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As vital transportation carriers in trade, ships have the advantage of stability,

economy, and bulk capacity over trucks, trains, and airplanes. Even though nav-

igation technology has been developing year by year, ship collision still accounts

for a large percentage of maritime accidents. Their loss and cost due to collisions

and other accidents exceed those of any other mode of transportation. It is very

di�cult for o�cers to ascertain routes that will avoid collisions, especially when

multiple ships travel the same waters.

Ship collision avoidance involves helping ships find routes that will best enable

them to avoid a collision. When more than two ships encounter one another,

the procedure becomes more complex since a slight change in course by one ship

might cause a “butterfly e↵ect” in the whole system. To prevent ship collisions

many ways have been suggested, such as COLREGs, ship domain, fuzzy theory,

and genetic algorithm. These methods work well in one-on-one situations, but are

more di�cult to apply in multiple-ship situations.

To support the need to find safe routes for ship traveling in crowded waters, I apply

the Distributed Algorithm. The Distributed Algorithm does not require a server,

which could be came a bottleneck in the system. The objective of this thesis is

to reduce the ship collision risk in multiple-ship situations. To do that, I suggest

three kinds of Distributed Algorithms, such as Distributed Local Search Algorithm

(DLSA), Distributed Tabu Search Algorithm (DTSA) and Distributed Stochastic

Search Algorithm (DSSA). Along with the development of the Distributed Algo-

rithms, I also suggest a new cost function that considers both safety and e�ciency

to find a safe course.
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First, I introduce the DLSA. The main purpose of DLSA is to reduce collision risk

among multiple ships. DLSA is a distributed algorithm in which multiple ships

communicate with each other within a certain area. DLSA computes a cost based

on the information received from neighboring ships. By exchanging information

on, for example, next-intended courses within a certain area among ships, ships

having the maximum reduction in collision risk change courses simultaneously

until all ships approach a destination without collision. In DLSA, I assume that

ships can exchange information with each other (using a communication device

such as the Automatic Identification System) to cooperatively establish routes to

avoid collisions. More specifically, when multiple ships meet, the ship that can

reduce collision risk most significantly has the right to choose its next course.

Where there is a tie in the maximum risk reduction, the one with the highest

priority has the right to choose its next course. These choices are then relayed to

their neighboring ships as their current courses. Each individual ship computes

its collision risk based on the information on current courses that it receives from

the neighboring ships.

Second, I show DTSA to make up for the weak points of DLSA. DLSA works well

empirically, but, it is sometimes trapped in Quasi-Local Minimum (QLM) that

prevents a ship from changing course even when at risk of collision. To deal with

this issue, therefore, I developed a new distributed algorithm called the DTSA.

DTSA uses a Tabu Search (TS) to escape from QLM. There are several types of

memory, such as short-term, intermediate-term and long-term. By using memory

to prohibit certain moves, TS searches for global optimization rather than local

optimization. In short-term memory, the recently selected or visited solutions are

put in tabu list. Therefore, an agent can search new solution in spite of worse one.

Only a short-term memory may be enough to solve a given problem in conventional

local search methods. The intermediate and long-term memory structures are

used for solving more complex problems. For ship collision avoidance, I use only

short-term memory structure. DTSA enables a ship to search for a new course

compulsorily when trapped in QLM, to allow it to escape. In this way, DTSA

enables ships to find shorter paths to their destinations while avoiding collisions.

Third, I introduce DSSA to compensate the problems of DLSA and DTSA. The

common drawback of DLSA and DTSA are that it takes a relatively large number

of messages for the ships to coordinate their actions. This could be fatal, especially

in cases of emergency, where quick decisions should be made. DSSA enables each
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ship to change her next-intended course in a stochastic manner immediately after

receiving all of the intentions from the neighboring ships. It allows each ship to

reduce the number of messages compared to DLSA and DTSA.

Forth, I propose new cost function. For a course, two things have to be taken

into consideration, i.e. collision risk and relative angle are related to the safety

and the e�ciency for a certain course, respectively. Otherwise, a ship will be in a

dangerous situation or she will go a long way round. Therefore, the cost function

is made up of two parts.

Finally, to know the performance of DLSA, DTSA, and DSSA, I made experiments

in various situations. For the performance benchmark, I computed the sailing

distance, the average cost, the number of exchanged messages. As the results of

experiments, I categorized the results according to each variable.
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Chapter 1

INTRODUCTION

1.1 Ship collision

The ship is a watercraft to transport passenger or cargo from one to another. She

has long been used throughout the world. There are many kinds of ships depending

on the purpose, such as bulk carrier, tanker, container, LNG (liquified natural gas),

and submarine. As vital transportation carriers in trade, ships have the advantage

of stability, economy, and bulk capacity over airplanes, trucks, and trains. Even

so, their loss and cost due to collisions and other accidents exceed those of any

other mode of transportation. The size and speed of ships is rapidly increasing

in order to boost economic e�ciency. However, navigation technology has been

developing year after year, ship collision still accounts for a large percentage of

maritime accidents [1]. Ship collision is a physical impact between ships or a

ship and a floating or fixed objects. If ships collide, the damage and cost can be

astronomical. There are huge impacts on our life, economy and environments. It

is very di�cult for o�cers to ascertain routes that will avoid collisions, especially

when multiple ships proceed the same waters.

To prevent ship collisions many ways have been suggested, e.g., lookouts, radar,

and VHF radio. The 1972 COLREGs which is the regulation for preventing col-

lision between ships. It specifies navigation rules to be followed by all ships at

sea to prevent collisions. However, it would be very hard to describe all possible

conditions in the form of rules due to the complexity of the actual marine envi-

ronment. On top of that, it would be a big burden for an o�cer to consider many

di↵erent variables to apply to the rules in time-pressed situations.

1
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Technologically speaking, many related studies have been conducted. The term

“Ship domain” involves that area surrounding a ship that the navigator wants

to keep other ships clear of. Ship domain alone is not su�cient, however, for

enabling one or more ships to simultaneously determine the collision risk for all

of the ships concerned. More advanced methodologies, such as fuzzy theory, and

genetic algorithm, have been proposed [2–8]. Fuzzy theory is useful in helping ships

avoid collision in that fuzzy theory may define whether collision risk is based on

Distance to Closest Point of Approach (DCPA), Time to Closest Point of Approach

(TCPA), or relative bearing - algorithms that are di�cult to apply to more than

two ships simultaneously. These methods work well in one-on-one situations, but

are more di�cult to apply in multiple-ship situations.

However, in reality, collisions between ships frequently occur. This is partly due

to the ever increasing size and speed of ships each year. A primary cause of

ship collisions is o�cer error. OOW have generally some expertise in finding safe

routes that will avoid ship collisions; however, particularly when shipping lanes

are crowded and many ships encounter each other simultaneously, finding such

routes is especially di�cult for o�cers. The need to repeat this task throughout

the voyage multiplies the risk of human error.

Ship collision avoidance involves helping ships find routes that will best enable

them to avoid a collision. When more than two ships encounter one another, the

procedure becomes more complex since a slight change in course by one ship might

cause a “butterfly e↵ect” in the whole system. To support the need to find safe

routes for ship traveling in crowded waters, I propose the Distributed Algorithms

such as Distributed Local Search Algorithm (DLSA), Distributed Tabu Search

Algorithm (DTSA) and Distributed Stochastic Search Algorithm (DSSA). Along

with the development of the Distributed Algorithms, I also suggest a new cost

function that considers both safety and e�ciency. By adjusting a weight factor of

the cost function, a ship can consider both.

The main purpose of DLSA is to reduce collision risk among multiple ships. DLSA

is a distributed algorithm in which multiple ships communicate with each other

within a certain area. DLSA computes cost based on the information received

from neighboring ships. By exchanging information on, for example, next-intended

courses within a certain area among ships, ships having the maximum reduction

in collision risk change courses simultaneously until all ships approach a destina-

tion without collision. In DLSA, I assume that ships can exchange information
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with each other (using a communication device such as the Automatic Identifi-

cation System (AIS)) to cooperatively establish routes to avoid collisions. More

specifically, when multiple ships meet, the ship that can reduce collision risk most

significantly has the right to choose its next course. Where there is a tie in the

maximum risk reduction, the one with the highest priority has the right to choose

its next course. These choices are then relayed to their neighboring ships as their

current courses. Each individual ship computes its collision risk based on the in-

formation on current courses that it receives from the neighboring ships. This

process is repeated until the collision risk disappears.

DLSA works well empirically, however, it is sometimes trapped in Quasi Local

Minimum (QLM) that prevents a ship from changing course even when at risk of

collision. To deal with this issue, I developed a new distributed algorithm called

the Distributed Tabu Search Algorithm (DTSA). DTSA uses a tabu list to escape

from QLM. DTSA enables a ship to search for a new course compulsorily when

trapped in QLM, to allow it to escape.

The common drawback of these algorithms is that it takes a relatively large number

of messages for the ships to coordinate their actions. This could be fatal, especially

in cases of emergency, where quick decisions should be made. Distributed Stochas-

tic Search Algorithm (DSSA) enables each ship to change her next-intended course

in a stochastic manner immediately after receiving all of the intentions from the

neighboring ships. It allows each ship to change her next-intended course in a

stochastic manner immediately after receiving all of the intentions from the neigh-

boring ships.

To know the performance of the Distributed Algorithms, I made experiments to

compare DLSA, DTSA, and DSSA. I computed the average distance and cost,

and the number of exchanged messages on the performance benchmark. Experi-

ments results showed that in most cases, the proposals apply well in ship collision

avoidance among multiple ships.

1.1.1 Ship’s characteristics

There is a big di↵erence between land and sea when an object moves, i.e. buoyancy.

It is possible to make a ship bigger and bigger. Thus, ships can carry lots of cargoes

easily to far away countries. Now more than ever, the size and speed of ships are
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Figure 1.1: Several types of ships, (a)Bulk carrier ‘Sabrina I’, (b)Oil tanker
‘AbQaiq’, (c)LNG tanker ‘Puteri Firus Satu’.

Figure 1.2: World largest container ship ‘Oscar’.

rapidly increasing in order to boost economic e�ciency. These cause the issues of

those resulting from characteristics of ship:

• High speed: Normally, the speed of a container ship is around 24 knots

(t44 kilometers/hour). When it considers the ship’s size, the force of inertia

is very big. Also, there is no brake to stop like car. In other words, a

ship cannot change her heading and speed easily. When changing a course,

therefore, a ship has to decide next course carefully.

• Massiveness: There are di↵erent types and sizes of ships to meet the de-

mands of transportation. For the fuel e�ciency, furthermore, the sizes of
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Figure 1.3: Comparison between Oscar and Tokyo tower.

ships are highly diversified. The containerization has allowed container ship-

ping companies to achieve of economy of scale. The more the containers, the

less the transportation cost. Cargo ships can be categorized by capacity. For

example, there are various types of ships as the followings:

- Aframax: Aframax is medium-sized oil tankers.

- Capesize: Capesize ships are large and ultra cargo ships. They are

categorized by Very Large Ore Carriers (VLOC) and Very Large Bulk Car-

riers (VLBC).

- Chinamax: Chinamax ships are the largest bulk carriers with 400,000

DeadWeight Tonnage (DWT)

- Handymax: Handymax are small-sized ships with 60,000 DWT.

-Handysize: Handysize are small-sized ships between 15,000 and 35,000

DWT.

