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Introduction

In this thesis, we study the construction of constant mean curvature (CMC) surfaces and the
theory for their singularities, and we analyze these surfaces via an integrable systems approach,
which involves, for example, the DPW method and Lax pairs. CMC surfaces are well known as
mathematical models of soap bubbles, and many researchers have been studying them over a long
period of time. In 1866, K. T. Weierstrass showed that one can construct CMC H = 0 (minimal)
surfaces in the 3-dimensional Euclidean space R3 by using an integral formula involving a pair of
holomorphic functions satisfying certain conditions. This famous formula is called the Weierstrass
representation formula, and many examples of minimal surfaces have been constructed via this
formula:

Fact 0.0.1 (Weierstrass representation). Any minimal surface X : Σ ⊂ C → R3 can be locally
represented as

X = Re

∫ (
1− h2, i(1 + h2), 2h

)
η dz

over a simply-connected domain Σ on which h is meromorphic, while η and h2η are holomorphic.

In 1998, J. Dorfmeister, F. Pedit and H. Wu discovered a generalization of the Weierstrass
representation formula. They showed that one can construct CMC H ̸= 0 surfaces in R3 by using
holomorphic data satisfying certain conditions and using a matrix loop splitting called the Iwasawa
splitting. This method is called the DPW method. Recently, this DPW method has been applied
to construct surfaces in various non-Euclidean spaces.
In the first half of this thesis, we apply the DPW method for spacelike CMC surfaces in semi-

Riemannian spaceforms, i.e. Lorentz 3-space, de Sitter 3-space and anti-de Sitter 3-space (see also
[70, 71]). We also study some criteria for the types of their singularities. In the last half of this
thesis, we study the corank two singularities of CMC surfaces, the transformation theory for them
and their discretization (see also [22, 72, 73, 74]).
This thesis has the following chapters:

• Chapters 1 and 2. In previous works ([17], [24], [29], [30], [86], etc), Brander, Dorfmeis-
ter, Inoguchi, Kobayashi, Kilian, Rossman and Schmitt constructed new examples of CMC
surfaces in the 3-dimensional sphere S3 and hyperbolic space H3 (non-Euclidean positive def-
inite spaceforms) via the DPW method. In [17], Brander, Rossman and Schmitt constructed
spacelike CMC surfaces in the 3-dimensional Lorentzian space R2,1, and they classified the
spacelike rotationally symmetric surfaces. (See also [33] and [34].) In the appendix of [24]
(arXiv version), spacelike CMC |H| < 1 surfaces in the de Sitter space S2,1 are considered.
Here we apply this method to spacelike CMC surfaces in R2,1, S2,1 and anti de-Sitter space

H2,1, and we give some examples of spacelike CMC surfaces in those Lorentzian spaceforms.
We can see this theory as a special case of [33], however here we also study the singularities of
the resulting CMC surfaces, and look at some examples in detail (totally umbilical surfaces,
round cylinders, and more interestingly, analogs of Smyth surfaces).
Section 1.1 explains the DPW method for spacelike CMC surfaces in R2,1, as in [17] and

[33], using Lax pairs and loop groups. In Sections 1.2 and 1.3, we describe the DPW method
for spacelike CMC surfaces in S2,1 and H2,1, as in [33]. Section 1.4 introduces some models
of S2,1 and H2,1 for visualization. We use the hollow ball model for S2,1, and we use the
cylindrical models for H2,1. In Section 1.5, as applications, we describe the most basic ex-
amples of spacelike CMC surfaces in S2,1 and H2,1. In Section 2.1, we explore singularities
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on CMC surfaces in Lorentzian spaceforms, and give criteria for determining certain types
of singularities (cuspidal edges, swallowtails and cuspidal cross caps) in the context of Lax
representations. Finally, in Section 2.2, we apply the methods and results in this thesis to the
analogs of Smyth surfaces in Lorentzian spaceforms, including results about their symmetries,
singularities, and relations with the Painleve III equation.

• Chapters 3 and 4. In the previous chapters, we studied spacelike CMC surfaces in R2,1,
S2,1 and H2,1, and created criteria for singularities on these surfaces, by using the frame-
change method, called the s-spectral deformation. However, as in [70], we omitted the case of
spacelike CMC H surfaces with 0 ≤ H < 1 in S2,1 because the Lax pair and Iwasawa splitting
are quite different from the case of H > 1. On the other hand, in the appendix of [24] (arXiv
version), spacelike CMCH surfaces with 0 ≤ H < 1 in the de Sitter space S2,1with no umbilics
are considered by using the normal vector of the parallel surfaces of CMC H surfaces with
0 ≤ H < 1 in H3. See Proposition 3.1.2 in the present thesis.
Here, rather, to allow for umbilics as one of the reasons, we give a DPW method for

spacelike CMC H surfaces with 0 ≤ H < 1 in S2,1 by using Iwasawa splitting. (See Theorems
3.2.1, 3.3.1 and 3.3.2.) We also study the singularities of these surfaces, and specify types
of singularities, focusing on the asymptotic behavior of Iwasawa splitting and using the s-
spectral deformation. (See Theorems 3.4.1, 4.1.3.) In particular we look at singularities of
Smyth-type surfaces with 0 ≤ H < 1 in S2,1. The data for such surfaces in H3 was given by
Dorfmeister, Inoguchi and Kobayashi in [24] - however, in that H3 case the Iwasawa splitting
is more easily extendable beyond the Iwasawa core, and so singularities do not appear on
these surfaces. Here instead we go to the S2,1 case to examine singularities.
Section 3.1 explains Lax pairs and the immersion formula as in [33]. In Section 3.2, we

prove the existence and uniqueness of ΛSL2(C)τ -Iwasawa splitting. In Section 3.3, we apply
the DPW method for spacelike CMC H surfaces with 0 ≤ H < 1 in S2,1, and in Section 3.4
we consider the behavior of the frames and surfaces when approaching the ΛSL2(C)τ -Iwasawa
small cell P. In Section 4.1, we introduce criteria of singularities on these surfaces, including
cuspidal edges, swallowtails and cuspidal cross caps, and in the last Section 4.2 we introduced
Smyth-type surfaces with umbilics and singularities. Here, we show these Smyth-type surfaces
have three types of singularities, i.e. cuspidal edges, swallowtails and cuspidal cross caps (see
Theorem 4.2.2).

• Chapter 5. The hyperbolic 3-space H3 is a 3-dimensional Riemannian spaceform with con-
stant sectional curvature −1 and the de Sitter 3-space S2,1 is a 3-dimensional Lorentzian
spaceform with constant sectional curvature 1 in Lorentz-Minkowski 4-space R3,1. There are
numerous articles on the study of surfaces in H3 and S2,1 (for example, [29, 31, 32, 36, 50,
52, 53, 57, 58, 60]). Gálvez, Mart́ınez and Milán [36] showed the representation formula for
flat surfaces in H3. For flat fronts in H3, Kokubu, Rossman, Saji, Umehara and Yamada
[57] showed that generic singularities on flat fronts are cuspidal edges and swallowtails (see
also [47]). Moreover, the criteria for cuspidal edges and swallowtails were obtained. Recently,
differential geometric properties of fronts were studied (cf. [63, 64, 68, 83, 84]). In particular,
normal forms and isometric deformations of cuspidal edges were obtained in [63, 68].
On the other hand, the Gauss map plays an important role in investigating differential

geometry of surfaces in the Euclidean 3-space R3. Singularities and stability of Gauss maps
for surfaces in R3 were studied in [4, 7]. Bleecker and Wilson [7] showed that generic sin-
gularities of the Gauss map are fold and cusp singularities. Banchoff, Gaffney and McCrory
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[4] studied geometric meanings of cusp singularities of Gauss maps. The differential of the
Gauss map, that is, the Weingarten map, gives the Gaussian curvature, the mean curvature
and the principal curvatures for the surface. Therefore, for surfaces in H3, such maps also
play important roles. In [36, 58, 60], flat fronts in H3 and their hyperbolic Gauss maps were
studied. Izumiya, Pei and Sano [50] studied singularities of hyperbolic Gauss maps and hy-
perbolic Gauss indicatrices for surfaces in H3. They regard hyperbolic Gauss indicatrices as
wave fronts and showed that generic singularities of hyperbolic Gauss map images are cuspi-
dal edges and swallowtails, by applying the Legendrian singularity theory. Moreover, Izumiya
[49] introduced a Legendrian duality theorem for pseudo-spheres in the Lorentz-Minkowski
space. Using this duality theorem, the de Sitter Gauss map image and the lightcone Gauss
map image of surfaces in H3 can be constructed. Thus one can study extrinsic differential
geometry of surfaces in H3.
In this chapter, we clarify relations between differential geometric properties called ridge

points of cuspidal edges in H3 and singularities of de Sitter Gauss map images in S2,1. In Sec-
tion 5.1, we consider local differential geometric properties of cuspidal edges in H3. We shall
define the principal curvature, the principal direction and ridge points for cuspidal edges. In
Section 5.2, we show relations between differential geometric properties of cuspidal edges and
singularities of de Sitter Gauss map images (Theorem 5.2.1). In Section 5.3, we consider the
normal form of cuspidal edges in H3. The normal form of cuspidal edges in R3 was introduced
in [63]. We give a condition that the origin is a ridge point in the context of the coefficients
of the normal form. In the last section, we apply results obtained in previous sections to flat
fronts in H3 and S2,1. We show conditions for singularities of de Sitter Gauss map images
for flat fronts in the context of the data which appear in the representation theorem for flat
fronts in H3 given by [36] (Theorem 5.4.1). Furthermore, we consider the Enneper-type flat
fronts as global examples. We give the duality between Enneper-type flat fronts and their de
Sitter Gauss map images (Theorem 5.4.2).

• Chapter 6. Singularities of wave fronts can appear on surfaces via parallel transforma-
tions. It is known that generic singularities of wave fronts in 3-spaces are cuspidal edges
and swallowtails. Moreover, the singularities of the bifurcations in generic one-parameter
families of wave fronts in 3-spaces are cuspidal lips, cuspidal beaks, cuspidal butterflies and
D4-singularities, in addition to the above two (see [3, 51]). There are criteria for these singu-
larities in [52, 53, 57, 82]. On the other hand, in [35], Fukui and Hasegawa studied singularities
of the parallel surfaces of regular surfaces in Euclidean 3-space R3. They gave criteria for cusp-
idal edges, swallowtails, cuspidal lips, cuspidal beaks, cuspidal butterflies and D4-singularities
by using geometric invariants of the original surfaces, for example principal curvatures.
For constant mean curvature (CMC) surfaces in Riemannian and semi-Riemannian space-

forms, there are several studies. In general, CMC surfaces in semi-Riemannian spaceforms
have singularities (see [16, 32, 46, 70, 71, 91, 92], for example). In [92], criteria for cuspidal
edges and swallowtails of maximal surfaces were obtained by using Weierstrass data. Sim-
ilarly, for maximal surfaces and CMC 1 surfaces, criteria for corank one singularities were
given in [32]. Umeda [91] gave criteria for cuspidal edges, swallowtails and cuspidal cross caps
of extended CMC surfaces in Minkowski 3-space R2,1, and in [70, 71], the present author also
studied the analogues of Umeda’s criteria for these singularities of extended CMC surfaces in
other semi-Riemanian spaceforms.
However, the above previous studies did not consider corank two singularities of such sur-

faces. It is well-known that the corank two singularities appear even on CMC surfaces in



5

Riemannian spaceforms. Thus in this thesis, we consider the criteria for the corank two sin-
gularities, especially D4-singularities.
For CMC H ̸= 0 surfaces in R3 and R2,1, the following fact is known. (For the definition

of f̂ t, see (6.1.3).)

Fact 0.0.2 ([35, 45]). Let f be a conformal (spacelike) CMC surface in R3 (or R2,1) with
mean curvature H > 0, unit normal vector ν and Hopf differential factor Q, and let p be an
umbilic point of f . Then for t = 1/H, the parallel transform f̂ t of f becomes a conformal
(spacelike) CMC surface in R3 (or R2,1) with mean curvature −H and Hopf differential factor

−Q. Moreover, f̂ t has a corank two singularity at p.

For CMC surfaces in the spherical 3-space S3, hyperbolic 3-space H3, de Sitter 3-space S2,1
and anti-de Sitter 3-space H2,1, the following is known. (For definitions of f̂ t and f̌ t, see
(6.1.4) and (6.1.5).)

Fact 0.0.3 ([20, 24]). Let f : U →M3 be a conformal (spacelike) CMC H immersion and ν
its unit normal vector.

(1) If M3 = H3 or S2,1 with H > 1, then for t = arccoth(H), f̂ t becomes a conformal
(spacelike) CMC surface in M3 with mean curvature −H.

(2) If M3 = H3 (resp. S2,1) with 0 < H < 1, then for t = arctanh(H), f̌ t = ν̂t becomes a
conformal spacelike CMC surface in S2,1 (resp. H3) with mean curvature −H.

(3) If M3 = S3 or H2,1 with mean curvature H > 0, then for t = arccot(H), f̂ t is a
conformal (spacelike) CMC surface in M3 with mean curvature −H. Moreover, if f is a
conformally immersed minimal (resp. maximal) surface, then ν is a conformal minimal
(resp. maximal) surface in M3 and f is a unit normal vector to ν.

By these facts, considering parallel transforms of CMC surfaces naturally emphasizes their
umbilic points, and parallel transforms play an important role in understanding relations
between umbilic points and corank two singularities. Moreover, by Facts 0.0.2 and 0.0.3, we
can start to consider a regular CMC surface f with an umbilic point instead of a CMC surface
f̂ (or f̌) with a D4-singularity via parallel transform. Thus, in this thesis, we study (spacelike)
CMC surfaces with D4-singularities in Riemannian and semi-Riemannian spaceforms, and we
give criteria for D4-singularities in terms of the Hopf differential factors (Theorem 6.2.1). For
minimal surfaces, we give conditions for which they have D4-singularities by using Weierstrass
data (Theorem 6.2.2).
For surfaces in S3, H3, S2,1 or H2,1, their unit normal vectors form surfaces. Thus we can

compare curvatures of CMC surfaces with curvatures of their unit normal vectors (Proposition
6.3.1). Moreover, we show a kind of duality between parallel transforms of CMC surfaces and
their unit normal vectors (Proposition 6.3.2).

• Chapter 7. The study of minimal surfaces with planar curvature lines is a classical subject,
having been studied by Bonnet, Enneper, and Eisenhart in the late 19th century, as recorded
in [14], [26], and [27], respectively. The subject was further studied by Nitsche in [69], where
he gave a full classification of such surfaces. Nitsche showed that families of planar curvature
lines transform into orthogonal families of circles on the unit sphere S2 under the Gauss map,
and by analyzing orthogonal systems of circles, he classified different types of minimal surfaces
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with planar curvature lines, which we will state here along with their respective Weierstrass
data.

Fact 0.0.4. A minimal surface in Euclidean space R3 with planar curvatures lines must be a
piece of one, and only one, of

– a plane (0, 1 dz),

– a catenoid (ez, e−z dz),

– an Enneper surface (z, 1 dz), or

– a surface in the Bonnet family {(ez + t, e−z dz), t > 0}

up to isometries and homotheties of R3.

In fact, planes can also be considered as spheres with infinite radius. Thus, minimal sur-
faces with planar curvature lines can be thought of as a special case of minimal surfaces with
spherical curvature lines. There are many works focused on such surfaces, including [23] and
[95].
On the other hand, Thomsen studied surfaces with zero mean curvature which are also

affine minimal. In [88], he classified such surfaces using the fact that the families of asymp-
totic lines of these surfaces transformed into orthogonal families of circles on the unit sphere
under the Gauss map. He also mentioned that since the asymptotic lines correspond to the
curvature lines of the conjugate surface, minimal surfaces that are also affine minimal are
conjugate surfaces of minimal surfaces with planar curvature lines. Building on the result of
Thomsen, Schaal showed that the plane and the Enneper surface can be attained as a limit of
Thomsen surfaces in [85], and Barthel, Volkmer, and Haubitz were able to join these surfaces
into a one-parameter family of surfaces using an analytical approach in [5].
It is also possible to attain a deformation between minimal surfaces with planar curvature

lines using the Goursat transformation introduced in [37] and [38]. The Goursat transforma-
tion transforms minimal surfaces to minimal surfaces; additionally, the transformation not
only maps curvature lines to curvature lines but also preserves the planar curvature line con-
dition, as seen in [42], [66], or [75]. However, one may not transform a non-planar minimal
surface into a plane via Goursat transformations alone.
Meanwhile, non-zero constant mean curvature (CMC) surfaces with planar curvature lines

also have been studied extensively, as in [1], [93], [94]. In particular, Wente constructed non-
trivial examples of compact CMC surfaces, called Wente tori in [94]. Then in [1], Abresch gave
a classification of all CMC surfaces with planar curvature lines including the Wente tori and
cylindrical ended bubbletons, by solving a system of partial differential equations. Similarly,
in [93] Walter considered explicit parametrizations of Wente tori, by showing the existence a
notion of axes.
In this thesis, to classify minimal surfaces in R3 with planar curvature lines, we propose

an alternative method to using orthogonal systems of circles. In particular, we utilize the
method analogous to the approach taken in [1], [5], and [93], modified for the subject at hand.
In Section 7.1, we first obtain and solve a system of partial differential equations describing
the metric function, similar to the method used in [1] and [5]. Then, following [93], we prove
the existence of axial directions of these surfaces, using them to recover the Weierstrass data,
and ultimately their parametrizations. In Section 7.2, we use the results from the previous
section to obtain a single-parameter deformation of all minimal surfaces preserving the planar
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curvature line condition. Finally as the main result, we state the classification, parametriza-
tion, and deformation of all minimal surfaces with planar curvature lines (see Theorem 7.2.1
and Figure 7.2).

• Chapter 8. In the smooth (or continuous) case, surfaces governed by some integrable equa-
tion, like constant negative Gaussian curvature surfaces and non-zero constant mean curvature
surfaces, have been well studied. When studying such surfaces, it is useful to describe 2 × 2
matrix representations and matrix-valued partial differential equations called Lax pairs. In
particular, as mentioned before, applying matrix-splitting theorems, Dorfmeister, Pedit, Wu
[25] established the generalized Weierstrass representation for smooth CMC surfaces in Eu-
clidean 3-space R3 (regarding the cases of smooth CMC surfaces in spherical 3-space S3 and
hyperbolic 3-space H3, see [10], [30] for example), now called the DPW method for smooth
CMC surfaces.
Stepping away from smooth surface theory, there has been recent progress on discrete

surface theory. In the last three decades, using integrable systems techniques, discrete sur-
face theory has been developed. Burstall, Hertrich-Jeromin, Rossman, Santos [19] described
discrete CMC surfaces in any 3-dimensional Riemannian spaceform and gave several new ex-
amples of discrete CMC surfaces, and Bobenko, Hertrich-Jeromin, Lukyanenko [11] gave a
curvature theory for discrete surfaces in Riemannian spaceforms (see also [18]). Due to these
works, we are able to treat discrete surfaces in 3-dimensional Riemannian spaceforms. In
particular, constructing discrete CMC surfaces is one of the central topics in the study of
discrete surface theory. In fact, Bobenko and Pinkall [9] introduced a Weierstrass representa-
tion for discrete minimal surfaces in R3, and Hertrich-Jeromin [40] derived a Weierstrass-type
representation for discrete CMC 1 surfaces in H3.
Bobenko, Pinkall [12] described Lax pairs for discrete CMC surfaces in R3 and gave a Cauchy

problem for them (see also [41]). Applying matrix-splitting formulae (see also Propositions
8.3.1, 8.3.2 here), Hoffmann [43] gave a construction for discrete non-zero CMC surfaces in
R3. This method is called the discrete DPW method for discrete CMC surfaces in R3. On
the other hand, although discrete CMC surfaces became treatable recently, the discrete DPW
method for discrete CMC surfaces in other 3-dimensional Riemannian spaceforms had not yet
been considered.
In this chapter, we give the discrete DPW method for discrete CMC surfaces in S3 and H3,

which is a generalization of the work by Hoffmann [43], and give several examples. In the
smooth case, we can choose a common Lax pair for R3, S3 and H3. Also in the discrete case,
using the same Lax pair as in R3, we will show that we can construct discrete CMC surfaces
in S3 and H3 and that discrete CMC surfaces given by Lax pairs have mean curvatures (in the
sense of [11] and [18]) that are constant. Our construction covers discrete isothermic surfaces
in S3 with any constant mean curvature H, and the discrete isothermic surfaces in H3 with
constant mean curvature H satisfying |H| > 1.
As an application, we will also construct discrete constant positive Gaussian curvature

surfaces by taking parallel surfaces of discrete CMC surfaces, and look at their singulari-
ties. In the smooth case, constant Gaussian curvature surfaces generally have singularities
(for example, see [47]), so it is natural to expect that discrete constant positive Gaussian
curvature surfaces have certain configurations of singularities. Based on work by Rossman
and Yasumoto [81], we will analyze singularities of such discrete constant positive Gaussian
curvature surfaces in R3, S3 and H3.
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Chapter 1

The DPW method for spacelike
CMC surfaces

1.1 The loop group method in R2,1

We consider the DPW method for constructing spacelike CMC surfaces in R2,1 as in [17], [33].
Let R2,1 be the 3-dimensional Lorentz space with Lorentz metric

⟨x, y⟩R2,1 := x1y1 + x2y2 − x0y0 for x = (x1, x2, x0), y = (y1, y2, y0) ∈ R2,1.

We simplify the notation ⟨·, ·⟩ to ⟨·, ·⟩R2,1 , and use its bilinear extension to C3. Let Σ be a simply-
connected domain in C with the usual complex coordinate z = x+ iy, and let f : Σ −→ R2,1 be a
conformally immersed spacelike surface. Since f is conformal,

⟨fz, fz⟩ = ⟨fz̄, fz̄⟩ = 0, ⟨fz, fz̄⟩ := 2e2u (1.1.1)

for some function u : Σ −→ R. We choose the unit timelike normal vector field N : Σ −→ H2 (H2

is the hyperbolic 2-space in R2,1) of f , and then the mean curvature and Hopf differential are

H =
1

2e2u
⟨fzz̄, N⟩, Q := ⟨fzz, N⟩. (1.1.2)

The Gauss-Codazzi equations are the following form in the CMC cases:

4uzz̄ +QQ̄e−2u − 4H2e2u = 0, Qz̄ = 0. (1.1.3)

The Codazzi equation in (1.1.3) is equivalent to the Hopf differential Q being holomorphic, and
(1.1.3) is invariant with respect to the transformation Q → λ−2Q for λ ∈ S1. When f(x, y) is a
spacelike CMC in R2,1, the spectral parameter λ ∈ S1 allows us to create a 1-parameter family of
CMC surfaces fλ = f(x, y, λ) associated to f(x, y).
To describe the 2×2 matrix representation of R2,1 as in [17], [33], writing su1,1 for the Lie algebra

of the Lie group

SU1,1 :=

{(
α β
β̄ ᾱ

) ∣∣∣∣∣α, β ∈ C, αᾱ− ββ̄ = 1

}
, (1.1.4)

11
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we identify R2,1 with su1,1 via

R2,1 ∋ x = (x1, x2, x0) 7−→
(

ix0 x1 − ix2
x1 + ix2 −ix0

)
∈ su1,1.

The metric becomes, under this identification, ⟨X,Y ⟩ = 1
2 trace(XY ) for X,Y ∈ su1,1.

Let f be a conformal immersed spacelike surface in R2,1 with associated family fλ, and let the
identity matrix and Pauli matrices be as follows:

I :=

(
1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (1.1.5)

Then {σ1, σ2, iσ3} is an orthogonal basis for su1,1 ≈ R2,1. We can define

e1 :=
fλx
|fλx |

=
fλx
2eu

= F̂ σ1F̂
−1, e2 :=

fλy
|fλy |

=
fλy
2eu

= F̂ σ2F̂
−1, N := F̂ iσ3F̂

−1 (1.1.6)

for F̂ = F̂ (z, z̄, λ) ∈ SU1,1. For this F̂ , we get the untwisted 2× 2 Lax pair in R2,1 as follows:

F̂z = F̂ Û , F̂z̄ = F̂ V̂ , where Û =
1

2

(
−uz −iλ−2Qe−u

2iHeu uz

)
, V̂ =

1

2

(
uz̄ −2iHeu

iλ2Q̄e−u −uz̄

)
.(1.1.7)

We change the “untwisted” setting to the “twisted” setting by the following transformation (3.1.4).
Let F be defined by

F̂ = −σ3
(
F−1

)t( √
λ 0
0 1√

λ

)
σ3, (1.1.8)

producing the twisted 2× 2 Lax pair of f in R2,1,

Fz = FU, Fz̄ = FV , where U =
1

2

(
uz 2iλ−1Heu

−iλ−1Qe−u −uz

)
, V =

1

2

(
−uz̄ iλQ̄e−u

−2iλHeu uz̄

)
. (1.1.9)

The following Proposition 1.1.1 gives us a method for determining spacelike CMC H ̸= 0 surfaces
in R2,1 from given data u and Q, by choosing a solution F of (1.1.9) and inserting F into the
Sym-Bobenko type formula (1.1.10).

Proposition 1.1.1 (Sym-Bobenko type formula for spacelike CMC surfaces in R2,1 [17], [33]). Let
Σ be a simply-connected domain in C. Let u and Q solve (1.1.3), and let F = F (z, z̄, λ) be a solution
of the system (1.1.9). Suppose F ∈ SU1,1 for all λ ∈ S1 and one value of z. Then F ∈ SU1,1 for all
z. Defining the following Sym-Bobenko type formulas

f =

[
1

2H
Fiσ3F

−1 +
i

H
λ(∂λF )F

−1

] ∣∣∣∣∣
λ=1

, N = −
[
Fiσ3F

−1
] ∣∣∣
λ=1

, (1.1.10)

f is a conformally parametrized spacelike CMC H ̸= 0 surface in R2,1 with normal N .
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1.2 The loop group method in S2,1 and H2,1

We apply the DPW method to construct spacelike CMC surfaces in S2,1 and H2,1, as in [33].
Let R3,1, resp. R2,2, be the 4-dimensional space with metric ⟨(x1, x2, x3, x4), (y1, y2, y3, y4)⟩ :=

x1y1 + x2y2 + ε · x3y3 − x4y4, where ε = 1 for R3,1, resp. ε = −1 for R2,2. We define the spaceform
S := {x|⟨x, x⟩ = ε}. Thus we obtain S = S2,1 (resp. S = H2,1) when ε = 1 (resp. ε = −1).
Let Σ be a simply-connected domain in C with the usual complex coordinate w = x + iy. Let

f : Σ −→ S be a conformally immersed spacelike surface. Since f is conformal,

⟨fw, fw⟩ = ⟨fw̄, fw̄⟩ = 0, ⟨fw, fw̄⟩ = 2e2u (1.2.1)

for some function u : Σ −→ R. For the unit normal vector field N of f satisfying ⟨N,N⟩ = −1,
⟨fw, N⟩ = ⟨fw̄, N⟩ = 0, we define the mean curvature H and Hopf differential A as follows:

H :=
1

2e2u
⟨fww̄, N⟩, A := ⟨fww, N⟩. (1.2.2)

The Gauss-Codazzi equations are of the following form in the CMC (H2 > ε) cases:

2uww̄ − 2e2u(H2 − ε) +
1

2
AĀe−2u = 0, Aw̄ = 0. (1.2.3)

Making the change of parameter z := 2
√
H2 − ε · w and defining Q by A = −2

√
H2 − ε · e−iψQ

for a real constant ψ, we have equation (1.1.3) with H = ± 1
2 :

4uzz̄ +QQ̄e−2u − e2u = 0, Qz̄ = 0. (1.2.4)

S2,1 and H2,1 and their matrix group representations. We identify R3,1, resp. R2,2, with
the Hermitian symmetric group

{
X ∈M2×2

∣∣X = X̄t
}
, resp. another matrix group, as follows:

R3,1, resp. R2,2 ∋ x = (x1, x2, x3, x4) 7−→
(
x4 + ν · x3 x1 − ix2
x1 + ix2 x4 − ν · x3

)
, (1.2.5)

with ν = 1 for R3,1 and ν = i for R2,2. The metric becomes, under this identification, ⟨X,Y ⟩ =
− 1

2 trace(Xσ2Y
tσ2). In particular, ⟨X,X⟩ = −det(X), and we can identify S2,1, resp. H2,1, with{
X ∈M2×2

∣∣X = X̄t, det(X) = −1
}
=
{
Fσ3F̄

t |F ∈ SL2(C)
}
, (1.2.6)

respectively, with SU1,1, as in (1.1.4) via

H2,1 ∋ x = (x1, x2, x3, x4) 7−→
(
x4 + ix3 x1 − ix2
x1 + ix2 x4 − ix3

)
. (1.2.7)

The Sym-Bobenko type formula in S2,1 and H2,1. Defining F̂ and fλ in the same way as in
(3.1.3), once again we change the “untwisted” setting to the “twisted” setting by the transformation
(3.1.4) defining F . We define the twisted 2× 2 Lax pair of f in S as

Fz = FU, Fz̄ = FV, (1.2.8)

where U and V are as in (1.1.9) with H fixed to be 1
2 .

The following Proposition 1.2.1 gives us a method for determining spacelike CMC H surfaces in
S2,1 with |H| > 1, resp. CMC H surfaces in H2,1 for any value of H, from given data u and Q.
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Proposition 1.2.1 (Sym-Bobenko type formula for spacelike CMC surfaces in S2,1, H2,1 [33]). Let
Σ be a simply-connected domain in C. Let u and Q solve (1.2.4), and let F = F (z, z̄, λ) ∈ SL2(C)
be a solution of the system (1.2.8) such that F (z, z̄, λ) ∈ SU1,1 when λ ∈ S1.

• In the case of S2,1, set F0 = F |
λ=e

q
2 eiψ

for q, ψ ∈ R, q ̸= 0. We define the following Sym-
Bobenko type formulas

f = F0

(
e

1
2 q 0

0 −e− 1
2 q

)
F0

t
, N = −F0

(
e

1
2 q 0

0 e−
1
2 q

)
F0

t
. (1.2.9)

Then, f is a spacelike CMC H = −coth(−q) surface in S2,1 with normal N .

• In the case of H2,1, set F1 = F |λ=eiγ1 and F2 = F |λ=eiγ2 for γ1, γ2 ∈ R and γ1 − γ2 ̸= nπ
(n ∈ Z). We define the following Sym-Bobenko type formulas

f = iF1

(
e

1
2 i(γ1−γ2) 0

0 −e− 1
2 i(γ1−γ2)

)
F2

t
, N = −F1

(
e

1
2 i(γ1−γ2) 0

0 e−
1
2 i(γ1−γ2)

)
F2

t
.(1.2.10)

Then, f is a spacelike CMC H = −cot(γ1 − γ2) surface in H2,1 with normal N .

1.3 Application of the DPW method to S2,1 and H2,1

In this section, we give a description of the DPW method, and apply this method to spacelike CMC
surfaces in S2,1 and H2,1 as in [17], [33]. First, we define the potential ξ:

Definition 1.3.1 (holomorphic potential [17], [25], [30]). Let Σ be a simply-connected domain,
z ∈ Σ and λ ∈ C. A holomorphic potential ξ is of the form

ξ := Adz, A = A(z, λ) =
∞∑

j=−1

Aj(z)λ
j , (1.3.1)

where each Aj(z) is a 2× 2 matrix that is independent of λ, is holomorphic in z ∈ Σ, is traceless,
is a diagonal (resp. off-diagonal) matrix when j is even (resp. odd), and the upper-right entry of
A−1(z) is never zero.

Given a holomorphic potential ξ, we then solve the equation

dφ = φξ, φ(z∗) = I for φ ∈ ΛSL2(C), (1.3.2)

where ΛSL2(C) =
{
φ(λ) ∈M2×2

∣∣∣φ : S1 C∞

−−−−→ SL2(C), φ(−λ) = σ3φ(λ)σ3

}
for some choice of

initial point z∗ ∈ Σ.
We will use the following “SU1,1-Iwasawa splitting” defined on an open dense subset B1,1, called

the Iwasawa big cell, of this loop group ΛSL2(C). The following proposition was proven in [17].

Proposition 1.3.1 (SU1,1-Iwasawa splitting [17]). For all φ ∈ B1,1, there exist unique loops F and
B such that

φ = F ·B, (1.3.3)
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where
F ∈ ΛSU1,1 ∪

{(
0 λi

λ−1i 0

)
· ΛSU1,1

}
, B ∈ Λ+

RSL2(C),

ΛSU1,1 =
{
φ(λ) ∈M2×2

∣∣∣φ : S1 C∞

−−−−→ SU1,1, φ(−λ) = σ3φ(λ)σ3

}
,

Λ+
RSL2(C) =

B+(λ) ∈ ΛSL2(C)

∣∣∣∣∣∣
B+ extends holomorphically to D,

B+(0) =

(
ρ 0
0 ρ−1

)
for some ρ > 0.

.
After obtaining a solution φ of (1.3.2), we restrict to B1,1 and split φ as in (1.3.3). We then input

F into the “Sym-Bobenko type formula” in (1.1.10) (resp. (1.2.9) or (1.2.10)), and the following
proposition tells us we have a conformally immersed CMC surface f = f(z, z̄) in R2,1 (resp. S2,1
or H2,1).

