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1 Introduction

Expressing one’s opinions and findings is important for social decisions, managing organization and

so on. If the players’ preferences are not aligned or expressing ones’ opinions and findings are costly,

there are distortions in incentive to express a certain message (i.e., player has an incentive not to

tell the true information) and it becomes an issue to achieve a socially optimal decision. Eliciting

the true information from the players is a central problem in the studies of mechanism design and

organizational economics.

In this paper, we study how incentives of telling the truth are distorted in some organizations and

mechanisms that often used in real world.

First, consider a situation that a person complains about some issue. If he makes a complaint about

the issue, it may be improved, whereas making a complaint is costly for him while overlooking is

costless. In the context of this study, improving the issue is considered as a public good and making

a complaint is considered as a contribution to the public good. Chapter 2 considers such situation as

a problem of private provision of a discrete public good with a binary contribution. That is, when a

certain number of persons (threshold) contributes a public good, it is provided, otherwise not. This

chapter examines the property of equilibria in a large population. We show that the limit probability

that the public good is provided is irrelevant to the preferences distribution, which shows that such

system is meaningless.

In chapter 2, since sending a message is costly, only most zealous players to provide a public good

send messages and thus, the outcome is irrelevant to the citizens’ preferences. However, if there is a

surrogate who sends a message on behalf of the citizens, the tragic result may change.

In chapter 3, we consider an initiative process based on a signature collection where there is a

campaigner who gathers signatures. In this setting, the campaigner is a surrogate of citizens. If signing

and not signing are costless, unlikely in the previous model, the number of collected signatures is

increasing in the ratio of supporters of the campaign. In this case, however, the campaigner’s incentive

1



1 Introduction

to campaign becomes an issue since the campaigner can gather many signatures by asking many people

to sign even when the campaign is supported by only a small ratio of people. Thus, if the signature

requirement is too low, too many campaigns can meet the requirement. On the other hand, since

campaigning is costly, with a too high requirement, almost all campaigners give up campaigning.

Chapter 3 examines the optimal requirement to balance the tradeoff. This is the minimum require-

ment to the campaigner gathers the required signatures for popular laws while give up gathering the

required signatures for unpopular law. We show that when the difference between popular and unpop-

ular laws is large in the number of collected signatures, a low requirement is needed for the purpose.

We also show that the difference is large if either uncertainty in citizens’ preference distribution is

high or, citizens have a keen interest on whether the law is enacted (the importance of the law is high).

Therefore, in such case, the optimal requirement is low.

To summarize, chapter 2 and 3 study systems dealing with citizens’ request for improvement and

examine an optimal system to elicit the true information about their preferences from the people. This

type of question is also seen in another situation. In an organization, managers cannot always find

problems about the organization, so they delegate their subordinates to find the problems and ask

him to report the problem if he finds it. Here the subordinate’s information is whether he knows the

problem. However, in the real world, the subordinates may not report the problems that they find

even when they may be punished for not reporting. There should be incentives of not reporting the

problem.

In chapter 4, we study workers’ incentives for reporting problems within an OLG organization

consisting of a subordinate and a manager. In this paper, we assume that in each period, the subordinate

proceeds to be a manager and the manager retires in the next period. Subordinates have responsibility

to report the problem and managers have responsibility to solve the reported problem. We also assume

that the manager’s responsibility is heavier when the problem is reported than the case of being not

reported. Then, if the subordinate reports and the manager does not solve the reported problem,

the subordinate will have a responsibility for solving the reported problem in the next period. On

the other hand, if the subordinate conceals the problem and, so does the next subordinate, since the

problem has not reported, the responsibility of the subordinate will be reduced. This mechanism

creates subordinates’ incentive of not reporting. We study the properties of equilibria and show that

this incentive has a strategic complementarity, which implies that not reporting of the problem is

realized as a firm’s culture (Kreps, 1990).

2



We also see that the timing when the problem is reported. To consider this, we assume that the size

of the problem, which determines the size of punishment and the cost of solving the problem, evolves

as time proceeds. We show that when the growth rate of the size decreases as time proceeds, there

exists a period such that before the period, no player reports, and thus the report is delayed. On the

contrary, if the growth rate of the size increases, there exist a period such that after the period, no

player reports. In the latter case, if the size of the problem increases, after a period, the problem will

be ignored until accidents occur even when the managers could solve if it is reported.

3



2 Binary contribution to a discrete public

good in a large population1

2.1 Introduction

This study examines the private provision of a discrete public good problem with non-refunded binary

contribution developed by Palfrey and Rosenthal (1984).2 We investigate the asymptotic properties

of this model when the population is finite but sufficiently large.

This model can apply to the following situations. Consider the situation that a citizen complains

about, say, a TV program, a collection of books in a library, or a government’s policy implementation.

For example, the BBC receives about 250,000 complaints every year,3 while the American Library

Association reports lists of books that are frequently requested to be removed from libraries.4 If a

sufficiently large number of citizens complain about such issues, the parties concerned would make

a response and may modify the issues. In the context of this study, the modification of the issue is

considered to be a discrete public good, while the act of complaining is a binary contribution.5

Similarly, in some countries, if the required number of signatures to a petition are gathered, citizens

can request that a law be enacted. Signing or not signing is again a binary choice and enacting the

law is a public good. For example, US government has a online platform,“We the People” to citizens

make a petition and if the petition collects 100,000 signatures, US government reviews and responds

1 The author is deeply grateful to Eiichi Miyagawa and Yoshikatsu Tatamitani, who provided carefully considered
feedback and valuable comments. The author is also indebted to the many people who commented on this work. Their
comments significantly contributed to improving this manuscript. Any errors in this paper are the author’s own. This
work was supported by JSPS KAKENHI grant number 14J05350.

2 This game is also called a threshold game.
3 http://www.bbc.co.uk/complaints/handle-complaint/.
4 http://www.ala.org/bbooks/frequentlychallengedbooks/top10.
5 Liang (2013) considers consumer complaints and analyzes information transmission when the number of consumers

is 2. Prendergast (2002) also considers consumer complaints as a tool of resolving agency problem.
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2.1 Introduction

the petition.6

In either case, the population is considered to be large. Therefore, considering an infinite population

approximates the real world. Moreover, the costs of complaining and signing cannot be recovered.

This is the reason why we consider non-refunded contribution.

In this setting, we consider the symmetric Bayesian Nash equilibrium (symmetric BNE) to investi-

gate the probability that the discrete public good is provided when the population goes to infinity. We

provide the necessary and sufficient condition that there exists a symmetric equilibrium in which each

player contributes a positive probability with a sufficiently large population. Let h be the threshold

level, V be the maximum valuation, and C be the minimum cost of contribution among citizens. We

call a player whose value and contribution cost are respectively V and C the most zealous player.

If h > 1, the act of no player contributing is a trivial equilibrium. In the non-trivial equilibrium,

we show that as the population goes to infinity, only the most zealous players contribute and the

distribution of the number of contributors converges to a Poisson distribution with parameter x, which

solves V e−x x (h−1)/(h − 1)! = C. The intuition is as follows. Note that the probability that a given

player contributes converges to zero as the population goes to infinity. In this case, the number

of contributors follows a Poisson distribution. Then, e−x x (h−1)/(h − 1)! is the probability that the

number of contributors is h − 1. Hence, e−x x (h−1)/(h − 1)! is the probability that a given player is

pivotal. Therefore, V e−x x (h−1)/(h − 1)! and C are respectively the expected utility and cost of the

most zealous player’s contribution. In the non-trivial equilibrium, these values coincide. If the most

zealous player’s cost exceeds his expected utility, no player wishes to contribute. This is a trivial

equilibrium (i.e., a contradiction). If the most zealous player’s expected utility exceeds his cost, since

the population goes to infinity, an infinite number of players contribute. This fact implies that the

probability that the number of contributors is h − 1 goes to zero and, in turn, the expected utility of

the most zealous player’s contribution goes to zero, which, again, is a contradiction. Thus, we have

V e−x x (h−1)/(h − 1)! = C.

If the threshold is one, the symmetric BNE is unique. If the minimum cost is sufficiently small,

the act of no player contributing is not an equilibrium. In particular, if the maximum valuation is

infinity or the minimum cost is 0, in any symmetric equilibrium, the probability that the public good

is provided goes to 1 as the population goes to infinity. When the threshold is more than one, if the

minimum cost is sufficiently small, there are exactly two equilibria in which each player contributes

6 https://petitions.whitehouse.gov.
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2 Binary contribution to a discrete public good in a large population

a positive probability. These equilibria differ in the expected number of contributors. We call the

equilibrium with the smaller expected number of contributors the low contributing equilibrium and

that with the larger expected number of contributors the high contributing equilibrium.

We show that with a large population, in low contributing equilibria, the probability that a given

player contributes is decreasing in V/C. On the contrary, in high contributing equilibria, the probability

that a given player contributes is increasing in V/C. We also consider the threshold effect. We show that

in both high contributing and low contributing equilibria, the probability that a given player contributes

is increasing at the threshold. On the contrary, in high contributing equilibria, the probability that the

public good is provided is decreasing at the threshold.

These comparative static results can be applied to design optimal complaint management systems.

Consider a public organization. Some citizens are dissatisfied with its decisions, systems, and in-

stitutions. However, the people currently working in the organization may be unable to grasp all its

decisions, as some were made a long time ago for example. In another case, such decisions are made

by a decentralized party. Such decisions cause complaints and are requested to be modified. However,

how should the organization handle such complaints?

For example, consider a collection of books in a public library. Typically, these books are collected

by librarians. Some citizens may complain that the library’s collection includes unsuitable books and

request their removal.

We consider a system such that if an issue causes complaints and the number of complaining citizens

is larger than h, the decision is modified. Since the government cannot grasp the issue, setting h = 0

may be impossible. In the case that setting h = 0 is impossible, if the modification is socially desirable,

h = 1 is optimal in the following two senses. First, since setting h = 1 implies the highest probability

of a sufficient number of citizens complaining. Problematic issues are thus easily exposed. Second,

setting h = 1 also implies the lowest number of complaining citizens since this number is increasing

at the threshold. Typically, handling a large number of complaints is costly. Thus, fewer complaining

citizens is more desirable. On the contrary, if the modification is socially undesirable, rejecting all

complaints is optimal. In summary, the optimal policy is either h = 1 or rejecting all complaints. That

is, the number of complaining citizens does not matter. Indeed, as a real-world example, the BBC has

previously stated that the number of complaints does not make a difference.7 Our result may explain

this policy.

7 http://www.bbc.co.uk/complaints/handle-complaint/.
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2.1 Introduction

Previous studies have assumed that players simultaneously decide whether to contribute. However,

each player may also observe the behavior of others before deciding whether to contribute. For

example, consider an anti-governmental demonstration. A group of campaigners are campaigning to

repeal a policy. They count the number of citizens who have already participated in the demonstration

and announce this figure publicly, which inevitably affects the future decisions of other possible

participants. As another example, at the website of US government’s platform to citizen make a

petition, we can view on-going status of collected signatures of each petition. This also creates a

dynamic situation.

We consider the case. Let h be the threshold. In the static model, if h > 1, the act of no player

contributing is necessarily an equilibrium. Indeed, if h is more than the entire number of opportunities

to announce the number of contributors, the act of no player contributing is still a symmetric perfect

Bayesian equilibrium. However, we show that if h is less than the entire number of opportunities, as

the population goes to infinity, there is a positive infimum in the probability that at least h players

contribute in any symmetric perfect Bayesian equilibrium. Moreover, if the minimum cost among

players goes to zero, the probability that at least h players contribute converges to 1 in any symmetric

perfect Bayesian equilibrium.

Recall that when h = 1, even in the static model, the act of no player contributing is not an

equilibrium with sufficiently low cost. Suppose that there are two chances to contribute and h = 2.

Suppose also that one player contributed in the first stage. Then, in the second stage, it is the same

situation as h = 1. One player’s contribution is sufficient to provide the public good. Therefore, in the

second stage, the act of no player contributing is not an equilibrium. Then, in turn, in the first stage,

since at least one player contributes, at least one player contributes in the second stage and thus the

public good is provided. This situation is the same as the case for h = 1. Thus, the act of no player

contributing is not an equilibrium. This discussion can be generalized for the case of a finite number

of chances to contribute.

The remainder of this paper consists of the following sections. Section 3.2 reviews the related

literature. Section 2.2 describes our model. The results of the equilibrium analysis are presented

in Section 2.3, where we calculate the probability that the public good is provided in an infinitely

large population. Section 2.4 addresses the dynamic provision model. Section 2.5 considers threshold

uncertainty before our conclusions are finally drawn. Omitted proofs are presented in the Appendix.

7



2 Binary contribution to a discrete public good in a large population

2.1.1 Related Literature

This section reviews the literature on the private provision of discrete public goods. To the best of the

author’s knowledge, Palfrey and Rosenthal (1984) was the first study to analyze this problem, showing

both efficient and inefficient equilibria. Harrington (2001), Xu (2001), and Bergstrom (2012b) all

find that when the threshold level is one, as the population goes to infinity, the probability of the

provision of public goods converges to a constant positive number. Xu (2002) analyzes how an

increase at the threshold level influences the probability of the provision of a public good by dividing

the effects into the threshold effect (direct effect) and strategic effect (indirect effect), showing that

the effect of a threshold increase is not necessarily negative. That is, increasing at the threshold can

raise the probability of the provision of a public good. In contrast to these authors, who deal with

identical preferences for public goods, Menezes, Monteiro and Temimi (2001) analyze the case that

preferences are private information and continuous contribution. They show that if the provision cost

is sufficiently high, the unique equilibrium is non-contributing. Barbieri and Malueg (2008) also

consider the continuous contribution case and study the efficiency of equilibria.

The present study examines the case that both players’ preferences and the contribution cost are

private information. In addition, we consider the decision to be binary (i.e., contribute to public goods

or not (Palfrey and Rosenthal, 1984)) rather than continuous contribution (Menezes, Monteiro and

Temimi, 2001). Binary contribution model is similar to voting model. Related to this paper, as in

our analysis, Taylor and Yildirim (2010,b) show that the limiting distribution of the number of votes

converges to a Poission distribution.

Many studies have examined the dynamic contribution of discrete public goods. Bliss and Nalebuff

(1984) and Bilodeau and Slivinski (1996) consider the case that public goods are provided in a

single provision. Marx and Matthews (2000) consider a general case with continuous contribution

in a repeated game setting, showing that an efficient allocation is achieved. However, Marx and

Matthews (2000)’s model, in contrast to that presented in our study, needs the belief that a punishment

ensues if one does not contribute. Gradstein (1992) considers the dynamic provision of public goods

with a binary contribution in a large population, finding that although a contribution delay occurs

in a finite population, such a delay disappears for an infinite population, although the equilibrium

remains inefficient. Yildirim (2006) also considers the dynamic provision of public goods with a

binary contribution. In Yildirim’s setting, different from our setting, each player decides whether to

contribute a public good in each period and if a sufficient number of public goods are provided, players

8



2.2 Model

are rewarded. In contrast to our result, in that setting, an equilibrium in which no one contributes is

not excluded. Bag and Roy (2008) consider the dynamic provision of public goods with a continuous

contribution under incomplete information and verify the effect of announcement.

While the above studies consider repeated forms of simultaneous games, Bergstrom (2012a) con-

siders provision by randomly arriving players, while Admati and Perry (1991) deal with continuous

alternative contributions in the two-person case, showing that a Pareto-efficient allocation is not com-

pleted without commitment under certain conditions. Bag and Roy (2011) consider the world of

incomplete information in the setting that the order of contribution is exogenously given.

Bagnoli and Lipman (1989) consider a dynamic mechanism to provide multiple discrete public

goods where in each stage, players contribute to a public good and if a threshold level is achieved, a

public good is provided. They show that the mechanism implements core allocations.

In a recent study, Iijima and Kasahara (2016) consider a general model of a continuous time dynamic

contribution game with complete information and stochastic noise that allows a gradual adjustment to

the contribution and show the uniqueness of a Nash equilibrium. This study relates to ours by showing

that multiple equilibria in a static game disappear in a dynamic extension.

We also study threshold uncertainty in line with Nitzan and Romano (1990), McBride (2006), and

Barbieri and Malueg (2010), who analyze the problem of providing discrete public goods under such

uncertainty. Nitzan and Romano (1990) and McBride (2006) assume a common value and cost for

public goods, while Barbieri and Malueg (2010) consider a private-value model of a subscription

game (contribution is refunded) and show the existence and uniqueness of the equilibrium.

2.2 Model

There are n ∈ N players who consider whether to contribute a public good. If h ∈ {0, , . . . , n} players

contribute, the public good is provided.

Let N = {1, 2, . . . , n} be the set of players. Player i ∈ N chooses whether to contribute; if he

contributes, he incurs contribution cost ci. Costs have a continuous distribution. We assume that each

player’s cost is private information and i.i.d. The cost distribution function has density g such that

g(ci) > 0, ∀ci ∈ (C,C),C ⩾ 0,C ∈ (0,∞).

The utility of player i from the provided public good is vi, where vi is the valuation of the policy

and density is f (vi) > 0,∀vi ∈ (V,V ), where V ⩽ 0 and V > 0. The distribution of each player’s

9



2 Binary contribution to a discrete public good in a large population

valuation is i.i.d. The valuation and cost of each player are allowed to be correlated. For each cost c,

let the conditional density function of valuation v be f (v | c) and f (v | c) > 0 for all v, c.

2.3 Static Model

This section considers only the symmetric BNE. First, we assume C < V since if C ⩾ V , no one

contributes. For each v, c, interim expected utility is

q(v, c)vΨ(h − 1) + (1 − q(v, c))vΨ(h) − cq(v, c) = q(v, c)[{Ψ(h − 1) − Ψ(h)}v − c] + vΨ(h),

where q(v, c) is an ex-ante strategy that if the citizen observes his type v, c, he complains with a

probability of q(v, c). Ψ(h) is the probability that the number of contributions by others is no more

than h and is defined as8

Ψ(h) =
n−1∑
k=h

[(
n − 1

k

) (
Pr(q(v, c) = 1)

) k (
Pr(q(v, c) = 0)

)n−1−k
]
.

Then, his best response is

q(v, c) = 1 if
v

c
[Ψ(h − 1) − Ψ(h)] ⩾ 1,

q(v, c) = 0 if
v

c
[Ψ(h − 1) − Ψ(h)] ⩽ 1.

This strategy is called the cutoff strategy. We show that this strategy profile is an equilibrium. We set

yn,h to satisfy yn,h = 1/[Ψ(h − 1) − Ψ(h)]. This value is called the cutoff point. If v/c < yn,h, then

q(v, c) = 0, and if v/c > yn,h, then q(v, c) = 1. Firstly, we assume the existence of the cutoff point.

Then,

Ψ(h − 1) − Ψ(h) =

(
n − 1
h − 1

) *,
∫
yn,h<v/c

f (v | c)g(c) dv dc+-
h−1 *,

∫
yn,h>v/c

f (v | c)g(c) dv dc+-
n−h .

8 The term
(
n
r

)
denotes the binomial coefficient, that is

(
n
r

)
= n!/[(n − r)!r!].

10



2.3 Static Model

By putting P(yn,h) =
∫
yn,h<v/c

f (v | c)g(c) dv dc, the above equation becomes

Ψ(h − 1) − Ψ(h) =
(n − 1)!

(h − 1)!(n − h)!
[P(yn,h)]h−1[1 − P(yn,h)]n−h.

Therefore, the best response is

q(v, c) = 1 if
v

c
>

(h − 1)!(n − h)!
(n − 1)!

1
[P(yn,h)]h−1[1 − P(yn,h)]n−h ,

q(v, c) = 0 if
v

c
<

(h − 1)!(n − h)!
(n − 1)!

1
[P(yn,h)]h−1[1 − P(yn,h)]n−h .

That is, yn,h is a solution for yn,h
(n−1)!

(h−1)!(n−h)! [P(yn,h)]h−1[1 − P(yn,h)]n−h = 1. Define function Γn,h as

Γn,h(y) :=
1

[P(y)]h−1[1 − P(y)]n−h

(h − 1)!(n − h)!
(n − 1)!

. (2.1)

Then, cutoff point yn,h is a fixed point of Γn,h. If a fixed point exists, a cutoff point that satisfies the

equilibrium condition exists. Therefore, the cutoff strategy is an equilibrium.

2.3.1 Large Population

If h > 1, the act of no player contributing is a trivial symmetric equilibrium. Consider the case of no

fixed point of Γn,h. Then, Γn,h(y′) > y,∀y′ ∈ [W,V/C], where W = min{0,V/C}. Hence, when there

is no fixed point of Γn,h, no one contributes. The following lemma proves the sufficient condition that

the act of no player contributing is the unique equilibrium.

Lemma 2.1. If the following inequality is established, the act of no player contributing in any

symmetric BNE:

V
C
<

(n − 1)n−1

(h − 1)h−1(n − h)n−h

(h − 1)!(n − h)!
(n − 1)!

. (2.2)

We consider the case that C > 0 and V < ∞.

Firstly, we characterize the condition that Γn,h has a fixed point. At the threshold, (2.2) is almost a

necessary and sufficient condition that ensures that Γn,h has no fixed point.

11



2 Binary contribution to a discrete public good in a large population

Lemma 2.2. Suppose that h ∈ N. Then, Γn,h has a fixed point with sufficiently large n if

V
C
> eh−1 (h − 2)!

(h − 1)h−2 .

On the contrary, if

V
C
< eh−1 (h − 2)!

(h − 1)h−2 ,

there exists n̄ ∈ N such that for each n ⩾ n̄, Γn,h has no fixed point.

If a fixed point of Γn,h, namely yn,h exists,

yn,h =
1

[P(yn,h)]h−1[1 − P(yn,h)]n−h

(h − 1)!(n − h)!
(n − 1)!

. (2.3)

This equation characterizes the probability that a given player contributes. In any equilibrium, we

can show that supn nP(yn,h) < ∞. Then, we have P(yn,h) → 0 and yn,h → V/C. We also find that

there exists a subsequence that nP(yn,h) converges to a real number. Suppose that nP(yn,h) → x, then

[1 − P(yn,h)]n → 1/ex . Therefore, the equilibrium condition becomes

V
C
=

(h − 1)!ex

xh−1 . (2.4)

Therefore, the solution of (2.4) characterizes the convergence of nP(yn,h). We now have

Proposition 2.1. Suppose that h is fixed, V < ∞ and C > 0.

(i) Suppose that

V
C
> eh−1 (h − 2)!

(h − 1)h−2 .

Then, in a sequence of symmetric BNEs where a given player contributes with a positive probability,

an x solves (2.4) such that the probability that a given player contributes converges to x. Moreover,

the distribution of the number of contributors converges to the Poisson distribution with parameter x.

Conversely, for each solution to (2.4), namely x, there exists a sequence of symmetric BNEs such

that the distribution of the number of contributors converges to a Poisson distribution with parameter

x. In particular, if h ⩾ 2, the number of solutions to (2.4) is two.

12



2.3 Static Model

(ii) Suppose that

V
C
< eh−1 (h − 2)!

(h − 1)h−2 .

The unique symmetric BNE is the act of no player contributing.

Since the number of contributors follows a Poisson distribution, the probability that a public good

is provided converges to 1 −∑h−1
ℓ=0

xℓ
ℓ! e−x .

Note that if h is sufficiently large,
∑h−1
ℓ=0

xℓ
ℓ! → ex and the probability that the number of contributors

is less than h goes to one. In other words, the probability that the public good is provided goes to zero.

When h = 1, this problem reduces to the best-shot public good. In this case, in contrast to the case

of h ⩾ 2, the act of no player contributing is not an equilibrium when V > C.

Corollary 2.1 (Harrington (2001); Xu (2001); Bergstrom (2012b)). Suppose that h = 1, V < ∞ and

C > 0.

(i) If V > C, in the symmetric BNE, the probability that the public good is provided converges to

1 − C/V .

(ii) If V < C, the unique symmetric BNE is the act of no player contributing.

2.3.2 Unbounded Valuation

This section considers the case that V = ∞ or C = 0. We show that the probability that the public

good is provided converges to 1 or 0. First, we consider the case that h = 1. In this case, we obtain

Corollary 2.2. Suppose that h = 1 and V = ∞ or C = 0 hold. In the symmetric BNE, the probability

that the public good is provided converges to 1.

The probability that the public good is provided converges to 1 or 0.

Corollary 2.3. Suppose that V = ∞ or C = 0 hold. In the symmetric BNE, the probability that the

public good is provided converges to 1 or 0.

If the valuation per unit cost is unbounded, the equilibrium in which a given player contributes with

a positive probability may be unique.

Example 2.1. Suppose that h = 2, g(c), and f (v | c) are uniformly distributed on (0, 1).
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2 Binary contribution to a discrete public good in a large population

Then, the probability that a given player contributes is

P(yn,2) =
∫ 1/yn,2

0

∫ 1

cyn,2
dv dc =

∫ 1/yn,2

0
(1 − cyn,2) dc =

1
2yn,2

.

From the equilibrium condition and the above equation, the probability that a given player does not

contribute is

1 − P(yn,2) =
(

2
n − 1

) 1
n−2

.

Thus, an equilibrium exists and yn,2 → ∞. Rearranging the equilibrium condition yields

[1 − P(yn,2)]n =
[1 − P(yn,2)]2

(n − 1)P(yn,2) yn,2
=

[1 − P(yn,2)]2

(n − 1)/2
.

The LHS of the above equation is the probability that no one contributes. When the population

diverges to infinity, according to the above equation, we find that limn→∞[1 − P(yn,2)]n = 0.

On the contrary, rearranging the equilibrium condition also yields

(n − 1)[1 − P(yn,2)]n−2P(yn,2) =
1
yn,2

.

By rearranging the above equation, we obtain

n[1 − P(yn,2)]n−1P(yn,2) =
n

n − 1
1 − P(yn,2)

yn,2
. (2.5)

The LHS of the above equation is the probability that only one player contributes, which, if the

population diverges to infinity, converges to 0.

Hence, the probability that at least two players contribute is one. Therefore, the probability that the

public good is provided converges to one when the population diverges to infinity. △

Although this example shows that the probability that the public good is provided converges to

one, this is not the general case, even when h = 2. The following example shows the case that the

probability that the public good is provided converges to zero.

Example 2.2. Suppose that h = 2, g(c) = c on [0,
√

2], and f (v | c) is a uniform distribution on [0, 1].
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2.3 Static Model

The probability that a given player contributes, that is, P(yn,2), is calculated as

P(yn,2) =
∫ 1/yn,2

0

∫ 1

cyn,2
dvc dc =

∫ 1/yn,2

0
(c − c2 yn,2) dc =

1
6[yn,2]2 . (2.6)

From the equilibrium condition, we obtain

[1 − P(yn,2)]n−2 =
6yn,2

(n − 1)
. (2.7)

By using these equations, we obtain

(
1 − 1

6[yn,2]2

)n−2
=

6yn,2

(n − 1)
. (2.8)

Let yn,2 = εn(n − 1)/6 for the positive real number εn. Then, by rearranging (2.8), we have

Tn(εn) := ε2
n(1 − ε1/(n−2)

n ) =
6

(n − 1)2 . (2.9)

To show the existence of yn,2 that satisfies (2.8), it is sufficient to show that (2.9) has a solution. Note

that when Tn(1) = Tn(0) = 0. Moreover,

T ′n(ε) = 2ε(1 − ε1/(n−2)) − 1
n − 2

ε1+1/(n−2) .

Therefore, for ε ∈ (0, 1), according to the Taylor expansion, Tn(ε) = −(1 − ε)[2ε′(1 − (ε′)1/(n−2)) −
1

n−1ε
1+1/(n−2)] for some ε′ ∈ (ε, 1). We now consider An(ε) := Tn(ε)(n − 1)2. Then,

An(ε) = −(1 − ε)
[
2(ε′)(1 − (ε′)1/(n−2))(n − 1)2 − n − 1

n − 2
(n − 1)(ε′)1+1/(n−2)

]
.

From the Taylor expansion, (ε′)1/(n−2) = 1 − (1 − ε′)/(1 − n)[ε′′]1/(n−2)−1, where ε′′ ∈ (ε′, 1).

An(ε)/(n − 1) = −(1 − ε)ε′
[
2[ε′′]1/(n−2)

(
1 − ε′

ε′′

)
− (ε′)1/(n−2)

]
.

Since both [ε′]1/(n−2) and [ε′′]1/(n−2) converge to 1 as n → ∞, An(ε)/(n − 1) is positive with ε

sufficiently near 1. Thus, An/(n − 1) does not converge to 0. Therefore, An(ε) > 6 for sufficiently

large n. This finding implies that for sufficiently large n, Tn(ε) > 6/(n − 1)2 > Tn(1). Hence, a point
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2 Binary contribution to a discrete public good in a large population

in (ε, 1) that satisfies (2.9) exists.

This finding also implies that there exists yn,2 that satisfies (2.8) and yn,2 =
ε

6(n−1) for some

ε ∈ (0, 1). We now calculate limn→∞[1−P(yn,2)]n. Since P(yn,2) = 6
(n−1)2 , nP(yn,2) → 0. Therefore,

limn→∞[1 − P(yn,2)]n = 1. That is, the probability that no one contributes converges to one. Hence,

we conclude that there is an equilibrium such that the probability that the public good is provided

converges to zero. △

2.3.3 Comparative Statics

Based on the case of a finite number of players, Xu (2002) discusses the effect of increases at the

threshold, stating that the threshold effect can be either positive or negative. Indeed, Xu shows an

example that has two equilibria with the following properties. In one equilibrium, the probabilities that

both a public good is provided and a given player contributes decrease when the threshold increases.

In another equilibrium, however, the probabilities that both a public good is provided and a given

player contributes increase when the threshold increases. In Xu’s example, the number of players is

three. This section thus considers the threshold effect with a large number of players.

If h ⩾ 2 and

V
C
> eh−1 (h − 2)!

(h − 1)h−2

holds, as shown in Proposition 2.1, there exist three equilibria with sufficiently large n. Let ȳ = V/C.

By taking the logarithm of (2.4), we have

(h − 1) ln xh − xh = ln(h − 1)! − ln ȳ (2.10)

for some h. Let Th(x) = (h− 1) ln x − x and S(h) = ln(h− 1)!− ln ȳ . Note that Th is a concave single

peaked function of x and is maximized when x = h − 1. If h ⩾ 2, according to Proposition 2.1, the

number of xh that satisfies (2.10) is two. Let xL
h and xH

h be the two solutions and xL
h < xH

h . Then, we

find that xL
h < h − 1 < xH

h . Note that x is the expected number of contributors in the equilibrium. We

call the equilibrium in which the expected number of contributors converges to xH
h (resp. xL

h ) the high

contributing equilibrium (resp. low contributing equilibrium). When h = 1, since x1 > 0 = h − 1,

there is no low contributing equilibrium.
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2.4 Dynamic Provision Model

Increases at the threshold

Note that S(h) − S(h − 1) = ln(h − 1) and Th(x) − Th−1(x) = ln x. Therefore, S(h) − S(h − 1) >

Th(x) − Th−1(x) if and only if h − 1 > x. Since Th(xL
h ) = S(h) and xL

h < h − 1, Th−1(xL
h ) > S(h − 1).

In the same way, we have Th−1(xH
h ) < S(h − 1). Since Th−1(x) is decreasing when x > h − 1 and

xH
h−1 is the greatest solution of Th−1(x) = S(h − 1), xH

h−1 < xH
h . Since xL

h < xH
h , Th−1(xL

h ) > S(h − 1)

and Th−1(x) is increasing when x < h − 1, we have xL
h−1 < xL

h . Therefore, for each i ∈ {1, 2}, xi
h is

increasing in h.

Proposition 2.2. In each equilibrium, the expected number of contributors is increasing at the thresh-

old level.

Consider the probability that the public good is provided. We focus on the high contributing

equilibrium, in which the expected number of contributors is xH
h .

Proposition 2.3. Consider the high contributing equilibrium. Then, the probability that the public

good is provided is decreasing at the threshold level.

Increasing in the maximum valuation

This section considers the case of increasing in ȳ . Let Sh( ȳ) = ln(h − 1)! − ln ȳ . Note that Sh( ȳ) is

decreasing in ȳ . Let xL
h ( ȳ) and xH

h ( ȳ) be the numbers that satisfy Th(xL
h ( ȳ)) = Sh( ȳ) = Th(xH

h ( ȳ))

and xL
h ( ȳ) < xH

h ( ȳ). Since Th is concave, Th(x) is increasing when x ⩽ h − 1 and decreasing when

x ⩾ h − 1. Let y > ȳ . Note that Th(xL
h ( ȳ)) > Sh(y). Since x1

h( ȳ) ⩽ h − 1 and Th(x) is increasing,

xL
h (y) < xL

h ( ȳ). In the same way, we find that xH
h (y) > xH

h ( ȳ).

2.4 Dynamic Provision Model

This section considers the case that campaigners provoke players to contribute by announcing the

number of players who have already contributed. First, we consider a two-stage game. In the first

stage, players decide whether to contribute. In the second stage, with this knowledge about the

number of previous contributors, the players who did not contribute in the first stage decide whether to

contribute. If the threshold number of players contribute, the public good is provided, otherwise not.

In the previous section, if h ⩾ 2, the act of no player contributing was a trivial equilibrium. However,

in the dynamic model, the act of no player contributing is no longer an equilibrium.

