water and air at 25 °C and 1 atm were used. The two-

dimensional axisymmetric coordinates were used and the mesh was 250×200. The cell size 

was uniform, Δ = 3.8×10
-5

 m, and the time step was 5×10
-7

 s. Φ
E
 was set at 90° and the 

model parameters Φ
mda

, Φ
mdr

, l
a
, and l

r
, were 114°, 52°, 9×10

-9
, and 9×10

-8
, respectively 

(Yokoi et al., 2009). A comparison of the predicted drop shape with the experiment is 

shown in Fig. 2.15. Transient behaviour of the wetting length defined as the length, which 

is in contact with the surface, was plotted in Fig. 2.16. The predicted height of the drop as a 

function of time is also shown in Fig. 2.17. The present result is in good agreement with 

the experiment. 

The volume conservation was also checked for the total volume of the drop as shown in 

Fig. 2.18(a). E
V
 remained of the same order as in the case of the simulation in Cartesian 

coordinates. The distribution at a vertical cross-section normal to the tip of the drop at 10 

ms is shown in Fig. 2.18(b). Here also the ability of THAINC to capture the interface 

within two cells with no over or undershooting can be confirmed.  
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         Experiment                  Simulation                 Experiment                  Simulation 

   

                             (a) 0 ms                                                           (d) 10 ms 

   

                             (b) 2 ms                                                           (e) 15 ms 

   

                             (c) 4 ms                                                           (f) 30 ms 

Fig. 2.15 Comparison between predicted and measured drop motion (Yokoi et al., 2009) 
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Fig. 2.16 Drop wetting length 

 

Fig. 2.17 Drop height 
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(a) Transient behaviour of the total volume 

 

(b) Distribution of α at vertical section normal to the tip of the drop at 10 ms  

Fig. 2.18 Simulation of drop motion on a solid plate 
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2.6 Conclusions 

The ability of tangent hyperbolic function to effectively represent the interface was 

confirmed. The problem of artificial wrinkling of interface in multi-dimensional 

simulations caused by the use of constant β (Xiao et al., 2005) was overcome with the 

proposed method by making β a function of the inclination of the interface without 

increasing the computational cost. The method is easy to program and extend to three 

dimensions. The accuracy of the proposed method was investigated by carrying out three 

types of advection tests and simulation of a rising bubble and wetting of a solid plate by a 

drop. The following results were obtained: 

(1) The proposed method has lower errors, E
V
 and E

S
, in the advection tests as 

compared to THINC, THINC/WLIC, Donor-Acceptor, and 1
st
 order upwind 

schemes. 

 

(2) The predicted motion of the gas-liquid interface in the case of rising bubble and 

drop on a solid plate was in good agreement with the reported behaviour.  

 

(3) THAINC is able to capture the gas-liquid interface within two cells with good 

volume conservation. There is also no overshooting or undershooting of the phase 

indicator function. 
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Chapter 3  
 

 

Extension of the interface tracking method to flows 

containing complex solid obstacles 

 

3.1 Introduction 

Coating processes often contain complex solid geometries such as the nozzle of the 

inkjet head which affect their overall behaviour. Hence, the numerical method must be 

equipped to handle the presence of complex solid geometries. This requires special 

treatment and several techniques (Peskin, 1977; Koshizuka et al., 1990; Landsberg, 1997) 

have been proposed for this. Among them, the immersed boundary (IB) method has been 

identified as a suitable method. The immersed boundary method deals with the shape of a 

solid body in an orthogonal structured grid. The use of such a grid facilitates easy 

programming as well as good numerical stability. The program is also easy to parallelize. 

Fadlun et al. (2000) developed a second-order accurate and highly efficient method. The 

efficiency and easiness of their method has made it very popular in this field (e.g. 

Paravento et al., 2008; Noor et al., 2009). 

In this chapter, an immersed boundary method is implemented on THAINC to perform 

simulation of multiphase flows in complex geometries or flows including solid objects of 

arbitrary shapes. The proposed method is referred to as THAINC-IB. The fluid-volume and 
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momentum fluxes through computational cell faces are calculated by taking the effect of 

the solid into account. The potential of THAINC-IB will be demonstrated using three 

examples: (1) advection of a square, (2) flow about cylindrical tubes in a staggered 

arrangement, and (3) a dam break problem with an obstacle.  

 

3.2 Numerical method for interface tracking in the presence of solid 

3.2.1 Transport equation of gas-liquid interface 

An equation for tracking gas-liquid interface in the presence of solid is derived in the 

following. Figure 3.1 shows a system consisting of a solid phase and two fluid phases. The 

solid phase is shown by the area shaded with hatched lines while the fluids are shown by 

the empty regions in the diagram. The fluids are separated from each other by an interface. 

The following assumptions are made in the present model: one solid phase and two fluid 

phases can be simultaneously present in a computational cell, the phases are immiscible, 

there is no phase change and the solid phase is stationary. The volume of a computational 

cell is therefore given by 

SLG θ+θ+θ=θ          (3.1) 

where the subscript S denotes the solid phase. The volume fractions of the phases satisfy 

1=α+α+α SLG          (3.2) 

Since the solid phase is assumed to be stationary, α
S
 follows 

0
αS 




t
          (3.3) 

The gas and liquid volume fractions, η
K
, in the fluid volumes are defined by 
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Fα

α
=η

K

K   (K = G, L)       (3.4) 

where 

LGF α+α=α          (3.5) 

The η
G
 and η

L
 satisfy 

1=η+η LG           (3.6) 

Substituting Eq. (3.4) into Eq. (2.4) yields 

  VV 



KK

K

t
ηη

η
        (3.7) 

Taking the volume average over the fluid region for Eq. (3.7) and using the volume 

averaged value of η
K
 inside the computational cell gives 

  θ
θ

η
θη

θ

1η

FF θFθF

 



dd

t

K
K

K VV       (3.8) 

where θ
F
 = θ

G
 + θ

L
. Applying the divergence theorem, Eq. (2.8), to Eq. (3.8) yields 

  SVSV
SS

 




FF
FF θ

η
η

θ

1η
dd

t

K
K

K       (3.9) 

The gas–liquid interface in the presence of solid phase is tracked by solving Eq. (3.9). For 

the sake of simplicity, η
K
 will be referred to as η from hereon. 
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Fig. 3.1 Phase field in the present model 

The following direction split is used to transport η: 













 














 




F

,,2/1,,,2/1,

F

,,2/1,,,2/1,*

θ

ΩΩ
η

θ
ηη

n

kjix

n

kjixn

n

kjix

n

kjixn
JJ

   (3.10) 













 














 




F

*

,2/1,,

*

,2/1,,*

F

*

,2/1,,

*

,2/1,,***

θ

ΩΩ
η

θ
ηη

kjiykjiykjiykjiy JJ
   (3.11) 













 














 




F

**

2/1,,,

**

2/1,,,**

F

**

2/1,,,

**

2/1,,,**1

θ

ΩΩ
η

θ
ηη

kjizkjizkjizkjizn
JJ

   (3.12) 

The calculation of J and Ω in THAINC-IB is given in detail in the following section. 

 

3.2.2 Solution algorithm based on THAINC-IB 

The calculation of J
x
 is modified to incorporate the presence of solid inside the cell by 

using the new phase indicator, η, and introducing area fraction of the fluid phase, A
F
(x), in 

Eq. (2.13) as 

Fluid

Solid

θG

θL

θS

Gas-Liquid interface

(Immiscible, No-phase change)

Stationary solid phase
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   


 

 

kji

kjikji

x

tux

iDiDkjix zdxyxAxJ

,,2/1

,,2/1,,2/1

,F,,2/1, η       (3.13) 

The distribution of η in the x-direction is obtained by using the same tangent hyperbolic 

function as in THAINC; i.e. η is approximated by the following function:  

 



















 

iD
iD

xiD x
x

xx
βγx ~

Δ
tanh1

2

1
η 2/1      (3.14) 

The equations for calculating γ, iDx~  and βx are the same but η is used instead of α. A
F,iD

(x) 

is approximated as  

  
















x

xx
aAxA

kji

kjiiD

,,2/1

,,2/1,F,F
      (3.15) 

where  

kjiDkjiD AAa ,,2/1,F,,2/1,F           (3.16) 

Details of the procedure to calculate A
F
 at a cell face are given in Section 3.2.4. Using the 

normalized coordinate, s, defined by Eq. (2.24) instead of x yields  

    iDxiD xsβγs ~Γtanh1
2

1
η        (3.17) 

Equation (3.15) then reduces to  

  asAsA kjiiD   ,,2/1,F,F         (3.18) 

Equation (3.13) can be written as a function of s as 
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   


 

0

,F,,2/1, η

xC

iDiDkjix zdsyxsAsJ                                                             

   













 





00

,,2/1,F ηηθ

xx C

iD

C

iDkji dsssadssA      (3.19) 

The first integral in Eq. (3.19) is also present in the original THAINC without IB and can 

be calculated using Eq. (2.28). The second integral in Eq. (3.19) is calculated as follows:  

    




00

~Γtanh
2

1
η

xx C

iDx

C

iD dsxsβγssdsss                                                             

 
0

321

2

24
xC

LLL
γs











        (3.20) 

where L
1
,  L

2
, and L

3
 are  

 
2

~Γtanh2

1
iDx xsβs

L


        (3.21) 

     
2

2
2

2

Li1ln2

x

x

β

smsmβs
L


       (3.22) 

 
2

2

3
1

s
sm

s
L 


          (3.23) 

where m and Li
2
 are functions given by 

    iDx xsβsm ~Γ2exp         (3.24) 

    iDx

l

l

xsβ
l

δ
δ ~Γ2expLi

1
22  





      (3.25) 

Equation (3.20) can be rewritten as  
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   321

20

24
η MMM

γC
dsss x

C

iD

x




                   (3.26)  

where M
1
, M

2
, and M

3
 are given by 

 
2

~Γtanh2

1
iDxxx xCβC

M


                     (3.27)  

        
2

22
2

2

0LiLi1ln2

x

xxxx

β

mCmCmβC
M


               (3.28)  

 
2

2

3
1

x

x

x C
Cm

C
M 


                    (3.29)  

Ω
x
 at (i+1/2, j, k) also has to be modified to incorporate the presence of the solid:  

 


 

 

kji

kjikji

x

tux

iDkjix zdxyxA

,,2/1

,,2/1,,2/1

,F,,2/1,       (3.30) 

Applying the variable transformation to the above equation yields 

 


 

0

,F,,2/1,

xC

iDkjix zdsyxsA    

  


 

0

,,2/1,Fθ

xC

kji dsasA          

 







 

2
θ

2

,,2/1,F
x

xkji

aC
CA       (3.31) 
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The second term in both J
x
 and Ω

x
 is an additional term that appears due to the presence of 

the solid phase. A
F,i+1/2,j,k

 and a will take the values, 1 and 0, respectively in the absence of 

solid in the computational cell,  giving us the same equations as THAINC. 

