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Chapter 1 
 
Introduction 
 
 
1.1 Background 
 
     An irrigation canal plays an important role to apply irrigation water from a source 

to fields. In Japan, agricultural water requirements demand is 54.4 billion m3 in 2010 

(MLITT, 2013). The water requirements is approximately twice as much as municipal 

water. The main irrigation canal networks extend over a length of 49,000 km (MAFF, 

2012). After World War 2, the networks were developed in order to increase yields of 

foods associated with an expansion of an urban area and economic development. 

     In recent years, the aging irrigation canal increases as shown in Figure 1.1 and 

requires a repair work. A standard economic life of irrigation facilities is 40 years and 

the aging irrigation canals have a risk for a leakage and a decrease of a capacity of flow. 

In addition, since the aging irrigation canals do not have a resistance of major 

earthquake such as Nankai Trough earthquake which will happen in the near future, the 

aging irrigation canals have a risk for a serious damage. 

     As a repair work for an aging pipeline, Pipe rehabilitation has been used. In this 

method, the inner pipe (rehabilitated pipe) is inserted into the outer aging pipe as shown 

in Figure 1.2. This method was recognized to use firstly in 1971 (Anzaki, 2013) and 
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developed at a sewerage filed. This method has four merit (J.P.R.Q.A.A., 2007a). Firstly, 

the strength, capacity of flow, water-tightness, anticorrosion property and rub resistance 

on the aging pipeline can be greatly improved. Secondly, the influence of the 

construction by this method on fields, residents and traffic conditions can be lower since 

a large excavation does not need. Thirdly, the less construction cost is anticipated for the 

same reason as the second. Finally, an amount of industrial waste can be reduced since 

the aging pipeline was remained to be buried. The method is categorized in terms of the 

 

Figure 1.1 Service period of irrigation canal (M.A.F.F., 2010)  

 

 

Figure 1.2 Pipe rehabilitation 
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structure and production as shown in Table 1.1.  

     In the design standard (MAFF, 2009) for pipeline in Japan, the design of the pipe 

rehabilitation is not described. In the design standard of this method for the sewerage 

filed (JSWA, 2001), a stiffness of an aging outer pipe is negligible. Thus, it is assumed 

that all earth pressure acts on the inner pipe. In the design standard for the irrigation 

pipeline, a pipeline is designed with consideration of the stiffness around the pipeline on 

the basis of Marston-Spangler theory (Spangler, 1941 and Marston, 1930). It is needed 

to clear an influence of an aging outer on an inner pipe in order to apply the pipe 

rehabilitation to the design standard for irrigation pipeline. 

 

 

1.2 Literature Review 
      
     Almost researches related to rehabilitated pipeline have been made for sewage 

pipeline. As an initial study, Falter (1996) suggested the need of new method and 

solution for the design of rehabilitated sewage pipeline from the analysis. In addition, 

Table 1.1 Categorization of Pipe rehabilitation (J.P.R.Q.A.A., 2007b). 

Structure Function Method Name( construction method) 

Non-integrated 

Only inner pipe resist 
the force (single layer) 
/ Outer and Inner pipes 
share the force (double 

layer) 

Cured-in-place 

ICP BREATHE 
SD LINER 

IN SITU FORM 
ALL LINER 

GROW 
HORSE LINING 

IN PIPE 

Close-Fit 

EX 
OMEGA LINER 

FFT-S 
ALL LINER 

PALTEM HL-E 
PALTEM SZ 

SEAMLESS SYSTEM 

Integrated Integrated pipe resist 
the force Spirally-wound 

SPR 
DANBY 

PALTEM FLOORING 
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22 series of centrifuge test were performed using different pipe stiffness, burying way 

and ground condition in order to evaluate the behavior of buried flexible pipe. 

Takahashi et al. (2002) conducted the full-scale loading test, centrifuge test and FEM 

analyses in order to evaluate the deformation behavior of the rehabilitated pipe under 

different damage level of the outer pipe and it was found that the outer aging pipe 

reinforced the ground and bending strain of inner rehabilitated pipe decreased by about 

60% relative to that of single buried pipe. Nakano et al. (2002) developed the separate 

non-linear analysis method to design the reinforced the aging sewerage pipe. In addition, 

Nakano et al. (2003) conducted the destructive test and FEM analysis for RC box 

culvert. As the results, it was found that the load bearing capacity of the rehabilitated 

RC box culvert depended on the damage level of the outer pope. Gumbel et al. (2003) 

and Spasojevic et al. (2007) conducted centrifuge tests using PVC as inner rehabilitated 

pipe and duralumin as outer aging pipe in order to evaluate the influence of the damage 

of outer pipe on the behavior of inner pipe. The results indicated that bending strain of 

inner pipe increased as the damage of outer pipe developed. Inoue et al. (2005) 

discussed about the buckling behavior and design of sewer pipes cured with plastic 

inner liners. The effect of the aging outer pipe on the buckling of inner pipes was 

estimated through the buckling theory. As the results, the critical buckling occurs when 

the external hydraulic pressure acts on the inner pipe. In addition, both standards of 

ASTM and JSWA were compared, indicating that JSWA was more reasonable than 

ASTM for the design of two layer pipe. Yoshimura et al. (2006) conducted two-edge 

loading test and FEM analyses for sewer concrete pipes which rehabilitated by 

cured-in-place pipes (CIPP). It was suggested that the effect of outer pipe of CIPP on 

the deformation response of the rehabilitated pipe was slight from the test and analyses 

results. In addition, from the result for the full scale test that simulated vehicle loading 

and adjacent excavation, Inoue et al. (2006) indicated that the rehabilitated pipes by 

CIPP were fully safe. In the test, the outer pipe had an inner diameter of 300 mm and 

four crossed cracks. Tohda, et al. (2006) conducted fourteen dynamic centrifuge model 

tests to investigate the response and safety of sewer concrete pipes rehabilitated by CIPP 

under strong seismic loading. The outer pipe and the inner pipe were hypothesized as 
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the integrated structure and two model pipes with different flexibilities which was 

simulated damaged levels of the outer pipes were used. From the test results, safety of a 

rehabilitated pipe under strong seismic loading was confirmed. Law et al. (2007) 

discussed about the influence of slip between the outer pipe and the inner pipe in detail 

by FEM analyses. Miyashita and Kuwano (2008) and Ko and Kuwano (2010) 

conducted cyclic loading test to evaluate the relationship between the effects of backfill 

material density and damage level on the double layer pipe. As the test results, it was 

revealed that the inner pipe was retained in loose sand by the restraint effect from the 

outer pipe when the deterioration level was low.  

     In recent years, studies on pipe rehabilitation for irrigation field has been 

conducted. Sawada et al. (2014) conducted the model experiments under different 

damage levels of the aging pipe and loading positions. Experimental results indicated 

that the strain concentration occurred at the top and the bottom of the rehabilitated pipe 

due to the point contact of the edge of the aging pipe. In addition, Ono et al. (2015) 

conducted the centrifuge model tests under various conditions including the damage 

levels of the outer pipe, the positions of surcharge load, the ring stiffness of the inner 

pipe, and the density of the backfill material. The test results show that the strain 

concentration of the inner pipe was reduced by 20% as the ring bending stiffness of the 

inner pipe increased, and that the strain concentration appears for loose and dense 

ground. 

     Although the following studies on the dynamic behavior of the buried pipe such 

as the floatation, deformation and lateral displacement were conducted by the shaking 

table tests and the analyses and so on, studies in order to verify the dynamic behavior of 

the rehabilitated pipe was almost not conducted. Nasu (1972) conducted dynamite tests, 

plank hammering tests, gas gun tests to verify dynamic behavior of the buried pipeline. 

As the test results indicated that the period spectrum of the pipeline was corresponding 

to that of the ground, and the axial strain was larger than the bending strain. Ohara and 

Yamamoto (1976) conducted shaking table tests for the buried pipe in order to measure 

the shaking earth pressure. From the tests results, it was cleared that a damage of the 

pipe due to the seismic force was small when the pipe was buried nearly on the base 
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rock and backfill material was sufficiently compacted. Oishi and Sekiguchi (1984) 

observed the strain and the acceleration of the buried pipe in order to investigate the 

dynamic behavior of buried pipelines. On the base of the observed earthquake, the 

spectra analysis and phase velocity analysis were conducted to make clear the 

relationship between the strain and the ground motion. They proposed the method of the 

seismic response analysis of the buried pipeline. Mohri et al. (1998) conducted the large 

scale shaking tests for the shallowly buried pipe to investigate the amount floatation of 

the pipe during earth quake. The test results show that the velocity and the amount of 

floating of the buried pipe depended on the degree of liquefaction, the shaking time and 

the vertical shaking. They proposed the effectiveness of three types of the floatation 

restraint. In addition, the pipe for the protection method with geogrid and gravel as 

backfill material did not float even the cover depth of approximately zero (Mohri et al. 

2000). Yuasa et al. (2000) conducted the shaking table tests for buried pipes in 

liquefaction and finite element analysis as the purpose of the clarification of the 

floatation mechanism of the buried pipe. As the results, it was revealed that the 

floatation was influenced by the difference in external pressure acted on the pipe and 

that the floatation could be reproduced by the analysis. Sato et al. (2003) predicted the 

amount of the floatation of the buried pipe by FEM (FLIP). The floatation behavior of 

the buried pipe was partially simulated. Kawabata et al. (2005) conducted DEM 

analyses in order to clarify the uplift mechanism of the buried pipe to cyclic simple 

shear in dry sand. As the analyses results, the buried pipe uplifted due to the reaction 

force from the lower ground as the lateral displacement of the pipe increased. Kawabata 

et al. (2011) conducted the shaking table test in order to verify the dynamic behavior for 

the bend of pressure pipeline with a concrete block and the thrust restraint using 

geogrids (Kawabata et al., 2006, Kawabata et al., 2009, Sawada et al., 2010). As the 

results, the horizontal displacement of the bend with the concrete block was extremely 

larger than that with the thrust restrain using geogrid. 

     In addition, since a damage of joint of pipes and a settlement of pipes may be 

caused by earthquake, their dynamic behavior was investigated. Kitaura et al. (1982) 

proposed a model test using a sinking-soil-box and measured stress acting on pipes and 
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deformation of joints of pipes when ground sank. Colton et al. (1982) conducted the 

dynamic test for full-scale buried pipelines to measure the soil-pipe axial interaction. As 

the test results, when the displacement of the pipe was less than 0.01in., the pipe did not 

slip relative to the sand. At displacement greater than about 0.01 in., the irreversibility 

was observed in the sand deformation. In addition, the relationship between the force 

and the displacement of the pipe was highly nonlinear. Miyajima (1983) conducted 

shaking table test for a model pipe fixed at one end in liquefied ground to verify a 

destruction of pipes due to floating of its. Hachiya et al. (2005) proposed a rational 

design method for buried pipelines subjected to differential ground settlement on the 

basis of a data set from 3D centrifuge model tests. From test results of shaking table test, 

Fujita et al. (2007) evaluated an allowable range of joint for expansion and bending on 

pipeline that formed with flexible joints and Tanaka et al. (2005) cleared that the use of 

ball type flexible joint has reduced significantly the vertical thrust on the joint that 

usually observed during the ground settlement after the liquefaction. Da et al. (2008) 

were conducted two pairs of centrifuge tests designed to investigate the differences in 

behavior of buried high-density polyethylene pipelines subjected to normal and strike 

-strip faulting. Alireza et al. (2014) monitoring the performance of pipe rehabilitation 

using acoustic emission technique, subjected to static and dynamic loading. Particularly, 

two damage mechanisms are investigated-delamination between outer pipe and inner 

pipe, and incipient failure of the inner pipe.  

     In Discrete Element Method (DEM) (Cundall and Strack, 1979), a micro 

mechanical quantity which do not measure in laboratory tests can be evaluated. In 

recent years, DEM is widely used in order to verify a theory and to support a date 

obtained from the tests in geotechnical engineering field. Meguro and Hakuno (1988) 

developed Modified Distinct Element Method and conducted the fracture analyses of 

the concrete structure. This method was introduced into the non-linear spring to mortar. 

The numerical results obtained in this method agreed well with the results of laboratory 

tests. Sakaguchi et al. (1993) introduced the rolling friction into DEM analyses. The 

rolling friction was formulated by the term of resisting moment and could be expressed 

as a shear strength which had an actual soil material. Matsuoka and Yamamoto (1994) 
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compared the result for direct shear box tests and biaxial compression tests on granular 

assemblies of aluminum rods to the result for DEM by which their tests was simulated 

in order to investigate the quantitative applicability of DEM to stress-strain behavior of 

granular material. They concluded that DEM could be a useful tool to elucidate the 

microscopic mechanism of the behavior of granular materials. Nakase et al. (2002) 

proposed that any structures are modeled using a polygonal element which consisted of 

a circle element and an edge element. Suehiro et al. (2003) conducted the shaking table 

test to clarify the mechanism of floatation behavior of underground structure using the 

polygonal element by DEM. Kawabata et al. (2003) evaluated the characteristic 

behavior of shallowly buried pipeline under wheel load using DEM analyses. The 

model pipe was expressed as 20 beam elements, all elements was coupled by contacting 

element and elastic spring at each element. As the analyses results, it was found that the 

load of the traveling force distributed in the flexible pipe in the whole and surrounding 

ground, and the stress concentration to the top of the pipe was remarkable for the rigid 

pipe. Murakami et al. (2004) incorporated a numerical model where both the adhesive 

force and the lubricative effect due to liquid bridges in order to capture the mechanism 

of soil compaction from micro-mechanical viewpoint. They carried out numerical 

simulation of soil compaction test by the proposed model and the results were found to 

be in good agreement with the compaction curve obtained through usual experiments. 

Mori and Ogawa (2007) conducted the liquefaction analysis for the river dike by DEM 

and compared the analysis result to the damage of the river dike due to the 1995 

Hyogoken-Numbu earth quake. It was found that the settlement of the river dike 

obtained from the analysis result could reproduce the actual settlement. Fukumoto et al. 

(2011) proposed a simple model for DEM with fewer parameters. The interparticle 

contact bond model and the rolling friction model were introduced into the conventional 

contact model. 
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1.3 Aim of This Study 

 

     As described above, studies on the dynamic behavior of the rehabilitated pipe are 

much less studies relative to the static behavior although many researchers have 

evaluated the influence of the aging outer pipe on the static behavior of the inner pipe 

by the model test, the centrifuge test and the analyses such as FEM. 

