Q_e"‘”&

;f Kobe University Repository : Kernel

R
4ope

PDF issue: 2024-06-05

An Integrable Systems Approach to Constant Mean
Curvature Surfaces and their Singularities

Ogata, Yuta

(Degree)
Bt (EZF)

(Date of Degree)
2017-03-25

(Date of Publication)
2018-03-01

(Resource Type)
doctoral thesis

(Report Number)
FA 5568465

(URL)
https://hdl. handle. net/20.500. 14094/D1006846

X HAVFT VY RMARZOZMERTY. BNER - TEFASZELEY. ZEEETROON TV ZEENT, BIICTRHACEIW,

KOBE

\j].\]\'l:lihl'[ Y
J

%)



Juoogtd

An Integrable Systems Approach to
Constant Mean Curvature Surfaces and their Singularities

Joduobbbgooouoobuoooobobbouoooooo

o290 10

goouoobooooon

googn 12550065
0000 OO0 00 (Yuta Ogata)



Introduction

In this thesis, we study the construction of constant mean curvature (CMC) surfaces and the
theory for their singularities, and we analyze these surfaces via an integrable systems approach,
which involves, for example, the DPW method and Lax pairs. CMC surfaces are well known as
mathematical models of soap bubbles, and many researchers have been studying them over a long
period of time. In 1866, K. T. Weierstrass showed that one can construct CMC H = 0 (minimal)
surfaces in the 3-dimensional Euclidean space R® by using an integral formula involving a pair of
holomorphic functions satisfying certain conditions. This famous formula is called the Weierstrass
representation formula, and many examples of minimal surfaces have been constructed via this
formula:

Fact 0.0.1 (Weierstrass representation). Any minimal surface X : ¥ € C — R? can be locally
represented as

X = Re/ (1—h%i(14 h*),2h)n dz

over a simply-connected domain ¥ on which A is meromorphic, while  and h%n are holomorphic.

In 1998, J. Dorfmeister, F. Pedit and H. Wu discovered a generalization of the Weierstrass
representation formula. They showed that one can construct CMC H # 0 surfaces in R3 by using
holomorphic data satisfying certain conditions and using a matrix loop splitting called the Twasawa
splitting. This method is called the DPW method. Recently, this DPW method has been applied
to construct surfaces in various non-Euclidean spaces.

In the first half of this thesis, we apply the DPW method for spacelike CMC surfaces in semi-
Riemannian spaceforms, i.e. Lorentz 3-space, de Sitter 3-space and anti-de Sitter 3-space (see also
[70, [71]). We also study some criteria for the types of their singularities. In the last half of this
thesis, we study the corank two singularities of CMC surfaces, the transformation theory for them
and their discretization (see also [22, [72, [73, [74]).

This thesis has the following chapters:

e Chapters 1 and 2. In previous works ([1], [24], [249], [B0], [R6], etc), Brander, Dorfmeis-
ter, Inoguchi, Kobayashi, Kilian, Rossman and Schmitt constructed new examples of CMC
surfaces in the 3-dimensional sphere S* and hyperbolic space H? (non-Euclidean positive def-
inite spaceforms) via the DPW method. In [I'7], Brander, Rossman and Schmitt constructed
spacelike CMC surfaces in the 3-dimensional Lorentzian space R?!, and they classified the
spacelike rotationally symmetric surfaces. (See also [33] and [34].) In the appendix of [4]
(arXiv version), spacelike CMC |H| < 1 surfaces in the de Sitter space S*! are considered.

Here we apply this method to spacelike CMC surfaces in R*!, §2'! and anti de-Sitter space
H?!, and we give some examples of spacelike CMC surfaces in those Lorentzian spaceforms.
We can see this theory as a special case of [33], however here we also study the singularities of
the resulting CMC surfaces, and look at some examples in detail (totally umbilical surfaces,
round cylinders, and more interestingly, analogs of Smyth surfaces).

Section 1.1 explains the DPW method for spacelike CMC surfaces in R%!, as in [I7] and
[33], using Lax pairs and loop groups. In Sections 1.2 and 1.3, we describe the DPW method
for spacelike CMC surfaces in S?! and H*!, as in [33]. Section 1.4 introduces some models
of S*! and H?*!' for visualization. We use the hollow ball model for S*!, and we use the
cylindrical models for H?!'. In Section 1.5, as applications, we describe the most basic ex-
amples of spacelike CMC surfaces in S*! and H?'. In Section 2.1, we explore singularities



on CMC surfaces in Lorentzian spaceforms, and give criteria for determining certain types
of singularities (cuspidal edges, swallowtails and cuspidal cross caps) in the context of Lax
representations. Finally, in Section 2.2, we apply the methods and results in this thesis to the
analogs of Smyth surfaces in Lorentzian spaceforms, including results about their symmetries,
singularities, and relations with the Painleve III equation.

Chapters 3 and 4. In the previous chapters, we studied spacelike CMC surfaces in R?!,
S%! and H?!, and created criteria for singularities on these surfaces, by using the frame-
change method, called the s-spectral deformation. However, as in [[70], we omitted the case of
spacelike CMC H surfaces with 0 < H < 1 in S*! because the Lax pair and Iwasawa splitting
are quite different from the case of H > 1. On the other hand, in the appendix of [24] (arXiv
version), spacelike CMC H surfaces with 0 < H < 1 in the de Sitter space S*!with no umbilics
are considered by using the normal vector of the parallel surfaces of CMC H surfaces with
0 < H <1 in H?. See Proposition BT in the present thesis.

Here, rather, to allow for umbilics as one of the reasons, we give a DPW method for
spacelike CMC H surfaces with 0 < H < 1 in S*! by using Iwasawa splitting. (See Theorems
B2, B33 and B32.) We also study the singularities of these surfaces, and specify types
of singularities, focusing on the asymptotic behavior of Iwasawa splitting and using the s-
spectral deformation. (See Theorems B2, BT3.) In particular we look at singularities of
Smyth-type surfaces with 0 < H < 1 in S*!. The data for such surfaces in H? was given by
Dorfmeister, Inoguchi and Kobayashi in [24] - however, in that H?® case the Iwasawa splitting
is more easily extendable beyond the Iwasawa core, and so singularities do not appear on
these surfaces. Here instead we go to the S?! case to examine singularities.

Section 3.1 explains Lax pairs and the immersion formula as in [83]. In Section 3.2, we
prove the existence and uniqueness of ASLo(C) -Iwasawa splitting. In Section 3.3, we apply
the DPW method for spacelike CMC H surfaces with 0 < H < 1 in S, and in Section 3.4
we consider the behavior of the frames and surfaces when approaching the ASLs(C),-Iwasawa
small cell P. In Section 4.1, we introduce criteria of singularities on these surfaces, including
cuspidal edges, swallowtails and cuspidal cross caps, and in the last Section 4.2 we introduced
Smyth-type surfaces with umbilics and singularities. Here, we show these Smyth-type surfaces
have three types of singularities, i.e. cuspidal edges, swallowtails and cuspidal cross caps (see
Theorem B—23).

Chapter 5. The hyperbolic 3-space H? is a 3-dimensional Riemannian spaceform with con-
stant sectional curvature —1 and the de Sitter 3-space S%*! is a 3-dimensional Lorentzian
spaceform with constant sectional curvature 1 in Lorentz-Minkowski 4-space R%*!'. There are
numerous articles on the study of surfaces in H* and S*! (for example, [29, 51, 82, 86, b0,
62, b3, 57, bR, 60]). Gdlvez, Martinez and Milédn [36] showed the representation formula for
flat surfaces in H3. For flat fronts in H?3, Kokubu, Rossman, Saji, Umehara and Yamada
[67] showed that generic singularities on flat fronts are cuspidal edges and swallowtails (see
also [&7]). Moreover, the criteria for cuspidal edges and swallowtails were obtained. Recently,
differential geometric properties of fronts were studied (cf. [63, 62, 68, B3, 84]). In particular,
normal forms and isometric deformations of cuspidal edges were obtained in [63, BE].

On the other hand, the Gauss map plays an important role in investigating differential
geometry of surfaces in the Euclidean 3-space R3. Singularities and stability of Gauss maps
for surfaces in R® were studied in [4, [7]. Bleecker and Wilson [] showed that generic sin-
gularities of the Gauss map are fold and cusp singularities. Banchoff, Gaffney and McCrory



[@] studied geometric meanings of cusp singularities of Gauss maps. The differential of the
Gauss map, that is, the Weingarten map, gives the Gaussian curvature, the mean curvature
and the principal curvatures for the surface. Therefore, for surfaces in H?, such maps also
play important roles. In [86, b8, 60|, flat fronts in H? and their hyperbolic Gauss maps were
studied. Izumiya, Pei and Sano [60] studied singularities of hyperbolic Gauss maps and hy-
perbolic Gauss indicatrices for surfaces in H?. They regard hyperbolic Gauss indicatrices as
wave fronts and showed that generic singularities of hyperbolic Gauss map images are cuspi-
dal edges and swallowtails, by applying the Legendrian singularity theory. Moreover, Izumiya
[@9] introduced a Legendrian duality theorem for pseudo-spheres in the Lorentz-Minkowski
space. Using this duality theorem, the de Sitter Gauss map image and the lightcone Gauss
map image of surfaces in H? can be constructed. Thus one can study extrinsic differential
geometry of surfaces in H?.

In this chapter, we clarify relations between differential geometric properties called ridge
points of cuspidal edges in H? and singularities of de Sitter Gauss map images in S?!. In Sec-
tion 5.1, we consider local differential geometric properties of cuspidal edges in H3. We shall
define the principal curvature, the principal direction and ridge points for cuspidal edges. In
Section 5.2, we show relations between differential geometric properties of cuspidal edges and
singularities of de Sitter Gauss map images (Theorem 521). In Section 5.3, we consider the
normal form of cuspidal edges in H>. The normal form of cuspidal edges in R? was introduced
in [63]. We give a condition that the origin is a ridge point in the context of the coefficients
of the normal form. In the last section, we apply results obtained in previous sections to flat
fronts in H? and S*!'. We show conditions for singularities of de Sitter Gauss map images
for flat fronts in the context of the data which appear in the representation theorem for flat
fronts in H? given by [36] (Theorem 5Z). Furthermore, we consider the Enneper-type flat
fronts as global examples. We give the duality between Enneper-type flat fronts and their de
Sitter Gauss map images (Theorem B7472).

Chapter 6. Singularities of wave fronts can appear on surfaces via parallel transforma-
tions. It is known that generic singularities of wave fronts in 3-spaces are cuspidal edges
and swallowtails. Moreover, the singularities of the bifurcations in generic one-parameter
families of wave fronts in 3-spaces are cuspidal lips, cuspidal beaks, cuspidal butterflies and
Dy-singularities, in addition to the above two (see [8, b1]). There are criteria for these singu-
larities in [62, 53, 57, 82]. On the other hand, in [35], Fukui and Hasegawa studied singularities
of the parallel surfaces of regular surfaces in Euclidean 3-space R?. They gave criteria for cusp-
idal edges, swallowtails, cuspidal lips, cuspidal beaks, cuspidal butterflies and D4-singularities
by using geometric invariants of the original surfaces, for example principal curvatures.

For constant mean curvature (CMC) surfaces in Riemannian and semi-Riemannian space-
forms, there are several studies. In general, CMC surfaces in semi-Riemannian spaceforms
have singularities (see [, B2, 46, [70, 71, 91, 67, for example). In [62], criteria for cuspidal
edges and swallowtails of maximal surfaces were obtained by using Weierstrass data. Sim-
ilarly, for maximal surfaces and CMC 1 surfaces, criteria for corank one singularities were
given in [32]. Umeda [&1] gave criteria for cuspidal edges, swallowtails and cuspidal cross caps
of extended CMC surfaces in Minkowski 3-space R?!, and in [z, [71], the present author also
studied the analogues of Umeda’s criteria for these singularities of extended CMC surfaces in
other semi-Riemanian spaceforms.

However, the above previous studies did not consider corank two singularities of such sur-
faces. It is well-known that the corank two singularities appear even on CMC surfaces in



Riemannian spaceforms. Thus in this thesis, we consider the criteria for the corank two sin-
gularities, especially D,-singularities.

For CMC H # 0 surfaces in R3 and R%!, the following fact is known. (For the definition
of ft, see (EI3).)

Fact 0.0.2 ([85, 45]). Let f be a conformal (spacelike) CMC surface in R3 (or R*!) with
mean curvature H > 0, unit normal vector v and Hopf differential factor @, and let p be an
umbilic point of f. Then for ¢t = 1/H, the parallel transform ft of f becomes a conformal
(spacelike) CMC surface in R? (or R?!) with mean curvature —H and Hopf differential factor
—(@Q. Moreover, ft has a corank two singularity at p.

For CMC surfaces in the spherical 3-space S, hyperbolic 3-space H?, de Sitter 3-space S2:1
and anti-de Sitter 3-space H*!, the following is known. (For definitions of f! and f?, see
(B13) and (E13).)

Fact 0.0.3 ([20, 24]). Let f: U — M?3 be a conformal (spacelike) CMC H immersion and v
its unit normal vector.

(1) If M3 = H?® or %! with H > 1, then for t = arccoth(H), f* becomes a conformal
(spacelike) CMC surface in M? with mean curvature —H.

(2) If M3 = H? (resp. S*') with 0 < H < 1, then for t = arctanh(H), f* = 0* becomes a
conformal spacelike CMC surface in S%1 (resp. H?) with mean curvature —H.

(3) If M3 = S3 or H2! with mean curvature H > 0, then for t = arccot(H), f' is a
conformal (spacelike) CMC surface in M? with mean curvature —H. Moreover, if f is a
conformally immersed minimal (resp. maximal) surface, then v is a conformal minimal
(resp. maximal) surface in M? and f is a unit normal vector to v.

By these facts, considering parallel transforms of CMC surfaces naturally emphasizes their
umbilic points, and parallel transforms play an important role in understanding relations
between umbilic points and corank two singularities. Moreover, by Facts 0002 and 03, we
can start to consider a regular CMC surface f with an umbilic point instead of a CMC surface
f (or f) with a Dy-singularity via parallel transform. Thus, in this thesis, we study (spacelike)
CMC surfaces with D,4-singularities in Riemannian and semi-Riemannian spaceforms, and we
give criteria for Dy-singularities in terms of the Hopf differential factors (Theorem G2). For
minimal surfaces, we give conditions for which they have D,-singularities by using Weierstrass
data (Theorem B272).

For surfaces in S?, H?, S*! or H?!, their unit normal vectors form surfaces. Thus we can
compare curvatures of CMC surfaces with curvatures of their unit normal vectors (Proposition
BE33). Moreover, we show a kind of duality between parallel transforms of CMC surfaces and
their unit normal vectors (Proposition B233).

Chapter 7. The study of minimal surfaces with planar curvature lines is a classical subject,
having been studied by Bonnet, Enneper, and Eisenhart in the late 19th century, as recorded
in 4], [26], and [27], respectively. The subject was further studied by Nitsche in [69], where
he gave a full classification of such surfaces. Nitsche showed that families of planar curvature
lines transform into orthogonal families of circles on the unit sphere S? under the Gauss map,
and by analyzing orthogonal systems of circles, he classified different types of minimal surfaces



with planar curvature lines, which we will state here along with their respective Weierstrass
data.

Fact 0.0.4. A minimal surface in Euclidean space R3 with planar curvatures lines must be a
piece of one, and only one, of

— a plane (0,1dz2),
— a catenoid (e, e % dz),
— an Enneper surface (z,1dz), or

— a surface in the Bonnet family {(e* +t,e *dz),t > 0}

up to isometries and homotheties of R3.

In fact, planes can also be considered as spheres with infinite radius. Thus, minimal sur-
faces with planar curvature lines can be thought of as a special case of minimal surfaces with
spherical curvature lines. There are many works focused on such surfaces, including [23] and
[G5].

On the other hand, Thomsen studied surfaces with zero mean curvature which are also
affine minimal. In [B8], he classified such surfaces using the fact that the families of asymp-
totic lines of these surfaces transformed into orthogonal families of circles on the unit sphere
under the Gauss map. He also mentioned that since the asymptotic lines correspond to the
curvature lines of the conjugate surface, minimal surfaces that are also affine minimal are
conjugate surfaces of minimal surfaces with planar curvature lines. Building on the result of
Thomsen, Schaal showed that the plane and the Enneper surface can be attained as a limit of
Thomsen surfaces in [85], and Barthel, Volkmer, and Haubitz were able to join these surfaces
into a one-parameter family of surfaces using an analytical approach in [5].

It is also possible to attain a deformation between minimal surfaces with planar curvature
lines using the Goursat transformation introduced in [37] and [B8]. The Goursat transforma-
tion transforms minimal surfaces to minimal surfaces; additionally, the transformation not
only maps curvature lines to curvature lines but also preserves the planar curvature line con-
dition, as seen in [@2], [B6], or [75]. However, one may not transform a non-planar minimal
surface into a plane via Goursat transformations alone.

Meanwhile, non-zero constant mean curvature (CMC) surfaces with planar curvature lines
also have been studied extensively, as in [0], [93], [9]. In particular, Wente constructed non-
trivial examples of compact CMC surfaces, called Wente tori in [94]. Then in [[], Abresch gave
a classification of all CMC surfaces with planar curvature lines including the Wente tori and
cylindrical ended bubbletons, by solving a system of partial differential equations. Similarly,
in [93] Walter considered explicit parametrizations of Wente tori, by showing the existence a
notion of axes.

In this thesis, to classify minimal surfaces in R? with planar curvature lines, we propose
an alternative method to using orthogonal systems of circles. In particular, we utilize the
method analogous to the approach taken in [, [5], and [93], modified for the subject at hand.
In Section [, we first obtain and solve a system of partial differential equations describing
the metric function, similar to the method used in [{] and [6]. Then, following [93], we prove
the existence of axial directions of these surfaces, using them to recover the Weierstrass data,
and ultimately their parametrizations. In Section [, we use the results from the previous
section to obtain a single-parameter deformation of all minimal surfaces preserving the planar



curvature line condition. Finally as the main result, we state the classification, parametriza-
tion, and deformation of all minimal surfaces with planar curvature lines (see Theorem 21
and Figure [[2).

Chapter 8. In the smooth (or continuous) case, surfaces governed by some integrable equa-
tion, like constant negative Gaussian curvature surfaces and non-zero constant mean curvature
surfaces, have been well studied. When studying such surfaces, it is useful to describe 2 x 2
matrix representations and matrix-valued partial differential equations called Lax pairs. In
particular, as mentioned before, applying matrix-splitting theorems, Dorfmeister, Pedit, Wu
[75] established the generalized Weierstrass representation for smooth CMC surfaces in Eu-
clidean 3-space R3 (regarding the cases of smooth CMC surfaces in spherical 3-space S* and
hyperbolic 3-space H?, see [i0], [30] for example), now called the DPW method for smooth
CMC surfaces.

Stepping away from smooth surface theory, there has been recent progress on discrete
surface theory. In the last three decades, using integrable systems techniques, discrete sur-
face theory has been developed. Burstall, Hertrich-Jeromin, Rossman, Santos [T9] described
discrete CMC surfaces in any 3-dimensional Riemannian spaceform and gave several new ex-
amples of discrete CMC surfaces, and Bobenko, Hertrich-Jeromin, Lukyanenko [I1] gave a
curvature theory for discrete surfaces in Riemannian spaceforms (see also [IR]). Due to these
works, we are able to treat discrete surfaces in 3-dimensional Riemannian spaceforms. In
particular, constructing discrete CMC surfaces is one of the central topics in the study of
discrete surface theory. In fact, Bobenko and Pinkall [8] introduced a Weierstrass representa-
tion for discrete minimal surfaces in R?, and Hertrich-Jeromin [40] derived a Weierstrass-type
representation for discrete CMC 1 surfaces in H?3.

Bobenko, Pinkall [12] described Lax pairs for discrete CMC surfaces in R and gave a Cauchy
problem for them (see also [&1]). Applying matrix-splitting formulae (see also Propositions
B30, B3 here), Hoffmann [d3] gave a construction for discrete non-zero CMC surfaces in
R3. This method is called the discrete DPW method for discrete CMC surfaces in R?. On
the other hand, although discrete CMC surfaces became treatable recently, the discrete DPW
method for discrete CMC surfaces in other 3-dimensional Riemannian spaceforms had not yet
been considered.

In this chapter, we give the discrete DPW method for discrete CMC surfaces in S® and H?,
which is a generalization of the work by Hoffmann [43], and give several examples. In the
smooth case, we can choose a common Lax pair for R3, S? and H3. Also in the discrete case,
using the same Lax pair as in R?, we will show that we can construct discrete CMC surfaces
in S? and H? and that discrete CMC surfaces given by Lax pairs have mean curvatures (in the
sense of [[C1] and [IR]) that are constant. Our construction covers discrete isothermic surfaces
in S with any constant mean curvature H, and the discrete isothermic surfaces in H?® with
constant mean curvature H satisfying |H| > 1.

As an application, we will also construct discrete constant positive Gaussian curvature
surfaces by taking parallel surfaces of discrete CMC surfaces, and look at their singulari-
ties. In the smooth case, constant Gaussian curvature surfaces generally have singularities
(for example, see [A7]), so it is natural to expect that discrete constant positive Gaussian
curvature surfaces have certain configurations of singularities. Based on work by Rossman
and Yasumoto [81], we will analyze singularities of such discrete constant positive Gaussian
curvature surfaces in R3, S3 and HB3.
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Chapter 1

The DPW method for spacelike
CMC surfaces

1.1 The loop group method in R*!

We consider the DPW method for constructing spacelike CMC surfaces in R*! as in [I7], [33].
Let R?! be the 3-dimensional Lorentz space with Lorentz metric
(T, y)Rea 1= T1y1 + 2y2 — Toyo for = = (21,22,20),y = (Y1,¥2,%0) € R>1.

We simplify the notation (-,-) to (-, -)gz.1, and use its bilinear extension to C®. Let ¥ be a simply-
connected domain in C with the usual complex coordinate z = x + iy, and let f : ¥ — R?! be a
conformally immersed spacelike surface. Since f is conformal,

(for £y = (f2 f2) =0, (f2, fz) :=2e>" (1.1.1)

for some function u : ¥ — R. We choose the unit timelike normal vector field N : ¥ —s H? (H?>
is the hyperbolic 2-space in R*!) of f, and then the mean curvature and Hopf differential are

1
o 2¢2u

<fZ27N>7 Q:: <fzzaN>~ (112)
The Gauss-Codazzi equations are the following form in the CMC cases:
duyz + QQe " —4H?*e* =0, Q;=0. (1.1.3)

The Codazzi equation in (ITI3) is equivalent to the Hopf differential @ being holomorphic, and
(CI33) is invariant with respect to the transformation Q@ — A72Q for A € S'. When f(z,y) is a
spacelike CMC in R?!, the spectral parameter A € S! allows us to create a l1-parameter family of
CMC surfaces fA = f(x,y, \) associated to f(x,y).

To describe the 2 X 2 matrix representation of R*! as in [I'7], [83], writing su; ; for the Lie algebra

of the Lie group
SUl,l = {( % g >

11

a,BEC,adﬂBl}, (1.1.4)



12 CHAPTER 1. THE DPW METHOD FOR SPACELIKE CMC SURFACES

we identify R?! with sup,1 via

T T — 1T
R?1 5 2 = (21,29, 70) +—— o L7520 e suq .
xr1 +1xo —1Z ’

The metric becomes, under this identification, (X,Y) = %trace(XY) for X,Y € suq .
Let f be a conformal immersed spacelike surface in R>! with associated family f*, and let the
identity matrix and Pauli matrices be as follows:

(3 0) am (00)e mm (05 ) me (30 g

Then {01, 02,903} is an orthogonal basis for su; ; ~ R2!. We can define

N A S b el
== ‘f:g“ = @ :FO'1F 5 €9 = @ = @ :FJQF 5 N = FZUgF (116)

€1 :

for F' = F(z, Z,A) € SUy 1. For this F, we get the untwisted 2 x 2 Lax pair in R*>! as follows:

P A1 —u, —iAT2Qe v o 1 Uz —2iHe"
F,=FU, F; = FV, where U= 3 ( i H o " ), V=3 ( IO, )(1.1.7)

We change the “untwisted” setting to the “twisted” setting by the following transformation (814).
Let F' be defined by

F=—os(FY) ( \? \?f >a3, (1.1.8)
A

producing the twisted 2 x 2 Lax pair of f in R%!,

- o 1 Uy 2iN"1Het 1 —uz iAQe™
.F‘Z—.F‘[J7 .F‘g—.F"/7 where U7§( 72‘)\71Q€7u —u, >, V*§( _9iNHev us ). (1.1.9)

The following Proposition I gives us a method for determining spacelike CMC H # 0 surfaces
in R%! from given data u and Q, by choosing a solution F of (II9) and inserting F into the
Sym-Bobenko type formula (ITT10).

Proposition 1.1.1 (Sym-Bobenko type formula for spacelike CMC surfaces in R*! [I7], [83]). Let
¥ be a simply-connected domain in C. Let u and Q solve (II23), and let F' = F(z,Z, A) be a solution
of the system (IH). Suppose F € SUy 1 for all A € S' and one value of z. Then F € SUy ;1 for all
z. Defining the following Sym-Bobenko type formulas

1 .
= ﬁFiagF_l + IZ{)\(@)\F)F_l]

. N = — [FiogF] ‘A g (1.1.10)
A=1 =

f is a conformally parametrized spacelike CMC H # 0 surface in R*1 with normal N.
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1.2 The loop group method in S*! and H>!

We apply the DPW method to construct spacelike CMC surfaces in §*! and H*!, as in [33].

Let R31 resp. R?? be the 4-dimensional space with metric ((z1, 22,73, 74), (Y1, Y2, Y3,Ya)) :=
T1Y1 + ToYo + € - T3y3 — T4Y4, Where € = 1 for R®!, resp. € = —1 for R%2. We define the spaceform
S := {z|(z,z) = €}. Thus we obtain S = §*! (resp. S = H?!) when ¢ = 1 (resp. ¢ = —1).

Let ¥ be a simply-connected domain in C with the usual complex coordinate w = z + iy. Let
f X — S be a conformally immersed spacelike surface. Since f is conformal,

(fus fuw) = (fas fo) =0, {fuw, fa) = 26" (1.2.1)

for some function u : ¥ — R. For the unit normal vector field N of f satisfying (N, N) = —1,
(fw, N) = (fg, N) = 0, we define the mean curvature H and Hopf differential A as follows:

H:—mew%vkzmmNy (1.2.2)

2e2u

The Gauss-Codazzi equations are of the following form in the CMC (H? > ¢) cases:
1 -
2uni — 267 (H? —€) + SAA™ =0, Ay =0. (1.2.3)

Making the change of parameter z := 2¢/H? — ¢ - w and defining Q by A = —2vVH?2 —¢-e~¥Q
for a real constant v, we have equation (I'T33) with H = :I:%:

du.z: +QQe > — e =0, Q:=0. (1.2.4)
S?! and H?! and their matrix group representations. We identify R*!, resp. R??, with

the Hermitian symmetric group {X € Msyo }X =Xt }, resp. another matrix group, as follows:

Tq4+ V-3 T, — 129
R3! resp. R2? 3 o = (21, 20, T3, T4) — . 1.2.5
) P ( 15 42,3, 4) 21 + iTo Ty — V- T3 ’ ( )

with v = 1 for R®! and v = i for R*2. The metric becomes, under this identification, (X,Y) =
—1itrace(Xo2Y'0s). In particular, (X, X) = —det(X), and we can identify S>1, resp. H*!, with

{X € Myys | X = X", det(X) = -1} = {FosF" |F € SL,(C) }, (1.2.6)

respectively, with SU; 1, as in (CI4) via

Ty +1T3 T — 1o
H?*! 5 2 = (21, 22, 23, T4) — . . . 1.2.7
> ( 1, 42,43, 4) T + iTo T4 — i3 ( )

The Sym-Bobenko type formula in S2! and H?'. Defining F and f* in the same way as in
(3.1.3), once again we change the “untwisted” setting to the “twisted” setting by the transformation
(B13) defining F'. We define the twisted 2 x 2 Lax pair of f in S as

F, = FU, F,=FV, (1.2.8)

where U and V are as in (IT9) with H fixed to be 3.
The following Proposition X1 gives us a method for determining spacelike CMC H surfaces in
S2! with |H| > 1, resp. CMC H surfaces in H*! for any value of H, from given data u and Q.
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Proposition 1.2.1 (Sym-Bobenko type formula for spacelike CMC surfaces in S*!, H*! [33]). Let
Y be a simply-connected domain in C. Let u and Q solve (CZA), and let F = F(z,Z,\) € SLy(C)
be a solution of the system (I"2ZR) such that F(z,z,\) € SU1 1 when A € S'.

o In the case of S>', set Fy = F|)\:e%ew for g, € R, q # 0. We define the following Sym-
Bobenko type formulas

iq _ 34 .
f=F ( € 0 )Fot, N=—F, ( eo ) 0 )Fot. (1.2.9)

0 —e 21 —24
Then, f is a spacelike CMC H = —coth(—q) surface in S*! with normal N.

o In the case of H*Y, set Fy = F|y_,imi and Fy = F|y_,ivs for 71,72 € R and v, — y2 # nrw
(n € Z). We define the following Sym-Bobenko type formulas

ezi(v1—72) e3i(r1—72) 0

: 0 —t —t
f=ih ( 0 —e—Filn—72) ) By N=-h ( 0 e—3i(v1—72) )F2 (1.2.10)

Then, f is a spacelike CMC H = —cot(y1 — v2) surface in H*! with normal N.