Proposition 1.3.2 ([17]). Let ξ be a holomorphic potential as in (3.3.1) over a simply-connected
domain Σ in C, and let φ : Σ −→ ΛSL2(C) be a solution of (1.3.2). Define the open set Σo :=
φ−1(B1,1) ⊂ Σ, and consider the unique SU1,1-Iwasawa splitting on Σo as in (1.3.3).

Then, after a conformal change of parameter z and appropriate choice of definitions for u, H
and Q, we have that F satisfies the Lax pair (1.1.9).

The converse of this recipe, that any conformally immersed CMC H ̸= 0 (resp. H = −coth(−q)
or H = −cot(γ1 − γ2)) surface in R2,1 (resp. S2,1 or H2,1) has a holomorphic potential, also holds,
but we will not prove that here, see [17] [33] for details.

1.4 Visualization of surfaces in S2,1 and H2,1

In the next section, we introduce some examples of CMC surfaces in S2,1 and H2,1. At that point,
we wish to visualize CMC surfaces in S2,1 and H2,1, using appropriate models for S2,1 and H2,1, and
we consider those models here. These models are already known, and we describe them explicitly
here, in the context of our setting.

The hollow ball model of S2,1. To visualize CMC surfaces in S2,1, we use the hollow ball
model of S2,1, as in [29], [54], [61], [96]. We get the following identification (bijection):

S2,1 ∋ (x1, x2, x3, x4) 7−→

(
earctan(x4)√

1 + x24
x1,

earctan(x4)√
1 + x24

x2,
earctan(x4)√

1 + x24
x3

)
∈ H. (1.4.1)

In this way, S2,1 is identified with the hollow ball H. The hollow ball model is the set {(y1, y2, y3) ∈
R3|e−π < y21 + y22 + y23 < eπ}.

The cylindrical model of H2,1. To visualize CMC surfaces in H2,1, we use a model for H2,1,
which we call the cylindrical model, like in [15] and [45]. It is actually only a model for the universal
cover of H2,1, but has the advantage that certain symmetries become more apparent. We have the
following homeomorphism and universal covering: H2,1 ≈ H2×S1 ⊂ H2×R =: C. This means that
we have the following covering:

H2,1 ∋ (x1, x2, x3, x4) 7−→

(
x1

1 +
√
x23 + x24

,
x2

1 +
√
x23 + x24

,Arg

(
x3 + ix4√
x23 + x24

))
∈ C. (1.4.2)

The cylindrical model is the set
{
(y1, y2, y3) ∈ R3|0 ≦ y21 + y22 < 1

}
.
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1.5 Examples

Here we introduce some examples of CMC surfaces in S2,1 and H2,1, using the DPW method.
Round cylinders. Here we show how the DPW method makes round cylinders. Defining

ξ := λ−1

(
0 1
1 0

)
dz (1.5.1)

for z = x+ iy ∈ Σ = C and λ ∈ S1, we solve dφ = φξ and determine F , obtaining

φ =

(
cosh(λ−1z) sinh(λ−1z)
sinh(λ−1z) cosh(λ−1z)

)
, F =

(
cosh(λ−1z + z̄λ) sinh(λ−1z + z̄λ)
sinh(λ−1z + z̄λ) cosh(λ−1z + z̄λ)

)
. (1.5.2)

Totally umbilical surfaces. The DPW method produces totally umbilical surfaces via

ξ := λ−1

(
0 1
0 0

)
dz, (1.5.3)

for z ∈ Σ = C and λ ∈ S1, we solve dφ = φξ and determine F (φ ∈ B1,1 when |z| ̸= 1), obtaining

φ = exp

(
zλ−1

(
0 1
0 0

))
=

(
1 zλ−1

0 1

)
, F =

1√
1− |z|2

(
1 zλ−1

z̄λ 1

)
∈ ΛSU1,1.

Remark 1.5.1. These surfaces in S2,1 and H2,1 are not compact, but are totally umbilic.

q = 1, ψ = 0

γ1 = π
3 , γ2 = π

6

q = 2, ψ = 0

γ1 = π
3 , γ2 = π

6

Fig. 1.1: The left two images are round cylinders in S2,1 (resp. H2,1), and right two image are
totally umbilical surfaces in S2,1 (resp. H2,1).



Chapter 2

Singularity theory for spacelike
CMC surfaces

2.1 Theory for CMC surfaces with singularities

In this section, we consider the singularities of CMC surfaces in R2,1, S2,1 and H2,1, and we show
criteria for cuspidal edges, swallowtails and cuspidal cross caps, using some geometric notions.
Relationships between Iwasawa splitting and singularities. We first make some remarks
about relationships between the DPW method and singularities. We define small cells as follows:

Definition 2.1.1 ([16], [17]). Define, for a positive integer m ∈ Z,

ωm =

(
1 0

λ−m 1

)
: m odd, ωm =

(
1 λ1−m

0 1

)
: m even.

Then the group ΛSL2(C) is a disjoint union

ΛSL2(C) = B1,1

⊔
m∈Z+

Pm, where B1,1 :=

(
ΛSU1,1 ∪

{(
0 λi

λ−1i 0

)
· ΛSU1,1

})
· Λ+

RSL2(C),

is called the Iwasawa big cell, and the m-th small cell is Pm := ΛSU1,1 · ωm · Λ+
RSL2(C).

Using these small cells, we have the following proposition for the case of R2,1, as in [16], [17].

Proposition 2.1.1 ([16], [17] Theorem 4.2). Let Σ be a simply connected domain, and let φ : Σ −→
ΛSL2(C). Define Σ0 = φ−1(B1,1), C1 = φ−1(P1) and C2 = φ−1(P2). Then:

1. The sets Σ0 ∪ C1 and Σ0 ∪ C2 are both open subsets of Σ. The sets Ci are each locally given
as the zero set of a non-constant real analytic function R2 −→ R.

2. All components of the matrix F obtained by Proposition 1.3.1 on Σ0, and evaluated at λ0 ∈ S1,
blow up as z approaches a point z0 in either C1 or C2. In the limit, the unit normal vector
N , to the corresponding surface in R2.1, becomes asymptotically lightlike, i.e. its length in the
Euclidean R3 metric approaches infinity.

17
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3. The CMC surface f ∈ R2,1 given by the DPW method extends to a real analytic map Σ0 ∪
C1 −→ R2,1, but is not immersed as points z0 ∈ C1.

4. The CMC surface f ∈ R2,1 given by the DPW method diverges to ∞ as z → z0 ∈ C2.
Moreover, the induced metric on the surface blows up as such a point in the coordinate domain
is approached.

By the above proposition, at a singular point, we cannot split φ to F · B for F ∈ ΛSU1,1, and
the procedure of the DPW method does not work. Thus, we consider the claims of Proposition
1.1.1 and 1.2.1 directly, without using the Iwasawa splitting. Our recipe is as follows:

1. First we choose a real constant H ̸= 0 (resp. H = 1/2) and holomorphic function Q, for the
case of R2,1 (resp. S2,1 and H2,1).

2. We define the metric function g = eu satisfying (1.1.3).

3. We obtain F by solving the system (1.1.9).

4. Finally, we get a conformal spacelike CMC surface f in R2,1 (resp. S2,1 or H2,1) by inputting
F into the Sym-Bobenko type formula (1.1.10) (resp. (1.2.9) or (1.2.10)).

Criteria for singularities of spacelike CMC H ̸= 0 surfaces in R2,1. Here we introduce
criteria for cuspidal edges, swallowtails and cuspidal cross caps of CMC H ̸= 0 surfaces in R2,1, as
in [91]. However, we use a different approach from [91] because we start not with harmonic maps,
but with H, Q and g = eu.
Let H ̸= 0 be a real constant, and let Q be a holomorphic function. Let g = eu be a solution of

(1.1.3). Here, in order to match [91], we use the untwisted setting. Thus we define F̂ satisfying the
system (1.1.7) for λ = 1. For this F̂ , we have the following untwisted version of Proposition 1.1.1:

Proposition 2.1.2 (untwisted version of Proposition 1.1.1). Let Σ be a simply-connected domain
in C. Let u and Q solve (1.1.3), and let F̂ = F̂ (z, z̄, λ) be a solution of the system (1.1.7). Suppose
F̂ ∈ SU1,1 for all λ ∈ S1 and one value of z. Then F̂ ∈ SU1,1 for all z where F̂ is bounded, and F̂
is bounded wherever u and Q are bounded. Defining the following Sym-Bobenko type formulas

f =

[
− 1

H
F̂ iσ3F̂

−1 +
i

H
λ(∂λF̂ )F̂

−1

] ∣∣∣∣∣
λ=1

, N =
[
F̂ iσ3F̂

−1
] ∣∣∣
λ=1

. (2.1.1)

f is a conformally parametrized spacelike CMC H ̸= 0 surface in R2,1 with normal N .

We denote F̂ = F̂ (z, z̄) = e−
u
2

(
ā b
b̄ a

)
∈ SU1,1, where |a|2 − |b|2 = eu = g. So we define h

and ω such that h := − ia
b and ω := −2b2, and metric is

ds2 = 4g2dzdz̄ = (1− |h|2)2|ω|2dzdz̄. (2.1.2)

This implies that, wherever ds2 is finite, f has a singularity if and only if h ∈ S1 or ω = 0. However,
by (2.1.1) we have

fz =
ω

2

(
1 + h2, i(1− h2),−2h

)
, fz̄ =

ω̄

2

(
1 + h̄2,−i(1− h̄2),−2h̄

)
, (2.1.3)

and ω = 0 means that f has an isolated singular point there. Here we consider only extended CMC
surfaces defined by the following, as in [91].
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Definition 2.1.2 ([91]). A CMC surface f restricted to the subdomain D = {p ∈ Σ | ds2 <∞} is
called an extended CMC surface if ω, resp. h2ω, is never zero on D when |h| <∞, resp. |h| = ∞.

Remark 2.1.1. By this definition, any point p ∈ Σ is singular only when |h(p)| = 1. (See [91].)

Remark 2.1.2. By [65], the normal vector N of spacelike CMC surface f satisfies that Nzz̄ is

parallel to N at each regular point p. This implies that hzz̄ +
2h̄

1−|h|2hzhz̄ = 0 meaning that h is a

harmonic map at each regular point p. Similarly, Nz = −Hfz − 1
2Qe

−2ufz̄ implies ω = h̄z
(1−|h|2)2 at

each regular point p. However, these Equations do not necessarily hold at singular points.

Now we have the following criteria for singularities of spacelike extended CMC H ̸= 0 surfaces,
as in [91]. However, since we use different notations and a different approach, we give a sketch
of the proof here. The notion of A-equivarece used in this theorem is fundamental in singularity
theory, and is explained in [32], [91], [92].

Theorem 2.1.1 ([91]). Let Σ be a simply connected domain, and let f : Σ −→ R2,1 be a spacelike
extended CMC H ̸= 0 surface. Then:

1. f is a front at a singular point p ∈ Σ (i.e. h(p) ∈ S1) if and only if Re
(
hz
h2ω

) ∣∣
p
̸= 0. If this

is the case, p is a non-degenerate singular point.

2. f is A-equivalent to a cuspidal edge at a singular point p ∈ Σ if and only if

Re

(
hz
h2ω

) ∣∣∣∣
p

̸= 0 and Im

(
hz
h2ω

) ∣∣∣∣
p

̸= 0.

3. f is A-equivalent to a swallowtail at a singular point p ∈ Σ if and only if

Re

(
hz
h2ω

) ∣∣∣∣
p

̸= 0, Im

(
hz
h2ω

) ∣∣∣∣
p

= 0 and Re

{(
hz
h

)(
hz
h2ω

)
z

}∣∣∣∣∣
p

̸= Re

{(
hz
h

)(
hz
h2ω

)
z̄

} ∣∣∣∣
p

.

4. f is A-equivalent to a cuspidal cross cap at a singular point p ∈ Σ if and only if

Re

(
hz
h2ω

) ∣∣∣∣
p

= 0, Im

(
hz
h2ω

) ∣∣∣∣
p

̸= 0 and Im

{(
hz
h

)(
hz
h2ω

)
z

}∣∣∣∣∣
p

̸= Im

{(
hz
h

)(
hz
h2ω

)
z̄

} ∣∣∣∣
p

.

Proof. The essential idea behind proving this is to input h, ω into the Kenmotsu type representation
as in [2] and to compute the same way as in [91].

Here we give equivalent conditions for Theorem 2.1.1, as follows (in this corollary ⟨fz, fz⟩C3 :=
1
4 (|fx|

2
R3 − |fy|2R3)− i

2 ⟨fx, fy⟩R3 is the bilinear extension of the R3 inner product) :

Corollary 2.1.1. Let Σ be a simply connected domain, and let f : Σ −→ R2,1 be a spacelike
extended CMC H ̸= 0 surface, given by a real constant H, a holomorphic function Q and a metric
function g. Then:

1. f is a front at a singular point p ∈ Σ if and only if Re
(

Q
⟨fz,fz⟩C3

) ∣∣∣
p
̸= 0. If this is the case,

p is a non-degenerate singular point.
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2. f is A-equivalent to a cuspidal edge at a singular point p ∈ Σ if and only if

Re

(
Q

⟨fz, fz⟩C3

) ∣∣∣∣
p

̸= 0 and Im

(
Q

⟨fz, fz⟩C3

) ∣∣∣∣
p

̸= 0.

3. f is A-equivalent to a swallowtail at a singular point p ∈ Σ if and only if

Re

(
Q

⟨fz, fz⟩C3

) ∣∣∣∣
p

̸= 0, Im

(
Q

⟨fz, fz⟩C3

) ∣∣∣∣
p

= 0 and

Re

[
Qz⟨fz, fz⟩C3 − 2Q⟨fzz, fz⟩C3

⟨fz, fz⟩2C3

· Q

⟨fz̄, fz̄⟩C3

] ∣∣∣∣
p

̸= Re

[
−2Q⟨fzz̄, fz⟩C3

⟨fz, fz⟩2C3

· Q

⟨fz, fz⟩C3

] ∣∣∣∣
p

.

4. f is A-equivalent to a cuspidal cross cap at a singular point p ∈ Σ if and only if

Re

(
Q

⟨fz, fz⟩C3

) ∣∣∣∣
p

= 0, Im

(
Q

⟨fz, fz⟩C3

) ∣∣∣∣
p

̸= 0 and

Im

[
Qz⟨fz, fz⟩C3 − 2Q⟨fzz, fz⟩C3

⟨fz, fz⟩2C3

· Q

⟨fz̄, fz̄⟩C3

] ∣∣∣∣
p

̸= Im

[
−2Q⟨fzz̄, fz⟩C3

⟨fz, fz⟩2C3

· Q

⟨fz, fz⟩C3

] ∣∣∣∣
p

.

Proof. Using the Hopf differential Q = ⟨fzz, N⟩R2,1 = ωhz and ⟨fz, fz⟩C3 = 2ω2h2, we draw the
conclusions from Theorem 2.1.1.

Criteria for singularities of spacelike CMC H2 > 1 surfaces in S2,1. In this section, we
study singularities of spacelike CMC H (H2 > 1) surfaces f in S2,1, similarly to Theorem 2.1.1 for
spacelike CMC H (H ̸= 0) surfaces in R2,1. However, in R2,1 we used λ ∈ S1 in the Sym-Bobenko
type formula and thus the solution F̂ in (1.1.7) is in SU1,1 for that λ, while in S2,1 this will not be
the case. In the case of S2,1, the λ we use in the Sym-Bobenko type formula is not in S1, and so
F̂ |λ ̸∈ SU1,1, and this creates complications for attempting to imitate Theorem 2.1.1. We remedy

this problem by using the s-spectral deformation to shift to a new CMC surface f̂ in S2,1 of the same
type where arguments like those proving Theorem 2.1.1 can be used. Noting that, by Lemma 4.1.1,
as we have not restricted the full class of surfaces being considered, we are still proving a result
(Theorem 4.1.3) that applies to all spacelike CMC surfaces in S2,1 with constant mean curvature
greater than 1 in absolute value. Here we introduce criteria for cuspidal edges, swallowtails and
cuspidal cross caps on CMC H2 > 1 surfaces in S2,1.
Let f : Σ −→ S2,1 be a spacelike CMC surface for a simply-connected domain Σ ⊂ C, with the

metric ds2 = 4g2dwdw̄ = 4e2udwdw̄ and unit normal vector N . First, we consider the moving
frame F such that

f = Fσ3F
t
,
fx
2eu

= Fσ1F
t
,
fy
2eu

= Fσ2F
t
, N = FF

t
.

Then, we have

Fw = FA, Fw̄ = FB, where A =
1

2

(
−uw −e−uA

2eu(1−H) uw

)
, B =

1

2

(
uw̄ −2eu(1 +H)

−e−uĀ −uw̄

)
. (2.1.4)

For this F, the compatibility condition implies the Gauss and Codazzi equations (1.2.3). We
define s-spectral deformations as follows:
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Definition 2.1.3 ([90]). The s-spectral deformation of the CMC surface f in S2,1 is the deformation
defined by (1+H) → s(1+H), (1−H) → s−1(1−H) in Equations (4.1.1) for the parameter s > 0.

The s-spectral deformation maps CMC surfaces to other CMC surfaces conformally, as follows
(the analogous result in the case of H3 was proven in [90]):

Theorem 2.1.2. For all s ∈ R>0, the s-spectral deformation deforms a surface f in S2,1, with
mean curvature H, metric ds2 = 4e2udwdw̄ and Hopf differential A, into a surface fs with mean

curvature Hs = s(1+H)−s−1(1−H)
s(1+H)+s−1(1−H) , metric 4e2u

s

dwdw̄ = 4k2e2udwdw̄ and Hopf differential As = kA

for k = s(1+H)+s−1(1−H)
2 .

Proof. We notice that the s-spectral deformation implies that{
k(1 +Hs) = s(1 +H)
k(1−Hs) = s−1(1−H)

, equivalently

{
k = s(1+H)+s−1(1−H)

2

Hs = s(1+H)−s−1(1−H)
s(1+H)+s−1(1−H) .

Then (1.2.3) holds with ε = 1, and u, A replaced by us = u+log|k|, As = kA. Thus the deformation
family of surfaces exists.

Lemma 2.1.1. (fs)
1
s = f .

Proof. The 1
s -spectral deformation of fs is k

1
s

(
1 + (Hs)

1
s

)
= 1

s (1 +Hs)

k
1
s

(
1− (Hs)

1
s

)
= s(1−Hs)

, equivalently

{
k

1
s = s−1(1+Hs)+s(1−Hs)

2 = 1
k

(Hs)
1
s = s−1(1+Hs)−s(1−Hs)

s−1(1+Hs)+s(1−Hs) = H.

Similarly we have (As)
1
s = A, (us) 1

s = u.

We define the (twisted) s-spectral Lax pair.

Definition 2.1.4 (s-spectral Lax pair). We define Fs as a solution of the following system:

Fsw = FsAs, Fsw̄ = FsBs,

where

As :=

(
0 1
1 0

)
1

2

(
−uw −e−uA

2eus−1(1−H) uw

)(
0 1
1 0

)
=

1

2

(
uw 2eus−1(1−H)

−e−uA −uw

)
,

Bs :=

(
0 1
1 0

)
1

2

(
uw̄ −2eus(1 +H)

−e−uĀ −uw̄

)(
0 1
1 0

)
=

1

2

(
−uw̄ −e−uĀ

−2eus(1 +H) uw̄

)
.

Further, we define the form Ωs := (Fs)−1dFs.

Theorem 2.1.3. For f given by the frame F, and mean curvature H2 > 1, there exists a member

of the s-spectral deformation, for the special value s = s0 :=
√

H−1
H+1 , that generates a frame F̃ =

Fs0 ∈ SU1,1. This frame F̃ represents the lift of a harmonic map in H2.
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Proof. It is easy to see that choosing s = s0 :=
√

H−1
H+1 gives the only deformation that makes the

Maurer-Cartan form become an su1,1-valued form.

As s approaches s0, the mean curvature goes to infinity, and f̃ := F̃σ3F̃
t

degenerates to a point,
but there still exists a map F̃ from Σ to SU1,1 such that F̃−1dF̃ = Ω̃ defined by the following (4.1.2).

The harmonic map is the natural projection of the adjusted frame F̃ (defined just below) to H2.

Definition 2.1.5. We call F̃ : Σ −→ SU1,1 the adjusted frame of F and the form Ω̃ = F̃−1dF̃ the
adjusted Maurer-Cartan form, where

Ω̃ =
1

2

(
uw −2eu

√
H2 − 1

−e−uA −uw

)
dw +

1

2

(
−uw̄ −e−uĀ

−2eu
√
H2 − 1 uw̄

)
dw̄ =: Ãdw + B̃dw̄. (2.1.5)

Theorem 2.1.4. Let Σ be a simply-connected domain. Let a > 0 (a ̸= 1) be an arbitrary real
constant, and let

β1(a) :=
a−1 − 1

2

(
0 −2eu

√
H2 − 1

0 0

)
dw, β2(a) :=

a− 1

2

(
0 0

−2eu
√
H2 − 1 0

)
dw̄.

Define Ω̂ := Ω̃ + β1(a) + β2(a). Then we have the following:

1. dΩ̂ + 1
2 [Ω̂ ∧ Ω̂] = 0.

2. If F̂ is a SL2(C)-valued solution of Ω̂ = F̂−1dF̂, then f̂ = F̂σ3F̂
t

is a conformal spacelike CMC

surface with Ĥ = a2+1
a2−1 .

Proof. For s =
√

H−1
H+1a ∈ R>0, we have Ωs = Ω̂, by direct computation. Thus we have existence of

f̂ , and Ĥ = Hs = a2+1
a2−1 .

Remark 2.1.3. Defining G := F̂ · F̃−1, we have Gσ3Ḡ
t = F̂σ3F̂

t

= f̂ .

As noted previously, we will consider the criteria for singularities of f̂ instead of f .

We denote F̃ = F̃(w, w̄) = e−
u
2

(
u1 u2
u2 u1

)
∈ SU1,1, where g = eu is the metric function of f , and

|u1|2−|u2|2 = g. So we define h := u2

u1
and ω := u21. By Remark 4.1.1, we have f̂ = F̂σ3F̂

t

= Gσ3Ḡ
t.

Setting k̂ = (a−a−1)
√
H2−1

2 , we get that f̂ has metric

ds2 := 4ĝ2dwdw̄ = 4k̂2(1− |h|2)2|ω|2dwdw̄.

Thus this implies that, wherever ds2 is finite, f̂ has a singularity if and only if h ∈ S1 or ω = 0.
However we consider only extended CMC surfaces f̂ defined in the same way as Definition 2.1.2.
We have the following criteria for singularities of spacelike extended CMC Ĥ2 > 1 surfaces in

S2,1. The proof of Theorem 4.1.3 is parallel to the proof of Theorem 3.1 in [32]. (Also see [91],
[92].)

Theorem 2.1.5. Let Σ be a simply connected domain, and let f̂ : Σ −→ S2,1 be a spacelike extended
CMC Ĥ2 > 1 surface, given by Theorem 2.1.4. Then:
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1. A point p ∈ Σ is a singular point if and only if h ∈ S1.

2. f̂ is a front at a singular point p ∈ Σ if and only if Re
(
hw
h2ω

) ∣∣
p
̸= 0. If this is the case, p is

non-degenerate singular point.

3. f̂ is A-equivalent to a cuspidal edge at a singular point p ∈ Σ if and only if

Re

(
hw
h2ω

) ∣∣∣∣
p

̸= 0 and Im

(
hw
h2ω

) ∣∣∣∣
p

̸= 0.

4. f̂ is A-equivalent to a swallowtail at a singular point p ∈ Σ if and only if

Re

(
hw
h2ω

) ∣∣∣∣
p

̸= 0, Im

(
hw
h2ω

) ∣∣∣∣
p

= 0 and Re

{(
hw
h

)(
hw
h2ω

)
w

}∣∣∣∣∣
p

̸= Re

{(
hw
h

)(
hw
h2ω

)
w̄

} ∣∣∣∣
p

.

5. f̂ is A-equivalent to a cuspidal cross cap at a singular point p ∈ Σ if and only if

Re

(
hw
h2ω

) ∣∣∣∣
p

= 0, Im

(
hw
h2ω

) ∣∣∣∣
p

̸= 0 and Im

{(
hw
h

)(
hw
h2ω

)
w

}∣∣∣∣∣
p

̸= Im

{(
hw
h

)(
hw
h2ω

)
w̄

} ∣∣∣∣
p

.

Proof. (1) This is clear (like in Remark 4.1.2).
(2) First we define

ν := G

(
1 + |h|2 2h̄

2h 1 + |h|2
)
Ḡt, (2.1.6)

and this ν is the Lorentz normal vector field of f̂ on the regular set of f̂ . This is not a unit vector,
but extends smoothly across the singular set. By Lemma 1.6 of [32], f̂ is a front at a singular

point p if and only if ν is not proportional to DR3,1

η ν at p, for the null direction η of f̂ and the

canonical connection DR3,1

. Since df̂ = G

{
2k̂

(
−h −1
−h2 −h

)
ωdw − 2k̂

(
h̄ h̄2

1 h̄

)
ω̄dw̄

}
Ḡt, the

null direction is η = i
hω∂w − i

h̄ω̄
∂w̄ at a singular point p. We also have, at p,

DR3,1

η ν = G

{
i

hω

(
hwh̄ 0
2hw hwh̄

)
− i

h̄ω̄

(
hh̄w̄ 2h̄w̄
0 hh̄w̄

)}
Ḡt.

On the other hand, we have ⟨ν, ν⟩ = ⟨DR3,1

η ν, ν⟩ = 0 at p, thus DR3,1

η ν is proportional to ν if

and only if DR3,1

η ν is a null vector, which is equivalent to

0 = det(DR3,1

η ν) = 4

(
Re

(
hw
h2ω

))2

. (2.1.7)

By the identification between R3,1 and the Hermitian symmetric group (1.2.5), we have

G−1f̂(Ḡt)−1 = (0, 0, 1, 0), G−1f̂w(Ḡ
t)−1 = −k̂ω(h2 + 1,−i(h2 − 1), 0, 2h),

G−1f̂w̄(Ḡ
t)−1 = −k̂ω̄(h̄2 + 1,−i(1− h̄2), 0, 2h̄),
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and we define n := GIḠt. This implies that G−1n(Ḡt)−1 = (0, 0, 0, 1). By Proposition 1.2 of [32],
we can define

λ := det(f̂ , f̂x, f̂y,n) = 4k̂2|ω|2(1 + |h|2)(1− |h|2).

Then, at a singular point p, dλ = −8k̂2|ω|2(dh · h̄+ h · dh̄), and thus p is a non-degenerate point if
and only if hw ̸= 0.
(3)&(4) These cases are proven analogously to the proofs of (3)&(4) in Theorem 2.1.1.

(5) We define the limiting tangent bundle, as in [32], as
{
X ∈ TS2,1|f̂(Σ); ⟨X, ν⟩ = 0

}
. By direct

computation, we notice any section X of the limiting tangent bundle is parametrized by

X = G

(
ζ̄h̄+ ζh ζ(|h|2 + 1)
ζ̄(|h|2 + 1) ζ̄h̄+ ζh

)
Ḡt

for some ζ : Σ −→ C, and X ∦ ν exactly when Im (ζh) |p ̸= 0 at a singular point p. For such X such

that Im (ζh) |p ̸= 0, we define ψ := ⟨DR3,1

η X, ν⟩ = −4iRe
(
hw
h2ω

)
Im (ζh). We can apply Theorem 1.4

of [32], and the conditions to have a cuspidal cross cap are

det(γt, η) ̸= 0, ψ = 0 and ∂tψ ̸= 0

⇐⇒ Im

(
hw
h2ω

)
̸= 0, Re

(
hw
h2ω

)
= 0 and Im

{(
hw
h

)(
hw
h2ω

)
w

}
̸= Im

{(
hw
h

)(
hw
h2ω

)
w̄

}
.

Criteria for singularities of spacelike CMC surfaces in H2,1. Here we introduce criteria
for cuspidal edges, swallowtails and cuspidal cross caps of CMC surfaces in H2,1. In this case as
well, like in the previous case of S2,1, we will shift from one surface f to another surface f̂ , again
without causing any restriction on the class of surfaces involved. However, in the case of H2,1, the
reason for doing this is different, because now we will indeed have the frames F1, F2 ∈ SU1,1. But

the fact that two frames F1, F2 are now involved again causes us to switch from f to f̂ .
Let f : Σ −→ H2,1 be a spacelike CMC surface for a simply-connected domain Σ ⊂ C, with

the metric ds2 = 4g2dwdw̄ = 4e2udwdw̄ and unit normal vector N . First, we consider frames
F1,F2 ∈ SU1,1 such that

f = F1F2
t
,
fx
2eu

= F1σ1F2
t
,
fy
2eu

= F1σ2F2
t
, N = F1iσ3F2

t
.

Then, we have

Ω1 := (F1)
−1dF1 =

1

2

(
−uw −ie−uA

2eu(1 + iH) uw

)
dw +

1

2

(
uw̄ 2eu(1− iH)

ie−uĀ −uw̄

)
dw̄ =: A1dw +B1dw̄, (2.1.8)

Ω2 := (F2)
−1dF2 =

1

2

(
−uw ie−uA

2eu(1− iH) uw

)
dw +

1

2

(
uw̄ 2eu(1 + iH)

−ie−uĀ −uw̄

)
dw̄ =: A2dw +B2dw̄, (2.1.9)

For these F1 and F2, the compatibility condition implies the Gauss and Codazzi equations
(1.2.3). We define s-spectral deformations as follows, now using s ∈ S1 and the terms 1 ± iH (in
Definition 4.1.1 we used s > 0 and the terms 1±H):
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Definition 2.1.6. The s-spectral deformation of the CMC surface f in H2,1 is the deformation
defined by (1 + iH) −→ s(1 + iH) and (1− iH) −→ s̄(1− iH) in the equations (2.1.8) and (2.1.9)
for the complex parameter s ∈ S1.

The s-spectral deformation maps CMC surfaces to other CMC ones conformally, as in the
following Theorem 2.1.6. The proof is analogous to the one of Theorem 4.1.1, but s−1 becomes s̄.

Theorem 2.1.6. For all s ∈ S1, the s-spectral deformation deforms a surface f in H2,1, with mean
curvature H, metric ds2 = 4e2udwdw̄ and Hopf differential A, into a surface fs with mean curvature

Hs = s(1+iH)−s̄(1−iH)
i{s(1+iH)+s̄(1−iH)} , metric 4e2u

s

dwdw̄ = 4k2e2udwdw̄ and Hopf differential As = kA for

k = s(1+iH)+s̄(1−iH)
2 .

The next lemma is proven like for Lemma 4.1.1:

Lemma 2.1.2. (fs)
s̄
= f .

We define the (twisted) s-spectral Lax pair.

Definition 2.1.7 (s-spectral Lax pair). We define Fs1 and Fs2 as solutions of the following systems:

(Fsj)w = FsjA
s
j , (Fsj)w̄ = FsjB

s
j (j = 1, 2),

where

As
1 :=

(
0 1
1 0

)
1

2

(
−uw −ie−uA

2eus(1 + iH) uw

)(
0 1
1 0

)
=

1

2

(
uw 2eus(1 + iH)

−ie−uA −uw

)
,

Bs
1 :=

(
0 1
1 0

)
1

2

(
uw̄ 2eus̄(1− iH)

ie−uĀ −uw̄

)(
0 1
1 0

)
=

1

2

(
−uw̄ ie−uĀ

2eus̄(1− iH) uw̄

)
,

As
2 :=

(
0 1
1 0

)
1

2

(
−uw ie−uA

2eus̄(1− iH) uw

)(
0 1
1 0

)
=

1

2

(
uw 2eus̄(1− iH)

ie−uA −uw

)
,

Bs
2 :=

(
0 1
1 0

)
1

2

(
uw̄ 2eus(1 + iH)

−ie−uĀ −uw̄

)(
0 1
1 0

)
=

1

2

(
−uw̄ −ie−uĀ

2eus(1 + iH) uw̄

)
.

Further, we define the forms Ωs1 := (Fs1)
−1dFs1 and Ωs2 := (Fs2)

−1dFs2.

Definition 2.1.8. For all f given by F1 and F2, and mean curvature H, there exists a member of

the s-spectral deformation, for the special value s = s0 := i
√

1−iH
1+iH , that generates frames F̃1 = Fs01 ,

F̃2 = Fs02 ∈ SU1,1. We call F̃1 and F̃2 the adjusted frames of F1 and F2, and the forms Ω̃1 = F̃−1
1 dF̃1

and Ω̃2 = F̃−1
2 dF̃2 the adjusted Maurer-Cartan forms, where

Ω̃1 =
1

2

(
uw 2eui

√
H2 + 1

−ie−uA −uw

)
dw +

1

2

(
−uw̄ ie−uĀ

−2eui
√
H2 + 1 uw̄

)
dw̄ =: Ã1dw + B̃1dw̄, (2.1.10)

Ω̃2 =
1

2

(
uw −2eui

√
H2 + 1

ie−uA −uw

)
dw +

1

2

(
−uw̄ −ie−uĀ

2eui
√
H2 + 1 uw̄

)
dw̄ =: Ã2dw + B̃2dw̄. (2.1.11)

These forms satisfy Ω̃1 = σ3Ω̃2σ3.
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Theorem 2.1.7. Let F̃1, F̃2 : Σ −→ SU1,1, where Σ is a simply-connected domain. Let a ∈ S1
(a ̸= 1) be an arbitrary constant, and let

β1 :=

(
0 2eui

√
H2 + 1

0 0

)
dw, β2 :=

(
0 0

−2eui
√
H2 + 1 0

)
dw̄.