17



2 Binary contribution to a discrete public good in a large population

Consider the case that h = 2 and a two-stage game. We show that the strategy profile that no one

contributes in the equilibrium path is not an equilibrium. Suppose, by contradiction, that the act of

no player contributing in either stage of equilibrium path is an equilibrium. Consider the behavior of

players in the second stage. Suppose that a player contributes in the first stage. Then, in the second

stage, if at least one player contributes, the public good is provided. Therefore, this is the same

situation as the static version of our game analyzed in the previous section. According to Corollary

2.1, if V is sufficiently large, the strategy profile that no one contributes is not an equilibrium. Thus, if

one player contributes in the first stage, the public good is provided with a positive probability. When

V is sufficiently large, the probability approaches 1. That is, in the second stage, there is an incentive to

contribute. Thus, when V is sufficiently large, in the first stage, one player’s contribution is sufficient

to provide the public good. This is also the same situation as in the static game when h = 1; thus, the

act of no player contributing is not an equilibrium.

The above discussion does not apply when h = 3 in our two-stage game, however. Consider the

behavior in the second stage. If two players contribute in the first stage, as in the above discussion,

the act of no player contributing is not an equilibrium. However, if the number of contributors in the

first stage is less than one, the act of no player contributing is still an equilibrium. Therefore, even if

a player contributes in the first stage, the probability that the public good is provided is 0. Thus, no

player has an incentive to deviate from the strategy profile that no one contributes in the first stage.

Therefore, the number of contributors in the first stage is 0; thus, the act of no player contributing in

the second stage is still an equilibrium.

This observation predicts that a player contributes with a positive probability in any equilibrium

path if and only if the number of stages is greater than or equal to the threshold, h.

We now formalize the above discussion for a finite stage game. Our T-stage game is described as

follows. Each player decides whether to contribute in each stage. If the number of contributors is no

less than h in stage T , the public good is provided in stage T . In each stage, each player is informed

of the number of contributors in the previous stages. Each player’s contribution is permanent and he

can contribute only once. Let δ ∈ (0, 1) be a discount factor common to all players. Suppose T and

h are finite numbers such that T ⩾ h. We first note that there exists a symmetric perfect Bayesian

equilibrium (PBE).

Proposition 2.4. Consider the T-stage model. Then, there exists a symmetric PBE.

We calculate the probability that the public good is provided. We prove the following proposition
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2.5 Threshold Uncertainty

by using mathematical induction.

Proposition 2.5. Consider the T-stage game. When T ⩾ h, in any symmetric PBE, the limiting

probability that the public good is provided is greater than 1 − h C
δT−1V

.

Note that in the low contributing equilibrium of the static case, the probability that the public good is

provided is 1−∑h−1
ℓ=0

(x)ℓ
ℓ! e−x , and x < h−1. Therefore, regardless of the value of C/V , the probability

that the public good is provided is strictly less than 1. Indeed, Example 4.2 shows an equilibrium

where C = 0 and the probability that the public good is provided converges to 0. However, in the

dynamic case, if C/V falls, the probability that the public good is provided arbitrarily approaches 1.

On the contrary, when T < h, the act of no player contributing in either stage is still an equilibrium.

Proposition 2.6. Consider the T-stage game. When T < h, there is a symmetric PBE where no one

contributes on the equilibrium path.

2.5 Threshold Uncertainty

The previous sections considered the case that if the threshold number of players contribute, the public

good is necessarily provided. However, in the real world, this is not always true. In this section,

we consider the case of an uncertain threshold. In this regard, we slightly generalize our model of

simultaneous moves. For each ℓ ∈ N, let Ω(ℓ) be the probability that the public good is provided

when the number of contributors is ℓ. We suppose that Ω is nondecreasing in the number of players

who contribute and there exists n̄ such that for each n ∈ N, Ω(n) ⩽ Ω(n̄). Let ψn(ℓ) be the probability

that only ℓ players contribute. Then, the best response is

q(v, c) = 1 if
v

c
⩾

1∑n̄
ℓ=1 ψ(ℓ − 1)[Ω(ℓ) −Ω(ℓ − 1)]

,

q(v, c) = 0 if
v

c
⩽

1∑n̄
ℓ=1 ψ(ℓ − 1)[Ω(ℓ) −Ω(ℓ − 1)]

.

As in the basic model, as the population goes to infinity, the proportion of players who contribute

converges to 0. Then, as the population goes to infinity, from the Poisson law of small numbers, there

exists x such that

C

V
ex =

n̄∑
ℓ=1

xℓ−1

(ℓ − 1)!
[Ω(ℓ) −Ω(ℓ − 1)]
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2 Binary contribution to a discrete public good in a large population

and x is the expected number of contributors at the limit.

Proposition 2.7. There is an equilibrium in which no one contributes for sufficiently large population

if and only if

1
Ω(1) −Ω(0)

⩾
V
C
.

There is an equilibrium in which a given player contributes with a positive probability if and only if

there is an x such that

V
C
=

1∑n̄
ℓ=1

xℓ−1

(ℓ−1)! e
−x[Ω(ℓ) −Ω(ℓ − 1)]

.

Moreover, the distribution of the number of contributors converges to a Poisson distribution with

parameter x.

2.6 Concluding Remarks

This study analyzes a private provision of a discrete public good model and calculates the asymptotic

probability that the public good is provided, which depends on the threshold, maximum valuation of

the public good, and minimum contribution cost among players. We show the monotonicity of the

expected number of contributors at the threshold. We also find that the probability that the public good

is provided decreases as the threshold increases. When the threshold number is above two, there is

an equilibrium in which no one contributes. However, if several opportunities to make a contribution

exist, and the number of opportunities is above the threshold level, we can calculate a lower bound of

the probability that the public good is provided that larger than zero.

In our model, we assume that each player knows preferences distribution, whereas it may not be

adequate since if there are sufficiently many population, by the law of large number, the government

knows players’ preferences. In this case, without using such systems, the government can deal with

the issue. Considering uncertainty in players’ preference distribution is left for the future works.
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Appendix

2.A Omitted Proofs

Proof of Lemma 2.1. To consider the case of h , 1, we verify whether the equilibrium in which

a player contributes exists by using the shape of function Γn,h. Since P(V/C) = 0, we find that

limy→V/C Γn,h(y) = ∞. Differentiating Γn,h(y) by y yields

dΓn,h(y)
dy

=
[P(y)]h−2[1 − P(y)]n−h−1P′(y)[(n − 1)P(y)] − (h − 1)

([1 − P(y)]n−h[P(y)]h−1)2
(h − 1)!(n − h)!

(n − 1)!
.

Since P(y) is decreasing, if (n − 1)P(y) − (h − 1) is positive, Γn,h(y) is increasing, while if it is

negative, Γn,h(y) is decreasing. From P(V/C) = 0 and h ⩾ 1, Γn,h(y) is single-dipped. The abscissa

of the vertex of graph Γn,h is y , which satisfies (n− 1)P(y) − (h− 1) = 0. Then, the coordinate of the

vertex is

(y, Γn,h(y)) =
(
P−1

(
n − h
n − 1

)
,

[(h − 1)!(n − h)!]/[(n − 1)!]
[(h − 1)/(n − 1)]h−1[(n − h)/(n − 1)]n−h .

)

A larger h makes a larger abscissa P−1(h − 1/n − 1).9 We thus establish a sufficient condition that no

one contributes in the equilibrium.

If inequality (2.2) holds, for any y, y′,

y < V/C < Γn,h(y′). (2.11)

According to the best response, q(v, c) = 0 is the dominant strategy. Therefore, no one contributes in

the equilibrium. □

9 Palfrey and Rosenthal (1984) show this property under complete information with a mixed strategy.
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2 Binary contribution to a discrete public good in a large population

Proof of Lemma 2.2. Recall that for each y ,

Γn,h(y) ⩾
(n − 1)n−1

(h − 1)h−1(n − h)n−h

(h − 1)!(n − h)!
(n − 1)!

.

Let

A(n, h) :=
(n − 1)n−1

(h − 1)h−1(n − h)n−h

(h − 1)!(n − h)!
(n − 1)!

.

Computing the ratio between A(n, h) and A(n, h − 1) yields

A(n, h)
A(n, h − 1)

=
(h − 2)h−2(n − h + 1)n−h+1

(h − 1)h−1(n − h)n−h

(h − 1)!(n − h)!
(h − 2)!(n − h + 1)!

=

(
h − 2
h − 1

)h−2 (
n − h + 1

n − h

)n−h

.

Then, taking a limit of it yields

lim
n→∞

A(n, h)
A(n, h − 1)

=

(
h − 2
h − 1

)h−2
e.

Note that A(n, 1) = 1 for each n. Then, limn→∞ A(n, 2) = e. By induction, for each h, A(n, h)

converges to eh−1 (h−2)!
(h−1)h−2 . Let A(h) be the convergent.

Suppose that V/C < A(h); then, with sufficiently large n, Γn,h ⩾ A(h) and thus, there is no fixed

point with a sufficiently large population.

Suppose that V/C > A(h). Recall that Γn,h is minimized at P−1((n − h)/(n − 1)). Note that

limn→∞ Γn,h(P−1((n − h)/(n − 1))) = A(h), and P−1((n − h)/(n − 1)) → V/C. Note also that

limn→∞ Γn,h(0) = ∞. Thus, the intermediate value theorem implies that a fixed point of Γn,h exists

with sufficiently large n. □

Proof of Proposition 2.1. (i) Rearranging the equilibrium condition yields

(1 − P(yn,h))n−h =
1

yn,h[P(yn,h)]h−1
(h − 1)!(n − h)!

(n − 1)!
.

Suppose that each Γn,h has a fixed point. Without loss of generality, we assume that P(yn,h)(n− 1) →

x ∈ R+ ∪ {∞}. Then, (1 − P(yn,h))n−h → 1/ex and

1
yn,h[P(yn,h)]h−1

(h − 1)!(n − h)!
(n − 1)!

→ (h − 1)!
y

1
xh−1 .
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Thus, x satisfies

1
ex =

(h − 1)!
y

1
xh−1 .

By taking the logarithm, we have

(h − 1) ln x − x = ln(h − 1)! − ln y.

Suppose that x = 0. Then, the LHS diverges to −∞, whereas the RHS is finite (i.e., a contradiction).

Suppose that x = ∞. Then, the LHS diverges to −∞, which, again, is a contradiction. Thus, x is a

positive real number, which implies that {P(yn)(n − 1)}n is a bounded sequence. Therefore, it has a

convergent. Without loss of generality, we assume that {P(yn)(n − 1)}n converges. Let T (x) := (h −

1) ln x−x, which is concave and maximized at x = h−1. Note that limx→0 T (x) = limx→∞ T (x) = −∞.

Therefore, if (h − 1) ln(h − 1) − (h − 1) > ln(h − 1)! − ln y , equation T (x) = ln(h − 1)! − ln y has

exactly two solutions when h > 1 and has exactly one solution when h = 1. Rearranging the condition

yields

y > eh−1 (h − 2)!
(h − 1)h−2 .

This condition is always satisfied when Γn,h has a fixed point with sufficiently large n. We now

calculate the probability that the public good is provided. The probability that ℓ players contribute to

the public good is

n!
ℓ!(n − ℓ)!

[P(yn,h)]ℓ[1 − P(yn,h)]n−ℓ .

Since (n − 1)P(yn,h) → x, the probability that the number of contributors is ℓ converges to

lim
n→∞

n!
ℓ!(n − ℓ)!

[P(yn,h)]ℓ[1 − P(yn,h)]n−ℓ =
xℓ

ℓ!
1
ex .

To show the latter part of (i), let x be the solution of (2.4). Take an ε > 0 sufficiently small such
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2 Binary contribution to a discrete public good in a large population

that

T (x + ε) > ln(h − 1)! − ln y > T (x − ε) or

T (x + ε) < ln(h − 1)! − ln y < T (x − ε).

Define yn and y
n

such that

nPr(yn ⩽ v/c) = x + ε

nPr(y
n
⩽ v/c) = x − ε

According to the definition of T and given that both yn and y
n

converge to y with sufficiently large n,

we have either of the following:

Γn,h(yn) > yn and Γn,h(y
n
) < y

n
or

Γn,h(yn) < yn and Γn,h(y
n
) > y

n
.

Therefore, according to the intermediate theorem, fixed point y∗n ∈ (yn, yn
) exists. From this

definition, with sufficiently large n, nP(y∗n ) ∈ (x − ε, x + ε). Then, letting ε → 0 implies that

nP(y∗n ) → x, which concludes the proof.

(ii) This case is a corollary of Lemma 2.2. □

Proof of Corollary 2.3. Since the case for h = 1 is shown in Corollary 2.2, consider the case for

h ⩾ 2. As in the case of V < ∞ or C > 0, the fixed point of Γn,h characterizes the equilibria. If Γn,h has

no fixed point, the probability that the public good is provided is 0. Let A = {n : ∃y s.t. Γn,h(y) = y }.

Suppose that |A| < ∞. This implies that there exists n̄ such that for each n > n̄ and Γn,h(y) , y for

each y .

Suppose that |A| = ∞. Note that {nP(yn,h)}n∈A has a convergent subsequence or subsequence

that diverges to infinity. Without loss of generality, we assume that {nP(yn,h)}n∈A converges to

x ∈ R+ ∪ {∞}. If x = ∞, the sequence diverges to infinity.

Suppose that x < (0,∞). Since {nP(yn,h)}n∈A converges, P(yn,h) → 0. Therefore, according to the
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Poisson law of small numbers, (1 − P(yn,h))n−h → 1/ex . Therefore, from the definition of yn,h,

lim
n→∞

yn,h = lim
n→∞

1
[P(yn,h)]h−1[1 − P(yn,h)]n−h

(h − 1)!(n − h)!
(n − 1)!

=
ex

xh−1 (h − 1)!.

On the contrary, since P(yn,h) → 0, yn,h → V/C = ∞; thus, x cannot in (0,∞). Therefore, x = 0 or

x = ∞. Note that the limit of the probability that the number of contributors is less than h is
∑h−1
ℓ=0

xℓ
ℓ!

1
ex .

If x = 0,
∑h−1
ℓ=0

xℓ
ℓ!

1
ex = 1, which implies that the probability that the public good is provided converges

to 0. If x = ∞,
∑h−1
ℓ=0

xℓ
ℓ!

1
ex = 0, which implies that the probability that the public good is provided

converges to 1. □

Proof of Proposition 2.3. Let πh be the probability that the public good is provided when the threshold

is h, that is,

πh = 1 −
h−1∑
ℓ=0

(xH
h )ℓ

ℓ!
1

exH
h

.

Note that xH
h satisfies (h−1)!ex

H
h

(xH
h

)h−1 = ȳ . Therefore,

πh+1 − πh =
1
ȳ

[
1 + (h − 1)(xH

h )−1 + (h − 1)(h − 2)(xH
h )−2 + · · · + (h − 1)!(xH

h )−h+1

−1 − h(xH
h+1)−1 − h(h − 1)(xH

h+1)−2 − · · · − h!(xH
h+1)−h+1 − h!(xH

h+1)−h
]
.

To prove πh+1 < πh, we prepare

Lemma 2.3. For each h ⩾ 1, (h − 1)xH
h+1 < hxH

h .

Proof of Lemma 2.3. Note that when h = 1, this inequality is always satisfied. Consider the case of

h ⩾ 2. To show this, consider Th+1((h/(h − 1))xH
h ) − S(h + 1). By using Th(xH

h ) − S(h) = 0, this is
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2 Binary contribution to a discrete public good in a large population

calculated as

Th+1((h/(h − 1))xH
h ) − S(h + 1) = h ln(h/(h − 1))xH

h − (h/(h − 1))xH
h − ln h! + ln ȳ

= h ln h − h ln(h − 1) + h ln xH
h − xH

h −
1

h − 1
xH

h − ln h! + ln ȳ

= (h − 1) ln h − h ln(h − 1) + ln xH
h − ln(h − 1) − 1

h − 1
xH

h

= (h − 1) ln h − (h + 1) ln(h − 1) + ln xH
h −

1
h − 1

xH
h .

Since xH
h > h − 1, for each h ⩾ 2, ln xH

h −
1

h−1 xH
h < ln(h − 1) − 1

h−1 (h − 1). Thus,

Th+1((h/(h − 1))xH
h ) − S(h + 1) < (h − 1) ln h − h ln(h − 1) − 1.

Note that (h − 1) ln h − h ln(h − 1) is decreasing in h. This is because

(h − 1) ln h − h ln(h − 1) − [h ln(h + 1) − (h + 1) ln h] = h(2 ln h − ln(h + 1) − ln(h − 1)] ⩽ 0.

Note also that ln 2 − 2 ln 1 − 1 = ln 2 − 1 < 0. Thus, Th+1((h/(h − 1))xH
h ) − S(h + 1). Note

that since xH
h > h − 1, (h/(h − 1))xH

h > h. Therefore, Th+1((h/(h − 1))xH
h ) is decreasing. Since

Th+1(xH
h+1) − S(h + 1) = 0, xH

h+1 < (h/(h − 1))xH
h . □

From Lemma 2.3, we have (h− 1)xH
h+1 < hxH

h . This also implies that for each ℓ < h, (ℓ − 1)xH
h+1 <

ℓxH
h . This implies that πh+1 < πh. □

Proof of Proposition 2.4. Let ℓτ = (0, ℓ1, . . . , ℓτ−1) be the history of contributors in the previous

periods before stage τ. Let pn,τ (ℓτ) be the conditional probability that a given player contributes in

stage τ when the history of contributors is ℓτ. Let ρ = (pn,τ (ℓτ))τ∈{1,...,T },ℓt∈{ℓt−1,...,n}τ ∈ [0, 1]M be

given, where M is some integer.

Consider player i’s behavior in stage τ. We consider the equilibrium such that if players are

indifferent between contributing and not contributing, they do not contribute. Let Rn,τ (ℓ) be the

probability that the public good is provided when ℓ players contributed at the beginning of stage τ.

Let ψn,τ,ℓτ (ℓ − ℓτ−1) be the probability that ℓ − ℓτ−1 players contribute in stage τ when the history of
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the number of contributors is ℓτ. Then, player i’s expected utility of contributing in stage τ is


h−1∑

ℓ=ℓτ−1

ψn,τ,ℓτ (ℓ − ℓτ−1)Rn,τ+1(ℓ + 1) +
∑
ℓ⩾h

ψn,τ,ℓτ (ℓ − ℓτ−1)
 δT−τvi − ci .

Let Sτ (ℓτ) be the set of available continuation strategies after stage τ when the history of contributors

is ℓτ. Since the numbers of players and stages are finite, there exists M ∈ N such that Sτ (ℓτ) = [0, 1]M .

Let q(t, ℓ′ | s) be the conditional probability that the player contributes after being induced by strategy

s ∈ Sτ (ℓ) in period t when the number of contributors is ℓ′ ⩾ ℓ. Note that for each s ∈ Sτ (ℓτ),

s = (q(t, ℓ′ | s))t⩾τ,ℓ′⩾ℓτ−1 .

For each s ∈ Sτ (ℓτ), let P(s) be the probability that the public good is provided and Qt (s) be the

probability that player i contributes in stage t after being induced by strategy s and given ρ. Note that

P(s) and Qt (s) are the sums and products of the elements of s and ρ.

Then, the expected utility of employing strategy s is

P(s)δT−τvi −
T∑

t=τ+1
Qt (s)δt−τci .

Let

Aτ =


h−1∑
ℓ=ℓτ−1

ψn,τ,ℓτ (ℓ − ℓτ−1)Rn,τ+1(ℓ + 1) +
∑
ℓ⩾h

ψn,τ,ℓτ (ℓ − ℓτ−1)
 .

Then, player i contributes in stage τ only if for each s ∈ Sτ (ℓ),

(Aτ − P(s))δT−τ vi
ci
⩾ 1 −

T∑
t=τ+1

Qt (s)δt−τ > 0. (2.12)

The following set is the set of valuations at which player i who has not contributed contributes in stage

τ.

VCτ (ℓτ) :=
 vici
∈ Y : (Aτ − P(s))δT−τ vi

ci
⩾ 1 −

T∑
t=τ+1

Qt (s)δt−τ for all s ∈ Sτ (ℓτ)
 ,

where Y = [min{V/C,V/C},V/C]. We show that VCτ (ℓτ) is a closed interval or empty set.

Note that if |Aτ − P(s) | is sufficiently small, since vi/ci is bounded, no vi/ci satisfies (2.12).
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2 Binary contribution to a discrete public good in a large population

Therefore, there exists ε > 0 such that for some s, if |Aτ − P(s) | < ε, each player does not contribute.

In this case, VCτ (ℓτ) = ∅.

If Aτ − P(s) ⩾ 0 for some s ∈ Sτ (ℓτ) and Aτ − P(s) ⩽ 0 for some s, each player does not contribute

and thus, VCτ (ℓτ) = ∅.

If Aτ − P(s) ⩾ ε for each s ∈ Sτ (ℓτ), player i contributes in stage τ if and only if

vi
ci
⩾ sup

s∈Sτ (ℓτ )

1 −∑T
t=τ+1 Qt (s)δt−τ

δT−τ (Aτ − P(s))
.

If Aτ − P(s) ⩽ −ε for each s ∈ Sτ (ℓτ), player i contributes in stage τ if and only if

vi
ci
⩽ inf

s∈Sτ (ℓτ )

1 −∑T
t=τ+1 Qt (s)δt−τ

δT−τ (Aτ − P(s))
.

In each case, VCτ (ℓτ) is a closed interval.

Using, VCτ (ℓτ) the probability that a given remaining player contributes is

pn,τ (ℓτ) =

∫ ∫
v/c∈VCτ (ℓ)\[∪t<τ VCt (ℓt )] f (v | c)g(c) dv dc∫ ∫
v/c∈Y\[∪t<τ VCt (ℓt )] f (v | c)g(c) dv dc

, (2.13)

and this is the equilibrium condition for the probability that a given player contributes in stage τ when

the number of contributors is ℓ. Note that since Aτ < 1 and P(s) < 1, (δ − 1, 1 − δ) 1 VCt (ℓt ) for

each t and ℓt . This implies that in any equilibrium path, there is a player who does not contribute with

a positive probability and thus, Y \ [
∪

t<τ VCt (ℓt )] , ∅. Therefore, the RHS of (2.13) is well defined.

This fact also implies that in any off equilibrium path, there is a player who contributes, however, this

player is now nonactive and thus, it brings no effect on the belief to the remaining players.

We now show that the RHS of (2.13) is continuous in ρ. Note that since mins∈Sτ (ℓ) 1−∑T
t=τ+1 Qt (s)δt−τ >

0, Aτ − P(s) → 0 for some s,
∫ ∫

VCτ (ℓτ ) f (v | c)g(c) dv dc → 0. Thus, pn,τ (ℓ) is continuous around

Aτ − P(s) = 0 for some s. Suppose that there exists ε > 0 such that Aτ − P(s) ⩾ ε for each s. Since

Aτ, P(s) and Qt (s) are the sums and products of the elements of s, they are continuous in s. Since

Sτ (ℓτ) is finite (and thus, compact),

sup
s∈Sτ (ℓτ )

1 −∑T
t=τ+1 Qt (s)δt−τ

δT−τ (Aτ − P(s))
= max

s∈Sτ (ℓτ )

1 −∑T
t=τ+1 Qt (s)δt−τ

δT−τ (Aτ − P(s))
. (2.14)

Then, according to the maximum theorem, the above equation is continuous in ρ. In the same way, if
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there exists ε > 0 such that Aτ − P(s) ⩽ −ε for each s,

inf
s∈Sτ (ℓτ )

1 −∑T
t=τ+1 Qt (s)δt−τ

δT−τ (Aτ − P(s))
= min

s∈Sτ (ℓτ )

1 −∑T
t=τ+1 Qt (s)δt−τ

δT−τ (Aτ − P(s))

is continuous in ρ.

Since VCτ (ℓτ) is an interval and its endpoints are continuous in ρ, pn,τ (ℓ) is also continuous in ρ.

Then, (pn,τ (ℓτ)) is a continuous function of ρ and ρ = (pn,τ (ℓτ)). Therefore, according to Brouwer’s

fixed point theorem, a fixed point exists. The fixed point (pn,τ (ℓτ))τ∈{1,...,T },ℓτ is an equilibrium. □

Proof of Proposition 2.5. First, when T = 1 ⩾ h = 1, according to Corollary 2.1, the probability

converges to 1 − C/V . Second, we show the following.

Lemma 2.4. When T = m ⩾ 1 and h = 1, as population goes to infinity, the limit of the probability

that at least one player contributes is greater than 1 − C/δT−1V .

Proof. Consider player i’s behavior in the first stage, in which his expected utility of contributing is

δT−1vi − ci, while that of not contributing in any stage is

[1 − Ψn,1(0) + Ψn,1(0)R−i
n,2(0)]δT−1vi,

where Ψn,1(0) is the probability that no one contributes in the first stage and R−i
n,2(0) is the probability

that another player contributes after the first stage when no one contributes in the first stage. Therefore,

player i contributes only if

δT−1 vi
ci
⩾

1
Ψn,1(0)(1 − R−i

n,2(0))
.

Therefore, in the second stage, if no player contributes in the first stage, each player updates his

information such that for each j ∈ N ,

δT−1 v j

c j
⩽

1
Ψn,1(0)(1 − R−i

n,2(0))
.

Let pn,τ be the probability that a given player contributes in stage τ in the equilibrium. Since pn,τ is a

bounded sequence and has a convergent subsequence, we assume that pn,τ → xτ. If xτ > 0 for some
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2 Binary contribution to a discrete public good in a large population

τ, Ψn,τ (0) → 0; that is, at least one player contributes in stage τ ∈ {1, . . . ,T }. Thus, the probability

that the public good is provided converges to 1.

Suppose that xτ = 0 for each τ. This implies that for each ε > 0, for each player i such that

vi/ci < V/C − ε prefers not contributing to contributing in each stage τ for sufficiently large n.

Therefore, at the limit,

δT−1 V
C
⩽

1
limn→∞ Ψn,1(0)(1 − R−i

n,2(0))
.

Rearranging the above inequality yields

lim
n→∞

1 − Ψn,1(0)(1 − R−i
n,2(0)) ⩾ 1 −

C

δT−1V
.

The RHS is the probability that at least one player contributes in this game, which concludes the

proof. □

We consider the case that T ⩾ h. To show this, as an induction assumption, we suppose that for

each T ′ and h such that h ⩽ m, T ′ < T and m ⩽ T , the probability that the public good is provided is

greater than 1 − mC/[δT ′−1V ]. We now consider the case that h = m + 1.

Consider player i’s behavior in the first stage. As in the proof of the case that h = 2, we consider a

contributor in the first stage. Let Rn,τ (ℓ) be the probability that the public good is provided when ℓ

players have contributed at the beginning of stage τ. Let R−i
n,τ (ℓ) also be the probability that the public

good is provided when ℓ players have contributed at the beginning of stage τ but player i does not

contribute in either stage.

Since player i contributes in stage τ only when his expected payoff of contributing in stage τ is

higher than that of not contributing in either stage, we have


h−1∑

ℓ=ℓτ−1

ψn,τ,ℓτ (ℓ)Rn,τ+1,ℓτ (ℓτ + ℓ + 1) +
∑
ℓ⩾h

ψn,τ,ℓτ (ℓ)
 δT−τvi − ci

⩾


h−1∑
ℓ=0

ψn,τ,ℓτ (ℓ)R−i
n,τ+1,ℓτ (ℓτ + ℓ + 1) +

∑
ℓ⩾h

ψn,τ,ℓτ (ℓ)
 δT−τvi .

Lemma 2.5. For each τ and ℓ, pn,τ (ℓτ) → 0.

Proof. Suppose that lim supn→∞ pn,τ (ℓτ) > 0 for some τ and ℓτ. Then, since h is finite, according the
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law of large numbers,
∑
ℓ⩾h ψn,τ,ℓτ (ℓ) → 1. Therefore,

h−1∑
ℓ=ℓτ−1

ψn,τ,ℓτ (ℓ)Rn,τ+1,ℓτ (ℓτ + ℓ + 1) +
∑
ℓ⩾h

ψn,τ,ℓτ (ℓ) → 1

h−1∑
ℓ=0

ψn,τ,ℓτ (ℓ)R−i
n,τ+1,ℓτ (ℓτ + ℓ + 1) +

∑
ℓ⩾h

ψn,τ,ℓτ (ℓ) → 1,

which implies that for each vi and ci,

lim
n→∞


h−1∑

ℓ=ℓτ−1

ψn,τ,ℓτ (ℓ)Rn,τ+1,ℓτ (ℓτ + ℓ + 1) +
∑
ℓ⩾h

ψn,τ,ℓτ (ℓ)
 δT−τvi − ci

< lim
n→∞


h−1∑
ℓ=0

ψn,τ,ℓτ (ℓ)R−i
n,τ+1,ℓτ (ℓτ + ℓ + 1) +

∑
ℓ⩾h

ψn,τ,ℓτ (ℓ)
 δT−τvi .

Thus, pn,τ (ℓτ) = 0 for sufficiently large n, which is a contradiction. □

This lemma implies that for each ε > 0, for each player i such that vi/ci < V/C − ε prefers not

contributing to contributing in each stage τ for sufficiently large n. This implies


h−1∑
ℓ=0

ψn,1(ℓ)Rn,2(ℓ + 1) +
∑
ℓ⩾h

ψn,1(ℓ)
 − ci

δT−1vi
⩽


h−1∑
ℓ=0

ψn,1(ℓ)R−i
n,2(ℓ) +

∑
ℓ⩾h

ψn,1(ℓ)
 , (2.15)

for each v/c ⩽ V/C − ε. Recall that for each ε > 0, there exists n ∈ N such that player i does not

contribute when vi/ci < V/C− ε. Therefore, we can see the second stage as the first stage of the T −1-

stage game and the supremum of each player’s v/c is V/C when n → ∞. According to the induction

assumption, for each ℓ ⩾ 0, lim infn→∞ Rn,2(ℓ+1) ⩾ 1− (h−ℓ−1)C/[δT−2V ] ⩾ 1− (h−1)C/[δT−1V ].

Thus, from (2.15), we have

1 − h
C

δT−1V
⩽ lim

n→∞


h−1∑
ℓ=0

ψn,1(ℓ)R−i
n,2(ℓ) +

∑
ℓ⩾h

ψn,1(ℓ)


Note that R−i
n,1(0) = limn→∞

∑h−1
ℓ=0 ψn,1(ℓ)R−i

n,2(ℓ) +
∑
ℓ⩾h ψn,1(ℓ). Further, Rn,1(0) is the ex-ante

probability that the public good is provided. Thus, it is sufficient to show that limn→∞ Rn,1(0) = R−i
n,1(0).

We now show that limn→∞ R−i
n,τ (ℓ) = limn→∞ Rn,τ (ℓ) for each τ and ℓ.

Let pn,τ (ℓ) be the probability that a given player contributes in stage τ when ℓ players contribute

31



2 Binary contribution to a discrete public good in a large population

before stage τ. Let ψn,τ,ℓ (ℓ′ − ℓ) =
(

n−ℓ−1
ℓ′−ℓ

)
[pn,τ (ℓ)]ℓ′−ℓ[1 − pn,τ (ℓ)]n−1−ℓ′. This is the probability that

exactly ℓ′ − ℓ players contribute in stage τ. Now, Rn,τ (ℓ) and R−i
n,τ (ℓ) are calculated as

Rn,τ (ℓ) =
h−1∑
ℓ′=ℓ

ψn,τ,ℓ (ℓ′ − ℓ)[pn,τ (ℓ)Rn,τ+1(ℓ′ + 1) + (1 − pn,τ (ℓ))Rn,τ+1(ℓ′)]

+
∑
ℓ′=h

(1 − pn,τ (ℓ))ψn,τ,ℓ′ (ℓ′ − ℓ) + pn,τ (ℓ)ψn,τ,ℓ′ (ℓ′ − ℓ − 1)

Rn,T (ℓ) =
∑
ℓ′=h

(1 − pn,T (ℓ))ψn,T,ℓ′ (ℓ′ − ℓ) + pn,T (ℓ)ψn,T,ℓ′ (ℓ′ − ℓ − 1)

R−i
n,τ (ℓ) =

h−1∑
ℓ′=ℓ

ψn,τ,ℓ (ℓ′ − ℓ)R−i
n,τ+1(ℓ′) +

∑
ℓ′=h

ψn,τ,ℓ′ (ℓ′ − ℓ)

R−i
n,T (ℓ) =

∑
ℓ′=h

ψn,T,ℓ′ (ℓ′ − ℓ).

When τ = T , since limn→∞ pn,T (ℓ) = 0. Then, R−i
n,T (ℓ) = Rn,T (ℓ).

From the induction assumption, suppose that for each τ > k, limn→∞ R−i
n,τ (ℓ) = limn→∞ Rn,τ (ℓ).

Consider the case that τ = k. Since limn→∞ pn,k (ℓ) = 0,

lim
n→∞

Rn,k (ℓ) = lim
n→∞

h−1∑
ℓ′=ℓ

ψk,ℓ (ℓ′ − ℓ)[Rn,k+1(ℓ′)] +
∑
ℓ′=h

ψℓ′ (ℓ′ − ℓ).

According to the induction assumption, we have limn→∞ Rn,k+1(ℓ′) = limn→∞ R−i
n,k+1(ℓ′). □

Proof of Proposition 2.6. Consider the following strategy: Let ℓt be the number of contributors at

period t. If ℓτ < h − (T − τ + 1) for each τ < t, then each player does not contribute at period t.

Otherwise, there exists t′ < t such that ℓt ′ ⩾ h − (T − t′ + 1). If ℓt ′ ⩾ h, each player has nothing to do.

Otherwise, each player plays a symmetric PBE of the game with period T − t′ with threshold being

h − (T − t′ + 1). The existence is guaranteed by Proposition 2.4. In this case we assume that each

player has the initial belief for other players.

