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Chapter 1

General Introduction

In living organisms, temporally and spatially multi-scale chemical reactions occur

in a systematic way. Photosynthesis, the system of which has been constructed via

plenty of evolution processes over a long time, provides a typical example of such a

multi-scale reaction system. To adapt to changeable environmental conditions such

as light, temperature and humidity, photosynthetic reaction systems have a variety of

mechanisms for progressing reactions stably at each scale of protein, organelle, cell,

tissue and whole body [1]. For example, chlorophyll a fluorescence induction, which

exhibits responses to environmental changes of light, is well known as a phenomenon

that represents a multi-time-scale property of photosynthetic reactions [2]. This phe-

nomenon is observed when a photosynthetic organism that has been acclimated to

the dark beforehand is continuously illuminated with a constant light intensity; it

then shows a transient process of progressing reactions stably under the given light

condition [3]. The notable properties of this phenomenon reflect multi-time-scale char-

acteristics and different time-course patterns of fluorescence intensity with respect to

different light conditions [2]. Experimentally observed time-course patterns are classi-

fied into fast change patterns (microsecond - second) and slow change patterns (second

- hour). Besides, very fast processes are also involved concerning excitation-energy

and electron transfer processes (∼ picosecond) [4–7], though they are not apparent

in the characteristic time scale of the induction phenomenon. This induction phe-

nomenon has been theoretically studied on the basis of several mathematical models

of photosynthetic reaction systems at various time scales [8–19]. Although many stud-

ies have been performed to elucidate this issue, a full understanding and consensus

about the meaning of these time-course patterns and the detailed mechanisms have

not yet been achieved [3, 20].
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In Chapter 2, I shortly review previous studies about fluorescence induction phe-

nomena and some theoretical studies concerning this topic. There remain some prob-

lems for constructing a better mathematical model of photosynthetic reaction systems.

Several detailed studies about the components of photosynthetic reaction processes

have been already conducted [21–25]. Thus, the construction of a mathematical model

based on microscopic structural information, which is obtained, for example, by X-

ray crystal structural analysis, can be achieved. However, a more detailed model

description makes it more difficult to understand the dynamic behavior of the whole

system intuitively because it makes the objects too complex [10]. Furthermore, such

a precise description would lead to an intractably higher calculation cost, because the

fast-time-scale processes have to be analyzed for the calculation of a multi-time-scale

mathematical model even if one is concerned with slower-time-scale dynamics [26].

To overcome these problems, I propose a hierarchical reduction scheme to cope with

coupled rate equations that describe the dynamics of multi-time-scale photosynthetic

reactions in Chapter 3. To numerically solve nonlinear dynamical equations contain-

ing a wide temporal range of rate constants, I first study a prototypical three-variable

model. Using a separation of the time scale of rate constants combined with iden-

tified slow variables as (quasi-)conserved quantities in the fast process, I achieve a

coarse-graining of the dynamical equations reduced to those at a slower time scale.

By iteratively employing this reduction method, the coarse-graining of broadly multi-

scale dynamical equations can be performed in a hierarchical manner. I then apply

this scheme to the reaction dynamics analysis of a simplified model for an illuminated

photosystem II, which involves many processes of electron and excitation-energy trans-

fers with a wide range of rate constants. I thus confirm a good agreement between

the coarse-grained and fully (finely) integrated results for the population dynamics.

In Chapter 4, an extensive kinetic model of photosystem II (PS II) combined with

oxygen-evolving complex (OEC) and light-harvesting chlorophyll-protein complex II

(LHC II) is analyzed through the use of the hierarchical coarse-graining method pro-

posed in Chapter 3. PS II is a protein complex which evolves oxygen and drives

charge separation for photosynthesis employing electron and excitation-energy trans-

fer processes over a wide time scale range from picoseconds to milliseconds. While the

fluorescence emitted by the antenna pigments of this complex is known as an impor-

tant indicator of the activity of photosynthesis, its interpretation was difficult because

of the complexity of PS II. In this coarse-grained analysis, the reaction center (RC) is

described by two states, open and closed RCs, both of which consist of oxidized and
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neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at

millisecond scale with three-state RC, which was studied previously, could be derived

by suitably adjusting the kinetic parameters of electron transfer between tyrosine and

RC. Our novel coarse-grained model of PS II can appropriately explain the light-

intensity dependent change of the characteristic patterns of fluorescence induction

kinetics from O-J-I-P to O-J-D-I-P.

In Chapter 5, the coarse-graining method is applied to the model of PS I under

continuous light. The coarse-grained model describes the RC by seven variable states,

though the original model describes the RC by 28 states. Based on the derived

model, I820 curve, which reflects the accumulations of P+
700 and Pc+, is simulated

and analyzed. With respect to this signal curve, it is revealed that the increase

up to the inflection point at 10−3 s, the increase from that point to the peak at 2

× 10−2 s, and the decay after that peak reflect the accumulations of P700, Pc+ and

P700F
−
AF

−
B , respectively. Besides, the important role of the charge recombination

processes from P+
700A

−
1A and P+

700A
−
1A states for the dissipation of the extra absorbed

energy in photosynthetic induction time is confirmed.

In Chapter 6, I summarize the present works and discuss the remaining problems

and the future perspective.
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Chapter 2

Background

2.1 Processes of photosynthesis

Photosynthesis is one of the most important reaction on the Earth. Almost all

working of the living things consumes the energy of the sun light caught by this re-

action. Over a long period of time, the mechanism of this reaction has been studied.

In the early 19th century, chloroplast, that is the organelle in which all reaction of

photosynthesis occur, was discovered. In the early 20th century, it were revealed that

photosynthesis reaction is composed of light-dependent reactions and temperature-

dependent reactions, later called as “light reaction” and “dark reaction”, respectively.

With respect to “dark reaction”, Calvin determined the reductive pentose phosphate

cycle (Calvin-Benson cycle) in 1956. For “light reaction”, Emerson revealed that two

photosystems work in tandem in 1957. Light reaction occurs at thylakoid membrane

(Fig. 2.1). In this membrane, there is cytochrome b6/f protein complex in addition

to photosystem I and photosystem II. Electron transfers linearly over the pigments

located in series on these membrane binding complexes. In the late 20th, technolog-

ical development made it possible to determine the structure of components of this

reaction at atomic level. In 2001, The structure of Photosystem II and Photosystem

I were revealed by x-ray crystal structural analysis. Although the static structure of

photosynthesis has thus been revealed, the dynamic property of this phenomena has

hardly been elucidated. To understand such a property, systems approach provides

one of the useful tools.
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Figure 2.1 Electron transfer reaction processes on thylakoid membrane in chloroplast.

2.2 Fluorescence induction

Understanding the dynamic property is important to understand the mechanism

of regulation of photosynthesis such as environmental response [27]. With respect to

the light environment response of photosynthesis, chlorophyll a fluorescence induction

phenomena (FI) is well known [28]. This phenomenon was first observed by Kautsky in

1931. In early days, the intensity of fluorescence emitted by chlorophyll was regarded

as reflecting the amount of excitons which are not used by photochemical reaction.

This phenomenon is observed when the photosynthetic organisms adapted to dark

beforehand are illuminated with continuous light. On the one hand, fluorescence

intensity rapidly increases after the illumination and then decreases to the lower steady

intensity; on the other hand, the rate of CO2 assimilation gradually increases to the

steady rate. These behaviors show the inverse correlation. With the experimental

improvement of resolution in time, it has been revealed that FI shows various time-
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course patterns depending on the light intensity. The patterns are often separated into

fast-change pattern and slow-change pattern based on the timescale of each pattern

[23]. The former and latter indicate the patterns over millisecond to second range

and over second to minute range, respectively. To explain the complex behavior of

FI, various quenchers of fluorescence (i.e., the components which reduce the intensity

of fluorescence) have been detected and proposed.

2.2.1 Quantum efficiency

The fluorescence intensity is widely observed as the indicator of photosynthesis

activity in terms of fluorometry. The intensity of fluorescence is interpreted by use of

the formula as follows [29]:

Ft = Vin · ΦF(t),

ΦF(t) =
kF

kF + kP(t) + kH(t)
,

where Ft, Vin, and ΦF(t) are photon flux density of fluorescence, photon flux density of

incident light and quantum efficiency of fluorescence, respectively. Quantum efficiency

of fluorescence indicates the probability that the exciton created by illumination is

emitted as fluorescence. kF, kP(t) and kH(t) are the rate constants of fluorescence

emission, photochemical reaction and heat dissipation of excited energy in antenna

chlorophyll, respectively. The rates of photochemistry and heat dissipation change

with time following the proceeding of reaction. Photochemical and heat dissipation

rates are determined by the states of electron transfer chain and those of quenchers,

respectively.

The losses of energy via heat dissipation are caused by the light-induced path and

the non-light-induced path [30]. The former of these paths is particularly called as

non-photochemical quenching (NPQ). NPQ is regarded as the key factor that governs

the slow-change patterns of FI, and the non-light-induced heat dissipation paths are

considered to determine the fast-change patterns of FI [31].

2.2.2 Quenchers of Chl a fluorescence

A variety of factors have been proposed as the quencher of Chl a fluorescence.

Among these quenchers, the typical ones that are not induced by light are as follows:
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• P+
680 quenching shows similar efficiency to photochemical quenching [32].

• P680 triplet which survives as long as some hundred micro seconds is regarded

as a quencher [33].

• Carotene triplet plays a role of quencher under very high intensity light [34].

• The oxidized state of plastoquinone-pool (PQ-pool) plays a role of quencher.

This effect is observed by comparing between the samples whose electron

transfer to PQ-pool is restricted by inhibitor, e.g. 3-(3,4-dichlorophenyl)-,1-

dimethylurea (DCMU), and those whose electron transfer is not restricted [35].

The light-induced quencher, NPQ, is classified into three categories: qE , qI and

qT [36]. qE is the NPQ that depends on the processes for energy accumulation. This

qE is considered to be regulated by the pH of the lumen, which is the inside space

of the thylakoid membrane vesicle. The protonation of PsbS protein and the bind-

ing of zeaxanthin that is generated by the de-epoxidation of violaxanthin induce the

conformational changes of the antennae that account for the increases of thermal dis-

sipation of excited-energy [37]. qI is the NPQ that depends on the photo-inhibition.

This factor is considered to be related to processes such as repairing cycle of damaged

PS II [37]. qT is the NPQ that depends on the state transition which is the process

of LHA traveling for the purpose of regulating energy allocation between two photo-

systems, PS II and PS I [38]. The classification above is based on the difference of

relaxation time scales of fluorescence in dark. That is, the amount of absorbed light

for driving photosynthesis is regulated in various timescales.

These different NPQs have been analyzed based on the simulation of the dynamics

of the fluorescence transient at each different timescale [31]. However, the consistent

understanding of this phenomenon has not been achieved because of the complexity

and the hierarchical spatiotemporal property of the whole picture.

2.2.3 Characteristics of the patterns of FI

The patterns of FI are known to be different depending on the species and the

environmental condition [2]. The three parameters, oxygen evolving rate, CO2 uptake

rate and the difference of pH across the thylakoid membrane, i.e. the difference

between stroma and lumen, are correlated with the FI [3]. The characteristics of

these parameters in regard to the O-P-S-M-T pattern, which are observed in higher

plants, is as follows:
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• Oxygen evolving rate:

Oxygen evolving rate increases during O-I phase, then decreases until peak P.

After that, it increases again and reaches a plateau during MT phase.

• CO2 uptake rate:

The value of CO2 uptake rate remains zero during O-P-S pattern of FI. This

rate starts to increase in S-M phase and reaches a steady state at the end of

M-T phase.

• pH difference across the thylakoid membrane:

pH difference between stroma and lumen is considered to be in proportion to

the rate of electron transfer. This value has a negative correlation with FI, i.e.,

it decreases on P-S phase, increases in S-M phase, and decreases again in M-T

phase.

With respect to higher plants, the several-times repetition of S-M-T wave cycle

is observed under abnormal circumstance. Such cycle is regarded to come from the

transient restriction on the receiver of electron flux behind PS I. This sort of limit

is caused by the deficiency of supply of NADP+, phosphorus or oxygen, or excessive

supply of CO2.

parameter OI IP PS SM MT

O2 evolving rate ↗ ↘ ↗ ↗ becomes steady after transient plateau

CO2 uptake rate 0 0 0 ↗ ↗ and then becomes steady at the T point

∆ pH across thylakoid ↗ ↘ ↗

In general, the slow-change pattern of FI is more difficult to understand than the

fast-change pattern because more factors are involved .

2.3 Kinetic models of excitation-energy and electron transfer
processes

2.3.1 Principle

Electron and excited-energy transfer processes can be described by means of reac-

tion kinetics. In this treatment, the variables of the ordinary differential equations

are set as the states of electron of each pigment which construct the electron transfer
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D-

D

A-

A

……
kf

kb

donor acceptor

Figure 2.2 Diagram of electron transfer processes between donor and acceptor.

chain on thylakoid membrane. Change of each state is described to occur when elec-

tron or excited-energy transfer happens. For example, a charged electron acceptor is

created when an electron transfers from a charged electron donor to a neutral electron

acceptor occurs (Fig. 2.2 ). The rate of this transfer is described by the product of the

concentration of the charged donor and that of the neutral acceptor. The dynamics

of the change of the states of electron carriers evoked by electron transfer processes

are thus described as
d[D−]

dt
= −kf [D

−][A] + kb[D][A−] + · · · ,
d[A−]

dt
= kf [D

−][A]− kb[D][A−] + · · · ,
(2.1)

where the conservation relation holds:

[D−] + [D] = const,

[A−] + [A] = const.
(2.2)

Here, [D−] and [D] represent the concentrations of charged donor and neutral donor,
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respectively. [A−] and [A] represent the concentration of charged acceptor and neutral

acceptor, respectively. kf and kb are rate constants of forward and backward electron

transfer processes, respectively. In principle, the model of photosynthetic electron

transfer processes can be constructed by adding all the states of pigments on electron

transfer chain to the differential equations and connecting them by the electron or

excited-energy transfer processes.

2.3.2 Excited-energy transfer in lattice

Photoexcitation at antenna complex initiates photosynthesis. Once exciton that

is generated by photon absorption reaches the reaction center (RC), then electron

transfer is driven by charge separation. This excited-energy transport process at

antenna system is simply expressed by the use of a homogeneous lattice model [39,40].

kinetic model of trapping by RC

The exciton transport process at light harvesting antenna (LHA) lattice is repre-

sented by the master equation:

dpi

dt
= −klpi +

∑
j

(piWji − piWij)− δi,RCγpRC. (2.3)

Here, kl, Wij , γ and pi represent the rate of excited-energy loss at LHA, the hopping

rate from site i to site j, the rate of quenching at RC, and the population of exciton

at site i (the notation “RC” indicates reaction center site), respectively.

LHA-lattice is characterized by the space structure, site number N, dimension d and

coordination number z. This process is regarded as a random walk on lattice. The

characteristics of random walk on a variety of lattices are analyzed by Montroll [41,42].

With respect to the case that trap-site owing a quencher exists on lattice, Perlstein

developed the generalized theory for the lifetime of a random walker [43].

Average life-time approach

In 1982, Perlstein analyzed the lifetime of the exciton on LHA based on a model of

the lattice with trap site [43]. The lifetime is given by the zeroth moment M0 of the

total exciton population on lattice.

M0 =

∫ ∞

0

(N−1∑
n=0

ρn(t)

)
dt. (2.4)
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RC
WT

WD

Wh
γ RC

τFP (First Passage time)

τQ (Quenching time)

Figure 2.3 Excited-energy transfer processes in a lattice model.

This depends on the initial value of the population of the exciton on lattice. In the

condition where the exciton transport is restricted to the nearest-neighbor and the

initial values are set as ρ0 = ρRC and ρi ̸=0 = (1− ρRC)/N , M0 is expressed as

M0 =
WT +WD(N − 1)

WT

1

γ
+ (1− ρRC)

(
N − 1

z

(
1

WT
− 1

Wh

)
+

N2

N − 1
hd(N)

1

Wh

)
= τQ + (1− ρRC)(τT + τmig) = τQ + (1− ρRC)τFP ,

(2.5)

where WT , WD and Wh represents the rate constant for trapping to RC from its

neighbors, detrapping from RC, and hopping between others, respectively. Here, τFP

is the “first passage time”, i.e. the average time taken for an exciton generated at

LHA to arrive at RC, and τQ is the “all revisiting time”, i.e. the average time taken

to be quenched after arriving RC. These ideas are described in Fig. 2.3. On the one

hand, this process is “trap-limited” if multi-revisiting occurs, but on the other hand,

it is “diffusion-limited” if revisiting hardly occurs.
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τFP can be decomposed into the time taken to arrive at the site next to RC, τmig,

and that taken from RC neighbor site to the RC, τT .

τQ =
WT +WD(N − 1)

WT

1

γ
,

τT =
N − 1

z

(
1

WT
− 1

Wh

)
,

τmig =
N2

N − 1
hd(N)

1

Wh
,

(2.6)

where τmig depends on the function hd(N) of the geometrical structure of lattice. M0

is linearly dependent on the initial value (1－ρRC).

Perturbed two-level model

If the size of antenna system is small, the time taken for the exciton transfer inside

of the LHA to reach the equilibrium is much shorter than that taken to be quenched

at RC. In this case, the antenna system can be regarded as a super-molecular complex

by the assumption that the time taken for the exciton migration inside the LHA is

infinitesimally short: Wh = 0 as the first approximation. If the exciton transport

inside of the LHA is restricted to nearest-neighbor, the rate between RC and LHA is

represented as

W̄T =
1

N − 1

N−1∑
n=1

W0n =
zWT

N − 1
,

W̄D =

N−1∑
n=1

= zWD.

(2.7)

Then the rate τ+ for the equilibrium and τ− for the decay of excited-energy are

Expressed, respectively, as

λ± = −γ + W̄T + W̄D ±
√
(γ + W̄T + W̄D)2 − 4γW̄T

2
. (2.8)

In the case that the time for the migration inside the LHA is finite, the effect of the

migration time is evaluated by expanding the lifetime of the exciton by the hopping

time Wh [44].
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Chapter 3

Hierarchical Coarse-Graining Method
for Photosystem II

3.1 Introduction

I here propose a method for reducing the ordinary differential equations (ODEs)

of a reaction network including both fast and slow time-scale processes to those in-

cluding only slow time-scale processes for the purpose of constructing the reliable

phenomenological model of photosynthesis. This new method makes it possible to

algebraically calculate the fast time-scale variables in a precise way, to evaluate the

order of magnitude of the flux of each fast time-scale process, and to reduce a complex

model including multi-time-scale processes to a simpler one only including slow time-

scale processes. Consequently, an answer to the question of what processes govern

the asymptotic behavior of an complex system at concerned time scale is given as a

reduced model through application of time-coarse-graining scheme. If there exists a

simple structure in a biological reaction network system including various intertwined

multi-scale processes, the identification of the simple structure at each scale would

imply the achievement of a deep understanding of the pertinent system. I would

like to discuss a method of systematically reducing an complex model of a biologi-

cal reaction system to such a simple one that emerges as a result of the interactions

among the multi-scale layers, while finding such a phenomenological structure has

often been attempted by intuition. The effect of this scheme for reducing the cost of

understanding and computation will also be addressed.

In this chapter, I first present a reduction method for coarse-graining in time,

which makes it possible to reduce a complex kinetic model to a simpler tractable
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one on the basis of a prototypical three-variable reaction system. Then, I confirm the

usefulness of this time-coarse-graining reduction method by applying it to a simplified

photosystem II (PS II) model, which has multi-time-scale processes. The multi-time-

scale coarse-graining reduction of the simplified PS II model can be achieved by

applying the time-coarse-graining reduction method iteratively. Thus, I can extract

the structure governed by dominant processes at each time-scale class from a model

system with multi-scale property in time.

3.2 Theory

In this section, a prototypical three-variable reaction model that has a multi-time-

scale property is discussed. This model is composed of reaction, inflow, and outflow

processes. The characteristics of this model are having a nonlinear reaction process,

fast reaction processes, and no fast inflow process (see Fig. 3.2). The characteristics

listed above are common with a variety of biological reactions such as photosynthetic

reactions. The effect of interactions between different time-scale reactions with each
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other is an interesting problem about these reaction systems. A theoretical way to

investigate such chain-like interactions is the analysis of ordinary differential equations

(ODEs) of the full model, which simultaneously describe all multi-time-scale reaction

processes in a system. However, there are some issues concerning this approach:

(1) An intuitive understanding of the behavior of the system becomes more difficult

as the number of components forming the system increases; (2) The computation

cost increases as a wider variety of different time scales are considered. In order to

overcome these difficulties, I study how to simplify and reduce such a complex multi-

time-scale system to a combination of effective mono-time-scale systems. A full model

for three time-dependent variables for the population, xi(t), which are analyzed in

this section, is presented as
dx0

dt = v0 − k0x0 + kbx2 − kfx1x0,
dx1

dt = v1 − k1x1 + kbx2 − kfx1x0,
dx2

dt = v2 − k2x2 − kbx2 + kfx1x0,

(3.1)

where v0, v1 and v2 represent the slow inflows into the system. Reaction rates kjs are

categorized into two groups according to their time scales. Two rate constants, kb and

k0, which satisfy 1/kb ≪ 1/k0 , are set as the characteristic rate constants for fast

and slow groups, respectively: AI =
{
kj

∣∣ O(kj) ∼ O(kb)
}

and AII =
{
kj

∣∣ O(kj) ∼
O(k0)

}
. kf and kb are fast rate constants of inner chemical reactions; k0, k1 and k2

are the rate constants of outflows. The property of the system dynamics thus depends

on the pattern of the time-scale-based classification of rate constants of outflows. I

discuss three typical cases of the time-scale based classification of these outflow rate

constants. The multi-time-scale property makes it possible to introduce dimensionless

time parameters at each time scale. The dimensionless times are then expressed in

terms of the characteristic rate constants at each time scale as τI = kbt and τII = k0t.

εI,II = k0/kb represents the ratio of two time scales, which is assumed to be small. κj

refers to dimensionless rate constants that are defined as each kj normalized by the

characteristic rate constants of time-scale groups to which each kj belongs:

κj =

{
kj/kb kj ∈ AI,

kj/k0 kj ∈ AII,
(3.2)

where κb = kb/kb = 1, κ0 = k0/k0 = 1 and all κjs are of the order of unity. vjs are

also normalized as νj = vj/k0.

Here, I present a scheme that shows how to reduce the original ODE systems with
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Figure 3.2 Three-variable reaction model. Blue circle: variable population, red
arrow: fast reaction path, black solid arrow: slow reaction path. Black dashed
arrow represents that the time scale of this path depends on the case.

time t, which have the characteristics addressed above, to the dimensionless ODE

systems having small degrees of freedom with time τII characterized by a slower rate

constant k0, as the following steps.

0. To make the original ODEs with time t dimensionless, and to yield ODEs with

τI → ∞: Dividing the original ODEs with t by the fast rate constant kb yields

the dimensionless ODEs for τI. Then, the dimensionless ODEs with τI → ∞
can be obtained.

1. Pseudo-steady-state approximation in the dimensionless ODEs with τI → ∞:

Suppose a system which is formed by reaction paths having O(1) rate in the

dimensionless ODEs with τI, and which is not affected by the reaction paths

having O(εI,II) rate. I then consider the following three cases.

（a）If the system constructed above in the fast process has no outflow or inflow

that allows interactions between the system and the environment, it is

called a quasi-isolated system. In this case, there exist quasi-conserved

quantities that change little with O(εI,II) at the τI scale. Provided that

the quasi-isolated system is in a quasi-equilibrium for τI → ∞, the system

is in quasi-equilibrium pseudo-steady state that changes with O(εI,II) rate.

Then, the fast variables which change at the τI scale can be represented by

a coarse-grained functions Γ′s of quasi-conserved quantities. These quasi-

conserved quantities will be used as variables in the next step.

（b）If the system constructed above is not quasi-isolated but has quasi-
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conserved quantities, the quasi-equilibrium pseudo-steady-state approxi-

mation is not be applicable. In this case, fast variables that linearly decay

with O(1) at τI scale are assumed to be in nonequilibrium pseudo-steady

state as τI → ∞. Then, the fast variables which change at the τI scale

can be represented by a coarse-grained functions Γ′s of quasi-conserved

quantities. These quasi-conserved quantities will be used as variables in

the next step.

（c）If the system constructed above is not a quasi-isolated system and does

not have any quasi-conserved quantity, fast variables that vary with O(1)

at the τI scale are assumed to be in nonequilibrium quasi-steady state as

τI → ∞. Then, the fast variables which linearly decay at the τI scale can

be represented by a coarse-grained functions Γ′s of slow variables. These

slow variables will be used in the next step.

2. Transformation of the ODEs with τI → ∞ to those with τII: Closed ODEs with

τI → ∞ that change by O(εI,II) at the τI scale can be obtained by the application

of step 1 to the ODEs with τI. Divided by εI,II, the ODEs with τI → ∞ can

be translated into those with τII. Thus, we can obtain the ODEs with τII that

change by O(1) at the τII scale. If one is interested only in the dynamics at the

τII scale, the O(εI,II) terms in the ODEs with τII can be neglected.

I deal with three cases in which the classification of k1 and k2 according to time

scales is different: (a) k0, k1, k2 ∈ AII; (b) k0, k2 ∈ AII, k1 ∈ AI; and (c) k0 ∈
AII, k1, k2 ∈ AI. Each case corresponds to the case that should be approximated by

(a), (b), and (c) in step 1, respectively, if the time-coarse-graining reduction method

is applied to each case. This will be presented in more detail below.

a. Case of k0, k1, k2 ∈ AII

To translate the ODEs with t to the dimensionless ODEs with τI, step 0 is applied.

We thus find 
dx0

dτI
= εI,IIν0 − εI,IIκ0x0 + κbx2 − κfx1x0,

dx1

dτI
= εI,IIν1 − εI,IIκ1x1 + κbx2 − κfx1x0,

dx2

dτI
= εI,IIν2 − εI,IIκ2x2 − κbx2 + κfx1x0.

