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Chapter 1

General Introduction

In living organisms, temporally and spatially multi-scale chemical reactions occur
in a systematic way. Photosynthesis, the system of which has been constructed via
plenty of evolution processes over a long time, provides a typical example of such a
multi-scale reaction system. To adapt to changeable environmental conditions such
as light, temperature and humidity, photosynthetic reaction systems have a variety of
mechanisms for progressing reactions stably at each scale of protein, organelle, cell,
tissue and whole body [1|. For example, chlorophyll a fluorescence induction, which
exhibits responses to environmental changes of light, is well known as a phenomenon
that represents a multi-time-scale property of photosynthetic reactions [2]. This phe-
nomenon is observed when a photosynthetic organism that has been acclimated to
the dark beforehand is continuously illuminated with a constant light intensity; it
then shows a transient process of progressing reactions stably under the given light
condition [3|. The notable properties of this phenomenon reflect multi-time-scale char-
acteristics and different time-course patterns of fluorescence intensity with respect to
different light conditions |2]. Experimentally observed time-course patterns are classi-
fied into fast change patterns (microsecond - second) and slow change patterns (second
- hour). Besides, very fast processes are also involved concerning excitation-energy
and electron transfer processes (~ picosecond) [4-7|, though they are not apparent
in the characteristic time scale of the induction phenomenon. This induction phe-
nomenon has been theoretically studied on the basis of several mathematical models
of photosynthetic reaction systems at various time scales [8-19|. Although many stud-
ies have been performed to elucidate this issue, a full understanding and consensus
about the meaning of these time-course patterns and the detailed mechanisms have

not yet been achieved |[3,20].



Chapter 1 General Introduction

In Chapter 2, I shortly review previous studies about fluorescence induction phe-
nomena and some theoretical studies concerning this topic. There remain some prob-
lems for constructing a better mathematical model of photosynthetic reaction systems.
Several detailed studies about the components of photosynthetic reaction processes
have been already conducted [21-25|. Thus, the construction of a mathematical model
based on microscopic structural information, which is obtained, for example, by X-
ray crystal structural analysis, can be achieved. However, a more detailed model
description makes it more difficult to understand the dynamic behavior of the whole
system intuitively because it makes the objects too complex [10]. Furthermore, such
a precise description would lead to an intractably higher calculation cost, because the
fast-time-scale processes have to be analyzed for the calculation of a multi-time-scale
mathematical model even if one is concerned with slower-time-scale dynamics [26].

To overcome these problems, I propose a hierarchical reduction scheme to cope with
coupled rate equations that describe the dynamics of multi-time-scale photosynthetic
reactions in Chapter 3. To numerically solve nonlinear dynamical equations contain-
ing a wide temporal range of rate constants, I first study a prototypical three-variable
model. Using a separation of the time scale of rate constants combined with iden-
tified slow variables as (quasi-)conserved quantities in the fast process, I achieve a
coarse-graining of the dynamical equations reduced to those at a slower time scale.
By iteratively employing this reduction method, the coarse-graining of broadly multi-
scale dynamical equations can be performed in a hierarchical manner. I then apply
this scheme to the reaction dynamics analysis of a simplified model for an illuminated
photosystem II, which involves many processes of electron and excitation-energy trans-
fers with a wide range of rate constants. I thus confirm a good agreement between
the coarse-grained and fully (finely) integrated results for the population dynamics.

In Chapter 4, an extensive kinetic model of photosystem II (PS II) combined with
oxygen-evolving complex (OEC) and light-harvesting chlorophyll-protein complex II
(LHC II) is analyzed through the use of the hierarchical coarse-graining method pro-
posed in Chapter 3. PS II is a protein complex which evolves oxygen and drives
charge separation for photosynthesis employing electron and excitation-energy trans-
fer processes over a wide time scale range from picoseconds to milliseconds. While the
fluorescence emitted by the antenna pigments of this complex is known as an impor-
tant indicator of the activity of photosynthesis, its interpretation was difficult because
of the complexity of PS II. In this coarse-grained analysis, the reaction center (RC) is

described by two states, open and closed RCs, both of which consist of oxidized and



neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at
millisecond scale with three-state RC, which was studied previously, could be derived
by suitably adjusting the kinetic parameters of electron transfer between tyrosine and
RC. Our novel coarse-grained model of PS II can appropriately explain the light-
intensity dependent change of the characteristic patterns of fluorescence induction
kinetics from O-J-I-P to O-J-D-I-P.

In Chapter 5, the coarse-graining method is applied to the model of PS I under
continuous light. The coarse-grained model describes the RC by seven variable states,
though the original model describes the RC by 28 states. Based on the derived
model, Igoo curve, which reflects the accumulations of P;FOO and Pct, is simulated
and analyzed. With respect to this signal curve, it is revealed that the increase
up to the inflection point at 1073 s, the increase from that point to the peak at 2
x 1072 s, and the decay after that peak reflect the accumulations of Prgg, Pct and
ProoF, Fg, respectively. Besides, the important role of the charge recombination
processes from P;rooAfA and P;’OOAIA states for the dissipation of the extra absorbed
energy in photosynthetic induction time is confirmed.

In Chapter 6, I summarize the present works and discuss the remaining problems

and the future perspective.






Chapter 2

Background

2.1 Processes of photosynthesis

Photosynthesis is one of the most important reaction on the Earth. Almost all
working of the living things consumes the energy of the sun light caught by this re-
action. Over a long period of time, the mechanism of this reaction has been studied.
In the early 19th century, chloroplast, that is the organelle in which all reaction of
photosynthesis occur, was discovered. In the early 20th century, it were revealed that
photosynthesis reaction is composed of light-dependent reactions and temperature-
dependent reactions, later called as “light reaction” and “dark reaction”, respectively.
With respect to “dark reaction”, Calvin determined the reductive pentose phosphate
cycle (Calvin-Benson cycle) in 1956. For “light reaction”, Emerson revealed that two
photosystems work in tandem in 1957. Light reaction occurs at thylakoid membrane
(Fig. 2.1). In this membrane, there is cytochrome b6 /f protein complex in addition
to photosystem I and photosystem II. Electron transfers linearly over the pigments
located in series on these membrane binding complexes. In the late 20th, technolog-
ical development made it possible to determine the structure of components of this
reaction at atomic level. In 2001, The structure of Photosystem II and Photosystem
I were revealed by x-ray crystal structural analysis. Although the static structure of
photosynthesis has thus been revealed, the dynamic property of this phenomena has
hardly been elucidated. To understand such a property, systems approach provides

one of the useful tools.
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Figure 2.1 Electron transfer reaction processes on thylakoid membrane in chloroplast.

2.2  Fluorescence induction

Understanding the dynamic property is important to understand the mechanism
of regulation of photosynthesis such as environmental response [27]. With respect to
the light environment response of photosynthesis, chlorophyll a fluorescence induction
phenomena (FI) is well known [28|. This phenomenon was first observed by Kautsky in
1931. In early days, the intensity of fluorescence emitted by chlorophyll was regarded
as reflecting the amount of excitons which are not used by photochemical reaction.
This phenomenon is observed when the photosynthetic organisms adapted to dark
beforehand are illuminated with continuous light. On the one hand, fluorescence
intensity rapidly increases after the illumination and then decreases to the lower steady
intensity; on the other hand, the rate of CO5 assimilation gradually increases to the
steady rate. These behaviors show the inverse correlation. With the experimental

improvement of resolution in time, it has been revealed that FI shows various time-
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course patterns depending on the light intensity. The patterns are often separated into
fast-change pattern and slow-change pattern based on the timescale of each pattern
[23]. The former and latter indicate the patterns over millisecond to second range
and over second to minute range, respectively. To explain the complex behavior of
FI, various quenchers of fluorescence (i.e., the components which reduce the intensity

of fluorescence) have been detected and proposed.

2.2.1 Quantum efficiency

The fluorescence intensity is widely observed as the indicator of photosynthesis
activity in terms of fluorometry. The intensity of fluorescence is interpreted by use of

the formula as follows [29]:

Ft:Vvin'(PF(t)a

kp
%®:@+@@+@@’

where Fi, Vi,, and ®p(t) are photon flux density of fluorescence, photon flux density of
incident light and quantum efficiency of fluorescence, respectively. Quantum efficiency
of fluorescence indicates the probability that the exciton created by illumination is
emitted as fluorescence. kg, kp(t) and ky(t) are the rate constants of fluorescence
emission, photochemical reaction and heat dissipation of excited energy in antenna
chlorophyll, respectively. The rates of photochemistry and heat dissipation change
with time following the proceeding of reaction. Photochemical and heat dissipation
rates are determined by the states of electron transfer chain and those of quenchers,
respectively.

The losses of energy via heat dissipation are caused by the light-induced path and
the non-light-induced path [30]. The former of these paths is particularly called as
non-photochemical quenching (NPQ). NPQ is regarded as the key factor that governs
the slow-change patterns of FI, and the non-light-induced heat dissipation paths are

considered to determine the fast-change patterns of FI [31].

2.2.2 Quenchers of Chl a fluorescence

A variety of factors have been proposed as the quencher of Chl a fluorescence.

Among these quenchers, the typical ones that are not induced by light are as follows:



14

Chapter 2 Background

° ngo quenching shows similar efficiency to photochemical quenching [32].

e Pggo triplet which survives as long as some hundred micro seconds is regarded
as a quencher [33].

e Carotene triplet plays a role of quencher under very high intensity light [34].

e The oxidized state of plastoquinone-pool (PQ-pool) plays a role of quencher.
This effect is observed by comparing between the samples whose electron
transfer to PQ-pool is restricted by inhibitor, e.g. 3-(3,4-dichlorophenyl)-,1-
dimethylurea (DCMU), and those whose electron transfer is not restricted [35].

The light-induced quencher, NPQ), is classified into three categories: ¢g, q; and
qr [36]. gg is the NPQ that depends on the processes for energy accumulation. This
qg is considered to be regulated by the pH of the lumen, which is the inside space
of the thylakoid membrane vesicle. The protonation of PsbS protein and the bind-
ing of zeaxanthin that is generated by the de-epoxidation of violaxanthin induce the
conformational changes of the antennae that account for the increases of thermal dis-
sipation of excited-energy [37]|. ¢; is the NPQ that depends on the photo-inhibition.
This factor is considered to be related to processes such as repairing cycle of damaged
PS 1T [37]. gr is the NPQ that depends on the state transition which is the process
of LHA traveling for the purpose of regulating energy allocation between two photo-
systems, PS II and PS I [38]. The classification above is based on the difference of
relaxation time scales of fluorescence in dark. That is, the amount of absorbed light
for driving photosynthesis is regulated in various timescales.

These different NPQs have been analyzed based on the simulation of the dynamics
of the fluorescence transient at each different timescale [31]. However, the consistent
understanding of this phenomenon has not been achieved because of the complexity

and the hierarchical spatiotemporal property of the whole picture.

2.2.3 Characteristics of the patterns of Fl

The patterns of FI are known to be different depending on the species and the
environmental condition [2|. The three parameters, oxygen evolving rate, CO2 uptake
rate and the difference of pH across the thylakoid membrane, i.e. the difference
between stroma and lumen, are correlated with the FI [3]. The characteristics of
these parameters in regard to the O-P-S-M-T pattern, which are observed in higher

plants, is as follows:
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e Oxygen evolving rate:
Oxygen evolving rate increases during O-I phase, then decreases until peak P.
After that, it increases again and reaches a plateau during MT phase.

e CO5 uptake rate:
The value of CO5 uptake rate remains zero during O-P-S pattern of FI. This
rate starts to increase in S-M phase and reaches a steady state at the end of
M-T phase.

e pH difference across the thylakoid membrane:
pH difference between stroma and lumen is considered to be in proportion to
the rate of electron transfer. This value has a negative correlation with FI, i.e.,
it decreases on P-S phase, increases in S-M phase, and decreases again in M-T

phase.

With respect to higher plants, the several-times repetition of S-M-T wave cycle
is observed under abnormal circumstance. Such cycle is regarded to come from the
transient restriction on the receiver of electron flux behind PS I. This sort of limit
is caused by the deficiency of supply of NADP™, phosphorus or oxygen, or excessive
supply of COs.

parameter ol 1P PS SM MT

O, evolving rate N S becomes steady after transient plateau
COs uptake rate 0 0 0 7 " and then becomes steady at the T point
A pH across thylakoid S\ ya

In general, the slow-change pattern of FI is more difficult to understand than the

fast-change pattern because more factors are involved .

2.3 Kinetic models of excitation-energy and electron transfer

processes
2.3.1 Principle

Electron and excited-energy transfer processes can be described by means of reac-
tion kinetics. In this treatment, the variables of the ordinary differential equations

are set as the states of electron of each pigment which construct the electron transfer
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donor acceptor

Figure 2.2 Diagram of electron transfer processes between donor and acceptor.

chain on thylakoid membrane. Change of each state is described to occur when elec-
tron or excited-energy transfer happens. For example, a charged electron acceptor is
created when an electron transfers from a charged electron donor to a neutral electron
acceptor occurs (Fig. 2.2 ). The rate of this transfer is described by the product of the
concentration of the charged donor and that of the neutral acceptor. The dynamics
of the change of the states of electron carriers evoked by electron transfer processes

are thus described as

2 R0 Vo P -
A2 kyip)1a1 - mDlAT -
where the conservation relation holds:
[D~] + [D] = const, (2.2

[A7] + [A] = const.

Here, [D~] and [D] represent the concentrations of charged donor and neutral donor,
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respectively. [A~] and [A] represent the concentration of charged acceptor and neutral
acceptor, respectively. k; and k; are rate constants of forward and backward electron
transfer processes, respectively. In principle, the model of photosynthetic electron
transfer processes can be constructed by adding all the states of pigments on electron
transfer chain to the differential equations and connecting them by the electron or

excited-energy transfer processes.

2.3.2 Excited-energy transfer in lattice

Photoexcitation at antenna complex initiates photosynthesis. Once exciton that
is generated by photon absorption reaches the reaction center (RC), then electron
transfer is driven by charge separation. This excited-energy transport process at

antenna system is simply expressed by the use of a homogeneous lattice model [39,40].

kinetic model of trapping by RC
The exciton transport process at light harvesting antenna (LHA) lattice is repre-

sented by the master equation:

dpi
dt

= —kip; + Z(pini - piWij) - 52’,RCVPRC- (2-3)

J
Here, k;, W;;,v and p; represent the rate of excited-energy loss at LHA, the hopping
rate from site ¢ to site j, the rate of quenching at RC, and the population of exciton
at site i (the notation “RC” indicates reaction center site), respectively.

LHA-lattice is characterized by the space structure, site number N, dimension d and
coordination number z. This process is regarded as a random walk on lattice. The
characteristics of random walk on a variety of lattices are analyzed by Montroll [41,42].
With respect to the case that trap-site owing a quencher exists on lattice, Perlstein

developed the generalized theory for the lifetime of a random walker [43].

Average life-time approach
In 1982, Perlstein analyzed the lifetime of the exciton on LHA based on a model of
the lattice with trap site [43|. The lifetime is given by the zeroth moment Mj of the

total exciton population on lattice.
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(@) O O O O O @) @] @]
TFP (First Passage time)

(@) O @) O O @)
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Wp TQ (Quenching time)
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Figure 2.3 Excited-energy transfer processes in a lattice model.

This depends on the initial value of the population of the exciton on lattice. In the
condition where the exciton transport is restricted to the nearest-neighbor and the

initial values are set as po = prc and piz0 = (1 — pre)/N, My is expressed as

Wr + Wp(N —1) 1 N-1/1 1 N2 1
Moy = —+(1- — - — ha(N)——
0 W St pRC)( 2 (WT Wh>+N—1 AN
=79 + (1 = prc)(Tr + Tmig) = 7@ + (1 — prC)TFP,
(2.5)

where Wrp, Wp and W), represents the rate constant for trapping to RC from its
neighbors, detrapping from RC, and hopping between others, respectively. Here, 7pp
is the “first passage time”, i.e. the average time taken for an exciton generated at
LHA to arrive at RC, and 7¢ is the “all revisiting time”, i.e. the average time taken
to be quenched after arriving RC. These ideas are described in Fig. 2.3. On the one
hand, this process is “trap-limited” if multi-revisiting occurs, but on the other hand,

it is “diffusion-limited” if revisiting hardly occurs.
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Trp can be decomposed into the time taken to arrive at the site next to RC, 7,4,

and that taken from RC neighbor site to the RC, 7p.

I WT—FWD(N—l)l
@ Wr od
N-1/1 1 26)
= z WT Wh ’ '
N? 1
Tmig = mhd(N)Wh7

where 7,,;, depends on the function hy(NN) of the geometrical structure of lattice. My

is linearly dependent on the initial value (1 —pgrc).

Perturbed two-level model

If the size of antenna system is small, the time taken for the exciton transfer inside
of the LHA to reach the equilibrium is much shorter than that taken to be quenched
at RC. In this case, the antenna system can be regarded as a super-molecular complex
by the assumption that the time taken for the exciton migration inside the LHA is
infinitesimally short: W, = 0 as the first approximation. If the exciton transport
inside of the LHA is restricted to nearest-neighbor, the rate between RC and LHA is

represented as

N—1
_ 1 zWr
Wr = ~_1 nz::l Won

- N-1
o (2.7)
WD = Z = ZWD.
n=1

Then the rate 74 for the equilibrium and 7_ for the decay of excited-energy are

Expressed, respectively, as

_’Y+WT+WD:E\/(’}/—FWT—I—WD)Z—ZLWWT

At = 5

(2.8)

In the case that the time for the migration inside the LHA is finite, the effect of the
migration time is evaluated by expanding the lifetime of the exciton by the hopping
time W), [44].






Chapter 3

Hierarchical Coarse-Graining Method
for Photosystem |

3.1 Introduction

I here propose a method for reducing the ordinary differential equations (ODEs)
of a reaction network including both fast and slow time-scale processes to those in-
cluding only slow time-scale processes for the purpose of constructing the reliable
phenomenological model of photosynthesis. This new method makes it possible to
algebraically calculate the fast time-scale variables in a precise way, to evaluate the
order of magnitude of the flux of each fast time-scale process, and to reduce a complex
model including multi-time-scale processes to a simpler one only including slow time-
scale processes. Consequently, an answer to the question of what processes govern
the asymptotic behavior of an complex system at concerned time scale is given as a
reduced model through application of time-coarse-graining scheme. If there exists a
simple structure in a biological reaction network system including various intertwined
multi-scale processes, the identification of the simple structure at each scale would
imply the achievement of a deep understanding of the pertinent system. 1 would
like to discuss a method of systematically reducing an complex model of a biologi-
cal reaction system to such a simple one that emerges as a result of the interactions
among the multi-scale layers, while finding such a phenomenological structure has
often been attempted by intuition. The effect of this scheme for reducing the cost of
understanding and computation will also be addressed.

In this chapter, I first present a reduction method for coarse-graining in time,

which makes it possible to reduce a complex kinetic model to a simpler tractable

21
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Figure 3.1 Graphical Abstract of Chapter 3

one on the basis of a prototypical three-variable reaction system. Then, I confirm the
usefulness of this time-coarse-graining reduction method by applying it to a simplified
photosystem II (PS II) model, which has multi-time-scale processes. The multi-time-
scale coarse-graining reduction of the simplified PS II model can be achieved by
applying the time-coarse-graining reduction method iteratively. Thus, I can extract
the structure governed by dominant processes at each time-scale class from a model

system with multi-scale property in time.

3.2 Theory

In this section, a prototypical three-variable reaction model that has a multi-time-
scale property is discussed. This model is composed of reaction, inflow, and outflow
processes. The characteristics of this model are having a nonlinear reaction process,
fast reaction processes, and no fast inflow process (see Fig. 3.2). The characteristics
listed above are common with a variety of biological reactions such as photosynthetic

reactions. The effect of interactions between different time-scale reactions with each
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other is an interesting problem about these reaction systems. A theoretical way to
investigate such chain-like interactions is the analysis of ordinary differential equations
(ODEs) of the full model, which simultaneously describe all multi-time-scale reaction
processes in a system. However, there are some issues concerning this approach:
(1) An intuitive understanding of the behavior of the system becomes more difficult
as the number of components forming the system increases; (2) The computation
cost increases as a wider variety of different time scales are considered. In order to
overcome these difficulties, I study how to simplify and reduce such a complex multi-
time-scale system to a combination of effective mono-time-scale systems. A full model
for three time-dependent variables for the population, z;(¢), which are analyzed in

this section, is presented as

2o = vy — kowo + kpT2 — kpT120,
% = V1 — k:lxl + k?bZCQ — k’f.’L‘lx(), (31)
% = vy — koxo — kpxo + kfilj'lilj'o,

where vg, v1 and vy represent the slow inflows into the system. Reaction rates k;s are
categorized into two groups according to their time scales. Two rate constants, k;, and
ko, which satisfy 1/k, < 1/ko , are set as the characteristic rate constants for fast
and slow groups, respectively: Ar = {k; | O(k;) ~ O(ky)} and Ag = {k; | O(k;) ~
(’)(ko)}. k; and Ky are fast rate constants of inner chemical reactions; ko, k1 and ko
are the rate constants of outflows. The property of the system dynamics thus depends
on the pattern of the time-scale-based classification of rate constants of outflows. I
discuss three typical cases of the time-scale based classification of these outflow rate
constants. The multi-time-scale property makes it possible to introduce dimensionless
time parameters at each time scale. The dimensionless times are then expressed in
terms of the characteristic rate constants at each time scale as 71 = kpt and T = kot.
er,m = ko/ksy represents the ratio of two time scales, which is assumed to be small. ;
refers to dimensionless rate constants that are defined as each k; normalized by the

characteristic rate constants of time-scale groups to which each k; belongs:

- e A
Kj = ki/ky kj € A, (3.9)
k‘j/ko k’j S AH,

where Ky, = ky/ky = 1, ko = ko/ko = 1 and all ks are of the order of unity. v;s are
also normalized as v; = v; /ko.

Here, I present a scheme that shows how to reduce the original ODE systems with
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Figure 3.2 Three-variable reaction model. Blue circle: variable population, red
arrow: fast reaction path, black solid arrow: slow reaction path. Black dashed

arrow represents that the time scale of this path depends on the case.

time ¢, which have the characteristics addressed above, to the dimensionless ODE
systems having small degrees of freedom with time 7y characterized by a slower rate

constant kg, as the following steps.

0. To make the original ODEs with time ¢ dimensionless, and to yield ODEs with
11 — oo: Dividing the original ODEs with ¢ by the fast rate constant k; yields
the dimensionless ODEs for 7y. Then, the dimensionless ODEs with 71 — oo

can be obtained.