For example, MSC “Oscar” is one of the largest container ships in the world

as shown in Figure 1.2. The length is 395.4 meters and the tonnage is

197,362 DWT. The capacity for containers is 19,224 Twenty-foot Equivalent

Unit(TEU). Compared to Tokyo tower that the length is 333 meters, she

is longer and heavier. Therefore, when a ship starts to move, it should be

decided carefully. And once she starts to move, it is hard to stop.

• Automation: For support an o�cer, there are many on-board machines,

such as AIS, RADAR, ARPA, Electronic Chart Display and Information

System (ECDIS), gyro compass, autopilot and communications equipment.

When target ship penetrates the safety domain of own ship, an ARPA warns
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an o�cer for dangerous situation. An autopilot can control the trajectory

of a ship without constant control by an o�cer.

1.1.2 Statistics of ship collision

Table 1.1 shows the number of maritime accidents as of 2016 in Japan [9]. The total

number of marine accidents is on a downward tendency. Among that, the number

of collisions occupied the largest percentage of total accidents. The reasons due

to a maneuvering mistake are also forming big part of marine accidents, such as

contact (striking by an external object, but not another ship), grounding (striking

the sea bottom), and capsizing.

Table 1.1: Number of maritime accidents as of April 30, 2016
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2016 48 23 38 0 8 9 5 0 0 5 37 0 173
2015 239 95 196 5 11 57 38 3 0 22 122 0 788
2014 266 115 213 7 11 61 35 1 0 37 150 3 899
2013 265 144 210 10 25 49 33 2 0 38 163 2 941
2012 246 132 264 5 21 55 44 2 0 34 155 0 958
2011 282 145 264 12 18 57 32 1 0 23 142 1 977
2010 356 180 369 15 18 50 35 2 0 26 146 0 1197
2009 325 174 431 16 19 58 42 3 0 38 217 2 1325
2008 181 101 255 12 4 28 15 3 0 30 61 0 690

Table 1.2 shows the number of vessels by types as of 2016. The total number of

vessels exceeded 1,000 and it is showing a reduction trend from 2009. Among that,

fishing boat recorded the largest percentage. And cargo ship and pleasure boat

followed after that.

Table 1.3 shows the number of marine incidents as of 2016. Most of incidents are

done by loss of control, such as machinery failure.
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Table 1.2: Number of Vessels by types as of April 30, 2016
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2016 19 40 14 73 16 8 0 7 11 4 39 0 6 237
2015 47 172 59 347 49 29 7 25 39 8 244 49 13 1088
2014 49 213 63 390 81 39 5 34 55 16 224 67 16 1252
2013 47 206 64 427 93 39 4 35 69 20 243 62 18 1327
2012 61 272 58 413 84 30 8 36 57 13 221 48 8 1309
2011 49 268 91 451 83 36 6 26 48 16 217 43 20 1354
2010 80 382 98 500 116 52 6 44 76 22 225 64 16 1681
2009 79 437 72 535 146 35 5 34 96 35 228 63 22 1787
2008 40 253 42 251 77 25 4 24 54 11 120 31 6 938

Table 1.3: Number of marine incidents as of April 30, 2016

Loss of control
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2014 89 1 2 15 0 24 0 131
2013 98 2 6 7 3 25 0 141
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2010 80 0 3 16 0 38 0 137
2009 102 0 3 33 0 59 0 197
2008 53 1 0 34 8 87 0 183
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Figure 1.4: Oil on to the rocky shores (left) and Clean-up for an oiled shoreline
(right) in Alaska, US.

Table 1.4: Top 20 Major Spills Table

Position Ship name Year Location Spill Size
1 ATLANTIC EMPRESS 1979 O↵ Tobago, West Indies 287,000
2 ABT SUMMER 1991 700 nautical miles o↵ Angola 260,000
3 CASTILLO DE BELLVER 1983 O↵ Saldanha Bay, South Africa 252,000
4 AMOCO CADIZ 1978 O↵ Brittany, France 223,000
5 HAVEN 1991 Genoa, Italy 144,000
6 ODYSSEY 1988 700 nautical miles o↵ Nova Scotia, Canada 132,000
7 TORREY CANYON 1967 Scilly Isles, UK 119,000
8 SEA STAR 1972 Gulf of Oman 115,000
9 IRENES SERENADE 1980 Navarino Bay, Greece 100,000
10 URQUIOLA 1976 La Coruna, Spain 100,000
11 HAWAIIAN PATRIOT 1977 300 nautical miles o↵ Honolulu 95,000
12 INDEPENDENTA 1979 Bosphorus, Turkey 94,000
13 JAKOB MAERSK 1975 Oporto, Portugal 88,000
14 BRAER 1993 Shetland Islands, UK 85,000
15 AEGEAN SEA 1992 La Coruna, Spain 74,000
16 SEA EMPRESS 1996 Milford Haven, UK 72000
17 KHARK 5 1989 120 nautical miles o↵ Atlantic coast of Morocco 70,000
18 NOVA 1985 O↵ Kharg Island, Gulf of Iran 70,000
19 KATINA P 1992 O↵ Maputo, Mozambique 67,000
20 PRESTIGE 2002 O↵ Galicia, Spain 63,000
35 EXXON VALDEZ 1989 Prince William Sound, Alaska, USA 37,000
131 HEBEI SPIRIT 2007 South Korea 11,000

1.1.3 Issues

As shown statistics above, the collision betweens ships is big part of ship accidents.

Once ship collision happened, there are huge impacts, such as the loss of human

life, the destruction of the environment and the local community. Especially, the

destruction of the environment is done by the oil spill of large tanker. Table 1.4

shows the top 20 major oil spills. For example, the exxon valdez oil spill occurred

in Alaska, US. About 38,000 to 42,000 m2 were spilled into the Alaska. Until

2010, there still remains an estimated 23,000 US gallons(t 87,064 liters). Until

2014, National Oceanic and Atmospheric Administration (NOAA) reported that

between 16,000 and 21,000 gallons (t 60,566 ⇠ 79,493 liters) of oil still remained
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[10]. Thus, to prevent ship accidents including collision between ships is one of

the most important issues.

1.2 Thesis outline

In Chapter 2, it gives related works on ship collision avoidance, and Chapter 3

provides the outline of distributed ship collision avoidance including the overall

framework, basic terminologies, and new cost function to compute collision risk.

Chapter 4 gives the details of DLSA to prevent collision in multiple-ship situations.

Chapter 5 illustrates the DTSA to remedy DLSA’s shortcomings. Chapter 6 gives

the motivation and details of DSSA. Chapter 7 concludes with a brief summary.

Figure 1.5 shows the composition of the thesis.

Figure 1.5: Composition of the thesis.



Chapter 2

Background and Related work

2.1 Introduction

In Chapter 2, I introduce a brief summary of what have been suggested and the

details for supporting methods for ship collision avoidance.

Szlapczynski suggested a new approach to collision avoidance by evolutionary al-

gorithms [11, 12]. He tried to find optimal sets of safe trajectories in multi-ship

encounter situations. In this approach, the fitness function is computed by the sum

of the fitness of trajectories. The fitness of each trajectory considers the way loss,

target ships and obstacles. He revised the algorithm for application to restricted

visibility situations and focused on compliance with COLREGS Rule 19 [13]. A

new violation penalty was added for penetration of ship domain, the di↵erence

for altering course, distance from target ship, and etc. The methods proposed

in these papers had good results. However, he focused on the application of a

centralized system, such as VTS. If many ships encounter each other outside of

VTS control, it is di�cult to apply these methods. Moreover, the number of ships

used in experiments was less than five. Lamb and Hunt used Poisson distribution

to compute the probability of multiple encounters [14]. The tra�c flow is assumed

to be uniformly distributed across the lane. The probability for various situations

is computed by vessel type, speed, domain radius, and lane tra�c flow during

crossing situations. Lamb and Hunt later revised their method by adding three

options: the relationship between ships, maneuvering angle (which is changeable),

and speed reduction [15]. They also took into account not only the first ship, but

also the second ship at risk to avoid collision. Although their methods are related

10
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with multiple encounters, their focus is on how a ship finds a safe course in multiple

encounters, namely a one-to-many situation. Hornauer et al. proposed a decen-

tralized trajectory optimization algorithm to avoid collision between ships that are

partly cooperating with each other [16, 17]. The movement for non-cooperative

ships is computed by a Bayesian model using the data from the AIS. The prob-

ability of the estimated position for a passive ship that predicts the trajectories

by historic probabilistic models is accurately computed. The computed trajectory

is reasonable when three ships encounter each other. However, any new explicit

algorithm among cooperating ships has not been provided in these papers.

2.2 COLREG

There are many methods for preventing ship collisions at sea. From a regulation

point of view, the 1972 Convention on the International Regulations for Preventing

Collisions at Sea (COLREGs) compels or recommends that ships follow specific

regulations [18]. COLREGs, published by the International Maritime Organiza-

tion (IMO), set out navigation rules, compelling most oceangoing ships to obey

COLREG rule such as navigational lights, tra�c laws of the waterways, and the

buoyage system. COLREGs is composed of the followings:

• Part A - General: This part defines the meaning of terms, an applicable

object and scope.

• Part B - Steering and sailing: This part defines the relationship between

ships, how to pass narrow channels or avoid collision.

• Part C - Lights and shapes: In this part, to let other ships know a ship’s

situation, the installation requirements for light and shapes are defined.

• Part D - Sound and light signals: To let other ships know a ship’s

situation, this part defines the sound and light signals, such as warning and

distress signals.

• Part E - Exemption: This part defines the details of exemption.

• Annexes: If any articles are modified, the changes are recorded.
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When a ship encounters with other ship at sea, there are three possible relationship

of position, such as head-on, crossing, and overtaking situations. By COLREGs,

each situation is defined as the followings [18]:

• Head-on situation

- “When two power-driven vessels are meeting on reciprocal or nearly

reciprocal courses so as to involve risk of collision each shall alter her course

to starboard so that each shall pass on the port side of the other”.

- “When a vessel is in any doubt as to whether such a situation exists

she shall assume that it does exist and act accordingly”.

• Crossing situation

- “When two power-driven vessels are crossing so as to involve risk of

collision, the vessel which has the other on her own starboard side shall

keep out of the way and shall, if the circumstances of the case admit, avoid

crossing ahead of the other vessel”.

• Overtaking situation

- “A vessel shall be deemed to be overtaking when coming up with an-

other vessel from a direction more than 22.5 degrees abaft her beam, that

is, in such a position with reference to the vessel she is overtaking, that at

night she would be able to see only the stern light of that vessel but neither

of her sidelights”.

Figure 2.1 shows the relationship and how to avoid collision between ships. Ac-

cording to COLREGs, the ship at port (on the left side) of target ship gives way.

It is easy to avoid ship collisions by following COLREGs if there is enough time

or few ships involved.

In multiple-ship situations as shown in Figure 2.2, however, it may give a big

burden to o�cers to avoid collisions. Whether COLREGs apply to ship collision

avoidance depends on the situation and it requires much navigational experience

among a ship’s o�cers.
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Figure 2.1: The relationship between ships.

Figure 2.2: Multiple-ship situations.

2.3 Computational methodology for ship colli-

sion avoidance

From a technological point of view, several algorithms are used in ship collision

avoidance, such as ship domain [4, 5], fuzzy theory [6], and genetic algorithm (GA)

[19].

2.3.1 Ship domain

The idea of a ship domain is the important terms for navigation. The ship do-

main algorithm computes a collision risk depending on whether the ship’s safety

domain is penetrated. Several ship collision avoidance algorithms are based on the

ship domain concept, such as circle, ellipse and octagon [5]. In Fujii’s paper, the
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Figure 2.3: Coordinate transformation.