(3.3)

Next, by applying step 1 (a) to the ODEs with τI, the quasi-equilibrium pseudo-
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steady-state approximation is performed. The quasi-conserved quantities at the τI

scale, x02 = x0(τI) + x2(τI) and x12 = x1(τI) + x2(τI), can be introduced. It is

assumed that the reactions inside the quasi-isolated system, which proceed in the τI

scale and consist of x0, x1 and x2, are in quasi-equilibrium pseudo-steady states for

τI → ∞: dx0/dτI = 0, dx1/dτI = 0, and dx2/dτI = 0. This approximation yields the

following equation:

x2 =
κf

κb
x1x0. (3.4)

Note that the processes of O(εI,II) at the τI scale are neglected in this treatment. By

constructing a quadratic equation for x0 by using Eq. (3.4) and the quasi-conserved

quantities x02 and x12, the solution to x0 is obtained uniquely because of x0 > 0. The

forms of coarse-grained functions Γ, which hold at τI → ∞ and represent x0, x1 and

x2 by the quasi-conserved quantities x02 and x12, are thus derived as

lim
τI→∞

x0(τI) = Γx0(x02, x12)

=

√
(κb + κfx12 − κfx02)2 + 4κfκbx02 − (κb + κfx12 − κfx02)

2κf
,

lim
τI→∞

x1(τI) = Γx1(x02, x12) =
x12

1 +
κf

κb
Γx0(x02, x12)

,

lim
τI→∞

x2(τI) = Γx2(x02, x12) = x02 − Γx0(x02, x12).

(3.5)

The ODEs with τI → ∞ composed of the quasi-conserved quantities are derived by

substituting these equations into Eq. (3.3). These ODEs change with the O(εI,II) rate

for τI → ∞.

Finally, step 2 is applied to the ODEs with τI → ∞ for the coarse-graining trans-

formation. That is, the ODEs are divided by εI,II. Thus, the transformation from the

ODEs with τI → ∞ to those with τII is achieved as{
dx02

dτII
= ν0 + ν2 − κ0Γx0(x02, x12)− κ2Γx2(x02, x12),

dx12

dτII
= ν1 + ν2 − κ1Γx1(x02, x12)− κ2Γx2(x02, x12).

(3.6)

With respect to the ODEs composed of the terms that have O(1) rates at the τI

scale, the relaxation time of the fast processes can be evaluated by the linear stability

analysis [45]. In this analysis, the system is assumed to be in steady state. The

solution x̄ = (x̄0, x̄1, x̄2)
T of the ODEs that are in the steady state is called an equi-

librium point. It is noted that x̄ is composed of non-negative values. The decay time
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of the τI-scale reactions can be evaluated by the linear stability analysis of the point

x̄ + ∆x, which is displaced from the equilibrium point by ∆x = (∆x0,∆x1,∆x2)
T.

The decay time can be analytically obtained by diagonalizing the Jacobian matrix for

the ODEs of ∆x. The diagonalization can be carried out by transforming ∆x to y

via ∆x = Py, where P = (p0,p1,p2); p0,p1 and p2 are eigenvectors of eigenvalues

λ1, λ2 and λ3 of the Jacobian matrix of ODEs of ∆x, respectively. As a result, the

decay time of the perturbation ∆x to the equilibrium point is evaluated as O(−1/λ2),

where λ2 is the slowest decay component of the eigenvalues (see Appendix A.1).

b. Case of k0, k2 ∈ AII, k1 ∈ AI

To translate the original ODEs with t to the dimensionless ODEs with τI, step 0 is

applied, leading to 
dx0

dτI
= εI,IIν0 − εI,IIκ0x0 + κbx2 − κfx1x0,

dx1

dτI
= εI,IIν1 − κ1x1 + κbx2 − κfx1x0,

dx2

dτI
= εI,IIν2 − εI,IIκ2x2 − κbx2 + κfx1x0.

(3.7)

With respect to the ODEs composed of the O(1) terms in Eq. (3.7), the relaxation

time of the reactions at the τI scale can be evaluated by the linear stability analysis

as well as through step 1 (a). The eigenvalues of Jacobian matrix of the ODEs for

perturbation ∆x around the equilibrium point can be obtained as

λ0 = 0, λ± =
−[κ1 + κb + κf (x̄0 + x̄1)]±

√
[κ1 + κb + κf (x̄0 + x̄1)]2 − 4κ1(κb + κf x̄1)

2
.

(3.8)

Thus, the slowest decay time of the ODEs with τI is evaluated as O(−1/λ+) (see

Appendix A.1).

Next, by applying step 1 (b) to the ODEs with τI, the nonequilibrium pseudo-

steady-state approximation is performed. The quasi-conserved quantity at the τI

scale, x02 = x0(τI) + x2(τI), can be introduced. It is then assumed that the reactions

about the variables that linearly decay with the O(1) rate at the τI scale are in the

nonequilibrium pseudo-steady states for τI → ∞: dx1/dτI = 0 and dx2/dτI = 0 under

the influence of the O(εI,II) terms. This approximation yields the following equations:
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x1 =
κbx2 + εI,IIν1
κ1 + κfx0

,

x2 =
κfx1x0 + εI,IIν2

κb + εI,IIκ2
.

(3.9)

Constructing the quadratic equation for x2 by using Eq. (3.9) and the quasi-conserved

quantity x02, the solution to x2 is obtained uniquely because of x2 > 0. By expanding

x2 with εI,II ≪ 1 and considering up to the first order of εI,II, the form of x2 can be

obtained as

x2 = εI,II
κfν1x02 + ν2(κ1 + κfx02)

κbκ1
+O(ε2I,II). (3.10)

The forms of coarse-grained functions Γ that hold at τI → ∞ and represent x1 and

x2 by the quasi-conserved quantity x02 are thus derived from Eqs. (3.9) and (3.10) as

lim
τI→∞

x1(τI) = εI,IIΓx1
(x02) +O(ε2I,II),

lim
τI→∞

x2(τI) = εI,IIΓx2(x02) +O(ε2I,II),
(3.11)

where

Γx1(x02) =
1

κ1 + κfx02

[
Γx2(x02) + ν1

]
,

Γx2(x02) =
κfν1x02 + ν2(κ1 + κfx02)

κbκ1
.

(3.12)

The closed ODEs with τI → ∞ composed of the quasi-conserved quantity are derived

by substituting these equations into Eq. (3.7). These ODEs change with the O(εI,II)

rate for τI → ∞.

Finally, step 2 is applied to the ODEs with τI → ∞ for the coarse-graining trans-

formation. That is, the ODEs are divided by εI,II. Thus, the transformation from the

ODEs with τI → ∞ to that with τII is achieved as

dx02

dτII
= ν0 + ν2 − κ0

[
x02 − εI,IIΓx2(x02)

]
− εI,IIκ2Γx2(x02). (3.13)

c. Case of k0 ∈ AII, k1, k2 ∈ AI

To translate the original ODEs with t to the dimensionless ODEs with τI, step 0 is

applied. We thus find
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
dx0

dτI
= εI,IIν0 − εI,IIκ0x0 + κbx2 − κfx1x0,

dx1

dτI
= εI,IIν1 − κ1x1 + κbx2 − κfx1x0,

dx2

dτI
= εI,IIν2 − κ2x2 − κbx2 + κfx1x0.

(3.14)

Concerning the ODEs composed of the O(1) terms in Eq. (3.14), the relaxation time

of the reactions at the τI scale can be evaluated by the linear stability analysis as well

as through step 1 (a). The eigenvalues of the Jacobian matrix of the ODEs for the

perturbation ∆x around the equilibrium point can be obtained as

λ0 = ω1
3

√
−q +

√
q2 + p3 + ω1

3

√
−q −

√
q2 + p3 − 1

3
a,

λ1 = ω2
3

√
−q +

√
q2 + p3 + ω3

3

√
−q −

√
q2 + p3 − 1

3
a,

λ2 = ω3
3

√
−q +

√
q2 + p3 + ω2

3

√
−q −

√
q2 + p3 − 1

3
a,

(3.15)

where ω1 = 1, ω2 = −1+i
√
3

2 , ω3 = −1−i
√
3

2 , q = 1
2c −

1
6ab +

1
27a

3, and p = 1
3b −

1
9a

2.

The details of a, b and c are described in Appendix A.1 Thus, the slowest decay time

of the ODEs with τI is evaluated as O(−1/λ0) (see Appendix A.1).

Next, by applying step 1 (c) to the ODEs with τI, the nonequilibrium pseudo-

steady-state approximation is performed. In this case, there is no quasi-conserved

quantity at the τI scale. It is assumed that the reactions of the variables that linearly

decay with the O(1) rate at τI scale are in the nonequilibrium pseudo-steady states

for τI → ∞; dx1/dτI = 0 and dx2/dτI = 0 are considered under the influence of the

O(εI,II) terms. This approximation yields the following equations:

x1 =
κbx2 + εI,IIν1
κ1 + κfx0

,

x2 =
κfx1x0 + εI,IIν2

κb + κ2
.

(3.16)

These equations can be arranged about x1 and x2 as

lim
τI→∞

x1(τI) = εI,IIΓx1(x0),

lim
τI→∞

x2(τI) = εI,IIΓx2(x0),

Γx1(x0) =
κbν2 + (κ2 + κb)ν1

(κ2 + κb)(κ1 + κfx0)− κbκfx0
,

Γx2(x0) =
κf

κ2 + κb

[
Γx1(x0)x0 +

ν2
κf

]
.

(3.17)
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The ODEs with τI → ∞ constructed by the slow variable are derived by substituting

these equations into Eq. (3.14). These ODEs change with the O(εI,II) rate for τI → ∞.

Finally, step 2 is applied to the ODEs with τI → ∞ for the coarse-graining trans-

formation. That is, the ODEs are divided by εI,II. Thus, the transformation from the

ODEs with τI → ∞ to that with τII is achieved as

dx0

dτII
= ν0 − κ0x0 + κbΓx2(x0)− κfΓx1(x0)x0. (3.18)

Note that, in the three cases above, derived coarse-grained ODEs have different

structures from each other depending on what processes are fast in the original model

system. Figure 3.3 shows the results for the dynamics of x0, which are computed on

the basis of the original ODEs with time t, the ODEs composed only of O(1) terms at

the τI scale, and the time-coarse-grained ODEs with τII in the case of (a), (b), and (c)

above, respectively. The parameter values were set as k0 = 1, k1 = 1 or 1000, k2 = 2

or 2000, kf = 3000, kb = 1000, v0 = 2, v1 = 1, and v2 = 3. The results of both the

ODEs composed only of O(1) terms at the τI scale and the time-coarse-grained ODEs

with τII agree well with those of the original ODEs with time t at the fast and slow

time scales, respectively. With respect to the original ODEs, the decay processes at

the τI scale are represented by the former, and the slow processes at the τII scale are

represented by the latter. These results show a clear separation of time scales τI and

τII. The relaxation time to the pseudo-steady state at the τI scale can be evaluated

through the linear stability analysis. The relaxation times in the (a), (b), and (c) cases

are estimated as 1.9 × 10−4, 7.9 × 10−3, and 4.1 × 10−3, respectively, by the linear

stability analysis. The evaluated relaxation times are consistent with the calculated

results of the ODEs composed only of O(1) terms at the τI scale. The relaxation times

of the computed results do not depend on the initial values, where those of x0, x1,

and x2 are searched for the range between 0 and 2 under the constraint as x02 = 2

and x12 = 1 in the case (a) and x02 = 2 in the case (b).

3.3 Application to a simplified model for PS II

In this section, we investigate the usefulness of the time-coarse-graining scheme

shown in the preceding section for the reduction of a system that has a multi-scale

property in time. For such a system, I employ photosystem II (PS II) emitting

Chlorophyll a fluorescence [29], which is often detected as an environmental response
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Figure 3.3 Calculated dynamics of x0 in the cases of a, b and c. Grey line:
the full ODE results with t (Eqs. (3.3), (3.7) and (3.14)), red squares: the ODE
results with τI (Eqs. (A.1), (A.7) and (A.11)) and blue squares: the ODE results
with τII (Eqs. (3.6), (3.13), and (3.18)). Initial values are set as x0 = 1, x1

= 0, and x2 = 1. Parameters are set as k0 = 1, k1 = 1 or 1000, k2 = 2 or
2000, kf = 3000, kb = 1000, v0 = 2, v1 = 1, and v2 = 3.
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of photosynthesis. Time-coarse-graining is applied to a simplified model of PS II,

which simply describes the processes of excitation-energy and electron transfers in PS

II, as illustrated in Fig. 3.4. Four different time scales coexist in the reactions of this

model. The ODEs with time t are then given by



dW1(t)

dt
=

W0

WT
vI − kdW1 −

kt
RT

(X0 + Y0)W1 +
k−t

WT
W0(X1 + Y1),

dX0(t)

dt
= − kt

RT
X0W1 +

k−t

WT
W0X1 + kdX1 + k3X4,

+
k4
ZT

Z0Y0 −
k−4

RT
X0Z1,

dX1(t)

dt
=

kt
RT

X0W1 −
k−t

WT
W0X1 − k1X1 + k−1X2 − kdX1,

dX2(t)

dt
= k1X1 − (k2 + k−1)X2 + k−2X3,

dX3(t)

dt
= k2X2 − (k3 +

k4
ZT

Z0 + k−2)X3 +
k−4

RT
X4Z1,

dX4(t)

dt
= −k3X4 −

k−4

RT
X4Z1 +

k4
ZT

Z0X3,

dY0(t)

dt
= − kt

RT
Y0W1 +

k−t

WT
W0Y1 + kdY1 + k3X3,

− k4
ZT

Z0Y0 +
k−4

RT
X0Z1,

dY1(t)

dt
=

kt
RT

Y0W1 −
k−t

WT
W0Y1 − kdY1,

dZ1(t)

dt
= −k5Z1 +

k4
ZT

Z0(Y0 +X3)−
k−4

RT
(X0 +X4)Z1,

W0(t) = WT −W1,

Z0(t) = ZT − Z1,

(3.19)

where W,X, Y and Z represent the concentrations of different states of the core an-

tenna, the reaction center (the special pair, the first and second electron acceptor) and

the final electron acceptor as follows. W1: excited state of core antenna, W0: ground

state of core antenna, X0: [P680PheQA], X1: [P∗
680PheQA], X2: [P+

680Phe−QA], X3:

[P+
680PheQ−

A], Y0: [P680PheQ−
A], Y1: [P∗

680PheQ−
A], Z0: [QB ], Z1: [Q−

B ]. The core

antenna can take two possible states. The reaction center is characterized by the

combination of the states of the special pair, the first and second electron acceptors.

Each component of the reaction center takes two possible states; the special pair takes

P680 or P+
680, the first electron acceptor takes Phe or Phe−, and the second electron

acceptor takes QA or Q−
A. However, the states [P+

680Phe−Q−
A], [P680Phe−Q−

A] and

[P680PheQ−
A ], which are not easily realized kinetically, are neglected for simplicity.

The special pair can transition to the excited state P∗
680 only in the reaction center in
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which both the special pair and the first electron acceptor are in the ground (neutral)

states. The final electron acceptor takes two possible states QB and Q−
B . The index

0 of each variable represents the ground (neutral) state.

The parameters of the simplified model of PS II are described in Table 1. The

parameters that belong to significantly different time scales coexist in this model.

To clearly represent the multi-time-scale property, time scales are characterized by

the representative rate constants, kt, k2, k3, k−2, where these parameters satisfy the

following relation: 1/kt ≪ 1/k2 ≪ 1/k3 ≪ 1/k−2. That is, the hierarchical structure

in the time scale of this system is formed by four classes. The rate constants are

classified on the basis of their time scales as follows: AI =
{
kj

∣∣ O(kj) ∼ O(kt)
}
, AII ={

kj
∣∣ O(kj) ∼ O(k2)

}
, AIII =

{
kj

∣∣ O(kj) ∼ O(k3)
}
, and AIV =

{
kj

∣∣ O(kj) ∼
O(k−2)

}
.

The dimensionless times τI, τII, τIII, and τIV normalized by the characteristic rate

constants of each time scale are introduced as τI = ktt, τII = k2t, τIII = k3t and

τIV = k−2t. The ratios of the time scales are introduced as

εI,II = k2/kt,

εII,III = k3/k2,

εIII,IV = k−2/k3,

εII,IV = εII,IIIεIII,IV = k−2/k2,

(3.20)

which satisfy the following relations: εII,IV ≪ εI,II ∼ εII,III ∼ εIII,IV ≪ 1.

The time-coarse-grained reduction of a reaction system that has a multi-time-scale

property as described above is attempted in the following by applying repeatedly the

time-coarse-graining scheme described in Sec. 3.2. It is shown that the reduction of

the simplified PS II model from the τI scale to the τIV scale is realized by applying

the time-coarse-graining scheme three times iteratively.

3.3.1 the ODEs (τI) → the ODEs (τII)

To translate the original ODEs with t to the dimensionless ODEs with τI, step 0 is

applied, i.e., Eq. (3.19) is divided by kt. The ODEs having O(1) rates at the τI scale

are given by



34 Chapter 3 Hierarchical Coarse-Graining Method for Photosystem II

Y1  W1 X1

 W0 X0Y0

Z1 Z0

VI kdkdkd

k-t
k-t

kt
kt

k1

k-1

k2k-2

k4
k-4

k3

k4k-4

k5

k3

  X2

X3X4

Figure 3.4 Diagram of the simplified model of PSII. Each box indicates each
state variable. Dotted line: reactions at AI scale, chain line: AII scale, dashed
line: AIII scale, solid line: AIV scale. Black and red lines indicate electron transfer
and excitation-energy transfer (or photon-flux), respectively.



dW1

dτI
= − κt

RT
(X0 + Y0)W1 +

κ−t

WT
W0(X1 + Y1),

dX1

dτI
=

κt

RT
X0W1 −

κ−t

WT
W0X1,

dX0

dτI
= − κt

RT
X0W1 +

κ−t

WT
W0X1,

dY1

dτI
=

κt

RT
Y0W1 −

κ−t

WT
W0Y1,

dY0

dτI
= − κt

RT
Y0W1 +

κ−t

WT
W0Y1.

(3.21)

The reaction processes expressed by these ODEs constitute a quasi-isolated system

at the τI scale. Then, step 1 (a) in Sec. 3.2 is applied to this system. The quasi-

conserved quantities, U1, X01 and Y01, are introduced as U1 = W1 +X1 + Y1, X01 =
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Table 3.1 Table 1: List of parameters of simplified PSII model.

description notation　 time scale class value

rate constant of excitation transfer from core antenna to special pair kt AI 2× 1013s−1

rate constant of excitation transfer from special pair to core antenna k−t AI kt exp[
hc(1/λChl−1/λp)

kBT ]*s−1

rate constant of excitation dissipation from core antenna kd AII 108s−1

rate constant of charge separation in open (QA is neutral) reaction center k1 AII 2.5× 1010s−1

rate constant of charge recombination in open reaction center k−1 AII 3× 108s−1

rate constant of electron transfer from Pheo− to QA k2 AII 2× 109s−1

rate constant of electron transfer from Q−
A to Pheo− k−2 AIV 2× 103s−1

radiation flux density to core antenna vI AIV 1, 000 µmol m−2 s−1

rate constant of electron transfer from OEC to P+
680 k3 AIII 5× 106s−1

rate constant of electron transfer from Q−
A to QB k4 AIV 2, 500s−1

rate constant of electron transfer from Q−
B to QA k−4 AIV 175s−1

rate constant of electron transfer from Q−
B to downstream (plastoquinone) k5 AIV 800s−1

concentration of all reaction center’s states (conserved quantity) RT - 1 µmol m−2

concentration of all QB ’s states (conserved quantity) ZT - 1 µmol m−2

concentration of all core antenna’s states (conserved quantity) WT - 70 µmol m−2

* kB : Boltzmann constant, h: Planck’s constant, c: speed of light, T : temperature (298K), λChl: wavelength of the maximum absorbance of antenna chlorophyll
(678nm), λp: wavelength of the maximum absorbance of special pair (680nm).

X0 +X1 and Y01 = Y0 +Y1. It is assumed that the reactions inside the quasi-isolated

system of Eq. (3.21), which proceed at the τI scale, are in the quasi-equilibrium pseudo-

steady state for τI → ∞: dW1/dτI = 0, dX1/dτI = 0 and dY1/dτI = 0. Note that

the processes of O(εI,II) at the τI scale are neglected in the above treatment. This

approximation yields the following coarse-grained functions Γ, which hold for τI → ∞,

and represent W1, X1 and Y1 by the quasi-conserved quantities, U1, X01 and Y01:

lim
τI→∞

W1(τI) =
−[ κt

RT
(X01 + Y01) + κ−t − αU1] +

√
[ κt

RT
(X01 + Y01) + κ−t − αU1]2 + 4ακ−tU1

2α

≡ ΓW1(U1, X01, Y01),

lim
τI→∞

X1(τI) =
κt

RT
X01

κt

RT
ΓW1 +

κ−t

WT
(WT − ΓW1)

≡ ΓX1(U1, X01, Y01),

lim
τI→∞

Y1(τI) =
κt

RT
Y01

κt

RT
ΓW1 +

κ−t

WT
(WT − ΓW1)

≡ ΓY1(U1, X01, Y01),

(3.22)

where α ≡ κt/RT − κ−t/WT. By substituting these equations into Eq. (3.19) and

using the definitional equations for quasi-conserved quantities, the ODEs of quasi-

conserved quantities that hold for τI → ∞ are obtained. These ODEs change with

O(εI,II) rates as τI → ∞.

Then, step 2 is applied to the ODEs with τI → ∞ for the coarse-graining transfor-
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mation. That is, divided by εI,II, the transformation from the ODEs with τI → ∞
to those with τII can be achieved. The ODEs that change with O(1) rates at the τII

scale are expressed as follows:



dU1

dτII
= −κdU1 − κ1ΓX1(U1, X01, Y01) + κ−1X2 + εII,IVνI,

dX01

dτII
= −κ1ΓX1

(U1, X01, Y01) + κ−1X2 + εII,IIIκ3X4

+εII,IV
κ4

ZT
[Y01 − ΓY1(U1, X01, Y01)]Z0

−εII,IV
κ−4

RT
[X01 − ΓX1(U1, X01, Y01)]Z1,

dX2

dτII
= κ1ΓX1(U1, X01, Y01)− (κ2 + κ−1)X2 + εII,IVκ−2X3,

dX3

dτII
= κ2X2 − (εII,IIIκ3 + εII,IV

κ4

ZT
Z0 + εII,IVκ−2)X3

+εII,IV
κ−4

RT
X4Z1,

Y01 = RT − (X01 +X2 +X3 +X4).

(3.23)

3.3.2 the ODEs (τII) → the ODEs (τIII)

The reaction processes at the τII scale presented in Eq. (3.23) do not form a quasi-

isolated system. Then, step 1 (c) in Sec. 3.2 is applied to this system. In this system,

the variables that linearly decay with O(1) rates at the τII scale are U1 and X2. The

total inflow and outflow of the processes related to these variables are assumed to be

balanced for τII → ∞, that is, the nonequilibrium pseudo-steady-state approximation

is applied: dU1/dτII = 0 and dX2/dτII = 0. As a result, the coarse-grained functions

that hold for τII → ∞ and represent U1 and X2 by the slower variables are obtained

as

lim
τII→∞

U1(τII) = εII,IV
νI + κ−2γ

b
X2

X3

κd + βκ1γ
f
X2

,

≡ εII,IVΓU1(X01, Y01, X3),

lim
τII→∞

X2(τII) = εII,IV
κ1βΓU1 + κ−2X3

κ2 + κ−1
,

(3.24)

where ΓX1(U1, X01, Y01) is expressed by βU1 with 0 < β < 1. Besides, γf
X2

≡
κ2/(κ2 + κ−1) and γb

X2
≡ κ−1/(κ2 + κ−1) are introduced, which indicate the ratios

of forward and backward outflows to total outflow from X2, respectively. Equation

(3.24) suggests U1 ∼ O(εII,IV) ≪ 1. Concerning Eq. (3.22), by expanding W1 by U1,

and X1 and Y1 by W1(< U1), considering up to the first order of O(εII,IV), W1, X1

and Y1 are represented as
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lim
τII→∞

W1(τII) = εII,IVΓU1

(
1 +

κt

κ−t

X01 + Y01

RT

)−1
,

lim
τII→∞

X1(τII) = lim
τII→∞

U1

(κ−t

κt

RT

X01 + Y01
+ 1

)−1 X01

X01 + Y01

= εII,IVΓU1p(X1 + Y1 | U1)
X01

X01 + Y01

≡ εII,IVΓX1(X01, Y01, X3),

lim
τII→∞

Y1(τII) = lim
τII→∞

U1

(κ−t

κt

RT

X01 + Y01
+ 1

)−1 Y01

X01 + Y01

= εII,IVΓU1p(X1 + Y1 | U1)
Y01

X01 + Y01

≡ εII,IVΓY1
(X01, Y01, X3),

(3.25)

where the partition ratio of U1 (population of total exciton in PS II) at the reaction

center (total concentration RT), p(X1 + Y1 | U1) ≡ [κ−t/κt · RT/(X01 + Y01) + 1]−1,

has been introduced. Equation (3.25) indicates β = p(X1 + Y1 | U1)X01/(X01 + Y01).

By substituting Eqs. (3.24) and (3.25) into Eq. (3.23), the ODEs with τII → ∞ are

obtained.

The transformation from the ODEs with τII → ∞ to those with τIII is achieved by

applying step 2, i.e., by dividing the ODEs with τII → ∞ by εII,III. The ODEs that

change with O(1) rates at the τIII scale are thus given by



dX01

dτIII
= −εIII,IVκ1γ

f
X2

ΓX1(X01, Y01, X3) + κ3X4 + εIII,IVκ−2γ
b
X2

X3

+εIII,IV
κ4

ZT
Y01Z0 − εIII,IV

κ−4

RT
X01Z1,

dX3

dτIII
= εIII,IVκ1γ

f
X2

ΓX1(X01, Y01, X3)

−(κ3 + εIII,IV
κ4

ZT
Z0 + εIII,IVκ−2γ

b
X2

)X3

+εIII,IV
κ−4

RT
X4Z1,

dX4

dτIII
= −κ3X4 − εIII,IV

κ−4

RT
X4Z1 + εIII,IV

κ4

ZT
Z0X3,

(3.26)

where the terms of O(εIII,IVεII,IV) at the τIII scale are neglected.

3.3.3 the ODEs (τIII) → the ODEs (τIV)

The processes at the τIII scale presented in Eq. (3.26) do not form a quasi-isolated

system. Then, step 1 (c) in Sec. 3.2 is applied to this system. In this system, the
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variables that linearly decay with O(1) rates at the τIII scale are X3 and X4. The

total inflow and outflow of the processes related to these variables are assumed to be

balanced for τIII → ∞, that is, the nonequilibrium pseudo-steady-state approximation

is applied: dX3/dτIII = 0 and dX4/dτIII = 0. As a result, the equations that hold

for τIII → ∞ and represent X3 and X4 by the slower variables are obtained. The

coarse-grained functions that are expanded by εIII,IV are

lim
τIII→∞

X3(τIII) = εIII,IVγ
f
U1
νI [1 + εIII,IV(κ−2γ

b
X2

γf
U1

− κ4

ZT
Z0 − κ1γ

f
X2

)] +O(ε3III,IV)

≡ εIII,IVΓX3(X01, Y01, Z0),

lim
τIII→∞

X4(τIII) = ε2III,IVγ
f
U1
νI

κ4

ZT
Z0 +O(ε3III,IV)

≡ ε2III,IVΓX4(X01, Y01, Z0),

(3.27)

where the ratio of forward outflow via charge separation to total outflow from U1:

γf
U1

≡
κ1γ

f
X2

p(X1 + Y1 | U1)
X01

X01+Y01

κd + κ1γ
f
X2

p(X1 + Y1 | U1)
X01

X01+Y01

, (3.28)

is introduced. By substituting Eq. (3.27) into Eq. (3.26), the ODEs with τIII → ∞ are

obtained.