The above procedure is summarized in Fig. 3.2 and is similarly applied to the y and z 

directions. 

                      

Fig. 3.2 Calculation procedure 

 

Read ηn

Calculate AF(x) using Eq. (3.15)

Calculate Jx using Eq. (3.19)

Calculate η(x) using Eq. (3.14)

Calculate the coefficients γ, β, and xiD

using η instead of α in Eq. (2.17) etc.

For each direction

Calculate Ωx using Eq. (3.30)

Calculate η using Eq. (3.10) etc.

˜
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3.2.3 Implementation of immersed boundary method  

The direct forcing method proposed by Fadlun et al. (2000) was used to predict the fluid 

flow in the presence of solid phase. The solution of flow field requires information of 

velocity in the cells neighbouring the cell whose velocity is being computed. The velocities 

of the boundary cells must be set appropriately to ensure proper implementation of the 

boundary condition. An example of no-slip wall boundary condition is explained with the 

help of Fig. 3.3. Figure 3.3(a) shows a case when the cell is completely filled with solid or 

fluid, as in the case of THAINC in the previous chapter. Here the bottom cell is the 

boundary and the x-component of the velocity vector at the wall is set to zero by 

kjikji uu ,,2/1,1,2/1           (3.32) 

The presence of complex solid geometries may cause a cell face to be partially occupied by 

solid as shown in Fig. 3.3(b). In such a case, the boundary condition is implemented by 

                                   

               (a) No immersed boundary             (b) Immersed boundary 

Fig. 3.3 Implementation of wall boundary condition  

Wall

Fluid

ui+1/2,j,k

ui+1/2,j-1,k

Wall

Fluid
ui+1/2,j,k

ui+1/2,j-1,k

AF,i+1/2,j,k
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kji

kji

kji

kji u
A

A
u ,,2/1

,,2/1,F

,,2/1,F

,1,2/1
5.0

5.1






 
















       (3.33) 

The equation of continuity is discretized using the area fraction of the fluid phase: 

  0
face

1

F 


N

p
pp A SV          (3.34) 

where N
face

 is the number of faces enclosing a computational cell. η is transported using the 

updated velocity. 

 

3.2.4 Calculation of the A
F
 at a cell face  

The procedure to compute A
F
 at a face is explained. The line fraction of the fluid at an 

edge, denoted as ζ, is introduced. In two-dimensional calculations, since a face is defined 

by an edge, A
F
 at a face can be calculated as  

EdgeFace,F ζA          (3.35) 

As for the three-dimensional problem, a face is defined by four edges, and its A
F
 is 

computed from the ζ of the four edges. Figure 3.4 shows a cell containing solid phase and 

its right face, located at (i+1/2,j,k). The face is defined by the right edge, left edge, top edge, 

and bottom edge located at (i+1/2,j+1/2,k), (i+1/2,j–1/2,k), (i+1/2,j,k+1/2), and (i+1/2,j,k–

1/2) respectively. Using the four ζ values, the A
F
 is computed according to 

   BTLRBTLRFace,F ζζζζζζζζ
2

1
A       (3.36) 
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An edge is defined by a lower vertex and an upper vertex denoted by superscripts l and u, 

respectively. The ζ at an edge is defined as the sum of two components as shown in Fig. 3.5 

according to   

lu

Edge ζζζ           (3.37) 

For the edge that is aligned with the y-direction in two dimensions, ζ
u
 and ζ

l
 can be 

calculated as  
































 0,1,minmaxζ

u

f

u

Edgeu

y

Yy
       (3.38) 
































 0,1,minmaxζ

l

Edge

l

fl

y

yY
       (3.39) 

where y
Edge

 is the location of the cell vertex in the y-direction and Y
f
 the location on the 

solid surface computed from the function f supplied by the user, defining the solid surface 

such that it satisfies 

  0,f fEdge KK Yx   (K = u, l)      (3.40) 

where x
Edge

 is the location of the cell vertex in the x-direction. The above procedure can be 

similarly applied to edges aligned with the x-direction to compute their ζ values. Figure 3.6 

shows the possible combinations of an edge and solid. Table 3.1 shows the value of ζ for 

each case. 
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                     (a) Computational cell (i,j,k)                       (b) Right cell face of (i,j,k)    

Fig. 3.4 Computational cell containing a fixed solid-fluid interface 

 

 

Fig. 3.5 Edge containing solid 

 

Table 3.1 ζ value for an edge for different combinations 

Combination (a) (b) (c) (d) (e) 

ζ
u
 0 0 0 ε 1 

ζ
l
 1 ε 0 0 0 

ζEdge 1 ε 0 ε 1 

Note: 0<ε<1 

Fluid region

Solid region

x

z
y

ζL ζR

ζT

ζB

y

z

i+1/2, 

j-1/2, 

k+1/2

i+1/2, 

j+1/2, 

k+1/2

i+1/2, 

j-1/2, 

k-1/2

i+1/2, 

j+1/2, 

k-1/2

l u
Solid

Edge

ζuζl
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                (a)                    (b)                       (c)                 (d)                          (e) 

Fig. 3.6 Possible combinations of an edge and solid 

 

 

 

 

ζl

ζu

Vertex

Part of the edge

in the fluid

Part of the edge 

in the solid

Solid

x

y

ζl

ζu

ζl

ζu

ζl

ζu ζu

ζl
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For the three-dimensional case, ζ
u
 and ζ

l
 are calculated depending on the alignment of the 

edge with an axis according to 
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  (3.41) 
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  (3.42) 

where Xf, Yf, and Zf are computed such that they satisfy 

 
 
  axis  with aligned Edgesfor      ,  0,,f

axis  with aligned Edgesfor      ,  0,,,f

axis  with aligned Edgesfor      ,  0,,,f

fEdgeEdge

EdgefEdge

EdgeEdgef

zZyx

yzYx

xzyX

KKK

KKK

KKK







          (K = u, l) (3.43) 
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3.3 Advection tests using THAINC-IB 

3.3.1 Advection in one-dimension 

 

(a) Schematic of the calculation domain 

 

      

(b) Initial shape                 (c) Final shape 

Fig. 3.7 Advection of a square in one-dimension by THAINC 

The ability of THAINC-IB to accurately transport the phase in the presence of a solid 

was verified by transporting a square between two parallel walls. First the errors, E
S
 and E

V
, 

were evaluated for one-dimensional transportation of a square between parallel walls such 

that the cells either contained only solid material or fluid as shown in Fig. 3.7(a). This 

resulted in calculation of the fluxes only by THAINC. The size of the square was 15×15 

cells, and η was set at 1. The square was transported in the x-direction over a length of 5 

η = 1

Solid

15 cells

15 cells
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times the width of the square. C
x
 was set at 0.25. The distortion in shape shown in Fig. 

3.7(c) and the volume error after transportation were small, i.e., E
S
 = 2.8%, and E

V
 = 10

-8
%. 

Next, the same advection test was carried out, but the square was positioned such that 

some of the cells contained both solid and fluids. The initial phase distributions were set by 

dividing the computational domain into three regions as shown in Fig. 3.8: (a) cells 

containing only solid phase, i.e., α
S
 = 1, (b) cells containing both fluid and solid phases, i.e., 

α
F
 = 0.5 and α

S
 = 0.5, and (c) cells containing only fluid phases, i.e., α

F
 = 1. The errors, E

S
 

and E
V
, were found to be exactly the same as in the former case.  

 

(a) Schematic of the calculation domain 

                

(b) Initial shape              (c) Final shape 

Fig. 3.8 Advection of a square in one-dimension by THAINC-IB 

Region (a)

η = 1

Region (a)

Region (c)

Region (b)

Region (b)

Solid

15 cells

15 cells

αF = αS = 0.5
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3.3.2 Advection in two-dimensions 

A two-dimensional advection test was also carried out by transporting a square 

diagonally over a length equal to 5 times the width of the square. The square of size 15×15 

cells with η = 1 was positioned as shown in Fig. 3.9. The following condition was used for 

numerical stability:  

25.0OC            (3.44) 

where the definition of C
O
 is  

y

tv

x

tu
C

jiji

O
Δα

Δ

Δα

Δ
1/2

F

2/1,

1/2

F

,2/1 
          (3.45) 

The reason for the use of Eq. (3.45) instead of Eq. (2.41) is as follows. In the presence of 

solid phase in the cell, the amount of fluid in the cell is no longer ΔxΔy; rather it is α
F
ΔxΔy. 

Enforcing the condition, Eq. (3.44), with Eq. (3.45) ensures that the amount of fluid to be 

advected from a cell is not more than the amount present in it and hence ensures numerical 

stability by preventing the value of η from going below 0. The following definition should 

be used for three-dimensional simulations:  
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Δ

Δα
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Δ
1/3
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2/1,,

1/3

F

,2/1,

1/3

F

,,2/1 
        (3.46) 

where w is the z component of the velocity. The shape of the square after advection with C
O
 

= 0.25 is shown in Fig. 3.9(c). The E
S
 was 6.8%, and E

V
 was of the order of 10

-2
%. This 

reduction in the volume was caused due to the loss of η formed in the direction of the wall 

because of numerical diffusion. In the previous example, this problem was not encountered 

since there was no advection in the y direction and due to the absence of any solid matter in 

the x-direction. This slight reduction in volume would be still acceptable for practical 

purposes.  
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a) Schematic of the calculation domain 

                       

(b) Initial shape               (c) Final shape 

Fig. 3.9 Two-dimensional advection of a square in the presence of solid 

 

Solid
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3.4 Flow about cylindrical tubes in a staggered arrangement 

To demonstrate the ability of the immersed boundary method, single phase flow around 

a bundle of cylindrical tubes in a two-dimensional channel shown in Fig. 3.10 was 

calculated. The boundaries of the channel were slip walls. The tubes were arranged in a 

staggered manner, and the flow was let in uniformly. The inlet velocity was altered, and its 

effect on the pressure drop between the inlet and outlet was calculated. The number of 

computational cells in the flow and orthogonal directions were 250 and 50, respectively. 

The number, N
T
, of tubes in the flow direction was 10 and the diameter of the tubes, d

T
, 

were 80 mm. The pitch, b, between two adjacent tubes was 1.5d
T
. The cell size was 

uniform, and its width was 0.125d
T
. 