1.3 Application of the DPW method to S*! and H>'

In this section, we give a description of the DPW method, and apply this method to spacelike CMC
surfaces in §*! and H*! as in [I7], [33]. First, we define the potential ¢:

Definition 1.3.1 (holomorphic potential 7], [25], [80]). Let ¥ be a simply-connected domain,
z € X and A € C. A holomorphic potential £ is of the form

€:=Adz, A= A(z,)\) = f: Aj(2)N, (1.3.1)

j=-1

where each A;(z) is a 2 x 2 matrix that is independent of ), is holomorphic in z € 3, is traceless,
is a diagonal (resp. off-diagonal) matrix when j is even (resp. odd), and the upper-right entry of
A_1(z) is never zero.

Given a holomorphic potential £, we then solve the equation

dp =€, (z:) =1 for ¢ € ASLy(C), (1.3.2)

where ASLy(C) = {cp()\) € Maxa|p: S AN SL,(C), p(—A) = agcp()\)ag} for some choice of
initial point z, € X.

We will use the following “SU; ;-Iwasawa splitting” defined on an open dense subset B 1, called
the Twasawa big cell, of this loop group ASLy(C). The following proposition was proven in [I7].

Proposition 1.3.1 (SU; ;-Iwasawa splitting [I7]). For all ¢ € By 1, there exist unique loops F' and
B such that

¢=F-B, (1.3.3)
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where 0 X\

F e ASUl,l @] {( 1o ) . ASULl} B e A SLQ((C),

ASULl = {(,D()\) S ]\/[2)(2

(,OZSI L} SU1$17(10( *O’d@ 05}7
B, extends holomorphically to D, }

B.(0) = ( P pE)l ) for some p > 0.

AFSLy(C) = {B+(/\) € ASLy(C)
0

After obtaining a solution ¢ of (IZ32), we restrict to By ;1 and split ¢ as in (Z333). We then input
F into the “Sym-Bobenko type formula” in (ITI0) (resp. (IZZ9) or (I"21W)), and the following
proposition tells us we have a conformally immersed CMC surface f = f(z,2) in R®! (resp. S*!
or H*1).

Proposition 1.3.2 ([[74]). Let & be a holomorphic potential as in (B33d) over a simply-connected
domain ¥ in C, and let ¢ : ¥ — ASLy(C) be a solution of (IZ32). Define the open set ¥.° :=
0 Y (B11) C X, and consider the unique SUy 1-ITwasawa splitting on X° as in (I33).

Then, after a conformal change of parameter z and appropriate choice of definitions for u, H
and Q, we have that F satisfies the Lax pair (IIT9).

The converse of this recipe, that any conformally immersed CMC H # 0 (resp. H = —coth(—q)
or H = —cot(y; — 72)) surface in R*! (resp. S>! or H*!) has a holomorphic potential, also holds,
but we will not prove that here, see [I'7] [83] for details.

1.4 Visualization of surfaces in S*! and H?!

In the next section, we introduce some examples of CMC surfaces in S>! and H?'. At that point,
we wish to visualize CMC surfaces in S*! and H?!, using appropriate models for S! and H*!, and
we consider those models here. These models are already known, and we describe them explicitly
here, in the context of our setting.

The hollow ball model of S?!. To visualize CMC surfaces in S?!, we use the hollow ball
model of S?1, as in [29], [64], [61], [96]. We get the following identification (bijection):

(1.4.1)

01 earctan(m;) earctan(a:‘;) earctan(z4)
S= 9($1,$2,$3,£€4)'—) eH

V1+ a3 o V1+ 22 e «/1—1—:@21%

In this way, S*1! is identified with the hollow ball H. The hollow ball model is the set {(y1,y2,y3) €
Rle™™ <yi+y3 +y35 <e™}.

The cylindrical model of H?!. To visualize CMC surfaces in H?*!, we use a model for H?!,
which we call the cylindrical model, like in (5] and [@5]. It is actually only a model for the universal
cover of H?!, but has the advantage that certain symmetries become more apparent. We have the
following homeomorphism and universal covering: H*! ~ H? x S! € H? x R =: C. This means that
we have the following covering:

H2’1 > (1'1,1172, $3,$4)

T3 + 124
A €c. (142)
<1+\/x3—|—x4 1—4—\/3:3—1—@21 («/xd—i—xi))

The cylindrical model is the set {(y1,y2,y3) € R3|0 < yf +y3 < 1}.
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1.5 Examples

Here we introduce some examples of CMC surfaces in S>! and H?', using the DPW method.
Round cylinders. Here we show how the DPW method makes round cylinders. Defining

E:=271 ( (1] (1) )dz (1.5.1)

for z=x+iy € ¥ =C and X € S!, we solve dp = ¢¢ and determine F, obtaining

_( cosh(A71z) sinh(A712) [ cosh(A71z +2)\) sinh(A71z + 2)\) (1.5.2)
T\ sinh(A712) cosh(A7tz) /7 7 \ sinh(A™'z +2)\) cosh(A~lz+2z)\) - o

Totally umbilical surfaces. The DPW method produces totally umbilical surfaces via
1 (01
E:=A ( 0 0 dz, (1.5.3)
for 2 € ¥ = C and X € S!, we solve dp = ¢ and determine F (p € By when |z| # 1), obtaining

_ 1( 0 1 Y _ 1 IR

Remark 1.5.1. These surfaces in S*! and H?! are not compact, but are totally umbilic.

oIy

Fig. 1.1: The left two images are round cylinders in S?! (resp. H?!), and right two image are
totally umbilical surfaces in S?! (resp. H?1).



Chapter 2

Singularity theory for spacelike
CMC surfaces

2.1 Theory for CMC surfaces with singularities

In this section, we consider the singularities of CMC surfaces in R%!, S$*! and H?', and we show
criteria for cuspidal edges, swallowtails and cuspidal cross caps, using some geometric notions.
Relationships between Iwasawa splitting and singularities. We first make some remarks
about relationships between the DPW method and singularities. We define small cells as follows:

Definition 2.1.1 ([i6], [I7]). Define, for a positive integer m € Z,

1 0 1 Atmm
wm—<>\m 1>.modd, wm—<0 1 ).meven.

Then the group ASLy(C) is a disjoint union
ASLQ((C) = Bl,l |_| Pm, where Bl,l = (ASULl @] {( )\912 )(‘)7' ) . ASUI,I}) . A%SLQ(C),

mezZt
is called the Iwasawa big cell, and the m-th small cell is Py, :== ASU1 1 - wy, - A SL2(C).
Using these small cells, we have the following proposition for the case of R*!, as in [18], [17].

Proposition 2.1.1 ([i@], [ Theorem 4.2). Let X be a simply connected domain, and let ¢ : 3 —
ASLy(C). Define X° = =1 (By 1), Ci = ¢ 1(P1) and Cy = ¢~ (P2). Then:

1. The sets X° U C; and X° U Cy are both open subsets of ©. The sets C; are each locally given
as the zero set of a non-constant real analytic function R? — R.

2. All components of the matriz F obtained by Proposition 3 on X°, and evaluated at Ao € S*,
blow up as z approaches a point zg in either Cy or Cy. In the limit, the unit normal vector
N, to the corresponding surface in R%1, becomes asymptotically lightlike, i.e. its length in the
Euclidean R® metric approaches infinity.

17
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3. The CMC surface f € R*' given by the DPW method extends to a real analytic map ¥° U
Cy — R>L, but is not immersed as points zy € C.

4. The CMC surface f € R?! given by the DPW method diverges to oo as z — zy € C.
Moreover, the induced metric on the surface blows up as such a point in the coordinate domain
is approached.

By the above proposition, at a singular point, we cannot split ¢ to F'- B for F' € ASU; 1, and
the procedure of the DPW method does not work. Thus, we consider the claims of Proposition
[0 and X directly, without using the Iwasawa splitting. Our recipe is as follows:

1. First we choose a real constant H # 0 (resp. H = 1/2) and holomorphic function @, for the
case of R?! (resp. S?! and H?1).

2. We define the metric function g = e satisfying (ICI3).
3. We obtain F' by solving the system ().

4. Finally, we get a conformal spacelike CMC surface f in R%! (resp. S*! or H?!) by inputting
F into the Sym-Bobenko type formula (M) (resp. (IZ29) or (I21M)).

Criteria for singularities of spacelike CMC H # 0 surfaces in R%*!. Here we introduce
criteria for cuspidal edges, swallowtails and cuspidal cross caps of CMC H # 0 surfaces in R*!, as
in [G1]. However, we use a different approach from [d1] because we start not with harmonic maps,
but with H, QQ and g = e".

Let H # 0 be a real constant, and let () be a holomorphic function. Let g = e* be a solution of
(I=3). Here, in order to match [91], we use the untwisted setting. Thus we define F satisfying the
system (ICI-4) for A = 1. For this F', we have the following untwisted version of Proposition [T

Proposition 2.1.2 (untwisted version of Proposition TI). Let ¥ be a simply-connected domain
in C. Let u and Q solve (II3A), and let F = F(z,%,\) be a solution of the system (7). Suppose
Fe SUy,1 for all X € ST and one value of z. Then Fe SUy,1 for all z where Fis bounded, and F
is bounded wherever u and @ are bounded. Defining the following Sym-Bobenko type formulas

f= {—;Fia;’,ﬁ—wéx(aﬁ)ﬁ—l] B N = [Fio ]| (2.1.1)
f is a conformally parametrized spacelike CMC H # 0 surface in R*' with normal N.
We denote F = F(z,2) = e~ % < %l Z > € SUy 1, where |a|?> — |b]? = e = g. So we define h
and w such that & := —% and w := —2b%, and metric is
ds* = 4g*dzdz = (1 — |h|?)?|w|*dzdz. (2.1.2)

This implies that, wherever ds? is finite, f has a singularity if and only if h € S' or w = 0. However,
by (2I) we have

fz = % (1+h2,i(1*h2),72h), f5: §(1+E2’7i(1752)’727l)’ (2'1'3)

and w = 0 means that f has an isolated singular point there. Here we consider only extended CMC
surfaces defined by the following, as in [91].
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Definition 2.1.2 ([a1]). A CMC surface f restricted to the subdomain D = {p € ¥ | ds? < oo} is
called an extended CMC surface if w, resp. h%w, is never zero on D when |h| < oo, resp. |h| = cc.

Remark 2.1.1. By this definition, any point p € ¥ is singular only when |h(p)| = 1. (See [g1].)

Remark 2.1.2. By [65], the normal vector N of spacelike CMC surface f satisfies that N,z is

parallel to N at each regular point p. This implies that h,z + %hzhg = 0 meaning that h is a

harmonic map at each regular point p. Similarly, N, = -H f, — %Qe‘zufg implies w = O*}?W at
each regular point p. However, these Equations do not necessarily hold at singular points.

Now we have the following criteria for singularities of spacelike extended CMC H # 0 surfaces,
as in [U0]. However, since we use different notations and a different approach, we give a sketch
of the proof here. The notion of A-equivarece used in this theorem is fundamental in singularity
theory, and is explained in [32], [G1], [92].

Theorem 2.1.1 ([4l]). Let X be a simply connected domain, and let f : ¥ — R*! be a spacelike
extended CMC H # 0 surface. Then:

1. f is a front at a singular point p € ¥ (i.e. h(p) € S') if and only if Re (hh?zw) ’p # 0. If this
is the case, p is a non-degenerate singular point.

2. f is A-equivalent to a cuspidal edge at a singular point p € ¥ if and only if

h. h.
Re(h2w> p;éO and Im(hzw)

3. [ is A-equivalent to a swallowtail at a singular point p € X if and only if

hz hz hz hz hz h‘Z
(i), #om () | —omaned () (). | m{(5) ().}

4. [ is A-equivalent to a cuspidal cross cap at a singular point p € ¥ if and only if

Ro(hi;;) -0 Im<h};w) A0and Im{m<}gw)} L#Im{(%) (h];w)}

Proof. The essential idea behind proving this is to input h, w into the Kenmotsu type representation
as in [2] and to compute the same way as in [G1]. O

£ 0.

p

P

Here we give equivalent conditions for Theorem I, as follows (in this corollary (f., f:)cs :=
1(|fols = [ fyl3s) = £(fs, fy)re is the bilinear extension of the R* inner product) :

Corollary 2.1.1. Let ¥ be a simply connected domain, and let f : ¥ — R?! be a spacelike
extended CMC H +# 0 surface, given by a real constant H, a holomorphic function Q) and a metric
function g. Then:

c3

1. f is a front at a singular point p € X if and only if Re (ﬁ) ‘ # 0. If this is the case,
21f 2 »

p s a non-degenerate singular point.
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2. f is A-equivalent to a cuspidal edge at a singular point p € ¥ if and only if

_Q _Q
Re(<fz,fz><c3> p;éO and Im( )

<fZ7 fZ>C3
3. f is A-equivalent to a swallowtail at a singular point p € ¥ if and only if

(), 7o ()

£0.

P

=0 and

p

Qz<fzafz>(€3 _2Q<fzzafz>(C3 . @ :| |:_2Q<fzzafz>c3 . Q :l

fe |: <fzafz>(2c3 <f5af2>(C3 p#Re <fz>fz>¢2:3 <fz7fz>(C3 P
4. f is A-equivalent to a cuspidal cross cap at a singular point p € 3 if and only if
Q Q
Re| —— = I —_ d
¢ <<fz,fz>cs) , o ((fz,fz><c3> J70

Im {Qz<fmfz>(c3 _2Q<fzz7fz>(c3 . @ ] #Im [_2Q<fzz7fz>c3 . Q :|

<fzafz>(%3 <f27f2>(c3 p <fzafz>(2c.3 <fz7fz><C3 P

Proof. Using the Hopf differential Q = (f.., N)gea = wh, and (f., f.)cs = 2w?h?, we draw the
conclusions from Theorem P11 O

Criteria for singularities of spacelike CMC H? > 1 surfaces in S?!. In this section, we
study singularities of spacelike CMC H (H? > 1) surfaces f in S?!, similarly to Theorem 2T for
spacelike CMC H (H # 0) surfaces in R%!. However, in R*! we used A € S in the Sym-Bobenko
type formula and thus the solution Fin (CI2) is in SU; ; for that A, while in S*! this will not be
the case. In the case of S*!, the A\ we use in the Sym-Bobenko type formula is not in S', and so
F [» & SUq 1, and this creates complications for attempting to imitate Theorem EZI1. We remedy
this problem by using the s-spectral deformation to shift to a new CMC surface f in S%! of the same
type where arguments like those proving Theorem ZI1 can be used. Noting that, by Lemma BT,
as we have not restricted the full class of surfaces being considered, we are still proving a result
(Theorem ET3) that applies to all spacelike CMC surfaces in S?! with constant mean curvature
greater than 1 in absolute value. Here we introduce criteria for cuspidal edges, swallowtails and
cuspidal cross caps on CMC H? > 1 surfaces in S*1.

Let f: ¥ — S*! be a spacelike CMC surface for a simply-connected domain ¥ C C, with the
metric ds? = 4¢’dwdw = 4e**dwdw and unit normal vector N. First, we consider the mowving
frame § such that

I 30§, U~ 50,7, N =55

et 2ev -

=t
[ =3F0s3F,
Then, we have

— _ N _1 — Uy —e A _1 Up —2e“(1+ H)
Sw=7FA, 5o =3B, where A = 5 < 2eu(1 - H) s ) , B= 5 ( Ceu g oy ) (2.1.4)

For this §, the compatibility condition implies the Gauss and Codazzi equations (23). We
define s-spectral deformations as follows:
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Definition 2.1.3 ([G0]). The s-spectral deformation of the CMC surface f in S*? is the deformation
defined by (1+H) — s(1+H), (1— H) — s~ (1 — H) in Equations (Z11) for the parameter s > 0.

The s-spectral deformation maps CMC surfaces to other CMC surfaces conformally, as follows
(the analogous result in the case of H* was proven in [90]):

Theorem 2.1.2. For all s € Rwq, the s-spectral deformation deforms a surface f in S*', with
mean curvature H, metric ds®> = 4e**dwdw and Hopf differential A, into a surface f° with mean

curvature H® = %m’ metric 4¢*" dwdw = 4k*e**dwdw and Hopf differential A> = kA

_ s(14+H)+s '(1—H)
for k= 20T A=)

Proof. We notice that the s-spectral deformation implies that

_ s(1+H)+s *(1—-H)

{ k(l + Hs) = S<11 + H) equivalently o
k(1—H®) =s'1-H) ° H* = bt

Then (233) holds with £ = 1, and u, A replaced by u® = u+log|k|, A°* = k.A. Thus the deformation
family of surfaces exists. O

1
s

Lemma 2.1.1. (f*) = f.

Proof. The %—spectral deformation of f? is

k= (1 + (HS)%) = 1(1 + H®) L= s*1(1+H='%+s(1—H5) _ %
) s , equivalently w1 s Y1 HY)—s(1_H®
we (1 B (Hs)%) =s(1-H°) (H?)e = s*lgl+Hsg+sgl—HS; = H.
Similarly we have (AS)% = A, (ué)l = u. O

We define the (twisted) s-spectral Lax pair.

Definition 2.1.4 (s-spectral Lax pair). We define §* as a solution of the following system:

Su=38"A°, 35 =8B,

A (0 1)1 — Uy —e " A 0 1) 1 Uy 2ets~ (1 — H)
T \1 0 )2\ 2% (1-H) Uy 1 0) 2\ —e A — Uy ’

gs._ (01 1 up  —2e"s(1+ H) 0 1) _1 —Ug —e "A
L1 0 )2\ —evA —Ug 1 0 ) 2\ —2“s(1+H) U )

Further, we define the form Q% := (§F*)~1dg*.

Theorem 2.1.3. For f given by the frame §, and mean curvature H? > 1, there exists a member
of the s-spectral deformation, for the special value s = sg := g—f&, that generates a frame § =

§°° € SU1,1. This frame T represents the lift of a harmonic map in H2.
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Proof. 1t is easy to see that choosing s = sg := ’/% gives the only deformation that makes the
Maurer-Cartan form become an su; ;-valued form. O

As s approaches sg, the mean curvature goes to infinity, and f 5033 degenerates to a point,
but there still exists a map T from ¥ to SUy,1 such that 5 1dF = Q defined by the following (E712).
The harmonic map is the natural projection of the adjusted frame 5 (defined just below) to H?Z.

Definition 2.1.5. We call §: ¥ —» SUy,1 the adjusted frame of § and the form Q = 3 1dF the
adjusted Maurer-Cartan form, where

B _o,u 2 _ o _o—u g - -
Q:E( Uy 2e*VH® -1 >dw+1< g U € A>dw=;Adw+Bdw. (2.1.5)

2 —e A — Uy 2 H?2 -1 U

Theorem 2.1.4. Let ¥ be a simply-connected domain. Let a > 0 (a # 1) be an arbitrary real
constant, and let

at =170 —2uVHZ -1 a—1 0 0\ ;=
ﬁ]_(d) = T < 0 0 ) dwa BQ(G) C T ( _Qeu\/l_ﬁ 0 ) dw

Define 0 := Q + B1(a) + Ba2(a). Then we have the following:
1.dQ+ 3[QAQ =0,

N a R ~ N .~ =t
2. If§isa SLQ((C) valued solution of Q = §1dF, then f = §os§ is a conformal spacelike CMC

surface with H=2 ﬂ

Proof. For s = 4/ gﬂa € Ry, we have 2° = Q, by direct computation. Thus we have existence of

s __ a +1
f, and H = H° +1 O

N~ _ ~ =t ~
Remark 2.1.3. Defining G := §-§ ', we have Go3G? = §o3§ = f.
As noted previously, we will consider the criteria for singularities of f instead of f.

We denote § = @(w, w) =€ 2 < # ? ) € SUj,1, where g = e* is the metric function of f, and
2 U1

)

__ L. =t _
[ui[? —|uz|* = g. So we define h := 2 and w := u7. By Remark I, we have f = §o35 = Go3G".

IAC _ (a—a HVH?Z-1
- 2

Setting , we get that f has metric

ds? := 4% dwdw = 4k*(1 — |h|?)?|w]>dwdw.

Thus this implies that, wherever ds? is finite, f has a singularity if and only if h € S! or w = 0.
However we consider only extended CMC surfaces f defined in the same way as Definition PZ1T4.

We have the following criteria for singularities of spacelike extended CMC H? > 1 surfaces in

S%1. The proof of Theorem BT is parallel to the proof of Theorem 3.1 in [82]. (Also see [41],

2],

Theorem 2.1.5. Let X be a simply connected domain, and letf : ¥ — S%! be a spacelike extended
CMC H? > 1 surface, given by Theorem BI4. Then:
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1. A point p € ¥ is a singular point if and only if h € St.

2. f is a front at a singular point p € X if and only if Re (,fz—“;}) ‘p # 0. If this is the case, p is
non-degenerate singular point.

3. f is A-equivalent to a cuspidal edge at a singular point p € ¥ if and only if

oy By
Re (h%}) #0 and Im (w)
4. f 18 A-equivalent to a swallowtail at a singular point p € ¥ if and only if
B ho \| R\ (T ho\ (
he (525 ’ 2o m () , o Re{(h> (h>} ’ #red (%) (T)} '
P
. f is A-equivalent to a cuspidal cross cap at a singular point p € ¥ if and only if
h/w _ hiw hi hiw @ hfw
()]0 (i) o (T () ] () ()
p

Proof. (1) This is clear (like in Remark B-177).
(2) First we define

£0.

P

P

p

. 1+ |h|? 2h -
V._G( o, 1+ AP Gt, (2.1.6)

and this v is the Lorentz normal vector field of f on the regular set of f . This is not a unit vector,
but extends smoothly across the singular set. By Lemma 1.6 of [32], f is a front at a singular

point p if and only if v is not proportional to DES’IV at p, for the null direction 7 of f and the

A ~ _— _ ~ h 72 —
canonical connection D®”". Since df = G {Qk ( 7}?2 7}11 ) wdw — 2k ( }f };—L ) de} G', the

null direction is n = ﬁ@w — %6@ at a singular point p. We also have, at p,

Rt L hwﬁ 07 . L hBuj 2]21,71; =t
Dy V_G{hw ( % huh ) F@\ 0 hhg )
On the other hand, we have (v,v) = (Dy’lu, v) = 0 at p, thus Dﬁs’lu is proportional to v if
and only if D%g"ly is a null vector, which is equivalent to

0=det(DX"'v) =4 (Re (:2';))2 . (2.1.7)

By the identification between R*! and the Hermitian symmetric group (I"2Z3), we have

G (GH ™ =(0,0,1,0), G 'fu(GH ™t = —kw(h?+1,—i(h? —1),0,2h),
G fo(GY™t = —kw(h? +1,—i(1 — h?),0,2h),
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and we define n := GIG?. This implies that G~'n(G?)~! = (0,0,0, 1). By Proposition 1.2 of [37],
we can define

A= det(f, fo, fyym) = 4R2|wl* (L + [A*)(1 — |B]).

Then, at a singular point p, dA = —8]%2|w\2(dh -h+h-dh), and thus p is a non-degenerate point if
and only if h,, # 0.

(3)&(4) These cases are proven analogously to the proofs of (3)&(4) in Theorem PZT.

(5) We define the limiting tangent bundle, as in [32], as {X € T82’1|f(2); (X,v) = 0}. By direct
computation, we notice any section X of the limiting tangent bundle is parametrized by

_ Ch+Ch  C(R2+1) Y 5
X—G(5<|h|2+1> Ch+ Ch >Gt

for some ¢ : ¥ — C, and X } v exactly when Im (Ch) |, # 0 at a singular point p. For such X such
that Im (Ch) |, # 0, we define v := (DB]QMX7 v) = —4iRe (}Z—Z) Im (Ch). We can apply Theorem 1.4
of [87], and the conditions to have a cuspidal cross cap are

det(v, ) #0, ¥ =0 and 9:p # 0

= (i) oo ) somam{(5) (). () ().}

Criteria for singularities of spacelike CMC surfaces in H?!. Here we introduce criteria
for cuspidal edges, swallowtails and cuspidal cross caps of CMC surfaces in H?!. In this case as
well, like in the previous case of S*!, we will shift from one surface f to another surface f , again
without causing any restriction on the class of surfaces involved. However, in the case of H>!, the
reason for doing this is different, because now we will indeed have the frames §;, §2 € SU; ;. But

the fact that two frames §1, §2 are now involved again causes us to switch from f to f .

Let f : ¥ — H?! be a spacelike CMC surface for a simply-connected domain ¥ C C, with
the metric ds® = 4¢?dwdw = 4e*“dwdw and unit normal vector N. First, we consider frames
51,352 € SU171 such that

f= 51@2 2]% = 3101@t7 Ju —Slazgt, N = Sliffsgt-

2ev

Then, we have

_ 1 —u —e " A 1 U 2e¢*(1—iH) N _
. 1 _ = w - w .
Q= (F1) dg1 = 5 < 2ev(1 4 iH) s ) dw + 3 < ie—u A v ) dw =: Aydw + Bydw, (2.1.8)
_ 1 —u ie " A 1 Ugp 2¢“(1+iH) _ _
e 1 _ = w - wo .
Oy = (F2) "dF2 = 5 < 2et(1 — iH) s ) dw + 3 ( je—u e ) dw =: Asdw + Bydw, (2.1.9)

For these §1 and {2, the compatibility condition implies the Gauss and Codazzi equations
(=23). We define s-spectral deformations as follows, now using s € S! and the terms 1 £ iH (in
Definition BT we used s > 0 and the terms 1+ H):
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Definition 2.1.6. The s-spectral deformation of the CMC surface f in H?! is the deformation
defined by (14 iH) — s(1+iH) and (1 —iH) — 5(1 — ¢H) in the equations (ZT8) and (Z19)
for the complex parameter s € S*.

The s-spectral deformation maps CMC surfaces to other CMC ones conformally, as in the
following Theorem ZZI8. The proof is analogous to the one of Theorem B, but s~ becomes 5.