It was not cleared that the influence of the aging outer pipe with cracks on the 

dynamic behavior of the inner pipe although Tohda et al. (2006) conducted fourteen 

dynamic centrifuge model tests assuming the outer pipe and the inner pipe as the 

integrated structure and concluded that the safety of a rehabilitated pipe under strong 

seismic loading was confirmed. In addition, the pipe rehabilitation has added two issues 

to be resolved. One is a reduction of cross-sectional area of water flow due to 

construction or insert of inner pipes into outer pipes. Another is the dynamic behavior of 

joints of outer pipes. The mail purposes in this study are shown as followings.  

 To verify an influence of a pipe thickness on a static and dynamic behavior of 

a pipe 

 To verify an influence of a shear deformation of a backfill material on a 

rehabilitated pipe 

 Formularization of a deflection of a rehabilitated pipe to shear deformation of 

a backfill material 

 To verify an influence of a joint of an outer pipe on an inner pipe during 

earthquake 

 

 
1.4 Overview of This Thesis 
 

The thesis is organized into seven chapters. Chapter 1 provides a brief 

introduction, literature reviews with respect to Marston-Spangler theory and pipe 

rehabilitation, and the aim of this thesis. 

In chapter 2 the model tests for several flexible pipes, which each pipe has a 
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different thickness and equivalent bending ring stiffness were conducted in a steel pit to 

discuss the influence of the thickness of pipe and ground stiffness behavior of pipes. In 

chapter 3, shaking table tests using these pipes were conducted in order to verify the 

influence of the thickness of pipe, a condition of test pit and bedding material on the 

dynamic behavior of pipes due to a shear deformation of a backfill material. In chapter 4, 

in order to verify the influence of a damage of the outer pipe on the dynamic behavior 

of the inner pipe, cyclic shear test using a lamina box was a conducted under a different 

damage of outer pipes and a different density of backfill material. In chapter 5, two 

dimensional discrete element method (DEM) analyses were conducted in order to verify 

the deformation mechanism of the inner pipe with and without the outer pipe during 

earthquake and formulate the oblique deflection of the inner pipe to shear strain of the 

backfill material. In chapter 6, shaking table tests were conducted to verify the dynamic 

behavior of the axial direction of the inner pipe used for the method. Finally, Chapter 7 

describes the conclusions and perspectives of the present study. 
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Chapter 2 
 
Mechanical Behavior for Flexible Pipe Having Different 
Thickness and Equivalent Bending Ring Stiffness 
 
2.1 Introduction 
 

The pipe rehabilitation has a demerit that a cross sectional area of water flow of an 

inner pipe is smaller than that of an existing outer pipe due to construction or insert of 

inner pipes into outer pipes although this method has a great merit that is trenchless repair 

work. To control the reduction rate at the cross sectional area of water flow, thinning of 

pipe thickness is desirable. 

Design standard (MAFF, 2009) for pipeline in Japan is based on Marston-Spangler 

theory (Marston, 1930 and Spangler, 1941). Structural calculation of flexible pipeline is 

based on bending ring stiffness Ep I/Dc
3, where Ep is the elastic modulus, I is the moment 

of inertia of area ( 3 /12pI t , tp is the thickness of a pipe), Dc is the center diameter of a 

pipe. Bending ring stiffness is defined from the following formula that indicates 

relationships vertical deflection of flexible pipe and linear load. 

30.149 / 2
p

c

E IS
P

D
                  （2.1） 

where P is the linear load, S is the vertical deflection. Depending on the formula, behavior 

of buried flexible pipes having different thickness and equivalent bending ring stiffness 
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are identical in theory. However, it is reported that a pipeline which met the design 

standard buckled (Tomita et al., 1999). Kawabata et al. (2008) conducted field buried test 

for a pipeline having a diameter of 3,000 mm and a thickness of 26~28 mm. As the results, 

it was revealed that the behavior of the buried pipe was different from the behavior on the 

basis of Marston-Spangler theory. Tohda and Yoshimura (1999) also indicated that earth 

pressure on buried pipes and deflection of buried pipes and verified the relationships 

vertical deflection ratio of flexible pipe and maximum of bending moment from the result 

of FEM analyses. 

In this chapter, the model tests for several flexible pipes, which have a different 

thickness and equivalent bending ring stiffness, were conducted in a steel pit to discuss 

the influence of the thickness of pipe and ground stiffness behavior of pipes. 

  

 

2.2 Outline of Shaking Table Test  
 
2.2.1 Test Equipment 

The test pit was made of steel and has a length of 1830 mm, a width of 1000 mm 

and a depth of 1230 mm as shown in Figure 2.1. Both side walls of the test pit had a hole 

with a diameter 300 mm from the bottom of the test pit of 600 mm in height to install 

measurement instruments. Two vinyl sheets which were applied silicon oil between two 

sheets were set inside. 

 

2.2.2 Model Pipe 

     A steel pipe, a polyvinyl chloride pipe (abbr. as PVC) pipe, a high density 

polyethylene (abbr. as HDPE) pipe, a thin steel pipe and a low density polyethylene (abbr. 

as LDPE) were used. The steel pipe, the PVC pipe and the HDPE pipe had an equivalent 

bending ring stiffness. The thin steel pipe and the LDPE pipe had an equivalent bending 

stiffness. The bending ring stiffness of those three pipes was one-tenth of that of these 

two pipes. Table 2.1 shows properties of pipes. Tests using the steel pipe, the PVC pipe 

and the HDPE pipe grouped under Case-A. Tests using the shin steel pipe and the LDPE 
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pipe grouped under Case-B. 

 

2.2.3 Model Ground 

     Silica sand was used as a soil material for the model ground. Table 2.2 shows the 

 

Figure 2.1 Schematic layouts of experiment 
 

 
Table 2.1 Properties of pipes 
Type of pipe Thickness 

tp (mm) 
Center diameter 

Dc (mm) 
Elastic modulus 

Ep (N/mm2) 
Ring Bending stiffness 

EpI/Dc
3 (kN/m2) 

Steel   2.49 402.00 223,067 4.4 
PVC  9.12 406.69 3,470 3.3 
HDPE  14.26 422.79 1,223 3.9 
Thin steel pipe 1.12 400.38 211,151 0.4 
LDPE 11.68 408.63 275 0.5 
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properties of silica sand. Figure 2.2 shows a grain size accumulation curve for silica sand. 

The pit was backfilled with silica sand in two different relative densities of 95 % (dense 

ground) or 25 % (loose ground) from the bottom of the pipe to the ground surface. A 

bedding of 400 mm height was dense ground. In addition, as shown in Figure 2.3, 

concrete blocks were set in the area of from the bottom of the pipe to a height of half the 

pipe diameter. Table 2.3 shows the mix design of concrete. Unconfined compression 

strength of 28 days curing the concrete was 17.97 N/mm2.  

 

Table 2.2 Properties of silica sand 

Density of soil particles ρs  2.59 g/cm3  
Minimum dry density   ρdmin 1.236 g/cm3  
Maximum dry density ρdmax 1.566 g/cm3  
Mean particle size D50 0.19  
Angle of internal friction ϕ 39.76 deg.  

 

Figure 2.2 Grain size accumulation curve for silica sand  
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2.2.4 Procedure of Model Test and Test Condition 

     After backfilling, vertical pressure on the surface of the ground is given with an air 

bag up to 120 kPa in increments of 10 kPa. The model pipe and dummy pipes were buried 

under an overburden depth of 400 mm. Dummy pipes were set at both end of model pipes. 

Vertical pressure of 120 kPa corresponded about an overburden depth of 11m. Table 2.4 

shows test conditions. 

2.2.5 Measurements  

     Strain of pipes, horizontal and vertical deflections of pipes and vertical pressure 

were measured. In steel pipe, PVC pipe and HDPE pipe, 120 strain gauges were attached 

circumferentially to the inner and outer surfaces of each pipe at intervals of 6 degrees. In 

thin steel pipe and LDPE pipe, 240 strain gauges were attached circumferentially to the 

inner and outer surfaces of each pipe at intervals of 3 degrees. Horizontal and Vertical 

deflections of pipes was measured by rotating a displacement transducer as shown in 

Figure 2.4. Vertical loading pressure by the air bag was measured by a pressure transducer. 
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Figure 2.3 Concrete block 

Table 2.3 Mix design of concrete 

High early strength   20 kg  
Gravel    4.4 kg  
water  3.5 l  
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2.3 Relationships between Test Process and Deflection 
 
     In design standard (MAFF, 2009) for a pipeline in Japan, a securement of an area 

water cross of a pipeline and of a water tightness of joints of a pipeline were judged by a 

ratio of a deflection of a pipe. The ratio of deflection is calculated by dividing a deflection 

of a pipe into a center diameter of a pipe. 

     Figure 2.5(a) also shows relationships between the test process and ratio of 

Table 2.4 Test condition 

 Type of pipe Backfill material condition  
Case-A-ST-D steel dense ground  
Case-A-ST-L steel loose ground  
Case-A-PE-D PVC dense ground  
Case-A-PE-L PVC loose ground  
Case-A-PVC-D HDPE dense ground  
Case-A-PVC-L HDPE loose ground  
Case-B-ST-D thin steel dense ground  
Case-B-ST-L thin steel loose ground  
Case-B-ST-C thin steel loose ground and concrete block  
Case-B-PE-D LDPE dense ground  
Case-B-PE-L LDPE loose ground  
Case-B-PE-C LDPE loose ground and concrete block  

 

 

Figure 2.4 Displacement transducer 
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horizontal and vertical deflections of model pipes in Case-A. Figure 2.5(b) shows these 

relationships in Case-B. Table 2.5 shows horizontal and vertical ratios of the deflection 

of pipes at the load of 120 kPa. When a pipe was deformed rectangularly, a change of a 

distance between a top of a pipe and a bottom of a pipe is a negative vertical deflection 

and a change of a distance between of sides of a pipe is a positive horizontal deflection 

of a pipe.     

     An influence of thickness of a pipe on horizontal and vertical deflection of a 

flexible pipe having an equivalent bending ring stiffness was small inspire of a density of 

a backfill material and .of a value of a bending ring stiffness. From Figure 2.5(a), it was 

found that each pipe in Case-A was deformed longitudinally when the backfill material 

was filled from the bottom of the pipe to the top of the pipe in the case of dense ground. 

This result was similar to the result for the field test for a buried flexible pipe having a 

diameter of 1,500 mm in which Kawabata et al. (1993) conducted. The results were 

caused by a lateral pressure acting at the side of the pipe due to a compaction of the 

backfill material. According to an increment of vertical pressure due to the increment of 

the depth from the top of the pipe to the ground surface and vertical load by the air bag, 

the vertical deflection of each pipe was small. The ratio of the horizontal and the vertical 

defection of pipes were -0.3~0.0 % and 0.1~0.2 % respectively at vertical load of 120 kPa 

as shown in Table 2.5. The results indicated the longitudinal deformation of the pipe 

remained when the backfill material was density.  

     On the other hand, the ratio of the horizontal and vertical deflection of pipes in 

Case-A were approximately zero in the case of loose ground because of no compaction 

when pipes were buried from the bottom of pipes to the top of pipes as shown in Figure 

2.5(a).  
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 (a) Case-A 

 

 

(b) Case-B 

Figure 2.5 Relationships between test process and ratio of horizontal and  
vertical deflection of pipe  
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Table 2.5 Ratios of horizontal and vertical deflection at load of 120 kPa  

 Case-A-ST-D Case-A-PVC-D Case-A-PE-D 
Ratio of horizontal deflection -0.2 % -0.3 % 0.0 % 
Ratio of vertical deflection  0.1 % 0.2 % 0.1 % 
 Case-A-ST-L Case-A-PVC-L Case-A-PE-L 
Ratio of horizontal deflection 2.3 % 2.5 % 2.0 % 
Ratio of vertical deflection  -2.7 % 3.0 % -2.6 % 
 Case-B-ST-D Case-B-PE-D Case-B-ST-L 
Ratio of horizontal deflection -2.5 % -1.9 % 1.8 % 
Ratio of vertical deflection  2.4 % 2.5 % -2.9 % 
 Case-B-PE-L Case-B-ST-C Case-C-PE-C 
Ratio of horizontal deflection 1.5 % 0.6 % 0.7 % 
Ratio of vertical deflection  -2.9 % -0.6 % -1.9 % 

 

The ratio of the horizontal deflection of pipes increased and the ratio of the vertical 

deflection decreased from the backfilling of the top of pipes at the load of 120 kPa. The 

ratio of the horizontal and the vertical defection of pipes were 2.0~2.5 % and -3.0~ -2.6 % 

respectively at the vertical load of 120 kPa as shown in Table 2.5. The result was caused 

by low confining pressure of loose ground in comparison with it of dense ground.  

     As shown in Figure 2.5(b), for dense and loose ground, the tendency of the 

horizontal and vertical deflection to the process of backfilling and vertical load by the air 

bag in Case-B were similar to that in Case-A. Compared to the ratio of the horizontal and 

vertical deflection of the pipe in Case-A, that in Case-B was large as shown in Table 2.5 

since the bending ring stiffness of pipes in Case-B were one- tenth of that in Case-A. 

     When the concrete block was set from the bottom of the pipe to the spring line, the 

deformation of the pipe was restricted. Ratios of horizontal and vertical deflection of the 

pipe in Case-B-ST-C and Case-B-PE-C were approximately zero in the process of the 

filling as shown in Figure 2.5(b). Absolutes of the ratio of the horizontal and vertical 

deflection of the pipe in Case-B-ST-C and Case-B-PE-C became smaller in comparison 

with those of in Case-B-ST-L and Case-B-PE-L. At the load of 120 kPa, the ratios of the 

vertical deflection of the pipe in Case-B-ST-C and Case-B-PE-C were -0.6 and -1.9 % 

respectively. This difference was caused by the shape of concrete block. The concrete 

formwork was made using the thin steel pipe. The concrete block was not fitted 

completely to the LDPE pipe since outer diameter of the LDPE pipe was larger than that 

of the thin steel pipe. 
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2.4 Influence of Pipe Thickness on Bending Strain 
 

     The distribution of the bending strain in each case shows Figure 2.6 and Figure 

2.7 respectively. The bending strain is calculated by the following equation. 

2
out in

b                                        (2.2) 

where b  is the bending strain, out  is the outer circumferential strain on a pipe and 

in is the inner circumferential strain on a pipe. A tensile outer circumferential strain is 

positive. For the setting of the concrete block, strain gauges were not attached from the 

bottom of the pipe to the spring line. In Case-A, the scales of the PVC and HDPE pipe 

are calibrated on the basis of thickness of the steel pipe, since the bending strain is 

proportional to a thickness of a pipe. In Case-B, the scale of the LDPE pipe was calibrated 

on the basis of thickness of the thin steel pipe. 