1. Pseudo-steady-state approximation in the dimensionless ODEs with 7 — oo:
Suppose a system which is formed by reaction paths having O(1) rate in the
dimensionless ODEs with 77, and which is not affected by the reaction paths
having O(er ) rate. I then consider the following three cases.

(a) If the system constructed above in the fast process has no outflow or inflow
that allows interactions between the system and the environment, it is
called a quasi-isolated system. In this case, there exist quasi-conserved
quantities that change little with O(er ) at the 71 scale. Provided that
the quasi-isolated system is in a quasi-equilibrium for 71 — oo, the system
is in quasi-equilibrium pseudo-steady state that changes with O(ey ) rate.
Then, the fast variables which change at the 77 scale can be represented by
a coarse-grained functions I''s of quasi-conserved quantities. These quasi-

conserved quantities will be used as variables in the next step.

(b) If the system constructed above is not quasi-isolated but has quasi-
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(c)

conserved quantities, the quasi-equilibrium pseudo-steady-state approxi-
mation is not be applicable. In this case, fast variables that linearly decay
with O(1) at 71 scale are assumed to be in nonequilibrium pseudo-steady
state as 71 — o0o. Then, the fast variables which change at the 7y scale
can be represented by a coarse-grained functions I's of quasi-conserved
quantities. These quasi-conserved quantities will be used as variables in

the next step.

If the system constructed above is not a quasi-isolated system and does
not have any quasi-conserved quantity, fast variables that vary with O(1)
at the 71 scale are assumed to be in nonequilibrium quasi-steady state as
71 — 00. Then, the fast variables which linearly decay at the 7y scale can
be represented by a coarse-grained functions I''s of slow variables. These

slow variables will be used in the next step.

2. Transformation of the ODEs with 71 — oo to those with 71: Closed ODEs with

71 — oo that change by O(er ) at the 71 scale can be obtained by the application
of step 1 to the ODEs with 71. Divided by 15, the ODEs with 1 — oo can
be translated into those with 7. Thus, we can obtain the ODEs with 7 that

change by O(1) at the 7 scale. If one is interested only in the dynamics at the

7 scale, the O(er ) terms in the ODEs with 71 can be neglected.

I deal with three cases in which the classification of k1 and ks according to time
scales is different: (a) ko, k1,k2 € An; (b) ko, ke € Ap, k1 € Ap; and (¢) ko €
Arn, k1,ko € A;. Each case corresponds to the case that should be approximated by

(a), (b), and (c) in step 1, respectively, if the time-coarse-graining reduction method

is applied to each case. This will be presented in more detail below.

a. Case of kg, ki, ke € Ap

To translate the ODEs with ¢ to the dimensionless ODEs with 7y, step 0 is applied.
We thus find

dx

G = ELIV0 — ELIK0T0 + KpT2 — KfT1T0,

dx

_dﬁl = €1,0V1 — €L,IK1T1 + KpT2 — KfT120, (3.3)
dx

—de = eL,nV2 — E1,IK2T2 — KpT2 + KfX1Xg.

Next, by applying step 1 (a) to the ODEs with 77, the quasi-equilibrium pseudo-



26

Chapter 3 Hierarchical Coarse-Graining Method for Photosystem 11

steady-state approximation is performed. The quasi-conserved quantities at the 7
scale, xgo = zo(11) + z2(71) and z12 = z1(71) + x2(71), can be introduced. It is
assumed that the reactions inside the quasi-isolated system, which proceed in the 7
scale and consist of g,z and xo, are in quasi-equilibrium pseudo-steady states for
1 — 00: dxg/dm = 0,dx1/dm = 0, and dxo/dr = 0. This approximation yields the

following equation:

To = ﬁill'lil?(). (3.4)

Rp
Note that the processes of O(eq ) at the 71 scale are neglected in this treatment. By
constructing a quadratic equation for zy by using Eq. (3.4) and the quasi-conserved
quantities zg2 and x12, the solution to xg is obtained uniquely because of x¢g > 0. The
forms of coarse-grained functions I', which hold at 71 — oo and represent xg,x; and

x9 by the quasi-conserved quantities xgo and x12, are thus derived as

lim zo(m) =Ty (02, T12)
TI— 00

B \/(lib + K12 — KFxo2)? + 4K pRpxo2 — (Ky + KpZi2 — Kf2o2)
- 2I€f

‘ B B T12
Tlh_{noo T1 (7’1) = Fxl (x027x12) - 1 + 'Z_i]_—‘xo (,CL’02,$12),

Y

(3.5)

lim xo(m) =Ty, (202, 212) = To2 — L'y, (202, 12)-
T —> 00O

The ODEs with 71 — oo composed of the quasi-conserved quantities are derived by
substituting these equations into Eq. (3.3). These ODEs change with the O(ey 1) rate
for 1 — oo.

Finally, step 2 is applied to the ODEs with 71 — oo for the coarse-graining trans-
formation. That is, the ODEs are divided by ery. Thus, the transformation from the

ODEs with 71 — oo to those with 7 is achieved as

C?TOHZ =1y +vy— Ii()rxo ($02, 11712) — HQFI,Q (:E()Q? ;1;12)’ (3 6)
% = vy + v — K1l's, (To2, 212) — Kol'z, (702, T12).

With respect to the ODEs composed of the terms that have O(1) rates at the 7
scale, the relaxation time of the fast processes can be evaluated by the linear stability
analysis [45]. In this analysis, the system is assumed to be in steady state. The
solution & = (%o, Z1,72)T of the ODEs that are in the steady state is called an equi-

librium point. It is noted that & is composed of non-negative values. The decay time
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of the 7-scale reactions can be evaluated by the linear stability analysis of the point
Z + Az, which is displaced from the equilibrium point by Az = (Axg, Az, Axs)T.
The decay time can be analytically obtained by diagonalizing the Jacobian matrix for
the ODEs of Axz. The diagonalization can be carried out by transforming Ax to y
via Az = Py, where P = (po, P1, P2); Po, P1 and p2 are eigenvectors of eigenvalues
A1, A2 and A3 of the Jacobian matrix of ODEs of Az, respectively. As a result, the
decay time of the perturbation Az to the equilibrium point is evaluated as O(—1/Az),

where \s is the slowest decay component of the eigenvalues (see Appendix A.1).

b. Case of ko, k‘g S AH, kl € AI

To translate the original ODEs with ¢ to the dimensionless ODEs with 7y, step 0 is
applied, leading to

dxg

dn = ELIY0 — ELmKoTo + KeT2 — KfT1T0,

dzx

Te = ELmv — k1T + KpT2 — KpT1%o, (3.7)
dx

d_rf = EL,nV2 — E1,1kK2T2 — KpT2 + KfX1Zg.

With respect to the ODEs composed of the O(1) terms in Eq. (3.7), the relaxation
time of the reactions at the 77 scale can be evaluated by the linear stability analysis
as well as through step 1 (a). The eigenvalues of Jacobian matrix of the ODEs for

perturbation Az around the equilibrium point can be obtained as

—[Iﬂ + Kp + Iif(:fo + 51)] + \/[Iﬁ + Kp + Hf(fo + fl)]z — 4/'11(1% + Iifa_tl)

Ao =0, s = 5

(3.8)
Thus, the slowest decay time of the ODEs with 77 is evaluated as O(—1/\;) (see
Appendix A.1).

Next, by applying step 1 (b) to the ODEs with 77, the nonequilibrium pseudo-
steady-state approximation is performed. The quasi-conserved quantity at the 7y
scale, g2 = xo(71) + 22(71), can be introduced. It is then assumed that the reactions
about the variables that linearly decay with the O(1) rate at the 71 scale are in the
nonequilibrium pseudo-steady states for 71 — oo: dzq/dmn = 0 and dzo/dm = 0 under

the influence of the O(ey 1) terms. This approximation yields the following equations:
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KpTo + €1,mV1

xr1 =
K1+ KfZo (3 9)
. Kfx12o + Erule ’
2 = .
Ky + €1, MK2

Constructing the quadratic equation for z2 by using Eq. (3.9) and the quasi-conserved
quantity zgo, the solution to x5 is obtained uniquely because of x5 > 0. By expanding
2o with e71 < 1 and considering up to the first order of ey, the form of x5 can be

obtained as

KfV1To2 + I/Q(Iil + Iifill'og)
RpRk1

Ty = €I + O(etq)- (3.10)

El

The forms of coarse-grained functions I' that hold at 1 — oo and represent z; and

x2 by the quasi-conserved quantity xgs are thus derived from Egs. (3.9) and (3.10) as

11_1)11 z1(m1) = eruls, (To2) + 0(5%,11)7
T1 o0

. ) (3.11)
Tllgnoo wa(m1) = ernl's, (zo2) + Olern),
where
Ty, (z02) = Ly, (z02) +
1 (Xo2) = —— |1, (@ vils
o2 K1+ KfZo2 202 ' (3.12)

Kf1To2 + Va(K1 + KfTo2
Fx2($02) = dei(ﬁ ! )

The closed ODEs with 71 — oo composed of the quasi-conserved quantity are derived
by substituting these equations into Eq. (3.7). These ODEs change with the O(er )
rate for 1 — oo.

Finally, step 2 is applied to the ODEs with 71 — oo for the coarse-graining trans-
formation. That is, the ODEs are divided by 1. Thus, the transformation from the

ODEs with 71 — oo to that with 7 is achieved as

d.CCOQ

dT]I =19 + Vo — R [1'02 — 517]1F332 (.%02)} — 617]1/€2Fw2 (1’02). (313)

c. Case of kg € Ay, ki, ks € A

To translate the original ODEs with ¢ to the dimensionless ODEs with 7y, step 0 is
applied. We thus find
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d
d‘ﬁ? = €1, — EL,1K0To + KpXT2 — KfX1X0,
dzx
G = eIV — K11 + KpT2 — KFT1Z0, (3.14)
dx
—de = e,nl2 — KaX2 — KpT2 + KfT1Z0.

Concerning the ODEs composed of the O(1) terms in Eq. (3.14), the relaxation time
of the reactions at the 71 scale can be evaluated by the linear stability analysis as well
as through step 1 (a). The eigenvalues of the Jacobian matrix of the ODEs for the

perturbation Ax around the equilibrium point can be obtained as

1
)\Ozwlf/—q—k \/q2+p3+w1§/—q—\/q2+p3—ga,
>\1=wz\3/—q+\/q2+p3+W3{’/—q—\/q2+p3—%a, (3.15)
Azzwg\s/—q—F \/q2+p3+w2</—q—\/q2+p3—%a,

—1—iV3
2

where w; = 1,wy = %,wg = ,q = 3¢ — tab+ 5-a®, and p = $b — $a’.
The details of a,b and ¢ are described in Appendix A.1 Thus, the slowest decay time
of the ODEs with 77 is evaluated as O(—1/\g) (see Appendix A.1).

Next, by applying step 1 (c) to the ODEs with 71, the nonequilibrium pseudo-
steady-state approximation is performed. In this case, there is no quasi-conserved
quantity at the 77 scale. It is assumed that the reactions of the variables that linearly
decay with the O(1) rate at 71 scale are in the nonequilibrium pseudo-steady states
for 1 — o0; dx1/dm = 0 and dzo/dm = 0 are considered under the influence of the

O(er,n) terms. This approximation yields the following equations:

KpTo + 1,11

I = T
K KT
1 f0 (3.16)
KfZ1Zo + E1,mV2
To = .
Kp + Ko
These equations can be arranged about z; and x5 as
((lim z1(m1) = ernly, (%0),
TI— 00
lim zo(m1) = ernls, (o),
T —> 00
g r (q; ) _ Kplo + (/432 + /{b)Vl (3'17)
21 \L0 (,{%{_1_ Kp) (K1 + foo) P h:b/'ifZEo’
f 2
I = I —
(" (o) Ko + Kp Lo ()0 + ’ff]
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The ODEs with 1 — oo constructed by the slow variable are derived by substituting
these equations into Eq. (3.14). These ODEs change with the O(er ) rate for 71 — oo.

Finally, step 2 is applied to the ODEs with 77 — oo for the coarse-graining trans-
formation. That is, the ODEs are divided by ery. Thus, the transformation from the

ODEs with 71 — oo to that with 7 is achieved as

dl‘o

— =1y — Koo + KLz, (x0) — KL s, (T0)xo. (3.18)
dT]]

Note that, in the three cases above, derived coarse-grained ODEs have different
structures from each other depending on what processes are fast in the original model
system. Figure 3.3 shows the results for the dynamics of x(y, which are computed on
the basis of the original ODEs with time ¢, the ODEs composed only of O(1) terms at
the 71 scale, and the time-coarse-grained ODEs with 7y in the case of (a), (b), and (c)
above, respectively. The parameter values were set as kg = 1,k; = 1 or 1000, ko = 2
or 2000, k¢ = 3000, k, = 1000,v9 = 2,v; = 1, and vo = 3. The results of both the
ODEs composed only of O(1) terms at the 71 scale and the time-coarse-grained ODEs
with 74 agree well with those of the original ODEs with time ¢ at the fast and slow
time scales, respectively. With respect to the original ODEs, the decay processes at
the 71 scale are represented by the former, and the slow processes at the 7 scale are
represented by the latter. These results show a clear separation of time scales 71 and
mi. The relaxation time to the pseudo-steady state at the 77 scale can be evaluated
through the linear stability analysis. The relaxation times in the (a), (b), and (c) cases
are estimated as 1.9 x 1074, 7.9 x 1073, and 4.1 x 1073, respectively, by the linear
stability analysis. The evaluated relaxation times are consistent with the calculated
results of the ODEs composed only of O(1) terms at the 77 scale. The relaxation times
of the computed results do not depend on the initial values, where those of xq, x1,
and o are searched for the range between 0 and 2 under the constraint as xgs = 2

and 12 = 1 in the case (a) and xg2 = 2 in the case (b).

3.3 Application to a simplified model for PS Il

In this section, we investigate the usefulness of the time-coarse-graining scheme
shown in the preceding section for the reduction of a system that has a multi-scale
property in time. For such a system, I employ photosystem II (PS II) emitting

Chlorophyll a fluorescence [29], which is often detected as an environmental response
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Figure 3.3 Calculated dynamics of zo in the cases of a, b and c.
the full ODE results with t (Egs. (3.3), (3.7) and (3.14)), red squares: the ODE
results with 71 (Egs. (A.1), (A.7) and (A.11)) and blue squares: the ODE results
with 71 (Egs. (3.6), (3.13), and (3.18)).
= 0, and x2 = 1. Parameters are set as kg = 1,k1 = 1 or 1000,ks = 2 or

Initial values are set as zp = 1, 1

2000, k; = 3000, ky = 1000, vo = 2,v; = 1, and va = 3.
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of photosynthesis. Time-coarse-graining is applied to a simplified model of PS II,
which simply describes the processes of excitation-energy and electron transfers in PS
I1, as illustrated in Fig. 3.4. Four different time scales coexist in the reactions of this

model. The ODEs with time ¢ are then given by

(AW, (¢ 4% k k_
d1t< ) = Wiw—kdﬂﬁ — R—;(X0+YO)W1+W_;WO(X1+Y1)’
dXo(t) ky k—t
= L XoWq + W X1 + kg X + ks X
dt kRT 0 1+WT 0T Rt T e
+Z—420Y0 - R;4XOZh
dX.(t)  k k
dlt = R—;X()Wl — W;;WOXl - lel + k—lXQ - kXmv
dXo(t
th( ) =k X) — (ko + k_1)Xo + k_oX3,
dX5(t k k-
di"t( ) haXe — (ks + ﬁZo +k_2)X; + R—§X4Zl,
] L I 3.19
det k i k T
t _
C(;t( ) — —R—;Y0W1 + W_;WOYI + kdlfl + k3X37
k k_
——4Z0Y0 + _4XOZD
i) F &
1 t t —t
= LYW, — —LWoY; — kY,
dZdt(t) S
= ks Zid o Zo(Yo + Xa) = (Ko + Xa) 2,
W()(t) - WT - le
Z()(t) - ZT - Zl,

where W, X, Y and Z represent the concentrations of different states of the core an-
tenna, the reaction center (the special pair, the first and second electron acceptor) and
the final electron acceptor as follows. Wj: excited state of core antenna, Wj: ground
state of core antenna, Xo: [PegoPheQa], X1: [PgsoPheQal, Xo: [PdsoPhe™Qal, Xa:
[PdsoPheQ], Yo: [PesoPheQ], Yi: [PigoPheQyl, Zo: [Qsl, Z1: [Qg). The core
antenna can take two possible states. The reaction center is characterized by the
combination of the states of the special pair, the first and second electron acceptors.
Each component of the reaction center takes two possible states; the special pair takes
Pgso or Pgso, the first electron acceptor takes Phe or Phe™, and the second electron
acceptor takes Q4 or Q. However, the states [PggoPhe™Q], [PssoPhe” Q] and
[PesoPheQ, |, which are not easily realized kinetically, are neglected for simplicity.

The special pair can transition to the excited state Pggy only in the reaction center in
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which both the special pair and the first electron acceptor are in the ground (neutral)
states. The final electron acceptor takes two possible states Qp and Q. The index
0 of each variable represents the ground (neutral) state.

The parameters of the simplified model of PS II are described in Table 1. The
parameters that belong to significantly different time scales coexist in this model.
To clearly represent the multi-time-scale property, time scales are characterized by
the representative rate constants, k;, ko, k3, k_o, where these parameters satisfy the
following relation: 1/k; < 1/ky < 1/ks < 1/k_o. That is, the hierarchical structure
in the time scale of this system is formed by four classes. The rate constants are
classified on the basis of their time scales as follows: Ay = {k; | O(k;) ~ O(k:)}, Ax =
{kj ‘ O(kj) ~ O(kg)},Am = {k;j ! O(kj) ~ (’)(k:g)}, and Ay = {kj | O(kj) ~
O(k_2)}.

The dimensionless times 71, 7, 7m, and 7rv normalized by the characteristic rate
constants of each time scale are introduced as 71 = kit,Tm = kot,Tm = kst and

v = k_ot. The ratios of the time scales are introduced as

ern = ka/ke,
enm = ks /ke, (3.20)
emv = k—2/ks, '

env = enmem,v = k—2/ka,

which satisfy the following relations: eq v < erm ~enm ~ emv < 1.

The time-coarse-grained reduction of a reaction system that has a multi-time-scale
property as described above is attempted in the following by applying repeatedly the
time-coarse-graining scheme described in Sec. 3.2. It is shown that the reduction of
the simplified PS IT model from the 71 scale to the 7 scale is realized by applying

the time-coarse-graining scheme three times iteratively.

3.3.1 the ODEs (11) — the ODEs (7y)

To translate the original ODEs with ¢ to the dimensionless ODEs with 7y, step 0 is
applied, i.e., Eq. (3.19) is divided by k;. The ODEs having O(1) rates at the 7 scale

are given by
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Figure 3.4 Diagram of the simplified model of PSII. Each box indicates each
state variable. Dotted line: reactions at Aj scale, chain line: Ap scale, dashed
line: A scale, solid line: Ay scale. Black and red lines indicate electron transfer

and excitation-energy transfer (or photon-flux), respectively.

¢ AW _
Lo X Y)W+ W (X 4 YY),
S Rr Wr
& Bt xown - Etwx,
B R Wr
QA0 By w4 Pt x (3.21)
dd;/—l K',RT K WT
1 t —t
S Myw, — Etwy,
(%17_ R,T 0 1 WT ofL1,
0 Kt K—¢
S0 My W, + WYy
\ dTI RT 0 ! + WT 071

The reaction processes expressed by these ODEs constitute a quasi-isolated system
at the 71 scale. Then, step 1 (a) in Sec. 3.2 is applied to this system. The quasi-
conserved quantities, Uy, Xo1 and Ypq, are introduced as Uy = Wy + X7 + Yy, Xo1 =
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Table 3.1 Table 1: List of parameters of simplified PSII model.

description notation time scale class value
rate constant of excitation transfer from core antenna to special pair k¢ Ay 2 x 1013571
rate constant of excitation transfer from special pair to core antenna k_y A ki exp[hc(l/)‘gilgl/)‘}’)]*sfl
rate constant of excitation dissipation from core antenna kg Axn 10851
rate constant of charge separation in open (Q4 is neutral) reaction center ky Aqg 2.5 x 1010571
rate constant of charge recombination in open reaction center k_y An 3 x 10871
rate constant of electron transfer from Pheo™ to QA ko Aqg 2 x 1091
rate constant of electron transfer from Q} to Pheo™ k_o A 2 x 103s~1
radiation flux density to core antenna Vi Ay 1,000 pmol m=2 s~!
rate constant of electron transfer from OEC to P(ersu k3 Am 5x 10051
rate constant of electron transfer from Q} to Qp ky A 2,500s~!
rate constant of electron transfer from Qp; to Q4 k4 A 17551
rate constant of electron transfer from Q to downstream (plastoquinone) ks Ay 800s1
concentration of all reaction center’s states (conserved quantity) Ry - 1 pmol m—2
concentration of all Qp’s states (conserved quantity) Zy - 1 pmol m~2
concentration of all core antenna’s states (conserved quantity) Wr - 70 ppmol m~2

* kp: Boltzmann constant, h: Planck’s constant, ¢: speed of light, T: temperature (298K), Acp;: wavelength of the maximum absorbance of antenna chlorophyll
(678nm), Ap: wavelength of the maximum absorbance of special pair (680nm).

Xo+ X7 and Yy = Yy +Y;. It is assumed that the reactions inside the quasi-isolated
system of Eq. (3.21), which proceed at the 77 scale, are in the quasi-equilibrium pseudo-
steady state for 1 — oo: dW;/dm = 0, dX1/dn = 0 and dY;/dr = 0. Note that
the processes of O(er ) at the 71 scale are neglected in the above treatment. This
approximation yields the following coarse-grained functions I', which hold for 71 — oo,

and represent Wy, X; and Y; by the quasi-conserved quantities, Uy, Xp; and Yp1:

—[lfs (Xo1r + Yo1) + 5y — ali] + \/[Q—;(Xm +Yo1) + k_t — alU;]?2 + dak_ Uy
lim Wy (m) =

TT— 00 2a
= I'w, (U1, Xo1, Yo1),
e
lim Xi(m1) = +; R o = I'x, (U1, Xo1, Yo1),
100 w=lwy + w7 (Wr — wy)
&= Yo1

lim Y1 (7‘1) =

K-t EF 1 U ,X ,Y y
T — 00 g_ffFW1 _*_W_*T(WT_FW]-) Y( 1 01 01)

(3.22)

where a = k¢/Rr — k_¢/Wr. By substituting these equations into Eq.(3.19) and
using the definitional equations for quasi-conserved quantities, the ODEs of quasi-
conserved quantities that hold for 1 — oo are obtained. These ODEs change with
O(ern) rates as 71 — o0.