The transformation from the ODEs with τIII → ∞ to those with τIV is achieved by

applying step 2, i.e., by dividing the ODEs with τIII → ∞ by εIII,IV. The ODEs with

τIV are thus given by



dX01

dτIV
= −κ1γ

f
X2

ΓX1
+ εIII,IVκ3ΓX4

+ εIII,IVκ−2γ
b
X2

ΓX3

+
κ4

ZT
(ZT − Z1)Y01 −

κ−4

RT
X01Z1,

dY01

dτIV
= ΓX3 −

κ4

ZT
(ZT − Z1)Y01 +

κ−4

RT
X01Z1,

dZ1

dτIV
= −κ5Z1 +

κ4

ZT
(ZT − Z1)(Y01 + εIII,IVΓX3)−

κ−4

RT
(X01 + ε2III,IVΓX4)Z1.

(3.29)

In particular, by neglecting the terms of O(εIII,IV), the ODEs with τIV are concisely

represented as
dX01

dτIV
= −νIγ

f
U1

+
κ4

ZT
(ZT − Z1)(RT −X01)−

κ−4

RT
X01Z1,

dZ1

dτIV
=

κ4

ZT
(RT −X01)(ZT − Z1)−

κ−4

RT
X01Z1 − κ5Z1,

(3.30)
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where the relation κ1γ
f
X2

ΓX1 = νIγ
f
U1

is used, and the relations X01 + Y01 = RT and

p(X1 + Y1 | U1) = (κ−t/κt + 1)−1 hold.

To represent these ODEs in a simpler way, each variable and parameter are nor-

malized as follows: X01/RT = X, Z1/ZT = Z and νI/RT = ν. They indicate the

occupancy ratio of each state and the incidence rate of photo-excitation per PS II. Be-

sides, by assuming RT = ZT, which is a natural assumption, Eq. (3.30) is represented

as 
dX

dτ
= −ν

κ′
1X

κd + κ′
1X

+ κ4(1−X)(1− Z)− κ−4XZ,

dZ

dτ
= κ4(1−X)(1− Z)− κ−4XZ − κ5Z,

(3.31)

where τIV is replaced by τ , and κ′
1 ≡ κ1γ

f
X2

p(X1 + Y1 | U1) is introduced.

3.3.4 Results and Discussion

The calculated results of four different time-scale variables of the full ODEs with

t and the reduced ODEs obtained by the time-coarse-graining method are shown in

Figs. 3.5 and 3.6. Each time step of integration of the full ODEs with t, ODEs with

τII, ODEs with τIII, and ODEs with τIV is set as 10−13s, 10−11s, 5× 10−8s, and 10−5s,

respectively. The integration of each reduced ODE is computed up to 0.1 s and that

of the full ODEs is computed up to 0.01 s. Initial values of the variables are set as

those for non-reduced states under the assumption that the system is dark adapted:

X0 = 1, Z0 = 1, and otherwise 0. The values of the relevant variables and those of

the fast variables at each time scale of the ODEs are calculated by integrating the

ODEs and through the coarse-grained functions, respectively. All of the results of the

reduced ODEs are in good agreement with those of the full ODEs at each time-scale

range of each reduced ODE (see Fig. 3.5 ). This result indicates that the time-coarse-

graining method adequately yields the effective reduced ODEs at each time scale. The

calculated results for the variables of the reduced ODEs, which are not shown here,

are also in good agreement with those of the full ODEs. The comparison between the

results of the ODEs with τIV neglecting O(ε2III,IV) terms (see Appendix A.2) and those

neglecting O(εIII,IV) terms are shown in Fig. 3.6. This result suggests that Eq. (3.30)

consisting of two variables appropriately describes the dynamics of the simplified PS II

model consisting of nine variables at the τIV scale, because both the ODEs neglecting

the O(ε2III,IV) terms and those neglecting O(εIII,IV) terms represent the full ODEs fairly
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Figure 3.5 Computed dynamics of (a) W1 and (b) Z1 concentrations. Grey line:
the results of full ODEs with t, open square (green): the ODE results with τII,
open triangle (blue): the ODE results with τIII, and open circle (magenta): the
ODE results with τIV. The full ODEs are computed up to 0.01 s. Details of the
computation are shown in Sec. 3.3.4.

well.

The diagram of coarse-grained model at the slowest time scale (Eq. (3.31)) is illus-

trated in Fig. 3.7. The initial values are X = 1 and Z = 0, corresponding to dark

adapted samples. If the incident light flux ν is absorbed by PS II, then the ratio γf
U1

to it is used for charge separation, which accompanies the decrease in the population

of X state and the increase in the population of 1−X state. As a result, the flux of
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Figure 3.6 Computed dynamics of (a) X2 and (b) X4 concentrations. Grey line:
the results of full ODEs with t, open square (green): the ODE results with τIV

neglecting O(ε2III,IV) terms (Eq. (A.16)), and open circle (blue): the ODE results
with τIV neglecting O(εIII,IV) terms (Eq. (3.30)). The full ODEs are computed up
to 0.01 s. Details of the computation are shown in Sec. 3.3.4.

downward outflow from reaction center, whose flux is in proportional to (1−X)(1−Z),

increases. On the one hand, γf
U1

= κ′
1X/(κd + κ′

1X), which is a function of X, de-

creases along with the decrease in X state; on the other hand, the fraction of heat

dissipation, γd
U1

≡ 1−γf
U1

= κd/(κd+κ′
1X), which is also a function of X, increases si-

multaneously. As a sufficiently long time passes, the system becomes a steady state in

which the net flux from reaction center to downward (= κ4(1−X)(1−Z)− κ−4XZ)
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Figure 3.7 Diagram of the coarse-grained model at the τIV scale. Each box
represents each state variable. X: open RC, 1 − X: closed RC, Z: reduced
QB , and 1− Z: oxidized QB . Black and red lines indicate electron transfer and
excitation-energy transfer (or photon flux), respectively.

is equal to the flux of effective charge separation (= νγf
U1
) under the effect of the

process occurring with the outflow from Z to downward.

Here, the effects of application of time-coarse-graining method is summarized as

follows: (A) Fast processes are transformed to effectively slow processes. (B) The

reaction network system is reduced to a simple one by neglecting reaction paths with

evaluated small fluxes. The effect of (A) is reflected in the first term on the right-hand

side of ODE for X in Eq. (3.31). This term contains the processes of excitation of PS II

by light absorption, transfer of exciton to P680 of open RC (X0 state), transition from

X1 state to X2 state via charge separation, transition from X2 state to X3 state, and

transition to closed RC (Y01 state). Concretely, ν represents the excitation rate of PS

II, and the fractional factor represents the ratio of excited PS II which will transition

from X01 state to Y01 state; κd and κ′
1X = κ1γ

f
X2

p(X1+Y1 | U1)X, which are involved

in the fractional factor, represent the dissipation rate and effective charge separation

rate, respectively. Concerning the effective charge separation rate, p(X1 + Y1 | U1)X

and κ1γ
f
X2

reflect the result of quasi-equilibrium pseudo-steady state approximation

at τI scale and that of nonequilibrium pseudo-steady state approximation at τII scale,

respectively. The result of the approximation at τIII scale is reflected as that almost all
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of X3 state transitioned from X01 state via charge separation becomes Y01 state. The

effect of (B) is reflected on the description of electron transfer between the reaction

center and Z0 or Z1 state. Eq. (3.31) suggests that one has only to consider X01

state and Y01 state as electron donor concerning this process. That is, the present

time-coarse-graining method succeeds in the simultaneous extraction of the principal

reaction paths at each layer of scale and consequently the accurate description of the

system dynamics.

Finally, the present work is primarily focused on the novel development of mathe-

matical modeling and methodology that can be applied to multi-scale photosynthetic

systems. The applications of the present method to more realistic, full PS II models,

which may involve macroscopic phenomena such as long-term state transitions [38],

are currently under way, and their details will be reported elsewhere. Photosynthetic

systems are complex and systematic combinations of a variety of quantum-mechanical

and classical-mechanical devices with a wide range of characteristic times. These fea-

tures underlie the coarse-graining manipulations developed in the present study, and

their theoretical modeling and elucidation remain to be performed with respect to

many issues.

3.4 Conclusions

In this chapter, I proposed a reduction method for temporal coarse-graining, and

applied it to a simplified PS II model. This coarse-graining method is based on a pro-

totypical three-variable reaction model that has two (fast and slow) time scales and

a quadratic, nonlinear reaction process. Influxes into the system belong to the slower

time-scale processes, and intra-system reaction processes belong to the faster time-

scale ones, which is a typical setting for photosynthetic reaction systems. The extrac-

tion of the simple structure at slower time-scale and the reduction of computational

cost about the three-variable model were systematically achieved for various cases

by applying the temporal coarse-graining reduction method. The different structures

of the coarse-grained models appear according to the cases of different time-scaled

classification of reaction processes. I then applied the coarse-graining method to a

simplified PS II model, which is more complex than the three-variable model and

has a multi-time-scale character. The reduction of a model with a multi-time-scale

property to that scaled to a certain time scale was performed by applying the coarse-

graining method iteratively. It was possible to estimate the orders of magnitudes of
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the fluxes of reaction paths reduced by the coarse-graining method. By neglecting

the reaction paths whose fluxes are small enough at a given time scale, a reduction of

the complex model to a model having a simple structure and small degrees of freedom

was carried out. As a result, it has turned out that there exists a simple structure at

slower time scale described by two variables and four paths in contrast to the original

model composed of nine variables and eighteen paths. The simple structure contains

the paths which include the information of fast processes in a renormalized way.

In this study, the proposed method successfully reduced the multi-time-scale dy-

namics of a photosynthetic reaction system composed of the reactions of the picosec-

ond to millisecond time scale to a slower one. The temporal coarse-graining reduction

method proposed in this work thus has the potential to be applied to any reaction

model that shares the properties of the prototypical three-variable model for the

extraction of the structure of each time-scale layer and the reduction of the compu-

tational cost. The reduction of more complex photosynthetic reaction systems with

slower (≳ seconds or minutes) time scales using the present method is also possible.

Thus, the reduced effective minimum model, which is consistent with the complex

and detailed model of photosynthetic reaction systems, is expected to be obtained.

Furthermore, the description of mathematical structure at each scale by this novel

method will allow for the investigation of the effects of variations of reaction pro-

cesses, which may be caused by the changes of environmental and genetic factors, on

the coarse-grained structure and the asymptotic behavior of the whole system.
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Chapter 4

PS II Complex Model Studies for Chl a
Fluorescence Induction Kinetics

4.1 Introduction

Photosynthesis is a complex and multi-scale phenomenon in which a variety of chem-

ical processes are involved and intertwined [46]. A variety of environmental responses

of this phenomenon at a wide range of scales have been identified via experimental

and theoretical studies on different spatiotemporal scales [27]. The measurement of

chlorophyll a fluorescence [29, 47] is known in this context as a useful tool to probe

the dynamics of photosynthesis. It has then been recognized [23, 28] that the major

contribution to chlorophyll a fluorescence arises from photosystem II (PS II) that

drives photosynthesis with the charge separation and the production of oxygen. As

observed in experiments, the intensity of chlorophyll a fluorescence significantly varies

according to environmental conditions. It is noticeable that plants show a variety of

time-course patterns of fluorescence under various amplitudes of continuous illumi-

nation after the dark acclimation, which are known as fluorescence induction (FI)

phenomena [2, 23, 28, 48]. The elucidation of the FI mechanism is, however, difficult

generally due to the physicochemical complexities of pertinent systems [3, 15,28].

Systems approach [49,50] provides an essential viewpoint for analyzing the dynamics

of complex biological systems. Concerning the interpretation of FI, a simple kinetic

model was first proposed by Duysens and Sweers [51]. They suggested that there

was a fluorescence quencher “Q” , later identified as the PS II-bound plastoquinone

QA in oxidized state. The main idea of Duysens and Sweers theory (DST) is that

the fluorescence increases as the amount of quencher decreases, i.e, as the QA in
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reduced state increases. Besides, they suggested the linear relationship between the

fluorescence intensity and the amount of the quencher Q that was considered as the

only factor influencing the fluorescence. Following their pioneering work, a number

of extensions (extended Duysens-Sweers theories, EDSTs) have been introduced to

quantitatively account for the FI kinetics, thus leading to more and more complicated

models including many elementary processes associated with excitation-energy and

electron transfer reactions [8, 9, 12, 13, 19, 20, 52–62]. EDSTs are formed on the basis

of structural information of molecules and thus include the chemical processes such

as S-state (Kok) cycle of the oxygen-evolving complex (OEC) [63], reversible radical

pair model which describes the trapping and charge-stabilization processes in reaction

center (RC) [11, 64, 65], two-electron gate model that describes the electron transfer

processes between QA and QB [66], and so on. EDSTs also presume the quenchers of

fluorescence in addition to the QA in oxidized state since various quenchers have been

proposed. While the accuracy of the model calculations to reproduce the experimental

results has thus been improved substantially [31], it has become fairly difficult to
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intuitively and comprehensively understand the whole phenomena. On the other

hand, a totally different, phenomenological model accounting for the FI behaviors

has also been proposed by Vredenberg [67–69]. This theory is based on a three-state

trapping model (TSTM) in which the reaction centers make transitions among three

representative states with some associated assumptions. Although this model, called

fluorescence induction algorithm (FIA), agrees well with experimental results, it is

not straightforward to systematically compare it with the EDST, thus preventing us

from assessing its relevance [15]. The differences in their degree of complexities also

make the comparison more difficult.

In an earlier work [70], we have proposed a hierarchical coarse-graining (HCG)

method to comprehensively analyze the dynamical behaviors of reaction networks

with many dynamical variables such as those of PS II. In addition to its capabil-

ity of hierarchically integrating the temporal evolutions of many dynamical variables

with wide varieties of characteristic time scales, this HCG method can unambigu-

ously provide us with rational coarse-grained pictures for the whole system dynam-

ics at specified time scales on the basis of underlying mathematical structures. In

the present study, we construct a complicated EDST-like model with 28 dynamical

variables for PS II including oxygen-evolving complex (OEC) and light-harvesting

complex (LHCII) components, and apply the HCG method to the full model for the

reduction into a simplified one with good accuracy. We thus intend to understand the

FI phenomena intuitively in terms of the correspondence between the original compli-

cated model and the simplified coarse-grained model. Depending on the magnitudes

of kinetic parameters in the original detailed models, the HCG method has an ability

to give different coarse-grained model descriptions. With this perspective in mind, we

simultaneously aim at showing how and under what conditions the phenomenological

TSTM by Vredenberg can be derived from the original complex PS II model in this

study. Theoretical accounts for the experimental results for the FI behaviors in PS

II are thus given comprehensively.

In the following, the EDST-like model and two different coarse-grained models of

PS II are described in Materials and Methods section. The HCG method is also

introduced concisely in this section. The simulated FIs based on two different models

are shown in Results section, where the light-intensity dependent changes of FI pattern

from O-J-I-P, which shows two inflection points, J and I, between initial point O and

peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points,

observed by Schansker [71,72] are reproduced. The question of what the J-D-I pattern
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reflects is answered based on the models, i.e., the transition on the donor side of

PS II. In Discussion section, we compare the phases of the RC state over the wide

range of light condition between the two different coarse-grained models of PS II and

investigate the light-intensity dependent change of dominant transition path of the

RC. Conclusion section provides a summary in the present work.

4.2 Materials and Methods

4.2.1 Kinetic model of PS II

To investigate the dynamic properties of the PS II, a variety of EDSTs have been

proposed and improved. Though the increase in the complexity of the models makes

the reproducibility for the experiments better, it also makes it difficult to interpret

the phenomena on the basis of underlying models. While the phenomenological mod-

els of PS II which are simpler than EDSTs have been proposed, the comprehensive

understanding has not been achieved because there are differences in the reaction pro-

cesses considered among the models. For example, the quenchers taken into account

in the models are different between the EDST by Zhu et al. [19] and the TSTM by

Vredenberg [67–69]. Therefore, we here construct a model à la EDST which includes

both processes described by Zhu et al. and Vredenberg with respect to electron and

excitation-energy (exciton) transfers in PS II. The addition of the process for the

redox reaction of tyrosine Yz in the model asks for the improvement of the model for

the OEC reactions because the redox reaction of Yz facilitates the electron transfer

between RC and OEC, and thus affects the reaction of OEC. For the purpose of con-

structing the comprehensive framework, the following physicochemical processes are

also considered in our model:

• Effects of peripheral antenna and core antenna are taken into account.

• Rate constants of charge separation which drives the transition from P∗
680Phe

to P+
680Phe

− are different between open RC, in which the primary quinone

electron acceptor QA is neutral, and closed RC, in which QA is reduced [71,72].

• As the quenchers of excited chlorophyll, plastoquinone (PQ) [16, 73] and oxi-

dized special-pair (P+
680) [32,74] are taken into account. In some cases, oxidized

tyrosine Z (Y+
Z ) [68] is also taken into account.

• As the energy dissipation pathways of excited chlorophyll, non-radiative re-

combination of P+
680Q

−
A to the ground state, non-radiative recombination of
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P+
680Phe

− to the ground state, and intersystem crossing of P+
680Phe

− to the

triplet state 3P+
680Phe

− are taken into account [75,76].

• The states of tyrosine YZ which mediates the electron transfer between RC and

oxygen-evolving complex (OEC) are explicitly treated in the model.

The kinetic model of PS II is described in terms of the concentrations on a green

leaf (in the unit of µmol cm−2) of various states of electron donors/acceptors and

light-absorbing pigments that change via electron and exciton transfers. This model

encompasses the processes from the transition of the states of OEC on the donor side of

PS II to the oxidation of PQH2 by cytochrome b6f (Cyt b6f) complex on the acceptor

side of PS II. We note that the negative feedbacks by light-induced non-photochemical

quenching processes, such as xanthophyll cycle and state transition [29], are assumed

to have no effect on the reaction processes of PS II at the concerned timescale range

(picoseconds - milliseconds) and therefore not included in the present model. It seems

that these processes should be considered in the model to analyze the slow change

pattern (seconds - minutes) of FI. The ordinary differential equations (ODEs) for the

kinetic model of the reaction processes from RC to plastoquinone pool in thylakoid

membrane are then given by
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dV1(t)
dt = V0

WT+VT+RT
Vin + kUW1

V0

VT
− kUV1

W0

WT

−(kF + kd + kc
X2+X4+Y2+Y4

RT
+ kq

Q0

QT
)V1,

dW1(t)
dt = W0

WT+VT+RT
Vin − kUW1

V0

VT
+ kUV1

W0

WT
− k̄t

X0+Y0

RT
W1 + k̄−t

W0

WT
(X1 + Y1)

−(kF + kd + kc
X2+X4+Y2+Y4

RT
+ kq

Q0

QT
)W1,

dX0(t)
dt = − X0

WT+VT+RT
Vin − k̄t

X0

RT
W1 + k̄−t

W0

WT
X1

+(kF + kd + kc
X2+X4+Y2+Y4

RT
+ kq

Q0

QT
)X1 + kdnrY4 + kindnr X2 + kntr0 XT

0

+k3
T0

TT
X4 − k−3

T1

TT
X0 +

k41Z0+k42Z1

ZT
Y0 − (k−41Z1 + k−42Z2)

X0

RT
,

dX1(t)
dt = X0

WT+VT+RT
Vin + k̄t

X0

RT
W1 − k̄−t

W0

WT
X1

−(ko1 + kF + kd + kc
X2+X4+Y2+Y4

RT
+ kq

Q0

QT
)X1 + ko−1X2,

dX2(t)
dt = ko1X1 − (k2 + ko−1 + ktr + kindnr + k3

T0

TT
)X2 + k−3

T1

TT
X3 + k−2Y4

+k41Z0+k42Z1

ZT
Y2 − (k−41Z1 + k−42Z2)

X2

RT
,

dX3(t)
dt = k3

T0

TT
X2 − (k2 + k−3

T1

TT
)X3 + k−2Y0

+k41Z0+k42Z1

ZT
Y3 − (k−41Z1 + k−42Z2)

X3

RT
,

dX4(t)
dt = −k3

T0

TT
X4 + k−3

T1

TT
X0 +

k41Z0+k42Z1

ZT
Y4 − (k−41Z1 + k−42Z2)

X4

RT
,

dXtr
2 (t)
dt = ktrX2 − ktr02X

tr
2 ,

dXtr
0 (t)
dt = ktr02X

tr
2 − kntr0 Xtr

0 ,
dY0(t)

dt = − Y0

WT+VT+RT
Vin − k̄t

Y0

RT
W1 + k̄−t

W0

WT
Y1

+(kF + kd + kc
X2+X4+Y2+Y4

RT
+ kq

Q0

QT
)Y1 + k2X3 + kntr0 Y tr

0 + kindnr Y2

+k3
T0

TT
Y4 − (k−2 + k−3

T1

TT
+ k41Z0+k42Z1

ZT
)Y0 + (k−41Z1 + k−41Z2)

X0

RT
,

dY1(t)
dt = Y0

WT+VT+RT
Vin + k̄t

Y0

RT
W1 − k̄−t

W0

WT
Y1

−(kc1 + kF + kd + kc
X2+X4+Y2+Y4

RT
+ kq

Q0

QT
)Y1 + kc−1Y2,

dY2(t)
dt = kc1Y1 − (kc−1 + ktr + kindnr + k3

T0

TT
+ k−3

T1

TT
Y3 +

k41Z0+k42Z1

ZT
)Y2

+(k−41Z1 + k−42Z2)
X2

RT
,

dY3(t)
dt = k3

T0

TT
Y2 − (k−3

T1

TT
+ k41Z0+k42Z1

ZT
)Y3 + (k−41Z1 + k−42Z2)

X3

RT
,

dY4(t)
dt = k2X2 − (k3

T0

TT
+ k41Z0+k42Z1

ZT
+ k−2 + kdnr)Y4 + k−3

T1

TT
Y0

+(k−41Z1 + k−42Z2)
X4

RT
,

dY tr
2 (t)
dt = ktrY2 − ktr02Y

tr
2 ,

dY tr
0 (t)
dt = ktr02Y

tr
2 − kntr0 Y tr

0 ,
dZ1(t)

dt = k41
Z0

ZT
(Y0 + Y2 + Y3 + Y4)− k−41

X0+X2+X3+X4

RT
Z1

−k42
Z1

ZT
(Y0 + Y2 + Y3 + Y4) + k−42

X0+X2+X3+X4

RT
Z2,

dZ2(t)
dt = k42

Z1

ZT
(Y0 + Y2 + Y3 + Y4)− k−42

X0+X2+X3+X4
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Q0
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Q1
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,

dQ1(t)
dt = k5Z2

Q0
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Q1

QT
− k6Q1,

(4.1a)
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
V0(t) = VT − V1,

W0(t) = WT −W1,

Z0(t) = ZT − Z1 − Z2,

Q0(t) = QT −Q1,

(4.1b)

where V, W, X, Y, Z and Q represent the concentrations of different states of the

peripheral antenna, core antenna, QA-neutral (open) RC, QA-reduced (closed) RC,

secondary quinone electron acceptor (QB) and plastoquinone pool (PQ,PQH2), re-

spectively, as follows. V0: ground states of peripheral antenna; W0: ground states of

core antenna; V1: excited states of peripheral antenna; W1: excited states of core an-

tenna; X0: [P680PheQA]; X1: [P∗
680PheQA]; X2: [P+

680Phe
−QA]; X3: [P680Phe

−QA];

X4: [P+
680PheQA]; Y0: [P680PheQ

−
A ]; Y1: [P∗

680PheQ
−
A ]; Y2: [P+

680Phe
−Q−

A ]; Y3:

[P680Phe
−Q−

A ]; Y4: [P+
680PheQ

−
A ]; Z0: [QB]; Z1: [Q−

B ]; Z2: [Q2−
B ]; Q0: [PQ]; Q1:

[PQH2], where [ ] means the concentration. The superscript “tr” indicates the triplet

state. The right-hand sides of ODEs represent the rates of electron and exciton trans-

fers. For example, the X1 state changes in time with the rates of light absorption,

exciton transfer and electron transfer. The rate of excitation of open RC by light ab-

sorption is given as the product of the flux Vin of incident light for PS II and the ratio

X0/(WT + VT +RT) of the open RC in the ground state to all the light absorbing

pigments. With regard to the exciton transfer, the open RC is connected with the

core antenna. The trapping rate from core antenna to open RC is proportional to the

concentration W1 of the excited core antenna, and the ratio X0/RT of open RC in

the ground state to all of RC. The detrapping rate for the exciton from open RC to

core antenna is proportional to the concentration of the excited open RC, X1, and the

ratio of core antenna in the ground state, W0/WT. In addition, the X1 state changes

to the ground state (X0) via charge separation, fluorescence emission, dissipation,

P+
680 quenching and PQ quenching, where the quenching rates of P+

680 and PQ are

proportional to the populations of quenchers, X2+X4+Y2+Y4 and Q0, respectively.

Further, the charge recombination of the X2 state produces the X1 state with the rate

proportional to the population of X2. All other states of electron donors/acceptors

and light absorbing pigments change in similar ways to X1.



52 Chapter 4 PS II Complex Model Studies for Chl a Fluorescence Induction Kinetics

OEC
P680!
Phe!
QA-

P680!
Phe!
QA

P680*!
Phe!
QA-

P680+!
Phe-!
QA-

P680!
Phe-!
QA-

P680+!
Phe-!
QAP680*!

Phe!
QA

P680!
Phe!
QA-

P680!
Phe!
QA

P680+!
Phe!
QA

e-

k2

kt

k-2

k3

Core Antenna
light
dissipation

triplet 
P680+!
Phe-!
QA-

triplet 
P680+!
Phe-!
QA

P680!
Phe-!
QA

P680+!
Phe!
QA-

Yz+ Yz

Peripheral!
 Antenna

light
dissipation

QB 2-QB -QB

S1

S0

S2
S3

Yz+S0*

Yz+S1*

Yz+S2*

Yz+S3*

Yz S4*

e-

PQPQH2

fluorescence

fluorescence

Figure 4.2 Schematic diagram of excitation-energy and electron transfer pro-
cesses for PS II.
The EDST-like model is described by eqs 4.1a, 4.1b and 4.2. Solid and dashed
lines indicate the electron transfer and the excitation-energy transfer, respec-
tively. Each color indicates different time-scales as follows. Red: picoseconds,
yellow: nanoseconds, blue: microseconds, black: milliseconds.