 

Fig. 3.10 Schematic of the flow channel 

The friction factor, f
tube

, was evaluated by substituting the predicted pressure drop ΔP 

across the tube bundle into  

T
2

max

tube

1

2
ρ

Δ

4

1

NU

P
f









          (3.47) 

where U
max

 is the maximum velocity between the tubes defined by 

Slip wall

Slip wallInlet Outlet
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













Tc

inmax
dnD

D
UU          (3.48) 

where U
in

 is the inlet velocity, D is the channel width, and n
c
 is the effective number of 

tubes per unit length of the cross-section, which is calculated as  

b

D
n c            (3.49) 

The predicted f
tube

 was compared with the following empirical correlation proposed by 

Bergelin et al. (1952):  

6.1

T

v

tube

70










b

d

Re
f           (3.50) 

where Re
v
 is the Reynolds number defined by 

μ

ρ maxv

v

Ud
Re            (3.51) 

where d
v
 is the hydraulic diameter and the maximum velocity between the tubes defined by  

T

2

T2

v
π

4
π

4
d

d
b

d



           (3.52) 

Figure 3.11 shows the relation between f
tube

 and Re
v
. Good agreement between the 

prediction and correlation is obtained. Figure 3.12 shows a velocity profile for Re
v
 = 32. A 

reasonable prediction of the velocity field is obtained. 
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Fig. 3.11 Comparison of different friction factor values versus Reynolds number 

 

 

Fig. 3.12 Velocity distribution, Re
v
 = 32 
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                     (a) t = 0 s                                       

                                

                        (b) t = 5 s 

                            

                         (c) t = 10 s 

                            

                           (d) t = 15 s 

Fig. 3.13 Liquid layer flowing into a staggered arrangement of cylinders 

A simulation of a gas–liquid two-phase flow in this geometry was also carried out to 

demonstrate the applicability of the proposed method to two-phase flows in complex 

geometries. The initial condition is shown in Fig. 3.13(a). Initially, a liquid layer with a 

height of 15 cells was assumed. The liquid and gas uniformly flowed into the domain from 

the left boundary at a constant velocity of 0.1 m/s. The following Neumann boundary 

condition for η was imposed on both the inlet and outlet: 

Gas 

inlet

Liquid 

inlet

Outlet

x

y

g
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0
η






x

K   (K = G, L)       (3.53) 

The liquid height in the upstream of the tubes increases with time as shown in Fig. 

3.13(b), (c), and (d). This can be attributed to the large pressure drop due to the presence of 

the tubes, and this behaviour is physically reasonable. This example has demonstrated the 

capability of THAINC-IB to handle a two-phase flow in a complex geometry. 

 

3.5 Flow over an obstacle 

A two-dimensional water column under the influence of gravity as shown in Fig. 3.14 

(a) was calculated. This problem is known as the “broken dam problem.” The number of 

computational cells was 80×100 with the cell size of 0.0073 m. The height, T, and width, W, 

of the computational domain were 0.73 m and 0.584 m, respectively. The height, H, and 

width, L, of the water column were 0.292 m and 0.146 m, respectively. The predicted 

position, Z, of the water front is compared with the experimental data (Koshizuka et al., 

1997) in Fig. 3.14(b), in which Z
*
 is the dimensionless front position and T

*
 is the 

dimensionless time defined by 

L

Z
Z *

          (3.54) 

L

Ng
tT *

         (3.55) 

where N is the aspect ratio of the water column defined as 

L

H
N            (3.56) 

The prediction agrees well with the experimental data.  
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(a) Schematic of the computational domain 

 

 

(b) Water front tip position as a function of time 

Fig. 3.14 Broken dam in the absence of a containment dyke 
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Then water flowing over an obstacle (Greenspan and Young, 1978) was simulated. A 

schematic of the calculation domain is shown in Fig. 3.15. The numbers of computational 

cells in the x and y directions were 300 and 200, respectively, and the cell size was 0.00254 

m in each direction. The initial height of the water column was 0.2032 m while the width 

was 0.2286 m. A right-angled triangular dyke of angle 60° was placed at a distance, R, of 

0.2286 m from the water front. The height of the dyke, A, was 0.1016 m.  

            

Fig. 3.15 Schematic of flow over a containment dyke 

A comparison between the experiment (Greenspan and Young, 1978) and simulation is 

shown in Fig. 3.16. The prediction was in good agreement with the experiment. The 

amount of spillage, which is the water that spills over and is collected on the right hand side 

of the dyke, was computed in the simulation and compared with the experimental data for a 

quantitative comparison. The spillage in the experiment was reported as 21% of the initial 

volume of the water, and in the simulation it was 20.5%. Hence, the simulation was able to 

accurately predict the spillage within a relative error of 2.4%. To demonstrate THAINC-

IB’s ability to maintain the sharpness of the interface, the distribution of η along the dotted 
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line in Fig. 3.16(b) is shown in Fig. 3.17. The sharpness of the interface was maintained 

even after large interface deformation. 

                       

                                   (a) Experiment           (b) Simulation 

Fig. 3.16 Comparison of the flow over a containment dyke 

 

Fig. 3.17 η distribution along the cross-section at Line A 

Line ALine A

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.05 0.10 0.15 0.20

η 

x [m] 



                                

 

75 

 

3.6 Conclusions 

A numerical method, THAINC-IB, for predicting the motion of gas–liquid interface in 

the presence of complex solid geometry in the flow domain was developed. First the 

transport equations of the fluid volume fractions in the presence of a stationary solid were 

derived. The method for solving the transport equation of the gas volume fraction is based 

on the THAINC developed in the previous chapter, whereas the immersed boundary 

method proposed by Fadlun et al. (2000) is implemented so as to deal with complicated 

solid geometries. The proposed method does not need to reconstruct the interface 

configuration in a computational cell as in PLIC-type methods. Owing to this feature, 

implementation of this method to three-dimensions is easier compared to the methods 

implementing geometric reconstruction. The applicability of THAINC-IB was examined 

through several tests: linear transportations of a square, flows about cylindrical tubes in a 

staggered arrangement, and dam break problems. As a result, the following conclusions 

were obtained:  

(1) THAINC-IB conserves the fluid volumes well.  

 

(2) The errors in the transported interface shape predicted using THAINC-IB are small.  

 

(3) Pressure drops due to the presence of many cylinders in a staggered arrangement are 

well predicted.  

 

(4) The motion of a water column in the presence of a triangular dyke is accurately 

predicted using THAINC-IB. 

 

(5) The interface sharpness is well preserved even after large interface deformation. 
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Chapter 4  
 

 

Assessment of numerical treatments for evaluation of surface 

tension force in interface capturing simulations 

 

4.1 Introduction 

Droplet sizes varying from sub-micron to a few hundred micron meters are often 

encountered in coating processes. The accurate prediction of wetting behaviour of droplets 

of such scales is important since it plays an important role in the quality of coating. 

Interface tracking methods based on the volume-of-fluid method enable us to deal with the 

interface motion of a droplet with accurate mass conservation. Due to the presence of gas-

liquid interface of micron and sub-micron meter length scale, the surface tension force is 

the dominant force affecting the behaviour of gas-liquid interface motion. Hence, the 

accurate evaluation of the surface tension force is of primal importance when simulating 

the surface-tension-driven interface motion.  

In Chapters 2 and 3, a numerical method for accurate transport of the gas-liquid interface 

was proposed and equipped to handle the presence of complex solid geometries. However, 

its accurate transport also depends on the accurate estimation of the surface tension force 

which directly affects the flow field on which the transport of the gas-liquid interface is 

based. The surface tension force estimation in the previous chapters was based on CSF 

model (Brackbill et al., 1992). This model however cannot accurately evaluate the interface 
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curvature when using the volume fraction as a scalar function. The numerical errors in 

surface tension force are known to cause the so-called spurious current. One of the 

remedies for the inaccurate evaluation is to use a level set function reconstructed from the 

volume fraction for the curvature evaluation instead of the volume fraction. This method is 

referred to as the coupled level set and volume-of-fluid (CLSVOF) method (Sussman et al., 

1994; Hayashi et al., 2014). Although CLSVOF is more accurate than the original CSF, its 

computational cost is higher due to the re-initialization of level set function. In addition, 

Cummins et al. (2005) pointed out that the error in curvature evaluated using the 

reconstructed level set function does not decrease with increasing spatial resolution. They 

also showed that the height function is the best from the point of view of accuracy and 

computational cost, provided that the interface is resolved with a sufficient spatial 

resolution. Popinet (2009) improved the height function method, in which the 

computational stencil is adjusted for capturing the interface configuration. 

  Francois et al. (2006) pointed out that the cause of spurious current is not only the error 

in curvature but also the inappropriate discretization for the normal to the interface in CSF. 

They proposed a modified discretization, which is called the balanced-force algorithm 

(BFA), to assure the force balance between the pressure and surface tension force in an 

equilibrium state. The combination of the height function and balanced-force algorithm 

gives the most accurate evaluation of the surface tension force. 

  The contact angle affects the behaviour of gas-liquid interface on a solid surface and 

hence its proper modelling is also necessary. The static contact angle between a solid 

surface and the gas–liquid interface has been taken into account in interface tracking 

methods (Brackbill et al., 1992; Yokoi et al., 2009; Afkhami et al., 2004; 2007). In CSF, 

the unit normal to the gas–liquid interface at a solid surface in curvature evaluation is given 

so as to satisfy the specified static contact angle (Brackbill et al., 1992). Afkhami et al. 

(2004, 2007) extended the height function method to deal with the static contact angle and 

implemented the balanced-force algorithm for accurate predictions. They compared CSF 

with their method for static drops on a solid surface and confirmed that their method gives 
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much smaller spurious currents. However the comparisons were made only for mili/sub-

mili meter drops and accuracy tests for smaller droplets such as sub-micron meter droplets 

appearing in coating process have not been carried out yet. With decreasing the drop size, 

the surface tension force becomes dominant so that spurious currents may strongly affect 

predictions of very small droplets. In addition, Afkhami et al. (2004; 2007) did not account 

for the dynamic contact angle, which is of great importance in wetting processes in reality. 

In this chapter, the surface tension force calculation based on the height function method 

proposed by Popinet (2009) and balanced force algorithm is implemented into the proposed 

interface tracking method, THAINC (tangent of hyperbola with adaptive slope for interface 

capturing). Effects of droplet size on numerical errors in surface tension force are 

investigated by varying the sizes of static droplets from mili to sub-micron meters. In 

addition, a model of dynamic contact angle proposed by Yokoi et al. (2009) is implemented 

into the height function method. Dynamic wetting by a mili-meter sized clean water drop 

(Yokoi et al., 2009) is simulated using the proposed method and the results are compared 

with those obtained from CSF and CLSVOF. A simulation of a sub-micron meter clean 

water droplet is carried out using the dynamic contact angle model to examine whether or 

not the proposed method can stably simulate the motion of a sub-micron meter droplet. 