Then, step 2 is applied to the ODEs with 71 — oo for the coarse-graining transfor-
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mation. That is, divided by ey 5, the transformation from the ODEs with 71 — oo
to those with 7y can be achieved. The ODEs that change with O(1) rates at the 7

scale are expressed as follows:

(% = —kqU1 — kil'x, (U1, Xo1,Yo1) + k-1 Xo + en v,
ddLTOHl = —r1l'x, (U1, Xo1, Yo1) + k-1 X2 + enmks Xy
K
+5H,Nﬁ[Y01 — Iy, (U1, Xo1, Yo1)] Zo
kL
—811,1\/—4[X01 — I'x, (U1, Xo1, Yo1)] Z1,
Ry (3.23)

22— g Tx, (Ur, Xo1, Yor) — (k2 + K1) X2 + envr—2 X3,

K
Cé—i(lf‘ = ko X9 — (emmA3 + 611,IVZ—420 +enwvk—2)X3
T
K_
+€H,NR—4X421,
T
[ Y01 =Ry — (Xo1 + Xo + X3+ Xy).

3.3.2 the ODEs (71) — the ODEs ()

The reaction processes at the 7 scale presented in Eq. (3.23) do not form a quasi-
isolated system. Then, step 1 (c¢) in Sec. 3.2 is applied to this system. In this system,
the variables that linearly decay with O(1) rates at the 7y scale are U; and X5. The
total inflow and outflow of the processes related to these variables are assumed to be
balanced for 7 — oo, that is, the nonequilibrium pseudo-steady-state approximation
is applied: dU;/dm = 0 and dXo/dm = 0. As a result, the coarse-grained functions
that hold for 7y — oo and represent U; and X5 by the slower variables are obtained

as

vr+ /<6—271)7(2X3

lim Ul(TH) = €n,1v
T —> 00 Kd _|_ 5517};2

= en,vl'v, (Xo1, Yo1, X3), (3.24)

r _oX
lim XQ(TI[) = E&n,v Klﬁ el + R-24s
T — 00 Ko + K_1

where T'x, (U1, Xo1,Y01) is expressed by pU; with 0 < 8 < 1. Besides, 7§(2 =
Ko/(ke + K_1) and 7()’(2 = k_1/(k2 + K1) are introduced, which indicate the ratios
of forward and backward outflows to total outflow from Xs, respectively. Equation
(3.24) suggests Uy ~ O(env) < 1. Concerning Eq. (3.22), by expanding W; by Uy,
and X; and Y7 by Wi(< Uy), considering up to the first order of O(en ), W1, X1

and Y; are represented as
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X Yo1.\—
]}ign W1 (TI[) = 5H,IVFU1 (1 + l:t OlR—; 01) 1;
T] o —t
_ _ k—t Rr -1 X1
lim Xi(mg) = lim U +1) ———
TI— 00 1(7m) TE—00 1( ke Xo1+ You Xo1 + Yo1
X
= en,vl'x, (Xo1, Yo1, X3), (3.25)
' . k—t Rt -1 Yo
lim Y; = lim U —_—
T — 00 1(7—]1) T — 00 1( K¢ X()l + Yv()l ) XOl + YOl
Yo1
= en vl X1+ |\U)——
0,1V o, (X1 1] 1)X01 Yo,

= 5H,IVFY1 (X017 Y017 X3)7

where the partition ratio of U; (population of total exciton in PS II) at the reaction
center (total concentration Rr), p(X1 + Yy | U1) = [k_¢/ke - Rr/(Xo1 + Yo1) + 1]71,
has been introduced. Equation (3.25) indicates = p(X1 + Y1 | U1)Xo1/(Xo1 + Yo1).
By substituting Egs. (3.24) and (3.25) into Eq. (3.23), the ODEs with 1 — oo are
obtained.

The transformation from the ODEs with 71 — oo to those with 7 is achieved by
applying step 2, i.e., by dividing the ODEs with 74 — oo by egm. The ODEs that
change with O(1) rates at the 7y scale are thus given by

rdX
dn?ll = —sm,wlfﬂf(QFXl (Xo1, Yor, X3) + w3 Xy + emvi-27%, X3
K K_
+€1]1,Iv—4Y01ZO - 61]1,Iv—4 Xo141,
X 7T Rr
d—3 zam,wﬁwﬂc(zFXl(Xm,Ym’X:%)
T K4 . (326)
—(Kks + 5]]I,IVEZO +emvr—27%,) X3
K_
‘|‘5[[[,IVR_4X4217
T
dX _
TR Xy — 6m,NuX4Z1 + 51[[,IVEZ0X3a
\ dT]]I RT ZT

where the terms of O(em venv) at the 7 scale are neglected.

3.3.3 the ODEs (1) — the ODEs (my)

The processes at the 7y scale presented in Eq. (3.26) do not form a quasi-isolated

system. Then, step 1 (c) in Sec. 3.2 is applied to this system. In this system, the
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variables that linearly decay with O(1) rates at the 7 scale are X3 and X4. The
total inflow and outflow of the processes related to these variables are assumed to be
balanced for T — oo, that is, the nonequilibrium pseudo-steady-state approximation
is applied: dX3/dmy = 0 and dX4/dmm = 0. As a result, the equations that hold
for T — oo and represent X3 and X4 by the slower variables are obtained. The

coarse-grained functions that are expanded by ep v are

. _ I boAf ] i
dim X3 (7w) = em vy, vill + emw (k27,70 — EZO —m17x,)] + Olem )
= emvl'x, (Xo1, Yo1, Zo),
. _ 2 _f K4 3
7—1]1112100 X4(7']]1) = EI]I,IV’)/Ul VIEZO + O(SHLIV)

= e v x, (Xo1, Yo, Zo),
(3.27)

where the ratio of forward outflow via charge separation to total outflow from Uy:

f X
ik p(X1+ Y1 | U 01
751 _ 177X, ( 1 1 ‘ 1)X01+Y01 : (3.28)

Ka + k7%, p(X1 + Y1 | U1) oo —

is introduced. By substituting Eq. (3.27) into Eq. (3.26), the ODEs with 7y — oo are
obtained.

The transformation from the ODEs with 7y — oo to those with 7y is achieved by
applying step 2, i.e., by dividing the ODEs with 7y — oo by em 1v. The ODEs with

Tv are thus given by

(dX,

dTI(\J/l = —r1v%,Tx, +emvrslx, + emvi—27k,Tx,

p K
+Z_4(ZT — Zl)YOI — _R 4)(Olzlv

dy, Lk LR

T =D (2= Z)Yo + = Xa

dgv T/{/ T KR

, 4
L —ksZy + 5—(Zr — Z1)(Yo1 + emvI'x,) — (Xo1 + E%I wlx) 21

i 7 R ;

(3.29)
In particular, by neglecting the terms of O(em,v), the ODEs with 7y are concisely

represented as

dX K K_
dn(\)/l = —vry, + ﬁ(ZT — Z1)(Rr — Xo1) — R—;X(lel’
an N (3.30)

K_
(Rr — Xo1)(Z1 — Z41) — "2 X1 2y — ks Za,

dTN - ZT RT



3.3 Application to a simplified model for PS II

39

where the relation m’yf(zf X, = V17£1 is used, and the relations Xyp; + Y51 = Rt and
p(X1 +Y1 | Up) = (k_¢/ke +1)71 hold.

To represent these ODEs in a simpler way, each variable and parameter are nor-
malized as follows: Xo1/Rr = X, Z1/Zr = Z and v; /Ry = v. They indicate the
occupancy ratio of each state and the incidence rate of photo-excitation per PS II. Be-

sides, by assuming Rt = Zr, which is a natural assumption, Eq. (3.30) is represented

as
dX X
L B k(- X)(1 - Z) — kX2,
dr Rq + /‘ilX (331)
dz

—_ :R4(1—X)(1—Z)—I€_4XZ—KJ5Z,

where 71y is replaced by 7, and k] = mwf(z p(X1 + Y1 | Uy) is introduced.

3.3.4 Results and Discussion

The calculated results of four different time-scale variables of the full ODEs with
t and the reduced ODEs obtained by the time-coarse-graining method are shown in
Figs. 3.5 and 3.6. Each time step of integration of the full ODEs with ¢, ODEs with
11, ODEs with 71, and ODEs with 7y is set as 10713s, 107 11s, 5 x 1078s, and 10~ s,
respectively. The integration of each reduced ODE is computed up to 0.1 s and that
of the full ODEs is computed up to 0.01 s. Initial values of the variables are set as
those for non-reduced states under the assumption that the system is dark adapted:
Xo =1, Zy = 1, and otherwise 0. The values of the relevant variables and those of
the fast variables at each time scale of the ODEs are calculated by integrating the
ODEs and through the coarse-grained functions, respectively. All of the results of the
reduced ODEs are in good agreement with those of the full ODEs at each time-scale
range of each reduced ODE (see Fig.3.5 ). This result indicates that the time-coarse-
graining method adequately yields the effective reduced ODEs at each time scale. The
calculated results for the variables of the reduced ODEs, which are not shown here,
are also in good agreement with those of the full ODEs. The comparison between the
results of the ODEs with 7rv neglecting O(ef; /) terms (see Appendix A.2) and those
neglecting O(em 1v) terms are shown in Fig. 3.6. This result suggests that Eq. (3.30)
consisting of two variables appropriately describes the dynamics of the simplified PS II
model consisting of nine variables at the v scale, because both the ODEs neglecting

the O(efy 1y) terms and those neglecting O(em 1v) terms represent the full ODEs fairly
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Figure 3.5 Computed dynamics of (a) Wi and (b) Z; concentrations. Grey line:
the results of full ODEs with t, open square (green): the ODE results with 71,
open triangle (blue): the ODE results with 7m, and open circle (magenta): the
ODE results with 7rv. The full ODEs are computed up to 0.01 s. Details of the
computation are shown in Sec. 3.3.4.
well.

The diagram of coarse-grained model at the slowest time scale (Eq. (3.31)) is illus-
trated in Fig. 3.7. The initial values are X = 1 and Z = 0, corresponding to dark
adapted samples. If the incident light flux v is absorbed by PS II, then the ratio 751
to it is used for charge separation, which accompanies the decrease in the population

of X state and the increase in the population of 1 — X state. As a result, the flux of
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Figure 3.6 Computed dynamics of (a) X2 and (b) X4 concentrations. Grey line:
the results of full ODEs with t, open square (green): the ODE results with
neglecting O(efy 1v) terms (Eq. (A.16)), and open circle (blue): the ODE results
with mrv neglecting O(em,v) terms (Eq. (3.30)). The full ODEs are computed up
to 0.01 s. Details of the computation are shown in Sec. 3.3.4.

downward outflow from reaction center, whose flux is in proportional to (1—X)(1—2),
increases. On the one hand, 7{}1 = k1 X/(kaq + 1 X), which is a function of X, de-
creases along with the decrease in X state; on the other hand, the fraction of heat
dissipation, v =1 —7{;1 = Kq/(kq+ k1 X), which is also a function of X, increases si-
multaneously. As a sufficiently long time passes, the system becomes a steady state in

which the net flux from reaction center to downward (= k4(1 — X)(1 - 2) —k_4 X Z)
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Figure 3.7 Diagram of the coarse-grained model at the 7y scale. Fach box
represents each state variable. X: open RC, 1 — X: closed RC, Z: reduced
QpB, and 1 — Z: oxidized Qp. Black and red lines indicate electron transfer and
excitation-energy transfer (or photon flux), respectively.

is equal to the flux of effective charge separation (= I/’)/[];l) under the effect of the
process occurring with the outflow from Z to downward.

Here, the effects of application of time-coarse-graining method is summarized as
follows: (A) Fast processes are transformed to effectively slow processes. (B) The
reaction network system is reduced to a simple one by neglecting reaction paths with
evaluated small fluxes. The effect of (A) is reflected in the first term on the right-hand
side of ODE for X in Eq. (3.31). This term contains the processes of excitation of PS II
by light absorption, transfer of exciton to Pggo of open RC (X state), transition from
X, state to X5 state via charge separation, transition from X5 state to X3 state, and
transition to closed RC (Y{; state). Concretely, v represents the excitation rate of PS
II, and the fractional factor represents the ratio of excited PS II which will transition
from Xy state to Yy, state; kg and k] X = mvf(Qp(Xl +Y; | U1)X, which are involved
in the fractional factor, represent the dissipation rate and effective charge separation
rate, respectively. Concerning the effective charge separation rate, p(X; + Y7 | U)X
and I€1’7§(2 reflect the result of quasi-equilibrium pseudo-steady state approximation
at 71 scale and that of nonequilibrium pseudo-steady state approximation at 7 scale,

respectively. The result of the approximation at 7y scale is reflected as that almost all
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of X3 state transitioned from Xy; state via charge separation becomes Yj; state. The
effect of (B) is reflected on the description of electron transfer between the reaction
center and Zj or Z; state. Eq.(3.31) suggests that one has only to consider X
state and Yy state as electron donor concerning this process. That is, the present
time-coarse-graining method succeeds in the simultaneous extraction of the principal
reaction paths at each layer of scale and consequently the accurate description of the
system dynamics.

Finally, the present work is primarily focused on the novel development of mathe-
matical modeling and methodology that can be applied to multi-scale photosynthetic
systems. The applications of the present method to more realistic, full PS IT models,
which may involve macroscopic phenomena such as long-term state transitions [38],
are currently under way, and their details will be reported elsewhere. Photosynthetic
systems are complex and systematic combinations of a variety of quantum-mechanical
and classical-mechanical devices with a wide range of characteristic times. These fea-
tures underlie the coarse-graining manipulations developed in the present study, and
their theoretical modeling and elucidation remain to be performed with respect to

many issues.

3.4 Conclusions

In this chapter, I proposed a reduction method for temporal coarse-graining, and
applied it to a simplified PS II model. This coarse-graining method is based on a pro-
totypical three-variable reaction model that has two (fast and slow) time scales and
a quadratic, nonlinear reaction process. Influxes into the system belong to the slower
time-scale processes, and intra-system reaction processes belong to the faster time-
scale ones, which is a typical setting for photosynthetic reaction systems. The extrac-
tion of the simple structure at slower time-scale and the reduction of computational
cost about the three-variable model were systematically achieved for various cases
by applying the temporal coarse-graining reduction method. The different structures
of the coarse-grained models appear according to the cases of different time-scaled
classification of reaction processes. I then applied the coarse-graining method to a
simplified PS II model, which is more complex than the three-variable model and
has a multi-time-scale character. The reduction of a model with a multi-time-scale
property to that scaled to a certain time scale was performed by applying the coarse-

graining method iteratively. It was possible to estimate the orders of magnitudes of
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the fluxes of reaction paths reduced by the coarse-graining method. By neglecting
the reaction paths whose fluxes are small enough at a given time scale, a reduction of
the complex model to a model having a simple structure and small degrees of freedom
was carried out. As a result, it has turned out that there exists a simple structure at
slower time scale described by two variables and four paths in contrast to the original
model composed of nine variables and eighteen paths. The simple structure contains
the paths which include the information of fast processes in a renormalized way.

In this study, the proposed method successfully reduced the multi-time-scale dy-
namics of a photosynthetic reaction system composed of the reactions of the picosec-
ond to millisecond time scale to a slower one. The temporal coarse-graining reduction
method proposed in this work thus has the potential to be applied to any reaction
model that shares the properties of the prototypical three-variable model for the
extraction of the structure of each time-scale layer and the reduction of the compu-
tational cost. The reduction of more complex photosynthetic reaction systems with
slower (2 seconds or minutes) time scales using the present method is also possible.
Thus, the reduced effective minimum model, which is consistent with the complex
and detailed model of photosynthetic reaction systems, is expected to be obtained.
Furthermore, the description of mathematical structure at each scale by this novel
method will allow for the investigation of the effects of variations of reaction pro-
cesses, which may be caused by the changes of environmental and genetic factors, on

the coarse-grained structure and the asymptotic behavior of the whole system.



Chapter 4

PS [l Complex Model Studies for Chl a
Fluorescence Induction Kinetics

4.1 Introduction

Photosynthesis is a complex and multi-scale phenomenon in which a variety of chem-
ical processes are involved and intertwined [46]. A variety of environmental responses
of this phenomenon at a wide range of scales have been identified via experimental
and theoretical studies on different spatiotemporal scales [27|. The measurement of
chlorophyll a fluorescence [29,47] is known in this context as a useful tool to probe
the dynamics of photosynthesis. It has then been recognized [23,28] that the major
contribution to chlorophyll a fluorescence arises from photosystem II (PS II) that
drives photosynthesis with the charge separation and the production of oxygen. As
observed in experiments, the intensity of chlorophyll a fluorescence significantly varies
according to environmental conditions. It is noticeable that plants show a variety of
time-course patterns of fluorescence under various amplitudes of continuous illumi-
nation after the dark acclimation, which are known as fluorescence induction (FI)
phenomena [2,23,28,48]. The elucidation of the FI mechanism is, however, difficult
generally due to the physicochemical complexities of pertinent systems [3,15, 28].

Systems approach [49,50] provides an essential viewpoint for analyzing the dynamics
of complex biological systems. Concerning the interpretation of FI, a simple kinetic
model was first proposed by Duysens and Sweers [51|. They suggested that there
was a fluorescence quencher “Q” , later identified as the PS II-bound plastoquinone
Qa in oxidized state. The main idea of Duysens and Sweers theory (DST) is that

the fluorescence increases as the amount of quencher decreases, i.e, as the Qa in

45
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reduced state increases. Besides, they suggested the linear relationship between the
fluorescence intensity and the amount of the quencher QQ that was considered as the
only factor influencing the fluorescence. Following their pioneering work, a number
of extensions (extended Duysens-Sweers theories, EDSTs) have been introduced to
quantitatively account for the FI kinetics, thus leading to more and more complicated
models including many elementary processes associated with excitation-energy and
electron transfer reactions [8,9,12,13,19,20,52-62]. EDSTs are formed on the basis
of structural information of molecules and thus include the chemical processes such
as S-state (Kok) cycle of the oxygen-evolving complex (OEC) [63], reversible radical
pair model which describes the trapping and charge-stabilization processes in reaction
center (RC) [11,64, 65], two-electron gate model that describes the electron transfer
processes between Qa and Qp [66], and so on. EDSTs also presume the quenchers of
fluorescence in addition to the QA in oxidized state since various quenchers have been
proposed. While the accuracy of the model calculations to reproduce the experimental

results has thus been improved substantially [31], it has become fairly difficult to



4.1 Introduction

47

intuitively and comprehensively understand the whole phenomena. On the other
hand, a totally different, phenomenological model accounting for the FI behaviors
has also been proposed by Vredenberg [67-69]. This theory is based on a three-state
trapping model (TSTM) in which the reaction centers make transitions among three
representative states with some associated assumptions. Although this model, called
fluorescence induction algorithm (FIA), agrees well with experimental results, it is
not straightforward to systematically compare it with the EDST, thus preventing us
from assessing its relevance [15]. The differences in their degree of complexities also
make the comparison more difficult.

In an earlier work [70], we have proposed a hierarchical coarse-graining (HCG)
method to comprehensively analyze the dynamical behaviors of reaction networks
with many dynamical variables such as those of PS II. In addition to its capabil-
ity of hierarchically integrating the temporal evolutions of many dynamical variables
with wide varieties of characteristic time scales, this HCG method can unambigu-
ously provide us with rational coarse-grained pictures for the whole system dynam-
ics at specified time scales on the basis of underlying mathematical structures. In
the present study, we construct a complicated EDST-like model with 28 dynamical
variables for PS II including oxygen-evolving complex (OEC) and light-harvesting
complex (LHCII) components, and apply the HCG method to the full model for the
reduction into a simplified one with good accuracy. We thus intend to understand the
FI phenomena intuitively in terms of the correspondence between the original compli-
cated model and the simplified coarse-grained model. Depending on the magnitudes
of kinetic parameters in the original detailed models, the HCG method has an ability
to give different coarse-grained model descriptions. With this perspective in mind, we
simultaneously aim at showing how and under what conditions the phenomenological
TSTM by Vredenberg can be derived from the original complex PS II model in this
study. Theoretical accounts for the experimental results for the FI behaviors in PS
IT are thus given comprehensively.

In the following, the EDST-like model and two different coarse-grained models of
PS II are described in Materials and Methods section. The HCG method is also
introduced concisely in this section. The simulated FIs based on two different models
are shown in Results section, where the light-intensity dependent changes of FI pattern
from O-J-I-P, which shows two inflection points, J and I, between initial point O and
peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points,
observed by Schansker [71,72| are reproduced. The question of what the J-D-I pattern
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reflects is answered based on the models, i.e., the transition on the donor side of
PS II. In Discussion section, we compare the phases of the RC state over the wide
range of light condition between the two different coarse-grained models of PS II and
investigate the light-intensity dependent change of dominant transition path of the

RC. Conclusion section provides a summary in the present work.

4.2 Materials and Methods

421 Kinetic model of PS Il

To investigate the dynamic properties of the PS II, a variety of EDSTs have been
proposed and improved. Though the increase in the complexity of the models makes
the reproducibility for the experiments better, it also makes it difficult to interpret
the phenomena on the basis of underlying models. While the phenomenological mod-
els of PS IT which are simpler than EDSTs have been proposed, the comprehensive
understanding has not been achieved because there are differences in the reaction pro-
cesses considered among the models. For example, the quenchers taken into account
in the models are different between the EDST by Zhu et al. [19] and the TSTM by
Vredenberg [67-69]. Therefore, we here construct a model a la EDST which includes
both processes described by Zhu et al. and Vredenberg with respect to electron and
excitation-energy (exciton) transfers in PS II. The addition of the process for the
redox reaction of tyrosine Yz in the model asks for the improvement of the model for
the OEC reactions because the redox reaction of Yz facilitates the electron transfer
between RC and OEC, and thus affects the reaction of OEC. For the purpose of con-
structing the comprehensive framework, the following physicochemical processes are

also considered in our model:

e Effects of peripheral antenna and core antenna are taken into account.

e Rate constants of charge separation which drives the transition from Pgg,Phe
to Pz{SOPhe_ are different between open RC, in which the primary quinone
electron acceptor Q4 is neutral, and closed RC, in which Q4 is reduced [71,72].

e As the quenchers of excited chlorophyll, plastoquinone (PQ) [16, 73] and oxi-
dized special-pair (Pgg,) [32,74] are taken into account. In some cases, oxidized
tyrosine Z (Y, ) [68] is also taken into account.

e As the energy dissipation pathways of excited chlorophyll, non-radiative re-

combination of Pg‘—soQX to the ground state, non-radiative recombination of
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ngoPhe_ to the ground state, and intersystem crossing of Pg'goPhe_ to the
triplet state >Pdy,Phe™ are taken into account [75,76].
e The states of tyrosine Yz which mediates the electron transfer between RC and

oxygen-evolving complex (OEC) are explicitly treated in the model.

