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Abstract

Cryptosystems is the fundamental technology for the information security. The cryptology is one
of academical research topics, and the motivation is to support the security of various ongoing
services, to design more secure and efficient cryptosystems, and to seek new application of
cryptosystems for reduction of security risks. Nowadays, a number of information systems and
computer networks ensure the security based on cryptosystems.

There are two types of cryptosystems; one is a public-key cryptosystem and another is a
symmetric-key cryptosystem. They have its advantages and drawbacks. The public-key cryp-
tosystem encrypts message by using the public key, and the encrypted message (ciphertext) is
decrypted by the corresponding secret key. We do not need to share the secret key in advance,
but it is unsuitable to handle large data because the processing is not fast. The symmetric-key
cryptosystem has to shared the same key in advance. However, the processing is very faster
than the public-key cryptosystem. Therefore, we first share the secret key for the symmetric-key
cryptosystem by using the public-key cryptosystem and then handle large data by using the
symmetric-key cryptosystem.

Cryptanalyses are one of the most important topics in cryptology. Only after many cryptogra-
phers analyze the security of cryptosystems and show supporting evidence that the cryptosystem
is secure, it is admitted widely used and standardized. Moreover, the knowledge of cryptanalyses
contributes to designing more secure new cryptosystem. In fact, cryptology has been developed
by iterating designs and analyses. If there are no third-party cryptanalysis and the security is
guaranteed only by the designer intuition, it is too dangerous to use such cryptosystems. For
example, if one nation designs cryptosystem with trapdoor and they promote its use, it will
lead to mass-surveillance society. Therefore, we have to continue the activity of cryptanalyses
to avoid such society.

We focus on the cryptanalytic techniques for symmetric-key cryptosystems. Many such
techniques have been developed in last three decades. The most famous technique is the dif-
ferential cryptanalysis by Biham and Shamir at 1990 and the linear cryptanalysis by Matsui at
1993. Both cryptanalyses were developed to analyze Data Encryption Standard (DES). After
their proposals, many symmetric-key cryptosystems which are secure against both cryptanaly-
ses have been proposed. Similarly, many new advanced cryptanalytic techniques have also been
developed, e.g., the higher-order differential cryptanalysis, impossible differential cryptanalysis,
truncated differential cryptanalysis, integral cryptanalysis, multi-dimensional linear cryptanaly-
sis, and zero-correlation linear cryptanalysis.

In this doctor thesis, we propose many novel techniques for the integral cryptanalysis. The
integral cryptanalysis is one of the most powerful cryptanalytic techniques. In a broad sense,
attackers recover the secret key by analyzing the pair of chosen-plaintext and corresponding-
ciphertext sets. In a narrow sense, the integral cryptanalysis first constructs an integral charac-
teristic and then recovers the secret key by using the characteristic. In the integral characteristic,
attackers first prepare N chosen plaintexts. If the XOR of all corresponding texts encrypted by
r rounds is 0 for all keys, we say that the cipher has an r-round integral characteristic with
N chosen plaintexts. Namely, we prepare the plaintext set X satisfying

∑
p∈X T (Ek(p)) = 0

for all round key k, where the function T is a simple truncation function and Ek denotes the
target block cipher whose number of rounds is reduced to r rounds. The probability that above
equation holds for ideal ciphers is negligible. Therefore, we can execute a distinguishing attack
by construction the integral characteristic. The integral cryptanalysis additionally appends a
key recovery step to the r-round integral characteristic. Attackers guess round keys used in the
last s rounds and attack (r + s) rounds. If guessed round keys are correct, the sum is always 0.
Therefore, if the sum is not 0, the guessed round key is incorrect. By repeating this procedure,
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attackers recover the correct round keys used in the last s rounds.
Our contribution mainly consists of two parts; one part is supporting advanced techniques

for the integral cryptanalysis, and another part is the development of the division property.

Improved Techniques for Integral Cryptanalysis

We first propose generic attacks against several Feistel networks. Such a topic has been discussed
since the introduction of Luby-Rackoff construction in 1988. The Luby-Rackoff construction is
unrealistic because its round functions must be chosen at random from the set of all functions.
We focus on the security of more practical constructions, which are indeed used by some Feistel
ciphers in practice. We show new properties using the relationship between the pair of plaintext
and ciphertext sets. We propose new generic key recovery attacks by using our properties, and
confirm the feasibility by implementing the attack on Feistel ciphers with small block sizes. As
a result, we conclude that efficient and practical 6-round Feistel networks are not secure.

We next propose a new technique for the integral cryptanalysis called the Fast Fourier Trans-
form (FFT) key recovery. When N chosen plaintexts are required for the integral cryptanalysis
and the guessed key is κ bits, a straightforward key recovery requires the time complexity of
O(N2κ). However, our FFT key recovery only requires the time complexity of O(N + κ2κ).
We apply the FFT key recovery technique to three structures, an Even-Mansour scheme, key-
alternating cipher, and Feistel structure. As a result, we improve the time complexity for integral
cryptanalyses against specific ciphers.

Division Property: Efficient Method to Estimate Upper
Bound of Algebraic Degree

How to find effective integral characteristics is the most importance procedure for the integral
cryptanalysis. There are two famous methods to find such characteristic: one is the propagation
of integral property and anther is the estimation of upper bound of algebraic degree. They have
its advantages and drawbacks. While the integral property can mainly exploit the diffusion part
of block ciphers, the degree estimation can mainly exploit the confusion part of block ciphers.
The division property is developed by combining the advantages of the integral property and
degree estimation. The division property can find more accurate integral characteristics than
conventional two methods. To show its advantage, we search for integral characteristics on
Feistel, SPN, and AES-like structures using the division property. As a result, we can find
improved integral characteristics for all structures.

The usefulness of the division property is not limited to generic attacks. We apply this
technique to MISTY1. MISTY1 is a block cipher designed by Matsui in 1997, and it was
well evaluated and standardized by projects, such as CRYPTREC, ISO/IEC, and NESSIE. We
propose a key recovery attack on the full MISTY1, i.e., we show that 8-round MISTY1 with 5
FL layers does not have 128-bit security. Many attacks against MISTY1 have been proposed,
but there is no attack against the full MISTY1. Therefore, our attack is the first cryptanalysis
against the full MISTY1. We construct a new integral characteristic by using the propagation
of the division property. As a result, we construct a 6-round integral characteristic on MISTY1.
Finally, we recover the secret key of the full MISTY1 with 263.58 chosen plaintexts and 2121 time
complexity. Moreover, if we use 263.994 chosen plaintexts, the time complexity for our attack is
reduced to 2108.3.

We also apply the division property to a lightweight block cipher Lilliput, which is an
instantiation of extended generalized Feistel network (EGFN) developed by Berger et al. Division
property can find a 13-round integral characteristic which is improved from the previous one by
4 rounds. The new integral characteristic is further extended to a 17-round key recovery attack
which are improved from the previous best attack by 3 rounds.

The division property is very powerful tool to find integral characteristics against block
ciphers based on S-boxes. However, it has not been applied to non-S-box-based ciphers like the
Simon family effectively. To gain high benefit against non-S-box-based ciphers, we extend the
division property to a bit-based division property. As a result, we show the existence of 15-round
integral characteristic of Simon32.
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We also apply the bit-based division property to a lightweight block cipher PRESENT. We
introduce the compact representation for the bit-based division property, and it helps us to
evaluate the propagation of the bit-based division property in practical time. As a result, we
find 9-round integral characteristics, which is improved by two rounds than previous best one.
Moreover, we attack 12-round PRESENT-80 and 13-round PRESENT-128 by using this new
characteristic.
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Chapter 1

Introduction

1.1 Motivation

Cryptology. Information systems and computer networks become one of the most important
social infrastructures, and we need to manage and utilize such sensitive information includ-
ing personal information. Security technologies are necessary for the secure utilization, and a
cryptosystem is especially important because it is the fundamental technology underlying every
security technology. In fact, we always use some cryptosystems in our routine, e.g., social ser-
vices via the Internet or online shopping. They use cryptosystem to construct secure channels.
The cryptology is one of academical research topics, and the motivation is to support the security
of various ongoing services, to design more secure and efficient cryptosystems, and to seek new
application of cryptosystems for reduction of security risks.

The cryptology is developing research topic. The cryptology, as you imagine, is one of the
most sensitive technologies. Actually, the cryptological technologies were managed by every na-
tion for the national defense before World War II. We, i.e., the contemporary cryptographers,
call them historical cryptosystems to distinguish with modern cryptosystems. The difference be-
tween the historical and modern cryptosystems is whether or not the algorithm of cryptosystems
can open to the public. The security of the historical cryptosystem is guaranteed by concealing
the algorithm from adversaries. Therefore, once the algorithm open to the public, we cannot use
it in secure. We have to manage the cryptosystem itself strictly, and it is practically impossible
to apply it to modern services via the Internet. On the other hand, the modern cryptosystem
allows the publication of the algorithm, and we conceal only secret key, which is another input
of cryptosystems. Since the algorithm open to the public, we can discuss the security in the
academical community and the cryptology has been developed.

There are two types of cryptosystems; one is a public-key cryptosystem and another is
symmetric-key cryptosystem. They have its advantages and drawbacks. Let us consider two
persons: Alice and Bob, and Alice aims to send her message to Bob via the secure channel.
In the public-key cryptosystem, Bob first generates his public key from his secret key, and the
public key open to the public. It is practically infeasible to compute the secret key only from
the public key. Then, Alice encrypts her message using Bob’s public key. The ciphertext can be
decrypted only using Bob’s secret key. The public-key cryptosystem is very useful because we do
not need to share their secret keys in advance. On the other hand, it has to use advanced math-
ematical computation to achieve such rich functionality, and such computation are not always
efficient for the computer. In the symmetric-key cryptosystem, Alice and Bob have to share the
common secret key in advance. However, it is very efficient and the processing is almost 100
times than that of the public-key cryptosystem. This doctor thesis focuses on the security of
the symmetric-key cryptosystem.

Symmetric-Key Cryptosystem. There are several types in the symmetric-key cryptosys-
tem, e.g., a block cipher, stream cipher, hash function, message authentication code, and au-
thenticated encryption.

The most common symmetric-key cryptosystem is the block cipher. The input and output
lengths of the block cipher are fixed, and n-bit block ciphers denote block ciphers with n-bit
input and output. The claimed security is generally κ bits when block ciphers accept κ-bit
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secret keys k. Namely, let p and E(·, ·) be a plaintext and the block cipher, respectively, and
the corresponding ciphertext c is computed as c = E(k, p). The decryption uses the same key
k and p = E−1(k, c), where E−1(·, ·) is the decryption circuit. Since block ciphers support only
fixed-length message, we have to use modes of operations for block ciphers like ECB, CBC, and
CTR to support variable-length message.

The stream cipher is constructed by the pseudo-random number generator F (·, ·), which ac-
cepts κ-bit secret key k and n-bit initialization vector iv. The pseudo-random number generator
generates finite-length key streams z = F (k, iv) ∈ {0, 1}∗, and the ciphertext c is computed as
c = p⊕ z. Then, the decryption is trivial, i.e., p = c⊕ z.

The role of the hash function is completely different from the block cipher and stream cipher.
While the block cipher and stream cipher aim to achieve the confidentiality, the hash function
aim to achieve the integrity. Let m be the original message, and the hash value is computed
as h = F (m), where F (·) denotes the hash function. As you see, the hash function does not
accept the secret key. If the original message is forged to m′, the hash value is different from the
hash value of the original message, i.e., F (m) ̸= F (m′). Here, the hash function is expected to
achieve the following properties: pre-image resistance, second pre-image resistance, and collision
resistance.

The message authentication code (MAC) is similar to the hash function, but the required
security is different from the hash function. Let m be the message, and the MAC value is
computed as mac = F (k,m), where F (·, ·) denotes the message authentication code. Let us
revisit the communication between Alice and Bob. The motivation of MAC is Bob knows whether
or not the message is sent by Alice. Only using hash function cannot achieve this functionality
because the adversary can easily compute the hash value for forged message. Therefore, to use
MAC, we have to share the secret key in advance like block cipher and stream cipher.

The block cipher and stream cipher provide only confidentiality, and the message authen-
tication code provides only integrity. Both confidentiality and integrity are important in real
communication, and we use both symmetric-key cryptosystems under several combinations, e.g.,
enc-then-mac, mac-then-enc, and enc-and-mac. However, it is not always efficient. The authen-
ticated encryption can provide both confidentiality and integrity in the same time efficiently.

Cryptanalysis. Cryptanalyses are one of the most important topics in cryptology. Only after
many cryptographer analyze the security of cryptosystems and show supporting evidence that the
cryptosystem is secure, it is admitted widely using and standardized. Moreover, the knowledge
of cryptanalyses contributes to design more secure new cryptosystem. In fact, cryptology has
been developed by iterating designs and analyses. If there are no third-party cryptanalysis
and the security is guaranteed only by the designer intuition, it is too dangerous to use such
cryptosystems. For example, if one nation designs cryptosystem with trapdoor and they promote
its use, it will lead to mass-surveillance society. Therefore, we have to continue the activity of
cryptanalyses to avoid such society.

Many cryptanalytic techniques have been proposed in last three decades. The most famous
cryptanalytic technique is the differential cryptanalysis by Biham and Shamir at 1990 [BS90] and
the linear cryptanalysis by Matsui at 1993 [Mat93]. Both cryptanalyses were developed to analyze
Data Encryption Standard (DES) [Nat77]. After their proposals, many new symmetric-key cryp-
tosystems which are secure against both cryptanalyses have been proposed. Similarly, many new
advanced cryptanalytic techniques also have been developed, e.g., the higher-order differential
cryptanalysis [Lai94], impossible differential cryptanalysis [BBS99], truncated differential crypt-
analysis [Knu94], integral cryptanalysis [KW02], multi-dimensional linear cryptanalysis [BJV04],
meet-in-the-middle attack [DH77, DS08] and zero-correlation linear cryptanalysis [BR11, BR14].

Integral Cryptanalysis. The integral cryptanalysis is one of the most powerful cryptana-
lytic techniques, and the concept was introduced by Knudsen and Wagner at FSE2002 [KW02].
However, similar techniques had been applied before the proposal of the integral cryptanalysis.
The first this-type cryptanalysis is the higher-order differential cryptanalysis by Lai [Lai94] and
is the extension of differential cryptanalysis. The advantage from the classical differential crypt-
analysis was discussed by Knudsen in [Knu94]. Then, the similar technique to the higher-order
differential cryptanalysis was used as the dedicated attack against the block cipher Square
[DKR97]. This attack is widely applied to various block ciphers, where it was referred to the

14



square attack [Dem02, HQ01, YPK02]. Then, some extensions of the square attack were pro-
posed like the multiset [BS01], saturation [Luc01], and internal collision cryptanalyses [GM00].
In 2002, Knudsen and Wagner then formalized the square attack as the integral cryptanalysis.

The integral cryptanalysis first constructs an integral characteristic and then recovers the
secret key by using the characteristic. In the integral characteristic, attackers first prepare N
chosen plaintexts. If the XOR of all corresponding texts encrypted by r rounds is 0 for all
keys, we say that the cipher has an r-round integral characteristic with N chosen plaintexts.
Namely, we prepare the plaintext set X satisfying

∑
p∈X T (Ek(p)) = 0 for all round key k, where

the function T is a simple truncation function and Ek denotes the target block cipher whose
number of rounds is reduced to r rounds. The probability that above equation holds for ideal
ciphers is negligible. Therefore, we can execute a distinguishing attack by construction the
integral characteristic. The integral cryptanalysis additionally append a key recovery step to
the r-round integral characteristic. Attackers guess round keys used in the last s rounds and
attack (r + s) rounds. If guessed round keys are correct, the sum is always 0. Therefore, if the
sum is not 0, the guessed round key is incorrect. By repeating this procedure, attackers recover
the correct round keys used in the last s rounds.

1.2 Our Contribution and Outline

In this doctor thesis, we propose many novel techniques for the integral cryptanalysis. We first
show the definition, security requirement, attack assumption, and structure of block ciphers In
Chapter 2. Moreover, we show the history of the integral cryptanalysis as preliminaries. Our
contribution mainly consists of two parts; one part is supporting advanced techniques for the
integral cryptanalysis, and another part is the development of the division property.

Improved Technique for Integral Cryptanalysis.

• In Chapter 3, we deal with upper bounds for the security of some Feistel networks. Such a
topic has been discussed since the introduction of Luby-Rackoff construction [LR88]. The
Luby-Rackoff construction is unrealistic because its round functions must be chosen at
random from the set of all functions. Knudsen dealt with a more practical construction
whose round functions are chosen at random from a family of 2κ randomly chosen func-
tions, and showed an upper bound for the security by demonstrating generic key recovery
attacks [Knu02]. However it is still difficult for designers to choose functions randomly.
Then, this chapter considers the security of some Feistel networks which have more effi-
cient and practical round functions, and such Feistel networks are indeed used by some
Feistel ciphers in practice. We show new properties using the relationship between the pair
of plaintext and ciphertext sets. We propose new generic key recovery attacks by using
our properties, and confirm the feasibility by implementing the attack on Feistel ciphers
with small block sizes. As a result, we conclude that efficient and practical 6-round Feistel
networks are not secure.

• In Chapter 4, we propose a new technique for the integral cryptanalysis called the Fast
Fourier Transform (FFT) key recovery. When N chosen plaintexts are required for the
integral characteristic and the guessed key is κ bits, a straightforward key recovery requires
the time complexity of O(N2κ). However, the FFT key recovery only requires the time
complexity of O(N + κ2κ). As a previous result using FFT, Collard et al. proposed
that FFT can reduce the time complexity of a linear cryptanalysis [CSQ07]. We show
that FFT can also reduce the complexity of the integral cryptanalysis. Moreover, the
estimation of the complexity is very simple. We first show the complexity of the FFT key
recovery against three structures, an Even-Mansour scheme, key-alternating cipher, and
Feistel structure. As examples of these structures, we show integral cryptanalyses against
Prøst, AES [U.S01], PRESENT [BKL+07], and CLEFIA [SSA+07]. As a result, an 8-
round Prøst P̃128,K can be attacked with an approximate time complexity of 279.6. For
the key-alternating cipher, a 6-round AES and a 10-round PRESENT can be attacked with
approximate time complexities of 251.7 and 297.4, respectively. For the Feistel structure, a
12-round CLEFIA can be attacked with approximate time complexities of 287.5.
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Division Property: Efficient Method to Estimate Upper Bound of Algebraic Degree.

• Chapter 5 proposes the division property as a novel technique to find integral characteris-
tics. The most important part of the integral cryptanalysis is how to find good integral
characteristics. We already have two conventional methods to find them; one method uses
the propagation of integral property and another method estimates the upper bound of the
algebraic degree of symmetric-key cryptosystems. The former was proposed by Knudsen
and Wagner [KW02]. Nowadays, this method has been used as the most common technique
to find integral characteristics. The latter was proposed by Lai [Lai94], and this attack is
often called the higher-order differential cryptanalysis. Nevertheless both methods find the
same non-trivial behavior, i.e., the integral characteristic, they construct the integral char-
acteristic by exploiting different property of symmetric-key cryptosystems. The division
property is developed by combining the advantages of the integral property and degree
estimation. The division property can find more accurate integral characteristics than
conventional two methods. To show its advantage, we search for integral characteristics
on Feistel, SPN, and AES-like structures [U.S01] using the division property. As a result,
we can find improved integral characteristics for all structures.

• Chapter 6 shows the integral cryptanalysis on full MISTY1 [Mat97], and we show that
the division property is also useful for the dedicated attack against specific cryptosys-
tems. MISTY1 is a block cipher designed by Matsui in 1997, and it was well evalu-
ated and standardized by projects, such as CRYPTREC [CRY13], ISO/IEC [ISO05], and
NESSIE [NES04]. We propose a key recovery attack on the full MISTY1, i.e., we show that
8-round MISTY1 with 5 FL layers does not have 128-bit security. Many attacks against
MISTY1 have been proposed, but there is no attack against the full MISTY1. Therefore,
our attack is the first cryptanalysis against the full MISTY1. We construct a new integral
characteristic by using the propagation of the division property. As a result, we construct
a 6-round integral characteristic on MISTY1. Finally, we recover the secret key of the
full MISTY1 with 263.58 chosen plaintexts and 2121 time complexity. Moreover, if we use
263.994 chosen plaintexts, the time complexity for our attack is reduced to 2108.3.

• Chapter 7 shows the best third-party cryptanalysis against a lightweight block cipher Lil-
liput [BFMT15], which is an instantiation of an extended generalized Feistel network
(EGFN) developed by Berger et al. [BMT13]. Its round function updates a part of the
state only linearly, which yields several security concerns. Owing to its unique compu-
tation structure, the designers expected that EGFN efficiently enhances security against
the integral cryptanalysis from generalized Feistel network. However, the security is not
enhanced as the designers expect. In fact, division property can find a 13-round integral
characteristic which is improved from the previous characteristic by 4 rounds. The new
integral characteristic is further extended to a 17-round key recovery attack which are
improved from the previous best attack by 3 rounds.

• Chapter 8 extends the division property to bit-based variant. The division property is very
powerful tool to find integral characteristics against symmetric-key cryptosystem based on
S-boxes. However, it has not been applied to non-S-box-based ciphers like the Simon fam-
ily [BSS+13] effectively, and only the existence of the 10-round integral characteristic on
Simon32 was proven in Chapter 5. On the other hand, the experimental characteristic,
which possibly does not work for all keys, covers 15 rounds [WLV+14], and there is a 5-
round gap. To fill the gap, we introduce a bit-based division property, and we apply it
to show that the experimental 15-round integral characteristic always works for all keys.
Though the bit-based division property finds more accurate integral characteristics, it
requires much time and memory complexity. As a result, we cannot apply it to symmetric-
key cryptosystem whose block length is over 32. Therefore, we alternatively propose a
method for designers. The method works for ciphers with large block length, and it shows
“provable security” against integral cryptanalyses using the division property. We apply
this technique to the Simon family and show that Simon48, 64, 96, and 128 probably do
not have 17-, 20-, 25-, and 29-round integral characteristics, respectively.

• Chapter 9 apply the bit-based division property to PRESENT [BKL+07]. We first show
the application of the bit-based division property to an S-box. The similar observation,
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which is called the parity set, was introduced by Boura and Canteaut [BC16], and they
show the relationship between the parity set and the division property. We first show the
relationship between the parity set and the bit-based division property, and the parity set
helps us to get the propagation characteristic of the bit-based division property for an S-
box. We next propose the compact representation for the bit-based division property. The
disadvantage of the bit-based division property is that it cannot be applied to block ciphers
whose block length is over 32 because of high time and memory complexity. The compact
representation partially solves this problem, and we apply this technique to 64-bit block
cipher PRESENT to illustrate our method. We can accurately evaluate the propagation
of the bit-based division property thanks to the compact representation. As a result, we
find 9-round integral characteristics, and the characteristic is improved by two rounds than
previous best characteristic. Moreover, we attack 12-round PRESENT-80 and 13-round
PRESENT-128 by using these new characteristic.
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Chapter 2

Symmetric-Key Cryptosystems
and Integral Cryptanalysis

2.1 Block Ciphers

The security of block ciphers is discussed in this doctor thesis, and we first show the definition
and security requirement. Then we show attack assumptions which is well used to analyze block
ciphers. We finally show how block ciphers are designed. The understanding of the structure of
block ciphers is necessary to understand the concept of the integral cryptanalysis.

2.1.1 Definition

secret key

n n
plaintext ciphertext

secret key

n n
ciphertext plaintext

Figure 2.1: Block Cipher of n-bit block length and κ-bit secret key

The input and output lengths of a block cipher are fixed, and we call a block cipher with n-bit
input and output an n-bit block cipher. The block cipher accepts a κ-bit secret key. Therefore,
the block cipher is keyed permutation such that a mapping E : Fκ

2 × Fn
2 → Fn

2 . This mapping
is bijective under the condition the secret key is fixed, and the decryption is also defined as a
mapping E−1 : Fκ

2 × Fn
2 → Fn

2 . Figure 2.1 shows an n-bit block cipher with κ-bit secret key.

2.1.2 Security Requirement

The ideal block cipher should be modeled as (strong) pseudo-random permutation. The block
cipher is an underlying primitive, and some cryptographic functionalities, e.g, modes of op-
eration, hash functions, and authenticated encryptions, are realized by using the block cipher.
Then, we can discuss the reduction security of the cryptographic function, i.e., we can prove that
the application is always secure as long as the underlying block ciphers behaves like (strong)
pseudo-random permutation.

Definition 2.1 (Pseudo-random permutation). Let E : Fκ
2 × Fn

2 → Fn
2 be an efficient keyed

permutation. We say that E is a pseudo-random permutation if

• For any k ∈ Fκ
2 , E is a bijective from Fn

2 to Fn
2 .

• For any k ∈ Fκ
2 , there is an efficient algorithm to evaluate E.

• For any polynomial-time algorithm A, we have
⏐⏐⏐Pr[AE(k,·)]− Pr[Af(·)]

⏐⏐⏐ < negl(n),

18



where k ∈ Fκ
2 is chosen uniformly at random and f is chosen uniformly at random from

the set of permutation on n-bit strings.

Definition 2.2 (Strong pseudo-random permutation). Let E : Fκ
2 × Fn

2 → Fn
2 be an efficient

keyed permutation. We say that E is a pseudo-random permutation if

• For any k ∈ Fκ
2 , E is a bijective from Fn

2 to Fn
2 .

• For any k ∈ Fκ
2 , there is an efficient algorithm to evaluate E and E−1.

• For any polynomial-time algorithm A, we have

⏐⏐⏐Pr[AE(k,·),E−1(k,·)]− Pr[Af(·),f−1(·)]
⏐⏐⏐ < negl(n),

where k ∈ Fκ
2 is chosen uniformly at random and f is chosen uniformly at random from

the set of permutation on n-bit strings.

From the definition of the block cipher, the permutation is chosen from at most 2κ permu-
tations. On the other hand, when f is chosen uniformly at random from the set of permutation
on n-bit strings, the permutation is chosen from (2n)! permutations.

2.1.3 Goal of Attacks

The motivation of cryptanalyses is to reveal whether or not target block ciphers fulfill the security
requirements. Generally, goals of attacks on block ciphers are summarized as follows.

Distinguishing Attacks The goal of attackers is to distinguish the target block cipher from
an ideal cipher, i.e. strong pseudo-random permutation. The distinguishing attack does
not recover the secret information, but it clearly violates security requirements of the block
cipher as a (strong) pseudo-random permutation.

Key Recovery Attacks The goal of attackers is to recover the secret key. Once the secret key
is recovered, any ciphertext is easily decrypted by attackers.

Message Recovery Attacks The goal of attackers is to recover plaintexts. Therefore, message
recovery attack can be also possible if the key recovery attack is possible. If attackers can
recover plaintext without recovering the secret key, such attacks are the message recovery
attack not key recovery attack.

The secret key is chosen from a finite set. Therefore, if attackers try out all possible secret keys,
they can recover the correct key. This is called a brute force attack. The brute force attack is not
regarded as a flaw of the design because it is theoretically impossible to avoid. Therefore, the
block cipher is regarded as secure if there is no an efficient attack than the brute force attack,
and cryptographers have following consensus about successful attack.

Definition 2.3 (Successful attack). If the time complexity of an attack is less than that of the
brute force attack, such an attack is regarded as a successful attack.

If there is an attack to recover the secret key or distinguish the block cipher from a random
permutation, such attack is called a shortcut attack. For block ciphers, allowing shortcut attacks
is regarded as a significant vulnerability. Therefore, the goal of cryptanalyses is finding a shortcut
attack.

2.1.4 Attack Assumption

Several attack assumptions are used to analyze block ciphers. We summarize four common
attack assumptions as follows.

Ciphertext-only attacks An attacker is allowed to obtain only ciphertexts.

Known-plaintext attacks An attacker is allowed to know pairs of plaintext and the corre-
sponding ciphertext.
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secret key

n n
plaintext ciphertext

Figure 2.2: Structure of a block cipher

Chosen-plaintext attacks An attacker is allowed to choose plaintexts to be encrypted and
know the corresponding ciphertexts.

Chosen-ciphertext attacks An attacker is allowed to choose ciphertexts to be decrypted and
know the corresponding plaintexts.

From above definitions, a pseudo-random permutation is secure against chosen plaintext attacks,
and a strong pseudo-random permutation is secure even if chosen ciphertext attacks. We can-
not execute ciphertext-only attack against modern block ciphers without some information of
plaintexts. Therefore, many well-known cryptanalytic techniques use known and chosen plain-
text (ciphertext) attacks, e.g., the differential and integral cryptanalyses are a chosen plaintext
attack and the linear cryptanalysis is a known plaintext attack.

2.1.5 Structure of Block Ciphers

Block ciphers are generally designed using iterating structure. First, a round function, which
is high efficient but weak (keyed) function, are designed, and a block cipher is constructed
by iterating the round function several times with different round keys. Here, round keys are
generated from the secret key using a key schedule. When the round function is iterated R
times, we call it an R-round block cipher. Figure 2.2 shows the structure of the block cipher.

2.2 Integral Cryptanalysis

An integral cryptanalysis is one of the most powerful cryptanalytic techniques, and the concept
was introduced by Knudsen and Wagner at FSE2002 [KW02]. However, similar techniques have
been applied before the proposal of the integral cryptanalysis. In this section, we summarize the
integral cryptanalysis and related works.

2.2.1 Higher-Order Differential Cryptanalysis

The concept of the higher-order differential cryptanalysis was first introduced by Lai [Lai94] and
the advantage over the traditional differential cryptanalysis was studied by Knudsen [Knu94]. Let
E(k, ·) = Ek(·) be an n-bit block cipher, and the traditional differential cryptanalysis focuses on

∆αEk(x) = Ek(x+ α)− Ek(x)

and recovers the secret key by analyzing the relationship between α and ∆αEk(x). On the other
hand, the higher-order differential cryptanalysis focuses on ith order differential as

∆(i)
α1,α2,...,αi

Ek(x) = ∆αi
(∆(i−1)

α1,α2,...,αi−1
Ek(x))

and recovers the secret key by analyzing the relationship between (α1, α2, . . . , αi) and ∆
(i)
α1,α2,...,αiEk(x).

For example, the 2nd order differential denotes as

∆(2)
α1,α2

Ek(x) = ∆α2
(Ek(x+ α1)− Ek(x))

= Ek(x+ α1 + α2)− Ek(x+ α2)− Ek(x+ α1) + Ek(x).
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Figure 2.3: Outline of the integral cryptanalysis

Let deg(Ek) be the algebraic degree of Ek, and Lai showed the following relationship.

deg(∆αEk) ≥ deg(Ek)− 1.

Therefore, assuming the algebraic degree of Ek is at most d, the dth and (d + 1)th order dif-
ferentials are constant and zero, respectively. It is obvious that the algebraic degree has to be
at least min(n − 1, κ − 1) if block ciphers accept κ-bit secret keys. Then, Knudsen showed the
advantage over the conventional differential cryptanalysis by using the toy ciphers [Knu94].

2.2.2 Integral Cryptanalysis

The similar technique to the higher-order differential cryptanalysis was used as the dedicated
attack against the block cipher Square [DKR97]. Since this dedicated attack is powerful
cryptanalysis, it is widely applied to various block ciphers, where it was referred to the square
attack [Dem02, HQ01, YPK02]. Then, some extensions of the square attack were proposed like
the multiset [BS01], saturation [Luc01], and internal collision cryptanalyses [GM00]. In 2002,
Knudsen and Wagner formalized the square attack as the integral cryptanalysis. Figure 2.3
shows the outline of the integral cryptanalysis. Attackers first prepare N chosen plaintexts. If
the XOR of all corresponding ciphertexts is 0 for all keys, we say that the cipher has an integral
characteristic with N chosen plaintexts. Namely, we prepare the plaintext set X satisfying

∑

p∈X
T (Erk(p)) = 0 (2.1)

for all round key rk, where the function T is an observing function and often used the simple
truncation from n bits to m (≤ n) bits. The probability that Eq. (2.1) holds for ideal ciphers is
2−m. Therefore, we can execute a distinguishing attack by constructing the integral character-
istic.

The integral cryptanalysis additionally appends a key recovery step to the integral charac-
teristic. Assuming that block ciphers has an r-round integral characteristics, attackers guess
round keys used in the last s rounds and attack (r+s) rounds. If a guessed round key is correct,
Eq. (2.1) always holds. Therefore, if Eq. (2.1) does not hold, the guessed round key is incorrect.
By repeating this procedure, attackers recover the correct round keys used in the last s rounds.

2.2.3 What is different between Integral and Higher-Order Differential
Cryptanalyses?

The definition of the higher-order differential cryptanalysis is different from that of the integral
cryptanalysis. However, they are often regarded as the same cryptanalysis. We discuss why they
are regarded as the same cryptanalysis in this section.

To achieve high performance under computer, almost all operations of block ciphers are
defined using bit operations like XOR and bit-oriented AND. Then, both the addition of the
integral cryptanalysis and the difference of the higher-order differential cryptanalysis become
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XOR. For example, the 2nd order differential is represented as

∆(2)
α1,α2

Ek(x) = Ek(x⊕ α1 ⊕ α2)⊕ Ek(x⊕ α1)⊕ Ek(x⊕ α2)⊕ Ek(x)

=
⨁

p∈V [α1,α2]

Ek(p),

where V [α1, α2] is linear subspace whose basis is (α1, α2). Therefore, the 2nd order differential
is the same as the integral characteristic with X = V [α1, α2].

The higher-order differential cryptanalysis uses only a linear subspace as the input set, but
the integral cryptanalysis can use arbitrary input set. However, since inputs and outputs of all
components of block ciphers are represented as bit strings, almost all previous integral crypt-
analyses have never used input sets that are not linear subspace. Therefore, there is no difference
between the higher-order and integral characteristics once both cryptanalyses are applied to real
ciphers.

2.2.4 How to Find Integral Characteristics

In the practical use, the distinction between the higher-order and integral cryptanalyses is not
important. It is rather more important to understand how to find their characteristics. The
higher-order differential cryptanalysis focuses on the algebraic degree to construct the charac-
teristics, while the integral cryptanalysis evaluates the propagation of the integral property to
construct the characteristic. Nowadays, an analysis that mainly exploits the algebraic degree is
called the “higher-order differential cryptanalysis.” On the other hand, an analysis that mainly
exploits the integral property is called the “integral cryptanalysis.”

Degree Estimation. The higher-order differential characteristic is constructed by evaluating
the upper bound of the algebraic degree, but it is not easy in general. The most classical
method uses the fact that the algebraic degree of an r-round block cipher is upper-bounded by
dr if the algebraic degree of each round function is at most d. However, this method is too rough
evaluation, and the upper bound is generally more small. Canteaut and Videau showed tighter
bound of the degree of iterated round functions [CV02], and Boura et al. then improved the
bound in [BCC11]. This improved bound is useful to evaluate the upper bound on Substitution-
Permutation network (SPN).

Theorem 2.1 ([BCC11]). Let S be a function from Fn
2 into Fn

2 corresponding to the concatena-
tion of m smaller S-boxes, defined over Fn0

2 . Let δk be the maximal degree of the product of any
k bits of anyone of these S-boxes. Then, for any function G from Fn

2 into F2, we have

deg(G ◦ S) ≤ n− n− deg(G)

γ
,

where

γ = max
1≤i≤n0−1

n0 − i
n0 − δi

.

For example, let us consider SPN ciphers using four 4-bit bijective S-boxes. Since the alge-
braic degree of 4-bit bijective S-boxes is at most 3, the algebraic degree of the 2-round cipher is
at most 32 = 9. When we use the classical method, the algebraic degree of the 3-round cipher is
at most min(15, 33 = 27) = 15 but it is not tight. On the other hand, Theorem2.1 shows that
the algebraic degree is at most ⌊16− 16−9

3 ⌋ = 13. Boura et al. showed integral distinguishers on
Keccak [DBPA11] and Luffa [CSW08] by using this theorem. We cannot apply Theorem2.1
to non-SPN ciphers, and real block ciphers have more complicated round function. Therefore,
this method is still far from the tight lower bound.

A brute-force method, i.e., all algebraic equations are resolved, is often used because the
theoretical estimation of the algebraic degree is difficult [THK99]. The accurate algebraic degree
is evaluated by using this method, but it generally requires practically infeasible time complexity.
Therefore, the application is very limited.
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Figure 2.4: Integral distinguisher on 4-round AES

Integral property. The propagation of the integral property is most widely applied to con-
struct integral characteristics, and many integral characteristics have been constructed by eval-
uating the propagation of the integral property [KW02, LWZ11, WZ11, YPK02, ZRHD08]. It
uses four integral properties as follows:

• ALL (A) : Every value appears the same number in the multiset.

• BALANCE (B) : The XOR of all texts in the multiset is 0.

• CONSTANT (C) : The value is fixed to a constant for all texts in the multiset.

• UNKNOWN (U) : The multiset is indistinguishable from one of n-bit random values.

Knudsen and Wagner showed that AES has the 4-round integral distinguisher with 232 chosen
plaintexts [KW02] (see Fig. 2.4).

Unfortunately, the integral property does not find effective characteristics if block ciphers
consist of non-bijective functions like DES [Nat77] and Simon [BSS+13]. Moreover, since the
propagation does not clearly exploit the algebraic degree of block ciphers, it tends not to con-
struct effective characteristics on block ciphers with low-degree round functions.
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Chapter 3

Generic Attack using
Integral-Like Technique

Abstract– In this chapter, we deal with the security of some Feistel networks. Such a topic has
been discussed since the introduction of a Luby-Rackoff construction, which constructs a pseudo-
random permutation from pseudo-random functions. However, the construction is unrealistic
because its round functions must be chosen at random from the set of all functions. Knudsen
dealt with the security of a more practical construction whose round functions are chosen at
random from a family of 2κ randomly chosen functions and showed an upper bound for the
security by demonstrating generic key recovery attacks. However it is still difficult for designers
to choose functions randomly. Then, this chapter focuses on the security of some Feistel networks
which have more efficient and practical round functions, and such Feistel networks are indeed
used by some Feistel ciphers in practice. We show new properties using the relationship between
plaintexts and ciphertexts. We propose new generic key recovery attacks by using our properties,
and confirm the feasibility by implementing the attack on Feistel ciphers with small block sizes.
As a result, we conclude that efficient and practical 6-round Feistel networks are not secure.
Keywords– Block ciphers, Feistel networks, Round functions, Key recovery attacks

3.1 Introduction

We can construct n-bit pseudo-random permutations from (n/2)-bit pseudo-random functions by
using Feistel networks. Luby and Rackoff [LR88] proved that 3- and 4-round Feistel networks are
sufficient to make a pseudo-random permutation and a super pseudo-random permutation, re-
spectively, if round functions are pseudo-random functions. Since then, many results for pseudo-
randomness on Feistel networks have been proposed [Pat92, Luc96, Pat03, Pat10, LP12]. Luby
and Rackoff also showed that the 3-round Feistel network can be distinguished from random
permutations by using the adaptive chosen plaintext and ciphertext attack. Since then, many
generic attacks on Feistel networks have been proposed [Knu02, Pat04, KR07, SY11]. In this
chapter, we discuss the number of rounds that Feistel networks can be attacked by a generic
attack. For instance, Patarin showed the distinguishing attack on the 5-round Feistel network
whose round functions are pseudo-random functions [Pat04]. The attack is the chosen plaintext
attack (CPA) with O(23n/4) texts. Moreover, Knudsen showed the distinguishing attack on the
5-round Feistel network whose round functions are pseudo-random permutation [Knu02]. The
attack is CPA with O(2n/2) texts.