Define Ω̂1 := Ω̃1 +
a−1
2 β1 +

ā−1
2 β2 and Ω̂2 := Ω̃2 +

−ā+1
2 β1 +

−a+1
2 β2. Then we have the following:

1. dΩ̂1 +
1
2 [Ω̂1 ∧ Ω̂1] = 0, dΩ̂2 +

1
2 [Ω̂2 ∧ Ω̂2] = 0.

2. If F̂1 and F̂2 are SU1,1-valued solutions of Ω̂1 = F̂−1
1 dF̂1 and Ω̂2 = F̂−1

2 dF̂2, then f̂ = F̂1F̂2

t

is a conformal spacelike CMC surface with Ĥ = a+ā
i(a−ā) .

Proof. For s = ia
√

1−iH
1+iH ∈ S1, we have Ωs1 = Ω̂1 and Ωs2 = Ω̂2, by direct computations. Thus we

have existence of f̂ , and Ĥ = Hs = a+ā
i(a−ā) .

Remark 2.1.4. Defining G1 := F̂1 · F̃−1
1 and G2 := F̂2 · F̃−1

2 , then G1G2
t
= F̂1F̂2

t

= f̂ .

As noted previously, again we will consider the criteria for singularities of f̂ instead of f .

We denote F̃1 = F̃1(w, w̄) = e−
u
2

(
u1 u2
u2 u1

)
∈ SU1,1, where g = eu is the metric function

of f , and |u1|2 − |u2|2 = g. So we define h := u2

u1
and ω := u21. By Remark 2.1.2, we have

f̂ = F̂1F̂2

t

= G1G2
t
. By the definition of G1 and G2, we have

G−1
1 dG1 = (a− 1)i

√
H2 + 1

(
−h 1
−h2 h

)
ωdw − (ā− 1)i

√
H2 + 1

(
h̄ −h̄2
1 −h̄

)
ω̄dw̄,

G−1
2 dG2 = (−ā+ 1)i

√
H2 + 1

(
h 1

−h2 −h

)
ωdw − (−a+ 1)i

√
H2 + 1

(
−h̄ −h̄2
1 h̄

)
ω̄dw̄.

Setting k̂ = (a−ā)i
√
H2+1

2 , f̂ has metric ds2 := 4ĝ2dwdw̄ = 4k̂2(1 − |h|2)2|ω|2dwdw̄. Thus this

implies that, wherever ds2 is finite, f̂ has a singularity if and only if h ∈ S1 or ω = 0. However we
consider only extended CMC surfaces f̂ defined in the same way as Definition 2.1.2.
Now we have the following criteria for singularities of spacelike extended CMC surfaces in H2,1.

The proof of Theorem 2.1.8 is parallel to the proof of Theorem 4.1.3.

Theorem 2.1.8. Let Σ be a simply connected domain, and let f̂ : Σ −→ H2,1 be a spacelike extended
CMC surface, given by Theorem 2.1.7. Then:

1. A point p ∈ Σ is a singular point if and only if h ∈ S1.

2. f̂ is a front at a singular point p ∈ Σ if and only if Im
(
hw
h2ω

) ∣∣
p
̸= 0. If this is the case, p is

non-degenerate singular point.

3. f̂ is A-equivalent to a cuspidal edge at a singular point p ∈ Σ if and only if

Im

(
hw
h2ω

) ∣∣∣∣
p

̸= 0 and Re

(
hw
h2ω

) ∣∣∣∣
p

̸= 0.
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4. f̂ is A-equivalent to a swallowtail at a singular point p ∈ Σ if and only if

Im

(
hw
h2ω

) ∣∣∣∣
p

̸= 0, Re

(
hw
h2ω

) ∣∣∣∣
p

= 0 and Im

{(
hw
h

)(
hw
h2ω

)
w

}∣∣∣∣∣
p

̸= Im

{(
hw
h

)(
hw
h2ω

)
w̄

} ∣∣∣∣
p

.

5. f̂ is A-equivalent to a cuspidal cross cap at a singular point p ∈ Σ if and only if

Im

(
hw
h2ω

) ∣∣∣∣
p

= 0, Re

(
hw
h2ω

) ∣∣∣∣
p

̸= 0 and Re

{(
hw
h

)(
hw
h2ω

)
w

}∣∣∣∣∣
p

̸= Re

{(
hw
h

)(
hw
h2ω

)
w̄

} ∣∣∣∣
p

.

Proof. We can prove this theorem by computing the same way as in the proof of Theorem 4.1.3.

2.2 Analogues of Smyth surfaces in Lorentzian spaceforms
and their singularities

B. Smyth studied a generalization of Delaunay surfaces in R3, which are CMC surfaces with rota-
tionally invariant metrics, in [87]. These surfaces are called Smyth surfaces, and there are numerous
studies about them. For example, in [89], Timmreck et al. showed properness of Smyth surfaces in
R3, and A. I. Bobenko and A. Its studied relationships between Smyth surfaces and Painleve III
equations in [8]. The DPW method was applied to Smyth surfaces in Riemannian spaceforms, in
[8], [25], [30] for example. (See Figure 2.1.) Recently, in [17], D. Brander et al. constructed the
analogue of Smyth surfaces in R2,1.
Here we will construct the analogues of Smyth surfaces in S2,1 and H2,1, in addition to R2,1, and

show that there are different kinds of Smyth surfaces in semi-Riemannian spaceforms, some which
have singularities before reaching an end, and some which do not. We also identify the types of
singularities on Smyth surfaces, using the criteria in Section 2.1.

Fig. 2.1: The left image is a 6-legged Smyth surface in R3, the middle is a 3-legged Smyth surface
in S3, and the right is a 3-legged Smyth surface in H3.

Reflective symmetry of Smyth surfaces in R2,1, S2,1 and H2,1. Define

ξ = λ−1

(
0 1
czk 0

)
dz, c ∈ C, z ∈ Σ = C, (2.2.1)



28 CHAPTER 2. SINGULARITY THEORY FOR SPACELIKE CMC SURFACES

and take a solution φ such that dφ = φξ and φz=0 = I. If k = 0 and c ∈ S1, then we have a round
cylinder, as in Section 1.5. However, when k ̸= 0 or c /∈ S1 ∪ {0}, Iwasawa splitting of φ is not so
simple, and the surface f has singularities in some cases where the ΛSU1,1-Iwasawa splitting of φ
approaches small cells.
Now we can assume c ∈ R>0 using a reparametrization of z and a rigid motion of f , as in [17].

Theorem 2.2.1 ([17]). The surface f : Σ0 = φ−1(B1,1) −→ R2,1, produced via the DPW method,
from ξ in (4.2.1), with φ|z=0 = I and λ = 1, has reflective symmetry with respect to k + 2 geodesic
planes that meet equiangularly along a geodesic line.

Proof. Consider the reflections Rl(z) = e
2πil
k+2 z̄ of the domain Σ = C, for l ∈ {0, 1, · · · , k + 1}. Note

that ξ(Rl(z), λ) = Al · ξ(z̄, λ) ·A−1
l , where

Al :=

(
e
πil
k+2 0

0 e−
πil
k+2

)
: constant in z, λ.

Since d (φ(Rl(z), λ) ·Al) = dφ(Rl(z), λ) ·Al · ξ(z̄, λ), and since any solutions of this equation differ
by a factor that is constant in z, we have φ(Rl(z), λ) ·Al = A ·φ(z̄, λ). However the initial condition
φ(z, λ)|z=0 = I implies that A = Al, so φ(Rl(z), λ) = Al · φ(z̄, λ) · A−1

l . It is easy to see that this
relation extends to the factors F and B in the Iwasawa splitting φ = F ·B, and so we have a frame F

which satisfies F (Rl(z), Rl(z), λ) = Al ·F (z̄, z, λ) ·A−1
l . Note that c ∈ R>0 implies ξ(z̄, λ) = ξ(z, λ̄),

φ(z̄, λ) = φ(z, λ̄) and F (z̄, λ) = F (z, λ̄), thus we have F (Rl(z), Rl(z), λ) = Al · F (z, z̄, λ̄) · A−1
l .

Inserting this into the Sym-Bobenko type formula, we have

f(Rl(z), Rl(z)) = −Al · f(z, z̄) ·A−1
l . (2.2.2)

The transformation f(z, z̄) −→ −f(z, z̄) represents a reflection across the plane {x1 = 0} of R2,1,
and conjugation by Al represents a rotation by angle 2πl

k+2 about the x0-axis, proving the result.

Theorem 2.2.2. The surfaces f : φ−1(B1,1) −→ S2,1, produced via the DPW method, from ξ in
(4.2.1), with φ|z=0 = I and F0 = F |

λ=e
q
2
for q ∈ R, q ̸= 0, has reflective symmetry with respect to

k + 2 geodesic planes that meet equiangularly along a geodesic line.

Proof. As the proof of Theorem 2.2.1, we have F (Rl(z), Rl(z), λ) = Al·F (z, z̄, λ̄)·A−1
l . Inserting this

into the Sym-Bobenko type formula, we have f(Rl(z), Rl(z)) = Al ·f(z, z̄) ·Al
t
. The transformation

f(z, z̄) −→ f(z, z̄) represents a reflection across the plane {x2 = 0} of R3,1, and conjugation by Al
represents a rotation by angle 2πl

k+2 about the x4-axis.

Similarly, we can prove:

Theorem 2.2.3. The surfaces f : φ−1(B1,1) → H2,1, produced via the DPW method, from ξ in
(4.2.1), with φ|z=0 = I, F1 = F |λ=eiγ1 and F2 = F |λ=eiγ2 for γ1, γ2 ∈ R\{0} and γ1 = −γ2, has
reflective symmetry with respect to k + 2 geodesic planes that meet equiangularly along a geodesic
line.

Remark 2.2.1. The surfaces f in Theorems 2.2.1, 2.2.2 and 2.2.3 extend to φ−1(C1) at singularities
(see Proposition 2.1.1, (3)).
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The Gauss equation of Smyth surfaces. Here we assume the mean curvature is H = 1
2 ,

as in [8], [17], [89], and then we show that the metric of Smyth surfaces is rotational invariant.
Before giving the theorems, we create the notation g := eu for the metric function, and we have
the following Lax pair

Fz = FU, Fz̄ = FV, where U =
1

2

( gz
g iλ−1g

−iλ−1Qg−1 − gz
g

)
, V =

1

2

( − gz̄
g iλQ̄g−1

−iλg gz̄
g

)
, (2.2.3)

and Gauss equation

4(gzz̄ · g − gz · gz̄) +QQ̄− g4 = 0. (2.2.4)

Theorem 2.2.4 ([17]). The Gauss equation (2.2.4) for a surface in R2,1, S2,1 or H2,1 generated by
ξ in (4.2.1), with φ|z=0 = I, is equivalent to a special case of the Painleve III equations, and the
metric function g, which is a solution of (2.2.4), is rotational invariant.

Using polar coordinates z = reiθ, (2.2.4) and the suitable choice of the initial conditions are

g
(
grr +

gr
r

)
− (gr)

2 + c2r2k − g4 = 0, g|r=0 = 1, gr|r=0 = 0. (2.2.5)

We can assume c = 1 in (2.2.5) by a change of coordinate:

Lemma 2.2.1. After an appropriate change of coordinate z, the Gauss equation (2.2.5) for (k+2)-
legged Smyth surfaces in R2,1, S2,1 or H2,1, becomes

g
(
grr +

gr
r

)
− (gr)

2 + r2k − g4 = 0, g|r=0 = q2, gr|r=0 = 0 (2.2.6)

for a real constant q > 0.

Proof. Let φ be a solution of dφ = φξ for ξ =

(
0 λ−1

λ−1czk 0

)
dz and φ|z=0 = I with ΛSU1,1-

Iwasawa splitting φ = F · B. We define φ̆ = φ

(
q 0
0 q−1

)
. By the uniqueness of the Iwasawa

splitting φ̆ = F̆ · B̆ of φ̆, we have F̆ = F and B̆ = B

(
q 0
0 q−1

)
. Furthermore, we notice that

B̆|λ=0,z=0 =

(
q 0
0 q−1

)
, since F̆ |z=0 = I, and this implies that ğ|r=0 = q2. On the other hand,

we have

ξ̆ = φ̆−1dφ̆ =

(
0 q−2λ−1

q2λ−1c2zk 0

)
dz =

(
0 λ−1

q2k+4λ−1c2z̆k 0

)
dz̆

for z̆ := q−2z, and we can let c̆ = q2k+4c. In this way, we can change c to 1.

Some examples of the metric function g are seen in Figure 2.2. By the previous studies [39]
and [48], there are at least three kinds of solutions g of this special case of Painleve III equations
(2.2.6). This implies that (spacelike) Smyth surfaces in R2,1, S2,1 and H2,1, near the origin 0 ∈ Σ,
are classified into the following three cases (See Figures 2.2, 2.3, 2.5 and 2.7.):

• The first kind does not have singularities and g diverges to ∞.
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Fig. 2.2: Solutions of a special case of Painleve III (near the origin)

• The second kind does not have singularities and g does not diverge to ±∞. This case is
unique, and given by g with the following initial condition:

g|r=0 = q20 , gr|r=0 = 0 for q0 =

(
1 +

k

2

) k
4+2k

2
k

2+k

√√√√√Γ
(

1
2 + k

4+2k

)
Γ
(

1
2 − k

4+2k

) .
• The third kind has singularities before g diverges to −∞.

Smyth surfaces with singularities. Here we only consider Smyth surfaces that have singu-
larities before g diverges to −∞. By numerical calculation, we know that these Smyth surfaces have
cuspidal edges, swallowtails and cuspidal cross caps, using criteria as in Section 2.1, see Figures
2.3∼2.8.

Fig. 2.3: The left image is a 3-legged Smyth surface with singularities in R2,1, and the right image
is one with no singularities in R2,1.

Fact 2.2.1. There exist Smyth surfaces in R2,1, S2,1 and H2,1 which have singularities before g
diverges to −∞, and which have cuspidal edges, swallowtails and cuspidal cross caps. (See Figures
2.4, 2.6 and 2.8.)

Here we show, for the surfaces in Fact 2.2.1, that there are at least 2(k+2)-swallowtails for the
case of R2,1, without relying on numerical calculation, and using only geometric properties. Before
doing that, we have some lemmas.
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Fig. 2.4: The values of The values of Re
(
hz
h2ω

)
, Im

(
hz
h2ω

)
, Re

{(
hz
h

) (
hz
h2ω

)
z

}
− Re

{(
hz
h

) (
hz
h2ω

)
z̄

}
and Im

{(
hz
h

) (
hz
h2ω

)
z

}
− Im

{(
hz
h

) (
hz
h2ω

)
z̄

}
for a 3-legged Smyth surface in R2,1 at (r0, θ) such that

g(r0) = 0 and 0 ≤ θ ≤ 2π. (left to right)

Fig. 2.5: The left image is a 3-legged Smyth surface with singularities in S2,1, and the right image
is one with no singularities in S2,1.

Fig. 2.6: The values of Re
(
hw
h2ω

)
, Im

(
hw
h2ω

)
, Re

{(
hw
h

) (
hw
h2ω

)
w

}
− Re

{(
hw
h

) (
hw
h2ω

)
w̄

}
and

Im
{(

hw
h

) (
hw
h2ω

)
w

}
− Im

{(
hw
h

) (
hw
h2ω

)
w̄

}
for a 3-legged Smyth surface in S2,1 at (r0, θ) such that

g(r0) = 0 and 0 ≤ θ ≤ 2π. (left to right)
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Fig. 2.7: The left image is a 3-legged Smyth surface with singularities in H2,1, and the right image
is one with no singularities in H2,1.

Fig. 2.8: The values of Im
(
hw
h2ω

)
, Re

(
hw
h2ω

)
, Im

{(
hw
h

) (
hw
h2ω

)
w

}
− Im

{(
hw
h

) (
hw
h2ω

)
w̄

}
and

Re
{(

hw
h

) (
hw
h2ω

)
w

}
− Re

{(
hw
h

) (
hw
h2ω

)
w̄

}
for a 3-legged Smyth surface in H2,1 at (r0, θ) such that

g(r0) = 0 and 0 ≤ θ ≤ 2π. (left to right)
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Lemma 2.2.2. Let F̂ = F̂ (z, z̄, λ) be the solution of the untwisted Lax pair (1.1.7) with F̂ |z=0 = I

for the case of a Smyth surface. Then F̂ (z) = σ3F̂ (z̄)σ3 for λ = 1.

Proof. By direct computation, we have Û(z) = −V̂ (z̄)t and V̂ (z) = −Û(z̄)t. By this equation and
F̂ (z)|z=0 = I, we get the conclusion.

Corollary 2.2.1.
(1) h(z) = −h(z̄) and ω(z) = ω(z̄).
(2) At (r, θ) = (r0, 0) for r0 such that g(r0) = 0, we have h(r0, 0) = ±i (i.e. h(r0, 0) ∈ iR ∩ S1),
ω(r0, 0) ∈ R \ {0} and ωz(r0, 0) = ωz̄(r0, 0).

Theorem 2.2.5. Let f̂(z) = f̂(r, θ) be a (k + 2)-legged Smyth surface in R2,1, and let r0 satisfy

g(r0) = 0. Then f̂ has a swallowtail at (r0, 0).

Proof. We will use the criteria of Theorem 2.1.1. First we check that

Re

(
hz
h2ω

)
= Re

(
Q

h2ω2

)
̸= 0 (2.2.7)

at (r0, 0). By using Q(r, 0) = −rk ∈ R<0 and Corollary 2.2.1, we notice that (2.2.7) holds. Similarly,
we also have

Im

(
hz
h2ω

)
= Im

(
Q

h2ω2

)
= 0 (2.2.8)

at (r0, 0). Lastly, we check that

Re

{(
hz
h

)(
hz
h2ω

)
z

}
̸= Re

{(
hz
h

)(
hz
h2ω

)
z̄

}
(2.2.9)

at (r0, 0). By direct computation, this is equivalent to

Re

{(
Q

hω

)(
Qzh

2ω2 −Q(2Qhω + 2h2ωωz)

h4ω4

)}
̸= Re

{(
Q

hω

)(
−2Qh2ωωz̄

h4ω4

)}
. (2.2.10)

Applying Corollary 2.2.1 to (2.2.10), we have h4ω4 ∈ R \ {0} and Q
hω = −

(
Q
hω

)
∈ iR \ {0}. Thus,

(2.2.10) is equivalent to

−Im{Qzh2ω − 2Q2h− 2Qh2ωz} ̸= Im
{
−2Qh2ωz̄

}
. (2.2.11)

Using Q(r, 0) = −rk ∈ R<0, Qz(r, 0) = −krk−1 ∈ R<0 and Corollary 2.2.1, (2.2.11) becomes

±2r2k0 ̸= 0. (2.2.12)

As this is clear, we concluded that (2.2.9) holds.

Similarly, we have the same conclusion when θ = π
k+2 .

Theorem 2.2.6. Let f̂(z) = f̂(r, θ) be a (k + 2)-legged Smyth surface in R2,1, and let r0 satisfy

g(r0) = 0 and gr(r0) = −rk0 . Then f̂ has a swallowtail at (r0,
π
k+2 ).
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By above two theorems and reflective symmetry, we get the following main result:

Theorem 2.2.7. If a (k+2)-legged Smyth surface in R2,1 has singularities before g diverges to −∞,
then it has at least 2(k + 2) swallowtails.

Remark 2.2.2. We have checked numerically that there are cuspidal cross caps along the cuspidal
edges between each adjacent pair of swallowtails, using item (4) of Corollary 2.1.1, item (5) of
Theorem 4.1.3 and item (5) of Theorem 2.1.8. Thus the surface as in Theorem 4.2.2 will also have
at least 2(k + 2) cuspidal cross caps.



Chapter 3

Spacelike CMC surfaces with
0 ≤ H < 1 in S2,1 via Iwasawa
splitting

3.1 The Lax pair in S2,1

3.1.1 The 3-dimensional de Sitter space

Let R3,1 be the Cartesian 4-space with metric
⟨(x1, x2, x3, x4), (y1, y2, y3, y4)⟩ := x1y1+x2y2+x3y3−x4y4. We define the 3-dimensional de Sitter
space as the hyperquadric S2,1 := {x|⟨x, x⟩ = 1} ⊂ R3,1.
Let Σ be a simply-connected domain in C with the usual complex coordinate w = x + iy. Let

f : Σ −→ S2,1 be a conformally immersed spacelike surface. Since f is conformal,

⟨fw, fw⟩ = ⟨fw̄, fw̄⟩ = 0, ⟨fw, fw̄⟩ = 2e2u

for some function u : Σ −→ R. For the unit normal vector field N of f satisfying ⟨N,N⟩ = −1,
⟨fw, N⟩ = ⟨fw̄, N⟩ = 0, we define the mean curvature H and Hopf differential Adw2 as follows:

H :=
1

2e2u
⟨fww̄, N⟩, A := ⟨fww, N⟩.

The Gauss-Codazzi equations are of the following form in the CMC cases:

2uww̄ − 2e2u(H2 − 1) +
1

2
AĀe−2u = 0, Aw̄ = 0. (3.1.1)

The Codazzi equation in (3.1.1) is equivalent to the Hopf differential A being holomorphic, and
(3.1.1) is invariant under the deformation A 7→ µ−2A for µ ∈ S1. When f(x, y) is a spacelike CMC
in S2,1, the spectral parameter µ ∈ S1 allows us to create a 1-parameter family of CMC surfaces
fµ = f(x, y, µ) associated to f(x, y).

35
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3.1.2 The 2× 2 matrix model of S2,1

We identify R3,1 with the space
{
X ∈M2×2

∣∣X = X̄t
}
of all 2 by 2 Hermitian matrices as follows:

R3,1 ∋ x = (x1, x2, x3, x4) 7−→
(

x4 + x3 x1 − ix2
x1 + ix2 x4 − x3

)
. (3.1.2)

The metric becomes, under this identification, ⟨X,Y ⟩ = − 1
2 trace(Xσ2Y

tσ2). In particular, ⟨X,X⟩ =
−det(X), and we can identify S2,1 with{

X ∈M2×2

∣∣X = X̄t, det(X) = −1
}
=
{
Fσ3F t |F ∈ SL2(C)

}
.

Let f be a conformal spacelike CMC surface in S2,1 with associated family fµ, and let the
identity matrix and Pauli matrices be as follows:

I :=

(
1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

Then {I, σ1, σ2, σ3} is an orthogonal basis for R3,1. We can define

fµ := F̂ σ3F̂ t, e1 :=
fµx
|fµx |

=
fµx
2eu

= F̂ σ1F̂ t, e2 :=
fµy
|fµy |

=
fµy
2eu

= F̂ σ2F̂ t, N := F̂ F̂ t

for F̂ = F̂ (w, w̄, µ) ∈ SL2(C). For this F̂ , we get the untwisted 2× 2 Lax pair in S2,1 as follows:

F̂w = F̂ Ŝ, F̂w̄ = F̂ T̂ , where Ŝ =
1

2

(
−uw −µ−2Ae−u

2(1−H)eu uw

)
, T̂ =

1

2

(
uw̄ −2(1 +H)eu

−µ2Āe−u −uw̄

)
. (3.1.3)

We change the “untwisted” setting to the “twisted” setting by the following transformation (3.1.4).
Let F̃ be defined by

F̂ = −σ3
(
F̃−1

)t( √
µ 0
0 1√

µ

)
σ3, (3.1.4)

producing the twisted 2× 2 Lax pair of fµ in S2,1,

F̃w = F̃ S̃, F̃w̄ = F̃ T̃ , where S̃ =
1

2

(
uw 2µ−1(1−H)eu

−µ−1Ae−u −uw

)
, T̃ =

1

2

(
−uw̄ −µĀe−u

−2µ(1 +H)eu uw̄

)
. (3.1.5)

Now we consider 0 ≤ H < 1 case, and we set H := tanh(−q) for q ≤ 0. We change F̃ to a new
frame F , as follows:

F = F̃

(
e
q
4 0

0 e−
q
4

)
.

We call this F the extended frame of spacelike CMC H surfaces with 0 ≤ H < 1. Moreover we set

H := −ie−q(1−H) = −ieq(1 +H) ∈ iR, Q := −iA, ν := e−
q
2µ, (3.1.6)

and we have the following:

Fw = FU, Fw̄ = FV , where U =
1

2

(
uw 2iν−1Heu

−iν−1Qe−u −uw

)
, V =

1

2

(
−uw̄ iνQ̄e−u

−2iνHeu uw̄

)
. (3.1.7)
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We call (3.1.7) the extended Lax pair, and F = F (w, w̄, ν) is in the following loop group

ΛSL2(C)τ =
{
F (λ) ∈M2×2

∣∣∣F : S1 C∞

−−−−→ SL2(C), F (−λ) = σ3F (λ)σ3, τ(F (λ)) = F (λ)
}
, (3.1.8)

where τ(F (λ)) := Ad

((
e
π
4 i 0
0 e−

π
4 i

))
·
(
F (iλ̄−1)t

)−1

. For simplicity, we setR =

(
e−

π
4 i 0
0 e

π
4 i

)
as in [24] and the symbol * is defined by F ∗(λ) :=

(
F (iλ̄−1)t

)−1

, and we can rewrite τ(F (λ)) =

Ad(R−1)F ∗(λ).
The following Proposition 3.1.1 gives us a method for determining spacelike CMC H surfaces

with 0 ≤ H < 1 in S2,1, from given data u and A.

Proposition 3.1.1 (The immersion formula for spacelike CMC H surfaces with 0 ≤ H < 1 in
S2,1). Let Σ be a simply-connected domain in C. Let u and A solve (3.1.1). Set Q = −iA and
H := −ie−q(1− tanh(−q)) for q ≤ 0. Let F = F (w, w̄, ν) ∈ ΛSL2(C)τ be a solution of the system
(3.1.7). Set F0 = F |

ν=e−
q
2
. We define the following immersion formulas

f = F0

(
e−

1
2 q 0

0 −e 1
2 q

)
F0

t
, N = F0

(
−e− 1

2 q 0

0 −e 1
2 q

)
F0

t
. (3.1.9)

Then, f is a spacelike CMC H = tanh(−q) surface in S2,1 with unit normal N .

Proof. Applying a frame change in Theorem 8.5 in [33], we can prove this proposition. We can also
prove it by the same argument as in the proof of Proposition 4.1 in [24]. So we omit the proof.

By the above Proposition 3.1.1, we can construct all simply-connected spacelike CMCH surfaces
with 0 ≤ H < 1. However, here we also have the following proposition in Appendix E of [24], and
it says that spacelike CMC H surfaces with 0 ≤ H < 1 with no umbilics can be constructed as the
normal vector of parallel transformation of CMC H surfaces with 0 ≤ H < 1 in the 3-dimensional
hyperbolic space H3. In this proposition, we need the following extended Lax pair for CMC H
surfaces with 0 ≤ H < 1 in H3:

(FH3)w = FH3UH3 , (FH3)w̄ = FH3VH3, where UH3 =
1

2

(
(uH3)w −2ν−1HH3euH3

ν−1QH3e−uH3 −(uH3)w

)
, VH3 =

1

2

(
−(uH3)w̄ −νQH3e−uH3

2νHH3euH3 (uH3)w̄

)
,

where uH3 is the metric function for ds2 = 4e2uH3dwdw̄, and HH3 = ie−q(1 − HH3) for mean
curvature HH3 = tanh(−q), and QH3 = iAH3 for Hopf differential AH3 .

Proposition 3.1.2 ([24]). Let Σ be a simply-connected domain in C. Let FH3 be the extended
frame of some CMC 0 ≤ HH3 = tanh(−q) < 1 surface fH3(w, w̄) in H3 with unit normal NH3 . Set
(FH3)0 = (FH3)|

ν=e−
q
2
for q < 0. Then, by changing parameter such that z = iw,

f(z, z̄) = sinh(−q)fH3 + cosh(−q)NH3 = (FH3)0

(
−e 1

2 q 0

0 e−
1
2 q

)
(FH3)0

t
(3.1.10)

is a spacelike CMC H = tanh(−q) surface in S2,1, and ds2 = e−2uH3 cosh2(−q)|AH3 |2dzdz̄, A = AH3 .
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3.2 Iwasawa splitting for ΛSL2(C)τ
In this section, we introduce the Birkhoff splitting and prove the existence and uniqueness of the
(twisted) ΛSL2(C)τ -Iwasawa splitting, by using the Birkhoff splitting. First we define the notations
for loop groups and algebras.

Definition 3.2.1.

ΛSL2(C) =
{
φ : S1 C∞

−−−−→ SL2(C)
∣∣∣φ(−λ) = σ3φ(λ)σ3

}
, Λsl2(C) =

{
A : S1 C∞

−−−−→ sl2(C)
∣∣∣A(−λ) = σ3A(λ)σ3

}
,

Λ+
△SL2(C) =

{
B+(λ) ∈ ΛSL2(C)

∣∣∣ B+ extends holomorphically to D.
}
,

Λ−
△SL2(C) =

{
B−(λ) ∈ ΛSL2(C)

∣∣∣ B− extends holomorphically to C ∪ {∞}\D.
}
,

Λ+
RSL2(C) =

{
B+(λ) ∈ Λ+

△SL2(C)

∣∣∣∣∣ B+(0) =

(
ρ 0
0 ρ−1

)
for ρ ∈ R, ρ > 0.

}
,

where S1 =
{
λ ∈ C ∪ {∞}|λλ̄ = 1

}
, D =

{
λ ∈ C ∪ {∞}|λλ̄ < 1

}
. We can also define ΛGL2(C),

etc., in a similar way.

Here we introduce the twisted version of the Birkhoff splitting as follows:

Proposition 3.2.1 ([79]). For all φ ∈ ΛGL2(C), there exist φ+ ∈ Λ+GL2(C), φ− ∈ Λ−GL2(C)
and a1, a2 ∈ Z such that

φ = φ−

(
λ2a1 0
0 λ2a2

)
φ+. (3.2.1)

The middle term is uniquely determined by φ, and the big cell B, where a1 = a2 = 0, is an open
dense subset in ΛGL2(C). When φ ∈ B, we have a unique splitting such that φ+ ∈ Λ+

I GL2(C),
φ− ∈ Λ−GL2(C).

We also introduce the specialized version of the Birkhoff splitting for ΛSL2(C), as in [17].

Proposition 3.2.2 (the specialized version of the Birkhoff splitting [17]). For all φ ∈ ΛSL2(C),
there exist B+ ∈ Λ+

△SL2(C), B− ∈ Λ−
△SL2(C) and k ∈ Z such that

φ = B−MB+, (3.2.2)

where either

M =

(
λ2k 0
0 λ−2k

)
, or M =

(
0 λ2k+1

−λ−2k−1 0

)
. (3.2.3)

Remark 3.2.1 ([17]).
(1) The factor M is uniquely determined by φ. For φ ∈ B, where k = 0, there is a unique splitting
φ = B−B+ with B− ∈ Λ−

△SL2(C), B+ ∈ Λ+
I SL2(C), with M = I.

(2) For the ΛSL2(C)τ -Iwasawa splitting, we define

P =

{
φ ∈ ΛSL2(C)

∣∣∣∣M of the Birkhoff splitting of φ is

(
0 λ

−λ−1 0

)}
,

and we call this P the Birkhoff first small cell.
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In order to prove the ΛSL2(C)τ -Iwasawa splitting, we need some definitions and lemmas.

Definition 3.2.2 (operator τ). For φ(λ) ∈ ΛSL2(C), we define an operator τ by

τ(φ(λ)) := R−1

(
φ(iλ

−1
)
t
)−1

R for R =

(
e−

π
4 i 0
0 e

π
4 i

)
.

Remark 3.2.2. For φ ∈ ΛSL2(C), the following two statements hold:

• τ(τ(φ(λ))) = σ3φ(−λ)σ3 = φ(λ).

• τ(φ(λ)) = φ(λ) for all λ ∈ S1 ⇐⇒ φ(λ) ∈ ΛSL2(C)τ .
Thus, τ is an automorphism on ΛSL2(C)τ .

Lemma 3.2.1. Let ψ ∈ ΛSL2(C) such that (τ(ψ))−1 = ψ. If ψ ∈ B ∪ P, then we have

ψ = τ(B+)
−1 · (±I) ·B+ or ψ = τ(B+)

−1 ·
(

0 λ
−λ−1 0

)
·B+ for B+ ∈ Λ+

△SL2(C).

However, if ψ /∈ B ∪ P, then we do not have

ψ = τ(B+)
−1 ·

(
λ2k 0
0 λ−2k

)
·B+ or ψ = τ(B+)

−1 ·
(

0 λ2k+1

−λ−2k−1 0

)
·B+

for B+ ∈ Λ+
△SL2(C).