Figure 2.4: The change of f(t).

collision risk was defined by f(t) as temporary approach factor. Fig. 2.3 shows the

coordinates for ellipse-shaped domain.
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New coordinates (red line) are as follows:
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If two ships are placed as shown in Figure 2.4, the relationship between home and

target ship’s position can be formulated by an equation of an ellipse.
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New quadratic equation on the time series can be induced by putting the equation

2.4 into the equation 2.3.

f 2(t) = At2 + Bt+ C (2.5)
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And thus:

f 0(t) =
2At+ B

2
p
At2 + Bt+ C

(2.6)

The equation 2.6 equals to zero for:

T
min

= � B

2A
(2.7)

where T
min

is the remaining time until the moment of the smallest ellipse-shaped

figure.

f
min

=

r
�B2

4A
+ C (2.8)

where f
min

is a minimum value among f(t) as shown in Figure 2.4.

If f
min

is greater than one, no other ship is located within its safety domain. If it

equals one, target ship will be located on the border of the ship domain. If f
min

is less than one, the ship domain has been penetrated by target ship, and if this

happens, the ship must alter its course to keep other ships out of her ship domain.

2.3.2 Fuzzy theory

The fuzzy theory computes the membership function for a collision risk [20]. To

compute collision risk, several parameters - Variation of Compass Degree (VCD),

Time of Closest Point of Approach (TCPA), and Distance to Closest Point of

Approach (DCPA) - are used. Figures 2.5 and 2.6 show the collision risk depending

on the change of the relative bearing. If the change of the relative bearing has

constant bearing, the target ship or an object are getting closer but maintaing the

same relative bearing. If it continues, the collision will be happened. The VCD

is a parameter whether to check the change of the relative bearing. If the VCD

equals zero, there are collision risks on the current course. Otherwise, ships can

pass each other safely.

V CD
i

= |Bearing
i

� Bearing
i�1| (2.9)
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Figure 2.5: The change of the relative bearing I.

Figure 2.6: The change of the relative bearing II.

2.3.3 Genetic algorithm

The genetic algorithm (GA) is based on the principle of evolution, that is, survival

of the fittest. Tsou and Hsueh used GA to find the safest and shortest path that

also complied with COLREGs[19]. The fitness function is defined as the distance

from the turning point to the original route. Then, they used GA to get the

shortest collision avoidance route. Equation 2.10 is the fitness function.

Distance =
n

min
i=1

{D
ri +D

si} (2.10)

where D
ri is the distance of navigational restoration, D

si is the distance after

collision avoidance.

D
si = f 3(X1)Vo

, D
ri = f 3(X2)Vo

(2.11)

min f 3(X1) is the navigation time after collision avoidance. min f 3(X2) is the

navigation time of navigational restoration.
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As chromosome constitution, there are four parameters - avoidance time, turning

angle, restoration time and limited angle. They found optimum routes under three

situations in which a ship can encounter a target ship. Considering that the real-

time collision avoidance, they limited the number of the population, the crossover

and the mutation rate.



Chapter 3

Distributed Collision Avoidance

In Chapter 3, I introduce common parts of the distributed algorithms. First, I

explain the framework how to work the distributed algorithms and the terminology.

I also suggest new cost function.

3.1 Framework and terminology

3.1.1 Framework

Distributed ship collision avoidance is made up of two procedures: control and

search. A framework of these procedures is given in Figure 3.1. When a ship

arrives at her destination, this procedure is terminated. For the control procedure,

the ship decides whether to proceed to the next position. If the ship does not have

any neighboring ship within a certain area, namely detection range, and also has

not yet arrived at her destination, she moves to the next position. For the search

procedure, a ship tries to avoid collision by running a distributed algorithm when

she confirms that there is a collision risk. If every ship finds a solution, or if the

computational time exceeds a certain time limit, they move to the next positions.

A time limit on the computational time is set for all ships exchange messages with

each other to figure out safe courses. When the time has elapsed, all ships move to

the next positions to check whether a collision happened on the spot. The ships

alternate the search and control procedures until they arrive at their destinations.

19
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Figure 3.1: Framework.

3.1.2 Terminology

Figure 3.2 illustrates these basic terms. The home ship located at the center

has a detection range to detect neighboring ships. The home ship can exchange

messages with the neighboring ships, but not with the ships located outside the

detection range. The home ship tries to keep a safety domain between herself and

the neighboring ship. If that safety domain is penetrated, it is considered they

collide with each other. The meaning of the terms is as followings:

- Home ship: A ship that focus on.

- T: The maximum length of time (in minutes) for which the home ship plans

her future positions.

- Detection range: The area in which the home ship can communicate with

other ships.
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Figure 3.2: Basic terms.

- Neighbor: A ship located within the detection range. The home ship can

exchange messages only with her neighbors.

- Safety domain: The area that the home ship prohibits a neighboring ship

from penetrating.

- Ok? message: It includes information of position.

- Improvement message: It includes the number how much the cost is

reduced.

- ID: Identification is given at initial state. It is used when improvement is

same with neighboring ship’s one. A ship with higher priority ID has the

right to choose next course.

- Candidate course: Considering the maneuvering ability of ships, the al-

tering course is restricted as shown in Figure 3.3. It has to be considered

with the characteristics of ship, such as speed, tactical circle and the tra�c

condition.

Due to the characteristics of ship, a ship has a restriction to change maximum

course as shown in Figure 3.3. The figures show candidate courses for a ship. For

example, when maximum changeable course is 10 degrees, a ship can choose one

of them, such as starboard 10 degrees, forward, and port 10 degrees. Figure 3.4

shows the change of neighboring ships depending on the detection range of home
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Figure 3.3: Limit of maneuvering course.

Figure 3.4: The change of neighboring ships depending on the detection range.

ship at center. The larger the size of the detection range, the more the number of

neighboring ships.

Figure 3.5 shows multiple-ship situations. Each ship has her own local view called

detection range (red circles). The home ship can exchange messages with a neigh-

boring ship, but not with a ship located outside the detection range. Figure 3.6

shows how to proceed to destination. To arrive destination, home ship exchanges

messages with neighboring ships until she finds a safe course. And then home ship

proceeds to next position. Home ship repeats this process until she arrives at the

destination.
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Figure 3.5: Multiple-ship situations.

Figure 3.6: How to proceed to destination.
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Suppose, for example, that a ship sails the ocean at 12 nautical miles per hour.

Due to the restriction on ship movement, a sailing ship cannot change her course

abruptly. Once she selects a course, she must follow it for a certain period of

time. The ship is required to consider changing her course every three minutes

(every 0.6 nautical miles). The ship plans her future positions in 15 minutes on the

basis of current positions, headings, and speeds of herself and her neighbors. Note

that this is done every three minutes through communication with neighboring

ships. The Ok? message includes the information for position. The improvement

message includes the number how much the cost is reduced. The ship exchanges

both messages with neighboring ships. When T gets larger, a ship becomes more

proactive.

3.2 Cost and improvement

For a candidate course, two things have to be considered, i.e. collision risk against

a neighboring ship and relative angle between a candidate course and destination as

shown in Figure 3.7. I propose a cost function considering both of them. The cost

function is used for all distributed algorithms that will be shown in the Chapter.

4, 5, 6.

Given current positions, headings, and speeds of neighboring ships, a ship com-

putes the cost for each candidate course. A candidate course is chosen from a

Figure 3.7: Collision risk and relative angle
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Figure 3.8: Candidate courses and the angle heading for a destination.

discrete set of angles as shown in Figure 3.8. In consideration of typical ship ma-

neuvering, it ranges from 45 degree on the port side (-45 degrees) to 45 degrees

on the starboard side (+45 degrees) in step of 5 degrees. If the angle heading for

a destination exists in these bounds, it is also included as a candidate course.

Equation 3.1 shows the collision risk, where crs and j mean a candidate course and

a neighboring ship, respectively, and self means the home ship. It self will collide

with ship j in T when choosing a course crs, and CR
self

for crs and j is computed

as T divided by TCPA. It becomes zero, otherwise. Equation 3.2 computes the

COST for a course crs, which is made up of two parts: first, the sum of CR
self

over the neighboring ships at risk for crs, and second, the relative angle between

crs and a destination. The ↵ is a weight factor that controls the relationship

between the safety and e�ciency. In equation 3.2, the front part, CR
self

, is for

the safety against target ships, and the rest part is for the e�ciency, considering

the destination. If ↵ gets larger, a ship places more emphasis on safety than

e�ciency. On the other hand, the ship goes long way round. For all distributed

algorithms, I set the value of ↵ to one. During the search, a ship tentatively selects

one course as her next-intended course that causes some cost computed by equation

3.2. However, she may be able to reduce the cost by changing it to another course.

Equation 3.3 computes the largest reduction in costs as improvement
self

. A ship

always tries to select the course that gives the largest reduction in costs. A ship is

always aware of absolute angles ✓
heading

and ✓
dest

for her heading and destination,
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Figure 3.9: Numerical example for computing costs and improvements.

respectively. As shown in Equation 3.4, a course for the destination is computed

by ✓
dest

-✓
heading

to be added into a set of candidate courses only if the course is

within the bounds on alterable angles.

Figure 3.9 is an example of how to compute COST
self

and improvement
self

for the

home ship (H). Ships T1 and T2 are neighboring ships of the home ship. Ship T2 is

contented with the current course. However, the home ship will collide with ship

T1 after 12 minutes (four time steps) later with her current course. The cost for

000� is computed by COST(000�) = 5/4 + 18�/180� = 1.35, while the cost for 045�

is COST(045�) = 0 + 27�/180� = 0.15, and the cost for 018� (the course for the

destination) is COST(018�) = 0 + 0�/180� = 0. The improvement
self

for the home

ship is thus computed by improvement
self

=max
crs

{COST(000�)�COST(crs)} =

1.35, since the cost for 018� is clearly minimum among the candidate courses. Ship

T2 is ruled out for computing the cost because ship T2 has nothing to do with any

collision.

CR
self

(crs, j) ⌘

8
<

:

T

TCPAself (crs,j)
, if self will collide with ship j

0, otherwise
(3.1)

COST
self

(crs) ⌘ ↵
X

j2Neighbors

CR
self

(crs, j) +
✓
dest

� ✓
self

(crs)

180�
(3.2)
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improvement
self

⌘ max
crs

{COST
self

(next intended course)� COST
self

(crs)}
(3.3)

✓
dest

⌘

8
<

:
✓
dest

� ✓
heading

, if |✓
dest

� ✓
heading

| < 45�

empty, otherwise
(3.4)

where crs 2 {�45�,�40�, · · · ,�5�, 0�,+5�, · · · ,+40�,+45�} [ {✓
dest

}



Chapter 4

Distributed Local Search

Algorithm

4.1 Introduction

One of the many methods for preventing ship collisions at sea from a regula-

tions point of view is the COLREGs. From a technological point of view, several

algorithms are used in ship collision avoidance, including those of ship domain,

fuzzy theory, ant colony algorithm and neural networks. These algorithms use the

distance to the DCPA and TCPA as parameters. The ship domain algorithm cal-

culates collision risk well, depending on whether the ship safety area is penetrated.

Fuzzy theory is said to enable machines to “reason flexible” the as humans beings

do [20, 21] and was well applicable in ship collision avoidance. These algorithms

define collision risk mostly in one-to-one ship situations, however, and are com-

puted by using only local information without online communication among ships.