    The shape of the distribution of the bending strain in steel pipe in Case-A was similar 

to other pipes in spite of the density of the backfill material. For the dense ground, the 

tensile strain increased at the bottom and top of each pipe and the compressive strain 

increased at the side of each pipe due to compaction of the backfill material when the 

backfill material was filled from the bottom of the pipe to the top of the pipe in the case 

of dense ground as shown in Figure 2.6(a), (c) and (e). It was found that each pipe in 

Case-A was deformed longitudinally as well as the result of the deflection of each pipe. 

The stress concentration occurred at the bottom and top of each pipe since the bending 

strain on the bottom and top of each pipe decreased at the load of 120 kPa. As shown in 

Figure 2.6(b), (d) and (f), the strain of each pipes was not generated at the process of the 

filling for the loose ground. This was corresponding to the result as shown in Figure 2.4. 

At the load of 120 kPa, the compressive strain on the bottom and top of each pipes 

increased and the tensile strain on 30 and 150 degrees of each pipes increased due to the 

vertical load. As shown in Figure 2.7(a), (b), (c) and (d), the similar shape of the 

distribution of the bending strain in each pipe in Case-B was found for the dense and 

loose ground as well as the shape in Case-A. 
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(a) Case-A-ST-D                      (b) Case-A-ST-L 

         
(c) Case-A-PVC-D                  (d)  Case-A-PVC-L 

         
(e) Case-A-PE-D                   (f) Case-A-PE-L 

Figure 2.6 Bending strain distributions in Case-A 
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(a) Case-B-ST-D                      (b) Case-B-PE-D 

         
(c) Case-B-ST-L                    (d)  Case-B-PD-L 

         
(e) Case-B-ST-C                   (f) Case-B-PE-C 

Figure 2.7 Bending strain distributions in Case-B 

Initial After backfilling Load of 120 kPa
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     It was found that the boundary between the concrete block and the backfill material 

was influenced of the deformation of buried flexible pipes as shown in Figure 2.7(c), (d), 

(e) and (f). The distribution of the bending strain from the spring line of the pipe to top of 

the pipe for the loose ground with using concrete block was similar to that for the loose 

ground only. However, it was assumed that the compressive strain was generated at the 

boundary between the loose ground and the concrete block for the load of 120 kPa.  

 

 

2.5 Influence of Pipe Thickness on Axial Stress 
 

     The axial stress distribution in Case A and Case B shows Figure 2.8 and Figure 

2.9, respectively. The axial stress is calculated by the following equation. 

r r pE                              (2.3) 

2
out in

r                                          (2.4) 

where r  is the axial stress (MN/m2), r  is the axial strain. A tensile stress is positive. 

     The compressive stress depended on the thickness as shown in Figure 2.8. The 

axial stress of pipes to the process of the backfilling for dense ground was not generated 

as shown in Figure 2.8(a), (c) and (e) although the deflection and the bending strain of 

pipes to the process increased due to the ground compaction. The compressive stress was 

generated at the vertical load of 120 kPa and the maximum compressive stress in Case-

A-ST-D, Case-A-PVE-D and CASE-A-PE-D was 5.3, 1.4 and 0.39 MN/m2 respectively. 

For loose ground, the maximum compressive stress in Case-A-ST-L, Case-A-PVC-L and 

Case-A-PE-L was 8.2, 2.5 and 0.95 MN/m2, respectively as shown in Figure 2.8(b), (d) 

and (f). In comparison with the axial stress distribution of the steel pipe for dense ground, 

that of the thin steel pipe for loose ground was non-uniform. The result indicated that a 

stress concentration on the pipe occurred since the difference between the ring bending 

stiffness and the ground stiffness for loose ground was larger than that for dense ground. 

     For Case-B that the ring bending stiffness was one tenth of that in Case-A, the 

compressive stress depended on the thickness as shown in Figure 2.9 as well as the result 
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in Case-A. The axial stress of the thin steel pipe and LDPE pipe was not generated the 

process of the backfilling for dense and loose ground. The absolute maximum stress in 

Case-B-ST-D and Case-B-ST-L was 23.0 and 51.3 MN/m2 respectively. The axial stress 

distribution of the thin steel pipe at the load of 120 kPa in spite of the density of the 

ground was more non-uniform than that of the HDPE pipe. In addition, the axial strain in 

Case-B-ST-C also distributed non-uniformly from the spring line to the pipe top when the 

concrete block was set as the base material.  
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(a) Case-A-ST-D                       (b) Case-A-ST-L 

          
(c) Case-A-PVC-D                     (d) Case-A-PVC-L 

           
(e) Case-A-PE-D                      (f) Case-A-PE-L 

Figure 2.8 Axial stress distributions in Case-A 
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(a) Case-B-ST-D                     (b) Case-B-PE-D 

        
(c) Case-B-ST-L                     (d) Case-B-PE-L 

        
(e) Case-B-ST-C                      (f) Case-B-PE-C 

Figure 2.9 Axial stress distributions in Case-B 
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In order to verify the influence of the thickness of pipes in Case-B for loose ground 

on the absolute maximum stress, Figure 2.10 shows the relationships between L outD L  

( L : the vertical load (kN/m2), outD : the outer diameter of a pipe (m) and L : the length 

of a pipe (m) ) and mtL  ( m : the absolute maximum axial stress (kN/m2). A broken 

line indicates linear approximation line of relationships. The absolute maximum axial 

stress increased according to the increment of the loading pressure. In design standard 

(MAFF, 2009) for pipeline in Japan, an allowable stress of type of a pipes is determined 

by dividing a tensile strength by a safety factor. The allowable stress of a steel pipe, 

STW290 is 123 N/mm2 and that of PE pipe is 6.2 N/mm2. The value of mtL  converted 

from these allowable stress shows a solid line in Figure 2.10. It was found that the thin 

steel pipe reached the allowable stress earlier than the LDPE pipe since the slope of 

approximation line of the thin steel pipe was 7.9 times to that of the LDPE pipe. The 

result indicated that the relationship between the axial stress and the vertical pressure 

depended on the thickness of the pipe. 

 

Figure 2.10 Relationships between L ou tD L  and mtL in Case-B 
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     The non-uniformity of the axial stress distribution in Case-B was evaluated with a 

change rate of axial stress to the distance between a strain gauge and an adjacent strain 

gauge. The change rate,  is defined as the following equation.  

1

/
rn rn

o utD i
                             (2.5) 

where 1rn  is the axial stress at a measurement point n+1, rn  is the axial stress at a 

measurement point n and i is 120 (a number of strain gauge which was attached to the 

outer surface of pipes. Figure 2.11 shows relationships between each measurement point 

and  at the load of 120 kPa. A spring line of pipes is zero degrees and a top of pipes 

is 90 degrees.  in Case-B-ST-D was large at 45 and 270 degrees and the absolute 

maximum change rate was 2,358.  in Case-B-ST-L varied widely and the absolute 

maximum  was 4,623. Since the deflection rate of the pipe in the loose ground was 

larger than that in the dense as shown in Figure 2.5(b), the change rate depended on the 

deflection of the pipe. The change rate in Case-B-PE-D was extremely small. The 

absolute maximum  in Case-B-PE-D and Case-B-PE-L were 7.4 and 68, respectively. 

These results indicated that the dispersion of the axial stress was large according to the 

density of the backfill material.  

     The part of the sudden change of  was corresponding to a result of a previous 

study and a report of an accident during earthquake.  was suddenly changed at the 

inclined direction as shown in Figure 2.11. Tanaka and Mohri (1985) and Tanaka et al 

(2000) indicated that the fracture region at 45 degrees from the top of the pipe was 

generated from the result of the vertical loading test for the buried flexible pipe and that 

a shear strain of an underground dominated at 45 degrees from the top when an arched 

underground structure was buckled. Yoshida (1999) reported that cracks was generated at 

45 degrees from the top of the shield tunnel during the Great Hanshin-Awaji Earthquake.  
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Figure 2.11 Relationships between each measurement point and  at the load of 120 kPa. 
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2.6 Conclusions 
 
     In this chapter, the model tests for several flexible pipes, which have different 

thicknesses and equivalent bending ring stiffness were conducted in a steel pit to discuss 

the influence of the thickness of pipe and ground stiffness behavior of pipes. From the 

result of the model test, the following conclusions were obtained. 

 

1. For flexible pipes having different thickness and equivalent bending ring stiffness, 

the influence of the thickness of the pipe on the deflection and the bending strain 

distribution of the pipe was extremely small. 

2. For the dense ground, flexible pipes were deformed longitudinally due to the 

compaction of the ground. The compressive strain of the side of the pipe increased at 

the process of backfilling. The compressive strain of the bottom and top of the pipe 

increased due to the vertical pressure. 

3. For the loose ground, the pipe was not deformed at the process of the backfilling. The 

deformation of the pipe depended on the increment of the vertical pressure. 

4. The boundary between the concrete block and the backfill material was influenced 

of the deformation of buried flexible pipes. 

5. The axial stress of the pipe which was generated due to the vertical pressure increased 

according to the decrease of the pipe thickness. 

6. The more non-uniformity the axial stress distribution of the pipe was and the larger 

the axial stress was, the smaller the thickness of the pipe. In addition, the thin steel 

pipe reached the allowable stress earlier than the LDPE.  

7. The non-uniformity of the axial stress distribution was evaluated with the change rate 

of axial stress to the distance between a strain gauge and an adjacent strain gauge.   
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Chapter 3 
 
Dynamic Behavior for Flexible Pipe Having Different 
Thickness and Equivalent Bending Ring Stiffness 
 
3.1 Introduction 
 

In chapter 2, model test was conducted to verify the characteristic mechanical 

behavior for flexible pipes having different thickness and equivalent bending ring 

stiffness. From the test results, it is found that the influence of the thickness of the pipe 

upon the deflection and the distribution of bending strain was extremely small and the 

larger axial stress acts on the pipe with the thinner wall, and that the change of axial stress 

in infinitesimal section of pipe was larger with the thinner wall. In this chapter, shaking 

table tests using these pipes were conducted in order to verify the influence of the 

thickness of pipe, a condition of test pit and bedding material on the dynamic behavior of 

pipes due to a shear deformation of a backfill material. 

 
 

3.2 Outline of Shaking Table Test  
 
3.2.1 Test Equipment 
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     The shaking table used for the test had plane dimensions of 6 m × 4 m, with the 

maximum loading capacity of 50 tf. Its excitation system was an electro-hydraulic servo. 

A rigid box (1,680 mm length, 400 mm width, and 825 mm height) and a laminar box 

(1,990 mm length, 1,500 mm width, and 970 mm height) were used as a test pit as shown 

in Figure 3.1. These test pits were installed on the shaking table. The laminar box 

consisted of fifteen flames having 55 mm height. A ground deformation is restricted due 

to the side wall of the rigid box. On the other hand, propagation of S-waves that 

horizontally vibrate a ground surface in the field is simulated by using the laminar box. 

Kokusho and Iwatate (1979) evaluated the nonlinear dynamic response of soft ground 

from a shaking table test results using a laminar box. Tanaka et al. (2005) evaluated the 

axial behavior of a buried pipe having a ball type flexible joint during earthquake. In this 

study, the condition that pipelines were buried on open channels (Harada, 1998), was 

simulated using the rigid box and the condition that flexible pipes were buried in the field 

was simulated using the laminar box. 

 

3.2.2 Model Ground 

     In the test using the rigid box, Toyoura-sand was used as a soil material for the 

model ground. The density of soil particle of Toyoura-sand was 2.68 g/cm3. In the test 

using the laminar box silica sand was used. The density of soil particle of silica-sand was 

2.65 g/cm3. Figure 3.2 shows grain size accumulation curves for Toyoura-sand and silica 

sand. In both cases, relative density of backfill material was 40 %. In addition, as shown 

in Figure 3.3, concrete blocks were set in the area of from the bottom of the pipe to a 

height of half the pipe diameter. The concrete block consisted of high early portland 

cement, coarse aggregate and fine aggregate. The weight ratio of these was 1:2:3. Water 

cement ratio was 40 %. Unconfined compression strength of 3 days curing the concrete 

was 17.19 N/mm2.  
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(a) Rigid box  

 

 
(b) Laminar box 

Figure 3.1 Schematic layouts of experiment 
 
 

 
Figure 3.2 Grain size accumulation curves for Toyoura sand and silica sand 
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3.2.3 Model Pipe 

     A steel pipe, a PVC pipe, HDPE pipe were used as model pipes. The steel pipe, the 

PVC pipe and the HDPE pipe had an equivalent bending ring stiffness. Table 3.1 shows 

properties of pipes. An inertia force acting on model pipes depends on the weight of pipes. 

Four vinyl hoses included lead shots were attached at the inner circumferential of The 

PVC pipe and the HDPE pipe to equalize a weight of the steel pipe. 

 

3.2.4 Procedure of Test and Test Condition 

     Horizontal shakings were applied after backfilling as shown in Figure 3.1. In the 

test using the rigid box, an input acceleration generated a sinusoidal wave at a frequency 

of 2 Hz with the maximum acceleration of 6 m/s2 as shown in Figure 3.4(a). In the test 

using the laminar box, the input acceleration generated a sinusoidal wave at frequency of 

2 Hz with the maximum acceleration of 4 m/s2 as shown in Figure 3.4(b). Table 3.2 

shows test conditions. 

 

Figure 3.3 Schematic diagram of concrete block 

 

Table 3.1 Properties of pipes 

Type of pipe Thickness 
tp (mm) 

Center diameter 
Dc (mm) 

Elastic modulus 
Ep (N/mm2) 

Ring Bending 
stiffness 

EpI/Dc
3 (kN/m2) 

Steel   1.92 301.9 164,399 3.6 
PVC  7.23 309.2 3,155 3.3 
HDPE  11.52 311.8 1,390 3.9 
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3.2.5 Measurements  

     Strain and deflection of pipes, ground acceleration, ground settlement, horizontal 

displacement of the laminar box and acceleration of the shaking table were measured as 

shown in Figure 3.1. 32 strain gauges were attached circumferentially to the inner 

surfaces at intervals of 11.25 degrees. The deflection of pipes were measured using 

phosphor bronze that strain gauges were attached in both side. As a top of pipe was 

 

(a) Rigid box 

 

 

(b) Laminar box 

Figure 3.4 Acceleration response of shaking table 

 
Table 3.2 Test conditions 

 Type of pipe Test pit Maximum 
acceleration foundation 

Case 1 Steel 
Rigid Box 6 m/s2 － Case 2 PVC 

Case 3 HDPE 
Case 4 Steel Laminar 

Box 4 m/s2 － Case 5 PVC 
Case 6 HDPE 
Case 7 Steel Laminar 

box 4 m/s2 Concrete Case 8 PVC 
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defined as zero degrees, 0-180 (vertical), 45-225, 90-270 (horizontal) and 135-315 

degrees were set inside pipe. The shear strain of the laminar box was calculated by 

dividing the height of the measurement position into the horizontal displacement of the 

laminar box.  

