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Abstract

In robotics, a robot configuration that has a degenerated Jacobian matrix is called singular con-
figuration. The kinematic properties of singular configurations are well-studied. In a singular
configuration, the robot end-effector loses one or more degrees of freedom, and cannot be
freely controlled in each direction. For this reason, many control and motion planning strate-
gies have been used to avoid the singularities. However, these strategies lead to a complex
control and motion-planning process, and a restricted range of feasible tasks.

As we know, everything has two sides. Some researches showed that singular configu-
rations are advantageous in several robot motions, even though the advantage has been ne-
glected for a long time. To give an explanation of the advantage, it is necessary to examine
the dynamics near the singular configurations. Serial manipulators are commonly utilized in
industry and faculty, and the understanding of the corresponding dynamics is very important.
The investigation of the dynamics of serial manipulators near the singular configurations is
the main emphasis in this dissertation. This dissertation summarizes the features of singu-
lar configurations. Two of them have been observed and theoretically explained in previous
studies. To theoretically analyze the rest of the features, a two-link manipulator with a heavy
object grasped at the end-effector is considered. This dissertation focuses on how to accelerate
the heavy object efficiently. The acceleration of the object is divided into three components,
torque-dependent, gravity-dependent and velocity-dependent accelerations. These correspond
to three terms including joint torques, gravity and joint velocities in the equations of motion
of the object respectively. Each component of acceleration of the object is approximately
expressed by the function of joint angle under several assumptions. The behavior of the ap-
proximate expressions with different postures can clearly explain the rest of the features.

The goal of this dissertation is to understand how to utilize the features in robot motions.
The ideas gained from these studies will be useful for making a robot perform highly dynamic
motions from a practical viewpoint. This dissertation pays attention to some dynamic motions,
including lifting motions of a two-link robot manipulator, dragging motions of a two-link
mobile manipulator, jumping motions of two/four-link legged robots and landing motions
of a four-link legged robot. A heavy object or body is considered to be strongly moved by a
manipulator or leg in a limited time. For each dynamic motion, the optimal one that minimizes
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the necessary joint torques is obtained by numerical optimization. Simulation results show
that the features of singular configurations are utilized in the obtained motions to reduce the
necessary joint torques. From the simulation results, the way of using the features in each
motion is also clarified.
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Chapter 1

Introduction

1.1 Background

The development of the robots that can perform human-like movements has attracted many
researchers [1-3]. Over the past decades, researchers have proposed several robot manipu-
lators to perform highly dynamic tasks such as grasping [4—7], batting [8—10] and throwing
[11-14] by their end-effectors. The lifting motion performed by the robots in behalf of us has
been studied well [15, 16].

Mobile manipulators are expected to perform various tasks by using the manipulator fitted
on the mobile platform [17, 18]. In [17], a quadruped robot (BigDog) with a manipulator has
successfully performed lifting and throwing heavy objects. Due to fukushima daiichi nuclear
disaster [19], the mobile manipulators that can work in unknown and dangerous environment
instead of human beings attract the interest of many researchers recently [20, 21]. Mobile ma-
nipulators have been used inside the fukushima daiichi reactor buildings for several purposes
such as opening door and picking up debris.

Many of the robot manipulators (including the mobile ones) are equipped with the actua-
tors with high performance. However, powerful actuators often have heavy weight, and may
bring external energy consumption during robot motions, especially for the mobile robots
which are powered by the batteries. When these mobile robots work in an unknown envi-
ronment such as an earthquake rubble or a nuclear rubble, there should be enough remaining
battery capacity for any emergency issue. If the tasks are performed efficiently even by small
actuators, energy consumption can be reduced and the tasks can be achieved as much as pos-
sible before running out of batteries. Therefore, there is a pressing need to find a way of
efficiently achieving dynamic tasks.

Several approaches to develop jumping robots have been proposed so far [22-26]. Most
of them are based on the biological structure and biomechanics. In [22], biped robots with
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musculoskeletal system are constructed to realize a jumping motion from take-off to stable
landing. Dynamic movements such as walking, running and jumping need coordination of
many degrees of freedom under the gravitational force and the ground reaction force, and are
difficult for robots to perform. As we have known, when something is exerting force on the
ground, the ground will push back with equal force in the opposite direction. If someone
wants to jump, the gravity force and ground reaction force should act upon him or her in the
period that the foot touches the ground, and the period is called "stance phase". When no part
of him or her touches the ground, only gravity force acts in this case, and the period is called
"aerial phase". The jumping motion can be divided into three parts, jumping (stance phase),
floating (aerial phase) and landing (stance phase). If we want to jump higher vertically, we
need to generate enough upward acceleration while overcoming gravity in stance phase. In
other words, the jumping movement is a highly dynamic motion and needs a large amount of
energy in a short time [27, 28]. Electro-magnetic actuators for robots could be saturated due
to a torque limit during the jumping movement. To achieve the jumping movement within the
torque limit, an efficient way of supplying the energy from the joint torques has to be adopted.

During a landing motion, large ground reaction force, called impact force, occurs due
to the impact between the foot and the ground. Reducing the impact force (or momentum)
is important for humans to prevent injuries and for robots to avoid mechanical breakdowns.
When a robotic arm or leg collides with other object, the impact force caused by the collision
depends on the configuration (posture) of the robot. The optimal configuration that minimizes
the impact force can be calculated by using a mathematical model of the impact force. Two
different impact force models have been considered in the references [29-31]. For the model
in [29, 30], the impact with stiff objects occurs in an infinitesimally small period of time.
The joint velocities and the momentum of the robot change discontinuously at the instant of
collision. It is called discontinuous model in this dissertation. In [31], landing of a legged
robot that has a foot equipped with a soft pad is considered. The soft pad generates a spring
damper force between the foot and the ground. The impact through the pad occurs in a finite
duration, and the changes in joint velocities and momentum of the robot are continuous. It is
called continuous model in this dissertation. For both models, the configuration of the robot
where the leg is bent, that is, the configuration far from the singular configuration where the
leg is stretched out, is advantageous to reduce the impact force or momentum.

To complete a landing motion after the collision, joint torques of a legged robot have to
bring the configuration to a stable stance and absorb the kinetic energy of the robot to stop
the motion. The joint torques for human landing motion have been investigated so far. It was
found in [32] that the joint stiffness alters during the ground contact phase in human hopping.
The leg stiffness modulation is sensitive to changes in ankle joint stiffness [33]. Inspired
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by those results, a body stiffness and damping control method has been proposed to achieve
soft landing of a legged robot in [26]. Time varying stiffness and damping coefficients were
optimized to reduce the peak value of ground reaction force. On the other hand, minimization
of necessary joint torques during a landing motion is also important for reducing the energy
consumption of joint motors. More importantly, the weight of the robot can be reduced by
using small motors if the necessary joint torques are small. The lighter weight makes the

realization of a jumping robot much easier.

Human beings can dexterously perform highly dynamic motions. For instance, we achieve
efficient walk by utilizing the posture with extended knees and hips [34]. We push or pull a
heavy object as a habitual and physically strenuous task. When we pull an extremely heavy
object, we use our whole bodies. The translational momentum (or kinetic energy) of the trunk
is generated before we apply a pulling force to the object with our hands, and then a large force
is applied to the object near a configuration where the arm is fully extended. Human beings
usually lift up heavy objects to a higher place in the daily life. In a weight lifting motion, an
athlete lifts up a heavy barbell. The athlete firstly extends his arms and then suddenly starts to
lift the barbell from the ground. After lifting it above his head, the body stretches to sustain the
barbell. In a vertical jumping motion of human beings, the leg stretches rapidly in an aligned
position in stance phase, and the take-off posture is almost stretched out. In these motions, the
extended postures of human beings, that are called singular configurations in robotics, seem
to be very useful. As we know, both human beings and robots can be modeled as multibody
systems, and they have much in common. The features of singular configurations that will be
mentioned later, might have a great ability to solve the above problems for the robots.

Robot kinematics describes the motion of the robot, such as the relation among displace-
ment, velocity, acceleration and time, without considering the cause of the motion (force).
Forward kinematics calculates the position and orientation of the end-effector in terms of the
joint variables. In general, by denoting the end-effector position and orientation by x € R™
and the set of joint angles as g € R" for a robot manipulator, the forward kinematics map is

expressed as

x=f(q). (L.D

The following equation will be obtained by differentiating the forward kinematics map

i=Jg, (1.2)

where J = 9x/9q4, and is called (m x n) Jacobian matrix. The Jacobian relates how movement
of the elements of g causes movement of the elements of x. In robot kinematics, the Jacobian
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matrix is very important and arises in almost every aspect of robotic manipulation, such as in
motion planning and in the derivation of equations of motion. Based on the Jacobian matrix,
manipulability ellipsoid has been proposed to geometrically interpret the ability for the robot
manipulator to change its end-effector position [35]. A round ellipsoid suggests that the robot
can produce equal velocities in all directions. In robotics, inverse kinematics problem is very
fundamental. There are many researches for solving the joint space solution to a required
end-effector position and orientation [36-39].

According to the principle of virtual work, there exists a symmetric relation between the
force/torque and velocity/angular velocity. In statics, the relationship between the force F
applied at the end-effector and the joint torques T can be derived as

t=J'F. (1.3)

For a robot manipulator, singular configuration is a configuration where the Jacobian
matrix relating the end-effector velocity to the joint velocities drops rank [40]. The solu-
tion to the inverse kinematics problem is undefined in a singular configuration. At a kinematic
singularity, the rank of the Jacobian matrix r is less than m, and some column vectors of the
Jacobian matrix become linearly dependent. Thus, the end-effector loses one or more degrees
of freedom, and can not move in the directions corresponding to the degenerated freedoms. In
motion planning and precise control for the robot end-effector, it is widely common to avoid
the singular configurations [41-43]. To understand the properties of singular configuration,
many researchers focus on the analysis of kinematic singularities for parallel manipulators
[44-52] and for serial ones [53-58]. The literature [45] has developed a general framework
for the singularity analysis of non-redundant mechanisms. The singular configurations of re-
dundant manipulators have been classified based on the possibility of reconfiguration into a
nonsingular posture using self-motion in [55].

The robot dynamics describes how the robot moves in response to actuator forces. The
derivation of equations of motion is central to the dynamics. There are many methods of
generating dynamic equations or equations of motion of a mechanical system based on La-
grangian equation and Newton-Euler formulation. All the methods generate the same equa-
tions, but some approaches could reduce the computation complexity [59—63]. The kinematics
and dynamics are highly coupled, that is, kinematic properties have a strong effect on the dy-
namics. The dynamic manipulability takes the robot dynamics into consideration in order
to measure how easily the position and orientation of the end-effector can change in motion
[64, 65]. It is derived from the Jacobian matrix and the inertia matrix of the robot. In a sin-
gular configuration, both the manipulability ellipsoid and dynamic manipulability ellipsoid
become degenerate, and the acceleration along the degenerate direction cannot be caused in-
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stantaneously by the joint torques. However, the variation of the dynamic manipulability near
singular configurations has not been examined sufficiently. As the robot moves slightly from
the singular configuration along the degenerate direction, the dynamic manipulability ellip-
soid changes drastically, which will be shown in Appendix 2.A. The dynamic performance
in terms of inertial or mass properties has also been characterized in [66, 67], and the one in
terms of the end-effector acceleration has been described in [68]. In the dynamic model of a
robot manipulator, joint velocities generally appear as nonlinear terms which include the Cori-
olis and centrifugal forces. However, these researches have not considered the velocity effects
sufficiently, that can play an important role in the acceleration of the end-effector [69, 70]. The
Coriolis and centrifugal forces become larger for dynamic motions with large joint velocities,
and could be major causes for the acceleration of the end-effector. The analysis of the velocity
effects near the singular configurations will become one of the emphases in this dissertation.

1.2 Motivation and Goal

Since the demerit of singular configurations in robot kinematics is so obvious, the role of
singular configurations in robot dynamics has been neglected for a long time. Until recently,
singular configurations have shown the usefulness for achieving dynamic motions of the robots
[71-73]. Some static and dynamic features of singular configurations have been noticed in
[16, 74, 75]. A heavy weight is lifted (or pulled) up in [16], while a heavy door is pulled in
[74]. Through theoretical analysis and numerical simulations, the literature [ 16, 74] has shown
that energy can be efficiently generated by the joint torques near the singular configurations,
and the heavy object is strongly pulled simultaneously. However, the researches have not
theoretically explained how to accelerate the object near singular configurations in pulling
motions.

So far there has been little research on the dynamics of the robots near singular configura-
tions, and it is still not understood sufficiently. Therefore, the singular configurations have not
been widely utilized in robot motions. As mentioned earlier, human beings dexterously utilize
the singular configurations in several motions such as jumping and pulling. When we make
the robots perform such dynamic tasks like human beings, it becomes necessary to understand
the dynamic features of robot near their singular configurations. This dissertation focuses on
the relation between the robot motion and the singular configurations.

In this dissertation, the features of singular configurations will be summarized, and their
dynamic advantages in the motions of robot manipulators and legged robots will be verified.
Since the dynamics of the robots with more than two links is extremely complex, the model
of a two-link robot manipulator will be considered for analysis. Two-link mechanisms are



6 Introduction

Table 1.1: Classification of the robot motions in this dissertation and the ones in our previous

studies
In vertical plane In horizontal plane
Lifting motion of Pulling motion of
Fixed robot base a two-link manipulator a two-link manipulator
(Sections 3.2, 3.3 and [16]) ([74D
Jumping and landing motions of Dragging motion of
Unfixed robot base || two-link/four-link legged robots | a two-link mobile manipulator
(Sections 4.2, 4.3 and 4.4) (Section 3.4)

commonly used, and considered as a simplified model of our arms and legs. The analysis
of the two-link manipulator could be important for a fundamental understanding of singular
configurations and its future extension. The robot motions in this dissertation and the ones
in our previous studies are classified in Table 1.1, according to whether the robot bases are
fixed or unfixed, and whether the robots move in a vertical or horizontal plane. In the lifting
motion of a two-link robot manipulator and dragging motion of a two-link mobile manipulator,
a heavy object is pulled by the manipulator. Numerical optimization will be performed to
clarify the usefulness of the singular configuration in the pulling motions. More precisely, the
necessary joint torques in the robot motion are minimized, and the corresponding motion is
analyzed to check whether the result is concerned with the features of singular configurations
or not. In the jumping motion of two/four-link legged robots and landing motion of a four-link
legged robot, a heavy body is pushed by the leg. The utilization of singular configurations in
these motions will also be examined.

1.3 Outline

The main structure of this dissertation is shown in Fig. 1.1. The main theme is to study the
relation between the features of singular configurations and their applications, namely, some
illustrative robot motions.

Chapter 2 lists four features of singular configurations observed up to now. Section 2.2
derives the kinematic and dynamic equations of a multibody system, which is designed as
a series of rigid links, as a general representation. Since this dissertation deals with several
kinds of robots, the corresponding kinematics and dynamics can be easily calculated based
on the obtained equations. Section 2.3 introduces the model of a two-link robot manipulator,
by using the equations obtained in Section 2.2. A brief explanation about two of the features
is given in Section 2.4. The other features have been noticed but not theoretically explained
before. A simplified model of the two-link manipulator is considered, and the two features are
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Robot Manipulator

/

Legged Robots

Features of Applications

Singular Configurations
Figure 1.1: Main structure of this dissertation

verified through theoretical analysis in Section 2.5. The main contribution is that this disserta-
tion provides a theoretical explanation about the dynamic features of singular configurations,
which can be utilized in robot motion.