Theorem 2.1.6. For all s € S, the s-spectral deformation deforms a surface f in H*', with mean
curvature H, metric d52 = 4e?“dwdw and Hopf differential A, into a surface f* with mean curvature
H® = - {1((1117’5?);‘;((111]?)}, metric 4e** dwdw = 4k*e*“dwdw and Hopf differential A5 = kA for
jo — SULHH)+5(1—iH)

I A

The next lemma is proven like for Lemma BT
Lemma 2.1.2. (f%)° = f.
We define the (twisted) s-spectral Lax pair.

Definition 2.1.7 (s-spectral Lax pair). We define §§ and §3 as solutions of the following systems:

&w =3547, e =3;B; (j=1,2),

1 — gy —ie * A 0
2\ 2e"s(1+1iH) U 1
1 ug  2e"s5(1 —iH)
2\ e v A —Ug
s 1 — Uy e v A
A= < ) 2 ( 2¢"5(1 —iH)  uy ) (
B 0 1 Ug 2¢e%s(1+iH) 0o 1)\_1 —Ug —ije A
| 2\ —ie7vA —Ug 1 0 ) 2\ 2“s(1+iH) U

Further, we define the forms Q5 := (F5)71dT; and Q3 := (§5) ~1dFs.

where

s 0
A1::<1

Bf:(

—ie " A —Ugy

Definition 2.1.8. For all f given by §1 and §2, and mean curvature H, there exists a member of
1—iH
TFiH

- §5° € SU; 1. We call %1 and Fo the adjusted frames of §1 and 2, and the forms 0 = §f1d§1
and Q2 = S;ld& the adjusted Maurer-Cartan forms, where

the s-spectral deformation, for the special value s = sg := i that generates frames § = 31,

=1 Uy 2e%ivVH? + 1 1 —Ug et A o S
0 = 5 ( Cie—ug Dty dw + o\ oeniVIETT wy diw =: Aydw + Bydw, (2.1.10)
~ 1 Uy —2e%ivVH? +1 1 —Ugp —ie™"A o A, 3. A
Oy = 5 ( ie— A i ) dw + 5 ( 2euiVEZF1 s ) dw =: Aydw + Badw. (2.1.11)

These forms satisfy Q) = 030905.
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Theorem 2.1.7. Let @1,§2 : ¥ — SUy 1, where ¥ is a simply-connected domain. Let a € St
(a # 1) be an arbitrary constant, and let

(0 2emiVH?TH1 . 0 0\

Define Qy := Q + o184+ 4513, and Qo= Qs + =il 4 =4t 8,. Then we have the following:

1.d0y + %[Ql AL] =0, dy + %[Qg Ay =0.

t

2. If @1 and @g are SUq 1 -valued solutions of Ql = @fld@’l and QQ = §§1d3’2, then f = §1§2

is a conformal spacelike CMC' surface with H= i(‘;t%).

Proof. For s = ia %:g € S', we have Q5 = Ql and Qf = Q% by direct computations. Thus we
have existence of f, and H = H® = —atd_ .

i(a—a)

~ ~ ~ ~ . ~ =t ~
Remark 2.1.4. Defining Gy := § -Sfl and Gy := §2 -&51, then Gngt =515 =f.

As noted previously, again we will consider the criteria for singularities of f instead of f.

We denote §; = @1(11),117) =e 3 ( # # ) € SU;y,1, where g = €" is the metric function
2 Uy
of f, and |ui|? — |uz|> = g. So we define h := ™ and w := u}. By Remark 2T, we have
1

~ ~ =t .
=818 = Gngt. By the definition of G; and G2, we have

1 . —h 1 _ : h —h%Y\ _ .
G{dGy=(a—1)iv/H?+1 9 wdw — (a—1)ivVH? +1 | wdw,
—he h 1 —h
~h  —h?
h

GyldGy = (—a+ 1)ivVH? 4+ 1 ( _}22 —1h )wdw —(—a+1)yivVH?>+1 ( 1 )wdw.

Setting k = % VHPHL - f has metric ds? := 4¢2dwdw = 4k2(1 — |h|?)?|w|?dwdw. Thus this
implies that, wherever ds? is finite, f has a singularity if and only if h € S or w = 0. However we
consider only extended CMC surfaces f defined in the same way as Definition ZZT2.

Now we have the following criteria for singularities of spacelike extended CMC surfaces in H?!.
The proof of Theorem P-T8 is parallel to the proof of Theorem ET73.

Theorem 2.1.8. Let X be a simply connected domain, and letf : Y — H?! be a spacelike extended
CMC surface, given by Theorem B_I1-1. Then:

1. A point p € ¥ is a singular point if and only if h € S*.

2. f is a front at a singular point p € X if and only if Im (,Z—ww) ’p # 0. If this is the case, p is
non-degenerate singular point.

3. f s A-equivalent to a cuspidal edge at a singular point p € ¥ if and only if

Im<:2“;j> #0 and Re<h1;) #0

p

p
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4. f is A-equivalent to a swallowtail at a singular point p € 3 if and only if
hw Doy _ N hw oy oy
i ()| 20 v ()| =omam{ () (). | #m{ () (i) 3
p
5. f is A-equivalent to a cuspidal cross cap at a singular point p € ¥ if and only if

B B () [ hw ha\ ( huw
()] =0 e ()| #omane{ (%) (m)w}\pﬂe{(h) () )

Proof. We can prove this theorem by computing the same way as in the proof of Theorem B1=3. [J

p

2.2 Analogues of Smyth surfaces in Lorentzian spaceforms
and their singularities

B. Smyth studied a generalization of Delaunay surfaces in R3, which are CMC surfaces with rota-
tionally invariant metrics, in [87]. These surfaces are called Smyth surfaces, and there are numerous
studies about them. For example, in [89], Timmreck et al. showed properness of Smyth surfaces in
R3, and A. 1. Bobenko and A. Its studied relationships between Smyth surfaces and Painleve III
equations in [8]. The DPW method was applied to Smyth surfaces in Riemannian spaceforms, in
[®], [25], [30] for example. (See Figure E1.) Recently, in [7], D. Brander et al. constructed the
analogue of Smyth surfaces in R%1.

Here we will construct the analogues of Smyth surfaces in S*! and H?!, in addition to R%!, and
show that there are different kinds of Smyth surfaces in semi-Riemannian spaceforms, some which
have singularities before reaching an end, and some which do not. We also identify the types of
singularities on Smyth surfaces, using the criteria in Section 2.

Fig. 2.1: The left image is a 6-legged Smyth surface in R3, the middle is a 3-legged Smyth surface
in S?, and the right is a 3-legged Smyth surface in H3.

Reflective symmetry of Smyth surfaces in R?!, S*! and H?>'. Define

g:Al(cgk é)dz, ceC, zex=C, (2.2.1)
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and take a solution ¢ such that dy = p¢ and ¢,—o =I. If k =0 and ¢ € S!, then we have a round
cylinder, as in Section 3. However, when k # 0 or ¢ ¢ S' U {0}, Iwasawa splitting of ¢ is not so
simple, and the surface f has singularities in some cases where the ASU; ;-Iwasawa splitting of ¢
approaches small cells.

Now we can assume ¢ € Ry using a reparametrization of z and a rigid motion of f, as in [I7].

Theorem 2.2.1 ([7]). The surface f : X% = =Y (B11) — R?1, produced via the DPW method,
from & in (BZ2), with p|,—0 = I and X\ = 1, has reflective symmetry with respect to k + 2 geodesic
planes that meet equiangularly along a geodesic line.

2mil

Proof. Consider the reflections R;(z) = e*+2 z of the domain ¥ = C, for [ € {0,1,--- ,k + 1}. Note
that £(R;(2),\) = 4; - £(2,\) - A;', where

il
ek+t2 0 .
A = ( il ) : constant in z, A.

Since d (@(Ri(2), A) - A;) = do(Ri(2), A) - A; - £(Z, A), and since any solutions of this equation differ
by a factor that is constant in z, we have (R;(2),\) - A; = 2A-p(z, A). However the initial condition
©(2,\)|2=0 = I implies that 2A = A;, so p(R;(2),\) = Al ~o(2,\) - A;'. Tt is easy to see that this
relation extends to the factors F' and B in the Iwasawa splitting ¢ = F'- B, and so we have a frame F’
which satisfies F(R;(2), Ri(2),\) = A;- F(2,2,\)- A; " Note that ¢ € Rs implies £(2,\) = £(2, \),
©(2,\) = ¢(2,\) and F(2,)\) = F(z,)), thus we have F(R;(2), Ri(2),\) = A; - F(2,2,)\) - A"
Inserting this into the Sym-Bobenko type formula, we have

f(Ri(2), Ri(2)) = —=A; - f(z,2) - A (2.2.2)

The transformation f(z,z) — —f(z, z) represents a reflection across the plane {z; = 0} of R*1,

and conjugation by A; represents a rotation by angle 13112 about the xg-axis, proving the result. [

Theorem 2.2.2. The surfaces f : ¢~ (B11) — S*!, produced via the DPW method, from & in
(B2), with p|,—0 = I and Fy = F|)\:e% for g € R, q # 0, has reflective symmetry with respect to
k + 2 geodesic planes that meet equiangularly along a geodesic line.

Proof. As the proof of Theorem 2271, we have F(Ry(z), R)(2),\) = A;-F(z, z, )\) -A; ', Inserting this

into the Sym-Bobenko type formula, we have f(R;(2), Ri(2)) = A;- f(z,%) - A", The transformation

f(z,2) — f(z, 2) represents a reflection across the plane {z5 = 0} of R3 'L and conjugation by A;

represents a rotation by angle kQ—fQ about the x4-axis. O

Similarly, we can prove:

Theorem 2.2.3. The surfaces f : ¢~ (Bi1) — H>', produced via the DPW method, from & in
(B0, with @l,—0 = I, F1 = Fly—cim and Fy = F|y_civa for v1,72 € R\{0} and v1 = —72, has
reflective symmetry with respect to k + 2 geodesic planes that meet equiangularly along a geodesic
line.

Remark 2.2.1. The surfaces f in Theorems 2221, 2224 and 2223 extend to ¢~ 1(C}) at singularities
(see Proposition EZ1T, (3)).
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The Gauss equation of Smyth surfaces. Here we assume the mean curvature is H = %7
as in [§], [I7], [RY], and then we show that the metric of Smyth surfaces is rotational invariant.
Before giving the theorems, we create the notation g := e* for the metric function, and we have
the following Lax pair

1 g ixTlg 1/ =2 4\Qg!
= s = = — = — g
F,=FU, F;=FV, whereU 7 ( —i/\_%ng_l _g?z ), v 5 < _ixg % >, (2.2.3)

and Gauss equation
4(9:2-9—9--9:) +QQ — g* = 0. (2.2.4)

Theorem 2.2.4 ([I7]). The Gauss equation (2224) for a surface in R*!, S* or H?! generated by
& an (B2, with ¢|,—0 = I, is equivalent to a special case of the Painleve III equations, and the
metric function g, which is a solution of (B224), is rotational invariant.

Using polar coordinates z = re??, (2224) and the suitable choice of the initial conditions are
9 (gw + ‘%) —(9:)* + ™ =g =0, gli—o =1, grlr=0 = 0. (2.2.5)

We can assume ¢ = 1 in (E2Z3) by a change of coordinate:
Lemma 2.2.1. After an appropriate change of coordinate z, the Gauss equation (2223) for (k+2)-
legged Smyth surfaces in R>!, S>1 or H?!, becomes

gr
g (grr + 7) - (gr)z + r2k - 94 = 07 g|r:0 = q27 gr|r:0 =0 (226)

for a real constant q > 0.

-1
Proof. Let ¢ be a solution of dp = ¢ for £ = ( )\_?czk /\0 ) dz and ¢|,—o = I with ASU; ;-
Iwasawa splitting ¢ = F' - B. We define ¢ = ¢ (q)

q91 ) By the uniqueness of the Iwasawa

splitting ¢ = F B of ¢ we have F = F and B = B ( g q91 ) Furthermore, we notice that

b,
é')\:o,z:() = ( g q91 ), since F’\zzo = I, and this implies that §|,—o = ¢?. On the other hand,

we have

Y o1 0 2\t 0 AL .
E§=¢ 1d90= ( q2)f102zk 1 0 )dz: ( q2k+4>\71625k 0 )dz

2k+4

for 2 := ¢ 22, and we can let ¢ = ¢ c. In this way, we can change c to 1. O

Some examples of the metric function g are seen in Figure E2. By the previous studies [3Y]
and [@R], there are at least three kinds of solutions g of this special case of Painleve III equations
(z=28). This implies that (spacelike) Smyth surfaces in R%1, §?'! and H?!, near the origin 0 € X,
are classified into the following three cases (See Figures 22, 23, 78 and 272.):

e The first kind does not have singularities and g diverges to oc.
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Fig. 2.2: Solutions of a special case of Painleve III (near the origin)

e The second kind does not have singularities and g does not diverge to +oo. This case is
unique, and given by g with the following initial condition:

kO 42k K
g‘r:():qg, 9rlr=0 =0 for q0<1+2> QTHE

e The third kind has singularities before g diverges to —oo.

Smyth surfaces with singularities. Here we only consider Smyth surfaces that have singu-
larities before g diverges to —oo. By numerical calculation, we know that these Smyth surfaces have
cuspidal edges, swallowtails and cuspidal cross caps, using criteria as in Section P, see Figures
3~

Fig. 2.3: The left image is a 3-legged Smyth surface with singularities in R?!, and the right image
is one with no singularities in R%!.

Fact 2.2.1. There exist Smyth surfaces in R%!, S§>! and H?' which have singularities before g
diverges to —oo, and which have cuspidal edges, swallowtails and cuspidal cross caps. (See Figures
P4, 23 and I73.)

Here we show, for the surfaces in Fact EZZT, that there are at least 2(k + 2)-swallowtails for the
case of R>!, without relying on numerical calculation, and using only geometric properties. Before
doing that, we have some lemmas.
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Fig. 2.4: The values of The values of Re (), Tm (55), Re { (%) (45, } - Re {(%) ().}

and Im { (%) (h};zw)z} —Im { (%) (hh;w)g} for a 3-legged Smyth surface in R%! at (rg, ) such that

g(ro) =0 and 0 < 0 < 27. (left to right)

Fig. 2.5: The left image is a 3-legged Smyth surface with singularities in S*!, and the right image
is one with no singularities in S%1.

o ~, ) . A ~

Fig. 2.6 The values of Re (), Im (#5), Re{(%) (#5),} - Re{(%) (45),} and

Im{(h—“’) (,fTww)w} — Im{(hT“’) (i%i;)w} for a 3-legged Smyth surface in S at (rq,6) such that
and 0 < 6 < 27, (left to right)
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Fig. 2.7: The left image is a 3-legged Smyth surface with singularities in H?!, and the right image
is one with no singularities in H?1.

Fig. 2.8: The values of Im (}’LZ—‘”W), Re (,ﬁg—ww), Im{(hTw) (}Z—‘Z})w} — Im{(hTw) (}ig—ww)w} and
h (&—“&))w} — Re{(hﬁ) (}Z—i})w} for a 3-legged Smyth surface in H*! at (rq,6) such that
and 0 < 0 < 27. (left to right)
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Lemma 2.2.2. Let F' = F(z,%,\) be the solution of the untwisted Lax pair (1) with F|,—q = I
for the case of a Smyth surface. Then F(z) = o3F(2)as for A = 1.

Proof. By direct computation, we have U(z) = =V (2)" and V(z) = —U(2)*. By this equation and
F(z)|,=0 = I, we get the conclusion. O

Corollary 2.2.1.
(1) h(z) = =h(2) and w(z) = w(Z2).
(2) At (r,0) = (r0,0) for ro such that g(ro) = 0, we have h(rg,0) = %i (i.e. h(ro,0) € iRNS!),

w(rp,0) € R\ {0} and w,(rg,0) = wz(ro,0).

Theorem 2.2.5. Let f(z) = f(r,0) be a (k + 2)-legged Smyth surface in R>', and let ro satisfy
g(ro) =0. Then f has a swallowtail at (rg,0).

Proof. We will use the criteria of Theorem I First we check that

h Q
at (r9,0). By using Q(r,0) = —r* € R and Corollary 221, we notice that (2222) holds. Similarly,
we also have
h. Q
Im (h%}) =Im <h2w2> =0 (2.2.8)

at (rg,0). Lastly, we check that

W) (k) () ()

at (rg,0). By direct computation, this is equivalent to

e {(;{%) (thQ Qb 2h2wwz>> } 2 Re { <h%> <”§%f“’) } (2210)

Applying Corollary ZZ21 to (222M), we have h*w* € R\ {0} and % = 7<%) € iR\ {0}. Thus,
(1) is equivalent to

—Im{Q.h*w — 2Q*h — 2Qh*w. } # Im { —2Qh’w; } . (2.2.11)

Using Q(r,0) = —r* € R, Q.(r,0) = —kr*~1 € R_g and Corollary P20, (22211 becomes
+2r2F £ 0. (2.2.12)
As this is clear, we concluded that (22279) holds. O

Similarly, we have the same conclusion when § = 7.

Theorem 2.2.6. Let f(z) = f(r, 0) be a (k + 2)-legged Smyth surface in R*', and let vy satisfy
g(ro) = 0 and g.(ro) = —rk. Then f has a swallowtail at (o, a)-
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By above two theorems and reflective symmetry, we get the following main result:

Theorem 2.2.7. If a (k+2)-legged Smyth surface in R*! has singularities before g diverges to —oo,
then it has at least 2(k + 2) swallowtails.

Remark 2.2.2. We have checked numerically that there are cuspidal cross caps along the cuspidal
edges between each adjacent pair of swallowtails, using item (4) of Corollary EZI, item (5) of
Theorem B3 and item (5) of Theorem ZTR. Thus the surface as in Theorem 22 will also have
at least 2(k + 2) cuspidal cross caps.



Chapter 3

Spacelike CMC surfaces with
0< H<1in S%1 via Iwasawa
splitting

3.1 The Lax pair in S?!

3.1.1 The 3-dimensional de Sitter space

Let R3! be the Cartesian 4-space with metric
((x1, 22,3, 24), (Y1,Y2,Y3,Y4)) := T1Y1 + Toy2 + T3y3 — T4y4. We define the 3-dimensional de Sitter
space as the hyperquadric S*! := {z|(z,z) = 1} C R3L.

Let ¥ be a simply-connected domain in C with the usual complex coordinate w = = + iy. Let
f: ¥ — S%! be a conformally immersed spacelike surface. Since f is conformal,

<fw7fw>:<fm7fw>:0, <fw7fﬂ)>:2€2u

for some function u : ¥ — R. For the unit normal vector field N of f satisfying (N, N) = —1,
(fws N)Y = (fo, N) = 0, we define the mean curvature H and Hopf differential Adw? as follows:

1
T 2e2u

<fw7InN>7 A:: <fwwaN>'
The Gauss-Codazzi equations are of the following form in the CMC cases:
1 -
Qi — 224 (H? — 1) + 5AAe—Q“ =0, Az =0. (3.1.1)
The Codazzi equation in (BI) is equivalent to the Hopf differential A being holomorphic, and
(BI) is invariant under the deformation A — u=2A for p € St. When f(z,y) is a spacelike CMC
in S>!, the spectral parameter 1 € S! allows us to create a l-parameter family of CMC surfaces

f* = f(x,y, n) associated to f(z,y).

35
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3.1.2 The 2 x 2 matrix model of S*!
We identify R*! with the space {X € Mayy |X = X'} of all 2 by 2 Hermitian matrices as follows:

3,1 _ T4+ T3 T — 1T
R*" 5 ¢ = (21, 22,23, 24) — ( o) +iTy 4 — T3 > (3.1.2)

The metric becomes, under this identification, (X,Y) = —trace(Xo2Y'02). In particular, (X, X) =
—det(X), and we can identify S%! with

{X € Mao | X = X' det(X) = -1} = {Fa?ﬁu? € SLy(C) } .

Let f be a conformal spacelike CMC surface in S?! with associated family f*, and let the
identity matrix and Pauli matrices be as follows:

r_(10 (01 (0 —i (10
= 0 1 5 g1 .= 1 0 5 09 = i 0 5 g3 i— 0 1 .

Then {I,01,09,03} is an orthogonal basis for R*!. We can define

fu.fpﬁ o ffiﬁiﬁ‘ﬁ .fﬁfifﬁﬁ N — PRt
= 1 o3 y €1 = |ff’|_2€u_ g1 ; €g = |f,}f‘_26“_ g9 s =

for ' = F(w,w, n) € SLy(C). For this F', we get the untwisted 2 x 2 Lax pair in S*! as follows:

2R 2T I AR s & 1 — Uy —p 2 Ae .1 Ugp —2(14 H)e"
F, =FS, Fy=FT, where §- 5( o e ) Tﬁ( By ) (3.1.3)

We change the “untwisted” setting to the “twisted” setting by the following transformation (B4).
Let F be defined by

. ~ t 0
F:—O'3 (F_l) ( \{)ﬁ 1 >0’3, (314)
Vi
producing the twisted 2 x 2 Lax pair of f* in S?1!,
A 5 1 U 2u~ (1 — H)e" -1 —ug —pAe
F,=FS8, Fy =FT, where §= 3 ( e o > T= 5( (LA ) ) (3.1.5)

Now we consider 0 < H < 1 case, and we set H := tanh(—q) for ¢ < 0. We change F to a new
frame F', as follows:
aq
~ ([ e1 0
F=F .
(5 &)

We call this F' the extended frame of spacelike CMC H surfaces with 0 < H < 1. Moreover we set

i

H = —ie 91— H) = —ie!(1+ H) € iR, Q := —iA, v:i=e 2y, (3.1.6)
and we have the following;:

B B 1 Uy 251 Hev 1 —ug  wQe™
F,=FU, F3 =FV, where U= 3 ( ) V=3 ( _9ivHen i . (3.1.7)

—ivT1Qe™ — Uy Ug



3.1. THE LAX PAIR IN S?! 37

We call (BI22) the extended Lax pair, and F = F(w,w,v) is in the following loop group

ASL2(C); = {F() € Maso| - 81 —C §1,(C), F(-A) = 0sF(Nas, 7(F(N) = FV) }, (3.1.8)
where 7(F()\)) := Ad <( egz e*O%i )>.(F(i5\—1)t>_l. For simplicity, we set R = ( 670W egi )

as in [74] and the symbol * is defined by F*(\) := (F(ij\—l)t)i , and we can rewrite 7(F(\)) =
Ad(R™HF*(N).

The following Proposition BT gives us a method for determining spacelike CMC H surfaces
with 0 < H < 1 in S?!, from given data u and A.

Proposition 3.1.1 (The immersion formula for spacelike CMC H surfaces with 0 < H < 1 in
S21). Let X be a simply-connected domain in C. Let u and A solve (BI0). Set Q = —iA and
H := —ie"9(1 — tanh(—q)) for ¢ < 0. Let F = F(w,w,v) € ASLy(C), be a solution of the system
(BI). Set Fy = F|V:e,%. We define the following immersion formulas

1 1
e 29 0 —t —e™ 24 0 —t
f—F0< 0 76%‘1 )FO, N—F0< 0 76%'1 >F0 (319)

Then, f is a spacelike CMC H = tanh(—q) surface in S*1 with unit normal N.

Proof. Applying a frame change in Theorem 8.5 in [33], we can prove this proposition. We can also
prove it by the same argument as in the proof of Proposition 4.1 in [24]. So we omit the proof. [

By the above Proposition BT, we can construct all simply-connected spacelike CMC H surfaces
with 0 < H < 1. However, here we also have the following proposition in Appendix E of [#4], and
it says that spacelike CMC H surfaces with 0 < H < 1 with no umbilics can be constructed as the
normal vector of parallel transformation of CMC H surfaces with 0 < H < 1 in the 3-dimensional
hyperbolic space H?. In this proposition, we need the following extended Lax pair for CMC H
surfaces with 0 < H < 1 in H3:

B B 1 (ums)w —2u ™ Y s et 1 —(ups)w  —vQyseUE
(Fis ) = FisUss, (Fis)o = FugsVis, Where U = 3 ( =1 Qs e (s ) , Vs = 5\ 20ty e (uss ) s
where uys is the metric function for ds? = 4e?“# dwdw, and Hys = ie (1 — Hys) for mean

curvature Hys = tanh(—q), and Qgs = iAgs for Hopf differential Aps.

Proposition 3.1.2 ([24]). Let ¥ be a simply-connected domain in C. Let Fys be the extended
frame of some CMC 0 < Hys = tanh(—q) < 1 surface fys(w,w) in H® with unit normal Ngs. Set
(Fus)o = (Fys)| ' for ¢ < 0. Then, by changing parameter such that z = iw,

v=

F(2,7) = sinh(—q) fus + cosh(—q)Nugs = (Fﬂs)o( **Efq e_O%q )(FH3)0 (3.1.10)

is a spacelike CMC H = tanh(—q) surface in S*', and ds® = e=2%s cosh®(—q)|Ays |2dzdz, A = Ays.
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3.2 Iwasawa splitting for ASLy(C),

In this section, we introduce the Birkhoff splitting and prove the existence and uniqueness of the
(twisted) ASLs(C),-Iwasawa splitting, by using the Birkhoff splitting. First we define the notations
for loop groups and algebras.

Definition 3.2.1.
ASL2(€) = {81~ SL,(©)|0(-A) = asp(Nas 5 Asta(€) = {4181 —C75 ()| A(-N) = 75 AN }
AL SLy(C) = {B+()\) € ASL, ((C)‘ B extends holomorphically to ID).} )

AR SLy(C) = {B,()\) € ASLQ(C)‘ B_ extends holomorphically to C U {oo}\ﬁ} ,

AESLy(C) = {B+(>\) € ALSLy(C)

B.(0) = <g p91 ) for,oE]R,p>O.}7

where St = {A € CU{oo}[AXA =1}, D = {A € CU{oo}|AX < 1}. We can also define AGL3(C),
etc., in a similar way.

Here we introduce the twisted version of the Birkhoff splitting as follows:

Proposition 3.2.1 ([79]). For all ¢ € AGLy(C), there exist o € ATGL2(C), p_ € A~GLy(C)
and a1, as € 7 such that

)\2@1 0
Y =p- ( 0 )\2(12 ) P+ (321)

The middle term is uniquely determined by v, and the big cell B, where a1 = as = 0, is an open
dense subset in AGLy(C). When ¢ € B, we have a unique splitting such that o, € A} GLa(C),
p— € A~GLy(C).

We also introduce the specialized version of the Birkhoff splitting for ASLy(C), as in [I7].

Proposition 3.2.2 (the specialized version of the Birkhoff splitting [T7]). For all ¢ € ASLs(C),
there exist By € AL SLy(C), B_ € AxSLo(C) and k € Z such that

¢ =B_MB,, (322)

where either

)\Zk 0 0 )\2k+1
M = ( 0 )\72k ) , or M = < _)\72]@71 0 > . (323)

Remark 3.2.1 ([I7]).

(1) The factor M is uniquely determined by . For ¢ € B, where k = 0, there is a unique splitting
¢ = B_By with B_ € A, SLy(C), By € AjSL2(C), with M = I.

(2) For the ASLy(C),-Iwasawa splitting, we define

P = {50 € ASLQ((C)‘M of the Birkhoff splitting of ¢ is < _)(\)_1 8\ >} ,

and we call this P the Birkhoff first small cell.
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In order to prove the ASLs(C) -Iwasawa splitting, we need some definitions and lemmas.

Definition 3.2.2 (operator 7). For ¢(\) € ASLy(C), we define an operator 7 by

t\ —1 _my
m(p(N) =R} (w(m‘l) ) R for R= ( c 04 9 )
Remark 3.2.2. For ¢ € ASLy(C), the following two statements hold:

o 7(7(p(N)) = o3p(=A)as = ().

o 7(p(N) = p(A) for all A € St <= ¢(\) € ASLy(C),.
Thus, 7 is an automorphism on ASLy(C).