 

4.2 Evaluation of surface tension force 

The evaluation of surface tension force, Eq. (2.33), requires calculation of N and κ. 

Since a staggered variable arrangement is used for each variable, it requires surface tension 

forces to be calculated at the cell faces. The effect of numerical techniques for computing N 

and κ to evaluate surface tension force on the prediction of a drop in two-dimensional 

Cartesian coordinates will be given in detail in the following sections. 
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4.2.1 Normal vector, N 

In this study, two schemes for computing N were examined. One of them is a scheme 

utilized in the original CSF, which is referred to as the ALE (Arbitrary Lagrangian-

Eulerian) like scheme. The other scheme is the one used in the balanced-force algorithm 

(Francois et al., 2006). 

 

4.2.1.1 Arbitrary Lagrangian-Eulerian (ALE) like scheme 

A brief description of the ALE like scheme is given below. The x and y components, N
x
 

and N
y
, of N at the cell vertex, (i+1/2, j+1/2), are calculated using the four neighbouring 

cell centre values of α shown in Fig. 4.1(a): 

x
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N at the cell centre is computed by taking the average of N at the four vertices of the cell: 

4
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N     (4.3) 

The components N
x
 and N

y
 required at (i+1/2, j) and (i, j+1/2), respectively, for the 

momentum equations are computed by taking the average of those at the cell centres: 
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4.2.1.2 Balanced-force algorithm 

Francois et al. (2006) proposed the balanced-force algorithm for a collocated variable 

arrangement. Their method was implemented for the staggered variable arrangement in this 

study. Francois et al. (2006) showed that the pressure jump across the interface will be σκ if 

the discretization of α in Eq. (2.35) is carried out in the same manner as that of the pressure 

term in the momentum equations, i.e. 

x
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Hence, as shown in Fig. 4.1(b), N at the cell face is computed by 
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      (a) ALE like scheme                     (b) BFA 

Fig. 4.1 Variable arrangement in a grid 
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4.2.2 Interface curvature calculation 

The interface curvature is calculated at the cell centre and then interpolated to the cell 

face by taking the weighted average of the neighbouring cell centre values (Renardy and 

Renardy, 2002) as follows: 

jiji

jijijiji

ji
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ww

,1,

,1,1,,

,2/1

κκ
κ


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



        (4.10) 

where w is the weight given by 

 jijijiw ,,, α1α           (4.11) 

This ensures that the interpolated curvature value at the cell face is close to the curvature of 

the nearest interface. 

 

4.2.2.1 Continuum surface force (CSF) 

Equation (2.36) can be written as 



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N

N
CSFκ          (4.12) 

The above equation can also be transformed into the following form by applying the chain 

rule  
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The calculation of curvature using Eq. (4.13) instead of Eq. (4.12) yields better results 

(Brackbill et al., 1992). The interface normal used in this case is the ALE like scheme. 



                                

 

84 

 

4.2.2.2 Height function (HF) 

The height function based on a variable stencil proposed by Popinet (2009) is used. In 

this method, the stencil is adjusted to capture the interface completely. The basic idea is 

explained with the help of a vertical stencil shown in Fig. 4.2, and this can be easily 

extended to a horizontal stencil. The individual stencil for calculating a height for the cell 

containing an interface, (i, j), is selected such that the starting cell, (i, j
1
), is completely 

filled with the dispersed phase while the last cell, (i, j
0
), is completely empty. The height, h, 

is then defined by 

yh
jk

jk

kiji  




0

1

,, α          (4.14) 

The choice of stencils is based on the orientation of the interface. A horizontal stencil is 

used if the interface is more vertical, i.e. |N
x
|>|N

y
|, else a vertical stencil is used. The 

interface normal computed using the method described in Section 4.2.1.1 is used to 

determine the orientation of the interface. The interface normal used to compute the 

curvature for the vertical stencil shown in Fig. 4.2 is defined by 
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h
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The first order derivative of h with respect to x is computed by the second-order centred 

difference scheme: 

x

hh

x

h ,ji,ji

Δ2

11  





         (4.16) 

Substituting Eq. (4.15) into Eq. (4.12) yields 
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


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



x

h

x

h

        (4.17) 

The second order derivative of h with respect to x is computed by the second-order centred 

difference scheme: 

2

,1,,1

2

2

Δ

2

x

hhh

x

h jijiji  





        (4.18) 

 

Fig. 4.2 Variable stencil for calculation of heights 

The calculation of curvature at a cell containing interface requires its neighbouring heights. 

In the case of using the heights based on variable stencils as compared to fixed stencils, 

there is a large possibility that not all heights begin from the same baseline, as illustrated in 
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Fig. 4.2, and the heights have to be readjusted so that all the three heights, h
i-1,j

, h
i,j

, and 

h
i+1,j

, have the same baseline. This is done by identifying the heights that need to be 

adjusted, h
i,j

  and h
i+1,j

 for the case shown in Fig. 4.2. 

 

4.2.3 Wall treatment 

An interface cell on the wall requires special treatment to implement the contact angle. 

In the case of CSF, this is carried out by modifying the unit normal vector used to calculate 

the curvature. Brackbill et al. (1992) proposed to compute the unit normal vector at points 

on the solid surface by 

ΦsinΦcos tw nnn          (4.19) 

where Φ is the contact angle, n
w
 the unit inward normal vector of the wall, and n

t
 the unit 

tangent vector of the wall pointing into the dispersed phase. An example of n
w
 and n

t
 is 

shown in Fig. 4.3. 

 

Fig. 4.3 Unit normal vector of the wall 

Wall

nw

nt

nw

nt
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(a) Horizontal stencil 

 

 

(b) Vertical stencil 

Fig. 4.4 Contact angle implementation in HF 

The contact angle implementation to the height function is carried out using the same 

procedure proposed by Afkhami et al., (2007). The contact angle is implemented by 

interpolating the height inside the wall in such a manner that the angle between the height 
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inside the wall and the central height is kept equal to the contact angle as shown in Fig. 4.4. 

When the stencil is horizontal (Fig. 4.4(a)), the height can be interpolated using 




tan

Δ
,1,

y
hh jiji

         (4.20) 

whereas, when the stencil is vertical (Fig. 4.4(b)), 

 tanΔ,1, xhh jiji         (4.21) 

The volume fractions for cells inside the wall are required for computing the heights in 

the cells close to the walls. This is done by extending the interface inside the wall as shown 

in Fig. 4.5, and assigning values of α to these cells accordingly.  

 

Fig. 4.5 Interpolation of α value for cells inside the wall 
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4.3 Validation of the code 

The effects of the numerical treatments of N and κ on the accuracy of prediction have 

often been investigated in literature (Cummins et al., 2005; Francois et al., 2005) through 

simulations of neutrally buoyant circular drops. Hence the developed numerical code was 

validated by examining whether or not results of the benchmark test obtained with the code 

are similar to those in literature.  

Due to the point symmetry of a neutrally buoyant circular drop, the surface tension 

forces at all the interface points should take the same value. Hence, the drop should not 

have any motion and the pressure jump across the interface, ΔP
INT

 shall follow Laplace’s 

formula: 

σκΔ INT P           (4.22) 

The theoretical value of curvature for the circle is 

R

1
κTH            (4.23) 

where R is the radius of the drop. Different combinations of curvatures, namely κ
CSF

, κ
HF

, 

and κ
TH

, and normal vectors, N
ALE

 and N
BFA

, described in Section 4.2, were examined, 

where the subscripts ALE and BFA denote the ALE like scheme and the balanced-force 

algorithm, respectively. 

The accuracy was evaluated by calculating the magnitude, |V
MAX

|, of the maximum 

Samspurious current and the error in pressure, Err
P
, defined by 

INT

INTMAX

Δ

ΔΔ

P

PP
ErrP


         (4.24) 
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where ΔP
MAX

 is the difference between the maximum and minimum pressures in the 

calculation domain. 

The physical properties of water and air at 25 °C and 1 atm were used. The tests were 

carried out for a drop of radius R = 1 mm. The drop size used was of the same order as that 

in Francois et al. (2006). The effect of spatial resolution was checked by using mesh sizes 

of 50×50 and 100×100. A uniform cell size, Δ = Δx = Δy, is used in the following for 

simplicity. The R/Δ, for 50×50 and 100×100 meshes were 10 and 20, respectively. The 

simulations were carried out until α distribution, i.e. the shape, and spurious currents did 

not change with time. The errors for the two spatial resolutions are summarized in Tables 

4.1 and 4.2, respectively. 

Table 4.1 Errors in velocity and pressure for 1 mm drop using 50×50 mesh 

Normal vector N
ALE

   N
BFA

   

Curvature κ
CSF

 κ
HF

 κ
TH

 κ
CSF

 κ
HF

 κ
TH

 

Err
P
 [%] 9.47 0.90 1.91 15.77 0.50 2.40×10

-11
 

|V
MAX

| [m/s] 8.94×10
-2

 6.85×10
-2

 5.44×10
-2

 4.76×10
-2

 4.66×10
-8

 1.47×10
-13

 

 

Table 4.2 Errors in velocity and pressure for 1 mm drop using 100×100 mesh 

Normal vector N
ALE

   N
BFA

   

Curvature κ
CSF

 κ
HF

 κ
TH

 κ
CSF

 κ
HF

 κ
TH

 

Err
P
 [%] 3.70 6.65 0.08 18.16 0.11 2.80×10

-11
 

|V
MAX

| [m/s] 9.53×10
-2

 1.17×10
-1

 5.66×10
-2

 4.04×10
-2

 3.56×10
-8

 1.11×10
-13

 

 

 

 

 



                                

 

91 

 

 0.05 m/s 

    

                   (a) κ
CSF

, N
ALE                  (d) κ

CSF
, N

BFA 

    

(b) κ
HF

, N
ALE      (e) κ

HF
, N

BFA 

    

(c) κ
TH

, N
ALE      (f) κ

TH
, N

BFA 

Fig. 4.6 Spurious currents for 1 mm droplet on 50×50 mesh 
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Figure 4.6 shows the spurious currents in the case of 50×50. The use of N
ALE

 resulted in 

larger spurious currents compared with N
BFA

 for the same method for κ. N
ALE

 gave the 

same order of spurious currents for both methods of κ calculation and the spurious current 

did not attenuate even with the theoretical curvature. This result indicates that despite a 

very accurate evaluation of κ, spurious currents will be generated due to the numerical 

errors caused by N
ALE

. On the other hand, N
BFA

 gave very small errors in the case of 

theoretical curvature. The errors reduced with increasing the spatial resolution in the case 

of height function. Accurate evaluation of local mean curvature as well as appropriate 

discretization for N are therefore very important to reduce the spurious currents, and the 

combination of N
BFA

 and κ
HF

 is the best among the available schemes for N and κ. These 

results are similar to those in literature (Francois et al., 2006); hence the validity of the 

present code has been confirmed. 