Chapter 3 deals with the motions of two-link robot manipulators such as a manipulator
with fixed base and a mobile manipulator with unfixed base. Sections 3.2 and 3.3 present the
lifting motions of a two-link robot manipulator, a lifting motion and a weight lifting motion,
respectively. A heavy object attached to the end-effector is to be moved upward by the ma-
nipulator. In the lifting motion, the heavy object is lifted up a certain height from the lowest
position, while the heavy object is lifted up to the highest position in the weight lifting motion.
These motions are optimized for minimizing the necessary joint torques. The numerical simu-
lation results show that the features of singular configurations are advantageous in generating
large energy and causing large acceleration with bounded joint torques. Section 3.4 deals with
the optimal motion of a mobile manipulator for dragging a heavy object with the end-effector.
When the object is moved a certain distance, the torques that are consumed in the mobile
manipulator during the motion are minimized by numerical optimization. In the optimized
motion, the arm mounted on the mobile base passes through its singular configuration, and a
large force to pull the object is generated simultaneously. A theoretical analysis is performed
to explain the numerical results by using a simplified model of the mobile manipulator.

Chapter 4 deals with the motions of legged robots, including a two-link legged robot and
a four-link legged one. Sections 4.2 and 4.3 obtain optimal jumping motions of a two-link
legged robot and a four-link legged one. For the two-link robot, the robot motion in stance
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phase is considered, and a fixed amount of translational energy is supplied to the robot from
joint torques by the take-off time when the foot leaves the ground. For the four-link robot,
the robot motion in aerial phase in addition to the one in stance phase is also considered, and
the rotations of joints are stopped in the air by the time when the robot reaches the maxi-
mum height with the joints fully extended. For both the two-link robot and four-link one, the
numerical optimization results show that the take-off posture that is close to a singular con-
figuration has the advantage in supplying a large force (or acceleration) efficiently in stance
phase. Furthermore, the numerical optimization results of the four-link robot with different
take-off postures show that the take-off posture close to a singular configuration is also useful
for reducing the rotational energy that has to be eliminated in aerial phase. Even though the
model of the four-link robot is more complex, the features of singular configurations can be
noticed in the motions of both robots. Section 4.4 deals with optimal landing motions of a
four-link legged robot that minimizes the impact force at the contact point and the necessary
joint torques during the motion. The cost function for optimization is given as the weighted
sum of the impact force and the joint torques. The configuration of the robot that is close to a
singular configuration is advantageous in minimizing the joint torques for a heavy body, while
the configuration where the leg is bent is advantageous in reducing the impact force. This
is shown by numerical optimization results with different weights for the cost function and a
theoretical analysis of a simplified model for the legged robot.
Finally, this dissertation is summarized in Chapter 5.



Chapter 2

Features of Singular Configurations

2.1 Introduction

As mentioned in Chapter 1, the disadvantage of singular configurations has been observed
based on the investigation of robot kinematics. Due to the disadvantage, singular configura-
tions fell from grace with the scientists.

There exist few studies on the advantage of singular configurations, which is concerned
with the robot dynamics. Since the dynamics is much more complex than the kinematics, a
detailed investigation of robot dynamics near singular configurations has been neglected until
recently. This research gains enlightenment from the analysis of the dynamics related to a
two-link manipulator in the literature [16, 74].

Firstly, the derivation of the kinematics and dynamics of a multibody system will be de-
scribed in detail. Based on the obtained equations, the kinematic and dynamic equations with
respect to all the robots considered in this dissertation will be easily calculated. Then, four
features of singular configurations related to a two-link robot manipulator will be introduced,
and two of them are demonstrated by theoretical analysis. These features will deepen our
understanding of singular configurations.

2.2 Kinematics and Dynamics of a Multibody System

In robotics, the general form of equations of motion is expressed as

M(q)g+h(q,q)+t,(q)=T+JF, (2.1)

where M (q) is the inertia matrix, h(q, ) is the vector with respect to the Coriolis and centrifu-
gal effects, and T is the gravitational term. The vector F denotes the force at the end-effector
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a;]

aj-11

Figure 2.1: Model of link j— 1 and j of a n-link multibody system

of the manipulator, and J is the corresponding Jacobian matrix. In general, a robot can be
modeled as a multibody system.

Since this dissertation deals with several kinds of serial robots, a general representation
of kinematic and dynamic equations for these robots will be required to efficiently reduce
the computational complexity. The kinematics and dynamics of a multibody system which is
designed as a series of rigid links will be introduced in this section.

2.2.1 Kinematics

Firstly, two orthogonal sets of unit vectors, {a;_1} = {a;_11,aj-12,a;—13} and {a;} =
{aji, a;», aj3}, are introduced. As shown in Fig. 2.1, the vectors of {a;_;} and {a;} are
fixed in the link j — 1 and link j of a n-link multibody system respectively, where j =1,...,n.
The notations [a;_;] and [a;] denote the coordinate frames for the link j — 1 and link j, and
are defined as [aj_1] =[a;_11,aj-12,a;-13]" and [a;] = [a;1, aj2, aj3]". The following
vectors are also defined:

®;;=la;j]"V®;;: Angular velocity vector of [a;] with respect to [a;],

p;= a j]T(j ) p j: Position vector from an arbitrary point in the link to the mass center of

link J,

R; = [aj]TU)R;: Position vector from the origin of [a,] to the mass center of link j,

rj = [a;]Tr;: Position vector from the origin of [a;] to the origin of [a;1],

. J
o;=aj]"Ve, <: Y @y | : Angular velocity vector of [a;] with respect to [ay)],
=1
A ; : Transformation matrix from [a;] to [a;].

The vector x in Fig. 2.1 can be expressed in two different frames as x = [a j]T(j)x =
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[a;—1)"U=Vx. The local coordinate representations ~Vx and ()x of x in [a,;_1] and [a}]
satisfy V)x = [a;][a;—1]"U=Vx = A; ;U= Dx. The transformation matrix A; ;_; is an or-
thogonal matrix, and satisfies

AjjAT =1 (2.2)
By differentiating the above equation, the following relation will be obtained:

Ajji=-Ye;; 1 xAj;. (2.3)

A cross product of vector x is defined as x:

X1
x=1|x |, 2.4)
X3
0 X3 —X2
X=—XX = —X3 0 X1 . (25)

Thus, (2.3) can be rewritten as
A=Y@ 145, (2.6)

where V)@ ji—1= A i, J'—IAJT, j—1- The following equations are valid with respect to cross prod-
uct :

F=@Xr=—rxo=rio, (2.7)
R(b x ¢) = (Rb) x (Rc), (2.8)
R(wx)R" = (Rw)x, 2.9)
i[a,-]T =0;x|aj]". (2.10)
dt

There are many representations to parameterize A; ;1 such as Euler angles and quater-
nions. For instance, the 1-2-3 Euler angles are defined as 0 j_| = (6, 6, 63]T, and the trans-
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formation matrix A ; ;1 becomes

Ajj1=R3(65)R:(6:)R((6)) 2.11)

c6,c05 50156205 + 01505 —c0O156,c0;5 + 56,503

= —cbhs03 —s50156,503+c01cO; 0150505+ 560503 , (2.12)
sez —S91C92 C91692
where
1 0 0 692 0 —S92
Ri(6))=| 0 c6 s6; [,Ra(62)=]| 0 1 0 ;
0 —s6; c6; 56, 0 cH,
693 S93 0
R3(63)=| —s63 c6; 0 |,cO=cosb and s6 =sin6.
0 0 1

The relative joint velocity V)@ j,j—1 can be expressed by the Euler angle rates as

cOc6; 5603 0O
Vew;; 1=5(0)0,5(0)=| —c6,56; c6; 0 |. (2.13)
s 0 1

The system is composed of n links as shown in Fig. 2.2. The origin of [a}] is located on
link 7, and [ap)] is fixed to the inertia space. The following vector will be used as generalized
coordinates

xT = [(0),.(7)"7 (61,0)T7 (ez,l)T (en,n—l)T]- (214)

The velocity variables are introduced as follows:

T T T
z" =94, ((”wLo) , ((Z)wz,l) ((")(om_l) ! (2.15)
The two vectors satisfy the equation below:
=52, (2.16)

where S_1 =diag (1,3_1(91’0),3_1(62’1), ...,S_l(en,n_l)).
The equations of motion based on Newton-Euler formulation will be derived. Firstly, the
position vector x; from the origin of [ag] to an arbitrary point in link j and velocity vector of
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[ao]

Figure 2.2: Model of n-link serial multibody system

that point u#; can be expressed by

j—1
xj = lao)" Vro+ Y lay ) Vry+[a)" (VR +7p)), (2.17)
=1

= [ao]" Wiy + Z la;)" (V7Moo o) +[aj]" (VR +Dp ). (2.18)

It should be noted that for the point in link 1, x; = [ag]” Vro+ [a;]” ( IR +Wp 1) and u; =

lao)” Vg + [ay]T <( IR, +( pl) ®) o. The component of u; in the frame [a ;] becomes

j—1

(j)uj — Aj,O(O)"'O 4+ Z j7j,((j’);-j,(j’)mj,70) 4 ((j)f\’] 4 (J’)pj)(ﬂ ®;o. (2.19)
J=1
This equation can also be rewritten in matrix form as
(j)uj — ((1) + U )g + U )p]) (2.20)
where
1 0 o ... 0
Ao 1 0 0
H = AZ,O A2,l I 0 c R3(n+1)><3(n+1)’
A,I?() An71 An72 I §
n+1—j
DL . = —_—— €R3><3(n—|—1),

Aj,O A./'al(l)i.l Aj’j_l(j_l)i'j_l 0o .. 0
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(g; = —_—— € R¥3(+1) and
< 0 0 UR, 0 0

(J)p - /—/]% ) /—HL c R3><3(n+1)_
/ 0 0 Yp;, 0

2.2.2 Dynamics

Equations of motion with respect to translational movement

Let dm; be arbitrary small mass in link j, f; be distributed force at the mass and x; be the
displacement of the mass. According to newton’s second law of motion, the equations of

motion for the small mass are expressed as

d
demj = aTthde = f]-dmj. (2.21)

For the whole system, the equations of motion are obtained as

n n
L <k > Y <f;i>; (2.22)
=1 =1
Lo =N, (2.23)

where the equations are denoted in the inertia frame [ag,
<* >j= f*dmj,

A n .
Ly = Y < x;>;: Total translational momentum vector,
J=1
n

No= Y < f;>: Total force vector applied at the whole system.
Jj=1 '

Equations of motion with respect to rotational movement

i-1
A position vector from the origin of [ay] to joint i is denoted by ro; = Y. r;. By multiplying
Jj=0

(2.21) by (x; — ro;) %, it is obtained that
(x]' — r()i) X demj = (.x]' — r()i) X fjdmj

d N
(E ((xj —ro;) x x;) + Fo; ><xj> dmj= (xj—ro;) X fdm. (2.24)
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By considering the links from joint i to the end, the above equations can be combined as

o <Z< — 1)) X X; > >+r0,><2<x,>J—Z< —roi) X f; > (2.25)

J=1 J=1

Li+97Pi=N,(i=1,....n), (2.26)

where the equations are denoted in the inertia frame [ay],

L= )rf < (xj —ro;) x X; >j: Angular momentum vector with respect to the rotations of

the liljlkls from joint i to the end (i = 1,...,n),

v; = iy, Translational velocity vector of joint i in the frame [ay),

Pi: Total translational momentum vector of the links from joint i to the end,

N;: Joint torque vector with respect to the forces at the links from joint # to the end .

The obtained equations of motion (2.23) and (2.26) are denoted in the inertia frame [ap).
Next, the expression of the equations of motion related to link 7 in the local frame [a;] will be
given. Firstly, the generalized momenta are expressed as

24, = [ai]T(i)f,i7i_1. (227)

By differentiating the above equation, it is obtained that

L= % <[ai]T(i)lA'i,i—l) = [a)]" <(i)ii,i—1 + <(i)&)i,—1>T (i)i'i,i—l) : (2.28)

Since v; = [a;]" Dv;, P; = [a;]” O P; and N; = [a;]" )N, the equations of motion in the local
frame [a;] are defined as

T

N\ A

DL g+ D@L+ (U)ﬁi) Wp; = 0N;. (2.29)

By expressing the equations in matrix form, the equations of motion become

L+QL+VP=N, (2.30)

where

Q = diag (0, ((1)&)170>T , ((2)&)2,0)T N ((")&)n,o)T) ;
V =diag (0, <(1)131)T, <(2)52>T,..., <(”)f)n>T) )
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N

L=KZ

Y

K=H"(L'ML+J)H,

L=L+¢,
_ 0 -
m11 0
M— c R x3(n+1)
0
myl
_ 0 _
Mg, 0
J = 6R3(n-|-1)><3(n—i-1)
0
g,
_ 0 _
(DR, 0
e: E R3(n+1)><3(n+l)
0
R,
- o )
Ao 0

bl

L= Ay A VR 0 0 e R3(n+1)>x3(n+1)
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The notation/)J j denotes the moment of inertia with respect to the mass center of link j, and

. T,
equals to < ((f)pj> (J)pj > .
The components of generalized forces N are shown as follows

N=HT (i.TF1+F2) Y Fs, 2.31)

where T
F,—= [O, <Wf ST «@fVST g >,{] :

T
Fa=[0 ,<Oplf > <OpI@f st o <plong ST,
F; is the vector of external forces.
The obtained equations of motion can be rewritten as

KZ+KZ+QL+VP—HT (iTFl -|—F2) +F,. (2.32)

The matrix K and the vector KZ+ QL+ VP correspond to M and h in (2.1) and the terms F3
and HT (f.TFl + F2> correspond to 7 and J* F — T,(q) in (2.1).

For a robot, the origin of the local frame [a;] is always set to be located on the robot
base. When the robot base is fixed, [a;] is stationary and the degrees of freedom of the
robot decrease. The vectors x and Z are reduced to x7 = [(GQ’I)T (Gn,n_l)T] and ZT =

[((2) a)2’1> ! <(”) (1) Py 1) T]. If there exist more structural constraints on the robot, the num-
ber of degrees of freedom is reduced to a smaller one.

With the obtained equations of motion, the ones for all the robots in the remaining chapters
can be easily calculated, such as the two-link manipulator in Section 2.3 and the four-link
legged robot in Section 4.3. The equations of motion for the mobile manipulator in Section
3.4 can also be obtained in a similar way.