The reaction diagram of PS II and the associated parameters of the model are

shown in Fig. 4.2 and Table 4.1, respectively. Each box in Fig. 4.2 represents each

different state of electron donors/acceptors. Besides, each arrow represents the trans-

port of excitation energy or electron. Electrons are supplied from OEC to PS II.

These electrons reduce the oxidized tyrosine and P+
680 in turn. Meanwhile, light is ab-

sorbed by peripheral antenna and core antenna, and then excitation energy (exciton)

is generated. The excitation energy is transported to RC from core antenna. Here, it

is assumed that the exciton is received only by the RC in which both P680 and Phe

are in ground states. Once the RC receives the excitation energy, charge separation

occurs, and then Phe and QA are reduced in turn. Quinone B receives an electron
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from QA twice and then forms the doubly reduced state. The doubly reduced QB

forms plastoquinol. Plastoquinol diffuses in thylakoid membrane and then is oxidized

by the Cyt b6f complex.

Concerning Eq. (4.1a), we note that k̄t and k̄−t are connected to microscopic infor-

mation in terms of the perturbed-two-level model [44] as below: k̄t = zkt/(Nc − 1)

and k̄−t = zk−t, where z is a coordination number (the number of pigments next to

RC) and Nc is the number of pigments at one core antenna; kt and k−t are the rate

constants of trapping and de-trapping, respectively, of the excitation-energy transfer

between the RC and its nearest pigments at antenna. In regard to the diffusion of

excitation energy, the trap-limited condition is assumed in this model.

The ODEs for the oxygen-evolving complex (OEC) that exists on the donor side of

PS II are given by

dT1(t)

dt
= −

3∑
i=0

ki∗,i
Si

ST
T1 + k3

T0

TT
(X2 +X4 + Y2 + Y4)

−k−3
T1

TT
(X0 +X4 + Y0 + Y4),

dS0(t)

dt
= k0,4TS4 − k0∗,0

S0

ST
T1,

dSi(t)

dt
= ki,(i−1)∗TS

∗
i−1 − ki∗,i

Si

ST
T1 (i = 1− 3),

dTS∗
i (t)

dt
= ki∗,i

Si

ST
T1 − ki+1,i∗TS

∗
i (i = 0− 2),

dTS∗
3 (t)

dt
= k3∗,3

S3

ST
T1 − k4,3∗TS

∗
3 + k3∗,4TS4,

dTS4(t)

dt
= k4,3∗TS

∗
3 − (k3∗,4 + k0,4)TS4,

(4.2)

where the conservation relations hold as below: TT = T0 + T1 +
∑

TS∗
i + TS4,

ST =
∑

Si +
∑

TS∗
i + TS4. The concentrations of the states of tyrosine Z (Y+

Z )

of the D1 protein are represented by T ’s, T0: [YZ] and T1: [Y+
Z ], where [ ] means

the concentration. The OEC is described on the basis of the model proposed by [63]

(“Kok cycle”) that accounts for the oxidative water splitting by four sequential steps.

The concentrations of the five states of OEC are denoted as Si (i = 0 − 4), where

S0 and S4 indicate the concentrations of the states with the redox levels of H2O and

O2, respectively, and S1, S2 and S3 indicate the concentrations of the states with the

redox levels of hydroxyl radical, peroxide and superoxide, respectively. Besides, the

triggering processes of Si states by Y+
Z are included, and the “triggered” redox states

of Si’s are denoted by S∗
i ’s. The “triggered” redox states of OEC and S4 state are
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treated as being coupled with Y+
Z and thus described as TS∗

i ’s and TS4, respectively.

With respect to S3 modeling, “S4 dogma” [77,78] is employed in this model (Fig. 4.2).

The parameters that belong to significantly different timescales coexist in the PS

II model. To clearly represent the multi-timescale property, we characterize each

timescale by means of the representative rate constant. As the hierarchical structure

in the time scales of this system proves to be decomposed into four classes, we intro-

duce the dimensionless times τI, τII, τIII and τIV normalized by the characteristic rate

constants as

τI ≡ k̄tt,

τII ≡ k2t,

τIII ≡ k3t,

τIV ≡ k−2t.

(4.3)

Here, the characteristic parameters satisfy the relation: k̄t ≫ k2 ≫ k3 ≫ k−2. The

rate constants kt, k2, k3 and k−2 have the picosecond, nanosecond, microsecond and

millisecond orders of magnitude, respectively. Therefore, each unit of each dimension-

less time τI, τII, τIII and τIV is characterized by the timescale of picosecond, nanosec-

ond, microsecond and millisecond, respectively. The ratios of the time scales are then

introduced as εI,II ≡ k2/k̄t, εII,III ≡ k3/k2, εIII,IV ≡ k−2/k3 and εII,IV ≡ εII,IIIεIII,IV =

k−2/k2, satisfying the following relations: εII,IV ≪ εI,II ∼ εII,III ∼ εIII,IV ≪ 1.

The rate constants are classified on the basis of their time scales as AI =
{
kj

∣∣
O(kj) ∼ O(k̄t)

}
, AII =

{
kj

∣∣ O(kj) ∼ O(k2)
}
, AIII =

{
kj

∣∣ O(kj) ∼ O(k3)
}

and

AIV =
{
kj

∣∣ O(kj) ∼ O(k−2)
}
. We introduce dimensionless rate constants κj defined

as each kj scaled by the characteristic rate constants of time-scale groups to which

each kj belongs:

κj =


kj/k̄t kj ∈ AI,

kj/k2 kj ∈ AII,

kj/k3 kj ∈ AIII,

kj/k−2 kj ∈ AIV,

(4.4)

thus each κj being of the order of unity. The light excitation rate v, which is defined by

the ratio (radiation flux density Vin)/(concentration of PS II RT), is also normalized

as ν = v/kj . The timescale classes to which each rate constant belongs are shown in

Table 1. Parameters used in this model were obtained in experiments [11, 65, 79–90]
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except for radiation flux density Vin for PS II, which is an environmental factor. The

present study is concerned with the changes of FI pattern depending on this Vin value.

4.2.2 Coarse graining

In general, the complexity and the multi-timescale property of a system cause dif-

ficulties in understanding the object intuitively and calculating the slow dynamics.

Photosynthesis reaction system is one of the systems which have the characteristics

addressed above. If one intends to understand the dynamical properties of photo-

synthesis reaction system reflected by FI, the whole reactions inside chloroplast from

excitation energy transfer (picosecond scale) to membrane protein diffusion (minute

scale) over the wide timescale range should be taken into account. The picture of this

whole reaction system is too complex to understand intuitively. Besides, the wide-

range timescale property makes it difficult to simulate the dynamics at slow scales

on the basis of a kinetic reaction model because the computational cost becomes

too high to integrate over time. The coarse-graining treatment, which extracts the

mathematical structure of concerned dynamical system and reduces the degrees of

freedom, is an approach to deal with such difficulties as above [91–93]. In the fol-

lowing, the hierarchical time-coarse-graining of a reaction network of PS II that has

a multi-timescale property as described above is attempted by repeatedly applying

the HCG method proposed by Matsuoka et al. [70]. This temporal coarse-graining

scheme consists of three steps. At step 0, the original ODEs with respect to time t are

converted to the ODEs with dimensionless time in which the fastest scale reactions

have O(1) rates. Then at step 1, the coarse-graining functions Γ’s, which give the

values of some fast variables in terms of slow variables, are derived by means of the

steady-state approximation. If possible, quasi-conserved quantities which vary with

O(ε) rates at concerned time scales are introduced. At step 2, the transformation of

the dimensionless-time ODEs to those with slower time scale is conducted through

the results of step 1. The coarse-graining of PS II with four classes of time scales is

performed by applying this scheme three times repeatedly. As a result, the hierar-

chical ODEs are obtained with τI, τII, τIII and τIV, respectively. It is noted that the

accuracies of the coarse-grained ODEs can be controlled by means of the timescale

ratios εI,II, εII,III, εIII,IV and εII,IV introduced in this method. The accuracies of the hi-

erarchical ODEs were also evaluated numerically in our previous study [70]. Besides,

with respect to the stability of the concerned system, a prototypical three-state model
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Table 4.1 Parameter List of PS II Model

Description Notation Value (Time-scale class) Reference

Rate constant of excitation transfer from core

antenna to special pair

kt (AI) Implicit

Rate constant of excitation transfer from spe-

cial pair to core antenna

k−t kt exp[
hc(1/λChl−1/λp)

kBT ]*(AI) Implicit

Rate constant of excitation transfer between

core and peripheral antenna

kU 1010 s−1 (AII) [90]

Rate constant of excitation dissipation from

antenna

kd 108 s−1 (AII) [48,65]

Rate constant of excitation fluorescence from

antenna

kF 3× 107 s−1 (AII) [11]

Rate constant of charge separation in open

(QA is neutral) reaction center

ko1 2.5× 1010 s−1 (AII) [88]

Rate constant of charge recombination in open

reaction center

ko−1 3× 108 s−1 (AII) [88]

Rate constant of charge separation in closed

(QA is reduced) reaction center

kc1 4× 109 s−1 (AII) [88]

Rate constant of charge recombination in

closed reaction center

kc−1 9× 108 s−1 (AII) [88]

Rate constant of electron transfer from Phe−

to QA

k2 2× 109 s−1 (AII) [88]

Rate constant of electron transfer from Q−
A to

Phe−
k−2 2, 000 s−1 (AIV) Model esti-

mate [48]

Rate constant of P680+ quenching of antenna kc 109 s−1 (AII) [65]

Rate constant of PQ quenching kq 3× 106 s−1 (AII) [57]

Rate constant of non-radiative recombination

from P+
680Phe

−

kindnr 108 s−1 (AII) [75,76]

Rate constant of non-radiative recombination

from P+
680Q

−
A

kdnr 500 s−1 (AIV) [76]

Rate constant of intersystem crossing to the

triplet state from P+
680Phe

−

ktr 108 s−1 (AII) [76]

Rate constant of non-radiative recombination

from 3P+
680Phe

−

ktr02 3.3× 109 s−1 (AII) [76]

Rate constant of decay into the ground state

from 3P680Phe

kntr0 1.5× 109 s−1 (AII) [75]

Rate constant of electron transfer from YZ to

P+
680

k3 5× 106 − 107 s−1 (AIII) [78,85]

Rate constant of electron transfer from P680

to Y+
Z

k−3 106 s−1 (AIII) [57,78]

(To be continued)
* kB: Boltzmann constant, h: Planck constant, c: speed of light, T : temperature (298K), λChl: wavelength for the

maximum absorbance by antenna chlorophyll (678nm), λp: wavelength for the maximum absorbance by special pair
(680nm).
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(Continued)

Rate constant of OEC from Si “triggered” redox

state: Y+
Z S

∗
i to Si+1 state (i=0-2)

ki+1,i 109 s−1(AII) [78]

Rate constant of OEC from S3 “triggered” redox

state: Y+
Z S

∗
3 to S4 state

k4,3 1, 000 s−1 (AIV) [78]

Rate constant of OEC from S0 state to S0 “trig-

gered” redox state: Y+
Z S

∗
0

k0∗,0 1.4× 104 s−1 (AIV) [78]

Rate constant of OEC from S1 state to S1 “trig-

gered” redox state: Y+
Z S

∗
1

k1∗,1 7, 000 s−1 (AIV) [78]

Rate constant of OEC from S2 state to S2 “trig-

gered” redox state: Y+
Z S

∗
2

k2∗,2 3, 300 s−1 (AIV) [78]

Rate constant of OEC from S3 state to S3 “trig-

gered” redox state: Y+
Z S

∗
3

k3∗,3 5, 000 s−1 (AIV) [78]

Rate constant of OEC from S4 state to Y+
Z S

∗
3 k3∗,4 1× 104 s−1 (AIV) [78]

Radiation flux density to PS II Vin (AIII) ∪ (AIV)

Rate constant of electron transfer from Q−
Ato QB k41 2, 500 s−1 (AIV) [82–84,89]

Rate constant of electron transfer from Q−
A to Q−

B k42 3, 300 s−1 (AIV) [82–84,89]

Rate constant of electron transfer from Q−
Bto QA k−41 175 s−1 (AIV) [82]

Rate constant of electron transfer from Q2−
B to QA k−42 250 s−1 (AIV) [80]

Rate constant of electron transfer from Q2−
B to PQ k5 800 s−1 (AIV) [87,89]

Rate constant of electron transfer from PQH2 to

Q2−
B

k−5 80 s−1 (AIV) [81]

Rate constant of electron transfer from PQH2 to

Cyt b6f protein complex

k6 50 s−1 (AIV) [79]

Concentration of all reaction center’s states (con-

served quantity)

RT - -

Concentration of all QB site (conserved quantity) ZT - -

Concentration of PQ pool in thylakoid membrane

(conserved quantity)

QT - -

Concentration of all OEC states (conserved quan-

tity)

ST - -

Concentration of all YZ states (conserved quantity) TT - -

Concentration of total pigments in peripheral an-

tenna (conserved quantity)

VT - -

Concentration of total pigments in core antenna

(conserved quantity)

WT - -

Number of pigments at one peripheral antenna NP 200 [86]

Number of pigments at one core antenna NC 40 [75]

Ratio of amount of plastoquinon to PS II in thy-

lakoid membrane

NQ 8 Model esti-

mate [19]
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which possesses the characteristics of photosynthesis reaction system was also ana-

lyzed. Though the system treated in the present study has higher degrees of freedom

than those of the earlier three-state model, the essential feature about the stability of

EDST-like model would be the same as that of three-state model because these mod-

els have the dynamical characteristics of photosynthetic reaction system in common.

Hereafter, the case v ∈ AIV is treated. This illumination condition is almost certainly

satisfied on the surface of the Earth.

From picosecond scale to nanosecond scale

To transform the original ODEs with t to the dimensionless-time ODEs with τI,

the step 0 of coarse-graining scheme is applied, i.e., Eq. (4.1a) is divided by k̄t. The

variables changing with O(1) rates at the τI scale are W1, W0, X1, X0, Y1 and Y0 (see

Appendix B.1.1).

In step 1, quasi-conserved quantities at τI scale are introduced [70] as follows:

U1 ≡ W1 +X1 + Y1,

X01 ≡ X0 +X1,

Y01 ≡ Y0 + Y1.

(4.5)

Provided that the processes at τI scale are in pseudo-steady states for τI → ∞, the

asymptotic behaviors of W1, X1, Y1 as τI → ∞ can be described in terms of slow

variables U1, X01, Y01 as limτI→∞ W1(τI) = p(W1 | U1)U1, limτI→∞ X1(τI) = p(X1 |
U1)U1 and limτI→∞ Y1(τI) = p(Y1 | U1)U1, where p(W1 | U1) = κ̄−tRT/(X01 + Y01 +

κ̄−tRT), p(X1 | U1) = X01/(X01 + Y01 + κ̄−tRT) and p(Y1 | U1) = Y01/(X01 + Y01 +

κ̄−tRT) are the fraction (probability) functions which represent the partition ratios

of U1 (population of the total exciton over the core antenna and the RC) at the core

antenna, the open RC, and the closed RC, respectively [70]. We note that we refer

to U1 as excited population in the “core antenna” in the following (meaning the RC

included). By substituting these relations into the original ODEs and expressing them

in terms of the quasi-conserved quantities, the ODEs with τI → ∞ are obtained.

As the treatment of step 2, the transformation from the ODEs with τI → ∞ to

those with τII is achieved by dividing the ODEs by εI,II.

From nanosecond scale to microsecond scale

The variables that change with O(1) rates in the ODEs with τII are V1, U1, X2, Y2, X3,

Xtr
2 , Xtr

0 , Y tr
2 and Y tr

0 . In step 1, the variables that exponentially decay with O(1)
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rates at the τII scale are assumed to be in nonequilibrium pseudo-steady states

for τII → ∞, i.e., the total influx and total outflux in each state are in balance.

In this case, there is no quasi-conserved quantity at the τII scale and the detailed

balance is not achieved at each state for τII → ∞. As a result, coarse-graining

functions for τII → ∞ that represent V1, U1, X2, Y2, X3, X
tr
2 , Xtr

0 , Y tr
2 , Y tr

0 in terms of

the slower variables are obtained as limτII→∞ U1(τII) ≡ εII,IVΓU1 , limτII→∞ V1(τII) ≡
εII,IVΓV1 , limτII→∞ X2(τII) ≡ εII,IVΓX2 , limτII→∞ Y2(τII) ≡ εII,IVΓY2 , limτII→∞ X3(τII) ≡
εII,IVΓX3 , limτII→∞ Xtr

2 (τII) ≡ εII,IVΓXtr
2
, limτII→∞ Xtr

0 (τII) ≡ εII,IVΓXtr
0
, limτII→∞

Y tr
2 (τII) ≡ εII,IVΓY tr

2
, limτII→∞ Y tr

0 (τII) ≡ εII,IVΓY tr
0
. The explicit forms of coarse-

graining functions are presented in Appendix B.1.2.

In regard to the model of OEC, its ODEs with τII are obtained by dividing Eq. (4.2)

by k2. Provided that the variables that exponentially decay with O(1) rates at the

τII scale are in nonequilibrium pseudo-steady states for τII → ∞ as the treatment of

step 1, the coarse-graining functions, limτII→∞ TS∗
i (τII) ≡ εII,IVΓTS∗

i
for i = 0− 2, are

obtained (see Appendix B.1.2).

By substituting these coarse-graining functions into the ODEs with τII, the ODEs

with τII → ∞ are obtained. Then, in step 2, the transformation from the ODEs with

τII → ∞ to those with τIII can be achieved by dividing the former by εII,III .

From microsecond scale to millisecond scale

In the ODEs with τIII, the variables that change with O(1) rates are X01, X4, Y01, Y4,

T0 and T1 (see Appendix B.1.1). There are some combinations among the above

variables whose sums only change with O(εIII,IV) at τIII scale as X01 + X4, Y01 +

Y4, T0 + T1, X01 + Y01 + T0 and Y4 +X4 + T1. With the application of step 1, these

combinations are introduced as quasi-conserved quantities X04, Y04, T01, E and H:

X04 ≡ X01 +X4,

Y04 ≡ Y01 + Y4,

T01 ≡ T0 + T1,

E ≡ X01 + Y01 + T0,

H ≡ X4 + Y4 + T1

= X04 + Y04 + T01 − E.

(4.6)

Here, X04 is the sum of the oxidized and neutral special pairs in the open RC, Y04

is the sum of the contributions of oxidized and neutral special pairs in the closed

RC, T01 is the sum of YZ and Y+
Z in PS II whose OEC states are S0, S1, S2 and S3

except for triggered S3 (S∗
3 ), E is the sum of neutral states of tyrosine and special
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pair, and H is the sum of oxidized (hole) states of tyrosine and special pair. Besides,

by assuming the processes at τIII scale are in detailed balance, i.e., by applying the

nonequilibrium pseudo-steady state approximation, following coarse-graining func-

tions of X4, Y4 and T1 are derived: limτIII→∞ X4(τIII) ≡ ΓX4 , limτIII→∞ Y4(τIII) ≡ ΓY4

and limτIII→∞ T1(τIII) ≡ ΓT1 . In particular, the first two functions are described as

ΓX4 = p(X4 | X04)X04, and ΓY4 = p(Y4 | Y04)Y04, where p(X4 | X04) and p(Y4 | Y04)

are the probabilities of special pairs to be in neutral states at the open and the

close RCs, respectively. (The explicit forms are described in Appendix B.1.2.) The

coarse-graining functions of Y0, X0 and T0 are obtained by the quasi-conservation

relations: limτIII→∞ X01(τIII) ≡ ΓX01 = X04 − ΓX4 , limτIII→∞ Y01(τIII) ≡ ΓY01 =

Y04 − ΓY4 , limτIII→∞ T0(τIII) ≡ ΓT0 = T01 − ΓT1 .

The coarse-graining of Y3, which decays with O(1) at τIII scale, is performed by

assuming that the state is in nonequilibrium pseudo-steady state for τIII → ∞. The

coarse-graining function is thus defined as limτIII→∞ Y3(τIII) ≡ εII,IVΓY3 .

Then, the ODEs with τIII → ∞ are obtained by employing these coarse-graining

functions in the ODEs with τIII. The transformation from the ODEs with τIII → ∞ to

those with τIV is achieved by applying step 2, i.e., by dividing the ODEs with τIII → ∞
by εIII,IV. The ODEs with τIV are thus given (see Appendix B.1.1).

Coarse-grained model of PS II at millisecond scale

The ODEs with τIV obtained through the HCG method is concisely represented

with good accuracy by neglecting the terms which have O(εIII,IV) and O(εII,III) of

magnitudes. Besides, to represent the ODEs in much simpler way, we normalize the

variables as PE = E/(RT+TT), PX04 = X04/RT, PZ1 = Z1/ZT, PZ2 = Z2/ZT, PQ1 =

Q1/QT, PSi = Si/ST, PTS∗
3
= TS∗

3/TT and PTS4 = TS4/TT. Then, the ODEs with

τIV are represented as
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

dPE

dτIV
=

[
−ΦPν

′ +
{
κ−2[γ

d
X2

+ γb
X2

(1− ΦP)] + κd
nr

}ΓY4

RT

]
RT

RT + TT

+

[ 2∑
i=0

κi∗,iPSi

ΓT1

TT
+ κ0,4PTS4

]
TT

RT + TT
,

dPX04

dτIV
= −ΦPν

′ +
{
κ−2[γ

d
X2

+ γb
X2

(1− ΦP)] + κd
nr

}ΓY4

RT

+(κ41PZ0 + κ42PZ1)PY04 − (κ−41PZ1 + κ−42PZ2)PX04 ,
dPZ1

dτIV
= κ41PY04PZ0 − (κ42PY04 + κ−41PX04)PZ1 + κ−42PX04PZ2 ,

dPZ2

dτIV
= κ42PY04PZ1 − (κ−42PX04 + κ5PQ0)PZ2 + κ−5PZ0PQ1 ,

dPQ1

dτIV
=

κ5

NQ
PZ2PQ0 − (

κ−5

NQ
PZ0 + κ6)PQ1 ,

dPSi

dτIV
= κi−1∗,i−1PSi−1

ΓT1

TT
− κi∗,iPSi

ΓT1

TT
(i = 1− 3),

dPTS∗
3

dτIV
= κ3∗,3PS3

ΓT1

TT
− κ4,3∗PTS∗

3
+ κ3∗,4PTS4 ,

dPTS4

dτIV
= κ4,3∗PTS∗

3
− (κ3∗,4 + κ0,4)PTS4 ,

(4.7a)

where 

ΦP = ΦP(PE , PX04 , PY04 , PT01 , PQ1),

ΓY4 = ΓY4(PE , PX04 , PY04 , PT01),

ΓT1 = ΓT1(PE , PX04 , PY04 , PT01),

PY04 = 1− PX04 ,

PZ0 = 1− PZ1 − PZ2 ,

PQ0 = 1− PQ1 ,

PT01 = 1− PTS∗
3
− PTS4 ,

PS0 = 1−
3∑

i=1

PSi − PTS∗
3
− PTS4 .

(4.7b)

Here, we set RT = TT = ST by assuming that there is no dameged PS II. Besides,

we introduce an effective light-excitation rate of core antenna (U1), ν′ = (νU1 +

νV1γ
f
V1
)/RT, the quantum efficiency of photochemical process in core antenna, ΦP ≡

κo
P/(κ

o
P + κF + κD + κC + κQ), and the ratio of the amount of plastoquinone pool to

the amount of PS II (which is equivalent to that of RC or secondary quinone electron

acceptor, QB), NQ = QT/ZT. Dimensionless rate constants, κo
P, κF, κD, κC and κQ,

are the effective rates of deactivation of excited energy in core antenna (U1) by charge

separation from P∗
680PheQA, fluorescence, non-radiative dissipation, P+

680 quenching

and PQ quenching, respectively. The explicit forms of these effective rates and those
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of νU1 , νV1 and γf
V1

are given in Appendix B.1.2. The diagram of this coarse-grained

model is illustrated in Fig. 4.3.

The results of coarse-graining are reflected in the equations for PE and PX04 . First,

RC is coarse-grained to take two states: X04 state (P680PheQA

+P+
680PheQA) and Y04 state (P680PheQ

−
A + P+

680PheQ
−
A). The special pair in each

state is in quasi-equilibrium between oxidized and neutral states. Thus, we name this

model as double state trapping model (DSTM) in contrast to TSTM. The transition

from X04 state to Y04 state takes place with the rate given by the product of the

effective light-excitation rate ν′ of the core antenna and the probability ΦP that an

exciton in the core antenna is quenched via charge separation at the open RC. The

back transfer from Y04 to X04 occurs through the non-radiative pathway from Y4 state

(P+
680Q

−
A) to the ground state, the indirect non-radiative pathway from Y4 state to the

ground state via charge separation or intersystem crossing of X2 state (P+
680Phe

−),

and the indirect non-radiative pathway from Y4 state to the ground state via non-

photochemical quenching from the excited state created by charge recombination of

X2 state. The rate of each path is given as the product of the fraction of Y4 state in

RC, ΓY4
/RT, and κd

nr, κ−2γ
d
X2

or κ−2γ
b
X2

(1 − ΦP ), respectively. Here γd
X2

and γb
X2

represent the ratios of dissipation flow and back flow to the total outflow from X2

state, respectively (see Appendix B.1.2).

Second, the equation of the sum of the probabilities of neutral states in P680 and

YZ, PE ≡ PX01+PY01+PT0 , describes the electron transfer processes between RC and

OEC. This quantity changes temporally with the rate of RC transition (first term on

the right-hand side in the first equation of Eq. (4.7a)) and the rate of YZ transition

(second term in the first equation of Eq. (4.7a)). Here, the schematic diagram is

illustrated in Fig. 4.3(c). On one hand, in regard to the effect of RC, PE decreases

via charge separation from open RC and increases via back transfer from Y4 to the
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Z
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また、OEC の数理モデルに関して、式 (2) を k2 で割ることにより、ODEs (τII) が得られる。step.