Lemma 3.2.1. Let v € ASLy(C) such that (7(¢))™! =. Ifp € BUP, then we have

_ _ 0 A
Yp=71(By) - (£I)-By or ¢ =71(By)"*- ( Ao ) By for Bi € ALSLy(C).
However, if ¥ ¢ BUP, then we do not have
_ )\2k 0 _ 0 >\2k‘+1
v (N ) o v=rma (e N )

for By € AL SLy(C).

Proof. (i) Noting the result in Proposition B2, suppose
AF0
l/J_B—( 0 )\2k>B+
for some B, € A} SLy(C) and B_ € A, SLy(C) and some k € Z. By 7(¢)) ! = ¢, we have

soreerm (T S )= (Y 3 ) B e

for 6 =1 (resp. —1) if k € 2Z + 1 (resp. k € 2Z). Setting B(\) = B4 - 7(B_), this equals

5. T(]B(/\))_l . ( f/\O*Qk _ng ) _ ( A2k - Qk > B (324)
+ a(A)  b(A)
Now we note that B(\) € AxSLy(C), and we let B(\) = ( ) dN) ) Then, (B224) equals
“A72Rar(N) =i e (N) ) ( A%Ra(\) AZRB(N)
4 < i)\—ka*()\) —)\de*()\) > = < )\72kc()\) )kad()\) ) ) (3-2~5)

where a*(\) = a(ix_l).
If £ > 0, then the upper-left component of (B=23F) implies —da*(\) = A**a()\), and this a has
the power series expansion Y2 a; A/, where the a; do not depend on A since B(A) € A% SLy(C).
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By these conditons, we know a = 0. Similarly, the upper-right and lower-left component of (B=23)
imply that

b, c : complex constants and dib = c.

However, by the twisted property, we have b = ¢ = 0, and this contradicts det(B())) = 1. Similarly,
if £ < 0, then we get the contradiction. Thus, we conclude k = 0.

By k=0,wehave § = —1,b=c=0, a € R\ {0}: constant, d = a~!. Here we notice that \/a is
well-defined, and we get the following:

A SO () e 520
T<(\f \/g_l >>1=<_B/a _\/Oa_l> if a<0. (3:2.7)

Thus, we separately consider these cases to finish the case (i).

(i)-(1) If a > 0, then

B=B. -7(B.)= ( 8 agl ) for By € A%SLy(C).

1 —1
C 0 Va 0
This implies that ( % Ja ) By=r1 (B_ ( 0 \/5_1 )) .

-1
Now let 8, = ( \/ao \% >B+ € A%XSLy(C) and B = B_ ( ‘(/)5

0

Ja! ) € AxSLy(C),

then

Y =B_By =p_py=7(81)"" By
(i)-(2) If a < 0, similarly we have

IB_B+.T(B_)_(“ 0 ) for By € AXSLy(C).

0 a!
_ -1
Thus this implies that < \/% 1 \95 )B+ =T (B_( —(\)/6 7\/05,1 )) Now let B4 =
~1
( \/% \(/)6 ) B; € AfSLy(C) and - := B_ ( 7(\)/5 B Oa_l ) € ALSLy(C), then
¥ =B_By =B_(=1)Bs =7(8+) " (=1)B+- (3.2.8)

This completes the proof of the case (i).

(ii) Again noting the result in Proposition B2, suppose

0 )\2k+1
Y =B_ < e >B+
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for some B, € AL SLy(C) and B_ € A, SLy(C). By 7(¢))~! = 1, we have

i)\_2k_16*()\) _)\2k+1a*()\) )\2k+lc()\) )\2k+1d()\)
5’( /\72k71d*()\) iNZk+1p N ) ( —)\*Qkfla(A) 7}\721@71[)()\) ) (3.2.9)

(
for B(A\) = B4 - 7(B-) = ( C018)) Z((:\\;

expansion of b(\) and ¢()), we conclude

). As in the case (i), by the form of the power series

c=0, b(A) = A + b3\ + - F by AT SN TR (N) = b(N) if k>0, (3.2.10)
b=0, c(\) =AM +esAP 4 g sA T3 G2 (V) = ¢()\) if k< 0. (3.2.11)

Similarly, by the off-diagonal components of (B229), we have
§=—1 (<= kc2Z), acS':complex constant, d=a"'. (3.2.12)

Finally, we need to change By and B_ to B4 = Y B, € A{SLy(C) and B = B_X ! € A;SLy(C)

by using X € AxSL2(C) and Y € AL SLy(C). To complete the requirement, these matrices X and
Y should satisfy the following condition:

B=Y '7(X) (3.2.13)

_ )\21 0 0 /\2k+1 _ 0 )\‘ZH»I 0 )\2k+l
X! ( 0 - >Y: < -2k 0 ) or X1 < T 0 >Y: ( )2k 0 >(3.2.14)

for some | € Z. By direct computation with (8210), (B=21), (8212) and (B213), we know that
the diagonal case in (B2ZId) does not occur for any k, and that the off-diagonal case in (B=Z1d)

1 1
occurs only for k = 0. For k = 0, as in (i), we set 54 := ( \/% _i\b/}{&)\ ) B, € ALSLy(C)

and

and B_ := B_ va 0 € AL SLy(C), then
—%b\/&)\_l Va o ’
0 A 0 A _ 0 A
¢:B* ( T ) )B+ :5* < e ) >6+ :T(BJr) ! < 21 0 >ﬂ+
This completes the proof of Lemma B=2l. O

Here we define the ASLs(C),-Twasawa big cell B, and ASLy(C),-Twasawa first small cell P.
Definition 3.2.3.

B, = {gp € ASLg((C)|T(<p)_1<p € B} , P = {cp € ASLQ(C)‘T((,O)_lng € P} )

We introduce one of the main theorems here, and this Theorem B2 plays an important role
in the next section about the DPW method, in order to construct the solution of the extended Lax
pair which was introduced in the previous section. We will also study the asymptotic behavior of
F near P, related to singularities of surfaces in the two latter sections. In Theorem B=Xl, we use

the map
v (( i&)) cbl((ig >) N ( A—al(cA(QAL) Adb(%z)) ) (3.2.15)
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Theorem 3.2.1 (ASLy(C),-Iwasawa splitting).
1) For all ¢ € B, there exist F € ASLy(C), U V(i) - ASLy(C), and B € A SLy(C) such that
A

¢ = FB. (3.2.16)

We can choose B € AﬁSLg((C), and then F and B are uniquely determined. We call this unique

splitting “normalized.”
(2) For all p € P, there exist F € ASLy(C), U ¥(io) - ASLy(C), and B € A{SLy(C) such that

~1 i\ > (3.2.17)

yNJ\H

2

Proof. Take any ¢ € ASLy(C), and set 1 = 7(p) 1. Then, we have 7(¢))~! = 1, thus we can
apply Lemma B for this . This implies that

7(By) 't (W) "W By = 7(WB1) ™' W B,

for W=1TIorW = ( A > or W = 1 i\ >, and for some B € AL SLy(C). The

first two cases occur When w € B (i.e. p € B ) he third case occurs when ¢ € P (i.e. ¢ € P,).
First we show that F' := 7(o)7(WBy)™! 2(C)-. The twisted property is automatically
satisfied by definition, and we need to check T( ) = ]3' However, it is also clear because 7(F) = F
is equivalent to ¢ = T( )JT(WBL)"'WB,.
Next we will consider cases:
(i) The case W = I, W € ASLy(C),. We set F := FW € ASLy(C), and B := B, € A% SLy(C),
and this is the required splitting. Moreover, about normalization, we set

a 0
B|>\:0 - ( 0 Oéil )
for o € C\ {0}. Splitting to

(50 (F )T L)

1
2
—IA-
nd t
ASL

o 0

we notice that ( Oa 5 | € ASL: (C),, and that v/aa € Rsg. Hence, we can split to ¢ = F' B’
a 0 JE oo

for F! .= F 0 \/g € ASLy(C), and B’ := Oa z B € A+SL2((C). So the

uniqueness of this splitting follows from uniqueness of the Birkhoff sphttmg on B.

0 A
S N\
normalization of splitting in the same way as in (i).

(ii) The case W = ( ), EFW € W(ioy) - ASLy(C),. We can prove the existence and

i A ~ L .
) = 2 — ) = Y = = )
(iii) The case W 121 we set [/ :=F, C := W and B := B, and this is the required
—3A 1
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« 0

splitting. Moreover, about normalization, we set B|x=¢ = ( 0 a-l > for « € C\ {0}. Splitting

to the same form as in (i), we have

(5 J) (e S )

0 -VE)A VE+ \/g
S zeys (VE-va) |
and we notice that 5 ( - ) ) € ASLy(C),. Hence we can split
T-VE)AT VEe

to p = F'CB' for F/ := F

(

Remark 3.2.3. B, becomes an open dense subset of ASLy(C) because we can use the same
argument as in the proof of Theorem 1.2 (4) in [I77].

(\/\/31 \/g € ASLy(C), and B’ :=

INIE
—
\
QIR
~——
g
-

0

(an)

) B € A{SLy(C). O

&
a

3.3 The DPW method for spacelike CMC H surfaces with
0< H<1in S*!

3.3.1 Holomorphic potential

Here we will show that all simply-connected spacelike CMC H surfaces with 0 < H < 1 in S?>! are
given by a holomorphic potential, defined in Definition B=3.

Definition 3.3.1 (holomorphic potential [I'7], [25]). Let ¥ be a simply-connected domain, z € ¥
and A € C. A holomorphic potential £ is of the form

€:=Adz, A=Az, )\ Z Ay( (3.3.1)

j=—1

where each A;(z) is a 2 x 2 matrix that is independent of ), is holomorphic in z € 3, is traceless,
is a diagonal (resp. off-diagonal) matrix when j is even (resp. odd), and the upper-right entry of
A_1(z) is never zero.

3.3.2 The inverse problem of the DPW method

We will show that given a holomorphic potential £, then we get a conformal spacelike CMC H
surface f with 0 < H < 1 in S*»!. However, in Theorem B=31, we will see that finding spacelike
CMC H surfaces with 0 < H < 1 is equivalent to finding the solution of the extended Lax pair of
the form (BT1), and then the surface is found by using the immersion formula (BT9). So to prove
that the DPW method finds all spacelike CMC H surfaces with 0 < H < 1, we want to prove that
the DPW method produces all integrable Lax pairs of the form (B172) and all their solutions F'.
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Theorem 3.3.1 (The inverse problem of the DPW method). Let § := A(A)dz = > 72 | A; (2)Mdz
be a holomorphic potential over a simply-connected domain 3 in C including the origin, and let
@ : 3 — ASLy(C) be a solution of

do = @& and o(2)|.=0 = I. (3.3.2)
Define the open set ¥.° := ¢~ Y(B,) C ¥, and take the unique ASLy(C),-Iwasawa splitting on ¥°:
@ = FB, (3.3.3)
where
F € ASU,(C),, B € A{SLy(C). (3.3.4)
Then, after a change of coordinates and notations, F satisfies the extended Lax pair in (BI22).

We can prove Theorem BZ3 in the same way as in [[I77], [24]. We omit the proof.

3.3.3 The ordinary problem of the DPW method
We will consider the converse of Theorem BT, in the same way as in [4].

Theorem 3.3.2 (The ordinary problem of the DPW method). Let f : ¥ — S*>! be a spacelike
CMC H surfaces with 0 < H < 1 for simply-connected domain 3, and let F be the ertended
frame of f satisfying (BI=0). Then, there exist ¢ such that ¢ = FB for some B € A{SLy(C) and

holomorphic potential & such that & = p~tdp.

We can also prove Theorem B3 in the same way as in [I'7], [24]. Again we omit the proof.

3.4 Behavior of the frame and surface when approaching P,

We have introduced ASLy(C) -Iwasawa splitting and defined the ASLy(C) -Iwasawa big cell B,
and small cell P,. In the previous section, we also showed that on X9 = ©~1(B;) the surface f
is immeresed since the metric function e is positive definite. However, here we will show that on
@ Y(P,) f is not immersed, since the metric function e* is approaching zero there.

First, we show the following lemma.

_(a b _ Z?io a; N Z]o; b\ + —
Lemma 3.4.1. Let B = ( ¢ d ) = ( Zjil N Z?io d; N € AXSLy(C), and let C =

1
12 A . Then, there exist three factorizations:
—35A 1

(1) If|2a0 +b1| > |d0|, then

U VA

BC™'=K\B, K,:= ( -l o ) € ASLy(C),, B € ALSLy(C),

where u and v are constant in \, and determined by a,b,c,d.

(2) If [2a0 + bi| < |do|, then

U VA

-1 _ » ——
BC ! = KyB, Ky:= ( -l o

) S ‘I’(iO’Q)ASLQ((C)T, B € AZSLQ(C),
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where u and v are constant in \, and determined by a, b, c, d.
(3) If|2a0 + b1| = |d0|, then

_ - Va 0 .
BC™'=K3;CB, Kj3:= ( 0 Jal € ASLy(C),, B e AfSLy(C),
where a :=

_ 2a0+b1
do :
First two cases imply BC™' € B,, and third one implies that BC~! € P,.

Proof. By direct computation, we have the following results for the three cases:

_ u o vA 5 ati — col + Lax—t — 4y —atA + cvA? + Su — JoA
(1) Ky = ( D N )’ B = ( —atA !+ cu — %1‘))\’2 + %u)ﬁl at — CuX — %1‘))\’1 + %u ’
where u and v are the solutions of the following equations:

lul> = v =1, 2(2ag + b1)v — dou = 0.

A T e G et (e e L
-t - ) avAt+cu+ 2oAT2+ SunTl —ab — cud 4+ SoATt + du )0
where v and v are the solutions of the following equations:

—ul’+ o> =1, 2(2a0 + b1)v + dou = 0.

)

B V2ae 0 at — cu\ + gﬂ)\fl — gv —a@\ + cv\? + gﬂ — gv/\
o 0 2aet? atA™t + cu + 317)\_2 + gu)\_l —av — cul + %17)\_1 + %u ’
where u = %e*ie and v = %em. O

This is one of our main theorems:

Theorem 3.4.1. Let p,, be a sequence in B, with lim, . v, = ¢o € Pr. Let ¢, = F,,B,, be a
ASL3(C),-Twasawa splitting. Then,
(1) Writing F,, as

F, = < :I::BZZE fg% ) € ASLy(C), UW(ioa) - ASLo(C),  for zf =z, (iA~1),

we have limy, o |2y| = lim, 00 |yn| = 00 for all .
(2) Writing the constant term of B,, with respect to A as

n 0
Bn|/\:0 - ( pO p71 )7

we have lim, o |prn| = 0. This implies that f has singularities on P, since the metric function u
is defined as u = 2log(p) (i.e. the metric ds* = 4e*“dwdiw — 0 if n — 00).
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Proof. (1) By ASLy(C),-Iwasawa splitting in Theorem B2, we have ¢y = FyC By. Expressing ¢,
as
Pn = @nCBOa @n = QpnBo_lcilv

we have lim,,_,o, ¢, = Fy. So, for sufﬁpieptly large n, we }}ave On € B Thl}S, for these n, ¢,
is ASLo(C),-Iwasawa split into ¢, = F,,B,,, and lim,,_,o F;, = Fp, lim, 0 B, = I. Applying
Lemma B2 with X replacing —\, we have

Up, Up A
+to, 2" 4w,
the computaion in the proof of Lemma B2, we also have

where X,, = K1(—\) or Ky(—A). Thus, X,, = ( > for u,,v,: constant in A. By

[tn] _ |20, + bin|
|U”| |d0,n|

b

. , . S i S bin
where ag p, b1,n,do,n are determined by the components of B,, = g=0"nn J=Leene o
Zj:l CjmN Z —0djn
So

lim by n»=0 and lim ap, = hm d0n =1 (3.4.1)

n— oo n—oo

because lim,, oo B, = I. By (BZ) and |u,|? — |va]? = %1, we get lim,, o0 |tn| = lim, o0 [vn] =
lim,, o || X || = oo for some suitable matrix norm || - |]. Now the uniqueness of the ASLg(C),-
Iwasawa splitting says that

for some diagonal matrix D,, which is constant in A\. Then we have

1Xall = [1F7 L] < 1] [1Fall,
50 limy o0 [|E7Y| - || || = limp—oo ||Fp|| = o0, since limy, o0 ||| = ||Fol| is finite. Because
|2 |2 — |yn|? = £1, we get the conclusion lim,, oo |Zn| = limy, o0 |yn| = co.
(2) In the same way as in the proof of (1), we get lim,, o |p, | = oo, by using (8Z). O



Chapter 4

Singularity theory for spacelike
CMC surfaces with 0 < H <1 in
82’1

4.1 Criteria for singularities of spacelike CMC H surfaces
with 0 < H < 1 in S>!.

In this section, we study singularities of spacelike CMC H surfaces f with 0 < H < 1 in S%1,
similarly to our previous work [70] of spacelike CMC H surfaces with H > 1 in S!. We will
use the frame-changing method, called the s-spectral deformation, in order to specify the types of
singularities. Here we introduce criteria for cuspidal edges, swallowtails and cuspidal cross caps on
spacelike CMC H surfaces with 0 < H < 1 in S%!.

Let f : X — S%! be a spacelike CMC immersion of a simply-connected domain ¥ C C, with
the metric ds? = 4¢%dwdw = 4e**dwdw and unit normal vector N. First, we consider the frame §
such that

=t
f = ‘350-3'3: )
B _ 1 Ugy 2e*(1—H) 1 —Ug —e A
&w *8’A~ 517,' - SB, where A = 5 < _equ — Uy ) ) B = 5 < —28”(1 +H) U > (411)

This § is related to F in (BI3) such that § = F)| u=1. For this §, the compatibility condition
implies the Gauss and Codazzi equations (BIl). We define s-spectral deformations as follows:

Definition 4.1.1. The s-spectral deformation of the spacelike CMC surface f in S?! is the de-
formation defined by (1 + H) — is(1+ H), (1 — H) — is~*(1 — H) in Equations (=) for the
parameter s > 0.

The s-spectral deformation maps spacelike CMC surfaces to other spacelike CMC surfaces con-
formally, as follows:

47
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Theorem 4.1.1. For all s € R+, the s-spectral deformation deforms a surface f in S**, with mean
curvature H, metric ds® = 4e*“dwdw and Hopf differential A, into a surface f* with mean curvature

Hs = %ﬁ:g:g;, metric 4e** dwdw = 4(k*)?e**dwdw and Hopf differential A> = —ik* A for

kS — s(1+H)+s ' (1—H)
=S
Proof. Checking the Gauss—Weingarten equations for f*, we get the conclusion. O

Lemma 4.1.1. (fs) s =f.

Proof. Direct computation implies (HS)*% =H, (ks)*% = —%, (AS)*% =A, (us)’é =u. O
We define the s-spectral Lax pair.
Definition 4.1.2 (s-spectral Lax pair). We define §* as a solution of the following system:
S __ S AS s _ ~s S s . 1 Uy 26“74'8_1(1 —H) s . 1 — U _e—uﬂ
Sy =8"A% § =B, where A" = 2 ( —e A — Uy ) » B =3 ( —2¢e%is(1+ H) Ug ) ’

Further, we define the form Q° := (F*)~1dg*.

Theorem 4.1.2. For f given by the frame §, and mean curvature 0 < H < 1, there exists a

member of the s-spectral deformation, for the special value s = sg := that generates a frame

§ = &% € SUy, (defined in p.3 of [70], etc.).

H+17

Proof. 1t is easy to see that choosing s = sg := ,/;I_—_g gives the only deformation that makes the

Maurer-Cartan form become an su; ;-valued form. O

As s approaches sg, the mean curvature goes to infinity, and f 3033 degenerates to a point,
but there still exists a map 3’ from ¥ to SU; ; such that §~ 1d§ Q defined by the following (E12).

Definition 4.1.3. We call §: ¥ —» SUy,1 the adjusted frame of § and the form Q = 3 1dF the
adjusted Maurer-Cartan form, where

= 1 Uy —2ie"\/1— H? 1 —Ug —e " A -
Q= 3 ( Cemug Cu > dw + 3 ( Lo/ HE  uy ) dw =: Adw + Bdw. (4.1.2)
Remark 4.1.1. Defining G := F - 3L, we have Go3Gt = 303? = f.

By the above remark, we can use a new frame G instead of §, to construct the criteria for

singularities of f.

We denote § = §(w,w) = e % (

Uy U

— ) € SUy 1, where g = e* is the metric function of f, and
2 Ul

|u1|? —|ua|? = g. So we define h := % and w := u2. By Remark B0, we have f = 8’0;;? = Go3G".
Setting @ := (1 — H) —iv1— H? and f:= —(1+ H) +iv1 — H2, we get
ds* := 4g*dwdw = (1 — |h|*)*|w|*dwdw,

_ A _ 712
G—ldG:a<_£’2 i)wdw—i—ﬁ(? " )wdw.

This implies that, wherever ds? is finite, f has a singularity if and only if h € S! or w = 0.
However we consider only extended CMC surfaces f defined in the following Definition B4
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Definition 4.1.4 ([a1]). A CMC surface f restricted to the subdomain D = {p € ¥ | ds? < oo} is
called an extended CMC surface if w, resp. h%w, is never zero on D when |h| < oo, resp. |h| = cc.

Remark 4.1.2. By this definition, any point p € ¥ is singular only when |h(p)| = 1. (See [91].)

We have the following criteria for singularities of spacelike extended CMC H surfaces with
0 < H < 1in S*!. The proof of Theorem B3 is parallel to the proof of Theorem 7.5 in [70]. (See
also [B2), [u1], [92].)

Theorem 4.1.3. Let X be a simply connected domain, and let f : ¥ — S?1 be a spacelike extended
CMC H surface with 0 < H < 1. Then:

1. A point p € ¥ is a singular point if and only if h € S*.

2. f is a front at a singular point p € ¥ if and only if Re (#) |p # 0. If this is the case, p is
a non-degenerate singular point.

3. f has a cuspidal edge at a singular point p € X if and only if

A A
Re <W> ‘p % 0 and Im <W> |p # 0.

4. f has a swallowtail at a singular point p € ¥ if and only if

A A
Re <h2w2) ‘ #0, Im <h2w2) ‘ =0
p p

ne{ (i) (e | ne{() (G))

5. f has a cuspidal cross cap at a singular point p € ¥ if and only if

A A
R(hw)’ =0, Im(h%?)’ 70
p p

() () () (5]

Proof. We can use the same argument as in the proof of Theorem 7.5 of [[70], which is the case of
CMC H > 1. Then, we get the exactly the same claim as Theorem 7.5 of [70], for example:
“ f has a swallowtail at a singular point p € ¥ if and only if

P P P how hw how
ne () R () e Re{(h) (m)w}lpﬂe{(h) (7). )

However, we also have A = —2h,,w, Az = 0 and hg|, = 0, since H is constant. Applying these, we
get the conclusion. O

and

and

p

)

P
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4.2 Example: Smyth-type surfaces with 0 < H < 1 in S*'and
their singularities

4.2.1 Smyth surfaces

Smyth studied a generalization of Delaunay surfaces in R?, which are CMC surfaces with rotationally
invariant metrics, in [87]. These surfaces are called Smyth surfaces, and there are numerous studies
about them. For example, Bobenko and Its studied relationships between Smyth surfaces and
Painleve III equations in [8]. The DPW method was also applied to Smyth surfaces in Riemannian
spaceforms, in [§], [25]. In our previous work of [70], we constructed the analogue of Smyth surfaces
in R%1, §%! and H?!, and specified the types of singularities they have. However, in [70] we omitted
the case of 0 < H < 1 in S>! because the Iwasawa splitting given here becomes quite different from
the H > 1 case.

Here we will construct Smyth-type surfaces with 0 < H < 1 in S>!. In Equation (E=23), we
will notice that Smyth-type surfaces with 0 < H < 1 in S*! have an umbilic point at the origin,
thus Smyth-type surfaces can be constructed by applying only Proposition BT, not by Proposition
BT. Hence, Smyth-type surfaces with 0 < H < 1 are good examples of applying the DPW method
introduced in this paper. We also identify the types of singularities on Smyth-type surfaces, using
the criteria in Section E.

4.2.2 Reflective symmetry of Smyth-type surfaces
Define

0 1
— )1 _
E=A (ka 0>dw7 ceC, weX=C, (4.2.1)
and take a solution ¢ such that dp = ¢€ and ¢,,—g = I. Now we can assume ¢ € Ry using a
reparametrization of w and a rigid motion of f, as in [I7].

The following Proposition B=21 is proven in the same way as Theorem 8.2 in [70].

Proposition 4.2.1. The surfaces f : o~ (B;) — S*, produced via the DPW method, from & in
(B=2), with @|w=0 = I and Fy = F|)\=e,% for g <0, has reflective symmetry with respect to k + 2
geodesic planes that meet equiangularly along a geodesic line.

4.2.3 The Gauss equation of Smyth-type surfaces

Here we assume the mean curvature is H = % for simplicity, and then we show that the metric of
Smyth-type surfaces is rotationally invariant.

Theorem 4.2.1. The Gauss equation (B for a surface in S>' generated by & in (E221), with
©lw=0 = I, is equivalent to a special case of the Painleve III equations, and the metric function u
s rotationally invariant.

Proof. When H = %, the Gauss equation is of the following form:

)
2

Ay + €2 + |QPe™ " = 0. (4.2.2)
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By the proof of Theorem BZ3l, we have
Q=—2H— = —icw® (i.e. A= cuw"). (4.2.3)

Set v :=u — 3log|Q|, and (EZ2) is equivalent to
40 + 2|e| - [w|Fcosh(2v) = 0. (4.2.4)

Using vws = 1070 + £0yv for r := |w|, (E24) becomes
1
%0 4 —0,v + 2|¢| - rFcosh(2v) = 0. (4.2.5)
r

Next we set x := ﬁng Vlel, and (B223) is equivalent to

1
02v + —0,v + 2cosh(2v) = 0. (4.2.6)

x
(E=2@) is a special case of the Painleve III equation that is y,, = %(ygﬁ)2 — %ym - %(ozy2 +0) +7y3+§,
fory=e’,a=p=0,v=6=-1 |
Using polar coordinates w = re’? and setting g := e*, the Gauss equation and the suitable

choice of the initial conditions are as follows:

9(grr + gf) — g+ — A1’ =0, gli—o=1, grlr—o=0. (4.2.7)

This solution g depends only on 7, and some examples of g are seen in Figure B-1. The singular set
S(f) :=={(r,0) € C|g(r) = 0} corresponding to this data of g is seen in the right-side of Figure B.
As in Figure B2, Smyth-type surfaces with H = £ in S?! arrive at the singular set S(f) repeatedly
before they diverge to infinity. This phenomenon does not occur in the case of H > 1. (See [[70].)

Fig. 4.1: The left image is a solution g of Equation (E=210), and the right image is the corresponding
singular set.

4.2.4 The types of singularities on Smyth-type surfaces

By numerical calculation, we know that these Smyth surfaces have cuspidal edges, swallowtails and
cuspidal cross caps, using the criteria as in Section B0, see Figure E=3.

Fact 4.2.1. There exist Smyth-type surfaces in S?! which have cuspidal edges, swallowtails and
cuspidal cross caps. (See Figures £3.)
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Fig. 4.2: The middle image is a 3-legged Smyth-type surface with H = %, and the left image is part
of the middle one, from the origin to the first singular set. The right i 1mage is a part of the middle
one, near second singular set (using the hollow ball model as in [29]).

Fig. 4.3: The values of Re( 5 2)|p, Im(hcfzﬂp, Re{(%) (Awh“’_“}‘:s(i’?+2hWW))}‘
p
~Re {(;3) (F557) } |p and Im{ (75) (A he “:siéﬂhww )} ‘p—Im A) (FH4e)} |p for a 3-

legged Smyth-type surface with H = % in S*! at (rg,6) such that g(rg) = 0 and 0 < 6 < 27
(left to right).
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Here we show, for the surfaces in Fact B221, that there are at least 2(k+ 2)-swallowtails, without
relying on numerical calculation, and using only geometric properties. Before doing that, we have
a lemma.