Proof. (i) Noting the result in Proposition 3.2.2, suppose

ψ = B−

(
λ2k 0
0 λ−2k

)
B+

for some B+ ∈ Λ+
△SL2(C) and B− ∈ Λ−

△SL2(C) and some k ∈ Z. By τ(ψ)−1 = ψ, we have

δ · τ(B+ · τ(B−))
−1 ·

(
−λ−2k 0

0 −λ2k
)

=

(
λ2k 0
0 λ−2k

)
·B+ · τ(B−)

for δ = 1 (resp. −1) if k ∈ 2Z+ 1 (resp. k ∈ 2Z). Setting B(λ) = B+ · τ(B−), this equals

δ · τ(B(λ))−1 ·
(

−λ−2k 0
0 −λ2k

)
=

(
λ2k 0
0 λ−2k

)
· B(λ), (3.2.4)

Now we note that B(λ) ∈ Λ+
△SL2(C), and we let B(λ) =

(
a(λ) b(λ)
c(λ) d(λ)

)
. Then, (3.2.4) equals

δ ·
(

−λ−2ka∗(λ) −iλ2kc∗(λ)
iλ−2kb∗(λ) −λ2kd∗(λ)

)
=

(
λ2ka(λ) λ2kb(λ)
λ−2kc(λ) λ−2kd(λ)

)
, (3.2.5)

where a∗(λ) = a(iλ
−1

).
If k > 0, then the upper-left component of (3.2.5) implies −δa∗(λ) = λ4ka(λ), and this a has

the power series expansion
∑∞
j=0 ajλ

j , where the aj do not depend on λ since B(λ) ∈ Λ+
△SL2(C).
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By these conditons, we know a ≡ 0. Similarly, the upper-right and lower-left component of (3.2.5)
imply that

b, c : complex constants and δib = c.

However, by the twisted property, we have b ≡ c ≡ 0, and this contradicts det(B(λ)) = 1. Similarly,
if k < 0, then we get the contradiction. Thus, we conclude k = 0.
By k = 0, we have δ = −1, b ≡ c ≡ 0, a ∈ R \ {0}: constant, d = a−1. Here we notice that

√
a is

well-defined, and we get the following:

τ

(( √
a 0

0
√
a
−1

))−1

=

( √
a 0

0
√
a
−1

)
if a > 0 (3.2.6)

τ

(( √
a 0

0
√
a
−1

))−1

=

(
−
√
a 0

0 −
√
a
−1

)
if a < 0. (3.2.7)

Thus, we separately consider these cases to finish the case (i).

(i)-(1) If a > 0, then

B = B+ · τ(B−) =

(
a 0
0 a−1

)
for B± ∈ Λ±

△SL2(C).

This implies that

( √
a
−1

0
0

√
a

)
B+ = τ

(
B−

( √
a 0

0
√
a
−1

))−1

.

Now let β+ :=

( √
a
−1

0
0

√
a

)
B+ ∈ Λ+

△SL2(C) and β− := B−

( √
a 0

0
√
a
−1

)
∈ Λ−

△SL2(C),

then

ψ = B−B+ = β−β+ = τ(β+)
−1 · β+.

(i)-(2) If a < 0, similarly we have

B = B+ · τ(B−) =

(
a 0
0 a−1

)
for B± ∈ Λ±

△SL2(C).

Thus this implies that

( √
a
−1

0
0

√
a

)
B+ = τ

(
B−

(
−
√
a 0

0 −
√
a
−1

))−1

. Now let β+ :=( √
a
−1

0
0

√
a

)
B+ ∈ Λ+

△SL2(C) and β− := B−

(
−
√
a 0

0 −
√
a
−1

)
∈ Λ+

△SL2(C), then

ψ = B−B+ = β−(−I)β+ = τ(β+)
−1(−I)β+. (3.2.8)

This completes the proof of the case (i).

(ii) Again noting the result in Proposition 3.2.2, suppose

ψ = B−

(
0 λ2k+1

−λ−2k−1 0

)
B+
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for some B+ ∈ Λ+
△SL2(C) and B− ∈ Λ−

△SL2(C). By τ(ψ)−1 = ψ, we have

δ ·
(
iλ−2k−1c∗(λ) −λ2k+1a∗(λ)

λ−2k−1d∗(λ) iλ2k+1b∗(λ)

)
=

(
λ2k+1c(λ) λ2k+1d(λ)

−λ−2k−1a(λ) −λ−2k−1b(λ)

)
(3.2.9)

for B(λ) = B+ · τ(B−) =

(
a(λ) b(λ)
c(λ) d(λ)

)
. As in the case (i), by the form of the power series

expansion of b(λ) and c(λ), we conclude

c ≡ 0, b(λ) = b1λ
1 + b3λ

3 + · · ·+ b4k+1λ
4k+1, −δiλ4k+2b∗(λ) = b(λ) if k ≥ 0, (3.2.10)

b ≡ 0, c(λ) = c1λ
1 + c3λ

3 + · · ·+ c−4k−3λ
−4k−3, δiλ−4k−2c∗(λ) = c(λ) if k < 0. (3.2.11)

Similarly, by the off-diagonal components of (3.2.9), we have

δ = −1 (⇐⇒ k ∈ 2Z), a ∈ S1 : complex constant, d = a−1. (3.2.12)

Finally, we need to change B+ and B− to β+ = Y B+ ∈ Λ+
△SL2(C) and β− = B−X

−1 ∈ Λ−
△SL2(C)

by using X ∈ Λ−
△SL2(C) and Y ∈ Λ+

△SL2(C). To complete the requirement, these matrices X and
Y should satisfy the following condition:

B = Y −1τ(X) (3.2.13)

and

X−1

(
λ2l 0
0 λ−2l

)
Y =

(
0 λ2k+1

−λ−2k−1 0

)
or X−1

(
0 λ2l+1

−λ−2l−1 0

)
Y =

(
0 λ2k+1

−λ−2k−1 0

)
(3.2.14)

for some l ∈ Z. By direct computation with (3.2.10), (3.2.11), (3.2.12) and (3.2.13), we know that
the diagonal case in (3.2.14) does not occur for any k, and that the off-diagonal case in (3.2.14)

occurs only for k = 0. For k = 0, as in (i), we set β+ :=

( √
a
−1 −1

2b
√
aλ

0
√
a

)
B+ ∈ Λ+

△SL2(C)

and β− := B−

( √
a
−1

0
−1

2b
√
aλ−1

√
a

)
∈ Λ−

△SL2(C), then

ψ = B−

(
0 λ

−λ−1 0

)
B+ = β−

(
0 λ

−λ−1 0

)
β+ = τ(β+)

−1

(
0 λ

−λ−1 0

)
β+.

This completes the proof of Lemma 3.2.1.

Here we define the ΛSL2(C)τ -Iwasawa big cell Bτ and ΛSL2(C)τ -Iwasawa first small cell Pτ .

Definition 3.2.3.

Bτ =
{
φ ∈ ΛSL2(C)

∣∣τ(φ)−1φ ∈ B
}
, Pτ =

{
φ ∈ ΛSL2(C)

∣∣τ(φ)−1φ ∈ P
}
.

We introduce one of the main theorems here, and this Theorem 3.2.1 plays an important role
in the next section about the DPW method, in order to construct the solution of the extended Lax
pair which was introduced in the previous section. We will also study the asymptotic behavior of
F near Pτ related to singularities of surfaces in the two latter sections. In Theorem 3.2.1, we use
the map

Ψ

((
a(λ) b(λ)
c(λ) d(λ)

))
=

(
a(λ2) λb(λ2)

λ−1c(λ2) d(λ2)

)
. (3.2.15)
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Theorem 3.2.1 (ΛSL2(C)τ -Iwasawa splitting).
(1) For all φ ∈ Bτ , there exist F ∈ ΛSL2(C)τ ∪Ψ(iσ2) · ΛSL2(C)τ and B ∈ Λ+

△SL2(C) such that

φ = FB. (3.2.16)

We can choose B ∈ Λ+
RSL2(C), and then F and B are uniquely determined. We call this unique

splitting “normalized.”
(2) For all φ ∈ Pτ , there exist F ∈ ΛSL2(C)τ ∪Ψ(iσ2) · ΛSL2(C)τ and B ∈ Λ+

RSL2(C) such that

φ = FCB, C =

(
1
2 λ

− 1
2λ

−1 1

)
. (3.2.17)

Proof. Take any φ ∈ ΛSL2(C), and set ψ = τ(φ)−1φ. Then, we have τ(ψ)−1 = ψ, thus we can
apply Lemma 3.2.1 for this ψ. This implies that

ψ = τ(B+)
−1τ(W )−1WB+ = τ(WB+)

−1WB+

for W = I or W =

(
0 λ

−λ−1 0

)
or W =

(
1
2 λ

−1
2λ

−1 1

)
, and for some B+ ∈ Λ+

△SL2(C). The

first two cases occur when ψ ∈ B (i.e. φ ∈ Bτ ), and the third case occurs when ψ ∈ P (i.e. φ ∈ Pτ ).
First we show that F̂ := τ(φ)τ(WB+)

−1 ∈ ΛSL2(C)τ . The twisted property is automatically
satisfied by definition, and we need to check τ(F̂ ) = F̂ . However, it is also clear because τ(F̂ ) = F̂
is equivalent to φ = τ(φ)τ(WB+)

−1WB+.
Next we will consider cases:

(i) The case W = I, W ∈ ΛSL2(C)τ . We set F := F̂W ∈ ΛSL2(C)τ and B := B+ ∈ Λ+
△SL2(C),

and this is the required splitting. Moreover, about normalization, we set

B|λ=0 =

(
α 0
0 α−1

)
for α ∈ C \ {0}. Splitting to(

α 0
0 α−1

)
=

( √
α
ᾱ 0

0
√

ᾱ
α

)( √
αᾱ 0
0 1√

αᾱ

)
,

we notice that

( √
α
ᾱ 0

0
√

ᾱ
α

)
∈ ΛSL2(C)τ , and that

√
αᾱ ∈ R>0. Hence, we can split to φ = F ′B′

for F ′ := F

( √
α
ᾱ 0

0
√

ᾱ
α

)
∈ ΛSL2(C)τ and B′ :=

( √
ᾱ
α 0

0
√

α
ᾱ

)
B ∈ Λ+

RSL2(C). So the

uniqueness of this splitting follows from uniqueness of the Birkhoff splitting on B.

(ii) The case W =

(
0 λ

−λ−1 0

)
, F̂W ∈ Ψ(iσ2) · ΛSL2(C)τ . We can prove the existence and

normalization of splitting in the same way as in (i).

(iii) The case W =

(
1
2 λ

− 1
2λ

−1 1

)
, we set F := F̂ , C :=W and B := B+, and this is the required
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splitting. Moreover, about normalization, we set B|λ=0 =

(
α 0
0 α−1

)
for α ∈ C \ {0}. Splitting

to the same form as in (i), we have

C

( √
α
ᾱ 0

0
√

ᾱ
α

)
=

1

2

 √
α
ᾱ +

√
ᾱ
α

(√
ᾱ
α −

√
α
ᾱ

)
λ(√

ᾱ
α −

√
α
ᾱ

)
λ−1

√
α
ᾱ +

√
ᾱ
α

C,

and we notice that 1
2

 √
α
ᾱ +

√
ᾱ
α

(√
ᾱ
α −

√
α
ᾱ

)
λ(√

ᾱ
α −

√
α
ᾱ

)
λ−1

√
α
ᾱ +

√
ᾱ
α

 ∈ ΛSL2(C)τ . Hence we can split

to φ = F ′CB′ for F ′ := F 1
2

 √
α
ᾱ +

√
ᾱ
α

(√
ᾱ
α −

√
α
ᾱ

)
λ(√

ᾱ
α −

√
α
ᾱ

)
λ−1

√
α
ᾱ +

√
ᾱ
α

 ∈ ΛSL2(C)τ and B′ :=( √
ᾱ
α 0

0
√

α
ᾱ

)
B ∈ Λ+

RSL2(C).

Remark 3.2.3. Bτ becomes an open dense subset of ΛSL2(C) because we can use the same
argument as in the proof of Theorem 1.2 (4) in [17].

3.3 The DPW method for spacelike CMC H surfaces with
0 ≤ H < 1 in S2,1

3.3.1 Holomorphic potential

Here we will show that all simply-connected spacelike CMC H surfaces with 0 ≤ H < 1 in S2,1 are
given by a holomorphic potential, defined in Definition 3.3.1.

Definition 3.3.1 (holomorphic potential [17], [25]). Let Σ be a simply-connected domain, z ∈ Σ
and λ ∈ C. A holomorphic potential ξ is of the form

ξ := Adz, A = A(z, λ) =
∞∑

j=−1

Aj(z)λ
j , (3.3.1)

where each Aj(z) is a 2× 2 matrix that is independent of λ, is holomorphic in z ∈ Σ, is traceless,
is a diagonal (resp. off-diagonal) matrix when j is even (resp. odd), and the upper-right entry of
A−1(z) is never zero.

3.3.2 The inverse problem of the DPW method

We will show that given a holomorphic potential ξ, then we get a conformal spacelike CMC H
surface f with 0 ≤ H < 1 in S2,1. However, in Theorem 3.3.1, we will see that finding spacelike
CMC H surfaces with 0 ≤ H < 1 is equivalent to finding the solution of the extended Lax pair of
the form (3.1.7), and then the surface is found by using the immersion formula (3.1.9). So to prove
that the DPW method finds all spacelike CMC H surfaces with 0 ≤ H < 1, we want to prove that
the DPW method produces all integrable Lax pairs of the form (3.1.7) and all their solutions F .
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Theorem 3.3.1 (The inverse problem of the DPW method). Let ξ := A(λ)dz =
∑∞
j=−1Aj(z)λ

jdz
be a holomorphic potential over a simply-connected domain Σ in C including the origin, and let
φ : Σ −→ ΛSL2(C) be a solution of

dφ = φξ and φ(z)|z=0 = I. (3.3.2)

Define the open set Σo := φ−1(Bτ ) ⊂ Σ, and take the unique ΛSL2(C)τ -Iwasawa splitting on Σo:

φ = FB, (3.3.3)

where

F ∈ ΛSU2(C)τ , B ∈ Λ+
RSL2(C). (3.3.4)

Then, after a change of coordinates and notations, F satisfies the extended Lax pair in (3.1.7).

We can prove Theorem 3.3.1 in the same way as in [17], [24]. We omit the proof.

3.3.3 The ordinary problem of the DPW method

We will consider the converse of Theorem 3.3.1, in the same way as in [24].

Theorem 3.3.2 (The ordinary problem of the DPW method). Let f : Σ −→ S2,1 be a spacelike
CMC H surfaces with 0 ≤ H < 1 for simply-connected domain Σ, and let F be the extended
frame of f satisfying (3.1.7). Then, there exist φ such that φ = FB for some B ∈ Λ+

△SL2(C) and

holomorphic potential ξ such that ξ = φ−1dφ.

We can also prove Theorem 3.3.2 in the same way as in [17], [24]. Again we omit the proof.

3.4 Behavior of the frame and surface when approaching Pτ

We have introduced ΛSL2(C)τ -Iwasawa splitting and defined the ΛSL2(C)τ -Iwasawa big cell Bτ
and small cell Pτ . In the previous section, we also showed that on Σ0 = φ−1(Bτ ) the surface f
is immeresed since the metric function eu is positive definite. However, here we will show that on
φ−1(Pτ ) f is not immersed, since the metric function eu is approaching zero there.
First, we show the following lemma.

Lemma 3.4.1. Let B =

(
a b
c d

)
=

( ∑∞
j=0 ajλ

j
∑∞
j=1 bjλ

j∑∞
j=1 cjλ

j
∑∞
j=0 djλ

j

)
∈ Λ+

△SL2(C), and let C =(
1
2 λ

−1
2λ

−1 1

)
. Then, there exist three factorizations:

(1) If |2a0 + b1| > |d0|, then

BC−1 = K1B̌, K1 :=

(
u vλ

v̄λ−1 ū

)
∈ ΛSL2(C)τ , B̌ ∈ Λ+

△SL2(C),

where u and v are constant in λ, and determined by a, b, c, d.
(2) If |2a0 + b1| < |d0|, then

BC−1 = K2B̌, K2 :=

(
u vλ

−v̄λ−1 −ū

)
∈ Ψ(iσ2)ΛSL2(C)τ , B̌ ∈ Λ+

△SL2(C),
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where u and v are constant in λ, and determined by a, b, c, d.
(3) If |2a0 + b1| = |d0|, then

BC−1 = K3CB̌, K3 :=

( √
α 0

0
√
α
−1

)
∈ ΛSL2(C)τ , B̌ ∈ Λ+

△SL2(C),

where α := − 2a0+b1
d0

.

First two cases imply BC−1 ∈ Bτ , and third one implies that BC−1 ∈ Pτ .

Proof. By direct computation, we have the following results for the three cases:

(1) K1 =

(
u vλ

v̄λ−1 ū

)
, B̌ =

(
aū− cvλ+ b

2 ūλ
−1 − d

2v −aūλ+ cvλ2 + b
2 ū− d

2vλ
−av̄λ−1 + cu− b

2 v̄λ
−2 + d

2uλ
−1 av̄ − cuλ− b

2 v̄λ
−1 + d

2u

)
,

where u and v are the solutions of the following equations:

|u|2 − |v|2 = 1, 2(2a0 + b1)v̄ − d0u = 0.

(2) K2 =

(
u vλ

−v̄λ−1 −ū

)
, B̌ =

(
−aū− cvλ− b

2 ūλ
−1 − d

2v aūλ+ cvλ2 − b
2 ū− d

2vλ
av̄λ−1 + cu+ b

2 v̄λ
−2 + d

2uλ
−1 −av̄ − cuλ+ b

2 v̄λ
−1 + d

2u

)
,

where u and v are the solutions of the following equations:

−|u|2 + |v|2 = 1, 2(2a0 + b1)v̄ + d0u = 0.

(3) K3 =

( √
α 0

0
√
α
−1

)
,

B̌ =

( √
2αe−iθ 0

0
√
2αeiθ

)(
aū− cvλ+ b

2 ūλ
−1 − d

2v −aūλ+ cvλ2 + b
2 ū− d

2vλ
av̄λ−1 + cu+ b

2 v̄λ
−2 + d

2uλ
−1 −av̄ − cuλ+ b

2 v̄λ
−1 + d

2u

)
,

where u = α√
2
e−iθ and v = 1√

2
eiθ.

This is one of our main theorems:

Theorem 3.4.1. Let φn be a sequence in Bτ , with limn→∞ φn = φ0 ∈ Pτ . Let φn = FnBn be a
ΛSL2(C)τ -Iwasawa splitting. Then,
(1) Writing Fn as

Fn =

(
xn yn

±iy∗n ±x∗n

)
∈ ΛSL2(C)τ ∪Ψ(iσ2) · ΛSL2(C)τ for x∗n := xn(iλ−1),

we have limn→∞ |xn| = limn→∞ |yn| = ∞ for all λ.
(2) Writing the constant term of Bn with respect to λ as

Bn|λ=0 =

(
ρn 0
0 ρ−1

n

)
,

we have limn→∞ |ρn| = 0. This implies that f has singularities on Pτ , since the metric function u
is defined as u = 2log(ρ) (i.e. the metric ds2 = 4e2udwdw̄ → 0 if n→ ∞).
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Proof. (1) By ΛSL2(C)τ -Iwasawa splitting in Theorem 3.2.1, we have φ0 = F0CB0. Expressing φn
as

φn = φ̂nCB0, φ̂n := φnB
−1
0 C−1,

we have limn→∞ φ̂n = F0. So, for sufficiently large n, we have φ̂n ∈ Bτ . Thus, for these n, φ̂n
is ΛSL2(C)τ -Iwasawa split into φ̂n = F̂nB̂n, and limn→∞ F̂n = F0, limn→∞ B̂n = I. Applying
Lemma 3.4.1 with λ replacing −λ, we have

φn = F̂nB̂nCB0 = F̂nXnB̌nB0,

where Xn = K1(−λ) or K2(−λ). Thus, Xn =

(
un vnλ

±vnλ−1 ±un

)
for un, vn: constant in λ. By

the computaion in the proof of Lemma 3.4.1, we also have

|un|
|vn|

=
|2â0,n + b̂1,n|

|d̂0,n|
,

where â0,n, b̂1,n, d̂0,n are determined by the components of B̂n =

( ∑∞
j=0 âj,nλ

j
∑∞
j=1 b̂j,nλ

j∑∞
j=1 ĉj,nλ

j
∑∞
j=0 d̂j,nλ

j

)
.

So

lim
n→∞

b̂1,n = 0 and lim
n→∞

â0,n = lim
n→∞

d̂0,n = 1 (3.4.1)

because limn→∞ B̂n = I. By (3.4.1) and |un|2 − |vn|2 = ±1, we get limn→∞ |un| = limn→∞ |vn| =
limn→∞ ||Xn|| = ∞ for some suitable matrix norm || · ||. Now the uniqueness of the ΛSL2(C)τ -
Iwasawa splitting says that

Fn = F̂nXnDn

for some diagonal matrix Dn which is constant in λ. Then we have

||Xn|| = ||F̂−1Fn|| ≤ ||F̂−1|| · ||Fn||,

so limn→∞ ||F̂−1|| · ||Fn|| = limn→∞ ||Fn|| = ∞, since limn→∞ ||F̂−1|| = ||F0|| is finite. Because
|xn|2 − |yn|2 = ±1, we get the conclusion limn→∞ |xn| = limn→∞ |yn| = ∞.
(2) In the same way as in the proof of (1), we get limn→∞ |ρ−1

n | = ∞, by using (3.4.1).



Chapter 4

Singularity theory for spacelike
CMC surfaces with 0 ≤ H < 1 in
S2,1

4.1 Criteria for singularities of spacelike CMC H surfaces
with 0 ≤ H < 1 in S2,1.

In this section, we study singularities of spacelike CMC H surfaces f with 0 ≤ H < 1 in S2,1,
similarly to our previous work [70] of spacelike CMC H surfaces with H > 1 in S2,1. We will
use the frame-changing method, called the s-spectral deformation, in order to specify the types of
singularities. Here we introduce criteria for cuspidal edges, swallowtails and cuspidal cross caps on
spacelike CMC H surfaces with 0 ≤ H < 1 in S2,1.
Let f : Σ −→ S2,1 be a spacelike CMC immersion of a simply-connected domain Σ ⊂ C, with

the metric ds2 = 4g2dwdw̄ = 4e2udwdw̄ and unit normal vector N . First, we consider the frame F
such that

f = Fσ3F
t
,

Fw = FA, Fw̄ = FB, where A =
1

2

(
uw 2eu(1−H)

−e−uA −uw

)
, B =

1

2

(
−uw̄ −e−uĀ

−2eu(1 +H) uw̄

)
. (4.1.1)

This F is related to F̃ in (3.1.5) such that F = F̃ |µ=1. For this F, the compatibility condition
implies the Gauss and Codazzi equations (3.1.1). We define s-spectral deformations as follows:

Definition 4.1.1. The s-spectral deformation of the spacelike CMC surface f in S2,1 is the de-
formation defined by (1 + H) → is(1 + H), (1 − H) → is−1(1 − H) in Equations (4.1.1) for the
parameter s > 0.

The s-spectral deformation maps spacelike CMC surfaces to other spacelike CMC surfaces con-
formally, as follows:

47
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Theorem 4.1.1. For all s ∈ R>0, the s-spectral deformation deforms a surface f in S2,1, with mean
curvature H, metric ds2 = 4e2udwdw̄ and Hopf differential A, into a surface fs with mean curvature

Hs = s(1+H)−s−1(1−H)
s(1+H)+s−1(1−H) , metric 4e2u

s

dwdw̄ = 4(ks)2e2udwdw̄ and Hopf differential As = −iksA for

ks = s(1+H)+s−1(1−H)
2 .

Proof. Checking the Gauss-Weingarten equations for fs, we get the conclusion.

Lemma 4.1.1. (fs)
− 1
s = f .

Proof. Direct computation implies (Hs)−
1
s = H, (ks)−

1
s = − 1

ks , (As)−
1
s = A, (us)− 1

s = u.

We define the s-spectral Lax pair.

Definition 4.1.2 (s-spectral Lax pair). We define Fs as a solution of the following system:

Fsw = FsAs, Fsw̄ = FsBs, where As :=
1

2

(
uw 2euis−1(1−H)

−e−uA −uw

)
, Bs :=

1

2

(
−uw̄ −e−uĀ

−2euis(1 +H) uw̄

)
.

Further, we define the form Ωs := (Fs)−1dFs.

Theorem 4.1.2. For f given by the frame F, and mean curvature 0 ≤ H < 1, there exists a

member of the s-spectral deformation, for the special value s = s0 :=
√

1−H
H+1 , that generates a frame

F̃ = Fs0 ∈ SU1,1 (defined in p.3 of [70], etc.).

Proof. It is easy to see that choosing s = s0 :=
√

1−H
H+1 gives the only deformation that makes the

Maurer-Cartan form become an su1,1-valued form.

As s approaches s0, the mean curvature goes to infinity, and f̃ := F̃σ3F̃
t

degenerates to a point,
but there still exists a map F̃ from Σ to SU1,1 such that F̃−1dF̃ = Ω̃ defined by the following (4.1.2).

Definition 4.1.3. We call F̃ : Σ −→ SU1,1 the adjusted frame of F and the form Ω̃ = F̃−1dF̃ the
adjusted Maurer-Cartan form, where

Ω̃ =
1

2

(
uw −2ieu

√
1−H2

−e−uA −uw

)
dw +

1

2

(
−uw̄ −e−uĀ

−2ieu
√
1−H2 uw̄

)
dw̄ =: Ãdw + B̃dw̄. (4.1.2)

Remark 4.1.1. Defining G := F · F̃−1, we have Gσ3Ḡ
t = Fσ3F

t
= f .

By the above remark, we can use a new frame G instead of F, to construct the criteria for
singularities of f .

We denote F̃ = F̃(w, w̄) = e−
u
2

(
u1 u2
u2 u1

)
∈ SU1,1, where g = eu is the metric function of f , and

|u1|2−|u2|2 = g. So we define h := u2

u1
and ω := u21. By Remark 4.1.1, we have f = Fσ3F

t
= Gσ3Ḡ

t.

Setting α := (1−H)− i
√
1−H2 and β := −(1 +H) + i

√
1−H2, we get

ds2 := 4g2dwdw̄ = (1− |h|2)2|ω|2dwdw̄,

G−1dG = α

(
−h 1
−h2 h

)
ωdw + β

(
h̄ −h̄2
1 −h̄

)
ω̄dw̄.

This implies that, wherever ds2 is finite, f has a singularity if and only if h ∈ S1 or ω = 0.
However we consider only extended CMC surfaces f defined in the following Definition 4.1.4.
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Definition 4.1.4 ([91]). A CMC surface f restricted to the subdomain D = {p ∈ Σ | ds2 <∞} is
called an extended CMC surface if ω, resp. h2ω, is never zero on D when |h| <∞, resp. |h| = ∞.

Remark 4.1.2. By this definition, any point p ∈ Σ is singular only when |h(p)| = 1. (See [91].)

We have the following criteria for singularities of spacelike extended CMC H surfaces with
0 ≤ H < 1 in S2,1. The proof of Theorem 4.1.3 is parallel to the proof of Theorem 7.5 in [70]. (See
also [32], [91], [92].)

Theorem 4.1.3. Let Σ be a simply connected domain, and let f : Σ −→ S2,1 be a spacelike extended
CMC H surface with 0 ≤ H < 1. Then:

1. A point p ∈ Σ is a singular point if and only if h ∈ S1.

2. f is a front at a singular point p ∈ Σ if and only if Re
( A
h2ω2

) ∣∣
p
̸= 0. If this is the case, p is

a non-degenerate singular point.

3. f has a cuspidal edge at a singular point p ∈ Σ if and only if

Re

(
A

h2ω2

) ∣∣∣∣
p

̸= 0 and Im

(
A

h2ω2

) ∣∣∣∣
p

̸= 0.

4. f has a swallowtail at a singular point p ∈ Σ if and only if

Re

(
A

h2ω2

) ∣∣∣∣
p

̸= 0, Im

(
A

h2ω2

) ∣∣∣∣
p

= 0

and

Re

{(
A
hω

)(
Awhω −A(2A+ 2hωw)

h3ω3

)} ∣∣∣∣∣
p

̸= Re

{(
A
hω

)(
−2Aωw̄
h2ω3

)} ∣∣∣∣
p

.

5. f has a cuspidal cross cap at a singular point p ∈ Σ if and only if

Re

(
A

h2ω2

) ∣∣∣∣
p

= 0, Im

(
A

h2ω2

) ∣∣∣∣
p

̸= 0

and

Im

{(
A
hω

)(
Awhω −A(2A+ 2hωw)

h3ω3

)} ∣∣∣∣∣
p

̸= Im

{(
A
hω

)(
−2Aωw̄
h2ω3

)} ∣∣∣∣
p

.

Proof. We can use the same argument as in the proof of Theorem 7.5 of [70], which is the case of
CMC H > 1. Then, we get the exactly the same claim as Theorem 7.5 of [70], for example:
“ f has a swallowtail at a singular point p ∈ Σ if and only if

Re

(
hw
h2ω

) ∣∣∣∣
p

̸= 0, Im

(
hw
h2ω

) ∣∣∣∣
p

= 0 and Re

{(
hw
h

)(
hw
h2ω

)
w

}∣∣∣∣∣
p

̸= Re

{(
hw
h

)(
hw
h2ω

)
w̄

} ∣∣∣∣
p

.”

However, we also have A = −2hwω, Aw̄ = 0 and hw̄|p = 0, since H is constant. Applying these, we
get the conclusion.



50 CHAPTER 4. SINGULARITY THEORY FOR SPACELIKE CMC SURFACES

4.2 Example: Smyth-type surfaces with 0 ≤ H < 1 in S2,1and
their singularities

4.2.1 Smyth surfaces

Smyth studied a generalization of Delaunay surfaces in R3, which are CMC surfaces with rotationally
invariant metrics, in [87]. These surfaces are called Smyth surfaces, and there are numerous studies
about them. For example, Bobenko and Its studied relationships between Smyth surfaces and
Painleve III equations in [8]. The DPW method was also applied to Smyth surfaces in Riemannian
spaceforms, in [8], [25]. In our previous work of [70], we constructed the analogue of Smyth surfaces
in R2,1, S2,1 and H2,1, and specified the types of singularities they have. However, in [70] we omitted
the case of 0 ≤ H < 1 in S2,1 because the Iwasawa splitting given here becomes quite different from
the H > 1 case.
Here we will construct Smyth-type surfaces with 0 ≤ H < 1 in S2,1. In Equation (4.2.3), we

will notice that Smyth-type surfaces with 0 ≤ H < 1 in S2,1 have an umbilic point at the origin,
thus Smyth-type surfaces can be constructed by applying only Proposition 3.1.1, not by Proposition
3.1.2. Hence, Smyth-type surfaces with 0 ≤ H < 1 are good examples of applying the DPW method
introduced in this paper. We also identify the types of singularities on Smyth-type surfaces, using
the criteria in Section 4.1.

4.2.2 Reflective symmetry of Smyth-type surfaces

Define

ξ = λ−1

(
0 1
cwk 0

)
dw, c ∈ C, w ∈ Σ = C, (4.2.1)

and take a solution φ such that dφ = φξ and φw=0 = I. Now we can assume c ∈ R>0 using a
reparametrization of w and a rigid motion of f , as in [17].
The following Proposition 4.2.1 is proven in the same way as Theorem 8.2 in [70].

Proposition 4.2.1. The surfaces f : φ−1(Bτ ) −→ S2,1, produced via the DPW method, from ξ in
(4.2.1), with φ|w=0 = I and F0 = F |

λ=e−
q
2
for q < 0, has reflective symmetry with respect to k + 2

geodesic planes that meet equiangularly along a geodesic line.

4.2.3 The Gauss equation of Smyth-type surfaces

Here we assume the mean curvature is H = i
2 for simplicity, and then we show that the metric of

Smyth-type surfaces is rotationally invariant.

Theorem 4.2.1. The Gauss equation (3.1.1) for a surface in S2,1 generated by ξ in (4.2.1), with
φ|w=0 = I, is equivalent to a special case of the Painleve III equations, and the metric function u
is rotationally invariant.

Proof. When H = i
2 , the Gauss equation is of the following form:

4uww̄ + e2u + |Q|2e−2u = 0. (4.2.2)
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By the proof of Theorem 3.3.1, we have

Q = −2H b−1

a−1
= −icwk (i.e. A = cwk). (4.2.3)

Set v := u− 1
2 log|Q|, and (4.2.2) is equivalent to

4vww̄ + 2|c| · |w|kcosh(2v) = 0. (4.2.4)

Using vww̄ = 1
4∂

2
rv +

1
4r∂rv for r := |w|, (4.2.4) becomes

∂2rv +
1

r
∂rv + 2|c| · rkcosh(2v) = 0. (4.2.5)

Next we set x := 1
1+ k

2

r1+
k
2

√
|c|, and (4.2.5) is equivalent to

∂2xv +
1

x
∂xv + 2cosh(2v) = 0. (4.2.6)

(4.2.6) is a special case of the Painleve III equation that is yxx = 1
y (yx)

2− 1
xyx−

1
x (αy

2+β)+γy3+ δ
y ,

for y = ev, α = β = 0, γ = δ = −1.