The kinetic model of PS II is described in terms of the concentrations on a green
leaf (in the unit of pmolcm™2) of various states of electron donors/acceptors and
light-absorbing pigments that change via electron and exciton transfers. This model
encompasses the processes from the transition of the states of OEC on the donor side of
PS II to the oxidation of PQHs by cytochrome bgf (Cyt bgf) complex on the acceptor
side of PS II. We note that the negative feedbacks by light-induced non-photochemical
quenching processes, such as xanthophyll cycle and state transition [29], are assumed
to have no effect on the reaction processes of PS II at the concerned timescale range
(picoseconds - milliseconds) and therefore not included in the present model. It seems
that these processes should be considered in the model to analyze the slow change
pattern (seconds - minutes) of FI. The ordinary differential equations (ODESs) for the
kinetic model of the reaction processes from RC to plastoquinone pool in thylakoid

membrane are then given by
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dZdlt(t) = k’41 Z (Yo —+ Y2 + Y3 + Y;L) k. Al X0+X2+X3+X4Z

—kyo Z- s L(Yo+ Yo+ Y3+ Yy)+k_yo X0+X2+X3+X4Z

dZ—th—(t) = kyoZ- 7 L(Yo+ Yo +Y3+Yy) —k 4o X0+X2R+TX3+X4 Z

—k52280 +k_ SZOQ_
dQ1 (t) — k5Z2— —k_ 520% - k6Q17

\ dt

(4.1a)
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Vo(t) =Vr -V,
Wo(t) = Wrp — Wi,
Zo(t) = Zv— 2y — Zy,
Qo(t) =Qr —Qy,

where V, W, X, Y, Z and (@) represent the concentrations of different states of the

(4.1b)

peripheral antenna, core antenna, Qa-neutral (open) RC, Qa-reduced (closed) RC,
secondary quinone electron acceptor (Qp) and plastoquinone pool (PQ,PQH,), re-
spectively, as follows. Vj: ground states of peripheral antenna; Wy: ground states of
core antenna; V7: excited states of peripheral antenna; Wi: excited states of core an-
tenna; Xo: [PesoPheQal; X1: [PigoPheQal; Xo: [PdgoPhe™Qal; X3: [PesoPhe™Qal;
Xy [PdgoPheQal; Yo: [PesoPheQy]; Yi: [PgsoPheQy]; Ya: [PgoPhe Qy]; Ya:
[PesoPhe™Q]; Ya: [PdsoPheQyl; Zo: [Qsl; Z1: [Qgli Z2: [QF |; Qo [PQJ; Q1
[PQHz|, where | | means the concentration. The superscript “tr” indicates the triplet
state. The right-hand sides of ODEs represent the rates of electron and exciton trans-
fers. For example, the X; state changes in time with the rates of light absorption,
exciton transfer and electron transfer. The rate of excitation of open RC by light ab-
sorption is given as the product of the flux V;, of incident light for PS II and the ratio
Xo/(Wr + Vi + Rr) of the open RC in the ground state to all the light absorbing
pigments. With regard to the exciton transfer, the open RC is connected with the
core antenna. The trapping rate from core antenna to open RC is proportional to the
concentration Wi of the excited core antenna, and the ratio Xy/Rr of open RC in
the ground state to all of RC. The detrapping rate for the exciton from open RC to
core antenna is proportional to the concentration of the excited open RC, X7, and the
ratio of core antenna in the ground state, Wy /Wr. In addition, the X; state changes
to the ground state (X() via charge separation, fluorescence emission, dissipation,
Pg—so quenching and PQ quenching, where the quenching rates of Pg—so and PQ are
proportional to the populations of quenchers, X5 + X4 + Y5 4+ Y, and Qg, respectively.
Further, the charge recombination of the X5 state produces the X state with the rate
proportional to the population of X5. All other states of electron donors/acceptors

and light absorbing pigments change in similar ways to Xj.
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Figure 4.2 Schematic diagram of excitation-energy and electron transfer pro-
cesses for PS II.

The EDST-like model is described by eqs 4.1a, 4.1b and 4.2. Solid and dashed
lines indicate the electron transfer and the excitation-energy transfer, respec-
tively. Each color indicates different time-scales as follows. Red: picoseconds,
yellow: nanoseconds, blue: microseconds, black: milliseconds.

The reaction diagram of PS II and the associated parameters of the model are
shown in Fig. 4.2 and Table 4.1, respectively. Each box in Fig. 4.2 represents each
different state of electron donors/acceptors. Besides, each arrow represents the trans-
port of excitation energy or electron. Electrons are supplied from OEC to PS II.
These electrons reduce the oxidized tyrosine and ngo in turn. Meanwhile, light is ab-
sorbed by peripheral antenna and core antenna, and then excitation energy (exciton)
is generated. The excitation energy is transported to RC from core antenna. Here, it
is assumed that the exciton is received only by the RC in which both Pggg and Phe
are in ground states. Once the RC receives the excitation energy, charge separation

occurs, and then Phe and Qs are reduced in turn. Quinone B receives an electron
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from Qa twice and then forms the doubly reduced state. The doubly reduced Qg
forms plastoquinol. Plastoquinol diffuses in thylakoid membrane and then is oxidized
by the Cyt bgf complex.

Concerning Eq. (4.1a), we note that k; and k_; are connected to microscopic infor-
mation in terms of the perturbed-two-level model [44] as below: ki = zk;/(N, — 1)
and k_; = zk_¢, where z is a coordination number (the number of pigments next to
RC) and N, is the number of pigments at one core antenna; ky and k_; are the rate
constants of trapping and de-trapping, respectively, of the excitation-energy transfer
between the RC and its nearest pigments at antenna. In regard to the diffusion of
excitation energy, the trap-limited condition is assumed in this model.

The ODEs for the oxygen-evolving complex (OEC) that exists on the donor side of
PS IT are given by

(

dT1 (1)
== kit T ks =2 (Xo+ X4+ Y2 4 Y,
- Z 1+3 (2+ 1+ Yo +Yy)
T
—k_gT—T(XO + X4 + YO + Y4)7
dSo(t) So
= ko,aT'Ss — kox 0o 11,
dsdt 0,44 04 0 OS 1 .
dt) - _ Fiio1)sTSi—1 = kiwig=Th (i=1-3), (42)
i1’ s o
“(t i ]
L ( ) = kz* i_Tl - k?i—|—1 Z*TSZ* (7’ =0- 2)’
aSio W
5 (t
d—i() = k3*135—3T1 - k4’3*TS§ + k3*,4TS47
T
dT'Sy(t
\ d—?() = k473*TS§ - (kS*A + k0,4>TS47

where the conservation relations hold as below: T = Ty + 1Ty + > T'SF + TSy,
St =38+ Y. TS; + TSy The concentrations of the states of tyrosine Z (Y)
of the D1 protein are represented by T’s, Ty: [Yz] and Ty: [Y,], where [ | means
the concentration. The OEC is described on the basis of the model proposed by [63]
(“Kok cycle”) that accounts for the oxidative water splitting by four sequential steps.
The concentrations of the five states of OEC are denoted as S; (i = 0 — 4), where
So and Sy indicate the concentrations of the states with the redox levels of HoO and
Os, respectively, and S, 55 and S3 indicate the concentrations of the states with the
redox levels of hydroxyl radical, peroxide and superoxide, respectively. Besides, the
triggering processes of S; states by Y%’ are included, and the “triggered” redox states

of S;’s are denoted by S;’s. The “triggered” redox states of OEC and S, state are
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treated as being coupled with Y; and thus described as T'S}’s and T'S4, respectively.
With respect to S5 modeling, “Sy dogma” [77,78] is employed in this model (Fig. 4.2).

The parameters that belong to significantly different timescales coexist in the PS
II model. To clearly represent the multi-timescale property, we characterize each
timescale by means of the representative rate constant. As the hierarchical structure
in the time scales of this system proves to be decomposed into four classes, we intro-
duce the dimensionless times 71, 74, 7m and v normalized by the characteristic rate

constants as

= k?tt,

T = kat,

= (4.3)
T = ]{Igt,
v = k_Qt.

Here, the characteristic parameters satisfy the relation: k; > ko > ks > k_o. The
rate constants kg, ko, k3 and k_s have the picosecond, nanosecond, microsecond and
millisecond orders of magnitude, respectively. Therefore, each unit of each dimension-
less time 71, Tq, Tm and 7y is characterized by the timescale of picosecond, nanosec-
ond, microsecond and millisecond, respectively. The ratios of the time scales are then
introduced as ey = k:g/k_t,emm = ks/ko,emv = k_2/ks and en v = epmemv =
k_o/ko, satisfying the following relations: eqv < erm ~ enm ~ emv < 1.

The rate constants are classified on the basis of their time scales as A; = {kj ‘
O(k;) ~ O(Et)},AH = {k;j ‘ O(k;) ~ (’)(k:g)},Am = {k; | O(k;) ~ O(ks)} and
A = {k; | O(k;) ~ O(k_3)}. We introduce dimensionless rate constants r; defined
as each k; scaled by the characteristic rate constants of time-scale groups to which

each k; belongs:

ki/ke  kj € A,
k;j/ke  k; € An,
k;/ks k; € Am,
k‘j/k_z k’j € AI\/,

(4.4)

thus each x; being of the order of unity. The light excitation rate v, which is defined by
the ratio (radiation flux density Vi,)/(concentration of PS II Rr), is also normalized
as v = v/k;. The timescale classes to which each rate constant belongs are shown in

Table 1. Parameters used in this model were obtained in experiments [11,65,79-90|
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except for radiation flux density Vi, for PS II, which is an environmental factor. The

present study is concerned with the changes of FI pattern depending on this V;, value.

4.2.2 Coarse graining

In general, the complexity and the multi-timescale property of a system cause dif-
ficulties in understanding the object intuitively and calculating the slow dynamics.
Photosynthesis reaction system is one of the systems which have the characteristics
addressed above. If one intends to understand the dynamical properties of photo-
synthesis reaction system reflected by FI, the whole reactions inside chloroplast from
excitation energy transfer (picosecond scale) to membrane protein diffusion (minute
scale) over the wide timescale range should be taken into account. The picture of this
whole reaction system is too complex to understand intuitively. Besides, the wide-
range timescale property makes it difficult to simulate the dynamics at slow scales
on the basis of a kinetic reaction model because the computational cost becomes
too high to integrate over time. The coarse-graining treatment, which extracts the
mathematical structure of concerned dynamical system and reduces the degrees of
freedom, is an approach to deal with such difficulties as above [91-93]. In the fol-
lowing, the hierarchical time-coarse-graining of a reaction network of PS II that has
a multi-timescale property as described above is attempted by repeatedly applying
the HCG method proposed by Matsuoka et al. [70]. This temporal coarse-graining
scheme consists of three steps. At step 0, the original ODEs with respect to time ¢ are
converted to the ODEs with dimensionless time in which the fastest scale reactions
have O(1) rates. Then at step 1, the coarse-graining functions I'’s, which give the
values of some fast variables in terms of slow variables, are derived by means of the
steady-state approximation. If possible, quasi-conserved quantities which vary with
O(e) rates at concerned time scales are introduced. At step 2, the transformation of
the dimensionless-time ODEs to those with slower time scale is conducted through
the results of step 1. The coarse-graining of PS II with four classes of time scales is
performed by applying this scheme three times repeatedly. As a result, the hierar-
chical ODEs are obtained with 7y, 7q, 7p and 71y, respectively. It is noted that the
accuracies of the coarse-grained ODEs can be controlled by means of the timescale
ratios erm, en,m, €m,iv and ep,v introduced in this method. The accuracies of the hi-
erarchical ODEs were also evaluated numerically in our previous study [70]. Besides,

with respect to the stability of the concerned system, a prototypical three-state model
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Table 4.1 Parameter List of PS II Model

Description Notation ~ Value (Time-scale class) Reference

Rate constant of excitation transfer from core k, (Ap) Implicit

antenna to special pair

Rate constant of excitation transfer from spe- k_t k, exp[Wi“T_lw]*(Al) Tmplicit
cial pair to core antenna

Rate constant of excitation transfer between ky 101051 (Ap) [90]
core and peripheral antenna

Rate constant of excitation dissipation from kq 108571 (Ap) [48,65]
antenna

Rate constant of excitation fluorescence from kp 3x107s71 (Ap) [11]
antenna

Rate constant of charge separation in open kS 2.5 x 101051 (Ay) [88]
(Qa is neutral) reaction center

Rate constant of charge recombination in open k° 3x 108571 (Ay) [88]
reaction center

Rate constant of charge separation in closed kS 4 x10%s71 (Ay) [88]
(Qa is reduced) reaction center

Rate constant of charge recombination in kS, 9 x 108571 (Ay) [88]
closed reaction center

Rate constant of electron transfer from Phe™ ko 2 x10%s™1 (Ay) [88]

to Qa

Rate constant of electron transfer from Q, to k_o 2,000s71 (Ar) Model esti-
Phe~ mate [48]
Rate constant of P680T quenching of antenna ke 109571 (Ap) [65]
Rate constant of PQ quenching kq 3 x10%s™1 (Aj) [57]
Rate constant of non-radiative recombination kind 108571 (Ap) [75,76]
from Py, Phe™

Rate constant of non-radiative recombination kd. 500571 (Ary) [76]
from Pg—goQX

Rate constant of intersystem crossing to the Ko 108571 (Ap) [76]
triplet state from Py Phe™

Rate constant of non-radiative recombination k&, 3.3 x 10%s7! (Ap) [76]
from 3Py, Phe~

Rate constant of decay into the ground state kywr 1.5 x 10971 (Aq) [75]
from 3PggoPhe

Rate constant of electron transfer from Yz to ks 5x 10 —107s™1 (Aq) [78,85]
Pgso

Rate constant of electron transfer from Pggg k_3 108571 (Aq) [57,78]
to Y,

(To be continued)

* kp: Boltzmann constant, h: Planck constant, c¢: speed of light, T: temperature (298K), Acp): wavelength for the
maximum absorbance by antenna chlorophyll (678nm), Ap: wavelength for the maximum absorbance by special pair
(680nm).
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(Continued)

Rate constant of OEC from §; “triggered” redox
state: YS! to S;41 state (i=0-2)

Rate constant of OEC from Sj3 “triggered” redox
state: Y4 S3 to Sy state

Rate constant of OEC from Sy state to Sy “trig-
gered” redox state: Y, S

Rate constant of OEC from S; state to S; “trig-
gered” redox state: Y, St

Rate constant of OEC from S5 state to S “trig-
gered” redox state: Y Sj

Rate constant of OEC from S3 state to Ss “trig-
gered” redox state: Y, S}

Rate constant of OEC from Sy state to Y S}
Radiation flux density to PS II

Rate constant of electron transfer from Qjto Qp
Rate constant of electron transfer from Q, to Qg
Rate constant of electron transfer from Qgto Qa
Rate constant of electron transfer from Q2B_ to Qa
Rate constant of electron transfer from Q2B* to PQ
Rate constant of electron transfer from PQHs to

2
B

Rate constant of electron transfer from PQHs to
Cyt bgf protein complex

Concentration of all reaction center’s states (con-
served quantity)

Concentration of all Qg site (conserved quantity)
Concentration of PQ pool in thylakoid membrane
(conserved quantity)

Concentration of all OEC states (conserved quan-
tity)

Concentration of all Yy, states (conserved quantity)
Concentration of total pigments in peripheral an-
tenna (conserved quantity)

Concentration of total pigments in core antenna
(conserved quantity)

Number of pigments at one peripheral antenna
Number of pigments at one core antenna

Ratio of amount of plastoquinon to PS II in thy-

lakoid membrane

kiv1,

ka3

k3s 3

k3s 4
Vin
ka1
ka2

k_a1

k_42
ks

ks

Ry

ZT
Qr

St

TT
Vr

Wr

Np
N¢

109s71(Ap)
1,000 (An)
1.4 x 10*s™1 (Apy)
7,000~ (Aw)
3,300 (Aw)
5,0005 " (Ap)
1% 10451 (Ap)
(Am) U (Av)

2,500s~1 (Ay)
3,300s~! (Any)

200
40

[78]

[78]

[78]

[78]

78]

[78]

[78]
[82-84,89)
[82-84,89)
[82]

[80]
[87,89]

[81]

[79]

[36]

[75]
Model esti-
mate [19]
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which possesses the characteristics of photosynthesis reaction system was also ana-
lyzed. Though the system treated in the present study has higher degrees of freedom
than those of the earlier three-state model, the essential feature about the stability of
EDST-like model would be the same as that of three-state model because these mod-
els have the dynamical characteristics of photosynthetic reaction system in common.
Hereafter, the case v € Apy is treated. This illumination condition is almost certainly

satisfied on the surface of the Earth.

From picosecond scale to nanosecond scale

To transform the original ODEs with ¢ to the dimensionless-time ODEs with 7y,
the step 0 of coarse-graining scheme is applied, i.e., Eq. (4.1a) is divided by k;. The
variables changing with O(1) rates at the 71 scale are Wy, Wy, X1, Xo, Y1 and Y (see
Appendix B.1.1).

In step 1, quasi-conserved quantities at 77 scale are introduced [70] as follows:

U =W+ X1+ 1,

Xo1 = Xo + X, (4.5)

Yo = Yo + V1.
Provided that the processes at 71 scale are in pseudo-steady states for 71 — oo, the
asymptotic behaviors of W7, X7, Y7 as 1 — oo can be described in terms of slow
variables Uy, Xo1, Yo1 as limy oo Wi(m1) = p(W1 | Uy)Uy, limy 00 X1(11) = p(X7 |
Up)U; and lim, o Y1(11) = p(Y7 | U1)Uy, where p(W; | Uy) = Rt Rr/(Xo1 + Yo1 +
R—¢Rt), p(X1 | Ur) = Xo1/(Xo1 + Yo1 + k—¢Rr) and p(Y: | Ur) = Yo1/(Xo1 + Yo1 +
R_tRr) are the fraction (probability) functions which represent the partition ratios
of Uy (population of the total exciton over the core antenna and the RC) at the core
antenna, the open RC, and the closed RC, respectively [70]. We note that we refer
to U; as excited population in the “core antenna” in the following (meaning the RC
included). By substituting these relations into the original ODEs and expressing them
in terms of the quasi-conserved quantities, the ODEs with 71 — oo are obtained.

As the treatment of step 2, the transformation from the ODEs with 71 — oo to

those with 7 is achieved by dividing the ODEs by ¢y y.

From nanosecond scale to microsecond scale
The variables that change with O(1) rates in the ODEs with 71 are Vq, Uy, X3, Yo, X3,
X5, X8 Y4 and Y§'. In step 1, the variables that exponentially decay with O(1)
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rates at the 7y scale are assumed to be in nonequilibrium pseudo-steady states
for 1 — oo, i.e., the total influx and total outflux in each state are in balance.
In this case, there is no quasi-conserved quantity at the 7 scale and the detailed
balance is not achieved at each state for 71 — oo. As a result, coarse-graining
functions for 7 — oo that represent Vi, Uy, X, Y2, X3, X5 X&', Y35, V" in terms of
the slower variables are obtained as lim.;_ o Ui(mn) = enwlv,, limqy oo Vi(mn) =
en,vlvy, imey oo Xo(mn) = envlx,, imey oo Yo () = envlyy, limyy oo Xa(mn) =
en vl x,, imy oo X35 (Tn) = em vl xg, limey oo X (mp) = emivlxer, limpy oo
Yot (mp) = env Dy, limey, o Y () = en,vI'ysr. The explicit forms of coarse-
graining functions are presented in Appendix B.1.2.

In regard to the model of OEC, its ODEs with 71 are obtained by dividing Eq. (4.2)
by ko. Provided that the variables that exponentially decay with O(1) rates at the
7 scale are in nonequilibrium pseudo-steady states for 71 — 0o as the treatment of
step 1, the coarse-graining functions, lim,; o, 7S} (Tn) = envl'rss for i =0—2, are
obtained (see Appendix B.1.2).

By substituting these coarse-graining functions into the ODEs with 7y, the ODEs
with 71 — oo are obtained. Then, in step 2, the transformation from the ODEs with

o — oo to those with 7 can be achieved by dividing the former by eqm .

From microsecond scale to millisecond scale

In the ODEs with 7y, the variables that change with O(1) rates are Xo1, X4, Yo1, Ya,
To and T3 (see Appendix B.1.1). There are some combinations among the above
variables whose sums only change with O(emv) at 7 scale as Xo1 + Xu, Yo1 +
Yy, To +T1, Xo1 + Yo1 + 1o and Yy + X4 + T7. With the application of step 1, these

combinations are introduced as quasi-conserved quantities Xo4, Yo4, 101, F and H:

Xoa = Xo1 + Xy,
Yoa = Yo1 + Yy,
Tor = To + 11,
E = Xo1 + Yo1 + To,
H=X,+Y,.+1T}
= Xog + Youa + 701 — E.

(4.6)

Here, X4 is the sum of the oxidized and neutral special pairs in the open RC, Y4
is the sum of the contributions of oxidized and neutral special pairs in the closed
RC, Ty is the sum of Yz and Y; in PS II whose OEC states are Sy, S1, S and S3

except for triggered S3 (S3), F is the sum of neutral states of tyrosine and special
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pair, and H is the sum of oxidized (hole) states of tyrosine and special pair. Besides,
by assuming the processes at 7y scale are in detailed balance, i.e., by applying the
nonequilibrium pseudo-steady state approximation, following coarse-graining func-
tions of X4, Yy and T3 are derived: lim,; 00 Xa(mm) = I'x,, limy 00 Ya(rm) = Ty,
and lim oo T1(mm) = T'z,. In particular, the first two functions are described as
I'x, = p(Xa | Xo4)Xoa, and I'y, = p(Ys | Yo4)Yoa, where p(Xy | Xos4) and p(Ys | You)
are the probabilities of special pairs to be in neutral states at the open and the
close RCs, respectively. (The explicit forms are described in Appendix B.1.2.) The
coarse-graining functions of Yy, Xy and Ty are obtained by the quasi-conservation
relations: lim;; 00 Xo1(tm) = I'xyy, = Xoa — Ixy, limry oo Yor(rm) = Ty, =
You — DUy, limry 00 To(tm) = 'y = To1 — 'y

The coarse-graining of Y3, which decays with O(1) at Ty scale, is performed by
assuming that the state is in nonequilibrium pseudo-steady state for 7y — oo. The
coarse-graining function is thus defined as lim ;o Y3(7m) = envl'y;-

Then, the ODEs with 7y — oo are obtained by employing these coarse-graining
functions in the ODEs with 7. The transformation from the ODEs with 7 — oo to
those with 7y is achieved by applying step 2, i.e., by dividing the ODEs with 7y — oo
by em,1v. The ODEs with 7y are thus given (see Appendix B.1.1).