3.1.1 Already Evaluated Constructions

Luby-Rackoff construction has round functions which are chosen at random from a family of

2(n/2)2
n/2

functions (see the left of Fig. 3.1). This means that the key size for the r-round Feistel
cipher is (r × (n/2)2n/2) bits, and it is unrealistic in practice. Then, Knudsen introduced more
practical Feistel networks whose round functions are chosen at random from a family of 2κ

randomly chosen functions. We call this network the FKi-Feistel (see the right of Fig. 3.1). In
the FKi-Feistel, attackers can search for the correct round function by an exhaustive search over
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Figure 3.1: Luby-Rackoff construction and Knudsen’s construction

all 2κ possible round functions. Moreover, Knudsen proposed the key recovery attack on 5- and
6-round FKi-Feistel by using CPA. Time complexity of the attack on the 5-round FKi-Feistel is

2κ+
n+6
4 . Time complexity of the attack on the 6-round FKi-Feistel is 2

κ+n
2 +1, but this attack is

as expensive as the brute force attack when the round key size is the same as the input size of
round functions (i.e., κ = n/2 bits) and the master key size is the same as the block length (i.e.,
n bits).

3.1.2 Constructions that We Evaluate

Figure 3.2: Constructions that we evaluate in this chapter

We revisit the Knudsen’s result. In order to implement the FKi
-Feistel, designers must design

ideal compression functions which have (κ + n/2)-bit input and (n/2)-bit output. However, it
is difficult to design such ideal compression functions. Therefore, many block ciphers use more
simple construction, e.g., round functions in Feistel networks consist of a key insertion and public
permutation rather than a compression function. We split the round function into the key insert
operation ∗ and nonlinear bijective function F . The operation ∗ is a function to mix an input
with a round key by a simple operation, e.g., an exclusive OR (⊕) or a modular addition (⊞).
The function F is a public permutation.

We have many methods to construct the function F , and we evaluate two constructions in
this chapter. First, we introduce the KiF -Feistel as the efficient construction (see the right of
Fig. 3.2). In this construction, a common nonlinear bijective function F is used for all rounds.
For instance, Camellia [AIK+00], SEED [Kor05] and GOST cipher [Nat89] have this construction.
Next, we introduce the KiFPi-Feistel (see the left of Fig. 3.2). In this construction, a common
permutation F and r linear functions Pi are used, and the composition function (Pi ◦F ) is used
as the ith round function. This construction is called the diffusion switching mechanism [SS06],
which is an effective method to design practical and secure Feistel ciphers.

3.1.3 Our Contributions

We summarize existing and our results in Table 3.1, where the target is defined by the key insert
operation and nonlinear bijective function. For instance, ⊕KiF denotes the KiF -Feistel with
the XOR key insertion. From Table 3.1, we can conclude that 6-round KiF - and KiFPi-Feistel
with the XOR key insertion are not secure.

In this chapter, we first discuss the security of the 5-round KiF -Feistel. We show that
there exists the non-ideal relationship between plaintexts and corresponding ciphertexts if and
only if corresponding internal states satisfy our property. Therefore we can distinguish whether
texts have our property by observing the relationship between plaintexts and ciphertexts. We
propose new key recovery attacks by using this distinguisher, and this attack is regarded as
the meet-in-the-middle-attack using differences. The time complexity is O(2n/2) and the attack
model is the known plaintext attack (KPA) rather than CPA. We next discuss the security of
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Table 3.1: Summary of attacks on several Feistel networks whose round key size is n/2 bits

Target Rounds Time Number of texts Reference

FKi
5 23n/4+3/2

√
n2n/4 CPA [Knu02]

⊕KiF 5 2n/2+3 2n/2+2 KPA Ours

⊕KiFPi 5 t2n/2 t2n/2 KPA Ours

⊞KiF 5 2n/2+3 2n/2+2 KPA Ours

FKi 6 2n+1 n
2 2

n/2 CPA [Knu02]

⊕KiF 6 n
2 2

n/2 n
2 2

n/2 CPA Ours

⊕KiFPi 6 27n/8+1 27n/8 CPA Ours

Let t in the result of ⊕KiFPi be a function of n. See Sect. 3.5.1 in detail.

the 6-round KiF -Feistel. However, we cannot distinguish by using plaintexts and corresponding
ciphertexts whether texts have our property. Then we propose a new property which exploits
that the key insert operation is XOR. By using the additional property, we can construct non-
ideal relationship between plaintexts and ciphertexts. As a result, we can attack the 6-round
KiF -Feistel, and the time complexity is O(n2 2

n/2).
We discuss the security of the 5-round KiFPi-Feistel. We cannot use the property which

is used to attack the 5-round KiF -Feistel because different round functions are used in every
round. However if the key insert operation is XOR, we can get non-ideal relationship between
plaintexts and ciphertexts. By using this non-ideal relationship, we propose a new key recovery
attack on the 5-round KiFPi-Feistel. The time complexity is O(2n/2) and the attack model is
KPA rather than CPA. We next discuss the security of the 6-round KiFPi-Feistel. We decrypt
one round by exhaustive search over all 2n/2 round keys, and we use the property which is used
to attack the 5-round KiFPi-Feistel. Unfortunately, we need about 2n complexity to execute
this attack. Therefore, we first carefully pick texts which are used in our attack. Next, we guess
the round key against only picked texts. We can attack the 6-round KiFPi-Feistel by using this
method, and the time complexity is O(27n/8). We confirm the feasibility by implementing the
attack against Feistel ciphers with small block sizes.

This chapter is organized as follows. Section 3.2 gives notations, Feistel networks evaluated
in this chapter, and the Knudsen’s attack. Section 3.3 gives new properties for the KiF -Feistel
and the KiFPi-Feistel. Section 3.4 gives key recovery attacks for the KiF -Feistel, and Sect. 3.5
gives key recovery attacks for the KiFPi-Feistel. We conclude this chapter in Sect. 3.6.

3.2 Preliminary

3.2.1 Notations

Let n be the block length for a Feistel network. Let p and c be plaintexts and ciphertexts,
respectively. Let ki be a round key of the ith round function. For a value x, xL denotes the left
half of x and xR denotes the right half of x. In the r-round Feistel network, the ciphertext is
calculated as follows:

c = Ek(p) = Swap ◦Ψkr ◦ · · · ◦Ψk1(pL, pR),

where Swap(xL, xR) = (xR, xL) holds. Moreover, Ψki is defined as follows:

(Li+1, Ri+1) = Ψki
(Li, Ri) = (yi ⊕Ri, Li)

= (ψki
(Li)⊕Ri, Li),

where Li and Ri denote the left half and the right half of the ith round input, respectively. Let
ψki

be the round function of the ith round. Moreover, let yi be an output of the ith round
function.
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3.2.2 Feistel Networks

We define some Feistel networks discussed in this chapter. We first show the Luby-Rackoff
construction. In the construction, ψki

must be chosen at random from the set of all functions in
every round. Unfortunately, it is unrealistic because the key size is enormous.

For more practical construction than the Luby-Rackoff construction, Knudsen defined the
ideal round function as follows:

Definition 3.1 (Knudsen’s ideal round function). Let Fk be an (n/2)-bit function or permutation
chosen from a family of 2κ function. Then Fk is called ideal if exhaustively search at least 2κ

possible functions is necessary to find the correct function.

We call this construction FKi-Feistel. The size of secret information of the r-round FKi-
Feistel is only (r × κ) bits. However, to achieve the FKi

-Feistel, designers must design ideal
compression functions which have (κ + n/2)-bit input and (n/2)-bit output, and it is not easy
to design such functions. Therefore, many block ciphers use more simple construction, e.g.,
round functions in Feistel networks consist of key insertions and public permutations rather
than compression functions.

We introduce a construction called KiF -Feistel. In the KiF -Feistel, we split a round function
into the key insert operation ∗ and nonlinear bijective function F , where the operation ∗ is a
function to mix an input with a round key by a simple operation, e.g., an XOR (⊕) or a
modular addition (⊞). The KiF -Feistel is used widely to design Feistel ciphers. As an existing
result for the security of the KiF -Feistel, Knudsen and Rijmen showed the 7-round known-key
distinguisher [KR07]. As another important result for the security of the KiF -Feistel, Isobe
and Shibutani showed generic key recovery attacks [IS13] by using the all subkeys recovery
attack [IS12]. Let n and κ be the block length and the key length, respectively. Then, Isobe et
al. showed that 5-, 7- and 9-round KiF -Feistel ciphers with κ = n, κ = 3n/2, and κ = 2n can
be attacked, respectively1.

Shirai et al. proposed the diffusion switching mechanism [SS06], which is efficient to design
practical and secure Feistel ciphers. In this technique, a linear permutation P is added after a
function F , and different linear functions are used in every round. Shirai et al. showed that
this technique improves the security against differential and linear cryptanalyses. We call this
network KiFPi-Feistel.

3.2.3 Knudsen’s attack

We show the outline of the Knudsen’s attack. The target is the FKi
-Feistel whose round functions

consist of permutations, but this attack is also valid against both theKiF -Feistel and theKiFPi-
Feistel. For the detailed procedure and evaluation, see the original paper [Knu02].

We show the outline of the Knudsen’s attack on the 5-round FKi-Feistel (see the left of
Fig. 3.3). The probability that input differences (0, α) derives output differences (·, α) is 0 for
the 4-round FKi

-Feistel, where α ̸= 0 and · is any differences. On the other hand, the probability
satisfying (0, α) → (·, α) is 2−n/2 for random permutations. Knudsen showed that the correct
key can be recovered by using (

√
κ × 2n/4+1/2) chosen plaintexts. The time complexity is at

most 2n/4+1/2(2κ + 2κ−1 + · · ·+ 2 + 1) ≈ 2κ+
n/2+3

2 .
We show the outline of the Knudsen’s attack on the 6-round FKi

-Feistel (see the right of
Fig. 3.3). The probability that input differences (0, α) derives output differences (α, 0) is 0 for the
5-round FKi-Feistel, where α ̸= 0. On the other hand, the probability satisfying (0, α)→ (α, 0)
is 2−n for random permutations. Knudsen showed that the correct key can be recovered by using
(κ × 2n/2) chosen plaintexts. The time complexity is at most 2n/2(2κ + 2κ−1 + · · · + 2 + 1) ≈
2κ+1+n/2. For many Feistel ciphers, the total secret key size is the same as the block length (i.e.,
n bits). Moreover the round key size is the same as the input size of the round function (i.e.,
n/2 bits). Unfortunately, Knudsen’s attack is not efficient for such Feistel ciphers, because the
time complexity is 2κ+1+n/2 = 2n+1, and it is almost the same as the complexity of the brute
force attack.

1 Notice that KiF -Feistel and KiFPi-Feistel are different from Feistel-2 in [IS13], because Feistel-2 can use
completely different functions in every round. However, Feistel-2 includes KiF -Feistel and KiFPi-Feistel.
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Figure 3.3: Knudsen’s key recovery attacks

3.3 New Properties for the KiF - and KiFPi-Feistel

We first propose several properties for 5-round Feistel networks. By exploiting our new prop-
erties, we show key recovery attacks on the KiF -Feistel and the KiFPi-Feistel in Section 3.4
and Section 3.5, respectively. Figure 3.4 shows the 5-round Feistel network. When F1, F2, . . . , F5

are the same function for all i, it is the KiF -Feistel. When Fi is expressed in Pi ◦ F , it is the
KiFPi-Feistel. Let A and B be the input of F2 and F4, respectively. In our properties, we pay
attention to texts satisfying A = B.

Property 3.1. In 5-round KiF -Feistel, cL = pL iff A = B.

Property 3.2. In 5-round KiFPi-Feistel, cL = P4(P
−1
2 (pL ⊕ L3))⊕ L3 iff A = B.

Proof of Property 3.1 and 3.2 . For the 5-round Feistel network, cL is calculated from pL as
follows:

cL = pL ⊕ F2(A)⊕ F4(B).

For the 5-round KiF -Feistel, the function F2 is the same as the function F4. Then a text always
satisfies cL = pL if and only if the text satisfies A = B.

For the 5-round KiFPi-Feistel, we can get the following equation:

F (A) = P−1
2 (pL ⊕ L3), F (B) = P−1

4 (cL ⊕ L3).

A text always satisfies F (A) = F (B) if and only if the text satisfies A = B. Then a text always
satisfies the following equation:

P−1
2 (pL ⊕ L3) = P−1

4 (cL ⊕ L3),

if and only if the text satisfies A = B. Then a text always satisfies cL = P4(P
−1
2 (pL⊕L3))⊕L3

if and only if the text satisfies A = B.

Both Property 3.1 and 3.2 do not depend on the key insert operation ∗. On the other hand,
the following property depends the key insert operation.
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Figure 3.4: New properties for the 5-round Feistel network

Table 3.2: Summary of satisfied properties

Target Property 3.1 Property 3.2 Property 3.3

⊕KiF ✓ - ✓

⊞KiF ✓ - -

⊕KiFPi - ✓ ✓

⊞KiFPi - ✓ -

Property 3.3. In 5-round Feistel network which uses XOR as the key insert operation, L3 =
k3 ⊕ F−1

3 (k2 ⊕ k4) iff A = B. In other words, L3 has the fixed value if the text satisfies A = B.

Proof of Property 3.3. For the 5-round Feistel network, L3 is calculated from k3⊕F−1
3 (L2⊕L4),

where L2 = A⊕ k2 and L4 = B ⊕ k4. Then L3 is calculated as follows:

L3 = k3 ⊕ F−1
3 (A⊕B ⊕ k2 ⊕ k4).

Then a text always satisfies L3 = k3⊕F−1
3 (k2⊕k4) if and only if the text satisfies A = B. Since

k2, k3 and k4 are constant values, L3 has the fixed value if the text satisfies A = B.

Property 3.3 is satisfied for both the KiF -Feistel and KiFPi-Feistel. We summarize each
property in Table 3.2, where “✓” means that the property holds under the corresponding target.
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3.4 New Key Recovery Attack on KiF -Feistel

3.4.1 New Key Recovery Attack for 5-round KiF -Feistel

We propose a new key recovery attack for the 5-round KiF -Feistel by using Property 3.1. This
attack is more efficient than the Knudsen’s attack, and it is KPA rather than CPA.

Overview. We use only texts satisfying pL = cL, and we can get such a text by observing
2n/2 known plaintexts and corresponding ciphertexts. These texts always satisfy A = B from
Property 3.1. A is calculated by guessing k1 and k2, and B is calculated by guessing k4 and
k5. If A ̸= B is satisfied, guessing keys are wrong. Moreover we can curtail the guessing of
round keys k2 and k4 by calculating differences. We calculate A and A′ from two different
texts, and calculate ∆A from the difference between A and A′. Similarly, we calculate B and
B′ from two corresponding texts, and calculate ∆B from the difference between B and B′.
Since it satisfies A = B and A′ = B′, ∆A = ∆B holds. Moreover ∆A and ∆B do not depend
on k2 and k4, respectively. As a result, it satisfies ∆A = ∆L2 and ∆B = ∆L4. Now ∆L2 is
computed from plaintexts by an exhaustive search over all 2n/2 possible round keys k1. Similarly
∆L4 is computed from ciphertexts by an exhaustive search over all 2n/2 possible round keys k5.
Consequently, we can execute the meet-in-the-middle-attack using two differences ∆L2 and ∆L4.

Procedure and Evaluation. The key recovery attack goes as follows.

1. We analyze about 2n/2 known plaintexts and pick a text satisfying pL = cL. We express
this text as (p, c). By an exhaustive search over all 2n/2 possible round keys k1, we calculate
and store X[k1] = pR⊕F (pL∗k1). In parallel, by an exhaustive search over all 2n/2 possible
round keys k5, we calculate and store Y [k5] = cR ⊕ F (cL ∗ k5).

2. We pick another text satisfying pL = cL, and we express this text as (p′, c′). Like the
first step, we calculate X ′[k1] and Y ′[k5], respectively. Moreover we calculate ∆X[k1] and
∆Y [k5], respectively. We pick (k1, k5) satisfying ∆X[k1] = ∆Y [k5] as key candidates.

3. By executing the second step several times, we recover the correct key k1 and k5.

For each key guess, the probability satisfying ∆X[k1] = ∆Y [k5] is 2
−n/2, then about 2n×2−n/2 =

2n/2 keys will be left for each execution of the second step. By executing the second step 3 times,
we can discard all wrong keys because the probability that wrong keys are left as candidates is
2n × (2−n/2)3 = 2−n/2, and it is negligible. Each time complexity to calculate X[k1] and Y [k5]
from one text satisfying pL = cL is 2n/2. We analyze 1 text and 3 texts for the first step and
the second step, respectively. Therefore the time complexity is (1 + 3)× 2× 2n/2 = 2n/2+3, and
our attack uses (1 + 3)× 2n/2 = 2n/2+2 known plaintexts.

Experimental Results. For feasibility evaluation of our attack, we execute experiments for
our attacks on the KiF -Feistel with small block sizes. We evaluate by the average of 1,000
samples in every block length. We choose functions F and round keys randomly in all samples.

We show experimental results for the key recovery attack on the 5-round KiF -Feistel. We
use XOR for the key insert operation. When we use XOR for the key insert operation, this
attack can recover two key candidates; one is the correct key (k1, k5), and the other is its reverse
(k5, k1). The reason is as follows. If correct k1 and k5 are guessed, it always satisfies

(pR⊕F (pL ⊕ k1)⊕ k2)⊕ (p′R ⊕ F (p′L ⊕ k1)⊕ k2)
= (cR ⊕ F (cL ⊕ k5)⊕ k4)⊕ (c′R ⊕ F (c′L ⊕ k5)⊕ k4).

Then, we can recover the correct key by executing the meet-in-the-middle-attack. However, since
both pL = cL and p′L = c′L hold, it also satisfies

(pR⊕F (pL ⊕ k5)⊕ k2)⊕ (p′R ⊕ F (p′L ⊕ k5)⊕ k2)
= (cR ⊕ F (cL ⊕ k1)⊕ k4)⊕ (c′R ⊕ F (c′L ⊕ k1)⊕ k4).

Then the meet-in-the-middle-attack always find the reverse (k5, k1). On the other hand, when
we use a modular addition for the key insert operation, this attack can recover (k1, k5) correctly.
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We evaluate the number of known plaintexts in our experiments. When the block length is
32 bits, we can get 4 texts satisfying pL = cL by observing 4.0098× 216 known plaintexts. This
is almost the same as theoretical value. Moreover, we can recover the correct key from 4 texts
in our experiments.

3.4.2 New Key Recovery Attack for 6-round KiF -Feistel

n/2 

R2 

Permutation 

5 round Feistel 

F 

Figure 3.5: Key recovery attack on the 6-round KiF -Feistel

We propose a new key recovery attack for the 6-roundKiF -Feistel (see Fig. 3.5). It is not clear
how to attack 6-round KiF -Feistel by exploiting only Property 3.1, and thus we additionally use
Property 3.3. Therefore the target cipher of our new attack is limited to the 6-round KiF -Feistel
whose key insert operation is XOR.

Overview. For the 5-round KiF -Feistel, we can exactly pick texts satisfying A = B by ob-
serving pL = cL. However, we cannot pick those texts efficiently for the 6-round KiF -Feistel,
because we cannot know the value of R6 which is cL for the 5-round KiF -Feistel. When the key
insert operation is XOR, we can exploit Property 3.3. First, we introduce the following lemma
derived from Property 3.3.

Lemma 3.1. For 2n/2 chosen plaintexts such that pL is a constant and pR is chosen from all
values, exactly one text satisfies A = B.

Proof. We prepare 2n/2 chosen plaintexts such that pL is a constant and pR is chosen from all
values. L3 which is calculated from chosen plaintexts has all values ranging from 0 to 2n/2 − 1
exactly once. From Property 3.3, a text satisfies A = B if and only if the text satisfies L3 =
k3⊕F−1

3 (k2⊕k4). Then the number of texts satisfying A = B is exactly one in chosen texts.

From Lemma 3.1, we can introduce the following lemma.

Lemma 3.2. For 2n/2 chosen plaintexts such that pL is a constant and pR is chosen from all
values, exactly one text satisfies k6 = F−1(pL ⊕ cR)⊕ cL.
Proof. From Lemma3.1, the number of texts satisfying A = B is exactly one in chosen texts.
From Property 3.1, a text always satisfies R6 = pL if and only if the text satisfies A = B. Then,
in chosen texts, exactly one text satisfies the following equation:

pL = R6 = F (cL ⊕ k6)⊕ cR.

Then exactly one text satisfies the following equation:

k6 = F−1(pL ⊕ cR)⊕ cL.
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From Lemma3.2, we know that the correct k6 can be calculated only once from 2n/2 chosen
plaintexts. We recover the round key by exploiting this property.

Procedure and Evaluation. The key recovery attack by using Lemma3.2 goes as follows.

1. We choose 2n/2 plaintexts such that pL is a constant and pR is chosen from all values. Let
p[i] = (pL, pR[i]) be an ith plaintext for i = 1, . . . , 2n/2. We query these chosen plaintexts
and get corresponding ciphertexts.

2. We calculate v = F−1(pL⊕cR[i])⊕cL[i] (1 ≤ i ≤ 2n/2), and store the number of occurrences
in Nv. We discard v from key candidates if Nv ̸= 1 holds.

3. By repeating the first and second steps several times, we recover the correct round key k6.

The probability that Nv = 1 holds for wrong keys v ̸= k6 is e−1 because of the Poisson
distribution with parameter λ = 1. Now we want to recover the (n/2)-bit round key k6. When
we repeat the first and second steps n/2 times, the probability that a wrong key is left is
2n/2 × e−n/2 and it is negligible. Therefore attackers can recover the correct key with n

2 2
n/2

complexity and n
2 2

n/2 CPA.

Experimental Result. For feasibility evaluation of our attack, we execute experiments for
our attacks on the KiF -Feistel with small block sizes. We evaluate by the average of 1,000
samples in every block length. We choose functions F and round keys randomly in all samples.

Table 3.3: Experimental results of the attack on the 6-round KiF -Feistel
Block length Average number of texts Theoretical number of texts

20 6.505× 210 10× 210

22 7.333× 211 11× 211

24 8.059× 212 12× 212

26 8.806× 213 13× 213

28 9.635× 214 14× 214

30 10.316× 215 15× 215

32 10.972× 216 16× 216

34 11.702× 217 17× 217

36 12.473× 218 18× 218

38 13.099× 219 19× 219

40 13.839× 220 20× 220

We show experimental results for the key recovery attack on the 6-round KiF -Feistel. In
this attack, we change the block length from 20 bits to 40 bits, and measure the number of
texts to recover the correct key. We show experimental results in Table 3.3. In Table 3.3,
“average number of texts” denotes the average number of texts to recover the correct key in
our experiments, and “theoretical number of texts” denotes the theoretical number of texts to
recover the correct key. From Table 3.3, we can know that “theoretical number of texts” is
sufficient to recover the correct key.

3.5 New Key Recovery Attacks on KiFPi-Feistel

In this section, we propose new key recovery attacks for the KiFPi-Feistel by exploiting Prop-
erty 3.2. It is not clear how to attack the KiFPi-Feistel by exploiting only Property 3.2, and
thus we additionally use Property 3.3. Namely, the target cipher of our new attack is limited to
the KiFPi-Feistel whose key insert operation is XOR.

3.5.1 A new property for 5-round KiFPi-Feistel

We propose a new key recovery attack for the 5-round KiFPi-Feistel by exploiting both Prop-
erty 3.2 and 3.3. This attack is more efficient than the Knudsen’s attack, and it is KPA rather
than CPA.
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Figure 3.6: Key recovery attack on the 5-round KiFPi-Feistel

Overview. Figure 3.6 shows the 5-round KiFPi-Feistel. We pay attention to texts satisfying
A = B. These texts always satisfies cL = P4(P

−1
2 (pL⊕L3))⊕L3 because of Property 3.2. More-

over L3 which is calculated from these texts is constant because of Property 3.3. By using two
properties, we show that there is the following relationship between plaintexts and corresponding
ciphertexts.

Lemma 3.3. For the 5-round KiFPi-Feistel, the probability that the relationship between plain-
texts and corresponding ciphertexts is expressed as

cL = P4(P
−1
2 (pL))⊕ k′

is about 2−n/2+1, where k′ is a constant value which is determined by the round keys k2, k3 and
k4.

Proof. First, we consider texts satisfying A = B, and they always have the following relationship
between plaintexts and corresponding ciphertexts because of Property 3.2:

cL = P4(P
−1
2 (pL ⊕ L3))⊕ L3

= P4(P
−1
2 (pL))⊕ P4(P

−1
2 (L3))⊕ L3

= P4(P
−1
2 (pL))⊕ k′, (3.1)

where k′ is a value depending on L3. Moreover, L3 is a constant value depending on k2, k3
and k4 because of Property 3.3. Therefore, k′ is a constant value depending on k2, k3 and k4.
Now we consider the probability satisfying Eq. (3.1). The probability satisfying A = B is 2−n/2,
and Eq. (3.1) is always satisfied in this case. The probability satisfying A ̸= B is 1 − 2−n/2,
and the probability that Eq. (3.1) is satisfied by chance is 2−n/2. Then the total probability is
2−n/2 + (1− 2−n/2)× 2−n/2 ≈ 2−n/2+1.

For a random value v except k′, the probability satisfying cL = P4(P
−1
2 (pL)) ⊕ v is 2−n/2.

Now we prepare t2n/2 known plaintexts and corresponding ciphertexts. In this case, Nk′ is
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about 2t and Nv (v ̸= k′) is about t. Then we can recover the correct k′ by using t that we can
distinguish the correct k′ and the others. We think that we can recover the correct k′ by using
t = O(n). This attack can only recover k′. However we can easily recover round keys by using
k′ once k′ is recovered.

Procedure and Evaluation. The key recovery attack by using Lemma3.3 goes as follows.

1. We prepare t2n/2 known plaintexts and corresponding ciphertexts.

2. We calculate v = cL⊕P4(P
−1
2 (pL)) and store the number of occurrences in Nv. We return

v that Nv is the maximum number.

The time complexity of this attack is t2n/2.

Experimental Results. For feasibility evaluation of our attack, we execute experiments for
our attacks on the KiFPi-Feistel with small block sizes. We evaluate by the average of 1,000
samples in every block length. We choose functions F and round keys randomly in all samples.

We show experimental results for the key recovery attack on the 5-round KiFPi-Feistel.
When the correct k′ is calculated most (i.e., Nk′ is the maximum number), we define it as “the
success.” The time complexity is t2n/2 by using KPA with t2n/2. For parameter t, we use two
parameters t = n and t = 2n. When the block length is 32 bits, the success probability of this
attack is 74.4% for t = n. Moreover the success probability of this attack is 99.5% for t = 2n.

3.5.2 New key recovery attack on 6-round KiFPi-Feistel

P4(P2
1(pL))

Figure 3.7: The relationship between plaintext and ciphertext of the 6-round KiFPi-Feistel

Overview. For the 5-round KiFPi-Feistel, there is small bias depending on k′ between pL and
cL. Then we can recover k′ from pL and cL. However, we cannot attack the 6-round KiFPi-
Feistel using this method because we cannot know the value of R6 which is cL for the 5-round
KiFPi-Feistel. Then we first assume that texts satisfy A = B, and calculate R6 as follows:

R6 = P4(P
−1
2 (pL))⊕ k′.

The relationship between plaintexts and corresponding ciphertexts is expressed as follows:

P6(F (cL ⊕ k6)) = cR ⊕R6

= cR ⊕ P4(P
−1
2 (pL))⊕ k′, (3.2)

where k6 is the round key for the 6-round. Figure 3.7 shows the circuit of the Eq. (3.2). Then if
we exhaustively search for over all 2n/2 possible round keys k6, we can recover k′ from Eq. (3.2).
However, this attack is not effective. The reason is that the probability satisfying the Eq. (3.2)
is at most probability 2−n/2+1. If we recover k′ by using this bias, we have to search for 2n/2

possible round keys k6 against over 2n/2 texts. This time complexity is over 2n.
We use the chosen ciphertext attack (CCA). We first prepare enormous chosen ciphertexts

and corresponding plaintexts. Next, we pick some texts which are used to recover round keys.
Finally, we guess k6, and get k′. Since we guess k6 against only picked texts, we can reduce the
complexity. Note that we can also attack the 6-round KiFPi-Feistel by using CPA not CCA,
because Feistel networks are involution. We show this attack by using CCA for simplicity in this
section.
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Picking Texts. We show how to pick some texts from chosen ciphertexts. We first prepare
2n/2 chosen ciphertexts such that cL is a constant and cR is chosen from all values. If cL is a
constant, we know cR⊕P4(P

−1
2 (pL)) is uniquely determined by k6 and k

′. Moreover we know that
Eq. (3.2) is satisfied with probability 2−n/2+1. Namely, the probability that cR ⊕ P4(P

−1
2 (pL))

is the same as P6(F (cL ⊕ k6))⊕ k′ is 2−n/2+1, and it is double compared with the others. Then
we calculate v = cR⊕P4(P

−1
2 (pL)) and store the number of occurrences in Nv. The number Nv

is about 2n/2 × 2−n/2+1 = 2 when it satisfies v = P6(F (cL ⊕ k6))⊕ k′. However the number Nv

is about 2n/2 × 2−n/2 = 1 when it satisfies v ̸= P6(F (cL ⊕ k6)) ⊕ k′. By using this slight bias,
we pick some texts which are used to recover round keys.

Lemma 3.4. Let us choose 2n/2 ciphertexts such that cL is a constant and cR is chosen from
all values, and query these chosen ciphertexts and get corresponding plaintexts. Next, let us
calculate v = cR ⊕ P4(P

−1
2 (pL)) and store the number of occurrences in Nv. Finally, let us pick

(cL, v) that Nv is the maximum number. Then, PT denotes the probability that the picked text
satisfies Eq. (3.2), and PT is expressed as follows:

PT =

2n/2∑

i=0

2ie−2

i!

⎛
⎝1

e

i∑

j=0

1

j!

⎞
⎠

2n/2−1

> 2−n/2.

Proof. We calculate v = cR⊕P4(P
−1
2 (pL)) and store the number of occurrences in Nv. Moreover

we choose v that Nv is the maximum number. The probability that the chosen v is equal to
P6(F (cL ⊕ k6)) ⊕ k′ has the Poisson distribution with parameter λ = 2, then the probability
that the number Nv is equal to i is given as follows:

Pc(i) =
2ie−2

i!
,

On the other hand, the probability that the chosen v is equal to another value has the Poisson
distribution with parameter λ = 1, then the probability that the number Nv is less than or equal
to i is given as follows:

Pf (i) =

i∑

j=0

1ie−1

j!
=

1

e

i∑

j=0

1

j!
.

Then, the probability of Lemma 3.4 is given as follows:

Pt =
2n/2∑

i=0

Pc(i)× (Pf (i))
2n/2−1

=

2n/2∑

i=0

2ie−2

i!

⎛
⎝1

e

i∑

j=0

1

j!

⎞
⎠

2n/2−1

=
1

e2n/2+1

2n/2∑

i=0

2i

i!

⎛
⎝

i∑

j=0

1

j!

⎞
⎠

2n/2−1

.

Since it satisfies the following equation

i∑

j=0

1

j!
= e− e

(i+ 1)!
,

it satisfies the following equation

Pt =
1

e2n/2+1

2n/2∑

i=0

2i

i!

(
e− e

(i+ 1)!

)2n/2−1

=
1

e2

2n/2∑

i=0

2i

i!

(
1− 1

(i+ 1)!

)2n/2−1

.
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Next we show the behavior of Pt. We pay attention to i that (i + 1)! ≈ 2n/2 is satisfied. Then

(1 − 1/(i + 1)!)2
n/2−1 is close to e−1. Moreover it satisfies i = Γ−1(2n/2) and i! = (i+1)!

i+1 =
2n/2

Γ−1(2n/2)+1
. Therefore, it satisfies the following equation

Pt >
1

e3
(Γ−1(2n/2) + 1)× 2Γ

−1(2n/2)

2n/2
.

Moreover it satisfies the following equation

2n/2 × Pt ≈
(Γ−1(2n/2) + 1)2Γ

−1(2n/2)

e3
> 1,

for Γ−1(2n/2) ≥ 3. Therefore Pt is higher than 2−n/2.

For the picked text (cL, v), we exhaustively search for over all 2n/2 possible round keys k6
and calculate k′ from k′ = P6(F (cL ⊕ k6)) ⊕ v. When we use 2d × 2n/2 chose ciphertexts, the
number that the correct (k6, k

′) is calculated is about 2d × Pt. On the other hand, the number
that the wrong tuple is calculated is about 2d×2−n/2 on average. Since Pt is greater than 2−n/2,
we can distinguish the correct (k6, k

′).

Procedure and Evaluation. We show a key recovery attack on the 6-round KiFPi-Feistel
by using Lemma3.4. The attack goes as follows.

1. We choose 2n/2 ciphertexts such that cL is a constant and cR is chosen from all values,
i.e., c[i] = (cL, cR[i]) for i = 1, . . . , 2n/2. We query these chosen ciphertexts and get
corresponding plaintexts.

2. We pick some texts by using Lemma3.4. We calculate v = cR[i]⊕P4(P
−1
2 (pL[i])) and store

the number of occurrences in Nv. We pick (cL, v) that Nv is the maximum number.

3. For the picked text (cL, v), we exhaustively search for over all 2n/2 possible round keys k6
and calculate k′. We count the number that (k6, k

′) is calculated.

4. We repeat the first, second and third steps 2d times. We return (k6, k
′) that is calculated

most.

Now we give the suitable number of chosen ciphertext. We consider n = 128 because many
block ciphers have the 128-bit block size. For n = 128, it satisfies Pt > 2−44 because of
Lemma3.4. By repeating the first, second and third steps 23n/8 times (namely, using 27n/8

chosen ciphertexts), the number that the correct (k6, k
′) is calculated is at least 23n/8×2−44 = 16.

Next, we consider the number that one of wrong keys is calculated, and the probability that
the number is over 16 is at most 1

16! [STKT06]. Consequently, our new attack can recover the
correct (k6, k

′).
We show the time complexity. The complexity for the second step is about 2n/2, and the

complexity for the third step is about 2n/2. Since we repeat the first, second and third steps
23n/8 times, the total time complexity is 27n/8+1.

Experimental Result. For feasibility evaluation of our attack, we execute experiments for
our attacks on the KiFPi-Feistel with small block sizes. We evaluate by the average of 1,000
samples in every block length. We choose functions F and round keys randomly in all samples.

We show experimental results for the key recovery attack on the 6-round KiFPi-Feistel, and
our attack uses 27n/8 chosen plaintexts. When the correct key (k, k′) is calculated most, we define
it as “the success.” We summarize experimental results in Fig. 3.8, where the horizontal axis
shows block lengths, the left vertical axis shows the number that the correct key is calculated,
and the right vertical axis shows the success probability on our attack. From Fig. 3.8, the number
that picked texts satisfy Eq. (3.2) is always higher than the theoretical value. Unfortunately the
success probability is small when the block length is small. However the success probability is
big when the block length is big. Therefore we expect that our attack can recover the correct
key of the 6-round KiFPi-Feistel.
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Figure 3.8: Experimental results of the attack on the 6-round KiFPi-Feistel

3.6 Conclusion

We revisit Knudsen’s Feistel networks. It is still difficult for designers to design Knudsen’s
Feistel networks, and many Feistel ciphers use more efficient and practical Feistel networks. In
this chapter, we introduce such Feistel networks, the KiF -Feistel and the KiFPi-Feistel. We
show new properties using the relationship between plaintexts and ciphertexts. By using these
properties, we show that the 6-round KiF - and KiFPi-Feistel are not secure.
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Chapter 4

Fast Fourier Transform (FFT)
Key Recovery Technique

Abstract– We propose a new technique for the integral cryptanalysis called the Fast Fourier
Transform (FFT) key recovery. When N chosen plaintexts are required for the integral charac-
teristic and the guessed key is κ bits, a straightforward key recovery requires the time complexity
of O(N2κ). However, the FFT key recovery only requires the time complexity of O(N + κ2κ).
As a previous result using FFT, at ICISC 2007, Collard et al. proposed that FFT can reduce
the time complexity of a linear cryptanalysis. We show that FFT can also reduce the com-
plexity of the integral cryptanalysis. Moreover, the advantage of the FFT key recovery is that
the estimation of the complexity is very simple. We first show the complexity of the FFT key
recovery against three structures, an Even-Mansour scheme, key-alternating cipher, and Feistel
structure. As examples of these structures, we show integral cryptanalyses against Prøst, AES,
PRESENT, and CLEFIA. An 8-round Prøst P̃128,K can be attacked with an approximate time
complexity of 279.6. For the key-alternating cipher, a 6-round AES and 10-round PRESENT can
be attacked with approximate time complexities of 251.7 and 297.4, respectively. For the Feistel
structure, a 12-round CLEFIA can be attacked with approximate time complexities of 287.5.
Keywords– Block ciphers, Integral cryptanalysis, Even-Mansour, Key-alternating cipher, Feis-
tel structure, FFT, FWHT

4.1 Introduction

An integral cryptanalysis was first proposed by Daemen et al. to evaluate the security of
Square [DKR97], and then Knudsen and Wagner formalized this attack as the integral crypt-
analysis [KW02]. This attack uses N chosen plaintexts (CPs) and the corresponding ciphertexts.
Generally, the integral cryptanalysis first constructs an integral characteristic and then recovers
the secret key by using the characteristic. In the integral characteristic, plaintexts are prepared
in which the XOR of the Rth round output is 0. In the key recovery, Rth round outputs are
recovered from ciphertexts by guessing round keys used in the last several rounds. If the guessed
key is correct, the XOR of the recovered texts is always 0. In this chapter, we focus on the key
recovery for the integral cryptanalysis.