Using polar coordinates w = reiθ and setting g := eu, the Gauss equation and the suitable
choice of the initial conditions are as follows:

g(grr +
gr
r
)− g2r + c2r2k − 4H2g4 = 0, g|r=0 = 1, gr|r=0 = 0. (4.2.7)

This solution g depends only on r, and some examples of g are seen in Figure 4.1. The singular set
S(f) := {(r, θ) ∈ C|g(r) = 0} corresponding to this data of g is seen in the right-side of Figure 4.1.
As in Figure 4.2, Smyth-type surfaces with H = i

2 in S2,1 arrive at the singular set S(f) repeatedly
before they diverge to infinity. This phenomenon does not occur in the case of H > 1. (See [70].)

Fig. 4.1: The left image is a solution g of Equation (4.2.7), and the right image is the corresponding
singular set.

4.2.4 The types of singularities on Smyth-type surfaces

By numerical calculation, we know that these Smyth surfaces have cuspidal edges, swallowtails and
cuspidal cross caps, using the criteria as in Section 4.1, see Figure 4.3.

Fact 4.2.1. There exist Smyth-type surfaces in S2,1 which have cuspidal edges, swallowtails and
cuspidal cross caps. (See Figures 4.3.)
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Fig. 4.2: The middle image is a 3-legged Smyth-type surface with H = i
2 , and the left image is part

of the middle one, from the origin to the first singular set. The right image is a part of the middle
one, near second singular set (using the hollow ball model as in [29]).

Fig. 4.3: The values of Re
( A
h2ω2

) ∣∣
p
, Im

( A
h2ω2

) ∣∣
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legged Smyth-type surface with H = i
2 in S2,1 at (r0, θ) such that g(r0) = 0 and 0 ≤ θ ≤ 2π

(left to right).
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Here we show, for the surfaces in Fact 4.2.1, that there are at least 2(k+2)-swallowtails, without
relying on numerical calculation, and using only geometric properties. Before doing that, we have
a lemma.

Lemma 4.2.1. Let F̃ = F̃(w, w̄) be the solution of the adjusted Lax pair (4.1.2) with F̃w=0 = I for

the case of a Smyth-type surface. Then F̃(w) = σ3F̃(w̄)σ3.

Proof. By direct computation, we have Ã(w) = −B̃(w̄)t. By this equation and F̃w=0 = I, we get
the conclusion.

Corollary 4.2.1.
(1) h(w) = −h(w̄), ω(w) = ω(w̄).
(2) At (r, θ) = (r0, 0) for g(r0) = 0, we have h(r0, 0) = ±i, ω(r0, 0) ∈ R\{0}, ωw(r0, 0) = ωw̄(r0, 0).

Proposition 4.2.2. Let f(w) = f(r, θ) be a (k + 2)-legged Smyth-type surface in S2,1, and let r0
satisfy g(r0) = 0. Then f has a swallowtail at (r0, 0).

Proof. We will use the criteria of Theorem 4.1.3, and by the data of the above Corollary 4.2.1 we
can get the conclusion.

Similarly, we have the same conclusion when θ = π
k+2 .

Proposition 4.2.3. Let f(w) = f(r, θ) be a (k + 2)-legged Smyth-type surface in S2,1, and let r0
satisfy g(r0) = 0. Then f has a swallowtail at (r0,

π
k+2 ).

By the above two propositions and the reflective symmetry, we get the following main result:

Theorem 4.2.2. If a (k+2)-legged Smyth-type surface in S2,1 has singularities, then it has at least
2(k + 2) swallowtails.

Remark 4.2.1. We have checked numerically that there are cuspidal cross caps along the cuspidal
edges between each adjacent pair of swallowtails. Thus the surface as in Theorem 4.2.2 will also
have at least 2(k + 2) cuspidal cross caps.





Chapter 5

Gauss maps of cuspidal edges in H3

5.1 Local differential geometry of cuspidal edges in H3

Let R3,1 denote the space R4 of 4-tuples the real numbers, equipped with the signature (−,+,+,+)
and symmetric bilinear form ⟨, ⟩ defined by

⟨(x0, x1, x2, x3), (y0, y1, y2, y3)⟩ = −x0y0 + x1y1 + x2y2 + x3y3

for any x = (x0, x1, x2, x3),y = (y0, y1, y2, y3). We call this space R3,1 the Lorentz–Minkowski
4-space or briefly the Minkowski 4-space.

For x ∈ R3,1 \ {0}, there are three kinds of vector called spacelike, lightlike or timelike and
defined by ⟨x,x⟩ > 0,= 0 or < 0 respectively. The norm of x ∈ R3,1 is defined by ||x|| =

√
|⟨x,x⟩|.

Especially, for a spacelike vector x, the norm of x is ||x|| =
√

⟨x,x⟩. We now define the pseudo
wedge product a1 ∧ a2 ∧ a3 as follows:

a1 ∧ a2 ∧ a3 =

∣∣∣∣∣∣∣∣
−e0 e1 e2 e3
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

∣∣∣∣∣∣∣∣ ,
where {e0, e1, e2,e3} is the canonical basis of R3,1, ai = (ai0, a

i
1, a

i
2, a

i
3) ∈ R3,1 (i = 1, 2, 3). We can

easily check that
⟨a,a1 ∧ a2 ∧ a3⟩ = det(a,a1,a2,a3)

holds. Hence a1 ∧ a2 ∧ a3 is pseudo orthogonal to ai, i = 1, 2, 3.
There are three kinds of pseudo-spheres in R3,1: the hyperbolic 3-space H3 is defined by

H3 = {x ∈ R3,1|⟨x,x⟩ = −1, x0 > 0},

the de Sitter 3-space S2,1 is defined by

S2,1 = {x ∈ R3,1|⟨x,x⟩ = 1}

and open lightcone LC∗ is defined by

LC∗ = {x ∈ R3,1 \ {0}|⟨x,x⟩ = 0}.
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We recall that wave fronts in H3. Let f : U → H3 ⊂ R3,1 be a smooth map, where U ⊂ R2 is
a simply-connected domain with local coordinates u, v. We call f a wave front (or front, for short)
if there exists a unit vector field ν along f such that the following conditions hold:

(a) ⟨df(Xp), ν(p)⟩ = 0, for any Xp ∈ TpU, p ∈ U , and

(b) the pair Lf = (f, ν) : U → T1H3 = {(v,w) ∈ H3 × S2,1|⟨v,w⟩ = 0} is an immersion, where
T1H3 is the unit tangent bundle over H3 equipped with the canonical contact structure.

Here, we call this vector ν a unit pseudo normal vector of f and Lf a Legendrian lift (cf. [3],
see also [57, 83]). A map f is called a frontal if (a) of the above condition is satisfied. A front
f might have singularities. Arnol’d and Zakalyukin showed that the generic singularities of fronts
in R3 are cuspidal edges and swallowtails (for example, see [3]). A cuspidal edge is a map-germ
f : (R2,0) → (R3,0) A-equivalent to the germ (u, v) 7→ (u, v2, v3) and a swallowtail is a map-germ
f : (R2,0) → (R3,0) A-equivalent to the germ (u, v) 7→ (u, 4v3 + 2uv, 3v4 + uv2) at the origin,
where two map-germs f, g : (R2,0) → (R3,0) are A-equivalent if there exist diffeomorphism-germs
Ξs : (R2,0) → (R2,0) on the source and Ξt : (R3,0) → (R3,0) on the target such that f ◦Ξs = Ξt◦g
holds (see Fig. 5.1).

Fig. 5.1: Cuspidal edge (left) and swallowtail (right).

For a front f , we define a function called the signed area density function λ as follows: λ =
det(fu, fv, ν, f), where fu = ∂f/∂u and fv = ∂f/∂v respectively. We denote by S(f) the singular
set of f . By definition of the signed area density function, the relation S(f) = λ−1(0) holds. For
a singular point p ∈ S(f), we say that p is non-degenerate if the condition dλ(p) ̸= 0 holds. Let
p ∈ S(f) be a non-degenerate singular point of f . Then, by the implicit function theorem, there
exists a regular curve γ : (−ε, ε) → U (ε > 0) with γ(0) = p such that γ locally parametrizes S(f).
Since non-degenerate singular points are corank 1 singular points, there exists a vector field η on
S(f) such that df(η) = 0 holds. We call such a vector field the null vector field. Under the above
situation, the following criteria are known.

Theorem 5.1.1 ([57, Propositin 1.3]). Let f : U → H3 be a front and p ∈ U be a non-degenerate
singular point of f . Then

(1) f at p is A-equivalent to a cuspidal edge if and only if ηλ(p) ̸= 0 holds.

(2) f at p is A-equivalent to a swallowtail if and only if ηλ(p) = 0 and ηηλ(p) ̸= 0 hold.
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We consider (extrinsic) differential geometric properties of cuspidal edges in H3. Let f : U → H3

be a front and p ∈ U a cuspidal edge. In this case, we can take a special local coordinate system
called the adapted coordinate system (see [63, 64], for example).

Definition 5.1.1. A coordinate system (U ;u, v) is called adapted if the following conditions hold:

1) the u-axis is the singular curve,

2) η = ∂v gives a null vector field along the u-axis, and

3) there are no singular points other than the u-axis.

We use this coordinate system in Sections 2, 3 and 4. With this coordinate, df(η) = fv = 0
and fvv ̸= 0 hold along the u-axis. Thus there exists a smooth map φ : U → R3,1 \ {0} such that
fv = vφ holds. We define a map

ν =
fu ∧ φ ∧ f

||fu ∧ φ ∧ f ||
: U → S2,1.

From the definition of ν, we have

⟨fu, ν⟩ = ⟨φ, ν⟩ = ⟨f, ν⟩ = 0, ⟨ν, ν⟩ = 1.

We call this map ν the de Sitter Gauss map image or the de Sitter Gauss image of f .

The signed area density of f is given by

λ = det(fu, fv, ν, f) = v det(fu, φ, ν, f) = vλ̃.

Since η = ∂v, a point p is a cuspidal edge of f if and only if ηλ = λ̃ ̸= 0 holds along the u-axis.
Thus f, fu, φ and ν are linearly independent.

We define the following functions:

Ê = ⟨fu, fu⟩, F̂ = ⟨fu, φ⟩, Ĝ = ⟨φ,φ⟩, (5.1.1)

L̂ = −⟨fu, νu⟩, M̂ = −⟨φ, νu⟩, N̂ = −⟨φ, νv⟩. (5.1.2)

We note that ÊĜ− F̂ 2 ̸= 0 near p and −⟨fu, νv⟩ = vM̂ holds. Using these functions, we have the
following.

Lemma 5.1.1. The differentials νu and νv can be written as

νu =
F̂ M̂ − ĜL̂

ÊĜ− F̂ 2
fu +

F̂ L̂− ÊM̂

ÊĜ− F̂ 2
φ, νv =

F̂ N̂ − vĜM̂

ÊĜ− F̂ 2
fu +

vF̂ M̂ − ÊN̂

ÊĜ− F̂ 2
φ.

We set

ψ(t) = det(γ̂, γ̂′, Df
η (ν ◦ γ), ν ◦ γ)(t),

where γ̂ = f ◦γ, Df is the canonical covariant derivative along a map f induced from the Levi-Civita
connection on H3 and ′ = d/dt. We note that ψ(0) ̸= 0 if and only if (f, ν) is a Legendre immersion
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at p, that is, f is a front at p when γ̂′(0) ̸= 0 (see [32, 53]). Taking an adapted coordinate system
(U ;u, v) around p, Df

ην = νv holds. Thus we have

ψ(u) = det(f(u, 0), fu(u, 0), νv(u, 0), ν(u, 0))

= − ÊN̂

ÊĜ− F̂ 2
det(f(u, 0), fu(u, 0), φ(u, 0), ν(u, 0))

by Lemma 5.1.1, and we see that N̂ does not vanish along the u-axis.

Remark 5.1.1. Let f : U → (M3, g) be a front with non-degenerate singular points, where (M3, g)
is an oriented 3-dimensional Riemannian manifold. We set

fη = df(η), fηη = ∇ηfη, fηηη = ∇ηfηη,

where ∇ is the Levi-Civita connection of (M3, g). In [64], a differential geometric invariant κc called
the cuspidal curvature is defined by

κc(t) =
|γ̂′(t)|3/2 detg(γ̂′(t), fηη(γ(t)), fηηη(γ(t)))

|γ̂′(t)×g fηη(γ(t))|5/2

along the singular curve γ, where γ̂ = f ◦ γ, detg is the Riemannian volume element of (M3, g) and
⟨a×g b, c⟩ = detg(a, b, c) for each a, b, c ∈ TqM

3 (q ∈M3). If M = R3, then detg can be identified
with the usual determinant. By [83, Corollary 3.5], f at p ∈ S(f) is a cuspidal edge if and only if
κc(p) ̸= 0 holds. For details about the cuspidal curvature κc, see [64].

Here the Gauss-Kronecker curvature function Kext and the mean curvature function H of f are
given by

Kext =
L̂N̂ − vM̂2

v(ÊĜ− F̂ 2)
, H =

ÊN̂ − 2vF̂ M̂ + vĜL̂

2v(ÊĜ− F̂ 2)
. (5.1.3)

We define the matrix

Sd = −
(
Ê F̂

F̂ Ĝ

)−1(
L̂ vM̂

M̂ N̂

)
,

called the modified de Sitter shape operator of f . Then the relation

detSd = vKext = K̂ext

holds. By definition of Kext given by (5.1.3), K̂ext is C
∞-function of u, v.

We consider the principal curvatures for cuspidal edges. We now define two functions as follows:

κ1 =
A+B

2v(ÊĜ− F̂ 2)
, κ2 =

A−B

2v(ÊĜ− F̂ 2)
. (5.1.4)

Here A = ÊN̂ − 2vF̂ M̂ + vĜL̂, B =

√
A2 − 4v(ÊĜ− F̂ 2)(L̂N̂ − vM̂2). By definitions of κ1 and

κ2, we have Kext = κ1κ2 and 2H = κ1+κ2. Thus we may regard κ1 and κ2 as principal curvatures
of f . However, we note that one of κi (i = 1, 2) may not be well-defined along the singular curve.
Two functions κ1 and κ2 in (5.1.4) can be rewritten as

κ1 =
2(L̂N̂ − vM̂2)

A−B
, κ2 =

2(L̂N̂ − vM̂2)

A+B
. (5.1.5)
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Here, A = ÊN̂ and B = Ê|N̂ | hold on the singular set {v = 0}. Thus A+B ̸= 0 (resp. A−B ̸= 0)
holds on {v = 0} if N̂ > 0 (resp. N̂ < 0). By the above arguments, if N̂ is positive (resp. negative)
along the singular curve, κ2 (resp. κ1) is well-defined along the singular curve. So we can regard
κ2 as the principal curvature for the cuspidal edge if and only if N̂(u, 0) is a non-zero positive
C∞-function of u along the u-axis. We note that Murata and Umehara [67] introduced the notion
of principal curvature maps for fronts in R3.

Let us consider the principal direction v = (ξ, ζ) with respect to the principal curvature κ2. In
this case, v satisfies the following equation:(

L̂ vM̂

vM̂ vN̂

)(
ξ
ζ

)
= κ2

(
Ê vF̂

vF̂ v2Ĝ

)(
ξ
ζ

)
.

Thus the principal direction v = (ξ, ζ) can be taken as

v = (N̂ − vκ2Ĝ,−M̂ + κ2F̂ ). (5.1.6)

Since N̂ ̸= 0 holds on {v = 0}, the principal direction v is also well-defined along the u-axis.
Using the principal curvature κ2 and the principal direction v corresponding to κ2, we define a

notion of ridge point.

Definition 5.1.2. Let f : U → H3 be a cuspidal edge, κ2 the principal curvatures of f and v
the principal directions with respect to κ2. The point f(p) is called a ridge point relative to v if
vκ2(p) = 0, where vκ2 is the directional derivative of κ2 in direction v. Moreover, f(p) is called
a k-th order ridge point relative to v if v(m)κ2(p) = 0 (1 ≤ m ≤ k) and v(k+1)κ2(p) ̸= 0, where
v(m)κ2 is the directional derivative of κ2 with respect to v applied m times.

Properties of ridge points for regular surfaces in R3 were first studied by Porteous to investigate
caustics of them. For details, see [77, 78].

5.2 Singularities of the de Sitter Gauss map image

In this section, we consider the de Sitter Gauss image ν : U → S2,1 of f . From arguments in Section
2, the pair L = (f, ν) gives a Legendrian immersion. Thus ν can be regarded as a (wave) front in
S2,1 with unit normal vector f .

We consider the signed area density function λν of ν. Using ν, νu, νv and f , λν is given by

λν = det(νu, νv, ν, f). (5.2.1)

By Lemma 5.1.1 and (5.1.3), it can be written as

λν = vKext det(fu, φ, f, ν). (5.2.2)

We note that det(fu, φ, f, ν) is a non-zero function. By definitions of Gauss-Kronecker curvature
and κ1 and κ2, we have

vKext = (vκ1)κ2. (5.2.3)

In this case, vκ1 is a non-zero function on U . From (5.2.1), (5.2.2) and (5.2.3), we can consider the
signed area density as

λ̂ν = κ2. (5.2.4)

Thus we have the following:
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Proposition 5.2.1. Under the above conditions, a point p ∈ U is a singular point of the de Sitter
Gauss image ν if and only if κ2(p) = 0 holds.

We denote by S(ν) = {q ∈ U |κ2(q) = 0} the set of singular points of ν and we call a point
p ∈ S(ν) a parabolic point for cuspidal edges. For p ∈ S(ν), a point p is a non-degenerate singular
point of ν if and only if (κ2)u(p) ̸= 0 or (κ2)v(p) ̸= 0 hold, that is, p is not a critical point of κ2.

We consider the case that p ∈ S(ν) is non-degenarate. In this case, there exists a vector field ην

on S(ν) such that dν(ην) = 0. We will find a concrete form for ην . Let us take ην = ην1∂u + ην2∂v.
Then

dν(ην) =

(
F̂ M̂ − ĜL̂

ÊĜ− F̂ 2
fu +

F̂ L̂− ÊM̂

ÊĜ− F̂ 2
φ

)
ην1

+

(
F̂ N̂ − vĜM̂

ÊĜ− F̂ 2
fu +

vF̂ M̂ − ÊN̂

ÊĜ− F̂ 2
φ

)
ην2 = 0 (5.2.5)

holds on S(ν) by Lemma 5.1.1. Since fu and φ are linearly independent, this equation is equivalent
to the following: (

Ê F̂

F̂ Ĝ

)−1(
L̂ vM̂

M̂ N̂

)(
ην1
ην2

)
=

(
0
0

)
(5.2.6)

holds on S(ν). Now N̂ ̸= 0, so we can take ην as

ην = N̂∂u − M̂∂v (5.2.7)

on S(ν). Moreover, ην can be extended on U by the form

ην = (N̂ − vκ2Ĝ)∂u + (−M̂ + κ2F̂ )∂v = v,

where v is the principal direction with respect to κ2. Thus we can regard the principal direction v
as a null vector field ην .

Using Theorem 5.1.1, the signed area density λ̂ν and null vector field ην , we obtain conditions
for singularities of ν.

Proposition 5.2.2. Let f : U → H3 be a cuspidal edge and ν : U → S2,1 a de Sitter Gauss image
of f . Suppose that p ∈ S(ν) is a non-degenerate singular point of ν. Then the following assertions
hold.

(1) ν at p is a cuspidal edge if and only if vκ2(p) ̸= 0 holds.

(2) ν at p is a swallowtail if and only if vκ2(p) = 0 and v(2)κ2(p) ̸= 0 hold.

Combining the results obtained in Sections 2 and 3, we have relations between singularities of
ν and the differential geometric properties of f .

Theorem 5.2.1. Let f : U → H3 be a cuspidal edge and ν : U → S2,1 a de Sitter Gauss image of
f . Then the following properties hold.

(1) A point p ∈ U is a singular point of ν if and only if κ2(p) = 0 holds.
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(2) A point p ∈ S(ν) is non-degenerate if and only if p is not a critical point of κ2.

(3) For a non-degenerate singular point p ∈ S(ν), ν at p is a cuspidal edge if and only if p is not
a ridge point of f .

(4) For a non-degenerate singular point p ∈ S(ν), ν at p is a swallowtail if and only if p is a first
order ridge point of f .

In [84], duality between Ak+1-inflection point (k ≤ n) of immersed C∞-hypersurfaces f :Mn →
P (Rn+2) and Ak-singularity of dual front g : Mn → P ((Rn+2)∗) were shown, where Mn is a C∞-
manifold of dimension n and A2-singularity and A3-singularity correspond to a cuspidal edge and a
swallowtail for fronts respectively. We also remark that cusp singularities of Gauss maps of regular
surfaces in R3 are related to parabolic points and ridge points for surfaces (see [4, Theorem 3.1]).

5.3 Normal form of cuspidal edges in H3

In this section, we consider the normal form of cuspidal edges in H3. For cuspidal edges in R3, the
following normal form obtained by Martins and Saji in [63] is known.

Proposition 5.3.1 ([63]). Let f : (R2,0) → (R3,0) be a smooth map-germ and 0 a cuspidal edge.
Then there exist a diffeomorphism-germ ψ : (R2,0) → (R2,0) on the source and an isometry-germ
Ψ : (R3,0) → (R3,0) on the target such that

Ψ ◦ f ◦ ψ(u, v)

=

(
u,
a20
2
u2 +

a30
6
u3 +

v2

2
,
b20
2
u2 +

b30
6
u3 +

b12
2
uv2 +

b03
6
v3
)
+ h(u, v) (5.3.1)

with b20 ≥ 0 and b03 ̸= 0, where

h(u, v) = (0, u4h1(u), u
4h2(u) + u2v2h3(u) + uv3h4(u) + v4h5(u, v)),

with hi(u) (1 ≤ i ≤ 4), h5(u, v) smooth functions.

See [63] for detailed descriptions and geometric properties of the coefficients in (5.3.1). We
extend (5.3.1) to the case of H3 by analogy to the hyperbolic-Monge form (or the H-Monge form,
for short) for regular surfaces which is introduced by Izumiya, Pei and Sano (see [50, Section 8]).
Let f : U → H3 be a cuspidal edge. Then we have H-Monge form f = (f0, f1, f2, f3) for surfaces
with cuspidal edge as follows:

f0 =
√
1 + f21 + f22 + f23 ,

f1 =
b20
2
u2 +

b30
6
u3 +

b12
2
uv2 +

b03
6
v3

+ u4h2(u) + u2v2h3(u) + uv3h4(u) + v4h5(u, v),

f2 = u,

f3 =
a20
2
u2 +

a30
6
u3 +

v2

2
+ u4h1(u).
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Using H-Monge form of cuspidal edge, we consider the conditions of ridge for cuspidal edge in terms
of the coefficients. Let us assume that b03 > 0 holds. Here f, fu and φ are

f = (1, 0, 0, 0), fu = (0, 0, 1, 0) and φ = (0, 0, 0, 1)

at the origin. We can take de Sitter Gauss image ν of f with ν = (0, 1, 0, 0) at the origin. In
this case, the coefficients of the first and the second fundamental forms are Ê = 1, F̂ = 0, G̃ =
1, L̂ = b20, M̂ = b12, N̂ = b03/2 at the origin. Moreover, the principal curvature satisfies κ2 =
L̂/Ê = b20, (κ2)u = b30 − a20b12 and (κ2)v = −(4b212 + a20b

2
03)/2b03 at the origin. Thus we have the

following lemma.

Lemma 5.3.1. Let f : U → H3 be a H-Monge form of cuspidal edge. Then κ2(0) = 0 if and
only if b20 = 0. Moreover the origin 0 is not critical point of κ2 if and only if b30 − a20b12 ̸= 0 or
4b212 + a20b

2
03 ̸= 0 hold.

We assume that b20 = 0 holds in what follows.

Lemma 5.3.2. Let f : U → H3 be the H-Monge form of a cuspidal edge, κ2 the principal curvature
and v the principal direction corresponding to κ2. Then the following assertions hold.

(1) The origin is not a ridge point if and only if 4b312 + b30b
2
03 ̸= 0 holds.

(2) The origin is a first order ridge point if and only if 4b312 + b30b
2
03 = 0 and

b403h2(0) + 4b212b
2
03h3(0)− 8b312b03h4(0) + 16b412h5(0, 0) ̸= 0.

hold.

Proof. First we show the condition (1) of Lemma 5.3.2. By defunitions of the principal curvature
and the principal direction, we have (κ2)u = b30 − a20b12, (κ2)v = −(4b212 + a20b

2
03)/2b03, ξ =

b03/2, ζ = −b12 at the origin. Using these conditions,

vκ2(0) = ξ(0)(κ2)u(0) + ζ(0)(κ2)v(0) =
4b312 + b30b

2
03

2b03

holds. On the other hand, the condition that the origin 0 is not a ridge point is vκ2(0) ̸= 0. Thus
it follows that the first assertion holds.

Next we show (2) of Lemma 5.3.2. Let us assume that

vκ2(0) =
4b312 + b30b

2
03

2b03
= 0

holds, that is, the origin is a ridge point. Then we see that ξu(0) = 3h4(0), ξv(0) = 8h5(0, 0), ζu(0) =
−4h3(0), ζv(0) = −3h4(0) and

(κ2)uu(0) = −2a30b12 + 24h2(0)− 4a20h3(0)),

(κ2)uv(0) =
1

2b203
(−a30b303 − 32b12b03h3(0) + 6(4b212 − a20b

2
03)h4(0)),

(κ2)vv(0) =
4

b203
(b203h3(0)− 6b12b03h4(0) + 2(8b212 − a20b

2
03)h5(0, 0)).
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Thus we obtain

v(2)κ2(0) =
1

4b203
(6b03(4b

3
03h2(0) + 16b212b03h3(0)− (28b312 − b30b

2
03)h4(0))

+ 32b12(8b
3
12 − b30b

2
03)h5(0, 0)).

Since the condition b30 = −4b312/b
2
03 holds, we have

v(2)κ2(0) =
6

b203
(b403h2(0) + 4b212b

2
03h3(0)− 8b312b03h4(0) + 16b412h5(0, 0))).

This shows that (2) of Lemma 5.3.2 holds.

We show some examples of cuspidal edge in H3 and corresponding de Sitter Gauss image. To
visualize surface in H3 and S2,1, we will use the Poincaré model P and the hollow ball model H in
what follows. For details of the hollow ball model, see [29]. Here the Poincaré model P is given by
a map

H3 ∋ (x0, x1, x2, x3) 7→
(

x1
1 + x0

,
x2

1 + x0
,

x3
1 + x0

)
∈ P

and the hollow ball model H is given by

S2,1 ∋ (x0, x1, x2, x3) 7→

(
earctan x0√
1 + x20

x1,
earctan x0√
1 + x20

x2,
earctan x0√
1 + x20

x3

)
∈ H.

Then we can view the Poincaré model P as the Euclidean unit ball

B3 = {(x1, x2, x3) ∈ R3 | x21 + x22 + x23 < 1}

in R3. Moreover the hollow ball model H can be viewed as

H = {(x1, x2, x3) ∈ R3 | e−π < x21 + x22 + x23 < eπ}.

Example 5.3.1. Let f = (f0, f1, f2, f3) : U → H3 be a cuspidal edge with

f0 =
√
1 + f21 + f22 + f23 , f1 = u3 +

v3

3
, f2 = u, f3 =

u2

2
+
u3

3
+
v2

2
+ u4.

This form satisfies the conditions of Lemma 5.3.1 and (1) of Lemma 5.3.2. Thus, by Theorem 5.2.1,
de Sitter Gauss image of f has cuspidal edge at the origin.

Example 5.3.2. Let f = (f0, f1, f2, f3) : U → H3 be a cuspidal edge with

f0 =
√
1 + f21 + f22 + f23 , f1 =

v3

3
+ u4, f2 = u, f3 =

u2

2
+
u3

3
+
v2

2
.

This form satisfies the conditions of Lemma 5.3.1 and (2) of Lemma 5.3.2. Thus, by Theorem 5.2.1,
de Sitter Gauss image of f has swallowtail singularity at the origin.
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Fig. 5.2: Pictures of Example 5.3.1. Cuspidal edge in H3 (left) and its de Sitter Gauss image in
S2,1 (right).

5.4 Application to flat fronts

In this section, we consider constant Gauss-Kronecker curvature Kext = 1 surfaces, called flat fronts
in H3 and S2,1. First we introduce explicit formula for flat fronts in H3, called the Bryant-type
representation, as in [36].

Proposition 5.4.1 ([36]). Let U be a simply-connected domain in C with the usual complex coor-
dinate z = u+ iv. Then, any flat front f : U → H3 is given by

f = FF t, where dF = F
(

0 h(z)
g(z) 0

)
dz (5.4.1)

for some holomorphic functions g and h.

We also have the following well-known fact as in Proposition 5.4.2:

Proposition 5.4.2. For flat fronts f in H3 as given in Proposition 5.4.1, the unit normal vector
ν of f becomes (spacelike) flat fronts in S2,1, and ν can be described as

ν = F
(

1 0
0 −1

)
F t. (5.4.2)

5.4.1 The singularity theory of flat fronts in H3 and S2,1.

Here we introduce criteria for singularities of flat fronts f in H3 as in [57], and we give criteria for
singularities of the de Sitter Gauss image ν (i.e. flat fronts in S2,1) of f in the same way.

Proposition 5.4.3 ([57]). Let U be a simply connected domain, and let f : U → H3 be a flat front
given as in Proposition 5.4.1.

1. A point p ∈ U is a non-degenerate singular point if and only if

|g(p)| = |h(p)| and (gzh− ghz)
∣∣
p
̸= 0.



5.4. APPLICATION TO FLAT FRONTS 65

Fig. 5.3: Pictures of Example 5.3.2. Cuspidal edge in H3 (left) and its de Sitter Gauss image in
S2,1 (right).

2. f has a cuspidal edge at a non-degenerate singular point p ∈ U if and only if

Im

(
gzh− ghz

(gh)
3
2

) ∣∣∣∣
p

̸= 0.

3. f has a swallowtail at a non-degenerate singular point p ∈ U if and only if

Im

(
gzh− ghz

(gh)
3
2

) ∣∣∣∣
p

= 0 and Re

{(
gzh− ghz

(gh)
3
2

)
z

(
gz
g

− hz
h

)} ∣∣∣∣∣
p

̸= 0.

Here we give criteria for singularities of the de Sitter Gauss image ν. The following theorem can
be proven by the same way as in the proof of the above proposition. Thus, we omit that proof.

Theorem 5.4.1. Let U be a simply connected domain, and let ν : U → S2,1 be a flat front given
in Proposition 5.4.2.

1. A point p ∈ U is a non-degenerate singular point if and only if

|g(p)| = |h(p)| and (gzh− ghz)
∣∣
p
̸= 0.

2. ν has a cuspidal edge at a non-degenerate singular point p ∈ U if and only if

Re

(
gzh− ghz

(gh)
3
2

) ∣∣∣∣
p

̸= 0.

3. ν has a swallowtail at a non-degenerate singular point p ∈ U if and only if

Re

(
gzh− ghz

(gh)
3
2

) ∣∣∣∣
p

= 0 and Im

{(
gzh− ghz

(gh)
3
2

)
z

(
gz
g

− hz
h

)} ∣∣∣∣∣
p

̸= 0.
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We note that Fujimori, Noro, Saji, Sasaki and Yoshida [31] study fronts in S2,1 from the view-
point of the de Sitter Schwarz map and they give criteria which correspond to Theorem 5.4.1 for
singularities of flonts in S2,1 in terms of de Sitter Schwarz map (For details, see [31, Proposition
6]).

By the above Proposition 5.4.3 and Theorem 5.4.1, we get the following Corollary 5.4.1.

Corollary 5.4.1.

1. The singular set of f coincides with the singular set of ν, i.e. S(f) = S(ν).

2. We define the set of non-degenerate singular points of f as Σ(f), which is the subset of S(f).
We define Σ(ν) similarly. Then, Σ(f) = Σ(ν).

We note that (1) of Corollary 5.4.1 is a special case of [64, Corollary C] (see also [31]).

5.4.2 Global example: Enneper-type flat fronts and their singularities

Here we introduce Enneper-type flat fronts in H3 and S2,1, which are flat fronts and have reflective
symmetry (see Fig 5.4 and 5.5), as global application of Theorem 5.2.1
Define g(z) = zk and h(z) = 1 for k ∈ N. Applying Proposition 5.4.1, we get (k + 2)-legged

Enneper-type flat fronts in H3. See Fig 5.4. We also have (k + 2)-legged Enneper-type flat fronts
in S2,1 applying Proposition 5.4.2. See Fig 5.5. Using polar coordinates z = reiθ and applying
Proposition 5.4.3, we get the following lemma:

Lemma 5.4.1. Let f be a (k + 2)-legged Enneper-type flat front in H3. Then:

1. S(f) =
{
(r0, θ)

∣∣rk0 = 1, 0 ≤ θ < 2π
}
.

2. f has (k + 2)-swallowtails at (r0, θ0) such that rk0 = 1 and θ0 = 2iπ
k+2 (i = 0, 1, 2, · · · , k + 1).

3. f has cuspidal edges at (r0, θ1) such that rk0 = 1 and θ1 ̸= 2iπ
k+2 (i = 0, 1, 2, · · · , k + 1).

Similarly we also get the following lemma by applying Theorem 5.4.1.