2.3 Model of a Two-link Manipulator with Heavy Object

A two-link manipulator with a heavy object attached to the end-effector is considered, and the
heavy object is regarded as a mass point, as shown in Fig. 2.3. The base is fixed at the origin
of x-y coordinate system. The first and second links are called link 1 and link 2 respectively.
The joint between y-axis and link 1 is called joint 1, and the joint between link 1 and link 2 is
called joint 2. The joint angle and input torque at joint i are expressed as 6; and 7; respectively.
The mass, length and moment of inertia of link 7 are denoted as m;, [; and I; (i = 1,2). The
length between joint i and the mass center of link i is expressed as /,;. The mass of the object
is called m,,. The generalized coordinates and generalized forces are chosen as g = [0}, GZ]T
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and T = [11, )7 The position of the end-effector is denoted as p, = [x,y.]|”

Figure 2.3: Model of two-link manipulator

The end-effector velocity p, can be expressed by using the generalized coordinates g:

p.=J(q)q, (2.33)

where the Jacobian matrix is

| licosOy +1hcos(8)+6,) Lcos(0; +62)

= : : ) . (2.34)
l1sin6) +bsin(0; + 6,)  Lysin(6; + 6,)
The equations of motion for the manipulator can be represented as:
M(q)§+h(q.9)+7,(q) =7 (2.35)
The inertia matrix M can be written as
M=M,+m,J"J. (2.36)

The inertia matrix of the manipulator M, is

M, = [Ml M ] (2.37)
M, Ms;
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where M| = mllgl + mz(l% + l§2 +2llgpcos0r) + 11+ Db, My = mz(lg2 +1ilgcos 6,) + I and
M3 = mzlgz + 1. The kinetic energy E is denoted by using M as

1, .
E=54'M(9)g, (2.38)
and h can be expressed as h = Mg — (0E/dq)". The gravitational field points toward the
y-axis negative direction, and the gravity term T, is calculated as

Ty =[(m1lg1 +maly +myly)gsin 0y + (malgy +mylo)
gsin(0y + 6,), (malg +mylr)gsin(0 +6,)]" (2.39)

where g = 9.8[m/s?].

A two-link robot manipulator has two singular configurations when 6, equals to O or 7.
The determinant of the Jacobian matrix J becomes zero at the singular configurations. In this
dissertation, the singular configuration in Fig. 2.4(a) is called Cy , and the one in Fig. 2.4(b)
is called Cy.

@)

(a) (b)

Figure 2.4: Singular configurations of a two-link manipulator: (a)Cp: 6 =0. (b)Cr: o =7

2.4 Features of Singular Configurations in the Literature

Singular configurations of a two-link robot manipulator have the following features:

a) Large loads can be sustained by small joint torques near singular configurations.
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b) Joint torques can generate the kinetic energy efficiently near singular configurations.

Since the features a) and b) have been theoretically demonstrated in [16], brief descriptions
are given as below.

Feature a) comes from the relationship between joint torques and the force at the end-
effector as (1.3). According to (2.33), small changes in joint angles 0g cause changes in
end-effector op, as dp, = J(g)0g. When the robot is in Cy as shown in Fig. 2.4 (a) with

q = 0, the Jacobian matrix J(q) becomes

J(0) = (2.40)

L+ b
0 0|

The end-effector loses a degree of freedom in the y-axis, and the vertical velocity of end-
effector y, equals zero no matter how large joint velocities are given. In statics, (1.3) shows
that if a vertical force F =[ 0 F, ]7 acts on the end-effector in Cp, the necessary joint torques
to sustain the force are also equal to zero. In other words, an infinitesimal torque T can cause
a finite force F in the y-axis near Cy.

The feature b) is derived from the analysis of the inertia matrix M in (2.36) under an
assumption that the object is much heavier than the manipulator (m,, > m;,m;). The inertia
matrix M can be represented as

M =Jiey e} +Moepe; . (2.41)

where A1 and A, denote the two eigenvalues of M (A; < A3), and e, and e,, are the corre-
sponding eigenvectors. When the robot is in a configuration far away from a singular one, the
inertia matrix almost equals to M ~ m,,J TJ, and the eigenvalues A; and A, can be expressed
as

A = 0(my) , A = O(my,), (2.42)

where O(x) is the big O notation. When the robot is in Cy or Cy, the eigenvalues become

A =O0(1) , A = O(my). (2.43)

When the robot is in Cy, ey, = ¢o/||c|l, Where ¢o = [l2, —(I; + 1>)]”. When the robot is in Cy,
ey, ~ ¢x/|exll, where ez = [, I} — )"
By supposing that the robot moves from rest in a horizontal plane, the equation (2.35) can

be rewritten as

g=M'1, (2.44)
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where h = 0 and 7, = 0. The work done by joint torques over a small time interval ot can be

expressed by
512
WJR'JTTTM_IT
6t 1 . 1 4
=57 <;L_lellell+,1_2elzelz)r' (2.45)

The joint torques are supposed to be bounded as || T|| = O(1). When the robot configuration is
far away from the singular configurations, the work remains Wy = O(mLW)St2 from (2.42) and
(2.45), no matter how the joint torques are chosen. When the manipulator is in a singular con-
figuration and the joint torques satisfy 7 || e;,, the work done by these joint torques becomes
W; = 0(1)3t2 from (2.43) and (2.45). The value is much larger than the one in other config-
urations, and leads to feature b). For more details of the feature b), please see the literature
[16].

2.5 Novel Features of Singular Configurations

§
S

Figure 2.5: Lifting up motion of a two-link manipulator

This dissertation points out two other features of the singular configurations:
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c) The energy is stored in the manipulator and causes large acceleration near singular con-
figurations.

d) The torque-dependent acceleration of the object has its largest value when the robot
configuration is close to, but not exactly, a singular configuration.

These features will show the usefulness for accelerating a heavy object attached to the end-
effector.

In [16], it has been shown that singular configurations of a two-link manipulator is advan-
tageous in lifting up a heavy object along y-axis as shown in Fig. 2.5. At the start time of the
lifting motion, the configuration of the manipulator is Cy, and the joint motion along e;, does
not change x,. The lifting motion along y-axis can utilize the above-mentioned feature b) and
the feature c), in order to reduce the joint torques necessary for the motion. And also, another
feature d) can be observed in the motion along y-axis.

This section will analyze the acceleration of the end-effector to reveal the features c) and
d) by using a simplified model. In order to obtain analytical solution to the acceleration, the

following assumptions are made:
1. The mass of the object is much larger than the mass and inertia of the manipulator.

2. The heavy object moves in y-axis, that is,
x. = 0. (2.46)
3. The input torques 7 are bounded and O(1).

4. The length of link 1 equals to the one of link 2, that is,
Lh=hL=L (2.47)
From (2.46) and (2.47), the joint angles must satisfy
6, =—26,,6, = —26,. (2.48)

Therefore, the degrees of freedom of the manipulator are reduced from two to one as 0.
The acceleration of the end-effector is obtained as

a=p,=J(q)4+JI(q.4)q (2.49)
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By substituting (2.35) into (2.49), the acceleration a can be divided into three terms as

a=a;+ag+a, (2.50)
where
a=JM 1, (2.51)
a,=—-JM 't (2.52)
a,=—-JM 'h+J(q,9)q. (2.53)

The accelerations a;, a, and a, represent the components of a dependent on joint torques,
gravity and joint velocities respectively. From the assumption 2, only the vertical components
of a;, a, and a,, that is, a;y, ag, and a,y, will be analyzed. Without loss of generality, the range
of 6; can be set to be 0 < 8; < 7 for the analysis. In addition, it can be easily checked that the
following equations hold:

ay(01) = —any (T —01) ,agy(61) = agy(—61)
avy(el) = —avy(ﬂt — 91) . (2.54)

From (2.54), it is enough to analyze the acceleration when 0 < 6 < g It should be noted that
Co and Cy; correspond to 6; = 0 and 7 respectively.

From the assumption 1, the physical parameters other than m,, are O(1) and m,, > O(1).
The accelerations of a;, a,, and a,, depend on m,, the physical parameters of O(1), the
kinetic energy E (or 6;) and the angle 6;. In the following subsections, their approximate
solutions will be obtained as functions of ; by neglecting small terms, under the condition
that E of O(1) is given.

2.5.1 Torque-dependent acceleration

The torque-dependent acceleration 4,y can be approximately obtained from (2.47), (2.48) and
(2.51) as

N V1 —¢c? (
Tam2 142 (1 — ) + Kymy, 12
— (4P Pmy, + Ky + 4P mollp) 1o} (2.55)

Ary (2c212my. + K> + (2% — 1)mollyn) T

where ¢ = cos(0;), K| = mll§1 +my(l— lg2)2 +h+bhand K> =1 —|—mzl§2.
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Table 2.1: Physical paramaters for acceleration analysis

my = 1[kg| my = 1[kg] my, = 30[kg]
I} =03[m] I, =03[m] ly1 = 0.15[m]
lpp =0.15[m] I} =0.1kgm?] L =0.1[kgm?|

From assumption 1, the angles 8; = 0(\/+;T) and 6 = § — 0(\/;%) correspond to the

robot configurations extremely close to Cp and Cy; respectively. When 6; € [0, 5 — 0(\/#7)]’
272 272
l l

the terms 2c?1°m,, and 4c*1%m,, are much larger than the ones K 4 (2¢% — 1)myllgy, = O(1)

and K7 + 4c2mzllg2 = O(1). Therefore, (2.55) can be approximated as

—21s(1 —5?)
Ay ~
Y 4m,, 1252 (1 — $2) + K,

{—-11+21}, (2.56)

where s = sin(0).

The variation of a;, from (2.56) will be investigated by supposing that 7; and 7, are con-
stants. For s = 0, the configuration of the manipulator is Cp, and the value of a;, equals
zero. The absolute value of ayy, |a;y|, has a maximum value of 0(\/;%) at s = s*, where

st = % n% < 1. The configuration that corresponds to s* is very close to Cy from the as-

sumption 1. The absolute value of a;, monotonically decreases to O(m—lw) as s increases from
s*. Therefore, the acceleration a;, varies intensely near Cp, and can be much larger than the
one far away from Cy. The variation of a,, leads to feature d):

d) The torque-dependent acceleration of the object has its largest value when the robot

configuration is close to, but not exactly, a singular configuration.

Moreover, from (2.56), joint torques must satisfy the following relation to generate the
maximum values of a;,(s*):
2_2 s, 2.57)
71 -1
The joint torques that satisfy || = 15 and (2.57) are chosen, and the profiles of the actual
value of a;, from (2.51) and the approximate value of a,, from (2.56) are drawn as shown in
Fig. 2.6. In this section, the physical parameters in Table 2.1 are used.

Remark 1: The behavior of a;, observed in this subsection remains unchanged even

. . 1 I | K{
when /; # I. The maximum value of |a;| is also 0(\/77) at s =s" = 95 \/ -, Where
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aty from (2.51) |
(o aty from (2.56)

’]

aty[m/s
[$)]

|

|

|

|

|

I |
ap: |
I |
|

|

|

|

|

05 : 15
91 [rad]

0 arcsin(s")

Figure 2.6: Variation of a;, with respect to 6;

K| = kzmllgl +my(kly — lg2)> + k2l + I, = O(1) and k = h/i,. The required joint torques to
generate large acceleration near the singular configurations are chosen as follows:

2_[1—1—12

for s* 2.58
o A ors”, (2.58)

The ratio of 71 to 7, for Cy equals to the one obtained in [16, 74], and both the feature b) and
the feature d) can be utilized simultaneously.

Remark 2: The torque-dependent acceleration in (2.51) has been analyzed in terms of
the dynamic manipulability so far [64]. The drastic variation of a;, near Cy corresponds to the
drastic change in the shape of the dynamic manipulability ellipsoid, as shown in Appendix
2.A.

2.5.2 Gravity-dependent acceleration

From (2.46), (2.47) and (2.48), T, is rewritten as

To = [(milgr +ma(l —lg2))sg, — (malgr + myl)sg]. (2.59)
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I agy from (2.52I) |
o agy from (2.60)

agy [m/sz]

91 [rad]

Figure 2.7: Variation of a,, with respect to 6,

Substituting it into (2.52), ag, can be approximately computed for 6; € [0, 7] as

S g 252 (1 - 52)

e {4my, (1 — %) +20(1 — s*) (my g +ma(1+31)) + K1 } .

(2.60)

In statics, T, approximately equals to the joint torques necessary to sustain the load m,,g.
When the manipulator is in Cy, T, equals zero from (2.59), which corresponds to the feature
a). The absolute value of ayy, |agy|, intensely increases from 0 to g as s increases from 0. In
Co, the gravity has no effect on the acceleration of the end-effector.

The profiles of the actual value of a,, from (2.52) and the approximate value of a,, from
(2.60) are drawn as shown in Fig. 2.7.

2.5.3 Velocity-dependent acceleration
From (2.46), (2.47) and (2.48), h can be rewritten as

h=1[0,—2kys\/1—5263", (2.61)
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where ky = mallgr + mwll2 = O(m,,). It is assumed that the kinetic energy is constant and O(1).
The same amount of energy causes different accelerations as the robot configuration varies.
The energy can be rewritten from (2.38) as

1 .
E=5(K + 2(25% — 1)ky) 67 , (2.62)

Substituting (2.61) into (2.53), a,y is approximately obtained for 6; € [0, 7] as

_2KIV1-576}
M A 2521 — 52) + K
B 4K 1V1—$°E
T (4my,2s2(1 — $2) + K ) (K) +452ky)

(2.63)

From (2.62), the joint velocity 8 equals to O(1) at s = 0, and rapidly decreases to O( \/}TW)
as s increases. The velocity-dependent acceleration a,, intensely decreases from O(1) to

0(%) as s increases from 0. The variation of a,, leads to feature c), that is,

c) The energy is stored in the manipulator and causes large acceleration near singular con-
figurations.

When the manipulator is in Cp, if the vector of joint velocities is parallel to the one of joint
torques in (2.57), the velocity of the end-effector is zero. Kinetic energy of the whole system
is stored as rotational one of the manipulator, and the joint velocities is relatively large from
(2.62). Thus, a,, becomes very large from (2.63). That is the reason why large acceleration
can be caused in Cj.

The profiles of the actual value of a,, from (2.53) and the approximate value of a,, from
(2.63) are drawn as shown in Fig. 2.8 with E = 0.4.

Remark 3: Even when [ # [, large acceleration can also be caused by the kinetic energy
in Cy. The vector of joint velocities should be parallel to the one of joint torques in (2.58) to
cause the largest acceleration.

2.5.4 Total acceleration

In summary, the variations of ag,y, a,y and a,, correspond to features a), ¢) and d) of singular
configurations respectively. The theoretical results illustrate that the kinetic energy E of O(1)
can cause an acceleration of O(1) in Cp, and the bounded joint torques T of O(1) can cause
an acceleration of O(1/,/m,,) for s = s*, that is, for the configuration close to Cy. When
the object is lifted up, a;, and a,, can be manipulated by 7 directly or indirectly, and can
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10 T T T T
ayy from (2.53)

9r \wwwllwavyfrom(2.63)

ayy[m/s’]

0.4 0.6 0.8 1

Figure 2.8: Variation of a,, with respect to 6,

make ay greatly large near Cy. The acceleration a,y only depends on the configuration of the
manipulator and opposes the upward movement of the object. However, it equals zero in Cy,
and does not spoil the large accelerations a,, and a,,. When the robot gets far away from Cy,
a;y and a,y rapidly decrease to O(1/m,,), and the downward acceleration of a4, increases to
g. Consequently, it is very difficult to generate a large upward acceleration with small joint
torques in the configurations far away from Cp, but it is much easier near Cy.

From (2.50), (2.51), (2.52) and (2.53), the profiles of the actual values of ay, agy, a,y and
their resultant acceleration a, are drawn in Fig. 2.9. The total acceleration ay, can be large due
to a;y and a,y near Cy, that is, 6; = 0, as mentioned above.

Remark 4: When the motion of the end-effector p, is restricted on the y-axis, 6, and
6, should satisfy the condition that 0, = —26,. If the end-effector can be accelerated along
the x-axis without the condition, the accelerations of a;y, agx and a,, can be approximately
calculated on the y-axis by a similar analysis. Refer to Appendix 2.B for details.