In this sense, it is said that most precedent algorithms are suited to a centralized

system in which every computation is done by a server without online communica-

tion among participants, i.e., ship personnel. To deal with multiple-ship situations,

which are more complex, however, algorithms must be suited to distributed sys-

tems that enable individual ships to exchange information online with neighboring

ships. Indeed, exchanging such information online is important, but one further

important consideration for individual ships is to know the intentions of other

ships because individual ships otherwise cannot respond promptly to actions by

other ships. In other words, a ship typically needs ten to fifteen times its length

28
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for stopping to avoid a collision. A ship 200 meters long, for example, needs two to

three kilometers for stopping. Therefore I consider it important to enable individ-

ual ships to exchange information on both facts and intentions to avoid collisions

in multiple-ship situations. In Chapter 4, I assume that individual ships exchange

intentions with neighboring ships using an AIS. The AIS is a machine used on

board to displays information such as the speed, bearing, and position of neigh-

boring ships in real time. Based on AIS, I introduce a Distributed Local Search

Algorithm (DLSA) for solving the ship collision problem e↵ectively in multiple-

ship situations by taking into account the intentions of neighboring ships[22]. A

distributed local search involves individual agents satisfying constraints by ex-

changing information with other agents. This pure distributed algorithm does not

require a server, which could be a bottleneck in the system. One objective of the

work is to reduce the ship collision risk in multiple-ship situations by using a DLS.

It is di�cult to quantitatively compare the DLSA with precedent ship collision

avoidance algorithms because, as mentioned above, precedent ones are designed

assuming one-to-one ship situations. Of course, precedent ones may be applica-

ble to multiple-ship situations, in principle, by reducing this situation to a set of

one-to-ones. I, however, consider that such a method would end up in immediate

failure, due to its higher computational complexity. In contrast, the DLSA deals

naturally with multiple-ship situations and make the system robust by enabling

individual ships to react to dynamic changes in the environment.

In Chapter 4, I explain the background of my work. Furthermore, I show how

DLSA is applied to ship collision avoidance, explaining variables, procedures for

the proposed algorithm, and experimental results.

4.2 Local Search

Local search is a metaheuristic method for solving optimization problems and

incompletely satisfiability algorithms. It may find the solution to a problem or fail

even if the problem is satisfiable. Local search is applied to many problems, e.g.,

the traveling salesman problem or the nurse scheduling problem. The local search

is a centralized system in which every computation is done at a central location

or computer. It is easy to design a whole system if a server knows all information

for all agents. The LS is a iterative improvement algorithm that keeps a ‘current’
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state and tries to improve it [23, 24]. This process is repeated until no further

improvement solution can be found. Algorithm 4.1 shows the pseudocode for LS.

Algorithm 4.1 Local Search

1: Set x0 as initial state
2: while do not satisfy or reach maximum iteration do
3: for each node N do
4: Evaluate the neighbors of N
5: Select one of the neighbors of x

i+1

6: Move to x
i+1

7: end for
8: end while

There are typical algorithms as the followings:

• Hill-climbing: It is like that climbing mountains in thick fog with amnesia.

It tries to find a solution to maximize or minimize a target function f(x).

- Simple hill-climbing: It chooses the closest move as initial step. If there

are any changes that improve f(x), it chooses next move.

- Stochastic hill-climbing: It does not choose next move, deterministi-

cally. It chooses next move by probability p, or keeps current move proba-

bility 1-p.

• Simulated annealing: It is a probabilistic method to find out the ap-

proximating global optimum. It accepts the worse solutions for expanding

the search space. Therefore, it is no need to consider local-minimum that

happens in hill-climbing.

• Genetic algorithm: It is a heuristic search algorithm by imitating natural

evolution. The main idea came from Charles Darwin of “survival of the

fittest”. Each generation consists of a population of strings like DNA.

Algorithm 4.2 shows the pseudocode for simulated annealing [25]. Algorithm 4.3

shows the genetic algorithm [26].

If, for some reason, e.g. a server is broken, it is not possible to maintain a sys-

tem. Compared to a local search, the DLSA searches locally for an approximation

solution by di↵erent agents. The DLSA does not have a server and need not use

a computer. This means that individual agents may solve a certain problem by

satisfying constraints. This is why it is flexible in a system failure and adds less

load in computation.
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Algorithm 4.2 Simulated annealing

1: Set initial solution S
current

as S
best

2: for i=1:iteration do
3: S

i

 S
neighbor

4: temperature
current

 ComputeTemperature(i, MaxTemp)
5: �  Cost(S

current

)-Cost(S
i

)
6: if � < 0 then
7: S

current

 S
i

8: if Cost(S
i

)  Cost(S
best

) then
9: S

best

 S
i

10: end if

11: else if exp
Cost(Scurrent)�Cost(Si)

tempcurrent > rand(0,1) then
12: S

current

 S
i

13: end if
14: end for
15: return S

best

Algorithm 4.3 Genetic algorithm

1: Set population
current

 population0

2: ComputePopulation(population
current

)
3: S

best

 BestSolution(population
current

)
4: while do not satisfy stop condition do
5: Parents  SelectionParent(Population, Population

size

)
6: Childere  ?
7: for Parent1, Parent2 2 Parents do
8: Child1, Child2  Crossover(Parent1, Parent2, Pcrossover

)
9: Children Mutation(Child1, Pmutation

)
10: Children Mutation(Child2, Pmutation

)
11: end for
12: ComputePopulation(Children)
13: S

best

 BestSolution(Children)
14: Set population

current

 Change(population
current

, Children)
15: end while
16: return S

best

4.3 Distributed Local Search Algorithm for Ship

Collision Avoidance

A constraint satisfaction problem (CSP) is a mathematical problem defined as a

set of objects that are consistent with the assignment of values to variables. A

CSP is composed of n variables x1, . . . , xn

, and a set of constraints. And each

variable can choose a value from finite and discrete domains D1, . . . , Dn

. It needs

to a value for each of the variables that satisfies all constraints. A typical example
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Figure 4.1: CSP example of color mapping

of CSP is color mapping as shown in Fig. 4.1. Each territory in Australia is

defined by variables WA, NT , Q, SA, V , NSW , and T . The objective is to color

a map that is divided by seven places so that the adjacency of each other does not

have same color. Each variable chooses red, green and blue from its domain. For

other example, there is the eight queens puzzle, in which eight chess queens are

placed on an 8 X 8 chessboard so that no more than two queens may attack each

other. The domain is the 64 positions on the chessboard where each queen can

choose one. The variables are eight queens, x1, x2, . . . x8. The constraint is that no

queen may attack another queen. It can organize the constraints and know that

two queens do not place in the same column. Each queen can be represented as

x1 = 3, x2 = 6, x3 = 4, x4 = 2, x5 = 8, x6 = 5, x7 = 7, and x8 = 1. x
i

cannot

attack x
j

(i 6= j). Along a diagonal, all queens have to satisfy |i� j| 6= |x
i

� x
j

|.
In this case, the number of representation equals to 88(16, 777, 216). There are 93

solutions that satisfies all constraints.

The DLSA, is a distributed constraint satisfaction problem (DisCSP), used for

solving a problem or satisfying all constraints by multiple agents [27–30]. The

DisCSP is consists of a set of agents, 1, 2, . . . , k and a set of CSPs, P1, P2, . . . , Pk

.

Figure 4.3 is the flowchart for DLSA. First, a ship sets current course as next-

intended course. Each ship exchanges information to compute COST
self

and

improvement
self

. If every ship is contented with next-intended course, then this
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Figure 4.2: CSP example of chess

Figure 4.3: Flowchart of Distributed Local Search Algorithm.

process ends. Otherwise, they exchange an improvement
self

message with neigh-

boring ships. A ship which has the largest value of improvement chooses new

next-intended course.

Figure 4.4 shows the process of the DLSA. This describes how to exchange mes-

sages and decides highest priority ship among ships. Assume three ships are
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Figure 4.4: The process of Distributed Local Search Algorithm.

encountered as shown in Fig. 4.4(a). A ship checks her position for whether she

has arrived at a destination. The process will be repeated until a ship arrives at

her destination. A ship searches a vicinity whether target ships exist. If so, target

ships are added in the neighboring list. Each ship exchanges ok? message with

target ships. They compute the cost for each candidate course as shown in Fig.

4.4(b). If there are collision risks between ships, they exchange improvement
self

message as shown in Fig. 4.4(c). Each ship compares the value of improvement

of herself and target ships. A ship that has the biggest improvement has a right

to choose next-intended course. Otherwise, she keeps the current course as shown

in Fig. 4.4(d). If more than two ships have same the value of improvement, the

ties are broken by the ID of ships that is given randomly in an initial situation.

This process continues until the collision risks disappear. If collision risk has dis-

appeared, a ship proceeds to the next position and checks whether its position is
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the destination.

Algorithm 4.4 is the pseudocode for DLSA. A ship checks whether she has arrived

at a destination (step 5). If she has not arrived at a destination, she starts to

search a vicinity (step 10). If there are neighboring ships in detection range,

she adds neighboring ships to neighboring ship’s list (step 11). She sends ok?

messages to the ships that registered in neighboring ship’s list and receives ok?

messages from the neighboring ships (step 17-18). Based on the ok? message, she

computes cost and improvement (step 20). She sends her improvement message

to the neighboring ships and receives improvement messages from the neighboring

ships (step 22-23). From step 25 to 33, the process chooses a ship which has the

biggest improvement. And the ship can select next-intended course. If there are

more than two ships that have the same improvement, the tie will be broken by

the ID (step 30-32). After deciding next-intended course, a ship i proceeds to the

next position (step 35). She checks whether the current position is the same as

the destination. If she has not arrived at the destination, she starts to search a

vicinity (step 40). This process repeats until a ship i arrives at the destination.
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Algorithm 4.4 Distributed Local Search Algorithm for Ship Collision Avoidance

1: improve
i

⌘ maximum improvement of i
2: neighs

i

⌘ neighbors of i
3: estPsn

i

⌘ estimated position of i
4: ID

i

⌘ identification of i
5: if i arrives at destination then
6: arrived

i

=TRUE
7: else
8: arrived

i

=FALSE
9: end if
10: Search a vicinity with Detection range
11: if neighs

i

exist then
12: Add neighs

i

to NeighsList
i

13: end if
14: while arrived

i

= FALSE do
15: while computation time < limited time do
16: for neighs

i

in neighsList
i

do
17: send ok?(estPsn

i

) to neighs
i

18: add ok?(estPsn
j

) to ShipV iew
i

19: end for
20: compute cost

i

and improve
i

21: for neighs
i

in neighsList
i

do
22: send improve

i

to neighs
i

23: add improve
j

to ShipImprove
i

24: end for
25: if improve

i

< max(ShipImprove
i

) then
26: i keeps current next intended course
27: else if improve

i

> max(ShipImprove
i

) then
28: i chooses new next intended course
29: else
30: if ID

i

> ID
j

of NeighsList
i

then
31: i chooses new next intended course
32: end if
33: end if
34: end while
35: i proceeds to next position
36: if i arrives at destination then
37: arrived

i

=TRUE
38: else
39: NeighsList

i

= empty
40: search a vicinity with detection range
41: if neighs

i

exist then
42: add neighs

i

to NeighsList
i

43: end if
44: end if
45: end while
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4.4 Experiments

The experiments are done by five ships and four variables - Candidate course, De-

tection range, Safety domain and Timestep - to determine how much each variable

a↵ects this algorithm. In one situation, all variables are used by changing their

values from each domain. There are 120 situations in which ships do not have the

same destination as shown in Figure 4.5.