 
 
3.3 Influence of Boundary Condition on Deflection 
 

Figure 3.5 shows the time history of deflection of the pipe in Case 1 and Case 4. 

The ratio of deflection is calculated by dividing a deflection of a pipe into a center 

diameter of a pipe. The compression deflection of the pipe in each direction is negative. 

In both case, the amplitude of the deflection of the pipe in each direction increased from 

3 seconds when the acceleration of the shaking table was reached at the peak. The 

 
Figure 3.5 Time history of deflection ratio of pipe 
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amplitude oblique deflection of the pipe was larger than the amplitude vertical and 

horizontal deflection of the pipe in each case. As the result, it was confirmed that a buried 

flexible pipe was deformed obliquely during earthquake although a buried flexible pipe 

was deformed rectangularly by a vertical earth pressure of a backfill material and a wheel 

load in general.  

Table 3.3 shows the absolute maximum deflection ratio of the pipe in Case 1 and 

Case 4. The vertical and horizontal deflection ratio of the pipe in Case 4 were more than 

double for that in Case 1. The oblique deflection ratio of the pipe in Case 4 was more than 

tripled for that in Case 1. The deflection of the pipe in Case 4 was larger than that in Case 

1 although the maximum acceleration of the shaking table in Case 1 was half again that 

in Case 4. It was indicated that the side wall of the rigid box controlled the ground 

deformation.  

The pipe was deformed obliquely by the difference between the displacement of 

the ground over and under the buried pipe. The amplitude of the deflection ratio in 45-

225 and 135-315 degrees decreased after that reached at the peak as shown in Figure 

3.5. Figure 3.6 shows the acceleration response of the ground over and under the pipe 

from 3.0 to 4.5 seconds and from 15.5 to 17.0 seconds. The phase difference between 

the ground over and under the pipe for the laminar box was larger than that for the rigid 

box. On the other hand, the phase difference did not occur from 15.5 to 17.0 seconds in 

both cases. 

     For the loose ground, the acceleration response of the ground over the pipe 

corresponding to that under the pipe since the propagation velocity of the shear wave 

increased by the cyclic shaking. Figure 3.7 shows the time history of the settlement of 

the ground in Case 1 and Case 4. The settlement of the ground increased from 3seconds 

due to the cyclic shaking. The density of the ground increase by the settlement. The results 

indicated that the negative dilatancy occurred by the cyclic shear deformation in the 

 
Table 3.3 Absolute maximum of deflection ratio 

 0-180 deg. 90-270 deg. 45-225 deg. 135-315 deg. 
Case 1 0.49% 0.40% 0.71% 0.86% 
Case 4 1.01% 0.99% 2.44% 2.69% 
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ground. The density of the ground increased due to the dilatancy and the shear stiffness 

of the ground increased. After the shaking, the settlement of the ground in Case 1 and 

Case 4 were 21.3 and 46.6 mm, respectably. In comparison with the settlement of the 

ground in Case 4, that in Case 1 was small since the ground deformation was restricted 

due to the side wall of the rigid box.  

 

3.4 Influence of Pipe Thickness on Bending Strain 
 

     Figure 3.8 shows the shear strain in laminar box for Case 4-6 and Case 7-9. The 

shear deformation as shown in Figure 3.9 is the positive shear deformation. From Figure 

3.8(a), after the amplitude of the shear strain of the laminar box increased from 3 sec., the 

 

(a) Rigid Box 

 

(b) Laminar box 
Figure 3.6 Acceleration response of ground 

 

Figure 3.7 Time history of settlement of ground 
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amplitude reached at approximately 3%. This was caused by the phase difference between 

the ground over and under the pipe as shown in Figure 3.6. After the amplitude of the 

shear strain reached at the peak, the amplitude decreased due to the increment of the shear 

stiffness of the ground. As shown in Figure 3.9(b), the maximum amplitude was 

approximately 2%. In comparison with the maximum amplitude in Case 4-6, the 

maximum amplitude was small. This indicated that the shear deformation of the ground 

was controlled by the concrete block. 

     Figure 3.10 shows the bending strain distribution in Case 1-3, Case4-6 and Case 

7-9. Figure 3.10(a) shows the bending strain in Case 1-3 at 3.714 seconds when the 

deflection of the pipe in 135-315 degrees direction. Figure 3.10(b) shows the bending 

strain in Case 4-6 at 3.860 seconds when the shear strain of the laminar box was 3% and 

 

 

(a) Case 4-6 

 
(b) Case 7-9 

Figure 3.8 Time history of shear strain of box 

 

Figure 3.9 Positive shear deformation  
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Figure 3.10(c) shows the bending strain in Case 7-9 at 3.846 seconds when the shear 

strain was 2.0 %. The bending strain was defined in Chapter 2. A tensile strain outer 

circumferential strain is positive. Since the measured strain increased relative to the 

direction from neutral axis, the bending strain of the steel pipe and the PVC pipe were 

multiplied by the ratio the thickness of the steel pipe and the PVC pipe to the HDPE pipe, 

respectively. 

      The influence of the thickness of the pipe on the bending strain distribution was 

small in spite of the boundary condition and the base material. As shown in Figure 

3.10(a), the peak position and the value of the tensile and compressive strain in all pipes 

were corresponding. From Figure 3.10(b), the tensile and compressive bending strain of 

all pipes were large at 135 and 315 deg. and 45 and 225 deg., respectively. The bending 

strain distribution of all pipes for using the concrete block as the base material was also 

corresponding.  

         

(a) Case 1-3                        (b) Case 4-6 

 

(c) Case 7-9 
Figure 3.10 Bending strain distributions 
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     When the underground structure was laid near the buried pipe, the deformation of 

the pipe was controlled. For the rigid box, the bending strain was generated hardly at 225 

deg. as shown in Figure 3.10(a) although the compressive bending strain for the laminar 

box was large. The results were caused by the difference between the condition of the 

rigid box and the laminar box. The ground deformation is restricted due to the side wall 

of the rigid box. 

     When the stiffness of the base material was difference largely from the stiffness of 

the backfill material, the pipe was deformed at the boundary between the base material 

and the backfill material. In comparison with the bending strain distribution in Case 4-6, 

the bending strain from 135 to 225 degrees in Case 7-9 was approximately zero since the 

deformation of the pipe was controlled through the rigid concrete block. In comparison 

with the bending strain in Case 7-9, the compressive bending strain was large at 270 

degrees. This result indicated that the stress concentration was generated due to the 

stiffness difference between the base and the back material. 

 

 

3.5 Influence of Pipe Thickness on Axial Stress 
 

     Figure 3.11 shows the axial stress distribution in Case 1-3, Case4-6 and Case 7-9. 

The axial stress distribution shows at the same time as the bending strain distribution. The 

axial stress was defined in Chapter 2. A tensile stress is positive. The axial stress 

distribution in Case 1-3 was large and non-uniform according to the thickness of the pipe 

as shown in Figure 3.11(a). The axial stress distribution in Case 4-6 and Case 7-9 

exhibited the similar tendency as shown in Figure 3.11(b) and Figure 3.11(c). These 

results indicated that the influence of the thickness of the pipe on the axial stress 

distribution was large in spite of the boundary condition and the base material condition. 

In addition, the axial stress was generated from 90 deg. to 270 deg. which the concrete 

block was set as shown in Figure 3.11(c) although the bending strain was hardly 

generated at the range as shown in Figure 3.10(c).  

     Figure 3.12 shows the time history of the absolute maximum axial stress in Case 



Dynamic Behavior for Flexible Pipe Having Different Thickness and  
Equivalent Bending Ring Stiffness                                    55 

 
 

4-6 in order to evaluate the magnitude of the axial stress in each case. The absolute 

maximum axial stress increased as the amplitude of the shear strain of the laminar box 

increased. The peak of the absolute maximum axial stress in Case 4, Case 5 and Case 6 

were 1.15, 0.24 and 0.14 N/mm2, respectively. The peak of the absolute maximum axial 
 

         

(a) Case 1-3                         (b) Case 4-6 
 

 

(c) Case 7-9 
Figure 3.11 Axial stress distributions 

 

 
Figure 3.12 Time history of maximum absolute of axial stress 
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stress in Case 4 was about 8 times the peak in Case 6. 

Figure 3.13 shows the relationships between the shear strain of the laminar box 

and the absolute maximum axial stress. Broken lines indicate linear approximation line 

of relationships. The absolute maximum axial stress to the shear strain had the linearity 

since the coefficient determination in Case 4, Case 5 and Case 6 were 0.94, 0.89 and 0.94, 

respectively. The slope of the absolute maximum axial stress to the shear strain in Case 4, 

Case 5 and Case 6 were 0.215, 0.023 and 0.018, respectively. The increment rate of the 

absolute maximum axial stress to the shear strain in Case 4 was approximately 10 times 

that in Case 5 and 12 times that in Case 6. As these results, it is founded that the absolute 

maximum axial stress increased according to the increment of the shear strain of the 

laminar box.  

 

  

3.6 Conclusions 
 

In this chapter, shaking table tests using these pipes were conducted in order to 

verify the influence of the thickness of pipe, a condition of test pit and bedding material 

on the dynamic behavior of pipes due to a shear deformation of a ground. The following 

findings were obtained through the test. 

 

1. The pipe was deformed obliquely by the difference between the displacement of the 

ground over and under the buried pipe during the cyclic shear deformation in the 

 

Figure 3.13 Relationships between shear strain and maximum absolute of axial stress 
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ground. When the underground structure was laid near the buried pipe, the 

deformation of the pipe was controlled. 
2. The influence of the thickness of the pipe on the bending strain distribution was small 

in spite of the boundary condition and the base material.  
3. When the stiffness of the base material was difference largely from the stiffness of 

the backfill material, the pipe was deformed at the boundary between the base 

material and the backfill material. 
4. The influence of the thickness of the pipe on the axial stress distribution was large in 

spite of the boundary condition and the base material condition. In addition, the 

absolute maximum axial stress increased according to the increment of the shear 

strain of the laminar box. 
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Chapter 4 
 
Cross Section Behavior for Pipe Rehabilitation during 
Earthquake 
 
 
4.1 Introduction 
 

For a pipe rehabilitation which an aging outer pipe is repair inside the pipe, the 

aging outer pipe is permanently remained. In design standard (MAFF, 2009) for pipeline 

in Japan, the design of the pipe rehabilitation is not described. In the previous study, the 

influence of the damage of the outer pipe on the static behavior of the inner pipe was 

cleared. Sawada et al. (2014) and Ono et al. (2015) indicated that the strain concentration 

occurs at the top and the bottom of the outer pipe due to the point contact of the edge of 

the outer pipe.  

The cross section behavior for pipe rehabilitation during earthquake was not 

cleared although the dynamic behavior of the buried pipe was investigated. Kawabata et 

al. (2005) verified the floating mechanism of the buried rigid pipe due to cyclic shear 

deformation of the ground using DEM analysis. Suehiro et al. (2003) conducted a shaking 

table test and DEM analysis in order to verify the floating mechanism of the buried rigid 

pipe in liquefied ground. A cross section force acting on a shield tunnel was calculated 

from a result of FEM analysis during earthquake (JSCE, Kansai branch, 2001).   



 
Cross Section Behavior for Pipe Rehabilitation during Earthquake            61 

 
 

In this chapter, in order to clarify the influence of a damage of the outer pipe on the 

dynamic behavior of the inner pipe, cyclic shear test using a lamina box was conducted 

under a different damage of outer pipes and a different density of backfill material.  

 
 
4.2 Outline of Cyclic Shear Test 
 

4.2.1 Test Equipment 

     The laminar box was made of aluminum and has a length of 700 mm, a width of 

300 mm and a depth of 550 mm as shown in Figure 4.1. The laminar box consisted of 

ten flames. After each flame was horizontally displaced, a rubber sheet was set at both 

side wall in order to smoothen a gap between each flame. The top of the laminar box was 

fixed as a horizontal displacement distribution of the frame increased commensurately to 

a depth of the laminar box. The bottom of the laminar box was displaced horizontally by 

a motor.  

 

4.2.2 Model Pipe 

     A hard polyvinyl chloride pipe (abbr. as VP) pipe, a thin polyvinyl (abbr. as VU) 

pipe, an aluminum (abbr. as AL) pipe were used as an inner pipe. Inner pipes has a length 

of 150 mm. Dummy pipes were set on both end of model pipes. Table 4.1 shows property 

of pipes. 

 

Figure 4.1 Schematic layouts of experiment 
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     Aluminum segments were used as an outer pipe as shown in Figure 4.2. The outer 

pipes were divided into 2, 4, 8 and 16 segments in order to simulate an aging damage. It 

was assumed that the number of segment increased according to the development of the 

damage of outer pipes. The segments had a thickness of 10 mm and an outer diameter of 

160 mm. The gap between the segments was 1 mm and was covered with a rubber sheet.  

 

4.2.3 Model Ground 

     Silica sand was used as a soil material for the model ground. Table 4.2 shows the 

properties of silica sand. Figure 4.3 shows a grain size accumulation curve for silica sand. 

The laminar box was backfilled with silica sand in for different relative densities of 20, 

45, 65 or 85% from the bottom of the pipe to the ground surface.  

 

4.2.4 Procedure of Model Test and Test Condition 

     A cyclic horizontal sinusoidal wave was applied to the bottom of the laminar box 

after backfilling. The center of the pipe was a height of 240 mm from the bottom of the 

Table 4.1 Properties of model pipe 

Type of pipe Thickness 
tp (mm) 

Outer diameter 
Do (mm) 

Ring Bending stiffness 
EpI/Dc

3 (kN/m2) 
VU   4.1 140.0 8.8 
VP  7.0 140.0 42.1 
AL  2.0 150.0 14.2 

 

 

Figure 4.2 Schematic dialog of segments 
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laminar box. A maximum shear strain of the laminar box was 5 % and the sinusoidal wave 

had a frequency of 2 Hz as shown in Figure 4.4. The shear deformation of the laminar 

box was repeated thirty times. Table 4.3 shows test conditions. In Series 1, the influence 

of the ring bending stiffness and the relative density of the backfill material condition on 

the behavior of the buried flexible pipes due to the cyclic shear deformation was evaluated. 

In Series 2, the influence of the shear deformation on a normal and tangential earth 

pressure acting on the AL pipe was evaluated. In Series 3, the influence of the damage of 

the outer pipe on the deflection of the inner pipe was evaluated.  