Lemma 4.2.1. Let § = @(w,u’}) be the solution of the adjusted Lax pair (EE12) with Fweo = I for
the case of a Smyth-type surface. Then §(w) = 03§ (w)os.

Proof. By direct computation, we have fl(w) = —B(?I})t. By this equation and Fu—o = I, we get
the conclusion. O

Corollary 4.2.1.

(1) h(w) = =h(@), w(w) = w(W).
(2) At (r,0) = (r9,0) for g(ro) = 0, we have h(rg,0) = £i, w(rg,0) € R\ {0}, wy(ro,0) = wg(ro,0).

Proposition 4.2.2. Let f(w) = f(r,0) be a (k + 2)-legged Smyth-type surface in S, and let rq
satisfy g(ro) = 0. Then f has a swallowtail at (rg,0).

Proof. We will use the criteria of Theorem B3, and by the data of the above Corollary E=2 we
can get the conclusion. O

Similarly, we have the same conclusion when § = 7.

Proposition 4.2.3. Let f(w) = f(r,0) be a (k + 2)-legged Smyth-type surface in S*', and let rg
satisfy g(ro) = 0. Then f has a swallowtail at (ro, 7 )-

By the above two propositions and the reflective symmetry, we get the following main result:

Theorem 4.2.2. If a (k+2)-legged Smyth-type surface in S has singularities, then it has at least
2(k + 2) swallowtails.

Remark 4.2.1. We have checked numerically that there are cuspidal cross caps along the cuspidal
edges between each adjacent pair of swallowtails. Thus the surface as in Theorem =22 will also
have at least 2(k + 2) cuspidal cross caps.






Chapter 5

Gauss maps of cuspidal edges in H?

5.1 Local differential geometry of cuspidal edges in H?

Let R®! denote the space R* of 4-tuples the real numbers, equipped with the signature (—, +, 4, +)
and symmetric bilinear form (,) defined by

((zo, 1,22, 23), (Yo, Y1,Y2,Y3)) = —ToYo + T1Y1 + T2y + T3Ys3

for any © = (z0,71,72,23),¥ = (Y0,Y1,Y2,¥3). We call this space R*>! the Lorentz—Minkowski
4-space or briefly the Minkowski 4-space.

For € R*!\ {0}, there are three kinds of vector called spacelike, lightlike or timelike and
defined by (z,x) > 0,= 0 or < 0 respectively. The norm of = € R*! is defined by ||z|| = \/|(z, z)|.
Especially, for a spacelike vector @, the norm of x is ||z|| = y/(z,z). We now define the pseudo
wedge product ai A az N a3 as follows:

—€p €1 eg e3

1 11 1
a a a a
_ | 9 1 G2 a3

aiNas Nag =| 5 2 2 9,
aj ai a3 a3

R

where {eg, e1, €2, e3} is the canonical basis of R*!, a; = (a},at,ab, al) € R®! (i = 1,2,3). We can
easily check that
(a,a1 A az A az) = det(a,ar,aq,as)

holds. Hence a; A as A as is pseudo orthogonal to a;,7 = 1,2, 3.
There are three kinds of pseudo-spheres in R3!: the hyperbolic 3-space H? is defined by

H? = {z € R*!|(z,z) = —1,29 > 0},
the de Sitter 3-space S** is defined by
S = {z e R¥!|(x,x) = 1}
and open lightcone LC* is defined by
LC* = {x € R*'\ {0}|(x, x) = 0}.
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We recall that wave fronts in H3. Let f : U — H? Cc R*! be a smooth map, where U C R? is
a simply-connected domain with local coordinates u,v. We call f a wave front (or front, for short)
if there exists a unit vector field v along f such that the following conditions hold:

a) (df(X,),v(p)) =0, for any X, € T,U, p € U, and
P p S dp

(b) the pair Ly = (f,v) : U = T1H? = {(v,w) € H? x $*!|(v,w) = 0} is an immersion, where
T,H? is the unit tangent bundle over H? equipped with the canonical contact structure.

Here, we call this vector v a unit pseudo normal vector of f and Ly a Legendrian lift (cf. [8],
see also [674, 83]). A map f is called a frontal if (a) of the above condition is satisfied. A front
f might have singularities. Arnol’d and Zakalyukin showed that the generic singularities of fronts
in R? are cuspidal edges and swallowtails (for example, see [3]). A cuspidal edge is a map-germ
f:(R2,0) — (R3,0) A-equivalent to the germ (u,v) — (u,v?,v3) and a swallowtail is a map-germ
f: (R%,0) — (R?,0) A-equivalent to the germ (u,v) ~ (u,4v3 + 2uv,3v* + uv?) at the origin,
where two map-germs f, g : (R?,0) — (R3,0) are A-equivalent if there exist diffeomorphism-germs
Zs : (R?,0) — (R?,0) on the source and Z; : (R3,0) — (R?,0) on the target such that foZ, = Z;0g
holds (see Fig. BI).

Fig. 5.1: Cuspidal edge (left) and swallowtail (right).

For a front f, we define a function called the signed area density function X\ as follows: A =
det(fu, fv,v, f), where f,, = 0f/0u and f, = 0f /v respectively. We denote by S(f) the singular
set of f. By definition of the signed area density function, the relation S(f) = A~%(0) holds. For
a singular point p € S(f), we say that p is non-degenerate if the condition dA(p) # 0 holds. Let
p € S(f) be a non-degenerate singular point of f. Then, by the implicit function theorem, there
exists a regular curve 7 : (—¢,¢) — U (¢ > 0) with v(0) = p such that + locally parametrizes S(f).
Since non-degenerate singular points are corank 1 singular points, there exists a vector field n on
S(f) such that df (n) = 0 holds. We call such a vector field the null vector field. Under the above
situation, the following criteria are known.

Theorem 5.1.1 ([5%, Propositin 1.3]). Let f: U — H? be a front and p € U be a non-degenerate
singular point of f. Then

(1) f at p is A-equivalent to a cuspidal edge if and only if nA(p) # 0 holds.

(2) f at p is A-equivalent to a swallowtail if and only if nA\(p) = 0 and nmA(p) # 0 hold.
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We consider (extrinsic) differential geometric properties of cuspidal edges in H3. Let f : U — H3
be a front and p € U a cuspidal edge. In this case, we can take a special local coordinate system
called the adapted coordinate system (see [63, B4], for example).

Definition 5.1.1. A coordinate system (U;u,v) is called adapted if the following conditions hold:
1) the w-axis is the singular curve,
2) n =0, gives a null vector field along the u-axis, and
3) there are no singular points other than the w-axis.

We use this coordinate system in Sections 2, 3 and 4. With this coordinate, df(n) = f, = 0
and f,, # 0 hold along the u-axis. Thus there exists a smooth map ¢ : U — R*1 \ {0} such that
fv = vy holds. We define a map

JuNpNf 2,1
1/:7:U—>S
‘|fu/\QPAf||

From the definition of v, we have

<fU7V> = <¢7y>:<f71/>207 <V7V>:1-

We call this map v the de Sitter Gauss map image or the de Sitter Gauss image of f.
The signed area density of f is given by

A= det(fmfv,y,f) = Udet(fu,gp,y, f) =\,

Since n = 9, a point p is a cuspidal edge of f if and only if n\ = A # 0 holds along the u-axis.
Thus f, fu, ¢ and v are linearly independent.
We define the following functions:

E = (fu, fu), F={fu,0), G = (o, 0), (5.1.1)
E = _<fU7Vu>7 M = _<</77Vu>; N = —<<,0, 1/1,>. (512)

We note that EG — F2 # 0 near p and —(fy,vy) = vM holds. Using these functions, we have the
following.

Lemma 5.1.1. The differentials v,, and v, can be written as
FM - GL +Fi—EM FN —vGM +UFM—EN
Uy = —=x= = u = = —== = Ju =
EG — F? EG—FQ@ EG — F? EG — F?

®.

y Vo =

We set
$(t) = det(¥,4', DJ (v o v),v 0 y)(1),

where 4 = fo, D/ is the canonical covariant derivative along a map f induced from the Levi-Civita
connection on H? and ' = d/dt. We note that ¢(0) # 0 if and only if (f,) is a Legendre immersion
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at p, that is, f is a front at p when 4/(0) # 0 (see [32, b3]). Taking an adapted coordinate system
(U; u,v) around p, D{;V = v, holds. Thus we have

Y(u) = det(f(u,0), fu(u,0),v,(u,0),v(u,0))
EN
= —————det U,O, uu70, U,O,I/’IL,O
o det(f(1.0). £u(1,0), (1. 0), (1, 0))
by Lemma BT, and we see that N does not vanish along the u-axis.

Remark 5.1.1. Let f : U — (M3, g) be a front with non-degenerate singular points, where (M3, g)
is an oriented 3-dimensional Riemannian manifold. We set

fn:df(n)7 fnnzvnfna fmm:vnfnm

where V is the Levi-Civita connection of (M?, g). In [64], a differential geometric invariant «, called
the cuspidal curvature is defined by

5/ ()22 dety (7' (2), fun (¥(2)), Fann (¥(2)))
Y/ () Xg fan(7(1)[572

along the singular curve v, where 4 = f o, det, is the Riemannian volume element of (A 3. g) and
(axyb,c)=dety(a,b,c) for each a,b,c € T,M? (g € M?3). If M = R?, then det, can be identified
with the usual determinant. By [83, Corollary 3.5], f at p € S(f) is a cuspidal edge if and only if
ke(p) # 0 holds. For details about the cuspidal curvature k., see [64)].

Ke(t) =

Here the Gauss-Kronecker curvature function K.y and the mean curvature function H of f are
given by
LN —vM? H_EN—QUFM—H}GL
v(EG — F?)’ w(EG - F2)

(5.1.3)

ext —

We define the matrix

gio (B FY(L e
F G M N’
called the modified de Sitter shape operator of f. Then the relation
det Sd = erxt = Kext

holds. By definition of Koy given by (B13), Kext is C°°-function of u, v.
We consider the principal curvatures for cuspidal edges. We now define two functions as follows:
A+ B A-B

Rl = —==x =, he = ——==—=__- (514)
20(EG — F?) 20(EG — F?)

Here A = EN — 20FM +vGL, B = \/A2 — 4u(EG — F2)(LN — vM?). By definitions of x; and
Ko, we have Koy = k1Ko and 2H = k1 + k2. Thus we may regard k1 and k9 as principal curvatures
of f. However, we note that one of x; (i = 1,2) may not be well-defined along the singular curve.
Two functions 1 and ks in (BI4) can be rewritten as

_ 2(LN —vM?) _ 2(LN —vl?)

R1 = A_B , Ko = A—|—B (515)
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Here, A = EN and B = E|N| hold on the singular set {v = 0}. Thus A+ B # 0 (resp. A— B # 0)
holds on {v = 0} if N > 0 (resp. N < 0). By the above arguments, if N is positive (resp. negative)
along the singular curve, ko (resp. k1) is well-defined along the singular curve. So we can regard
Ko as the principal curvature for the cuspidal edge if and only if N (u,0) is a non-zero positive
C*>°-function of u along the u-axis. We note that Murata and Umehara [67] introduced the notion
of principal curvature maps for fronts in R3.

Let us consider the principal direction v = (&, ) with respect to the principal curvature k. In
this case, v satisfies the following equation:

L oM &\ p E  oF 3
oM oN)\¢) P \wE 02G)\¢)
Thus the principal direction v = (£, ¢) can be taken as

v = (N — koG, —M + ko F). (5.1.6)

Since N # 0 holds on {v = 0}, the principal direction v is also well-defined along the wu-axis.
Using the principal curvature ko and the principal direction v corresponding to ko, we define a
notion of ridge point.

Definition 5.1.2. Let f : U — H? be a cuspidal edge, x» the principal curvatures of f and v
the principal directions with respect to ka. The point f(p) is called a ridge point relative to v if
vka(p) = 0, where vko is the directional derivative of ko in direction v. Moreover, f(p) is called
a k-th order ridge point relative to v if v(™ry(p) = 0 (1 < m < k) and v*+Vky(p) # 0, where
v(™) gy is the directional derivative of ky with respect to v applied m times.

Properties of ridge points for regular surfaces in R3 were first studied by Porteous to investigate
caustics of them. For details, see |77, [75].

5.2 Singularities of the de Sitter Gauss map image

In this section, we consider the de Sitter Gauss image v : U — S%! of f. From arguments in Section
2, the pair L = (f,v) gives a Legendrian immersion. Thus v can be regarded as a (wave) front in
S$%! with unit normal vector f.

We consider the signed area density function \” of v. Using v, v,,v, and f, AV is given by

A = det(vy, vy, v, f). (5.2.1)
By Lemma BT and (B13), it can be written as
)‘y = erXt dEt(fuvsava V)' (522)

We note that det(fy, ¢, f,v) is a non-zero function. By definitions of Gauss-Kronecker curvature
and k1 and ko, we have
VEoxt = (VK1)Ka. (5.2.3)

In this case, vk is a non-zero function on U. From (6221), (E222) and (6=23), we can consider the
signed area density as
A = K. (5.2.4)

Thus we have the following:
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Proposition 5.2.1. Under the above conditions, a point p € U is a singular point of the de Sitter
Gauss image v if and only if ka2(p) = 0 holds.

We denote by S(v) = {q € Ulka(q) = 0} the set of singular points of v and we call a point
p € S(v) a parabolic point for cuspidal edges. For p € S(v), a point p is a non-degenerate singular
point of v if and only if (k2),(p) # 0 or (k2),(p) # 0 hold, that is, p is not a critical point of ks.

We consider the case that p € S(v) is non-degenarate. In this case, there exists a vector field n”
on S(v) such that dv(n”) = 0. We will find a concrete form for 7. Let us take n* = n{d, + n50,.
Then

(FNi—ci. BB\,
du(n)( Ju+ @)771

G- BG- P

PR —oGNL, | wfN - BN
iG—  EG- P

<p> ny =0 (5.2.5)

holds on S(v) by Lemma BT, Since f, and ¢ are linearly independent, this equation is equivalent
to the following:

oAl =1, . - ,
(Fe) (i ¥)E)-0) 629
holds on S(v). Now N # 0, so we can take 7” as
n” =N, — Mo, (5.2.7)
on S(v). Moreover, n¥ can be extended on U by the form
0’ = (N — vk2@)8y 4 (=M + ki F), = v,

where v is the principal direction with respect to k2. Thus we can regard the principal direction v
as a null vector field n”.

Using Theorem BT, the signed area density A\ and null vector field 1", we obtain conditions
for singularities of v.

Proposition 5.2.2. Let f: U — H? be a cuspidal edge and v : U — S*1 o de Sitter Gauss image

of f. Suppose that p € S(v) is a non-degenerate singular point of v. Then the following assertions
hold.

(1) v at p is a cuspidal edge if and only if vka(p) # 0 holds.
(2) v at p is a swallowtail if and only if via(p) = 0 and vP ko (p) # 0 hold.

Combining the results obtained in Sections 2 and 3, we have relations between singularities of
v and the differential geometric properties of f.

Theorem 5.2.1. Let f: U — H3 be a cuspidal edge and v : U — S*! a de Sitter Gauss image of
f- Then the following properties hold.

(1) A point p € U is a singular point of v if and only if k2(p) = 0 holds.
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(2) A point p € S(v) is non-degenerate if and only if p is not a critical point of k.

(3) For a non-degenerate singular point p € S(v), v at p is a cuspidal edge if and only if p is not
a ridge point of f.

(4) For a non-degenerate singular point p € S(v), v at p is a swallowtail if and only if p is a first
order ridge point of f.

In [84], duality between Ay ;-inflection point (k < n) of immersed C*°-hypersurfaces f : M™ —
P(R"*2) and Aj-singularity of dual front g : M™ — P((R"*2)*) were shown, where M" is a C'°-
manifold of dimension n and As-singularity and As-singularity correspond to a cuspidal edge and a
swallowtail for fronts respectively. We also remark that cusp singularities of Gauss maps of regular
surfaces in R? are related to parabolic points and ridge points for surfaces (see [d, Theorem 3.1]).

5.3 Normal form of cuspidal edges in H?

In this section, we consider the normal form of cuspidal edges in H3. For cuspidal edges in R3, the
following normal form obtained by Martins and Saji in [63] is known.

Proposition 5.3.1 ([63]). Let f : (R%,0) — (R3,0) be a smooth map-germ and O a cuspidal edge.
Then there exist a diffeomorphism-germ 1 : (R?,0) — (R%,0) on the source and an isometry-germ
U : (R3,0) — (R3,0) on the target such that

o fo(u,v)
:(ufmua‘so:a v b » bao 5 i

bos
-2 212 02 4 203,38
5 U 6u+2,2u+6u+2uv—|—6v)+h(u,v) (5.3.1)

with bog > 0 and bos # 0, where
h(u,v) = (0, u*hy (u), u*hg(u) + u?v?hs(u) + uwvdhy(u) + v*hs(u,v)),
with h;(uw) (1 <1i<4), hs(u,v) smooth functions.

See [B63] for detailed descriptions and geometric properties of the coefficients in (BE23). We
extend (B23) to the case of H? by analogy to the hyperbolic-Monge form (or the H-Monge form,
for short) for regular surfaces which is introduced by Izumiya, Pei and Sano (see [50, Section 8]).
Let f : U — H3 be a cuspidal edge. Then we have H-Monge form f = (fo, f1, f2, f3) for surfaces
with cuspidal edge as follows:

fo= 1+ 12+ 3+ 12,

b b b bos -

+ u*ho(u) + u?v?hs(u) + wvdhy(u) + v1hs(u, v),
f2 =1u,
f3 Q20 o aso 3

2
v
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Using H-Monge form of cuspidal edge, we consider the conditions of ridge for cuspidal edge in terms
of the coefficients. Let us assume that bps > 0 holds. Here f, f,, and ¢ are

f=1(1,0,0,0), f, =(0,0,1,0) and ¢ = (0,0,0,1)

at the origin. We can take de Sitter Gauss image v of f with v = (0,1,0,0) at the origin. In
this case, the coefficients of the first and the second fundamental forms are E = I,F =0,G =
1,ﬁ = bQO,M = b12,1\7 = bo3/2 at the origin. Moreover, the principal curvature satisfies ko =
fJ/E = bgo7 (Hg)u = b30 — a20612 and (HQ)U = —(4[)%2 + a20b33)/2b03 at the origin. Thus we have the
following lemma.

Lemma 5.3.1. Let f : U — H? be a H-Monge form of cuspidal edge. Then r2(0) = 0 if and
only if bog = 0. Moreover the origin 0 is not critical point of ko if and only if byg — azgbia # 0 or
4b35 + ageb3s # 0 hold.

We assume that bsg = 0 holds in what follows.

Lemma 5.3.2. Let f : U — H? be the H-Monge form of a cuspidal edge, ko the principal curvature
and v the principal direction corresponding to ko. Then the following assertions hold.

(1) The origin is not a ridge point if and only if 4b3, + bsobZs # 0 holds.
(2) The origin is a first order ridge point if and only if 4b35 + bzob2s = 0 and
bozha(0) + 403565513 (0) — 8b75b03ha (0) + 16b1,h5(0,0) # 0.
hold.

Proof. First we show the condition (1) of Lemma 6332. By defunitions of the principal curvature
and the principal direction, we have (k2), = bso — az0bi2, (k2)» = —(4b3y + a20bis)/2bos, & =
bo3/2,( = —b12 at the origin. Using these conditions,

_ 4, + bsobis

012(0) = £(0)(R2), (0) + C(0) (2)(0) = =25

holds. On the other hand, the condition that the origin 0 is not a ridge point is vx3(0) # 0. Thus
it follows that the first assertion holds.
Next we show (2) of Lemma B=32. Let us assume that

4b3., + bagb?
vro(0) = —1z U008 ;;0330 93—

holds, that is, the origin is a ridge point. Then we see that £, (0) = 3h4(0),£,(0) = 8h5(0,0),¢,(0) =
—4h3(0),¢(0) = —3hy(0) and

(HQ)uu(O) = —2a3ob12 + 24h2 (O) — 4dagohs (O)),

(“2)% (0) = %1%3

4
(FLQ)M)(O) = bT(b(2)3h3(0) — 6b12b03h4(0) + 2(8[)%2 — agobgg)hg)(o, 0))
03

(—a30b83 — 32b12bg3hs (0) + 6(4()?2 — a20b33)h4 (O)),
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Thus we obtain

1
1)(2)/{2(0) = m(6b03(4bg3h2(0) + 16[)%2[)03]13(0) — (28[):152 — b30b33)h4(0))
03
+ 32b12 (81):132 — b30b%3)h5 (O, O))
Since the condition b3y = —4b3,/b3; holds, we have
6
v@h(0) = 55 (b33h2(0) + 4b2bh(0) — 8bisb03ha(0) + 16b13h5(0, 0)))-
03
This shows that (2) of Lemma B=32 holds. O

We show some examples of cuspidal edge in H? and corresponding de Sitter Gauss image. To
visualize surface in H? and S?!, we will use the Poincaré model P and the hollow ball model H in
what follows. For details of the hollow ball model, see [29]. Here the Poincaré model P is given by
a map

X1 To I3
H? 5 (z9, z1, 22, T3) — , , cP
(xo,x1, T2, x3) (1+xo 1+ 20 1+x0>

and the hollow ball model H is given by

arctan xg

91 e earctan X0 earctan X0
) ($0,$1,$2,$3)l—> x3 | € H.

Vit Vivm Vi
Then we can view the Poincaré model P as the Euclidean unit ball
B? = {(z1,20,23) € R® | 2% + 23 + 22 < 1}
in R3. Moreover the hollow ball model H can be viewed as
H={(x1,29,23) €R3 | ™™ < 2? + 23 + 22 < e}
Example 5.3.1. Let f = (fo, f1, fo2, f3) : U — H? be a cuspidal edge with

w2 ud v?

3
v
fO:\/1+f12+f22+f§,f1:u3+§,f2:u7f3:?+?+5+u4

This form satisfies the conditions of Lemma 5231 and (1) of Lemma 6332. Thus, by Theorem 5271,
de Sitter Gauss image of f has cuspidal edge at the origin.

Example 5.3.2. Let f = (fo, f1, f, f3) : U — H? be a cuspidal edge with

w2 uwd 0?

3
v
f0=\/1+f12+f22+f327f1=§+U47f2=%f3=?+§+?-

This form satisfies the conditions of Lemma 531 and (2) of Lemma 6E32. Thus, by Theorem 52T,
de Sitter Gauss image of f has swallowtail singularity at the origin.
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Fig. 5.2: Pictures of Example 5231. Cuspidal edge in H* (left) and its de Sitter Gauss image in
S%1 (right).

5.4 Application to flat fronts

In this section, we consider constant Gauss-Kronecker curvature Koy = 1 surfaces, called flat fronts
in H? and S*!. First we introduce explicit formula for flat fronts in H?, called the Bryant-type
representation, as in [B6].

Proposition 5.4.1 ([B6]). Let U be a simply-connected domain in C with the usual complex coor-

dinate z = u +iv. Then, any flat front f : U — H? is given by

f=FF, wheredF=F ( g?z) th) ) dz (5.4.1)

for some holomorphic functions g and h.
We also have the following well-known fact as in Proposition b24=2:

Proposition 5.4.2. For flat fronts f in H® as given in Proposition BZ-d, the unit normal vector
v of f becomes (spacelike) flat fronts in S*1, and v can be described as

v=F ( (1) _01 ) Ft. (5.4.2)
5.4.1 The singularity theory of flat fronts in H? and S*!.

Here we introduce criteria for singularities of flat fronts f in H® as in [57], and we give criteria for
singularities of the de Sitter Gauss image v (i.e. flat fronts in S*!) of f in the same way.

Proposition 5.4.3 ([67)). Let U be a simply connected domain, and let f : U — H3 be a flat front
given as in Proposition bZ-1.

1. A point p € U is a non-degenerate singular point if and only if

lg(p)] = [n(p)| and (g:h — ghs)|, # 0.
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Fig. 5.3: Pictures of Example 6532. Cuspidal edge in H? (left) and its de Sitter Gauss image in
S21 (right).

2. f has a cuspidal edge at a non-degenerate singular point p € U if and only if

(gzh B ghz)

Im | =————
(gh)2

3. f has a swallowtail at a non-degenerate singular point p € U if and only if

Im(%) p:o and R%(W)Z(“?%)}L#o.

Here we give criteria for singularities of the de Sitter Gauss image v. The following theorem can
be proven by the same way as in the proof of the above proposition. Thus, we omit that proof.

£0

p

Theorem 5.4.1. Let U be a simply connected domain, and let v : U — S>' be a flat front given
i Proposition b.Z.3.

1. A point p € U is a non-degenerate singular point if and only if
l9()| = |h(p)| and (g:h — gh.)|  # 0.
2. v has a cuspidal edge at a non-degenerate singular point p € U if and only if
Re (gzh - ghz)
(gh)>

3. v has a swallowtail at a non-degenerate singular point p € U if and only if

Re(gzh_ghz) =0 and Im <gzh—gshz) <gz_hz> # 0.
i /1, i ) \a n)f|

£0

p
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We note that Fujimori, Noro, Saji, Sasaki and Yoshida [&1] study fronts in S?! from the view-
point of the de Sitter Schwarz map and they give criteria which correspond to Theorem B2 for
singularities of flonts in S*! in terms of de Sitter Schwarz map (For details, see [&1, Proposition

6]).
By the above Proposition 62473 and Theorem 62, we get the following Corollary 62

Corollary 5.4.1.
1. The singular set of f coincides with the singular set of v, i.e. S(f) = S(v).

2. We define the set of non-degenerate singular points of f as X(f), which is the subset of S(f).
We define ¥(v) similarly. Then, 3(f) = X(v).

We note that (1) of Corollary B2 is a special case of [64, Corollary C] (see also [31]).

5.4.2 Global example: Enneper-type flat fronts and their singularities

Here we introduce Enneper-type flat fronts in H? and S?!, which are flat fronts and have reflective
symmetry (see Fig B4 and BH), as global application of Theorem 521

Define g(z) = 2z* and h(z) = 1 for k € N. Applying Proposition 620, we get (k + 2)-legged
Enneper-type flat fronts in H?. See Fig 64. We also have (k + 2)-legged Enneper-type flat fronts
in S*! applying Proposition 6432. See Fig 63. Using polar coordinates z = re*® and applying
Proposition B273, we get the following lemma:

Lemma 5.4.1. Let f be a (k + 2)-legged Enneper-type flat front in H?. Then:
1. S(f) = {(ro,0)|rf =1,0 < 6 < 27} .

2. f has (k + 2)-swallowtails at (ro,00) such that rf =1 and 6y = ,ffz (1=0,1,2,--- ,k+1).

3. f has cuspidal edges at (ro,01) such that rf =1 and 0, # lff2 (i=0,1,2,--- ,k+1).

Similarly we also get the following lemma by applying Theorem B
Lemma 5.4.2. Let v be a (k + 2)-legged Enneper-type flat front in S*1. Then:
1. Sw)=5S(f) ={(ro,0)|rk =1,0< 0 < 2r}.

2. v has (k+2)-swallowtails at (ro,02) such that rf =1 and 0, = (2?:2” (1=0,1,2,---  k+1).

3. v has cuspidal edges at (ro,03) such that rf =1 and 03 # (2;':12)” (t=0,1,2,--- k+1).

By the above two lemmas and Theorem b2, we get the following theorem:

Theorem 5.4.2 (Duality of Enneper-type flat fronts). Let f be a (k + 2)-legged Enneper-type flat
front in H3, and let v be a de Sitter Gauss image of f. Then:

1. Points (ro,02) such that rf =1 and 0y = (22112)” (1=0,1,2,--- ,k+1) are first order ridge
points of f.

2. Pjg)}nts (r0,03) such that & = 1 and 03 # (22112)” (:1=0,1,2,--- ,k+ 1) are not ridge points
0
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Fig. 5.4: The left image is a 3-legged Enneper-type flat front in H?, and the right is one portion of
it between 0 < 0 < %’r

Fig. 5.5: The left image is the de Sitter Gauss image of a 3-legged Enneper-type flat front, and the
right is one portion of it between 0 < 6 < 2?“






Chapter 6

CMUC surfaces and Dj-singularities

6.1 Preliminaries

6.1.1 Surfaces in spaceforms

We recall some properties of surfaces in several spaceforms. For more details, see [61, b2, b3].