For the key recovery using integral characteristic, we can use an exhaustive search for the
subkey bits effectively related to computing the XOR that is expected to be 0 for the correct
subkey [DKR97]. There exist several studies to improve the key recovery. Ferguson et al. pro-
posed the partial-sum technique to reduce the number of S-box lookups [FKL+00] for a reduced
round AES using memory to save a partial-sum of the integrals. Shimoyama et al. proposed a
technique that regards key recovery as to solve the system of equations using a linearization, and
the technique requires more chosen texts but reduces the time complexity of the attack when
the algebraic degree of the round function is small [SMKT99]. This chapter proposes another
technique to reduce the time complexity of the key recovery without requiring more texts.

We propose a new improved technique for the integral cryptanalysis called the Fast Fourier
Transform (FFT) key recovery. The FFT is recently used to accelerate the key recovery step
in several attacks. In 2007, Collard et al. first proposed a linear cryptanalysis using the
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Table 4.1: Summary of FFT key recovery, where κ, κ1, and κ2 be defined in Sect. 4.3, 4.4, and
4.5.

Target structure Previous FFT Reference

Even-Mansour O(22κ) O(κ2κ) Sect. 4.3

Key-alternating O(2κ1+2κ2) O(κ22
κ1+κ2) Sect. 4.4

Feistel O(22κ1+2κ2) O(κ12
κ1 + κ22

κ2) Sect. 4.5

Table 4.2: Comparison of attack results. Time column only includes the time complexity of the
key recovery step, and it does not include the time complexity to count the frequency of the
partial bit-string of ciphertexts corresponding to the chosen plaintexts (CPs).

Target cipher #Round Data (CP) Time Technique Reference

Prøst P̃128,K 8 264 279.6 FFT Sect. 4.3

Prøst P̃256,K 9 2× 264 280.9 FFT Sect. 4.3

AES 6 6× 232 6× 250 ≈ 252.6 Partial-sum [FKL+00]

AES 6 6× 232 251.7 FFT Sect. 4.4

PRESENT 10 222.4 299.3 Partial-sum [WW13]

PRESENT 10 222.4 297.4 FFT Sect. 4.4

CLEFIA 12 13× 2112 13× 2106 ≈ 2109.7 MITM, Partial-sum [SW12b]

CLEFIA 12 5× 2112 287.5 MITM, FFT Sect. 4.5

FFT [CSQ07], and then Nguyen et al. extended it to a multi-dimensional linear cryptanaly-
sis [NWWL10, NWW11]. Moreover, Bogdanov et al. proposed a zero correlation cryptanalysis
using the FFT in 2013 [BGW+13]. We now point out that the FFT can also be applied to
the integral cryptanalysis, and propose attack frameworks for the integral cryptanalysis with
the FFT key recovery. We focus on three structures for block ciphers, i.e., an Even-Mansour
scheme [EM97], key-alternating cipher [BKL+12], and Feistel structure, and we estimate the se-
curity against the integral cryptanalysis. Table 4.1 shows results of the FFT key recovery, and
Table 4.2 summarizes results of integral cryptanalyses against specific ciphers.

4.2 Previous Works

4.2.1 Integral Cryptanalysis

Knudsen and Wagner proposed the integral cryptanalysis [KW02]. It first searches for an in-
tegral characteristic of a target block cipher and then recovers the secret key by using the
characteristic. Nowadays, many integral cryptanalyses have been proposed against specific ci-
phers [KW02, LWZ11, WZ11, YPK02, ZRHD08].

Integral Characteristic. An integral characteristic is generally constructed by the propaga-
tion of the integral property. We define four integral properties as follows:

• ALL (A) : Every value appears the same number in the multiset.

• BALANCE (B) : The XOR of all texts in the multiset is 0.

• CONSTANT (C) : The value is fixed to a constant for all texts in the multiset.

• UNKNOWN (U) : The multiset is indistinguishable from one of n-bit random values.

Knudsen andWagner showed that AES has the 4-round integral characteristic by the propagation
of integral properties [KW02]. It uses 232 chosen plaintexts, and each byte after encrypting 4
rounds satisfies B.
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Figure 4.1: Integral cryptanalysis against 6-round AES

Key Recovery. The Rth round output is recovered from ciphertexts by guessing round keys
used in the last several rounds. If the guessed key is incorrect, the recovered texts are expected
to behave as random texts. On the other hand, if the guessed key is correct, the XOR of the
recovered texts is always 0.

For instance, Fig. 4.1 shows the key recovery of the integral cryptanalysis against a 6-round
AES. Here, we now have 232 ciphertexts for the 6-round AES, and know that y satisfies B. Let
c[i] be bytes in the ciphertexts as shown in Fig. 4.1, and cn denotes the nth ciphertext. In this
case, the XOR of y is calculated from 232 ciphertexts as

232⨁

n=1

S5(S1(cn[1]⊕K1)⊕ S2(cn[2]⊕K2)

⊕ S3(cn[3]⊕K3)⊕ S4(cn[4]⊕K4)⊕K5) = 0, (4.1)

where S1, S2, . . . , S5 are S-boxes, each of which consists of the inverse of the AES S-box and
a multiplication by a field element from the inverse of the AES MDS matrix. Moreover, K1,
K2, K3, and K4 are calculated from RK6, and K5 is calculated from RK5. Therefore, the total
bit length of the guessed keys is 40 bits. Analysis using a straightforward method incurs the
approximate time complexity of 232+40 = 272.

4.2.2 Ferguson et al.’s Partial-Sum Technique

Ferguson et al. proposed an improved technique to reduce the time complexity in the key recovery
of the integral cryptanalysis, and it is refereed as the partial-sum technique [FKL+00]. While
five keys are guessed in the same time in the straightforward method, a part of five keys are first
guessed in the partial-sum technique. Specifically, the frequency of 32 bits (c[1], c[2], c[3], c[4]) is
first stored into a voting table, two keys in K1, K2, K3, and K4 are then guessed, and reduce
the size of the voting table.

1. The frequency of (c[1], c[2], c[3], c[4]) is stored into a voting table. The size of the voting
table is 232.

2. For every element in the voting table, K1 andK2 are guessed, compute xK1,K2 = S1(c[1])⊕
K1)⊕S2(c[2])⊕K2). Elements in the voting table are updated as (xK1,K2

, c[3], c[4]). The
time complexity in this step is 232+16 = 248, and the size of the voting table is reduced to
224.

3. For every element in the voting table, K3 is guessed, compute yK1,K2,K3
= xK1,K2

⊕
S3(c[3]) ⊕ K3). Elements in the voting table are updated as (yK1,K2,K3

, c[4]). The time
complexity in this step is 224+24 = 248, and the size of the voting table is reduced to 216.

4. For every element in the voting table, K4 is guessed, compute zK1,K2,K3
= yK1,K2,K3

⊕
S4(c[4]) ⊕ K4). Elements in the voting table are updated as (zK1,K2,K3,K4

. The time
complexity in this step is 216+32 = 248, and the size of the voting table is reduced to 28.

5. For every element in the voting table, K5 is guessed, compute S5(zK1,K2,K3,K4
⊕K5). The

time complexity in this step is 28+40 = 248.

Since each time complexity from step 2 to 5 is 248, the total time complexity is 4 × 248 = 250

S-box lookups.
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4.2.3 Collard et al.’s FFT Key Recovery

Collard et al. showed a linear cryptanalysis using FFT in 2007. When the key recovery of the
linear cryptanalysis [Mat93] uses N ciphertexts c1, c2, . . . , cN , it guesses keys K and calculates

N∑

n=1

f(cn ⊕K). (4.2)

It finally recovers the correct K to evaluate Eq. (4.2) for several possible Ks. Here, let f :
{0, 1}k → {0, 1} be a Boolean function, which is generated from a linear approximate equation.
The evaluation of Eq .(4.2) requires the time complexity of O(N2κ) using a straightforward
method, and the size of N is often larger than 2κ. Collard et al. showed that the evaluation
of Eq. (4.2) requires the time complexity of approximately O(κ2κ). Nguyen et al. then noticed
that the Fast Walsh-Hadamard Transform (FWHT) can be used instead of the FFT [NWWL10].
Hereinafter, we show the calculation method using the FWHT.

Two κ-dimensional vectors v and w are first created, where v is generated from Boolean
function f , and w is generated from the set of ciphertexts as indicated below.

vi = f(i),

wi = #{1 ≤ n ≤ N |cn = i}.

A κ-dimensional vector u is calculated from v and w as
⎡
⎢⎢⎢⎢⎢⎣

u0
u1
u2
...

u2κ−1

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

v0 v1 v2 · · · v2κ−1

v1 v0 v3 · · · v2κ−2

v2 v3 v0 · · · v2κ−3

...
...

...
. . .

...
v2κ−1 v2κ−2 v2κ−3 · · · v0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

w0

w1

w2

...
w2κ−1

⎤
⎥⎥⎥⎥⎥⎦
. (4.3)

In this case, uK is equal to the results of Eq. (4.2). Therefore, if Eq. (4.3) can be calculated
quickly, the time complexity is reduced. Equation (4.3) is simply expressed as u = V ×w. Here,
matrix V consists of four (2κ−1)-dimensional block matrices V1 and V2 as

V =

[
V1 V2

V2 V1

]
.

From the diagonalization of V , we have

V =
1

2

[
I I
I −I

] [
V1 + V2 0

0 V1 − V2

] [
I I
I −I

]
,

where I is an identity matrix. Since V1 + V2 and V1 − V2 have the same structure as V , we
obtain

V =
1

2κ
×H2κ × diag(H2κv)×H2κ ,

where H2κ is the 2κ-dimensional Walsh matrix1, and diag(H2κv) is a diagonal matrix whose
element in the ith row and ith column is the ith element of H2κv. Therefore, Eq. (4.3) is
expressed as

u = V × w =
1

2κ
H2κ × diag(H2κv)×H2κw.

The procedure to calculate u is given below.

1. Let us calculate v̂ = H2κv. Then, Eq. (4.3) is expressed as u = 1
2κH2κ × diag(v̂)×H2κw.

1 The Walsh matrix is defined as the following recursive formulae.

H21 =

[
1 1
1 −1

]
, H2κ =

[
H2κ−1 H2κ−1

H2κ−1 −H2κ−1

]
(κ ≥ 2).
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2. Let us calculate ŵ = H2κw. Then, Eq. (4.3) is expressed as u = 1
2κH2κ × diag(v̂)ŵ.

3. Let us calculate û whose ûi is calculated from v̂i × ŵi, and then calculate u = 1
2κH2κ û.

In the first and second steps, we calculate the multiplication of the Walsh matrix using the
FWHT, and each time complexity is approximately the time of κ2κ additions. In the third step,
we first calculate 2κ multiplications of the κ-bit integers, where we regard that the complexity
of one multiplication is equal to that for κ additions. We next calculate the FWHT, and the
time complexity is approximately the time of κ2κ additions. We finally calculate the division by
2κ, but the time complexity is negligible because it can be computed by a κ-bit shift. Therefore,
the time complexity of the third step is approximately 2κ2κ. Thus, the total time complexity is
approximately the time of 4κ2κ additions.

4.3 FFT Key Recovery for Even-Mansour Scheme

4.3.1 Even-Mansour Scheme

The Even-Mansour scheme is a famous scheme to construct an n-bit block cipher from an n-bit
permutation P . The encryption is executed using two n-bit keys K1 and K2 as

c = K2 ⊕ P (p⊕K1),

where p and c denote a plaintext and ciphertext, respectively [EM97]. The Even-Mansour scheme
has recently been a popular topic of discussion [DKS12, BKL+12].

4.3.2 Attack Framework

P1 P2

 bits
Integral

characteristic

Figure 4.2: FFT key recovery for Even-Mansour scheme

We first split permutation P into two permutations, P1 and P2, as P = P2 ◦P1 (see Fig. 4.2).
We assume that P1 has an integral characteristic with N chosen plaintexts. Moreover, any one
bit is diffused to κ bits by P2. The straightforward key recovery requires O(min{N2κ, 22κ}) time
complexity.

Let f be a Boolean function such that the input is κ bits of the output of P2 and the output
is any one bit of the input of P2. In this case, the key recovery can be expressed as

N⨁

i=1

f(c′i ⊕K ′
2) = 0,

where c′i and K ′
2 are truncated to κ bits from ci and K2, respectively. The FFT key recovery

calculates the summation of integers, and we have

N∑

i=1

f(c′i ⊕K ′
2) = 0 mod 2.

We can efficiently evaluate this equation using the FWHT, and the time complexity is 4κ2κ

additions.
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4.3.3 Integral Cryptanalysis against Prøst Even-Mansour

Specification of Prøst. Prøst is an authenticated encryption scheme, which was submitted
to the CAESAR competition [KLL+14a, KLL+14b]. Prøst has a Prøst permutation Pn (n =
128 or 256), and the input and output size is 2n bits. Prøst permutation adopts a substitution-
permutation network, and the state is represented as 4 × d matrix, where d = 16 and 32 for
n = 128 and 256, respectively. Prøst permutation consists of T rounds, where T = 16 and
18 for n = 128 and 256, respectively. The round function of Prøst consists of four component
functions: SubRows, ShiftPlanes, MixSlices, and AddConstant. Each function is defined as
follows:

• SubRows substitutes each 4-bit value in the matrix into another 4-bit value by an S-box.

• ShiftPlanes cyclically shifts the jth row by π2−(i mod 2)(j) nibbles, where a nibble stands
for 4 bits, to the left for the ith round, where πi is defined as

(π1, π2) =

{
({0, 2, 4, 6}, {0, 1, 8, 9}) for n=128,

({0, 4, 12, 26}, {1, 24, 26, 31}) for n=256.

• MixSlices diffuses four 4-bit values within each column by a linear function.

• AddConstant is an XOR operation where the round constant is XORed to the matrix.
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Figure 4.3: 6-round integral characteristic of Prøst P128

Integral Characteristic of Prøst. We experimentally search for integral characteristics of
Prøst. We set a column of the second round input as A and observe the 6th round output.
The XOR of the output depends on the value of the constant nibbles of the second round input.
However, we can expect that bit positions whose XOR values are always zero are B by changing
the value of the constant nibbles of the second round input. We try 1024 randomly chosen values
for the constant nibbles, and the number of trials is sufficient to determine that the output bits
satisfy B by assuming that the non-B bits uniformly take 0 and 1.

Through the experiment, we obtain the 5-round integral characteristic of P128(x) with 216

chosen plaintexts (see Fig. 4.3). This characteristic is extended to the 6-round one as shown in
Fig. 4.3, and it uses 264 chosen plaintexts.

Similarly, we show the integral characteristic of P256(x). We first prepare chosen plaintexts
where each column satisfies A, and this characteristic is extended to the 7-round one with 264

chosen plaintexts. When the first column (16 bits) satisfies A, the 7th round output satisfies the
following integral property.
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0x30f0c00d3dc930cd090f0d0000d09000

0xd00c9fd390dc030d0f0000c0300090d0

0xd0930c0f0d000030c000d0d09003df9c

0x90d000c0f03009cd3dc0390d0d0f0000

Here, if the hexadecimal value in the ith row and jth column is 0x3, the upper two bits satisfy
B and the lower two bits do not satisfy B. As another example, when the 17th column (16 bits)
satisfies A, the 7th round output satisfies the following integral property.

0x090f0d0000d0900030f0c00d3dc930cd

0x0f0000c0300090d0d00c9fd390dc030d

0xc000d0d09003df9cd0930c0f0d000030

0x3dc0390d0d0f000090d000c0f03009cd

In both integral characteristics, 348 bits of the 7th round output satisfy B.

Detailed Attack Procedure. Prøst P128 has 6-round integral characteristics with 264 cho-
sen plaintexts. Moreover, any one bit is diffused to 64 bits in 2 rounds. Therefore, the time
complexity of the FFT key recovery is 4× 64× 264 = 272 additions. The probability that incor-
rect keys are discarded in one FFT key recovery is 2−1. All the bits of the output of the 6-round
integral characteristic satisfy B. Therefore, we repeat this analysis for 256 bits. The probability
that all 256 bits satisfy B for incorrect key K is 2−256. Thus, we can recover the correct key,
and the total complexity is approximately 256× 272 = 280 additions.

Prøst P256 has 7-round integral characteristics with 264 chosen plaintexts. Moreover, any
one bit is diffused to 64 bits in 2 rounds. Therefore, the time complexity of the FFT key recovery
is 4 × 64 × 264 = 272 additions. The probability that incorrect keys are discarded in one FFT
key recovery is 2−1. In each characteristic, only 348 bits of the 7th round output satisfy B.
Therefore, we use two 7-round characteristics, and then the sum of the number of bits that
do not satisfy B in both characteristics is 24 bits. Since 488 bits of the output of the 7-round
integral characteristic satisfy B, we repeat the FFT key recovery 488 times. The time complexity
is approximately 488 × 272 = 280.9 additions. Since the probability that all 488 bits satisfy B
for incorrect key K is 2−488, and 224 incorrect keys are expected to remain. We exhaustively
search for the correct key. The time complexity is 224, and it is negligible compared to the time
complexity for the two FFT key recoveries.

Further Optimization. The attack with the FFT key recovery can further be optimized. We
look again the principle of the FFT key recovery, which is shown in Sect. 4.2.3. Since a vector v̂
is calculated only from a Boolean function f , it does not depend on the multiset of ciphertexts.
Therefore, we do not need to calculate v̂ every time if we repeat the attack procedure for
different chosen plaintext sets. Similarly, since a vector ŵ is calculated only from the multiset of
ciphertexts, it does not depend on a Boolean function f . Therefore, we do not need to calculate
ŵ every time if we use the same set of ciphertexts.

We now revisit the 8-round integral cryptanalysis against Prøst P128. Any one bit is diffused
to 64 bits in 2 rounds, and there are 16 bits that are diffused to the same 64 bits. Therefore, we
only calculate ŵ once per 16, and the time complexity becomes (256/16) × 64 × 264 additions.
Moreover, it requires 256×64×264 and 256×2×64×264 additions to get v̂ and u, respectively.
Therefore, the total time complexity is about

(16 + 256 + 256× 2)× 64× 264 ≈ 279.6

additions.

4.4 FFT Key Recovery for Key-Alternating Cipher

4.4.1 Key-Alternating Cipher

The key-alternating cipher [BKL+12] is a common type of block cipher, and AES can be viewed
as a 10-round key-alternating cipher [ABD+13]. Let Pi be an n-bit permutation, and the key-
alternating cipher is expressed as

c = Kr ⊕ Pr(· · · ⊕ P3(K2 ⊕ P2(K1 ⊕ P1(K0 ⊕ p)))),
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where K0,K1, . . . ,Kr are round keys that are calculated from the master key. Let p and c be a
plaintext and a ciphertext, respectively.

4.4.2 Attack Framework

r1 rounds r2 rounds

bits
Integral

characteristic

Kr-1Kr-r2
Kr

   bits    bits

Figure 4.4: FFT key recovery for Key-alternating cipher

We first split r rounds into r1 and r2 rounds as r = r1+r2 (see Fig. 4.4). We assume that a key-
alternating cipher has an r1-round integral characteristic with N chosen plaintexts. Moreover,
we need to guess a κ-bit key that is required for this characteristic for the ciphertext side, and any
one bit of output from the r1 rounds is diffused to κ2 bits by r2 rounds. Let F2,K′ be a function
from κ2 bits to one bit, where K ′ is κ1-bit key calculated from Kr−r2 ,Kr−r2+1, . . . ,Kr−1. In
this case, the key recovery can be expressed as

N⨁

i=1

F2,K′(c′i ⊕K ′
r) = 0,

where c′i and K
′
r are truncated to κ2 bits from ci and Kr, respectively. To apply the FFT key

recovery, we first guess correct K ′, and then we have

N∑

i=1

F2,K′(c′i ⊕K ′
r) = 0 mod 2.

We can efficiently evaluate this equation using the FWHT. Thus, the time complexity is 4κ22
κ1+κ2

additions.

4.4.3 Integral Cryptanalysis against AES

Specification of AES. AES is standardized by the National Institute of Standards and Tech-
nology (NIST) in 2001 [U.S01]. The state of AES is expressed as a 4× 4 matrix whose elements
take an 8-bit value, i.e. the block length is 128 bits. AES consists of 10 rounds, and the round
function is composed of four functions: SubBytes, ShifrRows, MixColumns, and AddRoundKeys.
Each function is defined as follows:

• SubBytes substitutes each 8-bit value in the matrix into another 8-bit value by an S-box.

• ShifrRows rotates the position of 8-bit values within each row.

• MixColumns diffuses four 8-bit values within each column by a linear function.

• AddRoundKeys is an XOR operation where the round key is XORed to the matrix.
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Detailed Attack Procedure. We show the FFT key recovery for the integral cryptanalysis
against a 6-round AES (see Fig. 4.1). Since the FFT key recovery only calculates the summation
of integers, we transform Eq. (4.1) to

232∑

n=1

S
(i)
5 (S1(cn[1]⊕K1)⊕ S2(cn[2]⊕K2)

⊕ S3(cn[3]⊕K3)⊕ S4(cn[4]⊕K4)⊕K5)

=

232∑

n=1

f
(i)
K5

(F (cn ⊕ (K1∥K2∥K3∥K4))), (4.4)

where F is a function from {0, 1}32 to {0, 1}32. Moreover, f
(i)
K5

is a Boolean function whose
output is the ith bit of the output of S5. We first guess K5, and then calculate this summation
using the FWHT. The time complexity is 4 × 32 × 232 = 239 additions for every K5, and the
time complexity is 28 × 239 = 247 additions because K5 is 8 bits. The probability that incorrect
keys are discarded in one FFT key recovery is 2−1.

We estimate the time complexity to recover 5 keys K1,K2, . . . ,K5 because Ferguson et al.
estimated it in [FKL+00]. Since the output of S5 is 8 bits, we repeat this analysis using the
8 bits. The probability that all 8 bits satisfy B for incorrect key is 2−8. Since the total bit
length of K1,K2, . . . ,K5 is 40 bits, we repeat the above attack using 6 different sets. Thus, the
total complexity is approximately the time of 6 × 8 × 247 = 6 × 250 additions. When we use
the partial-sum technique, the total time complexity is approximately the time of 6× 250 S-box
lookups. We discuss the differences between them in Sect. 4.6.

Further Optimization. Similar to Sect. 4.3.3, we can further optimize our attack by removing
the redundant calculation of v̂ and û. A vector v̂ is calculated only from a Boolean function f ,
and the time complexity is 28 × 8 × 32 × 232 = 248 additions. Next, we calculate ŵ by using
FFT, and the complexity of this step is 32 × 232 = 237 additions. Finally, we calculate u from
v̂ and ŵ, and the time complexity is 2 × 28 × 8 × 32 × 232 = 249 additions. We execute our
cryptanalysis with 6 sets, but they always use the same v̂. Therefore, the total complexity is
about 248 + 6× (249 + 237) ≈ 251.7 additions.

4.4.4 Integral Cryptanalysis against PRESENT

s s s s s s s s s s s s s s s s

round key

Figure 4.5: Round function of PRESENT

Specification of PRESENT. PRESENT [BKL+07] is a lightweight block cipher and it is
adopted as an ISO/IEC standard [ISO12]. The block length is 64 bits, and the key size is chosen
from 80 bits or 128 bits. PRESENT consists of 31 rounds, and Fig. 4.5 shows the round function
of PRESENT. Round keys are first XORed and then sixteen 4-bit S-boxes are applied in the
first of the round function. Finally, a bit-wise permutation is applied.

Detailed Attack Procedure. PRESENT has 7-round integral characteristics with 216 chosen
plaintexts [WW13], and any one bit is diffused to full 64 bits in 3 rounds. Moreover, 20-bit round
key is required to calculate the inverse function. Therefore, the time complexity of the FFT key

47



recovery is 220 × 4× 64× 264 = 292 additions. The probability that incorrect keys are discarded
in one FFT key recovery is 2−1.

We estimate the time complexity to recover (20 + 64)-bit keys. Since only one bit of the
output of the 7-round integral characteristic satisfies B, we repeat this analysis by using 84
chosen plaintext sets. The probability that it satisfies B for incorrect key in all 84 sets is 2−84.
Therefore, we can recover the correct 84-bit key, and the total complexity is approximately
84× 292 ≈ 298.4 additions.

Further Optimization. Similar to Sect. 4.3.3, we can further optimize our attack by removing
the redundant calculation of v̂ and û. A vector v̂ is calculated only from a Boolean function
f , and the time complexity is 220 × 64 × 264 = 290 additions. Next, we calculate ŵ by using
FFT, and the complexity of this step is 64 × 264 = 270 additions. Finally, we calculate u from
v̂ and ŵ, and the time complexity is 2 × 220 × 64 × 264 = 291 additions. We execute our
cryptanalysis with 84 sets, but they always use the same v̂. Therefore, the total complexity is
about 290 + 84× (291 + 270) ≈ 297.4 additions.

4.5 FFT Key Recovery for Feistel Structure

4.5.1 Feistel Structure

F

RKi
Xi

L
Xi

R

Xi+1
L

Xi+1
R

x

y

z

Figure 4.6: Round function of Feistel structure

The Feistel structure is also commonly used to construct a block cipher. In this chapter,
we only focus on the Feistel structure whose round key is XORed before an F -function (see
Fig. 4.6). Let (xLi , x

R
i ) be the ith round output, and the (i+ 1)th round output is calculated as

(F (xLi ⊕RKi)⊕ xRi , xLi ), where RKi denotes the ith round key.

4.5.2 Attack Framework

In 2012, Sasaki et al. proposed the MITM technique for the integral cryptanalysis [SW12b].
Generally, since the integral characteristics of the Feistel structure satisfy B in the right half,⨁
z in Fig. 4.6 becomes 0. In the MITM technique, we evaluate

⨁
x and

⨁
y independently

instead of
⨁
z. Then, we search for keys satisfying

⨁
x =

⨁
y through analysis such as the

MITM attack [DH77]. In [SW12b], the partial-sum technique is used to evaluate
⨁
x and

⨁
y,

but the FFT can also be used to evaluate them.
We assume that we need to guess κ1 and κ2 bits to evaluate

⨁
x and

⨁
y, respectively. If

the round key is XORed with input from function F , the FFT key recovery can evaluate
⨁
x

and
⨁
y with 4κ12

κ1 and 4κ22
κ2 additions, respectively. Moreover, the matching step of MITM

analysis requires the time complexity of O(max{2κ1 , 2κ2}).

4.5.3 Integral Cryptanalysis against CLEFIA

Specification of CLEFIA. CLEFIA is a 128-bit block cipher, which was proposed by Shirai
et al. in 2007 [SSA+07]. It has a 4-branch type-2 generalized Feistel structure [ZMI89], and
is adopted as an ISO/IEC standard. The round function is defined as Fig. 4.7, and the ith
round output is calculated from the (i−1)th round output, RK2i−2 and RK2i−1. Moreover, the
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32
8

Figure 4.7: Round function of CLEFIA

whitening keys WK 0 and WK 1 are used in the first round, and WK 2 and WK 3 are used in the
last round. For the 128-bit security version, the number of rounds is 18.

Detailed Attack Procedure. Li et al. showed that it has a 9-round integral characteristic
with 2112 chosen plaintexts [LWZ11]. Then, Sasaki and Wang showed that the complexity of the
integral cryptanalysis against a 12-round CLEFIA is 13 × 2106 S-box lookups using the MITM
technique. We show the FFT key recovery against a 12-round CLEFIA. We first define some

B B B B

12 rounds

11 rounds

10 rounds

C0 C1 C2 C3

Figure 4.8: Key recovery of 12-round CLEFIA

notations. Let C1, C2, C3, and C4 be ciphertexts and each value is 32 bits (see Fig. 4.8). Let X
be any 32-bit value, and X[i] denotes the ith byte of X, namely X = X[1]∥X[2]∥X[3]∥X[4]. We
define function fi : {0, 1}32 → {0, 1}8 as

f1(X)∥f2(X)∥f3(X)∥f4(X) = F1(X).

We first use the same method as the MITM technique [SW12b]. It uses a 9-round integral
characteristic [LWZ11], where the second branch of the 9th round output satisfies B. To optimize
the MITM technique, we equivalently move the position of M0 in the 10th round as shown in
Fig. 4.8. As a result, we have

⨁
Y =

⨁
Z, where Y and Z are defined in Fig. 4.8. Therefore,

if
⨁
Y and

⨁
Z can be calculated with the guessed round keys, we can recover the secret key

from the MITM technique. Let
⨁
Y and

⨁
Z be calculated as

⨁
Y =

⨁
S(F1(F0(C0 ⊕RK22)⊕ C1 ⊕RK ′

21)

⊕ C2 ⊕RK18),⨁
Z =

⨁
M−1

0 (F1(C2 ⊕RK23)⊕ C3 ⊕WK 3),

where RK ′
21 = RK21 ⊕WK 2, and S denotes the concatenation of 4 S-boxes S0, S1, S0, and S1.

In [SW12b], each value is calculated using the partial-sum technique.
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Hereinafter, we use the FFT key recovery instead of the partial-sum technique. We need to
guess 96 bits to evaluate

⨁
Y . Since WK 3 does not affect

⨁
Z, we need to guess 32 bits to

evaluate
⨁
Z. Clearly, the time complexity to evaluate

⨁
Z is negligible compared to that to

evaluate
⨁
Y . Therefore, we show the complexity required to evaluate

⨁
Y . For instance, the

first byte of
⨁
Y is calculated as

⨁
Y [1] =

⨁
S0(f1(F0(C0 ⊕RK22)⊕ C1 ⊕RK ′

21)

⊕ C2[1]⊕RK18[1]).

To execute the FFT key recovery, we transform the above equation to

∑
Y [1](i) =

∑
S
(i)
0 (f1(F0(C0 ⊕RK22)⊕ C1 ⊕RK ′

21)

⊕ C2[1]⊕RK18[1]),

where Y [1](i) denotes the ith bit of Y [1] and the output of S
(i)
0 is the ith bit of the output of

S0. Moreover, this equation is transformed by defining function f as

∑
Y [1](i)

=
∑

f ((C0∥C1∥C2[1])⊕ (RK22∥RK ′
21∥RK18[1])) .

We can evaluate this equation for all possible (RK22∥RK ′
21∥RK18[1]) with 4× 72× 272 ≈ 280.2

additions. Similarly, we evaluate
∑
Z[1](i) using the FFT key recovery, but the time complexity

is negligible. Finally, we search for round keys satisfying
∑
Y [1](i) =

∑
Z[1](i) mod 2 using

analysis such as the MITM attack. Since the complexity is approximately 272, it is also negligible.
Since the output of S0 is 8 bits, we repeat this analysis for the eight bits. Moreover, we

similarly calculate the second, third, and fourth bytes of
⨁
Y and

⨁
Z. Therefore, the time

complexity is approximately 4×8×280.2 = 285.2 additions. The probability that all 32 bits satisfy
B for incorrect keys is expected to be 2−32. Since the total bit length of RK18, RK21 ⊕WK 2,
RK22, and RK23 is 128 bits, we repeat above analysis using 5 different chosen plaintext sets.
Thus, the total complexity is approximately 5× 285.2 = 287.5 additions.

4.6 Discussion

We compare the FFT key recovery and the partial-sum technique. We first compare them based
on their units of complexity. The complexity of the partial-sum technique is estimated from the
number of S-box lookups. On the other hand, that of the FFT key recovery is estimated from
the number of additions. Since the two processing speeds depend on the environment, we cannot
directly compare them. However, we can roughly compare them. In the partial-sum technique,
we need at least the time complexity of O(2κ+ℓ), where κ denotes the bit length of the guessing
key. Moreover, let ℓ be the bit length of guessed key when we partially compute the sum, e.g.,
ℓ = 8 for AES and ℓ = 32 for CLEFIA. We expect that the FFT key recovery is superior to the
partial-sum technique when ℓ is greater than 8. Second, we compare them based on memory
access. The partial-sum technique randomly accesses memories. On the other hand, the FFT
key recovery sequentially accesses memories. Generally, sequential access is more efficient than
the random access.

We have an open problem regarding the FFT key recovery. Since round keys of block ciphers
are calculated from the secret key, some bits of round keys are automatically recovered if some
bits of the secret key are recovered. The partial-sum technique can utilize this property and
efficiently reduce the complexity. For instance, the integral cryptanalysis against a 22-round
LBlock utilizes this property [SW12a]. However, in the FFT key recovery, we do not yet know
how to utilize this property.

4.7 Conclusion

We proposed a new technique for the integral cryptanalysis called the FFT key recovery. The
FFT is commonly known technique, which reduces the time complexity fromO(N2) toO(N log2N).
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For the integral cryptanalysis, N is the number of guessed key bit, namely N = 2κ if we guess
κ bits of round keys. The straightforward integral cryptanalysis requires the time complexity of
O(22κ), but the FFT key recovery is roughly requires the time complexity of O(κ2κ). Moreover,
the time complexity only depends on the bit length of keys that are required for an integral char-
acteristic from the ciphertext side for most cases. Therefore, we can easily estimate the time
complexity. We focused on three structures, i.e., the Even-Mansour scheme, key-alternating
cipher, and Feistel structure, and showed attack strategies for these three structures. As ap-
plications of the three structures, we showed that an 8-round Prøst P̃128,K , 6-round AES,
10-round PRESENT, and 12-round CLEFIA can be attacked with 279.6, 251.7, 297.4, and 287.5

additions, respectively.
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Part II

Division Property: Efficient
Method to Estimate Upper
Bound of Algebraic Degree
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Chapter 5

Division Property and
Application to Structural
Evaluation

Abstract– In this chapter, we show structural cryptanalyses against two popular networks, i.e.,
the Feistel Network and Substitute-Permutation Network (SPN). Our cryptanalyses are distin-
guishing attacks by an improved integral distinguisher. The integral distinguisher is one of the
most powerful distinguishers against block ciphers, and it is usually constructed by evaluating
the propagation of integral properties, e.g., ALL or BALANCE property. However, the integral
property does not derive useful distinguishers against block ciphers with non-bijective functions
and bit-oriented structures. Moreover, since the integral property does not clearly exploit the
algebraic degree of block ciphers, it tends not to construct useful distinguishers against block
ciphers with low-degree functions. In this chapter, we propose a new property called the division
property, which is the generalization of the integral property. It can effectively construct the
integral distinguisher even if the block cipher has non-bijective functions, bit-oriented structures,
and low-degree functions. From viewpoints of the attackable number of rounds or chosen plain-
texts, the division property can construct better distinguishers than previous methods. Although
our attack is a generic attack, it can improve several integral distinguishers against specific cryp-
tographic primitives. For instance, it can reduce the required number of chosen plaintexts for
the 10-round distinguisher on Keccak-f from 21025 to 2515. For the Feistel cipher, it theoret-
ically proves that Simon32, 48, 64, 96, and 128 have 9-, 11-, 11-, 13-, and 13-round integral
distinguishers, respectively.
Keywords– Block cipher, Integral distinguisher, Division property, Feistel Network, Substitute-
Permutation Network, Keccak, Simon, Boolean function

5.1 Introduction

The structural evaluation of cryptographic networks is an important topic of cryptology, and
it helps us to design strong symmetric-key primitives. There are several structural evaluations
against the Feistel Network and Substitute-Permutation Network (SPN) [BS01, IS13, Knu02,
LR88, Pat04]. As one direction of the structural evaluation, there are the security evaluation
by “the generic attack,” which exploits only the feature of the network and does not exploit the
particular weaknesses of a specific cipher. It is applicable to large classes of block ciphers, but it
is not often effective than the dedicated attack against the specific cipher. This chapter focuses
on generic attacks against both the Feistel Network and SPN. The existing generic attack shows
that the Feistel Network whose F -functions are chosen from random functions or permutations
is vulnerable up to 5 rounds [Pat04, Knu02]. Moreover, Biryukov and Shamir showed that the
SPN is vulnerable up to 2.5 rounds [BS01].

Our Contribution. This chapter shows generic attacks against two networks by improving
an integral distinguisher. The integral attack was first proposed by Daemen et al. to evaluate
the security of Square [DKR97], and then it was formalized by Knudsen and Wagner [KW02].

53



Table 5.1: The number of required chosen plaintexts to construct r-round integral distinguishers
on the Simonfamily, Serpent, and Keccak-f

Target log2(#texts) Method Reference
6R 7R 8R 9R 10R 11R 12R 13R

Simon32 17 25 29 31 - - - - our Sect. 5.4.3
- - - - - - - - degree [Knu94, BC13]

Simon48 17 29 39 44 46 47 - - our Sect. 5.4.3
17 - - - - - - - degree [Knu94, BC13]

Simon64 17 33 49 57 61 63 - - our Sect. 5.4.3
17 - - - - - - - degree [Knu94, BC13]

Simon96 17 33 57 77 87 92 94 95 our Sect. 5.4.3
17 33 - - - - - - degree [Knu94, BC13]

Simon128 17 33 65 97 113 121 125 127 our Sect. 5.4.3
17 33 - - - - - - degree [Knu94, BC13]

Target log2(#texts) Method Reference
3R 4R 5R 6R 7R 8R 9R 10R

Serpent 12 28 84 113 124 - - - our Sect. 5.5.3
28 82 113 123 127 - - - degree [BCC11]

Target log2(#texts) Method Reference
8R 9R 10R 11R 12R 13R 14R 15R

Keccak-f 130 258 515 1025 1410 1538 1580 1595 our Sect. 5.5.3
257 513 1025 1409 1537 1579 1593 1598 degree [BCC11]

Nowadays, many integral distinguishers have been proposed against specific ciphers [KW02,
LWZ11, WZ11, YPK02, ZRHD08], and they are often constructed by evaluating the propagation
characteristic of integral properties, e.g., ALL property or BALANCE property. In this chapter,
we revisit the integral property and then introduce the division property by generalizing the
integral property. The division property can effectively construct integral distinguishers even if
block ciphers have non-bijective functions, bit-oriented structures, and low-degree functions.