Lemma 5.4.2. Let ν be a (k + 2)-legged Enneper-type flat front in S2,1. Then:

1. S(ν) = S(f) =
{
(r0, θ)

∣∣rk0 = 1, 0 ≤ θ < 2π
}
.

2. ν has (k+2)-swallowtails at (r0, θ2) such that rk0 = 1 and θ2 = (2i+1)π
k+2 (i = 0, 1, 2, · · · , k+1).

3. ν has cuspidal edges at (r0, θ3) such that rk0 = 1 and θ3 ̸= (2i+1)π
k+2 (i = 0, 1, 2, · · · , k + 1).

By the above two lemmas and Theorem 5.2.1, we get the following theorem:

Theorem 5.4.2 (Duality of Enneper-type flat fronts). Let f be a (k + 2)-legged Enneper-type flat
front in H3, and let ν be a de Sitter Gauss image of f . Then:

1. Points (r0, θ2) such that rk0 = 1 and θ2 = (2i+1)π
k+2 (i = 0, 1, 2, · · · , k + 1) are first order ridge

points of f .

2. Points (r0, θ3) such that rk0 = 1 and θ3 ̸= (2i+1)π
k+2 (i = 0, 1, 2, · · · , k + 1) are not ridge points

of f .
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Fig. 5.4: The left image is a 3-legged Enneper-type flat front in H3, and the right is one portion of
it between 0 ≤ θ ≤ 2π

3 .

Fig. 5.5: The left image is the de Sitter Gauss image of a 3-legged Enneper-type flat front, and the
right is one portion of it between 0 ≤ θ ≤ 2π

3 .





Chapter 6

CMC surfaces and D4-singularities

6.1 Preliminaries

6.1.1 Surfaces in spaceforms

We recall some properties of surfaces in several spaceforms. For more details, see [51, 52, 53].
Let Rn = {(x1, . . . , xn) | xi ∈ R, 1 ≤ i ≤ n} be an n-dimensional vector space. For any

x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn, we define the pseudo inner product with the signature
(n− k, k) (0 ≤ k < n) by

⟨x,y⟩ =
n−k∑
i=1

xiyi −
n∑

j=n−k+1

xjyj .

We denote Rn−k,k = (Rn, ⟨, ⟩). We say that a vector x ∈ Rn \ {0} is spacelike, timelike or lightlike
if ⟨x,x⟩ > 0, < 0 or = 0 respectively. We note that Rn,0 = Rn is the Euclidean n-space. If k = 1,
we call the space Rn−1,1 the Minkowski n-space.

Let e1, . . . , en be the pseudo orthonormal basis of Rn−k,k and xi = (xi1, . . . , x
i
n) ∈ Rn−k,k

(1 ≤ i ≤ n − 1). Then we define the wedge product x1 ∧ · · · ∧ xn−1 with respect to the signature
(n− k, k) by

x1 ∧ · · · ∧ xn−1 =

∣∣∣∣∣∣∣∣∣
e1 · · · en−k −en−k+1 · · · −en
x11 · · · x1n−k x1n−k+1 · · · x1n
...

. . .
...

...
. . .

...
xn−1
1 · · · xn−1

n−k xn−1
n−k+1 · · · xn−1

n

∣∣∣∣∣∣∣∣∣ .
One can check that ⟨xi,x1 ∧ · · · ∧ xn−1⟩ = 0 holds for 1 ≤ i ≤ n− 1.

Let n = 4. Then we define the following spaceforms:

S3 = {x ∈ R4 | ⟨x,x⟩ = 1}, H3 = {x ∈ R3,1 | ⟨x,x⟩ = −1},
S2,1 = {x ∈ R3,1 | ⟨x,x⟩ = 1}, H2,1 = {x ∈ R2,2 | ⟨x,x⟩ = −1}.

We call S3, H3, S2,1 and H2,1 the spherical 3-space, the hyperbolic 3-space, the de Sitter 3-space
and the anti-de Sitter 3-space, respectively. It is known that S3 and S2,1 (resp. H3 and H2,1) have
constant sectional curvature 1 (resp. −1).

69
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Let M3 be a 3-dimensional spaceform one of R3, R2,1, S3, H3, S2,1 or H2,1. Let f : U → M3

be a (spacelike) immersion, where U ⊂ (R2;u, v) is an open set. Then we consider the unit normal
vector ν to f . If M3 = R3 or R2,1, ν is defined as

ν =
fu ∧ fv
|fu ∧ fv|

(fu = ∂f/∂u, fv = ∂f/∂v),

where |x| =
√

|⟨x,x⟩|. If M3 is one of the other spaceforms, ν can be taken as

ν =
f ∧ fu ∧ fv
|f ∧ fu ∧ fv|

.

In these cases, we use ⟨·, ·⟩ as the induced metric from the ambient space R4−k,k (k = 0, 1, 2).

6.1.2 CMC surface theory

In this section, we explain some basical notations, as in [10] and [17]. Let M3 be one of R3, R2,1,
S3, H3, S2,1 or H2,1. Let f : U → M3 be a conformally (spacelike) immersion, where U is a
simply-connected domain in C with usual complex coordinate z = u+ iv (i =

√
−1). By using the

map C ∋ z = u + iv 7→ (u, v) ∈ R2, we can identify C with R2. We note that ∂z = (∂u − i∂v)/2
and ∂z̄ = (∂u + i∂v)/2. Then ⟨fz, fz⟩ = ⟨fz̄, fz̄⟩ = 0 and ⟨fz, fz̄⟩ = 2g2 hold for some function
g : U → R, and in particular, the first fundamental form of f is given as

ds2 = 4g2(du2 + dv2).

Take the unit normal vector field ν. Then the mean curvature H and Hopf differential factor Q are
given by

H =
1

2g2
⟨fzz̄, ν⟩, Q = ⟨fzz, ν⟩. (6.1.1)

By (6.1.1), one can check that H and Q change to −H and −Q, respectively, when we change ν
to −ν. We assume that H is constant. It is known that the Codazzi equation implies that Q is
holomorphic. Moreover, the extrinsic Gaussian curvature K is written as

K = − 1

4g4
QQ̄+H2. (6.1.2)

We now define the parallel transforms f̂ t and f̌ t of f . If M3 = R3 or R2,1,

f̂ t = f + tν (6.1.3)

for some constant t ∈ R. In this case, ν is also a unit normal vector to f̂ t. If M3 = S3 or H2,1, f̂ t

and ν̂t are
f̂ t = (cos t)f + (sin t)ν, ν̂t = −(sin t)f + (cos t)ν (6.1.4)

for some constant t ∈ R. If M3 = H3 or S2,1, we define

f̂ t = (cosh t)f + (sinh t)ν, f̌ t = ν̂t = (sinh t)f + (cosh t)ν (6.1.5)

for some constant t ∈ R (cf. [20] and [24]).
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6.1.3 Wave fronts

We recall some notions of wave fronts. For details, see [3, 32, 51, 52, 83].

Let f : U → (M3, h) be a C∞ map, where U is a simply-connected domain in R2 and (M3, h)
is an oriented Riemannian or semi-Riemannian manifold with metric h. We call f a wave front
or front if for each point p ∈ U there exists a unit normal vector field ν along f and the map
L = (f, ν) : U → T1M

3 gives an immersion, where T1M
3 is the unit tangent bundle over M3. A

point p ∈ U is called a singular point if f is not an immersion at p. Let S(f) denote the set of
singular points of f . We set a function λ on U as

fu ∧ fv = λν (6.1.6)

when M3 = R3 or R2,1, and

f ∧ fu ∧ fv = λν (6.1.7)

when M3 = S3, H3, S2,1 or H2,1, where ∧ denotes the vector product with respect to the metric
h. We call this function λ the signed area density function. By definition, λ−1(0) = S(f) holds. A
singular point p is called non-degenerate if the exterior derivative dλ does not vanish at p. On a
neighborhood of a non-degenerate singular point, there exists a smooth regular curve γ(t) satisfying
γ(0) = p such that γ(t) parametrizes the set of singular points. We call this curve γ a singular
curve and the direction of γ′ = dγ/dt a singular direction. The dimension of the kernel Ker dfγ(t)
of the differential map dfγ(t) is 1 and there exists a never-vanishing vector field η(t) such that
⟨η(t)⟩R = Ker dfγ(t). We call η(t) a null vector field and the direction of η a null direction.

Definition 6.1.1. Let f : (U, p) → (R3, f(p)) be a map-germ around p. Then f has a cuspidal edge
at p if the map-germ f at p is A-equivalent to the map-germ (u, v) 7→ (u, v2, v3) at 0, and f has a
swallowtail at p if the map-germ f at p is A-equivalent to the map-germ (u, v) 7→ (u, 3v4+uv2, 4v3+
2uv) at 0, and f has a D±

4 -singularity at p if the map-germ f at p is A-equivalent to the map-germ
(u, v) 7→ (2uv,±u2 + 3v2,±2u2v + 2v3) at 0, where the two map-germs f, g : (R2,0) → (R3,0)
are A-equivalent if there exist diffeomorphism-germs θ : (R2,0) → (R2,0) on the source and
Θ : (R3,0) → (R3,0) on the target such that Θ ◦ f = g ◦ θ holds.

We note that cuspidal edges and swallowtails are non-degenerate singular points of fronts. On
the other hand, D4-singularities are degenerate singular points with corank two. There are well-
known criteria for cuspidal edges and swallowtails (see [57, Proposition 1.3]). There is a criterion
for D±

4 -singularities as well.

Fact 6.1.1 ([82, Theorem 1.1]). Let f be a front and λ the signed area density function. A singular
point p is a D+

4 -singularity (resp. D−
4 -singularity) if and only if the following conditions hold:

1. rank dfp = 0.

2. detHessλ < 0 (respectively, detHessλ > 0) at p.
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Fig. 6.1: The left hand side is a D+
4 -singularity and the right hand side is a D−

4 - singularity of a
wave front.

6.2 Constant mean curvature surfaces with D4-singularities

6.2.1 Surfaces with non-zero constant mean curvature

In this section, we consider cases such that{
H ̸= 0 if M3 = R3, R2,1, S3 or H2,1,

H ̸= 0, 1 if M3 = H3 or S2,1.
(6.2.1)

Lemma 6.2.1. Let f : (U, z) →M3 be a conformally CMC H immersion, ν a unit normal vector
to f and p an umbilic point.

(1) Suppose that M3 = S3 or H2,1 and H > 0. Then p is a corank two singular point of f̂ t if and
only if t = arccot(H).

(2) Suppose that M3 = H3 or S2,1 and H > 1. Then p is a corank two singular point of f̂ t if and
only if t = arccoth(H).

(3) Suppose that M3 = H3 or S2,1 and 0 < H < 1. Then p is a corank two singular point of f̌ t if
and only if t = arctanh(H).

Proof. We show (2) and (3) in the case of M3 = H3. For the case of M3 = S2,1 and (1), one can
show the result in a similar way.

Let f : U → M3 = H3 be a conformally CMC H immersion. Suppose that H > 1. Then
we consider f̂ t as in (6.1.5). Since νz = (−2Hfz − Qg−2fz̄)/2 and νz̄ = (−Q̄g−2fz − 2Hfz̄)/2 by
(6.1.1), we have

f̂ tz = (cosh t−H sinh t)fz −
Q

2g2
(sinh t)fz̄,

f̂ tz̄ = − Q̄

2g2
(sinh t)fz + (cosh t−H sinh t)fz̄.

Since p is an umbilic point, Q(p) = Q̄(p) = 0. Thus f̂ tz = f̂ tz̄ = 0 at p if and only if t = arccoth(H).
Therefore we have the assertion (2).
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Next we show (3). Assume that 0 < H < 1. By direct computations, we see that

f̌ tz = (sinh t−H cosh t)fz −
Q

2g2
(cosh t)fz̄,

f̌ tz̄ = − Q̄

2g2
(cosh t)fz + (sinh t−H cosh t)fz̄.

Hence f̌ tz = f̌ tz̄ = 0 at p if and only if t = arctanh(H).

Theorem 6.2.1. Let f be a CMC surface in M3 with mean curvature H with (6.2.1), Hopf differ-
ential factor Q(z) and p a corank two singular point. Then f has a D−

4 -singularity at p if and only
if Qz(p) ̸= 0. Moreover, f does not have D+

4 -singularities.

Proof. By Facts 0.0.2 and 0.0.3, if f : U → M3 is a CMC H immersion, then f̂ t and f̌ t are CMC
−H immersion on the set of regular points for suitable distance t. Therefore we consider the CMC
immersion f with an umbilic point p and singularities of its parallel transform f̂ t at p. Since one
can prove this similarly by using Lemma 6.2.1 in other cases, we consider just the case of M3 = R3.

Let f : U → R3 be a CMC immersion and p an umbilic point, where U ⊂ C is a simply-connected
domain with conformal coordinate z = u+ iv. By the previous section, ⟨fz, fz⟩ = ⟨fz̄, fz̄⟩ = 0 and
⟨fz, fz̄⟩ = 2g2 for some function g on U . We now consider the parallel transformation of f given by

f̂ t = f + tν, where t ∈ R is constant. In this case, we can take a unit normal vector ν̂t of f̂ t as ν.
By Fact 0.0.2, rank df̂ t(p) = 0 if and only if t = 1/H.

We fix t = 1/H. The signed area density function of f̂ t is given by λ̂t = ⟨f̂ tu ∧ f̂ tv, ν⟩ =

−2i⟨f̂ tz ∧ f̂ tz̄, ν⟩. Using νz = (−2Hfz − Qg−2fz̄)/2, νz̄ = (−2Hfz̄ − Q̄g−2fz)/2 and (6.1.2), the

signed area density function λ̂t is rewritten as

λ̂t = (1− 2tH + t2K)⟨fz ∧ fz̄, ν⟩.

Since ⟨fz ∧ fz̄, ν⟩ ̸= 0, we may regard

λ̃t = 1− 2tH + t2K (6.2.2)

as the signed area density function of f̂ t. By direct computations, λ̃tz and λ̃tz̄ are

λ̃tz = −t2 (QzQ̄+QQ̄z)g − 4QQ̄gz
4g5

, λ̃tz̄ = −t2 (Qz̄Q̄+QQ̄z̄)g − 4QQ̄gz̄
4g5

.

Since Q(p) = Q̄(p) = 0, λ̃tz(p) = λ̃tz̄(p) = 0, that is, dλ̃t(p) = 0 holds. We consider the Hessian of
λ̃t. The second derivative λ̃tzz becomes

λ̃tzz = − t2

4g5
{(QzzQ̄+ 2QzQ̄z +QQ̄zz)g + (QzQ̄+QQ̄z)g

− 4(QzQ̄gz +QQ̄zgz +QQ̄gzz)}

− t2
5{(QzQ̄+QQ̄z)g − 4QQ̄gz}gz

4g
. (6.2.3)
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Thus λ̃tzz(p) = 0 holds. Similarly, we see that λ̃tz̄z̄(p) = 0 holds. By direct calculation, we have

λ̃tzz̄ = − t2

4g5
{(Qzz̄Q̄+QzQ̄z̄ +Qz̄Q̄z +QQ̄zz̄)g + (QzQ̄+QQ̄z)gz̄

− 4(Qz̄Q̄gz +QQ̄z̄gz +QQ̄gzz̄)}

− t2
5{(QzQ̄+QQ̄z)g − 4QQ̄gz}gz̄

4g
. (6.2.4)

By this equation, λ̃tzz̄ = −t2QzQ̄z̄/4g4 holds at p. Identifying C with R2, we have

λ̃tuu = λ̃tzz + 2λ̃tzz̄ + λ̃tz̄z̄, λ̃tuv = i(λ̃tzz − λ̃tz̄z̄), λ̃tvv = −(λ̃tzz − 2λ̃tzz̄ + λ̃tz̄z̄).

By the above computations, it follows that

λ̃tuu = λ̃tvv = 2λ̃tzz̄ = −t2QzQ̄z̄
2g4

, λ̃tuv = 0

hold at p. Thus we have

detHess(u,v)(λ̃
t)p = λ̃tuu(p)λ̃

t
vv(p)− λ̃tuv(p)

2 = t4
(QzQ̄z̄)

2

4g8
> 0.

This completes the proof of the case M3 = R3, by Fact 6.1.1.

If M3 = R2,1, we can take λ̃t as same as the case of R3. If M3 = S3 or H2,1, we have the
assertion by using the signed area density for f̂ t as in (6.1.4)

λ̃t = cos2 t− 2 cos t sin tH + sin2 tK.

If M3 = H3 or S2,1, we show by using

λ̃t = cosh2 t− 2 cosh t sinh tH + sinh2 tK

for f̂ t and

λ̃t = sinh2 t− 2 cosh t sinh tH + cosh2 tK

for f̌ t.

Examples: Here we construct CMC surfaces with D−
4 -singularities in H3. By Theorem 6.2.1, we

need to choose the Hopf differential factor so that Qz(p) ̸= 0 at a point p. Now we fix Q = −z for
CMC H > 1 or 0 ≤ H < 1 surfaces and we have the 3-legged Smyth-type surfaces as in [8], [70],
[71] and [87]. Applying Theorems 6.2.1, we get the following figures with a D−

4 -singularity at the
origin z = 0:
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Fig. 6.2: 3-legged Smyth surface with H > 1 in H3 and its parallel transform with D−
4 -singularity.

Fig. 6.3: 3-legged Smyth surface with 0 < H < 1 in H3 and the normal vector of its parallel
transform into S2,1 with D−

4 -singularity.

6.2.2 Minimal surfaces with D4-singularities

We now consider the condition that minimal surfaces (resp. maximal surfaces) in R3 (resp. R2,1)
have D4-singularities. For minimal surfaces, the following representation formula is known.

Fact 6.2.1. Any simply-connected minimal surface f : U(⊂ C) → R3 can be parametrized as

f = Re

∫
(1− g2, i(1 + g2), 2g)ω, (6.2.5)

where g : U → C is a meromorphic function and ω = ω̂dz is a holomorphic 1-form.

We call the pair (g, ω) the Weierstrass data. On the other hand, the representation formula for
maximal surfaces is also known.

Fact 6.2.2 ([55]). Any simply-connected maximal surface f : U(⊂ C) → R2,1 can be parametrized
as

f = Re

∫
(1 + g2, i(1− g2),−2g)ω, (6.2.6)

where g : U → C is a meromorphic function and ω = ω̂dz is a holomorphic 1-form
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We also call the pair (g, ω) the Weierstrass data. We should remark that there are several
studies for maximal surfaces (see [28, 32, 59, 92], for example).

Lemma 6.2.2. Let f : U → R3 (resp. R2,1) be a minimal surface (resp. a maximal surface)
constructed by (6.2.5) (resp. (6.2.6)). Then p ∈ U is a corank two singular point of f if and only if
g(p) is of finite value (i.e., p is not a pole of g) and ω̂(p) = 0. Moreover, f is a front at p if and
only if gz(p) ̸= 0.

Proof. Let f : U → R3 be a minimal surface with the Weierstrass data (g, ω = ω̂dz2). The
differentials of f are

fz =
1

2
(1− g2, i(1 + g2), 2g)ω̂, fz̄ =

1

2
(1− ḡ2,−i(1 + ḡ2), 2ḡ)¯̂ω.

Thus we have the first assertion.
Next, we show the condition of f to be a front at p. Let p be a corank two singular point of

f . Then f is a front at p if and only if its unit normal vector ν : U → S2 gives an immersion at p.
Under the above settings, the unit normal vector ν to f is given by

ν =

(
g + ḡ

|g|2 + 1
, i

ḡ − g

|g|2 + 1
,
|g|2 − 1

|g|2 + 1

)
.

Since g is holomorphic at p, gz̄(p) = 0 holds. Differentiating ν, we have

νz = gz

(
1− ḡ2

(1 + |g|2)2
, i

−1 + ḡ2

(1 + |g|2)2
,

2ḡ

(1 + |g|2)2

)
,

νz̄ = gz

(
1− g2

(1 + |g|2)2
, i

1− g2

(1 + |g|2)2
,

2g

(1 + |g|2)2

)
at p. Thus we have the conclusion.

For maximal surfaces, one can show this similarly by identifying R2,1 with R3 and using the
Euclidean unit normal vector nE given as

nE =
1√

(1 + |g|2)2 + 4|g|2
(g + ḡ, i(ḡ − g), 1 + |g|2)

(see [92]).

Theorem 6.2.2. Let f : U ⊂ (C, z) → R3 (resp. f : U ⊂ (C, z) → R2,1) be a minimal surface
(resp. a maximal surface) given by the Weierstrass data (g, ω = ω̂dz). Then a point p ∈ U is a D−

4 -
singularity of f if and only if ω̂(p) = 0 and Qz(p) ̸= 0 (resp. ω̂(p) = 0, Qz(p) ̸= 0 and |g(p)| ̸= 1).
Here Q = gzω̂ is the Hopf differential factor. Moreover, f does not have D+

4 -singularities.

Proof. First, we show the case of a minimal surface. The signed area density function λ of f can
be given as

λ = −2i⟨fz ∧ fz̄, ν⟩ = (1 + |g|2)2|ω̂|2.

Since 1+ |g|2 ̸= 0, we may treat λ̂ = |ω̂|2 = ω̂ ¯̂ω as the signed area density function. Moreover, since

fz(p) = fz̄(p) = 0, p is a corank two singular point. The differentials of λ̂ in z, z̄ ∈ U are

λ̃z = 0, λ̃z̄ = 0, λ̃zz = 0, λ̃zz̄ = ω̂z ¯̂ωz̄, λ̃z̄z̄ = 0
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at p, since ω̂(p) = ¯̂ω(p) = ω̂z̄(p) = ¯̂ωz(p) = 0. Identifying z = u + iv ∈ C and (u, v) ∈ R2, we see
that λ̃uu(p) = λ̃vv(p) = 2ω̂z(p)¯̂ωz̄(p) and λ̃uv(p) = 0. Hence the Hessian of λ̃ is

detHess(u,v)(λ̃)p = 4|ω̂z(p)|4 ≥ 0.

By Fact 6.1.1 and Lemma 6.2.2, f has a D−
4 -singularity at p if and only if gz(p) ̸= 0 and ω̂z(p) ̸= 0.

On the other hand, the derivative of the Hopf differential factor Q is

Qz(p) = gzz(p)ω̂(p) + gz(p)ω̂z(p) = gz(p)ω̂z(p),

since gzz is finite at p. Thus we have the assertion.
Next, we consider a maximal surface that is not a maxface. The signed area density function is

λ = −2i⟨fz ∧ fz̄, ν⟩ = (|g|2 − 1)2|ω̂|2

where ∧ means the vector product with respect to the metric of R2,1. From Lemmas 6.2.2, we may
take λ̃ = ω̂ ¯̂ω. By using similar arguments, we obtain the assertion.

By the Lawson correspondence, the first fundamental forms of (spacelike) CMC 1 surfaces in H3

(resp. S2,1) are equal to the first fundamental forms of corresponding minimal surfaces in R3 (resp.
maximal surfaces in R2,1). This means that they have the same signed area density functions. Thus
we obtain the condition that (spacelike) CMC 1 surfaces have D−

4 -singularities similarly.
On the other hand, when f : U → M3 = S3, H3, S2,1 or H2,1 is a minimal immersion, there is

no representation formula. However, if p ∈ U is an umbilic point for f , then its unit normal vector
ν has a corank two singularity at p. By using similar calculations as in the proof of Theorem 6.2.1,
we see that ν has a D−

4 -singularity at p if and only if Qz(p) ̸= 0, where Q is the Hopf differential
factor of f .

Example: Here we construct CMC 1 surfaces with D−
4 -singularities in H3. By Theorems 6.2.2,

we fix the Weierstrass data (g, ω) = (cot(z − 1), (ez − 1)dz) for CMC 1 surface in H3. Applying
Theorem 6.2.2, we get the following figure with a D−

4 -singularity at the origin z = 0:

Fig. 6.4: CMC 1 surface with D−
4 -singularity in H3.

6.3 Curvatures of unit normal vector fields to CMC surfaces

In this section, M3 denotes one of S3, H3, S2,1 or H2,1. We consider relations between a CMC
immersion f : U →M3 and a unit normal vector ν to f .
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Proposition 6.3.1. Let f : U → M3 be a (spacelike) CMC H immersion and ν be a unit normal
vector to f . Let K denote the extrinsic Gaussian curvature of f . Then the extrinsic Gaussian
curvature Kν and the mean curvature Hν of ν are

Kν =
1

K
, Hν =

H

K
,

Moreover, the unit normal vector ν has a constant harmonic mean curvature 1/2H.

Here the harmonic mean curvature HMC is given by

HMC =
K

2H
.

Proof. We consider the case f : U → H3. One can show other cases similarly. Let (u, v) be a
conformal coordinate system on U . Then the determinant of the first fundamental matrix Iν is
given by

det Iν = EνGν − F 2
ν = K2E2,

where

Iν =

(
⟨νu, νu⟩ ⟨νu, νv⟩
⟨νv, νu⟩ ⟨νv, νv⟩

)
=

(
Eν Fν
Fν Gν

)
,

and E = ⟨fu, fu⟩ = ⟨fv, fv⟩. It follows that the coefficients of the second fundamental form of ν are
the same as of f by definition. Thus we have the assertions by straightforward calculations.

ForM3 = S3, H2,1 and H > 0, orM3 = H3, S2,1 and H > 1, the parallel transformations f̂ t and
ν̂t are defined as in (6.1.4) and (6.1.5). If M3 = H3, S2,1 and 0 < H < 1, the parallel transforms of

f and ν are f̌ t = ν̂t, ν̌t = f̂ t, respectively. Thus it is sufficient to consider f̂ t and ν̂t.

Lemma 6.3.1. Under the above settings, the extrinsic Gaussian curvature Kt and Kt
ν , and the

mean curvatures Ht and Ht
ν for f̂ t and ν̂t are given by the following:

Kt =


sin2 t+ 2H cos t sin t+K cos2 t

cos2 t− 2H cos t sin t+K sin2 t
,

sinh2 t+ 2H cosh t sinh t+K cosh2 t

cosh2 t− 2H cosh t sinh t+K sinh2 t
,

Kt
ν =


cos2 t− 2H cos t sin t+K sin2 t

sin2 t+ 2H cos t sin t+K cos2 t
,

cosh2 t− 2H cosh t sinh t+K sinh2 t

sinh2 t+ 2H cosh t sinh t+K cosh2 t
,

Ht =


(1−K) cos t sin t+H(cos2 t− sin2 t)

cos2 t− 2H cos t sin t+K sin2 t
,

− (1 +K) cosh t sinh t−H(cosh2 t+ sinh2 t)

cosh2 t− 2H cosh t sinh t+K sinh2 t
,

Ht
ν =


(1−K) cos t sin t+H(cos2 t− sin2 t)

cos2 t+ 2H cos t sin t+K sin2 t
,

− (1 +K) cosh t sinh t−H(cosh2 t+ sinh2 t)

cosh2 t+ 2H cosh t sinh t+K sinh2 t
.
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Proof. One can show the above formulas directly by applying the same computations as in [56].

By Proposition 6.3.1 and Lemma 6.3.1, we immediately have the following:

Proposition 6.3.2. Let f : U →M3 = S3, H3, S2,1, H2,1 be a CMC H ̸= 0 immersion and ν its
unit normal vector. A point p is an umbilic point for f if and only if p is a non-flat umbilic point
for ν. Moreover, if f̂ t (resp. f̌ t) has a D−

4 -singularity at p, p is a flat umbilic point of ν̂t (resp.
ν̌t) (see Figure 6.5, 6.6).

f : CMC with umbilic point at pOO

Parallel transform

��

Normal // ν : CHMC with non-flat umbilict pOO

Parallel transform

��
f̂ : CMC with D−

4 -singularity at p
Normal // ν̂ : CHMC with flat umbilic p

Fig. 6.5: The case that f is a (spacelike) CMC surface in S3, H2,1 (resp. H3, S2,1) with H > 0
(resp. H > 1)

f : CMC with umbilic point at pOO

Normal of parall. surf.

��

Normal // ν : CHMC with non-flat umbilic pOO

Normal of parall. surf.

��
f̌ : CMC with D−

4 -singularity at p
Normal // ν̌ : CHMC with flat umbilic p

Fig. 6.6: The case that f is a (spacelike) CMC surface in H3, S2,1 with 0 < H < 1





Chapter 7

Deformation of minimal surfaces
with planar curvature lines

7.1 Minimal surfaces with planar curvature lines in R3

We wish to classify minimal surfaces with planar curvature lines and obtain their parametrizations
by calculating the Weierstrass data. However, applying the planar curvature line condition directly
to the Weierstrass data involves heavy calculation in a complex-analysis setting. Therefore, from
the zero mean curvature condition and planar curvature line condition, we obtain a system of partial
differential equations for the metric function. Then by applying the method analogous to the one
employed by Abresch in [1], we solve the system of partial differential equations by transforming
it into a system of ordinary differential equations. Finally, using explicit solutions for the metric
function, we recover the Weierstrass data and the parametrization by calculating the unit normal
vector, through an analogous approach to the one taken by Walter in [93].

7.1.1 Minimal surface theory

Let Σ ⊂ R2 be a simply-connected domain with coordinates (u, v), and let X : Σ → R3 be a
conformally immersed surface. Since X(u, v) is conformal,

ds2 = e2ω(du2 + dv2)

for some ω : Σ → R. We choose the unit normal vector field N : Σ −→ S2 of X, and then the mean
curvature H and Hopf differential Q are

H :=
1

2e2ω
⟨Xuu +Xvv, N⟩ and Q :=

1

4
⟨Xuu − 2iXuv −Xvv, N⟩.

81



82 CHAPTER 7. DEFORMATION OF MINIMAL SURFACES

Since we are interested in minimal surfaces, we let H = 0 and calculate the Gauss-Weingarten
equations, 

Xuu = ωuXu − ωvXv + (Q+ Q̄)N

Xvv = −ωuXu + ωvXv − (Q+ Q̄)N

Xuv = ωvXu + ωuXv + i(Q− Q̄)N

Nu = −e−2ω(Q+ Q̄)Xu − ie−2ω(Q− Q̄)Xv

Nv = −ie−2ω(Q− Q̄)Xu + e−2ω(Q+ Q̄)Xv,

and the Gauss-Codazzi equation,

∆ω − 4QQ̄e−2ω = 0 and Qz̄ = 0

for z := u+ iv. Note that the Gauss-Codazzi equation is equivalent to the Hopf differential factor
Q being holomorphic. Moreover, the Gauss-Codazzi equation is invariant under the deformation
Q 7→ λ−2Q for λ ∈ S1 ⊂ C. In fact, when X(u, v) is a minimal surface in R3, λ ∈ S1 allows us
to create a single-parameter family of minimal surfaces Xλ(u, v) associated to X(u, v), called the
associated family. In particular if λ−2 = i, then the new surface is called the conjugate surface of
X.

Since the families of curvature lines of a plane are trivially planar, we may assume that X(u, v)
is not totally umbilic, and that (u, v) are conformal curvature line (or isothermic) coordinates.
Then we can normalize the Hopf differential such that Q = − 1

2 , and the relevant Gauss-Weingarten
equations become 

Xuu = ωuXu − ωvXv −N

Xvv = −ωuXu + ωvXv +N

Xuv = ωvXu + ωuXv

Nu = e−2ωXu

Nv = −e−2ωXv

(7.1.1)

where k1 = −e−2ω and k2 = e−2ω are the principal curvatures of X. Furthermore, the Gauss
equation becomes the following Liouville equation:

∆ω − e−2ω = 0.

On the other hand, as the following lemma shows, we may attain an additional partial differential
equation regarding ω from the planar curvature line condition, allowing us to solve for ω.

Lemma 7.1.1. For non-planar umbilic-free minimal surfaces with isothermic coordinates (u, v),
the following statements are equivalent:

1. u-curvature lines are planar.

2. v-curvature lines are planar.

3. ωuv + ωuωv = 0.

Proof. Since (u, v) is an isothermic coordinate, u-curvature lines are planar if and only if

det(Xu, Xuu, Xuuu) = 0.
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However, from (7.1.1),

Xuuu = (ωuu + ω2
u − ω2

v − e−2ω)Xu + (−2ωuωv − ωuv)Xv − ωuN.

Therefore, u-curvature lines are planar if and only if

0 = det(Xu, Xuu, Xuuu) = −e2ω(ωuv + ωuωv).

Similarly, (7.1.1) implies that v-curvature lines are planar if and only if ωuv + ωuωv = 0.

Remark 7.1.1. It should be noted that the condition ωuv+ωuωv = 0 is equivalent to the condition
(eω)uv = 0 as found in [5] or [6]. Since the curvature lines of the original minimal surface correspond
to asymptotic lines of its conjugate surface, the above equivalence shows that the conjugate of the
minimal surface with planar curvature lines is an affine minimal surface ([5], [6], [85], [88]).

Hence, finding non-planar umbilic-free minimal surfaces with planar curvature lines is equivalent
to finding solutions to the following system of partial differential equations:{

∆ω − e−2ω = 0 (minimality condition) (7.1.2a)

ωuv + ωuωv = 0 (planar curvature line condition). (7.1.2b)

Generally, solving systems of partial differential equations may prove to be difficult. However, the
next lemma shows that (7.1.2) can be reduced to a system of ordinary differential equations.