Let R" = {(z1,...,2,) | @ € R, 1 < i < n} be an n-dimensional vector space. For any
x=(21,...,2,) and y = (y1,...,yn) € R™, we define the pseudo inner product with the signature
(n—k,k) (0<k<mn)by

n—Fk n
(x,y) = Z TiYi — Z ZLjY;-
i=1 j=n—k+1

We denote R"~%k = (R™ (,)). We say that a vector x € R" \ {0} is spacelike, timelike or lightlike
if (x, ) > 0, < 0 or = 0 respectively. We note that R™° = R" is the Euclidean n-space. If k = 1,
we call the space R~ 1! the Minkowski n-space.

Let ej,...,e, be the pseudo orthonormal basis of R*“%* and z! = (2%,...,2%) € R*=kF
(1 <i < n—1). Then we define the wedge product €' A --- A "1 with respect to the signature
(n —k,k) by

€1 vt €n—k —€p_fky1 v —€n
1 1 1 1
1 n—1 Ty v Tk 'rnkarl o Ty
n—1 n—1 n—1 n—1
Ty v gk ‘/Enkarl T Ty

One can check that (x’, &' A---Ax" 1) =0 holds for 1 <i <n — 1.
Let n = 4. Then we define the following spaceforms:

§*={x R | (z,z) =1}, B = {x € R* | (z,2) = -1},
S = {x e R | (z,z) =1}, H?! = {x € R*? | (x,x) = —1}.

We call S3, H?, S>! and H?! the spherical 3-space, the hyperbolic 3-space, the de Sitter 3-space
and the anti-de Sitter 3-space, respectively. It is known that S* and S?! (resp. H® and H?!) have
constant sectional curvature 1 (resp. —1).

69
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Let M? be a 3-dimensional spaceform one of R?, R>!, §3, H?, S*! or H>'. Let f: U — M3
be a (spacelike) immersion, where U C (R?;u,v) is an open set. Then we consider the unit normal
vector v to f. If M3 = R3 or R?!, v is defined as

Ju N fo
V=7 Ju=0f/0u, f, =0f/0v),
|hAﬁ\( / /0v)
where |z| = \/|(z,x)|. If M3 is one of the other spaceforms, v can be taken as
TN
[f A fu N ol

In these cases, we use (-,-) as the induced metric from the ambient space R*=%* (k =0,1,2).

6.1.2 CMC surface theory

In this section, we explain some basical notations, as in [I0] and [I7]. Let M3 be one of R3, R,
S3, H3, §*! or H?!'. Let f : U — M? be a conformally (spacelike) immersion, where U is a
simply-connected domain in C with usual complex coordinate z = u + iv (i = /—1). By using the
map C 3 2z = u + iv — (u,v) € R?, we can identify C with R2. We note that 9, = (9, — i9,)/2
and 9; = (0, +i0,)/2. Then (f., f.) = (fs, fz) = 0 and (f., fz) = 2¢* hold for some function
g : U — R, and in particular, the first fundamental form of f is given as

ds® = 4g°*(du® + dv?).

Take the unit normal vector field v. Then the mean curvature H and Hopf differential factor ) are
given by

Hziﬂmw,Q:wmw. (6.1.1)

By (6B), one can check that H and @ change to —H and —@Q), respectively, when we change v
to —v. We assume that H is constant. It is known that the Codazzi equation implies that @ is
holomorphic. Moreover, the extrinsic Gaussian curvature K is written as

__ L oo
K =750+ (6.1.2)

We now define the parallel transforms ft and ft of f. If M3 = R3 or R%1,
ft=f+tv (6.1.3)

for some constant ¢ € R. In this case, v is also a unit normal vector to ft. If M3 =S3 or H*!, ft
and Dt are )
ft=(cost)f + (sint)y, »'= —(sint)f + (cost)v (6.1.4)

for some constant t € R. If M3 = H?3 or S>!, we define
ft = (cosht)f + (sinht)y, f* =0 = (sinht)f + (cosht)v (6.1.5)

for some constant t € R (cf. [20] and [24]).
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6.1.3 Wave fronts

We recall some notions of wave fronts. For details, see [3, B2, 51, b2, K3].

Let f: U — (M3, h) be a C* map, where U is a simply-connected domain in R? and (M3, h)
is an oriented Riemannian or semi-Riemannian manifold with metric h. We call f a wave front
or front if for each point p € U there exists a unit normal vector field v along f and the map
L = (f,v):U — Ty M? gives an immersion, where T} M? is the unit tangent bundle over M3. A
point p € U is called a singular point if f is not an immersion at p. Let S(f) denote the set of
singular points of f. We set a function A on U as

Ju N fo=2v (6.1.6)

when M3 = R3 or R?!, and
TN fu N fo=Av (6.1.7)

when M3 = S§3, H3, S?! or H?!, where A denotes the vector product with respect to the metric
h. We call this function \ the signed area density function. By definition, A=1(0) = S(f) holds. A
singular point p is called non-degenerate if the exterior derivative dA does not vanish at p. On a
neighborhood of a non-degenerate singular point, there exists a smooth regular curve ~(t) satisfying
~v(0) = p such that ~(¢) parametrizes the set of singular points. We call this curve v a singular
curve and the direction of v = dvy/dt a singular direction. The dimension of the kernel Ker df., )
of the differential map df, ) is 1 and there exists a never-vanishing vector field 7(t) such that
(n(t))r = Kerdf, ). We call n(t) a null vector field and the direction of n a null direction.

Definition 6.1.1. Let f : (U,p) — (R3, f(p)) be a map-germ around p. Then f has a cuspidal edge
at p if the map-germ f at p is A-equivalent to the map-germ (u,v) — (u,v?,v%) at 0, and f has a
swallowtail at p if the map-germ f at p is A-equivalent to the map-germ (u, v) — (u, 3v*+uv?, 403+
2uv) at 0, and f has a Df -singularity at p if the map-germ f at p is A-equivalent to the map-germ
(u,v) = (2uv, £u? + 302, +2u?v + 203) at 0, where the two map-germs f,g : (R?,0) — (R3,0)
are A-equivalent if there exist diffeomorphism-germs 6 : (R?,0) — (R%,0) on the source and
O : (R3,0) — (R3,0) on the target such that © o f = g o 6 holds.

We note that cuspidal edges and swallowtails are non-degenerate singular points of fronts. On
the other hand, D,-singularities are degenerate singular points with corank two. There are well-
known criteria for cuspidal edges and swallowtails (see [57, Proposition 1.3]). There is a criterion
for DF-singularities as well.

Fact 6.1.1 ([82, Theorem 1.1]). Let f be a front and A the signed area density function. A singular
point p is a DI—singularity (resp. Dy -singularity) if and only if the following conditions hold:

1. rankdf, = 0.

2. det Hess A < 0 (respectively, det Hess A > 0) at p.
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Fig. 6.1: The left hand side is a D] -singularity and the right hand side is a Dj - singularity of a
wave front.

6.2 Constant mean curvature surfaces with D -singularities

6.2.1 Surfaces with non-zero constant mean curvature

In this section, we consider cases such that

6.2.1
H #0,1if M3 =H3 or S>1. (62.1)

{H £0if M3 =R3, R2!, S3 or H>!,
Lemma 6.2.1. Let f: (U,z) — M? be a conformally CMC H immersion, v a unit normal vector
to f and p an umbilic point.

(1) Suppose that M3 = S3 or H*! and H > 0. Then p is a corank two singular point of ft if and
only if t = arccot(H).

(2) Suppose that M3 = H? or S>! and H > 1. Then p is a corank two singular point of ft if and
only if t = arccoth(H).

(3) Suppose that M = H? or S*' and 0 < H < 1. Then p is a corank two singular point of f* if
and only if t = arctanh(H).

Proof. We show (2) and (3) in the case of M3 = H3. For the case of M3 = S*! and (1), one can
show the result in a similar way.

Let f : U — M3 = H? be a conformally CMC H immersion. Suppose that H > 1. Then
we consider f* as in (613). Since v, = (—2Hf, — Qg 2f:)/2 and vz = (—Qg~2f. —2Hf;)/2 by
(BID), we have

fi = (cosht — Hsinht)f, — %(sinh t)fz,

fr— —Z%QQ(sinh t)f. + (cosht — Hsinht) f.

g
Since p is an umbilic point, Q(p) = Q(p) = 0. Thus f! = f! = 0 at p if and only if ¢ = arccoth(H).
Therefore we have the assertion (2).
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Next we show (3). Assume that 0 < H < 1. By direct computations, we see that

Q

f; = (sinht — H cosht)f, — % 53 (cosht) fz,

ft= —%(cosb t)f. + (sinht — H cosht)fs.
Hence f! = ft = 0 at p if and only if t = arctanh(H). O

Theorem 6.2.1. Let f be a CMC surface in M? with mean curvature H with (E223), Hopf differ-
ential factor Q(z) and p a corank two singular point. Then f has a D} -singularity at p if and only
if Q.(p) # 0. Moreover, f does not have D} -singularities.

Proof. By Facts 002 and 0003, if f : U — M3 is a CMC H immersion, then f* and f* are CMC
—H immersion on the set of regular points for suitable distance ¢. Therefore we consider the CMC
immersion f with an umbilic point p and singularities of its parallel transform ft at p. Since one
can prove this similarly by using Lemma B2l in other cases, we consider just the case of M3 = R3.

Let f : U — R? be a CMC immersion and p an umbilic point, where U C C is a simply-connected
domain with conformal coordinate z = u + iv. By the previous section, (f., f.) = (fz, fz) = 0 and
( f2, fz) = 2g? for some function g on U. We now consider the parallel transformation of f given by
ft f + tv, where t € R is constant. In this case, we can take a unit normal vector 7¢ of ft as v.
By Fact 003, rank df*(p) = 0 if and only if ¢ = 1/H.

We fix t = 1/H. The signed area density function of f* is given by At = (ft A fi v) =
—2i(ft A ft,v). Using v, = (=2Hf. — Qg™%f:)/2, vz = (=2H[: — Qg~2f.)/2 and (EI2), the
signed area density function M is rewritten as

M= (1—=2tH +2K)(f. A fz,v).
Since (f, A fz,v) # 0, we may regard
N =1-2H +#?K (6.2.2)
as the signed area density function of ft. By direct computations, 5\2 and 5\7; are

5 2(Q:Q +QQ:)g — 40Qg.

N o= VA (Q:Q +QQ:z)g — 4QQg5.

4g° # 4g°

Since Q(p) = Q(p) = 0, X (p) = A(p) = 0, that is, dA*(p) = 0 holds. We consider the Hessian of
A, The second derivative A’ becomes

~ 2 — — — — —
i, = —4%{@%@ 12Q.Q. + QQ.)g + (Q-Q + QQ.)g

- 4(Qngz + Qngz + Qngz)}

_ t2 5{(@2@ + QQz)g — 4Qng}gz )

" (6.2.3)
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Thus A, (p) = 0 holds. Similarly, we see that A%, (p) = 0 holds. By direct calculation, we have

~ 2 — — — — — —_
i, = —4% (Qu20+ Q.0- +Q-0. + QQ.2)g + (0.0 + Q0. )g-

—4(Q:Qg: + QQzg. + QQg.z)}

42 5{(QZQ + QQz)g - 4Qng }g=
4g '

(6.2.4)

By this equation, 5\2- = —t2Q.Q=/4g" holds at p. Identifying C with R?, we have

zZz)

By the above computations, it follows that

S, =5, =0k = L 5 o
2g*
hold at p. Thus we have
_ _ ~ _ 332
et Hess(ua (V) = X)X () — 2y 07 = 122 5
g

This completes the proof of the case M3 = R3, by Fact EI.

If M?® = R2!, we can take ! as same as ‘the case of R3. If M? = S? or H>!, we have the
assertion by using the signed area density for f! as in (EI4)

M = cos?t — 2costsintH +sin? tK.
If M3 =H?3 or S*!, we show by using
A = cosh?t — 2 coshtsinhtH + sinh? tK

for f* and
A\ = sinh? ¢ — 2 cosh ¢ sinh tH + cosh? tK

for ft. O

Examples: Here we construct CMC surfaces with D -singularities in H?. By Theorem 21, we
need to choose the Hopf differential factor so that @, (p) # 0 at a point p. Now we fix Q = —z for
CMC H > 1or 0 < H < 1 surfaces and we have the 3-legged Smyth-type surfaces as in [R], [70],
[71] and [R7]. Applying Theorems B2, we get the following figures with a D, -singularity at the
origin z = 0:
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Normal of
parallel surface

Fig. 6.3: 3-legged Smyth surface with 0 < H < 1 in H?® and the normal vector of its parallel
transform into S with D -singularity.

6.2.2 Minimal surfaces with D,-singularities

We now consider the condition that minimal surfaces (resp. maximal surfaces) in R? (resp. R?1)
have D,-singularities. For minimal surfaces, the following representation formula is known.

Fact 6.2.1. Any simply-connected minimal surface f : U(C C) — R? can be parametrized as

f=Re / (1— g2i(1 + %), 29)w, (6.2.5)

where g : U — C is a meromorphic function and w = @dz is a holomorphic 1-form.

We call the pair (g,w) the Weierstrass data. On the other hand, the representation formula for
maximal surfaces is also known.

Fact 6.2.2 ([65]). Any simply-connected maximal surface f : U(C C) — R*! can be parametrized
as

f=Re / (14 g% i(1 - g%), 20w, (6.2.6)

where g : U — C is a meromorphic function and w = @wdz is a holomorphic 1-form
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We also call the pair (g,w) the Weierstrass data. We should remark that there are several
studies for maximal surfaces (see [28, B2, bY, B7], for example).

Lemma 6.2.2. Let f : U — R? (resp. R?') be a minimal surface (resp. a mazimal surface)
constructed by (E22H) (resp. (622M)). Then p € U is a corank two singular point of [ if and only if
g(p) is of finite value (i.e., p is not a pole of g) and &(p) = 0. Moreover, f is a front at p if and

only if g.(p) # 0.

Proof. Let f : U — R3 be a minimal surface with the Weierstrass data (g,w = @dz?). The
differentials of f are

1 . . 1 _ . _ \ %
fo=50=g%i(l 46,29, fz=5(01-g%-i(1+5%),29)%.
Thus we have the first assertion.

Next, we show the condition of f to be a front at p. Let p be a corank two singular point of
f. Then f is a front at p if and only if its unit normal vector v : U — S? gives an immersion at p.
Under the above settings, the unit normal vector v to f is given by

Lo (9+3 . 9-9 g1
lgl> + 1" g2+ 17 [gl?+1/) "

Since g is holomorphic at p, gz(p) = 0 holds. Differentiating v, we have

) _g( 1—g° i_1+§2 27 )
TN+ P2 (gl (1 +1g12)2 )

_ ( 1—g¢g*> | 1-4g? 29 )
Vz :gz 50 )
(L+1[g/®)?2" (1 +1[g[®)?" (1 +g[*)?

at p. Thus we have the conclusion.
For maximal surfaces, one can show this similarly by identifying R*! with R® and using the
Euclidean unit normal vector ng given as

1
VL gP)? + g
(see [92]). O

ng —

(9+3,i(g—9),1+1g])

Theorem 6.2.2. Let f : U C (C,z) — R3 (resp. f:U C (C,z) — R%Y) be a minimal surface
(resp. a mazimal surface) given by the Weierstrass data (g,w = &dz). Then a pointp € U is a Dy -

singularity of f if and only if w(p) = 0 and Q~(p) # 0 (resp. @(p) =0, Q:(p) # 0 and |g(p)| # 1).
Here Q = g,& is the Hopf differential factor. Moreover, f does not have D} -singularities.

Proof. First, we show the case of a minimal surface. The signed area density function A of f can
be given as

A= =2(f. A fzv) = (1+|g*)? @]
Since 1+ |g|? # 0, we may treat A = |&|2 = Q& as the signed area density function. Moreover, since

f=(p) = fz(p) =0, p is a corank two singular point. The differentials of Nin z,z € U are

S\Z = O7 5\5 = 07 >\zz = O; Xz.? - (-szz)fy X?E =0
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£ ) = &:(p) = 0. Identifying z = u + iv € C and (u,v) € R?, we sce
that Aywu(p) = Ao (p) = 20, (p)@z(p) and Ay, (p) = 0. Hence the Hessian of A is

det Hess(u,v)(j\)p = 4|@.(p)|* > 0.

at p, since W(p) = (p) = w=(p)

By Fact B0 and Lemma B2, f has a D, -singularity at p if and only if ¢g.(p) # 0 and &, (p) # 0.
On the other hand, the derivative of the Hopf differential factor @ is

Q:(p) = g=z(p)w(p) + 9-(p)@=(p) = g-(P)©=(p),

since g, is finite at p. Thus we have the assertion.
Next, we consider a maximal surface that is not a maxface. The signed area density function is

A= _27’<fz A f2,1/> = (|g|2 - 1)2|(’:}|2

where A means the vector product with respect to the metric of R?!. From Lemmas 6232, we may
take A = Q. By using similar arguments, we obtain the assertion. O

By the Lawson correspondence, the first fundamental forms of (spacelike) CMC 1 surfaces in H?
(resp. S*1) are equal to the first fundamental forms of corresponding minimal surfaces in R? (resp.
maximal surfaces in R%1). This means that they have the same signed area density functions. Thus
we obtain the condition that (spacelike) CMC 1 surfaces have D, -singularities similarly.

On the other hand, when f: U — M3 =S?, H3, S*! or H?>! is a minimal immersion, there is
no representation formula. However, if p € U is an umbilic point for f, then its unit normal vector
v has a corank two singularity at p. By using similar calculations as in the proof of Theorem B2,
we see that v has a D -singularity at p if and only if Q,(p) # 0, where Q is the Hopf differential
factor of f.

Example: Here we construct CMC 1 surfaces with D -singularities in H®. By Theorems 523,
we fix the Weierstrass data (g,w) = (cot(z — 1), (e* — 1)dz) for CMC 1 surface in H3. Applying
Theorem B2, we get the following figure with a D, -singularity at the origin z = 0:

Fig. 6.4: CMC 1 surface with D -singularity in H?.

6.3 Curvatures of unit normal vector fields to CMC surfaces

In this section, M3 denotes one of S, H3, S?! or H*!'. We consider relations between a CMC
immersion f: U — M3 and a unit normal vector v to f.
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Proposition 6.3.1. Let f : U — M? be a (spacelike) CMC H immersion and v be a unit normal
vector to f. Let K denote the extrinsic Gaussian curvature of f. Then the extrinsic Gaussian

curvature K, and the mean curvature H, of v are
1 H
Kl/ = 7 Hl/ = 7
K K

Moreover, the unit normal vector v has a constant harmonic mean curvature 1/2H .
Here the harmonic mean curvature HMC is given by

K
HMC = —.
2H
Proof. We consider the case f : U — H®. One can show other cases similarly. Let (u,v) be a
conformal coordinate system on U. Then the determinant of the first fundamental matrix I, is
given by
detI, = E,G, — F? = K*E?,

I = <Vu7 Vu> <Vu7 Vv> _ £, F,
v <Vv71/u> <I/U7V'U> Fu Gu ’
and E = (fu, fu) = (fv, fo). It follows that the coeflicients of the second fundamental form of v are
the same as of f by definition. Thus we have the assertions by straightforward calculations. O

where

For M3 = S? H2! and H > 0, or M3 = H3, S2! and H > 1, the parallel transformations f* and
7t are defined as in (E14) and (EI3H). If M3 = H?, S>! and 0 < H < 1, the parallel transforms of

f and v are ft = pt, it = ft. respectively. Thus it is sufficient to consider f* and pt.

Lemma 6.3.1. Under the above settings, the extrinsic Gaussian curvature K' and K!, and the
mean curvatures H' and HY for f' and 0 are given by the following:

sin®t + 2H costsint + K cos? t

Kt — ) cos’t —2H costsint + K sin?t’
sinh®¢ + 2H coshtsinh ¢ + K cosh® ¢

cosh?t — 2H cosh tsinh t + K sinh? ¢’

cos?t — 2H costsint + K sin® ¢

Kt — sin®t + 2H costsint + K cos?t’
v cosh? t — 2H coshtsinht + K sinh? ¢

sinh? t + 2H coshtsinh¢ + K cosh®t’
(1 — K)costsint + H(cos?t — sin®t)

Ht — cos?t — 2H costsint 4 K sin® ¢
(1+ K)coshtsinht — H(cosh? t + sinh? )

cosh®t — 2H coshtsinht + K sinh? ¢
(1 — K)costsint + H(cos?t — sin?t)

cos?t + 2H costsint + K sin’t
(1+ K)coshtsinht — H(cosh®t 4 sinh? t)

cosh?t + 2H cosh tsinh ¢ + K sinh? ¢

)
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Proof. One can show the above formulas directly by applying the same computations as in [66]. O
By Proposition 6231 and Lemma BZ3l, we immediately have the following:
Proposition 6.3.2. Let f : U — M3 =$3, H3, %!, H>! be a CMC H # 0 immersion and v its

unit normal vector. A point p is an umbilic point for f if and only if p is a non-flat umbilic point
for v. Moreover, if f (resp. f') has a Dy -singularity at p, p is a flat umbilic point of v* (resp.
') (see Figure B4, B0).

mal

N
f : CMC with umbilic point at por' ——————— > v : CHMC with non-flat umbilict p

Parallel transformi IParallel transform

Normal

f : CMC with D, -singularity at p > : CHMC with flat umbilic p

Fig. 6.5: The case that f is a (spacelike) CMC surface in S, H*! (resp. H?, S*!) with H > 0
(resp. H > 1)

mal

f: CMC with umbilic point at gor ~> v : CHMC with non-flat umbilic p

Normal of parall. surf.1 INormal of parall. surf.

ormal

f: CMC with Dy -singularity at 1; """""" > : CHMC with flat umbilic p
Fig. 6.6: The case that f is a (spacelike) CMC surface in H?, $*! with 0 < H < 1






Chapter 7

Deformation of minimal surfaces
with planar curvature lines

7.1 Minimal surfaces with planar curvature lines in R?

We wish to classify minimal surfaces with planar curvature lines and obtain their parametrizations
by calculating the Weierstrass data. However, applying the planar curvature line condition directly
to the Weierstrass data involves heavy calculation in a complex-analysis setting. Therefore, from
the zero mean curvature condition and planar curvature line condition, we obtain a system of partial
differential equations for the metric function. Then by applying the method analogous to the one
employed by Abresch in [0], we solve the system of partial differential equations by transforming
it into a system of ordinary differential equations. Finally, using explicit solutions for the metric
function, we recover the Weierstrass data and the parametrization by calculating the unit normal
vector, through an analogous approach to the one taken by Walter in [93].

7.1.1 Minimal surface theory

Let ¥ C R? be a simply-connected domain with coordinates (u,v), and let X : ¥ — R3 be a
conformally immersed surface. Since X (u,v) is conformal,

ds? = e*¥(du® + dv?)

for some w : ¥ — R. We choose the unit normal vector field N : ¥ — S? of X, and then the mean
curvature H and Hopf differential @) are

1
H -

1 )
= @<X’uu +XU’U)N> and Q = Z<qu — QZX’U,U — X’U’UaN>-

81
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Since we are interested in minimal surfaces, we let H = 0 and calculate the Gauss-Weingarten
equations,

Xow = wu Xy —wo Xy + (Q + Q)N

Xpp = —wu Xy + w0 Xy, — (Q+ Q)N

X = wo Xy +wu Xy, +i(Q — Q)N

Ny = —e(Q+Q)X, —ie”>(Q - Q)X,

Ny = —ie™(Q — Q) Xy + e (Q + Q) X,

and the Gauss-Codazzi equation,
Aw—4QQe * =0 and Q:=0

for z := u + iv. Note that the Gauss-Codazzi equation is equivalent to the Hopf differential factor
@ being holomorphic. Moreover, the Gauss-Codazzi equation is invariant under the deformation
Q — 272Q for A € St ¢ C. In fact, when X (u,v) is a minimal surface in R3, X\ € S! allows us
to create a single-parameter family of minimal surfaces X*(u,v) associated to X (u,v), called the
associated family. In particular if A™2 = ¢, then the new surface is called the conjugate surface of
X.

Since the families of curvature lines of a plane are trivially planar, we may assume that X (u,v)
is not totally umbilic, and that (u,v) are conformal curvature line (or isothermic) coordinates.
Then we can normalize the Hopf differential such that QQ = —%, and the relevant Gauss-Weingarten
equations become

Xy = wy Xy —wp Xy — N
Xow = =Wy Xy + wy Xy + N

Xy = wp Xy + wy X, (7.1.1)
N, =e %X,
N, = —e X,

—2w

where k1 = —e 2 and ky = ¢ are the principal curvatures of X. Furthermore, the Gauss
equation becomes the following Liouville equation:

Aw—e 2 =0.

On the other hand, as the following lemma shows, we may attain an additional partial differential
equation regarding w from the planar curvature line condition, allowing us to solve for w.

Lemma 7.1.1. For non-planar umbilic-free minimal surfaces with isothermic coordinates (u,v),
the following statements are equivalent:

1. u-curvature lines are planar.
2. v-curvature lines are planar.
8. Wyp + wWywy = 0.
Proof. Since (u,v) is an isothermic coordinate, u-curvature lines are planar if and only if

det( Xy, Xuyw, Xyuw) = 0.
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However, from (1),
Xoww = (W + w2 —w? —e72) X, + (—2wuwy — Wy ) Xy — Wy N.
Therefore, u-curvature lines are planar if and only if
0 = det( Xy, Xuuws Xuwu) = —62“’(wmj + Wy ).
Similarly, (1) implies that v-curvature lines are planar if and only if wy, + wyw, = 0. O

Remark 7.1.1. It should be noted that the condition wy., +wy,w, = 0 is equivalent to the condition

(e“)up = 0 as found in [§] or [G]. Since the curvature lines of the original minimal surface correspond
to asymptotic lines of its conjugate surface, the above equivalence shows that the conjugate of the
minimal surface with planar curvature lines is an affine minimal surface ([5], [6], [85], [88]).

Hence, finding non-planar umbilic-free minimal surfaces with planar curvature lines is equivalent
to finding solutions to the following system of partial differential equations:

{ Aw—e 2 =0 (minimality condition) (7.1.2a)

Wy + wywy =0 (planar curvature line condition). (7.1.2b)

Generally, solving systems of partial differential equations may prove to be difficult. However, the
next lemma shows that (1) can be reduced to a system of ordinary differential equations.

Lemma 7.1.2. The solution w : ¥ — R of (I2) is precisely given by

sty _ LR+ g(0)?
fu(u) + gu(v)

(7.1.3)

where f(u) and g(v) are real-valued meromorphic functions satisfying the following system of ordi-
nary differential equations:

for some real constants ¢ and d such that c? + d?> # 0. Moreover, f and g can be recovered from w

by
{w“ =i (7.1.5)

wy = e Yg(v)

Proof. Integrating (TIT2H) with respect to u and v gives (I3) for some constants of integration
f(u) and g(v). Using these definitions of f and g, it is straightforward to check that (ZI=3) holds.
Now, from the fact that w,e ™ = e 2 f,

1+f2+92 <1+f2+92>2
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and multiplying both sides by 2f, and integrating with respect to u tells us that

(fu)2 _ (gv)2
1+ f2+ g2 1+ f2+ g2

+ D(v)

for some constant of integration D(v), implying that
(fu)? = (95)° + D)1+ f* + ¢°). (7.1.7)

Substituting (I0) into (I8), we get fuu(u) = D(v)f(u) implying that D(v) = ¢é for some
constant ¢. Hence,

fuu = 5f7
and again multiplying both sides by 2f, and integrating with respect to u implies that

(fu)2 :EfQ +c

for some constant c.
Similarly, from the fact that w,e™ = e~?“g, we can show that

Gov = CZQN
(90)* = dg*> +d

for some constants d and d. Substituting these differential equations into (ZT@) shows that —d =
c=c—d. O

To find the explicit solution for f, we must consider the initial conditions of f(u) and g(v)
satisfying (I4). We would like to assume f(0) = ¢(0) = 0 for simplicity; therefore, we first
identify the conditions for f(u) and g(v) having a zero and prove that both f(u) and g(v) has a
zero, using the next pair of lemmas.