 

4.4 Numerical tests for neutrally buoyant droplets 

Simulations of R = 10 μm and 0.1 μm droplets were also carried out using N
BFA 

and the 

two methods for curvature, CSF and HF, to examine the effects of the droplet size on the 

numerical errors. The mesh used was 100×100 and R/Δ was 20. The errors are shown in 

Table 4.3 and the spurious currents are shown in Fig. 4.7. No significant change was found 

in the order of errors for both CSF and HF with the change in droplet size, and the 

combination of N
BFA

 and κ
HF

 is most accurate. This demonstrates the ability of the 

combination of N
BFA

 and κ
HF

 to accurately simulate sub-micron meter droplets. 
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0.05 m/s 

    

(a) 10 µm, κ
CSF     (b) 0.1 µm, κ

CSF 

    

(c) 10 µm, κ
HF       (d) 0.1 µm, κ

HF
 

Fig. 4.7 Spurious currents for different droplet sizes 

Table 4.3 Errors in velocity and pressure for 10 µm and 0.1 µm droplets 

Droplet size 10 μm 0.1 μm 

Curvature κ
CSF

 κ
HF

 κ
CSF

 κ
HF

 

Err
P
 [%] 15.01 0.12 15.98 0.12 

|V
MAX

| [m/s] 8.40×10
-2

 1.14×10
-8

 1.72×10
-1

 6.74×10
-9
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4.5 Numerical tests for droplets adhering to walls 

Droplets on solid surfaces were simulated to check the occurrence of spurious currents 

due to implementation of contact angle. Droplets were initialized on the solid surface in 

such a manner that the initial angle between the gas–liquid interface and the solid surface 

at the point of contact was the same as the given contact angle. Hence the droplet was 

initialized at its equilibrium position. 

Table 4.4 Errors for the droplet initialized at its equilibrium position; R = 10 μm 

Curvature κ
CSF

   κ
HF

   

Contact angle 60° 90° 120° 60° 90° 120° 

|V
MAX

| [m/s] 6.56×10
-2

 9.88×10
-2

 4.59×10
-2

 5.28×10
-9

 5.72×10
-9

 1.71×10
-8

 

 

Table 4.5 Errors for the droplet initialized at its equilibrium position; R = 0.1 μm 

Curvature κ
CSF

   κ
HF

   

Contact angle 60° 90° 120° 60° 90° 120° 

|V
MAX

| [m/s] 9.86×10
-2

 1.09×10
-1

 1.06×10
-1

 9.17×10
-9

 8.12×10
-9

 6.60×10
-9

 

Simulations were carried out for droplets of R = 10 μm and 0.1 μm. Since N
ALE

 gave 

much larger errors than N
BFA

, only N
BFA

 was used. The resolution was fixed at R/Δ = 20 

and 100×70 mesh was used. Three values of Φ, i.e. 60°, 90° and 120°, were tested. The 

spurious currents for Φ = 60° and 120° for droplets of R = 10 μm and 0.1 μm are shown in 

Figs. 4.8 and 4.9, respectively. Tables 4.4 and 4.5 show |V
MAX

|. The errors for CSF and HF 

were of the same order compared with their respective cases of static circular droplets in 

Section 4.4. Hence the implementation of the contact angle does not cause any extra errors. 

This result suggests that κ
HF

 should be used for accurate predictions. 
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 0.05 m/s 

   

(a) κ
CSF

 , Φ = 60°     (b) κ
HF

 , Φ = 60° 

   

(c) κ
CSF

 , Φ = 120°     (d) κ
HF

 , Φ = 120° 

Fig. 4.8 Spurious currents for 10 µm droplet initialized at its equilibrium position 

 

0.05 m/s 

   

(a) κ
CSF

 , Φ = 60°     (b) κ
HF

 , Φ = 60° 

   

(c) κ
CSF

 , Φ = 120°     (d) κ
HF

 , Φ = 120° 

Fig. 4.9 Spurious currents for 0.1 µm droplet initialized at its equilibrium position 
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           (a) κ
CSF

, Time = 0 s            (b) κ
CSF

, Time = 0.02 ms        (c) κ
CSF

, Time = 0.2 ms 

         

             (d) κ
HF

, Time = 0 s           (e) κ
HF

, Time = 0.02 ms         (f) κ
HF

, Time = 0.2 ms 

Fig. 4.10 Droplet motion with contact angle of 60° (R = 10 µm) 

            

           (a) κ
CSF

, Time = 0 s            (b) κ
CSF

, Time = 0.02 ms        (c) κ
CSF

, Time = 0.2 ms 

           

             (d) κ
HF

, Time = 0 s           (e) κ
HF

, Time = 0.02 ms         (f) κ
HF

, Time = 0.2 ms 

Fig. 4.11 Droplet motion with contact angle of 120° (R = 10 µm) 

Next, the motion of semi-circular droplets with radius 10 μm and 0.1 μm over a solid 

surface due to the contact line motion was computed to check the spurious currents after 

the droplets reached their equilibrium state. The results obtained using CSF and HF were 

compared. The motions of droplet of R = 10 μm at Φ = 60° and 120° is shown in Figs. 4.10 

and 4.11, respectively. The droplet shapes in the equilibrium state for R = 0.1 μm are 

Theoretical Shape

Theoretical Shape

Theoretical Shape

Theoretical Shape
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shown in Figs. 4.12 and 4.13. The theoretical interface shape is represented by the dotted 

lines. The height function accurately predicts the equilibrium shape while there is some 

deviation in the case of CSF. The |V
MAX

| are summarized in Tables 4.6 and 4.7. The 

velocities for both CSF and HF settle down to the same order of the spurious currents as 

compared to their respective cases of the static droplet in equilibrium over a solid surface.  

Table 4.6 Errors for semi-circular droplet at different contact angles, R = 10 μm 

Curvature κ
CSF

 Κ
HF

 

Contact angle 60° 120° 60° 120° 

|V
MAX

| [m/s] 3.20×10
-2

 6.68×10
-2

 3.05×10
-8

 8.39×10
-8

 

Table 4.7 Errors for semi-circular droplet at different contact angles, R = 0.1 μm 

Curvature κ
CSF

 κ
HF

 

Contact angle 60° 120° 60° 120° 

|V
MAX

| [m/s] 1.67×10
-1

 5.58×10
-2

 5.42×10
-8

 6.09×10
-8

 

 

   

 (a) κ
CSF

, Time = 0.2 µs     (b) κ
HF

, Time = 0.2 µs   

Fig. 4.12 Droplet motion with contact angle of 60° (R = 0.1 µm) 

   

(a) κ
CSF

, Time = 0.2 µs      (b) κ
HF

, Time = 0.2 µs  

Fig. 4.13 Droplet motion with contact angle of 120° (R = 0.1 µm)  

Theoretical Shape Theoretical Shape

Theoretical Shape Theoretical Shape
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The above simulations have demonstrated that the combination of N
BFA

 and κ
HF

 is the 

most accurate not only for predicting buoyant droplets but also for predicting droplets on a 

solid surface. 

 

4.6 Wetting of a solid plate by drops 

   

                                (a) 0 ms                                                             (d) 10 ms 

   

                                (b) 2 ms                                                              (e) 15 ms 

   

                                (c) 4 ms                                                           (f) 30 ms 

Fig. 4.14 Comparison between predicted and measured drop motion (Yokoi et al., 2009) 

Height function with BFA (Present)
CLSVOF (Yokoi et al., 2009)

Height function with BFA (Present)
CLSVOF (Yokoi et al., 2009)

Height function with BFA (Present)
CLSVOF (Yokoi et al., 2009)

Height function with BFA (Present)
CLSVOF (Yokoi et al., 2009)

Height function with BFA (Present)
CLSVOF (Yokoi et al., 2009)

Height function with BFA (Present)
CLSVOF (Yokoi et al., 2009)
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First, the falling drop experiment for a clean water drop conducted by Yokoi et al. 

(2009) was simulated with the surface tension force calculated from the combinations of 

N
BFA

 with κ
HF

 and N
ALE

 with κ
CSF

. The simulation conditions were kept the same as those 

described in Section 2.5. The implementation of height function in two-dimensional 

axisymmetric coordinates is carried out following the method proposed by Ferdowsi 

(2012). It is explained in Appendix A.  

The predicted and measured drop motions are compared in Fig. 4.14. The drop shape 

predicted with the combination of HF and BFA in the wetting and dewetting phases is in 

better agreement with the experiment than CSF. The predicted wetting length and height of 

the drop as a function of time is shown in Figs. 4.15 and 4.16, respectively. The results are 

also compared with CLSVOF (Yokoi et al., 2009). The prediction of drop height is slightly 

better than that obtained using CLSVOF. Hence, the combination of HF and BFA is able to 

predict the motion of the drop with the same degree of accuracy and less computational 

cost compared with CLSVOF. 

 

Fig. 4.15 Drop wetting length 
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Fig. 4.16 Drop height 

               

   (a) Time = 0.0 µs            (b) Time = 0.005 µs   

               

   (c) Time = 0.01 µs              (d) Time = 1.0 µs   

Fig. 4.17 Time evolution of droplet shape with HF 
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Finally, a droplet of R = 0.1 μm was simulated to examine the applicability of the 

selected method, N
BFA

 and κ
HF

, to the wetting of a solid plate by sub-micron meter 

droplets. A clean water droplet at 25 °C and 1 atm with an impact velocity of 1 m/s was 

used. A mesh of 100×100 was used with the resolution of R/Δ = 20. The time step was 

2.5×10
-13

 s. The predicted droplet shape using HF with BFA is shown in Fig. 4.17. The 

droplet remains only in the wetting phase and shows no shape oscillations in contrast to the 

case of the larger drop. This can be attributed to the stronger surface tension force. That is 

to say, Weber number, We, 

σ

ρ2 2

IM RV
We           (4.25) 

where V
IM

 is the impact velocity, for the 1.14 mm drop (Yokoi et al., 2009) and 0.1 μm 

drop was 31.67 and 0.0028, respectively. The large reduction in We resulted in the 

weakening of the oscilattory behaviour of the drops. The surface tension force calculation 

using the combination CSF and ALE was also tested for comparison. 