Consider the path followed by this strategy profile. In the first period, since T > h, h−(T−1+1) > 0.

Thus, no one contributes (i.e., the number of contributors is zero). Since h − (T − t + 1) is increasing

in t, in each period, no one contributes. Then, the public good is not provided on path.

We now check this strategy profile is a PBE. Consider a path such that ℓτ < h − (T − τ + 1)

for each τ < t. If a player deviates to contribute at this period, ℓt = ℓt−1 + 1. However, since

ℓt−1 < h− (T − (t − 1) + 1), ℓt = ℓt−1 + 1 < h− (T − t + 1) is satisfied and thus, in period t + 1, no one
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contributes. This fact implies that after period t + 1, no one contributes. Then, the total number of

contributors failed to reach the threshold and thus, the public good is also not provided. This implies

that the contributing player’s payoff is strictly worse off. Therefore, the strategy is an equilibrium.

Consider the other case: there exists t′ < t such that ℓt ′ ⩾ h − (T − t′ + 1). If t − 1 = t′, since each

player has the initial belief, the strategy is a PBE by definition. After the period, the strategy is also a

PBE by the definition. □

Proof of Proposition 2.7. As in the basic model, let yn be the cutoff point; hence, a given player

contributes if and only if vi/ci > yn. Let P(yn) =
∫
yn<v/c

f (v | c)g(c) dv dc and then,

ψn(ℓ) =
(
n − 1
ℓ

) (
P(yn)

)ℓ (
1 − P(yn)

)n−1−ℓ .

Let Γ̃n(yn) satisfy

Γ̃n(yn) =
1∑n̄

ℓ=1 ψ(ℓ − 1)[Ω(ℓ) −Ω(ℓ − 1)]
.

Then, the equilibrium cutoff point is yn = Γn(yn) := min{G(yn),V/C}. Since Γn(yn) is a continuous

function, according to Brouwer’s fixed point theorem, a yn satisfies the above condition.

We first show that lim infn yn ⩾ V/C. If not, since P(yn) > 0, for each ℓ, lim supn ψn(ℓ) = 0.

Therefore, Γ̃n(yn) → ∞ and thus, with sufficiently large n, yn ⩾ V/C, which is a contradiction.

Therefore, P(yn) → 0. We next show that nP(yn) is bounded above. To show this, suppose, by

contradiction, that there is an equilibrium sequence that nP(yn) → ∞. Let xn = nP(yn). Then,

ψn(ℓ) ≈ 1
ℓ! (xn)ℓe−xn and thus, ψn(ℓ) → 0. This implies that with sufficiently large n, yn > V/C and

thus P(yn) = 0, which contradicts to nP(yn) → ∞. Without loss of generality, nP(yn) → x ⩾ 0.

Then, limn ψn(ℓ) = 1
ℓ! (x)ℓe−x . Thus, since limn yn = V/C, at the limit,

V
C
= min


1∑n̄

ℓ=1
xℓ−1

(ℓ−1)! e
−x[Ω(ℓ) −Ω(ℓ − 1)]

,
V
C

 .
Note that x is the expected number of contributors. Therefore, there is an equilibrium in which no one
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2 Binary contribution to a discrete public good in a large population

contributes at the limit if and only if

1
Ω(1) −Ω(0)

⩾
V
C
.

In the same way, there is an equilibrium in which a given player contributes with a positive probability

if and only if there is an x such that

V
C
=

1∑n̄
ℓ=1

xℓ−1

(ℓ−1)! e
−x[Ω(ℓ) −Ω(ℓ − 1)]

.

Since nP(yn) → x, the distribution of the number of contributors converges to a Poisson distribution

with parameter x. □
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3 Optimal signature requirements for

initiatives1

3.1 Introduction

In addition to traditional representative democracy as a means of social decision making, some

subnational regions and countries (e.g., many countries in Europe, several states in the United States,

and local governments in Japan) adopt forms of direct democracy such as initiatives and referendums.2

Under these systems, they can request new laws to be enacted or preexisting ones to be repealed if

campaigners gather signatures from a predetermined proportion of citizens. Typically, when the

required signatures are collected, a citizens’ referendum is held to decide whether to approve the

proposal.

The primary purpose of the signature requirement is to prevent citizens from overusing initiatives.3

With a too low requirement, many proposals gather the required number of signatures, although most

of them will be rejected in the referendum or legislature’s decision stage. Indeed, in Switzerland,

which needs 100,000 signatures for constitutional initiatives (about 2% of the registered voters), about

150 laws gathered the required signatures from 1893 to 2003, whereas only 15 laws were accepted

in citizens’ referenda.45 This observation suggests that many unpopular laws gather the required

1 The author is deeply grateful to Eiichi Miyagawa, Yoshikatsu Tatamitani, Takashi Shimizu and Masahiro Ashiya,
who provided carefully considered feedback and valuable comments that significantly contributed to improving the quality
of this work. Any errors in this paper are the author’s own. The author also thanks financial support from JSPS KAKENHI
Grant Number 14J05350.

2 Initiatives are requests by ordinary citizens to enact a new law, and referendums are requests to repeal a preexisting
law (Matsusaka, 2005).

3 Ellis (2003), p.44.
4 Kaufmann and Waters (2004).
5 As another example, in Japan, where the signature requirement is also 2% of the registered voters, only 10% of

petitions that gather the required signatures are approved (Ministry of Internal Affairs and Communication of Japan,
2014).
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3 Optimal signature requirements for initiatives

signatures, which may be a social cost as it requires holding a referendum on a law that will be

rejected. However, with a too high requirement, no campaigner can gather the required number of

signatures as it is too costly, and thus initiative will not used.6 The optimal requirement should balance

the tradeoff.

By considering the tradeoff, this study examines the optimal signature requirement and its properties.

We characterize the optimal signature requirement by citizens’ preference distribution and the social

cost of holding a referendum. The preference distribution and social costs are different place to

place, and so is the optimal requirement that balances the tradeoff. Indeed, in the real world, while

the requirement is about 2% in Switzerland and Japan,7, in US states, it ranges from 2% to 15%.

Moreover, different requirements are also imposed on different types of laws. In US states, signature

requirements for statutes are typically higher than those for constitutional amendments. We also study

which types of countries or laws need high signature requirements for initiatives.

In the present study, we construct a three-stage model of the initiative system based on signature

collection. There are n citizens and one campaigner. In stage 1, the campaigner chooses the size

of a campaign that determines the probability that a given citizen has a chance to sign. In stage 2,

each citizen meets the campaigner with a positive probability determined by the size of the campaign.

Citizens who meet a campaigner decide whether to sign. If λn signatures are gathered (where

0 < λ < 1), then the game moves to stage 3, where the citizens’ referendum decides whether to enact

the law.

Each citizen has a valuation for the law that is known to himself but not to others. The distribution

of citizens’ valuations for the law has several states that determine the number of supporters for the

law. We focus on a case in which there are only two states: good and bad. In the good state, more than

half of the citizens are favorable toward the law, while in the bad state, more than half of the voters

are opposed. The true state is assumed to be unknown to any citizen.

We assume that the campaigner profits from not only enacting the law but also gathering the

required signatures. As an example, it is a feeling of fulfillment. Interest groups may consider that

collecting sufficient signatures publicizes their activities, which also becomes the motivation. As

another example, if the campaigner employs a signature-gathering firm for the campaign, the profit of

6 Indeed, Arnold and Freier (2015) empirically show the negative relation between signature requirements and citizens’
initiative use.

7 In Japan, the requirement for requests of enacting new bylaws is 2%, whereas that for recalling heads of the local
government and members of municipal councils is 1/3 of the registered voters.
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gathering the required signatures is a reputation concern. This is because, if the firm fails to gather

required signature, even when the law is unpopular, since no one knows the true valuation distribution,

some potential campaigners see the firm as a bad firm, which loses a future profit. In reality, many

campaign employs signature-gathering firms.8 These stories justify our assumption.

Now we consider the campaigner’s and citizens’ behaviors. No matter which state of the law has

been realized, as each citizen knows his valuation, the citizen votes for the law if and only if he supports

the law. Therefore, if the required signatures are gathered, the law is enacted in the referendum stage

if and only if over half of the voters approve the law to be enacted.

In the signing stage, on the other hand, even though both signing and not signing are costless,

the condition that the required signatures are gathered is somewhat different from the voting stage.

This is because the campaigner can control the number of citizens who meet the campaigner, which

may also partially control the number of gathered signatures. Therefore, if the signature requirement

is sufficiently small, even when the law is opposed by most citizens, the campaign can collect the

required signatures.

Therefore, we need to find a signature requirement so that the campaigner gathers signatures only for

the law with the good state but gives up gathering signatures for the law with the bad state. If signing

and not signing are costless, the citizen signs if and only if he is favorable toward the law. Then, the

law of the bad state requires a large-scale campaign to gather the required signatures, which is more

costly for the campaigner. Therefore, with the requirement being in a certain range, the campaigner

gives up gathering the required signatures for the law with the bad state and tries to gather signatures

for the law with the good state, which is socially desirable. Thus, we can find the optimal requirement

in the range. Consider the minimum value of the range. Taking into account the campaigner’s cost,

the value is the optimal requirement.

Based on the above discussion, the gap in the number of gathered signatures is large when the gap

in the number of supporters between the good and bad states is large. Therefore, in this case, a lower

requirement is needed for the campaigner to give up gathering signatures for the law with the bad state.

This implies that the optimal requirement is low when the gap in the number of supporters between the

good and bad states is large. Such a situation is likely when the uncertainty in the distribution of the

citizens’ valuation is large. This result may suggest that the optimal requirement is high for the issues

where citizens have solid opinions. Our result may also suggest that the optimal requirement is low

8 Ellis (2002, 2003).

39



3 Optimal signature requirements for initiatives

for countries in which citizens’ preferences are diverse and high requirement is optimal for countries

with relatively homogeneous citizens.

Among US states, the requirement is low (less or equal to 8%) in California, Colorado, Idaho,

Florida, Massachusetts, Missouri, North Dakota, Oregon, Washington, etc. On the other hand,

the requirement is high (over or equal to 10%) in Alaska, Arizona, Maine, Mississippi, Nevada,

Utah, Wyoming, etc. From this observation, in relatively populous states (excluding Arizona), the

requirement is low, while in less populous states (excluding Idaho, North Dakota, and Oregon),

the requirement is high. The population is sometimes used as an index of uncertainty in citizens’

preferences.9 Our result may partly explain this fact.

We extend our basic model to allow continuous state case. We first show that the citizens’ welfare

is an inverted V shape of the requirements. Therefore, when the campaigner’s profit from the enacted

law is sufficiently large, there exists a requirement where the campaigner makes campaign size the

socially optimal level. On the other hand, when the campaigner’s profit from the enacted law is low,

the requirement where campaigning and not campaigning is indifferent for the campaigner is optimal.

We also show the similar results to our basic model. Under some condition, when the variance of the

popularity of the law increases, the optimal requirement declines.

As an application of characterization result, we consider a reform of signature-gathering process;

banning paid campaigners. Banning paid campaigners is an often suggested but rarely realized

reform.10 This reform is aimed at preventing well-financed campaigner gathering too much signatures

for their favorite law. Employing paid campaigners makes it easy to collect much signatures by

increasing efficiency of the campaign. Then, unpopular law may be more likely to get qualified. Our

question is whether banning paid petitioners improves the welfare when the requirement is optimally

chosen. When employing paid campaigners is banned, cost of campaigning increases and then,

campaigns are rarely conducted. Therefore, the optimal requirement declines, which may increases

the possibility that unpopular laws are qualified. We understand banning paid petitioners is a decline

in efficiency of campaign, that is an increase in campaigning cost. We show that an increase in the

campaigning cost reduces the citizens welfare.

As another interpretation of banning paid petitioner is a fall in the profit of gathering the required

signatures. This is a source of inefficiency of campaign since the campaigner has an incentive to

9 For example, see Matsusaka and McCarty (2001).
10 See for example Ellis (2002, 2003); Hoesly (2005).
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campaign for unpopular laws. Indeed, if there is no such profit, unpopular laws cannot qualified. On

the other hand, if the regulation is incomplete, such profits may remain. A small reduction of the

profit of gathering the required signatures has the same effect of increases in the cost, which implies

that it reduces the welfare. We conclude that incomplete regulation reduces the citizens’ welfare.

The above discussion depends on the assumption that both signing and not signing are costless.

However, in reality, signing is costly. More importantly, as citizens are asked to sign in front of

campaigners, some citizens may incur a cost to refuse a signature. These costs may be small compared

to the importance of the law at issue, but so is the effect of each citizen’s action.

In this case, with a sufficiently large population, the signature-gathering stage may not work well.

As the population goes to infinity, the probability of a citizen’s action being pivotal converges to zero.

Thus, if the population is large enough, a citizen’s decision making is determined solely by the cost of

signing and that of refusing to sign. That is, a citizen signs if and only if refusing is more costly than

signing. Therefore, the required signatures are gathered if and only if λ is less than the proportion of

citizens who meet the campaigner and for whom the refusal cost exceeds the signing cost. Therefore,

citizens’ valuation for the law has nothing to do with the outcome of the signing stage in the limit.

However, if the population is finite, citizens’ valuation for the law still has a relation with the

outcome of the signing stage.

As in the case of costless signing and not signing, we focus on the gap in the probability that a given

citizen signs for the law in either the good or the bad state. We show that this gap is large if either (1)

the difference of supporters among the realizable states is large, (2) the difference between the costs

of signing and refusing a signature is small, or (3) the absolute value of citizens’ valuation for the

law is large. Case (1) is the same result as obtained in the case of costless signing and not signing.

Cases (2) and (3) are specific to the costly interaction case. The reason for case (2) is as follows.

Note that if signing and not signing are costly, in addition to the valuation for the law, each citizen

also considers the difference between the costs of deciding whether to sign or not. If the difference

is small, each citizen can decide whether to sign more freely, which enlarges the gap in the gathered

signatures between popular and unpopular laws. Case (2) suggests another reform that prevents bad

laws from gathering the required signatures without raising the signature requirement, that is, reducing

the cost of signing and refusing a signature. The reason for case (3) is similar to that of case (2): If

the absolute value of citizens’ valuation for enacting the law is large, then citizens are likely to have

greater interest in whether to enact the law or not. Then, each citizen takes the decision of whether
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to or not sign more seriously, even when it is costly. This case is more likely for important laws such

as constitutions rather than ordinal policies, which are typically imposed higher requirements in US

states. Our study may suggest that lower requirement should be imposed for such laws.

3.2 Related Literature

To the best of the author’s knowledge, no existing literature studies signature-gathering campaigns

theoretically. As theoretical studies of initiatives, Gerber (1996) and Matsusaka and McCarty (2001)

consider theoretical models of initiatives in which the law is determined in equilibrium in a dynamic

game between the legislature and an interest group. Many other studies such as Besley and Coate

(2008) and Gregor and Smith (2012) also consider theoretical models of initiatives. However, these

works do not describe the process of signature collection explicitly. They assume that the interest

group can always collect enough signatures by paying a fixed cost. The present paper introduces

the process of signature collection explicitly into the game, in which the cost of collecting sufficient

signatures is determined endogenously.

As empirical studies of signature requirements, Matsusaka and McCarty (2001) and Arnold and

Freier (2015) provide empirical evidence that higher requirement has a negative effect on citizens’

initiative use.

Signing is similar to voting in majority voting (see Ledyard, 1981, 1984, Palfrey and Rosenthal,

1983, 1985, Bögers, 2004, and Krishna and Morgan, 2015 for reviews of this problem). If voting is

costless, then only the majority-supported law is enacted. Krishna and Morgan (2015) show that if

voting is costly, the result of majority voting maximizes a utilitarian social welfare. Related to their

results, this study also shows that under some assumptions, more signatures are gathered if enacting

the law improves a social welfare, whereas fewer signatures are gathered if the law reduces a social

welfare. This result also relates to that of probabilistic voting in which two candidates compete for an

office by setting their platform, and each voter has an ideological bias toward the candidates, which

is independent of the voter’s valuation for the platform.11 In this model, both candidates choose the

policy that maximizes a utilitarian social welfare, as both attempt to convince swing voters (i.e., voters

who have less bias) to vote for them. In our model, the costs of signing and refusing a signature are

similar to the ideological bias for candidates in the probabilistic voting model.12
11 For example, see Lindbeck and Weibull (1987), Persson and Tabellini (1999), and so on.
12 It is also known that in a costly voting, there is an equivalent probabilistic voting model that presents similar results
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Our model is also similar to the private provision of a discrete public good (Palfrey and Rosenthal,

1984), as signing is considered a contribution to a discrete public good. The cost of signing is

considered as a contribution cost, and the cost of refusing a signature is considered as a warm-glow to

the campaign.13 The main difference between this model and ours is that we introduce a referendum

stage after the required signatures are gathered and the campaigner’s decision stage.

An initiative based on signature collection is similar to a referendum with a turnout threshold, in

which the voting outcome is valid only if the voter turnout exceeds a predetermined threshold. If the

turnout falls short of the threshold, the status quo is maintained (see Aguiar-Conraria and Magalhães,

2010; Hizen and Shinmyo, 2011).

3.3 Model

There are many citizens and one campaigner. Let N be the set of citizens. The game is described as

follows:

1. The campaigner decides the size of the campaign m ∈ [0, 1). Setting m = 0 indicates that the

campaigner does not conduct a campaign.

2. A given citizen has a chance to sign (meet the campaigner) with probability m ∈ (0, 1). This

probability is referred to as meeting probability. A citizen who meets a campaigner decides

whether to sign or not.

3. If over a fraction λ [λ ∈ (0, 1)] of citizens sign, a petition goes to a citizens’ referendum. In the

referendum, all citizens decide to vote for or against the law. Voting is assumed to be costless.

The law is enacted if and only if a majority of citizens vote for the law.

Each citizen i has a valuation for the enacted law, which is denoted by vi ∈ R. This value is distributed

by an absolutely continuous distribution function Vπ. Here, π is the unknown parameter that describes

the popularity of the law, referred to as the state of the law. Let Π be the set of realizable states and

p(π) be the probability that π ∈ Π is realized. Assume that
∫
|v | dVπ (v) < ∞ for each π. We further

assume that each Vπ has the same support (V,V ).

to those of the costly voting model (Kamada and Kojima, 2013).
13 Hindriks and Pancs (2002) and Makris (2009) consider this problem of allowing warm-glow contributors and

investigate the group-size effect and free-riding incentives.
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The campaigner has a valuation vC > 0 for enacting the law and β ⩾ 0 for gathering the required

signatures. An example of the utility of gathering the required signatures, β, is the feeling of fulfillment.

As another example, if the campaigner employs a signature-gathering firm for the campaign,14 the firm

may care for its reputation. That is, if the firm fails to gather the required signatures, the firm may be

seen as a bad firm as the popularity of the law is not directly observable by others. This motivates the

firm to gather the required signatures even when the law is unpopular. The cost of campaigning with

the meeting probability being m is C(m), where C is strictly increasing, convex, and C(0) = 0. We

further assume that C(m) is twice continuously differentiable at each m > 0. Moreover, to simplify the

discussion, we avoid a corner solution m = 1 by assuming that C′(1) is sufficiently large.15 The cost of

the campaign is allowed to be discontinuous at zero, which may imply that campaigning needs a fixed

cost.16 For example, there may be a deposit for the campaign and a cost of looking for cooperators,

volunteers, paid petitioners, and so on.17 Lastly, we assume that holding a referendum costs K > 0.

3.4 Benchmark Case

As a benchmark case, we assume that both signing and not signing are costless. For simplicity, we

further assume that the set of citizens is a continuum on (V,V ). We consider the case that Π = {g, b},

where 1 − Vg (0) > 1/2 > 1 − Vb(0). Then, the law that gathers sufficient signatures is enacted if and

only if the realized state is g. In the signing stage, as both signing and not signing are costless, and

each citizen knows his valuation for the law, the citizen signs if and only if vi > 0. Then, m[1−Vπ (0)]

is the ratio of citizens who sign. The expected utility of campaigner is given by

U (m, λ) =


−C(m) if m < λ

1−Vg (0)

(vC + β)p − C(m) if m ∈
[

λ
1−Vg (0),

λ
1−Vb (0)

)
vC p + β − C(m) if m ⩾ λ

1−Vb (0),

14 In the US, it is common for a special interest group to employ a firm to gather signatures (see, for example, Ellis,
2002, 2003).

15 For example, if C(m) = am/(1 − m) + b, a > 0.b ⩾ 0, C ′(1) = ∞.
16 Fixed cost is defined by limm→0 C(m).
17 For example, some states in the US require a deposit to conduct a campaign for initiatives (See http://www.

iandrinstitute.org/docs/A_Comparison_of_Statewide_IandR_Processes.pdf).
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where p = p(g). Therefore, the optimal campaign size for the campaigner is

m∗ =



0 if


0 ⩾ (vC + β)p − C
(

λ
1−Vg (0)

)
0 ⩾ vC p + β − C

(
λ

1−Vb (0)

)
λ

1−Vg (0) if


(vC + β)p − C
(

λ
1−Vg (0)

)
⩾ 0

C
(

λ
1−Vb (0)

)
− C

(
λ

1−Vg (0)

)
⩾ (1 − p) β

λ
1−Vb (0) if


vC p + β − C

(
λ

1−Vb (0)

)
⩾ 0

(1 − p) β ⩾ C
(

λ
1−Vb (0)

)
− C

(
λ

1−Vg (0)

)
.

We now consider the optimal requirement to maximize social welfare. Let v̄π =
∫
v dVπ (v ) be the

social welfare from the law. Assume that v̄g − K > 0 > v̄b. Then, it is socially optimal to enforce the

campaigner to choose m∗ = λ/[1 − Vg (0)]. To do so, the requirement λ needs to satisfy

(vC + β)p − C
(

λ

1 − Vg (0)

)
⩾ 0, (3.1)

C
(

λ

1 − Vb(0)

)
− C

(
λ

1 − Vg (0)

)
⩾ (1 − p) β. (3.2)

The constraint (3.1) is individual rationality and (3.2) is incentive compatibility. We consider the

minimum λ that satisfies the above conditions as the optimal requirement. If we consider the cam-

paigner’s utility into social welfare and if the weight on the campaigner is sufficiently small, such λ is

optimal. Putting a small weight on the campaigner may be justified as the campaigner is only a small

portion of the citizens.

The first condition is satisfied when λ is sufficiently small since σ−1
g (λ) = λ/[1 − Vg (K/p)].

Differentiating C
(

λ
1−Vb (0)

)
− C

(
λ

1−Vg (0)

)
by λ yields the following:

C′
(

λ
1−Vb (0)

)
1 − Vb(0)

−
C′

(
λ

1−Vg (0)

)
1 − Vg (0)

.

Note that the above equation is positive since C is an increasing convex function and 1 − Vg (0) >

1 − Vb(0). Therefore, C
(

λ
1−Vb (0)

)
− C

(
λ

1−Vg (0)

)
is increasing in λ. Let λ∗ satisfy C

(
λ∗

1−Vb (0)

)
−

C
(

λ∗

1−Vg (0)

)
= (1 − p) β. Based on the above discussion, this value λ∗ is uniquely determined if it

exists. If λ∗ exists and (vC + β)p−C
(

λ∗

1−Vg (0)

)
⩾ 0, then, the first best action is enforceable. However,
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if λ∗ does not exist or (vC + β)p − C
(

λ∗

1−Vg (0)

)
< 0, the campaigner gives up gathering signatures. In

this case, we consider the second best action. We consider two cases: (1) pv̄g > K . Here, it is optimal

to hold the referendum at any time. Thus, λ = 0 is the second best solution. (2) pv̄g < K . Here,

holding a referendum is too costly for the law. Therefore, λ = 1 is the second best solution.

In each case, the signature-gathering campaign does not make any sense. In case (1), if the

government can hold a referendum by itself, such laws cannot be sent to the signing stage. Case

(2) presents the same situation in which initiatives are not allowed. The following summarizes this

discussion.

Result 3.1. Let λ∗ solve C
(

λ∗

1−Vb (0)

)
− C

(
λ∗

1−Vg (0)

)
= (1 − p) β if it exists. Then, if λ∗ exists and

(vC + β)p − C
(

λ∗

1−Vg (0)

)
⩾ 0, the optimal requirement is λ∗. Otherwise, (1) if pv̄g > K , it is optimal

to hold a referendum without a signature-gathering campaign, or (2) if pv̄g < K , not allowing a

signature-gathering campaign is optimal.

Now, we consider the question of which types of laws need high requirement. To answer this

question, we see the effect of 1 − Vg (0) and 1 − Vb(0) on the optimal requirement. To simplify the

notation, let g = 1 − Vg (0) and b = 1 − Vb(0), which are the ratios of the supporters of the law for

each state. As Proposition 3.1 shows, if it is an interior solution, the optimal requirement satisfies

C(λ∗(g, b)/b) − C(λ∗(g, b)/g) = (1 − p) β. By differentiating both sides of this equation, we can

easily check the following results.

Result 3.2. For each g, b, such that v̄g > K > v̄b and g > 1/2 > b, ∂λ∗∂g < 0 and ∂λ∗

∂b > 0.

This result indicates that the optimal requirement λ∗ increases as |g − b| decreases. This is because,

as g and b approach each other, the number of gathered signatures in each state also approach each

other. Thus, higher requirement is needed for the campaigner to give up gathering the required

signatures for the bad state.

3.5 Continuum states of the law

In the previous section, we assume that the set of possible states of the law Π contains only two

states. This section considers that Π contains more elements; Π is a continuum. We assume that

Π = (0, 1) and p is the probability measure (cumulative distribution function) onΠ.18 We also assume
18 We can show the following results if Π is an open interval (π, π) ⊂ (0, 1) that contains 1/2.
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that p is twice continuously differentiable at the support. To simplify the notation, we assume that

π = 1 − Vπ (0). Then, the expected utility of campaigner is given by

U (m, λ) =


−C(m) if m ⩽ λ

(vC + β)
∫ 1
λ/m dp(π) − C(m) if m ∈ (λ, 2λ]

(vC + β)P + β
∫ 1/2
λ/m dp(π) − C(m) if m > 2λ,

where P =
∫

1/2 dp(π). Note that for each λ > 0, U (m, λ) is continuous at each m > 0. Note also

that U (0, λ) > U (m, λ) for each m < λ. Therefore, the optimal meeting probability m is one of the

following: (i) m = 0 or (ii) m ∈ [λ, 1] that maximizes U (m, λ). Let m∗(λ) be the global optimum and

m∗∗(λ) be the solution to problem (ii). Since U (m, λ) is continuous in m, m∗(λ) and m∗∗(λ) exist for

each λ.

To determine the campaigner’s action uniquely, we assume the following.

Assumption 3.1. If U (m, λ) = U (m′, λ) ⩾ U (m′′, λ) for each m′′ ∈ [0, 1] and for some m,m′ ∈ [0, 1]

such that m > m′, the campaigner takes m.

The following assumption ensures that there is a requirement level under which the campaigner has

an incentive to conduct a campaign.

Assumption 3.2. limm→0 C(m) < vC P + β.

To see this, consider m =
√
λ. Note that limλ→0 U (

√
λ, λ) = vC P + β − limλ→0 C(

√
λ) > 0. Thus,

for some λ > 0, campaigning is optimal for the campaigner.

To characterize how the chosen meeting probability varies as the requirement λ increases, we show

the following.

Lemma 3.1. Under Assumptions 3.1 and 3.2,

(1) there exists λ̄ such that for each λ > λ̄, m∗(λ) = 0 and each λ ⩽ λ̄, m∗(λ) = m∗∗(λ).

(2) λ/m∗(λ) is nondecreasing in λ.

By using Lemma 3.1, we can calculate the optimal signature requirement to maximize social

welfare. To simplify the discussion, unlike in the previous subsection, we ignore the campaigner’s

utility. Furthermore, we also assume the following.

Assumption 3.3. The social welfare from the law v̄π is continuous and increasing in π and v̄1 > K >

v̄1/2.
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Assumption 3.4. p′′(π)π + p′(π) ⩾ 0 for each π ∈ [0, 1].

Assumption 3.3 ensures the existence of the optimal threshold of the state. Calculating the expected

social welfare yields

SW(λ) =


0 if m∗(λ) = 0∫
λ/m∗(λ)[v̄π − K] dp(π) if m∗(λ) ⩽ 2λ∫
1/2 v̄π dp(π) −

∫ 1
λ/m∗(λ) K dp(π) if m∗(λ) > 2λ.

Then, by Assumption 3.3, the first best is setting λ so that v̄λ/m∗(λ) = K . Let πK satisfy v̄πK = K .

Assumption 3.4 makes the characterization of the optimal requirement easy as seen later.19

We now characterize the optimal requirement. Consider the case that there exists λ such that

λ/m∗(λ) = πK . Then, setting λ that satisfies λ/m∗(λ) = πK is optimal. If not, we consider the

second best. Let λ∗K satisfy m∗∗(λ∗K ) = πK/λ
∗
K if it exists. As setting λ/m∗(λ) = πK is not feasible,

U (m∗∗(λ∗K ), λ∗K ) < 0 or there is no such λ∗K . The following lemma shows that the latter case is

impossible.

Lemma 3.2. Under Assumption 3.4, there exists λ∗K such that m∗∗(λ∗K ) = πK/λ
∗
K .

Therefore, we consider the former case, that is, U (m∗∗(λ∗K ), λ∗K ) < 0. Since λ/m∗∗(λ) is increasing

in λ and by Lemma 3.1, there exists λ̄ such that U (m∗∗(λ̄), λ̄) = 0 and πK > λ̄/m∗∗(λ̄). If λ < λ̄,

with larger λ, λ/m∗∗(λ) is smaller, and therefore SW(λ) is increasing in λ. If SW(λ̄) > 0, then λ = λ̄

is optimal. This is a standard way in the contract theory that extracts all profit from the campaigner.

If SW(λ̄) ⩽ 0, not allowing the signature-gathering campaign is optimal.

3.5.1 Comparative statics

Now, we consider the question of when is the requirement λ large. To answer this question, we

compare two probability measures on distribution p and p̂ that satisfy the following conditions: (i) p

and p̂ has the same mean and (ii) p′ crosses p̂′ exactly twice; that is, there exists π1, π2 ∈ (0, 1) such

that π1 < π2 for each π ∈ (0, 1) if π ∈ (π1, π2), p′(π) > p̂′(π), and p′(π) ⩽ p̂′(π) otherwise.

This condition implies that p̂ puts heavier weight on the tails. Indeed, one can show that p̂ is a mean

preserving spread of p, which implies that the variance of p̂ is higher than that of p. One can also
19 For example, if the probability measure has nondecreasing density, Assumption 3.4 is satisfied.
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density

π
0

p̂′

p′

π1 π2

Figure 3.1: Example of density functions satisfying conditions (i) and (ii).

show that p̂ crosses p exactly once; that is, there exists π̂ ∈ (π1, π2) such that if π < π̂, p̂(π) > p(π),

and p(π) ⩾ p̂(π) otherwise. Figure 3.1 illustrates an example.

Let λ∗ and λ̂∗ be the optimal requirement for p and p̂, respectively, and let m∗ and m̂∗ be the best

response for p and p̂, respectively. In the case that Π = {g, b}, we have shown that with more extreme

states of the law, less requirement is needed. We can show a similar result under some conditions.

Proposition 3.1. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Moreover, suppose that

allowing a signature-gathering campaign is optimal. Then,

(1) suppose that πK ∈ (π1, π2), and λ∗/m∗(λ) = λ̂∗/m̂∗(λ̂∗) = πK . Then, λ∗ ⩾ λ̂∗.

(2) assume π̂ ⩾ 1/2, and suppose that λ∗/m∗(λ) < π̂ and λ̂∗/m̂∗(λ̂∗) < π̂. Then, λ∗ ⩾ λ̂∗.

(3) assume π̂ ⩾ 1/2, and suppose that λ∗/m∗(λ) > π̂ and λ̂∗/m̂∗(λ̂∗) > π̂. Then, λ∗ ⩽ λ̂∗.

The logic underlying this proposition is different from the two states case. Consider the case that

the government can enforce the campaigner to set m that satisfies λ/m∗(λ) = πK . If πK ∈ (π1, π2),

the law faces relatively moderate opinion. If the probability measure is p, the density around πK is

higher than if the probability measure is p̂, and the campaigner makes much more effort to meet the

citizens. Thus, for p, a higher requirement is needed.

Consider the case that the government set λ to satisfy U (m, λ) = 0. In this case, λ/m∗(λ) <

πK . If λ/m < π̂, the campaigner’s expected payoff is higher when the probability measure is p.

Therefore, the government can reduce the campaigner’s payoff by raising λ. By doing this, as shown

in Lemma 3.1, λ/m becomes higher, which improves citizens’ welfare. If λ/m > π̂, the converse

holds; the campaigner’s expected payoff is higher when the probability measure is p̂. Therefore, in

this case, raising the requirement is optimal when p changes to p̂. However, if πK ⩽ π̂, the latter case

is impossible since λ∗/m∗(λ∗) ⩽ πK for each optimal requirement λ. Even when πK > π̂, if πK is

sufficiently close to π̂, the latter case hardly holds. Now, it is a question of when the above condition

is likely to hold. We say that p̂ is a median preserving spread of p if x̂ is a median of p and p̂.20
20 See Malamud and Torojani (2009) for the formal definition and properties.
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Assume that p̂ is a median preserving spread of p. Then, if the median of p is greater than 1/2 and K

is sufficiently small,21 π̂ > πK holds, and thus we can say that λ > λ̂.