Coarse-grained model of PS Il at millisecond scale

The ODEs with v obtained through the HCG method is concisely represented
with good accuracy by neglecting the terms which have O(emv) and O(eqm) of
magnitudes. Besides, to represent the ODEs in much simpler way, we normalize the
variables as Pp = E/(Rr+1T1r), Px,, = Xoa/Rr, Pz, = Z1/Z7r, Pz, = Z3/Z1, Py, =
Q1/Qr, Ps, = Si/St, Prs; = TS;/Tr and Prs, = T'Sy/Tr. Then, the ODEs with

Trv are represented as
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3
Ps, =1-Y_ Ps —Prs; — Prg,.

L i=1

Here, we set Ry = Tt = St by assuming that there is no dameged PS II. Besides,

we introduce an effective light-excitation rate of core antenna (Uj), v/ = (vy, +

vy, %/l) /R, the quantum efficiency of photochemical process in core antenna, ®p =

kD /(K% + KF + kD + K¢ + Kq), and the ratio of the amount of plastoquinone pool to

the amount of PS I (which is equivalent to that of RC or secondary quinone electron

acceptor, Qp), Nq = Q1/Z7. Dimensionless rate constants, k3, kr, kp, kc and Kq,

are the effective rates of deactivation of excited energy in core antenna (U;) by charge

separation from Pgg,PheQ,a, fluorescence, non-radiative dissipation, ngo quenching

and PQ quenching, respectively. The explicit forms of these effective rates and those
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of vy,, vy, and ’y{,l are given in Appendix B.1.2. The diagram of this coarse-grained
model is illustrated in Fig. 4.3.

The results of coarse-graining are reflected in the equations for Pr and Px,,. First,
RC is coarse-grained to take two states: X4 state (PggsoPheQa
+PdgoPheQa) and Yp4 state (PggoPheQy + PdgoPheQy). The special pair in each
state is in quasi-equilibrium between oxidized and neutral states. Thus, we name this
model as double state trapping model (DSTM) in contrast to TSTM. The transition
from X4 state to Yy, state takes place with the rate given by the product of the
effective light-excitation rate v/ of the core antenna and the probability ®p that an
exciton in the core antenna is quenched via charge separation at the open RC. The
back transfer from Yy4 to Xo4 occurs through the non-radiative pathway from Y, state
(PdgoQa ) to the ground state, the indirect non-radiative pathway from Yj state to the
ground state via charge separation or intersystem crossing of Xj state (P Phe™),
and the indirect non-radiative pathway from Y, state to the ground state via non-
photochemical quenching from the excited state created by charge recombination of
X5 state. The rate of each path is given as the product of the fraction of Y, state in
RC, T'y,/Rr, and s, /f_2’y§(2 or /i_gfy')[’(2(1 — ®p), respectively. Here fy§(2 and 7])3(2
represent the ratios of dissipation flow and back flow to the total outflow from X5
state, respectively (see Appendix B.1.2).

Second, the equation of the sum of the probabilities of neutral states in Pggg and
Yy, Pp = Px,, +Py,, + Pr,, describes the electron transfer processes between RC and
OEC. This quantity changes temporally with the rate of RC transition (first term on
the right-hand side in the first equation of Eq. (4.7a)) and the rate of Yy transition
(second term in the first equation of Eq.(4.7a)). Here, the schematic diagram is
illustrated in Fig. 4.3(c). On one hand, in regard to the effect of RC, Pg decreases
via charge separation from open RC and increases via back transfer from Y, to the
ground state via direct non-radiative pathway or indirect non-radiative pathway. On
the other hand, in regard to the effect of Yy, Pg increases via the reduction of Y%L
by S; (i = 0 — 2) and via the separation of T'Sy state.

With respect to the pathways of quenching from core antenna except for photo-
chemical quenching, the quantum efficiencies of fluorescence ®r and non-radiative

dissipation ®p are derived through coarse-graining procedure as

O = kp/(Kkp + KF + KD + Ko + KQ),

4.8
Op = (kp + ke + kQ)/ (KD + kF + kD + ke + KqQ), (4.8)
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where the relation ®p + & + &p = 1 holds.

(a) light (b)
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Figure 4.3 Schematic diagram of processes in double state trapping model
(DSTM) of PS II, expressed by Egs. (4.7a) and (4.7b). Solid and dotted lines
represent the transfers of electron and excitation energy, respectively. (a) Dia-
gram of processes on the acceptor side of PS II, (b) diagram of processes on the
donor side of PS II and (c¢) diagram of transition of quasi-conserved quantities.
The RC takes two quasi variable states in the case (a). S; for i = 0 — 2 react
with Y; in the case (b). For simplicity, intermediate states of OEC, YZS; and
Y7S4 are not indicated in (c). Xoa, Yos, To1, F and H represent quasi-conserved

quantities.

4.2.3 Treatment of the hole transfer from Y to Pggo

In the studies of PS II based on mathematical models, the hole transfer from Y;
to Pggo has often been neglected when the electron transfer between RC and OEC is
considered [19,67,68]. In particular, Vredenberg [67-69] constructed a model called
three state trapping model (TSTM) which describes the RC with three states based
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on the assumption that this hole-transfer process is negligible. While this model is
often classified as a different model from EDSTs [15|, we will show in the following
that a kind of TSTM can be derived from our EDST-like model through the HCG
procedure.

The coarse-graining of PS II model in the case that the hole transfer from Y, to
Pgso is neglected is carried out in the same way as in the preceding section up to
the derivation of the ODEs with 7 because this process is situated in 7y scale. In
the following, the ODEs with 71 in this case are derived. In particular, two different
conditions of light intensity are concerned: v € A and v € Ap. It is also noted
that the rate constant of electron transfer from Pggg to Y; is set as 5 x 10s7! in
accordance with the literature [19,68], and the Y;-quenching, which is assumed to

exist in the literature [68,69], is also taken into account.

From microsecond scale to millisecond scale for v € Ay,

First, we consider the coarse-graining in the case of v € Ap/. In the case that
the hole transfer from Y; to Pggo is neglected, i.e., k_3 = 0, there is no quasi-
conserved quantity in the ODEs with 7 (Eq.(B.9)). Then, we assume that the
variables which decay with O(1), X4 and Yj, are in nonequilibrium pseudo-steady
states for 7 — oo in step 1. As a result, the coarse-graining functions of X, and
Yy, limyy o0 Ya(mm) = em vy, and lim o0 X4(mm) = 52]]171\,1“)(4, are obtained (Ap-
pendix B.2.2). By substituting these coarse-graining functions into the ODEs with
Tm, the ODEs with 7 — oo are obtained.

Then, by applying step 2, the ODEs with 7y — oo are transformed to the ODEs
with 7ry. The ODEs with 7v considering up to O(emv) and O(eqm) terms are

expressed as
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(dX . T
dTm = —rSTx, + (K + kg + 62D, + em,mgT—,ﬂrX4
1\ T
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3
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0 LD 3 * (4.9b)

=1

Zo =Zr—Z1— Zo,

\QO - QT - Q].'

The schematic diagram of this model is illustrated in Fig.4.2.3. In this coarse-grained
model, the RC takes three different states, Xg;, Yp1 and Y3. These three states,

PesoPheQa, PegoPheQ, and PggoPhe™ Q) , are the same as the states which were
assumed for RC in TSTM by Vredenberg [67-69].
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light
v

Figure 4.4 Schematic diagram of three state trapping model (TSTM) of PS II
expressed by egs 4.9a and 4.9b. Solid and dotted lines represent the transfers
of electron and excitation energy, respectively. Each yellow and red dashed line
indicates the transition path 1 of RC state that is dominant for v € Ay, and the

path 2 that is not negligible for v € Amq.

In particular, by neglecting the terms of O(emv) and O(enm), and normalizing
the variables as Px,, = Xo1/Rt, Pz, = Z1/Zv, Pz, = Zy/Zr, Py, = Q1/Qt, Ps, =
Si/ST, Prg; = TS%/St and Prg, = T'S4/St, the ODEs on the acceptor side of PS

IT are concisely represented as

(dP
T)Ii:l = —V'®p + (ka1 Pz, + K42 Pz, ) Pyyy, — (ka1 Pz, + K-22P7,) Pxyy,
APy,
d,TIi = (K,41PZO — K)42PZ1)PY01 - (,{741PZ1 - ,{/*42PZ2)PX01’
dPy,
dﬁi = ka2 Pz, Py, — k—42P2,Px,, — ks Pz, Pq, + K-5P7,Fq,,
dPQ K5 KR_—5
—=1 = 2 Py Py, — ~—— Py, Py, — kePo,,
\ A7y NQ 217 Qo NQ 0l Q 64 Q1

(4.10a)
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PY01 :1_PX017
PQo :1_PQ17

and those on the donor side are expressed as

/ 3
dPr
dTIvl = V/(b(l)) - ; K/i*,iPSiPTla
dPs,
- = Ki—1%,i-1Ps,_ Pr, — Kix,i Ps, P =1-3),
g}_}w Ri—1,i—14878; 1 Ty — Riw,i 78, 471y (i ) (4.11a)
TS
dTN3 = #3435, Pry — K43+ Prs; + Kz« aPrs,,
dPrg
( TI\; = Ka3+Prs; — (K34 + Ko,4)Prs,,
Pr, =1-Pp, — Prs: — Prs,,
3 (4.11Db)

Ps, =1->Ps, — Prs; — Prs,.
i=1

Here the effective light-excitation rate of core antenna, v/ = (vy, + vv,7,)/Rr, the
ratio Ng = Qr/Zr of the amount of plastoquinon to the whole PS II, the quantum
efficiency of charge separation in open RC at core antenna, ®p = k% /(kr + Kp +
KD + ke + KkqQ + Kz), and the Y;—quenching rate, ky = K,(Th +T5%), are introduced.
This coarse-grained model is separated into RC system (Egs. (4.10a) and (4.10b))
and OEC system (Egs. (4.11a) and (4.11b)) with respect to electron transfer. This
means that the supply of electron from donor side of PS II to RC is always enough
(sufficiently fast in time) and thus the rate of charge separation is not limited by the
Kok cycle in OEC. However, in the case that Y%' quenching is taken into account, the
temporal evolution of RC is affected by that of Y%L . Besides, the RC takes two states
which do not include the oxidized special pair in this case. This means that reaction
pathway “path 2” indicated in Fig. 4.2.3 is negligible and thus the “path 1” reaction is
dominant with respect to the transition of RC state. Because of little accumulation of
Y, state (Pdg,Qy ), which is associated with the absence of hole transfer from Y to
Pgso, the effect of non-radiative pathways from Y, state to the ground state of open
RC is negligible and thus not included in this model. In this way, the transition of
RC proceeds only in path 1 in Fig. 4.2.3.
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From microsecond scale to millisecond scale for v € A

In this subsection, the coarse graining in the case of v € Ay is considered. In this
case, the light-excitation rate is scaled as ¥ = v/ks and the coarse graining functions
are defined by factoring out egm as limq oo U1 (mn) = enmlv,, im0 X1 (mn) =
enml x,, im0 Y1 () = enmlyy, Imyy o0 Xo(mn) = enmlx,, imyy oo Yo () =
enml'y, and lim oo X3(mn) = enwl'x,. (The explicit forms of coarse-graining func-
tions are given in Appendix B.2.3.)

The variables which decay with O(1) rates in the ODEs with m are X1, X4 and
Y4. In step 1 treatments, these variables are assumed to be in nonequilibrium quasi-
steady states for T — co. Thus, the coarse-graining functions of these variables are
obtained as im,; o0 Xo1(Tm) = em,vI x,,

lim o0 Ya(mm) = emvly,, and lim, ;00 Xy4(mm) = 5%171\,1“)(4. By substituting these
results to the ODEs with g, the ODEs with 7 — oo are obtained. Then, by applying
step 2, the transformation to the ODEs with 7y is carried out.

By neglecting the O(emv) and O(enm) terms, and normalizing the variables as
Py,, = Yo /Ry, Pz, = Z1/Z1, Pz, = Z2/Zt, P, = Q1/Qr, Ps, = Si/St, Prs; =
TS%/St and Prg, = T'S4/St, the ODEs with 7y on the acceptor and donor sides of

PS II are concisely expressed as

( dP: v
— = Op + (ka1 Pz, + ka2 Pz, ) Pxy,
dcglv EM,IV
R ka1 Pz, — k42 Pz, ,
dd]glzv (4.12a)
dr § = ka2 Pz, — '%5PZ2PQ0 + HZ—5PZ0PQ1=
v
dPQl Ry K_5
— 5 p, Py — 5P, Py, — kP,
\ dTIV NQ Z21°Qo NQ Zot Q1 K61°Qq s
Py, =1-PFy,,
Py, =1- Py — Py, (4.12b)
PQO =1- PQh

and
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drv EMm,IV Pt sl Rt ;FL A58t T
dPs,
> = ki vei1Ps,, Pr, — KixiPs, Pr, (1=1-3),
dnv (4.13a)
TS
dTN3 = Hg*,3PS3PT1 — K4,3*PTS§ + l€3*’4PTS4,
dPTS4
|y Faeelrsi - (K3x,4 + Ko,4) Prs,,
Pr, =1-Pr, — Prs: — Prs,,
(4.13D)

3
Ps, =1->_Ps, — Prs; — Prs,,
i=1

respectively. Here, the light-excitation rate of core antenna, v’ = (vy, + vy, fy{,l) /R,
the ratio of plastoquinone to PS II, Nq = Qr/Zr, and the quantum efficiency of
charge separation from closed RC, ®} = ki /(kr + kp + Kp + KD + ke + KQ + Kz), are
introduced. In this model, the RC takes two states, Yy; and Y3, which are different
from those for the model in the v € Ay case. This difference reflects that the path
2, which is negligible in v € Ay case, is not negligible in this case. The transition
from Y state (PggoPheQ),) to Y3 state (PggoPhe™ Q) )occurs with the rate given
as the product of the effective light-excitation rate EI_II}NV of core antenna scaled to
7rv scale and the quantum efficiency of charge separation ®§, (~ O(eqm)) from the
closed RC at core antenna. We note that the path 1 is active in this model though
there is no variable which explicitly expresses this path. The effects of this path
are reflected in the term describing the electron transfer rate from RC to Zp and Z;
states. The reason why these rate are proportional to the amount of donors is that all
RCs in this model, Yp; and Y3 states, always have the ability to supply electrons to
the downstream side. This means that the electron flow from Y{; state to Xy state
(PgsoPheQa ) exists. In this case the transition from Xy to Yp; proceeds sufficiently
fast in contrast to the transition from Yj; to Xg1, and thus the transition of X is

invisible at the v scale.

4.3 Results

FI is known to change the time-course pattern from the O-J-I-P type to the O-J-
D-I-P type, the latter having a dip D after the inflection point J depending on the

light intensity [71,72]. The experimental results at various light-intensity conditions
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are illustrated in Fig. 4.5. In this section, this light-intensity dependent change of FI
pattern is simulated and analyzed based on the coarse-grained models derived in the

preceding section by assuming the dark adapted condition.

6
55}
5f e
4.5
4+
(=}
I& 3.5 I: photon flux density
=
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Figure 4.5 The intensity of fluorescence as a function of time for various incident

photon flux densities. The change of pattern of FI is observed depending on the

2

incident photon intensity at, I = 3, 5, 8, 10, 15 mmol photonsm~2s™*, from Pea

Leaf. The intensity of fluorescence is normalized by the value at ¢ = 0, Fp.
(Modified from Schansker et al. [71].)

4.3.1 Results based on the DSTM

I present here the results of the reduced set of ordinary differential equations based
on the DSTM, which are expressed by Eqgs. (4.7a) and (4.7b), and illustrated in Fig.
4.3. These equations are obtained by applying the HCG method to the full PS II
model including the process of hole transfer from Y%’ to Pggog. The initial condition
of the variables are set as those for non-reduced states, i.e., P =2, Px,, =1, Pz, =
1,Pg, =1, Pr,, =1,Ps, = 0.25, Ps, = 0.75, and otherwise 0.

In the following results, there are no units of concentration because we simulate the
dynamics of the probabilities of each variable state which are defined as the ratios
of each concentration to the total concentration. The ratio of total amounts, PSII/
OEC/ LHC II / PQ pool, is assumed to be 1/1/1/8 for the simulation. Besides, the

light-excitation rate v for PS II is employed for the simulation. Here, v = 4,000s~*
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Figure 4.6 Simulated FIs with various light excitation rates, (a) for the case with
P{go-quenching and (b) for those without. Light excitation rate for PS II, v, is
set as 4,000, 6,000, 10,000, 15,000 and 20,000s'. The fluorescence intensity is
normalized by the value at ¢t = 0, Fp.

corresponds approximately to the light-flux density of 3 mmol photonsm=2s~! [12].
This estimation is based on the chlorophyll (a + b) concentration in a green leaf (about
15 pymolem—2) and the average chlorophyll (a + b) molecular mass (900g mol~1).
These lead to 0.017 pmol cm™2 chlorophyll (@ + b) concentration. If light irradiance

1'is used, the ratio (3mmolm=2s71)/(0.017ymol cm™?) gives the

of 3 mmolm~2s~
excitation rate of one chlorophyll as 18 s~!. Then, assuming 250 chlorophylls per PS
II, the excitation rate of one PS 1l is given as 4500s~t. If 80-90 % of irradiance is
absorbed, the excitation rate is estimated as 3600s~! to 4050s!.

Simulated FIs for various light intensities are plotted in Fig.4.6. In previous ex-
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Figure 4.7 Simulated FI (red solid line, left axis) and time courses of the oc-
cupancy ratios of quenchers (right axis) at v = 15,000s~". Px,, (green square),
Px, + Py, (blue circle) and Pg,(magenta triangle) indicate the occupancy ra-
tios of each quencher, PgsoPheQa, Py, and PQ, respectively. The fluorescence
intensity is normalized by the value at v = 0, Fp.

perimental studies |71, 72|, the light-intensity dependent changes of the FI transient
pattern from the O-J-I-P to the O-J-D-I-P were observed. In our simulation, the
Py, quenching is taken into account in the case (a) and neglected (i.e., setting the
Pdgo-quenching rate k. = 0) in the case (b). In the case (a), the light-intensity depen-
dent changes of the FI pattern from O-J-I-P to O-J-D-I-P are reproduced well. These
changes are in accord with the experimental results shown in Fig. 4.5. In the case (b),
in contrast, the fluorescence transient pattern of J-D-I does not appear even if the
light intensity is high. These results suggest that the appearance of the fluorescence
transient pattern J-D-I reflects the presence of strso quenching.

The time courses of the occupancies of PgggPheQa, ngo and PQ, denoted respec-
tively as Px,,, Px, + Py, and Py, are plotted with FI at v = 15,000 s~! in Fig.
4.7. The ratio of the Xy; state to total RC, Px,,, which is set as Px,, =1 at ¢t =0,
rapidly decreases until the J peak appears. At the same time, the ratio of strso in
RC, Px, + Py,, gradually increases. Then the fluorescence intensity increases, which
means that the magnitude of decrease of the rate of photochemical quenching, xp, via
charge separation from open RC is larger than that of increase of the Pgso—quenching

rate, k¢, and thus the quantum efficiency ®g of fluorescence increases. After the
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decreasing rate of Px,, slows down, Px, + Py, increases again. Then the peak J
appears, indicating that &y starts decreasing according to the increase of kc. Subse-
quently, Px, + Py, continues to increase and then comes to a peak at about 1 ms. At
this time, k¢ and @ take a local maximum and a local minimum, respectively, and
the dip D appears. Thereafter, ®r increases along with the decrease of Px, + Py,.
The inflection point I of FI appears when the decreasing rate of Px, + Py, deceler-
ates. Subsequently, the fluorescence intensity continues increasing under the effects
not only of photochemical quenching and P(}LSO quenching but also of PQQ quenching.
Finally, the peak P appears when the PQ and all other states come to steady states.

To analyze the situations of electron flows of PS II system, the ratios of the
rate of outflux to that of influx concerning each state of electron donors/acceptors
are plotted with FI at v = 15,000s! in Fig.4.8. The PgLSO quenching is taken
into account in the case (a) and neglected (i.e., k. = 0) in the case (b). The
ratios of outflux to influx concerning the transitions of the following states,
Qj (PesoPheQy + Py PheQy), Qi , PQ, Y, + Plgy and Yz + Y, are indicated as
Vorit [V, V2 Vi Vit [V VH VI and Vit /TP, respectively.  Here, Vi,
and V,¢ indicate the sum of the rates of outfluxes from the state z and those of
influxes into the state z in ODEs, respectively. Concerning the case (b) where Py,
quenching is neglected, it is clear that the timings at which the characters J’, I’ and
P’ of FI appear in the diagram correspond to those at which Vot /V;Yos /22 jy/ 22

and Vzﬁé / Vlgl become almost unity. This means that each pattern of FI, i.e., J’, I’ or
P’, reflects that the transition of Q,, Q%ﬁ or PQ state has come to the quasi-steady
state, respectively. This correspondence indicates that the amount of Qj, which
governs ®p via photochemical quenching rate, x, changes with the rate affected by
the states of donors/acceptors, Qa, Qp and PQ, on the downstream side of PS II,
which become to steady states in turn. On the other hand, in the case (a) where
Pz{go quenching is taken into account, the FI pattern does not clearly reflect anymore
the timings at which Qs and Qp have become quasi-steady states. In this case, the
peak J and the dip D appear after the transition of Qa state comes to a quasi-steady
state. The timing at which the inflection point I appears corresponds to that at
which H and Tj; have come to quasi-steady states. This means that the Kok cycle,
which represents the transition of states of OEC located on the donor side of PS
II, has become a quasi-steady state. At this time, the decreasing rate of the Pz{so

state starts decelerating since ngo accepts electrons provided by OEC. This causes

the decelerations of the decrease of ngo-quenching rate kg, and the increase of the
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Figure 4.8 Simulated FI (upper graph) and the ratios of fluxes about electron
donors/acceptors (lower graph) at v = 15,0005 " for the case (a) where Pgy,-
quenching is taken into account and (b) neglected. The ratios of outflux to
influx about each variable state, Q, (Yo4), Qn (Z2), PQ(Qo), Pdgo + Y, (H) and
Yz + Y} (To1), are defined as V)94 /V;Y04 (green open square), V.72 /V.72 (blue
closed square), V.21 /V.9 (magenta open circle), V., /Vil (aqua closed circle)
and V.10t / Vifm (vellow open triangle), respectively. The fluorescence intensity is

normalized by the value Fy at ¢t = 0.

quantum efficiency ®p of fluorescence. The timing at which the peak P appears
corresponds to that at which PQ has come to a steady state in the same way as in

the case (b).