2.6 Conclusion

This chapter listed the features of singular configurations, examined the acceleration of the
end-effector of a two-link manipulator and revealed dynamic features of singular configura-
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tions by theoretical analysis. In the remaining chapters, some typical robot motions will be
cited to show the dynamic advantage of the features.

10 T T T
agy avy

(J,y I aty

91 [rad]

Figure 2.9: Total acceleration a, with respect to 6,
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Appendix 2.A Dynamic Manipulability

The acceleration a; corresponds to the dynamic manipulability ellipsoid with § = 0 and no
gravity effect. The ellipsoid is defined by

al MI Y MJI la,=1TT<1. (2.64)

The ellipsoid directly illustrates the relation between bounded joint torques and maximum end-
effector acceleration in each direction. Fig. 2.10 shows the dynamic manipulability ellipsoids
with different postures by using the physical parameters in Table 2.1.

Figure 2.10: Dynamic manipulability ellipsoid

It is noticed that the shape of the ellipsoid changes rapidly when the robot approaches
its singular configurations. The maximum possible acceleration in y-axis firstly increases as
the arm extends, and reaches the peak when the arm is almost extended. From then on, it
intensely decreases to 0 with the arm extended fully. The similar phenomenon related to the
maximum acceleration in x-axis also can be found near the singular configuration when the
arm is folded.

Appendix 2.B  Horizontal Acceleration Analysis

If 6, # —26, the horizontal component of a does not identically equal zero. Under the same
assumptions as in Section 2.5, the horizontal components of a,, a, and a,, that is, a;y, ag, and
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ayx, will be investigated.

Torque-dependent Acceleration

When 6, € [0, %], the horizontal term a;, of a; can be approximately obtained from (2.47),
(2.48) and (2.51) as

IV1—s2

T am2 452 (1 — 52) +K1mW12{

drx (257 Pmy, + Ky + (287 — Dmpll) T + K3}, (2.65)

where Ky = I + mplg, = O(1) and K3 = m I3 +my(I> = 13,) + 1y =, = O(1). When 6, €

[0(\/+’Tw)7 Z], the term 2s%/°my,, is much larger than the ones K3 + (252 — 1)mall,» = O(1) and

K3 = O(1). Therefore, (2.65) can be approximated as
2lc(1— )1

dmy,l2c2(1—c2)+ Ky

~

Aix ~

(2.66)

The absolute value of ayy, |a,|, also has a peak value at ¢ = ¢*, where ¢* = % % < 1.

According to (2.66), joint torques must satisfy the following relation to generate the maximum
values of a;(c*):
Z—f _ ? for ¢*. (2.67)
The joint torques that satisfy ||T|| = 15 and (2.67) are chosen, and the profiles of the actual
value of a;, from (2.51) and the approximate value of a;, from (2.66) are drawn in Fig. 2.11
with the physical parameters in Table 2.1. The drastic variation of a;, near Cy corresponds to
the drastic change in the shape of the dynamic manipulability ellipsoid.

Gravity-dependent acceleration

Substituting (2.59) into (2.52), ag, can be approximately computed for 6; € [0, 7] as

—V1 —s2sg{2Is* (mylgy +my (1 — 1)) — K3}

. 2.68
4m,,1252(1 — s2) + K, (2.68)

agx =

1

The acceleration ag, has one local maximum and one local minimum of O(—-
w

) near the

ﬁ

singular configurations.
The profiles of the actual value of ag, from (2.52) and the approximate value of a,, from
(2.68) are drawn as shown in Fig. 2.12.
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Figure 2.11: Variation of a;, with respect to 6,
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Figure 2.12: Variation of ag, with respect to 6,
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I aVXfrom(2.53l)
o ayx from (2.69)

91 [rad]

Figure 2.13: Variation of a,, with respect to 6,

Velocity-dependent acceleration

Substituting (2.61) into (2.53), a,, is approximately obtained for 6; € [0, 7] as

2K3ls(1 —52)60?
Ayy <~ —
T 4my, 252 (1—s2) + Ky

which has a peak value of 0(\/#%) ats = % \/g :
The profiles of the actual value of a,, from (2.53) and the approximate value of a,, from
(2.69) are drawn in Fig. 2.13.
It should be noted that, when /; # [,, the approximate solution of a,, is quite different

(2.69)

from (2.69). A large ay, of (I} —1»)O(1) is caused from the energy of O(1) in the singular
configuration Cy.

Total acceleration

From (2.50), (2.51), (2.52) and (2.53), the profiles of the actual values of a;, agy, a,, and their
resultant acceleration a, are drawn in Fig. 2.14 with the same physical parameters used for
drawing Fig. 2.9. Comparing Figs. 2.9 and 2.14, it is found that when the robot moves along
y-axis, the maximum value of a,, are much smaller than the one of a,, if the kinetic energy E
is given. When ||7|| = O(1), the maximum achievable value of a;, near Cy is also smaller than
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91 [rad]

Figure 2.14: Total acceleration a, with respect to 6;

the one of a;y near Cy. The peak value of |ag,| is also small by comparing to the one of |agy|.



Chapter 3

Lifting and Dragging Motions of Robot
Manipulators

3.1 Introduction

This chapter attempts to find whether the features of singular configurations in Chapter 2
can be utilized in the lifting motions of a two-link robot manipulator with fixed base and in
dragging motion of a two-link mobile manipulator with unfixed base. The lifting motions of a
two-link robot manipulator includes two illustrative ones, a lifting motion in Section 3.2 and a
weight lifting motion in Section 3.3. In the lifting motion, a heavy object is lifted up a certain
height. In the weight lifting motion, a heavy object is lifted up from the lowest position to
the highest one. The model of the robot manipulator is the same as the one introduced in
Section 2.3. In the dragging motion of a mobile manipulator that will be shown in Section
3.4, a heavy object is dragged a certain distance in a horizontal plane. The mobile manipulator
is composed of a wheeled base and a two-link robot manipulator. In order to know what
motion can generate a large force with relatively small input torques to pull the heavy object,
this chapter searches for the optimal motions of the robot manipulators, where the integral
of squared input torques is minimized. Since an actual robot usually has the upper limits of
torques, the minimization of torques could make the task be more easily realized. For the
mobile manipulator powered by the batteries, the energy consumption necessary for the task
achievement can also be reduced, and the number of achievable tasks can be increased before
running out of batteries.

In Section 3.4.4, the dynamics of the mobile manipulator in dragging a heavy object will
be theoretically analyzed by using a simplified model. The subsection will show through a
novel theoretical analysis that the features of the singular configuration can also be utilized
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in the dragging motion. The energy can be generated more efficiently from the joint torques
near the singular configuration than from the torques at the wheels. The pulling force caused
from the energy near the singular configuration is much larger than the force provided directly
from the joint torques, that is, the feature c) has a bigger influence on the motion of dragging
a heavy object by a mobile manipulator than the feature d).

3.2 Lifting Motion of a Two-link Robot Manipulator

3.2.1 Problem formulation

The heavy object is pulled a desired height from the singular configuration in a similar way
as in [16]. In this section, the horizontal movement of the end-effector is not completely
restricted. The boundaries on (%, y.) at the start time, 7 = 0, and the end time, t = T, are given

as follows:
(xe7 ye)'[:() = (07_11 _12)7 (xw ya)'[:() = (070)7
(xea y€)|t=T = (anT)a (x€7 }}e)|t:T = (070)

where yr is the vertical position of the object at the end time 7. According to the above

3.1

equations, the joint angles at the start time and end time can be easily calculated.
A motion planning problem of achieving the lifting motion and minimizing the consumed
joint torques is considered. The cost function for optimization are chosen as follows:
T T
1e(@) = [ el = [ (54 Bar, (62)
0 0
where & represents the parameters for optimization, and is chosen as & = {7 (¢), 12(¢), T}. B-

splines are used to express the joint torques, and the independent parameters of the B-splines
will be optimized. See Appendix 3.A.1 for more details of B-splines.

3.2.2 Numerical results

The motions obtained by numerical optimization will be shown. The physical parameters of
the two-link manipulator are chosen as shown in Table 3.1. The initial and final heights of the
object are yo = —0.65[m| and y;7 = —0.45]m|. MATLAB function fmincon was used to find
the optimal parameters. To verify that the feature c) is very useful in the motion of passing
through Cp with larger energy, the numerical optimization was performed in two cases, Case
1 and Case 2. In Case 2, there is a condition on 6, as 0, < 0. Under the condition, the
manipulator starts directly from Cp and cannot pass through Cp.
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Table 3.1: Physical parameters of the two-link robot manipulator
I 0.3 [m] b 0.35 [m]
lgy 0.138[m] |l | 0.179 [m]
I | 0.121 [kgm?] | L | 0.118 [kgm?]
mi 0.8 [kg] my 0.52 [kg]
My 2.5 [kg]

Case 1

The red line in Fig. 3.1 represents the trajectory of the object. After the object is lifted up
a little from the singular configuration Cy, the object falls down and the manipulator passes
through Cj again. The time histories of joint torques and vertical acceleration of the object
are shown in Figs. 3.2 and 3.3 respectively. The dashed red line expresses the moment when
the manipulator passes through Cy, and the corresponding time is 0.597[s]. The optimized
duration time is 7 = 0.905]s], and the value of J for the obtained motion is 2.29[N*m?s].

All the features of singular configurations, a) to d), are used in the lifting motion. From
Figs. 3.1, 3.2 and 3.3, the object is lifted up twice around ¢t = 0.2[s] and 7 = 0.6[s]. The
initial and final configurations are denoted as IC and FC respectively. The configuration of the
manipulator changes in the pattern: 1C(Cy) — Cyp — FC. It is clear that a large acceleration
is caused from features b) and c) for the second lift. The energy is stored during the first
lift, and increased much by using the feature b) while approaching Cy again. The increased
energy causes the large acceleration a,, from the feature c) as shown in Fig. 3.3. Due to the
feature a), the negative acceleration from the gravity, agy, is small and does not spoil the large
acceleration. Feature d) is also utilized to generate a large torque-dependent acceleration, a;y,
just after passing through Cy. The joint torques satisfy (2.58) around ¢ = 0.597[s] as shown
in Fig. 3.2. Although 4, is negative before passing through Cy, the joint torques before Cy
are utilized to increase the energy and to obtain much larger a,, after Cyy. As the results of the
accelerations, the object is strongly pulled up with relatively small joint torques.

Case 2
The red line in Fig. 3.4 represents the trajectory of the object. The configuration of the
manipulator changes in the pattern: IC(Cy) — FC . The time histories of joint torques and
vertical acceleration are shown in Figs. 3.5 and 3.6 respectively. For the obtained motion,
Je = 4.62[N?m?s] and T = 0.522[s]. The cost Jc is almost twice as much as the one in Case 1.
Although all the features can be utilized even in Case 2, the energy stored in the first lift
and in approaching Cy again for Case 1 makes the feature c¢) more remarkable. The more
kinetic energy is generated near singular configurations, the larger acceleration can be caused
from it as observed in from Figs. 3.3 and 3.6.
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Figure 3.1: Initial and final postures of the robot for the optimized lifting motion (Case 1)
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Figure 3.2: Time histories of joint torques (Case 1)
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Figure 3.4: Initial and final postures of the robot for the optimized lifting motion (Case 2)
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Figure 3.5: Time histories of joint torques (Case 2)
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Figure 3.6: Time history of vertical acceleration of the heavy object (Case 2)



3.3 Weight Lifting of a Two-link Robot Manipulator 41

7

@  (=.00).400)

Figure 3.7: Task representation of weight lifting

3.3 Weight Lifting of a Two-link Robot Manipulator

Weight lifting of a two-link robot manipulator can be considered as a special case of the above
lifting motion. In (3.1), the final height of the object is set to be yr = [ + >, which means that
the heavy object is moved from the lowest position to the highest one as shown in Fig. 3.7.
The cost functions Jc and the parameters for optimization & are chosen as the same as the
ones in the above section.

The solution obtained by numerical optimization will be shown. The physical parameters
are used as the same as the ones in the above section, except that the mass of the object is set
to be 3.1[kg]. MATLAB function fmincon is also used to find the optimal parameters.

The obtained motion shows that the robot passes through the singular configurations twice
in Fig. 3.8. The green dashed line in Fig. 3.8 represents the configuration of the manipulator
as in Cy. The configuration of the manipulator changes in the pattern: 1C(Cy) — Cy — Cx
— FC(Cp). All the features of singular configuration are used in the obtained weight lifting
motion. The motion of passing through Cj is similar to the one in Case 1 of Section 3.2, and
the motion of passing through Cy is also useful for generating large acceleration. At the end
time, it is should be noted that the final posture is in Cp, and the required joint torques to
sustain the object equal zero due to the feature a).
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Figure 3.8: Optimized weight lifting

3.4 Pulling Motion of a Mobile Manipulator

This section investigates what motion of a mobile manipulator generates a large pulling force
efficiently and attempts to unveil the dynamics of the motion. For dragging a heavy object, it is
necessary to generate a large pulling force that is larger than the maximum static friction force
applied to the object on the ground. In this section, an optimal motion planning problem will
be solved to obtain the motion that generates the large pulling force with small joint torques.

3.4.1 Mobile manipulator

The mobile manipulator is composed of a wheeled base and a two-link robot manipulator. The
base has two differentially driven wheels and support casters to keep the roll and pitch angles
of the base zero. The hand of the two-link robot manipulator is supposed to grasp a heavy
object. For simplicity, the following assumptions are made:

1. The wheeled base and the object move on a horizontal plane.
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2. The orientation of the wheeled base is kept constant, that is, the two wheels rotate at the
same velocity and the base moves along a straight line.

3. The connection between the object and the robot manipulator hand is modeled as a joint
that freely rotates, and the joint is located at the mass center of the object.

4. The wheels of the base do not slip on the ground.
5. There are no frictions at the two joints of the robot manipulator.

From the assumptions 2 and 3, the rotations of the wheeled base and the object do not appear
in the equations of motion. The base and the object can be modeled as mass points. Figs. 3.9
and 3.10 show a schematic model of a mobile manipulator with a heavy object and the ex-
perimental prototype. The masses of the base and object are denoted as m;, and m,. From
the assumption 2, it is supposed that the base moves along x-axis, without loss of generality.
The location of the base is expressed as x;. The position of the end-effector is denoted as
P. = [xe,ve]". The rotation angle of the two wheels and the sum of driving torques applied
to them are represented as 6y and 7y. The inertia of each wheel around the rotation axis is
expressed as ,,. The links and joints of the robot manipulator are called as, Link 1, Link
2, Joint 1 and Joint 2. The mass and length of Link i are denoted as m; and [; respectively
(i = 1,2). The moment of inertia of Link i and the distance from Joint i to the mass center
of Link i are expressed by I; and l,;. The joint angles and torques with respect to Joint i are
represented as 6; and 7; respectively. From the assumption 4, the velocity of contact point of
the wheel with the ground must be zero, that is, x;, — R6y = 0 where R is the wheel radius. The
generalized coordinates and the generalized forces for the mobile manipulator are expressed
in vector forms as q = [x;, 01, 6;]" and T = [1, 71, 2] .
The velocity of the object is expressed by using generalized coordinates g as follows:

p.=Jc(q)q. (3.3)

The Jacobian matrix J, can be written as

J.(q) = 1 —11s0; —1hs(0;+6;) —hs(0;+ 6) (3.4)
¢ 0 15Oy + (6, +6,) lrc(6; + 67) ’ .

where cx and s% mean cos(*) and sin(x). The equations of motion for the mobile manipulator
can be represented in the following form:

M(q)§+h(q,4) =D(t—1;)+J.F., (3.5)
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Figure 3.9: Schematic model of a two-link mobile manipulator with a heavy object

where D = diag{1/R, 1,1}. The kinetic energy of the system is expressed by using M(q) as

E=(1/2)§"M(q)q. (3.6)

Then, the term h(q, §) is expressed as h = M(q)q — (0E/dq)” . The friction force between the
object and the ground is denoted as F, in (3.5). When the object is at rest, the static friction
force F; is applied to the object, that is, F, = F;. It is supposed to satisfy ||F|| < usm,||g||
where L is the static friction coefficient and g is the gravitational acceleration vector. When

the object slides on the ground, F, = F; where F is the kinetic friction force defined as

Fi = (—ap,—bsgn(p,))mol|g|- (3.7)

The friction torques at the wheels and the joints are denoted as T, = [yo, ‘L'fl,sz]T in
(3.5). From the assumption 5, 7s; = 0 (i = 1,2) and 7y is represented as

Tro = Cé(). (3-8)

The equations of motion only for the object can be represented as

mape:Fa+F€7 (39)

where the force at the object from the robot manipulator is expressed as F, = [Fyy, Fay]T.
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Figure 3.10: Experimental prototype
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Figure 3.11: Task of dragging a heavy object
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3.4.2 Problem formulation

This subsection deals with the problem of dragging a heavy object a certain distance along
x-axis by the mobile manipulator as shown in Fig. 3.11. The remainder of this section focuses
on the case where the masses of the base and the object are much larger than the mass and
inertia of the robot manipulator.