The Feistel Network is a generic construction to create a (2ℓ)-bit pseudo-random permutation
from an ℓ-bit pseudo-random function. We call the ℓ-bit function the F -function and assume
that an attacker cannot know the specification of the F -function. Our distinguishing attack
can attack up to 3 rounds, and it can attack up to 5 rounds if the F -function is limited to a
permutation. Unfortunately, they are not improved compared with the previous ones. However,
assuming that the algebraic degree of the F -function is smaller than the bit length of the F -
function, our attack can attack more rounds than the previous attacks exploiting the low-degree
function. We summarize new integral distinguishers in Table 5.4. Although the assumption of our
attack is only the algebraic degree of the F -function, it can construct new integral distinguishers
on the Simon family [BSS+13]. Since Simon has a non-bijective F -function and a bit-oriented
structure, it is complicated task to construct the integral distinguisher. In [WLV+14], Wang et
al. showed that Simon32 has the 15-round integral distinguisher by experiments. However, it
is difficult to experimentally search for integral distinguishers on other Simon families because
the block lengths are large. The division property theoretically introduces that Simon32, 48,
64, 96, and 128 have at least 9-, 11-, 11-, 13-, and 13-round integral distinguishers, respectively.
Table 5.1 shows the comparison between our distinguishers and previous ones.

The SPN consists of an S-Layer and P-Layer, where the S-Layer has m ℓ-bit bijective S-boxes
and the P-Layer has an (ℓm)-bit bijective linear function. The attacker cannot know the specifi-
cations of the S-boxes and linear function. Surprisingly, our generic attack is able to attack more
rounds as the number of S-boxes is larger than the bit length of S-boxes. This fact implies that
the design of the P-Layer that can diffuse more outputs of S-boxes may not derive prospective
security improvements. We summarize new integral distinguishers in Table 5.7. Similar to the
result against the Feistel Network, the division property is also useful to construct integral dis-
tinguishers against specific cryptographic primitives. For instance, we can reduce the required
number of chosen plaintexts for the 7-round distinguisher on Serpent [ABK98] from 2127 to 2124.
Moreover, for the integral distinguisher on Keccak-f [DBPA11], we can reduce the required
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number of chosen plaintexts compared with previous ones constructed by Boura et al. [BCC11].
Table 5.1 shows the comparison between our distinguishers and previous ones.

Organization. This chapter is organized as follows: In Sect. 5.2, we show notations, Boolean
functions, and the framework of integral distinguishers. In Sect. 5.3, we propose the division
property by generalizing the integral property and show propagation characteristics. In Sect. 5.4
and Sect. 5.5, we show new distinguishing attacks on the Feistel Network and SPN, respectively.

5.2 Preliminaries

5.2.1 Notation

We make the distinction between the addition over Fn
2 and addition over Z, and we use ⊕

and + as the addition over Fn
2 and addition over Z, respectively. For any a ∈ Fn

2 , the ith
element is expressed as a[i], and the Hamming weight w(a) is calculated as w(a) =

∑n
i=1 a[i].

Let 1n ∈ Fn
2 be a value whose all elements are 1. Moreover, let 0n ∈ Fn

2 be a value whose
all elements are 0. For any set K, let |K| be the number of elements. Moreover, let ϕ be an
empty set. For any a⃗ ∈ (Fn1

2 × Fn2
2 × · · · × Fnm

2 ), the vectorial Hamming weight is defined as
W (⃗a) = [w(a1), w(a2), . . . , w(am)] ∈ Zm, where ai denotes the ith element of a⃗. Moreover, for

any k⃗ ∈ Zm and k⃗′ ∈ Zm, we define k⃗ ⪰ k⃗′ if ki ≥ k′i for all i (1 ≤ i ≤ m). Otherwise, k⃗ ⪰̸ k⃗′.

Bit Product Functions. Let πu : Fn
2 → F2 be a function for any u ∈ Fn

2 . Let x ∈ Fn
2 be an

input of πu, and πu(x) is the AND of x[i] satisfying u[i] = 1, namely, it is defined as

πu(x) :=

n∏

i=1

x[i]u[i].

Let πu⃗ : (Fn
2 )

m → F2 be a function for any u⃗ ∈ (Fn
2 )

m. Let x⃗ ∈ (Fn
2 )

m be an input of πu⃗, namely,
πu⃗(x⃗) is calculated as

πu⃗(x⃗) :=

m∏

i=1

πui
(xi).

5.2.2 Boolean Function

A Boolean function is a function from Fn
2 to F2. Let deg(f) be the algebraic degree of a Boolean

function f . As representations of the Boolean function, we use Algebraic Normal Form, which
is defined as follows.

Algebraic Normal Form. Algebraic Normal Form (ANF) is a representation of a Boolean
function. Any f : Fn

2 → F2 can be represented as

f(x) =
⨁

u∈Fn
2

afu

(
n∏

i=1

x[i]u[i]

)
=
⨁

u∈Fn
2

afuπu(x),

where afu ∈ F2 is a constant value depending on f and u. If deg(f) is at most d, all afu satisfying
d < w(u) are 0. An n-bit S-box can be regarded as the concatenation of n Boolean functions. If
algebraic degrees of n Boolean functions are at most d, we say the algebraic degree of the S-box
is at most d.

5.2.3 Integral Distinguisher

An integral distinguisher was first proposed by Daemen et al. to evaluate the security of
Square [DKR97], and then it was formalized by Knudsen and Wagner [KW02]. It uses a
set of chosen plaintexts that contains all possible values for some bits and has a constant value
for the other bits. Corresponding ciphertexts are calculated from plaintexts in the set by using
an encryption oracle. If the XOR of the corresponding ciphertexts always becomes 0, we say
that this cipher has the integral distinguisher.
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Figure 5.1: Integral distinguisher on 4-round AES

Integral Property. Nowadays, many integral distinguishers have been proposed against spe-
cific ciphers [KW02, LWZ11, WZ11, YPK02, ZRHD08], and they are often constructed by eval-
uating the propagation characteristic of the integral property. We define four integral properties
as follows:

• ALL (A) : Every value appears the same number in the multiset.

• BALANCE (B) : The XOR of all texts in the multiset is 0.

• CONSTANT (C) : The value is fixed to a constant for all texts in the multiset.

• UNKNOWN (U) : The multiset is indistinguishable from one of n-bit random values.

Knudsen and Wagner showed that AES has the 4-round integral distinguisher with 232 chosen
plaintexts [KW02]. Figure 5.1 shows the integral distinguisher.

Unfortunately, the integral property does not derive effective distinguishers if block ciphers
consist of non-bijective functions, e.g., DES [Nat77] and Simon [BSS+13] consist of non-bijection
functions. Moreover, since the propagation characteristic does not clearly exploit the algebraic
degree of block ciphers, it tends not to construct effective distinguishers against block ciphers
with low-degree round functions.

Degree Estimation. As another method to construct the integral distinguisher, there is a
higher-order differential attack [Lai94, Knu94], which exploits the algebraic degree of block
ciphers. When the algebraic degree of a block cipher is at most D, the cipher has the integral
distinguisher with 2D+1 chosen plaintexts. Canteaut and Videau showed the bound of the degree
of iterated round functions [CV02]. Then, Boura et al. improved the bound [BCC11], and showed
integral distinguishers on Keccak [DBPA11] and Luffa [CSW08].

If the degree of r iterated round functions is at most D, we can construct the r-round
integral distinguisher with 2D+1 chosen plaintexts. In a classical method, if the degree of the
round function is at most d, the degree of r iterated round functions is bounded by dr. In 2011,
Boura et al. showed tighter bound as follows.

Theorem 5.1 ([BCC11]). Let S be a function from Fn
2 into Fn

2 corresponding to the concatena-
tion of m smaller S-boxes, defined over Fn0

2 . Let δk be the maximal degree of the product of any
k bits of anyone of these S-boxes. Then, for any function G from Fn

2 into F2, we have

deg(G ◦ S) ≤ n− n− deg(G)

γ
,

where

γ = max
1≤i≤n0−1

n0 − i
n0 − δi

.

By using this bound, we can estimate the degree of (ℓ, d,m)-SPN. For instance, we show the
degree of (4, 3, 64)-SPN as follows.

Number of rounds 1 2 3 4 5 6 7 8 9
Bound on degree 3 9 27 81 197 236 249 253 255

Therefore, we can construct the 8-round integral distinguisher on (4, 3, 64)-SPN with 2254 chosen
plaintexts.
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5.3 Division Property

5.3.1 Introduction of Division Property

The development of the division property is motivated from following two observations.

Observation 5.1. Let us consider the integral characteristic of AES. The propagation of the
integral property can find 4-round integral characteristics with 232 chosen plaintext, while the
algebraic degree of 4-round AES is upper-bounded by 126 even if Theorem2.1 is used. Therefore,
the propagation of the integral property is superior to the degree estimation.

Observation 5.2. Let us consider the integral characteristic of a modified AES, where S-boxes
with degree 2 are used instead of the original S-box. Since the propagation of the integral property
is not affected by the algebraic degree of S-boxes, the found characteristics is the same as the
original AES. On the other hand, the algebraic degree of 7-round modified AES is upper-bounded
by 96 when Theorem2.1 is used. Therefore, the degree estimation is superior to the propagation
of the integral property.

Observations 5.1 and 5.2 implies that each of the two methods has its own advantages and
drawbacks. Specifically, S-boxes are regarded as black boxes in the propagation of the integral
property, i.e., it constructs integral characteristics by mainly exploiting the diffusion part of block
ciphers. On the other hand, the degree estimation can exploit the algebraic degree of S-boxes
but is difficult to well exploit the diffusion part, i.e., it constructs integral characteristics by
mainly exploiting the confusion part of block ciphers. Therefore, it is natural that the method
that can exploit both diffusion and confusion parts of block ciphers is desirable.

Redefinition of Integral Property. Let X be a multiset whose elements take an n-bit value.
We first consider features of the multiset X satisfying A. If we choose one bit from n bits and
calculate the XOR of the chosen bit in the multiset, the calculated value is always 0. Moreover,
if we choose at most (n−1) bits from n bits and calculate the XOR of the AND of chosen bits in
the multiset, the calculated value is also always 0. However, if we choose all bits from n bits and
calculate the XOR of the AND of n bits in the multiset, the calculated value becomes unknown1.
Above features are expressed by using the bit product function πu, which is defined in Sect. 5.2.1,
as follows. We evaluate the parity of πu(x) for all x ∈ X, namely, evaluate

⨁
x∈X πu(x). The

parity is always even for any u satisfying w(u) < n. On the other hand, the parity becomes
unknown for u = 1n.

We next consider features of the multiset X satisfying B. If we choose one bit from n bits and
calculate the XOR of the chosen bit in the multiset, the calculated value is always 0. However,
if we choose at least two bits from n bits and calculate the XOR of the AND of chosen bits in
the multiset, the calculated value becomes unknown. Above features are expressed by using the
bit product function πu as follows. We evaluate the parity of πu(x) for all x ∈ X. The parity is
always even for any u satisfying w(u) < 2. On the other hand, the parity becomes unknown for
any u satisfying w(u) ≥ 2.

5.3.2 Definition of Division Property

Section 5.3.1 redefines both the ALL and BALANCE properties by the same notation. Since
the redefinition can be parameterized by the number of product bits w(u) of the bit product
function πu, we generalize the integral property as follows.

Definition 5.1 (Division Property). Let X be a multiset whose elements take a value of Fn
2 , and

k takes a value between 0 and n. When the multiset X has the division property Dn
k , it fulfils the

following conditions: The parity of πu(x) for all x ∈ X is always even if w(u) < k. Moreover,
the parity becomes unknown if w(u) ≥ k.

In the division property, the set of u is divided into the subset that
⨁

x∈X πu(x) becomes
unknown and the subset that

⨁
x∈X πu(x) becomes 0.

1 If all values appear the same even number in the multiset, the calculated value is always 0. If all values
appear the same odd number in the multiset, the calculated value is always 1. Thus, we cannot guarantee whether
the calculated value is 0 or not when we consider the multiset satisfying A. In this case, we say the calculated
value becomes unknown.
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Example 5.1. Let X be a multiset whose elements take a value of F4
2. As an example, we

prepare the input multiset X as

X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE}.

A following table calculates the summation of πu(x).

0x0 0x3 0x3 0x3 0x5 0x6 0x8 0xB 0xD 0xE
∑
πu(x)

0000 0011 0011 0011 0101 0110 1000 1011 1101 1110 (
⨁
πu(x))

u = 0000 1 1 1 1 1 1 1 1 1 1 10 (0)

u = 0001 0 1 1 1 1 0 0 1 1 0 6 (0)

u = 0010 0 1 1 1 0 1 0 1 0 1 6 (0)

u = 0011 0 1 1 1 0 0 0 1 0 0 4 (0)

u = 0100 0 0 0 0 1 1 0 0 1 1 4 (0)

u = 0101 0 0 0 0 1 0 0 0 1 0 2 (0)

u = 0110 0 0 0 0 0 1 0 0 0 1 2 (0)

u = 0111 0 0 0 0 0 0 0 0 0 0 0 (0)

u = 1000 0 0 0 0 0 0 1 1 1 1 4 (0)

u = 1001 0 0 0 0 0 0 0 1 1 0 2 (0)

u = 1010 0 0 0 0 0 0 0 1 0 1 2 (0)

u = 1011 0 0 0 0 0 0 0 1 0 0 1 (1)

u = 1100 0 0 0 0 0 0 0 0 1 1 2 (0)

u = 1101 0 0 0 0 0 0 0 0 1 0 1 (1)

u = 1110 0 0 0 0 0 0 0 0 0 1 1 (1)

u = 1111 0 0 0 0 0 0 0 0 0 0 0 (0)

For all u satisfying w(u) < 3,
⨁

x∈X πu(x) becomes 0. Therefore, the multiset has the division
property D4

3.

Each definition of B and U is essentially the same as that of Dn
2 and Dn

1 , respectively.
However, the definition of A is different from that of Dn

n. The multiset satisfying A always has
the division property Dn

n but not vice versa. For instance, the multiset satisfying the EVEN
property, which is defined that the number of occurrences is even for all values [SK12], does not
always have A, but it always has Dn

n. In this chapter, we use only Dn
n instead of A because it is

sufficient to use Dn
n from the viewpoint of the construction of integral distinguishers.

Propagation Characteristic of Division Property. Let s be an S-box whose degree is
d. Let X be an input multiset whose elements take a value of Fn

2 . Let S(X) be an output
multiset whose elements are calculated from s(x) for all x ∈ X. We assume that X has Dn

k and
want to evaluate the division property of S(X). In the division property, the set of u is divided
into the subset that

⨁
x∈X πu(x) becomes unknown and the subset that

⨁
x∈X πu(x) becomes 0.

Therefore, we divide the set of v into the subset that
⨁

s(x)∈S(X) πv(s(x)) becomes unknown and

the subset that
⨁

s(x)∈S(X) πv(s(x)) becomes 0. Since the parity of πv(s(x)) for all s(x) ∈ S(X)
is equal to that of (πv ◦ s)(x) for all x ∈ X, we evaluate

⨁
x∈X(πv ◦ s)(x).

Proposition 5.1 (Propagation Characteristic of Division Property). Let s be an function (S-
box) from n bits to n bits, and the degree is d. Assuming that an input multiset X has the
division property Dn

k , the output multiset S(X) has Dn
⌈ k
d ⌉
. In addition, assuming that the S-box

is a permutation, the output multiset S(X) has Dn
n when the input multiset has Dn

n.

Proof. We represent
⨁

x∈X(πv ◦ s)(x) by using ANF as

⨁

x∈X
(πv ◦ s)(x) =

⨁

x∈X

⎛
⎝⨁

u∈Fn
2

aπv◦s
u πu(x)

⎞
⎠

=
⨁

u∈Fn
2 |w(u)≥k

aπv◦s
u

(⨁

x∈X
πu(x)

)
⊕

⨁

u∈Fn
2 |w(u)<k

aπv◦s
u

(⨁

x∈X
πu(x)

)
.
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Since the multiset X has Dn
k ,
⨁

x∈X πu(x) is always 0 for any {u ∈ Fn
2 |w(u) < k}. Therefore, it

satisfies

⨁

x∈X
(πv ◦ s)(x) =

⨁

u∈Fn
2 |w(u)≥k

aπv◦s
u

(⨁

x∈X
πu(x)

)
.

If aπv◦s
u is 0 for all {u ∈ Fn

2 |w(u) ≥ k}, ⨁x∈A(πv ◦ s)(x) always becomes 0. In other words, if
there exists {u ∈ Fn

2 |w(u) ≥ k} such that aπv◦s
u is 1,

⨁
x∈A(πv ◦ s)(x) becomes unknown. Since

the function πv is the AND of w(v) bits and the degree of S-box is d, the degree of the Boolean
function (πv ◦ s) has the following properties:

• The degree of (πv ◦ s) is at most min{n,w(v)× d}.

• If the S-box is a permutation, the degree of (πv ◦ s) is at most n− 1 for w(v) < n.

We first assume that the multiset X has Dn
k . In this case, we consider only u satisfying w(u) ≥ k.

When w(v)× d < k holds, aπv◦s
u is always 0. Thus, the necessary condition that aπv◦s

u becomes
1 is w(v)× d ≥ k, and it is w(v) ≥ ⌈kd⌉. Namely, the necessary condition that

⨁
x∈X(πv ◦ s)(x)

becomes unknown is w(v) ≥ ⌈kd⌉, and S(X) has Dn
⌈ k
d ⌉
. We next assume that the multiset X has

Dn
n and the S-box is a permutation. In this case, we consider only u = 1n. When w(v) < n

holds, aπv◦s
1n is always 0 because the degree of the Boolean function (πv ◦ s) is at most n − 1.

Thus, the necessary condition that aπv◦s
1n becomes 1 is v = 1n. Namely, the necessary condition

that
⨁

x∈X(πv ◦ s)(x) becomes unknown is v = 1n, and S(X) has Dn
n.

Example 5.2. Let us consider a following 4-bit S-box.

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

s(x) 0x8 0xC 0x0 0xB 0x9 0xD 0xE 0x5 0xA 0x1 0x2 0x6 0x4 0xF 0x3 0x7

The S-box is bijective and the algebraic degree is 2. We now prepare the input multiset X as

X := {0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xB, 0xD, 0xE},

which is the same as Example 5.1 and the division property is D4
3. The output multiset is

calculated as

S(X) := {0x8, 0xB, 0xB, 0xB, 0xD, 0xE, 0xA, 0x6, 0xF, 0x3},

and a following table calculates the summation of (πv ◦ s)(x).

0x8 0xB 0xB 0xB 0xD 0xE 0xA 0x6 0xF 0x3
∑

(πv ◦ s)(x)
1000 1011 1011 1011 1101 1110 1010 0110 1111 0011 (

⨁
(πv ◦ s)(x))

v = 0000 1 1 1 1 1 1 1 1 1 1 10 (0)

v = 0001 0 1 1 1 1 0 0 0 1 1 6 (0)

v = 0010 0 1 1 1 0 1 1 1 1 1 8 (0)

v = 0011 0 1 1 1 0 0 0 0 1 1 5 (1)

v = 0100 0 0 0 0 1 1 0 1 1 0 4 (0)

v = 0101 0 0 0 0 1 0 0 0 1 0 2 (0)

v = 0110 0 0 0 0 0 1 0 1 1 0 3 (1)

v = 0111 0 0 0 0 0 0 0 0 1 0 1 (1)

v = 1000 1 1 1 1 1 1 1 0 1 0 8 (0)

v = 1001 0 1 1 1 1 0 0 0 1 0 5 (1)

v = 1010 0 1 1 1 0 1 1 0 1 0 6 (0)

v = 1011 0 1 1 1 0 0 0 0 1 0 4 (0)

v = 1100 0 0 0 0 1 1 0 0 1 0 3 (1)

v = 1101 0 0 0 0 1 0 0 0 1 0 2 (0)

v = 1110 0 0 0 0 0 1 0 0 1 0 2 (0)

v = 1111 0 0 0 0 0 0 0 0 1 0 1 (1)

For all v satisfying w(v) < 2,
⨁

s(x)∈S(X) πv(s(x)) becomes 0. Therefore, the multiset S(X) has

the division property D4
2.
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Figure 5.2: Propagation characteristic of division property

Figure 5.2 shows the outline of the propagation characteristic of the division property. Let
X and S(X) be input and output multisets, respectively. First, the size of the set of u that⨁

x∈X πu(x) becomes unknown is small. However, the size of the set of u that
⨁

x∈X πu(s(x))
becomes unknown expands. If the size expands to the universal set except for 0n, we regard that
the output multiset is indistinguishable from the multiset of random texts.

5.3.3 Vectorial Division Property

Section 5.3.2 only shows the division property for one S-box. However, since practical ciphers
use several S-boxes in every round, we cannot construct integral distinguishers by only using
Proposition 5.1. Therefore, we vectorize the division property.

Let an S-Layer be any function that consists of m n-bit S-boxes with degree d in parallel. We
now consider the propagation characteristic of the division property against the S-Layer. Let X
be the input multiset of the S-Layer, and x ∈ X takes a value of (Fn

2 )
m. The vectorization is

the natural extension of the division property. Namely, the set of u⃗ is divided into the subset
that

⨁
x⃗∈X πu⃗(x⃗) becomes unknown and the subset that

⨁
x⃗∈X πu⃗(x⃗) becomes 0, where u⃗ is an

m-dimensional vector whose elements take a value of Fn
2 . Figure 5.3 shows the difference between

the division property and vectorial one.

Definition 5.2 (Vectorial Division Property). Let X be a multiset whose elements take a value

of (Fn1
2 × Fn2

2 × · · · × Fnm
2 ). Let k⃗ be an m-dimensional vector whose ith element takes a value

between 0 and ni. When the multiset X has the (vectorial) division property Dn1,n2,...,nm

k⃗
, it

fulfils the following conditions:

⨁

x⃗∈X
πu⃗(x⃗) =

{
unknown if W (u⃗) ⪰ k⃗,
0 otherwise.

For the simplicity, the division property for (Fn
2 )

m is referred to as Dnm

K .

Propagation Characteristic of Vectorial Division Property. Assume that the input
multiset of the S-Layer has the division property Dn1,n2,...,nm

k⃗
. The output of the S-Layer is

calculated as S(x⃗) = (s1(x1), s2(x2), . . . , sm(xm)) for (x1, x2, . . . , xm) ∈ X. We now consider the
set of v⃗ that

⨁
x⃗∈X πv⃗(S(x⃗)) becomes unknown and the set of v⃗ that

⨁
x⃗∈X πv⃗(S(x⃗)) becomes

0. Since the output of each S-box is calculated independently, the propagation characteristic
of the division property can also be evaluated independently. Namely, the output multiset has
Dn1,n2,...,nm

k⃗′ , where k′i = ⌈ki/d⌉ holds. Moreover, if ith S-box is bijective and ki = n holds,

k′i = n holds.

5.3.4 Collective Division Property

By vectorizing of the division property, we can evaluate the multiset whose elements take a value
of (Fn

2 )
m. However, it is still insufficient to use only vectorial division property. For simplicity,

we consider a multiset X whose elements take a value of (F8
2)

2. Assume that the number of
elements in X is 256, and two elements of x⃗ take all values from 0 to 255 independently. We
consider the set of u⃗ that the parity of πu⃗(x⃗) for all x⃗ ∈ X becomes unknown and the set of u⃗
that the parity becomes 0.
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Figure 5.3: Division property, vectorial division property, and collective division property

• The parity becomes unknown if u⃗ ⪰ [8, 0].

• The parity becomes unknown if u⃗ ⪰ [0, 8].

• The parity becomes unknown if u⃗ ⪰ [1, 1].

• Otherwise, i.e., (u⃗ ̸⪰ [8, 0]) ∧ (u⃗ ̸⪰ [0, 8]) ∧ (u⃗ ̸⪰ [1, 1]), the parity is always even.

We cannot express this property by using the vectorial division property. Therefore, we col-
lect several vectorial division properties. Figure 5.3 shows the difference between the vectorial
division property and collective one.

Definition 5.3 (Collective Division Property). Let X be a multiset whose elements take a value
of (Fn1

2 × Fn2
2 × · · · × Fnm

2 ). Let K be a set whose elements take an m-dimensional vector whose
ith element takes a value between 0 and ni. When the multiset X has the division property
Dn1,n2,...,nm

K , it fulfils the following conditions:

⨁

x⃗∈X
πu⃗(x⃗) =

{
unknown if there exist k⃗ ∈ K s.t. W (u⃗) ⪰ k⃗,
0 otherwise.

It is obvious that the collective division property with |K| = 1 is the same as the vectorial
division property.

Example 5.3. Let X be a multiset whose elements take a value of (F8
2 × F8

2). Assume that the

multiset X has the division property D82

{[1,5],[3,3],[4,5],[5,1],[6,0]}. Then, if [u1, u2] is chosen from

the gray part in Fig 5.4,
⨁

[x1,x2]∈X π[u1,u2]([x1, x2]) becomes unknown. For example, when u⃗ =

[0x3F, 0xFC] is used, we cannot determine
⨁

[x1,x2]∈X π[0x3F,0xFC]([x1, x2]) because W (u⃗) = [6, 6].

On the other hand, if (u1, u2) is chosen from the white part in Fig 5.4,
⨁

[x1,x2]∈X π[u1,u2]([x1, x2])

is 0. Note that the division property D82

{[1,5],[3,3],[5,1],[6,0]} is the same as D82

{[1,5],[3,3],[4,5],[5,1],[6,0]}
because the unknown space is invariant.

A similar example is shown in [SHZ+15] and may help to further understand the division
property.

Propagation Characteristic for Collective Division Property.

Proposition 5.2 (Propagation Characteristic of Collective Division Property). Let S be a func-
tion that consists of m S-boxes, where the bit length and the algebraic degree of the ith S-box is
ni bits and di, respectively. The input and the output take a value of (Fn1

2 × Fn2
2 × · · · × Fnm

2 ),
and X and S(X) denote the input multiset and the output multiset, respectively. Assuming that
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Figure 5.4: Division Property D82

{[1,5],[3,3],[5,1],[6,0]}

the multiset X has the division property Dn1,n2,...,nm

K , the multiset S(X) has the division property

Dn1,n2,...,nm

K′ , where K′ is calculated as follows: First, K′ is initialized to ϕ. Then, for all k⃗ ∈ K,

K′ = K′ ∪
[⌈

k1
d1

⌉
,

⌈
k2
d2

⌉
, . . . ,

⌈
km
dm

⌉]
,

is calculated. Here, when the ith S-box is bijective and ki = ni, the ith element of the propagated
property becomes ni not ⌈ni/di⌉.
Proof. Let S be a function that consists of m S-boxes, where Si denotes the ith S-box and the
bit length and the algebraic degree is ni bits and di, respectively. The input and the output take
a value of (Fn1

2 × Fn2
2 × · · · × Fnm

2 ), and X and S(X) denote the input multiset and the output
multiset, respectively.

First, we only apply the first S-box and evaluate the division property of the multiset whose
elements are represented by [S1(x1), x2, . . . , xm]. Assuming that the multiset X has the division
property Dn1,n2,...,nm

K , the parity
⨁

x⃗∈X πv⃗([S1(x1), x2, . . . , xm]) is evaluated as follows:

⨁

x⃗∈X
πv⃗([S1(x1), x2, . . . , xm]) =

⨁

x⃗∈X

(
(πv1 ◦ S1)(x1)×

m∏

i=2

πvi(xi)

)

=
⨁

x⃗∈X

⎛
⎝
⎛
⎝ ⨁

u1∈Fn1
2

a
(πv1

◦S1)
u1 πu1(x1)

⎞
⎠×

(
m∏

i=2

πvi(xi)

)⎞
⎠

=
⨁

u1∈Fn1
2

(⨁

x⃗∈X

(
a
(πv1◦S1)
u1 πu1(x1)×

m∏

i=2

πvi(xi)

))

=
⨁

u1∈Fn1
2

(
a
(πv1◦S1)
u1

⨁

x⃗∈X
π[u1,v2,v3,...,vm](x⃗)

)
.

Therefore, for any v⃗ ∈ (Fn1
2 × Fn2

2 × · · · × Fnm
2 ), the parity

⨁
x⃗∈X πv⃗([S1(x1), x2, . . . , xm]) is 0 if

a
(πv1◦S1)
u1

⨁

x⃗∈X
π[u1,v2,v3,...,vm](x⃗)

is 0 for all u1 ∈ Fn1
2 . Since the algebraic degree of (πv1 ◦S1) is at most w(v1)× d1, a(πv1◦S1)

u1 = 0
when w(u1) > w(v1)× d1. Therefore, the parity becomes unknown only if we cannot determine
the value of

⨁
x⃗∈X π[u1,v2,v3,...,vm](x⃗) when w(u1) ≤ w(v1) × d1. Now, since the multiset X has

the division property Dn1,n2,...,nm

K ,

⨁

x⃗∈X
πu⃗(x⃗) =

{
unknown if there exist k⃗ ∈ K s.t. W (u⃗) ⪰ k⃗,
0 otherwise.
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Therefore, the necessary condition that
⨁

x⃗∈X π[u1,v2,v3,...,vm](x⃗) becomes unknown is expressed
as follows:

W ([u1, v2, v3, . . . , vm]) ⪰ k⃗,
⇒[w(v1)× d1, w(v2), . . . , w(vm)] ⪰ k⃗,

⇒[w(v1), w(v2), . . . , w(vm)] ⪰
[⌈

k1
d1

⌉
, k2, k3, . . . , km

]
.

Namely,
⨁

x⃗∈X πv⃗([S1(x1), x2, . . . , xm]) is unknown only if there exists k⃗ ∈ K satisfying

W (v1, v2, v3, . . . , vm) ⪰
[⌈

k1
d1

⌉
, k2, k3, . . . , km

]
.

Therefore, the division property of the output multiset is Dn1,n2,...,nm

K′ , where K′ has the following
vectors

[⌈
k1
d1

⌉
, k2, . . . , km

]
for all k⃗ ∈ K.

Next, assume that S1 is bijective and k1 = n1. Then, the algebraic degree of (πv1 ◦ S1) is
less than n1 for w(v1) < n1 and becomes n1 for only w(v1) = n1. Therefore, the necessary
condition that

⨁
x⃗∈X π[u1,v2,v3,...,vm](x⃗) becomes unknown is w(v1) = n1. Namely, if k1 = n1,

[n1, k2, k3, . . . , km] is inserted into K′ instead of [⌈k1/d1⌉ , k2, . . . , km]. Finally, Proposition 5.2 is
proven by repeating the same procedure for other S-boxes.

5.3.5 Propagation Rules for Simple Operation

We summarize some propagation rules for simple operation as follows.

Proposition 5.3 (COPY). Let F be a copy function, where the input x takes a value of Fn
2 and

the output is calculated as [y1, y2] = [x, x]. Let X and F (X) be the input multiset and the output
multiset, respectively. Assuming that the multiset X has the division property Dn

k , the multiset
F (X) has the division property Dn,n

K′ , where K′ is calculated as follows: First, K′ is initialized to
ϕ. Then, for all i (0 ≤ i ≤ k),

K′ = K′ ∪ [k − i, i],

is calculated.

Proof. Let F be a copy function, where the input x takes a value of Fn
2 and the output is

calculated as [y1, y2] = [x, x]. Let X and F (X) be the input multiset and the output multiset,
respectively.

Assuming that the multiset X has the division property Dn
k , the parity

⨁
y⃗∈F (X) πv⃗(y⃗) is

evaluated as follows:
⨁

y⃗∈F (X)
πv⃗(y⃗) =

⨁

x∈X
π[v1,v2]([x, x]) =

⨁

x∈X
(πv1(x)× πv2(x)) =

⨁

x∈X
(πv1∨v2(x)) .

Since the multiset X has the division property Dn
k ,

⨁

x∈X
πu(x) =

{
unknown w(u) ≥ k,
0 w(u) < k.

When w(v1)+w(v2) < k, the parity
⨁

y⃗∈F (X) πv⃗(y⃗) is 0 because w(v1∨v2) ≤ w(v1)+w(v2) < k.

Moreover, the necessary condition that the parity becomes unknown is w(v1) + w(v2) ≥ k.
Therefore, the division property of F (X) is Dn,n

K′ , where K′ has the following vectors

[k − i, i] for 0 ≤ i ≤ k.
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Proposition 5.4 (XOR). Let F be a function compressed by an XOR, where the input [x1, x2]
takes a value of (Fn

2 × Fn
2 ) and the output is calculated as y = x1 ⊕ x2. Let X and F (X) be

the input multiset and the output multiset, respectively. Assuming that the multiset X has the
division property Dn,n

K , the division property of the multiset F (X) is Dn
k′ as

k′ = min
[k1,k2]∈K

{k1 + k2}.

Here, if the minimum value of k′ is larger than n, the propagation characteristic of the division
property is aborted. Namely, a value of ⊕y∈F (X)πv(y) is 0 for all v ∈ Fn

2 .

Proof. Let F be a compression function by an XOR, where the input [x1, x2] takes a value of
(Fn

2 × Fn
2 ) and the output is calculated as y = x1 ⊕ x2. Let X and F (X) be the input multiset

and the output multiset, respectively.
Assuming that the multiset X has the division property Dn,n

K , the parity
⨁

y∈F (X) πv(y) is
evaluated as follows:

⨁

y∈F (X)
πv(y) =

⨁

[x1,x2]∈X
πv(x1 ⊕ x2) =

⨁

[x1,x2]∈X

(
n∏

i=1

(x1[i]⊕ x2[i])v[i]
)

=
⨁

[x1,x2]∈X

⎛
⎝ ⨁

w⃗∈{1,2}n

(
n∏

i=1

xwi
[i]v[i]

)⎞
⎠

=
⨁

w⃗∈{1,2}n

⎛
⎝ ⨁

[x1,x2]∈X

(
n∏

i=1

xwi
[i]v[i]

)⎞
⎠

=
⨁

w⃗∈{1,2}n

⎛
⎝ ⨁

[x1,x2]∈X

(
πδ1(v,w⃗)(x1)× πδ2(v,w⃗)(x2)

)
⎞
⎠ ,

where

δj(v, w⃗)[i] =

{
1 v[i] = 1 and wi = j,

0 otherwise.

Since the multiset X has the division property Dn,n
K ,

⨁

x⃗∈X
π[u1,u2](x⃗) =

{
unknown if there exist [k1, k2] ∈ K s.t. [w(u1), w(u2)] ⪰ [k1, k2],

0 otherwise.

When w(v) = w(δ1(v, w⃗)) + w(δ2(v, w⃗)) < mink⃗∈K{k1 + k2}, the parity
⨁

y∈F (X) πv(y) is 0

because there is not [k1, k2] ∈ K satisfying [w(δ1(v, w⃗)), w(δ2(v, w⃗))] ⪰ [k1, k2]. Moreover, the
necessary condition that the parity becomes unknown is w(v) ≥ mink⃗∈K{k1 + k2}. Therefore,
the division property of F (X) is Dn

k′ , where k′ = mink⃗∈K{k1 + k2}. Note that the parity is 0 for
all v if k′ is greater than n.

Proposition 5.5 (SPLIT). Let F be a split function, where the input x takes a value of Fn
2 and

the output is calculated as y1∥y2 = x, where [y1, y2] takes a value of (Fn1
2 × Fn−n1

2 ). Let X and
F (X) be the input multiset and the output multiset, respectively. Assuming that the multiset X
has the division property Dn

k , the multiset F (X) has the division property Dn1,n−n1

K′ , where K′ is
calculated as follows: First, K′ is initialized to ϕ. Then, for all i (0 ≤ i ≤ k),

K′ = K′ ∪ [k − i, i],

is calculated. Here, (k − i) is less than or equal to n1, and i is less than or equal to n− n1.

Proof. Let F be a split function, where the input x takes a value of Fn
2 and the output is

calculated as y1∥y2 = x, where [y1, y2] takes a value of (Fn1
2 × Fn−n1

2 ). Let X and F (X) be the
input multiset and the output multiset, respectively.
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Assuming that the multiset X has the division property Dn
k , the parity

⨁
y⃗∈F (X) πv⃗(y⃗) is

evaluated as follows:
⨁

y⃗∈F (X)
πv⃗(y⃗) =

⨁

x∈X
π[v1∥v2](x).

Since the multiset X has the division property Dn
k ,

⨁

x∈X
πu(x) =

{
unknown w(u) ≥ k,
0 w(u) < k.

When w(v1) +w(v2) < k, the parity
⨁

y⃗∈F (X) πv⃗(y⃗) is 0 because w(v1∥v2) = w(v1) +w(v2) < k.

Moreover, the necessary condition that the parity becomes unknown is w(v1) + w(v2) ≥ k.
Therefore, the division property of F (X) is Dn1,n−n1

K′ , where K′ has the following vectors

[k − i, i] for 0 ≤ i ≤ k.

Note that we cannot choose more than n1 and n− n1 bits from y1 and y2, respectively.

Proposition 5.6 (CONCATENATION). Let F be a concatenation function, where the input
[x1, x2] takes a value of (Fn1

2 × Fn2
2 ) and the output is calculated as y = x1∥x2. Let X and F (X)

be the input multiset and the output multiset, respectively. Assuming that the multiset X has the
division property Dn1,n2

K , the division property of the multiset F (X) is Dn1+n2

k′ as

k′ = min
[k1,k2]∈K

{k1 + k2}.

Proof. Let F be a concatenation function, where the input [x1, x2] takes a value of (Fn1
2 × Fn2

2 )
and the output is calculated as y = x1∥x2. Let X and F (X) be the input multiset and the output
multiset, respectively.

Assuming that the multiset X has the division property Dn1,n2

K , the parity
⨁

y∈F (X) πv(y) is
evaluated as follows:

⨁

y∈F (X)
πv(y) =

⨁

[x1,x2]∈X
πv1∥v2(x1∥x2) =

⨁

[x1,x2]∈X
π[v1,v2]([x1, x2]),

where v = v1∥v2, and the bit length of v1 and that of v2 is n1 and n2, respectively. Since the
multiset X has the division property Dn1,n2

K ,

⨁

x⃗∈X
π[u1,u2](x⃗) =

{
unknown if there exist [k1, k2] ∈ K s.t. [w(u1), w(u2)] ⪰ [k1, k2],

0 otherwise.