The final droplet shape and the velocity vector field obtained by using CSF and HF is 

compared in Fig. 4.18. The spurious currents in CSF after the droplet reached the 

equilibrium shape remained much stronger than HF. The simulation was stopped when 

reaching the steady state, i.e. no shape change was attained. The order of the spurious 

currents in CSF became constant while those in HF were still reducing. The equilibrium 

contact angle was specified at 90° and HF was able to predict the equilibrium shape better 

as shown in Fig. 4.18(b). The contact angle at the stationary state was computed using the 

method proposed by Iwata et al. (2012). HF and CSF gave contact angles of 90.07° and 

92.68°, respectively. Hence the errors in contact angle predicted using HF and CSF are 

0.08% and 2.98%, respectively. 

The run environment was Xeon x5650 (6 cores, Dual CPUs, 2.66 Ghz). The simulations 

were run for 2,000,000 time iterations. The calculation time taken for HF and CSF was 70.1 

hours and 83.7 hours respectively. The higher errors in CSF required more iterations for the 
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Poisson equation for pressure correction to converge as compared to HF and as a result HF 

took 16.25% less time as compared to CSF to complete the simulation. 

0.05 m/s 

    CSF            HF 

 
(a) Droplet shape and velocity vector field at Time = 1 μs 

 
(b) Comparison of droplet shape with theoretical shape 

Fig. 4.18 Comparison of the droplet shape and velocity vector field at Time = 1 μs (droplet 

at equilibrium) 

 

4.7 Conclusions 

Normal vector calculations based on the ALE like scheme and BFA and interface 

curvature calculations based on CSF and HF were compared to examine effects of the 

Theoretical shape
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numerical methods on the accuracy of the predicted motion of drops whose sizes range 

from mili to sub-micron meters. Simulations of a static circular drop of 1 mm in radius 

were carried out and the code was validated by confirming that the results were the same as 

to those in literature, i.e. the normal vector calculation based on BFA gave lower errors 

than the ALE like scheme, the interface curvature calculated using HF gave lower errors 

than CSF, and the errors were negligibly small when the theoretical value of curvature was 

used with BFA. 

Simulations were carried out for smaller droplets ranging from a few micron to sub-

micron meters to check the accuracy of the methods at such length scales. The applicability 

to coating processes was checked by carrying out simulation of wetting of a solid plate by 

droplets of mili-meter and sub-micron meter sizes. The following conclusions were 

obtained: 

(1) Numerical errors in the pressure and velocity remained at the same order when the 

droplet size was reduced as well as when the contact angle was implemented. The 

combination of balanced-force algorithm with height function for surface tension 

force calculation was found to yield the lowest errors. 

 

(2) The motion of a clean water drop of radius 1.14 mm on a solid plate was accurately 

predicted using the balanced-force algorithm with the height function and the model 

of dynamic contact angle proposed by Yokoi et al. (2009). 

 

(3) The motion of a clean water droplet of radius 0.1 µm on a solid plate exhibited no 

oscillatory behaviour due to stronger surface tension forces, and HF predicted the 

contact angle in the equilibrium state better and caused smaller spurious currents 

than CSF. 
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Chapter 5  
 

 

Effect of contamination on the dynamic behaviour of the 

gas-liquid interface 

 

5.1 Background 

The liquid used in the coating processes often consists of several components. For 

example, the ink used in inkjet printing is dissolved in a solvent to control the physical 

properties such as viscosity to ensure stable jetting from the nozzle. Also, the physical 

properties of the fluid such as surface tension are known to affect the formation of satellite 

droplets after injection from the nozzle (Wu et al., 2004(a) & (b); Jang et al., 2009). These 

are undesirable since they affect the quality of printing by falling at locations other than the 

targeted ones and lead to formation of stains. The solute may act as a surface active agent to 

lower the surface tension and affect the quality of the process. Hence, the numerical method 

should be able to accurately predict the dynamic behaviour in the presence of a surfactant 

to be able to use it for design and optimization of coating processes. Most of the 

investigation of the dynamic wetting behaviour has been restricted to pure liquids (Sikalo et 

al., 2005, Yokoi et al., 2009).  

In this chapter, the capability of the numerical method to predict the dynamic motion of 

gas-liquid interface in the presence of surfactant is investigated. Due to lack of data in the 

literature, falling contaminated droplet experiments were conducted for a wide range of 
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concentration. The contact angle was measured and fitted using the dynamic contact angle 

model proposed by Yokoi et al. (2009). Prediction of the wetting of a solid plate by a 

contaminated drop was carried out for several concentrations of the surfactant and 

compared with the experimental results. Finally, simulation of coating process was carried 

out to demonstrate the applicability of the proposed method to practical problems. The 

simulation of a typical coating process using an inkjet, beginning from injection of the 

droplet from a nozzle to its wetting behaviour on a solid surface, was carried out. The 

surfactant effect on the jetting from the nozzle was also investigated. 

 

5.2 Experimental setup and method 

 

Fig. 5.1 Experimental setup 

The experimental setup is shown in Fig. 5.1. The drop was created using a syringe pump 

(Isis Fusion touch 400) and made to fall on a solid plate made of methyl acrylate. A 50 ml 

syringe (Hamilton micro syringe 1000 series) was used along with a needle of inner and 

outer diameter of 0.15 mm and 0.52 mm, respectively. The drop behaviour from generation, 

motion in mid-air to the wetting of the solid surface was captured using a high speed video 

camera (Dantec Nanosense Mk-III, Micro-Nikon 60 mm, f/2.8D lens) with a metal halide 

light source as backlight. The exposure time and the focal length were set at 50 μs and 2.8 
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mm and the video was recorded at a frame rate of 2500 fps. The spatial resolution of the 

image captured at these conditions was 12.3 μm/pixel. Toritron X-100 was used as the 

surfactant and concentration was varied from 0 to 10 mmol/m
3
. The temperature of the 

experimental environment and the liquid was maintained at 25±0.5 ºC. An image 

processing method, developed in-house, was used to extract the required data such as drop 

volume, contact angle etc. The drop injection was carried out very slowly as shown in Fig. 

5.2 at the rate of 8.3×10
-3

 mm
3
/s controlled by the syringe pump. 

 1 mm 

 

                          Time = 0 s                  Time = 2 ms      Time = 4 ms 

Fig. 5.2 Drop detachment from the needle 

 

5.3 Image processing 

The automatic extraction of data such as drop size, contact angle etc. from the image 

taken during the experiment using the image processing method was selected to reduce 

errors due to manual operation. The gas-liquid interface must be clearly captured to obtain 

the necessary data. The following processing of the image was carried out within the image 

processing method to detect the interface: 
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1. Generation of a background image from the cluster of images. 

2. Removal of the background from the image. 

3. Binarization of the image. 

   

       (a) Original image               (b) Background image 

 

   

  (c) Image after removal of the background             (d) Final processed image 

Fig. 5.3 Image processing 
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The procedure has been summarized in Fig. 5.3. The accuracy of the data obtained from 

the method would depend on the quality of the captured image of the gas-liquid interface. 

The binarization was carried out based on a threshold value such that RGB values above 

the threshold were set to 255, i.e. white, and the values below it to 0, i.e. black. The 

resulting interface would depend on the threshold value. The threshold value was 

determined by a trial and error method. The interface was obtained using different threshold 

values and compared with the original image. The threshold value that gave an appropriate 

fit to the gas-liquid interface in the image interface was chosen as shown in Fig. 5.4(b).  

  

 (a) Inappropriate threshold value  (b) Appropriate threshold value 

Fig. 5.4 Effect of threshold value on the interface detection 

 

5.4 Experimental results 

The surface tension in the presence of surfactant at adsorption-desorption equilibrium 

state can be computed using von Szyszkowski’s equation (von Szyszkowski, 1908): 

 LaRT   1lnσσ 0         (5.1) 
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where σ
0
 is the surface tension for pure water (=72 mN/m), R the gas constant, T the 

temperature of the fluid, Γ
∞
 the saturation concentration of the surfactant at the gas-liquid 

interface, and La the Langmuir number defined by 

ψ

χc
La            (5.2) 

where c is the concentration of the surfactant at the interface, χ the adsorption coefficient, 

and ψ the desorption coefficient. The value of Γ
∞
, χ, and ψ for Toritron X-100 is 2.9×10

-6
 

mol/m
2
, 50 m

3
/mol·s, and 0.033 s

-1 
(Lin et al., 1990), respectively. The surface coverage of 

the surfactant, Se, can be computed by  

La

La
Se




1
         (5.3) 

The estimated value of surface tension from Eq. (5.1) and Se for several concentrations of 

the surfactant is shown in Table 5.1.  

The above values of surface tension are correct only if the adsorption-desorption 

equilibrium state has been reached with the surface tension constant everywhere at the gas-

liquid interface. This was verified by investigating the effect of the surfactant concentration 

on the drop size at the time of detachment from the needle tip. As the drop grows in size, 

the gravitational forces would become stronger and at a certain drop size the surface tension 

force would be balanced by the gravitational force. This can be considered to occur just 

before detachment as shown in Fig. 5.5 and the following relationship is established (Tate, 

1864) at this instant if the surface tension is constant everywhere on the interface: 

3/1

T

ρ

σ










g

D
d          (5.4) 
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where DT is the diameter of the needle tip and d the equivalent drop diameter calculated 

from the volume of the drop, V, at the time of detachment from the syringe tip by 

3/1

π

V6








d          (5.5) 

where V is calculated in the image processing method. First, the centroid of the drop in the 

x-direction, XG, is computed and this is assumed to be the axis of rotation. The volume of 

the drop can be then computed by 





b

a

Res

2πRV
y

y          (5.6) 

where ΔRes is the spatial resolution of the image, and a and b the upper and lower limit of y, 

respectively, between which the volume calculation is carried out and Ry the radius of the 

drop at y. The procedure is shown in Fig. 5.6. The repeatability of the experiment was also 

checked by carrying out several runs for clean water and measuring the drop volume at the 

time of detachment. The calculated values of the drop volume were within ±5% of the 

average value as shown in Fig. 5.7. 