Lemma 7.1.2. The solution ω : Σ → R of (7.1.2) is precisely given by

eω(u,v) =
1 + f(u)2 + g(v)2

fu(u) + gv(v)
(7.1.3)

where f(u) and g(v) are real-valued meromorphic functions satisfying the following system of ordi-
nary differential equations: 

(fu(u))
2 = (c− d)f(u)2 + c (7.1.4a)

fuu(u) = (c− d)f(u) (7.1.4b)

(gv(v))
2 = (d− c)g(v)2 + d (7.1.4c)

gvv(v) = (d− c)g(v). (7.1.4d)

for some real constants c and d such that c2 + d2 ̸= 0. Moreover, f and g can be recovered from ω
by {

ωu = e−ωf(u)

ωv = e−ωg(v)
. (7.1.5)

Proof. Integrating (7.1.2b) with respect to u and v gives (7.1.5) for some constants of integration
f(u) and g(v). Using these definitions of f and g, it is straightforward to check that (7.1.3) holds.

Now, from the fact that ωue
−ω = e−2ωf ,

fuu
1 + f2 + g2

− f((fu)
2 − (gv)

2)

(1 + f2 + g2)2
= 0, (7.1.6)
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and multiplying both sides by 2fu and integrating with respect to u tells us that

(fu)
2

1 + f2 + g2
=

(gv)
2

1 + f2 + g2
+D(v)

for some constant of integration D(v), implying that

(fu)
2 = (gv)

2 +D(v)(1 + f2 + g2). (7.1.7)

Substituting (7.1.7) into (7.1.6), we get fuu(u) = D(v)f(u) implying that D(v) = c̃ for some
constant c̃. Hence,

fuu = c̃f,

and again multiplying both sides by 2fu and integrating with respect to u implies that

(fu)
2 = c̃f2 + c

for some constant c.
Similarly, from the fact that ωve

−ω = e−2ωg, we can show that{
gvv = d̃g

(gv)
2 = d̃g2 + d

for some constants d and d̃. Substituting these differential equations into (7.1.6) shows that −d̃ =
c̃ = c− d.

To find the explicit solution for f , we must consider the initial conditions of f(u) and g(v)
satisfying (7.1.4). We would like to assume f(0) = g(0) = 0 for simplicity; therefore, we first
identify the conditions for f(u) and g(v) having a zero and prove that both f(u) and g(v) has a
zero, using the next pair of lemmas.

Lemma 7.1.3. f(u) (resp. g(v)) satisfying Lemma 7.1.2 has a zero if and only if c ≥ 0 (resp.
d ≥ 0).

Proof. First, we note that by (7.1.5), f(u) satisfying Lemma 7.1.2 must be real-valued since ω(u, v)
is real-valued.

Now, if c = d, then the statement is a result of direct computation; hence, we assume c ̸= d.
First, to see that c ≥ 0 implies that f(u) has a zero, from (7.1.4a) and (7.1.4b), we get

f(u) = C1e
√
c−d u + C2e

−
√
c−d u

for some complex constants C1 and C2 such that c = −4C1C2(c− d). If c = 0, then either f(u) ≡ 0
or (7.1.4a) implies d < 0, a contradiction to (7.1.4c). Now assume c > 0. Then, C1 and C2 are

non-zero, and we may let C1 = 1
2

√
c
c−d = −C2 so that f is real-valued and f(0) = 0.

On the other hand, if f(u0) = 0 for some u0, then (fu(u0))
2 = c, implying that c ≥ 0. Therefore,

f(u) has a zero if and only if c ≥ 0. The case for g(v) is proven similarly using (7.1.4d).

Lemma 7.1.4. Let f(u) and g(v) be functions satisfying (7.1.4). Then both f(u) and g(v) have a
zero.
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Proof. Suppose by way of contradiction that f does not have a zero. Then by the previous lemma,
c < 0. From (7.1.4a), we see that c < 0 implies c−d > 0. However, (7.1.4c) implies that if c−d > 0,
then d > 0, a contradiction since c < 0 and c > d. Therefore, f must always have a zero. Similarly,
g must have a zero, from (7.1.4b) and (7.1.4d).

By shifting parameters u and v, we may assume f(0) = g(0) = 0. Using these initial conditions,
we may solve (7.1.4) to get the following:

f(u) =

± α√
α2 − β2

sinh (
√
α2 − β2 u), if α ̸= β

±αu, if α = β

g(v) =

± β√
β2 − α2

sinh (
√
β2 − α2 v), if α ̸= β

±βv, if α = β

(7.1.8)

where α2 = c and β2 = d. It should be noted that by letting u 7→ −u and v 7→ −v, we may drop
the plus or minus condition of (7.1.8). Finally, we arrive at the following result.

Proposition 7.1.1. For a non-planar minimal surface X(u, v) with planar curvature lines, the
real-analytic solution ω : R2 → R of (7.1.2) is precisely given by

eω(u,v) =
1 + f(u)2 + g(v)2

fu(u) + gv(v)
(7.1.9)

with

f(u) =


α√

α2 − β2
sinh (

√
α2 − β2 u), if α ̸= β

αu, if α = β

g(v) =


β√

β2 − α2
sinh (

√
β2 − α2 v), if α ̸= β

βv, if α = β

(7.1.10)

where α+ β > 0.

Proof. To see that the ω in (7.1.9) with f(u) and g(v) as in (7.1.10) is real, we only need to show
that fu(u) + gv(v) > 0 for any (u, v) ∈ Σ. If α = β, then fu + gv = α + β > 0. Without loss of
generality, assume α > β; since α+ β > 0, α > |β|. From (7.1.10),

fu(u) = α cosh(
√
α2 − β2 u) ≥ α

gv(v) = β cos(
√
α2 − β2 v) ≥ −|β|

implying that fu + gv ≥ α − |β| > 0. The case for α < β can be proved similarly. Finally,
the real-analyticity of f(u) and g(v) tells us that the domain of ω(u, v) can be extended to R2

globally.

Since the u-direction and v-direction of ω(u, v) depend only on f(u) and g(v) respectively, by
choosing different values for α and β, we may analytically understand how the surfaces behave in
either direction. The following theorem and figure explains the relationship between different values
of α and β and the surface generated by the corresponding ω(u, v). Note that in the figure, the
subscript u↔ v denotes that the role of u and v are switched.
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Theorem 7.1.1. Let X(u, v) be a non-planar minimal surface in R3 with isothermic coordinates
(u, v) such that ds2 = e2ω(du2 + dv2). Then X has planar curvature lines if and only if ω(u, v)
satisfies Proposition 7.1.1. Furthermore, for different values of α and β, the curvature lines of
X(u, v) have the following properties, based on Figure 7.1:

• 1⃝, 1⃝′ are not periodic in the u-direction but periodic in the v-direction.

• 2⃝ is not periodic in the u-direction but constant in the v-direction.

• 3⃝ is not periodic in both the u-direction and v-direction.

1©

1©′

1©′

u↔v
1©

u↔v

3©

2©

2©
u↔v

α = βα+ β = 0

α

β

0

Fig. 7.1: Classification diagram for non-planar minimal surfaces with planar curvature lines.

7.1.2 Axial directions and normal vector

Through Theorem 7.1.1, we were able to identify the non-planar minimal surfaces with planar
curvature lines. In fact, we may even understand that the surfaces represented by 1⃝, 2⃝, or 3⃝ in
Figure 7.1 are surfaces in the Bonnet family, catenoid, or Enneper surface, respectively. However,
we would like to find their parametrizations, allowing us to visualize these surfaces and obtain
a deformation between them. To do this, we utilize the Weierstrass representation theorem as
follows: find the axial directions of the non-planar minimal surfaces with planar curvature lines by
referring to the method developed by Walter in [93], calculate the unit normal vector, and recover
the Weierstrass data from the metric function e2ω(u,v) in Proposition 7.1.1. First, we show the
existence of axial directions for non-planar minimal surfaces with planar curvature lines.

Proposition 7.1.2. If f(u) (resp. g(v)) is not identically equal to zero, then there is a unique
constant direction v⃗1 (resp. v⃗2) such that

⟨m(u, v), v⃗1⟩ = ⟨mv(u, v), v⃗1⟩ = 0 (7.1.11)

(resp. ⟨n(u, v), v⃗2⟩ = ⟨nu(u, v), v⃗2⟩ = 0)
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where m = e−2ω(Xu ×Xuu) (resp. n = e−2ω(Xv ×Xvv)) and

v⃗1 = ωuuXu − ωuvXv + ωuN

(resp. v⃗2 = ωuvXu − ωvvXv + ωvN).

Furthermore, if v⃗1 and v⃗2 both exist, then v⃗1 is orthogonal to v⃗2. We call v⃗1 and v⃗2 the axial
directions of the surface.

Proof. We will only prove the statement regarding v⃗1. From (7.1.1),

m = e−2ωXv − ωvN and mv = −ωue−2ωXu + ωuuN.

Since f(u) is not identically equal to zero, let f(u0) ̸= 0. Since ωu(u0, v) ̸= 0, m and mv are linearly
independent at (u0, v). Therefore, the following definition

v⃗1 := e−2ω(m×mv) = ωuuXu − ωuvXv + ωuN

is well-defined on (u0, v). Furthermore, by calculation,

(v⃗1)u = (v⃗1)v = 0

for all (u, v), implying that v⃗1 is constant. It is easy to check that (7.1.11) holds, and checking
orthogonality is a straight-forward calculation using the definitions of v⃗1 and v⃗2.

By normalizing these vectors, we may calculate the unit normal vector of the surface as follows.

Proposition 7.1.3. Let f(u) and g(v) be as in Proposition 7.1.1. If αβ ̸= 0, then the unit normal
vector N(u, v) is given by the following:

N(u, v) =

(
1

α
ωu,

1

β
ωv,

√
1− 1

α2
ω2
u −

1

β2
ω2
v

)
.

Proof. First we normalize the axial direction such that v⃗1 is parallel to e1, the unit vector in the
x1-direction. Then, from ⟨m, v⃗1⟩ = 0, we get

− ωvN1 − (N1)v = 0, (7.1.12)

where N = (N1, N2, N3). Now, using (7.1.2b) and integrating with respect to v, we obtain

N1 = B1(u) · ωu

for some function B1(u). Similarly, from ⟨mv, v⃗1⟩ = 0, we get

N1 = B2(v) · ωu

for some function B2(v). Therefore, B1(u) = B2(v) = B for some constant B, and

N1 = B · ωu.

To compute B, first note that since ωu(0, v) = eω(0,v)f(0) = 0, we note that ⟨m,Xu⟩ =
⟨mv, Xu⟩ = 0 on (0, v). Therefore, Xu(0, v) ∈ span {e1}, and

e2ω = ∥Xu(0, v)∥2 = ((X1(0, v))v)
2 = e2ωB2α2
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where X = (X1, X2, X3). Hence,

B =
1

α
and N1 =

1

α
ωu.

Similarly, by letting v⃗2 be parallel to e2, we get

N2 =
1

β
ωv.

Finally, using the fact that N is a unit normal vector gives us the desired result.

Using the normal vector, we may now calculate the Weierstrass data. Since the meromorphic
function h is the normal vector function under stereographic projection,

h(α,β)(u, v) =
1

1−N3
(N1 + iN2) =

√
α2 − β2

α− β
tanh

(√
α2 − β2

2
(u+ iv)

)
,

while since Q = − 1
2 (hu + ihv)η = − 1

2 , we also have

η(α,β)(u, v) =
1

hu + ihv
=

1

α+ β
cosh2

(√
α2 − β2

2
(u+ iv)

)

for α + β > 0. If we let α = r cos θ and β = r sin θ, then it is easy to see that r is a homothety
factor. Therefore, we may assume r = 1, and rewrite h(α,β)(u, v) and η(α,β)(u, v) as follows:

hθ(u, v) =


√
cos (2θ)

cos θ − sin θ
tanh

(√
cos (2θ)

2
(u+ iv)

)
, if θ ̸= π

4

u+ iv√
2
, if θ = π

4

ηθ(u, v) =


1

cos θ + sin θ
cosh2

(√
cos (2θ)

2
(u+ iv)

)
, if θ ̸= π

4

1√
2
, if θ = π

4

(7.1.13)

where θ ∈
(
−π

4 ,
3π
4

)
. Since hθ is meromorphic, and ηθ is holomorphic such that (hθ)2ηθ is holomor-

phic, we may use the Weierstrass representation theorem to obtain the following parametrizations
for minimal surfaces with planar curvature lines.

Proposition 7.1.4. Let X(u, v) be a non-planar minimal surface with planar curvature lines in
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R3. Then X must have the following parametrization

Xθ(u, v) =





u cos θ
√
cos 2θ − sin θ sinh (u

√
cos 2θ) cos (v

√
cos 2θ)

(cos 2θ)3/2

v sin θ
√
cos 2θ − cos θ cosh (u

√
cos 2θ) sin (v

√
cos 2θ)

(cos 2θ)3/2

cosh (u
√
cos 2θ) cos (v

√
cos 2θ)− 1

cos 2θ



t

,

if θ ̸= π
4(

−u(−6 + u2 − 3v2)

6
√
2

,
v(−6− 3u2 + v2)

6
√
2

,
u2 − v2

2

)
,

if θ = π
4

(7.1.14)

for some θ ∈
(
−π

4 ,
3π
4

)
on its domain up to isometries and homotheties of R3.

7.2 Continuous deformation of minimal surfaces with planar
curvature lines

In the previous section, we obtained the Weierstrass data and the parametrizations of non-planar
minimal surfaces in R3 with planar curvature lines; in fact, theWeierstrass data and the parametriza-
tions of such surfaces depended on a single parameter θ. In this section, we show that this parameter
defines a locally continuous deformation between non-planar minimal surfaces preserving the planar
curvature line condition. Furthermore, we show that by introducing a suitable homothety factor
depending on θ, we may also extend the deformation to include the plane.

First, we show that the deformation of minimal surfaces in R3 with planar curvature lines we
obtain by using the parameter θ is continuous. By “continuous”, we mean that the deformation
converges uniformally over compact subdomains component-wise. To show this, it is enough to
show that each component function in the parametrization is continuous for all θ at any point
(u, v) in the domain. The continuity is self-evident at any θ ̸= π

4 ; hence, we only need to check the
for the case θ = π

4 .
However, for the Weierstrass data of minimal surfaces with planar curvature lines as stated in

(7.1.13), it is easy to check that at any point (u, v),

lim
θ→π

4

hθ(u, v) = h
π
4 (u, v) and lim

θ→π
4

ηθ(u, v) = η
π
4 (u, v).

In addition, each component of the parametrization in (7.1.14) is also continuous at θ = π
4 at any

point (u, v), as
lim
θ→π

4

Xθ(u, v) = X
π
4 (u, v).

Therefore, Xθ(u, v) is a continuous deformation.
Now, we would like to extend Xθ(u, v) to include the plane. To do so, we define the homotethy

factor Rθ as follows:
Rθ =

(
1− sin

(
θ +

π

4

))
| cos 2θ|+ sin

(
θ +

π

4

)
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for θ ∈ [−π
4 ,

3π
4 ]. Note that Rθ ≥ 0, and Rθ = 0 if and only if θ is at an endpoint of its domain.

If we consider X̃θ(u, v) = RθXθ(u, v), then

lim
θ↘−π

4

X̃θ(u, v) =
3√
2
(u,−v, 0) = lim

θ↗ 3π
4

X̃θ(u, v).

Therefore, the extension of Xθ(u, v) to X̃θ(u, v) defined as

X̃θ(u, v) =

{
RθXθ(u, v), if θ ∈

(
−π

4 ,
3π
4

)
3√
2
(u,−v, 0), if θ = −π

4 ,
3π
4

is again, a continuous deformation for θ ∈ [−π
4 ,

3π
4 ].

In conclusion, we obtain the following classification and deformation of minimal surfaces with
planar curvature lines.

Theorem 7.2.1. If X̃(u, v) is a minimal surface with planar curvature lines in R3, then the surface
is given by the following parametrization on its domain

X̃θ(u, v) =



Rθ



u cos θ
√
cos 2θ − sin θ sinh (u

√
cos 2θ) cos (v

√
cos 2θ)

(cos 2θ)3/2

v sin θ
√
cos 2θ − cos θ cosh (u

√
cos 2θ) sin (v

√
cos 2θ)

(cos 2θ)3/2

cosh (u
√
cos 2θ) cos (v

√
cos 2θ)− 1

cos 2θ



t

,

if θ ̸= −π
4 ,

π
4 ,

3π
4(

−u(−6 + u2 − 3v2)

6
√
2

,
v(−6− 3u2 + v2)

6
√
2

,
u2 − v2

2

)
, if θ = π

4

3√
2
(u,−v, 0), if θ = −π

4 ,
3π
4

up to isometries and homotheties of R3 for some θ ∈
[
−π

4 ,
3π
4

]
, where Rθ =

(
1− sin

(
θ + π

4

))
| cos 2θ|+

sin
(
θ + π

4

)
. In fact, it must be a piece of one, and only one, of the following:

• plane (θ = −π
4 ,

3π
4 ),

• catenoid (θ = 0, π2 ),

• Enneper surface (θ = π
4 ), or

• a surface in the Bonnet family (θ ∈ (−π
4 ,

3π
4 ) \ {0, π4 ,

π
2 }).

Moreover, the deformation X̃θ(u, v) depending on the parameter θ is continuous.
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Fig. 7.2: Deformation of minimal surfaces with planar curvature lines with parametrization as in
Theorem 7.2.1.

Furthermore, by considering the conjugate of minimal surfaces with planar curvature lines, we
get the following classification and deformation of minimal surfaces that are also affine minimal.

Corollary 7.2.1. If X̂(u, v) is a minimal surface that is also an affine minimal surface in R3, then
the surface is given by the following parametrization on its domain

X̂θ(u, v) =



Rθ



u cos θ
√
cos 2θ − sin θ cosh (u

√
cos 2θ) sin (v

√
cos 2θ)

−(cos 2θ)3/2

v sin θ
√
cos 2θ − cos θ sinh (u

√
cos 2θ) cos (v

√
cos 2θ)

(cos 2θ)3/2

− sinh (u
√
cos 2θ) sin (v

√
cos 2θ)

cos 2θ



t

,

if θ ̸= −π
4 ,

π
4 ,

3π
4(

−v(6− 3u2 + v2)

6
√
2

,
u(6 + u2 − 3v2)

6
√
2

,−uv
)
, if θ = π

4

3√
2
(−v,−u, 0), if θ = −π

4 ,
3π
4
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up to isometries and homotheties of R3 for some θ ∈
[
−π

4 ,
3π
4

]
. In fact, it must be a piece of one,

and only one, of the following:

• plane (θ = −π
4 ,

3π
4 ),

• helicoid (θ = 0, π2 ),

• Enneper surface (θ = π
4 ), or

• a surface in the Thomsen family (θ ∈ (−π
4 ,

3π
4 ) \ {0, π4 ,

π
2 }).

Moreover, the deformation X̂θ(u, v) depending on the parameter θ is continuous.

Fig. 7.3: Deformation of minimal surfaces that are also affine minimal with parametrization as in
the corollary to Theorem 7.2.1.

7.3 Remarks for our future works

With appropriate modifications, the analytic method in conjunction with axial directions introduced
in this paper can be applied to study maximal surfaces with planar curvature lines in Lorentz-
Minkowski space R2,1. The complete classification is already given by Leite in [62], where she
developed and used the orthogonal systems of cycles on the hyperbolic plane. The analytic method
can also be used to fully classify such surfaces; however, using the analytic method further allows us
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to see that all maximal surfaces with planar curvature lines can be joined by a single deformation.
In addition, using this method allows us to understand that maximal Bonnet-type surfaces can be
classified into three general types analytically, and five specific types by means of singularity theory.
We will defer a complete discussion of these properties to our subsequent work [21].





Chapter 8

Discrete DPW method

8.1 The DPW method for smooth CMC surfaces

First we introduce construction of smooth CMC H ̸= 0 surfaces in R3, S3 and H3 introduced in [25]

(see also [30]), which is now called the DPW method. Throughout this paper, I :=

(
1 0
0 1

)
, σ1 :=(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
, S3 := {Y ∈ R4|⟨Y, Y ⟩ = 1}, R3,1 denotes Minkowski

4-space with signature (+ + +−), and H3 := {Y ∈ R3,1|⟨Y, Y ⟩ = −1}.
Let Σ be in a simply connected domain in the complex plane C with the usual complex coodinate

z = x+iy, let f : Σ → R3 be a conformal immersion satisfying ⟨fu, fu⟩ = ⟨fv, fv⟩ = 4e2u, ⟨fu, fv⟩ =
0 for some scalar function u : Σ → R, and let N : Σ → S be its unit normal vector field. In this
paper we identify R4 (resp. R3,1) with the unitary group

{
X ∈M2×2

∣∣X · X̄t = I
}
(resp. another

matrix group) as follows:

R4 (or, R3,1) ∋ x = (x1, x2, x3, x4) 7−→
(

x4 + ν · x3 x1 − ix2
−ε · (x1 + ix2) x4 − ν · x3

)
, (8.1.1)

with ν = i, ε = 1 for R4 (resp. ν = 1, ε = −1 for R3,1). The metric becomes, under this
identification,

⟨X,Y ⟩ = ε · 1
2
trace(Xσ2Y

tσ2).

In particular, ⟨X,X⟩ = ε · det(X), and we can identify S3 (resp. H3), with SU2 respectively, with
the self-adjoint matrices (X = X̄t), via

H3 ∋ x = (x1, x2, x3, x4) 7−→
(
x4 + x3 x1 − ix2
x1 + ix2 x4 − x3

)
∈
{
FF̄ t |F ∈ SL2(C)

}
.

Here we give a description of the DPW method by using loop groups and algebras. First, we
define the holomorphic potential ξ as in Definition 8.1.1:

Definition 8.1.1. Let Σ be a simply-connected domain. Then the 1−form

ξ := Adz, A = A(z, λ) =
∞∑

j=−1

Aj(z)λ
j for z ∈ Σ and λ ∈ C (8.1.2)

95
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is called a holomorphic potential, where each Aj(z) is a 2 × 2 matrix that is independent of λ, is
holomorphic in z ∈ Σ, is traceless, is a diagonal (resp. off-diagonal) matrix when j is even (resp.
odd), and the upper-right entry of A−1(z) is never zero.

Given a holomorphic potential ξ, we then solve the equation

dφ = φξ, φ(z∗) = I for φ ∈ ΛSL2(C), (8.1.3)

where ΛSL2(C) =
{
φ(λ) ∈M2×2

∣∣∣φ : S1 C∞

−−−−→ SL2(C), φ(−λ) = σ3φ(λ)σ3

}
for some choice of

initial point z∗ ∈ Σ. We will use the following “SU2-Iwasawa splitting” of this loop group ΛSL2(C).
The following proposition was proven in [25].

Proposition 8.1.1. For all φ, there exist unique loops F and B such that

φ = F ·B, where F ∈ ΛSU2, B ∈ Λ+
RSL2(C), (8.1.4)

ΛSU2 =
{
φ(λ) ∈M2×2

∣∣∣φ : S1 C∞

−−→ SU2, φ(−λ) = σ3φ(λ)σ3

}
,

Λ+
RSL2(C) =

B+(λ) ∈ ΛSL2(C)

∣∣∣∣∣∣
B+ extends holomorphically to D,

B+(0) =

(
ρ 0
0 ρ−1

)
for some ρ > 0.

 .

Using the SU2-Iwasawa splitting, we have the following recipe for smooth CMC surfaces in
R3, S3 and H3, which was originally derived in [25] (see also [30]):

Proposition 8.1.2. Any conformal CMC H ̸= 0 (resp. cot(−2γ1), coth(−γ)) surface in R3 (resp.
S3, H3) can be constructed by the following steps:

1. Set a holomorphic potential ξ, and solve dφ = φξ for some initial data φ|z∗∈Σ ∈ ΛSL2C.

2. For the φ obtained in (1), apply SU2-Iwasawa splitting φ = F · B with F ∈ ΛSU2, B ∈
Λ+
RSL2C.

R3 case: Substitute the F in (2) into

f =
1

2H

[
−1

2
Fiσ3F

−1 − iλ(∂λF )F
−1

] ∣∣∣∣∣
λ=1

(8.1.5)

with unit normal vector field N =
1

2

[
Fiσ3F

−1
] ∣∣∣
λ=1

.

S3 case: Set F1 = F |λ=eiγ1 and F2 = F |λ=e−iγ1 for γ1 ∈ R and 2γ1 ̸= nπ (n ∈ Z), and
substitute the F in (2) into

f = F1

(
eiγ1 0
0 e−iγ1

)
F2

−1 (8.1.6)

with normal vector field N = iF1

(
eiγ1 0
0 −e−iγ1

)
F2

−1.

H3 case: Set F0 = F |λ=eγ/2 for γ ∈ R \ {0}, and substitute the F in (2) into

f = F0

(
eγ/2 0
0 e−γ/2

)
F0

t
(8.1.7)
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with normal vector field N = F0

(
eγ/2 0
0 −e−γ/2

)
F0

t
.

In particular, choosing ξ = λ−1

(
0 h(z)

h(z)−1 0

)
dz, where h(z) is a meromorphic function with

respect to z, we have any smooth isothermic CMC surface in each 3-space.

8.2 Notations in discrete surface theory

In this section we define some notations of discrete differential geometry, as in [9], [12], [19], [43].
In order to define discrete isothermic CMC surfaces, we need to introduce the cross ratio of a
quadrilateral. Henceforth, each element in S3 and H3 is identified with the matrix form as in
Equation (8.1.1).

Definition 8.2.1. Let X1, X2, X3 and X4 be points in S3 or H3. Then

cr(X1, X2, X3, X4) := (X1 −X2)(X2 −X3)
−1(X3 −X4)(X4 −X1)

−1

is called the cross ratio of X1, X2, X3 and X4. Note that, the cross ratio cr(X1, X2, X3, X4) is a
scalar function multiple of the identity matrix if and only if the four points X1, X2, X3 and X4 lie
in a circle.

Like in R3, we define discrete isothermic surfaces in S3 and H3, and their dual durfaces. As
will be seen later, existence of the dual surfaces characterizes discrete CMC surfaces in Riemannian
spaceforms (see [11]).

Definition 8.2.2. A discrete isothermic surface is a map f : Z2 −→ S3 or H3 for which all

elementary quadrilaterals satisfy cr(fp, fq, fr, fs) = −αpq
αps

I for all

p = (m,n), q = (m+ 1, n), r = (m+ 1, n+ 1), s = (m,n+ 1) ((m,n) ∈ Z2),

where αpq (resp. αps) is a positive scalar function depending only on horizontal edges (resp. vertical
edges). Then αpq, αps are called the cross-ratio factorizing functions. In particular, a discrete
isothermic surface Z : Z2 → R2 ∼= C is called a discrete holomorphic map.

Let f : Z2 −→ S3 or H3 be a discrete isothermic surface. Then a discrete isothermic surface f∗

in R4 or R3,1 with the same cross-ratio as f solving

f∗q − f∗p = αpq
fq − fp

∥fq − fp∥2
, f∗s − f∗p = −αps

fs − fp
∥fs − fp∥2

is called a dual surface of f , where ∥ · ∥2 := ⟨·, ·⟩. Note that, the dual surface f∗ of f is uniquely
determined, up to scaling and translation, and f∗ is also a discrete isothermic surface.

Remark 8.2.1. In general, a dual surface of a discrete isothermic surface f does not lie in the
same spaceform, that is, when f is discrete isothermic in S3 (resp. H3), f∗ does not necessarily lie
in S3 (resp. H3). On the other hand, as will be seen in Proposition 8.2.1, a dual surface f∗ of a
discrete CMC H (resp. H with |H| > 1) surface f in S3 (resp. H3) can be chosen so that f∗ ∈ S3
(resp. H3).
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Let L4 be a 4-dimensional light cone in Minkowski 5-space R4,1 with signature (+ + + + −).
Then Mκ := {X ∈ L4; ⟨X, q⟩R4,1 = −1} for some constant vector q ∈ R4,1. Then Mκ has constant
sectional curvature κ = −⟨q, q⟩. In particular, take q = (0, 0, 0, 0, 1)t (resp. q = (0, 0, 0, 1, 0)t), and
we have M1

∼= S3 (resp. M−1
∼= H3). First we define several notations here.

Definition 8.2.3. Let f : Z2 → R4,1 be a discrete surface with each quadrilateral (fp, fq, fr, fs, )
planar. Then f is called a discrete conjugate net. And two discrete conjugate surfaces f and f∗ are
Königs dual to each other if they are discrete surfaces with corresponding edges parallel and with
opposite diagonal edges parallel, meaning f12 − f ∥ f∗2 − f∗1, f2 − f1 ∥ f∗12 − f∗.

As already introduced in [11] (see also [18]), the Gaussian and mean curvatures are defined for
the projection of discrete conjugate nets in L4 to Mκ, that is, discrete conjugate nets in Mκ. In
particular, the lift f of a discrete isothermic surface f in S3 or H3 to L4 is also a conjugate net and
it has a Königs dual partner. In fact, considering the following particular lifts

S3 ∋ f 7→ f := (f, 1)t ∈ L4 (resp. H3 ∋ (f1, f2, f3, f4)
t 7→ f := (f1, f2, f3,−1, f4)

t ∈ L4),

one can confirm that the lift f of a discrete isothermic surface f in S3 (resp. H3) has a Königs dual
net f∗. The f∗ can be explicitly written as

f∗ = (f∗, 1)t (resp. (f∗1 , f
∗
2 , f

∗
3 ,−1, f∗4 )

t),

where f∗ := (f∗1 , f
∗
2 , f

∗
3 , f

∗
4 ) is a dual surface of f . The Königs duality of fand f∗ follows from the

non-corresponding diagonal parallel condition of discrete isothermic surfaces f and f∗ (see [13]). In
this paper, restricting the class of f to the lift of discrete isothermic surfaces in S3 or H3, we define
the Gaussian and mean curvatures of discrete isothermic surfaces as follows:

Definition 8.2.4. Let f : Z2 → S3 (resp. H3) be a discrete isothermic surface and let f be its lift
to L4. Then a discrete surface n : Z2 → S3 (resp. S2,1 := {X ∈ R3,1|⟨X,X⟩ = 1}) is called the
Gauss map of f if ⟨f, n⟩ = 0 and dnpq + κpqfpq = 0 and dnps + κpsfps = 0, where

dfpq := fq − fp, dfps := fs − fp, dnpq := nq − np, dnps := ns − np

and κpq, κps are real-valued functions defined on horizontal edges or vertical edges, respectively.
Then κpq, κps are called the principal curvatures of f . Consider a particular lift

S3 ∋ n 7→ n := (n, 0) ∈ S3,1

(resp. S2,1 ∋ (n1, n2, n3, n4) 7→ n := (n1, n2, n3, 0, n4) ∈ S3,1),
(8.2.1)

where Sn,1 := {X ∈ Rn+1,1|⟨X,X⟩Rn+1,1 = 1}. Then n is called the lift of n (or, n is called the
Gauss map of f). Note that, n satisfies ⟨f, n⟩ = 0, dnpq + κpqfpq = 0 and dnps + κpsfps = 0 with κpq
and κps the same as those of f . The Gaussian curvature K and the mean curvature H of f are real
values satisfying

A(n, n) = KA(f, f), A(f, n) = −HA(f, f),

where A(g, g) :=
1

2
(δgpr ∧ δgqs), A(g, h) :=

1

4
(δgpr ∧ δhqs+ δhpr ∧ δgqs) for some discrete conjugate

nets g, h ∈ R4,1 with δgpr := gr−gp and δgqs := gs−gq (regarding the definition of wedge product,
see [80], for example).
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As already mentioned in Lemma & Def 2.3 in [11], a necessary and sufficient condition for a
discrete conjugate net f and f∗ to be Königs dual to each other is A(f, f∗) = 0. Using that, discrete
CMC H (resp. H with |H| > 1) in S3 (resp. H3) can be characterized as follows.

Proposition 8.2.1. Let f be a discrete isothermic surface in S3 (resp. H3), let n be the Gauss
map of f , and let f, n be their lifts. Then f is a discrete CMC H (resp. H with |H| > 1) surface in
S3 (resp. H3) if and only if its dual surface f∗ can be chosen as f∗ = fθ1 ∈ S3 (resp. H3) with θ1
satisfying θ1 = cot−1H (resp. coth−1H), where fθ := cos θ ·f+sin θ ·n (resp. cosh θ ·f+sinh θ ·n).
Moreover, fθ2 is a constant positive Gaussian curvature (|H|+

√
H2 + 1)2 (resp. (|H|+

√
H2 − 1)2)

surface in S3 (resp. H3), where θ2 =
1

2
cot−1H (resp.

1

2
coth−1H).

Proof. First we consider the case in S3. By definition, the following two equations

A(n, n) = KA(f, f), A(f, n) = −HA(f, f)

hold. Assume that H is constant. Then the Königs dual net f∗ of f can be chosen as f∗ = Hf+ n =(
Hf + n
H

)
. By translations and homotheties of R4,1, f∗ can be chosen as f∗ =

( H√
H2+1

f + 1√
H2+1

n

1

)
∈

L4, implying that the projection f∗ of f∗ can be chosen as f∗ = cos θ1 · f +sin θ1 ·n (θ1 = cot−1H).
In this proof Kθ denotes the Gaussian curvature of a parallel surface fθ = cos θ · f + sin θ · n of

f at distance θ. Then the unit normal vector field nθ of fθ is nθ = − sin θ · f + cos θ · n. Let fθ be
a lift of fθ and let nθ be a lift of nθ. Then we have

A(nθ, nθ) = KθA(fθ, fθ) = Kθ{cos2 θA(f, f) + 2 cos θ sin θA(f, n) + sin2 θA(n, n)}
⇔ {K cos2 θ +H sin(2θ) + sin2 θ}A(f, f) = Kθ{cos2 θ −H sin(2θ) +K sin2 θ}A(f, f).