When w(v) = w(v1) +w(v2) < mink⃗∈K{k1 + k2}, the parity
⨁

y∈F (X) πv(y) is 0 because there is

not [k1, k2] ∈ K satisfying [w(v1), w(v2)] ⪰ [k1, k2]. Moreover, the necessary condition that the
parity becomes unknown is w(v) ≥ mink⃗∈K{k1 + k2}. Therefore, the division property of F (X)
is Dn

k′ , where k′ = mink⃗∈K{k1 + k2}.

5.4 Improved Distinguishers on Feistel Network

5.4.1 Feistel Network

(ℓ, d)-Feistel. The Feistel Network is one of the most popular network to design block ciphers.
When n-bit block ciphers are constructed by the Feistel Network, the input of the round function
is expressed in two (n/2)-bit values. Moreover, an (n/2)-bit non-linear function F is used in
the round function, and we call this function the F -function. Let (w1, w2) be the input of the
round function, and the output is calculated as (z1, z2) = (F (w1) ⊕ w2, w1). We now define
an (ℓ, d)-Feistel, whose F -function is an ℓ-bit non-linear function with degree d (this function
is not limited to a permutation). Figure 5.5 shows the round function of the Feistel Network.
There are many block ciphers adopting (ℓ, d)-Feistel, e.g. DES [Nat77], Camellia [AIK+00], and
Simon2n [BSS+13] adopt (32, 5)-, (64, 7)-, and (n, 2)-Feistel, respectively.
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5.4.2 Propagation Characteristic for Feistel Network

This section shows that the division property is useful to construct integral distinguishers on
(ℓ, d)-Feistel. Since the Feistel Network has “copy,” “substitution,” and “xor,” where the “copy”
creates the input of the F -function, the “substitution” processes the input by the F-function, and
finally the “xor” creates the left half of the output by XOR. Therefore, we use Proposition 5.3,
5.2, and 5.4. Figure 5.6 shows the outline of the propagation characteristic.

-1- Copy Assume that the input set has the division property Dℓ2

K . From Proposition 5.3, the

output division property Dℓ3

K′ is computed as follows: First, K′ is initialized to ϕ. Then,

for all k⃗ ∈ K

K′ = K′ ∪ {[0, k1, k2], [1, k1 − 1, k2], . . . , [k1, 0, k2]}.

-2- Substitution The F -function is an ℓ-bit function with degree d. Assume that the input
set has the division property Dℓ3

K . From Proposition 5.2, the output division property has

Dℓ3

K′ is computed as follows: First, K′ is initialized to ϕ. Then, for all k⃗ ∈ K

K′ = K′ ∪ {[⌈k1/d⌉, k2, k3]}.
If the F -function is limited to a permutation, k′1 is ℓ when k1 = ℓ.

-3- Xor Assume that the input set has the division property Dℓ3

K . From Proposition 5.4, the

output division property has Dℓ2

K′ is computed as follows: First, K′ is initialized to ϕ. Then,

for all k⃗ ∈ K satisfying k1 + k3 ≤ ℓ
K′ = K′ ∪ {[k1 + k3, k2]}.

5.4.3 Path Search Algorithm for (ℓ, d)-Feistel

This section shows the path search algorithm for integral distinguishers against (ℓ, d)-Feistel.
The algorithm is based on the propagation characteristic shown in Sect. 5.4.2. Assume that k1
bits of the left half of the input are active and the rest (ℓ − k1) bits are constant. Moreover,
assume that k2 bits of the right half of the input are active and the rest (ℓ−k2) bits are constant.
Namely, we prepare 2k1+k2 chosen plaintexts. The input set has the division property Dℓ2

[k1,k2]
.

Algorithm 1 shows the path search algorithm to create the integral distinguisher on (ℓ, d)-Feistel.
Algorithm 1 does not limit the F -function to be a permutation. If the F -function is limited to be
a permutation, L becomes k2+ℓ when X = ℓ holds (see the 5th line in Algorithm 1). Algorithm 1

calls SizeReduce, which eliminates k⃗ ∈ K if there exists k⃗′ ∈ K satisfying k⃗ ⪰ k⃗′.
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Algorithm 1 Path search algorithm for integral distinguishers on (ℓ, d)-Feistel

1: procedure FeistelFuncEval(ℓ, d,K)
2: K′ ⇐ ϕ
3: for all k⃗ ∈ K do
4: for X = 0 to k1 do
5: L⇐ k2 + ⌈X/d⌉
6: if L ≤ ℓ then
7: K′ = K′ ∪ (L, k1 −X)
8: end if
9: end for

10: end for
11: return SizeReduce(K′)
12: end procedure

13: procedure IntegralPathSearch(ℓ, d, r = 0, k1, k2)
14: K⇐ FeistelFuncEval(ℓ, d, {[k1, k2]})
15: D ⇐ maxk⃗∈K{k1 + k2}
16: while 1 < D do
17: r ⇐ r + 1
18: K⇐ FeistelFuncEval(ℓ, d,K)
19: D ⇐ maxk⃗∈K{k1 + k2}
20: end while
21: return r
22: end procedure

Results. Table 5.2 shows the number of required chosen plaintexts to construct r-round in-
tegral distinguishers on (32, 5)- and (64, 7)-Feistel, where DES [Nat77] is classified into (32, 5)-
Feistel with non-bijective function and Camellia [AIK+00] is classified into (64, 7)-Feistel with
bijective function. When we construct the integral distinguisher on (ℓ, d)-Feistel with 2D chosen
plaintexts, we use (k1, k2) satisfying

(k1, k2) =

{
(D − ℓ, ℓ) for ℓ ≤ D,
(0, D) for D < ℓ.

For the comparison with our integral distinguishers, we consider two previous methods, one
is the propagation characteristic of the integral property and another is the estimation of the
algebraic degree. We first consider the propagation characteristic of the integral property. If the
F -function is a non-bijective function, the propagation characteristic does not construct effective
distinguishers. Therefore, results introduced by the integral property are only shown when the
F -function is bijective. We next consider the estimation of the algebraic degree. However, since
we do not know the improved bound against the Feistel Network, we use the trivial bound for the
Feistel Network. Assume that the left half of the plaintext is constant. For any r-round (ℓ, d)-
Feistel, it can be observed that the function, which associates the right half of the ciphertext with
the right half of the plaintext, has degree at most dr−2 for 2 ≤ r. Therefore, we can construct
the r-round integral distinguishers with 2d

r−2+1 chosen plaintexts. Since the right half of the
plaintext is at most ℓ bits, the distinguisher can be constructed with dr−2 + 1 ≤ ℓ.

As a result, as far as we try, all distinguishers constructed by the division property are
“better” than those by previous methods. We summarize integral distinguishers on (ℓ, d,m)-
SPN in Table 5.4. We already know a better integral distinguisher on Camellia in [YPK02], but
it is constructed by using the specific feature of Camellia. On the other hand, our method is
generic distinguishing attacks against (ℓ, d)-Feistel. From the result of (64, 7)-Feistel, it shows
that even if the F -function of Camellia is chosen from any functions with degree 7, the modified
Camellia has the 6-round integral distinguisher.

If we construct the dedicated path search algorithm for the specific cipher, we expect that
the algorithm can create better integral distinguishers.
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Table 5.2: The number of chosen plaintexts to construct r-round integral distinguishers on
(32, 5)- and (64, 7)-Feistel. Our distinguishers are got by implementing Algorithm 1.

Target F -function log2(#texts) Method Reference
[Application] 4R 5R 6R 7R 8R 9R
(32, 5)-Feistel 26 51 62 - - - our Sect. 5.4.3

[DES] 26 - - - - - degree [Knu94, BC13]
(64, 7)-Feistel bijection 50 98 124 - - - our Sect. 5.4.3
[Camellia] 50 - - - - - degree [Knu94, BC13]

64 - - - - - integral [KW02]

Table 5.3: The number of chosen plaintexts to construct r-round integral distinguishers on the
Simon family, where the F -function is not bijective. Our distinguishers are got by implementing
Algorithm 1.

Target log2(#texts) Method Reference
[Application] 6R 7R 8R 9R 10R 11R 12R 13R
(16, 2)-Feistel 17 25 29 31 - - - - our Sect. 5.4.3
[Simon32] - - - - - - - - degree [Knu94, BC13]

(24, 2)-Feistel 17 29 39 44 46 47 - - our Sect. 5.4.3
[Simon48] 17 - - - - - - - degree [Knu94, BC13]

(32, 2)-Feistel 17 33 49 57 61 63 - - our Sect. 5.4.3
[Simon64] 17 - - - - - - - degree [Knu94, BC13]

(48, 2)-Feistel 17 33 57 77 87 92 94 95 our Sect. 5.4.3
[Simon96] 17 33 - - - - - - degree [Knu94, BC13]

(64, 2)-Feistel 17 33 65 97 113 121 125 127 our Sect. 5.4.3
[Simon128] 17 33 - - - - - - degree [Knu94, BC13]

Integral Distinguishers on Simon Family. Although our attack is a generic attack, it can
create new integral distinguishers on the Simon family [BSS+13]. Simon is a lightweight block
ciphers proposed by the National Security Agency (NSA). Since Simon has a non-bijective F -
function and bit-oriented structure, it is complicated task to construct the integral distinguisher.
The division property theoretically shows that Simon32, 48, 64, 96, and 128 have at least 9-, 11-,
11-, 13-, and 13-round integral distinguishers, respectively. Table 5.3 shows the comparison be-
tween our distinguishers and previous ones by the degree estimation. On the other hand, Wang
et al. showed that Simon32 has the 15-round integral distinguisher by experiments [WLV+14].
Therefore, there are 6-round differences between our theoretical result and Wang’s experimental
result. Our distinguisher is valid against all (32, 2)-Feistel and it does not exploit the feature of
the round function. Namely, we expect that the 6-round difference is derived from the specifi-
cation of the round function of Simon32. We discuss this topic in Chap. 8.

5.5 Improved Distinguishers on Substitute-Permutation Net-
work

5.5.1 Substitute-Permutation Network

(ℓ, d,m)-SPN. The Substitute-Permutation Network (SPN) is another important structure for
block ciphers. The SPN has a round function that consists of an S-Layer and P-Layer, and a
block cipher is designed by iterating the round function. We now define an (ℓ, d,m)-SPN, whose
round function has m ℓ-bit S-boxes in the S-Layer and one (ℓm)-bit linear function in the P-
Layer. Here, each S-box is any bijective function whose degree is at most d, and an (ℓm)-bit
linear function is any bijective function whose degree is at most 1. Figure 5.7 shows the round
function of the SPN. Nowadays, many block ciphers adopting (ℓ, d,m)-SPN have been proposed,
e.g. AES [U.S01], PRESENT [BKL+07], and Serpent [ABK98] adopt (8, 7, 16)-, (4, 3, 16)-, and
(4, 3, 32)-SPN, respectively. Moreover, Keccak-f [DBPA11], which is a permutation in the hash
function Keccak, can be regarded as (5, 2, 320)-SPN.
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Table 5.4: The number of required chosen plaintexts to construct r-round integral distinguishers
on (ℓ, d)-Feistel. We get these values by implementing Algorithm 1.

Target F -function log2(#texts) Examples
6R 7R 8R 9R 10R 11R 12R 13R 14R

(16, 2) 17 25 29 31 - - - - - Simon32 [BSS+13]
bijection 16 23 28 30 31 - - - -

(24, 2) 17 29 39 44 46 47 - - - Simon48 [BSS+13]
bijection 17 27 38 43 46 47 - - -

(32, 2) 17 33 49 57 61 63 - - - Simon64 [BSS+13]
bijection 17 32 47 56 60 62 63 - -

(48, 2) 17 33 57 77 87 92 94 95 - Simon96 [BSS+13]
bijection 17 33 55 76 86 91 94 95 -

(64, 2) 17 33 65 97 113 121 125 127 - Simon128 [BSS+13]
bijection 17 33 64 95 112 120 124 126 127

Target F -function log2(#texts) Examples
3R 4R 5R 6R 7R 8R 9R 10R 11R

(32, 5) 6 26 51 62 - - - - - DES [Nat77]
bijection 6 26 46 61 - - - - -

(48, 5) 6 26 64 90 95 - - - -
bijection 6 26 59 89 95 - - - -

(64, 5) 6 26 77 118 126 - - - -
bijection 6 26 72 117 126 - - - -

Target F -function log2(#texts) Examples
3R 4R 5R 6R 7R 8R 9R 10R 11R

(32, 7) 8 35 60 - - - - - -
bijection 8 32 59 - - - - - -

(48, 7) 8 49 90 - - - - - -
bijection 8 48 84 95 - - - - -

(64, 7) 8 50 104 125 - - - - -
bijection 8 50 98 124 - - - - - Camellia [AIK+00]

Target F -function log2(#texts) Examples
3R 4R 5R 6R 7R 8R 9R 10R 11R

(32, 31) 32 62 - - - - - - -
bijection 32 32 63 - - - - - -

(48, 47) 48 94 - - - - - - -
bijection 48 48 95 - - - - - -

(64, 63) 64 126 - - - - - - -
bijection 64 64 127 - - - - - -

(32, 32) 33 - - - - - - - -
(48, 48) 49 - - - - - - - -
(64, 64) 65 - - - - - - - -

5.5.2 Propagation Characteristic for SPN

This section shows that the division property is useful to construct integral distinguishers on
(ℓ, d,m)-SPN. We first prepare the set of the input of the S-Layer such that ki bits of the input
of the ith S-box are active and the rest (ℓ− ki) bits are constant. In this case, the input set has
the division property Dℓm

k⃗
. We first evaluate the propagation characteristic against the S-Layer.

Next, the P-Layer is applied but the input and output take a value of Fℓm
2 . Therefore, we need

to convert the division property Dℓm

k⃗
into Dℓm

k and then evaluate the propagation characteristic
against the P-Layer. Since the S-Layer is applied again after the P-Layer, we convert the division
property Dℓm

k into Dℓm

K . After the second round, we evaluate the propagation characteristic of
this collective division property.
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Figure 5.7: (ℓ, d,m)-SPN

-1- S-Layer Assume that the input set has the division property Dℓm

K . From Proposition 5.2,
the output division property Dℓm

K′ is computed from K as

k′i =

{
⌈ki/d⌉ if ki < ℓ,

ℓ if ki = ℓ,

for all k⃗ ∈ K.

-2- Concatenation (Conversion form S-Layer to P-Layer) The output of the S-Layer is
expressed in a value of (Fℓ

2)
m, but the input of the P-Layer is expressed in a value of Fℓm

2 .
The transformation is generally implemented by a simple bit concatenation. Assume that
the input set has the division property Dℓm

K . From Proposition 5.6, the output division
property Dℓm

k′ is computed from K as

k′ = min
k⃗∈K

{
m∑

i=1

ki

}
.

-3- P-Layer The P-Layer consists of an (ℓm)-bit linear function. Since the degree of the linear
function is at most 1, there is no change in the division property.

-4- Partition (Conversion form P-Layer to S-Layer) The output of the P-Layer is ex-
pressed in a value of Fℓm

2 , but the input of the S-Layer is expressed in a value of (Fℓ
2)

m.
The transformation is generally implemented by a simple bit partition. Assume that the
input set has the division property Dℓm

k . From Proposition 5.5, the output division prop-

erty has Dℓm

K′ is computed as follows: First, K′ is initialized to ϕ. Then, for all k⃗′ satisfying∑m
i=1 k

′
i = k

K′ = K′ ∪ {k⃗′}.

We can construct the integral distinguisher by evaluating the propagation characteristic of the
collective division property. However, since |K| extremely expands, it is infeasible to execute
the straightforward implementation. Therefore, we show more efficient technique. Let X be the
input set of the S-Layer, and the elements take a value of (Fℓ

2)
m. Assume that the input set

has the division property Dℓm

K that is created by the partition of the division property Dℓm
k . If

k > (ℓ − 1)m, at least (m − ℓm + k) elements of k⃗ ∈ K have to become ℓ. In this case, the
rest elements have to become ℓ − 1. Since the S-Layer derives

⌈
ℓ−1
d

⌉
and ℓ from (ℓ − 1) and ℓ,

respectively, the output set has the division property Dℓm
k′ , where k′ is calculated as

k′ =

{⌈
ℓ−1
d

⌉
(ℓm− k) + ℓ(m− ℓm+ k) for k > (ℓ− 1)m,⌈

k
d

⌉
for k ≤ (ℓ− 1)m.

Here, if k ≤ (ℓ−1)m holds, we simply regard the round function of (ℓ, d,m)-SPN as one (ℓm)-bit
S-box with degree d.
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Algorithm 2 Path search algorithm for integral distinguishers on (ℓ, d,m)-SPN

1: procedure IntegralPathSearch(ℓ, d,m, r = 0, k1, k2, . . . , km)
2: if ki < ℓ then ki ⇐ ⌈ki/d⌉ ▷ 1-st round S-Layer
3: end if
4: k ⇐∑m

i=1 ki ▷ 1-st round Concatenation and P-Layer
5: while 1 < k do
6: r ⇐ r + 1
7: if k ≤ (ℓ− 1)m then k ⇐ ⌈k/d⌉ ▷ (r + 1)th round
8: else k ⇐

⌈
ℓ−1
d

⌉
(ℓm− k) + ℓ(m− ℓm+ k) ▷ (r + 1)th round

9: end if
10: end while
11: return r
12: end procedure

Table 5.5: The number of chosen plaintexts to construct r-round integral distinguishers on
(ℓ, d,m)-SPN. Our distinguishers are got by implementing Algorithm 2.

Target log2(#texts) Method Reference
3R 4R 5R 6R 7R

(4, 3, 16)-SPN 12 28 52 60 - our Sect. 5.5.3
[PRESENT] 28 52 60 63 - degree [BCC11]
(8, 7, 16)-SPN 56 120 - - - our Sect. 5.5.3

[AES] 117 127 - - - degree [BCC11]

Table 5.6: The number of chosen plaintexts to construct r-round integral distinguishers on
Keccak-f and Serpent. Our distinguishers are got by implementing Algorithm 2.

Target log2(#texts) Method Reference
[Application] 3R 4R 5R 6R 7R 8R 9R 10R
(4, 3, 32)-SPN 12 28 84 113 124 - - - our Sect. 5.5.3

[Serpent] 28 82 113 123 127 - - - degree [BCC11]

Target log2(#texts) Method Reference
[Application] 8R 9R 10R 11R 12R 13R 14R 15R
(5, 2, 320)-SPN 130 258 515 1025 1410 1538 1580 1595 our Sect. 5.5.3
[Keccak-f ] 257 513 1025 1409 1537 1579 1593 1598 degree [BCC11]

5.5.3 Path Search Algorithm for (ℓ, d,m)-SPN

We now consider integral distinguishers on (ℓ, d,m)-SPN. We first prepare the set of chosen
plaintexts such that ki bits of the input of the ith S-box are active and the rest (ℓ− ki) bits are
constant. Namely, we prepare 2

∑m
i=1 ki chosen plaintexts. The input set has the division property

Dℓm

k⃗
. Algorithm 2 shows the path search algorithm to construct the integral distinguisher.

Results. Table 5.5 shows the number of required chosen plaintexts to construct the r-round in-
tegral distinguisher on (4, 3, 16)- and (8, 7, 16)-SPN, where PRESENT [BKL+07] and AES [U.S01]
are classified into (4, 3, 16)- and (8, 7, 16)-SPN, respectively. When we construct the integral dis-

tinguisher on (ℓ, d,m)-SPN with 2D chosen plaintexts, we use a vector k⃗ satisfying

ki =

⎧
⎪⎨
⎪⎩

ℓ for iℓ ≤ D,
D − (i− 1)ℓ for (i− 1)ℓ ≤ D < iℓ,

0 for D < (i− 1)ℓ.

For the comparison with our integral distinguishers, we first consider the propagation charac-
teristic of the integral property. However, it does not construct effective distinguishers because
the P-Layer is any linear function. Next, we estimate the algebraic degree by using the method
proposed by Boura et al. (see Theorem5.1).
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As a result, as far as we try, all distinguishers constructed by the division property are
“better” than those by previous methods. We summarize integral distinguishers on (ℓ, d,m)-SPN
in Table 5.7. We already know the 7-round integral distinguisher on PRESENT in [WW13] and
the 4-round integral distinguisher on AES in [KW02]. However, they are constructed by using
the specific feature of each block cipher. On the other hand, our method is generic distinguishing
attacks against (ℓ, d,m)-SPN. From the result of (4, 3, 16)-SPN, it shows that even if the P-Layer
of PRESENT is chosen from any bijective linear functions, the modified PRESENT has the 6-
round integral distinguisher. Similarly, from the result of (8, 7, 16)-SPN, it shows that even if
the P-Layer of AES is chosen from any bijective linear function, the modified AES still has the
4-round integral distinguisher.

If we construct the dedicated path search algorithm for the specific cipher, we expect that
the algorithm can create better integral distinguishers.

Table 5.7: The number of required chosen plaintexts to construct r-round integral distinguishers
on (ℓ, d,m)-SPN. We get these values by implementing Algorithm 2.

Target Size log2(#texts) Examples
(bits) 4R 5R 6R 7R 8R 9R 10R

(4, 3, 16) 64 28 52 60 - - - -
PRESENT [BKL+07]
LED [GPPR11]

(4, 3, 24) 96 28 76 89 - - - -

(4, 3, 32) 128 28 84 113 124 - - -
Serpent [ABK98]
Noekeon [DPAR00]

(4, 3, 40) 160 28 84 136 152 - - -
(4, 3, 48) 192 28 84 156 180 188 - -
(4, 3, 56) 224 28 84 177 209 220 - -

(4, 3, 64) 256 28 84 200 237 252 - -
Prøst-128 [KLL+14a]
Minalpher-P [STA+14]

(4, 3, 128) 512 28 84 244 424 484 504 509 Prøst-256 [KLL+14a]

Target Size log2(#texts) Examples
(bits) 5R 6R 7R 8R 9R 10R 11R

(5, 2, 40) 200 18 35 65 130 178 195 - PRIMATE-80 [ABB+14]
(5, 2, 56) 280 18 35 65 130 230 265 275 PRIMATE-120 [ABB+14]
(5, 2, 64) 320 18 35 65 130 258 300 315 ASCON P [DEMS14]

Target Size log2(#texts) Examples
(bits) 9R 10R 11R 12R 13R 14R 15R

(5, 2, 160) 800 258 515 705 770 790 798 - Keccak-f [800] [DBPA11]
(5, 2, 256) 1280 258 515 1025 1195 1253 1271 1278
(5, 2, 320) 1600 258 515 1025 1410 1538 1580 1595 Keccak-f [1600] [DBPA11]

Target Size log2(#texts) Examples
(bits) 3R 4R 5R 6R 7R 8R 9R

(5, 4, 40) 200 20 65 170 195 - - -
(5, 4, 56) 280 20 65 230 270 - - -
(5, 4, 64) 320 20 65 260 305 - - -
(5, 4, 160) 800 20 65 260 665 770 795 -
(5, 4, 256) 1280 20 65 260 1025 1220 1265 - ICEPOLE P [MGH+14]
(5, 4, 320) 1600 20 65 260 1025 1460 1565 1595

Target Size log2(#texts) Examples
(bits) 3R 4R 5R 6R 7R 8R 9R

(8, 7, 16) 128 56 120 - - - - - AES [U.S01]
(8, 7, 24) 192 56 176 - - - - - Rijndael-192 [DR02]
(8, 7, 32) 256 56 232 - - - - - Rijndael-256 [DR02]
(8, 7, 64) 512 56 344 488 - - - - Whirlpool primitive [BR03]

Integral Distinguishers on Serpent and Keccak-f . Although our attack is a generic
attack, it can create new integral distinguishers on Serpent and Keccak-f . Serpent is one of
AES finalists and is classified into (4, 3, 32)-SPN. The existing integral distinguisher is shown in
[ZRHD08], and it shows that Serpent has 3.5-round integral distinguisher. On the other hand,
we show that all (4, 3, 32)-SPNs have at least 7-round integral distinguishers with 2124 chosen
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plaintexts. Table 5.6 shows the comparison between our distinguishers and previous ones by the
degree estimation.

Keccak is chosen as SHA-3, and the core function Keccak-f is classified into (5, 2, 320)-
SPN. Boura et al. estimated the algebraic degree of Keccak-f in [BCC11]. We search for
the integral distinguisher by using Algorithm 2. As a result, our distinguishers can reduce the
number of chosen plaintexts compared with previous ones. Table 5.6 shows the comparison
between our distinguishers and previous ones.

5.6 Improved Distinguishers on AES-Like Ciphers

We introduced the division property and proposed distinguishing attacks against the Feistel and
Substitute-Permutation Networks. In this section, we show that the division property is also
useful to construct the dedicated attack against specific ciphers. As an example, we apply the
division property to AES-like ciphers. AES is the most famous block cipher and is standardized
by the National Institute of Standards and Technology (NIST) in 2001. Many block ciphers,
hash functions, and authenticated encryptions with AES-like design have been proposed after
the standardization. The division property can find non trivial property on AES and improves
integral distinguishers on many AES-like ciphers.

5.6.1 AES-Like Cipher

(ℓ, d,m)-AES. AES is a 128-bit block cipher, and an intermediate text of AES is expressed
in a 4 × 4 matrix whose elements are 8 bits. The round function of AES consists of SubBytes,
ShiftRows, MixColumns, and AddRoundKey, where each function is defined as follows:

• SubBytes : It substitutes each byte in the matrix into another byte by an S-box.

• ShiftRows : Each byte of the ith row is rotated i− 1 bytes to the left.

• MixColumns : It diffuses bytes within each column by a linear function.

• AddRoundKey : A round key is XORed with the intermediate text.

We define an (ℓ, d,m)-AES, where ℓ, d, and m denote the bit length of an S-box, the algebraic
degree of an S-box, and the size of the matrix, respectively. The intermediate text is expressed
in an m×m matrix whose elements are ℓ bits. Let x⃗ ∈ (Fℓ

2)
m2

be an input of the round function,
which is arranged as

⎡
⎢⎢⎢⎣

x1 xm+1 · · · xm2−m+1

x2 xm+2 · · · xm2−m+2

...
...

. . .
...

xm x2m · · · xm2−m+m

⎤
⎥⎥⎥⎦ .

Let y⃗ ∈ (Fℓ
2)

m2

be an output of the round function, which is calculated as

y⃗ = (AddRoundKey ◦MixColumns ◦ ShiftRows ◦ SubBytes)(x⃗).

Each function is the same as that of AES except for the scale. For instance, AES [U.S01] and
LED [GPPR11] adopt (8, 7, 4)-AES and (4, 3, 4)-AES, respectively. Moreover, P256 of PHOTON [GPP11]
adopts (4, 3, 8)-AES2.

5.6.2 Path Search Algorithm for (ℓ, d,m)-AES

Section 5.5 shows how to construct integral distinguishers on (ℓ, d,m)-SPN, but practical block
ciphers have a specific P-Layer. For instance, the P-Layer in AES consists of ShiftRows and Mix-
Columns, and it is not any linear function. Taking into account the structure of the P-Layer, we
can construct more effective algorithm. In this section, as an example, we show a path search
algorithm to construct integral distinguishers on (ℓ, d,m)-AES. AesFuncEval in Algorithm 3

2Since PHOTON is a hash function, it uses AddConstant instead of AddRoundKey.
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Algorithm 3 Path search for integral characteristics on (ℓ, d,m)-AES

1: procedure AesFuncEval(ℓ, d,m, k⃗)
2: for i = 1 to m2 do
3: if ki < ℓ then ki ⇐ ⌈ki/d⌉ ▷ SubBytes
4: end if
5: end for
6: k⃗ ⇐ ShiftRows(k⃗) ▷ ShiftRows
7: k′c ⇐

∑m
r=1 k

′
m(c−1)+r for all c ▷ MixColumns

8: k⃗′ ⇐ sort(k⃗′)
9: return k⃗′

10: end procedure

11: procedure IntegralPathSearch(ℓ, d,m, r = 0, k⃗ ∈ {0, 1, . . . , ℓ}m2

)

12: K⇐ AesFuncEval(ℓ, d,m, k⃗) ▷ 1-st round
13: D ⇐ maxk⃗∈K(

∑m
c=1 kc)

14: while 1 < D do
15: r ⇐ r + 1
16: K′ = ϕ
17: for all k⃗ ∈ K do
18: K′′ ⇐ Partition(k⃗)

19: for all k⃗′′ ∈ K′′ do
20: K′ ⇐ K′ ∪ AesFuncEval(ℓ, d,m, k⃗′′)
21: end for
22: end for
23: K⇐ SizeReduce(K′)
24: D ⇐ maxk⃗∈K(

∑m
c=1 kc)

25: end while
26: return r
27: end procedure

evaluates the propagation characteristic of the division property against the round function of
AES-like ciphers, and it calls ShiftRows and sort. ShiftRows performs a similar transforma-
tion to ShifrRows. sort is the sorting algorithm, which is useful for feasible implementation.
IntegralPathSearch in Algorithm 3 shows the path search algorithm, and it calls Partition,

AesFuncEval, and SizeReduce. Partition(k⃗) calculates all possible k⃗′ ∈ {0, 1, . . . , ℓ}mm satis-
fying

(
m∑

r=1

k′r,
m∑

r=1

k′m+r, . . . ,

m∑

r=1

k′m(m−1)+r

)
= (k1, k2, . . . , km),

SizeReduce eliminates k⃗ ∈ K if there exists k⃗′ ∈ K′ satisfying k⃗ ⪰ k⃗′.
Note that |K| extremely expands when the partition of the division property is executed (see

the 18th line in Algorithm 3). Namely, our algorithm takes large execution time and memory
capacity if we straightforwardly implement our algorithm. Therefore, we use an effective method,
which uses the feature of (ℓ, d,m)-AES, for the feasible implementation. Note that each column

of (ℓ, d,m)-AES is equivalent each other. Assuming that the input set has D(ℓm)m

k⃗,⃗k′ that k⃗′ is

a permutation of elements of k⃗, the division property of the next round calculated from k⃗ is
exactly the same as that from k⃗′ because columns of (ℓ, d,m)-AES are equivalent each other.
Namely, it is enough to save either, and we implement it by a sorting algorithm (see the 8th
line in Algorithm 3). This technique enables us to execute our path search algorithm feasibly in
many parameters.

5.6.3 Results for (4, 3,m)-AES

Table 5.8 shows the number of required chosen plaintexts to construct r-round integral distin-
guishers on (4, 3,m)-AES. When we construct the integral distinguisher on (4, 3,m)-AES with
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Table 5.8: The number of chosen plaintexts to construct r-round integral distinguishers on
(4, 3,m)-AES

Target log2(#texts) Method Reference
[Application] 3R 4R 5R 6R 7R 8R
(4, 3, 4)-AES 4 12 32 52 - - our (AES) Sect. 5.6.2

[LED] 12 28 52 60 - - our (SPN) Sect. 5.5.3
28 52 60 63 - - degree [BCC11]
4 16 - - - - integral [DKR97, KW02]

(4, 3, 5)-AES 4 12 20 72 97 - our (AES) Sect. 5.6.2
[P100 in PHOTON] 12 28 76 92 - - our (SPN) Sect. 5.5.3

28 76 92 98 - - degree [BCC11]
4 20 - - - - integral [DKR97, KW02]

(4, 3, 6)-AES 4 12 24 84 132 - our (AES) Sect. 5.6.2
[P144 in PHOTON] 12 28 84 124 140 - our (SPN) Sect. 5.5.3

28 82 124 138 142 - degree [BCC11]
4 24 - - - - integral [DKR97, KW02]

(4, 3, 7)-AES 4 12 24 84 164 192 our (AES) Sect. 5.6.2
[P196 in PHOTON] 12 28 84 160 184 192 our (SPN) Sect. 5.5.3

28 82 158 184 192 195 degree [BCC11]
4 28 - - - - integral [DKR97, KW02]

(4, 3, 8)-AES 4 12 28 92 204 249 our (AES) Sect. 5.6.2
[P256 in PHOTON] 12 28 84 200 237 252 our (SPN) Sect. 5.5.3

28 82 198 237 250 254 degree [BCC11]
4 32 - - - - integral [DKR97, KW02]

2D chosen plaintexts, we carefully choose the input matrix k⃗.
For the comparison with our improved integral distinguishers, we also show integral dis-

tinguishers by using the propagation characteristic of the integral property. We also estimate
the algebraic degree by the method proposed Boura et al. (see Theorem5.1). Moreover, since
(4, 3,m)-AES are classified into (4, 3,m2)-SPN, we construct integral distinguishers by Algo-
rithm 2.

Figure 5.8 shows the comparison between the existing-best distinguisher and our distin-
guisher. Here the horizontal axis denotes the number of required chosen plaintexts and the
vertical axis denotes the number of rounds in integral distinguishers. As a result, as far as we
try, all distinguishers constructed by the division property are at least better than those by pre-
vious methods. Especially, the advantage of our method is large when we construct the integral
distinguisher with the small number of texts. For instance, our method shows that (4, 3, 8)-AES,
which is adopted by P256 in PHOTON, has the 6-round distinguisher with 292 chosen plaintexts.
If we regard (4, 3, 8)-AES as (4, 3, 64)-SPN, 2200 chosen plaintexts are required to construct the
distinguisher.

5.6.4 Results for (4, 2,m)-AES

As the algebraic degree of S-box decreases, the division property can construct longer integral
distinguisher because it can exploit the algebraic degree effectively. Therefore, we also evaluate
the integral distinguisher on (4, 2,m)-AES. Table 5.9 shows the number of required chosen plain-
texts to construct r-round integral distinguishers on (4, 2,m)-AES, where we carefully choose

the input matrix K⃗ when we construct the integral distinguisher on (4, 2,m)-AES with 2D

chosen plaintexts. Note that the propagation of integral properties finds only 4-round integral
distinguisher independent on the algebraic degree.

Figure 5.9 shows the comparison between the existing-best distinguisher and our distin-
guisher. Here the horizontal axis denotes the number of required chosen plaintexts and the
vertical axis denotes the number of rounds in integral distinguishers. Similarly to results for
(4, 3,m)-AES, all distinguishers constructed by the division property are at least better than
those by previous methods.
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Figure 5.8: Comparison between new and previous integral characteristics for (4, 3,m)-AES

Table 5.9: The number of chosen plaintexts to construct r-round integral distinguishers on
(4, 2,m)-AES

Target log2(#texts) Method
7R 8R 9R 10R 11R 12R 13R

(4, 2, 3)-AES 34 35 - - - - - degree
25 35 - - - - - our (AES)

(4, 2, 4)-AES 57 61 63 - - - - degree
33 49 61 - - - - our (AES)

(4, 2, 5)-AES 83 92 96 98 99 - - degree
37 60 80 96 99 - - our (AES)

(4, 2, 6)-AES 105 125 135 140 142 143 - degree
37 69 105 125 140 143 - our (AES)

(4, 2, 7)-AES 129 163 180 188 192 194 195 degree
36 69 116 163 184 192 195 our (AES)

(4, 2, 8)-AES 129 193 225 241 249 253 255 degree
33 65 129 193 225 249 253 our (AES)

5.6.5 Nontrivial Division Property on AES

The most important parameter on AES-like ciphers is (8, 7, 4)-AES because AES adopts the
parameter. We apply the division property to (8, 7, 4)-AES and show nontrivial property.

Revisiting 4-round Distinguisher. We first revisit the 4-round integral distinguisher on
AES. When the following input for Algorithm3

k⃗ =

⎡
⎢⎢⎣

8 0 0 0
0 8 0 0
0 0 8 0
0 0 0 8

⎤
⎥⎥⎦

is used, we get the following propagation of the division property.

D816

k⃗

4R−−→ D128
2

Therefore, 128 bits encrypted by 4 rounds are balanced.
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Figure 5.9: Comparison between new and previous integral characteristics for (4, 2,m)-AES-like
ciphers

Nontrivial Property. We next consider the propagation of the division property using more
number of chosen plaintexts. When the following input for Algorithm3

k⃗ =

⎡
⎢⎢⎣

8 8 0 0
0 8 8 0
0 0 8 8
8 0 0 8

⎤
⎥⎥⎦

is used, we get the following propagation of the division property.

D816

k⃗

4R−−→ D128
3

Therefore, the and of any 2 bits from 128 bits encrypted by 4 rounds is also balanced. Moreover,
when the following input for Algorithm3

k⃗ =

⎡
⎢⎢⎣

8 8 8 0
0 8 8 8
8 0 8 8
8 8 0 8

⎤
⎥⎥⎦

is used, we get the following propagation of the division property.

D816

k⃗

4R−−→ D128
4

Therefore, the and of any 3 bits from 128 bits encrypted by 4 rounds is also balanced.

5.7 Conclusion

In this chapter, we proposed the fundamental technique to improve integral distinguishers and
showed structural cryptanalyses against the Feistel Network and the SPN. Our new technique
uses the division property, which is the generalization of the integral property. It can effectively
construct integral distinguishers even if block ciphers have non-bijective functions, bit-oriented
structures, and low-degree functions. For the Feistel Network, when the algebraic degree of the
F -function is smaller than the bit length of the F -function, our method can attack more rounds
than previous generic attacks. Moreover, we theoretically showed that Simon48, 64, 96, and 128
have 11-, 11-, 13-, and 13-round integral distinguishers, respectively. For the SPN, our method
extremely reduces the required number of chosen plaintexts compared with previous methods.
Moreover, we improved integral distinguishers on Keccak-f and Serpent. The division property
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is useful to construct integral distinguishers against specific ciphers. As one example, we showed
a path search algorithm to construct integral distinguishers on the AES-like cipher, which is
the sub class of the SPN. From this fact, we expect that the division property can construct
many improved integral distinguishers against specific ciphers by constructing the dedicated
path search algorithm.
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Chapter 6

Application to MISTY1 –Integral
Cryptanalysis on Full MISTY1

Abstract– MISTY1 is a block cipher designed by Matsui in 1997. It was well evaluated
and standardized by projects, such as CRYPTREC, ISO/IEC, and NESSIE. In this chapter,
we propose a key recovery attack on the full MISTY1, i.e., we show that 8-round MISTY1
with 5 FL layers does not have 128-bit security. Many attacks against MISTY1 have been
proposed, but there is no attack against the full MISTY1. Therefore, our attack is the first
cryptanalysis against the full MISTY1. We construct a new integral characteristic by using
the propagation characteristic of the division property. We first improve the division property
by optimizing a public S-box and then construct a 6-round integral characteristic on MISTY1.
Finally, we recover the secret key of the full MISTY1 with 263.58 chosen plaintexts and 2121 time
complexity. Moreover, if we use 263.994 chosen plaintexts, the time complexity for our attack is
reduced to 2108.3. Note that our cryptanalysis is a theoretical attack. Therefore, the practical
use of MISTY1 will not be affected by our attack.
Keywords– MISTY1, Integral attack, Division property

6.1 Introduction

MISTY [Mat97] is a block cipher designed by Matsui in 1997 and is based on the theory of
provable security [Nyb94, NK95] against the differential attack [BS90] and linear attack [Mat93].
MISTY has a recursive structure, and the component function has a unique structure, the
so-called MISTY structure [Mat96]. There are two types of MISTY, MISTY1 and MISTY2.
MISTY1 adopts the Feistel structure whose F-function is designed by the recursive MISTY
structure. MISTY2 does not adopt the Feistel structure and uses only the MISTY structure.
Both ciphers achieve provable security against differential and linear attacks. MISTY1 is de-
signed for practical use, and MISTY2 is designed for experimental use.