On the contrary, as seen above, if the median of p is sufficiently small, β is sufficiently large, and

the difference, supx |p(x) − p̂(x) |, is so small that π̂ < λ∗/m∗(λ∗), π̂ < λ̂∗/m̂∗(λ̂∗), and the converse

relation holds: λ̂ > λ.

3.5.2 Banning paid petitioners

In the literature, as a reform plan of the initiative process, banning of paid petitioners has been proposed

as paid petitioners enable wealthy interest groups to gather the required signatures easily.22 However,

banning paid petitioners would make an initiative campaign too costly, and, thus, few campaigns

would be conducted. To cope with this problem, there is a need for lowering the requirement, which

will increase initiative campaigns. The question is whether banning paid petitioners and setting the

requirement optimally improves the social welfare. To answer this, let the cost function be kC(m). The

parameter k represents the efficiency of the campaign; small k implies that the campaign is efficient.

Banning paid petitioners implies a decline in the efficiency of the campaign, that is, in our term, an

increase in k. Thus, for this purpose, we see the effect of k.

Let m∗k (λ) be the best response of the campaigner to the requirement when the efficiency parameter of

the cost function is k. Let λ∗k be the socially optimal threshold. Consider the case that λ∗k/m
∗(λ∗k ) = πK .

In this case, since the first best is achieved, the social welfare cannot be improved. Consider the case

that λ∗k/m
∗(λ∗k ) < πK . Especially, focus on the case that λ∗k/m

∗(λ∗k ) , 1/2.23 In this case, we show

that an increase in k reduces the social welfare.

Proposition 3.2. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold, allowing the signature-

gathering campaign to be optimal, and λ∗k/m
∗(λ∗k ) < πK .

(1) Suppose that U (m∗(λ∗k ), λ∗k ) > U (2λ∗k, λ
∗
k ). Then, dλ∗

k
/m∗

k
(λ∗

k
)

dk ⩽ 0 if and only if
[

C ′(m)
C(m)/m

]′
⩾ 0

at m = m∗k (λ∗k ).

(2) Suppose that m∗(λ∗k ) = 2λ∗k and U (m, λ∗k ) < U (2λ∗k, λ
∗
k ) for each m , 2λ∗k , dλ∗

k
/m∗

k
(λ∗

k
)

dk = 0.

Note that C ′(m)
C(m)/m is the ratio of the marginal cost to the average cost. An intuitive explanation of (1)

is the following. The requirement λ is determined by zero profit condition, and λ is decreasing in the
21 In many US states, the referendum cost K is considered small as referendums are held at the same time as elections.
22 See, for example, Ellis (2002) and Hoesly (2005).
23 If λ∗

k
/m∗(λ∗

k
) = 1/2, as the second statement of the following proposition shows, dλ∗

k
/m∗

k
(λ∗

k
)

dk = 0.
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average cost. The campaign size m is determined by the first order condition, and m is decreasing in

the marginal cost. Therefore, λ/m is the fraction of decreasing functions of the average and marginal

cost. A decline in efficiency of the campaign decreases campaign size m, which decreases both of the

average and marginal cost. Therefore, if the fraction of the marginal and average costs is increasing

in m, a decline in efficiency of the campaign increases the fraction of the average and marginal costs.

Since λ/m is a decreasing relation of it, a decline in efficiency decreases λ/m.

We verify when C ′(m)
C(m)/m is increasing. At a glance, since C ⩾ 0 ,C′ ⩾ 0 and C′′ ⩾ 0, this inequality

is satisfied if C(m)/m > C′(m); that is, the average cost exceeds the marginal cost. If there is a fixed

cost to start a campaign, this condition is likely to be satisfied. As a concrete example, increasing

linear functions and increasing convex quadratic functions satisfy the condition. As another example,

C(m) = a m
1−m + b, a > 0, b > 0 also satisfies the condition.

In each case, therefore, a decline in the efficiency of a campaign decreases the social welfare.

To conclude, we interpret the banning of paid petitioners to be a decline in the efficiency of the

campaign. We have examined two cases: When the first best is achieved, banning paid petitioners

cannot improve the social welfare. Moreover, if the campaigner gathers the required signatures over

the socially optimal level [i.e., λ∗k/m
∗
k (λ∗k ) < πK ], banning paid petitioners may reduce the social

welfare (depending on the shape of the cost function).

On the other hand, as another interpretation, banning paid petitioner is also considered to be a

decline in the motivation of gathering the required signatures, namely β. This is because, β can

be considered as a reputation concern for signature-gathering firms. However, this case is similar

to the decline in the efficiency of campaigns. If vC = 0, the profit function of the campaigner is

(vC + β)P + β
[∫ 1/2
λ/m dp(π)

]
−C(m), which is equivalent to

[
P +

∫ 1/2
λ/m dp(π)

]
− (1/β)[C(m) − vC].

Therefore, a decline in β is equivalent to a decline in the efficiency of the campaign.

Corollary 3.1. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold, allowing the signature-gathering

campaign to be optimal, and λ∗k/m
∗(λ∗k ) < πK .

Suppose that U (m∗(λ∗), λ∗) > U (2λ∗, λ∗). Then, dλ∗/m∗(λ∗)
dβ ⩾ 0 if and only if

[
C ′(m)

(C(m)−vC )/m

]′
⩾ 0

at m = m∗(λ∗).

Therefore, if vC is sufficiently small and fixed cost is sufficiently high, a small decline in β reduces

the citizens’ welfare. The motivation of gathering required signature is a cause of inefficiency of

signature gathering campaign. However, when the requirement is optimally chosen, an incomplete

reduction of the motivation may reduce the citizens’ welfare.
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3.6 Costly Interaction with the Campaigner

In the previous section, we assume that both signing and not signing are costless. However, in the real

world, both signing and refusing a signature may be costly. This section considers the real-world case.

Precisely, we assume that when a given citizen meets the campaigner, the citizen incurs a cost cs
i if he

signs, whereas the citizen also incurs a cost cr
i if he refuses to sign. Let ci = cs

i − cr
i . The value ci is

distributed by a differentiable distribution function, H (·). Assume that the derivative of H is bounded.

Furthermore, while in the previous section, we assume that the set of citizens is a continuum, in this

section, we assume that the set of citizens is N = {1, . . . , n} to consider the cost of signing and not

signing. Without loss of generality, we assume that n is an odd number.

3.6.1 Equilibrium in the signing stage

This section considers the equilibrium of the signing and referendum stages. Let m > 0 be fixed. We

first consider the referendum stage. Let Dn,π (vi) be the belief of citizen i at the signing stage about

the probability that the given law is enacted in the referendum when the realized state is π. As each

citizen’s valuation for the law is a private value and voting is costless, each citizen votes for the law if

and only if it is favorable for that citizen. Therefore,24

Dn,π (vi) =


D+n,π :=
∑

k⩾(n−1)/2
(

n−1
k

)
[1 − Vπ (0)]k[Vπ (0)]n−k−1 if vi > 0

D−n,π :=
∑

k⩾(n−1)/2+1
(

n−1
k

)
[1 − Vπ (0)]k[Vπ (0)]n−k−1 if vi ⩽ 0.

A given citizen signs if and only if25

∑
π∈Π

p(π)[Dn,π (vi)Pr(number of signatures by others ⩾ h − 1)]vi − cs
i >∑

π∈Π
p(π)[Dn,π (vi)Pr(number of signatures by others ⩾ h)]vi − cr

i .

Equivalently, a given citizen signs if and only if

∑
π∈Π

p(π)[Dn,π (vi)Pr(number of signatures by others = h − 1)]vi > (cs
i − cr

i ).

24 Without loss of generality, we assume that the citizen whose valuation for the law is 0 votes against the law.
25 Without loss of generality, we also assume that if signing and not signing are indifferent, the citizen does not sign.

52



3.6 Costly Interaction with the Campaigner

Let the probability that a given citizen signs when state π is realized be σπ. Then,

σπ′ = Fα
π′ (σ) := m

∫
H

(
E[Dn,π (vi)

(
n − 1
h − 1

)
σh−1
π (1 − σπ)n−h]vi

)
dVπ′ (vi),

where α summarizes the parameters. Since Fα := (Fα
π )π∈Π is a continuous function of (σπ) ∈ [0, 1]|Π |

and Fα : [0, 1]|Π | → [0, 1]|Π |, it has a fixed pointσ∗π (α), which constructs a symmetric perfect Bayesian

Nash equilibrium (PBE).

The following proposition shows that if the population goes to infinity, the limiting probability that

a given citizen signs is irrelevant to the citizens’ valuation for the law.

Proposition 3.3. Consider a symmetric PBE. Let σπ (n) be the probability that a given citizen signs

when the population is n. Then, for each π ∈ Π, limn→∞ σπ (n) = mH (0).

Proposition 3.3 suggests that the citizens’ valuation for the law is irrelevant to the outcome of the

signature-gathering process. By this result, if the population is large enough, not allowing the initiative

to conduct the signature-gathering campaign is optimal. However, this result only holds in the limit.

The following section considers a finite population case.

3.6.2 Signature-gathering campaign in a finite population

This section considers a finite population and shows the relation between the realized preference

distribution and number of gathered signatures. To see detailed properties, we specify the set of

potential distributions of valuations, Π. We assume the following.

Assumption 3.5. For each π ∈ Π, there exists a continuously differentiable distributionΦ that satisfies

(1) symmetric at 0 and (2) V ′π (v )/Φ′(v ) is monotone in v .26

Under Assumption 3.5, as the likelihood ratio dominance implies first-order stochastic dominance,

1−Vπ (0) > 1/2 and
∫
v dVπ (v) > 0 if V ′π (v )/Φ′(v ) is nondecreasing and if V ′π (v)/Φ′(v) is nonincreas-

ing, the converses hold. Let Π+ := {π ∈ Π : 1 − Vπ (0) > 1/2} and Π− := {π ∈ Π : 1 − Vπ (0) < 1/2}.

As discussed above, under Assumption 3.5, Π = Π+ ∪ Π−.

To simplify the discussion, we assume that D+n,π = D−n,π = 1 for each π ∈ Π+ and D+n,π = D−n,π =

0 for each π ∈ Π−. This assumption is justified when the population is sufficiently large as an
26 Formally, a distribution function F is symmetric at v0 if F ′(v0 + v) = F ′(v0 − v ) for each v .
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approximation.27 Then, there exists χ such that citizen i signs if and only if χvi > ci, where χ is

defined as

χ = Gm(σ) :=
∑
π∈Π+

[
p(π)

(
n − 1
h − 1

)
σh−1
π′ (1 − σπ′)n−h

]
.

Then, the probability that a given citizen signs is

σπ ( χ) = Γπ ( χ,m) = m
∫

H
(
χvi

)
dVπ′ (vi).

Note that
∑
π∈Π+

[
p(π)

(
n−1
h−1

)
σh−1
π′ (1 − σπ′)n−h

]
is bounded above by Σ :=

(
n−1
h−1

)
, G(σ(·)) : [0, Σ] →

[0, Σ] is a continuous self mapping of χ. Therefore it has a fixed point, which constructs an equilibrium.

The following lemma shows the basic property of the equilibrium in the signing stage, which is used

for comparative statics.

Lemma 3.3. Assume Assumption 3.5 and D+n,π = D−n,π = 1 for each π ∈ Π+ and D+n,π = D−n,π = 0 for

each π ∈ Π−. Suppose that H has a probability density function that is symmetric at 0. Then, in any

symmetric PBE, ∂Γπ∂ χ ( χ,m) ⩾ 0 for each χ,m if π ∈ Π+ and otherwise ∂Γπ
∂ χ ( χ,m) ⩽ 0 for each χ,m.

Moreover, for the probability that a given citizen signs, σα
π , σα

π > mH (0) if and only if π ∈ Π+.

3.6.3 Gaps in gathered signatures

We now go back to the campaigner’s problem. To do this, we summarize the equilibrium of the signing

stage. Let σ∗π (m, h) be the probability that a given citizen signs in the equilibrium of the signing stage.

In the signing stage, the equilibrium may not be unique. In this case, we employ the equilibrium in

which the cutoff point is maximized among the equilibrium cutoff points. Let us call this equilibrium

the maximum equilibrium. The following lemma states that the maximum equilibrium exists.

Lemma 3.4. Suppose that each citizen considers that D+n,π = D−n,π = 1 for each π ∈ Π+ and

D+n,π = D−n,π = 0 for each π ∈ Π−. Then, the maximum equilibrium exists for each m∗.

27 Note that even when n is sufficiently large so that |D+n,π − 1| < ε for each π ∈ Π+ and |D+n,π | < ε for each π ∈ Π−,
|σπ (m) − mH (0) | > η for some η > ε. This is because while D+n,π is sufficiently close to its convergent if Vπ (0) , 1/2,
|σπ (m) − mH (0) | cannot be so small if |v̄π | is large enough.
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3.6 Costly Interaction with the Campaigner

Now, we can define the expected payoff of the campaigner as follows.

U (m, h) = E
[vC Dn,π + β]

∑
k=h

(
n
k

)
[σ∗π (m, h)]k[1 − σ∗π (m, h)]n−k

 − Cn(m).

To ensure the existence of the maximizer of U (m, h), we assume that the set of choosable m is finite.28

Then, if the population is sufficiently large,

U (m, h) ≈
∑
π∈Π+

[vC p(π) + β]
∑
k=h

(
n
k

)
[σ∗π (m, h)]k[1 − σ∗π (m, h)]n−k

 − Cn(m).

As in section 3.4, we will show that if the gaps in the gathered signatures between the good states

and bad states is large, a less signature requirement is sufficient to prevent a law with bad state from

gathering the required signatures. To see this, consider the case that Π = {g, b} where g ∈ Π+ and

b < Π+. Let m∗π (λ) be the minimum meeting probability that satisfies σ∗π (m∗π (λ), λn) > λ.29

As seen in section 3.4, to prevent a law with bad state from gathering the required signatures, we

need set λ to satisfy

C(m∗b(λ)) − C(m∗g (λ)) ⩾ (1 − p) β.

Section 3.4 shows that the optimal signature requirement is lower when the gap in the number of

signatures is large. This also holds for the costly interaction model. To see this, we consider two sets

of states Π = {g, b},Π′ = {g′, b′} such that σ∗g (m, h) > σ∗g′ (m, h) > mH (0) > σ∗b′ (m, h) > σ∗b(m, h)

for each m, h. Then, it easy to show that m∗g (λ) ⩽ m∗g′ (λ) ⩽ m∗b′ (λ) ⩽ m∗b(λ). Thus,

C(m∗b′ (λ)) − C(m∗g′ (λ)) ⩾ C(m∗b(λ)) − C(m∗g (λ)) ⩾ (1 − p) β.

This implies that the minimum signature-requirement to prevent the law with bad state from gathering

the required signatures is lower for Π than for Π′.

Now, it is a question of when is the gap in the number of gathered signatures large. The following

28 Note that in the signing stage, there might be multiple equilibria. In this case, the cutoff point may not be continuous
in m. One may think that if the cutoff point is upper semicontinuous in m, the payoff function is upper semicontinuous in
m and it has the maximum. However, this may not be right. Note that while for each π ∈ Π+, Γπ ( χ) is increasing in π,
for each π < Π+, Γπ ( χ) is decreasing in π (see the proof of Lemma 3.3). This is because the payoff function is increasing
in Γπ ( χ) for not only π ∈ Π+ but also π < Π+. Then, the upper semicontinuity of the payoff function is not guaranteed.

29 Since the set of choosable m is finite, it is well defined.
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propositions provide sufficient conditions.

Proposition 3.4. Assume assumptions of Lemma 3.3. Suppose that the cost of signing c = cs − cr is

written as c = kc∗ for some k > 0, where c∗ is distributed by H . Suppose also that v = ιv∗ for some

ι > 0, where v∗ is distributed by Vπ when π ∈ Π is realized. Then, as p(π) for each π ∈ Π+ increases,

k decreases or ι increases,

1. For each π ∈ Π+, σ∗π (m, h) increases.

2. For each π ∈ Π−, σ∗π (m, h) decreases.

In this proposition, k represents the relative size of cost and ι represents the importance, that is,

with higher ι, the benefit (loss if v < 0) from enacting the law is large.

To see a more specific property, we consider the case that Πa = {g(a), b(a)}. We assume that

V ′g(a) (v) = V ′b(a) (−v) = φ(v, a) for each v . Let Φ(v, a) be the function that satisfies ∂Φ
∂v (v, a) = φ(v, a)

for each v, a. We further assume that for each a > a′, Φ(v, a) first-order stochastically dominates

Φ(v, a′). The size of a represents the importance of enacting the law. With larger a, the difference from

the expected social welfare of enacting the law is large. Related to this, we can show the following.

Proposition 3.5. Assume the Assumptions of Lemma 3.3. Then, σg is increasing in a, while σb is

decreasing in a.

To summarize, based on the above discussions, we can state that when the law with π ∈ Π−, it

is more likely to gather the required signatures; that is, a higher signature requirement is needed.

Consider the following cases: (1) large β, (2) large k, (3) low
∑
π∈Π+ p(π), (4) small ι, and (5) small a.

The first case is trivial. The cause of the remaining cases is attributable to the citizens’ behavior.

Large k implies that the difference between the cost of signing and refusing a signature is large. With

large k, citizens are less sensitive to their valuation for the law as writing and refusing a signature are

more costly. With low
∑
π∈Π+ p(π), citizens are also less sensitive to their valuation as the possibility

that the law is enacted is low. This is similar to the cases of small ι and a. Small ι and a imply that

the law is less important. As discussed above, for such laws, a higher requirement is optimal. On the

contrary, for more important laws, a lower requirement is optimal.

Our results suggest another policy to prevent the law from gathering the required signatures when

π ∈ Π− without raising the requirement: reducing the cost k. As shown above, by reducing the costs,

the number of gathered signatures when π ∈ Π+ increases while the number of gathered signatures
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when π ∈ Π− decreases. As a result, it increases the probability that good laws are enacted without

increasing the probability that the bad laws gather the required signatures.

3.6.4 Numerical example

Example 3.1. Let Π = {g, b}. We consider the following two types of distributions:

1. Density is given by

dVg (v ) =


1
2(a+2) v +

1
(a+2) if v ∈ (−2, a)

− 1
2(−a+2) v +

1
(−a+2) if v ∈ [a, 2).

v̄g = a/3, 1 − Vg (0) = 1
2−a .

2. Density is given by

dVb(v ) =


1
2(−a+2) v +

1
(−a+2) if v ∈ (−2,−a)

− 1
2(a+2) v +

1
(a+2) if v ∈ [−a, 2).

v̄b = −a/3, 1 − Vb(0) = 1
2+a .

We assume that H is a uniform distribution on (−c, c) for some c > 0. The signature-requirement

λ = 0.08 and the population n = 100, 000.

Figure 3.1 shows Γg (Gm(σ)) and Γb(Gm(σ)). As each citizen cares only if π = g, the equilibrium

probability that a given citizen signs satisfies σ∗g = Γg (Gm(σ∗g)) and σ∗b = Γb(Gm(σ∗g)). In each

figure, the solid line shows Γg (Gm(σ)), the dotted line shows Γb(Gm(σ)), and dashed line shows the

45-degree line. The intersection of the solid and dashed lines shows the fixed point σ∗g. If there are

two or more fixed points in the maximum equilibrium, we employ the largest one as σ∗g.

Figure 3.1a shows the case for a = 1 and m = 0.121, which is the minimal value of m that the

campaigner gathers the requirement when π = g. In this case, there are multiple equilibria.

Figure 3.1b shows the case for a = 1 and m = 0.168, which is the minimal value of m for satisfying

the requirement even when π = b.

Figures 3.1c and 3.1d consider the case for a = 0.1. Each figure, respectively, shows the case for

m = 0.153 and m = 0.167, which are the minimal requirements for gathering the required signatures,
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Figure 3.1: Graphs of Γm (Gm (σ), π) in Example 1.

respectively, for π = g and π = b. Through these figures, we can see that with small a, the gap in the

minimum requirement of m between π = g and π = b is small.

3.7 Discussion

3.7.1 Asymmetric cost distribution

In the case of costly interaction with campaigner, we assume that H′ is symmetric at 0. This section

considers a case that the assumption is violated. To see the case, we consider the following distribution.

H′(a) =


δψ(a) if a > 0

(1 − δ)ψ( |a |) if a ⩽ 0,

where
∫ ∞

0 ψ(a) = 1. Smaller δ implies that cost of refusing a signature is more likely to be the

greater issue for citizens than the cost of signing. When δ = 1/2, H′ is symmetric at 0. Assume the
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assumptions of Lemma 3.5. Then, as in Lemma 3.5, we define

Γπ ( χ, δ) = m
∫ ∞

0
[δΨ( χv ) + (1 − δ)]Vπ (v ) dv + m

∫ 0
(1 − δ)[1 − Ψ(−χv )]Vπ (v) dv.

In an equilibrium of the signing stage, the following equations hold:

χa = Ga ( χa) = p
(
n − 1
h − 1

)
[σg ( χa)]h−1[1 − σg ( χa)]n−h,

σg ( χa) = Γg ( χ, a) = m
∫

H
(
χv

)
φ(v, a) dv,

σb( χa) = Γb( χ, a) = m
∫

H
(
χv

)
φ(−v, a) dv.

We see the effect of an increase in δ. Differentiating Γ by δ yields the following.

∂Γg ( χ, δ)
∂δ

= m
∫ ∞

0
[Ψ( χv ) − 1]φ(v, a) dv + m

∫ 0
[Ψ(−χv ) − 1]φ(v, a) dv

= m
∫ ∞

0
[Ψ( χv ) − 1][φ(v, a) + φ(−v, a)] dv < 0.

In the same way, we can show that ∂Γg ( χ,δ)
∂δ =

∂Γb ( χ,δ)
∂δ .

Second, we consider the indirect effect via cutoff point χ, which is given by

∂Γg ( χ, δ)
∂ χ

= δm
∫ ∞

0
ψ( χv )vφ(v ) dv + (1 − δ)m

∫ 0
ψ(−χv )vφ(v) dv.

When δ = 1/2, ∂Γg ( χ,δ)
∂ χ > 0. In the same way, we can show that ∂Γb ( χ,δ)

∂ χ < 0 when δ = 1/2. We now

see the effect on gathered signatures. If δ = 1/2, the derivatives are given by

dσg
dδ
=

∂Γg/∂δ

1 − ∂Γg
∂ χ G′( χ)

,
dσb

dδ
=

∂Γg
∂δ − 2 ∂Γg∂δ G′( χ) ∂Γg∂ χ

1 − ∂Γg
∂ χ G′( χ)

.

Then dσg

dδ > dσb

dδ if and only if G′( χ) < 0. We can easily to show that G′( χ) < 0 if and only if

σg > (h− 1)/(n− 1). This condition is satisfied when the campaigner gathers the required signatures

for the law with good state, which is always the case when the campaigner campaigns. Therefore, in

equilibrium, 0 > dσg

dδ > dσb

dδ holds. Thus, if δ > 1/2 and is it sufficiently close to 1/2, the gap between

σg and σb increases. Conversely if δ < 1/2, the gap between σg and σb decreases. Therefore,
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δ < 1/2 is a more problematic case to force the campaigner to take the first best action.

3.8 Conclusion

To summarize, this study has examined an initiative process based on a signature-gathering campaign

and explored the optimal signature requirements. As a benchmark case, we considered the situation in

which the law has two states, namely good and bad. In this case, the optimal requirement is high when

the gap in the popularity between good and bad states is large, which may imply that for countries

where uncertainty in preferences of citizens is large, the optimal requirement is low. This result partly

holds for the case in which there are uncountable states.

On the other hand, if signing and refusing a signature are costly and the population is infinite,

which are common in the real world, the differences in the gathered signatures between laws vanish,

which implies that the signature requirement does not make sense. Therefore, reducing costs of both

signing and refusing a signature is needed. As an example of such policy, establishing an online

signature-gathering system is considered. In addition, with an online signature-gathering campaign,

the campaigning cost may also reduce, which will need higher requirement.

When the population is finite with small costs, unlike the above case, the result for the benchmark

case holds even when both signing and not signing are costly. In addition, we show that in the case of

costly interaction with the campaigner, a low requirement is optimal for more important laws.

This study has several shortcomings. One is that in our costly interaction model, the case of

continuum states is not analyzed. Our discussion also depends on costless voting in the referendum

stage. If the voting is costly, a somewhat different outcome is obtained.30 Moreover, since the signing

stage reveals the preference distribution of citizens, it may also affect the voting behavior.31 This

study also ignored the type of law campaigned, which may be an issue of interest in the spatial voting

theory. These shortcomings are left to future research to address.

30 See Ledyard (1984); Krishna and Morgan (2015).
31 Taylor and Yildirim (2010) verify that information about citizens’ preference distribution affects the voting behavior,

and they show that much information may reduce the social welfare.
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Appendix

3.A Omitted proofs

Proof of Lemma 3.1. (1) We show the first part of the lemma. Note that U (m∗∗(λ), λ) is decreasing

in λ, since with larger λ, it needs larger m to gather the required signatures. Moreover, since U is

continuous in m and λ, by the maximum theorem, U (m∗∗(λ), λ) is continuous in λ.

Note also by Assumption 3.2, U (m∗∗(λ), λ) > 0 for some λ. If λ = 1, even when m = 1, the

probability that the required signatures are gathered is zero. Therefore, U (m∗∗(1), 1) = −C(1) < 0.

These facts imply that there exists λ̄ ∈ (0, 1), such that for each λ ⩾ λ̄, U (m∗∗(λ), λ) ⩽ 0, and for

each λ < λ̄, U (m∗∗(λ), λ) > 0. Then, m∗(λ) = 0 for each λ > λ̄, and m∗(λ) > 0 for each λ < λ̄.

(2) We now prove the second part of the lemma. Since the objective function of the campaigner

may not be (quasi or pseudo) concave, it may have several local optimal m. Let M (λ) be the set of

locally optimal meeting probabilities m that can be the m∗∗(λ) that is the chosen candidate except for

0. Note that by the first-order condition, for each m ∈ M (λ), it satisfies one of the following:32

(vC + β)p′(λ/m)λ/m2 = C′(m) if λ < m < 2λ,

βp′(λ/m)λ/m2 = C′(m) if 2λ < m,

m = 2λ,

m = λ.

Step 1. For each m(λ) ∈ M (λ) that satisfies the first-order condition, that is, (vC+β)p′(λ/m)λ/m2 =

C′(m) or βp′(λ/m)λ/m2 = C′(m), λ/m(λ) is increasing in λ.

Let m ∈ M (λ). (a) First consider the case that there exists ε > 0 such that m is the unique local

optimum in (m − ε,m + ε). Consider the case that λ/m < 1/2 and write m = mb(λ). By the implicit
32 Note that m = 1 is excluded by the assumption. Note also that m ⩽ λ is dominated by m = 0.
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function theorem, mb(λ) is continuously differentiable at λ. By the definition, the derivative of mb is

given by

β
1

(mb )2

[{
p′′

(
λ

mb

)
λ

mb
+ p′

(
λ

mb

)}
−

{
p′′

(
λ

mb

)
λ

mb
+ 2p′

(
λ

mb

)}
λm′

b

mb

]
= C ′′(mb )m′b . (A1)

For the local optimum, the second-order condition

0 < β

{
p′′

(
λ

mb

)
λ

mb
+ 2p′

(
λ

mb

)}
λ

(mb)3 + C′′(mb) (A2)

must be satisfied. We have two cases.

(a-1) Consider the case that p′′
(
λ

mb

)
λ

mb
+ p′

(
λ

mb

)
> 0. By equation (A1) and the second-order

condition, we can show that m′b =
∂mb (λ)
∂λ > 0. By (A1) and since p′ ⩾ 0, we also have

β

[
p′′

(
λ

mb

)
λ

mb
+ 2p′

(
λ

mb

)]
1

(mb)2

(
1 −

λm′b
mb

)
> C′′(mb)m′b > 0,

and thus mb > λm′b. This implies that λ/mb(λ) is increasing in λ.

(a-2) Consider the case that p′′
(
λ

mb

)
λ

mb
+ p′

(
λ

mb

)
⩽ 0. Then, by (A1), we have m′b(λ) ⩽ 0, and

thus λ/mb(λ) is increasing in λ.

Proof for the case of λ/m > 1/2 is completely parallel.

(b) Consider the case that m is not a unique local optimum in (m − ε,m + ε) for each ε > 0. Then,

since the utility function is continuous in m > 0, there is a continuum of local maximum points. Let

the supremum of such point be m̄b(λ). By Assumption 3.1, it is a candidate of the chosen meeting

probability. Since m = 1 is not optimal, m̄b(λ) < 1. Thus, for each m > m̄b(λ), the first-order

condition does not hold. This implies that the second-order condition (A2) holds at mb = m̄b(λ).

Therefore, by the implicit function theorem, m̄b(λ) is continuously differentiable, and λ/m̄b(λ) is also

increasing in λ.

Step 2. λ/m∗∗(λ) is increasing in λ.

We now prove that λ/m∗∗(λ) is increasing in λ. Note that M∗(λ) is divided into a finite set of

closed intervals,M∗(λ). For each I ∈ M∗(λ), let m∗∗∗I (λ) = sup I. Then, for each I, I′ ∈ M∗(λ),

there exists ε > 0 such that |m∗∗∗I (λ) − m∗∗∗I ′ (λ) | > ε. Let m∗∗(λ) = m∗∗∗I∗ (λ) for some I∗ ∈ M∗(λ).

(a) Consider the case that U (m∗∗(λ), λ) > U (m∗∗∗I , λ) for each I ∈ M∗(λ)/{I∗}. By the continuity

of U , for each ε > 0, there exists δ > 0 such that for each λ′ ∈ (λ − δ, λ + δ), m∗∗(λ′) ∈ (m∗∗(λ) −
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ε,m∗∗(λ) + ε). Therefore, as shown in the above, ∂(λ/m∗∗(λ))/∂λ > 0.

(b) Consider the case that U (m∗∗(λ), λ) = U (m∗∗∗I (λ), λ) for some I ∈ M∗(λ)/I∗. Let m∗∗∗I (λ) be

the minimum one that satisfies the above equality. By the assumption, m∗∗(λ) > m∗∗∗I (λ). To simplify

the notation, let m = m∗∗(λ) and m′ = m∗∗∗I (λ).

(b-1) Assume that λ/m′ > λ/m > 1/2. Then, by the first-order condition,

(vC + β)p′(λ/m)λ/m = mC′(m) > m′C′(m′) = (vC + β)p′(λ/m′)λ/m′,

and thus (vC + β)p′(λ/m)(1/m) > (vC + β)p′(λ/m′)(1/m′).

Note that by the envelope theorem, dU (m(λ),λ)
dλ = −(vC + β)p′(λ/m)(1/m). Therefore, for each λ′ > λ

that is sufficiently near λ, U (m′, λ′) > U (m, λ′). Thus, m∗∗(λ′) is in neighborhood of m′ = m∗∗∗I (λ).

Since m∗∗(λ) > m∗∗∗I (λ), λ/m∗∗(λ) is also increasing at λ. For the case of λ/m′ > 1/2 > λ/m and

1/2 > λ/m′ > λ/m, the proof is parallel.

(b-2) Consider the case that λ/m′ = 1/2 > λ/m. In this case, we write m = mb(λ). By this

condition, U (m′, λ) −U (m, λ) = 0, that is,

C(mb(λ)) − C(2λ) − β
∫ 1/2

λ/mb (λ)
dp(π) = 0.

We show that the difference U (m′, λ) − U (mb(λ), λ) is increasing in λ. To show this, we note that

by the envelope theorem and the first-order condition, ∂U (mb (λ),λ)
∂λ = −βp′(λ/mb(λ))(1/mb(λ)) =

−mb(λ)/λC′(mb(λ)). Since mb(λ) > 2λ and dU (m′,λ)
dλ =

dU (2λ,λ)
dλ = 2C′(2λ) , dU (m′,λ)

dλ > dU (mb (λ),λ)
dλ

Therefore, for each λ′ > λ such that mb(λ) exists, U (m′, λ′) −U (mb(λ′), λ′) > 0. Thus, λ′/m′ =

1/2 > λ′/mb(λ′) > λ/mb(λ).

(b-3) Consider the case that λ/m′ > 1/2 = λ/m. For the case that λ/m = 1/2, dU (2λ,λ)
dλ = −2C′(2λ).

On the other hand, by the envelope theorem and the first-order condition, dU (m′(λ),λ)
dλ = −(vC +

β)p′(λ/m′)(1/m′) = −m′/λC′(m′). Since m′ < 2λ, dU (m′(λ),λ)
dλ > −2C′(m′) > −2C′(2λ) = dU (2λ,λ)

dλ .

Therefore, for λ′ > λ, m′ that satisfies λ′/m′ > 1/2 is optimal. Thus, we can conclude that as λ

increases, λ/m∗∗(λ) increases.

(b-4) Consider the case that m′ = λ. Then, U (m′, λ) = −C(λ). Note that dU (λ,λ)
dλ = −C′(λ).

(b-4-1) λ/m > 1/2. Then, as in case (b-3), dU (m′,λ)
dλ − dU (m,λ)

dλ > 0.

(b-4-2) λ/m = 1/2. Then, since U (m′, λ) − U (m, λ) = C(2λ) − C(λ), by the convexity of C,
dU (m′,λ)

dλ − dU (m,λ)
dλ > 0.
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(b-4-3) λ/m < 1/2. As in case (b-2), dU (m′,λ)
dλ − dU (m,λ)

dλ > 0.

The above discussion concludes the proof of Step 2. By (1) and Step 2, we conclude that λ/m∗(λ)

is increasing in λ. □

Proof of Lemma 3.2. For the proof, we provide the following claim.