To save the energy consumption of the mobile manipulator, the torques necessary to drag
the heavy object should be reduced. The motion planning problem where the torques at the
wheels and the joints are minimized is considered under the following boundary conditions at
the start time, ¢t = 0, and the end time, t = T:

4(0) =¢(T) =0, x.(0) = y.(0) =0, x,(T) = Ax, (3.10)

where Ax is a specified displacement of the object along the x-axis. From (3.10), the initial
posture of the manipulator g(0) is obtained if 0;(0) is given.
The following cost function is chosen as criterion for optimization
T T
e(®)= [ elPar= [ (55 + B, G
0 0

where & represents the parameters for optimization and is chosen as § = {6(0), 7o(¢), 71 (¢),
T(¢)} (0 <7 < T). The initial posture can be chosen as 6;(0) > 0 due to the symmetry of the
problem with respect to the x-axis. The torques at the wheels and the robot manipulator joints,

To(t), 71(t) and 75(¢), are approximately represented by using cubic B-spline functions. Then,

the parameters for optimization are reduced to

¢:{91(0)7{pi7j}} (i:071727 j=1,---,m), (312)

where {p; ;} are the control points of B-spline function for 7;(f), and m is the number of
control points for each B-spline function.

3.4.3 Numerical results

The optimal motion of the mobile manipulator was searched for by numerical optimization.
The Matlab function, fmincon, was used to find the optimal values of ¢ and J-. The parameters
in Table 3.3 are used as the physical ones of the mobile manipulator. The other physical
parameters are set to be T = 2[s], Ax = —0.5[m], @ = 0.2[s/m]|, b = 0.2, gy, = 0.4 and ¢ =
0.3[Nms/rad].

In the task in Section 3.4.2, the force to pull the object is caused by the driving torque at the
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wheels, the joint torques of the robot manipulator and the inertial effects in the motion of the
mobile manipulator. In order to examine how the joint torques and the inertial effects of the
robot manipulator motion affect the cost J¢, the numerical optimization was performed in two
cases, Case A and Case B. In Case A, all the parameters of ¢ are optimized by the numerical
optimization. In Case B, there exist some constraints that 6;(0) = 0 and 7,(r) = 1o (z) =0,
that is, the robot manipulator is fully extended parallel to x-axis during the task and the object
is to be moved only by the wheel torque 7((¢). Therefore, the parameters for optimization in

Case B are reduced to ¢ = {po ;}.

Table 3.2: Physical parameters of the two-link mobile manipulator
[ 0.3 [m] b 0.35 [m]
lgg | 0138 [m] |y | 0.179 [m]
I | 0.121 [kgm?] | L, | 0.118 [kgm?]
mi 0.8 [kg] my 0.52 [kg]
mp | 3.41kgl | m, 5 [kg]

Case A

The motion obtained by numerical optimization is shown in Fig. 3.12, where the postures of
the robot are drawn at every 7'/5[s]. The time histories of input torques and joint velocities
of the robot manipulator are shown in Figs. 3.13 and 3.14 respectively. The red dashed lines
in these figures represent the moment t = 1.192[s], when the robot manipulator is at the exact
singular configuration. Fig. 3.15 shows the time histories of kinetic energies of the mobile
base, the two-link robot manipulator and the object. The value of J¢ for the obtained motion
is 8.6[N?m?s].

The features b), ¢) and d) are utilized in Case A. From Figs. 3.14 and 3.15, the joint
velocities and the kinetic energy of the robot manipulator reach their peak values around t =
1.21[s]. The object starts to move a little before that time due to the force F, shown in Fig.
3.16, which corresponds to the feature c). After the robot manipulator passes through the
singular configuration, the kinetic energy of the robot manipulator decreases while the one of
the object increases intensely, which means that energy flows from the robot manipulator into
the object as shown in Fig. 3.15. Moreover, the total energy also increases quickly when the
robot manipulator gets close to the singular configuration due to the feature b). Joint torques

also cause a large force just after passing through the singular configuration due to the feature
d).

Case B
The motion obtained by numerical optimization is shown in Fig. 3.17, where the postures
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Figure 3.12: Optimized motion of the mobile manipulator(Case A)

Figure 3.13: Time histories of input torques(Case A)
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Figure 3.15: Time histories of kinetic energies(Case A)
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Figure 3.16: Time history of the force acting on the object from the mobile manipulator(Case
A)

of the robot are drawn at every 7 /5[s]. The time history of the wheel torque 7y is shown
in Fig. 3.18. The mobile manipulator and the object are at rest until the static friction force
reaches its maximum value around the time r = 0.7[s], due to the increase of 7). The red
dashed line expresses the moment when the object starts to move. The wheel torque does
not generate the kinetic energy till that time, while the total energy has been stored before the
object starts to move in Case A. The value of J¢ for the obtained motion is 14.52[N?m?s]. None
of the features b), ¢) and d) is utilized in Case B, since 71 (t) = 72(t) = 0 and 0; (t) = 6,(t) = 0.
Because 0; (1) = 6,(t) = 0, the arm keeps its configuration as the singular one. The force acted
on the heavy object can be directly caused by the wheel torque, and the robot configuration is
kept without any joint torques, which corresponds to the feature a).
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Figure 3.17: Optimized motion of the mobile manipulator(Case B)
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Figure 3.18: Time history of input torque 7y (Case B)
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3.4.4 Pulling force with a simplified model

The numerical results in Section 3.4.3 show that the force F,, and the total energy E reach
their peak values when the robot manipulator is near the singular configuration. To explain the
results from a theoretical point of view, this subsection analyzes the dynamics of the mobile
manipulator by simplifying the model in Section 3.4.2, under the following assumptions as
shown in Fig. 3.19:

6. The length of Link 1 is equal to the one of Link 2, that is,

h=h=1. (3.13)

7. The coefficient of static friction U is large enough to prevent the object from being
dragged, that is,

p.(t)=0. (3.14)

8. The mass of the base is much larger than the mass and inertia of the robot manipulator.
9. The input torques T are bounded and O(1), and the friction torque Ty is set to be zero.
From (3.13) and (3.14), it can be easily obtained that

6, = —26y, x, = —2lcO; . (3.15)

Therefore, the degrees of freedom of the mobile manipulator are reduced from three to one.
The angle 6 at Joint 1 is chosen as the generalized coordinate for the simplified model. From
(3.9) and (3.14), it can also be obtained that

F,=—-F,. (3.16)

Substituting (3.15) and (3.16) into (3.5), the equations of motion are rewritten as

él T()/R
Fy | =A7" 7 | —h}, (3.17)
Fay T
os0 1 0
A= | o(s6))*>+B 0 2 |, (3.18)

ﬁ3 1891 1091
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The object
is fixed

Figure 3.19: Simplified model of the mobile manipulator

h = [01c0,02, 0ps0,c0,67,0]" (3.19)

where o = 2l +m1(21 - lgl) +m2(l - lgz), O = 21(—mllg1 - mz(l — lgz)), BQ =L—-hL+
mllgl +my (12 — l;z), B3 = =L +malgr (1 —lyp) and vy, = my, + 2I,,/R?. From the assumption
8, it should be noted that oy = O(if1p) > |2|, | B2, |B3]- The total energy E is also expressed
by using only 6; and 6;. Substituting (3.15) into (3.6), E is rewritten as

E=K(s)6%/2, (3.20)

where K (s) = (2011 + 0)s? + B2 — 235 and the variable s is defined as s = s6;.

This subsection focuses on a similar dynamic behavior to the one in Case A. The robot
manipulator passes through the singular posture (b) from posture (a) to posture (c) as shown
in Fig. 3.20, where t, < t, < t.. The variations of E and F,, will be investigated under the

following assumption:

10. 6, <0and —7/2< 6, < 7/2.

The first row of (3.17) can be rewritten by using E as follows:

E = (2156)(t0/R) + 61 (11 —21) = 1 (5)VE(1/R) + e2(s)VE(t1 —21),  (3.21)

where

e1(s) = —2Is\/2/K(s) ,ea(s) = —v/2/K(s) . (3.22)

The energy supply rates from the wheel torque 7y and the joint torques (7;,7) are de-
termined by the functions e;(s) and e;(s). Noting that K(0) = B, —2B3 = 0O(1) and K(1) =
K(—1) ~ 204l = 41,1 = O(ii,), the behavior of the functions can be easily analyzed. The
function e (s) is odd, and |e; (s)| monotonically increases from |e;(0)| =0to |e;(1)| =|e;(—1)]
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(a) t =1,
(b) t =t
(c) t =t.

Figure 3.20: Postures (a), (b) and (c) of the simplified model

= O(1/+/1y,) as s approaches &=1. On the other hand, e,(s) is even, and has a large peak
at s = 0, that is, at the singular configuration. The absolute value at the peak is |ez(0)| =

2/K(0) = O(1), and |e(s)| monotonically decreases to |ez(1)| = |ea(—1)| = O(1/+/,) as
s approaches £1 from 0.

The profile of E as the function of s is drawn in Fig. 3.21, where the physical parameters
of the simplified model are given in Table 3.3. According to the pulling motion shown in
Fig. 3.20, the joint torques and kinetic energy are set to be 7o = —1[Nm], 71 = —1[Nm],
7, = 2[Nm] and E = 1[kgm? /s%]. In order to maximize |t; — 21,/ / 1:12 + ‘L'zz, 71 and 7, should
satisfy 7, = —27;. From Fig. 3.21, it should be noted that a large energy supply E can be
caused by (7] —21) near s = 0.

Table 3.3: Physical parameters of the simplified model

I 03[m] [m,| 10[ke]
lyy | 015[m] | lp | 0.15[m]
I | 0.01 [kgm?] | I, | 0.01 [kgm?]
m 1 [kg] my 1 [kg]

R | 0.15[m]

The second row of (3.17) can be rewritten by using (3.20) as

Fax = f1(s)(%0/R) + f2(s)(11 = 2T2) + f3($)E
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Figure 3.21: Variation of energy supply E with respect to s
where

fi(s) = (0ns® + B2 = 2B3) /K (s), fals) = —aus/K(s),

f3(s) = =200 (B2 —2B3) V1 —s2/(K(s))? . (3.24)

The torques 7y and () —27;) are transmitted directly to the object as the first and second
terms of the right-hand side of (3.23). The third term expresses the force caused by the inertial
effects of the motion, and the magnitude of the term depends on the energy E. The behavior of
the functions, fi(s), f2(s) and f3(s), can also be easily analyzed. The function fi(s) is even,
and its maximum value is 1 at s = 0. The value of f](s) monotonically decreases to fi(1) =
f1(=1)= 0(1/nn,) as s approaches +1 from 0. The function f>(s) is odd, and f>(0) = 0. The
absolute value of f>(s) has a peak at s = £s* where s* = /(B2 —2B3) /(2011 + a2). The peak
value is f5(s*) = — fo(—s*) = O(\/1,). It should be noted that s* = O(1/+/1,) < 1. Although
| f2(s)| is zero at the exact singular posture (s = 0), it intensely increases from zero and has

the peak value at a posture close to the singular configuration (s = s*). As s approaches +1
from =£s*, | f2(s)| monotonically decreases to |f2(1)| = |f2(—1)| = O(1). The function f3(s)
is even, and its peak value is |f3(0)| = 2a; /(B2 — B3) = O(iitp). The absolute value |f3(s)|
monotonically decreases to [f3(1)| = |f3(—1)| =0 as s approaches +1.
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Figure 3.22: Variation of pulling force F,, with respect to s

The profile of Fy as the function of s is drawn in Fig. 3.22, where the same values for the
physical parameters and the torques are used as in Fig. 3.21. From Fig. 3.22, it should be
noted that a large pulling force |F,,| can be given from the energy E near s = 0.

From the above analysis, in the motion shown in Fig. 3.20, a large pulling force can be
generated from relatively small amount of input torques. As the robot manipulator is extended
from posture (a) to (b), the energy E can be efficiently generated by the second term of the
right-hand side of (3.21), as shown in Fig. 3.21. The generated energy causes a large force
|F,x| from the third term of the right-hand side of (3.23) near posture (b). As the posture turns
from (b) to (¢),

Similar behavior of E and F,, can be found in Figs. 3.15 and 3.16 for Case A. The energy

F,x| decreases intensely as shown in Fig. 3.22.

E increases intensely as the robot manipulator is getting close to the singular posture. The
decrease in E after passing the singular posture would be caused by the friction between the
object and the ground, because the object starts to move in Case A unlike in the above analysis.
The behavior of F, in Fig. 3.16 corresponds to the one in Fig. 3.22, because s decreases as
time advances in Case A. The difference between the amounts of F, in Figs. 3.16 and 3.22
could be caused from the differences of the physical parameters and the assumptions 6 and 7.

In Case B, the object is pulled only by the first term of the right-hand side of (3.23) at
s = 0, and the joint torques (7],7;) are not used. Although 7; and 7, are consumed to generate
the energy E in Case A, the value of J¢ for Case A is less than the one for Case B. It would
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be because the pulling force obtained from the energy E is much larger than the one from 7
as shown in Fig. 3.22 near s = 0. The joint torques (7;,7p) necessary to generate E are also
reduced in Case A by using the second term of (3.21).

3.4.5 Discussion

In [16, 74], a two-link robot manipulator starts its motion from the singular configuration
similarly to Case B in Section 3.2. The pulling force caused by the feature c) is limited,
because the energy of the robot manipulator that is used for the feature c) is generated only in
a short time from the start. Similarly to Case A in Section 3.2, a mobile manipulator can also
pull the object through the singular configuration in a horizontal plane. The mobile base can
firstly move away from the object while the object stays at rest, and then the robot manipulator
can start to pull the object after getting close to the singular configuration. The movement of
the base and the joint rotations of the robot manipulator can increase the total energy at the
singularity corresponding to the feature b). The larger energy near singular configuration for
a mobile manipulator generates a large force as shown in Fig. 3.22, which corresponds to the
feature c). The joint torques can also generate a large force after passing through the singular
configuration due to the feature d). The numerical result in Case A is consistent with this
theoretical result. A large amount of energy is stored before reaching the neighborhood of
singular configuration as shown in Fig. 3.15, and a large force is simultaneously generated as
shown in Fig. 3.16.