Figure 4.5: Situations involving ships having di↵erent destinations.

Table 4.1: Variable

Variable Value
Candidate course {�10�, 0�,+10�}, {�30�, 0�,+30�},

{�45�, 0�,+45�}, {�45�, �30�,�10�, 0�, +10�, +30�, +45�}
Detection range {10}, {20} nautical miles
Safety domain {0.5}, {1} nautical miles
Timestep {5}, {10}
Speed {12} knots

Experiments are done 3,840 times totally. The number of experiments are a combi-

nation of candidate course (four kinds), detection range (two kinds), safety domain

(two kinds), timestep (two kinds), and 120 kinds of situations (120 kinds). Ta-

ble 4.1 shows the values for each variable. During one round, individual ships

exchange ok? and improvement messages with neighboring ships. The ok? mes-

sage, which has ship position information, is sent to neighboring ships. Individual
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Table 4.2: Result of Experiment

Total Experiment 3,840 times
Result Success 3,720 times

(96.875%)
Failure 120 times

(3.125%)

ships use ok? messages to get the maximum reduction collision risk by changing

course. The maximum reduction cost is sent again to neighboring ships, and the

ship with the highest maximum reduction cost has the right to choose its next

possible course. This process is considered to be one round. Until subsequent

courses, which have no collision risk, are chosen, this round is repeated.

All experiments are done by Matlab R2013b and a PC (Core i7-4790K, 4 cores, 8

threads, 16 GB memory and Windows 10 Professional).

In 3,840 runs (combinations of di↵erent variables, Candidate course, Detection

range, Safety domain and Timestep) of the experiment, it succeeded 3,720 times

(96.875%) and failed 120 times (3.225%).

To evaluate the performance of DLSA, the followings are computed:

• Success ratio: The meaning of success is that all ships arrive at their

destination without collision. The success ratio is the ratio between the

number of successful results and total number of experiments.

• Average exchanged messages: The number of total exchanged messages,

e.g. ok? and improvement messages is divided by the total number of

experiments.

• Average distance: The sailing distance is a ship’s route from origin to

destination. The average distance is the figure that the sum of the sailing

distance for all experiments divided by the number of situations that result

in success.

• Cost: It is the cost for the course that is chosen by a ship for proceeding to

next position.
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Figure 4.6: Success ratio by Candidate course.

Figure 4.7: Average message and distance.

4.4.1 Classification by Candidate course

I categorized the success percentage, average message, average distance, and cost

according to candidate course. Figure 4.6 shows the success percentage according

to candidate course. The bar indicates the success percentage. The number below

the figures represents the candidate courses. The 10 denotes {�10�, 0�, +10�}.
ALL denotes {�45�, �30�,�10�, 0�, +10�, +30�, +45�}. As the value of domain

of candidate course increased, the success percentage also increased. In the case

of 10, the success percentage recorded lowest as 87.5%. Compared than other

candidate courses, because, in the case of 10, the range of alternatives is narrow.
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Figure 4.8: Average cost.

Figure 4.7 shows the average message and distance according to candidate course.

The bar and line mean the average message and distance, respectively. As the

value of domain of candidate course increased, the average message decreased.

The lowest average message showed at ALL candidate course. In terms of average

distance, all candidate courses showed a similar result.

Figure 4.8 shows the cost. In the case of 10, it recorded highest cost. In the case

of 45, it recorded lowest cost.

4.4.2 Classification by Detection range

I categorized the success percentage, average message, average distance, and cost

according to detection range Figure 4.9 shows the success percentage depending

on detection range. The numbers below the figure, such as 10 and 20, indicate the

detection range in nautical miles. The results for the success percentage are same

as 96.875% (1,860 times).

Figure 4.10 shows the average message and distance. As the value of domain of

detection range increased, the average message also increased. If the detection

range enlarges, the search space expands. Therefore, a ship can exchange message

with more neighboring ships. The average distance showed similar result regardless

of the detection range.
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Figure 4.9: Success ratio by Detection range.

Figure 4.10: Average message and distance by Candidate course.

Figure 4.11: Average cost by Candidate course.
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Figure 4.11 shows the cost. As the value of domain of detection range increased,

the average message decreased. The detection range gets lager, a ship can detect

target ship in advance. Therefore, a ship can avoid target ship with lower cost.

4.4.3 Classification by Safety domain

I categorized the success percentage, average message, average distance, and cost

according to safety domain Figure 4.12 shows the success percentage depending

on safety domain. The numbers below the figure mean the safety domain. The

case of 0.5 recorded higher percentage than the case of 1. As the safety domain

increased, the probability of collision also increased.

Figure 4.12: Success ratio by Safety domain.

Figure 4.13 shows the average message and distance. As the safety domain in-

creased, the average message also increased. The average distance showed similar

results.

Figure 4.14 shows the cost. The cost of the case of 1 recorded twice as much as

the case of 0.5. If the safety domain enlarges, a ship react positively.

4.4.4 Classification by Timestep

I categorized the success percentage, average message, average distance, and cost

according to timestep Figure 4.15 shows the success percentage depending on
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Figure 4.13: Average message and distance by Safety domain.

Figure 4.14: Average cost by Safety domain.

timestep. The both results of success percentage showed similar percentages.

Therefore, it can infer that the timestep does not have a large impact on the

collision avoidance in regard to the prevention of ship collision.

Figure 4.16 shows the average message and distance. As the domain of the timestep

increased, the average message decreased. In the case of 10 timestp, the average

message is decreased by approximately 22% compared to 5 timestep. With regard

to the average message, the longer the timestep, the less the communication be-

tween ships. In terms of average distance, both 5 and 10 timestep showed the

similar results.

Figure 4.17 shows the cost for timestep. As the domain of the timestep increased,

the cost decreased. If the timestep gets longer, a ship can estimate the position
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Figure 4.15: Success ratio by Timestep.

Figure 4.16: Average message and distance.

Figure 4.17: Average cost.
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of target ships for longer. It signifies that if a ship is well aware of the position of

neighboring ships, the collision risk decreases.

4.5 Conclusion

I have shown that using a DLSA is applicable in multiple-ship situations. Until

now there has been no study that analyzed relationship between ship collision and

the variables, such as Timestep, Safety domain, Detection range, and Candidate

course. The experiments have shown, through the simulation, how individual ships

can avoid neighboring ships. Furthermore, the experiments showed the e↵ects of

given variables - Timestep, Safety domain, Detection range, and Candidate course

in di↵erent situations.

• Candidate course: it showed a correlation between ship collision and the

ability to turning. Except the case of 10, no collision is found in all candidate

courses. The case of 10 indicating {�10�,0�,+10�} recorded lowest success

percentage as 87.5%. When a ship tries to avoid a collision, she only can

alter her course as 10 degrees maximumly. In the case of 45 indicating

{�45�,0�,+45�}, however, a ship can alter her course as 45 degrees at a

time. Of course, when a ship alters her course, a speed should be taken into

consideration for safety.

In the case of 10, it recorded highest average message and cost. A frequent

maneuvering a ship can be a cause of increasing the number of exchanged

messages. It will be obstructive of the decision for ship collision avoidance.

• Detection range: The cases of 10 and 20 showed same success percent-

ages. It needs to adjust the size of detection range. The number of average

messages for the case of 20 increased about 60% than the case of 10. The

bigger the size of detection range, the more the average messages.

The average cost for the case of 10 recorded a little higher than the case of

20. A ship can aware of collision risk depending on the detection range.

• Safety domain: The case of 0.5 recorded higher success ratio than the case

of 1. It demonstrates a ship that requires lager safety domain has to consider

a course carefully.
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The bigger the size of safety domain, the more not only the average message

but also distance.

• Timestep: A ship can estimate the next positions of target ships depending

on the size of Timestep. The cases of 5 and 10 showed similar results. It is

no required more than necessary.

The bigger the size of timestep, the less not only the average message, but

also the average cost.

In the “failure” case, it occupied almost 3% of this result, so the algorithm must

be improved e�ciency. The case of the failure occurred mostly in the case of 10

candidate course. The high speed boat such as a ground e↵ect vehicle (GEV)

has a restricted maneuvering angle. Therefore, it requires to enlarges the size of

detection range or change the size of safety domain.

In future work, it needs to expand the values of individual variable domains.

Because there are various types of ships such as container ship, bulk carrier and

fishing boat. Each individual ship has di↵erent safety domain, speed and turning

circle. To satisfy various restriction, it requires to find a proper value for a given

situation.
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Distributed Tabu Search

Algorithm

5.1 Introduction

There are many methods for preventing ship collisions at sea. COLREGs, ship

domain [4, 5], fuzzy theory [6], and genetic algorithm [19]. The ship domain

algorithm computes collision risk depending on whether the ships safety domain

is penetrated. The fuzzy theory computes the membership function for collision

risk. The genetic algorithm is based on the principle of evolution, that is, survival

of the fittest. Tsou [19] used genetic algorithm to find the safest and shortest path

that also complied with COLREGs. The fitness function is defined as the distance

from the turning point to the original route. As chromosome constitution, there

are four parameters - avoidance time, turning angle, restoration time and limited

angle. They found optimum routes under three situations in which a ship can

encounter a target ship. As mentioned previously, these works well in one-on-

one situations, but, with multiple ships collisions may be di�cult to avoid. To

solve this problem, I suggested DLSA in Chapter 4. DLSA is flexible during a

system failure. DLSA is easily applied to ship collision avoidance in multiple-ships

situations. All ships can chart their course freely. They prefer a course that will

allow them to reach their destination safely and quickly. A certain sea area, such

as an entry port, crossing area, or narrow area has no option but to be crowded

because all ships will travel in a similar pattern. In addition, each individual

ship must find a solution by itself using local information. However, according

47
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to the recent study, it is sometimes trapped in Quasi Local Minimum (QLM)

that prevents a ship from changing course even when at risk of collision. To deal

with this issue, I propose a new distributed algorithm called the Distributed Tabu

Search Algorithm (DTSA)[31]. DTSA enables a ship to search for a new course

compulsorily when trapped in QLM, to allow it to escape.

In Chapter 5, I explain the tabu search, and the application of tabu search for

ship collision avoidance and experimental results.

5.2 Tabu Search

Tabu search (TS) was invented by Glover in 1986 [32]. TS was proposed to over-

come local optima and it has been made to meta heuristic search method along

with genetic algorithm, simulated annealing and ant colony algorithm. TS is be-

ing used in integer programming, scheduling, routing, and the traveling sales-man

problem. By using memory to prohibit certain moves, TS searches for global opti-

mization rather than local optimization. There are several kinds of memory struc-

tures, such as short, intermediate, and long-term memory. The short-term memory

prohibits a solution (move) from being selected in the tabu list. The intermediate-

term memory may lead to bias moves toward promising areas. The long-term

memory guides to new search areas for diversity. In conventional problems, ap-

plication of the short-term memory only is su�cient. As one of the features, it

allows to choose a solution even though the solution is worse than the current

solution. This method enables precedent local search to overcome local minimum.

A combinatorial optimization problem can be represented in the following:

Min. f(x) : x 2 X in R
n

(5.1)

f(x) is the objective function which may be linear or nonlinear. The x 2 X that

is the condition constrains x to discrete values.

Let me explain hill climbing heuristic algorithm for easy understanding of TS.

Step 0: Initialization

• Choose an initial value x 2 X.
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Step 1: Comparison

• Choose some s 2 S(x) such that f(s(x)) < f(x)

• If there is no such s, x is a local optimum and stop. Otherwise,

Step 2: Update

• Let x be s(x) and go to Step 1.