MISTY1 is a 64-bit block cipher with 128-bit key, and it has a Feistel structure with FL
layers. MISTY1 is in the candidate recommended ciphers list of CRYPTREC [CRY13], and
it is standardized by ISO/IEC 18033-3 [ISO05]. Moreover, it is a NESSIE-recommended ci-
pher [NES04] and is described in RFC 2994 [OM00]. There are many existing attacks against
reduced MISTY1, and we summarize these attacks in Table 6.1. A higher-order differential at-
tack is the most powerful attack against MISTY1 [Bar15b]. However, there is no attack against
the full MISTY1, i.e., 8-round MISTY1 with 5 FL layers.

Integral Attack. The integral attack [KW02] was first proposed by Daemen et al. to evaluate
the security of Square [DKR97] and was then formalized by Knudsen and Wagner. There are
two major techniques to construct an integral characteristic; one uses the propagation character-
istic of integral properties [KW02], and the other estimates the algebraic degree [Knu94, Lai94].
We often call the second technique a “higher-order differential attack.” A new technique to con-
struct integral characteristics was proposed in EUROCRYPT 2015 [Tod15b], and it introduced
a new property, the so-called division property, by generalizing the integral property [KW02]. It
showed the propagation characteristic of the division property for any function restricted by an
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Table 6.1: Summary of single secret-key attacks against MISTY1

Rounds #FL layers Attack algorithm Data Time Reference

5 0 higher order differential 11× 27 CP 217 [THK99]

5 3 integral 234 CP 248 [KW02]

5 4 higher order differential 222 CP 228 [HTK04]

5 4 impossible differential 238 CP 246.45 [DK08]

6 4 higher order differential 253.7 CP 253.7 [TSSK08]

6 4 impossible differential 251 CP 2123.4 [DK08]

7 0 impossible differential 250.2 KP 2114.1 [DK08]

7 4 higher order differential 254.1 CP 2120.7 [TSSK08]

7 4 higher order differential 250.1 CP 2100.4 [Bar15b]

7 5 higher order differential 251.4 CP 2121 [Bar15b]

8 5 integral by division property 263.58 CP 2121 This chapter

8 5 integral by division property 263.994 CP 2108.3 This chapter

algebraic degree. As a result, several improved results were reported on the structural evalua-
tion of the Feistel network and the Substitution-Permutation network. Please refer to Chap. 5 in
detail. Moreover, the division property was applied to the generalized Feistel network [ZW15].

Our Contribution. InChap. 5, S-boxes are randomly chosen depending on round keys but
the algebraic degree is restricted. However, many realistic block ciphers use more efficient struc-
tures, e.g., a public S-box and key addition. In this chapter, we show that the division property
becomes more useful if an S-box is a public function. Then, we apply our technique to the crypt-
analysis of MISTY1. We first evaluate the propagation characteristic of the division property
for public S-boxes S7 and S9 and show that S7 has a vulnerable property. We next evaluate
the propagation characteristic of the division property for the FI function and then evaluate
it for the FO function. Moreover, we evaluate the propagation characteristic for the FL layer.
Finally, we devise an algorithm to search for integral characteristics on MISTY1 by assembling
these propagation characteristics. As a result, we can construct a new 6-round integral char-
acteristic, where the left 7-bit value of the output is balanced. We recover the round key by
using the partial-sum technique [FKL+00]. As a result, the secret key of the full MISTY1 can
be recovered with 263.58 chosen plaintexts and 2121 time complexity. Moreover, if we can use
263.994 chosen plaintexts, the time complexity is reduced to 2108.3. Unfortunately, we have to
use almost all chosen plaintexts, and recovering the secret key by using fewer chosen plaintexts
is left as an open problem.

6.2 MISTY1

MISTY1 is a Feistel cipher whose F-function has the MISTY structure, and the recommended
parameter is 8 rounds with 5 FL layers. Figure 6.1 shows the structure of MISTY1. Let XL

i

(resp. XR
i ) be the left half (resp. the right half) of an i-round input. Moreover, XL

i [j] (resp.
XR

i [j]) denotes the jth bit of XL
i (resp. XR

i ) from the left. MISTY1 is a 64-bit block cipher
with 128-bit key, and it has a Feistel structure with FL layers, where the FO function is used
in the F-function of the Feistel structure. The component function FOi is constructed by using
the 3-round MISTY structure, where FIi,1, FIi,2, and FIi,3 are used as the F-function of the
MISTY structure, and the four 16-bit round keys KOi,1, KOi,2, KOi,3, and KOi,4 are used.
Moreover, the function FIi,j is constructed by using the 3-round MISTY structure, where a
9-bit S-box S9 and 7-bit S-box S7 are used in the F-function, and a 16-bit round key KIi,j is
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Figure 6.1: Specification of MISTY1

used. Here, the ANF of S7 is represented as

y[0] = x[0]⊕ x[1]x[3]⊕ x[0]x[3]x[4]⊕ x[1]x[5]⊕ x[0]x[2]x[5]⊕ x[4]x[5]
⊕ x[0]x[1]x[6]⊕ x[2]x[6]⊕ x[0]x[5]x[6]⊕ x[3]x[5]x[6]⊕ 1,

y[1] = x[0]x[2]⊕ x[0]x[4]⊕ x[3]x[4]⊕ x[1]x[5]⊕ x[2]x[4]x[5]⊕ x[6]⊕ x[0]x[6]
⊕ x[3]x[6]⊕ x[2]x[3]x[6]⊕ x[1]x[4]x[6]⊕ x[0]x[5]x[6]⊕ 1,

y[2] = x[1]x[2]⊕ x[0]x[2]x[3]⊕ x[4]⊕ x[1]x[4]⊕ x[0]x[1]x[4]⊕ x[0]x[5]⊕ x[0]x[4]x[5]
⊕ x[3]x[4]x[5]⊕ x[1]x[6]⊕ x[3]x[6]⊕ x[0]x[3]x[6]⊕ x[4]x[6]⊕ x[2]x[4]x[6],

y[3] = x[0]⊕ x[1]⊕ x[0]x[1]x[2]⊕ x[0]x[3]⊕ x[2]x[4]⊕ x[1]x[4]x[5]⊕ x[2]x[6]
⊕ x[1]x[3]x[6]⊕ x[0]x[4]x[6]⊕ x[5]x[6]⊕ 1,

y[4] = x[2]x[3]⊕ x[0]x[4]⊕ x[1]x[3]x[4]⊕ x[5]⊕ x[2]x[5]⊕ x[1]x[2]x[5]⊕ x[0]x[3]x[5]
⊕ x[1]x[6]⊕ x[1]x[5]x[6]⊕ x[4]x[5]x[6]⊕ 1,

y[5] = x[0]⊕ x[1]⊕ x[2]⊕ x[0]x[1]x[2]⊕ x[0]x[3]⊕ x[1]x[2]x[3]⊕ x[1]x[4]
⊕ x[0]x[2]x[4]⊕ x[0]x[5]⊕ x[0]x[1]x[5]⊕ x[3]x[5]⊕ x[0]x[6]⊕ x[2]x[5]x[6],

y[6] = x[0]x[1]⊕ x[3]⊕ x[0]x[3]⊕ x[2]x[3]x[4]⊕ x[0]x[5]⊕ x[2]x[5]⊕ x[3]x[5]
⊕ x[1]x[3]x[5]⊕ x[1]x[6]⊕ x[1]x[2]x[6]⊕ x[0]x[3]x[6]⊕ x[4]x[6]⊕ x[2]x[5]x[6].
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Moreover, the ANF of S9 is represented as

y[0] = x[0]x[4]⊕ x[0]x[5]⊕ x[1]x[5]⊕ x[1]x[6]⊕ x[2]x[6]⊕ x[2]x[7]⊕ x[3]x[7]⊕ x[3]x[8]
⊕ x[4]x[8]⊕ 1,

y[1] = x[0]x[2]⊕ x[3]⊕ x[1]x[3]⊕ x[2]x[3]⊕ x[3]x[4]⊕ x[4]x[5]⊕ x[0]x[6]⊕ x[2]x[6]
⊕ x[7]⊕ x[0]x[8]⊕ x[3]x[8]⊕ x[5]x[8]⊕ 1,

y[2] = x[0]x[1]⊕ x[1]x[3]⊕ x[4]⊕ x[0]x[4]⊕ x[2]x[4]⊕ x[3]x[4]⊕ x[4]x[5]⊕ x[0]x[6]
⊕ x[5]x[6]⊕ x[1]x[7]⊕ x[3]x[7]⊕ x[8],

y[3] = x[0]⊕ x[1]x[2]⊕ x[2]x[4]⊕ x[5]⊕ x[1]x[5]⊕ x[3]x[5]⊕ x[4]x[5]⊕ x[5]x[6]
⊕ x[1]x[7]⊕ x[6]x[7]⊕ x[2]x[8]⊕ x[4]x[8],

y[4] = x[1]⊕ x[0]x[3]⊕ x[2]x[3]⊕ x[0]x[5]⊕ x[3]x[5]⊕ x[6]⊕ x[2]x[6]⊕ x[4]x[6]
⊕ x[5]x[6]⊕ x[6]x[7]⊕ x[2]x[8]⊕ x[7]x[8],

y[5] = x[2]⊕ x[0]x[3]⊕ x[1]x[4]⊕ x[3]x[4]⊕ x[1]x[6]⊕ x[4]x[6]⊕ x[7]⊕ x[3]x[7]
⊕ x[5]x[7]⊕ x[6]x[7]⊕ x[0]x[8]⊕ x[7]x[8],

y[6] = x[0]x[1]⊕ x[3]⊕ x[1]x[4]⊕ x[2]x[5]⊕ x[4]x[5]⊕ x[2]x[7]⊕ x[5]x[7]⊕ x[8]
⊕ x[0]x[8]⊕ x[4]x[8]⊕ x[6]x[8]⊕ x[7]x[8]⊕ 1,

y[7] = x[1]⊕ x[0]x[1]⊕ x[1]x[2]⊕ x[2]x[3]⊕ x[0]x[4]⊕ x[5]⊕ x[1]x[6]⊕ x[3]x[6]
⊕ x[0]x[7]⊕ x[4]x[7]⊕ x[6]x[7]⊕ x[1]x[8]⊕ 1,

y[8] = x[0]⊕ x[0]x[1]⊕ x[1]x[2]⊕ x[4]⊕ x[0]x[5]⊕ x[2]x[5]⊕ x[3]x[6]⊕ x[5]x[6]
⊕ x[0]x[7]⊕ x[0]x[8]⊕ x[3]x[8]⊕ x[6]x[8]⊕ 1.

The component function FLi uses two 16-bit round keys, KLi,1 and KLi,2, where ∩ and ∪
denote a bitwise AND and OR, respectively. These round keys are calculated from the secret
key (K1,K2, . . . ,K8) as follows.

Symbol KOi,1 KOi,2 KOi,3 KOi,4 KIi,1 KIi,2 KIi,3 KLi,1 KLi,2

Key Ki Ki+2 Ki+7 Ki+4 K ′
i+5 K ′

i+1 K ′
i+3 K i+1

2
(odd i) K ′

i+1
2 +6

(odd i)

K ′
i
2+2

(even i) K i
2+4 (even i)

Here, Ki and K
′
i are identified with Ki−8 and K ′

i−8, respectively, when i exceeds 8. Moreover,
K ′

i is defined as the output of FIi,j where the input is Ki and the key is Ki+1.

6.3 Integral Characteristic by Division Property

6.3.1 Notations

We make the distinction between the addition over Fn
2 and addition over Z, and we use ⊕

and + as the addition over Fn
2 and addition over Z, respectively. For any a ∈ Fn

2 , the ith
element is expressed as a[i], and the Hamming weight w(a) is calculated as w(a) =

∑n
i=1 a[i].

Moreover, a[i1, i2, . . . , ij ] denotes a j-bit substring of a as a[i1, i2, . . . , ij ] = a[i1]∥a[i2]∥ · · · ∥a[ij ].
Let 1n ∈ Fn

2 be a value whose all elements are 1. Moreover, let 0n ∈ Fn
2 be a value whose

all elements are 0. For any set K, let |K| be the number of elements. Moreover, let ϕ be an
empty set. For any a⃗ ∈ (Fn1

2 × Fn2
2 × · · · × Fnm

2 ), the vectorial Hamming weight is defined as
W (⃗a) = [w(a1), w(a2), . . . , w(am)] ∈ Zm, where ai denotes the ith element of a⃗. Moreover, for

any k⃗ ∈ Zm and k⃗′ ∈ Zm, we define k⃗ ⪰ k⃗′ if ki ≥ k′i for all i (1 ≤ i ≤ m). Otherwise, k⃗ ⪰̸ k⃗′.

Boolean Function. A Boolean function is a function from Fn
2 to F2. Let deg(f) be the

algebraic degree of a Boolean function f . Algebraic Normal Form (ANF) is often used as
representation of the Boolean function. Let f be any Boolean function from Fn

2 to F2. Then, it
can be represented as

f(x) =
⨁

u∈Fn
2

afu

(
n∏

i=1

x[i]u[i]

)
,
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where afu ∈ F2 is a constant value depending on f and u. If deg(f) is at most d, all afu satisfying
d < w(u) are 0. An n-bit S-box can be regarded as the collection of n Boolean functions. If the
algebraic degrees of its n Boolean functions are at most d, we say the algebraic degree of the
S-box is at most d.

6.3.2 Integral Attack

An integral attack [KW02] is one of the most powerful cryptanalyses against block ciphers.
Attackers prepare N chosen plaintexts and get the corresponding ciphertexts. If the XOR of all
corresponding ciphertexts is 0 for all secret keys, we say that the block cipher has an integral
characteristic with N chosen plaintexts. In an integral attack, attackers first create an integral
characteristic against a reduced-round block cipher. Then, they guess the round keys that are
used in the last several rounds and calculate the XOR of the ciphertexts of the reduced-round
block cipher. Finally, they evaluate whether or not the XOR is 0. If the XOR is not 0, they can
discard the guessed round keys from the candidates of the correct key.

6.3.3 Division Property

A division property, which was proposed in Chap. 5, is used to search for integral characteristics.
The division property of chosen plaintexts is first evaluated, and that of texts encrypted by one
round is evaluated by the propagation characteristic. By repeating this procedure, the division
property of texts encrypted by arbitrary rounds is evaluated. Finally, we can easily determine
from the propagated division property whether r rounds have integral characteristics or not.

Bit Product Function. We first define two bit product functions πu and πu⃗, which are used
to evaluate the division property of a multiset1. Let πu : Fn

2 → F2 be a function for any u ∈ Fn
2 .

Let x ∈ Fn
2 be the input, and πu(x) be the AND of x[i] satisfying u[i] = 1, i.e., it is defined as

πu(x) :=

n∏

i=1

x[i]u[i].

Let πu⃗ : (Fn1
2 × Fn2

2 × · · · × Fnm
2 ) → F2 be a function for any u⃗ ∈ (Fn1

2 × Fn2
2 × · · · × Fnm

2 ). Let
x⃗ ∈ (Fn1

2 × Fn2
2 × · · · × Fnm

2 ) be the input, and πu⃗(x⃗) be defined as

πu⃗(x⃗) :=

m∏

i=1

πui(xi).

Definition of Division Property. The division property is given against a multiset, and it is
calculated by using the bit product function. Let X be an input multiset whose elements take a
value of (Fn1

2 ×Fn2
2 ×· · ·×Fnm

2 ). In the division property, we first evaluate a value of
⨁

x⃗∈X πu⃗(x⃗)
for all u⃗ ∈ (Fn1

2 × Fn2
2 × · · · × Fnm

2 ). Then, we divide the set of u⃗ into a subset whose sum is 0
and a subset whose sum becomes unknown2. In Chap. 5, the focus was on using the Hamming
weight of u⃗ to divide the set.

Definition 5.3 (Division Property). Let X be a multiset whose elements take a value of (Fn1
2 ×

Fn2
2 × · · · × Fnm

2 ). When the multiset X has the division property Dn1,n2,...,nm

K , where K denotes
a set of m-dimensional vectors whose elements take a value between 0 and ni, it fulfills the
following conditions:

⨁

x⃗∈X
πu⃗(x⃗) =

{
unknown if there are k⃗ ∈ K s.t. W (u⃗) ⪰ k⃗,
0 otherwise.

If there are k⃗ ∈ K and k⃗′ ∈ K satisfying k⃗ ⪰ k⃗′, k⃗ can be removed from K because it is
redundant. Assume that the multiset X has the division property Dn1,n2,...,nm

K . If there is no
unit vector e⃗j in K, where e⃗j is a vector whose jth element is 1 and the others are 0,

⨁
x∈X xj

is 0. See Chap. 5 to better understand the concept in detail.

1A multiset allows multiple instances of the elements unlike a set.
2 If we know all accurate values in a multiset, we can divide the set of u⃗ into subsets whose evaluated value is

0 or 1. However, in the application to cryptanalysis, we evaluate the multiset whose elements are texts encrypted
for several rounds. Such elements change depending on the sub keys and the constant bit of plaintexts. Therefore,
we consider subsets whose sum is 0 for all sub keys, and otherwise, we consider the sum as unknown.
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Figure 6.2: The difference between Chap. 5 and this chapter. The left figure is an assumption
used in Chap. 5. The right one is a new assumption used in this chapter.

6.4 Division Property for Public Function

In an assumption of Chap. 5, attackers do not know the specification of an S-box and only know
the algebraic degree of the S-box. However, many specific block ciphers usually use a public
S-box and addition of secret sub keys, where an XOR is typically used for the addition. In this
chapter, we show that the propagation characteristic of the division property can be improved
if an S-box is a public function. The difference between Chap. 5 and this chapter is shown in
Fig. 6.2.

We consider the propagation characteristic of the division property for the function shown
in the right figure in Fig. 6.2. The key XORing is first applied, but it does not affect the
division property because it is a linear function. Therefore, when we evaluate the propagation
characteristic of the division property, we can remove the key XORing. Next, a public S-box
is applied, and we can determine the ANF of the S-box. Assuming that an S-box is a function
from n bits to m bits, the ANF is represented as

y[1] = f1(x[1], x[2], . . . , x[n]),

y[2] = f2(x[1], x[2], . . . , x[n]),

...

y[m] = fm(x[1], x[2], . . . , x[n]),

where x[i] (1 ≤ i ≤ n) is an input, y[j] (1 ≤ j ≤ m) is an output, and fj (1 ≤ j ≤ m) is a Boolean
function. The division property evaluates the input multiset and the output one by using the
bit product function πu, and we then divide the set of u into a subset whose evaluated value is
0 and a subset whose evaluated value becomes unknown. Namely, we evaluate the equation

Fu(x[1], x[2], . . . , x[n]) =

m∏

i=1

fi(x[1], x[2], . . . , x[n])
u[i]

and divide the set of u. In Chap. 5, a fundamental property of the product of some functions is
used, i.e., the algebraic degree of Fu is at most w(u)× d if the algebraic degree of functions fi is
at most d. However, since we now know the ANF of functions f1, f2, . . . , fm, we can calculate the
accurate algebraic degree of Fu for all u ∈ Fn

2 . In this case, if the algebraic degree of Fu is less
than w(u)×d for all u for which w(u) is constant, we can improve the propagation characteristic.

6.4.1 Application to MISTY S-boxes

Evaluation of S7. The S7 of MISTY is a 7-bit S-box with degree 3. We evaluate the property
of (πv ◦ S7) to get the propagation characteristic of the division property. The algebraic degree
of (πv ◦ S7) increases in accordance with the Hamming weight of v, and it is summarized as
follows.

w(v) 0 1 2 3 4 5 6 7
degree 0 3 5 5 6 6 6 7

One can easily choose a modified S-box S′
7 with algebraic degree 3, such that the algebraic degree

of (πv ◦ S′
7) is at least 6 with w(v) ≥ 2. However, for the S7, the increment of the algebraic

degree is bounded by 5 when w(v) = 2 or w(v) = 3 holds3. Then,
⨁

x∈X(πv ◦ S7)(x) is 0 for
w(v) ≤ 3 if X has D7

6. It means that the necessary condition that
⨁

x∈X(πv ◦ S7)(x) becomes
unknown is w(v) ≥ 4, and D7

4 is propagated from D7
6. Thus, the propagation characteristic is

represented as the following.

3 This observation was also provided by Theorem 3.1 in [BC13].
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Figure 6.3: Structure of FI function

D7
k for input set X D7

0 D7
1 D7

2 D7
3 D7

4 D7
5 D7

6 D7
7

D7
k for output set S(X) D7

0 D7
1 D7

1 D7
1 D7

2 D7
2 D7

4 D7
7

Note that all propagations except for D7
6 → D7

4 are calculated by following Proposition 5.1. If
the modified S-box is applied, the division property D7

2 is propagated from the division property
D7

6 because of Proposition 5.1. Therefore, the deterioration of the division property for the S7

is smaller than expected for a randomly chosen 7-bit S-box with algebraic degree 3.

Evaluation of S9. The S9 of MISTY is a 9-bit S-box with degree 2. We evaluate the property
of (πv ◦ S9) to get the propagation characteristic of the division property. The algebraic degree
of (πv ◦ S9) increases in accordance with the Hamming weight of v, and it is summarized as
follows.

w(v) 0 1 2 3 4 5 6 7 8 9
degree 0 2 4 6 8 8 8 8 8 9

Thus, the propagation characteristic is represented as

D9
k for input set X D9

0 D9
1 D9

2 D9
3 D9

4 D9
5 D9

6 D9
7 D9

8 D9
9

D9
k for output set S(X) D9

0 D9
1 D9

1 D9
2 D9

2 D9
3 D9

3 D9
4 D9

4 D9
9

Unlike the propagation characteristic of the division property for S7, the one for S9 is essentially
optimal among 9-bit S-boxes with algebraic degree 2.

6.5 New Integral Characteristic Based on Division Prop-
erty

This section shows how to create integral characteristics for MISTY1 by using the propaga-
tion characteristic of the division property. We first evaluate the propagation characteristic
for the component functions of MISTY1, i.e., the FI function, the FO function, and the FL
layer. Finally, by assembling these characteristics, we devise an algorithm to search for integral
characteristics on MISTY1.

6.5.1 Division Property for FI function

We evaluate the propagation characteristic of the division property for the FI function by using
those for MISTY S-boxes shown in Sect. 6.4.1. Since there are a zero-extended XOR and a
truncated XOR in the FI function, we use a new representation, in which the internal state
is expressed as two 7-bit values and one 2-bit value. Figure 6.3 shows the structure of the FI
function with our representation, where we remove the XOR of sub keys because it does not
affect the division property.

Let X1 be the input multiset of the FI function. We define every multiset X2,X3, . . . ,X11

in Fig. 6.3. Here, elements of the multiset X1, X5, X6, and X11 take a value of (F7
2 × F2

2 × F7
2).

Elements of the multiset X2, X3, X8, and X9 take a value of (F9
2×F7

2). Elements of the multiset
X4, X7, and X10 take a value of (F2

2 × F7
2 × F7

2). Since elements of X1 and X11 take a value of
(F7

2×F2
2×F7

2), the propagation for the FI function is calculated on D7,2,7
K . Here, the propagation

is calculated with the following steps.
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From X1 to X2: A 9-bit value is created by concatenating the first 7-bit value with the second
2-bit value. The propagation characteristic can be evaluated by using Proposition 5.6.

From X2 to X3: The 9-bit S-box S9 is applied to the first 9-bit value. The propagation char-
acteristic can be evaluated by using the table shown in Sect. 6.4.1.

From X3 to X4: The 9-bit output value is split into a 2-bit value and a 7-bit value. The
propagation characteristic can be evaluated by using Proposition 5.5.

From X4 to X5: The second 7-bit value is XORed with the last 7-bit value, and then, the order
is rotated. The propagation characteristic can be evaluated by using Proposition 5.3 and
5.4.

From X5 to X6: The 7-bit S-box S7 is applied to the first 7-bit value. The propagation char-
acteristic can be evaluated by using the table shown in Sect. 6.4.1.

From X6 to X7: The first 7-bit value is XORed with the last 7-bit value, and then, the order
is rotated. The propagation characteristic can be evaluated by using Proposition 5.3 and
5.4.

From X7 to X8: A 9-bit value is created by concatenating the first 2-bit value with the second
7-bit value. The propagation characteristic can be evaluated by using Proposition 5.6.

From X8 to X11: The propagation characteristic is the same as that from X2 to X5.

As an example, we show the propagation characteristic when X1 has the division property
D7,2,7

{[4,2,6]}.

Example 6.1 (Propagation from D7,2,7
[4,2,6] for FI function). We consider the propagation char-

acteristic of the division property for the FI function (see Fig. 6.3). Assume that X1 has the
division property D7,2,7

{[4,2,6]}.

From X1 to X2 : Since the first 7-bit value and the second 2-bit value are concatenated, Rule 5
is applied. Thus, the multiset X2 has the division property D9,7

{[6,6]}.

From X2 to X3 : The 9-bit S-box S9 is applied. Thus, the multiset X3 has the division property
D9,7

{[3,6]}.

From X3 to X4 : Since the first 9-bit value are split to 2-bit and 7-bit values, Rule 4 is applied.
Thus, the multiset X4 has the division property D2,7,7

{[0,3,6],[1,2,6],[2,1,6]}.

From X4 to X5 : Since the second 7-bit value is XORed with the last 7-bit value, Rule 2 and
Rule 3 are applied. In this case, the propagation of the division property is calculated as

[0, 3, 6]⇒ [0, 3, 6], [0, 4, 5], [0, 5, 4], [0, 6, 3], [0, 7, 2],

[1, 2, 6]⇒ [1, 2, 6], [1, 3, 5], [1, 4, 4], [1, 5, 3], [1, 6, 2], [1, 7, 1],

[2, 1, 6]⇒ [2, 1, 6], [2, 2, 5], [2, 3, 4], [2, 4, 3], [2, 5, 2], [2, 6, 1], [2, 7, 0].

The position is rotated, and then the division property of X5 has D7,2,7
K , where K has 18

vectors as

[6, 0, 3], [5, 0, 4], [4, 0, 5], [3, 0, 6], [2, 0, 7],

[6, 1, 2], [5, 1, 3], [4, 1, 4], [3, 1, 5], [2, 1, 6], [1, 1, 7],

[6, 2, 1], [5, 2, 2], [4, 2, 3], [3, 2, 4], [2, 2, 5], [1, 2, 6], [0, 2, 7].

From X5 to X6 : The 7-bit S-box S7 is applied. Here, we exploit the vulnerable property of S7.
Thus, the following 18 vectors

[4, 0, 3], [2, 0, 4], [2, 0, 5], [1, 0, 6], [1, 0, 7],

[4, 1, 2], [2, 1, 3], [2, 1, 4], [1, 1, 5], [1, 1, 6], [1, 1, 7],

[4, 2, 1], [2, 2, 2], [2, 2, 3], [1, 2, 4], [1, 2, 5], [1, 2, 6], [0, 2, 7],
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are calculated. For example, the vector [2, 0, 5] is removed because [2, 0, 5] ≻ [2, 0, 4]. Sim-
ilarly, after removing redundant vectors, and the division property of X6 has D7,2,7

K , where
K has 10 vectors as

[0, 2, 7], [1, 0, 6], [1, 1, 5], [1, 2, 4], [2, 0, 4],

[2, 1, 3], [2, 2, 2], [4, 0, 3], [4, 1, 2], [4, 2, 1].

From X6 to X7 : Since the first 7-bit value is XORed with the last 7-bit value, Rule 2 and Rule 3
are applied. In this case, the propagation of the division property is calculated as

[0, 2, 7]⇒ [0, 2, 7], [1, 2, 6], [2, 2, 5], [3, 2, 4], [4, 2, 3], [5, 2, 2], [6, 2, 1], [7, 2, 0],

[1, 0, 6]⇒ [1, 0, 6], [2, 0, 5], [3, 0, 4], [4, 0, 3], [5, 0, 2], [6, 0, 1], [7, 0, 0],

[1, 1, 5]⇒ [1, 1, 5], [2, 1, 4], [3, 1, 3], [4, 1, 2], [5, 1, 1], [6, 1, 0],

[1, 2, 4]⇒ [1, 2, 4], [2, 2, 3], [3, 2, 2], [4, 2, 1], [5, 2, 0],

[2, 0, 4]⇒ [2, 0, 4], [3, 0, 3], [4, 0, 2], [5, 0, 1], [6, 0, 0],

[2, 1, 3]⇒ [2, 1, 3], [3, 1, 2], [4, 1, 1], [5, 1, 0],

[2, 2, 2]⇒ [2, 2, 2], [3, 2, 1], [4, 2, 0],

[4, 0, 3]⇒ [4, 0, 3], [5, 0, 2], [6, 0, 1], [7, 0, 0],

[4, 1, 2]⇒ [4, 1, 2], [5, 1, 1], [6, 1, 0],

[4, 2, 1]⇒ [4, 2, 1], [5, 2, 0].

After removing redundant vectors, the position is rotated, and then the division property
of X7 has D2,7,7

K , where K has 16 vectors as

[0, 0, 6], [0, 1, 5], [0, 2, 4], [0, 3, 3], [0, 4, 2], [0, 6, 1], [1, 0, 5], [1, 1, 4],

[1, 2, 3], [1, 3, 2], [1, 5, 1], [2, 0, 4], [2, 1, 3], [2, 2, 2], [2, 4, 1], [2, 7, 0].

From X7 to X8 : Since the first 2-bit value and the second 7-bit value are concatenated, Rule 5
is applied. Then, the following 16 vectors

[0, 6], [1, 5], [2, 4], [3, 3], [4, 2], [6, 1], [1, 5], [2, 4],

[3, 3], [4, 2], [6, 1], [2, 4], [3, 3], [4, 2], [6, 1], [9, 0],

are calculated. After removing redundant vectors, the division property of X8 has D9,7
K ,

where K has 7 vectors as

[0, 6], [1, 5], [2, 4], [3, 3], [4, 2], [6, 1], [9, 0].

From X8 to X9 : The 9-bit S-box S9 is applied. Then, the following 7 vectors

[0, 6], [1, 5], [1, 4], [2, 3], [2, 2], [3, 1], [9, 0],

are calculated. After removing redundant vectors, the division property of X9 has D9,7
K ,

where K has 5 vectors as

[0, 6], [1, 4], [2, 2], [3, 1], [9, 0].

From X9 to X10 : Since the first 9-bit value are split to 2-bit and 7-bit values, Rule 4 is applied.
Thus, the multiset X10 has the division property D2,7,7

K , where K has 10 vectors as

[0, 6]⇒ [0, 0, 6],

[1, 4]⇒ [0, 1, 4], [1, 0, 4],

[2, 2]⇒ [0, 2, 2], [1, 1, 2], [2, 0, 2],

[3, 1]⇒ [0, 3, 1], [1, 2, 1], [2, 1, 1],

[9, 0]⇒ [2, 7, 0].
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Algorithm 4 Propagation for FI function

1: procedure FIEval(k1, k2, k3)

2: K⇐ S9Eval(k⃗) ▷ X1 → X5

3: K′ ⇐ S7Eval(K) ▷ X5 → X7

4: K′′ ⇐ S9Eval(K′) ▷ X7 → X11

5: return K′′

6: end procedure

1: procedure S9Eval(K)
2: K′ ⇐ ϕ
3: for all k⃗ ∈ K do
4: [ℓ, c, r]⇐ [k1, k2, k3]
5: k ⇐ ℓ+ c
6: if k < 9 then
7: k ⇐ ⌈k/2⌉
8: end if
9: for c′ ⇐ 0 to min(2, k) do

10: for x⇐ 0 to r do
11: ℓ′ ⇐ r − x
12: r′ ⇐ k − c′ + x
13: if r′ ≤ 7 then
14: K′ ⇐ K′ ∪ [ℓ′, c′, r′]
15: end if
16: end for
17: end for
18: end for
19: return SizeReduce(K′)
20: end procedure

21: procedure S7Eval(K)
22: K′ ⇐ ϕ
23: for all k⃗ ∈ K do
24: [ℓ, c, r]⇐ [k1, k2, k3]
25: k ⇐ ℓ
26: if k = 6 then
27: k ⇐ 4
28: else if k < 6 then
29: k ⇐ ⌈k/3⌉
30: end if
31: for x⇐ 0 to r do
32: ℓ′ ⇐ c
33: c′ ⇐ r − x
34: r′ ⇐ k + x
35: if r′ ≤ 7 then
36: K′ ⇐ K′ ∪ [ℓ′, c′, r′]
37: end if
38: end for
39: end for
40: return SizeReduce(K′)
41: end procedure

From X10 to X11 : Since the second 7-bit value is XORed with the last 7-bit value, Rule 2 and
Rule 3 are applied. In this case, the propagation of the division property is calculated as

[0, 0, 6]⇒ [0, 0, 6], [0, 1, 5], [0, 2, 4], [0, 3, 3], [0, 4, 2], [0, 5, 1], [0, 6, 0],

[0, 1, 4]⇒ [0, 1, 4], [0, 2, 3], [0, 3, 2], [0, 4, 1], [0, 5, 0],

[1, 0, 4]⇒ [1, 0, 4], [1, 1, 3], [1, 2, 2], [1, 3, 1], [1, 4, 0],

[0, 2, 2]⇒ [0, 2, 2], [0, 3, 1], [0, 4, 0],

[1, 1, 2]⇒ [1, 1, 2], [1, 2, 1], [1, 3, 0],

[2, 0, 2]⇒ [2, 0, 2], [2, 1, 1], [2, 2, 0],

[0, 3, 1]⇒ [0, 3, 1], [0, 4, 0],

[1, 2, 1]⇒ [1, 2, 1], [1, 3, 0],

[2, 1, 1]⇒ [2, 1, 1], [2, 2, 0],

[2, 7, 0]⇒ [2, 7, 0].

After removing redundant vectors, the position is rotated, and then the division property
of X11 has D7,2,7

K , where K has 12 vectors as

[0, 0, 4], [0, 1, 3], [0, 2, 2], [1, 0, 3], [1, 1, 2], [1, 2, 1],

[2, 0, 2], [2, 1, 1], [2, 2, 0], [4, 0, 1], [4, 1, 0], [6, 0, 0].

Algorithm4 creates the propagation characteristic table for the FI function. It calls SizeReduce(K),

where redundant vectors are eliminated, i.e., it eliminates k⃗ ∈ K if there exists k⃗′ ∈ K satisfying
k⃗ ⪰ k⃗′. Algorithm4 only creates the propagation characteristic table for which the input prop-
erty is represented by D7,2,7

{k⃗} . If any input multiset is evaluated, we need to know the propagation
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characteristic from D7,2,7
K with |K| ≥ 2. However, we do not need to evaluate such propagation

in advance because it can be easily evaluated by the table for which the input property is rep-
resented by D7,2,7

{k⃗} . For example, we consider the propagation characteristic from D7,2,7

{k⃗,⃗k′} to

D7,2,7
K . We first get K1 and K2 from the propagation characteristic tables for D7,2,7

{k⃗} and D7,2,7

{k⃗′} ,

respectively. Then, K is calculated as K = K1 ∪K2.
We show all propagation characteristic tables for the FI function in AppendixB. Here,

the propagation table from k⃗ to K is generated, and the number of entries of this table is
8 · 3 · 8 = 192. Moreover, we experimentally evaluated the propagation characteristic for the
FI function. In our experimental search, for any D7,2,7

{[k1,k2,k3]}, we created 100 random input

multisets and then evaluated the propagation characteristic. As a result, we confirmed that
the experimental propagation characteristics are the same as the theoretical ones shown in
AppendixB.

6.5.2 Division Property for FO function

Algorithm 5 Propagation for FO function

1: procedure FOEval(k1, k2, k3, k4, k5, k6)

2: K⇐ FORound(k⃗)
3: K′ ⇐ FORound(K)
4: K′′ ⇐ FORound(K′)
5: return K′′

6: end procedure

1: procedure FORound(K)
2: K′ ⇐ ϕ
3: for all k⃗ ∈ K do
4: Y⇐ FIEval(k1, k2, k3)
5: for all y⃗ ∈ Y do
6: for all x⃗ s.t. (x1 ≤ k4) ∧ (x2 ≤ k5) ∧ (x3 ≤ k6) do
7: k⃗′ ⇐ [k4 − x1, k5 − x2, k6 − x3, y1 + x1, y2 + x2, y3 + x3]
8: if (k′4 ≤ 7) ∧ (k′5 ≤ 2) ∧ (k′6 ≤ 7) then

9: K′ ⇐ K′ ∪ k⃗′
10: end if
11: end for
12: end for
13: end for
14: return SizeReduce(K′)
15: end procedure

We next evaluate the propagation characteristic of the division property for the FO function
by using the propagation characteristic table of the FI function. Here, we remove the XOR
of sub keys because it does not affect the division property. The input and output of the FO
function take the value of (F7

2×F2
2×F7

2×F7
2×F2

2×F7
2). Therefore, the propagation for the FO

function is calculated on D7,2,7,7,2,7
K . Similar to the one created for the FI function, we create the

propagation characteristic table for the FO function (see Algorithm5). We create only a table
for which the input property is represented by D7,2,7,7,2,7

{k⃗} and the output property is represented

by D7,2,7,7,2,7
K . Here, the propagation table from k⃗ to K is generated, and the number of entries

of this table is 8 · 3 · 8 · 8 · 3 · 8 = 36864. As an example, the propagation characteristic table from
D7,2,7,7,2,7

{[1,1,2,3,1,5]} is shown in Table 6.2.