Claim 3.1. Under Assumption 3.4, the number of m that satisfies the first-order condition is at most

one, and the second-order condition is always satisfied.

Proof of Claim 3.1. By the assumption, p′(λ/m)λ/m2 is weakly decreasing in m. Therefore, since

C′(m) is strictly increasing, the number of m that satisfies the first-order condition is at most one.

Since p′ ⩾ 0, we can easily check the second-order condition under the assumption. □

Suppose by contradiction that there is no λ∗K . We first show that there is λ such that (vC +

β)p′(πK )πK = λ/πKC′(λ/πK ). Suppose not. Consider the case that (vC+β)p′(πK )πK > λ/πKC′(λ/πK )

for some λ. Note that as λ → πK , C′(λ/πK ) → ∞. Then, there exists λ that satisfies the first-

order condition, which is a contradiction. Then, (vC + β)p′(πK )πK < λ/πKC′(λ/πK ) for each

λ. By λ → 0, the left-hand side goes to 0, a contradiction. Therefore, there exists λ such that

(vC + β)p′(πK )πK = λ/πKC′(λ/πK ). Then, in this case, as no other m except for m = λ/πK satisfies

the first-order condition, m∗∗(λ) = λ/πK or m∗∗(λ) = 2λ. By assumption, the latter case holds.

Note that by Assumption 3.4, p′(λ/m)λ/m is decreasing. Furthermore, since mC′(m) is increasing,

(vC + β)p′(1/2)(1/2) < 2λC′(2λ). This implies that m = 2λ is not local optimum as reducing m

improves the campaigner’s utility, which is a contradiction. □

Proof of Proposition 3.1. Let m∗∗ and m̂∗∗ be the optimal meeting probability except for 0. We can

easily show that λ∗/m∗(λ∗) ⩽ πK and λ̂∗/m̂∗(λ∗) ⩽ πK . Therefore, we have the following four cases.

(1) λ∗/m∗(λ∗) = λ̂∗/m̂∗(λ∗) = πK . Then,

(vC + β)p′(πK )πK = m∗(λ∗)C′(m∗(λ∗)),

(vC + β) p̂′(πK )πK = m̂∗(λ̂∗)C′(m̂∗(λ̂∗)).

Since πK ∈ (π1, π̂) ⊂ (π1, π2), p′(πK ) > p̂′(πk ). Therefore, m∗(λ∗)C′(m∗(λ∗)) > m̂∗(λ̂∗)C′(m̂∗(λ̂∗)),

and thus m∗(λ∗) > m̂∗(λ̂∗). Since λ∗/m∗(λ∗) = λ̂∗/m̂∗(λ̂∗) = πK , λ∗ > λ̂∗.

(2) λ∗/m∗(λ∗) < π̂ and λ̂∗/m̂∗(λ∗) < π̂. Then, U (m∗(λ∗), λ∗) = Û (m̂∗(λ̂∗), λ̂∗) = 0, where Û is

the expected utility of the campaigner when the probability measure is p̂.
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If λ̂∗/m̂∗(λ̂∗) > 1/2, the expected utility is given by

U (m, λ) = (vC + β)
∫ 1

λ/m
dp(π) − C(m),

Û (m, λ) = (vC + β)
∫ 1

λ/m
dp̂(π) − C(m).

Since λ̂∗/m̂∗(λ̂∗) < π̂, 1 − p(λ̂∗/m̂∗(λ̂∗)) > 1 − p̂(λ̂∗/m̂∗(λ̂∗)). Therefore, U (m∗(λ̂∗), λ̂∗) ⩾

U (m̂∗(λ̂∗), λ̂∗) > Û (m̂∗(λ̂∗), λ∗). Since U (m∗(λ∗), λ∗) = 0 and U (m∗(λ), λ) is decreasing in λ,

λ∗ > λ̂∗.

Consider the case that λ̂∗/m̂∗(λ̂∗) < 1/2. Then, the expected utility is given by

U (m, λ) = (vC + β)
∫ 1

1/2
dp(π) + β

∫ 1/2

λ/m
dp(π) − C(m),

Û (m, λ) = (vC + β)
∫ 1

1/2
dp̂(π) + β

∫ 1/2

λ/m
dp̂(π) − C(m).

Since π̂ ⩾ 1/2, we also have U (m̂∗(λ̂∗), λ̂∗) ⩾ Û (m̂∗(λ̂∗), λ̂∗). Thus, we can show that λ∗ ⩾ λ̂∗.

(3) λ∗/m∗(λ∗) > π̂ and λ̂∗/m̂∗(λ∗) > π̂. Since p(λ∗/m∗(λ∗)) > p̂(λ∗/m∗(λ∗)), as the same logic

in case (2), we can show that λ∗ ⩽ λ̂∗. □

Proof of Proposition 3.2. (1) Consider the case that U (m∗(λ∗k ), λ∗k ) > U (2λ∗k, λ
∗
k ). Then, m∗(λ∗k ) is

the interior solution, and thus it satisfies the first-order condition. Furthermore, since λ∗k/m
∗(λ∗k ) < πK ,

U (m∗(λ∗k ), λ∗k ) = 0. We consider the case that λ∗k/m
∗(λ∗k ) < 1/2 (The following discussion also holds

in the case of λ∗k/m
∗(λ∗k ) > 1/2). Therefore, there exists ε > 0, and for each k ∈ (k − ε, k + ε) and

each λ ∈ (λ − ε, λ + ε),

(vC + β)P + β
∫ 1/2

λ∗
k
/m∗

k
(λ∗

k
)

dp(π) − kC(m∗k (λ∗k )) = 0, (A3)

βp′(λ/m∗k (λ))
λ

(m∗k (λ))2 = kC′(m∗k (λ)). (A4)

Note that λ∗k is determined by (A3) and m∗k (λ) is determined by (A4). With a small change in k, the
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same condition is maintained. Thus, by differentiating both sides of (A3) by k and (A4),

−βp′(λ∗k/m
∗(λ∗k )) *.,

∂λ∗
k

∂k

m∗(λ∗k )
−

λ∗k
(m∗(λ∗k ))2

d[m∗k (λ∗k )]
dk

+/-
= C(m∗k (λ∗k )) + kC′(m∗k (λ∗k ))

d[m∗k (λ∗k )]
dk

(A5)

mk (λ∗k ) = −
∂λ∗k
∂k

βp′(λ∗k/m
∗(λ∗k ))

1
C(m∗k (λ∗k ))

, (A6)

where

d[m∗k (λ∗k )]
dk

=
∂m∗k
∂k

(λ∗k ) +
∂m∗k
∂λ

(λ∗k )
dλ∗k
dk

.

Note that by equation (A4) and Assumption 3.1, ∂m∗
k

∂k (λ) < 0 for each λ. Substituting (A6) into (A4)

yields

∂λ∗k
∂k

kC′(m∗k (λ∗k )) = −
λ∗k

m∗k (λ∗k )
C(m∗k (λ∗k )).

Abusing a notation, we write p′′ = p′′(λ∗k/m
∗
k (λ∗k )), p′ = p′(λ∗k/m

∗
k (λ∗k )), m∗k (λ∗k ) = m∗k , C =

C(m∗k (λ∗k )), C′ = C′(m∗k (λ∗k )), and C′′ = C′′(m∗k (λ∗k )).

Then by the above equations and calculating ∂m∗
k

∂k and ∂m∗
k

∂λ using the first-order condition,

C(m∗k (λ∗k )) + kC′(m∗k (λ∗k ))
d[m∗k (λ∗k )]

dk
=

1 −
k (C′)2/C + β[p′′λ∗k/m

∗
k + p′]λ∗k/(m∗k )3

kC′′ + β[p′′λ∗k/m
∗
k + 2p′]λ∗k/(m∗k )3

 C

=

1 −
k (C′)2/C − kC′/m∗k + β[p′′λ∗k/m

∗
k + 2p′]λ∗k/(m∗k )3

kC′′ + β[p′′λ∗k/m
∗
k + 2p′]λ∗k/(m∗k )3

 C.

The second equality follows from the first-order condition. By this equation, since m < 1, p′ > 0, and

C′′ > 0, the following equation

C(m∗k (λ∗k )) + kC′(m∗k (λ∗k ))
d[m∗k (λ∗k )]

dk

is positive if and only if C′′ > (C′)2/C − C′/m∗k .
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Then, by this and equation (A5), we have

dλ∗k/m
∗
k (λ∗k )

dk
=
*.,

∂λ∗
k

∂k

m∗k (λ∗k )
−

λ∗k
(m∗k (λ∗k ))2

∂m∗k (λ)
∂k

+/- < 0,

if and only if C′′ > (C′)2/C − C′/m∗k . This inequality is equivalent to
[

C ′(m)
C(m)/m

]′
> 0 at m = m∗k .

(2) Consider the case that U (m, λ∗k ) < U (2λ∗k, λ
∗
k ) for each m , λ∗k . Then, m = λ∗k is unique

optimal. Let M be the set of m that satisfies the first-order condition. As shown in Claim 3.1, M is

single, and thus it is continuous at the parameters. Let m∗∗∗k (λ∗k ) be the unique element of M . Then,

U (m∗∗∗k (λ∗k ), λ∗k ) < U (2λ∗k, λ
∗
k ). Therefore, with a small change in k and λ∗k , m = 2λ∗k is unique

optimal. Thus, λ∗k/m
∗
k (λ∗k ) = 1/2 for a small change in k, and, consequently, dλ∗

k
/m∗

k
(λ∗

k
)

dk = 0. □

Proof of Proposition 3.3. In each equilibrium,

σπ (n) = m
∫

H
(
Dn(vi)

(
n − 1
h − 1

)
(σπ (n))h−1(1 − σπ (n))n−h−1vi

)
dVπ (vi).

Since for each v ∈ R, H (
(

n−1
h−1

)
(σπ (n))h−1(1−σπ (n))n−h−1v ) → H (0) pointwisely, as n → ∞, and H

is bounded above, the bounded convergence theorem implies

lim
n→∞

σπ (n) = lim
n→∞

m
∫

H
(
Dn(vi)

(
n − 1
h − 1

)
(σπ (n))h−1(1 − σπ (n))n−h−1vi

)
dVπ (vi)

= m
∫

lim
n→∞

H
(
Dn(vi)

(
n − 1
h − 1

)
(σπ (n))h−1(1 − σπ (n))n−h−1vi

)
dVπ (vi)

= mH (0).

□

Proof of Lemma 3.3. We first note that for each H , Γπ (0,m) = mH (0). The derivative of Γπ ( χ,m) is

given by

∂Γπ
∂ χ

( χ,m) = m
∫

H′( χvi)vi dVπ (vi).

First note that ∂Γπ
∂ χ (0,m) = H′(0)

∫
v dVπ (v).

Consider the case that π ∈ Π+. We show that ∂Γπ
∂ χ ( χ,m) ⩾ 0 for each χ,m. Since H′ is symmetric

at 0, H′( χvi)vi = −H′(−χvi)vi for each vi ⩾ 0. Then, by Assumption 3.5, there exists a 0-symmetric
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distribution Φ such that V ′π (v)/Φ′(v ) is monotone. Since 1 − Vπ (0) > 1/2 = 1 − Φ(0), V ′π (v)/Φ′(v)

is nondecreasing. If not, by the monotonicity condition, V ′π (v )/Φ′(v ) is nonincreasing, which implies

that Φ first-order stochastically dominates Vπ. Then, 1 − Vπ (0) ⩽ 1 − Φ(0) = 1/2, which is a

contradiction. Therefore, for each v > 0,

V ′π (v )
Φ′(v )

⩾
V ′π (−v )
Φ′(−v)

.

SinceΦ is symmetric at 0,Φ′(v) = Φ′(−v), which implies that V ′π (v ) ⩾ V ′π (−v ). Then, ∂Γm∂ χ ( χ, π) ⩾ 0,

which implies that Γm( χ, π) > mH (0) for each χ > 0. Thus, in equilibrium, σπ > mH (0). In the

same way, we can show that if π ∈ Π−, σπ < mH (0). □

Proof of Lemma 3.4. Let χα be the equilibrium, where α is some parameter. Then, it satisfies

χα = Gα ( χα) :=
∑
π′∈Π+

[
p(π′)

(
n − 1
h − 1

)
[σπ′ ( χα)]h−1[1 − σπ′ ( χα)]n−h

]
.

σπ ( χ) = Γπ ( χ,m) = m
∫

H
(
χvi/k

)
dVπ (vi).

Since Gα is a continuous self-map, it admits a fixed point. Moreover, since Gα is continuous, the set

of fixed points is closed and thus compact. Therefore, the maximum fixed point exists. □

Proof of Proposition 3.4. We first consider the case that for each π ∈ Π+, p(π) increases. Then,

Gα ( χα) also increases for each χα. Therefore, the maximum fixed point also increases. If π ∈ Π+,

as see in the proof of Lemma 3.3, σπ ( χα) also increases, while if π ∈ Π−, σπ ( χα) decreases.

Second, we consider the case that k increases.

(1) Suppose that dGk ((Γπ ( χk,m))π )
dχ < 1. We first show that χk is continuously differentiable at k. By

an abuse of notation, we write Gk ( χ) = Gk ((Γπ ( χ,m))π). By the implicit function theorem, there

exists δ > 0 such that for each k′ ∈ (k − δ, k + δ), the solution to Gk ′ ( χ) = χ is uniquely determined.

Let χ̂(k′) be the solution. Note that χk ′ is the maximum χ that satisfies Gk ′ ( χ) = χ. Note also that

Gk ′ is continuous in k′. Since we consider the maximum equilibrium, for each χ > χk , Gk ( χ) < χ.

Then, by letting k′ → k, χk ′ can be arbitrarily close to χk , since if not, there is χ that satisfies

Gk ( χ) = χ and χ > χk . Therefore, χk ′ = χ̂(k′) for each k′ ∈ (k − δ, k + δ). The implicit function

theorem also implies that χk is continuously differentiable by k at k .
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Differentiating σπ by k yields the following:

dσπ ( χα)
dk

= −m
∫

H′( χαv/k)
v

k
dVπ (v)

[
1
k
χα −

dχα
dk

]
dχα
dk
=

∑
π′∈Π+

Xπ′
∂σπ′ ( χα)

∂k
,

where

Xπ′ =

[
p(π′)

(
n − 1
h − 1

)
[h − 1 − (n − 1)σπ′ ( χα)][σπ′ ( χα)]h−2[1 − σπ′ ( χα)]n−h−1

]
.

Let Aπ = m
∫

H′( χαv/k) vk dVπ (v ). By calculating the derivative, dχα
dk =

−∑
π′∈Π+ Xπ′Aπ′

1−∑π′∈Π+ Xπ′Aπ′
1
k χα.

Note that

dGk ((Γπ ( χk, α))π)
dχ

=
∑
π′∈Π+

Aπ′Xπ′ < 1.

We have two cases. Consider the case that
∑
π′∈Π+ Aπ′Xπ′ > 0. Since −∑

π′∈Π+ Aπ′Xπ′ > −1,
∂ χα
∂k < 0, and thus 1

k χα −
∂ χα
∂k > 0.

Next, consider the case that
∑
π′∈Π+ Aπ′Xπ′ ⩽ 0. Then, ∂ χα

∂k < − 1
k χα. Therefore, 1

k χα −
∂ χα
∂k > 0.

Note that as seen in the proof of Lemma 3.3, Aπ < 0 if and only if π ∈ Π+. Thus, in each case,
∂σπ ( χα )

∂k > 0 if and only if π ∈ Π−.

(2) Consider the case that dGk ((Γπ ( χk,α))π )
dχ ⩾ 1. Since for each π ∈ Π+, m

∫
H ( χv ) dVπ (v) is

increasing in χ, m
∫

H (( χ/k)v) dVπ (v ) > m
∫

H (( χ′/k′)v) dVπ (v) if and only if χ/k > χ′/k′.

Therefore, it is sufficient to show that χk/k is decreasing at k.

Note that

∂Γπ
∂k

( χ, α) = −χm
∫

H′( χv/k)
v

k2 dVπ (v) = − χ
k

Aπ .

Thus, since
∑
π′∈Π+ Aπ′Xπ′ ⩾ 1,

∂Gk

∂k
= −

∑
π′∈Π+

χ

k
Aπ′Xπ′ < 0.

Note that since we consider the maximum equilibrium, Gk ( χ) < χ for each χ > χk . Therefore, for

each k′ > k and each χ > χk , Gk ′ ( χ) < χ. Thus, χk ′ < χk . On the other hand, since for each
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k < k′, Gk ′ ( χk ) > χk , there exists χ such that Gk ′ ( χ) = χ and χ > χk . Since we consider the

maximum equilibrium, χk ′ > χk , which concludes the proof.

The proof of the case for the effect of ι is omitted since it is completely symmetric to the case of

the effect of k.

□

Proof of Proposition 3.5. Note that

χa = Ga ( χa) = p
(
n − 1
h − 1

)
[σg ( χa)]h−1[1 − σg ( χa)]n−h,

σg ( χa) = Γg ( χ, a) = m
∫

H
(
χv

)
φ(v, a) dv,

σb( χa) = Γb( χ, a) = m
∫

H
(
χv

)
φ(−v, a) dv.

By the assumption, for each χ, Γg ( χ, a) is increasing in a while Γb( χ, a) is decreasing in a.

Suppose that dGa (Γg ( χa,a))
dχ < 1. Then, as in the proof of Proposition 3.4, χ and σπ are differentiable

at a. Differentiating σπ by a yields the following:

dσπ
da
=
∂Γπ ( χ, a)

∂a
+
∂Γπ ( χ, a)

∂ χ

∂ χ

∂a
,

dχ
da
= p

(
n − 1
h − 1

)
[h − 1 − (n − 1)σg ( χα)][σg ( χα)]h−2[1 − σg ( χα)]n−h−1 ∂σg

∂a
.

Consider the case of π = g. Let Aπ =
∂Γπ ( χ,a)

∂a , Bπ =
∂Γπ ( χ,a)

∂ χ and

X = p
(
n − 1
h − 1

)
[h − 1 − (n − 1)σg ( χα)][σg ( χα)]h−2[1 − σg ( χα)]n−h−1.

Then, ∂σg

∂a =
Ag

1−BgX . Note that Ag > 0. Note also that dGa (Γg ( χa,a))
dχ = BgX < 1. Therefore, ∂σg

∂a > 0.

Next, consider the case of π = b. Then, ∂σb

∂a = Ab + Bb
AgX

1−BgX . Note that Ab < 0. Note also that

since H′ is symmetric at 0,

Bg = m
∫

H′( χv )vφ(v, a) dv

= −m
∫

H′( χ(−v))(−v )φ(v, a) dv

= −m
∫

H′( χ(v ))(v )φ(−v, a) dv = −Bb.
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Therefore, ∂σb

∂a = Ab − AgBgX
1−BgX . If BgX > 0, since Ag > 0, ∂σb

∂a < 0.

Consider the case that BgX < 0. By integration by parts, we have

Ag = m
∫

H ( χv )
∂φ(v, a)
∂a

dv

= m
[
H ( χv )

∂Φ(v, a)
∂a

]∞
−∞
− m

∫
H′( χv ) χ

∂Φ(v, a)
∂a

dv

= −m
∫

H′( χv ) χ
∂Φ(v, a)
∂a

dv.

On the other hand,

Ab = m
∫

H ( χv )
∂φ(−v, a)

∂a
dv = m

∫
H (−χv )

∂φ(v, a)
∂a

dv

= m
[
H ( χv )

∂Φ(v, a)
∂a

]∞
−∞
+ m

∫
H′(−χv ) χ

∂Φ(v, a)
∂a

dv

= m
∫

H′( χv ) χ
∂Φ(v, a)
∂a

dv = −Ag .

Therefore, ∂σb

∂a = Ab
1

1−BgX < 0.

Suppose that dGa (Γg ( χa,a))
dχ ⩾ 1. Since ∂Γg

∂a ( χ, a) > 0, as in the proof of Proposition 3.4, we can

show that χa is increasing at a. By this fact and the facts that Γg ( χ, a) is increasing and Γb( χ, a) is

decreasing χ, a, the statement of the proposition immediately follows. □

71



Bibliography

Aguiar-Conraria, L. and P. C. Magalhães (2010) “How quorum rules distort referendum outcomes:

Evidence from a pivotal voter model,” European Journal of Political Economy, Vol. 26, pp. 541–

557.

Arnord, F. and R. Freier (2015) “Signature requirements and citizen initiatives: Quasi-experimental

evidence from Germany,” Public Choice, Vol. 162, pp.43–56.

Besley, T. and S. Coate (2008) “Issue unbundling via citizens’ initiatives,” Quarterly Journal of

Political Science, Vol.3(4), pp.379–397.

Bögers, T. (2004) “Costly Voting,” American Economic Review, Vol.94, No. 1 pp.57–66.

Ellis, R. (2002) Democratic Delusions: The Initiative Process in America, University Press of Kansas.

— (2003) “Signature Gathering in the Initiative Process: How Democratic Is It?,” Montana Law

Review, Vol. 64, pp.35–97.

Gerber, E. R. (1996) “Legislative response to the threat of popular initiatives,” American Journal of

Political Science, Vol. 40, pp. 99–128.

Gregor, M. and M. L. Smith (2012) “Civic initiatives in the context of legal uncertainty,” Journal of

Theoretical Politics, Vol. 25, pp. 36–62.

Hindriks, J., and R. Pancs (2002) “Free Riding on Altruism and Group Size,” Journal of Public

Economic Theory, Vol. 4, No.3, pp. 335–346.

Hizen, Y., and M. Shinmyo (2011) “Imposing a turnout threshold in referendums,” Public Choice,

Vol. 148, pp. 491–503.

72



Bibliography

Hoesly, C. (2005) “Reforming Direct Democracy: Lessons from Oregon,” California Law Review,

Vol. 93, No. 4, pp. 1191–1248.

Kamada, Y. and F. Kojima (2013) “The equivalence between costly and probabilistic voting models,”

Games and Economic Behavior, Vol.80, pp.179–185.

Kaufmann, B. and M. D. Waters (2004) Direct Democracy in Europe: A Comprehensive Reference

Guide to the Initiative and Referendum Process in Europe, Carolina Academic Press.

Krishna, V., and J. Morgan (2015) “Majority rule and utilitarian welfare,” American Economic Journal:

Microeconomics, Vol. 7, pp.339–375.

Ledyard, J. O. (1981) “The paradox of voting and candidate competition: A general equilibrium

analysis,” G. Horwich and J. Quirk (Eds), Essays in Contemporary Field of Economics, pp. 54–80.

— (1984) “The pure theory of large two-candidate elections,” Public Choice, Vol. 44, pp. 7–41.

Lindbeck, A. and J. W. Weibull (1987) “Balanced-budget redistribution as the outcome of political

competition,” Public Choice, Vol. 52, pp. 273–297.

Makris, M. (2009) “Private provision of discrete public goods,” Games and Economic Behavior, Vol.

67, pp. 292–299.

Malamud, S. and F. Trojani (2009) “Variance Covariance Orders and Median Preserving,” Working

paper.

Matsusaka, J. G. (2005) “Direct democracy works,” Journal of Economic Perspectives, Vol. 19, pp.

185–206.

Matsusaka, J. G., and N. M. McCarty (2001) “Political resource allocation: Benefits and costs of voter

initiatives,” Journal of Law, Economics, and Organization, Vol. 17, pp. 413–448.

Ministry of Internal Affairs and Communication of Japan (2014) “Chihou jichi geppou (Local auton-

omy monthly),”(in Japanese), No. 55–57.

Palfrey, T. R., and H. Rosenthal (1983) “A strategic calculus of voting,” Public Choice, Vol. 41, pp.

7–53.

73



Bibliography

— (1984) “Participation and the provision of discrete public goods: A strategic analysis,” Journal of

Public Economics, Vol. 24, pp. 171–193.

— (1985) “Voter participation and strategic uncertainty,” American Political Science Review, Vol. 79,

pp. 62–78.

Persson, T. and G. Tabellini (1999) “The size and scope of government: Comparative politics with

rational politicians,” European Economic Review, Vol. 43, pp. 699–735.

Taylor, C. R. and H. Yildirim (2010) “Public information and electoral bias,” Games and Economic

Behavior, Vol. 68, pp.353–375.

74



4 Concealments of Problems: An Incentive

of Reducing the Responsibility1

4.1 Introduction

Firms sometime have problems for their products and management systems. If these problems are

ignored, they would cause accidents that harm consumers. Some of problems are growing over time

and harm from the accidents gets larger as time proceeds.

As an example case, consider a mass food poisoning that caused by a Japanese dairy company, Snow

Brand Milk Products Co. in 2000. It left 14,780 people ill. The direct cause was that toxic material

that produced when a production line stopped by power outage sent to the next level of production

line. As an organizational cause, it is considered that their crisis management has some problems.

For example, no policy is placed to prevent toxic material from being mixed when a production line

is stopped.2 In this case, as time proceeds, the harm form such an accidents could get larger. This is

because as the scale of plants gets larger, the harm from such a food poisoning also gets larger.

To prevent such accidents, such problems should be solved in their early. To do so, workers should

report them as soon as they notice the problems. Then, do workers report them to their superior? In

the above example case, failure in the crisis management are not resolved until the accident occurs.

It is suspected that no one made an issue of it. However, it is also doubtful that no one noticed the

failure. Indeed, workers at the plant told that the plant’s manual had been ignored for years.3 Thus, it
1 The author is deeply grateful to Eiich Miyagawa, Takashi Shimizu, and Yoshikatsu Tatamitani. The author also

thanks Masazumi Hattori, Chiaki Moriguchi, Shuhei Morimoto, Yuji Muramatsu, Takeshi Murooka, Hajime Tomura,
Kohei Yamagata and seminar and conference participants at the 96th meeting of OEIO, Kyoto University, Okayama
University, Hitotsubashi University, GAMES 2016, AMES 2016 and CTW for their valuable comments. Remaining
errors are the author’s responsibility. The author also acknowledges the financial support from the Japan Society for the
Promotion of Science (14J05350).

2 Failure Knowledge Database, http://www.sozogaku.com/fkd/en/cfen/CA1000622.html.
3 “Snow Brand pays the price”, The Japan Times, July 12, 2000.
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Period t Period t + 1 Period t + 2

Player t

Player t + 1

Subordinate Manager

Subordinate Manager

report
conceal

To the next subordinate.

solve
ignore

conceal

solve or ignore

The problem disappears.

Figure 4.1: Timing of the game

is also suspected that workers have noticed the failure but not reported.

Let us consider the workers’ incentive to conceal such problem even when they detect it. If they

report the problems, it is possible that the reported problems are ignored. In that case, if one of

the workers promotes to be a manager, he would be in charge of dealing with the reported problem.

Moreover, if the reported problem remains unsolved, it is considered as a systematic illegal action,

which causes harsh criticism for the firm and the manager when accident occurs. Then, workers may

think that they want to avoid such trouble, which may incite a worker to conceal the problem. This

paper formalizes this idea.

We consider an overlapping-generation organization that consists of two kinds of workers: a

subordinate and a manager. Each worker lives for two periods: he works as a subordinate in his first

period and works as a manager in his second period. In each period, the subordinate is in charge of

investigating whether there is a problem and reporting it to the manager when detect it. Reporting the

problem is assumed to be costless. The manager is in charge of solving the reported problem, which

is costly for the manager. The cost of solving the problem depends on the manager’s ability. Figure

4.1 illustrates the timing of the game.

An unsolved problem may cause accidents and in which case, only the worker in that period may

be punished. If the manager does not solved the reported problem and the unsolved problem causes

accidents,4 he is exposed to harsh criticism. On the other hand, the problem have not reported when

it causes accidents, criticism for the manager is softened but the subordinate is also punished for not

reporting or detecting. The sizes of punishments (criticism) and the cost of solving the problem are

4 In other case, the problem is detected by an outsider, which also causes blames for the workers.
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determined by the scale of the problem. We assume that the sizes of punishments and the cost of

solving a problem are proportional to the scale. The scale varies over time. For instance, consider the

mass food poisoning case that we present in the beginning of this section. In this case, solving the

problem corresponds to introducing a guidelines that prevent such accidents and educating workers.

Such acts are more costly when the scale of plants is larger. The size of harm also depends on the

scale of plants. Sizes of punishments are also larger as the size of harm gets larger. Therefore, sizes

of punishments are larger when the scale of plants is larger.

We now consider the motivation of not reporting the problem in this model. Note that even if

the subordinate reports the problem, when the manager’s ability is too low, he ignores the reported

problem. If the reported problem remains unsolved in the next period, the subordinate is responsible

for solving it in the next period as a manager, which is costly for him. On the contrary, if he does

not report the problem, the next subordinate is in charge of detecting and reporting the problem. The

next subordinate may fail to detect the unreported problem or conceal it. Then, the manager in the

next period is free from the responsibility for solving. This possibility of successful reduction of the

responsibility is the motivation of concealment.

The motivation of reducing responsibility has some interesting features. First, each of reporting and

concealing has complementarity, that is a subordinate is more likely to report when others report. This

is because, since if the next subordinate reports, even when the subordinate conceals, the problem is

reported in the next period. Then, the responsibility is not reduced. Therefore, incentive to conceal is

reduced. This property suggests that the possibility of multiple equilibria. That is, both of the strategy

profiles where all subordinates report and all subordinates conceal can be equilibria with the same

parameter. In this case, as Kreps (1990) discusses, corporate culture has important role to determine

which equilibrium is realized. That is, if “reporting” is a culture of the firm, each player believes

that the others report and thus “reporting” is an equilibrium. The culture “reporting” is realized as an

equilibrium. In the same way, the culture “concealment” is also realized as an equilibrium.

We can also say that if the scale of problem is increasing, concealments are more likely to occur. To

see this, note that the benefit of reporting is reducing the punishment of not reporting in the present

period, while the cost of reporting is the responsibility of solving the problem in the next period. If

the scale is increasing, the responsibility in the next period is heavier, which implies that the cost of

reporting is higher.

We see the relation between the incentive to reduce the responsibility and the size of punishment.
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Note that the cost of reporting is the responsibility of solving the reported problem. Then, increasing

in the size of punishment has two kinds of effects. One is increasing in the probability that the manager

solves the problem. This decreases the cost of reporting. The other is decreasing in the expected

utility when the reported problem remains unsolved. This increases the cost of reporting the problem

since the motivation of concealment comes from reducing the future responsibility. Therefore, if the

first effect is small while the second effect is large, increasing in the size of punishment makes the

incentive of concealment be larger.

Increasing in the punishment does not always increase the incentive of concealment. If the punish-

ment is sufficiently severe, an increasing in the size of punishment makes the incentive of concealment

decrease. The intuition is as follows. If the punishment is sufficiently severe, the probability that the

present manager solves the problem is high. If the probability is high enough, even if the responsibility

in the next period becomes heavier, since the possibility of facing the unsolved reported problem is

low, the effect on the cost of reporting, that is, the reported manager’s expected utility is also low.

In our model, the incentive of concealment comes from the motivation of reducing the responsibility.

Why do players want to reduce the responsibility? This is because dealing with the problem is costly

and thus each player wants not to be responsible for solving the problem. Thus, one may consider that

if there is a sufficient reward for solving the problem, this incentive would disappear. We consider

introducing a reward to managers for solving problems. As long as the expected utility of the manager

facing a reported problem is negative, there remains an incentive to reduce the responsibility and

thus, the equilibria have the same features in the previous analysis. However, if the expected utility of

managers of facing the reported problem is positive, while the incentive for reducing the responsibility

disappears, another incentive of concealment arises: the subordinate has an incentive to seek the

reward for solving the problem. To obtain the reward, the subordinate conceals the problem in the

present period and solves it when he is a manager. In this case, the problem is more likely to be solved,

but the solution is delayed.

The previous analyses assume that the manager can solve the problem certainly. However, in the

real world, they may fail to solve the problem. In this case, even if the manager tries to solve problem,

it is possible that the reported problem remains unsolved and the subordinate faces it as the manager in

the next period. In our basic model, if the punishment is sufficiently severe, severer punishment makes

the incentive of concealment small. However, in this case, we show that if the solving probability is

sufficiently small, the incentive of concealment increases as punishment becomes severer.
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The previous analyses also assume that the retired manager is not blamed. However, in the real

world, if a player have ignored the problem when he is a manager and his negligence is detected later,

even if he is retired, he would be punished. Considering this, if the scale growing rate is higher,

the future punishment is heavier. Thus, if the scale is increasing and the growth rate is sufficiently

high, the incentive of concealment is small. On the other hand, as in the basic model, if the scale

is decreasing and the shrinkage rate is sufficiently high, since it implies the future responsibility gets

smaller, the incentive of concealment is also small. Therefore, concealments are most likely to happen

when scale growing rate is modest.

The remainder of this study consists of the following sections. The next subsection reviews the

related researches. Section 4.2 describes our basic model. Section 4.3 summarizes the behaviors of

players. Section 4.4 characterizes perfect Bayesian equilibria and section 4.5 performs comparative

statics. Section 4.6 extends our basic model. Subsection 4.6.1 considers the case of introducing

the rewards for managers. Subsection 4.6.2 considers the case when managers’ managements of the

problems may fail to solve the problem. Subsection 4.6.3 considers the case when retired managers

may also be punished. All omitted proofs are delegated to the appendix.

4.1.1 Related Literature

As a research of concealment, Kerton and Bodell (1995) study firms’ concealment of information

about bad property of their products. In their setting, the motivation of concealment is profiting from

asymmetric information between the firm and consumers by hiding the information about the products.