1 の操作として、τII スケールで減衰する過程が τII → ∞ で定常状態にあると仮定すると、粗視化関数
limτII→∞ T1S∗

i (τII) ≡ εII,IVΓT1S∗
i
が得られる。（付録参照）

step. 2では、これらの粗視化関数を ODEs(τII)へ適用することにより、ODEs(τII → ∞)が得られる。得
られた方程式系の両辺を εII,III で割ることにより ODEs(τIII)への粗視化変換が達成される。

2.2.3 microseconds scale → milliseconds scale
ODEs(τIII)において、O(1)で変化する変数は、T0, T1, Y01, Y4, X01, X4 がある (付録参照)。これらについ
て、和が τIIIスケールでO(εIII,IV)しか変化しない組み合わせとして、Y01+Y4, X01+X4, T0+T1, X01+Y01+T0

がある。step. 1では、これらを τIII スケールでの擬保存量:

Y04 ≡ Y01 + Y4,

X04 ≡ X01 +X4,

T01 ≡ T0 + T1,

E ≡ X01 + Y01 + T0,

H ≡ Y4 +X4 + T1

= X04 + Y04 + T01 − E,

(6)

として導入する。ここで、Y04 は　Closed RCにある酸化状態とニュートラル状態のスペシャルペアの合計、
X04 は Open RC にある酸化状態とニュートラル状態のスペシャルペアの合計、T01 は OECが S0, S1, S2 そ
して S3状態（S3遷移状態は除く)にある PS IIの　 Yz と Y +

z の合計、E は電子が供給されてニュートラル状
態であるP680とYzの合計、H は、holeを供給されて酸化状態であるP+

680と Y +
Z の合計である。さらに、τIIIス

ケールの過程が τIII → ∞では詳細釣り合い状態にあるとみなし、擬平衡準定常状態近似を用いる。その結果、
Y4, X4, T1 の粗視化関数 limτIII→∞ Y4(τIII) ≡ ΓY4 , limτIII→∞ X4(τIII) ≡ ΓX4 , limτIII→∞ T1(τIII) ≡ ΓT1 , がそれ
ぞれ得られる。（付録参照）さらに、保存則から、limτIII→∞ X01(τIII) ≡ ΓX01 = X04−ΓX4 , limτIII→∞ Y01(τIII) ≡
ΓY01 = Y04 − ΓY4 , limτIII→∞ T0(τIII) ≡ ΓT0 = T01 − ΓT1 . また、O(1)で自身の濃度に一次の速度で減衰する
Y3 について、τIII スケールの過程が τIII → ∞では非平衡準定常状態にあると仮定することにより, Y3 の粗視
化関数 limτIII→∞ Y3(τIII) ≡ εII,IVΓY3 が求まる（付録参照）。

step. 2では、step. 1で得た粗視化関数を ODEs(τIII)に適用することにより、ODEs(τIII → ∞)が得られ
る。さらにその微分方程式系を粗視化変換することにより、ODEs(τIV) が得られる。（付録参照）

2.2.4 Coarse-graining model of PS II at milliseconds scale
以上の操作により粗視化変換された ODEs(τIV)について、O(εIII,IV),O(εII,III)の寄与を無視し、さらに変数
変換により、各状態をとる確率: PE = E/(RT +TT), PX04 = X04/RT, PZ1 = Z1/ZT, PZ2 = Z2/ZT, PQ1 =

Q1/QT, PSi = Si/ST, PT1 = T1/TT = ΓT1/TT, PT1S∗
3
= T1S∗

3/ST, PT0S4 = T0S4/ST 、コアアンテナの実
効的励起子生成速度: ν = (νVU1

+ νV1γ
f
V1
)/RT、 チラコイド膜のキノンプールと PSII(キノン Bまたは RC

と等量)の量比: NQ = QT/ZT を導入することにより、以下の微分方程式系が得られる。
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680と Y +
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ケールの過程が τIII → ∞では詳細釣り合い状態にあるとみなし、擬平衡準定常状態近似を用いる。その結果、
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ぞれ得られる。（付録参照）さらに、保存則から、limτIII→∞ X01(τIII) ≡ ΓX01 = X04−ΓX4 , limτIII→∞ Y01(τIII) ≡
ΓY01 = Y04 − ΓY4 , limτIII→∞ T0(τIII) ≡ ΓT0 = T01 − ΓT1 . また、O(1)で自身の濃度に一次の速度で減衰する
Y3 について、τIII スケールの過程が τIII → ∞では非平衡準定常状態にあると仮定することにより, Y3 の粗視
化関数 limτIII→∞ Y3(τIII) ≡ εII,IVΓY3 が求まる（付録参照）。

step. 2では、step. 1で得た粗視化関数を ODEs(τIII)に適用することにより、ODEs(τIII → ∞)が得られ
る。さらにその微分方程式系を粗視化変換することにより、ODEs(τIV) が得られる。（付録参照）

2.2.4 Coarse-graining model of PS II at milliseconds scale
以上の操作により粗視化変換された ODEs(τIV)について、O(εIII,IV),O(εII,III)の寄与を無視し、さらに変数
変換により、各状態をとる確率: PE = E/(RT +TT), PX04 = X04/RT, PZ1 = Z1/ZT, PZ2 = Z2/ZT, PQ1 =

Q1/QT, PSi = Si/ST, PT1 = T1/TT = ΓT1/TT, PT1S∗
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= T1S∗

3/ST, PT0S4 = T0S4/ST 、コアアンテナの実
効的励起子生成速度: ν = (νVU1

+ νV1γ
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)/RT、 チラコイド膜のキノンプールと PSII(キノン Bまたは RC

と等量)の量比: NQ = QT/ZT を導入することにより、以下の微分方程式系が得られる。
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ODEs(τIII)において、O(1)で変化する変数は、T0, T1, Y01, Y4, X01, X4 がある (付録参照)。これらについ
て、和が τIIIスケールでO(εIII,IV)しか変化しない組み合わせとして、Y01+Y4, X01+X4, T0+T1, X01+Y01+T0
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E ≡ X01 + Y01 + T0,

H ≡ Y4 +X4 + T1

= X04 + Y04 + T01 − E,

(6)

として導入する。ここで、Y04 は　Closed RCにある酸化状態とニュートラル状態のスペシャルペアの合計、
X04 は Open RC にある酸化状態とニュートラル状態のスペシャルペアの合計、T01 は OECが S0, S1, S2 そ
して S3状態（S3遷移状態は除く)にある PS IIの　 Yz と Y +

z の合計、E は電子が供給されてニュートラル状
態であるP680とYzの合計、H は、holeを供給されて酸化状態であるP+

680と Y +
Z の合計である。さらに、τIIIス

ケールの過程が τIII → ∞では詳細釣り合い状態にあるとみなし、擬平衡準定常状態近似を用いる。その結果、
Y4, X4, T1 の粗視化関数 limτIII→∞ Y4(τIII) ≡ ΓY4 , limτIII→∞ X4(τIII) ≡ ΓX4 , limτIII→∞ T1(τIII) ≡ ΓT1 , がそれ
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る。さらにその微分方程式系を粗視化変換することにより、ODEs(τIV) が得られる。（付録参照）

2.2.4 Coarse-graining model of PS II at milliseconds scale
以上の操作により粗視化変換された ODEs(τIV)について、O(εIII,IV),O(εII,III)の寄与を無視し、さらに変数
変換により、各状態をとる確率: PE = E/(RT +TT), PX04 = X04/RT, PZ1 = Z1/ZT, PZ2 = Z2/ZT, PQ1 =
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Y3 について、τIII スケールの過程が τIII → ∞では非平衡準定常状態にあると仮定することにより, Y3 の粗視
化関数 limτIII→∞ Y3(τIII) ≡ εII,IVΓY3 が求まる（付録参照）。

step. 2では、step. 1で得た粗視化関数を ODEs(τIII)に適用することにより、ODEs(τIII → ∞)が得られ
る。さらにその微分方程式系を粗視化変換することにより、ODEs(τIV) が得られる。（付録参照）

2.2.4 Coarse-graining model of PS II at milliseconds scale
以上の操作により粗視化変換された ODEs(τIV)について、O(εIII,IV),O(εII,III)の寄与を無視し、さらに変数
変換により、各状態をとる確率: PE = E/(RT +TT), PX04 = X04/RT, PZ1 = Z1/ZT, PZ2 = Z2/ZT, PQ1 =

Q1/QT, PSi = Si/ST, PT1 = T1/TT = ΓT1/TT, PT1S∗
3
= T1S∗

3/ST, PT0S4 = T0S4/ST 、コアアンテナの実
効的励起子生成速度: ν = (νVU1

+ νV1γ
f
V1
)/RT、 チラコイド膜のキノンプールと PSII(キノン Bまたは RC

と等量)の量比: NQ = QT/ZT を導入することにより、以下の微分方程式系が得られる。
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Figure 4.3 Schematic diagram of processes in double state trapping model
(DSTM) of PS II, expressed by Eqs. (4.7a) and (4.7b). Solid and dotted lines
represent the transfers of electron and excitation energy, respectively. (a) Dia-
gram of processes on the acceptor side of PS II, (b) diagram of processes on the
donor side of PS II and (c) diagram of transition of quasi-conserved quantities.
The RC takes two quasi variable states in the case (a). Si for i = 0 − 2 react
with Y+

Z in the case (b). For simplicity, intermediate states of OEC, Y+
Z S

∗
3 and

YZS4 are not indicated in (c). X04, Y04, T01, E and H represent quasi-conserved
quantities.

4.2.3 Treatment of the hole transfer from Y+
Z to P680

In the studies of PS II based on mathematical models, the hole transfer from Y+
Z

to P680 has often been neglected when the electron transfer between RC and OEC is

considered [19, 67, 68]. In particular, Vredenberg [67–69] constructed a model called

three state trapping model (TSTM) which describes the RC with three states based
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on the assumption that this hole-transfer process is negligible. While this model is

often classified as a different model from EDSTs [15], we will show in the following

that a kind of TSTM can be derived from our EDST-like model through the HCG

procedure.

The coarse-graining of PS II model in the case that the hole transfer from Y+
Z to

P680 is neglected is carried out in the same way as in the preceding section up to

the derivation of the ODEs with τIII because this process is situated in τIII scale. In

the following, the ODEs with τIV in this case are derived. In particular, two different

conditions of light intensity are concerned: v ∈ AIV and v ∈ AIII. It is also noted

that the rate constant of electron transfer from P680 to Y+
Z is set as 5 × 106 s−1 in

accordance with the literature [19, 68], and the Y+
Z -quenching, which is assumed to

exist in the literature [68,69], is also taken into account.

From microsecond scale to millisecond scale for v ∈ AIV

First, we consider the coarse-graining in the case of v ∈ AIV. In the case that

the hole transfer from Y+
Z to P680 is neglected, i.e., k−3 = 0, there is no quasi-

conserved quantity in the ODEs with τIII (Eq. (B.9)). Then, we assume that the

variables which decay with O(1), X4 and Y4, are in nonequilibrium pseudo-steady

states for τIII → ∞ in step 1. As a result, the coarse-graining functions of X4 and

Y4, limτIII→∞ Y4(τIII) ≡ εIII,IVΓY4 and limτIII→∞ X4(τIII) ≡ ε2III,IVΓX4 , are obtained (Ap-

pendix B.2.2). By substituting these coarse-graining functions into the ODEs with

τIII, the ODEs with τIII → ∞ are obtained.

Then, by applying step 2, the ODEs with τIII → ∞ are transformed to the ODEs

with τIV. The ODEs with τIV considering up to O(εIII,IV) and O(εII,III) terms are

expressed as
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
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= −κo

1ΓX1
+ (κo

−1 + κtr + κind
nr )ΓX2

+ εIII,IVκ3
T0

TT
ΓX4

+
κ41Z0 + κ42Z1

ZT
Y01 − (κ−41Z1 + κ−42Z2)

X01

RT
+ εIII,IVκ

d
nrΓY4 ,
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dτIV
= −κc

1ΓY1 + (κc
−1 + κtr + κind

nr )ΓY2 + κ2ΓX3 + κ3
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TT
ΓY4

−κ41Z0 + κ42Z1
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Y01 + (κ−41Z1 + κ−42Z2)
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RT
− κ−2Y01,
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dSi
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= κi−1∗,i−1

Si−1

ST
T1 − κi∗,i

Si

ST
T1 (i = 1− 3),

dTS∗
3

dτIV
= κ3∗,3

S3

ST
T1 − κ4,3∗TS
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3 + κ3∗,4TS4,

dTS4

dτIV
= κ4,3∗TS

∗
3 − (κ3∗,4 + κ0,4)TS4,

(4.9a)

T0 = TT − T1 − TS∗
3 − TS4,

S0 = ST −
3∑

i=1

Si − TS∗
3 − TS4,

Z0 = ZT − Z1 − Z2,

Q0 = QT −Q1.

(4.9b)

The schematic diagram of this model is illustrated in Fig. 4.2.3. In this coarse-grained

model, the RC takes three different states, X01, Y01 and Y3. These three states,

P680PheQA, P680PheQ
−
A and P680Phe

−Q−
A , are the same as the states which were

assumed for RC in TSTM by Vredenberg [67–69].
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Figure 4.4 Schematic diagram of three state trapping model (TSTM) of PS II
expressed by eqs 4.9a and 4.9b. Solid and dotted lines represent the transfers
of electron and excitation energy, respectively. Each yellow and red dashed line
indicates the transition path 1 of RC state that is dominant for v ∈ AIV, and the
path 2 that is not negligible for v ∈ AIII.

In particular, by neglecting the terms of O(εIII,IV) and O(εII,III), and normalizing

the variables as PX01 = X01/RT, PZ1 = Z1/ZT, PZ2 = Z2/ZT, PQ1 = Q1/QT, PSi =

Si/ST, PTS∗
3
= TS∗

3/ST and PTS4 = TS4/ST, the ODEs on the acceptor side of PS

II are concisely represented as

dPX01

dτIV
= −ν′Φo

P + (κ41PZ0 + κ42PZ1)PY01 − (κ−41PZ1 + κ−42PZ2)PX01 ,

dPZ1

dτIV
= (κ41PZ0 − κ42PZ1)PY01 − (κ−41PZ1 − κ−42PZ2)PX01 ,

dPZ2

dτIV
= κ42PZ1PY01 − κ−42PZ2PX01 − κ5PZ2PQ0 + κ−5PZ0PQ1 ,

dPQ1

dτIV
=

κ5

NQ
PZ2PQ0 −

κ−5

NQ
PZ0PQ1 − κ6PQ1 ,

(4.10a)
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
PY01 = 1− PX01 ,

PZ0 = 1− PZ1 − PZ2 ,

PQ0 = 1− PQ1 ,

(4.10b)

and those on the donor side are expressed as

dPT1

dτIV
= ν′Φo

P −
3∑

i=0

κi∗,iPSiPT1 ,

dPSi

dτIV
= κi−1∗,i−1PSi−1

PT1
− κi∗,iPSi

PT1
(i = 1− 3),

dPTS∗
3

dτIV
= κ3∗,3PS3PT1 − κ4,3∗PTS∗

3
+ κ3∗,4PTS4 ,

dPTS4

dτIV
= κ4,3∗PTS∗

3
− (κ3∗,4 + κ0,4)PTS4 ,

(4.11a)


PT0 = 1− PT1 − PTS∗

3
− PTS4 ,

PS0 = 1−
3∑

i=1

PSi − PTS∗
3
− PTS4 .

(4.11b)

Here the effective light-excitation rate of core antenna, ν′ = (νU1 + νV1γ
f
V1
)/RT, the

ratio NQ = QT/ZT of the amount of plastoquinon to the whole PS II, the quantum

efficiency of charge separation in open RC at core antenna, Φo
P = κo

P/(κF + κo
P +

κD + κC + κQ + κZ), and the Y+
Z -quenching rate, κZ ≡ κz(T1 + TS∗

3 ), are introduced.

This coarse-grained model is separated into RC system (Eqs. (4.10a) and (4.10b))

and OEC system (Eqs. (4.11a) and (4.11b)) with respect to electron transfer. This

means that the supply of electron from donor side of PS II to RC is always enough

(sufficiently fast in time) and thus the rate of charge separation is not limited by the

Kok cycle in OEC. However, in the case that Y+
Z quenching is taken into account, the

temporal evolution of RC is affected by that of Y+
Z . Besides, the RC takes two states

which do not include the oxidized special pair in this case. This means that reaction

pathway “path 2” indicated in Fig. 4.2.3 is negligible and thus the “path 1” reaction is

dominant with respect to the transition of RC state. Because of little accumulation of

Y4 state (P+
680Q

−
A), which is associated with the absence of hole transfer from Y+

Z to

P680, the effect of non-radiative pathways from Y4 state to the ground state of open

RC is negligible and thus not included in this model. In this way, the transition of

RC proceeds only in path 1 in Fig. 4.2.3.
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From microsecond scale to millisecond scale for v ∈ AIII

In this subsection, the coarse graining in the case of v ∈ AIII is considered. In this

case, the light-excitation rate is scaled as ν = v/k3 and the coarse graining functions

are defined by factoring out εII,III as limτII→∞ U1(τII) ≡ εII,IIIΓU1 , limτII→∞ X1(τII) ≡
εII,IIIΓX1 , limτII→∞ Y1(τII) ≡ εII,IIIΓY1 , limτII→∞ X2(τII) ≡ εII,IIIΓX2 , limτII→∞ Y2(τII) ≡
εII,IIIΓY2 and limτII→∞ X3(τII) ≡ εII,IVΓX3 . (The explicit forms of coarse-graining func-

tions are given in Appendix B.2.3.)

The variables which decay with O(1) rates in the ODEs with τIII are X01, X4 and

Y4. In step 1 treatments, these variables are assumed to be in nonequilibrium quasi-

steady states for τIII → ∞. Thus, the coarse-graining functions of these variables are

obtained as limτIII→∞ X01(τIII) ≡ εIII,IVΓX01 ,

limτIII→∞ Y4(τIII) ≡ εIII,IVΓY4 , and limτIII→∞ X4(τIII) ≡ ε2III,IVΓX4 . By substituting these

results to the ODEs with τIII, the ODEs with τIII → ∞ are obtained. Then, by applying

step 2, the transformation to the ODEs with τIV is carried out.

By neglecting the O(εIII,IV) and O(εII,III) terms, and normalizing the variables as

PY01
= Y01/RT, PZ1

= Z1/ZT, PZ2
= Z2/ZT, PQ1

= Q1/QT, PSi
= Si/ST, PTS∗

3
=

TS∗
3/ST and PTS4

= TS4/ST, the ODEs with τIV on the acceptor and donor sides of

PS II are concisely expressed as

dPY01

dτIV
= − ν′

εIII,IV
Φc

P + (κ41PZ0 + κ42PZ1)PX01 ,

dPZ1

dτIv
= κ41PZ0 − κ42PZ1 ,

dPZ2

dτIV
= κ42PZ1 − κ5PZ2PQ0 + κ−5PZ0PQ1 ,

dPQ1

dτIV
=

κ5

NQ
PZ2PQ0 −

κ−5

NQ
PZ0PQ1 − κ6PQ1 ,

(4.12a)


PY3 = 1− PY01 ,

PZ0 = 1− PZ1 − PZ2 ,

PQ0
= 1− PQ1,

(4.12b)

and
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

dPT1

dτIV
=

ν′

εIII,IV
Φc

P + κ3PT0

ΓY4

RT
−

3∑
i=0

κi∗,iPSiPT1 ,

dPSi

dτIV
= κi−1∗,i−1PSi−1PT1 − κi∗,iPSiPT1 (i = 1− 3),

dPTS∗
3

dτIV
= κ3∗,3PS3PT1 − κ4,3∗PTS∗

3
+ κ3∗,4PTS4 ,

dPTS4

dτIV
= κ4,3∗PTS∗

3
− (κ3∗,4 + κ0,4)PTS4 ,

(4.13a)


PT0 = 1− PT1 − PTS∗

3
− PTS4 ,

PS0 = 1−
3∑

i=1

PSi − PTS∗
3
− PTS4 ,

(4.13b)

respectively. Here, the light-excitation rate of core antenna, ν′ = (νU1 + νV1γ
f
V1
)/RT,

the ratio of plastoquinone to PS II, NQ = QT/ZT, and the quantum efficiency of

charge separation from closed RC, Φc
P = κc

P/(κF+κD+κo
P+κc

P+κC+κQ+κZ), are

introduced. In this model, the RC takes two states, Y01 and Y3, which are different

from those for the model in the v ∈ AIV case. This difference reflects that the path

2, which is negligible in v ∈ AIV case, is not negligible in this case. The transition

from Y01 state (P680PheQ
−
A) to Y3 state (P680Phe

−Q−
A)occurs with the rate given

as the product of the effective light-excitation rate ε−1
III,IVν of core antenna scaled to

τIV scale and the quantum efficiency of charge separation Φc
P (∼ O(εII,III)) from the

closed RC at core antenna. We note that the path 1 is active in this model though

there is no variable which explicitly expresses this path. The effects of this path

are reflected in the term describing the electron transfer rate from RC to Z0 and Z1

states. The reason why these rate are proportional to the amount of donors is that all

RCs in this model, Y01 and Y3 states, always have the ability to supply electrons to

the downstream side. This means that the electron flow from Y01 state to X01 state

(P680PheQA) exists. In this case the transition from X01 to Y01 proceeds sufficiently

fast in contrast to the transition from Y01 to X01, and thus the transition of X01 is

invisible at the τIV scale.

4.3 Results

FI is known to change the time-course pattern from the O-J-I-P type to the O-J-

D-I-P type, the latter having a dip D after the inflection point J depending on the

light intensity [71, 72]. The experimental results at various light-intensity conditions
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are illustrated in Fig. 4.5. In this section, this light-intensity dependent change of FI

pattern is simulated and analyzed based on the coarse-grained models derived in the

preceding section by assuming the dark adapted condition.

Figure 4.5 The intensity of fluorescence as a function of time for various incident
photon flux densities. The change of pattern of FI is observed depending on the
incident photon intensity at, I = 3, 5, 8, 10, 15mmol photonsm−2 s−1, from Pea
Leaf. The intensity of fluorescence is normalized by the value at t = 0, F0.
(Modified from Schansker et al. [71].)

4.3.1 Results based on the DSTM

I present here the results of the reduced set of ordinary differential equations based

on the DSTM, which are expressed by Eqs. (4.7a) and (4.7b), and illustrated in Fig.

4.3. These equations are obtained by applying the HCG method to the full PS II

model including the process of hole transfer from Y+
Z to P680. The initial condition

of the variables are set as those for non-reduced states, i.e., PE = 2, PX04 = 1, PZ0 =

1, PQ0 = 1, PT01 = 1, PS0 = 0.25, PS1 = 0.75, and otherwise 0.

In the following results, there are no units of concentration because we simulate the

dynamics of the probabilities of each variable state which are defined as the ratios

of each concentration to the total concentration. The ratio of total amounts, PSII/

OEC/ LHC II / PQ pool, is assumed to be 1/1/1/8 for the simulation. Besides, the

light-excitation rate v for PS II is employed for the simulation. Here, v = 4, 000 s−1
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Figure 4.6 Simulated FIs with various light excitation rates, (a) for the case with
P+

680-quenching and (b) for those without. Light excitation rate for PS II, v, is
set as 4, 000, 6, 000, 10, 000, 15, 000 and 20, 000 s−1. The fluorescence intensity is
normalized by the value at t = 0, F0.

corresponds approximately to the light-flux density of 3mmol photonsm−2 s−1 [12].

This estimation is based on the chlorophyll (a + b) concentration in a green leaf (about

15 µmol cm−2) and the average chlorophyll (a + b) molecular mass (900gmol−1).

These lead to 0.017 µmol cm−2 chlorophyll (a + b) concentration. If light irradiance

of 3 mmolm−2s−1 is used, the ratio (3mmolm−2 s−1)/(0.017µmol cm−2) gives the

excitation rate of one chlorophyll as 18 s−1. Then, assuming 250 chlorophylls per PS

II, the excitation rate of one PS ll is given as 4500 s−1. If 80-90 % of irradiance is

absorbed, the excitation rate is estimated as 3600 s−1 to 4050 s−1.

Simulated FIs for various light intensities are plotted in Fig. 4.6. In previous ex-
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Figure 4.7 Simulated FI (red solid line, left axis) and time courses of the oc-
cupancy ratios of quenchers (right axis) at v = 15, 000 s−1. PX01(green square),
PX4 + PY4(blue circle) and PQ0(magenta triangle) indicate the occupancy ra-
tios of each quencher, P680PheQA, P

+
680 and PQ, respectively. The fluorescence

intensity is normalized by the value at τIV = 0, F0.

perimental studies [71, 72], the light-intensity dependent changes of the FI transient

pattern from the O-J-I-P to the O-J-D-I-P were observed. In our simulation, the

P+
680 quenching is taken into account in the case (a) and neglected (i.e., setting the

P+
680-quenching rate kc = 0) in the case (b). In the case (a), the light-intensity depen-

dent changes of the FI pattern from O-J-I-P to O-J-D-I-P are reproduced well. These

changes are in accord with the experimental results shown in Fig. 4.5. In the case (b),

in contrast, the fluorescence transient pattern of J-D-I does not appear even if the

light intensity is high. These results suggest that the appearance of the fluorescence

transient pattern J-D-I reflects the presence of P+
680 quenching.

The time courses of the occupancies of P680PheQA, P+
680 and PQ, denoted respec-

tively as PX01 , PX4 + PY4 and PQ0 , are plotted with FI at v = 15, 000 s−1 in Fig.

4.7. The ratio of the X01 state to total RC, PX01 , which is set as PX04 = 1 at t = 0,

rapidly decreases until the J peak appears. At the same time, the ratio of P+
680 in

RC, PX4 + PY4 , gradually increases. Then the fluorescence intensity increases, which

means that the magnitude of decrease of the rate of photochemical quenching, κo
P, via

charge separation from open RC is larger than that of increase of the P+
680-quenching

rate, κC, and thus the quantum efficiency ΦF of fluorescence increases. After the
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decreasing rate of PX01 slows down, PX4 + PY4 increases again. Then the peak J

appears, indicating that ΦF starts decreasing according to the increase of κC. Subse-

quently, PX4 +PY4 continues to increase and then comes to a peak at about 1 ms. At

this time, κC and ΦF take a local maximum and a local minimum, respectively, and

the dip D appears. Thereafter, ΦF increases along with the decrease of PX4 + PY4 .

The inflection point I of FI appears when the decreasing rate of PX4 + PY4 deceler-

ates. Subsequently, the fluorescence intensity continues increasing under the effects

not only of photochemical quenching and P+
680 quenching but also of PQ quenching.

Finally, the peak P appears when the PQ and all other states come to steady states.