A value is chosen for x. S is the set of neighbors of X. The value x searches the

vicinity and checks whether any neighbors s which is satisfying the equation in

Step 2 exist. If there are no neighbors s, the value x is a local optimum. Otherwise,

the value x is substituted with the neighbor s, and go to Step 2.

The main problem of hill climbing heuristic algorithm is that the local optimum

obtained at the stopping point that there is no moves to improve current state.

TS enables a problem to search improving moves and to do not falling back a local

optimum again.

Step 0: Initialization

• Choose an initial value x 2 X. Let x⇤ and k(iteration counter) be x

and 0, respectively. T is empty.

Step 1: Searching and Tabu list

• If S(x)�T is empty, go to Step 3. Otherwise, set k := k+1 and choose

s
k

2 S(x)� T such that s
k

(x) = optimum(s(x) : s 2 S(x)� T )

Step 2: Update

• Let x be s
k

(x). If c(x) < c(x⇤), let x⇤ be x.

Step 3: Termination condition

• If k exceeds the iterations or x⇤ was last improved, or if the case that

directly reaching this step from Step 2 happened, then stop. Otherwise,

update T and go to Step 2.
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Table 5.1: Comparison of DLSA and DTSA.

DLSA(Kim, 2014) DTSA(Kim, 2015)

Solution for QLM None Tabu
Solution for endless loop Mutual exclusion with neighbors Mutual exclusion with neighbors
#opportunities of message

exchange per round Twice Twice

A subset T of S is the elements called tabu moves. And T is defined as

T (x) = {s 2 S : s(x)} violates the tabu conditions. For Step 0, the value x

is initialized and let x be the best solution found. The iteration counter k

sets to zero and leave the T empty. If there is no candidate value, go to Step

3. Otherwise, the iteration k is increased by one. And the value x chooses

a neighbor having optimum value. For step 2, the value x moves to next

point and the optimum value may be changed if c(x) < c(x⇤). For step 3,

the termination condition is checked by the iteration k and optimum value

x⇤.

5.3 Distributed Tabu Search Algorithm for Ship

Collision Avoidance

In Chapter 5, I use TS to escape QLM, which prevents a ship in risk of collision

from changing course. DLSA su↵ers from QLM, in which a ship cannot change its

course even though a collision risk still exists. To solve this problem, we applied

tabu search technique, where the ship in QLM puts her current course in a tabu list

to prohibit herself from selecting that course for a certain period of time. DTSA

enables individual ships to choose another course compulsorily. Table 5.1 shows

the di↵erence between DLSA and DTSA.

Figure 5.1 shows the procedure for DTSA. The whole framework is essentially the

same as DLSA; only the QLM procedure (dotted red box) is added. All ships

repeat this process until they arrive at their destination. Each ship checks for

whether it has arrived the destination. If not, the ship searches the vicinity to find

a neighboring ship. The ship exchanges an ok? and improvement messages with

its neighbors. The ship with the highest improvement chooses the next-intended

course. If there is no collision, all individuals move to the next position. If not,

the ship exchanges the exchanged information with its neighboring ship. This
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Figure 5.1: Sketch of Distributed Tabu Search Algorithm.

process is repeated until all ships are contended with their next-intended courses.

If QLM occurs, a ship calls the QLM procedure, in which she randomly chooses

an alternative course excepting any courses in the tabu list. This process will be

recurred until QLM is resolved. If the collision risk has disappeared, all ships move

to the next position.

Figure 5.2 shows the process of DTSA. Assume four ships encounter with each

other as shown in Figure 5.2 (a). Ships 2 and 4 are now satisfying current course.

Ships 1 and 3 have the risk of collision at current course. Even though ships 1

and 3 alter their course to avoid collision, there still exist collision risk with ships

2 and 4. The current courses of ships 1 and 3 are recorded in the tabu list to

prevent a ship from choosing current course as shown in Figure 5.2 (b). Ships 1

and 3 choose a course randomly except tabu list as shown in Figure 5.2 (c). After

exchanging messages with each other, ships 2 and 4 start to search a course with

minimum cost as shown in Figure 5.2 (d).

Algorithm 5.5 shows the pseudocode for DTSA. A greater part of the algorithm are

the same as DLSA. The procedure for QLM (step 36) is only added. If QLM hap-

pened, a ship calls a procedure QLM (step 49-70). The current next intended course

is put into tabu list. The ship chooses a candidate course randomly except a course
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Figure 5.2: The process of Distributed Tabu Search Algorithm.

stored in tabu list. Then she sends ok? messages to the ships that registered in

neighboring ship’s list and receives ok? messages from neighboring ships (step

53-54). Based on the ok? message, she computes cost and improvement (step

56). She sends her improvement message to neighboring ships and receives im-

provement messages from neighboring ships (step 58-59). From step 61 to 69,

it is for the process to choose a ship which has biggest improvement. And the

ship can select next-intended course. If there are more than two ships that has

same improvement, the tie will be broken by the ID (step 66-68). After deciding

next-intended course, a ship i proceeds to next position (step 38).
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Algorithm 5.5 Distributed Tabu Search Algorithm for Ship Collision Avoidance

1: improve
i

⌘ maximum improvement of i
2: neighs

i

⌘ neighbors of i
3: estPsn

i

⌘ estimated position of i
4: ID

i

⌘ identification of i
5: if i arrives at destination then
6: arrived

i

=TRUE
7: else
8: arrived

i

=FALSE
9: end if
10: Search a vicinity with Detection Range
11: if neighs

i

exist then
12: Add neighs

i

to NeighsList
i

13: end if
14: while arrived

i

= FALSE do
15: while computation time < limited time do
16: for neighs

i

in neighsList
i

do
17: send ok?(estPsn

i

) to neighs
i

18: add ok?(estPsn
j

) to ShipV iew
i

19: end for
20: compute cost

i

and improve
i

21: for neighs
i

in neighsList
i

do
22: send improve

i

to neighs
i

23: add improve
j

to ShipImprove
i

24: end for
25: if improve

i

< max(ShipImprove
i

) then
26: i keeps current next intended course
27: else if improve

i

> max(ShipImprove
i

) then
28: i chooses new next intended course
29: else
30: if ID

i

> ID
j

of NeighsList
i

then
31: i chooses new next intended course
32: end if
33: end if
34: end while
35: if QLM then
36: Quasi-Local Minimum
37: end if
38: i proceeds to next position
39: if i arrives at destination then
40: arrived

i

=TRUE
41: else
42: NeighsList

i

= empty
43: search a vicinity with detection range
44: if neighs

i

exist then
45: add neighs

i

to NeighsList
i

46: end if
47: end if
48: end while
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Algorithm 5.5 Distributed Tabu Search Algorithm for Ship Collision Avoid-
ance(continued)

49: procedure Quasi-Local Minimum
50: add current next intended course

i

to TabuList
i

51: i chooses a candidate course randomly except TabuList
i

52: for neighs
i

in neighsList
i

do
53: send ok?(estPsn

i

) to neighs
i

54: add ok?(estPsn
j

) to ShipV iew
i

55: end for
56: compute cost

i

and improve
i

57: for neighs
i

in neighsList
i

do
58: send improve

i

to neighs
i

59: add improve
j

to ShipImprove
i

60: end for
61: if improve

i

< max(ShipImprove
i

) then
62: i keeps current next intended course
63: else if improve

i

> max(ShipImprove
i

) then
64: i chooses new next intended course
65: else
66: if ID

i

> ID
j

of NeighsList
i

then
67: i chooses new next intended course
68: end if
69: end if
70: end procedure

5.4 Experiments

The experiments are done with five di↵erent situations depending on the number

of ships and various origins and destinations to test the performance of DTSA

compared to DLSA. A ship has the following given values: Safety domain = {0.5,
1} nautical miles, Detection range = {10, 20} nautical miles, and Speed = {12}
knots. The minus and plus signs indicate the port and starboard, respectively.

To evaluate the performance, the success percentage and average distance are

computed. Table 5.2 shows the meaning of the index used in the experimental

results. All experiments are done by Matlab R2013b and a PC (Core i7-4790K, 4

cores, 8 threads, 16 GB memory and Windows 10 Professional).

5.4.1 1st experiment

I experimented with six ships with four variables. Figure 5.3 illustrates the situa-

tion for experiment 1. Table 5.3 shows the neighboring ship list. Each ship records
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Table 5.2: Candidate course by Index used in experiments.

Index Candidate course
15 {�15�, 0�, +15�}
30 {�30�, 0�, +30�}
45 {�45�, 0�, +45�}
ALL {�45�, �30�, �15�, 0�,+15�, +30�, +45�}

Figure 5.3: Situation for 1st experiment.

Table 5.3: List of neighboring ships for experiment 1.

Number of ships 1 2 3 4 5 6
1 x o o x x x
2 o x o x o x
3 o o x x x x
4 x x x x o o
5 x o x o x o
6 x x x o o x

its neighboring ships in the list. That is, ship 1 recognizes ships 2 and 3. Ship

2 recognizes ships 1, 3, and 5. There is no collision risk for ships 1, 3, 4, and 6,

but ships 2 and 5 are at risk of collision. All variables are used by changing their

values in one situation. In total, sixteen experiments were conducted.

Figure 5.4 shows the result for experiment 1. Compared with DLSA, DTSA has a

better result. In case of 15, DTSA recorded higher success percentage than DLSA.

The cases of ALL DTSA showed the best results, which were no failures and low

average distance.
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Figure 5.4: Result for 1st experiment.

Figure 5.5: Situation for 2nd experiment.

5.4.2 2nd experiment

In experiment 2, I experimented with five ships that individual ships encounter, as

shown in Figure 5.5. The tracks of ships 1, 2, 3, and 4 produced an X shape. Ship

5 cuts across the space simultaneously. Figure 5.6 shows the result for experiment

2. In the experimental result, except for 15 DLSA, the average distance showed

similar figures. The cases of 30, 45 and ALL DTSA recorded no failures and low

average distance. 15 DLSA had the drawback in terms of success percentage.
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Figure 5.6: Result for 2nd experiment.

5.4.3 3rd experiment

I experimented with ten ships traveling in the same direction toward the desti-

nation from left to right, as shown in Figure 5.7. Figure 5.8 shows the result for

experiment 3. Compared with DLSA, DTSA demonstrated better performance

overall. All DTSA showed low and uniform average distance.

5.4.4 4th experiment

I experimented with twenty ships traveling in the same direction toward the des-

tination from left to right, as shown in Figure 5.9. Figure 5.10 shows the result

for experiment 4. The case of 15 for DTSA and DLSA recorded the lowest suc-

cess percentage. The case of 15 for DLSA showed the highest average distance.

ALL DTSA performed best in regard to the average distance. Only 15 DLSA and

DTSA recorded any failures.
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Figure 5.7: Situation for 3rd experiment.

Figure 5.8: Result for 3rd experiment.

5.4.5 5th experiment

I used one hundred ships in experiment 5, as shown in Figure 5.11. The ship

positions and headings were initialized randomly. The red and blue circles indicate

the origin and destination for the individual ships. Figure 5.12 shows the result

for experiment 5. ALL DTSA had no failure and the lowest average distance.
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Figure 5.9: Situation for 4th experiment.

Figure 5.10: Result for 4th experiment.
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Figure 5.11: Situation for 5th experiment.

Figure 5.12: Result for 5th experiment.

The larger the domain of the candidate course, the smaller the average distance.