Our model is different from inspection games (Dresher, 1962; Maschler, 1966). The major difference

between the standard inspection game and ours is that detectors may also be responsible for solving

the reported problem. In the standard inspection game, inspector’s responsibility is only detecting the

problem.

Our study deals with workers’ incentive to report problems. As a similar situation, whistleblowing

is considered. In the literature of corporate governance, many papers study the motivation of whistle-

blowing and its consequence (For example, see a survey of literature, Dasgupta and Kesharwani, 2010

and empirical works, Bowen et al., 2010; Dyck et al., 2010).

As costs of whistleblowing, many papers consider reputational effect, revenge from the company,

etc. For example, in the literature of corruption, a corrupting agent can threaten the monitor with

retaliating and it motivates the monitor not to report the corruption. Chassang and Padró i Miquel
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(2014) consider such situation and explore anti-corruption mechanisms. Unlike these motivations, in

this paper, we assume that reporting brings no direct cost mentioned above. One of our contributions is

showing that even when reporting itself is not costly and brings no such friction between the company,

workers may conceal the detected problem.

Another incentive of not reporting arises when the report is non-verifiable. Consider a situation

that a principal tries to make an agent effort. In case of not detecting of the agent’s negligence is

rewarded, since the principal cannot observes whether the agent efforts, the monitor has an incentive

to misreport. Rahman (2012) proposes a contract to motivating the monitor to report truthfully.

Our study relates to the researches of crime economics (Becker, 1968). In the literature of crime

economics, increasing in punishment is less costly than that in probability of conviction. However,

in our model, since punishment for managers distorts subordinates’ incentive of reporting, heavier

punishment may cause concealment of problems. Therefore, it may increase the probability of

accidents.

Our model is also relate a problem of dynamic contribution to a single public good. This is because,

solving and reporting a problem is considered as kinds of contributions to a public good. As examples

of such study, Bliss and Nalebuff (1984) and Bilodeau and Slivinski (1996) consider such problem

with continuous time and simultaneous decision making. The models of Bolle (2011) and Bergstrom

(2012) consider private provision of a public good with sequential decision making. In Bolle’s setting,

in each period t, only player t can contribute to the public good with discrete time. Bergstrom assumes

that contribution can be done by random arriving players in continuous time.

In our model, unlike these papers, to provide a public good (solving the problem), two steps of

contributions are needed: reporting and solving. In the standard model of private provision of a

public good, the motivation of not contributing comes from free-riding incentives: a player does not

contribute since others would do. In our model, each subordinate conceals since the manager does

not solve.

4.2 Model

There are two players in each period. Player t ∈ Z lives for two periods; period t and t + 1. In period

t, player t works as a subordinate and is promoted to a manager in period t + 1. We assume that a

problem arises at some period. No other problems are caused after the period. We assume that until
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Manager
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Figure 4.1: Flow of decisions in each period

a player detects or is reported the problem, he does not know that there is a problem. If a player

knows the problem, he learns the period that the problem arises. The period that the problem arises is

normalized to be 0. We assume that once the problem is reported, each player knows that the problem

is reported.

In the beginning of each period, the subordinate detects the problem with probability qS ∈ [0, 1]

and the manager detects the problem with probability qM ∈ [0, 1]. If the manager has detected the

problem, he decides whether to solve the problem. If the subordinate detects the problem which has

not solved, he decides whether to report the problem. If the problem is reported, the manager decides

whether to solve the problem. That is, the flow of decisions at each period is

1. If the manager has detected the problem (as a manager or when he is a subordinate), he decides

whether to solve the problem.

2. If the problem has not solved and not reported, the subordinate who detects the problem decides

whether to report the problem.

3. If the problem is reported, the manager decides whether to solve the problem.

Figure 4.1 illustrates the decision flow. When the problem is reported or solved, they are known to

each player. Once the problem is reported, stage 1 and 2 are skipped. Once the problem is solved,

since no problem occurs after, each player has nothing to do.

Let the scale of the problem at period t be denoted by st . If a subordinate detects a problem, he

knows the sequence of the scales of the problem. We assume that the sequence of scales (st )t∈N is

exogenously given. The reward for solving the problem to the manager is denoted by bM st and that

of reporting the problem for the subordinate is denoted by bSst . The cost of solving the problem for
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the manager in period t is ct st , where ct is private information of the manager. Each player learns the

parameter ct after he promotes to a manager at period t. For each t, ct follows a distribution function

F independently. We assume that the support of F is an interval in R++.

If the problem is unsolved, the problem causes an accident with probability p ∈ (0, 1).5 If the

problem causes an accident at period t, only the players in period t are blamed and the manger is

forced to solve the problem. If the problem is unreported, the punishment incurs disutility dM,U st

for the manager and dSst for the subordinate. If the problem is reported in the past and the manager

does not solved, the subordinate is not punished. On the other hand, the manager is punished and

the disutility from the punishment for the reported manager is dM,Rst . We assume that dM,R > dM,U .

We also assume that even if the unsolved problem that has been reported in period τ < t causes an

accident at period t, the manager at period t is punished. Finally, let δ ∈ (0, 1) denote the common

discount factor.

4.3 Behavior of managers and subordinates

This section considers the behaviors of managers and subordinates, and summarizes their best re-

sponses.

4.3.1 Managers’ behavior

We consider the manager’s problem. Suppose that the problem is reported. The expected utility of

solving the problem is bM st − ct st , while the expected utility of ignoring the problem is −p(dM,Rst +

ct st ). Therefore, the manager solves the reported problem if and only if

bM + pdM,R

1 − p
⩾ ct .

Suppose that the manager detects (or detected in the previous period but did not report) the problem.

Then, before the decision of the subordinate, the manager decides whether to solve the problem. Let

rt be the probability that the subordinate in period t reports the problem when he detects the problem.

5 In other case, the problem is detected by an outsider with a probability, which also causes blames for the subordinate
and the manager in the period.
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Then, the expected utility of ignoring the problem is

−(1 − qSrt )p(dM,U st + ct st ) + qSrt max{bM st − ct st,−p(dM,Rst + ct st )}.

Therefore, the manager solves the problem if and only if

bM + pdM,U

1 − p
⩾ ct .

Since we have assumed that dM,R > dM,U , the manager is more likely to solve the problem when the

problem is reported.

4.3.2 Subordinates’ behavior

Since we have characterized the behaviors of managers, we consider the behaviors of subordinates.

If the problem has been reported or the subordinate fails to detect the problem, he has nothing to do.

Suppose that the subordinate detects the unreported problem.

We first consider the belief of the subordinate about his manager’s cost. Let I (rt−1) be the updated

subordinate’s belief about that the manager ignores the reported problem when the subordinate detects

an unreported problem. If the problem has been solved or reported, the subordinate learns it and

he has nothing to do. Therefore, when the subordinate decides whether to report, he learns that the

manager does not solve the problem in the first stage of the period. This implies that the manager

detected and ignores the problem or the manager does not detect it. Then, I is defined as

I (rt−1) :=
(qS (1 − rt−1) + (1 − qS))

[
1 − F

(
bM+pdM,R

1−p

)]
(qS (1 − rt−1) + (1 − qS)qM )

[
1 − F

( bM+pdM,U

1−p

)]
+ (1 − qS)(1 − qM )

Since the problem happens in period 0, manager 0 cannot know the problem when he was a subordinate.

Therefore, if the manager knows the problem, he found it after he proceeds to a manager. Therefore

the belief of subordinate 0 about his manager is

I0 :=
1 − F

(
bM+pdM,R

1−p

)
qM

[
1 − F

( bM+pdM,U

1−p

)]
+ (1 − qM )

.

Note that I0 = I0(1). Thus, without loss of generality, we assume that r−1 = 1.
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Next, we consider the subordinate’s expected utility of being promoted to be a manager. Let DR

and DU satisfy

DR := Ec
[
max{−p(dM,R + c), bM − c}

]
, DU := Ec

[
max{−p(dM,U + c), bM − c}

]
.

Then, DRst+1 is the expected utility of the manager in the next period when the problem is reported,

while DU st+1 is that when the problem is unreported.

Summing up these elements, the expected utility of reporting the problem is

δ(1 − p)I (rt−1)DRst+1 + bSst .

On the other hand, the expected utility of not reporting the problem is

δ(1 − p)
[
(1 − qSrt+1)DU st+1 + qSrt+1DRst+1

]
− pdSst .

Then, the necessary and sufficient condition for reporting the problem is characterized as

Lemma 4.1. The subordinate in period t > 0 reports the problem if and only if

φrt−1,rt+1 (t) := δ(1 − p)
[
−(1 − I (rt−1))DR − (1 − qSrt+1)(DU − DR)

] st+1
st
+ bS + pdS ⩾ 0.

Intuitively, φrt−1,rt+1 is the net payoff of reporting the problem. First, pdS is the cost of not reporting

in the present period. The other terms are the net payoff of reporting. Consider a gain from reporting.

Suppose that reward bM is sufficiently low so that DR < 0. If the subordinate reports and the manager

solves, the problem disappears. Then, the utility of facing a reported problem, DR disappears. Note

that 1− I (rt−1) is the probability that the manager solves when the subordinate reports. Then, the gain

from reporting is −(1 − I (rt−1))DR. There is also a loss from reporting. If the subordinate reports

but the manager ignores, the subordinate will face a reported problem and obtain utility DR. On the

other hand, if the subordinate conceals and the next subordinate does not report, the subordinate will

obtain DU . Note that DU > DR. Reporting changes DU into DR. If the next subordinate does not

report, by concealing, the subordinate can earn DU − DR, which is called a gain form reducing the

responsibility. Note also that 1 − qSrt+1 is the probability that the next subordinate does not report.

Thus, (1 − qSrt+1)(DU − DR) is the expected loss from reporting.
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We concentrate on the case that st+1/st is monotone in t. To guarantee the monotonicity of

st+1/st , we prepare some sufficient conditions. At first, suppose that st has a continuous extension

s : R+ → R+. If s(t) is log-concave (resp. log-convex) function of t, st+1/st is decreasing (resp.

increasing) in t. For example, the density function of a normal distribution function is log-concave.

The following fact shows other sufficient conditions.

Fact 4.1. Consider an increasing function G such that G(0) = 0. Suppose that st+1 = G(st ) for each

t ∈ N. Then, if G is (strictly) concave, G(s)/s is (strictly) decreasing and if G is (strictly) convex,

G(s)/s is (strictly) increasing in s. Thus, if G(s) > s for each s and G is strictly concave, st+1/st is

strictly decreasing.

4.4 Equilibrium of the basic model

This section characterizes on pure strategy perfect Bayesian equilibria For notational simplicity,

“subordinate reports” implies that the subordinate takes the strategy where he reports the problem

when he detects it. In the same way, “subordinate does not report” and “subordinate conceals” imply

that the subordinate takes the strategy where he does not report the problem even if he detects it.

As a basic model, we assume that bM = 0. This implies that DR < 0 and DU < 0. We first

investigate the property of incentive to report. Recall that DR < 0, DU > DR and I (rt−1) is decreasing

in rt−1. The following lemma shows the property of φ. Although the proof of this lemma is obvious

from these facts and the definition of φ, it has an insight about subordinates’ incentive.

Lemma 4.2 (Complementarity of reporting). Suppose that DR < 0. Then, for each t ∈ N, φr,r ′ (t) is

increasing in r ∈ [0, 1] and r′ ∈ [0, 1].

This lemma implies that a subordinate tends to report when the others report, that is, reporting

(and thus concealing) are complementary. By Lemma 4.1 and 4.2, we obtain two equilibria and the

necessary and sufficient conditions for their existences.

Lemma 4.3. There is a perfect Bayesian equilibrium where the subordinate in each period reports if

and only if for each t ∈ N, φ1,1(t) ⩾ 0.

Lemma 4.4. There is a perfect Bayesian equilibrium where the subordinate in each period does not

report if and only if for each t ⩾ 1, φ0,0(t) ⩽ 0 and φ1,0(0) ⩽ 0.
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φ = 0 t

φ1,0
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φ1,1
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Figure 4.1: Multiple equilibria

Remark 4.1 (Multiple equilibria). Note that existence conditions for the above equilibria are not

exclusive each other. Thus there can be multiple equilibria with the same parameter. Figure 4.1

illustrates an example. If φ1,1(t) ⩾ 0, φ0,0(t) ⩽ 0 for each t ∈ N, and φ1,0(0) ⩽ 0 are hold, both of the

strategy profile where all subordinates report and that where all subordinates conceal are equilibria. In

this case, if each player believes that others report, he reports and if he believes that others conceal, he

conceals. This suggest that corporate culture plays a role to determine which equilibrium is realized

(Kreps, 1990). For example, consider a firm that has a culture such that even when a subordinate

detects a problem, he conceals it. A subordinate in a firm believes that others conceal and thus he

conceals. As a result, each subordinate conceals and the culture is realized as an equilibrium. On the

other hand, if “reporting” is a culture, it is also realized as an equilibrium.

Note that if qS = 1, while φ1,1 > 0 and φ0,1 > 0, φ0,0 and φ1,0 could be negative. Therefore, if qS is

large, multiple equilibria are likely to occur. △

We now explore the other equilibria. We focus on the case that the scale growth rate st+1/st is

monotone.

First, we consider the case that st+1/st is nondecreasing in t, that is scale growth rate is nondecreasing

over time. Let t1,0 ∈ N be the time such that φ1,0(t1,0) > 0 > φ1,0(t1,0 + 1). Since φ1,0 is monotone,

if t1,0 exists, it is determined uniquely. In this case, in addition to the equilibria that appeared in

Lemmata 4.3 and 4.4, the following strategy profile is an equilibrium.

Lemma 4.5. Suppose that bM = 0, and st+1/st is nondecreasing in t. Suppose also that t1,0 exists.

Then, there is a PBE such that for each t ⩽ t1,0, subordinate at period t reports and for each t > t1,0,

subordinate at period t conceals the problem.

We have shown that there can be three PBEs with pure strategy. The following theorem shows that

no other pure strategy PBE.
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Theorem 4.1. Suppose that bM = 0, st+1/st is nondecreasing in t. Suppose also that there is no t ∈ N

such that φ1,0(t) = 0. Then, there is no pure strategy PBE other than the following strategy profiles.

1. The subordinate in each period reports the problem.

2. The subordinate in each period conceals the problem.

3. For each t ⩽ t1,0, subordinate at period t reports and for each t > t1,0, subordinate at period t

conceals the problem.

When st+1/st is nonincreasing, the equilibria are characterized as in the previous case.

Corollary 4.1. Suppose that bM = 0. Suppose also that st+1/st is nonincreasing in t and there is no

t ∈ N such that φ0,1(t) = 0. Let t0,1 ∈ N be the time such that φ0,1(t0,1) < 0 < φ0,1(t0,1 + 1). Then,

there are at most three PBEs with pure strategy:

1. The subordinate in each period reports the problem.

2. The subordinate in each period conceals the problem.

3. For each t ⩽ t0,1, the subordinate in period t conceals and for each t > t0,1, the subordinate in

period t reports the problem.

In either case, the equilibrium results in a tragedy. Consider the case of increasing scales. When

the scale growth rate is nondecreasing, if the problem is not detected until the threshold period, the

problem will never be reported. Thus, the problem grows until the accidents occurs, which causes

greater accidents. When the scale growth rate is nonincreasing, until the threshold period, the problem

remains unreported. This results in higher probability of accidents, greater harm for consumers and

higher solving costs.

4.4.1 Welfare

In this section, we compute the welfare. Let LR(s)(resp. LU (s)) be the total loss of citizens other

than the personnels of the firm when the problem is reported (resp. unreported), an accident occurs

and the scale is s. Both of LR(s) and LU (s) include compensation for the accident by the firm. The
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amount of LR(s) and LU (s) can differ, which represents that the amount of compensation can differ

when the problem is reported or not. To simplify the notation,

c̄R =

∫ pdM,R

1−p
cdF (c)st, c̄U =

∫ pdM,U

1−p
cdF (c)st, c̄ =

∫
cdF (c)st

FR = F
(

pdM,R

1 − p

)
, FU = F

(
pdM,U

1 − p

)
.

Consider an equilibrium where each subordinate before (including) period t1,0 reports and each

subordinate after the period conceals. In this case, the social welfare SWRCt1,0 is calculated as

SWRCt1,0 = −
t1,0∑
t=0

[
(1 − p)(1 − qS)(1 − qM FU )δ

] t
[
qSSWR(t) + (1 − qS)B̃t

]
−
[
(1 − p)(1 − qS)(1 − qM FU )δ

] t1,0+1
[
B̃t1,0+1

+ (1 − p)(1 − qM FU )δ
∞∑

τ=t1,0+2

[(1 − p)(1 − qM FU )δ]τ−t1,0−2Bτ

]
,

where

SWR(t) =
∞∑
τ=t

[(1 − FR)(1 − p)δ]τ−t Aτ

Aτ = (1 − p)c̄Rsτ + p(1 − FR)
(
L(sτ),+dM,Rsτ

)
+ pc̄st,

B̃τ = qM (1 − p)c̄U sτ + p(1 − qM FU )((dM,U + dS)sτ + L(st )) + pc̄sτ,

Bτ = q∗(1 − p)c̄U sτ + p(1 − q∗FU )((dM,U + dS)sτ + L(st )) + pc̄sτ,

q∗ = 1 − (1 − qM )(1 − qS).

We consider the effect of a delay in t1,0, that is, compare the welfare when t1,0 = t∗ and t1,0 = t∗ + 1.

Then, by calculation,

SWRCt∗+1 > SWRCt∗ ⇐⇒

qS B̃t∗+1 + (1 − qM FU )(1 − p)δ(Bt∗+2 − (1 − qS)B̃t∗+2)

+ qS[(1 − qM FU )(1 − p)δ]2
∑
τ=t∗+3

[(1 − q∗FU )(1 − p)δ]τ−t∗−3Bτ − qSSWR(t∗ + 1) > 0.
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Observing this, since dM,R appears only in SWR(t∗ + 1), sufficiently large dM,R may induce that

SWRCt∗+1 < SWRCt∗ . However, in reality, such punishment would be prohibited. The total amount of

punishment would be no more than the loss of the citizens by the accidents. To represent such idea,

we assume that

Assumption 4.1. 1. For each s, LR(s) + dM,Rs = LU (s) + (dM,U + dS)s = SD(s) > 0.

2. For each s, LR(s) ⩾ 0 and LU (s) ⩾ 0.

The term SD(s) represents the social damage from the accidents with scale s. The first condition

implies that either the problem is reported or not, the social damage from the accidents keeps constant.

If the punishment is only compensation for the accidents, this condition is satisfied. The second

condition implies that citizens cannot benefit from the accidents. If they are negative, the firm

compensate too much for the accidents.

Under the assumption, we can show that

Proposition 4.1. Under Assumption 4.1, SWRCt∗+1 > SWRCt∗ .

Therefore, such type of equilibrium is inefficient. As in the same way, we can show that one time

concealment reduces the social welfare. Therefore, no concealment is socially optimal.

4.5 Comparative statics

In this section, we assume that st+1/st is nondecreasing in t. We focus on strategy profile 3 of

Theorem 4.1, that is there exists t∗ such that subordinate t < t1,0 reports and subordinate t > t1,0

conceals the detected problem. As Theorem 4.1 shows, φ1,0 characterizes the equilibrium. Note that

φ1,0(t) = δ(1 − p)
[
I (1)DR − DU

] st+1
st
+ bS + pdS . (4.1)

If φ1,0(t) increases for each t, t1,0 also increases, which decreases concealments.

4.5.1 Discount factor

Consider the effect of discount factor δ. If I (1)DR−DU ⩾ 0, φ1,0(t) > 0. Therefore, no one conceals.

Thus, if someone conceals, I (1)DR − DU < 0. In this case, increasing in δ decreases φ1,0, and thus,
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increasing concealments. This suggests that more farsighted subordinate is more likely to conceal the

problem. In another interpretation, consider δ as the probability that the subordinate promotes to be

a manager. Then, it also suggests that subordinate who is more likely to promote is more likely to

conceal.

4.5.2 Punishment and reward for subordinates

We consider increasings in punishment and reward for subordinates. Since they appear only in the

last two terms in (4.1), their increasings directly increase φ1,0. That is, increasings in punishment and

reward for subordinates decrease concealment.

4.5.3 Punishment for reported managers

Consider an increasing in punishment for the manager when he does not solve the reported problem,

i.e., dM,R. Since dM,R appears in DR and I (1), the effect is not obvious. Differentiating φ1,0 by dM,R

gives

∂φ1,0(t)
∂dM,R = δ(1 − p)

[
∂I (1)
∂dM,R DR + I (1)

∂DR

∂dM,R

]
st+1
st
,

where

∂I (1)
∂dM,R = −

p
1 − p


f
(

pdM,R

1−p

)
qM

[
1 − F

( pdM,U

1−p

)]
+ (1 − qM )

 < 0,

∂DR

∂dM,R = −p[1 − F (pdM,R/(1 − p))] < 0.

Since DR < 0, we have the following observation.

Observation 4.1. Suppose that f (pdM,R/(1 − p)) is sufficiently small but 1 − F (dM,R/(1 − p)) is not

so small. Then, then an increase in punishment for managers decreases φ1,0(s).

Recall that I is the probability that the manager ignores the problem. Intuitively, if f (pdM,R/(1−p))

is sufficiently small, the decrease in I that caused by an increase in dM,R, is small. On the other hand,

suppose that I itself is not small. Since the manager is likely to ignore the reported problem, if the

subordinate reports the problem, he is likely to face the problem when he is the manager. The increase
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in punishment for reported manager decreases the reported manager’s expected utility. Therefore, it

increases the incentive to conceal the problem.

Remark 4.2. The conditions in observation that φ1,0 is decreasing in the size of punishment may not

hold when dM,R is sufficiently large. To see this, note that

∂2DR

∂(dM,R)2 = p f (pdM,R/(1 − p))] > 0.

Suppose that f is nondecreasing. Then, the second order derivative of φ1,0 is

∂2φ1,0(t)
∂(dM,R)2 = δ(1 − p)

[
∂2I (1)
∂dM,R DR + 2

∂I (1)
∂dM,R

∂DR

∂dM,R +
∂2DR

∂(dM,R)2 I (1)
]

st+1
st

> 0.

Thus, φ1,0(t) is a convex function of dM,R for each t. This implies that even if φ1,0 is decreasing

when dM,R is small, if dM,R is sufficiently large, φ1,0(t) is increasing in dM,R. This is because, since

manager can solve the problem with probability 1, when dM,R is sufficiently large, the probability that

the reported problem is solved is 1. This result depends on the assumption that each manager is able

to solve the problem with probability 1. We revisit this problem in section 4.6.2. △

Example 4.1. Suppose that parameter c is distributed uniformly on (0, c̄). Then,

∂I (1)
∂dM,R DR + I (1)

∂DR

∂dM,R =


3p2dM,R

(1−p)c̄

(
1 − 1

2
pdM,R

(1−p)c̄

)
− p

( 1−2p
1−p

)
if pdM,R

1−p ⩽ c̄

0 otherwise.

Therefore, if p > 1/2, φ1,0 is increasing. If p < 1/2, when dM,R = 0, ∂φ1,0(t)
∂sM < 0 and when

pdM,R/(1 − p) = c̄, ∂φ1,0(s)
∂sM > 0. Since the uniform distribution has nondecreasing density, φ1,0 is

convex function of dM,R. Therefore, there exists d̄ such that for each dM,R < d̄, φ1,0 is decreasing and

for each dM,R > d̄, φ1,0 is increasing in dM,R. △

4.5.4 Punishment for unreported managers

We consider an increasing in dM,U , that is punishment for managers when the problem is unreported.

Recall that the net benefit of reporting, φ is given by

φrt−1,rt+1 (t) = δ(1 − p)
[
−(1 − I (rt−1))DR − (1 − qSrt+1)(DU − DR)

] st+1
st
+ bS + pdS .
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Recall also that we have assumed that dM,U < dM,R. By increasing dM,U , gain from reducing the

responsibility, DU − DR gets close to 0, which implies that if dM,U = dM,R,

φrt−1,rt+1 (t) = δ(1 − p)
[
−(1 − I (rt−1))DR

] st+1
st
+ bS + pdS .

Since DR < 0, φrt−1,rt+1 (t) > 0 and therefore no concealment occurs. The intuition is as follows. The

incentive for concealment comes from transferring the responsibility to the next subordinate. That is,

if the problem is unreported, the responsibility of the manager is reduced. However, if dM,R = dM,U ,

whether the problem is reported or not, the manager receives the same punishment. Subordinates

cannot reduce the responsibility.

4.5.5 Scale growth rate

We consider two problems P, P′ that are identified by the sequences of scales. That is, P = (st ), P′ =

(s′t ). Suppose that no other parameters differ. Note that corresponding φ and φ′ are given by

φrt−1,rt+1 (t) = δ(1 − p)
[
−(1 − I (rt−1))DR − (1 − qSrt+1)(DU − DR)

] st+1
st
+ bS + pdS,

φ′rt−1,rt+1 (t) = δ(1 − p)
[
−(1 − I (rt−1))DR − (1 − qSrt+1)(DU − DR)

] s′t+1
s′t
+ bS + pdS .

Assume that {st } is a strictly increasing sequence and {s′t } is a strictly decreasing sequence. Then, we

have st+1/st > 1 > s′t ′+1/s′t ′ for each t, t′ ∈ N. Assume that the coefficient of st+1/st is negative. Then,

in this case, φ′rt−1,rt+1 (t) > φrt ′−1,rt ′+1 (t′) for each t, t′ ∈ N. Consider the case that for problem P, there

is no PBE such that each player does not report the problem. This and Proposition 4.4 imply that for

some t′ ∈ N, φ0,0(t′) > 0. Then, φ′0,0(t) > 0 for each t ∈ N. Since φ′rt−1,rt+1 (t′) > φ′0,0(t) > 0 for each

t, t′ ∈ N, the unique equilibrium is the strategy profile such that each player reports. This shows

Theorem 4.2. Consider two problems P, P′. Suppose that problem P has increasing scales and

P′ has decreasing scales. Then, if there is no equilibrium such that no one reports in problem P,

then, in problem P′, the unique equilibrium is the strategy profile such that each player reports.

Conversely, there is no equilibrium such that no one conceal in problem P′, then in problem P, the

unique equilibrium is the strategy profile such that no one reports the problem.

This proposition implies that concealment happens more likely in problems with increasing scales.
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The intuition is as follows. If the scale is increasing, punishment in the next period is heavier than that

in the present period. If subordinate conceals the problem, he is likely to be punished in the present

period as a subordinate, but not in the next period. On the other hand, if he reports the problem, he

is likely to be punished in the next period as a manager. If the scale is decreasing, punishment in the

next period is less greater in the present period. Therefore, the motive for reducing the punishment

for manager is more greater in problems with increasing scale.

4.6 Extensions

4.6.1 Introducing rewards for the managers

In the later sections, without mentions, we assume that st+1/st is strictly increasing. We consider the

case that DR < 0. Then, since the relation φ0,0 < φr,r ′ < φ1,1 still holds, equilibrium is characterized

as Theorem 4.1.

We consider the case that DR > 0. Then, the motivation of concealing the problem is different

from the case for DR < 0. If a subordinate reports the problem, since solving the problem brings

high reward, the problem would be solved. On the other hand, if he conceals the problem and solves

it by himself in the next period, he could earn the reward. This incentive for the seeking the reward

is another motivation of concealment for the case that DR > 0. We consider the features of this

motivation.

Equilibria

First, we characterize equilibria. Recall that φrt−1,rt+1 is written as

φrt−1,rt+1 (t) = δ(1 − p)
[
−(1 − I (rt−1))DR − (1 − qSrt+1)(DU − DR)

] st+1

st
+ bS + pdS

Then, φrt−1,rt+1 (t) is increasing in I. Note that I (rt−1) is decreasing in rt−1. Thus, φrt−1,rt+1 (t) is

decreasing in rt−1. This implies that φ0,1(t) ⩾ φ0,rt+1 (t) ⩾ φrt−1,rt+1 (t) ⩾ φ1,0(t) for each rt−1, rt+1 ∈

[0, 1] and t ∈ N. Note that DU > DR and 1 > I (r). Thus, the net gain from the future responsibility

by reporitng is negative.

When DR > 0 , we have the following two cases: φ0,0(t) ⩽ φ1,1(t) and φ0,0(t) ⩾ φ1,1(t).
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Case 1. Consider the case that φ0,0(t) ⩽ φ1,1(t) for each t ∈ N. Then, the equilibria has the

following feature.

Lemma 4.6. Suppose that φ1,1(t) ⩽ 0 for some t ∈ N. Then, in any pure strategy PBE, for each t ∈ N

such that φ0,0(st ) < 0, subordinate t conceals the problem.

In some case, we can characterize pure strategy PBE.

Proposition 4.2. Suppose that φ1,1(t) ⩽ 0 for some t ∈ N and there is no t′ ∈ N such that φ1,0(t′) = 0.

If |{t : φ1,0(t) < 0 < φ0,0(t)}| ⩽ 1, the unique pure strategy PBE is the following strategy: subordinate

t reports if φ1,0(t) > 0 and subordinate t conceals the problem if φ1,0(t) < 0.

On the other hand, in general, there is no pure strategy PBE.

Proposition 4.3. Suppose that φ0,1(t) ⩽ 0 for some t ∈ N and there is no t′ ∈ N such that φ1,0(t′) = 0.

Suppose also that |{t : φ1,0(t) < 0 < φ0,0(t)}| ⩾ 2. Then, there is no pure strategy PBE.

However, in the range of mixed strategy, we have an equilibrium.

Theorem 4.3. Suppose that φ0,0(t) ⩽ φ1,1(t). Suppose that φ1,1(t) ⩽ 0 for some t ∈ N and there is

no t ∈ N such that φ1,0(t) = 0. Then, there exists a PBE such that for each t such that φ0,0(t) < 0,

subordinate t conceals the problem.

Case 2. Suppose that φ0,0(t) ⩾ φ1,1(t). In this case, the equilibria have the following features.

Lemma 4.7. Suppose that φ0,0(t) ⩾ φ1,1(t). Also suppose that φ0,0(t) ⩽ 0 for some t ∈ N. Then, in

PBE with pure strategy,

1. for each t such that φ0,0(t) < 0, subordinate t conceals the problem.

2. Suppose that |{t : φ0,0(t) > 0 > φ1,1(t)}| ⩾ 2. Then, for each t′, t′ − 1 ∈ {t : φ0,0(t) > 0 >

φ1,1(t)}, if subordinate t′ reports, subordinate t′ − 1 conceals the problem. If subordinate t′

conceals, subordinate t′ − 1 reports the problem.

The feature 1 is common to the previous case, but feature 2 is specific in the present case. The

following proposition shows the existence of equilibrium that has these features.

Theorem 4.4 (Existence of alternate generations equilibrium). Suppose that φ0,0(t) ⩾ φ1,1(t) and

φ0,0(t) < 0 for some t ∈ N. Also suppose that |{t : φ0,0(st ) > 0 > φ1,1(t)}| ⩾ 2.

Then, there is a PBE with pure strategy that satisfies
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1. for each t such that φ0,0(t) < 0, subordinate t conceals the problem.

2. Suppose that |{t : φ0,0(t) > 0 > φ1,1(t)}| ⩾ 2. Then, for each t′, t′ − 1 ∈ {t : φ0,0(t) > 0 >

φ1,1(t)}, if subordinate t′ reports, subordinate t′ − 1 conceals the problem. If subordinate t′

conceals, subordinate t′ − 1 reports the problem.

The reason for the alternation of action plans of subordinates is as follows. Since DR > 0, the

subordinate seeks the reward for solving the problem. Therefore, the subordinate wants to conceal the

problem when the manager is likely to solve the problem. If his manager takes the strategy that he

conceals the problem when he is a subordinate, the probability that he knows the problem is higher

than if he takes the strategy that he reports the problem when he detects it. This implies that the

manager’s c is high enough since he knows the problem but does not solve it. Therefore, the incentive

for concealment is weaker when the manager conceals than that when the manager reports. This

implies that the strength of the incentive for concealment alternates in each generation.

Remark 4.3. Note that since there is at most one problem, the actual actions, reporting and not

reporting do not alternate. △

Comparative statics

In each case, φ0,0 plays an important role to determine the start timing of concealment. Recall that the

function φ0,0 is written as

φ0,0(t) = δ(1 − p)(I (0)DR − DU )
st+1

st
+ bS + pdS .

We consider the effect of increasing punishment and reward. The following proposition shows the

effect of the punishment for the managers’ neglect.

Proposition 4.4. If DR > 0, increasing in dM,R decreases φ0,0(t).

The intuition is as follows. Consider DR > 0. In this case, if the manager ignores the problem, the

subordinate can earn award by solving the problem. Then, he wants not the manager to solve it when

the subordinate reports it. On the other hand, by concealing the problem, the subordinate can solve

it as a manager in the next period. Note that an increasing in dM,R increases the probability that the

manager solves the problem. This encourages the subordinate to conceal the problem.

Consider the effect of increasing in reward for managers, bM .
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scale size
s′4
R

s′3
R

s′2
C

s′1
R

s′0
C

s∗ s0

C
s1

R
s2

C

φ1,1

φ1,0

φ0,1

φ0,0

Figure 4.1: Illustration of Example 4.2

Proposition 4.5. Suppose that f (x)/(1 − F (x)) is increasing in x. Let wR = (bM + pdM,R)/(1 − p)

and wU = (bM + pdM,U )/(1 − p). Then,

(1) If F (wU ) > 1/2 and DR > 0, increasing in bM decreases φ0,0(t) for each t.

(2) If F (wR)(1 − F (wR)) > F (wU ) and DR < 0, increasing in bM increases φ0,0(t) for each t.