4.3.2 Results based on the TSTM

The TSTM, expressed by Eqs. (4.9a) and (4.9b), and illustrated in Fig. 4.2.3, is
obtained by applying the HCG method to the full PS IT model without the process
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Figure 4.9 Simulated FIs with various photoexcitation rates (a) for the case

with Y quenching and (b) for those without. Photoexcitation rate for PS II v
is set as 4, 000, 6,000, 10,000, 15,000 and 20,000s~*. The fluorescence intensity

is normalized by the

value at v = 0, Fp.

of hole transfer from YZ to Pgso. The results based on this model are presented

below. The initial values of the variables are set as Px,, =1, Pr, =1,Pz, =1,Pg, =
1, Ps, = 0.25, Pg, = 0.75, and otherwise 0.

Simulated FIs for various incident light intensities are plotted in Fig. 4.9. In the

case (a) Y, , Pgso and PQ quenchings are taken into account, while in the case (b) only

P{s, and PQ quenchings are taken into account but Y; quenching is neglected. The

Y%L quenching is due to a hypothetical quencher which was proposed in Vredenberg’s
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Figure 4.10 Simulated FI and time course of the states of quenchers at v =
15,0005~ . The FI (red solid line, left axis) and the ratios of quenchers to each
of their maximum values (right axis) are plotted. Px,, (green square), Px, +
Py, (blue circle), Pg,(magenta triangle) and Pr, + Prs: (aqua inverted triangle),
correspond to the quenchers PggoPheQa, Pgso: PQ and Y;, respectively. The
fluorescence intensity is normalized by the value at v = 0, Fp.

FIA [69]. We set this Y, -quenching rate to k, = 108s™! in the case (a). In this
case, the light-intensity dependent changes of FI pattern from O-J-I-P to O-J-D-I-P
observed by Schansker et al. [71, 72| are reproduced well. In the case (b), on the
other hand, the fluorescence transient pattern of J-D-I does not appear at all. These
results suggest that the fluorescence transient pattern J-D-I requires the presence of
YZ quenching in the case that the hole transfer from Y%L to RC is neglected.

The time courses of Px,,, Px, +Py,, Pg, and Pr, +PTS§ which are the occupancies
of PgggPheQa, Pgrgo, PQ and Y; + Y;S} respectively, are plotted with FI at v =
15,000s! in Fig. 4.10. For Px,, = 1 at t = 0, Px,, rapidly decreases and Pr, +
Prg: quickly increases up to a local maximum before the J peak appears. Then the
fluorescence intensity increases, which means that the magnitude of decrease of the
photochemical quenching rate xp via charge separation from open RC is larger than
that of increase of the Y%’ -quenching rate xz, and thus the quantum efficiency of
fluorescence, ®p = kp/(kD + Kp + KF + KD + K¢ + KQ + Kz), increases. After the
decreasing rate of Pyx,, decelerates, Px, + Py, starts decreasing and then reaches the

local minimum. Thus, the peak J appears, which indicates that kz and & reach
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Figure 4.11 Simulated FI (upper graph) and the ratios of fluxes about electron
donors/acceptors (lower graph) at v = 15,000s~". The ratio of outflux to influx
about each variable state: Qx (Yos4), Qn (Z2), PQ(Qo) and Y + Y} S5(T1+T'S3)
is defined as V)9 /V.X04 (green open square), V.72 /V;7?2 (blue closed square),

out

VO V.91 (magenta open circle) and (V.22 + ijg’)/(vﬁ1 + VIZSE’") (aqua closed

out out

circle), respectively. The fluorescence intensity is normalized by the value Fp at
t = 0. The Y -quenching is taken into account in the case (a) and is neglected
in the case (b).

the local minimum and the local maximum, respectively. Subsequently, Pr, + Prg;
continues to increase and then comes to the local maximum. At this time, k7 and
®p take the local maximum and local minimum, respectively, and the dip D appears.
After that ®p increases along with the decrease of Pr, + Prs;. The inflection point
I of FI appears when the decreasing rate of Pr, + Prg: decelerates. Subsequently,
the fluorescence intensity continues increasing under the effects of photochemical, Y
and PQ quenchings. The peak P appears when the PQ and all other states come to

steady states. In this case based on TSTM, the value of Px, + Py, is almost zero and
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does not accumulate in comparison to other states, indicating that Pg—go quenching is
not effective.

To analyze the states of electron fluxes of PS II system, each ratio of outflux to influx
concerning each state of electron donors/acceptors is plotted with FI at v = 15,0005 ™1
in Fig. 4.11. The Y, quenching is taken into account in the case (a) and neglected
(i.e., k, = 0) in the case (b). The ratios of outflux to influx concerning the transi-
tions of following states, Q, (PsgoPheQ), %_, PQ and Y, + Y/ S5, are indicated
as V! [V Vi JVZ2 VL V8 and (VI +Vo? )/ (Vi +Vie ™), respectively. On
the one hand, in the case (b), where the Y; quenching is neglected, it is clear that
the timings at which the patterns J’, I’ and P’ of FI appear correspond to those at
which the transitions of Qj, Q}23_ and PQ states lead to quasi-steady states similarly
as in Fig. 4.11(b). On the other hand, in the case (a), where the Y, quenching is
taken into account, the FI pattern does no longer reflect clearly the timings when Qa
and Qp have come to quasi-steady states. In this case, the peak J appears after the
transition of QA state leads to the quasi-steady state. At the instant when the peak J
appears, (V.11 —l—‘/;zf; )/ (Vi —l—Ving) takes the value of unity with a negative gradient
with respect to time. This means that the amount of Y + Y Sj starts increasing at
this time. At the instant when the dip D appears, the same ratio takes the value of
unity with a positive gradient with respect to time. This indicates that the amount of
Y, + Y/ S} starts decreasing at this timing. The instant at which the inflection point
I appears corresponds to that at which the ratio becomes stationary. This means that
the transition of Y; + Yg 53, i.e., the transition of states on donor side of PS II, has
come to a quasi-steady state. The timing at which the peak P appears corresponds

to that at which PQ has become to a steady state similarly as in the case (b).

4.4 Discussion

First, with respect to the states of RC in the coarse-grained models at millisecond
scale (Egs. (4.7a) and (4.7b), and Egs. (4.9a) and (4.9b)) obtained through the applica-
tion of the HCG method to the full PS II models, it is confirmed that the RC takes two
or three variable states depending on whether the hole transfer from Y; to Pggo is in-
cluded or not, respectively, in the PS II model. In the former case, the variables of RC
are given as quasi-conserved quantities, [PesoQa + PigoQa] and [PegoQx + PagoQal,
where the transition between Pggg and ngo is in equilibrium at both open and closed

RC. In the latter case, the RC state changes between PggoPheQa, PegoPheQ, and
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PesoPhe™ Q). The light-intensity dependent transition of the dominant states of RC
between the pairs of (PggoPheQa, PgsoPheQ) ) and (PgsoPheQ), PesoPhe™ Q) is re-
vealed on the basis of the difference between the coarse-grained models at millisecond
scale for the different regimes of light intensity. This means that the dominant path to-
wards PggoPheQa state or PgggPhe™ Q) state concerning the outflux from PggoPheQ
depends on the incident light intensity. To investigate this light-dependent change of
the transition pathway of RC states, the ratios of the transition flux Vv, y,, from
Yo1 (PesoPheQy) to Xo1 (PesoPheQa), to the flux Vx,, v,, from Yo (PegoPheQy)
to Y3 (PesoPhe™ Q) ) in terminal steady states at various photoexcitation rates v’s
for PS II are plotted in Fig. 4.12. The case (a) where the path of hole transfer from
Y%L to Pgsgo is included in the PS II model and the case (b) where that path is ne-
glected in the model are shown in Fig. 4.12. The parameters for the path are set as
ks =10"s7!, k_3 = 10°s~! in the former case and k3 = 5x10°s™!, k_5 = 0s~ ! in the
latter case. In the case (a), if v is lower than ~ 10°s™1, Vv, v,, /Vx,,.v0, is sufficiently
small and RC takes X4 state or Yp4 state, whereas if v is close to 107 s, the ratio
is close to unity and thus Y3 state appears. In the case (b), where Vv, v,,/Vxo1.Yo:
is larger than that of case (a), the ratio is close to unity at v ~ 10°s™!, whereas
the pair of RC states (PggsoPheQa, PgsoPheQ) ) is dominant when v is smaller than
~ 10%s7!. On the other hand, the pair (PgsoPheQ, PgsoPhe™Qj ) is dominant when
v is larger than ~ 5 x 10*s~!. This is in agreement with the result of coarse-graining
of PS IT whose coarse-grained models are different according to the photoexcitation
rate ranges. At the point where the flux ratio Vv, v,,/VXe:, Yo, 1S unity, the ratio of
Py,, to Py, becomes unity. The Y3 state is dominant when v is greater than the value
of this point. Up to v ~ 103s~1, there is no difference in the ratios of open and closed
RCs at the steady states between (a) and (b). However, when v is greater than that
value, there is a clear difference in the ratios of Y3 state between (a) and (b). These
results suggest that the hole transfer from er to Pego reduces Vy, y,, and suppresses
the production of PgggPhe™ Q.

Second, Figs. 4.7 and 4.10 indicate that the concentration of PggoPheQa gradually
decreases until the peak P appears in both the DSTM and the TSTM. Especially in
the TSTM, Fig. 4.7 illustrates that the ratio of PggoPheQ, state in RC at the J peak
is smaller than 0.9, which is in contradiction to Vredenberg’s assumption for FIA that
almost all the RCs are in PggoPheQ), state at the J peak. In contrast, we have found
out that the transition of Q4 is in quasi-steady state when the J peak appears (Fig.
4.11).
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Figure 4.12 The ratio Vx,,,v,/Vvys, v, (red solid line, left axis) of outflux for
path 1 to that for path 2 from PegoPheQ) (Yo1 state), and the occupancy of
each state in RC (right axis) at different light excitation rate v for PS II. In the
case (a), where the hole transfer from Y%L to Peso is taken into account, Px,,
and Py,, indicate the ratios for [PesoQa + PdgoQa] and [PesoQ, + PdgoQ,] in
the RC, respectively. In the case (b), where the hole transfer from Y to Pgso
is neglected, Px,, and Py,, indicate the ratios for PggoPheQa and PggoPheQ)
in the RC, respectively. In both cases, Py; indicates the ratio of PggoPhe™ Q}
in the RC. All data are taken at the terminal steady states of the coarse-grained

model at microsecond scale.
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Third, the change of FI pattern depending on the light intensity is accounted for
based on Pgy, quenching in the DSTM and Y, quenching in the TSTM. While in the
TSTM the simulated FI shows a characteristic dependence on light intensity similar
to that observed in experiments when the Y%L -quenching rate is set as k, = 108571,
this quencher is a hypothetical one and lacks the experimental verification. On the
other hand, Pgrso quenching mechanism, which explains the J-D-I pattern of FI in the
DSTM, has experimental evidences [65].

As a result of transformation from a detailed model of PS II to a coarse-grained
model, we have carve out the principal pathways at millisecond scale through the
application of HCG. The process of hole transfer from Yz to RC is not neglected in
the course of this procedure, but rather renormalized into the coarse-graining func-
tions which guide us to the point where the processes at microsecond scale sufficiently
proceed. This feature affects the coarse-grained structure of reaction network at mil-
lisecond scale and thus plays an important role for the description of the accumulation
of Pg—so state. For these reasons, we judge that the DSTM is a more reliable PS II
model at millisecond scale than the TSTM. The assumption that the hole transfer
from Yz to RC is negligible does not seem to be pertinent in the case that the incident
light intensity is high and thus the rate of charge separation would be transiently lim-
ited by the donor-side processes of PS II. It is noted that the mathematical structure
derived through the HCG method is robust for the delicate variances of parameter
values. This structure does not change unless the parameters of the original full model

change their orders of magnitudes.

4.5 Conclusions

The coarse-grained models of PS II at millisecond scale which correspond to an
EDST-like model were systematically elucidated through the HCG method in two
different cases. These models appropriately reproduce the light-intensity dependent
change of FI pattern from O-J-I-P to O-J-D-I-P. In both models, the J-D-I pattern
reflects the states of the donor side of PS II. On the one hand, in the case that the
hole transfer from Y%L to Pggo is accounted for in the PS II model, the J-D-I pattern
is explained on the basis of PZ{SO quenching. On the other hand, in the case that
the hole transfer process is neglected, the J-D-I pattern is explained on the basis of
Y%L quenching. In the former case, the states of RC are described by two effective

states. Each state is defined as the sum of Pgso and Pggg which are in equilibrium
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at microsecond scale in open RC or closed RC, respectively. The coarse-grained
model in the latter case has three variable states for RC, PggoPheQa, PggoPheQ
and PggoPhe™Q, . These states are equivalent to the states which were assumed to
be taken by RC in Vredenberg’s TSTM.

These coarse-grained models obtained through the application of HCG contain the
information about fast timescale processes in a renormalized way. In both the DSTM
and the TSTM, the picosecond-scale processes constitute a quasi-isolated system and
thus provide the quasi-conserved quantities. In the DSTM, the nanosecond-scale pro-
cesses are renormalized to give the quantum efficiencies of core antenna and the rate
of the indirect non-radiative recombination path from PgSOPheQX state. Besides, the
microsecond-scale processes form the quasi-conserved quantities in this model. In
TSTM, the nanosecond-scale processes are renormalized to give the quantum efficien-
cies of the core antenna. In particular, in the case that the photoexcitation rate v
is in microsecond-scale, it is revealed that the transition path from PggoPheQ, to
PegoPhe™ Q) is no longer negligible. In this case, the quantum efficiency of charge
separation from closed RC, that contains the information of nanosecond-scale pro-
cesses in a renormalized way, is introduced.

The present study has developed a model-based analysis of the light-intensity de-
pendent change of transition pathways. It then suggests that the hole transfer from
Y; to Pggo suppresses the production of over-reduced state PggoPhe™ Q) in the case
that the photoexcitation rate v is about 10*s~! or higher.

We have thus found that the coarse-grained EDST-like models derived through
the application of the HCG method give comprehensive descriptions with respect
to the dynamic properties of PS II at timescales of interest. It is remarkable that
the mathematical coarse-graining procedures naturally provide those physicochemical

pictures that are consistent with biological observations.



Chapter 5

Coarse-Graining of the Model for
Photosynthetic Processes of PS |

5.1 Introduction

Photosystem I (PS 1) is one of the most important protein complex of photosynthesis
as well as PS II. The redox potential (energy level) of electron transferred from HyO
is elevated by these two photosystems and then the electron obtains the reduction
power high enough to reduce NADP™' (nicotinamide adenine dinucleotide phosphate).
Meanwhile, other electron transfer steps dissipate the excitation energy, hence the
energy diagram of electron transfer steps on thylakoid membrane has a zig-zag feature
called “Z-scheme” [23]. The dynamics of electron transfer in PS I is observed by means
of Iggo signal, which reflects the accumulations of P, and oxidized Pc [94,95]. The
major peak of the fluorescence emitted from PS I at room temperature is observed at
725nm [96,97|. Therefore, its contribution to the Chl a fluorescence characterized by
a band peak at 685nm, which is discussed in Chapter 3, is regarded to be small.

The electron transport system in PS I is supposed to possess regulation mechanisms.
The charge recombination process is suggested to work for regulation of electron
transfer when electrons are congested in PS I. The congestion of electrons in PS I
occurs in the induction time. The dynamics of the electron transport system in PS
I is reflected by the characteristic time course profile of the Igoy signal. However,
the analysis of this time course pattern is difficult because the reaction model used
for analysis is too complex to comprehensively understand the phenomena on the
basis of the model. The reaction network of electron transfer in PS I is not only

complicated but also temporally multiscale as in PS II. In this chapter, a kinetic model
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of excitation-energy transfer and electron transfer for PS I is treated. If one deals with
all the possible combinations of the states of N electron carriers which take oxidized
or reduced states, the dimension of the state space of electron carriers is equal to 2%V,
This dimensionality can be reduced by extracting the principal reaction network by
means of the multiscale property of the original reaction model. In this way, I attempt
to understand the induction phenomena of PS I based on the simple and mono-scale
model extracted from the complex and multiscale model. The hierarchical coarse-
graining in time of the kinetic model of PS I at picosecond, nanosecond, microsecond

and millisecond scales are attempted below.
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Figure 5.1 Schematic diagram of excitation-energy and electron transfer pro-
cesses following a single excitation in PS I. Solid and dashed lines indicate the
electron transfer and the excitation-energy transfer, respectively. Each color in-
dicates different time-scales as follows. Red: picoseconds, yellow: nanoseconds,
blue: microseconds, black: milliseconds. Each RC, except for the ground and

the excited states, is characterized by the reduced site.

5.2.1 Kinetic model of PS |

First, the reaction network of electron transfer in PS I following the single excitation
is studied as a simple case [98]. The diagram of this reaction including picosecond to

microsecond scales is illustrated in Fig. 5.1. PS I has a heterodimeric reaction center
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that consists of the two near-symmetrical electron transfer branches, A-branch and
B-branch. Though the amino-acid identity of these branches is about 60 % and thus
there are some functional differences, the probabilities of the occurrences of charge
separation are nearly equal in both branches [99]. The kinetic model of this reaction
is expressed with the use of the ODEs (Eq. (5.2) below). The notations are assigned

to the variables as follows:

W1 : [antenna™|; W : [antennal; X I : [P*];
XIoa : [PTAG] X ap - [P+A6B];

Xlza: [PTAL X g [PTAR];

XI,: [PYFg); XI5 : [PTFR): XIg : [PHFg),

(5.1)

where | | means the concentration. P is the primary donor, P7oo. Both Aga and
App are Chl a molecules that are the first electron acceptors of path A and path B,
respectively. Aj;p and A;p are phylloquinone molecules that are the next electron
acceptors of path A and path B, respectively. The electron transfer reactions proceed
over the ion-sulfur clusters, Fx, Fa and Fg in turn. The rate constants are shown in
Table 5.1.

DL = Ve —kaW i — kpy M=o XL W — koW e + kg X T,
Xh = —kOWhX}O +k_ OWIO X1 + kX1,
L = hWhse —koye X1 — kaX Ty — kyy M=o X,
—(k1 + k1o)Xt + k-1 XIoa + k10X 125,
LA =k XD — (ky + k1) X Iaa,
% = k10X 11 — (k20 + k—10)X 2B,
dXLsa = |y XIha — ks XIsa + k_3X14,
XLsn = ko X Iop — k3o X Isp + k—30X L4,
X = |3 X T34 + k3o X Isp — (k_g + k_s0 + ka) X Iy + k_4 X I,
AUs = ky X1y — k-4 XI5 — kapXIs + k_apXle,
(s = kXI5 — k_apXIs.

(5.2)

Thus one should consider only nine states of RC for the reaction up to microsecond
scale when the reaction is induced by the single excitation. However, under continu-
ous light irradiation such as sun light, over-reduced states that have more than two
electron charges are realized in RC. This means that a number of states should be

taken into account under continuous light.
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The principal reaction pathway can be extracted with the use of the hierarchical
property of the timescale of the reaction network. In this treatment, each variable
state is assumed to change by the reactions whose timescales belong to the most
and secondly fast classes among the reactions related to each variable state. The
reaction network diagram extracted by this assumption is illustrated in Fig.5.2. A
kinetic model of the reaction network of PSI-RC under continuous light can be con-
structed based on this figure along with Eq. (5.2). The over-reduced states of RC are
represented by the combinations of the notations defined in Eq. (5.1). For example,
Xgsa : [PTELF Fgl; Xgso : [PFLFR]; Xgop @ [PTARFg]; XI5 : [P*F,], and
so on. Here, the notations 0 and 1 correspond to the ground state and the excited
state of the primary donor Prqg, respectively. Besides, the notations 24, 2B, ..., 5
and 6 represent that the corresponding pigments indicated in Eq. (5.1) are reduced.
In addition to Eq. (5.1), XI7 : [PT] is introduced for the RC state where the Prqq is

oxidized and other sites are neutral.
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Figure 5.2 Reduced diagrams of PSI-RC reaction network. Each number en-
closed within a circle indicates the reaction coupled with redox reaction of Pc.
The meanings of types and colors of arrows are the same as Fig. 5.1. The states
which share the same reduced sites are classified by the green boxes characterized
by the index i. The index i = 5, 6, 65 and 654 correspond to the '\, F5,F, Fg

and Fy I, I states, respectively.
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5.2.2 Coarse-graining treatment

Hereafter, coarse-graining treatment is applied to the kinetic model based on Fig.
5.2. According to the HCG method proposed in Chapter 2, the dimensionless times
should be introduced. In this chapter, the dimensionless times are introduced by

means of the characteristic rate constants of the kinetic model as below:

1 = kot,

1 = kat,

T = ]{4t, (53)
TV = k‘bft.