 

4.2.5 Measurements 

     Strain of pipes, deflections of pipes and the normal and tangential earth pressure 

and the lateral displacement of the bottom of the laminar box were measured. In VU  

Table 4.2 Properties of silica sand 

Density of soil particles ρs  2.63 g/cm3  
Minimum dry density   ρdmin 1.28 g/cm3  
Maximum dry density ρdmax 1.63 g/cm3  

 

 

Figure 4.3 Grain size accumulation curve for silica sand 
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Figure 4.4 Time history of shear strain of laminar box 

 

Table 4.3 Test conditions 

Series Case Inner type State of outer pipe Relative density 
Series 1 VUN-20 VU None 20 % 
 VUN-45   45 % 
 VUN-65   65 % 
 VUN-85   85 % 
 VPN-20 VP None 20 % 
 VPN-45   45 % 
 VPN-65   65 % 
 VPN-85   85 % 
Series 2 ALN-20 AL None 20 % 
 ALN-45   45 % 
 ALN-65   65 % 
 ALN-85   85 % 
Series 3 VU2-20 VU 2 cracks 20 % 
 VU2-45   45 % 
 VU2-65   65 % 
 VU2-85   85 % 
 VU4C-20   20 % 
 VU4C-45   45 % 
 VU4C-65   65 % 
 VU4C-85   85 % 
 VU4I-20  4 cracks (inclined) 20 % 
 VU4I-45   45 % 
 VU4I-65   65 % 
 VU4I-85   85 % 
 VU8-20  8 cracks 20 % 
 VU8-45   45 % 
 VU8-65   65 % 
 VU8-85   85 % 
 VU16-20  16 cracks 20 % 
 VU16-45   45 % 
 VU16-65   65 % 
 VU16-85   85 % 
 VP2-45  2 cracks 45 % 
 VP4C-45  4 cracks (cross) 45 % 
 VP4I-45  4 cracks (inclined) 45 % 
 VP8-45  8 cracks 45 % 
 VP16-45  16 cracks 45 % 
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pipe and VP pipe, 24 strain gauges were attached circumferentially to the inner surfaces 

of each pipe at intervals of 15 degrees  as show in Figure 4.5(a). In all pipes, the 

deflection of pipes were measured using a phosphor bronze that strain gauges were 

attached in both side. As a top of pipe was defined as zero degrees, the phosphor bronzes 

were set inside pipe at the direction of 0-180 (vertical), 45-225, 90-270 (horizontal) and 

135-315 degrees. The AL pipe included by-axial load cells by which the normal and 

tangential pressure at intervals of 18 deg. from the top of the pipe as shown in Figure 

4.5(b). Kawabata et al. (2003) investigated the normal and tangential earth pressure acted 

on the buried pipe in the reinforced embankment with settlement. The lateral 

displacement of the bottom of the laminar box were measured a displacement transducer. 

The shear strain of the laminar box was calculated by dividing the lateral displacement 

into the height of the laminar box. Shear deformations as shown in Figure 4.6 were 

defined as positive.  

        
     (a) Strain gauge and phosphor bronze              (b) By-axial load cell 

Figure 4.5 Installation position of measurements 
 

 

Figure 4.6 Shear deformation of laminar box 
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45°
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4.3 Buried Behavior for Flexible pipe 
 
     Figure 4.7 shows the relationship between the shear strain of the laminar box and 

the deflection of the pipe in VUN-45. The compressive deflection of the pipe in each 

direction is positive. The first cycle of the deflection of the pipe to the shear strain 

indicated a bolder line. As shown in Figure 4.7(a), the tensile deflection of 0-180 degrees 

direction and the compressive of 90-270 degrees increased as the shear strain increased 

from zero to 5%. When the shear strain decreased from 5% to zero, each deflection was 

approximately zero at the shear strain of 3%. This is caused by the plastic deformation of 

the backfill material. In each deflection, the relationship between the shear strain and the 

deflection had a hysteresis characteristic. As shown in Figure 4.7(b), the relationship had 

also the hysteresis characteristic in 45-225 and 135-315 degrees direction. The deflection 

of 0-180, 90-270, 45-225 and 135-315 degrees direction to the shear strain of 5% was 

0.50, -0.37, 1.01 and -1.07 mm. As described in Chapter 3, the oblique deflections of the 

pipe to the shear strain were larger than the horizontal and vertical deflection. Thus, the 

oblique deflection of the pipe was only discussed from here onward. 

     Figure 4.8 shows the relationship between the cyclic number and 45-225 degrees 

direction deflection of the pipe to the shear strain which reached 5%. The deflection of 

the pipe in VUN20, VUN45, VUN65 and VUN85 at the first cycle were 0.62, 1.01, 1.34 

and 1.87 mm, respectively. In general, a horizontal and vertical deflection of a buried 

flexible pipe for a dense ground is smaller than that for a loose ground since a ground 

stiffness increases according to a density of a ground. On the other hand, the oblique 

deflection of the pipe was large as the relative density of the backfill material increased. 

As the results, it was caused that the shear stress acting on the pipe for the dense ground 

was larger than that for the loose ground since the shear stiffness of the backfill material 

increased according to the relative density of the backfill material.  

     The deflection of the pipe in VUN20 increased according to the increment of the 

cycle. The deflection in VUN45 and VUN65 increased to 2 cycles and the change of the 

deflection was small. These results were caused by a negative dilatancy. The deflection 

of the pipe increased since the relative density increased due to the cyclic shear  
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(a) 0-180 and 90-270 deg. direction 

 
(b) 45-225 and 135-315 deg. direction  

Figure 4.7 Relationships between shear strain and deflection of pipe in VUN45 
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deformation of the laminar box. On the other hand, the deflection of the pipe in VUN85 

at the second cycles was smaller than that at the first cycle due to the positive dilatancy. 

In comparison with the deflection of the VU pipe in each relative density of the backfill 

material, that of the VP pipe was small due to the difference of the ring bending stiffness 

as described in Chapter 2. 

     Figure 4.9(a) shows the inner circumferential strain distribution in VUN-20, VUN-

45, VUN-65 and VUN-85 to the shear strain which reached 5 % at the first cycle.  

Figure 4.9(b) shows the inner circumferential strain distribution in VPN-20, VPN-45, 

 

Figure 4.8 Relationships between cycle number and deflection of 45-225 degrees direction 

 

  
(a) VU pipe                                (b) VP pipe 

Figure 4.9 Inner circumferential strain distribution  
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VPN-65 and VPN-85. A tensile strain is positive. In each case, the compressive strain 

increased from 90 to 180 degrees and from 270 to 360 degrees due to the shear 

deformation of the laminar box. In addition, the tensile strain increased from 0 to 90 

degrees and from 180 to 270 degrees. These results were corresponding to the oblique 

deflection of the pipe as shown in Figure 4.7(b). The compressive and tensile strain 

increased as the relative density of the backfill material. As shown in Figure 4.9(b), the 

compressive and tensile strain in the VP pipe was smaller than that in the VU pipe in spite 

of the relative density of the backfill material since the ring bending stiffness of the VP 

pipe was large in comparison with that in the VU pipe.  

     Figure 4.10 shows the normal and tangential earth pressure distribution in ALN-

20, ALN-45, ALN-65 and ALN-85 to the shear strain which reached 5 % at the first cycle. 

For the normal earth pressure, the compressive pressure is positive. For the tangential 

earth pressure, the clockwise pressure is positive. In each case, the normal earth pressure 

was generated from 60 to 210 degrees and from 240 to 360 degrees. The normal earth 

pressure increased according to the relative density of the backfill material. On the other 

hand, the normal earth pressure was hardly generated at the range of other. In each case, 

the negative tangential earth pressure was generated from 45 to 120 degrees and from 240 

to 300 degrees. The positive tangential earth pressure was generated from 120 to 210 

 

(a) Normal earth pressure                  (b) Tangential earth pressure 

Figure 4.10 Normal and tangential earth pressure distribution 
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degrees and from 300 to 30 degrees. In comparison with the tangential earth pressure 

distribution, the normal earth pressure distribution was large. As the results, it was found 

that the normal earth pressure had a dominant influence on the deformation of the pipe 

during earthquake.  

 

 

4.4 Influence of Damage Level of Outer Pipe 
 

Figure 4.11 shows the relationship between the shear strain of the laminar box at 

the first cycle and the 45-225 deg. direction deflection of the pipe in VUN-45, VU2-45, 

VU4C-45, VU4I-45, VU8-45 and VU16-45. The slope of the deflection to the shear strain 

in VU2-45, VU4C-45, VU4I-45, VU8-45 and VU16-45 were smaller than that in VUN-

45. The deflection of the pipe in VUN45 to the shear strain which reached 5 %was the 

smallest in all case. These results indicated that the deflection of the inner pipe was 

controlled with the outer pipe in spite of the damage level of the outer pipe.  

The influence of the damage level of the outer pipe on the deflection of the inner 

pipe was categorized into two broad types. Table 4.5 shows the 45-225 deg. direction 

deflection of the pipe to the shear strain which reached 5 % and Table 4.6 shows the 

 
Figure 4.11 Relationships between shear strain and 45-225 deg. direction deflection of pipe 
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deflection rate of the pipe with the outer pipe to the pipe without the outer pipe in each 

relative density of the backfill material. As shown in Table 4.6, the deflection ratio for 

the outer pipe without inclined cracks (2 cracks and 4 cross cracks) was approximately 

0.3 ~ 0.4 % for using the VU pipe as the inner pipe. On the other hand, the deflection 

ratio for the outer pipe with incline (4 inclined cracks, 8 cracks, 16 cracks) was 

approximately 0.8 ~ 1.0. From the results, it is found that the outer pipe without inclined 

cracks restrain that the earth pressure as show in Figure 4.10 from acting on the inner 

pipe. When the outer pipe had the inclined cracks, the restraint efficacy to the deflection 

of the inner pipe was small. In the case of using the VP pipe as the inner pipe, the 

deflection rate was obtain a similar results to that in the VU pipe as the inner pipe. 

However, the deflection ratio of VP2-45 to VPN-45 was 0. It was caused that the 

deflection of the VPN-45 was extremely small as show in Table 4.4.   

     Figure 4.12 shows the inner circumferential strain distribution of the pipe in VUN-

45, VU2-45, VU4C-45, VU4I-45, VU8-45 and VU16-45 pipe to the shear strain which 

reached 5 % at the first cycle. A tensile strain is positive. The strain distribution in VU2-

45 and in VU4C-45 were smaller than that in VUN-45. On the other hand, the strain 

distribution in VU4I-45 was similar to that in VUN-45 except 135 deg. at which the outer 

pipe had the crack. The tensile strain was concentrated at the crack. Sawada et al (2014) 

and Ono et al. (2015) indicated that the concentrated force acted on the points of cracks 

due to the contact with the edge of the damaged pipe from the results of vertical and 

eccentric loading tests. The distribution in VU8-45 and VU16-45 was almost similar to 

that in VUN-45. From these results, when the damage level of the outer pipe was incipient, 

the strain of the inner pipe due to earthquake was restricted. In addition, for the outer pipe 

with 4 inclined, the concentrated strain was generated at the crack. As the damage level 

of the outer pipe was developed, the influence of the outer pipe in the strain of the inner 

pipe was almost negligible. 
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Table 4.5 45-225 deg. direction deflection of inner pipe to shear strain which reached 5 % 
VU pipe Relative density of backfill material 
State of outer pipe 20 % 45 % 65 % 85 % 
None 0.62 mm 1.01 mm 1.34 mm 1.87 mm 
2 cracks  0.23 mm 0.34 mm 0.39 mm 0.40 mm 
4 cracks  0.22 mm 0.34 mm 0.49 mm 0.64 mm 
4 inclined cracks 0.56 mm 0.85 mm 1.12 mm 1.20 mm 
8 cracks 0.57 mm 0.84 mm 1.06 mm 1.19 mm 
16 cracks 0.62 mm 0.90 mm 1.25 mm 1.39 mm 
VU pipe Relative density of backfill material 
State of outer pipe 20 % 45 % 65 % 85 % 
None  0.21 mm   
2 cracks   0.00 mm   
4 cracks   0.10 mm   
4 inclined cracks  0.22 mm   
8 cracks  0.23 mm   
16 cracks  0.17 mm   

 

Table 4.6 Deflection ratio of pipe with the outer pipe to the pipe without the outer pipe 
VP pipe Relative density of backfill material 
State of outer pipe 20 % 45 % 65 % 85 % 
None 1.00 1.00 1.00 1.00 
2 cracks  0.38 0.34 0.29 0.21 
4 cracks  0.36 0.33 0.36 0.34 
4 inclined cracks 0.92 0.83 0.79 0.63 
8 cracks 1.01 0.89 0.93 0.74 
16 cracks 0.91 0.85 0.83 0.64 
VP pipe Relative density of backfill material 
State of outer pipe 20 % 45 % 65 % 85 % 
None  1.00   
2 cracks   0.00   
4 cracks   0.48   
4 inclined cracks  1.03   
8 cracks  1.08   
16 cracks  0.83   
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(a) VU2-45                              (b) VU4C-45 

 
(c) VU4I-45                              (d) VU8-45 

 

(d) VU16-45 
Figure 4.12 Inner circumferential strain distribution 
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4.5 Conclusions 
 

In this chapter, in order to clarify the influence of a damage of the outer pipe on the 

dynamic behavior of the inner pipe, cyclic shear test using a lamina box was a conducted 

under a different damage of outer pipes and a different density of backfill material. The 

following findings were obtained through the test. 

1. The relationship between the shear strain of the laminar box and the deflection of the 

flexible pipe had a hysteresis characteristic. The oblique deflections of the pipe to the 

shear strain were larger than the horizontal and vertical deflection. 

2. The deflection of the flexible pipe for the loose ground increased according to the 

increment of the cycle due to the negative dilatancy. On the other hand, the deflection 

for the dense ground at the second cycles was smaller than that at the first cycle due 

to the positive dilatancy.  