Note that if bM is sufficiently high, the conditions F (wU ) > 1/2 and DR > 0 are satisfied. Thus,

when bM is sufficiently high, φ0,0(t) is decreasing in bM . The intuition is straightforward. With

sufficiently large bM , the benefit from solving a problem is large enough, which also implies that

low probability of facing the problem. Since the benefit is large, the incentive for seeking rewards

is also large. Both of the effects strengthen the incentive to conceal. On the other hand, if DR < 0,

subordinates want not to face the problem. Therefore, the effect of reducing the probability of facing

the problem reduces the incentive to conceal.

We also perform a comparative static for the scale of a problem. As in the benchmark model,

if DR < 0, since the relation φ0,0 < φr,r ′ < φ1,1 for each r, r′ ∈ [0, 1] still holds, the statement of

Proposition 4.2 also holds. However, if DR > 0, the relation φ0,0 < φr,r ′ < φ1,1 is violated, but if

φ0,0 ⩽ φ1,1, the statement of Theorem 4.2 still holds in the range of pure strategy.

Theorem 4.5. Consider two problems P = (st )∞t=0, P
′ = (s′t )

∞
t=0 that satisfy st+1 > st and s′t+1 < s′t

for each t ∈ N. Suppose also that φ0,0 ⩽ φ1,1. Then, if there is no PBE such that no one reports in

problem P, then, in problem P′, the unique pure strategy PBE is the strategy profile such that each

player reports. Conversely, there is no PBE such that no one conceals in problem P′, then in problem

P, the unique pure strategy PBE is the strategy profile such that no one reports the problem.

If φ0,0 > φ1,1, a statement like Theorem 4.5 may be violated. Example 4.2 shows the case.

Example 4.2. Consider φ, (st )∞t=0, and (s′t )
∞
t=0 that are drawn in figure 4.1. Suppose that there is

an increasing function G such that (st )∞t=0, and (s′t )
∞
t=0 are generated by G, that is st+1 = G(st ) and
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s′t+1 = G(s′t ). Function G is drawn in figure 4.2. Assume that there exists s∗ such that G(s∗) = s∗ (see

figure 4.2). In this example, if the initial value s′0 < s∗, the scale is decreasing, while if s0 > s∗, the

scale is increasing. In this case, not that since φ is written as

φrt−1,rt+1 (t) := δ(1 − p)
[
−(1 − I (rt−1))DR − (1 − qSrt+1)(DU − DR)

] G(st )
st
+ bS + pdS,

φrt−1,rt+1 (t) is depend only on st . Therefore, consider φrt−1,rt+1 (t) as a function of scales, that is

φrt−1,rt+1 (s) := δ(1 − p)
[
−(1 − I (rt−1))DR − (1 − qSrt+1)(DU − DR)

] G(s)
s
+ bS + pdS .

Then, problems (st )∞t=0, and (s′t )
∞
t=0 have the same φrt−1,rt+1 .

Figure 4.1 shows a PBE. The term R indicates that the subordinate at the point reports in PBE and

C indicates that the subordinate at the point conceals. We show that the action profiles are PBEs.

Consider {st }. Note that for each t ⩾ 2, since φr,r ′ (st ) < 0, concealing is the dominant strategy.

Consider t = 0. As seen early in this section, since subordinate 0 is the first person who can detect

the problem, the manager 0 does not detect the problem when he is a subordinate. Thus, this situation

is the same one that subordinate −1 takes a strategy that reports the problem when he detects. Since

φ1,r (s0) < 0, the best response of subordinate 0 is concealing the problem. Then, since r0 = r2 = 0

and φ0,0(s1) > 0, r1 = 1.

Consider problem (s′t )
∞
t=0. Since for each t ⩾ 3, φr,r ′ (s′t ) > 0, reporting the problem is the dominant

strategy. Consider t = 0. As shown in above, since φ1,r (s′0) < 0, the best response of subordinate 0 is

concealing. Since r0 = 0 and φ0,r (s′1) > 0, r1 = 1. Since r1 = r3 = 1 and φ1,1(s′2) < 0, r2 = 0.

Obviously, the PBE in increasing scale is not “all conceal”. However, in decreasing scale, this PBE

is not “all report”. △

4.6.2 Possibility of failure in solving the problem

In the previous section, we assume that managers who facing the reported problem have only two

choices; solve or ignore. This section assumes that managers can chooses the probability that the

problem is solved. To simplifies discussion, we assume that if the manager fails to solve the problem,

the problem is inherited the next manager. In this case, his effort of trying to solve the problem has no

influence on the cost function of the next manager. We also assume that even if the problem causes
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st+1

st

G

s∗

s∗

Figure 4.2: Illustration of function G in Example 4.2.

accidents, the manager in the period is not forced to solve the problem.

Let ρ be the probability that the problem is solved, which managers can choose. Manager t’s cost

function to achieve ρ is given by ct χ(ρ)s, where ct is private information of the manager. Suppose that

ct is independently and identically distributed by a cumulative distribution function F on (0, c̄), where

c̄ ∈ R+. As in the basic model, we assume that each player learns c after he promotes to a manager.

The function χ : [0, ρ̄) → R+ is a strictly convex, differentiable, strictly increasing, and satisfies

χ(0) = 0 and limρ→ ρ̄ χ(ρ) = limρ→ ρ̄ χ
′(ρ) = ∞. The term ρ̄ ⩽ 1 is the supremum of achievable

probability. By this assumption, χ′ is strictly increasing and thus, has the strictly increasing inverse

function.

We assume that if the manager tries to solve the problem, that is he chooses ρ > 0, it is known to the

firm’s personnel that the manager knows the problem, but the level of ρ is unverifiable to any others.

We assume that punishment for the manager is irrelevant to the level of ρ. Let D̃R be the reported

manager’s expected utility, D̃U be the unreported manager’s utility and Ĩ be the probability that the

reported manager ignores.6 Then, as in the basic model, we show

Lemma 4.8. There exist a function Ĩ : [0, 1]→ [0, 1] and constants D̃U and D̃R such that subordinate

t reports if and only if

φ̃rt−1,rt+1 (t) := δ
[
( Ĩ (rt−1) − 1)D̃R − (1 − p)(1 − qSrt+1)(D̃U − D̃R)

] st+1
st

+ bS + pdS ⩾ 0.

6 For the detail definition, see appendix.

98



4.6 Extensions

In this case, the shape of function φ has the same characteristics of that in the previous sections 4.4.

The major differences arise in the effects of increasing in the sizes of punishments and rewards for

managers.

We consider the effect of dM,R. As in the basic model, we consider φ̃1,0, which determines the

equilibrium when D̃R < 0. In our basic model, as shown in example 4.1, we have the case that if dM,R

is sufficiently small, φ̃1,0(s) is decreasing in dM,R, while when dM,R is large, it is increasing. However,

in this model, the latter may not hold. Indeed, we show

Theorem 4.6. Suppose that the support of F is (0, c̄). (1) Suppose that the supremum of the solving

probability ρ̄ < 1 − p. Then, there exists d̄ such that for each dM,R > d̄, φ̃1,0(t) is decreasing in dM,R.

(2) Suppose that the supremum of the solving probability ρ̄ > 1 − p. Then, there exists d̄ such that

for each dM,R > d̄, φ1,0(t) is increasing in dM,R.

The intuition is as follows. Note that

φ̃1,0(t) := δ
[
−(1 − Ĩ (1))D̃R − (1 − p)(D̃U − D̃R)

] st+1
st
+ bS + pdS ⩾ 0.

Note also that 1− Ĩ (1) is the probability that the manager solves the problem, which converges to ρ̄ as

dM,R goes to infinity. By increasing in dM,R, which implies decreasing in D̃R, it increasing the merit of

reporting if the manager solves the problem. Therefore, the benefit increases by ρ̄. On the other hand,

if the subordinate does not report, with probability 1 − p, the problem is unreported. Recall that if

the problem remains unreported, the subordinate can obtain the gain from reducing the responsibility

D̃U − D̃R. Thus, by increasing in dM,R, it increases the gain from reducing the responsibility by

1 − p. Therefore, if ρ̄ < 1 − p, the increasing in the net benefit of reporting is negative, and thus, φ̃1,0

decreases.

Under some additional conditions, we can also say that φ̃1,0 is decreasing.

Proposition 4.6. Suppose that qM = dM,U = 0 and D̃R < 0. Suppose also that χ(ρ) = ρ/( ρ̄ − ρ).

Then, if ρ̄ < 1 − p, φ̃1,0 is decreasing in dM,R.

4.6.3 After retirement blames

In our basic model, we assume that managers are not punished after their retirement. This section

relaxes this assumption. Suppose that each player lives at most three periods. He works as subordinate
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in his first period, works as manager in his second period and retires in his third period. We assume

that the retired manager lives at most one period. The probability that the manager lives after his

retirement is µ. We also suppose that the support of F is (0, c̄) and F has differentiable density. If he

ignores a problem, his negligence is detected when the problem causes accidents. When his negligence

is detected, he is punished. Let dRst be the disutility of punishment for the living retired manager in

period t. We assume that the scale st is determined by a transition function G, that is st = G(st−1) for

each t ∈ N. Let D̂R be the reported manager’s utility, D̂U be the unreported manager’s utility and Î

be the probability that the reported manager ignores.7 Then, as in the basic model, we can define the

incentive to report, φ̂. However, since each manager considers his retired period, whether to solve the

problem is affected by the scale in his retired period. Thus, the expected utility of facing a reported

problem, D̂R and the probability that manager ignores the reported problem, Î is a function of the

scale.8 Then, we show

Lemma 4.9. Suppose that G(s)/s and f are well defined on R+ and sups∈R+ G(s)/s < ∞. Then,

there exists functions Î : [0, 1] × R → R and D̂R : R → R, and a constant D̂U such that subordinate

in period t reports the problem if and only if φ̂rt−1,rt+1 (t) ⩾ 0, where

φ̂rt−1,rt+1 (t) = δ(1 − p)
[
−{1 − Î (rt−1, st )}D̂R(st ) − (1 − qSrt+1)(D̂U − D̂R(st ))

] G(st )
st

+ bS + pdS .

In this case, since φ̂rt−1,rt+1 (t) is written as a function of st , we write φ̂rt−1,rt+1 as a function of s, that

is φ̂rt−1,rt+1 (st ) = φ̂rt−1,rt+1 (t). Obviously, an increase of dR has the same effect of an increase of dM,R.

Moreover, if G(s)/s is increasing, this is the same for the case that dM,R increases in each period.

Since the effect of increase in dM,R depends on the size of dM,R and distribution function, it is not

easy to determine the shape of φ̂. In this case, it is not clear the relation between the problem with

increasing scales and that with decreasing scales.

To simplify the analysis, we consider the case that G(s) = αs, α ∈ R++. Thus, if α > 1, the scales

are increasing. Then, φ̂, D̂, and Î are constant across the periods since G(s)/s = G2(s)/G(s) = α.

Thus, we write these variable as a function of α.
7 For the detail definitions, see appendix.
8 For the detail, see the proof of the lemma.

100



4.7 Discussion and Conclusion

We also have that the possible equilibria with pure strategy are all conceal and all reports since φ̂

is constant. Thus, we consider φ̂0,0 and φ̂1,1. For simplicity, we consider the case that D̂U < 0 (and

thus D̂R < 0 for each α). Consider the effect of α. Recall Remark 4.2. We have shown that if f

is nondecreasing, φ̂ is a convex function of punishment. Since an increasing in scale has the similar

effect of an increasing in punishment, φ̂ would also be high when α is large enough and small enough.

In fact, we show

Proposition 4.7. Suppose that D̂R < 0. Then, there exists ᾱ such that for each α > ᾱ, φ̂rt−1,rt+1 > 0

and φ̂rt−1,rt+1 is increasing in α.

Proposition 4.8. Suppose that D̂R < 0 and F is a uniform distribution on (0, c̄). Suppose also that p,

bM and dM,U are sufficiently small, qS < 1 and c̄ is sufficiently large. Then, there exists ᾱ such that

for each α < ᾱ, φ̂rt−1,rt+1 is decreasing in α.

4.7 Discussion and Conclusion

This paper studies the subordinates’ motivation of concealment of problems. We show that the main

cause of concealment is incentive to reduce the future responsibility. Increasing in punishment for

manager for a reported problem is considered as an easy way to decrease negligences of the managers.

However, in our model, heavier punishment makes the responsibility heavier and in turn, it may

strengthen the incentive to conceal the problem.

Comparative statics also shows that concealment is likely to occur when the scale is increasing. If

scale is increasing, the harm would also be increasing. Therefore, such problem should be solved in

their early stage, but in equilibrium, they will not be reported and thus, resolution of a problem tend

to delay or a problem remains unsolved until an accident occurs. This is the trouble. We need to

overcome this trouble by controlling punishments and rewards considering social welfare.

This paper assumes that there is only one subordinate in each period and he is sure to be a manager.

One may wonder that if there are many subordinates, since a few of them are promoted managers, the

incentive to reduce the responsibility may not work.

However, in such case, since there are many subordinates, the responsibility of reporting a problem

to a manager is also small for each subordinate. Thus, it is natural to assume that the responsibility of

subordinates decreasing in the number of subordinates. Since the present matter is such responsibility,
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4 Concealments of Problems: An Incentive of Reducing the Responsibility

even when the possibility of being a manager is small, the incentive to reduce the responsibility still

may work.

We leave some questions for future researches. The first question is optimizing punishment and

reward to maximize social welfare. In this paper, we omit the discussion about social welfare, but

it is important to determine public policy. The second question is generalizing our model to include

many players. In our model, only two players in the firm, but it is not realistic. The last question is

generalizing our model to allow nonlinear relation between costs, punishment, reward and scales. In

each generalization, the incentive to reduce responsibility also works, but it is a question that what

properties hold in equilibria.
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Appendix

4.A Omitted Proofs

4.A.1 Proof in Section 4.3

Proof of Fact 4.1. Differentiating G(s)/s gives

(
G(s)

s

)′
=

G′(s)s − G(s)
s2 =

s2

2 G′′(λs) − G(0)

s2 .

The second equality is by the Taylor expansion of G, that is, G(0) = G(s) − sG′(s) + s2

2 G′′(λs) for

some λ ∈ (0, 1). Since G(0) = 0, then G(s)/s is increasing if G is convex and is decreasing if G is

concave. □

4.A.2 Proofs in Section 4.4

Proof of Lemma 4.2. Note that I (rt−1) is decreasing in rt−1. Since DR < 0, φrt−1,rt+1 (t) > φr ′
t−1,rt+1 (t)

for each rt−1 > r′t−1. Since DR < DU , φrt−1,rt+1 (t) > φrt−1,r ′t+1
(t) for each rt+1 > r′t+1. Therefore, for

each rt−1, rt+1 ∈ [0, 1], φ1,1(s) ⩾ φrt−1,rt+1 (t) ⩾ φ0,0(t). □

Proof of Lemma 4.3. Suppose that for each t, φ1,1(t) ⩾ 0. Consider the behavior of subordinate at

period t. Suppose that the other player takes the action such that he reports the problem when he

detects it. Then, rt−1 = rt+1 = 1 and thus, reporting the problem is one of his best response.

Suppose that φ1,1(t∗) < 0 for some t∗ ∈ N. Then, since φr,r ′ (t∗) is increasing in r, r′, φr,r ′ (t∗) ⩽

φ1,1(t∗) < 0 for each r, r′ ∈ [0, 1] . Therefore, for the subordinate t∗, concealing the problem is a strict

dominant strategy. Therefore, reporting for each period is not an equilibrium. □

Proof of Lemma 4.4. Suppose that for each t, φ0,0(t) ⩽ 0 and φ1,0(0) ⩽ 0. Then, for each subordinate
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t > 0, as in the proof of Lemma 4.3, we can show that concealing is the best response. Then, since

subordinate 1 conceals, r−1 = 1, and φ1,0(0) ⩽ 0, for subordinate 0, concealing is the best response.

To prove contraposition, suppose that φ0,0(t) > 0 for some t or φ1,0(0) > 0. If φ0,0(t) > 0 for some

t, since φ0,0(t) < φr,r ′ (t) for each r, r′ ∈ [0, 1], for subordinate t, reporting is a strict dominant strategy.

Consider the latter case, φ1,0(0) > 0. Then, since subordinate 1 conceals and r−1 = 1, reporting

is the best response. In each case, the strategy profile where each subordinate reports is not an

equilibrium. □

Proof of Lemma 4.5. Suppose that t1,0 exists. Therefore, for some t, φ1,0(t) < 0. Then, since

bS + pdS > 0 and st > 0, δ(1 − p)[I (1)DR − DU] < 0. Since st+1/st is increasing over time t, φ1,0(t)

is decreasing in t.

Consider the behavior of subordinate t∗ ∈ N. Suppose that subordinate in each t , t∗ follows the

strategy of the statement. Suppose also that t1,0 > 0.

Consider the case that t∗ > t1,0. We show that subordinate t∗ conceals. Note that each subordinate

t > t∗ conceals. Thus, rt∗+1 = 0. Since st+1/st is increasing in t, φ1,0(t∗) < 0. Then, since φrt−1,rt+1 is

increasing in rt−1, φrt−1,0(t∗) < 0. Therefore, for subordinate t∗, concealing is the best response.

Consider the case that t∗ ⩽ t1,0. We show that subordinate t∗ reports. Note that each subordinate

t < t∗ reports. Thus, rt∗−1 = 1. Since st+1/st is increasing in t, φ1,0(t∗) > 0. Then, φrt−1,rt+1

is increasing in rt+1, since and φ1,rt+1 (t∗) > 0. Therefore, for subordinate t∗, reporting is the best

response.

Suppose that t∗ = 0. Then, since r−1 = 1 and 0 ⩽ t1,0, as in shown in above, reporting is the best

response. □

Proof of Theorem 4.1. By Lemma 4.3, 4.4 and 4.5, each of the strategies in the statement is a PBE

under some condition.

Consider a pure strategy equilibrium except for strategy profile 1 and 2. We show that this is

equivalent to strategy profile 3. Then, there exists tR ∈ N such that the subordinate in period tR reports

the problem if he detects it and there also exists tC such that the subordinate in period tC does not

report the problem even if he detects it.

To show the proposition, we prove

Claim 4.1. Suppose that the hypothesis of Proposition 4.1 holds. Let tR be a period at which the

subordinate reports and tC a period at which the subordinate conceals. Then,
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(i) In each PBE, for each t ⩽ tR, the subordinate in period t ⩾ 0 reports the problem.

(ii) In each PBE, for each t ⩾ tC , the subordinate in period t ⩾ 0 does not report the problem.

Proof of Claim 4.1. We first show the first part of the claim. Let t ⩽ tR.

Suppose by contradiction that t does not report the problem. Then, there is t∗ ∈ {t, t + 1, . . . , tR − 1}

such that subordinate t∗ does not report and subordinate t∗ + 1 reports.

Then, since subordinate t∗ does not report at an equilibrium and rt∗+1 = 1, φrt∗−1,1(t∗) < 0. Since

φrt∗−1,1 is increasing in rt∗−1 and there is no t such that φ0,1(t∗) = 0, φ0,1(t∗) < 0. Thus, in φ0,1, the

coefficient of st+1/st is negative. Note that st+1/st is nondecreasing in t and thus, φ0,1(t∗ + 1) < 0.

Since φ0,rt∗+1 (t∗ + 1) is increasing in rt∗+1, φ0,rt∗+1 (t∗ + 1) < 0. Therefore, for subordinate t∗ + 1, not

reporting is the unique best response, which is a contradiction the fact that subordinate t∗ + 1 report

at an equilibrium.

As in the same way, we can show that in equilibrium, for each t ⩾ tC , the subordinate in period t

does not report the problem even if he detects it. □

By Claim 4.1, there exists t̂ such that for each t ⩾ t̂, rt = 0 and for each t < t̂, rt = 1.

Suppose that φ1,0 (̂t) > 0. Then, since rt̂+1 = 0 and rt̂−1 = 1, reporting is the best response, is a

contradiction. Therefore, φ1,0 (̂t) < 0. Suppose that φ1,0 (̂t − 1) < 0. Then, since rt̂ = 0 and rt̂−2 = 1,

not reporting is the best response, is a contradiction. Therefore, φ1,0 (̂t − 1) > 0 > φ1,0 (̂t). Thus,

t̂ − 1 = t1,0. □

Proof of Theorem 4.2. (1) Suppose that there is no equilibrium such that no one reports in problem

P. Then, by Proposition 4.4, φ0,0(t) > 0 for some t ∈ N or φ1,0(0) > 0.

Case 1. Suppose that φ0,0(t) > 0 for some t ∈ N. Then, we first show that φ′0,0(t) > 0 for each

t ∈ N. Consider the case that I (0)DR − DU ⩾ 0. Then φ′0,0(t) > 0 for each t ∈ N.

Consider the case that I (0)DR − DU < 0. Then, we have φ̃0,0(t) > φ0,0(t). This implies that

φ̃0,0(t′) > 0 for each t′ ∈ N.

Since φ′rt−1,rt+1 (t′) > φ′0,0(t′) > 0 for each t′ ∈ N. Then, reporting is the dominant strategy for each

subordinate t. Therefore, the unique PBE is the strategy that each player reports the problem P′.

Case 2. Suppose that φ1,0(0) > 0. Then, as in the previous case, we have that φ′1,0(t) > 0 for

each t ∈ N. Then, for subordinate 0, reporting is strict dominant strategy. Since φ′1,0(s′1) > 0 and

φ′1,0(t) < φ′1,r (t) for each r , for subordinate 1 reporting is the unique best response. Continuing this
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process, reporting is the best response for each subordinate t.

(2) Suppose that there is no equilibrium such that no one conceals in problem P′. Then, by

Proposition 4.3, φ′1,1(t) < 0 for some t. This implies that −(1 − I (1))DR − (1 − q)(DU − DR) < 0.

Therefore, we have φ′1,1 > φ1,1, which implies that φ1,1(t) < 0 for each t ∈ N. Then, φrt−1,rt+1 (t′) < 0

for each t′ ∈ N, rt−1, rt+1 ∈ [0, 1]. This implies that not reporting is the dominant strategy, and thus,

unique equilibrium is the strategy such that each player does not report the problem P. □

Proof of Proposition 4.1. Under Assumption 4.1, first note that for each t, Bt > At and Bt ⩾ (1 −

qS)B̃t + qS At . This is because Bτ − Aτ is calculated as

Bτ − Aτ = (1 − p)(c̄U q∗ − c̄R) + p(FR − q∗FU )SD(st ).

When q∗ = 1,

Bτ − Aτ = (1 − p)(c̄U − c̄R)st + p(FR − FU )SD(st ) ⩾ 0,

since SD(st ) ⩾ dM,Rst and c̄R − c̄U =
∫ pdM,R

1−p
pdM,U

1−p

cdF (c). When q∗ = 0, as in the same way,

Bτ − Aτ = −(1 − p)(c̄R) + pFRSD(st ) ⩾ 0.

Since Bτ − Aτ is a linear function of q∗, Bτ − Aτ ⩾ 0.

As in the same way,

Bt − qS At − (1 − qS)B̃t = (1 − p)qS[c̃U − c̄R]st + pSD(st )qS (FR − FU ) ⩾ 0.

Then, since 1 − q∗FU > 1 − FR, SWRCt∗+1 − SWRCt∗ > 0. □

4.A.3 Proofs in Section 4.6.1

Proof of Lemma 4.6. Let (rt )t∈N ∈ {0, 1}N be the profile of probability of report in an equilibrium. By

the assumption, there exists t such that φ1,1(t) < 0. Suppose that rt = 1. Then, since φ1,1(t + 1) < 0

and φ1,0(t + 1) < 0, we have rt+1 = 0. On the other hand, since φ1,0(t) < 0 and φ0,0(t) < 0, rt = 0, a
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contradiction. Therefore, rt = 0. Let t∗ = min{t : φ1,1(t) < 0}. Since φ1,1(t) is decreasing in t, for

each t ⩾ t∗, rt = 0.

Let T = {t < t∗ : φ0,0(t) < 0}. If T = ∅, we are done. Suppose that T , ∅. Let t∗∗ = maxT .

Then, since φ0,0 < φ1,1, t∗∗ = t∗ − 1. Since φ1,0(t∗∗) < 0, φ0,0(t∗∗) < 0 and rt∗ = 0, rt∗∗ = 0. Note that

φ1,0(t) < 0, φ0,0(t) < 0 for each t ∈ T . Therefore, rt∗∗−1 = 0 if t∗∗ − 1 ∈ T . Continuing this process,

rt = 0 for each t ∈ T . □

Proof of Proposition 4.2. Note that if φ1,0(t) > 0, reporting is strict dominant strategy. Thus, in

equilibrium, rt = 1. By lemma 4.6, for each t such that φ0,0(t) < 0, subordinate t does not report. For

each t, such that φ0,0(t) < 0, since φ1,0(t) < 0, no one has an incentive to deviate.

If |{t : φ1,0(t) < 0 < φ0,0(t)}| = 0, we are done. Consider the case that |{t : φ1,0(t) < 0 <

φ0,0(t)}| = 1. Let t be the element. Then, rt−1 = 1 and rt+1 = 0. Since φ1,0(t) < 0, not reporting is

the best response, which concludes the proof. □

Proof of Proposition 4.3. Let t∗ := max{t : φ1,0(t) < 0 < φ0,0(t)}. By lemma 4.6, rt∗+1 = 0.

Suppose that rt∗ = 0. Then, since φ0,0(t∗) > 0, rt∗−1 = 1. Since |{t : φ1,0(t) < 0 < φ0,0(t)}| ⩾ 2,

t∗ − 1 ∈ {t : φ1,0(t) < 0 < φ0,0(t)}. Then, it must be rt∗−2 = 0 since φ1,0(t∗ − 1) < 0. However,

since φ0,1(t∗ − 2) > 0 and φ1,1(t∗ − 2) > 0, the best response for subordinate t∗ − 2 is reporting, a

contradiction. Suppose that rt∗ = 1. Then, since φ1,0(t∗) < 0, rt∗−1 = 0. However, since φ1,1(t∗ − 1) >

0 and φ0,1(t∗ − 1), reporting is the best response for subordinate t∗ − 1, a contradiction. □

Proof of Lemma 4.7. Let (rt )t∈N be the probability of report in an equilibrium. Suppose that φ0,0(t) ⩽

0 for some t ∈ N. Let t∗ := min{t : φ0,0(t) < 0}. Suppose that rt∗ = 1. Then, since for each t > t∗,

φ1,1(t) < 0 and φ1,0(t) < 0, rt∗+1 = 0. Suppose that rt∗+2 = 1. then, in turn, rt∗+3 = 0. However, since

φ0,0(t∗ + 2) < 0 this implies that rt∗+2 = 0, a contradiction. Therefore, rt∗+2 = 0. As in the same way,

we can show that rt∗+ j = 0 for each j > 0.

Then, suppose that rt∗−1 = 1. Since φ1,0(t∗) < 0, it is a contradiction. Then, suppose that rt∗−1 = 0.

Then, since φ0,0(t∗) < 0, it is also a contradiction. Therefore, rt∗ = 0. As in the same fashion, we can

show that rt∗+ j = 0 for each j > 0.

Let T = {t : φ1,1(t) < 0 < φ0,0(t)}. Suppose that |T | ⩾ 2. Let t∗ = maxT . We now show that if

rt∗− j = 1, rt∗− j−1 = 0 and if rt∗− j = 0, rt∗− j−1 = 1. for each j = 0, 1, . . . , |T | − 1.

We consider the case for j = 0. Suppose by contradiction that rt∗ = 1 and rt∗−1 = 1. Then, since

φ1,0(t∗) < 0 and rt∗+1 = 0, rt∗ = 0 is the best response, a contradiction.
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Suppose by contradiction that rt∗ = 0 and rt∗−1 = 0. Then, since φ0,0(t∗) > 0 and rt∗+1 = 0, rt∗ = 1

is the best response, a contradiction.

Suppose that when j = k, the statement is true and consider the case for j = k + 1. Suppose

by contradiction that rt∗− j = 1, rt∗− j−1 = 1. By induction assumption, since rt∗− j+1 = 0 and

φ1,0(t∗ − j − 1) < 0, rt∗− j = 0 is the best response, a contradiction.

Suppose by contradiction that rt∗− j = 0, rt∗− j−1 = 0. By induction assumption, since rt∗− j+1 = 1

and φ0,1(t∗ − j − 1) > 0, rt∗− j = 1 is the best response, a contradiction. □

Proof of Theorem 4.4. Consider the behavior of subordinate t such that φ0,0(t) < 0. Since φ1,0(t) < 0,

if players after period t take the strategy that not reporting the problem, for subordinate t, not reporting

is the best response. Since st is increasing in t and thus, φ0,0(t) is decreasing in t, for each t > t′,

φ1,0(t′) ⩽ φ0,0(t′) < 0. Therefore, for each subordinate t′, not reporting is the best response.

Consider the following strategy profile:

1. subordinate t ⩽ t∗ reports

2. subordinate t∗+2k+1 reports and subordinate t∗+2k does not report for each 0 ⩽ k ⩽ [t∗−t∗]/2.

3. subordinate t > t∗ does not report the problem.

As in the proof of lemma 4.7, for each t except for t∗, t∗, this strategy profile is the best response of

itself. Consider subordinate t∗. Since φ1,1(t∗) > 0 and subordinate t∗ − 1 and t∗ + 1 reports, reporting

is the best response.

For subordinate t∗, we have the following two cases:

Case 1. Suppose that |{t : φ0,0(t) > 0 > φ1,1(t)}| is an even number. Note that φ1,0(t∗) < 0. Since

|{t : φ0,0(t) > 0 > φ1,1(t)}| is an even number , subordinate t∗ − 1 reports and subordinate t∗ + 1 does

not report. Then, not reporting is the best response for subordinate t∗.

Case 2. Suppose that |{t : φ0,0(t) > 0 > φ1,1(t)}| is an odd number. Note that φ0,0(t∗) > 0. Since

|{t : φ0,0(t) > 0 > φ1,1(t)}| is an odd number, subordinate t∗ − 1 does not reports and subordinate

t∗ + 1 does not report. Then, reporting is the best response for subordinate t∗ .

Therefore, this strategy profile is a PBE. □
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Proof of Proposition 4.4. Note that

∂I (0)
∂dM,R =

− p
1−p f

(
wR

)
(qS + (1 − qS)qM )

[
1 − F

(
wU )]

+ (1 − qS)(1 − qM )
∂DR

∂dM,R = −p
∫
wR

dF (c) < 0,

where wR = (bM + pdM,R)/(1 − p) and wU = (bM + pdM,U )/(1 − p). In this case, since DR > 0,
∂φ0,0(s)
∂dM,R < 0. □

Proof of Proposition 4.5. Differentiating φ0,0 by bM yields

∂φ0,0(t)
∂bM = δ(1 − p)

(
∂I (0)
∂bM DR +

∂DR

∂BM I (0) − ∂DU

∂bM

)
st+1
st
.

Note that

∂I (0)
∂bM = − 1

1 − p

f
(
wR

) [
Q

[
1 − F

(
wU

)]
+Q′

]
−Q f

(
wU

) [
1 − F

(
wR

)]
Q

[
1 − F

(
wU )]

+Q′

∂DR

∂bM = F
(
wR

)
,

∂DU

∂bM = F
(
wU

)
,

where Q = (qS + (1− qS)qM ) and Q′ = (1− qS)(1− qM ). Note that the probability I (0) is maximized

when qS = 1 and minimized when qS = qM = 0. Then, we have

∂I (0)
∂bM DR +

∂DR

∂BM I (0) − ∂DU

∂bM <
∂I (0)
∂bM DR + F (wR)

1 − F (wR)
1 − F (wU )

− F (wU ), and

∂I (0)
∂bM DR +

∂DR

∂BM I (0) − ∂DU

∂bM >
∂I (0)
∂bM DR + F (wR)(1 − F (wR)) − F (wU ).

Since f (x)/(1 − F (x)) is increasing in x and wR > wU , ∂I (0)
∂bM is negative. Then, if DR > 0 and

F (wR)(1 − F (wR)) < F (wU )(1 − F (wU )), ∂φ0,0(s)
∂bM < 0. Conversely, if DR < 0 and F (wR)(1 −

F (wR)) > F (wU ), ∂φ0,0(s)
∂bM > 0. □

Proof of Theorem 4.5. Suppose that there is no PBE such that no one reports in problem P. Thus,

some subordinate reports. If the subordinate is subordinate 0, φ1,0(0) ⩾ 0. Consider the case that

φ1,0(0) < 0. We now show that for some t ∈ N, φ0,0(t) ⩾ 0. Suppose by contradiction that for each t,

φ0,0(t) < 0. Then, since subordinate 0 conceals, there is a PBE such that each subordinate t conceals,

a contradiction.
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Therefore, for some t ∈ N, φ0,0(t) > 0 or φ1,0(0) > 0.

Case 1. Suppose that for some t ∈ N, φ0,0(t) ⩾ 0. Then, as in the proof of Theorem 4.2, for each

t, φ′0,0(t) > 0. Then, we have φ′0,1(t) > 0 for each t since φ′0,1 > φ′0,0. Since φ0,0 ⩽ φ1,1, φ′1,1(t) > 0.

Since φ′1,1(t) > 0, the strategy profile that each player reports the problem is a PBE.

Suppose by contradiction that there is a pure strategy PBE such that someone conceals the problem.