To analyze the situations of electron flows of PS II system, the ratios of the

rate of outflux to that of influx concerning each state of electron donors/acceptors

are plotted with FI at v = 15, 000 s−1 in Fig. 4.8. The P+
680 quenching is taken

into account in the case (a) and neglected (i.e., kc = 0) in the case (b). The

ratios of outflux to influx concerning the transitions of the following states,

Q−
A(P680PheQ

−
A + P+

680PheQ
−
A), Q

2−
B , PQ, Y+

Z + P+
680 and YZ +Y+

Z , are indicated as

V Y04
out /V

Y04

in , V Z2
out/V

Z2

in ,V Q1

out/V
Q1

in ,V H
out/V

H
in and V T01

out /V
T01

in , respectively. Here, V x
out

and V x
in indicate the sum of the rates of outfluxes from the state x and those of

influxes into the state x in ODEs, respectively. Concerning the case (b) where P+
680

quenching is neglected, it is clear that the timings at which the characters J’, I’ and

P’ of FI appear in the diagram correspond to those at which V Y04
out /V

Y04

in , V Z2
out/V

Z2

in

and V Q1

out/V
Q1

in become almost unity. This means that each pattern of FI, i.e., J’, I’ or

P’, reflects that the transition of Q−
A , Q

2−
B or PQ state has come to the quasi-steady

state, respectively. This correspondence indicates that the amount of Q−
A , which

governs ΦF via photochemical quenching rate, κo
P, changes with the rate affected by

the states of donors/acceptors, QA, QB and PQ, on the downstream side of PS II,

which become to steady states in turn. On the other hand, in the case (a) where

P+
680 quenching is taken into account, the FI pattern does not clearly reflect anymore

the timings at which QA and QB have become quasi-steady states. In this case, the

peak J and the dip D appear after the transition of QA state comes to a quasi-steady

state. The timing at which the inflection point I appears corresponds to that at

which H and T01 have come to quasi-steady states. This means that the Kok cycle,

which represents the transition of states of OEC located on the donor side of PS

II, has become a quasi-steady state. At this time, the decreasing rate of the P+
680

state starts decelerating since P+
680 accepts electrons provided by OEC. This causes

the decelerations of the decrease of P+
680-quenching rate κC, and the increase of the
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Figure 4.8 Simulated FI (upper graph) and the ratios of fluxes about electron
donors/acceptors (lower graph) at v = 15, 000 s−1 for the case (a) where P+

680-
quenching is taken into account and (b) neglected. The ratios of outflux to
influx about each variable state, Q−

A(Y04), Q2−
B (Z2), PQ(Q0), P+

680 +Y+
Z (H) and

YZ +Y+
Z (T01), are defined as V Y04

out /V Y04
in (green open square), V Z2

out/V
Z2
in (blue

closed square), V Q1
out /V

Q1
in (magenta open circle), V H

out/V
H
in (aqua closed circle)

and V T01
out /V T01

in (yellow open triangle), respectively. The fluorescence intensity is
normalized by the value F0 at t = 0.

quantum efficiency ΦF of fluorescence. The timing at which the peak P appears

corresponds to that at which PQ has come to a steady state in the same way as in

the case (b).

4.3.2 Results based on the TSTM

The TSTM, expressed by Eqs. (4.9a) and (4.9b), and illustrated in Fig. 4.2.3, is

obtained by applying the HCG method to the full PS II model without the process



4.3 Results 75

Figure 4.9 Simulated FIs with various photoexcitation rates (a) for the case
with Y+

Z quenching and (b) for those without. Photoexcitation rate for PS II v

is set as 4, 000, 6, 000, 10, 000, 15, 000 and 20, 000 s−1. The fluorescence intensity
is normalized by the value at τIV = 0, F0.

of hole transfer from Y+
Z to P680. The results based on this model are presented

below. The initial values of the variables are set as PX01 = 1, PT0 = 1, PZ0 = 1, PQ0 =

1, PS0 = 0.25, PS1 = 0.75, and otherwise 0.

Simulated FIs for various incident light intensities are plotted in Fig. 4.9. In the

case (a) Y+
Z , P

+
680 and PQ quenchings are taken into account, while in the case (b) only

P+
680 and PQ quenchings are taken into account but Y+

Z quenching is neglected. The

Y+
Z quenching is due to a hypothetical quencher which was proposed in Vredenberg’s
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Figure 4.10 Simulated FI and time course of the states of quenchers at v =

15, 000 s−1. The FI (red solid line, left axis) and the ratios of quenchers to each
of their maximum values (right axis) are plotted. PX01(green square), PX4 +

PY4(blue circle), PQ0(magenta triangle) and PT1 +PTS∗
3

(aqua inverted triangle),
correspond to the quenchers P680PheQA, P

+
680, PQ and Y+

Z , respectively. The
fluorescence intensity is normalized by the value at τIV = 0, F0.

FIA [69]. We set this Y+
Z -quenching rate to kz = 108 s−1 in the case (a). In this

case, the light-intensity dependent changes of FI pattern from O-J-I-P to O-J-D-I-P

observed by Schansker et al. [71, 72] are reproduced well. In the case (b), on the

other hand, the fluorescence transient pattern of J-D-I does not appear at all. These

results suggest that the fluorescence transient pattern J-D-I requires the presence of

Y+
Z quenching in the case that the hole transfer from Y+

Z to RC is neglected.

The time courses of PX01 , PX4+PY4 , PQ0 and PT1+PTS∗
3

which are the occupancies

of P680PheQA, P
+
680, PQ and Y+

Z +Y+
Z S

∗
3, respectively, are plotted with FI at v =

15, 000 s−1 in Fig. 4.10. For PX04 = 1 at t = 0, PX01 rapidly decreases and PT1 +

PTS∗
3

quickly increases up to a local maximum before the J peak appears. Then the

fluorescence intensity increases, which means that the magnitude of decrease of the

photochemical quenching rate κo
P via charge separation from open RC is larger than

that of increase of the Y+
Z -quenching rate κZ, and thus the quantum efficiency of

fluorescence, ΦF ≡ κF/(κ
o
P + κc

P + κF + κD + κC + κQ + κZ), increases. After the

decreasing rate of PX01 decelerates, PX4 +PY4 starts decreasing and then reaches the

local minimum. Thus, the peak J appears, which indicates that κZ and ΦF reach
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Figure 4.11 Simulated FI (upper graph) and the ratios of fluxes about electron
donors/acceptors (lower graph) at v = 15, 000 s−1. The ratio of outflux to influx
about each variable state: Q−

A(Y04), Q2−
B (Z2), PQ(Q0) and Y+

Z +Y+
Z S

∗
3(T1+TS∗

3 )
is defined as V Y04

out /V Y04
in (green open square), V Z2

out/V
Z2
in (blue closed square),

V Q1
out /V

Q1
in (magenta open circle) and (V T1

out + V
TS∗

3
out )/(V T1

in + V
TS∗

3
in ) (aqua closed

circle), respectively. The fluorescence intensity is normalized by the value F0 at
t = 0. The Y+

Z -quenching is taken into account in the case (a) and is neglected
in the case (b).

the local minimum and the local maximum, respectively. Subsequently, PT1 + PTS∗
3

continues to increase and then comes to the local maximum. At this time, κZ and

ΦF take the local maximum and local minimum, respectively, and the dip D appears.

After that ΦF increases along with the decrease of PT1 + PTS∗
3
. The inflection point

I of FI appears when the decreasing rate of PT1 + PTS∗
3

decelerates. Subsequently,

the fluorescence intensity continues increasing under the effects of photochemical, Y+
Z

and PQ quenchings. The peak P appears when the PQ and all other states come to

steady states. In this case based on TSTM, the value of PX4 +PY4 is almost zero and
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does not accumulate in comparison to other states, indicating that P+
680 quenching is

not effective.

To analyze the states of electron fluxes of PS II system, each ratio of outflux to influx

concerning each state of electron donors/acceptors is plotted with FI at v = 15, 000 s−1

in Fig. 4.11. The Y+
Z quenching is taken into account in the case (a) and neglected

(i.e., kz = 0) in the case (b). The ratios of outflux to influx concerning the transi-

tions of following states, Q−
A(P680PheQ

−
A), Q

2−
B , PQ and Y+

Z +Y+
Z S

∗
3, are indicated

as V Y01
out /V

Y01

in , V Z2
out/V

Z2

in ,V Q1

out/V
Q1

in and (V T1
out+V

TS∗
3

out )/(V T1

in +V
TS∗

3

in ), respectively. On

the one hand, in the case (b), where the Y+
Z quenching is neglected, it is clear that

the timings at which the patterns J’, I’ and P’ of FI appear correspond to those at

which the transitions of Q−
A , Q

2−
B and PQ states lead to quasi-steady states similarly

as in Fig. 4.11(b). On the other hand, in the case (a), where the Y+
Z quenching is

taken into account, the FI pattern does no longer reflect clearly the timings when QA

and QB have come to quasi-steady states. In this case, the peak J appears after the

transition of QA state leads to the quasi-steady state. At the instant when the peak J

appears, (V T1
out+V

TS∗
3

out )/(V T1

in +V
TS∗

3

in ) takes the value of unity with a negative gradient

with respect to time. This means that the amount of Y+
Z +Y+

Z S
∗
3 starts increasing at

this time. At the instant when the dip D appears, the same ratio takes the value of

unity with a positive gradient with respect to time. This indicates that the amount of

Y+
Z +Y+

Z S
∗
3 starts decreasing at this timing. The instant at which the inflection point

I appears corresponds to that at which the ratio becomes stationary. This means that

the transition of Y+
Z +Y+

Z S
∗
3, i.e., the transition of states on donor side of PS II, has

come to a quasi-steady state. The timing at which the peak P appears corresponds

to that at which PQ has become to a steady state similarly as in the case (b).

4.4 Discussion

First, with respect to the states of RC in the coarse-grained models at millisecond

scale (Eqs. (4.7a) and (4.7b), and Eqs. (4.9a) and (4.9b)) obtained through the applica-

tion of the HCG method to the full PS II models, it is confirmed that the RC takes two

or three variable states depending on whether the hole transfer from Y+
Z to P680 is in-

cluded or not, respectively, in the PS II model. In the former case, the variables of RC

are given as quasi-conserved quantities, [P680QA + P+
680QA] and [P680Q

−
A + P+

680Q
−
A ],

where the transition between P680 and P+
680 is in equilibrium at both open and closed

RC. In the latter case, the RC state changes between P680PheQA, P680PheQ
−
A and



4.4 Discussion 79

P680Phe
−Q−

A . The light-intensity dependent transition of the dominant states of RC

between the pairs of (P680PheQA, P680PheQ
−
A) and (P680PheQ

−
A , P680Phe

−Q−
A) is re-

vealed on the basis of the difference between the coarse-grained models at millisecond

scale for the different regimes of light intensity. This means that the dominant path to-

wards P680PheQA state or P680Phe
−Q−

A state concerning the outflux from P680PheQ
−
A

depends on the incident light intensity. To investigate this light-dependent change of

the transition pathway of RC states, the ratios of the transition flux VY3,Y01 from

Y01 (P680PheQ
−
A) to X01 (P680PheQA), to the flux VX01,Y01 from Y01 (P680PheQ

−
A)

to Y3 (P680Phe
−Q−

A) in terminal steady states at various photoexcitation rates v’s

for PS II are plotted in Fig. 4.12. The case (a) where the path of hole transfer from

Y+
Z to P680 is included in the PS II model and the case (b) where that path is ne-

glected in the model are shown in Fig. 4.12. The parameters for the path are set as

k3 = 107 s−1, k−3 = 106 s−1 in the former case and k3 = 5×106 s−1, k−3 = 0 s−1 in the

latter case. In the case (a), if v is lower than ∼ 105 s−1, VY3,Y01/VX01,Y01 is sufficiently

small and RC takes X04 state or Y04 state, whereas if v is close to 107 s−1, the ratio

is close to unity and thus Y3 state appears. In the case (b), where VY3,Y01
/VX01,Y01

is larger than that of case (a), the ratio is close to unity at v ∼ 105 s−1, whereas

the pair of RC states (P680PheQA, P680PheQ
−
A) is dominant when v is smaller than

∼ 103 s−1. On the other hand, the pair (P680PheQ
−
A , P680Phe

−Q−
A) is dominant when

v is larger than ∼ 5× 104 s−1. This is in agreement with the result of coarse-graining

of PS II whose coarse-grained models are different according to the photoexcitation

rate ranges. At the point where the flux ratio VY3,Y01/VX01,Y01 is unity, the ratio of

PY01 to PY3 becomes unity. The Y3 state is dominant when v is greater than the value

of this point. Up to v ∼ 103 s−1, there is no difference in the ratios of open and closed

RCs at the steady states between (a) and (b). However, when v is greater than that

value, there is a clear difference in the ratios of Y3 state between (a) and (b). These

results suggest that the hole transfer from Y+
Z to P680 reduces VY3,Y01 and suppresses

the production of P680Phe
−Q−

A .

Second, Figs. 4.7 and 4.10 indicate that the concentration of P680PheQA gradually

decreases until the peak P appears in both the DSTM and the TSTM. Especially in

the TSTM, Fig. 4.7 illustrates that the ratio of P680PheQ
−
A state in RC at the J peak

is smaller than 0.9, which is in contradiction to Vredenberg’s assumption for FIA that

almost all the RCs are in P680PheQ
−
A state at the J peak. In contrast, we have found

out that the transition of QA is in quasi-steady state when the J peak appears (Fig.

4.11).
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Figure 4.12 The ratio VX01,Y01/VY3,Y01 (red solid line, left axis) of outflux for
path 1 to that for path 2 from P680PheQ

−
A (Y01 state), and the occupancy of

each state in RC (right axis) at different light excitation rate v for PS II. In the
case (a), where the hole transfer from Y+

Z to P680 is taken into account, PX04

and PY04 indicate the ratios for [P680QA + P+
680QA] and [P680Q

−
A + P+

680Q
−
A ] in

the RC, respectively. In the case (b), where the hole transfer from Y+
Z to P680

is neglected, PX01 and PY01 indicate the ratios for P680PheQA and P680PheQ
−
A

in the RC, respectively. In both cases, PY3 indicates the ratio of P680Phe
−Q−

A

in the RC. All data are taken at the terminal steady states of the coarse-grained
model at microsecond scale.
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Third, the change of FI pattern depending on the light intensity is accounted for

based on P+
680 quenching in the DSTM and Y+

Z quenching in the TSTM. While in the

TSTM the simulated FI shows a characteristic dependence on light intensity similar

to that observed in experiments when the Y+
Z -quenching rate is set as kz = 108 s−1,

this quencher is a hypothetical one and lacks the experimental verification. On the

other hand, P+
680 quenching mechanism, which explains the J-D-I pattern of FI in the

DSTM, has experimental evidences [65].

As a result of transformation from a detailed model of PS II to a coarse-grained

model, we have carve out the principal pathways at millisecond scale through the

application of HCG. The process of hole transfer from YZ to RC is not neglected in

the course of this procedure, but rather renormalized into the coarse-graining func-

tions which guide us to the point where the processes at microsecond scale sufficiently

proceed. This feature affects the coarse-grained structure of reaction network at mil-

lisecond scale and thus plays an important role for the description of the accumulation

of P+
680 state. For these reasons, we judge that the DSTM is a more reliable PS II

model at millisecond scale than the TSTM. The assumption that the hole transfer

from YZ to RC is negligible does not seem to be pertinent in the case that the incident

light intensity is high and thus the rate of charge separation would be transiently lim-

ited by the donor-side processes of PS II. It is noted that the mathematical structure

derived through the HCG method is robust for the delicate variances of parameter

values. This structure does not change unless the parameters of the original full model

change their orders of magnitudes.

4.5 Conclusions

The coarse-grained models of PS II at millisecond scale which correspond to an

EDST-like model were systematically elucidated through the HCG method in two

different cases. These models appropriately reproduce the light-intensity dependent

change of FI pattern from O-J-I-P to O-J-D-I-P. In both models, the J-D-I pattern

reflects the states of the donor side of PS II. On the one hand, in the case that the

hole transfer from Y+
Z to P680 is accounted for in the PS II model, the J-D-I pattern

is explained on the basis of P+
680 quenching. On the other hand, in the case that

the hole transfer process is neglected, the J-D-I pattern is explained on the basis of

Y+
Z quenching. In the former case, the states of RC are described by two effective

states. Each state is defined as the sum of P+
680 and P680 which are in equilibrium
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at microsecond scale in open RC or closed RC, respectively. The coarse-grained

model in the latter case has three variable states for RC, P680PheQA, P680PheQ
−
A

and P680Phe
−Q−

A . These states are equivalent to the states which were assumed to

be taken by RC in Vredenberg’s TSTM.

These coarse-grained models obtained through the application of HCG contain the

information about fast timescale processes in a renormalized way. In both the DSTM

and the TSTM, the picosecond-scale processes constitute a quasi-isolated system and

thus provide the quasi-conserved quantities. In the DSTM, the nanosecond-scale pro-

cesses are renormalized to give the quantum efficiencies of core antenna and the rate

of the indirect non-radiative recombination path from P+
680PheQ

−
A state. Besides, the

microsecond-scale processes form the quasi-conserved quantities in this model. In

TSTM, the nanosecond-scale processes are renormalized to give the quantum efficien-

cies of the core antenna. In particular, in the case that the photoexcitation rate v

is in microsecond-scale, it is revealed that the transition path from P680PheQ
−
A to

P680Phe
−Q−

A is no longer negligible. In this case, the quantum efficiency of charge

separation from closed RC, that contains the information of nanosecond-scale pro-

cesses in a renormalized way, is introduced.

The present study has developed a model-based analysis of the light-intensity de-

pendent change of transition pathways. It then suggests that the hole transfer from

Y+
Z to P680 suppresses the production of over-reduced state P680Phe

−Q−
A in the case

that the photoexcitation rate v is about 104 s−1 or higher.

We have thus found that the coarse-grained EDST-like models derived through

the application of the HCG method give comprehensive descriptions with respect

to the dynamic properties of PS II at timescales of interest. It is remarkable that

the mathematical coarse-graining procedures naturally provide those physicochemical

pictures that are consistent with biological observations.
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Chapter 5

Coarse-Graining of the Model for
Photosynthetic Processes of PS I

5.1 Introduction

Photosystem I (PS I) is one of the most important protein complex of photosynthesis

as well as PS II. The redox potential (energy level) of electron transferred from H2O

is elevated by these two photosystems and then the electron obtains the reduction

power high enough to reduce NADP+ (nicotinamide adenine dinucleotide phosphate).

Meanwhile, other electron transfer steps dissipate the excitation energy, hence the

energy diagram of electron transfer steps on thylakoid membrane has a zig-zag feature

called “Z-scheme” [23]. The dynamics of electron transfer in PS I is observed by means

of I820 signal, which reflects the accumulations of P+
700 and oxidized Pc [94, 95]. The

major peak of the fluorescence emitted from PS I at room temperature is observed at

725nm [96,97]. Therefore, its contribution to the Chl a fluorescence characterized by

a band peak at 685nm, which is discussed in Chapter 3, is regarded to be small.

The electron transport system in PS I is supposed to possess regulation mechanisms.

The charge recombination process is suggested to work for regulation of electron

transfer when electrons are congested in PS I. The congestion of electrons in PS I

occurs in the induction time. The dynamics of the electron transport system in PS

I is reflected by the characteristic time course profile of the I820 signal. However,

the analysis of this time course pattern is difficult because the reaction model used

for analysis is too complex to comprehensively understand the phenomena on the

basis of the model. The reaction network of electron transfer in PS I is not only

complicated but also temporally multiscale as in PS II. In this chapter, a kinetic model
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of excitation-energy transfer and electron transfer for PS I is treated. If one deals with

all the possible combinations of the states of N electron carriers which take oxidized

or reduced states, the dimension of the state space of electron carriers is equal to 2N .

This dimensionality can be reduced by extracting the principal reaction network by

means of the multiscale property of the original reaction model. In this way, I attempt

to understand the induction phenomena of PS I based on the simple and mono-scale

model extracted from the complex and multiscale model. The hierarchical coarse-

graining in time of the kinetic model of PS I at picosecond, nanosecond, microsecond

and millisecond scales are attempted below.
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5.2 Models and Methods

P           FxFAFBA0AA1A 
A0BA1B

P+A0A-

P+A1A-

P+A0B-

P+A1B-

P+FX-

P+FA-

P+FB-

P*           FxFAFBA0AA1A 
A0BA1B

Antenna

Antenna*

photo-excitation

PS I Peripheral Antenna PS I Reaction Center

A-branch B-branch

Figure 5.1 Schematic diagram of excitation-energy and electron transfer pro-
cesses following a single excitation in PS I. Solid and dashed lines indicate the
electron transfer and the excitation-energy transfer, respectively. Each color in-
dicates different time-scales as follows. Red: picoseconds, yellow: nanoseconds,
blue: microseconds, black: milliseconds. Each RC, except for the ground and
the excited states, is characterized by the reduced site.

5.2.1 Kinetic model of PS I

First, the reaction network of electron transfer in PS I following the single excitation

is studied as a simple case [98]. The diagram of this reaction including picosecond to

microsecond scales is illustrated in Fig. 5.1. PS I has a heterodimeric reaction center
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that consists of the two near-symmetrical electron transfer branches, A-branch and

B-branch. Though the amino-acid identity of these branches is about 60 % and thus

there are some functional differences, the probabilities of the occurrences of charge

separation are nearly equal in both branches [99]. The kinetic model of this reaction

is expressed with the use of the ODEs (Eq. (5.2) below). The notations are assigned

to the variables as follows:

WI1 : [antenna∗];WI0 : [antenna];XI1 : [P∗];

XI2A : [P+A−
0A];XI2B : [P+A−

0B];

XI3A : [P+A−
1A];XI3B : [P+A−

1B];

XI4 : [P+F−
X ];XI5 : [P+F−

A ];XI6 : [P+F−
B ],

(5.1)

where [ ] means the concentration. P is the primary donor, P700. Both A0A and

A0B are Chl a molecules that are the first electron acceptors of path A and path B,

respectively. A1A and A1B are phylloquinone molecules that are the next electron

acceptors of path A and path B, respectively. The electron transfer reactions proceed

over the ion-sulfur clusters, FX, FA and FB in turn. The rate constants are shown in

Table 5.1.



dWI1
dt = V WI0

WIT
− kdWI1 − kp+

XIT−XI0−XI1
XIT

WI1 − k0WI1
XI0
XIT

+ k−0
WI0
WIT

XI1,
dXI0
dt = −k0WI1

XI0
XIT

+ k−0
WI0
WIT

XI1 + kdXI1,
dXI1
dt = k0WI1

XI0
XIT

− k−0
WI0
WIT

XI1 − kdXI1 − kp+
XIT−XI0−XI1

XIT
XI1

−(k1 + k10)XI1 + k−1XI2A + k−10XI2B ,
dXI2A

dt = k1XI1 − (k2 + k−1)XI2A,
dXI2B

dt = k10XI1 − (k20 + k−10)XI2B ,
dXI3A

dt = k2XI2A − k3XI3A + k−3XI4,
dXI3B

dt = k20XI2B − k30XI3B + k−30XI4,
dXI4
dt = k3XI3A + k30XI3B − (k−3 + k−30 + k4)XI4 + k−4XI5,

dXI5
dt = k4XI4 − k−4XI5 − kABXI5 + k−ABXI6,

dXI6
dt = kABXI5 − k−ABXI6.

(5.2)

Thus one should consider only nine states of RC for the reaction up to microsecond

scale when the reaction is induced by the single excitation. However, under continu-

ous light irradiation such as sun light, over-reduced states that have more than two

electron charges are realized in RC. This means that a number of states should be

taken into account under continuous light.



5.2 Models and Methods 87

The principal reaction pathway can be extracted with the use of the hierarchical

property of the timescale of the reaction network. In this treatment, each variable

state is assumed to change by the reactions whose timescales belong to the most

and secondly fast classes among the reactions related to each variable state. The

reaction network diagram extracted by this assumption is illustrated in Fig. 5.2. A

kinetic model of the reaction network of PSI-RC under continuous light can be con-

structed based on this figure along with Eq. (5.2). The over-reduced states of RC are

represented by the combinations of the notations defined in Eq. (5.1). For example,

XI654 : [P+F－XF
－
AF

－
B ]; XI650 : [PF－AF

－
B ]; XI62B : [P+A－0BF

－
B ]; XI51 : [P∗F－A ], and

so on. Here, the notations 0 and 1 correspond to the ground state and the excited

state of the primary donor P700, respectively. Besides, the notations 2A, 2B, ..., 5

and 6 represent that the corresponding pigments indicated in Eq. (5.1) are reduced.

In addition to Eq. (5.1), XI7 : [P+] is introduced for the RC state where the P700 is

oxidized and other sites are neutral.
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Figure 5.2 Reduced diagrams of PSI-RC reaction network. Each number en-
closed within a circle indicates the reaction coupled with redox reaction of Pc.
The meanings of types and colors of arrows are the same as Fig. 5.1. The states
which share the same reduced sites are classified by the green boxes characterized
by the index i. The index i = 5, 6, 65 and 654 correspond to the F−

A , F
−
B ,F

−
AF

−
B

and F−
XF

−
AF

−
B states, respectively.
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5.2.2 Coarse-graining treatment

Hereafter, coarse-graining treatment is applied to the kinetic model based on Fig.

5.2. According to the HCG method proposed in Chapter 2, the dimensionless times

should be introduced. In this chapter, the dimensionless times are introduced by

means of the characteristic rate constants of the kinetic model as below:

τI ≡ k0t,

τII ≡ k2t,

τIII ≡ k4t,

τIV ≡ kbf t.

(5.3)

The timescale ratios are introduced as εI,II = k2/k0, εII,III = k4/k2, εIII,IV = kbf/k4

and εII,IV = kbf/k2. The rate constants of the model are enumerated in Table 5.1.

The ODEs with the dimensionless time τI scaled by the picosecond-scale rate con-

stant is expressed as


dWI1
dτI

= εI,IIν
WI0
WIT

− εI,IIκdWI1 − εI,IIκp+
XIT−XI0−XI1

XIT
WI1

−κ0WI1
∑

i XIi0
XIT

+ κ−0

∑
i

WI0
WIT

XIi1,
dXIi1
dτI

= κ0WI1
XIi0
XIT

− κ−0
WI0
WIT

XIi1 − εI,IIκdXIi1 − εI,IIκp+
XIT−XI0−XI1

XIT
XIi1

−εI,II(κ1 + κ10)XIi1 + εI,IIκ−1XIi2A + εI,IIκ−10XIi2B ,

(5.4)

where i = null, 5, 6, 65 and 654. At picosecond scale, the quasi-conserved quanti-

ties that only change with O(εI,II) rates exist: UI1 = WI1 +
∑

i XIi1 and XIi01 =

XIi0 +XIi1. The asymptotic behaviors of WI1 and XIi1’s can be described by the

slower variables by means of quasi-equilibrium pseudo-steady-state approximation,

limτI→∞ dWI1/dτI = 0 and limτI→∞ dXIi1/dτI = 0 :

lim
τI→∞

WI1(τI) =
κ−0XIT

κ−0XIT + κ0

∑
i XIi0

UI1,

lim
τI→∞

XIi1(τI) =
κ0XIi0

κ−0XIT + κ0

∑
i XIi0

UI1

≡ p(XIi1 | UI1)UI1.