15 DLSA and DTSA recorded highest average distance. ALL DLSA and DTSA

recorded lowest average distance.
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5.5 Conclusion

I explained earlier that several algorithms work in specific situations, such as one-

on-one situations. To avoid ship collisions in multiple-ship situations, I applied

DTSA and DLSA. I used the tabu search algorithm to avoid the QLM prob-

lem. The experiments demonstrated how individual ships can avoid collisions in

multiple-ship situations. In the experimental results, DTSA outperformed DLSA.

Some experiments showed similar patterns: The more the number of candidate

courses is increased, the shorter the average distance; the less the size of the de-

gree of the candidate course, the greater the failure count. This is because a ship

can bore o↵ quickly if it drastically alters its course. ALL DTSA showed the lowest

average distance in most cases. This means that the more candidate solutions, the

better the performance.



Chapter 6

Distributed Stochastic Search

Algorithm

6.1 Introduction

Even though navigation technology has been developing year by year, ship collision

still accounts for a large percentage of maritime accidents [1]. There is no doubt

that, once collisions occur, they have a negative impact on our life, economy, and

the environment. To prevent ship collisions, COLREGs was adopted in 1972. It

specifies navigation rules to be followed by all ships at sea to prevent collisions.

However, it would be very hard to describe all possible conditions in the form of

rules due to the complexity of the actual marine environment. On top of that, it

would be a big burden for an o�cer to consider many di↵erent variables to apply

to the rules in time-pressed situations. For example, in the algorithm using ship

domain, the notion of the safety domain has been introduced, where a home ship

prevents target ships from penetrating. Both ant colony optimization and the

genetic algorithm perform searches to identify a safe course by mimicking various

biological phenomena (foraging for food by ants and struggling for gene survival,

respectively). Most of these methods focus on one-to-one or one-to-few situations,

where a home ship decides her course by assuming that the surrounding ships will

all keep sailing as they did under the previous conditions. However, since each

target ship will also try to decide her course, any decision made by the home ship

will inevitably a↵ect the future decisions of the other ships, and vice versa. This

might bring about chaotic behavior in the whole system, producing what we call

62



Chapter 6. Distributed Stochastic Search Algorithm 63

the “butterfly e↵ect”. In order to deal with such complex relations among multiple

ships, many-to-many situations should be handled directly by modeling ships as

agents who can communicate their intentions, namely next-intended courses, with

each other to find their safest courses autonomously. For many-to-many situations,

few methods have been suggested in the literature except for DLSA and DTSA

in Chapter 4 and 5, respectively. Both algorithms can provide a safe course to

ships in distributed system well. However, it should be taken into consideration in

respect of limited range and transmission distance of frequency. In other words,

the number of messages between ships needs to be reduced. In DLSA and DTSA,

the mutual exclusion to prevent endless loop is one of the reasons that increases

the number of messages between ships. In DLSA, each ship searches for a safer

course within her own local view by exchanging intentions with neighboring ships.

The DTSA enhances DLSA with the tabu search technique to escape from a QLM

in which DLSA sometimes becomes trapped. One common drawback of these

algorithms is that a relatively large number of messages need to be sent in order

for the ships to coordinate their actions. Since message exchange accounts for the

largest part of the cost of distributed algorithms, this could be fatal, especially in

cases of emergency, where quick decisions should be made.

In Chapter 6, I introduce the Distributed Stochastic Search Algorithm (DSSA),

where each ship changes her next-intended course in a stochastic manner imme-

diately after receiving all of the intentions from the neighboring ships. In DSSA,

the probability is adopted to prevent ship collision. A ship may choose new next-

intended course with probability p, otherwise she will keep currently selected next-

intended course with probability 1-p. To know the performance of DSSA, I made

experiments to compare DLSA, DTSA, and DSSA in three di↵erent settings on

the number of ships, namely four, twelve, and 100 ships. As the results of ex-

periments, in terms of sailed distance, all distributed algorithms shows similar

results. However, in terms of messages that each ship exchanges with each other,

DSSA spends significantly fewer messages than DLSA and DTSA. Furthermore,

its stochastic nature excludes the need for a specific method to escape from QLM.

6.2 Motivation

The common drawback of DLSA and DTSA is that they have to send a relatively

large number of messages in order for the ships to coordinate their actions. In
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DLSA and DTSA, to prevent endless loop, a change of the ships among neighboring

ships is prohibited, simultaneously. Since this message exchange accounts for the

largest part of the cost of distributed algorithms, this could be fatal, especially in

cases of emergency, where quick decisions should be made. Therefore, to reduce

the number of messages is the purpose.

In the context of distributed constraint optimization, the Distributed Stochastic

Algorithm has been proposed to reduce the number of messages by allowing neigh-

boring agents to perform simultaneous changes in a stochastic manner [33, 34].

They reveal that these simultaneous changes often lead to faster convergence to

a sub-optimal solution; furthermore, its stochastic nature excludes the need for

a specific method to escape from QLM. The basic idea of this algorithm can be

applied in the context of distributed ship collision avoidance.

6.3 Distirbuted stochastic algorithm

Distributed Stochastic Algorithm (DSA) had been proposed by Zhang [33]. DSA is

a distributed hill-climbing algorithm to solve Distributed Constraint Optimization

Problems (DCOPs) such as distributed graph coloring, distributed route planning,

and resource allocation.

DCOP is composed of a tuple (A,X,D, F ).

• A={a1, . . . , an}: a set of agents

• X={x1, . . . , xn

}: a set of variables

• D={D1, . . . , Dn

}: a set of domains

• F={f1, . . . , fn}: a set of function

DSA has no ID to distinguish one another. All processes are executed synchroni-

cally. For each step, an agent sends and receives a message. They compute a cost,

and then decide whether to keep current value or to change new value. If an agent

chooses new value, it sends information to its neighboring agents. The principal

of DSA is the followings:

Step 0: Initialization



Chapter 6. Distributed Stochastic Search Algorithm 65

• Agent i chooses a value randomly.

Step 1: Repeat until no termination is met

• Sending message: Agent i sends a message to neighbors, if new value

is selected.

• Receiving message: Agent i receives a message from neighbors, if

any.

• Choosing a value: Agent i chooses and assigns the next value accord-

ing as table 6.1

For Step 0, an agent i chooses a value randomly. For Step 1, until no termination

is met, the followings are repeated. Each agent i sends its current state information

to its neighbors if the values of previous and current state are di↵erent. An agent

i receives the state information from the neighboring agents. It decides to keep a

current value or change new one stochastically. The key point of DSA is how to

decide next value for an agent. If there is no value that can improve its current

state, an agent i will not change its current value. If an agent i can find new

value that improves or keeps current state, new value will be chosen by the agent

stochastically.

Table 6.1 shows five possible strategies for DSAs. The � means best improvement

which is a number indicating how much the cost can be reduced between previous

and current state. - means no value change. The v and p mean the value giving

� and the probability.

In the case of DSA-A, for example, an agent changes its value v when � > 0

with the probability p. In other words, an agent can consider whether to change

new value or keep current value when the v brings better state than current one.

Therefore, the agent may change to new value that gives best improvement with

probability p.

Table 6.1: Five possible strategies for DSAs

Algorithm � > 0 Conflict, � = 0 No conflict, � = 0
DSA-A v with p - -
DSA-B v with p v with p -
DSA-C v with p v with p v with p
DSA-D v v with p -
DSA-E v v with p v with p
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In the case of DSA-B, the manner is the same as DSA-A. However, a constraint is

added. An agent may also change its value even though there exists a conflict and

the best improvement � equals zero. Because the currently violated constraint

may be satisfied with next step. And it may give better improvement to an agent.

Consequently, DSA-B will change a value more than DSA-A.

In the case of DSA-C, an agent changes its value more often compared with DSA-B.

The agent may change a value even if there is no conflict and the best improvement

� equals zero.

DSA-D and DSA-E are the extended models of DSA-B and DSA-C, respectively.

In the case of DSA-D and E, an agent i chooses the value v giving �, determin-

istically. This manner is greedy method. If there is any good value, an agent

will change it immediately. The frequency to change a value for each agent is as

followings:

• DSA-A < DSA-B < DSA-C

• DSA-D < DSA-E

From DSA-A, to DSA-B and DSA-C, each agent changes a value frequently. DSA-

E may change a value often than DSA-D. Based on the type of DSAs and the

variation of probability p, the degree of parallel executions can be changed.

6.4 Detail

Figure 6.1 shows the procedure for the DSSA for ship collision avoidance. First,

a ship selects her current course as the next-intended course. After exchanging

next-intended courses with neighboring ships, an agent computes COST
self

and

improvement
self

. If some ships are not contented with the next-intended course,

she changes her course by following rules A or B, which are described below. This

process is repeated until all ships are satisfied with their current next-intended

courses. The next-intended course is chosen stochastically as follows. A certain

ship, which depends on rule A or B, chooses the course giving improvement
self

with probability p, but does not change with probability 1�p. In DSSA with rule

A (denoted by DSSA-A), only the ships with positive improvement
self

can change
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Figure 6.1: Procedure for DSSA

the next-intended courses stochastically. On the other hand, in DSSA with rule

B (denoted by DSSA-B), the ships with zero imprvement
self

can also change the

next-intended courses if they have positive costs. This is because the change in

next-intended course of a ship may produce better results at the next step, even

if it does not reduce the cost presently. Therefore, the new next-intended course

may be chosen with the probability p.

Algorithm 6.6 shows the pseudocode for DSSA. The most parts are essentially

the same as DLSA; only the procedure for DSSA-A and B are added (step 20).

In DSSA-A, a ship i checks whether improvement is greater than zero (step 34).
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The next intended course is replaced with the candidate course that has biggest

improvement (step 35). If the probability p is greater than a criterion, she will

choose new next intended course (step 37). Otherwise, she will keep current

next intended course (step 39). In DSSA-B, the fundamental rule is the same

as DSSA-A. The condition that improvement is greater than or equal to zero is

added (step 44).

Algorithm 6.6 Distributed Stochastic Search Algorithm for Ship Collision Avoid-
ance
1: improve

i

⌘ maximum improvement of i
2: neighs

i

⌘ neighbors of i
3: estPsn

i

⌘ estimated position of i
4: if i arrives at destination then
5: arrived

i

=TRUE
6: else
7: arrived

i

=FALSE
8: end if
9: Search a vicinity with Detection Range
10: if neighs

i

exist then
11: Add neighs

i

to NeighsList
i

12: end if
13: while arrived

i

= FALSE do
14: while computation time < limited time do
15: for neighs

i

in neighsList
i

do
16: send ok?(estPsn

i

) to neighs
i

17: add ok?(estPsn
j

) to ShipV iew
i

18: end for
19: compute cost

i

and improve
i

20: call procedure for DSSA-A or B
21: i proceeds to next position
22: if i arrives at destination then
23: arrived

i

=TRUE
24: else
25: NeighsList

i

= empty
26: search a vicinity with detection range
27: if neighs

i

exist then
28: add neighs

i

to NeighsList
i

29: end if
30: end if
31: end while
32: end while
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Algorithm 6.6 Distributed Stochastic Search Algorithm for Ship Collision Avoid-
ance(continued)

33: procedure DSSA-A
34: if improve

i

> 0 then
35: new next intended course = candidate course with improve

i

36: if rand(0, 1) > criterion then
37: i chooses new next intended course
38: else
39: i keeps current next intended course
40: end if
41: end if
42: end procedure
43: procedure DSSA-B
44: if improve

i

� 0 then
45: new next intended course = candidate course with improve

i

46: if rand(0, 1) > criterion then
47: i chooses new next intended course
48: else
49: i keeps current next intended course
50: end if
51: end if
52: end procedure
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Table 6.2: Comparison of DLSA, DTSA, and DSSA.