6.5.3 Division Property for FL Layer

MISTY1 has the FL layer, which consists of two FL functions and is applied once every two
rounds. In the FL function, the right half of the input is XORed with the AND between the
left half and a sub key KLi,1. Then, the left half of the input is XORed with the OR between
the right half and a sub key KLi,2.
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Table 6.2: Division property of input is D7,2,7,7,2,7
{[1,1,2,3,1,5]}

k⃗ of D7,2,7,7,2,7

{k⃗} K of D7,2,7,7,2,7
K

[1 1 2 3 1 5] [0 0 0 0 0 4] [0 0 0 0 1 3] [0 0 0 0 2 2] [0 0 0 1 0 3] [0 0 0 1 1 2] [0 0 0 1 2 1]
[0 0 0 2 0 2] [0 0 0 2 1 1] [0 0 0 2 2 0] [0 0 0 3 0 1] [0 0 0 3 1 0] [0 0 0 5 0 0]
[0 0 1 0 0 3] [0 0 1 0 1 2] [0 0 1 0 2 1] [0 0 1 1 0 2] [0 0 1 1 1 1] [0 0 1 1 2 0]
[0 0 1 2 0 1] [0 0 1 2 1 0] [0 0 1 3 0 0] [0 0 2 0 0 2] [0 0 2 0 1 1] [0 0 2 0 2 0]
[0 0 2 1 0 1] [0 0 2 1 1 0] [0 0 2 2 0 0] [0 0 3 0 0 1] [0 0 3 0 1 0] [0 0 3 1 0 0]
[0 0 5 0 0 0] [0 1 0 0 0 3] [0 1 0 0 1 2] [0 1 0 0 2 1] [0 1 0 1 0 2] [0 1 0 1 1 1]
[0 1 0 1 2 0] [0 1 0 2 0 1] [0 1 0 2 1 0] [0 1 0 3 0 0] [0 1 1 0 0 2] [0 1 1 0 1 1]
[0 1 1 0 2 0] [0 1 1 1 0 1] [0 1 1 1 1 0] [0 1 1 2 0 0] [0 1 2 0 0 1] [0 1 2 0 1 0]
[0 1 2 1 0 0] [0 1 4 0 0 0] [0 2 0 0 0 2] [0 2 0 0 1 1] [0 2 0 0 2 0] [0 2 0 1 0 1]
[0 2 0 1 1 0] [0 2 0 2 0 0] [0 2 1 0 0 1] [0 2 1 0 1 0] [0 2 1 1 0 0] [0 2 3 0 0 0]
[1 0 0 0 0 3] [1 0 0 0 1 2] [1 0 0 0 2 1] [1 0 0 1 0 2] [1 0 0 1 1 1] [1 0 0 1 2 0]
[1 0 0 2 0 1] [1 0 0 2 1 0] [1 0 0 4 0 0] [1 0 1 0 0 2] [1 0 1 0 1 1] [1 0 1 0 2 0]
[1 0 1 1 0 1] [1 0 1 1 1 0] [1 0 1 2 0 0] [1 0 2 0 0 1] [1 0 2 0 1 0] [1 0 2 1 0 0]
[1 0 4 0 0 0] [1 1 0 0 0 2] [1 1 0 0 1 1] [1 1 0 0 2 0] [1 1 0 1 0 1] [1 1 0 1 1 0]
[1 1 0 2 0 0] [1 1 1 0 0 1] [1 1 1 0 1 0] [1 1 1 1 0 0] [1 1 3 0 0 0] [1 2 0 0 0 1]
[1 2 0 0 1 0] [1 2 0 1 0 0] [1 2 2 0 0 0] [2 0 0 0 0 2] [2 0 0 0 1 1] [2 0 0 0 2 0]
[2 0 0 1 0 1] [2 0 0 1 1 0] [2 0 0 3 0 0] [2 0 1 0 0 1] [2 0 1 0 1 0] [2 0 1 1 0 0]
[2 0 3 0 0 0] [2 1 0 0 0 1] [2 1 0 0 1 0] [2 1 0 1 0 0] [2 1 2 0 0 0] [2 2 1 0 0 0]
[3 0 0 0 0 1] [3 0 0 0 1 0] [3 0 0 2 0 0] [3 0 2 0 0 0] [3 1 1 0 0 0] [3 2 0 0 0 0]
[4 0 0 1 0 0] [4 0 1 0 0 0] [4 1 0 0 0 0] [6 0 0 0 0 0]

Since the input and output of the FL function take the value of (F7
2×F2

2×F7
2×F7

2×F2
2×F7

2),
the propagation for the FL function is calculated on D7,2,7,7,2,7

K . FLEval in Algorithm6 calculates

the propagation characteristic table for the FL function. Here, the propagation table from k⃗ to
K is generated, and the number of entries of this table is 8 · 3 · 8 · 8 · 3 · 8 = 36864. Moreover,
the FL layer consists of two FL functions. Therefore, we have to consider the propagation
characteristic of the division property D7,2,7,7,2,7,7,2,7,7,2,7

{k⃗} , where each FL function is applied to

the left and right halves. FLLayerEval in Algorithm6 calculates the propagation characteristic
of the division property for the FL layer.

6.5.4 New Path Search for Integral Characteristics on MISTY1

We created the propagation characteristic table for the FI and FO functions in Sect. 6.5.1 and
6.5.2, respectively. Moreover, we showed the propagation characteristic for the FL layer in
Sect. 6.5.3. By assembling these propagation characteristics, we devise an algorithm to search
for integral characteristics on MISTY1. Since the input and output are represented as eight
7-bit values and four 2-bit values, the propagation is calculated on D7,2,7,7,2,7,7,2,7,7,2,7

K .
The FL layer is first applied to plaintexts, and it deteriorates the propagation of the division

property. Therefore, we first remove only the first FL layer and search for integral characteristics
on MISTY1 without the first FL layer. The method for passing through the first FL layer is
shown in the next section. Algorithm7 shows the search algorithm for integral characteristics
on MISTY1 without the first FL layer.

As a result, we find 6-round integral characteristics without the first and last FL layers
by using Algorithm7. Each characteristic uses 263 chosen plaintexts, where any one bit of
the first seven bits is constant and the others take all values. Then, such input has the division
property D7,2,7,7,2,7,7,2,7,7,2,7

{[6,2,7,7,2,7,7,2,7,7,2,7]}. Therefore, we use k⃗ = [6, 2, 7, 7, 2, 7, 7, 2, 7, 7, 2, 7] as the input of

Algorithm7. We perfectly execute SizeReduce every round, and Table 6.3 shows the propagation
of K, where minw(K) and maxw(K) are calculated as

minw(K) = min
k⃗∈K

{
12∑

i=1

ki

}
, maxw(K) = max

k⃗∈K

{
12∑

i=1

ki

}
.

After the 6th round function, we have 131 vectors, which are listed in AppendixA.
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Algorithm 6 Propagation for FL layer

1: procedure FLLayerEval(K)
2: K′ ⇐ ϕ
3: for all k⃗ ∈ K do
4: L⇐ FlEval(k1, k2, . . . , k6)
5: R⇐ FlEval(k7, k8, . . . , k12)

6: for all ℓ⃗ ∈ L do
7: for all r⃗ ∈ R do
8: K′ ⇐ K′ ∪ [ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6, r1, r2, r3, r4, r5, r6]
9: end for

10: end for
11: end for
12: return K′

13: end procedure

1: procedure FLEval(k1, k2, . . . , k6)
2: K′ ⇐ ϕ
3: [ℓ, c, r]⇐ [k1 + k4, k2 + k5, k3 + k6]
4: for k′1 ⇐ 0 to min(7, ℓ) do
5: for k′2 ⇐ 0 to min(2, c) do
6: for k′3 ⇐ 0 to min(7, r) do
7: (k′4, k

′
5, k

′
6)⇐ (ℓ− k′1, c− k′2, r − k′3)

8: if (k′4 ≤ 7) ∧ (k′5 ≤ 2) ∧ (k′6 ≤ 7) then
9: K′ ⇐ K′ ∪ [k′1, k

′
2, k

′
3, k

′
4, k

′
5, k

′
6]

10: end if
11: end for
12: end for
13: end for
14: return SizeReduce(K′)
15: end procedure

Table 6.3: Propagation from D7,2,7,7,2,7,7,2,7,7,2,7
{[6,2,7,7,2,7,7,2,7,7,2,7]}

#rounds 0 (plaintexts) 1 2 FL 3 4 FL 5 6

|K| 1 1 9 16 2596 2617429 12268480 58962 131
maxw(K) 63 63 63 63 62 55 47 27 8
minw(K) 63 63 61 61 43 19 19 4 1

Assume that X has the division property D7,2,7,7,2,7,7,2,7,7,2,7
K . Let ei ∈ Z12 be a unit vector

whose ith element is one and the others are zero. When there do not exist ei in K,
⨁

x⃗∈X xi = 0.
Since the vector [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] is not included in 131 vectors, we are certain that
the first 7 bits are balanced. Our algorithm is written by C++, and the execution time is
about one day with Core i7-4770 Processor (4 cores) in 16 GB RAM. Figure 6.4 shows the 6-
round integral characteristic, where the bit strings labeled B, i.e., the first 7 bits and last 32
bits, are balanced. Note that the 6-round characteristic becomes a 7-round characteristic if
the FL layer after the 6th round function is removed. Compared with the previous 4-round
characteristic [HTK04, TSSK08], our characteristic is improved by two rounds.

As shown in Sect. 6.4, the S7 of MISTY1 has the vulnerable property that D7
4 is provided

from D7
6. Interestingly, assuming that S7 does not have this property (changing lines 26–30 in

S7Eval), our algorithm cannot construct the 6-round characteristic.

6.5.5 Revisiting Known Characteristic for MISTY1

It was already shown in [THK99] that reduced MISTY1 has a 14th order differential charac-
teristic, and the principle was also discussed in [BF00, CV02]. In the 14th order differential
characteristic, 14 bits PR[10, . . . , 16, 26, . . . , 32] are active and the others are constant. Then,
the first seven bits of XR

5 are balanced. We evaluate the principle of the characteristic by using
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Algorithm 7 Path search for r-round characteristics without first FL layer

1: procedure Misty1Eval(k1, k2, . . . , k12, r)

2: K⇐ RoundFuncEval(k⃗) ▷ 1st round
3: for i = 1 to r do
4: if i is even then
5: K⇐ FlLayerEval(K) ▷ FL Layer
6: end if
7: K⇐ RoundFuncEval(K) ▷ (i+1)th round
8: end for
9: return K

10: end procedure

1: procedure RoundFuncEval(K)
2: K′ ⇐ ϕ
3: for all k⃗ ∈ K do
4: for all x⃗ s.t. xj ≤ kj for all j = 1, 2, . . . , 6 do
5: [r1, r2, r3]⇐ [k1 − x1, k2 − x2, k3 − x3]
6: [r4, r5, r6]⇐ [k4 − x4, k5 − x5, k6 − x6]
7: Y⇐ FOEval(x1, x2, x3, x4, x5, x6)
8: for all y⃗ ∈ Y do
9: [ℓ1, ℓ2, ℓ3]⇐ [k7 + y1, k8 + y2, k9 + y3]

10: [ℓ4, ℓ5, ℓ6]⇐ [k10 + y4, k11 + y5, k12 + y6]
11: if ℓj′ ≤ 7 for j′ ∈ {1, 3, 4, 6} and ℓj′ ≤ 2 for j′ ∈ {2, 5} then
12: K′ ⇐ K′ ∪ [ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6, r1, r2, r3, r4, r5, r6]
13: end if
14: end for
15: end for
16: end for
17: return SizeReduce(K′)
18: end procedure

Table 6.4: Propagation from D0,0,0,0,0,0,0,0,7,0,0,7
{[6,2,7,7,2,7,7,2,7,7,2,7]}

#rounds 0 (plaintexts) 1 2 FL 3 4 FL

|K| 1 1 460 400 125 12 12
maxw(K) 14 14 14 14 4 2 1
minw(K) 14 14 4 4 1 1 1

the propagation characteristic of the division property. We search for the integral characteristics
by using Algorithm7 with perfect SizeReduce. We use k⃗ = [0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 7] as the
input of Algorithm7, and Table 6.4 shows the propagation of K. The output of the 4th round
function has the division property D7,2,7,7,2,7,7,2,7,7,2,7

K , where K has 12 vectors as follows:

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

This result implies the existence of a 14th order differential characteristic, where the left seven
bits of XR

5 are balanced.
The 14th order differential characteristic is extended to a 46th order differential charac-

teristic, where 14 bits PL[10, . . . , 16, 26, . . . , 32] and 32 bits PR are active and the others are
constant. Then, the first seven bits of XL

5 are balanced. We also revisit the 46th order differen-
tial characteristic. Namely, we evaluate the propagation characteristic of the division property,
where the input set has the division property D7,2,7,7,2,7,7,2,7,7,2,7

{[0,0,7,0,0,7,7,2,7,7,2,7]}. As a result, we can get an

integral characteristic that the first 16 bits of XL
5 are balanced. In the simple extension shown

in [HTK04] and [TSSK08], only the first 7 bits are balanced. Thus, our method proves that the
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number of balanced bits is extended from 7 bits to 16 bits.

6.5.6 Optimized Algorithm

If we execute SizeReduce perfectly, it requires O(|K|2) time complexity, and the execution time
of Algorithm7 is increased. Therefore, we use a more reasonable method.

LetDK be any division property, whereK contains redundant vectors. Moreover, by executing
SizeReduce, we get K′ from K. Then, as shown in Sect. 6.3.3, the unknown set indicated by DK
is the same as that by DK′ . Namely, the result of Algorithm7 does not change even if we do
not perform SizeReduce perfectly. Therefore, we execute a rough SizeReduce which performs
faster. The rough SizeReduce first sorts every vector in K by using lexicographic order and
obtains the following |K| vectors,

k⃗(1), k⃗(2), . . . , k⃗(|K|).

Then, there is no (k⃗(i), k⃗(j)) satisfying k⃗(i) ⪰ k⃗(j) such that i < j. We initialize two indices, i = 1

and j = 2, and evaluate whether or not k⃗(j) ⪰ k⃗(i). If k⃗(j) ⪰ k⃗(i), we remove k⃗(j), and increment
j. If k⃗(j) ⪰̸ k⃗(i), increment j. Moreover, if we cannot remove k⃗(j) “th” times consecutively,
increment i and set j = i+1. We can choose th freely. If th = |K|, the above algorithm executes
SizeReduce perfectly. From our experiments, th = 10 or th = 100 are reasonable parameters.

6.6 Key Recovery Using New Integral Characteristic

This section shows the key recovery step of our cryptanalysis, which uses the 6-round integral
characteristic shown in Sect. 6.5. In the characteristic, the left 7-bit value of XL

7 is balanced.
Since the integral characteristic does not cover the first FL layer, we first show how to pass
through the first FL layer. Then, we calculate two FL layers and one FO function by guessing
round keys from ciphertexts, and we evaluate the balanced seven bits.

6.6.1 Passage of First FL Layer

Our new characteristic removes the first FL layer. Therefore, we have to create a set of chosen
plaintexts to construct integral characteristics by using guessed round keys KL1,1 and KL1,2.
Here, we have to carefully choose the set of chosen plaintexts to avoid the use of the full code
book (see Fig. 6.5, Fig. 6.6, and Fig. 6.7). In every figure, Ai denotes for which we prepare an
input set that i bits are active. As an example, we consider an integral characteristic for which
the first one bit is constant and the remaining 63 bits are active. Since all bits of the right half
are active, we focus only on the left half. We first guess that KL1,2[1] = 1, and we then prepare
the set of plaintexts as in Fig. 6.5. We next guess that (KL1,1[1],KL1,2[1]) = (0, 0), and we then
prepare the set of plaintexts as in Fig. 6.6. Moreover, we guess that (KL1,1[1],KL1,2[1]) = (1, 0),
and we then prepare the set of plaintexts as in Fig. 6.7. These chosen plaintexts construct 6-
round integral characteristics if the guessed key bits are correct. Note that we do not use 262

chosen plaintexts of the form (1A15 1A15 A16 A16), i.e., we do not use chosen plaintexts satisfying
PL[1] = PL[16] = 1. Thus, our integral characteristics use 264 − 262 ≈ 263.58 chosen plaintexts.

6.6.2 Sub Key Recovery Using Partial-Sum Technique

Figure 6.8 shows the structure of our key recovery step. We guess KL1,1[i](= K1[i]) and
KL1,2[i](= K ′

7[i]) and then prepare a set of chosen plaintexts to construct an integral character-
istic. In the characteristic, seven bits XL

7 [1, . . . , 7] are balanced. Therefore, we evaluate whether
or not XL

7 [j] is balanced for j ∈ {1, 2, . . . , 7} by using the partial-sum technique [FKL+00].
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In the first step, we store the frequency of 34 bits (CL, CR[j, 16 + j]) into a voting table for
j ∈ {1, 2, . . . , 7}. Then, we partially guess round keys, reduce the size of the voting table, and
calculate the XOR of XL

7 [j]. Table 6.5 summarizes the procedure of the key recovery step, where
every value is defined in Fig. 6.8.

Step 1 Prepare the memory that stores how many times each 34-bit value (CL, CR[j, 16 + j])
appears, and pick the values that appear an odd number of times.

Step 2 Guess 32-bit (K1,K
′
7), and calculate XR

9 from CL. Delete the parity of the number of
occurrences of CL from the memory, and store that of XR

9 into the memory. Namely, the
memory contains a 234-bit array that stores the parity of the number of occurrences of the
34-bit string (XR

9 , C
R[j, 16 + j]). The time complexity of Step 2 is 234 × 232 = 266.

Step 3 Additionally guess 32-bit (K8,K
′
5), and calculate D1 from XR

9 . Delete the parity of the
number of occurrences of XR

9 [1, . . . , 16] from the memory, and store that of D1 into the
memory. Namely, the memory contains a 234-bit array that stores the parity of the number
of occurrences of the 34-bit string (D1, X

R
9 [17, . . . , 32], CR[j, 16+ j]). The time complexity

of Step 3 is 234 × 264 = 298.

Step 4 Additionally guess 1-bit K ′
3[j], get K7 from (K ′

7,K8), which is already guessed in Step 2
and Step 3, and calculate D2[j] from D1. Delete the parity of the number of occurrences of
D1 without D1[j] from the memory, and store that of D2[j] into the memory. Namely, the
memory contains a 220-bit array that stores the parity of the number of occurrences of the
20-bit string (D1[j], D2[j], X

R
9 [17, . . . , 32], CR[j, 16 + j]). The time complexity of Step 4 is

234 × 265 = 299.

Step 5 Additionally guess 32-bit K2, get K ′
1[j] from (K1,K2), which is already guessed in

Step 2 and Step 5, and calculate D3[j] from (XR
9 [17, . . . , 32], D1[j]). Delete the parity of

the number of occurrences of (XR
9 [17, . . . , 32], D1[j]) from the memory, and store that of

D3[j] into the memory. Namely, the memory contains a 24-bit array that stores the parity
of the number of occurrences of the 4-bit string (D2[j], D3[j], C

R[j, 16 + j]). The time
complexity of Step 5 is 220 × 281 = 2101.

Step 6 Additionally guess 2-bit (K5[j],K
′
2[j]), get K

′
3[j], which is already guessed in Step 4,

and calculate XL
7 [j] from (D2[j], D3[j], C

R[j, 16 + j]). The time complexity of Step 6 is
24 × 283 = 287.

The total time complexity is

266 + 298 + 299 + 2101 + 287 ≈ 2101.5.

We repeat the above six steps for j ∈ {1, 2, . . . , 7}. Therefore, the time complexity of the key
recovery step is 7× 2101.5 = 2104.3.

The key recovery step has to guess the 124-bit key

K1,K2,K5[1, . . . , 7],K7,K8,

K ′
1[1, . . . , 7],K

′
2[1, . . . , 7],K

′
3[1, . . . , 7],K

′
5,K

′
7.

Here, K ′
7 and K ′

1[1, . . . , 7] are uniquely determined by guessing K7,K8 and K1,K2, respectively.
Thus, the guessed key material is reduced to

K1,K2,K5[1, . . . , 7],K7,K8,

K ′
2[1, . . . , 7],K

′
3[1, . . . , 7],K

′
5,

and its size becomes 101 bits. Moreover, since we already guessed 2 bits, i.e., K1[i] and K
′
7[i], to

construct integral characteristics, the guessed key bit size is reduced to 99 bits. For wrong keys,
the probability that XL

7 [1, . . . , 7] is balanced is 2−7. Therefore, the number of the candidates of
round keys is reduced to 292. Finally, we guess the 27 bits:

K5[8, . . . , 16],K
′
2[8, . . . , 16],K

′
3[8, . . . , 16].

Note that K3, K4, and K6 are uniquely determined from (K2,K
′
2), (K3,K

′
3), and (K5,K

′
5),

respectively. Therefore, the total time complexity is 292+27 = 2119. We guess the correct
key from 2119 candidates by using two plaintext-ciphertext pairs, and the time complexity
is 2119 + 2119−64 ≈ 2119. We have to execute the above procedure against (K1[i],K

′
7[i]) =

(0, 0), (0, 1), (1, 0), (1, 1), and the time complexity becomes 4× 2119 = 2121.
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Table 6.6: Trade-off between time and data complexity
#characteristics Complexity for partial-sum Complexity for brute-force Total

1 1× 4× 2104.3 2121 2121

2 2× 4× 2104.3 2114 2114

3 3× 4× 2104.3 2107 2108.5

4 4× 4× 2104.3 2100 2108.3

5 5× 4× 2104.3 293 2108.6

6.6.3 Trade-off between Time and Data Complexity

In Sect. 6.6.2, we use only one set of chosen plaintexts, where (264 − 262) chosen plaintexts are
required. Since the probability that wrong keys are not discarded is 2−7, a brute-force search
is required with a time complexity of 2128−7 = 2121, and it is larger than the time complexity
of the partial-sum technique. Therefore, if we have a higher number of characteristics, the total
time complexity can be reduced.

To exploit several characteristics, we choose some constant bits from seven bits (i ∈ {1, 2, . . . , 7}).
If we use a characteristic with i = 1, we use chosen plaintexts for which plaintext PL takes the
following values

(00A14 00A14), (00A14 01A14), (01A14 00A14), (01A14 01A14),

(00A14 10A14), (00A14 11A14), (01A14 10A14), (01A14 11A14),

(10A14 00A14), (10A14 01A14), (11A14 00A14), (11A14 01A14),

where A14 denotes that all values appear the same number independently of other bits, e.g.,
(00A14 00A14) uses 2

60 chosen plaintexts because PR also takes all values. Moreover, if we use
a characteristic with i = 2, we use chosen plaintexts for which PL takes the following values

(00A14 00A14), (00A14 10A14), (10A14 00A14), (10A14 10A14),

(00A14 01A14), (00A14 11A14), (10A14 01A14), (10A14 11A14),

(01A14 00A14), (01A14 10A14), (11A14 00A14), (11A14 10A14).

When both characteristics are used, they do not require choosing plaintexts for which PL takes
(11A14 11A14). Therefore, (264 − 260) chosen plaintexts are required, and the probability that
wrong keys are not discarded becomes 2−14. Similarly, when three characteristics, which require
(264−258) chosen plaintexts, are used, the probability that wrong keys are not discarded becomes
2−21.

Table 6.6 summarizes the trade-off between time and data complexity. For the use of each
characteristic, we have to execute four key recoveries with the partial-sum technique, i.e., for
(KL1,1[1],KL1,2[1]) ∈ {(0, 1), (1, 1), (0, 0), (1, 0)}. It shows that the use of four characteristics is
optimized from the perspective of time complexity. Namely, when (264 − 256) ≈ 263.994 chosen
plaintexts are required, the time complexity to recover the secret key is 2108.3.

6.6.4 Follow-Up Results and Open Problem

After a preliminary version [Tod15a] was published, Achiya Bar-On improved the key recovery
step [Bar15a] by using the same integral characteristic shown in this chapter. Then, this paper
was accepted in CRYPTO2016 [BK16]. The improved key recovery technique uses the meet-in-
the-middle technique [SW12b] under the chosen ciphertext setting. It dramatically reduces the
time complexity where the secret key is recovered, and the time complexity is 269.5. On the
other hand, it requires the full code book. When we consider the data complexity optimization,
our attack, which requires 2121 time complexity and 263.58 chosen plaintexts, is still the best
attack. We need to construct a more efficient integral characteristic if we want to improve the
data complexity, and it is left as an open problem.
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6.7 Conclusion

In this chapter, we showed a cryptanalysis of the full MISTY1. MISTY1 was well evaluated and
standardized by several projects, such as CRYPTREC, ISO/IEC, and NESSIE. We constructed
a new integral characteristic by using the propagation characteristic of the division property.
Here, we improved the division property by optimizing the division property for a public S-box.
As a result, a new 6-round integral characteristic is constructed, and we can recover the secret
key of the full MISTY1 with 263.58 chosen plaintexts and 2121 time complexity. If we can use
263.994 chosen plaintexts, our attack can recover the secret key with a time complexity of 2108.3.
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Chapter 7

Application to Extended
Generalized Feistel Network:
Lilliput

Abstract– This chapter provides security analysis of lightweight block cipher Lilliput, which
is an instantiation of extended generalized Feistel network (EGFN) developed by Berger et al.
at SAC 2013. Its round function updates a part of the state only linearly, which yields several
security concerns. In this chapter, we propose the best third-party cryptanalysis. Owing to
its unique computation structure, the designers expected that EGFN efficiently enhances the
security against integral cryptanalysis. However, the security is not enhanced as the designers
expect. In fact, division property finds a 13-round distinguisher which improves the previous
distinguisher by 4 rounds. The new distinguisher is further extended to a 17-round key recovery
attack which improves the previous best attack by 3 rounds.
Keywords– Block cipher, Lilliput, extended generalized Feistel network, division property

7.1 Introduction

Lightweight cryptography is one of the most actively discussed topics in the current community
of symmetric-key cryptosystems. A huge number of designs have been proposed especially for
the last decade. Here, we omit the list of all the lightweight primitives. Please refer to [AB15]
for such a list. The motivation of lightweight cryptography is to design a secure symmetric-key
cryptosystem under area-constraining environment.

One of the major approaches to design lightweight cipher is using Feistel network or general-
ized Feistel network (GFN), which has a property that its transformation is basically involutive
thus the overhead to implement decryption circuit is minimized. Meanwhile, diffusion speed
of the standard Feistel network is often much slower than other design approaches. To over-
come this drawback, several researches have developed new ideas. Suzaki et al. pointed out
that security of GFN can be enhanced by replacing the way of mixing branches [SM10]. This is
called block-shuffle and TWINE [SMMK12] was designed based on this idea. Zhang and Wu used
modified Feistel network to design LBlock [WZ11], which turned out to be the same network as
one in TWINE. The latest approach, which is a main focus in this chapter, is extended GFN
(EGFN) proposed by Berger et al. [BMT13], in which an additional linear diffusion layer is
inserted between the application to F -function and branch network. The comparison of GFN
and EGFN is depicted in Fig. 7.1. In many designs, the nonlinear layer is the most expensive,
thus the linear layer leads to better diffusion speed with a small extra cost.

Berger et al. [BMT13] specified two concrete examples of EGFN with security analysis.
Unfortunately, mistakes in the security analysis were pointed out by Zhang and Wu [ZW14] and
very effective differential trails were constructed for those original choices of EGFN. To fix this
drawback, Berger et al. combined block-shuffle [SM10] with EGFN, and proposed a new cipher
preventing the attack by Zhang and Wu. The cipher was named Lilliput [BFMT15].

Lilliput is a lightweight block cipher, supporting 64-bit block and 80-bit key. Lilliput is
a 16-branch EGFN with block-shuffle, in which the size of each branch is 4 bits (nibble) and
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Figure 7.1: Comparison of GFN (Left) and EGFN (Right) with four branches

the nonlinear function is an application of a 4-bit S-box. Those parameter sizes are the same
as TWINE and LBlock. The number of rounds is 30, which is 2 rounds less than TWINE and
LBlock. This shows that the additional linear layer of Lilliput allows to ensure its security
with a smaller number of rounds than TWINE and LBlock. The designers of Lilliput provided
several security analysis, including minimal number of active S-boxes for every round, impossi-
ble differential attack, integral attack, differential/linear cryptanalysis, related-key attacks and
chosen-key attacks. Single-key attacks are summarized in Table 7.1.

Table 7.1: Key recovery attacks in the single-key model against Lilliput. Related-key attack
and chosen-key attacks reach 23 rounds, which are not included in this table.

approaches distinguisher key recovery data time ref.

integral 9 rounds 13 rounds 262 272 [BFMT15]
impossible differential 8 rounds 14 rounds 263 277 [BFMT15]

division property 13 rounds 17 rounds 263 277 Ours

Our Contributions. In this chapter, we show that the linear layer of EGFN and Lil-
liput yields security concern to be carefully discussed. The designers evaluated the security
in [BFMT15, BMT13], where the propagation characteristic of the integral property [KW02] was
used to search for the integral distinguisher. They showed that EGFN and Lilliput have higher
security than GFN with block-shuffle. Actually, while TWINE and LBlock allow 15-round inte-
gral distinguisher, Lilliput only allows the 9-round integral distinguisher. It implies that the
linear layer enhances security against the integral cryptanalysis by 6(= 15− 9) rounds. On the
other hand, the linear layer does not increase the algebraic degree. Hence by constructing the
integral characteristic by estimating the algebraic degree, which is often called the higher order
differential cryptanalysis, the attack may be improved drastically. The division property is a
new method to find integral distinguisher, which is a generalization of the integral property and
can exploit low algebraic degree in the same time. Thus security contribution of the linear layer
can be evaluated more accurately by using the division property. As a result, we show that the
division property finds a 13-round integral distinguisher, and it implies that the security is not
enhanced as the designers expected. Moreover, the new distinguisher leads to the attack against
17-round Lilliput (see Table 7.1), which is the current best attack against Lilliput.

7.2 Lilliput

7.2.1 Extended Generalized Feistel Network (EGFN)

Extended generalized Feistel network (EGFN) [BMT13] was invented by Berger et al. so as to
achieve faster diffusion than ordinary generalized Feistel network. Previous GFN has two compu-
tation layers per round; one is applying nonlinear functions to some of branches and XORing the
results to other branches (nonlinear layer F), and the other is permuting branches (permutation
layer P), which is often designed as a simple cyclic shift of branches. EGFN [BMT13] adds a
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new diffusion layer (linear layer L). In many designs, the nonlinear layer F is the most expensive
part, thus the linear layer L helps to increase the diffusion speed with a small additional cost.
Berger et al. showed two concrete choices of F and L when the number of branches is 8 and 16
along with some security analysis. It is notable that the permutation P was assumed to be a
simple swap of the left half and right half of the state.

Zhang and Wu [ZW14] pointed out that the security evaluation in [BMT13] was wrong and
presented efficient differential characteristics against concrete examples in [BMT13]. The attack
relies on the choice of P, which is a simple swap of branches.

7.2.2 Specification of Lilliput

15  14  13  12  11  10  9 8 7 6 5 4 3 2 1 0 

 

 

: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7  

Figure 7.2: Round function of Lilliput

Lilliput [BFMT15] was designed by Berger et al. in 2015. So as to prevent the attack by
Zhang and Wu [ZW14], the designers adopted block-shuffle network [SM10] proposed by Suzaki
et al. on top of EGFN so as to achieve even faster diffusion.

The block size and key size of Lilliput are 64 bits and 80 bits, respectively. Its round
function consists of 16 branches of size 4 bits. 64-bit plaintext is first loaded to sixteen 4-bit
array X15, X14 . . . , X0. Then, the round function consisting of three layers F , L, and P is
iterated 30 times. The permutation layer P is omitted in the last round for involution reasons.
An illustration of the round function is shown in Fig. 7.2.

The key schedule first expands the 80-bit key to 32-bit round keys for round j (j = 0, . . . , 29)
dented by RKj . We omit its description because we do not analyze the key schedule.

Non-linear Layer F . At first, the state input and round key are XORed. Then, a 4-bit S-box
is applied to each of eight nibbles in the right half of the state, and the results are xored to the
left half of the state. Let RKj

i and Xj
i be the ith nibble of the jth round key RKj and jth

round state Xj , respectively. Then, the nonlinear layer can be defined as

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 4 8 7 1 9 3 2 E 0 B 6 F A 5 D C

Linear Layer L. The idea in L is, along with diffusion by F , having Xj
7 propagate to all

nibbles in the left half of the state and having Xj
15 be propagated from all nibbles from the right

half of the state. L is defined as follows.

Xj
15 ← Xj

15 ⊕Xj
7 ⊕Xj

6 ⊕Xj
5 ⊕Xj

4 ⊕Xj
3 ⊕Xj

2 ⊕Xj
1 ,

Xj
15−i ← Xj

15−i ⊕Xj
7 for i = 1, 2, . . . , 6.
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Permutation Layer P. Nibble positions are permuted with permutation π defined as

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 13 9 14 8 10 11 12 15 4 5 3 1 2 6 0 7

The designers chose π to achieve the highest number of active S-boxes after 18, 19 and 20 rounds.

7.3 New Integral Characteristic Based on Division Prop-
erty

The designers of EGFN and Lilliput already showed the security against the integral cryptanal-
ysis in [BFMT15, BMT13], and the propagation characteristic of the integral property [KW02]
was used to search for the integral distinguisher. When a d-round EGFN reaches the full diffu-
sion, the integral distinguisher of the EGFN covers at most 2d+2 rounds. Moreover, Lilliput,
which is a specific block cipher based EGFN with d = 4, has the 9-round integral distinguisher.
Compared with 15-round integral distinguishers of TWINE and LBlock, it implies that the linear
layer enhances the security against the integral cryptanalysis by 6(= 15 − 9) rounds. On the
other hand, if we construct the integral distinguisher by estimating the algebraic degree, which is
often called the higher order differential cryptanalysis, the security is not likely to dramatically
improve because the linear layer does not increase the algebraic degree.

The division property is a new method to find integral distinguishers, and it is the gener-
alization of the integral property so that can exploit the algebraic degree in the same time.
Therefore, we can more accurately evaluate the contribution of the linear layer by using the di-
vision property. In this section, we show a new integral distinguisher with the division property,
and it covers 13 rounds, which is beyond 2d+ 2 = 10. Zhang and Wu showed that TWINE and
LBlock have 16-round integral distinguishers by using the division property [ZW15]. Therefore,
the true contribution by the linear layer is 3(= 16−13) rounds. Moreover, this 13-round integral
distinguisher leads to a 17-round attack, which is a current best attack against Lilliput.

7.3.1 Recall Division Property

This section briefly shows the definition and propagation rules to understand this chapter. Please
refer to Chapter 5 for details.

The division property of a multiset is evaluated by using the bit product function defined as
follows. Let πu⃗ : (Fn

2 )
m → F2 be a bit product function for any u⃗ ∈ (Fn

2 )
m. Let x⃗ ∈ (Fn

2 )
m be

the input, and πu⃗(x⃗) is defined as

πu⃗(x⃗) :=

m∏

i=1

⎛
⎝

n∏

j=1

xi[j]
ui[j]

⎞
⎠ .

Notice that xi[j]
1 = xi[j] and xi[j]

0 = 1.

Definition 5.3 (Division Property). Let X be a multiset whose elements take a value of (Fn
2 )

m.
When the multiset X has the division property Dnm

K , where K denotes a set of m-dimensional
vectors whose elements take a value between 0 and n, it fulfills the following conditions:

⨁

x⃗∈X
πu⃗(x⃗) =

{
unknown if there are k⃗ ∈ K s.t. W (u⃗) ⪰ k⃗,
0 otherwise,

where W (u⃗) = (w(um), . . . , w(u1)) ∈ Zm and w(uj) =
∑n

i=1 uj [i]. Moreover, k⃗ ⪰ k⃗′ denotes
ki ≥ k′i for all i ∈ {1, 2, . . . ,m}.

If there are k⃗ ∈ K and k⃗′ ∈ K satisfying k⃗ ⪰ k⃗′ in the division property Dnm

K , k⃗ can be

removed from K because the vector k⃗ is redundant. Let X be the set of texts encrypted by r
rounds, and ei ∈ Zm denotes an unit vector whose ith element is one and the others are zero.
Assuming that X fulfills the division property Dnm

K and ei does not belong to K, the cipher
has the r-round integral distinguisher, where the ith element is balanced. We summarize the
propagation of the division property in Proposition 5.2 and Sect. 5.3.5.
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Algorithm 8 Propagation from D416

K for the round function of Lilliput

1: procedure nonLinear(K, i, j)
2: K′ ⇐ ϕ
3: for all k⃗ ∈ K do
4: k⃗′ ⇐ k⃗
5: for x = 0 to kj do
6: k′i ⇐ ki +DS(x)
7: k′j ⇐ kj − x
8: if k′i ≤ 4 then

9: K′ ⇐ K′ ∪ {k⃗′}
10: end if
11: end for
12: end for
13: remove redundant vectors from K′

14: return K′

15: end procedure

1: procedure linear(K, i, j)
2: K′ ⇐ ϕ
3: for all k⃗ ∈ K do
4: k⃗′ ⇐ k⃗
5: for x = 0 to kj do
6: k′j ⇐ kj − x
7: k′i ⇐ ki + x
8: if k′i ≤ 4 then

9: K′ ⇐ K′ ∪ {k⃗′}
10: end if
11: end for
12: end for
13: remove redundant vectors from K′

14: return K′

15: end procedure

7.3.2 Integral Distinguisher on Lilliput

The state of Lilliput is represented as sixteen 4-bit values, and the use of the division property
D416

K is appropriate. Let |K| be the number of elements in K, and the upper bound of |K|
is 516 ≈ 237.15. Since we can reduce |K| by removing redundant vectors in general, we can

practically evaluate the propagation characteristic of D416

K .

Propagation Characteristic. The round function of EGFN consists of three layers: the
nonlinear layer, linear layer, and permutation layer. In the nonlinear layer of EGFN, the core
operation is

xi = xi ⊕ F (xj)

for appropriate i and j. We only focus on the case that F is permutation because the most
important instantiation Lilliput uses a bijective S-box. Let D4

k and D4
k′ be the input and

output division property for the S-box, respectively. As the algebraic degree of F is at most
three, it holds

k′ = DS(k) =

⎧
⎪⎨
⎪⎩

4 if k = 4,

1 if k = 1, 2, 3,

0 if k = 0.