Surface tension 

 

Fig. 5.5 Balance of surface tension and gravity 

 

d 

g 
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Table 5.1 Surface tension and Se for several concentrations of Toritron X-100 

c [mmol/m
3
] Se σ [mN/m] 

0.5 0.43 68.0 

1 0.60 65.4 

3 0.82 59.7 

6 0.90 55.4 

8 0.92 53.5 

10 0.94 52.0 

 

Table 5.2 Model parameters for several concentrations of Toritron X-100 

c [mmol/m
3
] ΦE [°] Φmda [°] Φmdr [°] la lr 

0 77.81 108.56 39.81 2.82×10
-8

 2.56×10
-8

 

0.5 74.48 109.27 47.29 2.95×10
-8

 7.58×10
-8

 

1 74.36 108.97 49.09 2.55×10
-8

 3.93×10
-8

 

3 72.28 107.06 48.84 2.89×10
-8

 5.44×10
-8

 

6 70.89 105.77 36.87 4.27×10
-8

 4.36×10
-8

 

8 74.66 102.32 39.81 9.08×10
-8

 2.90×10
-8

 

10 70.92 103.25 36.87 6.20×10
-8

 4.81×10
-8

 

 

           

                 (a) Processed image       (b) Volume calculation for one pixel 

Fig. 5.6 Pictorial representation of volume calculation 
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The drop diameters d for several concentrations of Toritron X-100 were computed from 

image processing and were plotted against σ
1/3

 in Fig. 5.8 to check whether the liquid had 

reached adsorption-desorption equilibrium state. The effect of surfactant concentration on 

drop size at the time of detachment is also shown in Fig. 5.9. The linear relationship 

between d and σ
1/3

 was confirmed which shows that the surfactant adsorption at the 

interface had reached the equilibrium state and hence, the surface tension values were 

calculated using Eq. (5.1). 

 

Fig. 5.7 Repeatability of the experiment 

 

Fig. 5.8 Effect of surface tension on the drop size 
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1 mm 

   

  (a) Pure water, d=2.6 mm            (b) c = 10 mmol/m
3
, d=2.3 mm 

Fig. 5.9 Drop size just after detachment from the needle 

       

                         (a) Photographed image                      (b) Contact angle detection 

Fig. 5.10 Contact angle measurement using image processing  

Next, the contact angle for contaminated drops was evaluated using the dynamic contact 

angle model proposed by Yokoi et al. (2009). The contact angle was also measured using 

the image processing method. After obtaining the binarized image of the drop, the co-

ordinates of the solid surface are inputted to search for the three phase contact point. The 

ΦStart point

End point

Cells containing the drop 

in the processed image

x

y

Wall
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three phase contact point is chosen as the start point as shown in Fig. 5.10(a). The end point 

is chosen as the interface cell at a distance of the specified number of pixels in the x-

direction, 4 in the case of Fig. 5.10(a). The angle made by the line joining the start and the 

end point and the solid surface is the contact angle. The number of pixels in the x-direction 

used for selecting the end point was 12. The static contact angle measured using this 

number of pixels for pure water gave the least error when compared with the theoretical 

value. The model parameters for the dynamic contact angle model for several 

concentrations of Toritron X-100 are shown in Table 5.2. Figure 5.11 shows a comparison 

of the contact angle obtained experimentally and from the dynamic contact angle model for 

pure water and c = 10 mmol/m
3
.  Finally, a comparison of the transient behaviour of drop 

wetting length and height for c = 3, 6, and 10 mmol/m
3
 are shown in Figs. 5.12 and 5.13, 

respectively.  

 

Fig. 5.11 Comparison between contact angle measured experimentally and calculated 

from the dynamic contact angle model 
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Fig. 5.12 Drop wetting length for several concentrations of Toritron X-100 

 

Fig. 5.13 Drop height for several concentrations of Toritron X-100 
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5.5 Wetting of a solid plate by contaminated drops 

Prediction of the motion of a contaminated water drop on the solid plate using the 

dynamic contact angle model was carried out. Since the drop was injected slowly until it 

detached itself, a stationary drop with the shape at the time of detachment shown in Fig. 

5.14(a) was used as the initial condition for the drop. The drop shape at the instant just after 

detachment from the needle tip is shown in Fig. 5.14(b). A 200×300 mesh was used. The 

cell size was uniform, Δ = 2.5×10
-5

 m, and the time step was 1×10
-6

 s. The prediction of the 

wetting of a solid plate by a drop was carried out for surfactant concentrations of 3, 6, and 

10 mmol/m
3
. The distance of the drop from the solid plate, h, the height of the drop, l, and 

the width of the drop, w, for the three concentrations are shown in Table 5.3. Prediction was 

carried out using both the combinations of HF with BFA and CSF with ALE. The time 

taken by the drop to make contact with the plate in the experiment was 22.4 ms and was 

calculated to be 25 ms and 30 ms with the former and latter, respectively. Time evolutions 

of the wetting length for c = 3, 6, and 10 mmol/m
3
 are shown in Figs. 5.15, 5.17, and 5.19, 

respectively while those of the drop height for c = 3, 6, and 10 mmol/m
3
 are shown in Figs. 

5.16, 5.18, and 5.20, respectively. Oscillations of drop height are better captured by HF 

with BFA than CSF with ALE where the height becomes constant after a certain time 

resulting in artificial dampening of the wetting behaviour. The prediction of the wetting 

length is also in better agreement for HF with BFA. The present results are in good 

agreement with the experiment. The wetting and dewetting motions are well predicted by 

only accounting for the surface tension reduction effects due to the surfactant and without 

solving the surfactant transport equation as was confirmed in our study. 

Table 5.3  Initial condition for the drop 

c [mmol/m
3
] w [mm] h [mm] l [mm] 

3.00 2.42 2.77 2.59 

6.00 2.29 3.01 2.64 

10.00 2.22 3.04 2.52 
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          (a) Schematic of the initial condition            (b) Drop shape just after detachment 

                Fig. 5.14 Initial condition 

 
Fig. 5.15 Drop wetting length, c = 3 mmol/m

3 
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Fig. 5.16 Drop height, c = 3 mmol/m
3 

 

Fig. 5.17 Drop wetting length, c = 6 mmol/m
3 
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Fig. 5.18 Drop height, c = 6 mmol/m
3
 

 

Fig. 5.19 Drop wetting length, c = 10 mmol/m
3
 

Predicted

Height function with BFA

Measured

CSF with ALE

0.0

1.0

2.0

3.0

4.0

0 10 20 30

H
ei

g
h

t 
[m

m
]

Time [ms]

Predicted

Height function with BFA

Measured

CSF with ALE

0.0

1.0

2.0

3.0

0 10 20 30

W
et

ti
n

g
 l

en
g
th

 [
m

m
]

Time [ms]



                                

 

122 

 

 
Fig. 5.20 Drop height, c = 10 mmol/m

3 

 

5.6 Simulation of a coating process using an inkjet 

Simulation of an inkjet coating process was carried out to demonstrate the applicability 

of the present method to industrial problems. The motion of tiny droplet starting from the 

injection of fluid from the nozzle to its wetting behaviour on a solid plate was predicted. 

First, a clean water droplet at 25 °C and 1 atm was simulated. A tapered inkjet head was 

used for injection as shown in Fig. 5.21(a). The outer diameter of the inkjet head was set at 

50 μm while the inner diameter changed from 40 μm to 30 μm over a height of 10 μm. The 

mesh was 40×200. The cell size was uniform, Δ = 1.0×10
-6

 m and the time step was 5×10
-

10
 s. The fluid injection was carried out in a step wise manner for 1.25 μs at a velocity of 10 

m/s. The dynamic contact angle model for a clean water droplet on a glass surface was 

used. The predicted droplet motion is shown in Fig. 5.21. The time required for the droplet 

to pinch off was 6 μs. The phenomena such as formation of droplet tail and its breakup to 

form satellite droplets have been captured.  
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             (a) t = 0 s          (b) t = 2.5 μs           (c) t = 5 μs               (d) t = 7.5 μs 

 

           (e) t = 13.5 μs          (f) t = 22.5 μs           (g) t = 35 μs           (h) t = 100 μs 

Fig. 5.21 Droplet injection from a nozzle head (VJet = 10m/s, σ = 72 mN/m)  
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             (a) t = 0 s          (b) t = 2.5 μs           (c) t = 5 μs               (d) t = 7.5 μs 

 

           (e) t = 13.5 μs          (f) t = 22.5 μs           (g) t = 35 μs           (h) t = 100 μs 

Fig. 5.22 Droplet injection from a nozzle head (VJet = 10m/s, σ = 36 mN/m)  
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The effect of contamination on the formation of satellite was also investigated by 

reducing the surface tension to 36 mN/m while keeping the other physical properties the 

same as clean water. The results are shown in Fig. 5.22. The time required for the droplet 

to pinch off increased to 7.9 μs in the presence of contamination. The lowering of surface 

tension also caused formation of more satellite droplets as can be confirmed by comparing 

Figs. 5.21(g) and 5.22(g). In most of the coating methods based on inkjet printing, the 

surface to be coated is moved continuously to increase the speed of coating. An increase in 

satellite droplets is undesirable since they may fall at sites other than the target locations. 

The increase in pinch off time and number of satellite droplets with decrease in surface 

tension is consistent with the results reported in the literature (Wu et al. ,2004(a) & (b)). 

The present method is being applied to industrial coating process to investigate the 

behaviour of droplets on different substrates under various conditions to obtain an insight 

into how various process conditions affect the coating behaviour. The scope of the method 

can be further broadened by incorporating the energy conservation equation and phase 

change to model evaporation of the solvent. The transport of the volume fraction with 

phase change is given by 

K

KK S

Dt

D

ρ

α
          (5.7) 

where S is the rate of mass loss per unit volume of phase K. A simple simulation of an 

evaporating neutrally buoyant drop of R = 1 mm without solving the flow equations was 

carried out to demonstrate the modelling of phase change. A 50×50 mesh was used and 

R/Δ was 10. The mass loss per unit area of the interface was set at 10 kg/m
2
∙s. The shape at 

different time instants is shown in Fig. 5.23. An artificial distortion in shape is noticed as 

the drop becomes smaller. The reason for this is the decrease in resolution since the mesh 

size was not being modified as the drop size decreased. Apart from this, challenges are 

present in the accurate modelling of the evaporation rate, S, which depends on parameters 

such as the local concetration of the solvent in the gas phase, temperature etc. 
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Implementation of grid refinement methods such as adaptive mesh refinement (AMR) and 

accurate modelling of evaporation rate can enable the present method to be applied to the 

investigation of droplet drying on a surface as well. 