DLSA(Kim, 2014) DTSA(Kim, 2015) DSSA

Solution for QLM None Tabu Stochasticity
Solution for endless loop Mutual exclusion with neighbors Stochasticity
#opportunities of message

exchange per round Twice Once

6.5 Comparison DSSA with DLSA and DTSA

Figure 6.2 and 6.3 show the di↵erent communication method among DLSA, DTSA

and DSSA. Let me suppose three ships are encountered with each other. If all ships

proceed to current course, a collision will happen at the center. To prevent the

collision, ships exchange messages with neighbors such as ok? message as shown

in Figure 6.2(1). They exchange messages again such as improvement message

as shown in Figure 6.2(2). If ship A has highest improvement, than she alters

next intended course as shown in Figure 6.2(3). While ships B and C do nothing,

because of the prevention for endless loop. Thus the collision between ships B and

C still remains, they exchange messages with neighbors as shown in Figure 6.2(4,

5). Finally, ships A and B alter their courses. And the collision disappeared. At

that time, the total number of messages are 24 times.

For DSSA, the total number of messages are 6 times. Because all ships send

messages to neighbors. And each ship changes next intended course by probability

p. By the stochastic nature, there is no need to wait for the decision of neighbors

or send improvement message.
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Figure 6.2: How to exchange messages for DLSA and DTSA

Figure 6.3: How to exchange messages for DSSA
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6.6 Experiments

DSSA is compared with DLSA and DTSA to evaluate the performance. As a

result of the preliminary experiments, DSSA-C, D and E are excluded. Figures

6.4, 6.5, and 6.6 show the results of them. As mentioned above, DSSA-C, D, and

E are the modified models of DSSA-A and B. In DSSA-C, even though a ship

satisfies a current course, she may change her course when the probability p is

greater than a criterion. DSSA-D and E are the greedy methods that all ships

take a candidate course with best improvement at the same time. These methods,

namely DSSA-C, D and E, can complicate the situation.

Figure 6.4: Simulated trajectories by DSSA-C.

The experiments are done by changing the number of ships. For 1st experiment,

total four ships are used. For 2nd experiment, total twelve ships are used. For

3rd experiment, total 100 ships are used. The heading, origin and destination for

all ships were generated randomly. All experiments are done by Matlab R2013b

and a PC (Core i7-4790K, 4 cores, 8 threads, 16 GB memory and Windows 10

Professional).
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Figure 6.5: Simulated trajectories by DSSA-D.

Figure 6.6: Simulated trajectories by DSSA-E.

6.6.1 Four-ship Encounter

In distributed ship collision avoidance, individual ships all cooperate with each

other. To clarify the importance of such cooperation, I show a simple result before

conducting comprehensive experiments using DLSA, DTSA, and DSSA.
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6.6.1.1 Cooperative and non-cooperative situation

Figure 6.7 shows the simulated trajectories of (a) Non-Cooperative and (b) Co-

operative ships for a four-ship encounter instance. In this instance, four ships,

each sailing in a diagonal direction, are arranged so that they intersect with each

other at the center. Non-Cooperative ships means that they make decisions on

the basis of their own gathered information such as from radar or AIS without

any exchange of information. Most previous studies have been conducted along

the same line. As shown in Figure 6.7(a), each ship’s trajectory forms a jagged

shape. This indicates that each ship has to suddenly and significantly change her

course. I observed that these behaviors sometimes lead to collisions. On the other

hand, Cooperative ships can exchange information with any relevant target ship.

A ship can predict the next movement of a target ship, thereby enabling each ship

to figure out whether a collision risk exists or not beforehand. As shown in Figure

6.7(b), all trajectories are smooth, and finally every ship arrives at her destination

without any collision. Note also that in terms of average distance each ship has

to travel, Cooperative ships give shorter ones than Non-Cooperative ships.

Figure 6.7: Simulated trajectories of four ships by Non-Cooperative (a, left)
and Cooperative (b, right).

Then, I compare the performance of DLSA, DTSA, and DSSA for the four-ship

encounter instance while varying time limit over three to ten seconds. The results

of this simulation are shown in Figure 6.8. The bar indicates the average distance

over the ships and the line indicates the number of messages exchanged among

the ships. The number in parenthesis of DSSA is probability p. Compared to

DLSA and DTSA, DSSA-A and B showed better performances. In the case of
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Figure 6.8: Result of simulation for Four-ship Encounter.

average distance, DLSA and DTSA showed almost the same results. The average

distance for DSSA-A and B recorded lower than DLSA and DTSA. In the case

of the number of messages for DLSA and DTSA, the longer the time limit, the

greater the number of messages. Compared to DLSA and DTSA, DSSA spent

much fewer messages than that, regardless of time limit. This implies that DSSA

did not exceed any time limit to find optimal courses for all ships, while DLSA

and DTSA often did so. DSSA enables multiple ships to alter their next-intended

courses simultaneously, leading to fast convergence to the optimum within one

second.

6.6.2 Twelve-ship Encounter

Total twelve ships are used, as shown in Figure 6.9. This is one of the simulated

trajectories of twelve ships by DSSA-A. All ships arrived at their destinations

without collision. It also demonstrates how much the home ship’s decision is

a↵ected by the target ships. The ships in the middle that are surrounded by

many target ships altered their courses significantly while other ships altered their

courses only a little. Figure 6.10 shows the average distance and the number of

messages for the twelve-ship encounter instance. In terms of average distance, all

algorithms showed a similar result. In terms of the number of messages, DSSA

had much fewer than DLSA and DTSA.
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Figure 6.9: Simulated trajectories of twelve-ship by DSSA-A.

Figure 6.10: Result of simulation for Twelve-ship Encounter.
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Figure 6.11: Initialization (a, left) and trajectories (b, right) for 100-ship
encounter instance.

Figure 6.12: Result of simulation for One hundred-ship Encounter.

6.6.3 One hundred-ship Encounter

I used 100 ships in this experiment. The heading, current position and destination

of each ship were generated randomly. Figure 6.11(a) shows their origins and

destinations in blue circles and red stars, respectively. Figure 6.11(b) shows the

trajectories computed by DSSA-A for this problem instance. Figure 6.12 indicates

both the average distance of trajectories and the number of messages exchanged
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by DLSA, DTSA and DSSA when time limit varies from three to five in order

to finish simulations within a reasonable amount of time. Note that no collision

occurs in this experiment. Again, I can see that while all algorithms showed a

similar result in average distance, DSSA performed much better than DLSA and

DTSA in terms of the number of messages.

6.7 Conclusion

In Chapter 6, I proposed Distributed Stochastic Search Algorithm for ship collision

avoidance. There are five types of DSSA depending on the probability and the

improvement. Depending on the probability, a ship chooses a next-intended course.

This manner can solve a QLM problem and reduce the number of messages. This

simplified the algorithm. Also I showed the pseudocode of DSSA-A and B. I

explained how to exchange messages among ships as shown in Figure 6.2 and 6.3.

To verify the importance of such cooperation, I showed the experiments when

Non-Cooperative and Cooperative situations by DLSA, DTSA, and DSSA.

In experimental results, compared to DLSA and DTSA, DSSA-A and B recorded

lowest average distance and messages. Figure 6.9 shows that how much a ship’s

decision is a↵ected by neighboring ships. Until now, there is no large scale ex-

periment, such as one hundred-ship encounter. I demonstrated that Distributed

Algorithms can be applied to multiple-ship situations. Note that all experiments

are recorded no collision.

For future work, It needs to consider the characteristics of ships. Some of variables,

such as detection range, safety domain may be sensitive to a distributed algorithm

for ship collision avoidance. It needs to be able to cope with various situations.



Chapter 7

Conclusions and Future work

This doctoral dissertation has described how to avoid a collision between ships by

applying Distributed Algorithms. In Chapter 7, I summarize the research.

7.1 Research summary

In Chapter 1, I introduced the definition of the ship collision and presented the

characteristics of ship and the statics of marine accidents.

In Chapter 2, I presented the background and related work in the field of ship

collision. To do that, I explained precedent methods, such as COLREGs, ship do-

main, fuzzy theory, and genetic algorithm. From these related works, I recognized

the problem of centralized system for ship collision avoidance.

• Most of the precedent methods need to make up for their weak points.

• It is important to know the intention of neighboring ships.

• Small action of ship may have a major influence to the decision of neighboring

ships. And it may bring about the ‘butterfly e↵ect’ of the whole system.

• A centralized system like VTS is not enough to prevent collision between

ships.

In Chapter 3, the common parts for the distributed algorithms are explained. This

chapter presented framework, terminology, and new cost function. The framework

79
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is made up of two procedures: control and search. For the control procedure, a

ship decides whether to proceed to the next position. for the search procedure, a

ship tries to avoid a collision by running a distributed algorithm when she confirms

that there is a collision risk. The ships alternate the search and control procedures

until they arrive at their destinations. For terminology, I defined the meaning of

terms for distributed collision avoidance. To compute the collision risk, I suggested

the new cost function and demonstrated an example how to compute it. The cost

function is comprised of two parts, such as the collision risk against a neighboring

ship and the relative angle between a candidate course and destination.

In Chapter 4, I described Distributed Local Search Algorithm. This method is

first trial in the field of ship collision especially when many ships are encountered,

e.g. 100 ships. I presented the process of DLSA and showed how to exchange

messages with neighboring ships.

In Chapter 5, I proposed Distributed Tabu Search Algorithm. To solve the prob-

lem of DLSA, tabu search is applied. DLSA is sometimes trapped in QLM that

prevents a ship from changing course. DTSA enables a ship to search for other

course compulsorily when trapped in QLM. The framework of DTSA is the same

as DLSA, essentially. The QLM procedure is added. I described the process of

DTSA. I made total five experiments by changing the number of ships and the

variables.

In Chapter 6, I proposed Distributed Stochastic Search Algorithm (DSSA). I ap-

plied Distributed Stochastic Algorithm that proposed by Zhang to ship collision

avoidance. In DSSA, ships have no ID to distinguish one another. All processes

are done synchronically. To choose next-intended course, a probability is applied.

This stochastic manner can reduce the number of messages and solve QLM. Fur-

thermore, I simulated two kinds of situations, i.e. cooperative and non-cooperative

situations. In non-cooperative situation, a ship’s trajectory forms a jagged shaped.

On the other hand, all trajectories of cooperative ships are smooth. It signified

how much it is important to know the intention of neighboring ships. As the re-

sults of experiments, the number of messages for DSSA showed much fewer than

DLSA and DTSA.
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7.2 Future work

• The multiple destinations or waypoints for ships need to be considered. In

this doctoral dissertation, all ships have only one destination. In real situa-

tion, however, there are many waypoints on the way to the destination from

origin.

• All ships have di↵erent maneuvering characteristics. Considering that, the

parameters, e.g. detection range, safety domain, timestep and the weight

factor ↵ have to be adjusted.

• I assumed that all ships can exchange messages by AIS. It is necessary to

research how to exchange messages in practice.

• The detailed study for cost function is needed whether any variable requires.

• The obstructions, e.g. island, breakwater, and shallow water, need to be

considered for the many diverse situations.

• It requires the path finding algorithms, such as A*, D*, and Dijkstra algo-

rithm to make sailing distance shortened or improve e�ciency of distributed

algorithms.
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