Lemma 7.1.3. f(u) (resp. g(v)) satisfying Lemma [T 13 has a zero if and only if ¢ > 0 (resp.
d>0).

Proof. First, we note that by (C13), f(u) satisfying Lemma T2 must be real-valued since w(u, v)
is real-valued.

Now, if ¢ = d, then the statement is a result of direct computation; hence, we assume ¢ # d.
First, to see that ¢ > 0 implies that f(u) has a zero, from (CIZd) and (CI4H), we get

f(u) — Cle\/c—du + Cze—\/c—du

for some complex constants Cy and Cy such that ¢ = —4C1Cy(c —d). If ¢ = 0, then either f(u) =0
or (CI24) implies d < 0, a contradiction to (FI2d). Now assume ¢ > 0. Then, C; and C; are

non-zero, and we may let Cp = %, | =55 = —Cs so that f is real-valued and f(0) = 0.
On the other hand, if f(ug) = 0 for some ug, then (f,(ug))? = ¢, implying that ¢ > 0. Therefore,
f(u) has a zero if and only if ¢ > 0. The case for g(v) is proven similarly using (CTZ4d). O

Lemma 7.1.4. Let f(u) and g(v) be functions satisfying (IA). Then both f(u) and g(v) have a

ZETo.
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Proof. Suppose by way of contradiction that f does not have a zero. Then by the previous lemma,
¢ < 0. From (CIZd), we see that ¢ < 0 implies c—d > 0. However, (CI2d) implies that if c—d > 0,
then d > 0, a contradiction since ¢ < 0 and ¢ > d. Therefore, f must always have a zero. Similarly,
g must have a zero, from (CI4H) and (CI1H24d). O

By shifting parameters u and v, we may assume f(0) = ¢g(0) = 0. Using these initial conditions,
we may solve (I2) to get the following:

iLﬁz sinh (va? — 82u), ifa#p

flu) = a? —
+ou, ifa=p
p (7.1.8)
o) = | E T (VB — o), et
+pv, ifa=p

where a? = ¢ and 3% = d. It should be noted that by letting u — —u and v — —v, we may drop

the plus or minus condition of (ZIH). Finally, we arrive at the following result.

Proposition 7.1.1. For a non-planar minimal surface X (u,v) with planar curvature lines, the
real-analytic solution w : R? — R of (CI) is precisely given by

6Lu(u,'u) _ L+ f(u)2 + g(’U)2 (719)

fulu) + gu(v)

with
fu) a2752sinh(\/042—BQu)7 ifa#p
u) = —
o, ifa=p
8 (7.1.10)
o) = | (Vi mate), dfaf s
ﬁ’l}, ZfOé =p

where o + 8 > 0.

Proof. To see that the w in (1) with f(u) and g(v) as in (ZI11) is real, we only need to show
that fy,(u) 4+ go(v) > 0 for any (u,v) € X. If @ = 3, then f, + g, = o+ 8 > 0. Without loss of
generality, assume « > (; since a + 8 > 0, o > |§|. From (Z11M),

fu(u) = acosh(v/a2 — f2u) >
gv(v) = BCOS(\/OW’U) > _|ﬁ|

implying that f, + g, > « — |8] > 0. The case for « < f can be proved similarly. Finally,
the real-analyticity of f(u) and g(v) tells us that the domain of w(u,v) can be extended to R?
globally. O

Since the wu-direction and v-direction of w(u,v) depend only on f(u) and g(v) respectively, by
choosing different values for o and 8, we may analytically understand how the surfaces behave in
either direction. The following theorem and figure explains the relationship between different values
of @ and 8 and the surface generated by the corresponding w(u,v). Note that in the figure, the
subscript u <+ v denotes that the role of u and v are switched.
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Theorem 7.1.1. Let X (u,v) be a non-planar minimal surface in R® with isothermic coordinates
(u,v) such that ds®> = €2*(du® + dv?). Then X has planar curvature lines if and only if w(u,v)
satisfies Proposition [[11. Furthermore, for different values of o and (3, the curvature lines of
X (u,v) have the following properties, based on Figure [7:

o D, @ are not periodic in the u-direction but periodic in the v-direction.
e () is not periodic in the u-direction but constant in the v-direction.

o (3 is not periodic in both the wu-direction and v-direction.

at+B8=0  pA a=4
\\ @u(—)v
./

!
N
AN @’LLH’U UV

Fig. 7.1: Classification diagram for non-planar minimal surfaces with planar curvature lines.

7.1.2 Axial directions and normal vector

Through Theorem [T, we were able to identify the non-planar minimal surfaces with planar
curvature lines. In fact, we may even understand that the surfaces represented by @, @), or @ in
Figure [0 are surfaces in the Bonnet family, catenoid, or Enneper surface, respectively. However,
we would like to find their parametrizations, allowing us to visualize these surfaces and obtain
a deformation between them. To do this, we utilize the Weierstrass representation theorem as
follows: find the axial directions of the non-planar minimal surfaces with planar curvature lines by
referring to the method developed by Walter in [93], calculate the unit normal vector, and recover
the Weierstrass data from the metric function e?*(®?) in Proposition ZZI0. First, we show the
existence of axial directions for non-planar minimal surfaces with planar curvature lines.

Proposition 7.1.2. If f(u) (resp. g(v)) is not identically equal to zero, then there is a unique
constant direction Uy (resp. U2) such that

<m(u7v),171> = <mv(u,v),171> =0 (7111)

(resp. (n(u,v),vs) = (ny(u,v),vs) = 0)
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where m = e~ 2% (X, X Xyy) (resp. n=e 2 (X, x Xyp)) and
U1 = Wyu Xy — Wuo Xy + Wy N

(resp. Vo = Wyp Xy — Wy Xy + Wy N).

Furthermore, if U1 and Uy both exist, then vy is orthogonal to Us. We call Uy and vy the axial
directions of the surface.

Proof. We will only prove the statement regarding ¢;. From (1),
m=e X, —w,N and my, = —wye *X, + wyuN.

Since f(u) is not identically equal to zero, let f(ug) # 0. Since wy, (ug, v) # 0, m and m,, are linearly
independent at (ug,v). Therefore, the following definition

= 720.1(

U1 i=e m X my) = WyuXy — Wy Xy + Wy N

is well-defined on (ug,v). Furthermore, by calculation,
(171)11 = (ﬁl)v =0

for all (u,v), implying that ¢} is constant. It is easy to check that (1) holds, and checking
orthogonality is a straight-forward calculation using the definitions of #; and . O

By normalizing these vectors, we may calculate the unit normal vector of the surface as follows.

Proposition 7.1.3. Let f(u) and g(v) be as in Proposition [[LI1. If af # 0, then the unit normal
vector N(u,v) is given by the following:

1 1 1 1
N(U,’U): (awuaﬂwv7\/1—a2wg—ﬁ2w3> .

Proof. First we normalize the axial direction such that ¢ is parallel to e, the unit vector in the
x1-direction. Then, from (m, 7)) = 0, we get

— wyN; — (N1)y = 0, (7.1.12)
where N = (N7, N3, N3). Now, using (CI2H) and integrating with respect to v, we obtain
Ny = B1(u) - wy
for some function Bj(w). Similarly, from (m,, 1) = 0, we get
Ny = By(v) - wy
for some function Bs(v). Therefore, By (u) = Ba(v) = B for some constant B, and
N1 = B -w,.

To compute B, first note that since w,(0,v) = e*(O¥) f(0) = 0, we note that (m,X,) =
(my, Xyu) = 0 on (0,v). Therefore, X, (0,v) € span {e;}, and

e* = || X, (0,0)[* = ((X1(0,v)),)* = €** B*a?
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where X = (X1, X2, X3). Hence,

1
B=— and N;=—w,
o
Similarly, by letting ¥ be parallel to es, we get
1
N2 = B Wy
Finally, using the fact that IV is a unit normal vector gives us the desired result. O

Using the normal vector, we may now calculate the Weierstrass data. Since the meromorphic
function h is the normal vector function under stereographic projection,

7 52 7 _ 52
h(B) (u,v) = N (N1 +iNy) = %tanh <a26 (u+ iv)),
while since Q@ = —1(hy + ihy)n = —3, we also have
1 1 2 pe
0P (u,v) = T — cosh? <a 5 i (U+iv)>

for o+ > 0. If we let @« = rcosf and 5 = rsinf, then it is easy to see that r is a homothety
factor. Therefore, we may assume r = 1, and rewrite h(®#) (u,v) and n(®?) (u,v) as follows:

20 20
BVACICORAN (AL YRS I T
B (u, v) = cosf —sinf 2
U+ v
T ifo=72
J 4
V2 (7.1.13)
1 9 cos (26) , .
————cosh” | Y——= foO£%
0 cosf +sinf ( 2 (utiv)), 677
' (u,v) = )
—, ifo=7%
V2 !
where 0 € (—27 %”) Since h? is meromorphic, and 7? is holomorphic such that (h?)%7? is holomor-

phic, we may use the Weierstrass representation theorem to obtain the following parametrizations
for minimal surfaces with planar curvature lines.

Proposition 7.1.4. Let X(u,v) be a non-planar minimal surface with planar curvature lines in



7.2. CONTINUOUS DEFORMATION 89

R3. Then X must have the following parametrization

u cos 0/ cos 260 — sin 6 sinh (uv/ cos 26) cos (vv/cos 20)

(cos 20)3/2
v sin 8/ cos 20 — cos 6 cosh (uv/ cos 20) sin (vv/ cos 20)
(cos 20)3/2 ,
cosh (uv/cos 260) cos (vV/cos 20) — 1
X% (u,v) = 0520 (7.1.14)
if0# 5
w(—6 +u? — 3v?) v(—6 — 3u? +v?) u? —v?
<_ 6v2 T 6v2 2 ) ’

if0=1%

3T

for some 0 € (f%, 7) on its domain up to isometries and homotheties of R3.

7.2 Continuous deformation of minimal surfaces with planar
curvature lines

In the previous section, we obtained the Weierstrass data and the parametrizations of non-planar
minimal surfaces in R3 with planar curvature lines; in fact, the Weierstrass data and the parametriza-
tions of such surfaces depended on a single parameter 6. In this section, we show that this parameter
defines a locally continuous deformation between non-planar minimal surfaces preserving the planar
curvature line condition. Furthermore, we show that by introducing a suitable homothety factor
depending on @, we may also extend the deformation to include the plane.

First, we show that the deformation of minimal surfaces in R? with planar curvature lines we
obtain by using the parameter 6 is continuous. By “continuous”, we mean that the deformation
converges uniformally over compact subdomains component-wise. To show this, it is enough to
show that each component function in the parametrization is continuous for all  at any point
(u,v) in the domain. The continuity is self-evident at any 6 # 7; hence, we only need to check the
for the case 0 = 7.

However, for the Weierstrass data of minimal surfaces with planar curvature lines as stated in
(1m3), it is easy to check that at any point (u,v),

INE]

(u,v).

lim 2%(u,v) = A% (u,v) and lim 7%(u,v) =7
0—7 0—7

s

In addition, each component of the parametrization in (_II4) is also continuous at § = 7 at any
point (u,v), as

lim X%(u,v) = X1 (u,v).

0—7
Therefore, X?(u,v) is a continuous deformation.

Now, we would like to extend X% (u,v) to include the plane. To do so, we define the homotethy
factor RY as follows:
R? = (1 — sin (9 + %)) | cos 26| + sin (9 + g)
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for 6 € [-Z, 237]. Note that R’ > 0, and R’ = 0 if and only if 6 is at an endpoint of its domain.
If we consider X?(u,v) = R®X?(u,v), then

. 3 .
lim X%(u,v) = —=(u,—v,0) = lim X%(u,v).
i, X) = T .0 = lim £ (e)

Therefore, the extension of X?(u,v) to X (u,v) defined as

- RX%(u,v), if6e (-3, 2)
0 _ U 11
X% (u,v) = {\%(u,—U,O), if@:_%%’
. . . . m 3T
is again, a continuous deformation for 6 € [-7, °F].

In conclusion, we obtain the following classification and deformation of minimal surfaces with
planar curvature lines.

Theorem 7.2.1. IfX(u, v) is a minimal surface with planar curvature lines in R3, then the surface
is given by the following parametrization on its domain

u cos 0/ cos 260 — sin 6 sinh (uv/ cos 20) cos (vv/cos 20)

(cos 20)3/2
Ro | vsin 6+/cos 26 — cos 6 cosh (uv/cos 26) sin (vv/cos 26) ,
(cos 20)3/2
cosh (u/cos 26) cos (vv/cos 260) — 1
X(u,v) = cos 26

(_u(—6—|—u2—302) v(=6 — 3u? 4+ v?) u2—v2> o=
6\/5 ) 6\/5 I 2 I 4

3 : T 3w
ﬁ(ua —’U,O), Zfez_Za%

up to isometries and homotheties of R3 for some 6 € [—%, %"] , where RY = (1 — sin (9 + %)) | cos 26|+

sin (9 + %) In fact, it must be a piece of one, and only one, of the following:

w

e plane (0 = =%, °7),

e catenoid (6 =0, ),
o Enneper surface (0 = ), or
e a surface in the Bonnet family (6 € (—%,35)\ {0, %, %}).

Moreover, the deformation Xe(u,v) depending on the parameter 6 is continuous.
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Fig. 7.2: Deformation of minimal surfaces with planar curvature lines with parametrization as in

Theorem 2.

Furthermore, by considering the conjugate of minimal surfaces with planar curvature lines, we
get the following classification and deformation of minimal surfaces that are also affine minimal.

Corollary 7.2.1. IfX'(u, v) is a minimal surface that is also an affine minimal surface in R, then
the surface is given by the following parametrization on its domain

u cos 0/ cos 260 — sin 6 cosh (uv/cos 26) sin (vv/cos 20)

—(cos 26)3/2
RY | vsin 0+/cos 20 — cos 0 sinh (uy/cos 26) cos (vy/cos 26) ,
(cos 20)3/2
— sinh (uv/cos 26) sin (vy/cos 26)
cos 20

— 32 2 2 _ 9,2
(_v(ﬁ 3u +’u)7u(6+u 3U),—uv>, iz
6v/2 6v/2
3 ; s T
ﬁ(_v,_uvo)a Zf62_273T
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up to isometries and homotheties of R? for some 6 € [—%, %’T} In fact, it must be a piece of one,
and only one, of the following:

o plone (0= —%, %),
e helicoid (0 =0, %),

e Enneper surface (0 = §), or
e a surface in the Thomsen family (6 € (—%,27)\ {0, Z,Z}).

Moreover, the deformation Xe(u,v) depending on the parameter 0 is continuous.

Fig. 7.3: Deformation of minimal surfaces that are also affine minimal with parametrization as in
the corollary to Theorem 2.

7.3 Remarks for our future works

With appropriate modifications, the analytic method in conjunction with axial directions introduced
in this paper can be applied to study maximal surfaces with planar curvature lines in Lorentz-
Minkowski space R%1. The complete classification is already given by Leite in [62], where she
developed and used the orthogonal systems of cycles on the hyperbolic plane. The analytic method
can also be used to fully classify such surfaces; however, using the analytic method further allows us
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to see that all maximal surfaces with planar curvature lines can be joined by a single deformation.
In addition, using this method allows us to understand that maximal Bonnet-type surfaces can be
classified into three general types analytically, and five specific types by means of singularity theory.
We will defer a complete discussion of these properties to our subsequent work [Z1]].






Chapter 8

Discrete DPW method

8.1 The DPW method for smooth CMC surfaces

First we introduce construction of smooth CMC H # 0 surfaces in R3, S* and H?® introduced in [25]

(see also [B0]), which is now called the DPW method. Throughout this paper, I := <é (1)> , o1 =

((1) (1)) , Og 1= (? _OZ> , O3 1= ((1) _01), S = {Y € RY(Y,Y) = 1}, R*»! denotes Minkowski
4-space with signature (+ + +—), and H? := {Y € R>|(Y,Y) = —1}.

Let ¥ be in a simply connected domain in the complex plane C with the usual complex coodinate
z = x+iy, let f : ¥ — R? be a conformal immersion satisfying {f., fu) = (fo, fo) = 4€**, (fu, fo) =
0 for some scalar function u : ¥ — R, and let NV : ¥ — S be its unit normal vector field. In this
paper we identify R* (resp. R*!) with the unitary group {X € Mayo ‘X - X' =1} (resp. another
matrix group) as follows:

4 3,1 _ T4+ V- T3 T — 1T
R* (or, R>") > x = (21,22, %3, 24) — <_€. (21 + iws) 74— v- xs) , (8.1.1)
with v = i,e = 1 for R* (resp. v = 1l,e = —1 for R*!). The metric becomes, under this
identification,

1
(X,)Y)=¢- itrace(Xathog).
In particular, (X, X) = ¢ - det(X), and we can identify S® (resp. H?), with SU; respectively, with
the self-adjoint matrices (X = X?), via

T4+ T3 X1 — 1x2

H? > 2 = (21,29, 23, 24) —> .
(1) 2,43, 4) x1+2x2 T4 — T3

) € {FF'|F € SLy(C) }.

Here we give a description of the DPW method by using loop groups and algebras. First, we
define the holomorphic potential £ as in Definition B

Definition 8.1.1. Let ¥ be a simply-connected domain. Then the 1—form

§i=Adz, A=A(z,\)= > Aj(z)N forz€ Land AeC (8.1.2)

i=—1

95
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is called a holomorphic potential, where each A;(z) is a 2 x 2 matrix that is independent of A, is
holomorphic in z € ¥, is traceless, is a diagonal (resp. off-diagonal) matrix when j is even (resp.
odd), and the upper-right entry of A_;(z) is never zero.

Given a holomorphic potential £, we then solve the equation

dp=p&, @(z) =1 for ¢ € ASLy(C), (8.1.3)

where ASLy(C) = {go()\) € Maxz|yp : St AN SLy(C), p(=A) = Ug(p()\)ag} for some choice of
initial point z, € ¥. We will use the following “SUs-Iwasawa splitting” of this loop group ASLy(C).
The following proposition was proven in [Z5].

Proposition 8.1.1. For all ¢, there exist unique loops F' and B such that
¢ =F-B, where F € ASU,, B € A{SLy(C), (8.1.4)
ASUy = {<p(/\) € Moyl : St o, SUs, (=) = 034,0()\)03},
B, extends holomorphically to D,

AFSLy(C) = ¢ BL()\) € ASL»(C 0
rSL2(C) +(AN) 2(C) B, (0) = (8 p_l) for some p > 0.

Using the SUs-Iwasawa splitting, we have the following recipe for smooth CMC surfaces in
R3, S* and H?, which was originally derived in [25] (see also [30]):

Proposition 8.1.2. Any conformal CMC H # 0 (resp. cot(—27;), coth(—y)) surface in R3 (resp.
S3, H3) can be constructed by the following steps:

1. Set a holomorphic potential &, and solve dp = p& for some initial data |, cx € ASLyC.

2. For the ¢ obtained in (1), apply SUs-Iwasawa splitting ¢ = F - B with F € ASUy, B €
A SL,C.

R? case: Substitute the F in (2) into

f= % [;FiagFl - iA(@AF)Fl] (8.1.5)

1
with unit normal vector field N = 5 [FiogFfl] ’ .
A=1
S case: Set Fy = F|y_.im and Fy = F|y_.—in for y1 € R and 2y, # nw (n € Z), and

substitute the F in (2) into
1 0 _
f=F (eo em> 12 (8.1.6)

. . Ei’yl 0 —1
with normal vector field N = iF}y 0 —e—im .

H3 case: Set Fy = F|y_.2 for v € R\ {0}, and substitute the F in (2) into

0\ ot
Fo F0< o0 /2) 7 (8.1.7)
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. e/? 0 —t
with normal vector field N = Fy 0 _e—/2 Fy .

0 h(z)
h(z)™t 0
respect to z, we have any smooth isothermic CMC surface in each 3-space.

In particular, choosing € = X\71 ) dz, where h(z) is a meromorphic function with

8.2 Notations in discrete surface theory

In this section we define some notations of discrete differential geometry, as in [[], [T2], [T9], [@3].
In order to define discrete isothermic CMC surfaces, we need to introduce the cross ratio of a
quadrilateral. Henceforth, each element in S? and H? is identified with the matrix form as in
Equation (BT).

Definition 8.2.1. Let X, X5, X3 and X4 be points in S® or H?. Then
er(X1, Xo, X3, X4) = (X1 — Xo)(Xo — X3) 7' (X3 — Xu)(Xy — Xy) 7

is called the cross ratio of X1, X5, X3 and X4. Note that, the cross ratio er(Xy, Xo, X3, X4) is a
scalar function multiple of the identity matrix if and only if the four points X7, X5, X3 and X4 lie
in a circle.

Like in R3, we define discrete isothermic surfaces in S® and H?®, and their dual durfaces. As
will be seen later, existence of the dual surfaces characterizes discrete CMC surfaces in Riemannian
spaceforms (see [I]).

Definition 8.2.2. A discrete isothermic surface is a map f : Z2 — S® or H? for which all

elementary quadrilaterals satisty cr(fp, fg, fr. fs) = _ 9T for all
Qps

p=(m,n), ¢g=(m+1n), r=m+1Ln+1), s=(mn+1) ((mn)€Z?),

where a,,, (resp. «,s) is a positive scalar function depending only on horizontal edges (resp. vertical
edges). Then a,q, ap,s are called the cross-ratio factorizing functions. In particular, a discrete
isothermic surface Z : Z? — R? 22 C is called a discrete holomorphic map.

Let f : Z?> — S3 or H? be a discrete isothermic surface. Then a discrete isothermic surface f*
in R* or R®! with the same cross-ratio as f solving

o px fq*fp I L fs*fp
K ey A R G AR A

is called a dual surface of f, where || - ||? := (-,-). Note that, the dual surface f* of f is uniquely
determined, up to scaling and translation, and f* is also a discrete isothermic surface.

Remark 8.2.1. In general, a dual surface of a discrete isothermic surface f does not lie in the
same spaceform, that is, when f is discrete isothermic in S? (resp. H?), f* does not necessarily lie
in S* (resp. H?). On the other hand, as will be seen in Proposition B2, a dual surface f* of a
discrete CMC H (resp. H with |H| > 1) surface f in S® (resp. H?) can be chosen so that f* € S3
(resp. H?3).
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Let L* be a 4-dimensional light cone in Minkowski 5-space R*! with signature (+ + + + —).
Then M, := {X € L*; (X, q)ge.r = —1} for some constant vector q € R*!. Then M, has constant
sectional curvature x = —(q,q). In particular, take q = (0,0,0,0,1)? (resp. q = (0,0,0,1,0)?), and
we have M; =2 S? (resp. M_; = H3). First we define several notations here.

Definition 8.2.3. Let { : Z?> — R*! be a discrete surface with each quadrilateral (Fps Fg» FroFss)
planar. Then f is called a discrete conjugate net. And two discrete conjugate surfaces § and §* are
Koinigs dual to each other if they are discrete surfaces with corresponding edges parallel and with
opposite diagonal edges parallel, meaning fio — f || f5 — 7, f2 — f1 || 12 — f*

As already introduced in [I] (see also [I¥]), the Gaussian and mean curvatures are defined for
the projection of discrete conjugate nets in L* to M,., that is, discrete conjugate nets in M. In
particular, the lift f of a discrete isothermic surface f in S* or H? to LL* is also a conjugate net and
it has a Konigs dual partner. In fact, considering the following particular lifts

83 > f — f = (fv]-)t € L4 (resp. H3 > (f17f27f37f4)t = f = (f17f27f37_17f4)t € L4)a

one can confirm that the lift f of a discrete isothermic surface f in S? (resp. H?) has a Konigs dual
net §*. The f* can be explicitly written as

f*:(f*vl)t (resp. (ff,f;,f§<7—1,fi)t),

where f* := (fy, fa, f3, f7) is a dual surface of f. The Konigs duality of fand §* follows from the
non-corresponding diagonal parallel condition of discrete isothermic surfaces f and f* (see [3]). In
this paper, restricting the class of f to the lift of discrete isothermic surfaces in S or H?, we define
the Gaussian and mean curvatures of discrete isothermic surfaces as follows:

Definition 8.2.4. Let f:Z? — S? (resp. H?) be a discrete isothermic surface and let f be its lift
to L. Then a discrete surface n : Z?> — S? (resp. $*! := {X € R3>!|(X, X) = 1}) is called the
Gauss map of f if (f,n) =0 and dnpq + Kpgfpq = 0 and dnps + Kps fps = 0, where

Afpq = fq = fps dfps == fs — [p, dnpq :=ng —np, dnps :=ns —ny

and Kpq, Kps are real-valued functions defined on horizontal edges or vertical edges, respectively.
Then kpq, kps are called the principal curvatures of f. Consider a particular lift

S*s3n—n:=(n,0)es®!

2.1 . 3.1 (8.2.1)
(resp. S** > (n1,ng,ng,ng) — n:= (ny,n2,n3,0,n4) € S>7),

where S = {X € R""V1|(X, X)gn+11 = 1}. Then n is called the lift of n (or, n is called the
Gauss map of f). Note that, n satisfies (f,n) = 0, dnyy + Kpefpg = 0 and dnys + Kpsfps = 0 with Ky,
and kps the same as those of f. The Gaussian curvature K and the mean curvature H of f are real
values satisfying

A(n,n) = KA(}§),  A(f,n) = —HA(, f),

where A(g, g) := %(égpr Ndggs), Alg,h) := i(égpr A hgs + by Adggs) for some discrete conjugate

nets g,h € R*! with dg,, := g, — g, and dg,s := gs — g, (regarding the definition of wedge product,
see [B0], for example).
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As already mentioned in Lemma & Def 2.3 in [[]], a necessary and sufficient condition for a
discrete conjugate net f and f* to be Konigs dual to each other is A(f, §*) = 0. Using that, discrete
CMC H (resp. H with |[H| > 1) in S? (resp. H?®) can be characterized as follows.

Proposition 8.2.1. Let f be a discrete isothermic surface in S3 (resp. H?), let n be the Gauss
map of f, and let f, n be their lifts. Then f is a discrete CMC H (resp. H with |H| > 1) surface in
S3 (resp. H3) if and only if its dual surface f* can be chosen as f* = f% € S* (resp. H?) with 6,
satisfying 61 = cot ™' H (resp. coth™ H ), where f% := cos@- f+sinf-n (resp. cosh@- f+sinh6-n).
Moreover, f% is a constant positive Gaussian curvature (|H|++vH?2 +1)2 (resp. (|[H|+vVH? —1)2)

1 1
surface in S® (resp. H?), where 63 = 3 cot "' H (resp. 3 coth™ H).
Proof. First we consider the case in S®. By definition, the following two equations
A(I‘l, tl) = KA(fa f)a A(fa Il) = 7HA(f7 f)

hold. Assume that H is constant. Then the Konigs dual net §* of § can be chosen as f* = Hf +n =
H 1
(Hf A n) . By translations and homotheties of R*!, {* can be chosen as f* = <\/H2+1 f ‘; T n>

H
IL*, implying that the projection f* of f* can be chosen as f* = cosf; - f +sinf; -n (§; = cot™! H).
In this proof K¢ denotes the Gaussian curvature of a parallel surface f¥ = cosf - f +sinf-n of
f at distance . Then the unit normal vector field n? of f? is n’ = —sinf - f 4+ cos@ - n. Let { be
a lift of f? and let n® be a lift of n’. Then we have

Am? ) = KA §%) = K%{cos? OA(f,f) + 2cosOsin OA(f,n) + sin? A (n,n)}
& {K cos® 0 + Hsin(20) + sin? 0} A(f,f) = K?{cos® 0 — Hsin(20) + K sin? 0} A(f, ).