In the analysis in Section 3.4.4 where [} = [, the joint torques 7; and 7, should satisfy
Ty, = —27; in order to increase the energy supply rate E and generate a large force from
the supplied E. Although the base can be moved and the object is fixed for the analysis in
this chapter unlike in [16, 74] and in Chapter 2, a similar result about the ratio of 7; to 7,
was obtained. Furthermore, the joint torques with respect to the robot manipulator are more
suitable for generating energy near the singular configuration than the driving torque at the
wheels. The analysis result about the force corresponds to the one related to end-effector
acceleration in Chapter 2.

3.5 Conclusion

This chapter firstly exhibited some lifting motions of a two-link robot manipulator with fixed
base. The features of singular configurations have shown the usefulness for minimizing the
necessary joint torques. For the robots that can pass through the singular configurations, the
feature c) can be utilized more efficiently. When the object needs to be lifted up in a weight
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lifting motion, the robot passes through its singular configurations twice to accelerate the
object.

In Section 3.4, it has been shown that the singular configuration of a mobile manipulator
with unfixed base is advantageous in reducing the torques necessary for dragging a heavy
object, which corresponds to the features b), ¢) and d). From the numerical and theoretical
results, the energy of the mobile manipulator is supplied efficiently from the input torques near
singular configuration, and the supplied energy causes a large force to pull the object.



3.A Parameterization Methods for Optimization 59

Appendix 3.A Parameterization Methods for Optimization

In robotics, numerical optimization and optimal control algorithms have become more and
more powerful in recent years [4, 76—79]. Generally, a cost function needs to be minimized
over the system variables in an optimization problem. Direct methods for trajectory optimiza-
tion are widely used for planning locally optimal trajectories of robotic systems. For instance,
the trajectories of angles can be firstly parameterized by several kinds of functions. If the
parameters for the joint angles are given once, the trajectories of joint torques can be obtained
according to the equations of motion. The obtained system variables (including joint angles,
joint velocities, joint torques etc.) lead to a certain value of the cost function. Thus, the op-
timal trajectory of the robot can be obtained by searching for the parameters that minimize
the cost function. The joint torques or end-effector position can also be parameterized in a
similar way as the joint angles. The parameterization methods used in this dissertation will be
introduced.

3.A.1 Approximation by cubic B-spline functions

The B-splines of order k are piecewise C*~2 continuous polynomials of degree k — 1. The joint
torque 7; can be expressed by using cubic B-spline with k = 4:

m

Ti(t,P) = Z Bi j kpi,j; (3.25)
j=1
where B; ; i represents the basis function, and P; = {pi1,---, pim} expresses the control points.

The basis function of order £ is given by using a recursion formula:

B;ji(t) = t.t_—thi,j,k—l(t) + t.tﬁLBi,jﬂ,k—l(t)a (3.26)

jrk—171j jrk—lj+1

where j=1,--- mk>2,t; <tp <--- <t,.rand

1 ifl‘j <t <tjyn

Bl'7j71(l) = (3.27)

0 otherwise

With the above approximation, the parameters to express the joint torques become {p; ;} (i=
0,1,2, j=1,---,m). The joint angle can be represented by B-spline as the same as the joint
torque.
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3.A.2 Approximation by piecewise fifth order spline functions

The duration time of the robot is denoted as 7, and the time interval [0 7] can be divide
by n. The trajectory of joint angle 6 in each time interval [t; #;1] (i=0,...,n—1andt; =

JT /nfor j=0,...,n) is expressed by a fifth order polynomial function of time, ¢;, as follows:

@i(t) = @+ bit +cit> +dit® +eit* + it (3.28)

where a;, b;, ¢, d;, e; and f; are scalar parameters. To make the input torque T continuous,
the functions (p,'([) that satisfy (Pi(ti+l) = (Pi(tH—l)’ (P,'(l‘,'+1) = (Pi(ti+l) and (P,'(tl‘_|_1) = (p,'(t,'_|_1)
are chosen for i = 0,---,n —2. When the polynomials satisfy those conditions, independent
parameters to express 0 are reduced to {ay,...,dn+1,€0,f0,---»€n—1,fn—1}-



Chapter 4

Jumping and Landing Motions of Legged
Robots

4.1 Introduction

For a vertical jumping motion of legged robot, the features of singular configurations might
be useful before or/and after taking-off. Similarly, the dynamic advantages of singular con-
figurations might be exploited for the landing motion of a legged robot, and the impact when
the foot contacts with the ground needs to be taken into consideration. The initial configura-
tion near singular configurations may be expected to be advantageous in absorbing the kinetic
energy with small joint torques to stop the landing motion. In order to clarify the advantages,
the dynamics around the impact near singular configurations has to be examined.

This chapter deals with the jumping and landing motions of legged robots. In Section 4.2,
the vertical jumping motion that minimizes the necessary joint torques for a two-link legged
robot will be obtained, and the usefulness of the features of singular configurations in the
stance phase will be verified. Section 4.3 extends the verification to the jumping motions for
a four-link legged robot in stance phase and in aerial phase. The interaction force between the
foot and the ground is calculated from the continuous model in a similar way as in [31] for the
numerical optimization.

In Section 4.4, not only reduction of impact force but also minimization of joint torques
for a landing motion of a four-link legged robot are considered. To the best of our knowledge,
the problem of optimizing them simultaneously during landing has not been dealt with in
the literature. The landing motion that minimizes the peak value of the impact force and the
necessary joint torques is obtained by numerical optimization. The cost function is composed
of the weighted sum of the one for the impact force and the one for the joint torques. Using
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the joint model proposed in [32], it is assumed that the joint torques are represented by the
parameters in the stiffness and damping coefficients. Numerical optimization results show
that, as the weight of the cost function for the joint torques increases, the optimal configuration
of the robot at the impact time becomes close to the singular configuration. To verify and
understand the results, a theoretical analysis of the dynamics around the impact is performed
with a simple model of the legged robot where the discontinuous model of impact is used. The
theoretical analysis provides new insight into landing motion; when the impact configuration
is close to, but not exactly, the singular configuration, the joint velocity immediately after the
impact has the maximum value, and the kinetic energy of the robot can be absorbed by small
joint torques.

4.2 Jumping Motion of a Two-link Legged Robot

4.2.1 Problem formulation

Optimal jumping motions of a two-link legged robot will be obtained, and the motion by the
take-off time when the foot leaves the ground will be considered. The model of the robot is
shown in Fig. 4.1. The robot is composed of two links, link 1, link 2 and a heavy body. The
mass, length and moment of inertia of link i are denoted as m;, [; and I; (i = 1,2). The angles
and joint torques at joint i are expressed as 6; and 7; (i = 1,2). The mass of the body and the
distance from joint i to the center of mass for link 7 are denoted as m;, and ly;. The mass center
of the body is considered to be located at joint 1 and its position is called (xp,yp).

The robot is supposed to jump from rest until the desired vertical velocity of the mass
center is achieved and the vertical ground reaction force becomes zero. Several constraint
conditions are considered as follows:

1 The horizontal position of the mass center of the robot should be just above the foot (the

end point of link 2) at the start time.
ii The angular velocities at all joints are set to be zero at the start time.
iii The vertical velocity of the body y,(7') at the take-off time is set to be v > 0.
iV At the take-off time, the vertical ground reaction force F,,(T') equals zero.

The same cost function as in (3.2) is also used except that & includes initial angle 8;, which
can expresses the initial posture of the robot from assumption i.

The legged robot pushes the ground with the foot, and is pushed back by the ground reac-
tion force. When the foot contacts with the ground, the ground reaction force F g is considered
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Figure 4.1: The model of two-link legged robot

as a constraint one, and can be directly derived from the equations of motion. In a similar
way for the acceleration ay, in Section 2.5, its vertical component Fg, can be divided into three
terms, torque-dependent force Fyy,, gravity-dependent force Fyg,, and velocity-dependent force
F,y,, respectively. Roughly speaking, Fyy,, Fygy, and Fyy, correspond to a;y, gy and a,, respec-
tively, and their variations with respect to the configurations are also similar to the ones for

the accelerations.

4.2.2 Numerical simulation

The physical parameters of the two-link legged robot are given in Table 4.1. The desired up-
ward velocity v is set to be 2[m/s]. MATLAB function fmincon is used to obtain the optimal
parameters. To verify that the features a) and d) are very useful in the jumping motion of ap-
proaching the singular configuration, the numerical optimization was performed in two cases,
Case A and Case B. In Case B, there is a condition on yj, at the take-off time, y,(7) < 0.5[m].
Under the condition, the robot configuration is always far from the singular one in Case B.

Table 4.1: Physical parameters of the two-link legged robot
I 0.3 [m] ) 0.3 [m]
lg1 0.15 [m] Ly 0.15 [m]
L | 1x1073 [kgm?] | L | 1x1073 [kgm?]
m 0.1 [kg] my 0.1 [kg]
my 10 [ke]

Case A
Fig. 4.2 shows the initial and final postures of the robot. The final posture is very close to
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the singular configuration that the leg is stretched out. The time histories of joint torques are
shown in Fig. 4.3. Fig. 4.4 shows the time histories of the vertical ground reaction force, Fyy,
and three components of the force, Fyy;, Fyye and Fgy,. Around the end time, the joint torques
intensely increase, while the vertical ground reaction force reaches its peak value just before
taking off. From then on, the force intensely decreases to zero. For the obtained jumping
motion, Jo = 76.2[N?m?s]. The duration time is obtained as T = 0.098]s].

Case B
Fig. 4.5 shows the initial and final postures of the robot. The time histories of joint torques
are shown in Fig. 4.6. Fig. 4.7 shows the time histories of the vertical ground reaction force,
F,y, and three components of the force, Fyy;, Fyye and Fyy,. For the obtained jumping motion,
Jc = 302.5[N?m?s]. The duration time is obtained as T = 0.114][s).

At the time interval ¢ € [0, 0.09][s], the joint torques in Case B are much larger than the
ones in Case A. The peak value of vertical ground reaction force Fyy is much smaller than the

one in Case A. The force F,y, approximates Fg,y, while the forces Fyy, and Fygy, can be ignored.

The features a) and d) of singular configurations are used in Case A. When y, = 0.6[m], the
robot is in a singular configuration where the links are aligned in a straight line. From Fig. 4.2,
the initial posture is not far from it, and the body moves upward as the joints rotates rapidly.
When the desired upward velocity v is given, the necessary joint velocities at the take-off time
will become infinitely large if the robot is in the singular configuration. Thus, the final posture
can be very close to, but not exactly, the singular configuration that the leg is stretched out as
shown in Fig. 4.2. As observed in Figs. 4.3 and 4.6, the joint torques to overcome the gravity
around the start time in Case A are much smaller than the ones in Case B due to the feature
a). Around the end time, the joint torques intensely increase in Case A. From Figs. 4.4 and
4.7, the peak value of the ground reaction force in Case A is much larger than the one in Case
B due to the feature d), even though the corresponding joint torques in Case A are smaller
than in Case B. It should be noted that the joint torques around the end time in Case A satisfy
(2.58) to use the feature d). The value of J¢ in Case B is much larger than the one in Case A.

The numerical simulation results show that the singular configuration is advantageous in
reducing joint torques in vertical jumping motion of a two-link legged robot. It will be shown
later that the merit of singular configurations is also applicable to a four-link legged robot.
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Figure 4.2: The initial and take-off postures of the robot for the optimized jumping mo-
tion(Case A)
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Figure 4.3: Time histories of joint torques(Case A)



66 Jumping and Landing Motions of Legged Robots

3000 T T T T T T T T T
Fgy Foyt, —— Fgyg —— Igyv

2000

1000

Fgy[N]

-1000

-2000

-3000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
t]s]

Figure 4.4: Time histories of vertical ground reaction forces(Case A)
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Figure 4.5: The initial and take-off postures of the robot for the optimized jumping mo-
tion(Case B)
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Figure 4.7: Time histories of vertical ground reaction forces(Case B)
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4.3 Jumping Motion of a Four-link Legged Robot

The model of a four-link legged robot composed of one leg and a heavy body can be considered
as a simplified one of human beings. By supposing that the foot is very light and the shape
of the heavy body is ignored, the four-link model can be reduced to a two-link one. To obtain
a natural jumping motion like human beings, it is required to consider the rotation and the
non-vertical movement of the body, and simultaneously deal with both the motion in stance
phase and the motion in aerial phase where the foot is in the air after take-off.

In this section, vertical jumping motions of a one-legged planar robot (Fig. 4.8) will be
considered. The robot consists of four links, foot, lower limb, upper limb and body, and they
are called Link 1, Link 2, Link 3 and Link 4 respectively. The mass, length and moment of
inertia of Link i are denoted as m;, [; and I; (i = 1,2,3,4). A virtual joint which is located at the
toe is called toe joint. When the leg is in stance phase, it is in contact with the ground through
the toe or/and the heel. As shown in Fig. 4.8, the toe joint is called Joint 1, and the joint
between Link i and i+ 1 is called Joint i (i = 2,3,4). The distance from Joint i to the center of
mass for Link i is expressed by /g;. A coordinate frame, (x, y), is chosen so that y-axis is along
the vertical line and x-axis is on the horizontal ground. The positions of the toe, heel and mass
center of the robot are denoted as (x1,y1), (x2,y2) and (xg,ys), respectively. The angle and
torque at Joint i are represented as 6; and 7; respectively, and they are positive in the counter-
clockwise direction (i = 1,2,3,4). It is assumed that the toe joint freely rotates and the torque
at the joint, 71, is zero. The generalized coordinates and the generalized forces for the legged
]T and T = [0,0,0,T2,13,T4]T.

The angular momentum of the total system around the mass center is denoted as Fg.

robot are expressed in vector forms as g = [x,y1, 61,602, 03,04

4.3.1 Contact model between foot and ground

When the foot collides with the ground, an impact force acts at the contact point. For avoiding
too large impacts and increasing the stability of movement, shock-absorbing mechanisms are
often equipped under the feet of biped robots [31, 80, 81]. In this section, it is assumed that
the foot is equipped with a shock-absorbing pad. The interaction force between the foot and
the ground is assumed to be obtained from a linear spring and damper model in the vertical
direction and a linear damper model in the horizontal direction as shown in Fig. 4.9. It is
also assumed that only the toe (Joint 1) and the heel (Joint 2) could be the contact points. The
thickness of the pad is denoted as y 4.

The interaction forces at the heel and the toe in the vertical direction are given by the



4.3 Jumping Motion of a Four-link Legged Robot 69

Joint 4

T4

4, Joint 3

T3

Joint 1
S T—
ﬁ (z1,21)

P B R A N R R R R RN

Figure 4.8: Four-link legged robot
following equation:

—ky(yi — Ypaa) —dyyi for y; <Ypaa
PO Bl pad (“.1)
0 for y; Zypad

where k, is a stiffness coefficient, dy is a damping coefficient, and i = 1 and 2 for the toe and
the heel respectively. Since the ground reaction force is never negative, the force fy; is set to
be zero if fy; in (4.1) is negative. On the other hand, the interaction force in the horizontal
direction can be expressed by

—dx; for f,; >0
fui = o 5 , 4.2)
0 for f;,=0

where d, is a damping coefficient. Those interaction forces are written in a vector form as

F = [fx1, o, fas fyo) - (4.3)

4.3.2 Equations of motion

The equations of motion for the four-link legged robot can be described by

M(q)g+h(q,9)+T,=T+J'F, (4.4)
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where M (q) is the inertia matrix, h(q, ¢) is the vector with respect to the Coriolis and centrifu-
gal effects, and T is the gravitational term. The matrix J is the Jacobian matrix with respect
to the positions of the toe and the heel.