The timescale ratios are introduced as ern = ka/ko, enm = ka/k2, emv = kpr/ka
and e, v = kps/k2. The rate constants of the model are enumerated in Table 5.1.
The ODEs with the dimensionless time 77 scaled by the picosecond-scale rate con-

stant is expressed as

dW i, _ W Iy . XIr—XIg—X1y
I = ELIV L, XI ELIRp+ — X7, Wi
i0 W IO
—/i()WIl —l—/i 0 E i Wir XI
dX1I,; XTI XIg—XI
—d7121 = koW Il XI — K_0 WIO XI;; — 5I,H/{dXIi1 — €I7I[I-€p_|_—T qu(j LX T

—ern(k1 + k1o)X i1 +ernk—1XTioa + e1uk—10X Li2B,
(5.4)

where ¢ = null, 5, 6, 65 and 654. At picosecond scale, the quasi-conserved quanti-
ties that only change with O(ern) rates exist: Ul; = Wi + ), XI;; and X101 =
X1I;o + X1I;;. The asymptotic behaviors of W1I; and X1I;;’s can be described by the
slower variables by means of quasi-equilibrium pseudo-steady-state approximation,

lim, oo AW I /dmr = 0 and lim, oo dX1;1/d7p =0

. IQ,()X]T
lim W1 = Ul
711—r>I<1>o 1(7—1) H_OXIT + Ko Zz XI’LO b
XI;
lim XIi () Sl Ul (5:5)

T1—00 " k_oXIp + Ko > X1io
= p(XI; |UL)UTL.
Here, the occupancy ratios of the exciton at RCs, X1I;1(: = null, 5, 6, 65, 654), to
the total exciton at PS I, U1, are introduced as p(XI;; | Uly) = ko X 1o/ (k—o X I1 +
ko y_; X1io).
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Table 5.1 Parameter List of PS I Model

Description Notation Value (Time-scale class) Reference
Rate constant of excitation transfer from LHA ko -(4y) Implicit
to special pair
Rate constant of excitation transfer from spe- k_o - (Ap) Implicit
cial pair to LHA
Rate constant of excitation dissipation from ka 5x 108s™1 (Aq) [98]
antenna
Rate constant of charge separation at branch k1 10t st (Ap) (98]
A
Rate constant of charge separation at branch k1o 10t s™1 (Ap) [98]
A
Rate constant of charge recombination at k_q 8.3 x 109s7! (Ajp) [98]
branch A
Rate constant of charge recombination at k_10 8.3 x 109s~! (Aq) (98]
branch B
Rate constant of electron transfer from Aga to ko 2.6 x 1019571 (Ap) [98]
Aia
Rate constant of electron transfer from Agp to kao 4.8 x 1010571 (Ajp) [98]
A
Rate constant of electron transfer from Aj to ks 4.6 x 107s7 ! (Am) [98]
Fx
Rate constant of electron transfer from A to k3o 82x 107! (Am) [98]
Fx
Rate constant of electron transfer from Fx to k_s 8.4 x107s™! (Am) [98]
A1
Rate constant of electron transfer from Fx to k4 2.1x107s7! (Am) [98]
Fa
Rate constant of electron transfer from F ot k_4 4.7 x 10*s71 (Aw) [98]
Fx
Rate constant of electron transfer from Fa to kap 3.5x 10%s1 (Am) [98]
Fy
Rate constant of electron transfer from Fg to  k_ap 1.1 x 105571 (Aq) [98]
Fg
Rate constant of P700" quenching of antenna kp+t 2x109s71 (Ap) [60]
Rate constant of non-radiative recombination kip 10°s71 (Aw) [60]

from PTAT, and PTA[,

(To be continued)
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(Continued)

Rate constant of electron transfer from Fg to F kBr 3.25 x 103s7! (Aq)  [60]
Rate constant of electron transfer from F~ Fg k_pr 325 x10%s7! (Agm)  [60]
Rate constant of electron transfer from F to active  kppygr 58051 (An) [78]
FNR

Rate constant of electron transfer from reduced k_ppyr 580s ! (Ary) [78]
FNR, FNR~ or FNR2™, to F

Rate constant for the activation of inactive FNR  kpypga 0.01s7! (Aw) [78]
(FNRi)

Rate constant for the oxidation of FNR?~ back to  krngr 220571 (Aw) [78]
active FNR

Rate constant of electron transport from reduced kpep 110571 (Awy) [78]
Pc to Py,

Rate constant of electron transport from Proo to  k_pcp 110s7! (Aw) [78]
Pc™

Rate constant for the reduction of Pc™ by electrons kpe 100871 (Apy) [78]
come from PS II

Radiation flux density to PS I Vv (Aw)
Concentration of all PS I reaction center’s states XIrt - -

(conserved quantity)
Concentration of total states of ferredoxin (con- Yt - -

served quantity)

Concentration of total states of FNR (conserved ALY - -
quantity)
Concentration of Pc in thylakoid lumen (conserved Cr - -
quantity)
Concentration of total pigments in core antenna Wit - -

(conserved quantity)

Next, the coarse-graining of the processes at nanosecond scale is considered.
The ODEs with dimensionless time 73 are expressed by means of Eq.(5.5) for
1 =null, 5, 6, 65 and 654:

Wh = ey Wl — jgU L — ki X5y g

+(K/1 —f—fﬂ?lo) Zzp(XIﬂ | UIl)Ufl, (5 6)
% = rp(XILin | UL)UIL — (k2 + k-1)X 24, .
dﬁ% = k1ol'x1,, — (K20 + k—10) X Li2B.

The coarse-graining functions are given through the non-equilibrium pseudo-

steady-state approximation, lim.;_,. dUI;/dm = 0, lim; oo dX Iioa/dmm = 0 and
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limTH_mo dXIZ‘QB/dT]] =0:

. En,vv
lim Uli(mp) = :
T —>00 1( H) XIr=32; Xlio f f X1 Ul
Kd+ Kp+t—x7. T (ffl’YX]izA + KlO'YXIiQB) > p(XIn [ UhL)
=ervlvr,
. R1
lim XIioa(mn) = emv I'xr,,
T —00 Ko + K_1
=en vl Xri04s
. K10
lim XZlop(mm) =env———I'xr,
T — 00 K20 + K—10
=envl X105

(5.7)

Here, the coarse-graining parameters, ,Y)f(IZA = Kko/(ka+k_1) and '7;0(123 = Koo/ (ka0 +
K_10), meaning the ratios of forward reaction flux rates to the total flux rate from
X1I>4 and X I>p, respectively, are introduced. Besides, the coarse-graining functions
of the excited RCs, lim,, oo X1I;1 = p(X ;1 | UL)Tyy, for i = null, 5, 6, 65 and 654,
are introduced.

The processes at microsecond scale are coarse-grained in the following. The kinetic
models at this scale are different among i = null, 5, 6, 65 and 654. The ODEs with
the dimensionless time 7y are shown as below.

The case of 7 = null:

( % = koem vl xr,, — (k3 + Kk1p) X134 + K3 X1y,
% = Kooem, vl x1,5 — (K30 + Kk1P) X I3B + K30 X 14,
L — k3 XIsa+ k30X Isp — (ka+ kg + ko30)XIa+emvra XI5, (5.8)
Sl = kX —emwvk-aXIs — kapXIs + r_apXIs,

Sl = kapXIs —kapXls —emn (kprXI6Y o — ki ppXI7Y ).

The case of 1 = 5, 6:
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( ddXT% = kapX 150 — k—apXleo,
% = koem v X154 — (K3 + K1P) X o34 + k—3XIss + kapXIs34 — k_apXlssa,
% = Koofm, v X1gap — (K30 + K1P) X e3B + K—30XI6a + kapXIssp — k_apXlssp,
e — k3 X T34 + k30X Iesp — (Ka + hiog + K_30) X o4 + emvr—aX Ies
+raBX 15y — k_apXlsy,
% = Ky XIes — emvh—aXIgs,
dbo = —kapXTs0 + r-apXleo,
dﬁ% = koem, v X155, — (k3 + K1P) X s34 + k_3XI54 — kapXIs3a + k_apXlssa,
% = Kooem, v X1sop — (K30 + K1P) X I53 + K_30X 54 — kaXIs3p + k_apXle3p,
(955t = kg XTs3a + k30X Issp — (Ka + kg + k30)XIsa — apXIsa + i apXles.

(5.9)
The case of 1 = 65:

dXTes34

e = Roem, VL X 1504 — (K3 + K1P) X 6534 + K3 X I654,
dXI¢s3B

TossB = Kooem, VI X1gson — (K30 + K1P) X Ig53B + K-30X 654, (5.10)

digﬂim = k3XIgs34 + k30X Les3p — (k—3 + K_30) X g54.

The case of i = 654:

dX1T
2428 = foem, v X 165000 — (K3 + K1P) X L6543, (5.11)
dX I, .
d‘?'15]143B = H20€]]17N1_‘XI6542B - ('%30 + HlP)X16543B-

The coarse-graining functions of the XI;34, XI;3p and X1I;4 for ¢ = null, 5, 6, 65
and 654 are derived through the nonequilibrium pseudo-steady-state approximation,
lim ;00 dX iza/dmp = 0, lim, 00 dX Lizp/dm = 0 and lim; oo dX [;y/dmp = 0. In

the case of i = null, the coarse-graining functions are expressed as below:

f f
K Uxrq + kool x71,5 + K_a X1,
].im XI4<7—HI) — 8]:[[,]:\[ 27XI3A 2A ’YXI3B 20 2B 4 5

d d
TIm—00 K4 + H*37X13A + ,{7307X13B
=emvlxy,,
- (5.12)
lim XI3a(tm) = ———[rol'x10 + i-3Uxr, ] =emwvlxrs4,
I —00 K3 + K1p
. ETI,IV _
lim XI3p(mm) = [kool'x 1,5 + k—s0lxr,] =emvT xrsp,

T — 00 K30 + K1p

with 7§(13A = Rk3/(Kk3 + K1pP), 7§(133 = K30/ (K30 + K1pP), WEJ(IBA = k1p/(k3 + k1p) and

’yngSB = R1p/(kso + k1p). For the case of i =5, 6, 65 and 654, see Appendix C.1.
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By substituting these results to Egs. (5.8) - (5.11), it is revealed in the case i = null
that there is the quasi-conserved quantity, XI5 = XI5 + XIg, that changes only
with O(eqrv) rates at this time scale.

The coarse-graining functions Eq.(5.13) are derived by applying the quasi-
equilibrium pseudo-steady-state approximation, lim o, dXI5/dmg = —kapX 15 +
k_apXIs = 0 and lim. e dXIs/drm = #ap XI5 — k_apXIs = O:

K—AB

lim XI5(mm) = ———— X1z
i — 00 KAB + K—AB
= FXI y
an (5.13)
lim XIg(mm) = —————— X156
T — 00 KAB + K_AB
= FXIG-

In the case of i = 5, 6, the quasi-conserved quantity, XI59/60 = X150 + X1g0, is
introduced as in the case of © = null. The coarse-graining functions of X I5g and X g

are also derived in the same way as in the case of i = null (See Appendix C.1).

5.2.3 Coarse-grained model of PS |

According to the above results, the coarse-grained reaction network model of PSI-
RC under continuous light is given. The diagram of the coarse-grained model of
PS T is illustrated in Fig. 5.3. With respect to this PS I kinetic model, the rates
of electron transfer outside PS I are set to be proportional to the product of the
concentrations of the reactants. For the reactants outside PS I, the electron acceptors
of PS I (ferredoxin (F), ferredoxin-NADP (H)-oxidoreductase (FNR)) and the electron
donor for PS I (plastocyanin (Pc)) are introduced. In the following, the notations are
adopted as below: Yy : [F]; Yy : [F7], Z_1 : [FNRy]; Zo : [FNR]; Z; : [FNR™|; Z :
[FNR2~]; Cy : [Pct]; Cy : [Pc]. The activation process of inactive FNR (FNR;), the
oxidation of FNR?~ and the reduction of oxidized Pc are assumed to be irreversible
and proceed linearly with their concentration.

The ODEs with 71y of the coarse-grained kinetic model of PS I are expressed as
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( dXIO
dTIv

dXI5/6
dTIV

Khea

dm
dX1Y 50/60

dTIv

dX Igs
dTIV

dX Igs0
dTIV

dX Igs40
dTN

X1

= —kol'wr, X—I; +roolxn, +riP(Uxra +Txrap)
Co Y Y
XTI =2 — k_pupXIg—=2 — 1 — ke pr—— X1,
+Kpcp 7CT K—_Ppcp OC,T + HBFYIT XIgo — K BFYIT 0
Y]
= kal'x1, — koal'x1, — kpr(Txp — XI65)Y_IE
YI C
i pr(XT; — Txr) o — FGPCPXI5/6—1 + H—PcPX160/50—Oa
YI Yo oy ¢ @1
= kpplxr —2 — k_grpXIr—t — kpepXI1—= + k_pop X Ig—2
KBF XIGY[CT K_BF Vi CRPP 7CT+HJ perXlo iz
= FJPcPXIs/G—l - /i—PcPXI50/60—0
Cr C
Y, v
—HBFW(FXIGO — X1gs0) + HfBFY—IT(XIO —TI'xr,)
Is0/60
—kolwn —7= + f-olx165 + w1P(Uxrss, + Tx1600 + Pxrsgy + Pixronn):
C C
= kgl x 15, — K_aX g5 — KPCPX165C—1 + K_PCPX165OC—2
T
Y] YI
—kpF o XI5 + kopro—Lx1,,
Yl Yo s Y1, YI
= kpepXIgs— — k_pep XIg50 —> — kpr——r X Igs0 + fLBF—lFXISO
Cr CB(I Yt Yit
+ral x15,0 — K—aX1Ie50 — Kol'wr, X;;O + kol x145, + 1P (T x6530 + I x6538),
= K T ﬁ — K X1 ﬁ
= m,leIPcP Xlosi G ~pepXle510 7
0
— — X7 .
KBF Y1, o5

(5.14)

The ODEs with 7y of the kinetic model of electron carriers outside PS I are ex-

presses as follows:
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(dY Iy
dTIV

dY I,
dTIv

dZ1_,

dr
azly

d
at
d
at,
]
acy

dTIv

dCy
dm v

Y,

= —kpr(Uxr1, + Uxr1y + X1o5 + Xos0 + X1es540 + 51]1,1VFX1654)Y—IT
YI
+r_pr(Xlo+ X174+ Txr, + 11){150)5,—1;
ZIO ZIl YIO
— 4+ —)YI{ — k_ Z1 Z1y)——
—HiFFNR(ZIT + ZIT) 1 — k_rrNr(Z1 + 2)YIT’

= kpr(TUxr1, + Uxigo + XI5 + X1e50 + X540 + cm vl x145,)
YT

Y It

Z1y AR Y I

— — 4+ —)Y1I _ 71 Z 1) ——
HFFNR(ZIT—FZIT) 1+ k_rrNr(Z1 + Q)YIT’

= —KFNRAZI 1,

Y
Yir
—k_pr(XIo+XI7+Txr, +T'xr1,,)

Z 1 Y
= KpNRAZI_1 — KvFFNRyjlz_I; + H—FFNRZHY—IO + KkpNrZ 12,

AA Yi,

= Y= — 5—)— k- 45 — Z1)
KFFNR 1(ZIT ZIT) k-rrNR(Z1 2)YIT’

= KFFNRYH% - H—FFNRZIZ% — KFNRZ D2,

= —kpcCo+ kpep (X7 + XIse + Xos + emvlxr,,)

Co

Cr’

= kpcCo — kpep(X 17 + X1se + Xgs + €m,IvFX165)Ci;T
Co

C—T.

G
Cly

—k_per(X 1o + X16050 + X Les0 + X Ls540)

+r_pep(X 1o+ X050 + XIs50 + X 1540)
(5.15)
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Figure 5.3 Coarse-grained picture of the diagram of PSI-RC reaction network.
Here, the P70, Fx, Fa and Fp sites are indicated by P, X, A and B, respectively.
The notation PA™ /B~ means that the PS I realizes ProoF y FB or ProoFalFg
state. The arrows marked with Pc™ /Pc, F/F~ and v indicate the reaction ac-
companied by the redox reactions of Pc, that of F and light absorption, respec-
tively. The index i = 5, 6, 65 and 654 correspond to the F,, Fg,F,F5 and
FF,Fg states, respectively.

5.3 Results and Discussion

The results of the simulations for the dynamics of PS I in photosynthetic induction
time are shown in this section. During the induction of photosynthesis, i.e, before the
dark reactions of photosynthesis such as Calvin-Benson cycle are activated by light,
the electron transfer reactions on thylakoid membrane are suitably regulated for light

environment. Until the activations of the dark reactions are induced by light, the
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amount of oxidized ferredoxin is limited and its reduced form builds up. Unless the
plastocyanin pool is fully oxidized, P%O is reduced fast enough and then electrons
linger on the acceptors of PS I upon further turnovers. It is necessary to dispose the
extra absorbed energy that is not used for photosynthesis at this situation. With
respect to such an energy-dissipation process, the charge-recombination processes
are considered to play an important role [99]. In regard to the dynamics of PS I, the
absorbance changes at 820 nm (relative to the absorbance at 870 nm), Igog signal, that
reflects the amounts of P;roo and PcT are known to show an characteristic pattern in
time [100,101]. With these in mind, the relations between the charge recombinations
of the charge separated states, PT A, and PTAJ;, and the characteristic pattern of
the dynamics of Igyo signal have been investigated.

First, the simulated Igog curve is illustrated in Fig. 5.4 along with the experimental
results [60]. Here, the initial states are set as those in dark: W1y(0) = Wiy, X1y(0) =
XIr,YIy(0) = Yy, ZI_1(0) = ZIt, C1(0) = Cr and otherwise 0. The ratio of
XIv/YIr/ZIr/Cp /Wy is assumed to be 1/3/3/3/170. The photo-excitation rate
used for the simulation is set to be 2000s~! which corresponds to the light flux density
of 3,000 pmolm~2s~! used in the experiment [60]. These two curves agree well with
respect to the inflection point at about 10~3s, the peak at about 2 x 1072s and the

relaxation at 10~ !s.
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Figure 5.4 Dynamics of Igao signal. The upper figure is the experimental re-
sult (Modified from Lazar [60]) and the lower one is the result of simulation.

The relative values are plotted in the upper figure. In simulation, Igo signal is
caluculated by the Eq. (C.3) (See Appendix C.2).
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Figure 5.5 The simulated dynamics of Ig2o signal and the occupancies of the
oxidized reactants, the total P, and Pc™.

Next, the dynamics of the occupancies of P;’OO and PcT to each total amount are
shown with Igog curve in Fig. 5.5. This figure indicates that the rise of Igog curve up
to inflection point at 1073s reflects the accumulation of P;LOO and the increase from
the inflection point to the peak at 2 x 10~ 2s reflects the accumulation of Pct. Besides,
the relaxation of Igsg curve after the peak accompanies the decreases of both P;LOO
and Pc™.

The dynamics of the occupancies of PSI-RC states and those of the states of other
electron carriers are shown in Fig. 5.6. With respect to the PSI-RC, the P;“OOFK /Fg
state firstly increases among all the P, states and then the Pd, FoFp state in-
creases. The simultaneous increase of F~, the reduced state of the electron acceptor
of PS I, indicates that above change of PSI-RC accompanies the electron transfer
from P?OOFAFg to F. In regard to the oxidized state of the electron donor, Pc™, it
increases with P, Fy /Fg and Pd, F1Fg states at the same time. This means that
the charge separations of ProoFaFg and ProoF /Fg states occur immediately after
the Pc has been oxidized by P;’OOF AFp and P;’OOF; JFg states, respectively. The re-
duced states of the electron carriers accumulate substantially, and then the almost all
ferredoxins become the reduced state, F~. At this time, almost all PSI-RCs become
P7ooF  Fg state. Therefore the plastocyanin is no more oxidized by PSI. This indi-
cates that the charge recombination process from Pl A F Fg or Pi A pF Fg

state to P7ooF, Fz state is in active as shown in Fig. 5.7.
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Figure 5.6 The simulated dynamics of Iss signal and each state of the electron
carriers. Here, the notations P, A and B mean P7go, Fa and Fp, respectively.

The dynamics of the ratios of the rate of charge separation and that of charge
recombination at each PSI-RC to the total rate of charge separation at PSI are plotted
with Iggo curve in Fig. 5.7. Figure 5.7 (b) shows the time courses of the ratios of the
rates of charge separations at ProoFaFg, ProoF, /Fg and Pr7ooF  Fg to the total rate
@gb:/B, and @g%B,,
respectively. Interestingly, the active process following the charge separation from

of charge separation at PS I. Each ratio is represented by @X%,

ProoFaFg state is not the charge separation from ProoF, /Fg state but that from
P7ooF, Fg state. This means that the majority of the P;LOOFKFB state produced via
charge separation from P;ooFaFp state is reduced by F~ at acceptor side of PS T and
then change into P7ooF, Fg state not through ProoF, /Fg state.

The ratio of charge recombination rate at each PSI-RC to the total charge separa-
tion rate at PS I is plotted in Fig. 5.7 (c). Here, ®%E, @glf”/B, @glf”B,
the ratios of the charge recombination rates of P ,A;, and P;’OOAIB at the PS I,

and represent
where the states of ion sulfurs are in F5Fg, F, /Fg and F,Fg states, to the total
charge separation rate at PS I, respectively. Through the comparison between Figs.
5.7 (b) and (c), it is revealed that the charge recombination rate is much smaller than

the charge separation rate at the P7rgoF A Fp state on the one hand. But, on the other
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hand, the time course of charge recombination rate is mostly the same as the charge
separation rate at the Prool", 'y state. This suggests that the charge recombination
paths from Pd, A F1Fg and Pi A zF,Fg states to P7ooF, F5 state play an im-
portant role for the dissipation of the extra absorbed energy. Thus it is revealed that
the regulation mechanism for dissipation of extra absorbed energy exists in electron
transfer chain of PS I. It is noted that this mechanism becomes active when the elec-
trons are accumulated at acceptor side of PS I, and then PSI-RC is in the doubly

reduced state, P7ooF .
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Figure 5.7 (a) The simulated dynamics of Ig2o signal, (b) the ratios of charge
separation rates of each PSI-RC to the total charge separation rate, and (c) the
ratios of charge recombination rates of each PSI-RC to the total charge separation

rate.

5.4 Conclusions

In this chapter, the coarse-grained model of PS I is derived and applied for the
simulation of the photosynthetic induction up to 1 s. With the use of the HCG
method, the dimensionality of the state space of PSI-RC is reduced from 28 to 7
(the number of variables of Eq.(5.14)). With respect to the curve of Igyy signal,
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it is revealed that the increase towards the inflection point at about 1073s reflects
the accumulation of P;FOO and the increase from that inflection point to the peak
at 2 x 10725 reflects the accumulation of Pct. Besides, the decrease after the peak
accompanies the increase of the doubly reduced PS I, P7ooF, F. The important role
of the charge recombination from P;’OOA;AF; F; or P?OOAIBF;Fg state to P7ooF y Fg
state for the dissipation of extra energy has also been revealed. It is noted that other
mechanisms of the regulation of electron transfer processes around PS I have been
proposed at more slower time scales such as cyclic electron flow [102] and water-
water-cycle [103|, which are called alternative electron pathways in distinction from
the ordinary linear electron pathway [104]|. It seems that the model proposed here
has a potential to describe the slower dynamics of photosynthesis in combination with

the models that describe the further slower reactions of photosynthesis.






Chapter 6

General Conclusion and Perspective

The multi-hierarchy and complexity are the typical characteristics of the reactions
in living body. To understand such a living system by intuition, it is necessary to
construct a model that is composed of the essential elements [105]. In this study, I
have tried to extract such a essential model of photosynthesis that is consistent with
the full detailed model.

In Chapter 3, I have presented a hierarchical coarse-graining (HCG) method in time
which can reduce the complexity and the multi-timescale property of photosynthesis
reaction models. This method is proposed based on the three variable model and
then applied to the simplified model of PS II. As a result, the multi-timescale model
of PS II is transformed into the mono-timescale one with sufficient accuracy.

Through this new method, the phenomenological structures of photosystem II and
photosystem I at millisecond scale can be systematically derived. It is important that
derived models have been revealed to have an ability to clearly explain the fluorescence
induction phenomena and the Igog signal curve.