 

         (a) Time = 0 ms       (b) Time = 10 ms       (c) Time = 20 ms      (d) Time = 30 ms 

 

       (e) Time = 40 ms       (f) Time = 50 ms       (g) Time = 60 ms      (h) Time = 70 ms 

Fig. 5.23 Evaporation of neutrally buoyant drop 

 

5.7 Conclusions 

Falling drop experiments were carried out for water drops with several concentrations of 

surfactant to examine the effect of contamination on the motion of drops on a solid plate. 

The repeatability of the experiment was confirmed. The adsorption-desorption equilibrium 

of the surfactant on the interface was confirmed by checking the effect of surface tension 

on the drop size at the time of detachment from the needle tip. Hence, the surface tension at 

different concentrations of the surfactant was estimated using von Szyszkowski’s equation 
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(von Szyszkowski, 1908). The contact angle was measured and modelled using the 

dynamic contact angle model proposed by Yokoi et al. (2009).  

The wetting of a solid plate by contaminated drop for c = 3, 6, and 10 mmol/m
3
 was 

predicted to check the accuracy of the present method. Finally, the simulation of a coating 

process using an inkjet was carried out to demonstrate the applicability to industrial 

problems. The following results were obtained: 

(1)   The presence of contamination caused a reduction in the contact angle. 

 

(2) The motion of a contaminated water drop on a solid plate was accurately predicted 

using the balanced-force algorithm with the height function and the model of 

dynamic contact angle proposed by Yokoi et al. (2009). 

 

(3) The reduction in surface tension caused an increase in the time required for the 

droplet to pinch-off and also increased the number of satellite droplets. 
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Chapter 6  
 

 

Conclusions 

 

6.1 Conclusions 

In this dissertation, a new numerical method was developed to predict the motion of gas-

liquid interface in the presence of complicated solid geometries. The transport of the fluid 

phase is carried out using a new scheme based on the VOF method and an immersed 

boundary method is used to handle of the complex solid geometries. An efficient and 

accurate method was developed for practical applications involving gas-liquid interface of 

length scales ranging from mili to sub-micron meters without increasing the computational 

cost. The method is easy to extend to three-dimensional problems. The performance of the 

developed method was demonstrated by carrying out several numerical tests and 

simulations. The results were compared with existing numerical methods as well as 

experiments. 

In chapter 2, a new VOF based method, THAINC, for transporting the gas-liquid 

interface was proposed. The reconstruction of the interface is based on a tangent hyperbolic 

function as proposed in THINC (Xiao et al., 2005). The tangent hyperbolic function in the 

present method is devised to be dependent on the inclination of the interface in contrast to 

THINC. This results in elimination of artificial wrinkling of the interface present in THINC. 

The proposed method does not need to geometrically reconstruct the interface configuration 
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in a computational cell as in PLIC-type methods. Owing to this feature, implementation of 

this method to three-dimensions is easier compared to the methods using geometric 

reconstruction. The method is also easy to program. Its ability to effectively represent the 

interface was checked by carrying out several advection tests. The proposed method has 

lower errors in the transported shape and the volume in the advection tests than THINC, 

THINC/WLIC, Donor-Acceptor, and 1
st
 order upwind schemes. The accuracy of THAINC 

was investigated by comparing the simulation results of a rising bubble and wetting of a 

solid plate by a drop with those reported in the literature. The predicted motions of the gas-

liquid interface in both cases were in good agreement with the experiments. THAINC is 

also able to capture the gas-liquid interface within two cells with good volume conservation. 

There is no overshooting or undershooting of the phase indicator function. 

In chapter 3, a numerical method, THAINC-IB, for predicting the motion of gas–liquid 

interface in the presence of complex solid geometry in the flow domain was developed. The 

transport equations of the gas-liquid interface in the presence of solid phase in the 

computational cell were derived. The proposed method is a combination of THAINC and 

an immersed boundary method. The transport of the fluid phases is based on the THAINC 

whereas the immersed boundary method proposed by Fadlun et al. (2000) is adopted to 

deal with complicated solid geometries. Hence, it has all the properties of THAINC such as 

easiness in extension to three-dimensional problems and low computational costs. 

The occurrence of errors in advection due to the presence of solid in computational cells 

was investigated by a horizontal and a diagonal advection of a fluid square between parallel 

solid walls. The errors in the transported shape and the volume using THAINC-IB were 

small. The proper implementation of the immersed boundary method was checked by 

simulating a single phase flow in the presence of staggered arrangement of cylindrical tubes. 

The calculated pressure drop across the bundle of cylindrical tubes for different Reynolds 

number were in good agreement with the values reported in the literature. The capability of 

THAINC-IB to handle two-phase flow in the presence complex solid geometry was 

examined by simulating the flow of a liquid layer through the same arrangement of 
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cylindrical tubes and a dam break problem in the presence of a dyke. The large pressure 

drop across the bundle of tubes caused an increase in liquid height upstream of the bundle 

of tubes, which is physically reasonable. The motion of the water column in the dam break 

problem was in good agreement with the experiments. These tests confirmed that 

THAINC-IB preserves the sharpness of the interface within two cells even after large 

interface deformation. 

In chapter 4, the effect of numerical treatments for evaluation of surface tension force on 

the prediction of the motion of gas-liquid interface of length scales varying from mili to 

sub-micron meters was investigated. Normal vector calculations based on the ALE like 

scheme and BFA, and interface curvature calculations based on CSF and HF were 

compared. First, simulations of a static circular drop of 1 mm in radius were carried out to 

validate the code. The results were the same as those in literature, i.e. the normal vector 

calculation based on BFA gives lower errors than the ALE like scheme, the interface 

curvature calculated using HF yields lower errors than CSF, and the errors are negligibly 

small when the theoretical value of curvature is used with BFA. 

Simulations were carried out for smaller droplets ranging from a few micron to sub-

micron meters to check the accuracy of the methods at such length scales. Numerical errors 

in the pressure and velocity remained at the same order even when the droplet size was 

reduced. Simulations of droplets adhering to walls were also carried out for the droplets of 

the same sizes to investigate the effect of wall treatment implementation on the accuracy. 

The errors in this case were also of the same order. The combination of balanced-force 

algorithm with height function for surface tension force calculation yields the lowest error. 

The applicability to coating processes was checked by carrying out simulation of wetting 

of a solid plate by drops of mili and sub-micron meter size. The motion of a clean water 

drop of radius 1.14 mm on a solid plate was accurately predicted using the balanced-force 

algorithm with the height function and the dynamic contact angle model proposed by Yokoi 

et al. (2009). The smaller water droplet of radius 0.1 µm exhibited no oscillatory behaviour 
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in contrast to the larger drop due to stronger surface tension forces. HF with BFA predicted 

the contact angle in the equilibrium state better and caused smaller spurious currents than 

CSF with ALE. 

In chapter 5, the effect of contamination on the motion of a drop on a solid plate was 

investigated. Falling drop experiments were carried out for water drops with different 

concentrations of surfactant. The data was obtained from the experiment using image 

processing. The adsorption-desorption equilibrium of the surfactant on the interface was 

confirmed by checking the effect of surface tension on the drop size at the time of 

detachment from the needle tip. Hence, the surface tension at different concentrations of the 

surfactant was estimated using von Szyszkowski’s equation (von Szyszkowski, 1908). The 

contact angle was measured and modelled using the dynamic contact angle model proposed 

by Yokoi et al. (2009). The presence of contamination caused a reduction in the contact 

angle. 

The motion of contaminated drop for c = 3, 6, and 10 mmol/m
3
 on a solid plate was 

simulated and compared with the experimental results. The prediction using the balanced-

force algorithm with the height function and the model of dynamic contact angle proposed 

by Yokoi et al. (2009) was in good agreement with the experiments. The wetting and 

dewetting motions were well predicted by only accounting for the surface tension reduction 

effects due to the surfactant and without solving the surfactant transport equation. Finally, 

the simulation of a coating process using an inkjet was carried out to demonstrate the 

applicability to industrial problems. The effect of surface tension on the injection of the 

fluid was investigated. The reduction in surface tension caused an increase in the time 

required for the droplet to pinch-off and also increased the number of satellite droplets 

which was consistent with the results reported in the literature. 

In summary, THAINC-IB is proved to be an efficient method for the prediction of 

motion of gas-liquid interface, both clean and contaminated, of length scales varying from 
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mili to sub-micron meter in the presence of complex solid geometry while preserving the 

interface sharpness and volume conservation.  
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Appendix A 

_________________________________________________________________________ 

Height function for axisymmetric coordinates (Ferdowsi, 2012) 

The heights used for curvature calculation are equivalent heights calculated from the 

total fluid volume in a stencil and can be computed in all directions of Cartesian co-

ordinates by simply adding the volume fraction, Eq. (4.14), since the cross-sectional area is 

constant. Hence, Eq. (4.14) can be used for calculating the height in z-direction but not in r-

direction since the cross-sectional area is dependent on r.  

The calculation of height in r-direction requires a different calculation method to 

incorporate for the changing cross-sectional area of the computational cell in the r-direction. 

First, i
1
 and i

0
 for each individual stencil is identified, Fig. A.1, and then I

1
 and I

0
 is chosen 

from them such that all the three height calculations begin and end at the same location. 

The stencil which is sufficient to capture the interface is outlined with thick black line as 

shown in Fig. A.1. The total fluid volume within an individual stencil is computed by 

zrrk

Ik

Ik

jkji  




π2αV
0

1

,,         (A.1) 

Two arrangements of the interface are possible where the dispersed fluid phase is closer to 

the axis of symmetry and vice versa as shown with Fig. A.1 (a) and (b), respectively. The 

effective height can be computed by satisfying the following condition for the former 

arrangement, 

0

,0

2

0

,0

V

VV jiji

r

hr 
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









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        (A.2) 

and  
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        (A.3) 

for the latter. r
0
 is the distance of the starting point of the stencil, I1, from the axis of 

symmetry and V
0
 is the volume contained by r

0
 computed by 

zr  2

00 πV          (A.4) 

The interface normal used to compute the curvature is defined by 











































direction- with aligned stencil ,     ,1

direction- with aligned stencil ,     1,

r
z

h

z
r

h

N     (A.5) 

Substituting Eq. (A.5) into Eq. (4.12) yields 


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 (A.6) 

where r
i
 is the distance of the cell (i, j) from the axis of symmetry and r

int
 the distance of 

the interface from the axis of symmetry given by 
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The first and the second order derivatives of h, with respect to r and z, are computed by 

the second-order centred difference scheme using Eqs. (4.16) and (4.18), respectively. 

 
             (a) Dispersed fluid phase closer to the axis of symmetry 

 

 
(b) Continuous fluid phase closer to the axis of symmetry 

Fig. A.1 Height calculation for r-direction       
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