According to (4.1) and (4.2), there exist four possible contact states between the foot and
the ground as shown in Fig. 4.10. All the contact states are considered in the motion planning
presented in the following subsection.

(22, y2) (z1,91)
'ypad
Figure 4.9: Contact model
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Figure 4.10: Contact states: (a) no contact, (b) contact at toe, (c) contact at heel, (d) contact at
toe and heel

4.3.3 Problem formulation

This section focuses on the motion planning problem for minimizing the joint torques during
jumping, on the condition that a fixed amount of translational kinetic energy is supplied to the
robot by the take-off time when the foot leaves the ground. The robot is supposed to jump
from rest and reach the maximum height in the air with the joints fully extended. To specify a
desired jumping motion, several constraint conditions are considered as follows:
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1. The horizontal position of the mass center of the robot should be above the foot at the
start time.

2. The angular velocities at all joints are set to be zero at the start time, t = 77, and at the
end time, r = 73. The angles at Joint 2, 3 and 4 are zero at t = T3.

3. Xg(t), yg(t) and Pg at the take-off time, r = 75, are set to be O[m/s|, vz, [m/s] and
0[kgm?/s], respectively.

4. The contact state turns from (ii) to (i) at the take-off time.

5. The configuration of the robot at the take-off time can be considered as the initial con-
figuration in aerial phase.

The constraint conditions, 1 to 4, can be written as
L. xo(Th) <xg(T7) <x1(Th).
2. 4(T1) =0, 6,(T3) =0, 6;(T3) =0 (i = 2,3,4).
3. (¥46(T2),y6(T2)) = (0,vp), P5(T2) = 0.
4. y1(T2) = ypaa-

The condition 5 will be explained later.

The duration time 7> — 7T} in stance phase is fixed, and the end time 73 is chosen such
that the vertical velocity of the robot is zero at t = T3, that is, T3 = 1> + vz, /g where g is the
gravitational acceleration.

The following cost function is chosen as the criterion for optimization:

Je(&1,82) = Je1(&1) +Je2(82).
Jei(&) = 7 () + (m) + (w)Pdr (i=1,2),

where (&, &,) represents the parameters for optimization. The cost functions in stance phase,

4.5)

t € [T\ T»], and in aerial phase, t € [T> T3], are denoted as Jci(&;) and Jeo (&), respec-
tively. &; are chosen as & = (01(T1), 62(¢), 65(t), 64(¢)) for ¢t € [T} T»]. &, are chosen as
&1 =(6:(2), 63(1), 04(2)) for t € [T T3]. The joint angles in &; are represented by fifth order
spline functions with n = 1 as in Appendix 3.A.2, and the ones in &, are expressed by B-spline
functions in a similar way as in Appendix 3.A.1. Then, the optimal motion planning problem
reduces to a parameter optimization problem, and the parameters that minimize the total cost
Je (&1, &) will be searched for.
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The angles, angular velocities and angular accelerations, 6;(), 6;(¢) and 6;(¢) should be
continuous at the take-off time (i = 2,3,4). The condition 5 means that &; and &, are not
independent, and it can be written as

5. lim 6;= lim 6, lim 6;= lim 6, lim 6;= lim 6,

t—1>40 t—T,—0 t—T,+0 t—T—0 t—T,40 t—1,—0

The optimal jumping motion will be obtained later by searching for the optimal values of
the parameters. For the obtained motion, the take-off posture is close to a singular configura-
tion, and the height of the mass center y;(73) is close to its maximum value. The influence
of the take-off posture on the cost function and the jumping motion will also be investigated.

The optimal motions for different take-off postures are obtained by putting one more constraint
condition on y;(73) as

6. y6(T2) = yG1,-

Denoting yG(7>) for the optimal motion as yg, the value of ygr, is varied near yg; .

4.3.4 Numerical results

The physical parameters of the four-link legged robot are given in Table 4.2. The vertical
velocity of the mass center at the take-off time is set to be vy, = 1.5[m/s]. The number of
control points in aerial phase, the start time, the take-off time, and the end time are set to be
m =10, T} =0[s], T» = 0.1[s] and T3 = 0.253[s| respectively. The thickness and parameters
of the pad are chosen as y,q¢ = 0.01[m], ky, = 8.0 x 10°[N/m], d, = 600[Ns/m] and dy =
500[Ns/m], respectively.

To find the optimal value of J¢, the MATLAB function fmincon was used. The value of
&, that minimizes only Jcy will be firstly searched for, and the value of &, that minimizes
Jco satisfying the condition 5 will be found. The obtained parameters (&;,&,) are treated as
initial values for the optimization of Jc. The optimal jumping motion was obtained where
v = 0.691[m]. When yg(T>) = 0.702[m], all the links of the robot are aligned vertically, and
the robot is at the exact singular configuration where all the joints are extended fully. Since the
joint angular velocities necessary for the desired velocity vr, are infinite at the configuration,
the condition that yg(72) < 0.702[m] is imposed. Then, the optimal jumping motions with
different values of ygr, near y;; were obtained at every 0.005[m] interval from 0.65[m] to
0.7[m], and the obtained values of J¢, Jc1 and Jcy are shown in Fig. 4.11. From this figure,
it is found that J¢; for ygr, = 0.69[m]| ~ y¢ is much smaller than for other ygr,s, and that
Jco near yg; is also much smaller than for ygr,s which are far from y;;. To investigate the
differences between the motions at y;; and at other ygr,s, the case when yg(7>) = 0.65[m] is
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considered. The cases when yg(73) = 0.691[m] and yg(73) = 0.65]m] are called as Case A
and Case B, respectively.

Table 4.2: Physical parameters of the four-link legged robot
[ 0.07 [m] b 0.3 [m] I3 0.3 [m] N 0.2 [m]
Lg1 0.035 [m] I 0.15 [m] ly3 0.15 [m] Lgs 0.1 [m]
my 0.2 [kg] ny 1 [kg] m3 1 [kg] my 10 [kg]
I, | 0.0009 [kgm?] | L, | 0.005 [kgm?] | Iz | 0.005 [kgm?] | I4 | 0.02 [kgm?]

Case A

The obtained value of J¢ is 39.5[N?m?s], Jo; = 38.3[N?m?s] and Jc; = 1.2[N?m?s). Fig. 4.12
shows three postures at the start, take-off and end time for the optimized jumping motion.
The robot jumps from rest while the part composed of Link 2, Link 3 and Link 4 moves near
the singular configuration. Fig. 4.13 shows the time histories of translational and rotational
energies. The translational energy reaches the desired value at 7> while the rotational energy
is kept small. The time histories of joint torques are shown in Fig. 4.14. The joint torque 7 is
much larger than 73 and 74 in stance phase.

Case B

The obtained value of J¢ is 103.7[N?>m?s], Jc; = 86.9[N’m?s] and Jop = 16.8[N’m?’s]. Fig.
4.15 shows the initial, take-off and final postures for the optimized jumping motion. The
postures in stance phase are far away from the singular configuration. Fig. 4.16 shows the
time histories of translational and rotational energies. By comparing Fig. 4.13 and Fig. 4.16,
it is found that even though the same amount of translational energy has been generated in
stance phase, the rotational energy in Case A is much smaller than the one in Case B. The

time histories of joint torques are shown in Fig. 4.17.

4.3.5 Discussion

Since the model of a four-link legged robot is extremely complex, it is very difficult to theo-
retically explain the usefulness of the singular configuration in the jumping motion. However,
from the numerical results, the difference between the value of cost function in Case A and
the one in Case B implies that the features a) and d) of singular configurations are also useful
for the jumping motion of a four-link legged robot. The feature a) could be utilized at Joint 3
and Joint 4 in Case A, because the initial posture of the robot in Case A is much closer to the
singular configuration than in Case B. The necessary joint torques to sustain the heavy body
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around the start time in Case A are smaller than in Case B, which can be found from Figs. 4.14
and 4.17. The feature d) could be used in Case A to efficiently generate large acceleration (or
force) from joint torques.

When the robot is in the air, the movement of its mass center is only affected by gravity, and
the angular momentum Py is conserved. The constraint on Pg at the take-off time, Pg(7>) = 0,
means that the angular movement of the whole robot stops when all the joint velocities become
zero in aerial phase. At the same time, the rotational energy generated in stance phase is
absorbed by joint torques. In the simulations presented in Section 4.3.4, the rotations of joints
are stopped in the air with the joints fully extended. Figs. 4.13 and 4.16 show that the rotational
energy in Case A is much smaller than the one in Case B, which also reduces the energy
consumption of Case A in aerial phase.

The duration time 7; — 77 in stance phase is fixed in Section 4.3 for simplicity. In order
to check the sensitivity of the cost function J¢- with respect to 73, the numerical optimization,
by taking 7, as one of the optimization parameters when yg(72) = 0.691[m] and yg(72) =
0.65[m], was performed. For y5(75) = 0.691[m] the obtained value of 75 is 0.0983([s] and the
corresponding cost function Jc is 39.05[N*m?s]. For yg(7>) = 0.65[m] the obtained value of 7>
is 0.061[s], and the corresponding cost function J¢ is 82.02[N?>m?s). It is found that, whether
the duration time is optimized or not, the optimal cost function when yg(7>) = 0.691[m] is
much smaller than the one when yg(73) = 0.65[m)].

The vertical velocity of the mass center at the take-off time vy, is also fixed in Section 4.3.
The maximum height of the mass center of the robot in aerial phase is determined according to
vr,. If the take-off posture is close to the singular configuration, the necessary joint velocities
and torques around the take-off time become much larger as vy, is set to be larger. This might
result in the increments of total cost and rotational energy unnecessary in aerial phase. To
investigate the optimal jumping motions for different values of vz,, numerical optimization
for different vz, s in the range from 1.1[m/s] to 3.0[m/s] has been performed. When there is
no constraint on y;(7>) as the same as in Case A, y5; > 0.681[m| for the obtained jumping
motions. That is to say, the take-off posture for the optimal jumping motion is still close to the
singular configuration for vz,s in the range. However, since there exist a number of factors,
such as the duration time 7, — T} and the parameterization method of the joint angles, that can
have a strong effect on the optimal jumping motion for larger vr,, further detailed analysis is
required.
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Figure 4.14: Time histories of joint torques in stance phase (Case A)
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Figure 4.17: Time histories of joint torques in stance phase (Case B)

4.4 Landing Motion

4.4.1 Representation of joint torques with stiffness and damping of leg

joints

The joint torques for human motions are often expressed by joint stiffness and damping. In
[32], the coefficients of stiffness and damping for human hopping have been examined in
detail and a nonlinear stiffness model has been proposed. Based on the results in [32], it is

assumed that the joint torques are represented in the following form:

7, = —Ki(6; — 6;.) —D;6; (fori=2,3,4), (4.6)

where the coefficients of stiffness and damping are given as

K; = Ki1 + Kin(6; — 6js), 4.7)

D; = Dy. (4.8)

The angle 6;; is the angle of Joint i at the start time of the motion. Thus, the parameters K;i,
K>, D;1 and 6;, determine the torque ;.
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4.4.2 Problem formulation

The optimization problem of finding the landing motion that reduces the peak vertical ground
reaction force and minimizes the joint torques during the landing motion simultaneously is
formulated. The model of the four-link legged robot and the contact model between the foot
and the ground are the same as the ones introduced in Section 4.3. The following cost function

is chosen as criterion for optimization:

Jo(9) = ciWi +Ws, 4.9)

where ¢ is the weight coefficient with respect to Wj. The functions W; and W, are defined as:

Wi = max,¢cjo,7](fy1(t) + £12(2)), (4.10)

T
WZ:/O (1) + (13)% + (14)?)dt, 4.11)

where W represents the peak value of vertical ground reaction force. The time 7 is set to be
zero at the instant when the first contact between the foot and the ground occurs, and 7" denotes
the end time of the landing motion.

In (4.9), ¢ represents the parameters for optimization and is chosen as the initial posture
0(0) =(6,(0),60,(0),05(0),64(0)), the coefficients K;i, Ki», Dj1, i (i = 2,3,4) and the dura-
tion time 7'

¢ =1{0(0),Ki1,Kn,Dj1,6;,T}. (4.12)

For a landing motion of the legged robot, it is assumed that, just before the contact with
the ground, all the joint angular velocities are zero and the downward velocity of the robot is

v¢. The initial values of generalized velocities are summarized as

4(0) =[0,-v,,0,0,0,0]”. (4.13)

The initial posture is assumed to satisfy 0 < 6,(0) < m/2, that is, the first contact between
the foot and the ground occurs in the state (b) shown in Fig. 4.10. After the first contact, the
second and multiple contacts between the foot and the ground may happen in the state (b), (c)
or (d).

At the end time of the motion, four constraints are added to the optimization problem as
follows:

1. The horizontal position of the mass center of the robot should be above the foot at the



80 Jumping and Landing Motions of Legged Robots

end time t = T', which can be expressed as follows:
X2 < xg(T) < x4 (4.14)
where x, is the horizontal position of the mass center.

2. The robot should be stationary att =T

4(T)=0. 4.15)

3. The angle of the body from the vertical direction should be small at t = T so that the
final posture of the robot is close to the one in human landing motion:

16:(T)| < /4, (4.16)
where 6, = 0 + 0, + 05 + 6,.
4. The landing motion should be finished in 1[s]:

T<1. 4.17)

4.4.3 Numerical results

By changing the value of ¢y, the optimal solutions for the soft landing and the stiff one can be
obtained. The solutions for different values of ¢ will be obtained by numerical optimization.
To find the optimal values of J¢, the MATLAB function, fmincon, was used. The physical
parameters of the robot and the shock-absorbing pad are chosen as the same as the ones used
in the previous section, except that my = 5[kg] and ky, = 4.0 x 10°[N/m]. The initial downward
velocity of the robot v; is set to be 1.5[m/s]. The numerical optimization was performed in
two cases, Case 1 and Case 2, where the weight ¢ is set to be 0 and 1 respectively. In Case 1,
since ¢; = 0, the cost function in (4.9) becomes Jo = W,, while Jo = W| + W, in Case 2.

Case 1

The motion obtained by numerical simulation is shown in Fig. 4.18 where the postures of the
robot are drawn at every 7 /5[s]. The time histories of joint angular velocities and joint torques
are shown in Figs. 4.19 and 4.20 respectively. The work done by each joint is calculated from
them as shown in Fig. 4.21. The values of W} and W, for the obtained motion are 1192.3[N]
and 4.03[N’m?s]. The optimal duration time T is 0.538]s].
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From Fig. 4.18, the initial posture of the robot is close to the singular configuration that
the leg is stretched out. After the first contact between the foot and the ground, the absolute
values of 6, and T, increase intensely in Figs. 4.19 and 4.20, while the others are relatively
small during landing. Thus, the absolute value of work done by 7, is much larger than by 73
and 74 as in Fig. 4.21. That is, a large part of the kinetic energy of robot is absorbed at Joint 2
to stop the landing motion.