In Chapter 4, the full model of PS II combined with OEC and LHA is coarse
grained through the HCG method. Two different coarse-grained models are derived
in response to the difference in the rate constants of the electron transfer at donor
side of PS II. The analysis of reaction network reveals that the coarse-grained model
that is consistent with the results of experiments is that derived in the case where the
electron transfer at donor side of PS II can be assumed in quasi-equilibrium. With
respect to FI, it is revealed that the light-intensity dependent changes of the transient
patterns from O-J-I-P to O-J-D-I-P reflect the changes of the states of the donor side
of PS II. The factor that affects the FI pattern is P{y, quenching or Y; quenching

corresponding to the different coarse-grained model.

105
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In Chapter 5, the coarse-grained model of PS I is obtained through the HCG method
base on the model that has the 28 dimensionality in the state space of RC. The ob-
tained model describes RC by seven state variables. The simulation of the photosyn-
thetic induction reveals what the Igog curve reflects. The increase up to the inflection
point at 1072 s, the increase from that point to the peak at 2 x 1072 s, and the decay
after that peak reflect the accumulations of P7,,, Pc and ProoF, Fg, respectively.
Besides, it is revealed that once the PSI-RC realized the P7ooFy F state the charge
recombination processes from P;FOOAIA and P;“OOAIA states play the important role
for the dissipation of the extra absorbed energy.

The remaining problem is concerned with the explanation of the slow-change pat-
tern of fluorescence induction phenomena. This phenomena is regarded to be affected
by NPQ processes as explained in Chapter 2. Though various mechanisms concerning
the environmental response at this timescale range from seconds to minutes are pro-
posed, the relationships between them are still being debated [106]. To cope with this
problem, it seems useful to derive the phenomenological structure of the reaction on
thylakoid membrane by combining the models of the NPQ with the models of PS II
and PS I obtained in this study, and then to analyze the phenomena systematically.
Furthermore, in combination with the model of dark reactions such as Calvin-Benson
cycle, the phenomenological model of photosynthesis in chloroplast that is consistent

with the full detailed model would be obtained.
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Appendix A

A.1 Linear stability analysis
A.1.1 The case of a

With respect to the ODEs constructed by neglecting the O(er ) terms in Eq. (3.3),
each ODE is denoted in terms of F;, as

dx

T = KpT2 — Kpr1xo = Fo,

dx _ _

T2 = kKpTe — Kpr1xo = I, (A1)
dzx _ _

d—Tf = —KpT2 + KpT1T0 = Fo.

The steady state of these ODEs is considered. The solution & = (Zg,Z1,Z2)T to
these ODEs at the steady state is called an equilibrium point. Then, the linear
stability analysis for & + Az, which is displaced by Az = (Axg, Az, Azy)’ from the
equilibrium point, is attempted. By substituting & + Az into Eq. (A.1), the ODEs of

Ax are obtained as

dAx
= AAx,
dTI
OFy, 0Fy 09K
0 0 0
_ | o8 8F  BF
A= Oz ox oz ’ A2
OFy OF, OF (A.2)
81’0 81‘1 8{1?2
—KfT1 —KfTo Kp
= | —KfZ1 —KfZo Kb
KT K$To —Kp

A is called the Jacobian matrix. By solving the eigenvalue equation |[IA — A| = 0 for

A, the eigenvalues of the Jacobian matrix are obtained as

A=A =0, = —(Iiffl + Kfxo + Kub). (Ag)
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The eigenvectors pg, p1, P2 of each Ay, A1, A2 are obtained by solving the following

equation:

(IAn — A)pn = 0. (A.4)

A matrix P, which is formed by the eigenvectors pg, p1, p2 is then introduced as

P=(po P1 P2),

To Kb 1 (A.5)
—T Kb 1 .

0 kKe(@o+z1) -1

I
8
o

By substituting Az = Py, Eq. (A.2) is transformed to a linear differential equation
of y = (yo,y1,52)" as

—y =P APy,
dTI
00 0 (A.6)
=00 0]y
0 0 X

The relaxation time of the perturbation Az for the steady state of Eq. (A.2) is esti-

mated as O(_A%) from this result.

A.1.2 The case of b
With respect to the ODEs constructed by neglecting the O(ey 1) terms in Eq. (3.7),

dxg

d = RpT2 — RKfX1Z0,

dz

T = K11+ KpTa — KfT1T0, (A.7)
dx _

d—Tf = —RpT2 + KfT1Zg,

the linear stability analysis for the point displaced by Az = (Azg, Azy, Axs)T from
the equilibrium point is attempted. This analysis can be performed by introducing

the ODEs for Az as well as in the case of a:

dAx

= AAx,
dTI
—KfX1 —KfXo Kb (A.8)
A= | —KZ1 —K1—KfZo Kb

K§T1 K$Zo —Kp
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The eigenvalues of the Jacobian matrix are obtained as

—(Iil + Ry + K,f(f'o + Iffl)) + \/(Hl + Ky + lif(f() + jl))Z — 4/%1(/11, + /ﬁf:ffl)

A0:07/\:|:: 2

(A.9)
A matrix P = (po p+ p—), which is formed by each eigenvector, is introduced. By
substituting Az = Py, Eq. (A.8) is transformed to a linear differential equation of

y = (yo,y1,92)":

d 0 O 0
Y= 0 Ay 0 |y (A.10)
I 0 0 M

The relaxation time of the perturbation Az for the steady state of Eq. (A.8) is esti-

mated as O(—ﬁ) from this result.

A.1.3 The case of ¢

Concerning the ODEs constructed by neglecting the O(er ) terms in Eq. (3.14),

dx

dT? = RpT2 — RfX1Zo,

dx _

T2 = —K1T1 + KpTe — K210, (A.11)
dzx

dn. = —haT2 — KpT2 + K10,

the linear stability analysis for the point displaced by Az = (Azg, Axy, Axs)T from
the equilibrium point is attempted. This analysis can be performed by introducing

the ODEs for Az as well as in the case of a:

dAx — AAw,
dTI
—KfX1 —K X0 Kb (A.12)
A= | —KZ1 —K1 —KfZo Kb
KT K$To —Kp — K3

The eigenvalues of the Jacobian matrix are obtained as
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1
Ao zwof/—q+ \/q2+p3+wo§/—q— V@& +pP - za,

3
1
>\1zwlf/—q+\/q2+p3+w2{’/—q—\/q2+p3—§a, (A.13)
1
A2 =w2\3/—q+ \/q2+p3+w1{’/—q— V@ +p - za,
where wg = 1,w; = %,wg = %,q: %c— %ab+2i7a3, and p = %b—%aQ. a,

b, and c are given by

a = K1 + l@f(f‘l —f—jg),
b= [/ﬁ—F/ﬁf(fl +Ez)]/€3+/€15b+/€1/€fil, (A.14)
C = K1K3.

A matrix P = (po p1 p2), formed by each eigenvector is introduced. By putting Az =
Py, Eq. (A.12) is transformed to a linear differential equation of y = (yo,y1,%2)T as

d M 0 O

i 0 0 X
The relaxation time of the perturbation Az for the steady state of Eq.(A.12) is
estimated as 0(_/\_10> from this result.

A.2 The ODEs with 1y

The ODEs with 7y (Eq. (3.29)) neglecting O(ef; 1) terms are expressed as

dX K3k

dTI(\)/l = —{l+em| ; H(2Zr - Z1) = koo, — emwr-ank,vr(vd,)?
T

K K_
+Z—4(ZT ~ Z)(Rr — Xo)) — X012,

A B R4 ! f k-4

— = —kst1+—Z7—Z1))(RT — X —— X012,

i K5 1+ZT( T — Z1)(Rr — Xo1 + em, vy, ) Ry 0141

(A.16)
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B.1 The case that hole transfer from Y; to RC is taken into

account
B.1.1 ODEs with dimensionless time

The equations which have O(1) terms in ODEs with 77 are

( % = —K:t j{?;Yo W17+ RWtXVV—fF)(X1 + Y1)+ O(ern),
d_TI = —ntR—TW1 + K/—tW_,(;Xl + 0(817]1),
Cii)ill = Rt ﬁ—ng — R—tx_gXl + 0(61’11), (B 1)
% = —Ii_tRLOTW1 + K_¢ %—i}ﬁ + 0(617]1), '
% = Kt RLOTWl — R—tg{v/_gyl + 0(517[[),

(Wo = Wp - W1

The equations which have O(1) terms in ODEs with 7 are
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((dV1
drn

dU;
drn

drg
dXs
dT
v,
drg

dry
v,
drg
dXs

d
angr

d’T]g

dT]g

dT]g

\ d7

dX01

Wr—Dw, v

ruUip(Wh | Un) Y514 — Wy

Xo+X4+Y2+4Y,
—(kp + Kq + Hc% + ,ti_g)Vh

T

Vo=V WT—FW
—kuUip(Wi | Ur) 2 + k= VA
Xo+X4+Yo+Y,
_("{F'f‘f{/d‘f’ffc o+ }1%—; 2+Ys +HqQ;)U1

—k{Up(Xy | Ur) — k§UIp(Y1 | Uh) + k21 Xo + 691 Yo + O(en,v),
= (k21 + ) X2 — &QUp(Xy | Un) + KU X+ O(enm),

— (kg + K2y + Ko + wn ) Xo + £3UIp(X1 | U1) + Olenm),

koXo 4+ O(enm), (B.2)
K1 Ys + ko X3 — k{U1p(Y1 | Ur) + Olenm),

(K21 + i+ A2 + KUY | U1) + Oenm),

—ko X3+ O(enm),

Fie Xo — K X5,

= kXS — kDX

kYo — Kga Yo,

tr ntry tr
= kYo" — KETY .

The equations which have O(1) terms in ODEs with 7y are

(

\

dXo1

dmm

dYy

d7mm

dXy

d7Tm

dYo1

drm

dTh

dmm

dTy

d7mm

dYs

dmm

= FLSTO Xy — K37 X01 + O(em,v),

= —/<03T0 Yi+ k- 3T1 Yo1 + O(em,v),

= —K3 TO Xg+ k- 3T1 Xo1 + O(em,v),

= /isTO Yy — kg7 Yo + 0(6111 V) (B.3)
= K3 To (Y, 4+ Xy) — kg 2L 7= (Xo + Yo + Y3) + Olem,w),

= —rg7e (Ya + X4) + hog gt (Xo + Yo + Y3) + Olemw),

= —m_g%Yg + O(enm) + O(em ).

The ODEs with v neglecting O(em,v) and O(eqm) terms are expressed by the

coarse-graining functions as



B.1 The case that hole transfer from Y;’ to RC is taken into account 115
( (ﬁ—?v = —k975, Tx, + (1 =k, +r8)Ty, + Z?:o /‘fz*,z'g—;rn + ko,aT'S4,
Cgf—f\’;‘ = -7, Tx, + (1 =7, + w50y, + %;42211/04 — (k—a1Z1 + K—4222))1§—‘)T4,
% = R41 5—25/()4 - /<&—41)1§—?;‘Z1 - /<642§—;Y04 + H—42)§—‘¥‘Z27
% = /‘f42§—;Y04 - 143—42)1;—(;422 - Fészz% + %—520%,
i = hsZage — KesZogs — ReQ,
% = Ki—1%,i—1 é—;lFTl - m*,ig—;FTI,
d;;i; = K3x,3 g—iFTl — K4,3+1'S3 + K34.4T'S4,
U5 — 5y 3.TS5 — (K3« + k0,4)T S,
You = Rr — Xog,
Zo =2t — Z1 — 2o,
Qo =Qr—Qr,
Tor =Ty —TS; —TS,,
(So  =Sr—30 S —TS; TS,
(B.4)
B.1.2 Coarse-graining functions
The coarse-graining functions which hold for 71 — oo are
v, (Xo1, Yo1,Ys, Tp) = v, + vl :
KU + KF + K4 + Kc + KQ
(B.5)

KF + Kp + Kp + Kp + K¢ + KQ

I'v, (Xo1, Yo1, Y, Tp) =

bl
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FXQ(X017Y()17Y37Y47T07T17Z()aZl) — [’{?FXl + 1/4

T Y-
+enmK—3 L (k—2Yy + (k4120 + %4221)—3 )}
TT ZT

x v, [1 — enmvk, (To/Tr)],
K_3 T1
KSy + ke + R Tr

FYQ (X017Y017Y33Y47T03T1) = (651,11\/ 3

€
kS + mtlr + wind FYl)
x (1 —enmy,),
I'x, (Xo1, Y01, Y3, Ya, To, T, Zo, Z1) = |:Y071 + enm(To/Tr)Tx, + (ka1 Zo + ,{4221)%]
x (1 —enmr—3T1/Tr),

Rtr

FXEY - Ktr FX?’
02
Rtr
Fx(t)r — _ntr FXZ’
Ko
Rtr
FYQtr = Htr FY2’
02
Rtr
FYOtr — _ntr FYQ,
Ko
Rix i Si
Prs; = ==Lt
Ri+1,i% OT

(B.6)

Here, light excitation rate at core antenna, vy, = v(Wp + Ryp)/(Vp + Wp +
Rr) = v(Nc¢ + 1)/(Np + Nc¢ + 1), light excitation rate at peripheral an-
tenna, vy, = v(Vp)/(Vo + Wp + Ry) = vNp/(Np + Nc + 1), effective rate

of photochemical quenching via charge separation at open RC in core antenna,

Kp = /“3(1)7&2]7()(1 | Uy), effective rate of photochemical quenching via charge
separation at closed RC in core antenna, k§ = rivi, p(Y1 | Uy), effective rate

of non-photochemical quenching via non-radiative pathway in core antenna,
kp = ka + &Y%, (X1 | Ur) + k95, p(Y1 | Ur) + suri, p(Wr | Un), rate of Py,-
quenching, ke = ke(X4+Ys)/Rr, and rate of PQ-quenching, kg = kqQo/Q, are in-
troduced. Besides, v, = ko/(k2+K% +ru+rnd), 7%, = K21 /(K2 +K2 +hp+r0D),
1%, = (e + o)/ (ko + K2y + ke + R, 7y, = emmra(To/Tr)/ (kS + e + Kir),
W = (R + D)/ (S0 + e+ m), W, = wu/(ku + KF + Ka + ko + kq) and
vy, = (kF + Ka + ke + £Q)/(Ku + KF + K4 + ko + KqQ) are introduced, where 7%,

7P and ¢ indicate the ratios of forward, backward and dissipation outflows to total
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outflow from x state, respectively. The coarse-graining functions of I'yy,, I'x, and

I'y, are defined by factoring out ep v as

11_1111 Xi(mn) = en,vl'x, (Xo1, You, Ya, 1) = en,vl'v, p( X1 | U),

T oo

T&i_lf)rlooiﬁ(m) = en,vly, (Xo1, Yo1, Y, To) = en,wlo,p(Ya | Uh), (B.7)
T}}gﬂoo Wi(mn) = en,vl'w, (Xo1, Yo1, Ya, To) = en,v Lo, p(W1 | Uy).

The coarse-graining functions which hold for 7y — oo are

I'ry

K3t
Iy, (E, Xoa, Yos, To1, Zo, Z1) = %[K_g B €H,mm%] +enw MlZQZJrTMng
Iy, (E, Xoa, You, Tor) =p(Ya | You)You,
I'x, (E, Xos, You, To1) =p(X4 | Xoa)Xoa,
ksH + k_sE + (ks — k_3)T01
2(ks — K_3)

% {1 + 1— 4(/‘%3 — l‘i_g)ligT()lH }
(k3H + Kk_3E + (k3 — k—3)T01]?

Here, the ratio of oxidized special pair is expressed as p(Yy | Yo4) = p(Xy | Xos) =

FYl ’

Ir, (E, Xo4, You,T01) =

(B.8)

k_3l'p /[ks(Tor — ') + k—3'py]. With respect to I'r,, the form which vanishes with
the initial value, H = 0, i.e., the case of — out of £, is employed. Incidentally, if

H < 1, the relation FTl = K3T01H/[I£3H + I-€73E + (Iig - H,3)T01] holds and thus
I'p, =0if H=0.

B.2 The case that hole transfer from Y%‘ to RC is neglected
B.2.1 ODEs with dimensionless time

The equations which have O(1) terms in ODEs with 7y are

S5 il D, 4B+ O + Olen).

% = w375, Tx, — fﬁgg—;n +O0(emw) + Olen,m), (B.9)
?lfn;l = —/{3%)(4 + O(EDI,IV) + 0(51[7[[[);

%311 = ’%31’1:_2}/4 + 0(5111,1\/) + 0(5]]7]]])

B.2.2 Coarse-graining functions in the case of v € Ay

The coarse-graining functions which hold for 7 — oo are
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I'x,
I'x, (Xo1, Yo1, Z1, Z2) ’ﬁ%@T /T

To

I —eq 1117)(2 T

S (B.10)
K K
B 5[[[,1\/[ 41 OZT 221 L k(1= 75(2)] }7

ka14o + Kao Z1

Ux,(Xo1,Yo1, Z1, Zo) =rS~%. T
x,(Xo1, Yo1, Z1, Z2) K17x,1 X1 Zr(To /Tr)?

B.2.3 Coarse-graining functions in the case of v € A

The coarse-graining functions which hold for 7y — oo are

v, + vk, + K27, Ya
KF + KD + KD + Kp + Ko + kQ + Kz
Ly, p(X1 | Ur),
Ly, p(Yr | Uy),
(1

'y, (Xo1, Y01, Ya

( ) =
I'x, (Xo1, Yo1, Y1)
'y, (Xo1, Yo1, Ya)
( )
( )

f o f f
I'x, (Xo1, Yo1, Yy —enmYx, )k 1 Vx, ' x, +emvyx, Ya,

I'y, (Xo1, Yo1, Y

|
'1
=

€ T Y-
I'x,(Xo1,Yo1,Ya,Ys,21,25), = [Ym 4 =L —OFX2 + (%4120 + /f4221> Zﬂ

(B.11)

where kp, k%, kKD, ko and kq are the same as those in Appendix B.1.2. k7 is £, (Th+
TS5%)/Tr.

The coarse-graining functions which hold for 7y — oo are

[ka + KS (L, + WQ)]YM + (ka + KUY )R—¢ R

“17X2 (vu, + VVﬁvl)
Ka14o + Kao Z1

FX(H (Y()la T07 207 Zl)

Yo1,
ZZT p (B.12)
K + K
I'y, Yo1, To, Zo, Z1) = 41Z’I(‘)TO/;T2 L Yor,
K41 20 + Kao 21\ 2
FX4(Y017T07207Z1) :( 412’1(‘JT()/;T2 1) Yo1.

B.2.4 The initial value at 7rv = 0 in TSTM in the case of v € A

Equation B.9 suggests that Xo1 + Yy + X4 + Yj1 is a quasi-conserved quantity at

Tm scale. Consequently, a relation, (emvIor + emwly, + 521117NFX4 + Yo1)ry=0 =
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(Xo1 + Yy + X4 + Yo1)i=0
= (), holds at v = 0, where C is a constant. Arranging this equation by considering

up to O(em 1v) terms, the initial value of Yy at 7y = 0 in eq 4.12a is given as

C
Y T = O = —
01( N ) 1+e¢ Ka1Zo+Ka2 21 [(Hd+HU’y§<2)R*tRT + ﬁ]
V=" Zn eV To (B.13)
ka1 20 + KaoZy [ (K + kuvl, )E—¢Rr T
20{1—51]1,1v [ — +—”
Zr K9V, V T
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C.1 Coarse-graining functions of PS |

The coarse-graining functions I'’s of the states of PS I are expressed as below:

lim Xlea(mm) = emvIl xre,,
T — 00

I'xre, = {’QQV;(I;;A (FXI62A + 7{(154FXI52A) + K207§(133 (FXIGZB + 7§(154FX15213>

+ kg X1e5 + 5]]1,IV’V§(154 ”BFYIO/YITFGM}

[ (a4 Kosrys + Fo307%rs, + 736(154“—143)7

lim XIss(tm) =emvlxrs,,
TIm — 00

) f
r K2Yx 134 L XIsoa + K20Yx 1,5 T X 1505 T 6—aBU X160, T emvEprY Lo/ Y ITD x 145,
X154 — d d )
KAB + K-3Yx1,, T K-30YX1sp

lim XIG54(T]]1) = 5]]I,IVPX16547
T — 00

f f
K2V X154 X Io50a + K20V X 1535 I'X Iss0n

d d
K3Yx15, T H30VX 145

FXIG54

)

where 7-{(154 = mAB/(/f_gfy;lUSA + /a_goﬂy_‘)lHSB + kap) is introduced.
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lim XI50(TI[[)

T — 00

lim XIGO (7'[[[)

Tm — 00

lim X 534(7m)

T — 00

FXISBa
hm XI@ga(T]]])
T — 00

FXIssa
lim XI53b(7']]])
TIm — 00

FX[53b
lirn XI63b(T]]1)
T — OO

FXI63b

lim X1653a(7']]l)
TIm — 00

I'x6534

hm XI653b (7'[[[)

I — 00
I x6530
hm XI540 (TI[[)
T — 00
I‘)(1'540

lim XI640 (T]]])

T — o0

FXIG40

R_AB
KAB + K—AB
Ixrs,

RAB
KAB + K_AB
Ix140,

X I50/60

X TI50/60

em vl X155,

kol'x 100 + k-3 x1,,
K3 + K1p
em, vl X145, 5

Y

Kol X100 + k-3 x14,
K3 + K1p
em, vl x 154, 5

)

kool'x 1505 + K—30'x1,,
K3o + K1p
em, vl X 144

Y

K20l X 150 + U'x160 + K—301 X144
K3o + Kip
em, vl X 1455, »

KQFX1652A + ’{*3FXI654
K3 + KAB
em, vl X 1553,

Y

K20l X 15505 T =301 X I654

K30 + KAB
em, vl X150,
krXIes40Y 1o/ Y I
kapka/(ks + k_aB)’
em, v X 16405

b

KAB

——I'xg
540 °
Ka+ K_AB

C.2  The definition of Igyg signal

The Igog signal is calculated by the following equation [58]:

Igo0(t) = 10

(Aper (D+A 4 (8)
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where

C
Apet+(t) =d X ¢ X epet+ X ity
Cr
N — g X156 + X1z + Xlgs + Xlgsa
P;Bo( ) =d x CXEpt X XIn .

(C.4)
A

Here, d, ¢, ep.+ and Epy, are the path length (0.01 c¢m), the molar concentration
of PS T (5.79 x 10~% M), the paticular molar extinction coefficients for Pc™ (1590
M~!tem™1) and Py, (10,300 M~!em™1) [107], respectively.
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