(5.5)

Here, the occupancy ratios of the exciton at RCs, XIi1(i = null, 5, 6, 65, 654), to

the total exciton at PS I, UI1, are introduced as p(XIi1 | UI1) = κ0XIi0/(κ−0XIT +

κ0

∑
i XIi0).
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Table 5.1 Parameter List of PS I Model

Description Notation Value (Time-scale class) Reference

Rate constant of excitation transfer from LHA

to special pair

k0 -(AI) Implicit

Rate constant of excitation transfer from spe-

cial pair to LHA

k−0 - (AI) Implicit

Rate constant of excitation dissipation from

antenna

kd 5× 108 s−1 (AII) [98]

Rate constant of charge separation at branch

A

k1 1011 s−1 (AII) [98]

Rate constant of charge separation at branch

A

k10 1011 s−1 (AII) [98]

Rate constant of charge recombination at

branch A

k−1 8.3× 109 s−1 (AII) [98]

Rate constant of charge recombination at

branch B

k−10 8.3× 109 s−1 (AII) [98]

Rate constant of electron transfer from A0A to

A1A

k2 2.6× 1010 s−1 (AII) [98]

Rate constant of electron transfer from A0B to

A1B

k20 4.8× 1010 s−1 (AII) [98]

Rate constant of electron transfer from A1A to

FX

k3 4.6× 107 s−1 (AIII) [98]

Rate constant of electron transfer from A1B to

FX

k30 8.2× 107 s−1 (AIII) [98]

Rate constant of electron transfer from FX to

A1A

k−3 8.4× 107 s−1 (AIII) [98]

Rate constant of electron transfer from FX to

FA

k4 2.1× 107 s−1 (AIII) [98]

Rate constant of electron transfer from FA ot

FX

k−4 4.7× 104 s−1 (AIV) [98]

Rate constant of electron transfer from FA to

FB

kAB 3.5× 106 s−1 (AIII) [98]

Rate constant of electron transfer from FB to

FB

k−AB 1.1× 106 s−1 (AIII) [98]

Rate constant of P700+ quenching of antenna kp+ 2× 109 s−1 (AII) [60]

Rate constant of non-radiative recombination

from P+A−
1A and P+A−

1B

k1P 105 s−1 (AIV) [60]

(To be continued)
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(Continued)

Rate constant of electron transfer from FB to F kBF 3.25× 103 s−1 (AIII) [60]

Rate constant of electron transfer from F− FB k−BF 3.25× 103 s−1 (AIII) [60]

Rate constant of electron transfer from F to active

FNR

kFFNR 580 s−1(AII) [78]

Rate constant of electron transfer from reduced

FNR, FNR− or FNR2−, to F

k−FFNR 580s−1 (AIV) [78]

Rate constant for the activation of inactive FNR

(FNRi)

kFNRA 0.01 s−1 (AIV) [78]

Rate constant for the oxidation of FNR2− back to

active FNR

kFNR 220 s−1 (AIV) [78]

Rate constant of electron transport from reduced

Pc to P+
700

kPcP 110 s−1 (AIV) [78]

Rate constant of electron transport from P700 to

Pc+
k−PcP 110 s−1 (AIV) [78]

Rate constant for the reduction of Pc+ by electrons

come from PS II

kPc 100 s−1 (AIV) [78]

Radiation flux density to PS I V (AIV)

Concentration of all PS I reaction center’s states

(conserved quantity)

XIT - -

Concentration of total states of ferredoxin (con-

served quantity)

Y IT - -

Concentration of total states of FNR (conserved

quantity)

ZIT - -

Concentration of Pc in thylakoid lumen (conserved

quantity)

CT - -

Concentration of total pigments in core antenna

(conserved quantity)

WIT - -

Next, the coarse-graining of the processes at nanosecond scale is considered.

The ODEs with dimensionless time τII are expressed by means of Eq. (5.5) for

i = null, 5, 6, 65 and 654:


dUI1
dτII

= εII,IVν
WI0
WIT

− κdUI1 − κp+
XIT−

∑
i XIi01

XIT
UI1

+(κ1 + κ10)
∑

i p(XIi1 | UI1)UI1,
dXIi2A

dτII
= κ1p(XIi1 | UI1)UI1 − (κ2 + κ−1)XIi2A,

dXIi2B
dτII

= κ10ΓXIi1 − (κ20 + κ−10)XIi2B .

(5.6)

The coarse-graining functions are given through the non-equilibrium pseudo-

steady-state approximation, limτII→∞ dUI1/dτII = 0, limτII→∞ dXIi2A/dτII = 0 and
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limτII→∞ dXIi2B/dτII = 0 :

lim
τII→∞

UI1(τII) =
εII,IVν

κd + κp+
XIT−

∑
i XIi01

XIT
+ (κ1γ

f
XIi2A

+ κ10γ
f
XIi2B

)
∑

i p(XIi1 | UI1)

≡ εII,IVΓUI1 ,

lim
τII→∞

XIi2A(τII) = εII,IV
κ1

κ2 + κ−1
ΓXIi1

≡ εII,IVΓXIi2A ,

lim
τII→∞

XIi2B(τII) = εII,IV
κ10

κ20 + κ−10
ΓXIi1

≡ εII,IVΓXIi2B .

(5.7)

Here, the coarse-graining parameters, γf
XI2A

= κ2/(κ2+κ−1) and γf
XI2B

= κ20/(κ20+

κ−10), meaning the ratios of forward reaction flux rates to the total flux rate from

XI2A and XI2B , respectively, are introduced. Besides, the coarse-graining functions

of the excited RCs, limτII→∞ XIi1 ≡ p(XIi1 | UI1)ΓUI1 for i = null, 5, 6, 65 and 654,

are introduced.

The processes at microsecond scale are coarse-grained in the following. The kinetic

models at this scale are different among i = null, 5, 6, 65 and 654. The ODEs with

the dimensionless time τIII are shown as below.

The case of i = null:

dXI3A
dτIII

= κ2εIII,IVΓXI2A − (κ3 + κ1P )XI3A + κ−3XI4,
dXI3B
dτIII

= κ20εIII,IVΓXI2B − (κ30 + κ1P )XI3B + κ−30XI4,
dXI4
dτIII

= κ3XI3A + κ30XI3B − (κ4 + κ−3 + κ−30)XI4 + εIII,IVκ−4XI5,
dXI5
dτIII

= κ4XI4 − εIII,IVκ−4XI5 − κABXI5 + κ−ABXI6,
dXI6
dτIII

= κABXI5 − κ−ABXI6 − εIII,IV(κBFXI6Y I0 − κ−BFXI7Y I1).

(5.8)

The case of i = 5, 6:
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

dXI60
dτIII

= κABXI50 − κ−ABXI60,
dXI63A
dτIII

= κ2εIII,IVΓXI62A − (κ3 + κ1P )XI63A + κ−3XI64 + κABXI53A − κ−ABXI63A,
dXI63B
dτIII

= κ20εIII,IVΓXI62B − (κ30 + κ1P )XI63B + κ−30XI64 + κABXI53B − κ−ABXI63B ,
dXI64
dτIII

= κ3XI63A + κ30XI63B − (κ4 + κ−3 + κ−30)XI64 + εIII,IVκ−4XI65

+κABXI54 − κ−ABXI64,
dXI65
dτIII

= κ4XI64 − εIII,IVκ−4XI65,
dXI50
dτIII

= −κABXI50 + κ−ABXI60,
dXI53A
dτIII

= κ2εIII,IVΓXI52A − (κ3 + κ1P )XI53A + κ−3XI54 − κABXI53A + κ−ABXI63A,
dXI53B
dτIII

= κ20εIII,IVΓXI52B − (κ30 + κ1P )XI53B + κ−30XI54 − κABXI53B + κ−ABXI63B ,
dXI54
dτIII

= κ3XI53A + κ30XI53B − (κ4 + κ−3 + κ−30)XI54 − κABXI54 + κ−ABXI64.

(5.9)

The case of i = 65:


dXI653A

dτIII
= κ2εIII,IVΓXI652A − (κ3 + κ1P )XI653A + κ−3XI654,

dXI653B
dτIII

= κ20εIII,IVΓXI652B − (κ30 + κ1P )XI653B + κ−30XI654,
dXI654
dτIII

= κ3XI653A + κ30XI653B − (κ−3 + κ−30)XI654.

(5.10)

The case of i = 654:{
dXI6543A

dτIII
= κ2εIII,IVΓXI6542A − (κ3 + κ1P )XI6543A,

dXI6543B
dτIII

= κ20εIII,IVΓXI6542B − (κ30 + κ1P )XI6543B .
(5.11)

The coarse-graining functions of the XIi3A, XIi3B and XIi4 for i = null, 5, 6, 65

and 654 are derived through the nonequilibrium pseudo-steady-state approximation,

limτII→∞ dXIi3A/dτII = 0, limτII→∞ dXIi3B/dτII = 0 and limτII→∞ dXIi4/dτII = 0. In

the case of i = null, the coarse-graining functions are expressed as below:

lim
τIII→∞

XI4(τIII) = εIII,IV
κ2γ

f
XI3A

ΓXI2A + γf
XI3B

κ20ΓXI2B + κ−4XI5

κ4 + κ−3γd
XI3A

+ κ−30γd
XI3B

≡ εIII,IVΓXI4 ,

lim
τIII→∞

XI3A(τIII) =
εIII,IV

κ3 + κ1P
[κ2ΓXI2A + κ−3ΓXI4 ] ≡ εIII,IVΓXI3A ,

lim
τIII→∞

XI3B(τIII) =
εIII,IV

κ30 + κ1P
[κ20ΓXI2B + κ−30ΓXI4 ] ≡ εIII,IVΓXI3B ,

(5.12)

with γf
XI3A

= κ3/(κ3 + κ1P ), γ
f
XI3B

= κ30/(κ30 + κ1P ), γ
d
XI3A

= κ1P /(κ3 + κ1P ) and

γd
XI3B

= κ1P /(κ30 + κ1P ). For the case of i = 5, 6, 65 and 654, see Appendix C.1.
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By substituting these results to Eqs. (5.8) - (5.11), it is revealed in the case i = null

that there is the quasi-conserved quantity, XI5/6 ≡ XI5 + XI6, that changes only

with O(εIII,IV) rates at this time scale.

The coarse-graining functions Eq. (5.13) are derived by applying the quasi-

equilibrium pseudo-steady-state approximation, limτIII→∞ dXI5/dτIII = −κABXI5 +

κ−ABXI6 = 0 and limτIII→∞ dXI6/dτIII = κABXI5 − κ−ABXI6 = 0:

lim
τIII→∞

XI5(τIII) =
κ−AB

κAB + κ−AB
XI56

≡ ΓXI5 ,

lim
τIII→∞

XI6(τIII) =
κAB

κAB + κ−AB
XI56

≡ ΓXI6 .

(5.13)

In the case of i = 5, 6, the quasi-conserved quantity, XI50/60 ≡ XI50 + XI60, is

introduced as in the case of i = null. The coarse-graining functions of XI50 and XI60

are also derived in the same way as in the case of i = null (See Appendix C.1).

5.2.3 Coarse-grained model of PS I

According to the above results, the coarse-grained reaction network model of PSI-

RC under continuous light is given. The diagram of the coarse-grained model of

PS I is illustrated in Fig. 5.3. With respect to this PS I kinetic model, the rates

of electron transfer outside PS I are set to be proportional to the product of the

concentrations of the reactants. For the reactants outside PS I, the electron acceptors

of PS I (ferredoxin (F), ferredoxin-NADP(H)-oxidoreductase (FNR)) and the electron

donor for PS I (plastocyanin (Pc)) are introduced. In the following, the notations are

adopted as below: Y0 : [F]; Y1 : [F−], Z−1 : [FNRi]; Z0 : [FNR]; Z1 : [FNR−]; Z2 :

[FNR2−]; C0 : [Pc+]; C1 : [Pc]. The activation process of inactive FNR (FNRi), the

oxidation of FNR2− and the reduction of oxidized Pc are assumed to be irreversible

and proceed linearly with their concentration.

The ODEs with τIV of the coarse-grained kinetic model of PS I are expressed as
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

dXI0
dτIV

= −κ0ΓWI1

XI0
XIT

+ κ−0ΓXI1 + κ1P (ΓXI3A + ΓXI3B )

+κPcPXI7
C1

CT
− κ−PcPXI0

C0

CT
+ κBF

Y I0
Y IT

ΓXI60 − κ−BF
Y I1
Y IT

XI0,

dXI5/6

dτIV
= κ4ΓXI4 − κ−4ΓXI5 − κBF (ΓXI6 −XI65)

Y I0
Y IT

+κ−BF (XI7 − ΓXI5)
Y I1
Y IT

− κPcPXI5/6
C1

CT
+ κ−PcPXI60/50

C0

CT
,

dXI7
dτIV

= κBFΓXI6

Y I0
Y IT

− κ−BFXI7
Y I1
Y IT

− κPcPXI7
C1

CT
+ κ−PcPXI0

C0

CT
,

dXI50/60

dτIV
= κPcPXI5/6

C1

CT
− κ−PcPXI50/60

C0

CT

−κBF
Y I0
Y IT

(ΓXI60 −XI650) + κ−BF
Y I1
Y IT

(XI0 − ΓXI50)

−κ0ΓWI1

XI50/60

XIT
+ κ−0ΓXI6151 + κ1P (ΓXI53a + ΓXI63a + ΓXI53b + ΓXI63b),

dXI65
dτIV

= κ4ΓXI64 − κ−4XI65 − κPcPXI65
C1

CT
+ κ−PcPXI650

C0

CT

−κBF
Y I0
Y IT

XI65 + κ−BF
Y I1
Y IT

ΓXI5 ,

dXI650
dτIV

= κPcPXI65
C1

CT
− κ−PcPXI650

C0

CT
− κBF

Y I0
Y IT

XI650 + κ−BF
Y I1
Y IT

ΓXI50

+κ4ΓXI640 − κ−4XI650 − κ0ΓWI1

XI650
XIT

+ κ−0ΓXI651 + κ1P (ΓX653a + ΓX653b),

dXI6540
dτIV

= εIII,IVκPcPΓXI654

C1

CT
− κ−PcPXI6540

C0

CT

−κBF
Y I0
Y IT

XI6540.

(5.14)

The ODEs with τIV of the kinetic model of electron carriers outside PS I are ex-

presses as follows:



96 Chapter 5 Coarse-Graining of the Model for Photosynthetic Processes of PS I



dY I0
dτIV

= −κBF (ΓXI6 + ΓXI60 +XI65 +XI650 +XI6540 + εIII,IVΓXI654)
Y I0
Y IT

+κ−BF (XI0 +XI7 + ΓXI5 + ΓXI50)
Y I1
Y IT

+κFFNR(
ZI0
ZIT

+
ZI1
ZIT

)Y I1 − κ−FFNR(ZI1 + ZI2)
Y I0
Y IT

,

dY I1
dτIV

= κBF (ΓXI6 + ΓXI60 +XI65 +XI650 +XI6540 + εIII,IVΓXI654)
Y I0
Y IT

−κ−BF (XI0 +XI7 + ΓXI5 + ΓXI50)
Y I1
Y IT

−κFFNR(
ZI0
ZIT

+
ZI1
ZIT

)Y I1 + κ−FFNR(ZI1 + ZI2)
Y I0
Y IT

,

dZI−1

dτIV
= −κFNRAZI−1,

dZI0
dτIV

= κFNRAZI−1 − κFFNRY I1
ZI0
ZIT

+ κ−FFNRZI1
Y I0
Y IT

+ κFNRZI2,

dZI1
dτIV

= κFFNRY I1(
ZI0
ZIT

− ZI1
ZIT

)− κ−FFNR(ZI1 − ZI2)
Y I0
Y IT

,

dZI2
dτIV

= κFFNRY I1
ZI1
ZIT

− κ−FFNRZI2
Y I0
Y IT

− κFNRZI2,

dC0

dτIV
= −κPcC0 + κPcP (XI7 +XI56 +XI65 + εIII,IVΓXI65)

C1

CIT

−κ−PcP (XI0 +XI6050 +XI650 +XI6540)
C0

CT
,

dC1

dτIV
= κPcC0 − κPcP (XI7 +XI56 +XI65 + εIII,IVΓXI65)

C1

CIT

+κ−PcP (XI0 +XI6050 +XI650 +XI6540)
C0

CT
.

(5.15)



5.3 Results and Discussion 97

P+A-/B-

P+A-B-

P+X-A-B-

P+AB

PA-/B-

PA-B-

PX-A-B-

F/F-

Pc+/Pc

Pc+/Pc

Pc+/Pc

Pc+/Pc

v

v

vPAB
F/F-

F/F-

F/F-

F/F-

F/F-

i=654i=65i=5, 6i=null

Figure 5.3 Coarse-grained picture of the diagram of PSI-RC reaction network.
Here, the P700, FX, FA and FB sites are indicated by P, X, A and B, respectively.
The notation PA−/B− means that the PS I realizes P700F

−
AFB or P700FAF

−
B

state. The arrows marked with Pc+/Pc, F/F− and v indicate the reaction ac-
companied by the redox reactions of Pc, that of F and light absorption, respec-
tively. The index i = 5, 6, 65 and 654 correspond to the F−

A , F
−
B ,F

−
AF

−
B and

F−
XF

−
AF

−
B states, respectively.

5.3 Results and Discussion

The results of the simulations for the dynamics of PS I in photosynthetic induction

time are shown in this section. During the induction of photosynthesis, i.e, before the

dark reactions of photosynthesis such as Calvin-Benson cycle are activated by light,

the electron transfer reactions on thylakoid membrane are suitably regulated for light

environment. Until the activations of the dark reactions are induced by light, the
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amount of oxidized ferredoxin is limited and its reduced form builds up. Unless the

plastocyanin pool is fully oxidized, P+
700 is reduced fast enough and then electrons

linger on the acceptors of PS I upon further turnovers. It is necessary to dispose the

extra absorbed energy that is not used for photosynthesis at this situation. With

respect to such an energy-dissipation process, the charge-recombination processes

are considered to play an important role [99]. In regard to the dynamics of PS I, the

absorbance changes at 820 nm (relative to the absorbance at 870 nm), I820 signal, that

reflects the amounts of P+
700 and Pc+ are known to show an characteristic pattern in

time [100,101]. With these in mind, the relations between the charge recombinations

of the charge separated states, P+A−
1A and P+A−

1B, and the characteristic pattern of

the dynamics of I820 signal have been investigated.

First, the simulated I820 curve is illustrated in Fig. 5.4 along with the experimental

results [60]. Here, the initial states are set as those in dark: WI0(0) = WIT, XI0(0) =

XIT, Y I0(0) = Y IT, ZI−1(0) = ZIT, C1(0) = CT and otherwise 0. The ratio of

XIT/Y IT/ZIT/CT/WIT is assumed to be 1/3/3/3/170. The photo-excitation rate

used for the simulation is set to be 2000 s−1 which corresponds to the light flux density

of 3,000 µmolm−2 s−1 used in the experiment [60]. These two curves agree well with

respect to the inflection point at about 10−3s, the peak at about 2 × 10−2s and the

relaxation at 10−1s.
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Figure 5.4 Dynamics of I820 signal. The upper figure is the experimental re-
sult (Modified from Lazar [60]) and the lower one is the result of simulation.
The relative values are plotted in the upper figure. In simulation, I820 signal is
caluculated by the Eq. (C.3) (See Appendix C.2).
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Figure 5.5 The simulated dynamics of I820 signal and the occupancies of the
oxidized reactants, the total P+

700 and Pc+.

Next, the dynamics of the occupancies of P+
700 and Pc+ to each total amount are

shown with I820 curve in Fig. 5.5. This figure indicates that the rise of I820 curve up

to inflection point at 10−3s reflects the accumulation of P+
700 and the increase from

the inflection point to the peak at 2×10−2s reflects the accumulation of Pc+. Besides,

the relaxation of I820 curve after the peak accompanies the decreases of both P+
700

and Pc+.

The dynamics of the occupancies of PSI-RC states and those of the states of other

electron carriers are shown in Fig. 5.6. With respect to the PSI-RC, the P+
700F

−
A/F

−
B

state firstly increases among all the P+
700 states and then the P+

700FAFB state in-

creases. The simultaneous increase of F−, the reduced state of the electron acceptor

of PS I, indicates that above change of PSI-RC accompanies the electron transfer

from P+
700FAF

−
B to F. In regard to the oxidized state of the electron donor, Pc+, it

increases with P+
700F

−
A/F

−
B and P+

700F
−
AF

−
B states at the same time. This means that

the charge separations of P700FAFB and P700F
−
A/F

−
B states occur immediately after

the Pc has been oxidized by P+
700FAFB and P+

700F
−
A/F

−
B states, respectively. The re-

duced states of the electron carriers accumulate substantially, and then the almost all

ferredoxins become the reduced state, F−. At this time, almost all PSI-RCs become

P700F
−
AF

−
B state. Therefore the plastocyanin is no more oxidized by PSI. This indi-

cates that the charge recombination process from P+
700A

−
1AF

−
AF

−
B or P+

700A
−
1BF

−
AF

−
B

state to P700F
−
AF

−
B state is in active as shown in Fig. 5.7.
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Figure 5.6 The simulated dynamics of I820 signal and each state of the electron
carriers. Here, the notations P, A and B mean P700, FA and FB, respectively.

The dynamics of the ratios of the rate of charge separation and that of charge

recombination at each PSI-RC to the total rate of charge separation at PSI are plotted

with I820 curve in Fig. 5.7. Figure 5.7 (b) shows the time courses of the ratios of the

rates of charge separations at P700FAFB, P700F
−
A/F

−
B and P700F

−
AF

−
B to the total rate

of charge separation at PS I. Each ratio is represented by ΦCS
AB,Φ

CS
A−/B− and ΦCS

A−B− ,

respectively. Interestingly, the active process following the charge separation from

P700FAFB state is not the charge separation from P700F
−
A/F

−
B state but that from

P700F
−
AF

−
B state. This means that the majority of the P+

700F
−
AFB state produced via

charge separation from P700FAFB state is reduced by F− at acceptor side of PS I and

then change into P700F
−
AF

−
B state not through P700F

−
A/F

−
B state.

The ratio of charge recombination rate at each PSI-RC to the total charge separa-

tion rate at PS I is plotted in Fig. 5.7 (c). Here, ΦCR
AB,Φ

CR
A−/B− and ΦCR

A−B− represent

the ratios of the charge recombination rates of P+
700A

−
1A and P+

700A
−
1B at the PS I,

where the states of ion sulfurs are in FAFB, F−
A/F

−
B and F−

AF
−
B states, to the total

charge separation rate at PS I, respectively. Through the comparison between Figs.

5.7 (b) and (c), it is revealed that the charge recombination rate is much smaller than

the charge separation rate at the P700FAFB state on the one hand. But, on the other



102 Chapter 5 Coarse-Graining of the Model for Photosynthetic Processes of PS I

hand, the time course of charge recombination rate is mostly the same as the charge

separation rate at the P700F
−
AF

−
B state. This suggests that the charge recombination

paths from P+
700A

−
1AF

−
AF

−
B and P+

700A
−
1BF

−
AF

−
B states to P700F

−
AF

−
B state play an im-

portant role for the dissipation of the extra absorbed energy. Thus it is revealed that

the regulation mechanism for dissipation of extra absorbed energy exists in electron

transfer chain of PS I. It is noted that this mechanism becomes active when the elec-

trons are accumulated at acceptor side of PS I, and then PSI-RC is in the doubly

reduced state, P700F
−
AF

−
B .
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Figure 5.7 (a) The simulated dynamics of I820 signal, (b) the ratios of charge
separation rates of each PSI-RC to the total charge separation rate, and (c) the
ratios of charge recombination rates of each PSI-RC to the total charge separation
rate.

5.4 Conclusions

In this chapter, the coarse-grained model of PS I is derived and applied for the

simulation of the photosynthetic induction up to 1 s. With the use of the HCG

method, the dimensionality of the state space of PSI-RC is reduced from 28 to 7

(the number of variables of Eq. (5.14)). With respect to the curve of I820 signal,
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it is revealed that the increase towards the inflection point at about 10−3s reflects

the accumulation of P+
700 and the increase from that inflection point to the peak

at 2× 10−2s reflects the accumulation of Pc+. Besides, the decrease after the peak

accompanies the increase of the doubly reduced PS I, P700F
−
AF

−
B . The important role

of the charge recombination from P+
700A

−
1AF

−
AF

−
B or P+

700A
−
1BF

−
AF

−
B state to P700F

−
AF

−
B

state for the dissipation of extra energy has also been revealed. It is noted that other

mechanisms of the regulation of electron transfer processes around PS I have been

proposed at more slower time scales such as cyclic electron flow [102] and water-

water-cycle [103], which are called alternative electron pathways in distinction from

the ordinary linear electron pathway [104]. It seems that the model proposed here

has a potential to describe the slower dynamics of photosynthesis in combination with

the models that describe the further slower reactions of photosynthesis.
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Chapter 6

General Conclusion and Perspective

The multi-hierarchy and complexity are the typical characteristics of the reactions

in living body. To understand such a living system by intuition, it is necessary to

construct a model that is composed of the essential elements [105]. In this study, I

have tried to extract such a essential model of photosynthesis that is consistent with

the full detailed model.

In Chapter 3, I have presented a hierarchical coarse-graining (HCG) method in time

which can reduce the complexity and the multi-timescale property of photosynthesis

reaction models. This method is proposed based on the three variable model and

then applied to the simplified model of PS II. As a result, the multi-timescale model

of PS II is transformed into the mono-timescale one with sufficient accuracy.

Through this new method, the phenomenological structures of photosystem II and

photosystem I at millisecond scale can be systematically derived. It is important that

derived models have been revealed to have an ability to clearly explain the fluorescence

induction phenomena and the I820 signal curve.

In Chapter 4, the full model of PS II combined with OEC and LHA is coarse

grained through the HCG method. Two different coarse-grained models are derived

in response to the difference in the rate constants of the electron transfer at donor

side of PS II. The analysis of reaction network reveals that the coarse-grained model

that is consistent with the results of experiments is that derived in the case where the

electron transfer at donor side of PS II can be assumed in quasi-equilibrium. With

respect to FI, it is revealed that the light-intensity dependent changes of the transient

patterns from O-J-I-P to O-J-D-I-P reflect the changes of the states of the donor side

of PS II. The factor that affects the FI pattern is P+
680 quenching or Y+

Z quenching

corresponding to the different coarse-grained model.
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In Chapter 5, the coarse-grained model of PS I is obtained through the HCG method

base on the model that has the 28 dimensionality in the state space of RC. The ob-

tained model describes RC by seven state variables. The simulation of the photosyn-

thetic induction reveals what the I820 curve reflects. The increase up to the inflection

point at 10−3 s, the increase from that point to the peak at 2 × 10−2 s, and the decay

after that peak reflect the accumulations of P+
700, Pc

+ and P700F
−
AF

−
B , respectively.