Case 2

The motion obtained by numerical simulation is shown in Fig. 4.22 where the postures of the
robot are drawn at every 7 /5[s]. Figs. 4.23, 4.24 and 4.25 show the time histories of joint
angular velocities, joint torques and work done by joint torques respectively. The values of W,
and W, for the obtained motion are 377.4|N] and 65.4[N*m?s]. The optimal duration time T
is 0.496(s].

At the initial posture, Joint 2 is flexed more than in Case 1. The impact force and the value
of W; are smaller than in Case 1, while the joint torque 7, absorbs less energy. The energy of
the robot is also absorbed by the joint torques 73 and 74 as shown in Fig. 4.25.

—©— initial posture
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Figure 4.18: Optimal motion of a legged robot(Case 1)
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Figure 4.19: Time histories of joint angular velocities(Case 1)
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Figure 4.20: Time histories of joint torques(Case 1)
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Figure 4.21: Time histories of the work done by joint torques(Case 1)
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Figure 4.22: Optimal motion of a legged robot(Case 2)
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Figure 4.23: Time histories of joint angular velocities(Case 2)
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Figure 4.24: Time histories of joint torques(Case 2)
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Figure 4.25: Time histories of the work done by joint torques(Case 2)

4.4.4 Impact dynamics with a simple model

The numerical results in Section 4.4.3 show that the initial posture where Joint 2 is more
flexed reduces the impact force, while the one with smaller 6, makes the time integral of joint
torques smaller. The impact force has been investigated so far based on the discontinuous
impact model where the impact occurs in an infinitesimally small period, and it is well known
that flexed postures are advantageous in reducing the impact force [26]. In this subsection, the
dynamic behavior of the robot at the impact instance will be analyzed by using a simplified
model of the legged robot. The analytical results will explain not only the impact force but
also the joint angular velocity right after the impact. For a larger joint angular velocity, the
joint torque necessary to absorb the kinetic energy of the robot is smaller.

A simple model of a legged robot is considered as shown in Fig. 4.26. The leg is composed
of two links, link 1 and link 2, and the body is modeled as a heavy mass point attached at the
top end of the leg. The mass and length of link i are denoted as m,; and [,; respectively(i =1,2),
and the mass of the body is m,,. The moment of inertia and the distance from joint i to the
center of mass for link i are expressed by /;; and l,;. The bottom end of the leg is supposed to
be a contact point, and its position is expressed as pj, = [x;,y]”. The position of the top end
is denoted as p, = [x.,y.]”. In a similar manner as in Section 4.4.2, the angles and the joint
torques are denoted as 6,,; and 7,; (i = 1,2), and expressed in vector forms as 8, = [6,, 6, ]T,
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Figure 4.26: Simple model of a legged robot with a heavy mass point (body)

T, = [0, Taz]T, noting that 7,; = 0. The generalized coordinates and generalized forces for the
system can be represented as g = [p!,0!]" and T = [0,0,0, 7,])" .

The variables just before and after the collision with the ground are denoted by superscripts
— and + respectively. Similarly as in (4.15), the generalized velocities are chosen as 9; =
[0,0]" and p, = [0,—v,]". The angular velocity 9: and the impulse applied at the contact

point will be analyzed under the following assumptions:

1. A perfectly inelastic collision occurs; the velocity of the bottom end of the robot be-
comes zero just after collision, that is, p; =[0,0].

2. The mass of the body is much larger than the ones of link 1 and link 2, namely, m,, >

Mg1,Mg2.

The equations of motion for the robot are expressed as follows:

M(q)4+h(q,q)+T,=T+J}F, (4.18)
where

M M
M= U2 (4.19)

M2 M3

a W 0
M, — mg1 +myy +m,, (4.20)
0 Mg| + mgp + My,

My =mgJg +mpd o +myd., 4.21)
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Ms;=M,+m,J ], (4.22)

The matrix M, is the inertia matrix of the leg composed of two links, and does not include the
inertia of the heavy mass point. The matrices J,, J41, Jgo and J, are the Jacobian matrices
with respect to p,,, the mass centers of link 1 and link 2, and p,, respectively. Note that J;, and
J . are expressed as

1 000
I, = : 4.23
b [0 10 0] (423)
Je:_ C9a1 _Seal la1+la2cea2 la2C9a2 : (424)
Seal Ceal laZSeaZ la239a2

where cx and sx mean cos(x) and sin(*). The vector F = [F,,F,]" represents the ground
reaction force.

In a similar way as in [30], it is assumed that the impact with the ground occurs in an
infinitesimally small period of time 8¢ and a finite translational momentum F is supplied from
F during the period. Integrating (4.18) during the period, the following equation is obtained:

ot ot

lim [ (M(q)§+h(q,q)+7,)dt = lim [ (T+J,F)dt. (4.25)
6t—0 /o 6t—0 /0

The above equation is rewritten as

M(q)(g"—q )=JF. (4.26)

From the assumption 1 and (4.26), the impulse F is derived as

F=—J,M U 1,q. (4.27)

By substituting (4.27) into (4.26), g is obtained as

g = s —M ' ILIM I TG (4.28)

By using (4.19) and (4.23), the impulse and the joint angular velocity just after the collision
are represented as

F=—(M,—M,M;'M})p; = —(M\p, —M,0)), (4.29)
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0, =M;'Mp, . (4.30)

From (4.29) and (4.30), the values of F and 9: are varied by the posture of the robot 0,
and the link parameters such as /,; and /,». The solutions of F and 9: in (4.29) and (4.30)
are a little complicated to understand their variations for all the joint angles 8, and all the link
lengths /;; and /,>. In this subsection, their variations will be investigated under the following
conditions:

lot = Loz, B = —20,1, 0 < 6,1 < 7t/4[rad]. 4.31)

The posture of the robot with the conditions can be changed from posture A to posture B
as shown in Fig. 4.27, keeping the position of the mass point just above the contact point.
For posture B, the leg is in the singular configuration with 6,; = O[rad] and the matrix J, is

? posture B

singular.

posture A
N 9a2 ()
' Yy Gal
XT

Figure 4.27: Range of postures: from posture A to posture B

Table 4.3: Physical parameters of the simple model
I 0.6 [m] I 0.6 [m]
lo1 0.3 [m] L 0.3 [m]
I | 0.01 [kgm?] | I, | 0.01 [kgm?]
Mgl 1 [kg] Ma2 1 [kg]
My, 50 [kg] vy 1.5 [m/s]

From the assumption 2, (4.30) and (4.31), the approximate solution of 9: can be obtained
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as

2myylg1ves(1 —s2)
4myl2 52 (1 —s2) +K
—4my, L ves(1 —s%)
4my 2,52 (1 —s2) + K

, (4.32)

where K = mallg1 + mgp(lg — lgz)2 + 1,1 + I,» and the variable s is defined as s = sin,;.
Under (4.31), the range of s satisfies 0 < s < V2 /2. Posture A and posture B correspond to
s=12 /2 and s = 0 respectively. By substituting (4.32) into (4.29), the vertical impulse F,
can be approximately calculated as

_ 4m2 12 vs* (1 — 5?)
Fy ~ myv, — ) 2 :

(4.33)

Furthermore, the kinetic energy of the robot just after the collision, ET = (9 M0 36 ) /2, can
be calculated from (4.32) as
2my Iz vist(1—-s%) 1

=+ wla1V i
~ ~— W — ). 4.34
4mwl§1s2(1 —s2)+K 2vt(m n=h) (434)

From (4.32), the variation of 9+ can be seen explicitly. Noting that 9+ = —29'+1 in (4.32),
the behavior of GJE will be emphasized below. The absolute value of 8% 5 1s zero at s = 0, and
sharply increases as s becomes slightly larger. The peak of |6 | occurs at s = s* where

1 K
* —_ 4.
s 2la1”m ‘ (4.35)

As s approaches v/2/2 from s*, |6.| monotonically decreases. Therefore, |0} has the max-

imum value for the posture where s = s*. Since s* is small from (4.35) and the assumption
2, the posture is close to posture B where the leg is in a singular configuration. As a result,
|9;§| has the maximum value at the posture close to the singular posture B, while it is zero at
posture B. The profile of 67, > as a function of s is drawn in Fig. 4.28, by using the physical
parameters in Table 4.3.

From (4.29), Fy has the maximum value at s = 0, and monotonically decreases as s ap-
proaches v/2/2. That is to say, Fy increases as the posture becomes close to the singular
posture B. Figure 4.29 shows the profile F; as a function of s by using the physical parameters
in Table 4.3.

Moreover, the similar behavior of 9;5 and Fy can be obtained, even if 6,, # —26,; and
l.1 # 1. This is easily verified by calculating their variations numerically by using (4.29) and
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(4.30).

As the above results, the posture where the leg is bent is advantageous in reducing the
impulse F, that would correspond to W; in Section 4.4.3. On the other hand, the posture
around s = s* can be useful for reducing the joint torques necessary for the landing motion.
For the simple model, the rate of work done by joint torques after the impact can be expressed
as

P,=110,=1,00,. (4.36)

Since |9;§| has the maximum value at s = s, the kinetic energy of the robot can be absorbed
most efficiently by 7,,. The kinetic energy E™ also depends on the posture as in (4.34). For the
posture with s = s*, a part of the kinetic energy E~ = (mgq1 + mgp +m,,)v? /2 is eliminated by
the inelastic collision with the ground, while almost all the energy E~ remains as E™ for the
posture close to posture A. Therefore, the posture around s = s*, that is close to the singular
posture B, is advantageous in reducing the joint torque 7, that would correspond to W, in
Section 4.4.3.

4.4.5 Discussion

From the numerical results in Case 1 and the theoretical results in Section 4.4.4, the amount
of joint torques necessary for the landing motion is reduced for the posture that is close to
a singular one. As mentioned in Section 4.4.4, the kinetic energy E™ for the simple model
depends on the posture as in (4.34). For posture B where s = 0, E™ becomes zero, though the
impulse £}, has the maximum value. From the assumption 1 of the perfectly inelastic collision,
all the energy E~ is eliminated despite 7,» = 0. The corresponding motion for the four-link
legged robot in Section 4.4.3 is the motion where all the joints of the robot are fully extended
and the robot bounces on the ground multiple times until all the energy E~ is eliminated.
Although W, = 0 for the motion, it was not found in the numerical optimization for Case 1
from the constraints (4.15) and (4.17). Instead, for the motion obtained in Case 1, non-zero
E™ is provided to the robot at the posture around s = s*, and W, is reduced from the large
energy absorption rate P,.

Regarding the subsystem composed of three links, Link 2, 3 and 4, as one link, the four-
link legged robot can be considered as a simple model composed of Link 1 and the subsystem.
From (4.30), the value of 6,; that maximizes |9;5| for the simple model can be obtained
numerically. The obtained value 6, is 0.69 [rad], while the corresponding values in Case
1 and 2 are 0.47 [rad] and 1.15 [rad]. In Case 1, 6; at the initial posture is close to 6,
16, (~]6.;|) becomes large after collision as shown in Fig. 4.19, and the joint torque 7,
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absorbs the kinetic energy of the robot efficiently as shown in Fig. 4.21. On the other hand, in
Case 2, |62’L | is much smaller than in Case 1 as shown in Fig. 4.23. The absorption of energy
at Joint 2 is not sufficient to stop the motion of the robot, and the torques 73 and 74, also absorb
the energy as shown in Fig. 4.25.

It should be noted that the value of cost function W, also depends on the posture of the
robot around the end time. Since the robot is in the contact state (d) around the end time, the
posture of the subsystem composed of Link 2, 3 and 4 affects highly the joint torques necessary
to sustain the heavy body due to the feature a). In Case 1, the posture of the subsystem is kept
near the singular posture where the three links are aligned in a straight line, and the joint
torques become very small around the end time from the feature a) as shown in Fig. 4.20. In
Case 2, the posture of the subsystem is far from the singular one around the end time, and
large joint torques continue to be required as shown in Fig. 4.24.

Moreover, optimization results for other values of ¢; show that, as the value of c¢; ap-
proaches 0, the obtained optimal motion becomes similar to the one in Case 1. For the value
of ¢ larger than 1, the optimal motion is almost the same as in Case 2.

4.5 Conclusion

Both the numerical optimization results in Sections 4.2 and 4.3 showed that the features a)
and d) of singular configurations are advantageous in the vertical jumping motions (in stance
phase) of two-link and four-link legged robots. In Section 4.4, numerical optimization results
with different weights for the cost function showed that the posture of the leg close to a singular
posture is useful for reducing the joint torques during landing, partly because of the feature
a). According to the investigation of the impact dynamics, just after collision, the energy
absorption rate for the posture around s = s* is much larger than the one for the posture far
away from the singular posture, when the joint torques are limited. Meanwhile, the rest of
the kinetic energy after collision for the posture around s = s* is much smaller. Thus, the
kinetic energy that needs to be eliminated can be efficiently absorbed by the joint torques
at the posture close to the singular one. Moreover, the flexion of the leg is advantageous
in reducing the reaction force. Those results were explained by a theoretical analysis of a
simplified model for the legged robot.



Chapter 5
Conclusions

This dissertation illustrated the advantages of singular configurations in robot motions by the-
oretical analysis and numerical simulations, for the purpose of understanding the dynamics of
the robot near singular configurations.

Firstly, a general expression of kinematic and dynamic equations for a multibody system
which is designed as a series of rigid links was introduced in Section 2.2. Sections 2.4 and 2.5
listed the features of singular configurations. These features are shown as follows:

a) Large loads can be sustained by small joint torques near singular configurations.
b) Joint torques can generate the kinetic energy efficiently near singular configurations.

c) The energy is stored in the manipulator and causes large acceleration near singular con-
figurations.

d) The torque-dependent acceleration of the object has its largest value when the robot
configuration is close to, but not exactly, a singular configuration.

The features a) and b) have been derived from the theoretical analysis of the Jacobian ma-
trix and the inertia matrix respectively. To give a theoretical explanation of the features c)
and d), the Jacobian and inertia matrices were combined together, and the end-effector ac-
celeration of a two-link manipulator with a heavy object and a fixed base was investigated
by using a simplified model. The acceleration was divided into three components, torque-
dependent, gravity-dependent and velocity-dependent accelerations. The features c) and d)
were explained clearly, based on the analytical solutions to the velocity-dependent and torque-
dependent accelerations respectively.

The numerical simulation results in Chapters 3 and 4 showed that they are applicable to
several kinds of robots and robot motions, that are classified in Table 1.1. All the features
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a) to d) can be utilized in the motions of lifting up a heavy object by a two-link manipulator
(with fixed base in a vertical plane) as shown in Sections 3.2 and 3.3. The features b), ¢) and
d) can be utilized in the motions of pulling a heavy object by a two-link mobile manipulator
(with unfixed base in a horizontal plane) as shown in Section 3.4. The features a) and d) can
be utilized in the vertical jumping motions of two-link/four-link legged robot (with unfixed
base in a vertical plane) as shown in Sections 4.2 and 4.3. Section 4.4 showed that the feature
a) can be utilized in the landing motions of a four-link legged robot (with unfixed base in a
vertical plane), and the posture of the robot close to a singular one at the impact instance is
useful for reducing the necessary joint torques.

The dynamic features summarized in this dissertation could be utilized for a practical
controller design. For a two-link manipulator, the ratios of joint torques to use the features b)
and d) depend only on the lengths of links. The vector of joint velocities to use the feature
c) are also parallel to them. Thus, there’s no need to know the actual weight of the object,
and to plan the robot motion in advance. The controller design for utilizing the singular
configurations would be greatly simplified.
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