Thus we have Kθ =
K cos2 θ +H sin(2θ) + sin2 θ

cos2 θ −H sin(2θ) +K sin2 θ
. Taking θ = θ2 =

1

2
cot−1H, we have Kθ2 =

(|H|+
√
H2 + 1)2.

Similarly, take a discrete isothermic surface f in H3, then f is a discrete CMC H (|H| > 1)
surface if and only if f∗ can be chosen as fθ1 with θ1 = coth−1H, where fθ := cosh θ ·f +sinh θ ·n.

And the Gaussian curvature Kθ of fθ is Kθ =
K cosh2 θ −H sinh(2θ) + sinh2 θ

cosh2 θ −H sinh(2θ) +K sinh2 θ
. In particular,

when f is a discrete CMC H surface in H3, the Gaussian curvature Kθ2 of fθ2 is (|H|+
√
H2 − 1)2

by taking θ2 =
1

2
coth−1H, proving the proposition.

8.2.1 The discrete Lax pair

Away from umbilic points, we can reparametrize the conformal coordinates to isothermic ones.
Then isothermic surfaces have real constant Hopf differentials Q (see [12]). Then, as a natural
choice, we can define the discrete Lax pair as follows:

Fq = FpUpq, Fs = FpVps, where (8.2.2)

Upq =

(
apq λbpq +

1
λbpq

− b̄pq
λ − λ

b̄pq
āpq

)
, Vps =

(
dps λeps +

1
λeps

− ēps
λ − λ

ēps
d̄ps

)
, (8.2.3)
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where apq, bpq, dps, eps ∈ C. The compatibility condition of F is

VpsUsr = UpqVqr, (8.2.4)

and taking the determinant of Equation (8.2.4), we have

det(Vps) · det(Usr) = det(Upq) · det(Vqr).

We now assume that det(Upq) (resp. det(Vps)) is independent of vertical edges (resp. horizontal
edges). Our goal is to find such Upq and Vps to obtain a discrete CMC surface. Note that, the
compatibility condition implies a discrete version of the sinh-Gordon equation (see [76]).

Remark 8.2.2. Our formulation of Lax pairs for discrete CMC surfaces in R3 is slightly different
from the original one in [12]. However, we can again construct the discrete non-zero CMC surfaces
in R3 using the solution F of Equations (8.2.2) and (8.2.3) (see Proposition 8.4.1 here).

8.3 Discrete versions of the matrix splitting theorems

Here we recall the definition of the projectivization of loop groups and matrix-splitting theorems
for them, which were given in [43], and play important roles in our construction of discrete CMC
surfaces in Riemannian spaceforms.

Definition 8.3.1. For λ0 ∈ R\{±1} and λ1 ∈ iR\{±i}, the set PΛSL2(C), the projectivization of
ΛSL2(C), is defined by the following conditions: C(λ) ∈ PΛSL2(C) if

1. C(λ) is a Laurent polynomial in λ.

2. C(λ) is twisted: C(−λ) = σ3C(λ)σ3.

3. det(C(λ)) = (1− (λ0/λ)
2)i(1− (λ1/λ)

2)j(1− λ20λ
2)k(1− λ21λ

2)l for some i, j, k, l ∈ N.

Remark 8.3.1. We can identify F ∈ PΛSL2(C) with F̃ ∈ SL2(C) projectively up to some scalar
function β : S1 −→ C, i.e. we can write F̃ = β(λ)F .

We introduce the discrete Birkhoff splitting in the following proposition, as shown in [43]. In
Proposition 8.3.1, X lies in the set corresponding to what would be the minus group, and C̃ lies
in the set corresponding to what would be the plus group, in the smooth case. We denote these
groups by PΛ−SL2(C) and PΛ+SL2(C).

Proposition 8.3.1. Let C ∈ PΛSL2(C). Then there exist matrices X, C̃ ∈ PΛSL2(C) such that

C = XC̃, X(λ)
λ→∞−→ I, det(C̃(λ)) =

det(C(λ))

1− (λl/λ)2
,

where l = 0 or 1.

Proof. We can write C(λl) =

(
a b
c d

)
(l = 0, 1) with det(C(λl)) = 0 but C(λl) ̸= 0, by taking

an appropriate scalar multiple of C. So we show the only case when ab ̸= 0 or cd ̸= 0 here. This
case is the one that always appears in the discrete DPW method here.
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Solve X̃(λl) · C(λl) = 0, and we obtain the unique solution X̃ =

(
1 −xl

λ

− λ2
l

xlλ
1

)
, where xl =

λl
a
c = λl

b
d , and X̃ ∈ PΛSL2(C). We set X :=

(
1 xl

λ
λ2
l

xlλ
1

)
and C̃ := X−1C, then we have

X, C̃ ∈ PΛSL2(C), X(λ)
λ→∞−→ I and det(C̃(λ)) = det(C(λ))

1−(λl/λ)2
.

Next we introduce the discrete SU2-Iwasawa splitting for PΛ−SL2(C) as follows:

Proposition 8.3.2 ([43]). Let L−
l ∈ PΛ−SL2(C) be of the form

L−
l (λ) =

(
1 xl

λ
λ2
l

xlλ
1

)
(l = 0, 1).

Then, there exist a matrix Ll(λ) of the form

Ll(λ) =

(
al λbl +

1
λbl

− b̄l
λ − λ

b̄l
āl

)

with
(
σ3L

−
l (λl)σ3

)
·Ll(λl) = 0 and det(Ll(λ)) = |λl|−2

(
1− (λl/λ)

2
) (

1− λ2l λ
2
)
, and this L−

l (λ) is
unique up to sign.

In Proposition 8.3.2, Ll(λ) lies in the set corresponding to what would be SU2, and (Ll)
−1 ·L−

l

lies in the set corresponding to what would be the plus group, in the smooth case. We denote these
groups by PΛSU2 and PΛ+SL2(C).

Proof. Solve (
1 −xl

λl

−λl
xl

1

)(
al λlbl +

1
λlbl

− b̄l
λl

− λl
b̄l

āl

)
= 0

⇐⇒ al +
xl
λ2l
b̄l +

xl
b̄l

= 0, āl −
λ2l
xl
bl −

1

xlbl
= 0.

These implies that bl = ±

√
−λ2l (1 + |xl|2)
|λl|4 + |xl|2

, and we obtain that al and bl are defined up to sign.

By direct computation, we get det(Ll(λ)) = |λl|−2
(
1− (λl/λ)

2
) (

1− λ2l λ
2
)
.

8.4 Discrete CMC surfaces via the discrete DPW method

In this section, first we introduce the discrete DPW method for discrete CMC H ̸= 0 surfaces in
R3, studied in [43]. After that, we show the main result here, which is a discrete analogue of the
DPW method for CMC surfaces in S3 with any mean curvature H and CMC surfaces in H3 with
|H| > 1, by using discrete holomorphic potentials.

Proposition 8.4.1 ([43]). Any discrete isothermic CMC H ̸= 0 surface f : Z2 −→ R3 can be
constructed by the following Steps 1-4:
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Step 1 Let Z : Z2 −→ C be a discrete holomorphic function with

cr(Zp,Zq,Zr,Zs) = λ20/λ
2
1 < 0

satisfying |λ0|, |λ1| ̸= 1 and set

L−
pq =

(
1

xpq
λ

λ2
0

λxpq
1

)
, M−

ps =

(
1

yps
λ

λ2
1

λyps
1

)
(8.4.1)

for xpq := Zq −Zp and yps := Zs −Zp.

Step 2 Solve

φq = φpL
−
pq, φs = φpM

−
ps (8.4.2)

with the initial condition φ0,0 = I.

Step 3 Split

φp = FpBp (Fp ∈ PΛSU2, Bp ∈ PΛ+SL2(C)). (8.4.3)

Step 4 Substitute Fp to the Sym-Bobenko formula

fp = SymR3(Fp) = Im

[
1

2H

(
−1

2
Fpiσ3F

−1
p − iλ(∂λFp)F

−1
p

)] ∣∣∣∣∣
λ=1

(8.4.4)

with unit normal vector field np =
1

2

[
Fpiσ3F

−1
p

] ∣∣∣
λ=1

, where

Im :

(
a+ ib c+ id
−c+ id a− ib

)
7−→

(
ib c+ id

−c+ id −ib

)
.

Remark 8.4.1. We have two remarks here.

• We do not have to choose λ0 or λ1 as in R \ {0,±1} or R \ {0,±i}. In fact, even when we
choose λ0 =

√
αpq and λ1 = i

√
αps (|λ0|, |λ1| ̸= 1) with αpq and αps the cross ratio factorizing

functions of a discrete holomorphic function Z, we can still construct discrete CMC surfaces.
In order to simplify the argument, we assume that λ0 and λ1 are constant.

• As already mentioned in Remark 8.2.2, because of the difference of the formulation of Lax
pairs for discrete isothermic CMC surfaces in R3 from the one in [12], the Sym-Bobenko
formula in Step 4 in Proposition 8.4.1 is different from [12]. On the other hand, we can see
that any discrete surface f defined in Step 4 is a discrete isothermic surface and the dual
surface f∗ of f can be chosen as f∗ = f + H−1n, i.e., f is a discrete isothermic CMC H
surface in R3. The proof of this fact is similar to the one in [12], so here we omit this proof.

Here we introduce our first main result. We can construct any discrete CMC H (resp. H with
|H| > 1) in S3 (resp. H3) via the following recipe, which is a generalization of a result by Hoffmann
[43].
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Theorem 8.4.1. Any discrete isothermic CMC surface f : Z2 −→ S3 (resp. H3) with CMC H
(resp. H with |H| > 1) can be constructed by the same Steps 1-3 in Proposition 8.4.1 and the
following Step 4′ or 4′′, respectively:

Step 4′ Set F 1
p = Fp|λ=t1:=eiγ1 and F 2

p = Fp|λ=t−1
1

for γ1 ∈ R and 2γ1 ̸= nπ (n ∈ Z). We define the

following Sym-Bobenko type formulas

fp = SymS3(Fp) = F 1
p

(
t1 0
0 t−1

1

)
(F 2
p )

−1 (8.4.5)

with its normal vector field np = iF 1
p

(
t1 0
0 −t−1

1

)
(F 2
p )

−1. Then, f is a discrete CMC H =

cot(−2γ1) surface in S3 with normal n.

Step 4′′ Set F 0
p = F |λ=t0:=eγ/2 for some constant γ ∈ R \ {0} satisfying

min
(
λ20, λ

−2
0

)
< eγ < max

(
λ20, λ

−2
0

)
.

We define the following Sym-Bobenko type formulas

fp = SymH3(Fp) :=
1

detF 0
p

F 0
p

(
t0 0
0 t−1

0

)
F 0
p

t
(8.4.6)

with normal vector field np =
1

detF 0
p

F 0
p

(
t0 0
0 −t−1

0

)
F 0
p

t
. Then, f is a discrete CMC H =

coth(−γ) surface in H3 with normal n.

We have some lemmas for these steps as follows, which implies that φp are well-defined for all
p:

Lemma 8.4.1. In Step 1, L−
pq and M−

ps satisfy M−
psL

−
sr = L−

pqM
−
qr.

Proof. By direct computations, we get

M−
psL

−
sr = L−

pqM
−
qr

⇐⇒

1 +
λ2
0yps
λ2xsr

= 1 +
λ2
1xpq
λ2yqr

,
xpq
λ +

yps
λ =

yqr
λ +

xpq
λ ,

λ2
1

λyps
+

λ2
0

λxsr
=

λ2
0

λxpq
+

λ2
1

λyqr
,

λ2
1xsr
λ2yps

+ 1 =
λ2
0yqr
λ2xpq

+ 1
. (8.4.7)

Here, by the definition of xpq and yps, we have

xsr + yps = yqr + xpq (= Zr −Zp), (8.4.8)

and by cr(Zp,Zq,Zr,Zs) = λ20/λ
2
1, we also have

xpqxsr
ypsyqr

=
λ20
λ21
. (8.4.9)

Thus, by using Equations (8.4.8), (8.4.9), Equation (8.4.7) are clear.
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In the next step, we show that the solution of Equation (8.4.2) can be split like in Step 3 of
Proposition 8.4.1, which we call SU2-Iwasawa splitting for φ.

Lemma 8.4.2. As in Step 3, for all φp we can split

φp = FpBp (Fp ∈ PΛSU2, Bp ∈ PΛ+SL2(C)).

Proof. By Step 2, we have the following solution φ:

φp = L−
0,0L

−
1,0L

−
2,0 · · ·L

−
m−1,0 ·M

−
m,0M

−
m,1M

−
m,2 · · ·M

−
m,n−1.

In the above equation, L−
u,0 := L−

(u,0)(u+1,0), M
−
m,v := M−

(m,v)(m,v+1) for u, v ∈ Z≥0 Applying

Proposition 8.3.2 to L−
0,0, we obtain

φp = U0,0A
+
0,0L

−
1,0L

−
2,0 · · ·L

−
m−1,0 ·M

−
m,0M

−
m,1M

−
m,2 · · ·M

−
m,n−1

for A0,0 ∈ PΛSU2 and A+
0,0 ∈ PΛ+SL2(C). Next we name Ug1,0 = A+

0,0L
−
1,0 ∈ PΛSL2(C) and split

Ug1,0 = U−
1,0A

++
1,0 by the discrete Birkhoff splitting in Proposition 8.3.1:

φp = U0,0U
−
1,0A

++
1,0 L

−
2,0 · · ·L

−
m−1,0 ·M

−
m,0M

−
m,1M

−
m,2 · · ·M

−
m,n−1.

We again use Proposition 8.3.2 for U−
1,0:

φp = U0,0U1,0A
+
1,0A

++
1,0 L

−
2,0 · · ·L

−
m−1,0 ·M

−
m,0M

−
m,1M

−
m,2 · · ·M

−
m,n−1

for U1,0 ∈ PΛSU2 and A+
1,0 ∈ PΛ+SL2(C). We can repeat these splittings and we get

φp = U0,0U1,0 · · ·Um−1,0 · Vm,0Vm,1 · · ·Vm,n−1A
+
m−1,n−1A

++
m−1,n−1.

Taking Fp = U0,0U1,0 · · ·Um−1,0 · Vm,0Vm,1 · · ·Vm,n−1 and Bp = A+
m−1,n−1A

++
m−1,n−1, the lemma is

proven.

If Upq and Vps obtained by the above process satisfy the compatibility condition VpsUsr =
UpqVqr, we have the solotion Fp of Equations (8.2.2), (8.2.3). In fact, the compatibility condition
follows from Lemma 8.4.3.

Lemma 8.4.3. Let Upq and Vps be matrices obtained by Lemma 8.4.2. Then

VpsUsr = UpqVqr ⇐⇒M−
psL

−
sr = L−

pqM
−
qs.

Proof. By Steps 2 and 3, we have FqBq = FpBpL
−
pq and FsBs = FpBpM

−
ps. These imply that

Upq = BpL
−
pqB

−1
q and Vps = BpM

−
psB

−1
s . Substituting them into VpsUsr = UpqVsr, we can prove

the lemma.

By the proof of Proposition 8.3.2 and by λ0 ∈ R \ {±1}, λ1 ∈ iR \ {±i}, we can choose the
components bpq ∈ iR\{0} and eps ∈ R\{0} of Upq and Vps in Equation (8.2.3). Replacing bpq with
ibpq (bpq ∈ R \ {0}) in Equation (8.2.3), we have the following expression:

Upq =

(
apq λibpq − λ−1ib−1

pq

λ−1ibpq − λib−1
pq āpq

)
, Vps =

(
dps λeps + λ−1e−1

ps

−λ−1eps − λe−1
ps d̄ps

)
for apq, dps ∈ C \ {0} and bpq, eps ∈ R \ {0}. Finally, we have the following lemma.
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Lemma 8.4.4. In Step 4′ (resp. 4′′), f is a discrete isothermic CMC cot(−2γ1) (resp. coth(−q))
surface in S3 (resp. H3).

Proof. Defining F̂p := F

(√
λ 0
0 1√

λ

)
, we have

fp = SymS3(Fp) = SymS3

(
F̂p

(
1√
λ

0

0
√
λ

))
= F̂ 1

p (F̂
2
p ),

where F̂ 1
p := F̂p|λ=t1 , F̂ 2

p := F̂p|λ=t−1
1
. Then,

fq − fp = −F̂ 1
p · t

2
1 − t−2

1

α2
pq(t1)

(
b−2
pq t

−2
1 − 1 −iapqb−1

pq

iāpqb
−1
pq 1− b−2

pq t
2
1

)
· (F̂ 2

p )
−1,

fs − fp = −F̂ 1
p · t

2
1 − t−2

1

α2
ps(t1)

(
1 + e−2

ps t
−2
1 dpse

−1
ps

d̄pse
−1
ps −1− e−2

ps t
2
1

)
· (F̂ 2

p )
−1,

where αpq(λ) :=
√

detUpq and αps(λ) :=
√

detVps. Furthermore, we have the following expressions:

F̂q = F̂p

 apq i
(
bpq − 1

λ2bpq

)
i
(
bpq − λ2

bpq

)
apq

 , F̂s = F̂p

(
dps eps +

1
λ2eps

−
(
eps +

λ2

eps

)
dps

)
.

Setting

Ûpq :=
1

αpq(λ)

 apq i
(
bpq − 1

λ2bpq

)
i
(
bpq − λ2

bpq

)
apq

 , V̂ps :=
1

αps(λ)

(
dps eps +

1
λ2eps

−
(
eps +

λ2

eps

)
dps

)
,

Û1
pq := Ûpq|λ=t1 and V̂ 1

ps := V̂ps|λ=t1 , we can express the above equations as

fq − fp = −F̂ 1
p · t

2
1 − t−2

1

αpq(t1)
b−1
pq Û

1
pq · σ2 · (F̂ 2

p )
−1,

fs − fp = −F̂ 1
p · t

2
1 − t−2

1

αps(t1)
e−1
ps V̂

1
pq · σ1 · (F̂ 2

p )
−1.

Similarly, by using Û2
pq := Ûpq|λ=t−1

1
and V̂ 2

ps := V̂ps|λ=t−1
1
, we also have

fr − fq = F̂ 1
p Û

1
pq ·

t21 − t−2
1

αps(t1)
e−1
qr V̂

1
qr · σ1 · (Û2

pq)
−1(F̂ 2

p )
−1,

fr − fs = −F̂ 1
p V̂

1
ps ·

t21 − t−2
1

αpq(t1)
b−1
sr Û

1
sr · σ2 · (V̂ 2

ps)
−1(F̂ 2

p )
−1.

Using these expressions and the compatibility condition ÛpqV̂qr = V̂psÛsr, we have

cr(fp, fq, fr, fs) = −
α2
ps(t1)

α2
pq(t1)

.
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Thus f is a discrete isothermic surface in S3. And by a direct computation, we can check that the
dual surface f∗ of f can be chosen as f−2γ1 = cos(−2γ1) · f + sin(−2γ1) · n, implying that f is a
discrete isohermic CMC cot(−2γ1) surface in S3.

In the same vein, but a tedious computation, we have that the f in Step 4′′ is a discrete

isothermic CMC coth(−q) surface in H3 with cross ration −
α2
ps(t0)

α2
pq(t0)

.

Combining Lemmas 8.4.1, 8.4.2, 8.4.3, 8.4.4, we have proven Theorem 8.4.1.

8.5 Examples

In this section, we introduce three examples which are round cylinders, Smyth surfaces and Delaunay
surfaces. In the following we will take λ1 = iλ0 for simplicity.

Example 8.5.1 (Round Cylinders and 2-legged Smyth surfaces). Taking Zm,n = cλ0(m+ in) (c ∈
R \ {0}). Then we have discrete CMC surfaces in R3, S3 and H3 as in Figure 8.1. When c = 1, the
resulting surfaces are round cylinders in R3, S3 and H3, and when c ̸= 1, we have discrete 2-legged
Smyth surfaces, as in the lower column in Figure 8.1. In order to visualize the surfaces in S3 and
H3, we use stereographic projections.

Fig. 8.1: Round cylinders in S3 and H3 (left to right).

Example 8.5.2 (k-legged Smyth surfaces). Let Zm,n be a dicrete power function zm,n defined as
follows (see [12] for detail):

γ · zm,n = 2m
(zm+1,n − zm,n)(zm−1,n − zm,n)

zm+1,n − zm−1,n
+ 2n · (zm,n+1 − zm,n)(zm,n − zm,n−1)

zm,n+1 − zm,n−1
,

z0,0 = 0, z1,0 = 1 z0,1 = iγ .

This discrete power function is the discrete analogue of the holomorphic function wγ for w ∈ C. In
order to construct discrete k-legged Smyth surfaces, we set γ = 2

k+2 . See Figure 8.2.

Example 8.5.3 (Delaunay surfaces). Here we construct discrete Delaunay surfaces with constant
cross ratios. Although discrete Delaunay surfaces in R3 were already constructed and the construc-
tion is explained in [43], here we introduce more detailed explanations.
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Fig. 8.2: 3-legged Smyth surfaces in S3 and H3 (left to right).

At first, assume that we have a discrete CMC surface of revolution in R3. Take a parametrization
of the discrete surface of revolution fm,n in R3 as fm,n = (Xn cos θm, Xn sin θm, Yn)

t, where Xn and
Yn are real-valued functions depending on only n, and θm is a real-valued function depending on
only m. Then, by a direct computation, we can show that fm,n is discrete isothermic. In particular,
if cr(fp, fq, fr, fs) is constant, θm must be chosen as θm = c1m, where c1 is a real cosntant.

This implies that the frame Fp as in Equation (8.2.2) along the horizontal direction (i.e. rota-
tional direction) is the multiple of scalar constant matrices Upq. Here we rename the scalar matrix
Upq as U . Starting from the data, first we recover the holomorphic data L(m,0)(m+1,0) as in Equa-
tion (8.4.1) (symbolic notation is the same as in the proof of Lemma 8.4.2). Then, splitting U into
U = L−

0,0L
+
0,0 by applying Proosition 8.3.1, we have

Fm,0 = UUU · · ·U︸ ︷︷ ︸
m times

= L−
0,0L

+
0,0L

−
0,0L

+
0,0L

−
0,0L

+
0,0 · · ·L

−
0,0L

+
0,0.

Applying Proposition 8.3.1 to the first L+
0,0L

−
0,0 from the left in the above equation, we have

L+
0,0L

−
0,0 = L−

1,0L
+
1,0. Then

Fm,0 = L−
0,0L

−
1,0L

+
1,0L

+
0,0L

−
0,0L

+
0,0 · · ·L

−
0,0L

+
0,0

Applying Proposition 8.3.1 to the next L+
0,0L

−
0,0, we can again split L+

0,0L
−
0,0 into L−

1,0L
+
1,0. Then we

have L+
1,0L

−
1,0 in the above equation. We can split L+

1,0L
−
1,0 into L−

2,0L
+
2,0 i.e.

Fm,0 = L−
0,0L

+
0,0L

−
0,0L

+
0,0L

−
0,0L

+
0,0 · · ·L

−
0,0L

+
0,0

= L−
0,0L

−
1,0L

+
1,0L

+
0,0L

−
0,0L

+
0,0 · · ·L

−
0,0L

+
0,0

= L−
0,0L

−
1,0L

+
1,0L

−
1,0L

+
1,0L

+
0,0 · · ·L

−
0,0L

+
0,0

= L−
0,0L

−
1,0L

−
2,0L

+
2,0L

+
1,0L

+
0,0 · · ·L

−
0,0L

+
0,0.

Iterating the splitting into

L+
k,0L

−
k,0 = L−

k+1,0L
+
k+1,0 (k ∈ N ∪ {0}), (8.5.1)
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we can recover the L−
pq as in Equation (8.4.1) by reduction.

Here we assume that U is constant, so detU = λ−2
0 (1 − λ20/λ

2)(1 − λ20λ
2) is also constant. In

particular, detU+
m,0 = λ−2

0 (1− λ20λ
2) and U+

m,0 is of the form

(
Spq λbpq
λ
bpq

λ2
0

Spq

)
.

Conversely, we derive the condition for discrete holomorphic function Zm,n from Equation
(8.5.1). Equation (8.5.1) implies

t :=

√
−λ20(1 + |x(0,0)(1,0)|2)
λ40 + |x(0,0)(1,0)|2

, S(0,0)(1,0) =
tx(0,0)(1,0)

λ20
, xjk =

Sij +
λ2
0t
xij

1
λ2
0xijSij

+ 1
t

, Sjk =
xjk

λ20xijSij
,

where i = (m − 1, 0), j = (m, 0), k = (m + 1, 0). So we can define a discrete function Zm,0 as the
solution of x(m,0)(m+1,0) = Zm+1,0 −Zm,0. In particular, here we assume that x(0,0)(1,0) ∈ iR.

For given initial data y(0,n)(0,n+1) ∈ C (n ∈ N∪{0}), defining Z0,n as the solution of y(0,n+1)(0,n) =
Z0,n+1−Z0,n, we can describe the discrete holomorphic function Zm,n as the solution of cross ratio

condition cr(Zp,Zq,Zr,Zs) =
λ20
λ21

= −1.

On the other hand, by a symmetry condition for the meridian curve of a discrete surface of
revolution, we must choose the initial data y(0,0)(0,1) so that V(0,0)(0,1) = V(1,0)(1,1). By Proposition

8.3.1, we can factorize V(0,0)(0,1) into V(0,0)(0,1) = M−
(0,0)(0,1)M

+
(0,0)(0,1). Moreover, by definition of

V(1,0)(1,1) and a construction of V(1,0)(1,1), we have

V(1,0)(1,1) = (F1,0)
−1F1,1 = B(0,0)(1,0)φ

−1
(0,0)(1,0)φ(0,0)(1,0)B

−1
(1,0)(1,1) = L+

(0,0)(1,0)M
−
(1,0)(1,1)B

−1
(1,0)(1,1).

Again, splitting L+
(0,0)(1,0)M

−
(1,0)(1,1) into L+

(0,0)(1,0)M
−
(1,0)(1,1) = U−U+, we have M−

(0,0)(0,1) = U−.

This condition, the compatibility condition x(0,0)(1,0) + y(1,0)(1,1) = y(0,0)(0,1) + x(0,1)(1,1), the as-

sumption of x(0,0)(1,0), and the cross ratio condition
x(0,0)(1,0)x(0,1)(1,1)

y(0,0)(0,1)y(1,0)(1,1)
= −1 imply

y(0,0)(0,1) =

√√√√−
2λ40 − x2(0,0)(1,0)λ

4
0 − x2(0,0)(1,0)

−1 + 2x2(0,0)(1,0) − λ40
.

Thus we have the initial condition for y(0,n)(0,n+1) = Z0,n+1 − Z0,n. In a similar way as for
x(m,0)(m+1,0), solving

T(0,0)(0,1) =
ty(0,0)(0,1)

λ21
, yjk =

Tij +
λ2
1t
yij

1
λ2
1yijTij

+ 1
t

, Tjk =
yjk

λ21yijTij
,

where i = (0, n− 1), j = (0, n), k = (0, n+ 1), we have Z0,n and the discrete holomorphic function
Zm,n. This data determines a CMC surface of revolution (see Figures 8.3, 8.4).

8.6 Singularities of discrete positive constant Gaussian cur-
vature surfaces

As mentioned in Section 8.2, we can obtain discrete positive constant Gaussian curvature (p-CGC,
for short) surfaces in S3 and H3. In the smooth case, it is known that p-CGC surfaces generally have
singularities, so it is natural to expect that discrete p-CGC surfaces also generally have singularities.
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Fig. 8.3: Discrete Delaunay surfaces in S3. Like in the smooth case, there exist discrete closed
isothermic CMC surfaces of revolution. In the upper row, a discrete unduloid and a discrete nodoid
with four lobs are shown. In the lower row, the half cuts of the pictures above are shown.

Hoffmann, Rossman, Sasaki, Yoshida [44] analyzed discrete flat surfaces (discrete circular sur-
faces with Gaussian curvature in the sense of Definition 8.2.4 identically 1) in H3, and Rossman and
the second author [81] analyzed singularities of discrete linear Weingarten surfaces of Bryant (resp.
Bianchi) type in H3 (resp. S2,1). Here we introduce vertices defined in [81] that are potentially
singularities of discrete surfaces.

Definition 8.6.1. Let i, j, k be three consective points in the horizontal or vertical direction in Z2,
let f be a discrete circular surface in S3 (resp. H3) and let n its Gauss map. Then fj is called a
flat, parabolic, singular vertex (FPS vertex, for short) if κij · κjk < 0.

FPS vertices possibly become singularities of discrete surfaces. On the other hand, in order to
define singularities of discrete surfaces, it is unsufficient to see only signatures of principal curvatures,
which was explained in [81]. In this paper we define and analyze singularities (i.e. singular vertices)
of discrete p-CGC surfaces in S3. For other 3-spaces (R3 or H3), we can also discuss singularities
of discrete constant positive Gaussian curvature surfaces in the same way.

Before discussing singularities of discrete p-CGC surfaces in S3, we see smooth p-CGC surfaces
in S3. At a singular point of a front, at least one of the principal curvatures of a front diverges (see
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Fig. 8.4: Discrete Delaunay surfaces in H3

[67]), which we would like to reflect in the discrete case. First we compute the principal curvatures
of smooth p-CGC surfaces.

Let f be a conformal CMC cot(−2γ1) surface in S3 described in Proposition 8.1.2 and let fθ be
its parallel surface at distance θ. In particular, we assume that f is isothermic. In order to simplify
the argument, we only consider that γ1 ∈ (0, π/4]. Then f−γ1 becomes a p-CGC cot2 γ1 surface
in S3 and the two principal curvatures κ1, κ2 become κ1 = cot(−2γ1) + e−2u csc(−2γ1), κ2 =
cot(−2γ1)− e−2u csc(−2γ1), implying that the principal curvatures κ−γ11 , κ−γ12 of a smooth p-CGC
surface f−γ1 are

κ−γ11 = cot γ1 ·
e−2u + 1

e−2u − 1
, κ−γ12 = cot γ1 ·

e−2u − 1

e−2u + 1
.

Thus we know that |κ−γ11 | > cot γ1 and |κ−γ12 | < cot γ1 at a regular point, and that κ−γ11 diverges
and κ−γ12 converges to 0 at a singular point.

Henceforth, we consider the discrete case. Let f be a discrete CMC cot(−2γ1) (γ1 ∈ (0, π/4])
surface in S3 described in Theorem 8.4.1 and let fθ be its parallel surface at distance θ. Like in
the smooth case, using Proposition 8.2.1, f−γ1 is a discrete p-CGC cot2 γ1 surface in S3. One can

compute that the principal curvatures of f are κpq =
cos(−2γ1)− b2pq

sin(−2γ1)
, κps =

cos(−2γ1) + e2ps
sin(−2γ1)

, and

the principal curvatures κθpq, κ
θ
ps of f

θ are κθpq =
1 + κpq cot θ

cot θ − κpq
, κθps =

1 + κps cot θ

cot θ − κps
. Using that, we

have

κ−γ1pq = cot γ1 ·
b2pq − 1

b2pq + 1
, κ−γ1ps = cot γ1 ·

e2ps + 1

e2ps − 1
.

Like in the smooth case, we have |κ−γ1pq | < cot γ1, |κ−γ1ps | > cot γ1. Mimicking the smooth case, this
justifies that there is no singular vertex in the m−direction but there exists a singular vertex in the
n−direction. In conclusion, we precisely define singular vertices of discrete p-CGC surfaces in S3
as follows:

Definition 8.6.2. Let f−γ be a discrete p-CGC cot2 γ surface obtained by taking a parallel surface
of a discrete isothermic CMC cot(−2γ1) surface described in Theorem 8.4.1 and let i, j, k be three
consective three points in the vertical direction. Then the FPS vertex f−γj is a singular vertex.
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Remark 8.6.1. By a similar observation, we can define singular vertices of discrete p-CGC surfaces
in R3 or H3 as follows: Let f̃ be a discrete p-CGC K surface obtained by taking a parallel surface
of a discrete isothermic CMC surface described in Proposition 8.4.1 or Theorem 8.4.1, and let i, j, k
be three consective three points in the horizontal or vertical direction. Then the FPS vertex f̃j is

a singular vertex if |κ̃ij |, |κ̃jk| >
√
K, where κ̃ are the principal curvatures of f̃ .

Finally we conclude this paper by examining examples of discrete p-CGC surfaces in S3. On
the left-hand side of Figure 8.5, an example of discrete p-CGC surfaces in S3 with FPS vertices is
shown, and on the right-hand of Figure 8.5, the same discrete p-CGC surface in S3 with singular
vertices is shown. The singular vertices seem to capture the characteristic of singularities of discrete
p-CGC surfaces much more than the FPS vertices.

Fig. 8.5: A discrete p-CGC surface in S3 obtained by taking a parallel surface of a discrete 2-legged
Smyth surface with FPS vertices (left-hand side) or singular vertices (right-hand side).
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