K cos? 0 + H sin(26) + sin? @
cos?2 @ — Hsin(26) + K sin? 0

Thus we have K =
(|H| +VH?+1)2

Similarly, take a discrete isothermic surface f in H3, then f is a discrete CMC H (|H| > 1)
surface if and only if f* can be chosen as f% with §; = coth™' H, where f? := cosh@- f +sinh0-n.
K cosh? § — H sinh(26) + sinh® @
cosh? § — H sinh(26) + K sinh® @’
when f is a discrete CMC H surface in H3, the Gaussian curvature K% of f%2 is (|H|++/H? —1)?

1
by taking 65 = 3 coth™ H, proving the proposition. O

1
. Taking 0 = 6, = §C0t_1 H, we have K% =

And the Gaussian curvature K? of f¢ is K¢ =

In particular,

8.2.1 The discrete Lax pair

Away from umbilic points, we can reparametrize the conformal coordinates to isothermic ones.
Then isothermic surfaces have real constant Hopf differentials @ (see [I2]). Then, as a natural
choice, we can define the discrete Lax pair as follows:

Fy,=F,Uy, Fs=F,Vps, where (8.2.2)

Gpq Abpq + ﬁ dps Aeps + %
Um=<_bm 2 " V= _en . ”sgp“s ., (823
pY S

— a
bpq rq
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where apq, bpg, dps, €ps € C. The compatibility condition of F is
VpsUsr = UpqVrs (8.2.4)
and taking the determinant of Equation (824), we have
det(Vys) - det(Us,) = det(Uyq) - det(Vy,).

We now assume that det(Up,,) (resp. det(V)s)) is independent of vertical edges (resp. horizontal
edges). Our goal is to find such Uy, and V), to obtain a discrete CMC surface. Note that, the
compatibility condition implies a discrete version of the sinh-Gordon equation (see [[78]).

Remark 8.2.2. Our formulation of Lax pairs for discrete CMC surfaces in R? is slightly different
from the original one in [TZ]. However, we can again construct the discrete non-zero CMC surfaces
in R? using the solution F' of Equations (B22) and (B2233) (see Proposition EZ1 here).

8.3 Discrete versions of the matrix splitting theorems

Here we recall the definition of the projectivization of loop groups and matrix-splitting theorems
for them, which were given in [43], and play important roles in our construction of discrete CMC
surfaces in Riemannian spaceforms.

Definition 8.3.1. For Ao € R\{%1} and A; € iR\{=£i}, the set PASLy(C), the projectivization of
ASL5(C), is defined by the following conditions: C'(\) € PASLy(C) if

1. C()) is a Laurent polynomial in A.

2. C()) is twisted: C(—=\) = g3C(\)os.

3. det(C(N)) = (1 — (Ao/N)H)H(1 — (A1/N)H) (1 — A2AH)*(1 — A2X2)! for some i, j, k,l € N.
Remark 8.3.1. We can identify ' € PASL(C) with F € SLy(C) projectively up to some scalar

function 3 : St — C, i.e. we can write F' = B(\)F.

We introduce the discrete Birkhoff splitting in the following proposition, as shown in [43]. In
Proposition B3, X lies in the set corresponding to what would be the minus group, and C lies
in the set corresponding to what would be the plus group, in the smooth case. We denote these
groups by PA~SLy(C) and PATSLy(C).

Proposition 8.3.1. Let C € PASLy(C). Then there exist matrices X, C' € PASLy(C) such that
~ A—ro00 ~ det(C(N))
€= XC. X2 1. detlCO)) = 1 CU
where [ =0 or 1.
Proof. We can write C'(\;) = Ccl Z > (I =0,1) with det(C(\;)) = 0 but C(N\;) # 0, by taking

an appropriate scalar multiple of C. So we show the only case when ab # 0 or cd # 0 here. This
case is the one that always appears in the discrete DPW method here.
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~ ~ 1 &
Solve X (A;) - C(X\;) = 0, and we obtain the unique solution X = < \? A ), where z; =

“ax L

- 1 = ~
Aig = )‘l%’ and X € PASLy(C). We set X := (A,Z ;) and C := X~1C, then we have
ey
X,C € PASLy(C), X(A) =5 I and det(C())) = £2C00 0

Next we introduce the discrete SUs-Twasawa splitting for PA~SLy(C) as follows:
Proposition 8.3.2 ([43]). Let L, € PA~SLy(C) be of the form
1 =
LrN=(x 7] @=01.
- 1
l
Then, there exist a matriz Lij(X) of the form

Aby + 55
Ll()\):<_al l/\bz)

A
b a

>l

with (o3L; (\)os) - Li(A) = 0 and det(Ly(N) = [N| 72 (1 = (A/N)?) (1 = APA?), and this L] (X) is
unique up to sign.

In Proposition B33, L;()) lies in the set corresponding to what would be SUs, and (L;) ™! - L;
lies in the set corresponding to what would be the plus group, in the smooth case. We denote these
groups by PASU; and PATSLy(C).

1
( 1/\ —f\i) Eaz . Nbi+ x5 —o
Py b a
x 1 Al Bl a

Proof. Solve

Tiy T N 1
— —b+=—=0 — b ——=0.
al+)\l21+bl , Qi le by
_)\2 1 2
These implies that b = + W, and we obtain that a; and b; are defined up to sign.
1 1
By direct computation, we get det(L;(X)) = |\|72 (1 — (Ai/A)?) (1 — A7A2). O

8.4 Discrete CMC surfaces via the discrete DPW method

In this section, first we introduce the discrete DPW method for discrete CMC H # 0 surfaces in
R3, studied in [43]. After that, we show the main result here, which is a discrete analogue of the
DPW method for CMC surfaces in S* with any mean curvature H and CMC surfaces in H? with
|H| > 1, by using discrete holomorphic potentials.

Proposition 8.4.1 ([23]). Any discrete isothermic CMC H # 0 surface f : Z2 —s R3 can be
constructed by the following Steps 1-4:
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Step 1 Let Z : Z2 — C be a discrete holomorphic function with
er(Zp, 24, 20, 2s) = N2/N2 <0

satisfying | Ao, |A\1]| # 1 and set

1 Zpg 1 Yps
— A —
)\ﬁpq >\yps

for zpq =2, — 2, and yps = Z5 — Z,.

[l d

Step 2 Solve
g = ppLpg, vs = @pMp, (8.4.2)

with the initial condition poo = 1.

Step 3 Split
¢op = F,B, (F, € PASUy, B, € PATSL,(C)). (8.4.3)

Step 4 Substitute F,, to the Sym-Bobenko formula

I _
fp = Symgs(F,) = Im [2H <2Fp203Fp ' —iX(OrF,)F, 1)] (8.4.4)

A=1

1
with unit normal vector field n, = 3 [Fpiang_l] ‘)\ , where
=1

I - a+ib c+id . ib c+id
Wil —etid a—ib —c+id —ib )
Remark 8.4.1. We have two remarks here.

e We do not have to choose Ag or A; as in R\ {0,%+1} or R\ {0,+¢}. In fact, even when we
choose A\g = |/apq and Ay = i, /s (| Ao, [M1| # 1) with o and s the cross ratio factorizing
functions of a discrete holomorphic function Z, we can still construct discrete CMC surfaces.
In order to simplify the argument, we assume that A\g and A\; are constant.

e As already mentioned in Remark B3, because of the difference of the formulation of Lax
pairs for discrete isothermic CMC surfaces in R? from the one in [12], the Sym-Bobenko
formula in Step 4 in Proposition B4 is different from [[2]. On the other hand, we can see
that any discrete surface f defined in Step 4 is a discrete isothermic surface and the dual
surface f* of f can be chosen as f* = f + H 'n, ie., f is a discrete isothermic CMC H
surface in R3. The proof of this fact is similar to the one in [I2], so here we omit this proof.

Here we introduce our first main result. We can construct any discrete CMC H (resp. H with
|H| > 1) in S? (resp. H?) via the following recipe, which is a generalization of a result by Hoffmann
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Theorem 8.4.1. Any discrete isothermic CMC surface f : Z?> — S® (resp. H?®) with CMC H
(resp. H with |[H| > 1) can be constructed by the same Steps 1-3 in Proposition BZ1 and the
following Step 4’ or 4", respectively:

Step 4 Set F) = Fply_y,.ceim and F} = Fp|,\:t;1 for 1 € R and 21 # nm (n € Z). We define the
following Sym-Bobenko type formulas

fo=symss(r) =1} (g ) (3.4.5)

t1 0

0 t_1> (F2)~'. Then, f is a discrete CMC H =
1

with its normal vector field n, = iF, (

cot(—27v1) surface in S* with normal n.

Step 4" Set F) = F|y_y,.—er/2 for some constant v € R\ {0} satisfying
min (A3, \g?) < e” < max (A, \;?) .

We define the following Sym-Bobenko type formulas

1 0 to 0 —=t
fp = Symys (F,) == det F9 F, <0 t01> FY (8.4.6)
with normal vector field n, = #FO to 0 FO'. Then f is a discrete CMC H =
P det FOTP N0 —t5t) P ’ B

coth(—7~) surface in H® with normal n.
We have some lemmas for these steps as follows, which implies that ¢, are well-defined for all
p:
Lemma 8.4.1. In Step 1, L,, and M, satisfy M, L = L, M.
Proof. By direct computations, we get

ML, =L M,

ps*sr

A2 s Az x s ” T
1 e =14 S, Z vy 2,

Axg )\2?/ r?
= 32 2 e Mo Y M (8.4.7)
AYps Asr — Apg Aygr’ Ayps +1= A2zpg +
Here, by the definition of z,, and y,,, we have
Tsr + Yps = Ygr + Tpg (= Zr — Zp), (8.4.8)
and by cr(Z,, 24, Z,, Z5) = A3 /%, we also have
Tpg® A2
P 22, (8.4.9)

YpsYqr /\%
Thus, by using Equations (B2R), (84), Equation (BZ71) are clear. O
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In the next step, we show that the solution of Equation (82=2) can be split like in Step 3 of
Proposition B2, which we call SUs-Iwasawa splitting for .

Lemma 8.4.2. As in Step 3, for all v, we can split
¢p = F,B, (F, € PASUy, B, € PATSLy(C)).

Proof. By Step 2, we have the following solution ¢:
¢p = LooLlyolag L1 My oMy, 1 My, 5 - My,

m,n—1°

In the above equation, L, , := L for u,v € Z>o Applying

(u,0)(u+1,0)
Proposition B3 to Ly o, we obtain

M;l,v = M(:n,v)(m,v-i—l)

ep = Uo0AS oL oLag Lim_10- My oMy My, 5+~ M,

m,n—1

for Ago € PASU; and Af, € PATSLy(C). Next we name U{, = Af,L;, € PASLy(C) and split
U1g,o = UfOAfa' by the discrete Birkhoff splitting in Proposition B3

_ — A+t - - - - -
$p = U0,0U1,0A1,0 Ly Ly v My oMy, 1My oMy, .
We again use Proposition B3 for Uy

m,n—1

Pp = U070U1,0AT,0AT,:JFL2_,0 T Lr_n—l,O : MY;,OMY;,IMT;,Q M,
for Uy o € PASU; and Afo € PATSLy(C). We can repeat these splittings and we get
ep =Uo0U1,0 - Un-1,0 Vin,oVim,1 - Vm,n—lAj_n_17n_1A;’—nt17n_1-

Taking F, = UpoU1.0** Un-1,0 " VinoVin1 -+ Vinn—1 and By, = A:;Lfl,nflAjntl,nfl’ the lemma is
proven. O

If Upq and Vj obtained by the above process satisfy the compatibility condition V,.Us, =
UpqVyr, we have the solotion F), of Equations (827), (823). In fact, the compatibility condition
follows from Lemma BZ73.

Lemma 8.4.3. Let Uy, and V), be matrices obtained by Lemma BZ-3. Then
VpsUsr = UpgVor <= M, L, = L, M.

pssr

Proof. By Steps 2 and 3, we have F,B; = F,B,L,, and F;B; = F,B,M, . These imply that
Upg = B,;L];(IB;1 and Vp, = BpMp’SBs’l. Substituting them into V,sUs. = UpqVer, we can prove
the lemma. O

By the proof of Proposition E32 and by Ag € R\ {£1}, Ay € iR\ {£i}, we can choose the
components by € iR\ {0} and e,; € R\ {0} of U,, and Vs in Equation (8223). Replacing b, with
ibpg (bpg € R\ {0}) in Equation (B23), we have the following expression:

U (pq Nibpg — A ib ! Vo dps Aeps + A7 et
pa A" libyg — Niby ! apq ropE A le,s — Aeyt dps

ps

for apq, dps € C\ {0} and by, eps € R\ {0}. Finally, we have the following lemma.
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Lemma 8.4.4. In Step 4’ (resp. 4”), [ is a discrete isothermic CMC cot(—27,) (resp. coth(—q))
surface in S® (resp. H?).

0 1

Proof. Defining Fp =F VA0 , we have
Vo)

(L 0 F
fp= SymS3(Fp) = Symgs (Fp <\Oﬁ\ ﬁ)) :F;(Fz?)u

. f P2 . f
where F, := Fp|x=y,, F}; == Fp|)\:tl_1. Then,

272 272 1 g bl A

_ — _Fl . 1 1 b 11 paboe . b

) P a%q(tl) idqu;ql 1 bgqft% (Fp) )
~ t2 — t72 1 + e—2t72 d e_l R

s =l = L _ps 7l Psps (F2)L

f fp p a%s (tl) dpseg?sl -1- e;SQt% ( P) ’

where g () 1= y/det Upq and ays(N) := y/det V,. Furthermore, we have the following expressions:

. 1
- - (pq t (bpq - ﬁ) - ; dps Cps T Xy,
F,=F, | \2 d , Fo=F, \2 .
i (bpq — m) Qpq - (eps + a) dps
Setting
1 a [ (b - #) 1 dps eps + 21
qu = " 2 T e vzns = " 2 ! e
apg(A) \i (bpq — b/\Z) (pq aps(A) \ — (eps + 675) dps
Ul}q = qu| a=t, and Vpls = Vp5| A=t,;, We can express the above equations as
a1t tIZ 1771 2y —1
—fp=—F; - b U oo (F5)™
fo—1p P g (ty) P4 2 ( p) )
p 11— 7f1_2 1771 2y —1
—fp=—F - e Vo o1 (F7)7".
fs = Ip P ap(ty) PP 1 ( P)

Similarly, by using ﬁ]fq = ﬁpq|>\:t;1 and Vpi = Vps|)\:t;1, we also have

177l t%_t;2 9
fr_fq:Fpqu' aps(tl) qr Vaqr

R t27t_2
f 7f :7Flvl A 1
' ’ b pq(t1)

ps b;rlﬁgr t02- (‘A/pi)il(ﬁﬁ)il'

Using these expressions and the compatibility condition quf/;” = VPSUST, we have

2.t
Cr(fpquvfrafs) = _zgsgtii'

pPq
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Thus f is a discrete isothermic surface in S*. And by a direct computation, we can check that the
dual surface f* of f can be chosen as f=27 = cos(—2v1) - f + sin(—271) - n, implying that f is a
discrete isohermic CMC cot(—27;) surface in S3.
In the same vein, but a tedious computation, we have that the f in Step 4" is a discrete
a?)s (to)
oZ (to)’ O
Pq

Combining Lemmas B2, B2, B4—3, B4, we have proven Theorem EZ.

isothermic CMC coth(—q) surface in H® with cross ration —

8.5 Examples

In this section, we introduce three examples which are round cylinders, Smyth surfaces and Delaunay
surfaces. In the following we will take Ay = iAg for simplicity.

Example 8.5.1 (Round Cylinders and 2-legged Smyth surfaces). Taking Z,, , = cAo(m+in) (c €
R\ {0}). Then we have discrete CMC surfaces in R?, S and H? as in Figure 8. When ¢ = 1, the
resulting surfaces are round cylinders in R3, S? and H?, and when ¢ # 1, we have discrete 2-legged
Smyth surfaces, as in the lower column in Figure BTl. In order to visualize the surfaces in S? and
H?, we use stereographic projections.

Fig. 8.1: Round cylinders in S® and H? (left to right).

Example 8.5.2 (k-legged Smyth surfaces). Let Z,,, be a dicrete power function z,,, defined as
follows (see [T7] for detail):

Zm,n+1 — Zm,n)\Zmn — fm,n—1
o | ) )
Zm+1,n — fm—1,n Zm,n+1 — fm,n—1

(Zm+1,n - Zm,n)(szl,n - Zm,n)

Y Zmn = 2M
200=0, z10=1 291 =1
0,0 , 21,0 0,1 .

This discrete power function is the discrete analogue of the holomorphic function w” for w € C. In

order to construct discrete k-legged Smyth surfaces, we set v = I%&-Z See Figure B2.

Example 8.5.3 (Delaunay surfaces). Here we construct discrete Delaunay surfaces with constant
cross ratios. Although discrete Delaunay surfaces in R were already constructed and the construc-
tion is explained in [43], here we introduce more detailed explanations.
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Fig. 8.2: 3-legged Smyth surfaces in S* and H® (left to right).

At first, assume that we have a discrete CMC surface of revolution in R?. Take a parametrization
of the discrete surface of revolution f,, ,, in R? as Jmn = (Xpn cos0p,, X, sin6,,,Y,,)!, where X,, and
Y,, are real-valued functions depending on only n, and #,, is a real-valued function depending on
only m. Then, by a direct computation, we can show that f,, , is discrete isothermic. In particular,
if er(fp, fq: fr, fs) is constant, 6,, must be chosen as 6,, = cym, where ¢; is a real cosntant.

This implies that the frame F), as in Equation (8232) along the horizontal direction (i.e. rota-
tional direction) is the multiple of scalar constant matrices Up,. Here we rename the scalar matrix
Upq as U. Starting from the data, first we recover the holomorphic data Ly, 0)(m+1,0) as in Equa-
tion (BZ) (symbolic notation is the same as in the proof of Lemma B49). Then, splitting U into
U=Ly OL& o by applying Proosition BZ3l, we have

Fno = UUU---U
) ~——
m times
T o el Sl el s — 7+
= LooLlooLooloolooloo - Looloo:
Applying Proposition B3 to the first LJOL(; o from the left in the above equation, we have
L(JJioLojo = LiOLfO. Then
Frno = LyoLioLioLioLooLdo - LooLio

s

Applying Proposition B3 to the next L(J{, 0Lo,0, we can again split Lg’ oL, into LiOLfO. Then we
have LfOLiO in the above equation. We can split L1+,0Lf,o into LiOL;O ie.

+
Fm,O 00"

LaOLgo
(—)i_,O e L(IOLS_,O

L&OLJO
(-)i_,O T L(IOLS_,O

Iterating the splitting into

L oLio = L1 0Lis1,0 (k € NU{0}), (8.5.1)
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we can recover the L, as in Equation (82) by reduction.
Here we assume that U is constant, so det U = A\g%(1 — A2/A?)(1 — A3\?) is also constant. In

bp(] Sl)q
Conversely, we derive the condition for discrete holomorphic function Z,,, from Equation
(B). Equation (B50) implies

=80+ |z 0,0),0)12) tT(0,0)(1,0)
t:= S0,0001,00 = — g

S b
particular, det U, o = Ay (1 — A3A?) and U, , is of the form & A§q>.

ij Tk
2 » Xjk = I +17Sjk:)\2xug,,’
0 )\%:Dijsij ? 0 ) )

Ao+ lzonao?
where i = (m —1,0),5 = (m,0),k = (m+ 1,0). So we can define a discrete function Z,, ¢ as the
solution of Z(,,,0)(m+1,0) = Zm+1,0 — Zm,0- In particular, here we assume that x g 0)(1,0) € iR.

For given initial data y(o,n)(0,n+1) € C (n € NU{0}), defining Z ,, as the solution of y(9 n+1)(0,n) =
20.n+1 — 20,n, we can describe the discrete holomorphic function Z,, ;, as the solution of cross ratio

)\2

condition cr(Z,, Z,, 2., 2Z;) = )\2 = —1.

On the other hand, by a symmetry condition for the meridian curve of a discrete surface of
revolution, we must choose the initial data y(o,0(0,1) so that V(g 0y0,1) = V(1,0)(1,1)- By Proposition

. . _ — + oy .

B=30, we can factorize V(g 0y(0,1) into V(g 0)(0,1) = M(o,o)(o,l)M(o,O)(o,l)' Moreover, by definition of

V(1,0)(1,1) and a construction of V(y g)(1,1), we have

-1 -1 -1 _
Vo = (Fro)™ Fia = B, 0)%(0,0)(1, 0)‘9(0,0)(1,0)3(1,0)(1,1) = LZB 0)(1,0) (1 0)(1, 1)B(1 0)(1,1)"

Again, splitting L%,O)(LO)M(E,O)(l,l) into L(0 0)(1, O)M(E 0(1,1) = =U"UT, we have M(o 0)(0,1) = U-.
ThlS COHditiOH, the Compatlblhty COndlthH x(0,0)(l,O) —+ y(170)(171) = y(070)(0,1) —+ ‘T(O,l)(l,l)a the as-
Z(0,0)(1,0)T(0,1)(1,1) _

sumption of x (g 0)(1,0), and the cross ratio condition —1 imply
Y(0,0)(0,1)¥(1,0)(1,1)
4
y B 2X — (0 0)(1, o))‘ - x(o 0)(1,0)
(0,0)(0,1) = 4| — 2 :
=1+ 2% 010y — Ao
Thus we have the initial condition for Yy n)o0mnt+1) = Zon+1 — Zo,n- In a similar way as for

T (m,0)(m+1,0)» solving

tYo,001 &l Yik
T(O,O)(O,l) = A% ) Yjk = 1 10 Tjk = A%y”T B

Ayi; T t

where i = (0,n—1),j = (0,n),k = (0,n + 1), we have 2, and the discrete holomorphic function
Zm.n- This data determines a CMC surface of revolution (see Figures B3, B4).

8.6 Singularities of discrete positive constant Gaussian cur-
vature surfaces
As mentioned in Section B2, we can obtain discrete positive constant Gaussian curvature (p-CGC,

for short) surfaces in S® and H®. In the smooth case, it is known that p-CGC surfaces generally have
singularities, so it is natural to expect that discrete p-CGC surfaces also generally have singularities.
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Fig. 8.3: Discrete Delaunay surfaces in S®. Like in the smooth case, there exist discrete closed
isothermic CMC surfaces of revolution. In the upper row, a discrete unduloid and a discrete nodoid
with four lobs are shown. In the lower row, the half cuts of the pictures above are shown.

Hoffmann, Rossman, Sasaki, Yoshida [#4] analyzed discrete flat surfaces (discrete circular sur-
faces with Gaussian curvature in the sense of Definition B2 identically 1) in H?, and Rossman and
the second author [§1] analyzed singularities of discrete linear Weingarten surfaces of Bryant (resp.
Bianchi) type in H? (resp. S*!). Here we introduce vertices defined in [®1] that are potentially
singularities of discrete surfaces.

Definition 8.6.1. Let 4, j, k be three consective points in the horizontal or vertical direction in Z2,
let f be a discrete circular surface in S* (resp. H?) and let n its Gauss map. Then f; is called a
flat, parabolic, singular vertex (FPS vertex, for short) if x;; - k;, < 0.

FPS vertices possibly become singularities of discrete surfaces. On the other hand, in order to
define singularities of discrete surfaces, it is unsufficient to see only signatures of principal curvatures,
which was explained in [81]. In this paper we define and analyze singularities (i.e. singular vertices)
of discrete p-CGC surfaces in S®. For other 3-spaces (R* or H?), we can also discuss singularities
of discrete constant positive Gaussian curvature surfaces in the same way.

Before discussing singularities of discrete p-CGC surfaces in S?, we see smooth p-CGC surfaces
in S3. At a singular point of a front, at least one of the principal curvatures of a front diverges (see
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Fig. 8.4: Discrete Delaunay surfaces in H3

[67]), which we would like to reflect in the discrete case. First we compute the principal curvatures
of smooth p-CGC surfaces.

Let f be a conformal CMC cot(—27;) surface in S? described in Proposition 812 and let f? be
its parallel surface at distance 6. In particular, we assume that f is isothermic. In order to simplify
the argument, we only consider that v; € (0,7/4]. Then f~7 becomes a p-CGC cot?v; surface
in S® and the two principal curvatures ki, Ko become k; = cot(—2y1) + e~ 2u csc(—271), ke =

cot(—2v1) — e 2% csc(—2v1 ), implying that the principal curvatures x; *, k, ' of a smooth p-CGC
surface f~7 are
—2u —2u
-7 __ e +1 —-v1 __ € -1
K1 —COt’}/l'm, Ko _COtrYl'e*T—Fl.

Thus we know that |k] 7| > coty; and |ky ™| < coty; at a regular point, and that k] 7" diverges
and k5 " converges to 0 at a singular point.

Henceforth, we consider the discrete case. Let f be a discrete CMC cot(—2v1) (y1 € (0,7/4])
surface in S* described in Theorem B2 and let f? be its parallel surface at distance #. Like in

the smooth case, using Proposition &2, f~7 is a discrete p-CGC cot? v, surface in S®. One can

cos(—2v;) — b2 cos(—2v;) + €2
compute that the principal curvatures of f are kp, = M, Kps = M7 and
sin(—2v1) sin(—27v;)
1+ Ky cot 6 1+ K5 cot 0
the principal curvatures % , k% of f@ are xf = — P4 """ 0 — = P57 {ging that, we
prieip v pa> fips Of f PI cotf —hpg = 77 coth — ks 8 A
have ) )
bz, —1 ess+1
KT = cotyy - 22 k)t = coty - 22 .
prq 2 ’ ps 2
by, +1 €ps — 1

Like in the smooth case, we have [r,*| < cot 1, [k,Jt| > coty1. Mimicking the smooth case, this
justifies that there is no singular vertex in the m—direction but there exists a singular vertex in the
n—direction. In conclusion, we precisely define singular vertices of discrete p-CGC surfaces in S?
as follows:

Definition 8.6.2. Let f~7 be a discrete p-CGC cot? v surface obtained by taking a parallel surface
of a discrete isothermic CMC cot(—2v;) surface described in Theorem B2 and let 4, j, k be three
consective three points in the vertical direction. Then the FPS vertex fj_” is a singular vertex.
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Remark 8.6.1. By a similar observation, we can define singular vertices of discrete p-CGC surfaces
in R3 or H3 as follows: Let f be a discrete p-CGC K surface obtained by taking a parallel surface
of a discrete isothermic CMC surface described in Proposition B2 or Theorem B2, and let 4, j, k
be three consective three points in the horizontal or vertical direction. Then the FPS vertex f; is
a singular vertex if |Ryj|, |#;1| > VK, where & are the principal curvatures of f.

Finally we conclude this paper by examining examples of discrete p-CGC surfaces in S?. On
the left-hand side of Figure B3, an example of discrete p-CGC surfaces in S* with FPS vertices is
shown, and on the right-hand of Figure BH, the same discrete p-CGC surface in S* with singular
vertices is shown. The singular vertices seem to capture the characteristic of singularities of discrete
p-CGC surfaces much more than the FPS vertices.

Fig. 8.5: A discrete p-CGC surface in S? obtained by taking a parallel surface of a discrete 2-legged
Smyth surface with FPS vertices (left-hand side) or singular vertices (right-hand side).
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