Let such player be subordinate t. Then, it must be φ′1,0(t) < 0. Let the equilibrium strategy profile of

subordinates denote by r . Suppose that rt+1 = 1. Then, since φ′0,1(t) > 0 and φ′1,1(t) > 0, the best

response is rt = 1, a contradiction. Suppose that rt+1 = 0. Consider the case that rt+2 = 1. Then, as

in the same way, we have a contradiction. Therefore, we consider the case that rt+2 = 0. However, in

this case, since φ′0,0(t) > 0 for each s, φ′0,0(t + 1) > 0. Thus, the best response for subordinate t + 1 is

rt+1 = 1, a contradiction.

Case 2. Suppose that φ1,0(0) ⩾ 0. Then, since φ′1,0(t) < φ′1,r (t) for each r > 0, as in the proof of

Theorem 4.2, each subordinate reports the problem in PBE.

The latter case is shown in the same way. □

Equilibrium with mixed strategy

In this subsection, we consider equilibria with mixed strategy. We first prove Theorem 4.3.

Proof of Theorem 4.3. Let T10,00 = {t : φ1,0(t) < 0 < φ0,0(t)}. We show the case for |T10,00 | ⩽ 1 in

the main text. We first consider the case that |T10,00 | = 2. Let T10,00 = {t∗, t∗ + 1}. Then, let rt∗, rt∗+1

be the numbers that satisfy φ1,rt∗ (t∗) = 0, φrt∗+1,0(t∗ + 1) = 0. Let rt = 1 for each t < t∗ and rt = 0 for

each t > t∗ + 1. Then, r is an equilibrium.

As an induction assumption, we suppose that there is an equilibrium when |T10,00 | = k. Consider

the case that |T10,00 | = k + 1.

Suppose by contradiction that there is no equilibria when |T10,00 | = k +1. Let t∗ = minT10,00. Since

|T10,00\{t∗}| = k, if rt∗ = 1, an equilibrium exists. Let M be the set of equilibrium strategy when rt∗ = 1

is fixed. Therefore, rt∗ = 1 is not the best response for subordinate t∗, which implies that φ1,rt∗+1 (t∗) < 0

for each r ∈ M . Since φ1,1(t∗) > 0, rt∗+1 < 1. Suppose that rt∗+1 = 0. Then, since φ0,0(t) > 0 and

φ0,1(t) > 0 for each t ∈ T10,00, rt∗+2 = 1 is the best response for subordinate t∗ + 1’s action.9 On

the other hand, since φ1,1(t) > 0 (and φ0,1(t) > 0), rt∗+1 = 1 is the best response for subordinate
9 Since k ⩾ 2, t∗ + 2 ∈ T10,00.
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t∗ + 2’s action, a contradiction. Therefore, rt∗+1 ∈ (0, 1). This implies that φ1,rt∗+2 (t∗ + 1) = 0. Since

φ1,0(t∗ + 1) < 0 < φ1,1(t∗ + 1), rt∗+2 ∈ (0, 1). This also implies that φrt∗+1,rt∗+3 (t∗ + 2) = 0.

Note that t∗ + k − 1 ∈ T10,00 but t∗ + k < T10,00. Note also that rt∗+k = 0.

Case 1. Suppose that rt∗+k−1 = 1. Then, since φr ′,1(t) > 0 for each t ∈ T10,00, rt∗+k−2 = 1. However,

since φ1,0(t∗ + k − 1) < 0, the best response is rt∗+k−1 = 0, a contradiction.

Case 2. Suppose that rt∗+k−1 = 0. Suppose also that rt∗+k−2 = 0, then, since φ0,0(t∗ + k − 1) > 0,

the best response is rt∗+k−1 = 1, a contradiction. Therefore, we have rt∗+k−2 ∈ (0, 1), that is,

φrt∗+k−3,rt∗+k−1 (t∗ + k − 2) = 0. Therefore, rt∗+k−3 ∈ (0, 1) since there is no t ∈ T10,00 such that

φ1,0(t) = 0, φ0,0(t) = 0, φ1,1(t) = 0, or φ0,1(t) = 0.

Case 2-1. Suppose that rt∗+k−4 = 1, then, for each j < k − 3, if rt∗+ j = 1, r is an equilibrium, a

contradiction.

Case 2-2. Suppose that rt∗+k−4 = 0, then, since φ0,r ′ (t) > 0 for each r′ ∈ [0, 1] and t ∈ T10,00,

rt∗+k−3 = 1 is the best response, a contradiction.

Therefore, we have rt∗+k−4 ∈ (0, 1). Continuing this process, rt∗+ j ∈ (0, 1) for each j = 1, . . . , k −2.

Case 3. Suppose that rt∗+k−1 ∈ (0, 1), then, since φrt∗+k−2,0(t∗ + k − 1) = 0, rt∗+k−2 ∈ (0, 1) and as

in the case 2, we have rt∗+ j ∈ (0, 1) for each j = 1, . . . , k − 1.

By cases 1,2 and 3, we have, φrt∗+ j−1,rt∗+ j+1 (t∗ + j) = 0 for each j = 1, . . . , k − 2. We also have that

φrt∗+k−2,rt∗+k (st∗+k−1) = 0.

Now let r̂t∗+1 be the number that satisfies φ1,̂rt∗+1 (t∗) = 0. Then, r̂t∗+1 > rt∗+1, φr̂t∗+1,rt∗+3 (t∗ + 2) < 0.

Then, there is r̂t∗+3 > rt∗+3 such that φr̂t∗+1,̂rt∗+3 (t∗) = 0. In turn, φr̂t∗+3,rt∗+5 (t∗ + 4) < 0. Let k∗ be the

largest even number less than k − 1. Continuing this process, for each j = 2, 4, . . . , k∗ there exists

r̂t∗+1, r̂t∗+3, . . . , r̂t∗+k∗+1 such that φr̂t∗+ j−1,̂rt∗+ j+1 (t∗ + j) = 0.

Consider the case that k − 1 is an even number. Then, k∗ = k − 3. Then, let r̂k−1 = rk−1. Note

that φrt∗+k−2,rt∗+k (t∗ + k − 1)rt∗+k−1 = 0. Suppose that rt∗+k−1 > 0. Then, φrt∗+k−2,0(t∗ + k − 1) = 0,

and thus, φr̂t∗+k−2,0(t∗ + k − 1) < 0. Then, let r̂t∗+k−1 = 0. Since φrt∗+k−3,rt∗+k−1 (t∗ + k − 2) = 0,

φrt∗+k−3,0(t∗ + k − 2) < 0. Then there exists r̂t∗+k−3 < rt∗+k−3 such that φr̂t∗+k−3,0(t∗ + k − 2) = 0.

Then, in turn, φrt∗+k−5,̂rt∗+k−3 (t∗ + k − 4) < 0. Continuing this process, there exists rt∗, rt∗+2, . . . , rt∗+k−1

for each j = 2, 4, . . . , k − 1, φr̂t∗+ j−2,̂rt∗+ j (t∗ + j + 1) = 0. Then, r̂ satisfies equilibrium condition.

Suppose that rt∗+k−1 = 0. Then, since φrt∗+k−2,0(t∗ + k − 1) < 0, φr̂t∗+k−2,0(t∗ + k − 1) < 0. For

each j = 2, 4, . . . , k − 1, let r̂t∗+ j = rt∗+ j . Then, since φrt∗+ j−1,rt∗+ j+1 (t∗ + j) = 0, we also have

φr̂t∗+ j−1,̂rt∗+ j+1 (t∗ + j) = 0. Then, r̂ satisfies equilibrium condition.
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Note that in either case, r̂t∗+k−1 = 0 when k is odd number. Thus, there is an equilibrium such that

r̂t∗+k−1 = 0 when k is odd.

Consider the case that k−1 is odd. Then, k∗ = k−2. As we shown above, rt∗+k−1 = 0 for some r ∈ M .

Then, since φrt∗+k−2,0(t∗ + k − 1) < 0, there is r̂t∗+k−2 < rt∗+k−2 such that φr̂t∗+k−2,0(t∗ + k − 1) = 0.

Then, in turn, φrt∗+k−4,̂rt∗+k−2 (t∗ + k − 3) < 0. Continuing this process, there exists rt∗, rt∗+2, . . . , rt∗+k−2

for each j = 2, 4, . . . , k − 1, φr̂t∗+ j−2,̂rt∗+ j (t∗ + j + 1) = 0. Then, r̂ satisfies equilibrium condition.

Thus, in each case, we can construct an equilibrium strategy, a contradiction. □

The following propositions show the properties of equilibria with mixed strategy. Combining

Theorem 4.3 and the following proposition, if φ0,1(t) ⩽ 0 for some t ∈ N,10 we can characterize the

equilibrium with mixed strategy.

Proposition 4.9. Suppose that φ0,1(t) ⩽ 0 for some t ∈ N. Then, in each equilibrium, for each t such

that φ0,0(t) < 0, subordinate t conceals the problem.

Proof of Proposition 4.9. Suppose that φ0,1(t) = 0 for some t ∈ N. Then, there exists t such that

φ0,1(t) < 0. Then, for each r, r′, φr,r ′ (t) < 0. Thus, for the subordinate in period t, not reporting

is strict dominant strategy. Since φ0,1(t) is decreasing in t, for each t′ > t, subordinate in period t′

conceals in equilibrium.

Let T := {t′ : φ0,1(t′) ⩾ 0 and φ0,0(t′) < 0}. If T = ∅, we are done. Suppose that T , ∅. Consider

t∗ := maxT . Then, we have φ0,1(t∗ + 1) < 0. Thus, rt∗+1 = 0. Since φ0,0(t) ⩾ φ1,0(t), φ1,0(t∗) < 0.

Therefore, not reporting is best response for the subordinate in period t∗. Thus, we have rt∗ = 0.

Continuing this process, we have that for each t ∈ T , subordinate t does not report in equilibrium. □

The above proposition needs the assumption that φ0,1(t) ⩽ 0 for some t ∈ N. If it fails to hold, the

equilibrium has the following properties.

Proposition 4.10. Suppose that φ1,1(t) ⩽ 0 for some t ∈ N and φ0,1(t) ⩾ 0 for each t ∈ N. Let

t∗ := min{t : φ1,1(t) < 0}. Then, in each equilibrium, the following statements hold. (1) Suppose that

rt∗ = 0. Then, for each t < t∗ such that φ0,0(t) < 0, subordinate t conceals the problem.

(2) Suppose that rt∗ , 0. Then, for each t such that φ1,1(t) < 0, subordinate t completely mixes

reporting and concealing.

10 Note that φ0,1(t) ⩽ 0 implies that φ1,1(t) ⩽ 0.
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Proof of Proposition 4.10. (1) This is same for the Proposition 4.9.

(2) Let t∗ := min{t : φ1,1(t) < 0}. Suppose that the subordinate in period t∗ reports. Then,

since φ1,1(t∗) < 0, for each r and t′ > t∗, φ1,r (t′) < 0. Therefore, rt∗+1 = 0. On the other hand,

since φ0,0(t∗) < 0, φr,0(t∗) < 0 for each r ∈ [0, 1]. Therefore, not reporting is the best response, a

contradiction.

Suppose that the subordinate in period t∗ reports with probability rt∗ < 1. This implies that

φrt∗−1,rt∗+1 (t∗) = 0. If rt∗+1 = 0, φrt∗−1,rt∗+1 (t∗) < 0, a contradiction. If rt∗−1 = 1, it also contradicts.

Therefore, rt∗+1 > 0 and rt∗−1 < 1. We consider the following three cases:

1. rt∗+1 = 1 and rt∗−1 = 0,

2. rt∗+1 = 1 and rt∗−1 > 0,

3. rt∗+1 < 1.

Case 1. Suppose that rt∗+1 = 1 and rt∗−1 = 0, then, since φ0,1(t) > 0 for each t ∈ N, a contradiction.

Case 2. Suppose that rt∗+1 = 1 and rt∗−1 > 0. Then, φrt∗,rt∗+2 (t∗ + 1) > 0. Since rt∗+1 = 1 and

φ1,r (t∗ + 2) < 0, rt∗+2 = 0. Thus, since φ0,0(t∗ + 1) < 0 and φ1,0(t∗ + 1) < 0, not reporting is the best

response for subordinate t∗ + 1 , a contradiction.

Case 3. Suppose that rt∗+1 < 1. Since rt∗+1 > 0, φrt∗,rt∗+2 (t∗ + 1) = 0. Then, rt∗+2 > 0 since

φrt∗,0(t∗ + 1) < 0. If rt∗+2 = 1, as in case 2, we have a contradiction. Continuing this process, for each

t′ > t∗, φrt ′−1,rt ′+1 (t′) = 0. □

4.A.4 Proofs in Section 4.6.2

Proof of Lemma 4.8. When the problem is reported, the manager in period t’s objective is

max
ρ

ρbM st + (1 − ρ)(−pdM,R)st − c χ(ρ)st,

equivalently

max
ρ

ρbM + (1 − ρ)(−pdM,R) − c χ(ρ). (4.2)
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By the Karush-Kuhn-Tucker condition, the optimal probability ρ∗(c) satisfies

bM + pdM,R − χ′(ρ∗(c))c + λ = 0, λ ρ∗(c) = 0,

for some nonnegative real number λ. Since χ′−1 is increasing, if bM + pdM,R < χ′(0)c, it must be

λ > 0. Therefore, ρ∗(c) = 0. On the other hand, if bM + pdM,R ⩾ χ′(0)c, λ = 0. Thus, problem

(4.2) has the interior solution. Therefore,

ρ∗(c) =


0 if bM + pdM,R < χ′(0)c,

χ′−1((bM + pdM,R)/c) if bM + pdM,R ⩾ χ′(0)c.

Since χ′−1 is increasing, ρ∗(c) is decreasing in c. Then, the expected utility of facing the reported

problem as a manager is

D̃R =

∫
[ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − c χ(ρ∗(c))] dF (c).

Consider the manager’s problem when the manager knows the problem before the subordinate’s report.

If he ignores the problem and the problem is unreported, the expected utility is −pdM,U . If he ignores

the problem and the problem is reported, the expected utility is ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) −

χ(ρ∗(c))c. Let r be the probability that the subordinate reports the problem. Then, the expected

utility of ignoring the problem is

r[ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − c χ(ρ∗(c))] + (1 − r)[−pdM,U].

On the other hand, if he does not ignore the problem, that is, ρ > 0 the expected utility is ρ∗(c)bM +

(1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c. Thus, the manager ignores the problem if and only if ρ∗(c)bM +

(1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c < −pdM,U .

As in the previous section, let D̃U be the expected utility of facing the unreported problem, that is,

D̃U =

∫
[max{ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c,−pdM,U }] dF (c).

It is easy to show that D̃U ⩾ D̃R. Let c∗ be the number that solves ρ∗(c∗)bM + (1− ρ∗(c∗))(−pdM,R)−

χ(ρ∗(c∗))c∗ = −pdM,U . Note that ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c is decreasing in
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c. This is because, by the envelope theorem, differentiating the above function by c yields that

−χ(ρ∗(c)) < 0. Then, D̃U is written as

D̃U =

∫ c∗

[ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c] dF (c)

−pdM,U (1 − F (c∗)).

Therefore, the probability that the reported problem remains unsolved in the next period, which is

denoted by Ĩ (rt−1) is

Ĩ (rt−1) :=
(
(qS (1 − rt−1) + (1 − qS)qM )

∫
c∗

(1 − ρ∗(c)) dF (c)

+ (1 − qS)(1 − qM )
(∫

(1 − ρ∗(c)) dF (c)
))

×
(
(qS (1 − rt−1) + (1 − qS)qM )(1 − F (c∗)) + (1 − qS)(1 − qM )

)−1

Consider the subordinate’s behavior. The expected utility of reporting is

δ Ĩ (rt−1)D̃Rst+1 + bSst .

The expected utility of not reporting is

−pdSst + δ
[
pD̃Rst+1 + (1 − p)(qSrt+1D̃Rst+1 + (1 − qSrt+1)D̃U st+1)

]
.

Then, calculating the difference of these equation yields φ̃rt−1,rt+1 . □

Proof of Theorem 4.6. Recall that

φ̃1,0(t) := δ(1 − p)
[
( Ĩ (rt−1) − 1)D̃R − (1 − p)(D̃U − D̃R)

] st+1
st
+ bS + dS .
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Then,

∂φ̃1,0(t)
∂dM,R = δ(1 − p)

 ∂ Ĩ (1)
∂dM,R D̃R + ( Ĩ (1) − p)

∂D̃R

∂dM,R −
∂D̃U

∂dM,R

 st+1
st
.

Consider the case that dM,R → ∞. Then, for sufficiently large dM,R, for each c ∈ (0, c̄), [bM +

pdM,R]/c > χ′(0). Therefore, the maximization problem (4.2) has an interior solution. Therefore by

the first order condition, we have χ′(ρ∗(c)) = [bM + pdM,R]/c. Then, since limρ→ ρ̄ χ
′(ρ) = ∞, as

dM,R → ∞, ρ∗(c) → ρ̄. This implies that χ(ρ∗(c)) → ∞. Then, we have that for each c > 0, as

dM,R → ∞, ρ∗(c)bM + (1 − ρ∗(c))(−pdM,R) − χ(ρ∗(c))c → ∞. Then, for sufficiently large dM,R,

c∗ < 0. This implies that for sufficiently large dM,R, since c∗ < 0 is not in the support of F, f (c∗) = 0.

Therefore, for sufficiently large dM,R,

∂ Ĩ (r)
∂dM,R = −

∫
∂ρ∗(c)
∂dM,R dF (c).

This also implies that ∂D̃U/∂dM,U = 0 for sufficiently large dM,R. Therefore, to determine the sign of
∂φ̃1,0(s)
∂dM,R , we consider only

∂ Ĩ (1)
∂dM,R D̃R + (I (1) − p)

∂D̃R

∂dM,R .

(1) We consider the case that ρ̄ < 1. We write D̃R as a function of dM,R explicitly, that is

D̃R(dM,R). Since ∂D̃R (dM,R )
∂dM,R = −p

∫
(1 − ρ∗(c)) dF (c) < −p, |D̃R(dM,R) − D̃R(0) | < pdM,R.

Therefore, |D̃R(dM,R) | < pdM,R + |D̃R(0) |.

To verify limdM,R→∞
∂ Ĩ (1)
∂dM,R D̃R(dM,R), we consider ∂ρ∗(c)/∂dM,R. Note that ∂ρ∗(c)

∂dM,R > 0. To

show this, recall that ρ∗(c) = χ′−1([bM + pdM,R]/c). Since χ′−1 is increasing, ∂ρ∗(c)
∂dM,R > 0. We

also write ρ∗(c) as a function of dM,R, ρ∗(c, dM,R). Note that ρ∗(c, dM,R) − ρ∗(c, dM,R/2) =∫ dM,R

dM,R/2(∂ρ∗(c, d′)/∂d′) dd′ ⩾ mind∈[dM,R/2,dM,R] dM,R(∂ρ∗(c, d)/∂dM,R)/2. Since ρ∗(c, dM,R) → ρ̄

for each c as dM,R → ∞, ρ∗(c, dM,R) − ρ∗(c, dM,R/2) → 0 as dM,R → ∞. Therefore,

lim
dM,R→∞

min
d∈[dM,R/2,dM,R]

dM,R

2
∂ρ∗(c, d)
∂dM,R = 0.
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Since

������ ∂ Ĩ (1)
∂dM,R D̃R(dM,R)

������ < max
c

∂ρ∗(c, d)
∂dM,R (pdM,R + |D̃R(0) |),

the RHS converges to 0 as dM,R → ∞.

Consider Ĩ (1) ∂D̃R

∂dM,R . Since c∗ < 0 for sufficiently large dM,R, Ĩ (1) =
∫

(1 − ρ∗(c)) dF (c). Then,

( Ĩ (1) − p)
∂D̃R

∂dM,R = −p
[∫

(1 − ρ∗(c, dM,R)) dF (c) − p
] [∫

(1 − ρ∗(c, dM,R)) dF (c)
]
.

Therefore, if ρ̄ < 1 − p, since for each c, ρ∗(c) → ρ̄, ( Ĩ (1) − p) ∂D̃R

∂dM,R < 0 and thus, ∂φ̃1,0
∂dM,R < 0. On

the other hand, if ρ̄ > 1 − p, ( Ĩ (1) − p) ∂D̃R

∂dM,R > 0 and thus, ∂φ̃1,0
∂dM,R > 0. □

Proof of Proposition 4.6. Under the assumption, D̃U = 0. Note that if qM = 0, Ĩ (1) =
∫

(1 −

ρ∗(c)) dF (c). Then,

φ̃1,0(t) = δ( Ĩ (1) − p)D̃R st+1
st
+ bS + pdS .

Note that since χ(ρ) = ρ/( ρ̄ − ρ), by the Karush-Kuhn-Tucker condition,

ρ∗(c) = max
{
ρ̄ −

√
ρ̄

c
bM + pdM,R , 0

}
.

The first order derivative is

δ

( Ĩ (1) − p)
∂D̃R

∂dM,R +
∂ Ĩ (1)
∂dM,R D̃R

 st+1
st
.

Consider ( Ĩ (1) − p) ∂D̃R

∂dM,R +
∂ Ĩ (1)
∂dM,R D̃R. This is calculated as

( Ĩ (1) − p)
∂D̃R

∂dM,R +
∂ Ĩ (1)
∂dM,R D̃R

= −p(1 − ρ̄)(1 − ρ̄ − p) − p
√
ρ̄τA

(
ρ̄

2
+
µA2

2
+ 1 − 2 ρ̄ − p + 1 − pdM,R

2(bM + pdM,R)

)
,

where A = 1/(bM + pdM,R)1/2, τ =
∫ ρ̄/A2 √

c dF (c) and µ =
∫ ρ̄/A2

c dF (c). Then, if 1 − p > ρ̄, the

first order derivative is negative. □
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4.A.5 Proof in Section 4.6.3

Proof of Lemma 4.9. Consider a manager in period t who is reported a problem. Let ξ (s) be the

probability that the manager t + 1 ignores the problem. Then, the manager’s expected utility of

ignoring the problem is

−p(dM,Rst + cst ) − (1 − p)pδξ (st )(1 − µ)dRG(st ).

The manager in period t solves the problem if and only if

bM + pdM,R + δ(1 − p)pξ (st )(1 − µ)dR[G(st )/st]
1 − p

⩾ c

Therefore, the probability that a manager ignores, ξ satisfies

ξ (s) = H (ξ)(s) :=
1 − F *.,

bM + pdM,R + δ(1 − p)ξ (G(s))(1 − µ)dR G2 (s)
G(s)

1 − p
+/-
 . (4.3)

Then, if there is a ξ that satisfies the above condition, the managers’ behavior is determined.

Claim 4.2. Suppose that G(s)/s and f are well defined on R+ and sups∈R+ G(s)/s < ∞. Then, there

exists a function ξ : R+ → [0, 1] that satisfies (4.3).

Proof of Claim 4.2. To show the existence of ξ that satisfies (4.3), we show the existence of a fixed

point of H .

Since each [0, 1] is a nonempty convex compact set, [0, 1]R+ is a convex set and by the Tychonoff

theorem, [0, 1]R+ is a compact set under the product topology. Let O be the product topology of RR+ .

To show the existence of a fixed point of H , we use

Fact 4.2 (Aliprantis and Border 2006, p.206). (RR+,O) is locally convex Hausdorff space.

Fact 4.3 (Brouwer-Schauder-Tychonoff’s fixed point theorem, Aliprantis and Border 2006, p.583). Let

C be a nonempty compact convex subset of locally convex Hausdorff space, and let f : C → C be a

continuous function. Then f has a fixed point.

Therefore, we only to show that H is continuous on [0, 1]R+ . To show this, let ξ, ξ′ ∈ [0, 1]R+ . Note

that the product topology is generated by the family of seminorm ( |h(s) |)s∈R+ for each h ∈ [0, 1]R+ .
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Note also that by the mean value theorem, there exists ξ̃ ∈ [0, 1] such that

|H (ξ)(s) − H (ξ′)(s) |

= δp(1 − µ)dR G2(s)
G(s)

f *.,
bM + pdM,R + δ(1 − p)pξ̃ (1 − µ)dR G2(s)

G(s)

1 − p
+/-

× |ξ (G(s)) − ξ′(G(s)) |.

Then, since G(s)/s is bounded above, when ξ′(s) → ξ (s) for each s, H (ξ′)(s) → H (ξ)(s) for each

s. Therefore, H is continuous. Then H has a fixed point, ξ. □

If the problem is unreported, the expected utility of ignoring the problem is

(1 − r)(−pdM,U st + cst ) + r max
{
bM st − dM,Rst,

− p(dM,Rst + cst ) − (1 − p)δpξ (st )(1 − µ)dRG(st )
}
,

where r is the probability that the problem is reported in the next period. Therefore, the manager

solves if and only if

bM st − cst ⩾ −(1 − r)p(dM,U + c)st + r max
{
bM st − cst,

−pdM,Rst − (1 − p)δpξ (st )(1 − µ)dRG(st )
}

If bM st − cst ⩾ −pdM,Rst − (1 − p)δpξ (st )(1 − µ)dRG(st ), the condition is

bM st − cst ⩾ −p(dM,U + c)st .

If bM st − cst < −p(dM,R + c)st − (1 − p)δpξ (st )(1 − µ)dRG(st ), the condition is

bM st − cst ⩾ −(1 − r)p(dM,U + c)st − r (pdM,Rst − (1 − p)δpξ (st )(1 − µ)dRG(st )).

However, since dM,R > dM,U , −pdM,Rst − (1 − p)δpξ (st )(1 − µ)dRG(st ) < −pdM,U . Therefore,
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if bM st − cst < −p(dM,R + c)st − (1 − p)δpξ (st )(1 − µ)dRG(st ), the above condition must not be

satisfied. Therefore, the manager solves if and only if bM+pdM,U

1−p ⩾ c. Thus, the probability that the

manager ignores problem is

Î (rt−1, s) =
(qS (1 − rt−1) + qM (1 − qS ))ξ (s)

[qS (1 − rt−1) + qM (1 − qS )]
[
1 − F

(
bM+pdM,U

1−p

)]
+ (1 − qS )(1 − qM )

.

Let D̂U := E
[
max

{
bM − c,−p(dM,U + c)

}]
, and

D̂R(s) := E

[
max

{
bM − c,−p(dM,R + c) − (1 − p)δpξ (G(s))(1 − µ)dR G2(s)

G(s)

}]
.

Then as in the basic model, we can define φ̂r,r ′. □

Proof of Proposition 4.7. Note that when st+1 = αst , D̂R, ξ and Î are no longer depend on s but on

α. Therefore, we write these variables as functions of α.

Note also that since ξ is independent of s, ξ is uniquely determined. This is because, (4.3) is written

as

ξ (α) = Hα (ξ (α)) :=
[
1 − F

(
bM + pdM,R + δ(1 − p)pξ (α)(1 − µ)dRα

1 − p

)]
. (4.4)

Then, since Hα (ξ) is decreasing in ξ, for each α, ξ (α) is uniquely determined.

Let E(α) := [−{1 − Î (rt−1, α)}D̂R(α) − (1 − qSrt+1)(D̂U − D̂R(α))]. The proof consists of the

following six steps.

Step 1: ξ (α) is decreasing in α. First note the derivative of ξ. By the implicit function theorem,

ξ (G) is differentiable and by (4.4), the derivative is given by

ξ′(α) = − A
1 + Aα

ξ (α) < 0,

where

A = pδ(1 − µ)dR f
(

bM + pdM,R + δ(1 − p)pξ (α)(1 − µ)dRα

1 − p

)
.

Therefore, ξ (α) is decreasing in α. ■
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Step 2: ξ (α)α is increasing in α. By step 1, ξ (α) is decreasing in α. On the other hand, the RHS

of (4.4) is a decreasing function of ξ (α)α. Therefore, ξ (α)α is increasing in α. ■

Step 3: ξ (α)α converges to a real number as α → ∞. Suppose by contradiction that ξ (α)α does

not converge. By step 2, since ξ (α)α is increasing, ξ (α)α → ∞. Then, there exists ᾱ such that for

each α > ᾱ,

bM + pdM,R + δ(1 − p)pξ (α)(1 − µ)dRα

1 − p
> c̄.

Then, since the support of f is (0, c̄), ξ (α) = 0, which implies that ξ (α)α = 0, a contradiction. ■

Step 4: limα→∞ E(α) > 0. By step 3, since ξ (α)α converges as α → ∞, ξ (α) → 0. This implies

that Î (r, α) → 0. Then, since D̂R(α) < 0 and D̂U < 0,

lim
α→∞

E(α) = −qSrt+1D̂R(α) − (1 − qSrt+1)D̂U > 0.

■

Step 5: limG→∞
∂E(α)
∂α α ⩾ 0. The derivative of E(α) is given by

∂E(α)
∂α

=
∂ Î (rt−1, α)

∂α
D̂R(α) + ( Î (rt−1, α) − qSrt+1)

∂D̂R(α)
∂α

,

where

∂ Î (rt−1, α)
∂α

=
(1 − qSrt−1)ξ′(α)

[qS (1 − rt−1) + qM (1 − qS)]
[
1 − F

( bM+pdM,U

1−p

)]
+ (1 − qS)(1 − qM )

< 0,

∂D̂R(α)
∂α

= −(1 − p)pδ(1 − µ)dR(ξ (α)α)′ξ (α) < 0.

Note that since ξ (α) → 0, ξ′(α) → 0. Therefore, ∂ Î (rt−1,α)
∂α → 0 and ∂D̂R (α)

∂α → 0. If rt+1 > 0, since

Î (rt−1, α) → 0 as α → ∞, ∂E(α)
∂α > 0 for sufficiently large α. ■

Step 6: Completing the proof. Consider the case that rt+1 = 0. Then, since ξ (α)α is bounded

above, Î (rt−1, α)α is bounded above. Since ∂D̂R (α)
∂α → 0, ( Î (rt−1, α)−qSrt+1) ∂D̂R (α)

∂α → 0. Thus, since
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D̂R(α) < 0 and ∂ Î (rt−1,α)
∂α < 0, limα→∞

∂E(α)
∂α α ⩾ 0.

Note that φ̂rt−1,rt+1 (α) = δ(1 − p)E(α)α + bS + pdS. Then, if E(α) > 0, φ̂rt−1,rt+1 (α) > 0. Thus, by

step 5, limα→∞ φ̂rt−1,rt+1 (α) > 0.

Note also that ∂φ̂rt−1,rt+1 (α)/∂α = δ(1 − p) ∂E(α)
∂α α + δ(1 − p)E(α). Then by steps 4 and 5,

∂φ̂rt−1,rt+1 (α)/∂α > 0. □

Proof of Proposition 4.8. As in the proof of Proposition 4.7, let

E(α) = [−{1 − Î (rt−1, α)}D̂R(α) − (1 − qSrt+1)(D̂U − D̂R(α))]

Since ∂φ̂rt−1,rt+1 (α)/∂α = δ(1− p) ∂E(α)
∂α α+ δ(1− p)E(α), it is sufficiently to show that ∂E(0)

∂α < 0 and

E(0) < 0 for sufficiently large c̄. Note that

ξ (0) = 1 − F
(

bM + pdM,R

1 − p

)
= 1 − bM + pdM,R

(1 − p)c̄
.

Then, we can write Î (rt−1, 0) = A(c̄)ξ (0). Note that A(c̄) ⩾ 1 and limc̄→∞ A(c̄) = 1. On the other

hand,

D̂R(0) = bM bM + pdM,R

(1 − p)c̄
−

(
bM + pdM,R

(1 − p)c̄

)2 1
c̄
− pdM,R

(
1 − bM + pdM,R

(1 − p)c̄

)

+
p
c̄

(
bM + pdM,R

(1 − p)c̄

)2

− pc̄

D̂U = bM bM + pdM,U

(1 − p)c̄
−

(
bM + pdM,U

(1 − p)c̄

)2 1
c̄
− pdM,U

(
1 − bM + pdM,U

(1 − p)c̄

)

+
p
c̄

(
bM + pdM,U

(1 − p)c̄

)2

− pc̄

Then, since D̂R(0) < 0,

E(0) = [−{1 − I (rt−1, 0)}D̂R(0) − (1 − qSrt+1)(D̂U − D̂R(0))]

< −D̂R(0)
bM + pdM,R

1 − p
− (1 − qSrt+1)(D̂U − D̂R(0)).
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Letting c̄ → ∞ yields that

lim
c̄→∞
−D̂R(0)

bM + pdM,R

1 − p
− (1 − qSrt+1)(D̂U − D̂R(0))

= p
bM + pdM,R

1 − p
− (1 − qSrt+1)p(dM,R − dM,U ).

Therefore, if the following condition holds, limc̄→∞ E(0) < 0.

p <
(1 − qSrt+1)(dM,R − dM,U ) − bM

dM,R − (1 − qSrt+1)(dM,R − dM,U )
.

The above condition holds when p, bM and dM,U are sufficiently small.

Next, we consider ∂E(α)
∂α , which is written as

∂E(α)
∂α

=
∂I (rt−1, α)

∂α
D̂R(α) + ( Î (rt−1, α) − qSrt+1)

∂D̂R(α)
∂α

.

Note that

ξ′(0) = −Aξ (0) = −pδ(1 − µ)dR

c̄
ξ (0),

∂D̂R(0)
∂α

= −(1 − p)δ(1 − µ)dR(ξ (0))2.

Therefore,

lim
c̄→∞

∂E(0)
∂α

= p2δ(1 − µ)dR − (1 − qSrt+1)(1 − p)δ(1 − µ)dR

= δ(1 − µ)dR(p2 − (1 − qSrt+1)(1 − p)).

Thus, if qS < 1 and p is sufficiently small, limc̄→∞
∂E(0)
∂α < 0. □
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