3. The compressive strain increased from 90 to 180 deg. and from 270 to 360 deg. due 

to the shear deformation of the laminar box. In addition, the tensile strain increased 

from 0 to 90 deg. and from 180 to 270 deg. 
4. The normal earth pressure on the flexible pipe was generated from 60 to 210 deg. and 

from 240 to 360 deg. The normal earth pressure increased according to the relative 

density of the backfill material. The negative tangential earth pressure was generated 

from 45 to 120 deg. and from 240 to 300 deg. and the positive tangential earth pressure 

was generated from 120 to 210 deg. and from 300 to 30 deg.  
5. The deflection of the inner pipe was controlled with the outer pipe in spite of the 

damage level of the outer pipe. The outer pipe without inclined cracks restrain that 

the earth pressure from acting on the inner pipe. When the outer pipe had the inclined 

cracks, the restraint efficacy to the deflection of the inner pipe was small. 
6. The strain of the inner pipe due to earthquake was restricted. In addition, for the outer 

pipe with 4 inclined, the concentrated strain was generated at the crack. As the damage 

level of the outer pipe was developed, the influence of the outer pipe in the strain of 

the inner pipe was almost negligible. 
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Chapter 5 
 
DEM Analyses on Cross-Section Behavior of Pipe 
Rehabilitation 
 
 
5.1 Introduction 
 

     In chapter 4, the deflection of the inner pipe was controlled with the outer pipe in 

spite of the damage level of the outer pipe. The outer pipe without inclined cracks restrain 

that the earth pressure from acting on the inner pipe. When the outer pipe had the inclined 

cracks, the restraint efficacy to the deflection of the inner pipe was small. In addition, for 

the outer pipe with 4 inclined, the concentrated strain was generated at the crack. As the 

damage level of the outer pipe was developed, the influence of the outer pipe in the strain 

of the inner pipe was almost negligible.  

     In this chapter, two dimensional discrete element method (DEM) analyses were 

conducted in order to verify the deformation mechanism of the inner pipe with and 

without the outer pipe during earthquake and formulate the oblique deflection of the inner 

pipe to shear strain of the ground. In DEM analyses, soil and a structure are regarded as 

assembly of elements and the mechanical behavior is simulated by solving the equations 

of motions for each element (Cundall, 1971).  
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5.2 Algorithm of DEM 
 
5.2.1 Equation of Motion 

     In an equation of motion of elements, elements are regarded as a rigid body, an 

elastic and an inelastic characteristic of elements are expressed as a spring coefficient and 

a damping coefficient, respectively. Where an equation of motion of an element i is 

defined from the following equation.  
0i i im u C u F     (5.1) 

0i i iI D M     (5.2) 

where mi is the element mass, u is the displacement vector of an element,  is the 

rotational displacement of an element, Ci, Di are the damping constants, Ii is the inertia 

moment of an element, Fi is the resultant force acted on an element and Mi is the resultant 

moment acted on an element. In addition, /x dx dt and 2 2/x d x dt . 

 

5.2.2 Contact Detection 

When the following inequality holds, two elements, i and j are contacted. 

i j ijr r R          (5.3) 

where ri is the radius of an element i, rj is the radius of an element j and Rij is the center 

distance between two elements, i and j. When two elements were contacted as shown in 

Figure 5.1, a relative displacement increment from t- t  to t is given as  
( ) cos ( ) sinn i j ij i j iju u u v v    (5.4) 

 ( ) sin ( ) cos ( )s i j ij i j ij i i j ju u u v v r r  (5.5) 

where, nu  is the normal relative displacement between two elements i and j, su  is 

the tangential relative displacement between two elements i and j, iu  is the x direction 

displacement increment of an element i, ju  is the x direction displacement increment 

of an element j, iv  is the y direction displacement increment of an element i, jv  is 

the y direction displacement increment of an element j, i  is the rotational increment 

of an element i, j  is the x direction displacement increment of an element i, ij  is 

the angle making a straight line connecting a center of element i with a center of element 

j and x axial.  
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5.2.3 Force between Two Elements 

A force between two elements is divided into the normal compressive force fn and 

the tangential shear force fs. Figure 5.2 shows a relationship between two elements. Kn is 
the normal spring coefficient, Ks is the tangential spring coefficient, n  is the normal 

damping coefficient, s  is the tangential damping coefficient and  is the frictional 

coefficient.  

1) Normal direction 
Since in the time increment t , the normal elastic force ne  is proportionate to 

the relative displacement u  and the normal damping force nd  is proportionate to a 

relative displacement velocity / tu , the following equation is given. 

n n ne K u          (5.6) 

/n n nd u t            (5.7) 

Thus, the normal elastic force n t
e and the normal damping force n t

d  at a time t are 

expressed as  

n n nt t t
e e e            (5.8) 

n nt
e d           (5.9) 

 

Figure 5.1 Contact detection 
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where, since a normal tensile force is 0,  
0 0n n nt t t

e e d      (5.10) 

From the above, the normal compressive force n t
f  was given as  

n n nt t t
f e d     (5.11) 

2) Tangential direction      

     Since a tangential shear force is given as the following equation as well as a normal 

compressive force. 

s s se K u          (5.12) 

/s s sd u t            (5.13) 

Thus, the tangential elastic force s t
e and the tangential damping force s t

d  at a time t 

are expressed as  

s s st t t
e e e            (5.14) 

s st
e d            (5.15) 

where since a slip is generated between two elements as upper value multiplied by a 

normal compressive force to friction coefficient,  
0 0n s st t t

e e d    (5.16) 

s n s n st t t t t
e e e e SIGN e  and 0s t

d      (5.17) 

From the above, a normal compressive force n t
f  was given as  

s s st t t
f e d     (5.18) 

 

Figure 5.2 Relationship between two elements 
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5.3 Outline of DEM Analyses 
 
5.3.1 Model pipe 

     A model inner pipe consisted of a truss structure of a polygonal element of a 

tricontadigon as shown in Figure 5.3. Nakase et al. (2002) proposed that any structures 

are modeled using a circle element and an edge element. The VU pipe, the VP pipe and 

the AL pipe used in the test were modeled. In the truss structure, 64 elements were set on 

the double circle and each element was connected by the spring.  

The normal spring coefficient of the model inner pipe was determined by a 

relationship between the normal spring coefficient and the elastic modulus. In DEM 

analyses, two point loading tests were conducted under various conditions including a 

center diameter of a model inner pipe dc, a normal spring coefficient Kn, a distance 

between two elements of an outer circumferential of a polygonal element l, a normal 

distance tm between an inner and an outer circumferential of a polygonal element as shown 

in Figure 5.4. The vertical deflection and the linear load obtained from these results was 

substituted in the equation (2.1) in Chapter 2. Thus, the relationship between 
33

2
p p c

m c

E t d
lt D

and Kn as shown in Figure 5.5 was obtained. A broken line indicates a linear 

approximation line of relationships and the following equation is obtained by the linear 

 

Figure 5.3 Model inner pipe 
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approximation. 

33

20.362 p p c
n

m c

E t dK
lt D

     (5.19) 

where pE  is an elastic modulus per unit depth (N/mm2/mm). In addition, when a center 

diameter of a test pipe was equivalent to that of a model pipe, equation (5.19) is expressed 

as  
3

20.362 p
n p

m

t
K E

lt
    (5.20) 

From the equation (5.20), the normal spring coefficient was calculated. Table 5.1 shows 

the DEM parameters for model pipes. The outer diameter of the model pipe was 

equivalent to that of the test pipe and the element density of the model pipe was also 

equivalent to that of the test pipe. The thickness of the VU model pipe and the VP model 

pipe were equivalent to that of the VU test pipe and the VP test pipe. Since the calculation 

about the model pipe having the thickness of 2.0 mm diverged, the thickness of the AL 

 
Figure 5.4 Definition of l and tm 
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model pipe was 7.0 mm and the normal spring coefficient was determined as the ring 

bending stiffness of the AL model pipe was equivalent to that of the AL test pipe. The 

tangential spring coefficient was one-forty of the normal spring coefficient. The surface 

friction coefficient was determined by the result for the direct shear tests for silica sand 

and the vinyl chloride plate.   

     Figure 5.6 shows the model outer pipe. The model outer pipe consisted of a truss 

structure of a polygonal element as well as the model inner pipe. Each segment was 

connected by the spring. An edge element which was set on the outer circumferential 

prevent from a backfill material to penetrating the gap between segments. The normal 

spring coefficient was a value sufficient to not deform. The tangential spring coefficient 

and the normal and tangential damping constant was determined in the same manner as 

the model inner pipe. The surface friction coefficient between each segment was zero. 

 

5.3.2 Model Backfill Material      

     The scale in DEM was equivalent to the scale in cyclic shear test as show in Figure 

5.7. The model backfill material consisted a particle which had the average diameter of 

2.0 mm and the uniformity coefficient of 1.52 since the calculation for the average 

diameter of silica sand used the cyclic shear test diverged. A rolling friction proposed by 

Sakaguchi et al. (1993) was used in order to express a shear strength had an actual soil 

material. The rolling friction Mr is expressed as  

tanr n rM R F     (5.21) 

Table 5.1 Parameters for model inner pipe 

Type of pipe VU VP AL 
Element radius (mm) 4.0 4.0 4.0 
Outer diameter (mm) 140 140 150 
Thickness of pipe (mm) 4.1 7.0 7.0 
Element density (kg/m3) 12,520 20,920 12,206 
Normal spring coefficient (×109N/m) 1.70 1.27 0.49 
Normal damping constant 0.5 0.5 0.5 
Tangential spring coefficient (×109N/m) 4.25 3.18 1.24 
Tangential damping constant 0.1 0.1 0.1 
Surface friction coefficient 0.54 0.54 0.54 
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where R is the radius of an element, Fn is the normal force at each contact and r  is the 

rolling friction angle. 

     The parameters for model backfill material for relative density of 20, 45 and 65 % 

was determined through a trial and error process as the relationship between the shear 

strain of the laminar box and the 45-225 deg. deflection of the flexible pipe obtained from 

the results for cyclic shear simulation by DEM were fitted to that from the result for cyclic 

shear test at first cycle from 0 % to 5 %. The variables were the element density, the 

friction angel at each element and the rolling friction angle. The element density was 

determined as the density of the model backfill material was equivalent to that of silica 

 
Figure 5.6 Schematic dialog of model outer pipe 

 
Figure 5.7 Schematic view of analysis 
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sand for the test. Table 5.2 shows the parameters for model backfill material. The 

procedure of the cyclic shear simulation was the same manner for the test. 

 

 

5.3 Reproducibility of Test Resulting  
 
     Figure 5.8(a) shows the relationship between the shear strain of the laminar box 

and the 45-225 deg. deflection of the inner pipe in VUN-20, VUN-45 and VUN-65. 

Figure 5.8(b) shows the relationship in VUN-45, ALN-45 and VPN-45. For each relative 

density, the deflection of the pipe to the shear strain in analysis result was corresponding 

to that in the test result as shown in Figure 5.8(a). For each ring bending stiffness, the 

analysis result was corresponding to the test result as show in Figure 5.8(b). These results 

indicated that the deflection of the pipe to the shear strain in the laminar box was 

simulated for any relative density of the backfill material and any ring bending stiffness. 

     Figure 5.9 shows the relationship between the shear strain of the laminar box and  

the 45-225 degrees deflection of the inner pipe in VU2-45, VU4C-45, VU4I-45, VU8-45 

and VU16-45. In VU2-45, VU4C-45 and VU4I-45, the deflection of the inner pipe to the 

shear strain in the analysis result was corresponding to that in the test result. In VU8-45 

and VU16-45, although the deflection to the shear strain from zero to -5% in the analysis 

result was larger than that in the test result, the deflection to the other shear strain in the 

analysis result was corresponding to that in the test result. From these results, it was 

confirmed that the influence of the damage level of the outer pipe on the oblique 

Table 5.2 Parameters for model backfill material 

Relative density 20 % 40 % 65 % 85 % 
Average diameter (mm) 2.0 2.0 2.0 2.0 
Coefficient of uniformity 1.52 1.52 1.52 1.52 
Element density (kg/m3) 1,643 1,742 1,830 1928 
Normal spring coefficient (×109N/m) 1.00 1.00 1.00 1.00 
Normal damping constant 0.2 0.2 0.2 0.2 
Tangential spring coefficient (×109N/m) 8.00 8.00 8.00 8.00 
Tangential damping constant 0.2 0.2 0.2 0.2 
Friction angel at each element (deg.) 20.0 26.1 29.9 36.8 
Rolling friction angel (deg.) 20.0 26.1 29.9 36.8 
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deflection of the inner pipe was simulated by DEM analyses. 

 

 

 

 

(a) VUN-20, VUN-45 and VUN-65 

 

(b) VUN-45, ALN-45 and VPN-45 

Figure 5.8 Relationships between shear strain and 45-225 deg. deflection of flexible pipe 
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(a) VU2-45                               (b) VU4C-45 

 

(c) VU4I-45                             (d) VU8-45  

 

(e) VU16-45 

Figure 5.9 Relationship between shear strain and 45-225 deg. deflection of inner pipe 
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     Figure 5.10 shows the earth pressure distribution on the pipe when the shear strain 

of the side boundary reached at 5% in ALN-45. In DEM, the normal and tangential earth 

pressure was calculated by dividing the normal and tangential force into which the force 

acted on the edge element between each element was resolved by the length of the edge 

element of the model pipe, respectively. The normal and tangential earth pressure 

distribution in the analysis result was similar to that in the test result although the 

distribution in the analysis had more variable than that in the test result. It was assumed 

that the bias in the force transmitting in the backfill material was generated since the 

average diameter of the model backfill material in DEM was larger than that of silica sand 

used in the test.  

 

   

(a) Normal earth pressure             (b) Tangential earth pressure 

Figure 5.10 Earth pressure distribution in ALN-45 
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5.4 Deformation Mechanism of Inner pipe 
 

Figure 5.11 shows the contact force distribution when the shear strain of the side 

boundary reached at 5% in VUN-45. A broken line indicates the installation position of 

the phosphor bronze in the cyclic shear test. The contact force was developed from the 

upper left boundary to the lower right boundary. Thus, when the model ground deformed 

into a parallelogram due to the shear deformation of the side boundary, the compressive 

force was acted on the shorter diagonal. The contact force which was more than 80 N was 

acted on the pipe from 90 to 135 degrees and from 270 to 315 degrees. These range was 

corresponding to the range to which the tensile inner circumferential strain was 

concentrated as shown in Figure 4.9(a) in chapter 4. 

Figure 5.12 shows the deflection of the pipe to each direction when the shear strain 

reached at 5% in VUN-45. A tensile deflection is positive. 33.75-213.75 degrees 

deflection was large than 45-225 degrees deflection of the pipe which was measured in 

the test. 123.75-303.75 degrees deflection was smaller than 135-315 degrees measured in 

the test.  

 
Figure 5.11 Contact force distribution in VUN-45 
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The deformation mechanism of the inner pipe judging from above results are shown 

in Figure 5.13. When the shear deformation was generated under the ground due to 

earthquake, the compressive normal earth pressure was acted on the pipe from 90 to 135 

degrees and from 270 to 315 degrees, and the tangential earth pressure was acted along 

the pipe from the range of the normal earth pressure. As the results, the oblique deflection 

of the pipe was developed.  