Besides, it is revealed that once the PSI-RC realized the P700F
−
AF

−
B state the charge

recombination processes from P+
700A

−
1A and P+

700A
−
1A states play the important role

for the dissipation of the extra absorbed energy.

The remaining problem is concerned with the explanation of the slow-change pat-

tern of fluorescence induction phenomena. This phenomena is regarded to be affected

by NPQ processes as explained in Chapter 2. Though various mechanisms concerning

the environmental response at this timescale range from seconds to minutes are pro-

posed, the relationships between them are still being debated [106]. To cope with this

problem, it seems useful to derive the phenomenological structure of the reaction on

thylakoid membrane by combining the models of the NPQ with the models of PS II

and PS I obtained in this study, and then to analyze the phenomena systematically.

Furthermore, in combination with the model of dark reactions such as Calvin-Benson

cycle, the phenomenological model of photosynthesis in chloroplast that is consistent

with the full detailed model would be obtained.
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Appendix A

A.1 Linear stability analysis

A.1.1 The case of a

With respect to the ODEs constructed by neglecting the O(εI,II) terms in Eq. (3.3),

each ODE is denoted in terms of Fn as
dx0

dτI
= κbx2 − κfx1x0 = F0,

dx1

dτI
= κbx2 − κfx1x0 = F1,

dx2

dτI
= −κbx2 + κfx1x0 = F2.

(A.1)

The steady state of these ODEs is considered. The solution x̄ = (x̄0, x̄1, x̄2)
T to

these ODEs at the steady state is called an equilibrium point. Then, the linear

stability analysis for x̄+∆x, which is displaced by ∆x = (∆x0,∆x1,∆x2)
T from the

equilibrium point, is attempted. By substituting x̄+∆x into Eq. (A.1), the ODEs of

∆x are obtained as

d∆x

dτI
= Λ∆x,

Λ =

∂F0

∂x0

∂F0

∂x1

∂F0

∂x2
∂F1

∂x0

∂F1

∂x1

∂F1

∂x2
∂F2

∂x0

∂F2

∂x1

∂F2

∂x2

 ,

=

−κf x̄1 −κf x̄0 κb

−κf x̄1 −κf x̄0 κb

κf x̄1 κf x̄0 −κb

 .

(A.2)

Λ is called the Jacobian matrix. By solving the eigenvalue equation |Iλ−Λ| = 0 for

λ, the eigenvalues of the Jacobian matrix are obtained as

λ0 = λ1 = 0, λ2 = −(κf x̄1 + κf x̄0 + κb). (A.3)
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The eigenvectors p0, p1, p2 of each λ0, λ1, λ2 are obtained by solving the following

equation:

(Iλn −Λ)pn = 0. (A.4)

A matrix P, which is formed by the eigenvectors p0,p1,p2 is then introduced as

P =
(
p0 p1 p2

)
,

=

 x̄0 κb 1
−x̄1 κb 1
0 κf (x̄0 + x̄1) −1

 .
(A.5)

By substituting ∆x = Py, Eq. (A.2) is transformed to a linear differential equation

of y = (y0, y1, y2)
T as

d

dτI
y = P−1ΛPy,

=

0 0 0
0 0 0
0 0 λ2

y.

(A.6)

The relaxation time of the perturbation ∆x for the steady state of Eq. (A.2) is esti-

mated as O(− 1
λ2
) from this result.

A.1.2 The case of b

With respect to the ODEs constructed by neglecting the O(εI,II) terms in Eq. (3.7),
dx0

dτI
= κbx2 − κfx1x0,

dx1

dτI
= −κ1x1 + κbx2 − κfx1x0,

dx2

dτI
= −κbx2 + κfx1x0,

(A.7)

the linear stability analysis for the point displaced by ∆x = (∆x0,∆x1,∆x2)
T from

the equilibrium point is attempted. This analysis can be performed by introducing

the ODEs for ∆x as well as in the case of a:

d∆x

dτI
= Λ∆x,

Λ =

−κf x̄1 −κf x̄0 κb

−κf x̄1 −κ1 − κf x̄0 κb

κf x̄1 κf x̄0 −κb

 .

(A.8)
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The eigenvalues of the Jacobian matrix are obtained as

λ0 = 0, λ± =
−(κ1 + κb + κf (x̄0 + x̄1))±

√
(κ1 + κb + κf (x̄0 + x̄1))2 − 4κ1(κb + κf x̄1)

2
.

(A.9)

A matrix P = (p0 p+ p−), which is formed by each eigenvector, is introduced. By

substituting ∆x = Py, Eq. (A.8) is transformed to a linear differential equation of

y = (y0, y1, y2)
T:

d

dτI
y =

0 0 0
0 λ+ 0
0 0 λ−

y. (A.10)

The relaxation time of the perturbation ∆x for the steady state of Eq. (A.8) is esti-

mated as O(− 1
λ+

) from this result.

A.1.3 The case of c

Concerning the ODEs constructed by neglecting the O(εI,II) terms in Eq. (3.14),
dx0

dτI
= κbx2 − κfx1x0,

dx1

dτI
= −κ1x1 + κbx2 − κfx1x0,

dx2

dτI
= −κ2x2 − κbx2 + κfx1x0,

(A.11)

the linear stability analysis for the point displaced by ∆x = (∆x0,∆x1,∆x2)
T from

the equilibrium point is attempted. This analysis can be performed by introducing

the ODEs for ∆x as well as in the case of a:

d∆x

dτI
= Λ∆x,

Λ =

−κf x̄1 −κf x̄0 κb

−κf x̄1 −κ1 − κf x̄0 κb

κf x̄1 κf x̄0 −κb − κ3

 .

(A.12)

The eigenvalues of the Jacobian matrix are obtained as
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λ0 = ω0
3

√
−q +

√
q2 + p3 + ω0

3

√
−q −

√
q2 + p3 − 1

3
a,

λ1 = ω1
3

√
−q +

√
q2 + p3 + ω2

3

√
−q −

√
q2 + p3 − 1

3
a,

λ2 = ω2
3

√
−q +

√
q2 + p3 + ω1

3

√
−q −

√
q2 + p3 − 1

3
a,

(A.13)

where ω0 = 1, ω1 = −1+i
√
3

2 , ω2 = −1−i
√
3

2 , q = 1
2c−

1
6ab+

1
27a

3, and p = 1
3b−

1
9a

2. a,

b, and c are given by

a = κ1 + κf (x̄1 + x̄2),

b = [κ1 + κf (x̄1 + x̄2)]κ3 + κ1κb + κ1κf x̄1,

c = κ1κ3.

(A.14)

A matrix P = (p0 p1 p2), formed by each eigenvector is introduced. By putting ∆x =

Py, Eq. (A.12) is transformed to a linear differential equation of y = (y0, y1, y2)
T as

d

dτI
y =

λ0 0 0
0 λ1 0
0 0 λ2

y. (A.15)

The relaxation time of the perturbation ∆x for the steady state of Eq. (A.12) is

estimated as O(− 1
λ0
) from this result.

A.2 The ODEs with τIV

The ODEs with τIV (Eq. (3.29)) neglecting O(ε2III,IV) terms are expressed as


dX01

dτIV
= −{1 + εIII,IV[

κ3κ4

ZT
(ZT − Z1)− κ−0]}νIγf

U1
− εIII,IVκ−2γ

b
X2

νI(γ
f
U1
)2

+
κ4

ZT
(ZT − Z1)(RT −X01)−

κ−4

RT
X01Z1,

dZ1

dτIV
= −κ5Z1 +

κ4

ZT
(ZT − Z1)(RT −X01 + εIII,IVνIγ

f
U1
)− κ−4

RT
X01Z1.

(A.16)
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B.1 The case that hole transfer from Y+
Z to RC is taken into

account

B.1.1 ODEs with dimensionless time

The equations which have O(1) terms in ODEs with τI are

dW1

dτI
= −κ̄t

X0+Y0

RT
W1 + κ̄−t

W0

WT
(X1 + Y1) +O(εI,II),

dX0

dτI
= −κ̄t

X0

RT
W1 + κ̄−t

W0

WT
X1 +O(εI,II),

dX1

dτI
= κ̄t

X0

RT
W1 − κ̄−t

W0

WT
X1 +O(εI,II),

dY0

dτI
= −κ̄t

Y0

RT
W1 + κ̄−t

W0

WT
Y1 +O(εI,II),

dY1

dτI
= κ̄t

Y0

RT
W1 − κ̄−t

W0

WT
Y1 +O(εI,II),

W0 = WT −W1.

(B.1)

The equations which have O(1) terms in ODEs with τII are
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

dV1

dτII
= κUU1p(W1 | U1)

VT−V1

VT
− κU

WT−ΓW1

WT
V1

−(κF + κd + κc
X2+X4+Y2+Y4

RT
+ κq

Q0

QT
)V1,

dU1

dτII
= −κUU1p(W1 | U1)

VT−V1

VT
+ κU

WT−ΓW1

WT
V1

−(κF + κd + κc
X2+X4+Y2+Y4

RT
+ κq

Q0

QT
)U1

−κo
1U1p(X1 | U1)− κc

1U1p(Y1 | U1) + κo
−1X2 + κc

−1Y2 +O(εII,IV),
dX01

dτII
= (κo

−1 + κind
nr )X2 − κo

1U1p(X1 | U1) + κntr
0 Xtr

0 +O(εII,III),
dX2

dτII
= −(κ2 + κo

−1 + κtr + κind
nr )X2 + κo

1U1p(X1 | U1) +O(εII,III),
dY4

dτII
= κ2X2 +O(εII,III),

dY01

dτII
= κc

−1Y2 + κ2X3 − κc
1U1p(Y1 | U1) +O(εII,III),

dY2

dτII
= −(κc

−1 + κtr + κind
nr )Y2 + κc

1U1p(Y1 | U1) +O(εII,III),
dX3

dτII
= −κ2X3 +O(εII,III),

dXtr
2

dτII
= κtrX2 − κtr

02X
tr
2 ,

dXtr
0

dτII
= κtr

02X
tr
2 − κntr

0 Xtr
0 ,

dY tr
2

dτII
= κtrY2 − κtr

02Y
tr
2 ,

dY tr
0

dτII
= κtr

02Y
tr
2 − κntr

0 Y tr
0 .

(B.2)

The equations which have O(1) terms in ODEs with τIII are

dX01

dτIII
= κ3

T0

TT
X4 − κ−3

T1

TT
X01 +O(εIII,IV),

dY4

dτIII
= −κ3

T0

TT
Y4 + κ−3

T1

TT
Y01 +O(εIII,IV),

dX4

dτIII
= −κ3

T0

TT
X4 + κ−3

T1

TT
X01 +O(εIII,IV),

dY01

dτIII
= κ3

T0

TT
Y4 − κ−3

T1

TT
Y01 +O(εIII,IV),

dT1

dτIII
= κ3

T0

TT
(Y4 +X4)− κ−3

T1

TT
(X0 + Y0 + Y3) +O(εIII,IV),

dT0

dτIII
= −κ3

T0

TT
(Y4 +X4) + κ−3

T1

TT
(X0 + Y0 + Y3) +O(εIII,IV),

dY3

dτIII
= −κ−3

T1

TT
Y3 +O(εII,III) +O(εIII,IV).

(B.3)

The ODEs with τIV neglecting O(εIII,IV) and O(εII,III) terms are expressed by the

coarse-graining functions as
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

dE
dτIV

= −κo
1γ

f
X2

ΓX1 + (1− γf
X2

+ κd
nr)ΓY4 +

∑3
i=0 κi∗,i

Si

ST
ΓT1 + κ0,4TS4,

dX04

dτIV
= −κo

1γ
f
X2

ΓX1 + (1− γf
X2

+ κd
nr)ΓY4 +

κ41Z0+κ42Z1

ZT
Y04 − (κ−41Z1 + κ−42Z2)

X04

RT
,

dZ1

dτIV
= κ41

Z0

ZT
Y04 − κ−41

X04

RT
Z1 − κ42

Z1

ZT
Y04 + κ−42

X04

RT
Z2,

dZ2

dτIV
= κ42

Z1

ZT
Y04 − κ−42

X04

RT
Z2 − κ5Z2

Q0

QT
+ κ−5Z0

Q1

QT
,

dQ1

dτIV
= κ5Z2

Q0

QT
− κ−5Z0

Q1

QT
− κ6Q1,

dSi

dτIV
= κi−1∗,i−1

Si−1

ST
ΓT1 − κi∗,i

Si

ST
ΓT1 ,

dTS∗
3

dτIV
= κ3∗,3

S3

ST
ΓT1 − κ4,3∗TS

∗
3 + κ3∗,4TS4,

dTS4

dτIV
= κ4,3∗TS

∗
3 − (κ3∗,4 + κ0,4)TS4,

Y04 = RT −X04,

Z0 = ZT − Z1 − Z2,

Q0 = QT −Q1,

T01 = TT − TS∗
3 − TS4,

S0 = ST −
∑3

i=1 Si − TS∗
3 − TS4.

(B.4)

B.1.2 Coarse-graining functions

The coarse-graining functions which hold for τII → ∞ are

ΓV1(X01, Y01, Y4, T0) =
νV1 + κUΓW1

κU + κF + κd + κC + κQ
,

ΓU1(X01, Y01, Y4, T0) =
νU1 + γf

V1
νV1 + κ−2γ

b
X2

(1− εII,IIIγ
f
X2

(T0/TT))Y4

κF + κD + κo
P + κc

P + κC + κQ
,

(B.5)
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ΓX2(X01, Y01, Y3, Y4, T0, T1, Z0, Z1) =
[
κo
1ΓX1 + Y4

+ εII,IIIκ−3
T1

TT
(κ−2Y0 + (κ41Z0 + κ42Z1)

Y3

ZT
)
]

× γf
X2

[
1− εII,IIIγ

f
X2

(T0/TT)
]
,

ΓY2(X01, Y01, Y3, Y4, T0, T1) =
(
ε−1
III,IV

κ−3

κc
−1 + κtr + κind

nr

T1

T T
Y3

+
κc
1

κc
−1 + κtr + κind

nr

ΓY1

)
×
(
1− εII,IIIγ

f
Y2

)
,

ΓX3(X01, Y01, Y3, Y4, T0, T1, Z0, Z1) =
[
Y0,1 + εII,III(T0/TT)ΓX2 + (κ41Z0 + κ42Z1)

Y3

ZT

]
× (1− εII,IIIκ−3T1/TT),

ΓXtr
2
=

κtr

κtr
02

ΓX2 ,

ΓXtr
0
=

κtr

κntr
0

ΓX2 ,

ΓY tr
2

=
κtr

κtr
02

ΓY2 ,

ΓY tr
0

=
κtr

κntr
0

ΓY2 ,

ΓTS∗
i
=

κi∗,i

κi+1,i∗

Si

ST
T1.

(B.6)

Here, light excitation rate at core antenna, νU1 = ν(WT + RT)/(VT + WT +

RT) = ν(NC + 1)/(NP + NC + 1), light excitation rate at peripheral an-

tenna, νV1 = ν(VT)/(VT + WT + RT) = νNP/(NP + NC + 1), effective rate

of photochemical quenching via charge separation at open RC in core antenna,

κo
P = κo

1γ
f
X2

p(X1 | U1), effective rate of photochemical quenching via charge

separation at closed RC in core antenna, κc
P = κc

1γ
f
Y2
p(Y1 | U1), effective rate

of non-photochemical quenching via non-radiative pathway in core antenna,

κD = κd + κo
1γ

d
X2

p(X1 | U1) + κc
1γ

d
Y2
p(Y1 | U1) + κUγ

d
V1
p(W1 | U1), rate of P+

680-

quenching, κC = κc(X4+Y4)/RT, and rate of PQ-quenching, κQ = κqQ0/QT, are in-

troduced. Besides, γf
X2

= κ2/(κ2+κo
−1+κtr+κind

nr ), γb
X2

= κo
−1/(κ2+κo

−1+κtr+κind
nr ),

γd
X2

= (κtr + κind
nr )/(κ2 + κo

−1 + κtr + κind
nr ), γf

Y2
= εII,IIIκ3(T0/TT)/(κ

c
−1 + κtr + κind

nr ),

γd
Y2

= (κtr + κind
nr )/(κc

−1 + κtr + κind
nr ), γf

V1
= κU/(κU + κF + κd + κC + κQ) and

γd
V1

= (κF + κd + κC + κQ)/(κU + κF + κd + κC + κQ) are introduced, where γf
x,

γb
x and γd

x indicate the ratios of forward, backward and dissipation outflows to total
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outflow from x state, respectively. The coarse-graining functions of ΓW1 , ΓX1 and

ΓY1 are defined by factoring out εII,IV as

lim
τII→∞

X1(τII) ≡ εII,IVΓX1(X01, Y01, Y4, T0) = εII,IVΓU1p(X1 | U1),

lim
τII→∞

Y1(τII) ≡ εII,IVΓY1(X01, Y01, Y4, T0) = εII,IVΓU1p(Y1 | U1),

lim
τII→∞

W1(τII) ≡ εII,IVΓW1(X01, Y01, Y4, T0) = εII,IVΓU1p(W1 | U1).

(B.7)

The coarse-graining functions which hold for τIII → ∞ are

ΓY3(E,X04, Y04, T01, Z0, Z1) =
κ3

ΓT0

TT

ΓT1

TT
[κ−3 − εII,III

κ3

κc
−1+κtr+κind

nr

ΓT0

TT
] + εII,IV

κ41Z0+κ42Z1

ZT

ΓY1 ,

ΓY4(E,X04, Y04, T01) =p(Y4 | Y04)Y04,

ΓX4(E,X04, Y04, T01) =p(X4 | X04)X04,

ΓT1(E,X04, Y04, T01) =
κ3H + κ−3E + (κ3 − κ−3)T01

2(κ3 − κ−3)

×
{
1±

√
1− 4(κ3 − κ−3)κ3T01H

[κ3H + κ−3E + (κ3 − κ−3)T01]2

}
.

(B.8)

Here, the ratio of oxidized special pair is expressed as p(Y4 | Y04) = p(X4 | X04) =

κ−3ΓT1/[κ3(T01−ΓT1)+κ−3ΓT1 ]. With respect to ΓT1 , the form which vanishes with

the initial value, H = 0, i.e., the case of − out of ±, is employed. Incidentally, if

H ≪ 1, the relation ΓT1 = κ3T01H/[κ3H + κ−3E + (κ3 − κ−3)T01] holds and thus

ΓT1 = 0 if H = 0.

B.2 The case that hole transfer from Y+
Z to RC is neglected

B.2.1 ODEs with dimensionless time

The equations which have O(1) terms in ODEs with τIII are
dX01

dτIII
= −κo

1γ
f
X2

ΓX1 + κ3
T0

TT
X4 +O(εIII,IV) +O(εII,III),

dY4

dτIII
= κo

1γ
f
X2

ΓX1 − κ3
T0

TT
Y4 +O(εIII,IV) +O(εII,III),

dX4

dτIII
= −κ3

T0

TT
X4 +O(εIII,IV) +O(εII,III),

dY01

dτIII
= κ3

T0

TT
Y4 +O(εIII,IV) +O(εII,III).

(B.9)

B.2.2 Coarse-graining functions in the case of v ∈ AIV

The coarse-graining functions which hold for τIII → ∞ are
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ΓX3(X01, Y01, Z1, Z2) =κo
1γ

f
X2

ΓX1

T0/TT

×
{
1− εII,IIIγ

f
X2

T0

TT

− εIII,IV

[
κ41Z0 + κ42Z1

ZT
+ κnr + κ−2(1− γf

X2
)

]}
,

ΓX4(X01, Y01, Z1, Z2) =κo
1γ

f
X2

ΓX1

κ41Z0 + κ42Z1

ZT(T0/TT)2
.

(B.10)

B.2.3 Coarse-graining functions in the case of v ∈ AIII

The coarse-graining functions which hold for τII → ∞ are

ΓU1
(X01, Y01, Y4) =

νU1 + νV1γ
f
V1

+ κo
−1γ

f
X2

Y4

κF + κD + κo
P + κc

P + κC + κQ + κZ
,

ΓX1(X01, Y01, Y4) = ΓU1p(X1 | U1),

ΓY1(X01, Y01, Y4) = ΓU1p(Y1 | U1),

ΓX2(X01, Y01, Y4) = (1− εII,IIIγ
f
X2

)κo
−1γ

f
X2

ΓX1 + εIII,IVγ
f
X2

Y4,

ΓY2(X01, Y01, Y4) =
κc
1

κc
−1 + κnr + κtr

ΓY1 ,

ΓX3(X01, Y01, Y4, Y3, Z1, Z2), =
[
Y01 +

εII,III
εIII,IV

T0

TT
ΓX2 +

(
κ41Z0 + κ42Z1

) Y3

ZT

]
,

(B.11)

where κD, κ
c
P, κ

o
P, κC and κQ are the same as those in Appendix B.1.2. κZ is κz(T1+

TS∗
3 )/TT.

The coarse-graining functions which hold for τIII → ∞ are

ΓX01(Y01, T0, Z0, Z1) =
[κd + κc

1(γ
f
Y2

+ γd
Y2
)]Y01 + (κd + κUγ

d
V 1)κ̄−tRT

κo
1γ

f
X2

(νU1 + νV1γ
f
V1
)

× κ41Z0 + κ42Z1

ZT
Y01,

ΓY4(Y01, T0, Z0, Z1) =
κ41Z0 + κ42Z1

ZTT0/TT
Y01,

ΓX4(Y01, T0, Z0, Z1) =
(κ41Z0 + κ42Z1

ZTT0/TT

)2

Y01.

(B.12)

B.2.4 The initial value at τIV = 0 in TSTM in the case of v ∈ AIII

Equation B.9 suggests that X01 + Y4 + X4 + Y01 is a quasi-conserved quantity at

τIII scale. Consequently, a relation, (εIII,IVΓ01 + εIII,IVΓY4 + ε2III,IVΓX4 + Y01)τIV=0 =
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(X01 + Y4 +X4 + Y01)t=0

≡ C, holds at τIV = 0, where C is a constant. Arranging this equation by considering

up to O(εIII,IV) terms, the initial value of Y01 at τIV = 0 in eq 4.12a is given as

Y01(τIV = 0) =
C

1 + εIII,IV
κ41Z0+κ42Z1

ZT

[ (κd+κUγf
X2

) ¯κ−tRT

κo
1γ

f
X2

ν′ + TT

T0

]
≃ C

{
1− εIII,IV

κ41Z0 + κ42Z1

ZT

[ (κd + κUγ
f
X2

)κ̄−tRT

κo
1γ

f
X2

ν′
+

TT

T0

]}
.

(B.13)





121

Appendix C

C.1 Coarse-graining functions of PS I

The coarse-graining functions Γ’s of the states of PS I are expressed as below:

lim
τIII→∞

XI64(τIII) ≡ εIII,IVΓXI64 ,

ΓXI64 =

{
κ2γ

f
XI3A

(ΓXI62A + γf
XI54

ΓXI52A) + κ20γ
f
XI3B

(ΓXI62B + γf
XI54

ΓXI52B )

+ κ−4XI65 + εIII,IVγ
f
XI54

κBFY I0/Y ITΓ654

}
/
(
κ4 + κ−3γ

d
XI3A + κ−30γ

d
XI3B + γf

XI54
κ−AB

)
,

lim
τIII→∞

XI54(τIII) ≡ εIII,IVΓXI54 ,

ΓXI54 =
κ2γ

f
XI3A

ΓXI52A + κ20γ
f
XI3B

ΓXI52B + κ−ABΓXI64 + εIII,IVκBFY I0/Y ITΓXI654

κAB + κ−3γd
XI3A

+ κ−30γd
XI3B

,

lim
τIII→∞

XI654(τIII) ≡ εIII,IVΓXI654 ,

ΓXI654 =
κ2γ

f
XI3A

ΓXI652A + κ20γ
f
XI3B

ΓXI652B

κ3γd
XI3A

+ κ30γd
XI3B

,

(C.1)

where γf
XI54

≡ κAB/(κ−3γ
d
XI3A

+ κ−30γ
d
XI3B

+ κAB) is introduced.
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lim
τIII→∞

XI50(τIII) =
κ−AB

κAB + κ−AB
XI50/60

≡ ΓXI50 ,

lim
τIII→∞

XI60(τIII) =
κAB

κAB + κ−AB
XI50/60

≡ ΓXI60 ,

lim
τIII→∞

XI53a(τIII) ≡ εIII,IVΓXI53a ,

ΓXI53a =
κ2ΓXI52A + κ−3ΓXI54

κ3 + κ1P
,

lim
τIII→∞

XI63a(τIII) ≡ εIII,IVΓXI63a ,

ΓXI63a =
κ2ΓXI62A + κ−3ΓXI64

κ3 + κ1P
,

lim
τIII→∞

XI53b(τIII) ≡ εIII,IVΓXI53b ,

ΓXI53b =
κ20ΓXI52B + κ−30ΓXI54

κ30 + κ1P
,

lim
τIII→∞

XI63b(τIII) ≡ εIII,IVΓXI63b ,

ΓXI63b =
κ20ΓXI62B + ΓXI64 + κ−30ΓXI64

κ30 + κ1P
,

lim
τIII→∞

XI653a(τIII) ≡ εIII,IVΓXI653a ,

ΓX653a =
κ2ΓXI652A + κ−3ΓXI654

κ3 + κAB
,

lim
τIII→∞

XI653b(τIII) ≡ εIII,IVΓXI653b ,

ΓX653b =
κ20ΓXI652B + κ−30ΓXI654

κ30 + κAB
,

lim
τIII→∞

XI540(τIII) ≡ εIII,IVΓXI540 ,

ΓXI540 =
κBFXI6540Y I0/Y IT
κABκ4/(κ4 + κ−AB)

,

lim
τIII→∞

XI640(τIII) ≡ εIII,IVΓXI640 ,

ΓXI640 =
κAB

κ4 + κ−AB
ΓXI540 .

(C.2)

C.2 The definition of I820 signal

The I820 signal is calculated by the following equation [58]:

I820(t) = 10
(APc+ (t)+A

P
+
700

(t))
, (C.3)
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where

APc+(t) = d× c× εPc+ × C0

CT
,

AP+
700

(t) = d× c× εP+
700

×
XI5/6 +XI7 +XI65 +XI654

XIT
.

(C.4)

Here, d, c, εPc+ and εP+
700

are the path length (0.01 cm), the molar concentration

of PS I (5.79 × 10−6 M), the paticular molar extinction coefficients for Pc+ (1590

M−1 cm−1) and P+
700 (10,300 M−1 cm−1) [107], respectively.
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