 

Figure 5.12 Deflection distribution in VUN-45 

 

Figure 5.13 Deformation mechanism of inner pipe due to shear deformation 
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5.5 Formulation for Oblique Deflection of Inner Pipe 
 
     In order to formulate the oblique deflection of the inner pipe due to the shear 

deformation, a deformation modulus of the backfill material was determined by the 

consolidated triaxial compression test under the change of confining pressure in each 

relative density of the silica sand. As shown in Figure 5.14, the deformation modulus E50 

is given as  

50
50

/ 2nqE         (5.22) 

where qn is the maximum deviator stress, 50  is the axial strain to half maximum deviator 

stress. Figure 5.15 shows the relationship between the mean stress and the deformation 

modulus. A solid line shows a linear approximation line. The deformation modulus in 

each relative density was defined as the value of the intercept E50-0, since the overburden 

pressures acted on the top of the pipe in Dr = 20, 45, 65 and 85 % were 2.1, 2.3, 2.4 and 

2.5 kPa, respectively. Also, E50-0 in Dr = 20, 45, 65 and 85 % were 5.46, 9.28, 14.7 and 

20.7 MPa, respectively.  

 

 

 
Figure 5.14 Relationship axial strain and deviator stress 
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     Figure 5.16 shows the relationship between 3
50 / ( / )p cE E I D and δ / Dc, where δ is 

the 45-225 deg. deflection of the pipe. The oblique deflection rate of the inner pipe 

increased in DEM analyses. Total twenty cases under various conditions including four 

types of the relative density of the model backfill material (Dr=20, 45, 65 and 85%) and 

five types of the different ring bending ( 3/p cE I D =2.89, 8.8, 14.2, 42.1, 130 kN/m2). 

When the pipe was rigid, the deflection was zero to any shear strain. As the value of 
3

50 / ( / )p cE E I D increased, the deflection increased. It was assumed that the deflection 

rate converged at an asymptotic value. 

     The asymptotic value was determined by a geometric calculation. It was 

hypothesized that a shear deformation of a backfill material and a flexible pipe is shown 

is Figure 5.17. In this deformation, γ is a shear strain (=tanα’), the oblique deflection of 

the pipe is Δ (= 2Δ’), the center of the ellipse is the origin and the following equation is 

given.   
2 2

2 2 1x y
a b

        (5.23) 

In addition, since the absolute of the compressive deflection in the direction of the 45-

225 degrees were approximately equal to the absolute of the tensile deflection in the 

direction of the 135-315 degrees at the first cycle as shown in Figure 4.7(b), the following 

equation is assumed. 

 

Figure 5.15 Relationships between mean stress and deformation modulus  

0 20 40 60 80 100
0

5

10

15

20

25

30

 

 

D
ef

or
m

at
io

n 
m

od
ul

us
 E

50
(M

N
/m

2 )

Mean stress (kPa)

Dr=20 % Dr=45 %
Dr=65 % Dr=85 %



94                                                            Chapter 5 
 

 

a b D          (5.24) 

The ellipse equations at a point P is expressed as   

2 2

2 2

1 90 1 90cos sin
2 2 2 2 1

D D

a b
   (5.25) 

The equation (5.24) is rearrangement as  

 
Figure 5.16 Relationships between 3

50 / ( / )p cE E I D and δ / Dc for analyses results 

 

 

Figure 5.17 Geometric deformation of a flexible pipe due to a shear deformation  
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,
2 2
D Da b     (5.26) 

The equation (5.26) is substituted in the equation (5.25) and the following equation is 

obtained. 
2 2 2 2

2 2 2 2 2 2

4 4 4 4
D D D DA D B D D D  

 (5.27) 

where 
2

2 21 90 ' 1 90 'cos , sin ,
2 2 2 2 4

DA D B D A B  

The equation (5.27) is rearrangement as  

3 2 2 23 ( ) 0
4

D A B D    (5.28) 

Δ’ is obtained as the general solution of a cubic equation. From the calculation result for 

Δ’ to various D’, Δ is expressed as  

2
3

D      (5.29) 

     The relationship between 3
50 / ( / )p cE E I D and the 45-225 degrees deflection of the 

pipe was approximated by Box-Lucas model. Box-Lucas model expressed a curved line 

which passes from an origin to an asymptotic value and is basic and simple model. Box-

Lucas model is expressed as  

1 qxf x p e     (5.30) 

dE x
q p f x

dx
      (5.31) 

where the coefficient p is the asymptotic value. When the deflection to the shear strain 

from 1% to 5% was approximated by Box-Lucas model as p =Δ, coefficient q in γ =1, 2, 

3, 4 and 5% were 1.7×104, 2.6×104, 2.8×104, 2.6×104 and 2.3×104, respectively. 

When the value of coefficient q was fixed at 2.5×104, the equation (5.30) was expressed 

as 
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4

50 0
3

2.5 102 1 exp
3 /

E
D EI D

   (5.32) 

where δ is the 45-225 degrees deflection of the pipe.  

Figure 5.18 shows the relationship between 3
50 / ( / )p cE E I D  and δ/D. Solid lines 

shows this approximate curve and plots shows the analysis results. Coefficients of 

determination in γ =1, 2, 3, 4 and 5% were 0.57, 0.93, 0.97, 0.98 and 0.97, respectively. 

The approximate curved lines gave good agreement with the analysis result in spite of 

case in γ =1 % because i the pipe was hardly deformed since the shear stress in γ =1% 

acted on the pipe was extremely small. 

     The deflection of the inner pipe decreased according to the damage level or the 

outer pipe in comparison with that of the inner pipe without the outer pipe as described 

in Chapter 4. The effect of decreasing was expressed by introducing the decreasing 

coefficient Ch to the equation (5.32). Ch was multiplied by the right side of the equation 

and the following equation was obtained. 
4

50 0
3

2.5 102 1 exp
3 /h

EC
D EI D

   (5.33) 

Ch was categorized as shown in Table 5.3 on the basis of Table 4.5 obtained from the test 

results. In Compaction 1, the relative density of the backfill material was 85% and over, 

 
Figure 5.18 Relationships between 3

50 / ( / )p cE E I D and δ / Dc for approximate curve line 
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and in compaction 2, that was under 65%. 

     Figure 5.19 shows the relationship between 3
50 / ( / )p cE E I D  and δ/D for 

rehabilitated pipe. A broken line shows the approximate curved line obtained from the  

 

 
equation (5.33). The scatter plots show the values obtained from the test results. In all 

group, the test result was partially predicted by the approximated equation. From the 

result, it was found that the deflection of the rehabilitated pipe was calculated on the basis 

of the damage level of the outer pipe and the relative density of the backfill material by 

introducing the decreasing coefficient Ch.. 

 

  

Table 5.3 Categorization of decreasing coefficient 

 Compaction  Damage level of outer pipe Ch 
Group 1 Compaction 1 and 2 cracks without inclined direction 0.35 
Group 2 Compaction1 cracks with inclined direction 0.70 
Group 3 Compaction 2 0.90 
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(a) Group 1  

 

(b) Group 2  

 

(c) Group 3  

Figure 5.18 Relationship between 3
50 / ( / )p cE E I D and δ / Dc introduced Ch 
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5.6 Conclusions 
 
     In this chapter, two dimensional discrete element method (DEM) analyses were 

conducted in order to verify the deformation mechanism of the inner pipe with and 

without the outer pipe during earthquake and formulate the oblique deflection of the inner 

pipe to shear strain of the ground. From the analysis results, the following findings were 

obtained. 

1. The relationship between the normal spring coefficient and the elastic modulus had 

a linear. The pipe which had any bending ring stiffness could be modeled. 

2. The deflection of the pipe to the shear strain in the laminar box was simulated for any 

relative density of the backfill material and any ring bending stiffness.  

3. The influence of the damage level of the outer pipe on the oblique deflection of the 

inner pipe was simulated. 

4. When the shear deformation was generated under the ground due to earthquake, the 

compressive normal earth pressure was acted on the pipe from 90 deg. to 135 deg. 

and from 270 deg. to 315 deg. (45 deg. to 90 deg. and 225 deg. to 270 deg.), and the 

tangential earth pressure was acted along the pipe from the range of the normal earth 

pressure. As the results, the oblique deflection of the pipe was developed. 

5. The oblique deflection rate of the flexible pipe to 3
50 / ( / )p cE E I D  had the 

asymptotic value. The asymptotic value was determined by a geometric calculation. 

The relationship between 3
50 / ( / )p cE E I D and the 45-225 deg. deflection of the pipe 

was approximated by Box-Lucas model. In addition, the deflection of the 

rehabilitated pipe was calculated on the basis of the damage level of the outer pipe 

and the relative density of the backfill material by introducing the decreasing 

coefficient Ch..  
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Chapter 6 
 
Axial Behavior for Pipe Rehabilitation in Liquefied Ground 
 
 
6.1 Introduction 
 

It is important to clear axial behavior of pipes during earthquake as with to cross 

section behavior. In chapters 4 and 5, cross-section behavior for pipe rehabilitation during 

earthquake was discussed from the results of cyclic shear tests and DEM analyses. An 

outer pipe such as a reinforced concrete pipe has joints. As the previous study, shaking 

table test, model test using sinking-soil-box and centrifuge test were conducted to verify 

the influence of ground deformation on axial behavior of pipes or joints of pipes. From 

test results of shaking table test, Fujita et al. (2007) evaluated an allowable range of joint 

for expansion and bending on pipeline that formed with flexible joints and Tanaka et al. 

(2005) cleared that the use of ball type flexible joint has reduced significantly the vertical 

thrust on the joint that usually observed during the ground settlement after the liquefaction. 

In addition, Kitaura and Miyajima (1983) conducted shaking table test for a model pipe 

fixed at one end in liquefied ground to verify a destruction of pipes due to floating of its. 

Takada and Yamabe (1982) proposed a model test using a sinking-soil-box and measured 

stress acting on pipes and deformation of joints of pipes when ground sank. Hachiya et 

al. (2005) proposed a rational design method for buried pipelines subjected to differential 
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ground settlement on the basis of a data set from 3D centrifuge model tests. Alireza et al. 

(2014) monitoring the performance of pipe rehabilitation using acoustic emission 

technique, subjected to static and dynamic loading. Particularly, two damage mechanisms 

are investigated-delamination between outer pipe and inner pipe, and incipient failure of 

the inner pipe. Da et al. (2008) were conducted two pairs of centrifuge tests designed to 

investigate the differences in behavior of buried high-density polyethylene pipelines 

subjected to normal and strike -strip faulting. 

The influence of damaged outer pipes on inner pipes in the axial direction during 

an earthquake is unclear. In this chapter, shaking table tests were conducted at the 

National Institute for Rural Engineering in Japan to verify the dynamic behavior of the 

axial direction of the inner pipe used for the method. To model inner pipes, polyvinyl-

chloride (PVC) and polyethylene (PE) pipe, which were 3,040 mm in length and 140 mm 

in diameter, were used. To model outer pipes, different types of concrete pipes in length 

were used. 

 
 
6.2 Outline of Shaking Table Test 
 

6.2.1 Test Equipment 

     The shaking table used for the test had plane dimensions of 6 m × 4 m, with the 

maximum loading capacity of 50 tf. Its excitation system was an electro-hydraulic servo. 

The test pit (5.6 m length, 3.6 m width, and 1.3 m height) as shown in Figure 6.1, was 

installed on the shaking table. At the bottom of the test pit, a bed of crushed stone was 

included to enhance the capabilities of pouring water into the ground. 

     For the model pipe, the bending strain in the axial direction and the horizontal 

acceleration, the horizontal displacement of the pipe end, and the pore water pressure in 

the model ground were measured. Figure 6.1 shows the layout of measurements. 
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(a) Top view 

 

 

 
(b) Cross-section view 

Figure 6.1 Schematic layouts of model pipes and sensors 
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6.2.2 Model Ground 

     Kasumigaura-sand was used as a soil material for the model ground. Table 6.1 

shows the properties of Kasumigaura-sand. The unsaturated ground was adequately 

compacted to achieve the target relative density of 50%. 

 

Table 6.1 Properties of Kasumigaura-sand 

Density of soil particle ρs 2.72 g/cm3 
Maximum dry density ρdmax 1.58 g/cm3 
Minimum dry density ρdmin 1.36 g/cm3 
Maximum void ratio emax 0.99 
Minimum void ratio emin 0.72 
Relative density Dr 50% 

 

6.2.3 Model Pipe 

PVC and PE pipes were used as inner pipes. Their properties are shown in Table 

6.2. One end of the inner pipe was rigidly-connected to the test-pit wall, as shown in 

Figure 6.1. Lead shot and silica sand were inserted into the inner pipes to prevent the 

model pipe from floating during liquefaction. Both ends of the inner pipe were 

waterproofed. A concrete block weighting 50 kg was installed at the other end. When 

inertia forces were applied to the concrete block during shaking, it was expected that 

deflections of the pipe efficiently amplified. The block was hoisted by chains to avoid 

sinking in the liquefied ground. 

 

Table 6.2 Properties of Inner pipe 

 Length 
L (mm) 

Thickness 
t (mm) 

Outer Diameter 
D (mm) 

Bending stiffness  
EI (kN ∙ m) 

PVC  3,000 4.1 140 15,354 
PE 3,000 7.0 140 7,250 

 

Concrete pipes were made to simulate RC pipes as outer pipes. These pipes had an 

inner diameter of 140 mm and a thickness of 27 mm. They were made in three-different 

lengths: with four segments (three joints), eight segments (seven joints), and 16 segments 

(15 joints) as shown in Figure 6.2. They were divided in the axial. After curing for seven 

days, the unconfined compression strength of the concrete was 22.72 N/mm2. 
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The outer diameter of the inner pipe corresponded to the inner diameter of the outer 

pipe. Outer pipes were tightly fit to inner pipes. To prevent outer pipes from sliding, the 

pipe was restricted by a band. The gap between outer pipes was 10 mm and was covered 

by membranes to simulate a joint structure in the axial direction. 

 

6.2.4 Procedure of Test 

     Experiments were conducted using different types of inner pipe and outer pipe as 

shown in Table 6.3. Horizontal shakings were applied after backfilling. The model pipes 

were buried at a depth of 140 mm (1D). The ground was saturated from the bottom of the 

pit. Input acceleration generated a sinusoidal wave at the frequency of 2 Hz with the 

maximum acceleration of 500 Gal as shown in Figure 6.3. Figure 6.4 shows the response 

of the horizontal displacement of the shaking table.  

 

Table 6.3 Test cases 

Series Case Type of inner pipe Type of outer pipe 

A 

PVC00  

PVC 

N/A 
PVC03 Three joints 
PVC07 Seven joints 
PVC15 15 joints 

B 
PE00 

PE 
N/A 

PE07 Seven joints 
PE15 15 joints 

 

 
 

  
Figure 6.2 Concrete pipe 
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6.3 Response of Horizontal Displacement of Pipe 
 

Figure 6.5 shows response of excess pore water pressure ratio. Liquefaction 

occurred during the shaking, judging from the excess pore water pressure ratio as shown 

in Figure 6.5 in both series. An excess pore water pressure ratio was calculated as the 

ratio of the initial effective stress to the change of the excess pore water pressure. The 

excess pore water pressure ratio increased at approximately 2.5 seconds from the start of 

the shaking. However, the excess pore water pressure ratios did not reach 1.0, indicating 

that the ground did not liquefy completely. 

 
Figure 6.3 Response of acceleration of shaking table 

 
Figure 6.4 Response of horizontal displacement of shaking table 
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The influence of the number of joint structures on the horizontal displacement of the 

pipe was extremely small. Figure 6.6(a) shows the response of the horizontal 

displacement of the pipe end in Series A. In every case, the end of the pipe moved 

horizontally due to the liquefaction as shown in Figure 6.5. The horizontal displacement 

of the pipe end increased with the increment of acceleration of the shaking table. The 

difference between the maximum displacement and the minimum for PVC00, PVC03, 

PVC07, and PVC15 is 107 mm, 114 mm, 112 mm and 105 mm, respectively. As shown 

in Figure 6.6 (b), the horizontal displacement in Series B was also similar to that in Series 

A. 

 
(a) Series A            

 

 (b) Series B. 
Figure 6.5 Response of excess pore water pressure ratio  

-0.5

0.0

0.5

1.0

0 5 10 15 20
-0.5

0.0

0.5

1.0

 

 PW1

 

 

Ex
ce

ss
 p

or
e 

w
at

er
 p

re
ss

ur
e 

ra
tio

Time (s)

 PW2

-0.5

0.0

0.5

1.0

0 5 10 15 20
-0.5

0.0

0.5

1.0
 

 PW1

 

 

Ex
ce

ss
 p

or
e 

w
at

er
 p

re
ss

ur
e 

ra
tio

Time (s)

 PW2



Axial Behavior for Pipe Rehabilitation in Liquefied Ground                111 
 

 

 

6.4 Influence of Damage Levels of Outer Aging Pipe 
 

The amplitude of the bending strain that PVC pipe had on the outer pipe was large 

when the liquefaction occurred. Figure 6.7(a) shows the response of the bending strain 

at the center (A-A’ section as shown in Figure 6.2) in Series A. In PVC00, the amplitude 

 

(a) Series A              

 

(b) Series B 

Figure 6.6 Response of horizontal displacement of end of pipe 
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of the bending strain increased, depending on the increasing amplitude of acceleration of  

the shaking table. For PVC00, PVC03, PVC07 and PVC15, the amplitude reached 284 μ, 

1,793 μ, 1,075 μ and 358 μ, respectively, at approximately 2.3 sec. when the ground 

liquefied. Tease results indicate that the outer pipe restricted the deformation of inner pipe 

when it was moved. Therefore, the stress was concentrated at the gaps between the outer 

pipes.  

Figure 6.8 shows relationships between the horizontal displacement of the pipe 

end and the bending strain at the center in every case. A broken line indicates linear 

approximate line of relationships. The gradient of approximate line in PVC00, PVC03, 

PVC07 and PVC15 were 57.9, 166.1, 76.9 and 40.3, respectively. Figure 6.9 shows the 

 
(a) Series A 

 
(b) Series B 

Figure 6.7 Response of bending strain of inner pipe at center 
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relationship between the length of outer pipe and the gradient. A solid line indicates linear 

approximate line of the relationship. The slope increased in proportion to the length of 

the outer pipe. From the result, it was revealed that the value of strain of inner pipe at the 

gaps between the outer pipes depended on the length of the outer pipes 

On the other hand, the concentration at the gaps between the outer pipes did not occur 

in the PE pipe. Figure 6.7(b) shows the response of the bending strain at the center in 

Series B. The wave form for PE00 showed no difference from the wave form for PE07 

 
Figure 6.8 Relationships between horizontal displacement of the pipe end and 

bending strain at the center 

  
(b) Series B 

Figure 6.9 Relationship between length of outer pipe and gradient of approximate line 
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and PE15 at the time when the ground liquefied. In addition, the amplitude of the bending 

strain increased from 7.5 to 15 seconds in every case, although the amplitude of the 

acceleration of the shaking table was constant at 5.0 m/ seconds squared. The creep of the 

PE pipe is considered to cause this result. 

 

 

6.5 Deflection Mode of Inner Pipe 
 

The deflection mode of the model pipes was categorized, in every case, into two 

main types: bow-shaped and pendulum-shaped deformation. Figure 6.10 shows the 

acceleration distribution, and Figure 6.11 shows the bending strain distribution in Series 

A. The displacement of the shaking table is 0 mm (t = 8.0) in Figure 6.10(a) and Figure 

6.11 (a), and the displacement is the maximum at approximately 30 mm (t = 8.125) in 

Figure 6.10(b) and Figure 6.11(b). The acceleration distribution looks bow-shaped as 

shown in Figure 6.10(a), and the bending strains at the rigid ends and around the centers 

developed as shown in Figure 6.11(a). However, the model pipes were deformed like a 

pendulum-shaped, judging from Figure 6.10(b) and Figure 6.11(b). The bending strain 

of a bow-shaped deformation is clearly larger than that the bending strain of a pendulum-

shaped deformation. Deflection mode of PE pipe is similar to that of PVC. Figure 6.12 

shows the acceleration distribution, and Figure 6.13 shows the bending strain distribution 

of in Series B. When the displacement of the shaking table was 0 mm, the PE pipe was 

deformed similarly to the PVC pipe as shown in Figure 6.12(a) and Figure 6.13(a). In 

addition, the PE pipe was also deformed like pendulum-shaped when the displacement of 

the shaking table was approximately 30 mm as shown in Figure 12(b) and Figure 13(b). 
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(a) t = 8.0 

 
 (b) t = 8.125 

Figure 6.12 Acceleration distribution of model pipe in Series B 

 

(a) t = 8.0 

 

(b) t = 8.125 
Figure 6.13 Bending strain distribution of model pipe in Series B 

0 500 1000 1500 2000 2500 3000 3500
-600
-300

0
300
600

 

 

A
cc

el
er

at
io

n 
(G

al
)

Distanse from the fixed pipe end (mm)

 PE00
 PE07
 PE15

0 500 1000 1500 2000 2500 3000 3500
-600
-300

0
300
600

 

 

A
cc

el
er

at
io

n 
(G

al
)

Distanse from the fixed pipe end (mm)

 PE00
 PE07
 PE15

0 500 1000 1500 2000 2500 3000 3500
-3000
-1500

0
1500
3000

 

 

B
en

di
ng

 st
ra

in
 (

)

Distanse from the fixed pipe end (mm)

 PE00  PE07  PE15

0 500 1000 1500 2000 2500 3000
-3000
-1500

0
1500
3000

 

B
en

di
ng

 st
ra

in
 (

)  

Distanse from the fixed pipe end (mm)

 PE00  PE07  PE15



116                                                            Chapter 6 
 

 

 

  

 

(a) t = 8.0 

 
(b) t = 8.125 

Figure 6.10 Acceleration distribution of model pipe in Series A 
 

 

(a) t = 8.0 

 
(b) t = 8.125 

Figure 6.11 Bending strain distribution of model pipe in Series A 
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6.8 Conclusions 
 

     In this chapter, the shaking table tests were conducted to verify the dynamic 

behavior in the axial direction for the pipe rehabilitation method during liquefaction. The 

following points were clarified from the test results: 

 

1. The influence of the number of joint structures on the horizontal displacement of the 

pipe was extremely small. 

2. The amplitude of the bending strain of PVC pipe having the outer pipe was large when 

liquefaction occurred due to the stress concentrated at the gaps between the outer 

pipes.  

3. The deflection mode of the pipe was categorized into two main types: bow-shaped 

and pendulum-shaped deformation during earthquake in liquefied ground. Compared 

with the bending strain of a pendulum-shaped deformation, the bending strain of a 

bow-shaped deformation was large. 
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Chapter 7 
 
Conclusions and Perspectives 

 

In this thesis, the dynamic behavior of rehabilitated pipe was discussed. The 

following shows the conclusions of the previous chapters. 
     In chapter 2, the model tests for several flexible pipes, which each pipe has a 

different thickness and equivalent bending ring stiffness were conducted in a steel pit to 

discuss the influence of the thickness of pipe and ground stiffness behavior of pipes. For 

flexible pipes having different thickness and equivalent ring bending stiffness, the 

influence of the thickness of the pipe on the deflection and the bending strain 

distribution of the pipe was extremely small. On the other hand, the axial stress of the 

pipe which was generated due to the vertical pressure and the dispersion of the axial 

strain distribution increased according to the decrease of the pipe thickness. The 

maximum change rate of axial stress to the distance between a strain gauge and an 

adjacent strain gauge in the thin steel pipe was 9 times as large as that in the HDPE pipe 

for loose ground. 

     In chapter 3, shaking table tests using these pipes were conducted in order to 

verify the influence of the thickness of pipe, a condition of test pit and bedding material 

on the dynamic behavior of pipes due to a shear deformation of a ground on the basis of 

the study in Chapter 3. As the results, the influence of the thickness of the pipe on the 

bending strain distribution was small in spite of the boundary condition and the base 
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material. The influence of the thickness of the pipe on the axial stress distribution was 

large in spite of the boundary condition and the base material condition. In addition, the 

absolute maximum axial stress increased according to the increment of the shear strain 

of the laminar box.  

     In chapter 4, in order to clarify the influence of a damage of the outer pipe on the 

dynamic behavior of the inner pipe, cyclic shear test using a lamina box was a 

conducted under a different damage of outer pipes and a different density of backfill 

material. The relationship between the shear strain of the laminar box and the deflection 

of the flexible pipe had a hysteresis characteristic. The oblique deflections of the pipe to 

the shear strain were larger than the horizontal and vertical deflection. The deflection of 

the flexible pipe for the loose ground increased according to the increment of the cycle 

due to the negative dilatancy. On the other hand, the deflection for the dense ground at 

the second cycles was smaller than that at the first cycle due to the positive dilatancy. 

The compressive strain increased from 90 to 180 deg. and from 270 to 360 deg. due to 

the shear deformation of the laminar box. In addition, the tensile strain increased from 0 

to 90 deg. and from 180 to 270 deg. The normal earth pressure on the flexible pipe was 

generated from 60 to 210 deg. and from 240 to 360 deg. The normal earth pressure 

increased according to the relative density of the backfill material. The negative 

tangential earth pressure was generated from 45 to 120 deg. and from 240 to 300 deg. 

and the positive tangential earth pressure was generated from 120 to 210 deg. and from 

300 to 30 deg. The deflection of the inner pipe was controlled with the outer pipe in 

spite of the damage level of the outer pipe. The outer pipe without inclined cracks 

restrain that the earth pressure from acting on the inner pipe. When the outer pipe had 

the inclined cracks, the restraint efficacy to the deflection of the inner pipe was small. 

The strain of the inner pipe due to earthquake was restricted. In addition, for the outer 

pipe with 4 inclined, the concentrated strain was generated at the crack. As the damage 

level of the outer pipe was developed, the influence of the outer pipe in the strain of the 

inner pipe was almost negligible. 

     In chapter 5, two dimensional discrete element method (DEM) analyses were 

conducted in order to verify the deformation mechanism of the inner pipe with and 
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without the outer pipe during earthquake and formulate the oblique deflection of the 

inner pipe to shear strain of the ground. The relationship between the normal spring line 

and elastic modulus of the flexible pipe had a linear and the model pipe had any ring 

bending stiffness was modeled. The deflection of the pipe to the shear strain in the 

laminar box was simulated for any relative density of the backfill material and any ring 

bending stiffness. The influence of the damage level of the outer pipe on the oblique 

deflection of the inner pipe was simulated. When the shear deformation was generated 

under the ground due to earthquake, the compressive normal earth pressure was acted 

on the pipe from 90 deg. to 135 deg. and from 270 deg. to 315 deg. (45 deg. to 90 deg. 

and 225 deg. to 270 deg.), and the tangential earth pressure was acted along the pipe 

from the range of the normal earth pressure. As the results, the oblique deflection of the 

pipe was developed. The oblique deflection rate of the flexible pipe to 3
50 / ( / )p cE E I D  

had the asymptotic value. The asymptotic value was determined by a geometric 

calculation. The relationship between 3
50 / ( / )p cE E I D  and the 45-225 deg. deflection 

of the pipe was approximated by Box-Lucas model. In addition, the deflection of the 

rehabilitated pipe was calculated on the basis of the damage level of the outer pipe and 

the relative density of the backfill material by introducing the decreasing coefficient Ch. 

     In this chapter 6, the shaking table tests were conducted to verify the dynamic 

behavior in the axial direction for the pipe rehabilitation method during liquefaction. 

The influence of the number of joint structures on the horizontal displacement of the 

pipe was extremely small. The amplitude of the bending strain of PVC pipe having the 

outer pipe was large when liquefaction occurred due to t the stress concentrated at the 

gaps between the outer pipes. The deflection mode of the pipe was categorized into two 

main types: bow-shaped and pendulum-shaped deformation during earthquake in 

liquefied ground. Compared with the bending strain of a pendulum-shaped deformation, 

the bending strain of a bow-shaped deformation was large. 

     In chapter 2~6, experiments and analyses used for fine-grained and homogeneous 

backfill material were conducted. Experiments and analyses under many types of the 

backfill material, the depth of the cover, the pipe diameter are need in order to evaluate 

more quantitatively the buried behavior In addition, aluminum segments which was 
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divided into 2, 4, 8 and 16 segments were used as the damaged outer pipe in chapter 4 

and 5. In order to clear the influence of the outer pipe on the buried behavior of the 

inner pipe, the deterioration state of pipes should be investigated in the field. 
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Contact force distribution  
 
     The contact force distribution discussed in chapter 5 is shown in this appendix for 

details. 

 
 

Figure A.1 Contact force distribution in ALN-20 at γ =5% 
 

 
 

Figure A.2 Contact force distribution in ALN-45 at γ =5% 
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Figure A.3 Contact force distribution in ALN-65 at γ =5% 
 

 
 

Figure A.4 Contact force distribution in ALN-85 at γ =5% 
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Figure A.5 Contact force distribution in ALN-45 at γ =1% (t = 0.129) 
 

 
 

Figure A.6 Contact force distribution in ALN-45 at γ =3% (t = 0.410) 
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Figure A.7 Contact force distribution in ALN-45 at γ =3.5% (t = 1.506) 
 

 
 

Figure A.8 Contact force distribution in ALN-45 at γ =0% (t = 2.000) 
 
 