Assuming D42

(ki,kj)
be the input division property of the Feistel structure, the output division

property D42

K is

K = {(ki +DS(x), kj − x) | 0 ≤ x ≤ kj , DS(x) ≤ 4− ki}.

The propagation characteristic for the nonlinear layer is shown in nonLinear of Algorithm8.
The linear layer of EGFN consists of the iteration of XORs as

xi = xi ⊕ xj

for appropriate i and j. Therefore, assuming D42

(ki,kj)
be the input division property of the Feistel

structure, the output division property D42

K is

K = {(ki + x, kj − x) | 0 ≤ x ≤ min{kj , 4− ki}}.

The propagation characteristic for the linear layer is shown in linear of Algorithm8.
About the permutation layer, the propagation characteristic is the only modification of the

corresponding index. The entire algorithm to evaluate the propagation characteristic of the
round function is shown in roundFunction of Algorithm9.
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Algorithm 9 Propagation from D416

K for the round function of Lilliput

1: procedure roundFunction(K)
2: for all (i, j) ∈ {(8, 7), (9, 6), (10, 5), (11, 4), (12, 3), (13, 2), (14, 1), (15, 0)} do
3: K = nonLinear(K, i, j)
4: end for
5: for all (i, j) ∈ {(15, 1), (15, 2), (15, 3), (15, 4), (15, 5), (15, 6), (15, 7)} do
6: K = linear(K, i, j)
7: end for
8: for all (i, j) ∈ {(14, 7), (13, 7), (12, 7), (11, 7), (10, 7), (9, 7)} do
9: K = linear(K, i, j)

10: end for
11: K′ ⇐ ϕ
12: for all k⃗ ∈ K do
13: for i = 0 to 16 do
14: k′π(i) ⇐ ki
15: end for
16: K′ ⇐ K′ ∪ {k⃗′}
17: end for
18: return K′

19: end procedure

Table 7.2: Propagation from D416

{[4,4,...,4,3]}
#rounds 0 1 2 3 4 5 6 ⋆
|K| 1 1 3 14 377 33948 5513237

maxw(K) 63 63 63 63 63 55 ≤57
minw(K) 63 63 61 59 55 19 35

#rounds 7 ⋆ 8 ⋆ 9 ⋆ 10 11 12 13
|K| 266813452 70804820 1385951 16960 572 52 16

maxw(K) ≤51 ≤43 ≤25 13 6 4 2
minw(K) 22 9 6 3 2 1 1

In rounds labeled ⋆, the set K includes redundant vectors.

New Integral Distinguisher. As the number of exploiting chosen plaintexts increases, the
integral distinguisher can analyze more rounds in general. Therefore, we evaluate all integral
distinguishers with 263 chosen plaintexts where only one bit in the right half is constant. Note
that these distinguishers are always better than distinguishers whose only one bit in the left half
is constant. We choose one 4-bit value from X0 to X7, and we prepare chosen plaintexts such
that any one bit in the chosen value is constant and the others are active.

We implemented Algorithm9 and searched for non-trivial integral distinguishers. Let D416

k⃗

be the plaintext division property. When we choose one-bit constant from Xp, we use k⃗ as

ki =

{
4 if i ̸= p

3 if i = p

for i ∈ {0, 1, . . . , 16}. We coded our algorithm with C++, and we executed it in Xeon Processor
E5-2699 (18 cores) in 128 GB RAM. As a result, our algorithm found 13-round integral distin-
guishers for p = 0 and p = 6. For other p, our algorithm found 12-round integral distinguishers.

When p = 0 i.e., k⃗ = [4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3], we find a 13-round integral distin-
guisher, and the position X13

9 is balanced. Table 7.2 shows the propagation characteristic, where
minw(K) and maxw(K) are calculated as

minw(K) = min
k⃗∈K

{
16∑

i=1

ki

}
, maxw(K) = max

k⃗∈K

{
16∑

i=1

ki

}
.

Round 0 denotes the division property of the plaintext set, and we perfectly remove redundant
vectors except for 6, 7, 8, and 9 rounds.
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7.4 Key Recovery Using New Integral Characteristic

Let Xj
i be the j-round nibble value in Xi, where the plaintext is represented as (X0

15, . . . , X
0
0 ).

Moreover, let Y j
i be the output of the S-box as Y j

i = S(Xj
i ⊕ RKj

i ). We prepare 263 chosen
plaintexts such that any one bit of X0

0 is constant and the other 63 bits are active. Then, it holds⨁
X13

9 = 0, and we can attack 17-round Lilliput by using the 13-round integral distinguisher.
In our attack, let c = (c15, . . . , c0) be the ciphertext, where the linear layer of the last round is
removed. Note that the last round of Lilliput has the linear layer but this c is equivalent with
the ciphertext of 17-round Lilliput because the linear layer is public.

Since Lilliput has many XORs in the round function, the procedure of the key recovery is
very complicating. For simplicity, we use the following strategy. We first decompose four rounds
of Lilliput into five subfunctions denoted by f13, f14, f15, f16, and L. Here the output of fi
is the XOR of Y i involved in X13

9 , and the output of L is the linear part to compute X13
9 from

ciphertext. Then

X13
9 = f13(c,K13)⊕ f14(c,K14)⊕ f15(c,K15)⊕ f16(c,K16)⊕ L(c),

where Ki is the set of round keys involved in fi. The bit sizes of K13, K14, K15, and K16 are 44,
16, 48, and 28 bits, respectively. Then,

f13(c,K13) = Y 13
6 ,

f14(c,K14) = Y 14
0 ,

f15(c,K15) = Y 15
0 ⊕ Y 15

1 ⊕ Y 15
3 ⊕ Y 15

5 ⊕ Y 15
6 ⊕ Y 15

7 ,

f16(c,K16) = Y 15
0 ⊕ Y 15

1 ⊕ Y 15
3 ⊕ Y 15

4 ⊕ Y 15
5 ⊕ Y 15

6 ⊕ Y 15
7 .

We compute the sum of fi(c,Ki) by guessing Ki independently of i. Then, we compute keys
satisfying

⨁

X0

f13(c,K13)⊕ f14(c,K14)⊕ f16(c,K16) =
⨁

X0

f15(c,K15)⊕ L(c) (7.1)

Note that we do not need to guess round keys to compute the sum of L(c). Note that K13 ∪
K14 ∪K15 ∪K16 is 72 bits, and the probability that Eq. (7.1) holds randomly is 2−4. Therefore,
we reduce the space of key candidates from 272 to 268. Finally, we recover the correct key by
additionally guessing the remaining 8 bits. It is enough to determine the correct key by using
two known plaintexts. Thus, the total time complexity is 276 × 2 = 277.

Note that the time complexity that we evaluate whether Eq. (7.1) holds or not is less than
261 and it is negligible.

7.4.1 Detail Procedure for Key Recovery

Table 7.3: Key-recovery procedure for f13
Step Guessed key #guessed New Discarded #texts Values in set Complexity

total bits value values
1 0 256 c15, c13, . . . , c2, c0
2 RK16

7 4 t1 c7, c8 252 c15, c13, . . . , c9, c6, . . . , c2, c0, t1 256+4 = 260

3 RK16
6 8 t2 c6, c9, t1 244 c15, c13, . . . , c10, c5, . . . , c2, c0, t2 252+8 = 260

4 RK16
5 12 t3 c5, c10, t2 236 c15, c13, c12, c11, c4, c3, c2, c0, t3 244+12 = 256

5 RK16
4 16 t4 c11, t3 232 c15, c13, c12, c4, c3, c2, c0, t4 236+16 = 252

6 RK16
3 20 t5 c3, c12, t4 224 c15, c13, c4, c2, c0, t5 232+20 = 252

7 RK16
2 , RK15

0 28 t6 c2, c13, t5 216 c15, c4, c0, t6 224+28 = 252

8 RK16
0 32 t7, X

16
15 c0, c15, t6 212 c4, t7, X

16
15 216+32 = 248

9 RK15
7 36 X15

8 c4, X
16
15 28 t7, X

15
8 212+36 = 248

10 RK14
3 40 X14

12 t7, X
15
8 24 X14

12 28+40 = 248

11 RK13
6 44 Y 13

6 X14
12 24 Y 13

6 24+44 = 248

1. Evaluation of f13(c,K13). Round keys including K13 is

K13 = {RK13
6 , RK14

3 , RK15
0 , RK15

7 , RK16
0 , RK16

2 , . . . , RK16
7 }.
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Therefore, we compute the sum of Y 13
6 from 56-bit c15, c13, . . . , c2, c0 by guessing 44-bit

K13. First,

f13(c,K13) = S(X14
12 ⊕RK13

6 )

= S(S(t7 ⊕X15
8 ⊕RK14

3 )⊕RK13
6 )

= S(S(t7 ⊕ S(X16
15 ⊕RK15

7 )⊕ c4 ⊕RK14
3 )⊕RK13

6 ),

where t7 = X15
2 ⊕X15

15 is calculated as

t7 = t6 ⊕ c15 ⊕ S(c0 ⊕RK16
0 ),

t6 = t5 ⊕ S(S(c2 ⊕RK16
2 )⊕ c13 ⊕RK15

0 ),

t5 = t4 ⊕ c12 ⊕ S(c3 ⊕RK16
3 ),

t4 = t3 ⊕ c11 ⊕ S(c4 ⊕RK16
4 ),

t3 = t2 ⊕ c10 ⊕ S(c5 ⊕RK16
5 ),

t2 = t1 ⊕ c9 ⊕ S(c6 ⊕RK16
6 ),

t1 = c7 ⊕ c8 ⊕ S(c7 ⊕RK16
7 ).

We can evaluate the value t7 = X15
2 ⊕X15

15 efficiently by using a partial-sum technique [FKL+00].
Table 7.3 shows the key-recovery procedure. Finally, we can create a table T13 = {⊕f13(c,K13),K13}
with about 261 time complexity.

2. Evaluation of f14(c,K14). Round keys including K14 is

K14 = {RK14
0 , RK15

2 , RK16
0 , RK16

1 }.

Therefore, we compute the sum of Y 14
0 from 20-bit c15, c14, c6, c1c0 by guessing 16-bit K14.

Clearly, the time complexity to create a table T14 = {⊕f14(c,K14),K14} is at most 236,
which is negligible.

3. Evaluation of f15(c,K15). Round keys including K15 is

K15 = {RK15
0 , RK15

1 , RK15
3 , RK15

5 , RK15
6 , RK15

7 , RK16
0 , RK16

2 , RK16
3 , RK16

4 , RK16
6 , RK16

7 }.

Therefore, we compute the sum of f15(c,K15) from 52-bit c15, c13, c12, c11, c9, . . . , c2, c0 by
guessing 48-bit K15. However, since the output of f15 is calculated as

f15(c,K15) = Y 15
0 ⊕ Y 15

1 ⊕ Y 15
3 ⊕ Y 15

5 ⊕ Y 15
6 ⊕ Y 15

7 ,

we can compute the sum of Y 15
i independently. Let K15,i be 8-bit round keys involved

in Y 15
i . Then, since each Y 15

i involves 8-bit ciphertext and 8-bit round key, the time
complexity to create a table T15,i = {⊕Y 15

i ,K15,i} is at most 216. Finally, we generate a
table T15,i = {⊕f15(c,K15),K15} from T15,0, T15,1, T15,3, T15,5, T15,6, and T15,7. Since the
size of each table is 28, the time complexity to create a table T15 is at most 248, which is
negligible.

4. Evaluation of f16(c,K16). Round keys including K13 is

K16 = {RK16
0 , RK16

1 , RK16
3 , RK16

4 , RK16
5 , RK16

6 , RK16
7 },

Therefore, we compute the sum of f16(c,K16) from 28-bit c7, . . . , c3, c1, c0 by guessing 28-
bit K16. Clearly, the time complexity to create a table T16 = {⊕f16(c,K16),K16} is at
most 248, which is negligible.

5. Merge tables and meet-in-the-middle technique. Recall that K13, K14, K15, and K16 is 44,
16, 48, and 28 bits, respectively. Therefore, the size of T13, T14, T15, and T16 is 244, 216,
248, and 228, respectively. Then, K13∪K14∪K16 is 56 bits. Therefore, we first merge three
tables T13, T14, and T16, and let

TA = {f13(c,K13)⊕ f14(c,K14)⊕ f16(c,K16),K13 ∪ K14 ∪ K16}
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be the merged table, and we can compute TA with 256 time complexity.

Finally, we search for round keys satisfying

⨁
f13(c,K13)⊕ f14(c,K14)⊕ f16(c,K16) =

⨁
f15(c,K15)⊕ L(c) (7.2)

from TA and T15 by using the meet-in-the-middle technique [SW12b]. In the meet-in-the-
middle technique, we can compute round keys with about time complexity max{256, 248} =
256. Note that K13∪K14∪K15∪K16 is 72 bits, and the probability that Eq. (7.2) randomly
holds is 2−4. Therefore, we reduce the space of key candidates from 272 to 268. Finally,
we recover the correct key by additionally guessing the remaining 8 bits. It is enough to
determine the correct key by using two known plaintexts. Thus, the total time complexity
is 276 × 2 = 277.

7.5 Conclusion

This chapter proposed the integral cryptanalysis on a lightweight block cipher Lilliput. The
designers also evaluated the integral characteristic using the propagation of the integral property.
Thanks to the linear layer L to achieve faster diffusion, the number of rounds in the found integral
characteristic was 9 rounds. Therefore, the designers expected that the advantage from the GFN
is 6(=15-9) rounds. On the other hand, if we focus on the upper bound of the algebraic degree,
the security is not likely to dramatically improve because L does not increase the algebraic
degree. The division property is generalized from the integral property so that can also exploit
the algebraic degree. As a result, the division property can find 13-round integral characteristics,
and the true contribution by L is at most 3(=16-13) rounds. Moreover, this 13-round integral
distinguisher leads to a 17-round attack, which is a current best attack against Lilliput.
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Figure 7.3: Evaluation of f13(c,K13).
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Figure 7.4: Evaluation of f14(c,K14).
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Figure 7.5: Evaluation of f15(c,K15).

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

:

:

:

Figure 7.6: Evaluation of f16(c,K16).
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Figure 7.7: Evaluation of Linear Part.
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Chapter 8

Bit-Based Division Property and
Application to Simon Family

Abstract– Ciphers that do not use S-boxes have been discussed for the demand on lightweight
cryptosystems, and their round functions consist of and, rotation, and xor. Especially, the
Simon family is one of the most famous such ciphers, and there are many cryptanalyses against
the Simon family. However, it is very difficult to guarantee the security because we cannot
use useful techniques for S-box-based ciphers. Very recently, the division property, which is a
new technique to find integral characteristics, was shown in EUROCRYPT 2015. The tech-
nique is powerful for S-box-based ciphers, and it was used to break, for the first time, the full
MISTY1 in CRYPTO 2015. However, it has not been applied to non-S-box-based ciphers like
the Simon family effectively, and only the existence of the 10-round integral characteristic on
Simon32 was proven. On the other hand, the experimental characteristic, which possibly does
not work for all keys, covers 15 rounds, and there is a 5-round gap. To fill the gap, we introduce
a bit-based division property, and we apply it to show that the experimental 15-round integral
characteristic always works for all keys. Though the bit-based division property finds more ac-
curate integral characteristics, it requires much time and memory complexity. As a result, we
cannot apply it to symmetric-key ciphers whose block length is over 32. Therefore, we alterna-
tively propose a method for designers. The method works for ciphers with large block length,
and it shows “provable security” against integral cryptanalyses using the division property. We
apply this technique to the Simon family and show that Simon48, 64, 96, and 128 probably do
not have 17-, 20-, 25-, and 29-round integral characteristics, respectively.
Keywords– Integral cryptanalysis, Division property, Provable security, Simon family

8.1 Introduction

Non-S-box-based ciphers have been proposed for the demand on lightweight cryptosystems [AJN15,
BSS+13]. Such ciphers are superior in lightweight environments because they are implemented
by logical operations and do not have a lookup table like S-boxes. In 2013, the NSA pro-
posed a lightweight block cipher family, called the Simon family, that follows this design princi-
ple [BSS+13]. However, it is too difficult to guarantee the security against several cryptanalyses
because we cannot use many useful techniques for S-box-based ciphers. Therefore, many crypt-
analyses have been proposed against the Simon family, e.g., [ALLW14, BRV14, BNS14, KLT15,
SHW+14, WLV+14], and the designers recently summarized cryptanalyses in [BSS+15]. In this
chapter, we investigate the security of non-S-box-based ciphers against integral cryptanalyses
and illustrate our methods on the Simon family.

Division Property. Very recently, the division property, which is a new technique to find
integral characteristics [KW02], was proposed in [Tod15b]. The new technique permitted us
to find a 6-round integral characteristic on MISTY1, leading to the first complete theoretical
cryptanalysis of the full MISTY1 [Tod15a]. Please refer to Chap. 5 and 6 in detail. Moreover, this
technique was applied to generalized Feistel structures in [ZW15], leading to improved integral
cryptanalyses against LBlock and TWINE.
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Table 8.1: Integral characteristics on Simon32
Methods #Rounds Balanced bit (right half) Reference

Experiment (no proof) 15 (?b??,????,b???,???b) [WLV+14]
Division 10 (bbbb,bbbb,bbbb,bbbb) [Tod15b], Chap. 5

Conventional bit-based division 14 (bbbb,bbbb,bbbb,bbbb) Sect. 8.3
Bit-based division using 3 subsets 15 (?b??,????,b???,???b) Sect. 8.4

Table 8.2: Provable secure number of rounds for the Simon family
Ciphers Simon48 Simon64 Simon96 Simon128 reference

Vulnerable number 14 rounds 17 rounds 21 rounds 25 rounds [ZWW15]
Provable security 17 rounds 20 rounds 25 rounds 29 rounds this chapter

The division property also proves integral characteristics on the Simon family in [Tod15b],
and Simon32, 48, 64, 96, and 128 have 9-, 11-, 11-, 13-, 13-round integral characteristics,
respectively1. However, the round function is regarded as any function of degree 2. Therefore, we
can expect that integral characteristics can be extended to more rounds if one is able to exploit
the concrete structure of the round function. In fact, the experimental integral characteristic,
which possibly does not work for all keys, covers 15 rounds [WLV+14], and there is a large gap
between the proved characteristic and experimental one.

Our Contribution. The round function of the Simon family is regarded as any function of
degree 2 inChap. 5 because we cannot decompose the round function into several sub blocks like
S-boxes. However, we can decompose the round function into every bit, and we call the division
property that focuses on every bit a bit-based division property.

First, we apply the conventional bit-based division property to Simon32, which is not against
the definition of the division property. Therefore, we can directly use the propagation rules of
the division property. As a result, the conventional bit-based division property proves that
Simon32 has a 14-round integral characteristic. However, there is still a gap of one round
between the proof and experiment. Namely, this means that either the experimental 15-round
characteristic does not work for all keys or the conventional bit-based division property cannot
find the accurate characteristic. As a result, we conclude that the conventional bit-based division
property is insufficient to find the accurate characteristic. The conventional division property
divides the set of u⃗ according to whether the parity is 0 or unknown. However, we should divide
the set of u⃗ according to whether the parity is 0, 1, or unknown because we can also exploit the
fact that the parity is not only 0 but also 1. To exploit this fact, we newly introduce a variant of
the bit-based division property, which divides the set of u⃗ into three subsets. Since the variant
is completely different from the definition of the conventional division property, we show the
propagation characteristic also. Finally, we apply the variant to Simon32 and show that the
experimental 15-round characteristic always works for all keys. The proved characteristic is the
completely same as the experimental one including the position of balanced bits. Table 8.1 shows
the comparison of integral characteristics, where balanced and unknown bits are labeled as b

and ?, respectively.
Although the bit-based division property can find more accurate integral characteristics, their

propagations require much time and memory complexity. When we evaluate the propagation for
n-bit block ciphers, it roughly requires 2n complexity because the bit-based division property
has to manage the set of n-dimensional vectors whose elements take values in F2. This is feasible
for Simon32 because the block length is 32 bits, but it is infeasible for other Simon family mem-
bers. Therefore, we introduce a new technique, which is useful for designers but is not useful for
attackers. We call this technique a lazy propagation, where we evaluate only a part of all prop-
agations. The lazy propagation cannot find the integral characteristic, but it can evaluate the
number of rounds that the bit-based division property cannot find integral characteristics even
if we can evaluate the accurate propagation. Namely, the technique shows “provable security”
for the integral cryptanalysis using the division property, and we expect that it becomes a useful

1 Since the round key is XORed after the round function in Simon, we can trivially get one-round extended
integral characteristics.
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technique for designers. Our provable security guarantees the security against only the integral
cryptanalysis using the division property, and it does not always guarantee the security against
all integral-like cryptanalyses. However, for Simon32, the bit-based division property can find
the accurate integral characteristic. Therefore, we expect that it also finds the best integral
characteristic for the other Simon family if it is feasible. Table 8.2 shows the number of rounds
of Simon48, 64, 96, and 128, where the division property never finds integral characteristics.
As a result, we expect that Simon48, 64, 96, and 128 do not have 17-, 20-, 25-, and 29-round
integral characteristics, respectively2. Moreover, as the comparison, Table 8.2 also shows the
number of rounds that Simon48, 64, 96, and 128 have integral characteristics [ZWW15].

8.2 Preliminaries

8.2.1 Notations

We make the distinction between the addition of Fn
2 and addition of Z, and we use ⊕ and

+ as the addition of Fn
2 and addition of Z, respectively. For any a ∈ Fn

2 , the ith element
is expressed in a[i], and the Hamming weight w(a) is calculated as w(a) =

∑n
i=1 a[i]. For

any a⃗ ∈ (Fn1
2 × Fn2

2 × · · · × Fnm
2 ), the vectorial Hamming weight of a⃗ is defined as W (⃗a) =

(w(a1), w(a2), . . . , w(am)) ∈ Zm. Moreover, for any k⃗ ∈ Zm and k⃗′ ∈ Zm, we define k⃗ ⪰ k⃗′ if
ki ≥ k′i for all i. Otherwise, k⃗ ⪰̸ k⃗′. In this chapter, we often treat the set of k⃗, and K denotes

this set. Then, let |K| be the number of vectors. We simply write K ← k⃗ when K := K ∪ {k⃗}.
Moreover, we simply write K x←− k⃗, where the new K computed as

K :=

{
K ∪ {k⃗} if the original K does not include k⃗,

K \ {k⃗} if the original K includes k⃗.

8.2.2 Integral Attack

The integral attack was first introduced by Daemen et al. to evaluate the security of Square
[DKR97], and then it was formalized by Knudsen and Wagner [KW02]. Attackers first prepare
N chosen plaintexts and encrypt them R rounds. If the XOR of all encrypted texts becomes 0,
we say that the cipher has an R-round integral characteristic with N chosen plaintexts. Finally,
we analyze the entire cipher by using the integral characteristic. Therefore, it is very important
to find integral characteristic. There are two main approaches to find integral characteristics.
The first one is the propagation of the integral property [KW02] and the second one is based on
the degree estimation [Knu94, Lai94].

8.2.3 Division Property

The division property, which was proposed in [Tod15b], is a new method to find integral charac-
teristics. This section briefly shows the definition and propagation rules. Please refer to Chap. 5
in detail.

Bit Product Function. The division property of a multiset is evaluated by using the bit
product function defined as follows. Let πu : Fn

2 → F2 be a bit product function for any u ∈ Fn
2 .

Let x ∈ Fn
2 be the input, and πu(x) is the AND of x[i] satisfying u[i] = 1, i.e., it is defined as

πu(x) :=

n∏

i=1

x[i]u[i].

Notice that x[i]1 = x[i] and x[i]0 = 1. Let πu⃗ : (Fn1
2 × Fn2

2 × · · · × Fnm
2 ) → F2 be a bit product

function for any u⃗ ∈ (Fn1
2 ×Fn2

2 × · · · ×Fnm
2 ). Let x⃗ ∈ (Fn1

2 ×Fn2
2 × · · · ×Fnm

2 ) be the input, and
πu⃗(x⃗) is defined as

πu⃗(x⃗) :=

m∏

i=1

πui
(xi).

2 If we truly guarantee the security against integral attack, we have to consider the key recovery part.
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Figure 8.1: Round function of Simon2n

The bit product function also appears in the Algebraic Normal Form (ANF) of a Boolean
function. The ANF of a Boolean function f is represented as

f(x) =
⨁

u∈Fn
2

afu

(
n∏

i=1

x[i]u[i]

)
=
⨁

u∈Fn
2

afuπu(x),

where afu ∈ F2 is a constant value depending on f and u.

Definition of Division Property.

Definition 5.3 (Division Property). Let X be a multiset whose elements take a value of (Fn1
2 ×

Fn2
2 × · · · × Fnm

2 ). When the multiset X has the division property Dn1,n2,...,nm

K , where K denotes
a set of m-dimensional vectors whose elements take a value between 0 and ni, it fulfills the
following conditions:

⨁

x⃗∈X
πu⃗(x⃗) =

{
unknown if there are k⃗ ∈ K s.t. W (u⃗) ⪰ k⃗,
0 otherwise.

In this chapter, the division property for (Fn
2 )

m is referred to as Dnm

K for the simplicity. If

there are k⃗ ∈ K and k⃗′ ∈ K satisfying k⃗ ⪰ k⃗′, k⃗ can be removed from K because it is redundant.
Assume that the multiset X has the division property Dn1,n2,...,nm

K . If there is no unit vector e⃗j
in K, where e⃗j is a vector whose jth element is 1 and the others are 0,

⨁
x∈X xj is 0. See Chap. 5

to better understand the concept in detail, and [SHZ+15] and [Tod15a] help readers understand
the division property.

8.2.4 Simon Family

The Simon family is a lightweight block cipher family [BSS+13] based on the Feistel construction.
Let Simon2n be the Simon block ciphers with 2n-bit block length, where n is chosen from 16,
24, 32, 48, and 64. Moreover, Simon2n with mn-bit secret key is referred to as Simon2n/mn.
Since we only care about integral characteristics on the Simon family, this chapter only uses
Simon2n.

The output of the ith round function is denoted by (Li, Ri) and is calculated as

(Li, Ri) = (L≪1
i−1 ∧ L≪8

i−1 )⊕ L≪2
i−1 ⊕Ri−1 ⊕ ki, Li−1),

where L≪j denotes the j-bit left rotation of L, and ki denotes the ith round key. Moreover,
(L0, R0) denotes a plaintext. The round function consists of and, rotation, and xor, and Fig. 8.1
shows the round function. For more details, please refer to [BSS+13].

8.2.5 Known Integral Characteristic on Simon Family

It is difficult to find effective integral characteristics on ciphers which consist of and, rotation,
and xor. In [WLV+14], authors experimentally showed that Simon32 has the 15-round integral
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characteristic with 231 chosen plaintexts. Since their characteristic is confirmed under 213 secret
keys, they expected that the success probability of this characteristic is at least 1−2−13. There-
fore, this approach does not guarantee that the characteristic works for all secret keys. Moreover,
it is practically infeasible to find integral characteristics of other Simon family members because
the block length is too large for proceeding to an experimental evaluation.

Integral characteristics proved under all secret keys are shown in Chap. 5, but in this approach
the round function of Simon2n is seen as any n-bit function of degree 2. Therefore, the detailed
structure of the round function is not exploited. As a result, it shows that Simon32, 48, 64,
96, and 128 has 9-, 11-, 11-, 13-, and 13-round integral characteristic, respectively. Since the
round key is XORed after the round function, we can trivially get one-round extended integral
characteristics using the same technique in [WLV+14]. Therefore, 10-, 12-, 12-, 14-, and 14-round
integral characteristics are proved in Simon32, 48, 64, 96, and 128, respectively. Thus, there is
a 5-round gap between the proved characteristic and experimental one.

8.3 Conventional Bit-Based Division Property

When n-bit block ciphers are analyzed, the conventional division property uses Dℓ1,ℓ2,...,ℓm
K ,

where ℓi and m are chosen by attackers in the range of n =
∑m

i=1 ℓi. This section considers the
conventional bit-based division property, i.e., D1n

K . Here, we summarize three propagation rules
for the bit-based division property as follows. Note that these rules are trivially proven from the
propagation rules shown in Sect. 8.2.3 because it is not against the definition of the conventional
division property.

Proposition 8.1 (Copy for DK). Let F be a copy function, where the input (x1, x2, . . . , xm)
takes values of Fm

2 , and the output is calculated as (x1, x1, x2, x3, . . . , xm). Let X and F (X) be

the input multiset and output multiset, respectively. Assuming that X has D1m

K , F (X) has D1m+1

K′ ,
where K′ is computed as

K′ ←
{
(0, 0, k2, . . . , km), if k1 = 0,

(1, 0, k2, . . . , km), (0, 1, k2, . . . , km), if k1 = 1,

from all k⃗ ∈ K.

Proposition 8.2 (AND for DK). Let F be a function compressed by an AND, where the input
(x1, x2, . . . , xm) takes values of Fm

2 , and the output is calculated as (x1 ∧ x2, x3, . . . , xm). Let
X and F (X) be the input multiset and output multiset, respectively. Assuming that X has D1m

K ,

F (X) has D1m−1

K′ , where K′ is computed from all k⃗ ∈ K as

K′ ←
(⌈

k1 + k2
2

⌉
, k3, k4, . . . , km

)
.

Proposition 8.3 (XOR for DK). Let F be a function compressed by an XOR, where the input
(x1, x2, . . . , xm) takes values of Fm

2 , and the output is calculated as (x1 ⊕ x2, x3, . . . , xm). Let
X and F (X) be the input multiset and output multiset, respectively. Assuming that X has D1m

K ,

F (X) has D1m−1

K′ , where K′ is computed from all k⃗ ∈ K s.t. (k1, k2) = (0, 0), (1, 0), or (0, 1) as

K′ ← (k1 + k2, k3, k4, . . . , km).

8.3.1 Comparison between Conventional Bit-Based Division Property
and Solving Algebraic Equations

Before the application to Simon family, we roughly show the relation between the bit-based
division property and the resolution of algebraic equations by brute force. When entire ciphers
are represented by algebraic equations, such equations involve both the plaintext and secret key.
Therefore, if we solve such equations for an n-bit block cipher with a κ-bit secret key, this roughly
requires 2κ+n complexity. On the other hand, XORing with a constant value does not change
the conventional bit-based division property because such XORing is a linear function [Tod15a].
Therefore, the propagation of the conventional bit-based division property does not involve the
secret key. It may miss some useful cryptographic properties, but it dramatically reduces the
complexity.
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Figure 8.2: Core operation of the Simon family.

Table 8.3: Propagation of the conventional bit-based division property for the core operation in
the Simon family

Input D14

k⃗
Output D14

K
k⃗ = [0, 0, 0, 0] K = {[0, 0, 0, 0]}
k⃗ = [1, 0, 0, 0] K = {[1, 0, 0, 0], [0, 0, 0, 1]}
k⃗ = [0, 1, 0, 0] K = {[0, 1, 0, 0], [0, 0, 0, 1]}
k⃗ = [1, 1, 0, 0] K = {[1, 1, 0, 0], [0, 0, 0, 1]}
k⃗ = [0, 0, 1, 0] K = {[0, 0, 1, 0], [0, 0, 0, 1]}
k⃗ = [1, 0, 1, 0] K = {[1, 0, 1, 0], [0, 0, 1, 1], [1, 0, 0, 1]}
k⃗ = [0, 1, 1, 0] K = {[0, 1, 1, 0], [0, 0, 1, 1], [0, 1, 0, 1]}
k⃗ = [1, 1, 1, 0] K = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1]}

k⃗ = [k1, k2, k3, 1] K = {[k1, k2, k3, 1]}

8.3.2 Propagation for Core Operation of Simon

As an example, we analyze Simon2n by using the conventional bit-based division property. We
focus on only one bit of the right half in Simon2n. The core operation of the round function
is represented by Fig. 8.2. Since the input and output bit length is 4 bits, we use the division
property D14

K .
We consider the propagation characteristic. For instance, let assume that the input multiset

has D14

[k1,k2,k3,1]
, where ki denotes any value, i.e., 0 or 1. Then, if the multiset of (y1, y2, y3, w5, x4)

has D15

[∗,∗,∗,1,1], where ∗ is propagated values, the propagation always abort in the XOR, x4 ⊕
w5. Consequently, the bit-based division property of (y1, y2, y3, y4) is the same as that of

(x1, x2, x3, x4). On the other hand, assuming that the input multiset has D14

[k1,k2,k3,0]
, the output

property is different from the input one.
Let D14

K and D14

K′ be the division property of the input and output, respectively. When we get
K′ from K, we first independently calculate vectors belonging to K′ by evaluating the propagation
from every vector in K. Then, K′ is represented as the union of all calculated vectors. Finally,
if there are k⃗ ∈ K′ and k⃗′ ∈ K′ such that k⃗ ⪰ k⃗′, k⃗ is removed from K′ because the vector is
redundant.

Table 8.3 summarizes the propagation characteristics from D14

k⃗
to D14

K . The round function of

Simon2n repeats the core operation for all n-bit values in the right half. Therefore, we use D12n

K .
In every core operation, we only focus on four bits and evaluate the propagation independent
of other (2n − 4) bits. Evaluating the propagation is a quite technical task. To help readers
understand the propagation, we show a toy example, where we evaluate the propagation on a
Simon-like cipher whose block length is only 8 bits.

Example 8.1 (Propagation of Conventional Bit-Based Division Property.). To help readers
understand the propagation of the bit-based division property, we show the specific propagation
on a Simon-like cipher. The block length of the Simon-like cipher is 8 bits, and (Li+1, Ri+1) is
computed as

(Li+1, Ri+1) = (L≪1
i ∧ Li)⊕ L≪2

i ⊕Ri ⊕ ki, Li).

The left figure in Fig. 8.3 shows the round function.
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Figure 8.3: Round function of the Simon-like ciphers

Let us consider the propagation of the bit-based division property D18

K . We evaluate the
propagation on the equivalent circuit shown in the right figure in Fig. 8.3. Notice that we can
remove XORing with the round key when the conventional bit-based division property is evaluated.

As an example, let us consider 23 chosen plaintexts that all bits in L0 and the first one
bit in R0 is constant and the others are active. Such set has the bit-based division property
D18

{[0,0,0,0,0,1,1,1]}. Hereinafter, [0, 0, 0, 0, 0, 1, 1, 1] is referred to as [00000111] for the simplicity.

Round 1 Now, the bit-based division property of (L0, R0) is D18

{[00000111]}.

Step 1 Since the 8th bit of [00000111] is one, there is no change in K.

Step 2 Since the 7th bit of [00000111] is one, there is no change in K.

Step 3 Since the 6th bit of [00000111] is one, there is no change in K.

Step 4 Since the 1st, 2nd, and 4th bits of [00000111] are zero, there is no change in K.

After the swapping, the bit-based division property of (L1, R1) is D18

{[01110000]}.

Round 2 Now, the bit-based division property of (L1, R1) is D18

{[01110000]}.

Step 1 The propagation from [01110000] generates three vectors as

[01110000]⇒ [01110000], [01100001], [00110001].

Step 2 From every vector, the following six vectors

[01110000]⇒ [01110000], [01000010],

[01100001]⇒ [01100001], [01000011],

[00110001]⇒ [00110001], [00000011],

are generated. Here, [01000011] is redundant because [01000011] ⪰ [01000010].
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Step 3 From every vector, the following 11 vectors

[01110000]⇒ [01110000], [00010100], [01100100],

[01000010]⇒ [01000010], [00000110],

[01100001]⇒ [01100001], [00000101],

[00110001]⇒ [00110001], [00010101], [00100101],

[00000011]⇒ [00000011],

are generated. Here, [00010101] is redundant because [00010101] ⪰ [00010100]. More-
over, [00100101] is redundant because [00100101] ⪰ [00000101].

Step 4 From every vector, the following 17 vectors

[01110000]⇒ [01110000], [00111000], [01011000],

[00010100]⇒ [00010100],

[01100100]⇒ [01100100], [00101100], [01001100],

[01000010]⇒ [01000010], [00001010],

[00000110]⇒ [00000110],

[01100001]⇒ [01100001], [00101001], [01001001],

[00000101]⇒ [00000101],

[00110001]⇒ [00110001], [00011001],

[00000011]⇒ [00000011],

are generated.

After the swapping, the bit-based division property of (L2, R2) is D18

K′ , where K′ has 17
vectors.

After the 2nd round, we similarly evaluate the propagation of the bit-based division property. As
a result, the bit-based division property of (L4, R4) is D18

K , where

K = {[00010000], [00100000], [01000000], [10000000], [00000010], [00000100], [00001001]}.

It means that the first one bit and the last one bit of R4 are balanced.

8.3.3 Application to Simon32

We evaluate the propagation characteristic of the conventional bit-based division property on Si-
mon32. We prepare chosen plaintexts such that the first bit is constant and the others are active.
Then, the set of chosen plaintexts has the division property D132

K , where K = {[0, 1, 1, . . . , 1]}.
Table 8.4 shows |K|, which is the number of vectors, in every round, where we perfectly remove
redundant vectors from K. Moreover, minw(K) and maxw(K) are defined as

minw(K) = min
k⃗∈K

(
32∑

i=1

w(ki)

)
, maxw(K) = max

k⃗∈K

(
32∑

i=1

w(ki)

)
.

The output of the 14th round function has the division property D132

K , where K has 32 distinct
vectors whose Hamming weight is one. Therefore, the conventional bit-based division property
cannot show whether or not the output of the 14th round function is balanced. On the other
hand, the output of the 13th round function has the division property D132

K , where K is repre-
sented as 16 vectors, whose Hamming weight of the left half is 1 and that of the right half is 0,
and 120 (=

(
16
2

)
) vectors, whose Hamming weight of the left half is 0 and that of the right half is

2. This division property means that the output of the 13th round function takes the following
integral property

(????,????,????,????, bbbb,bbbb,bbbb,bbbb),

where balanced and unknown bits are labeled as b and ?, respectively.
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Table 8.4: Propagation of the bit-based division property on Simon32
#rounds |K| minw(K) maxw(K)

0 (plaintexts) 1 31 31
1 1 31 31
2 3 30 31
3 11 29 31
4 65 27 31
5 774 24 31
6 18165 19 31
7 587692 14 30
8 5191387 8 25
9 1595164 5 18
10 95768 3 14
11 5894 2 6
12 682 2 4
13 136 1 2
14 32 1 1

Round keys are XORed with the right half only after the round function is applied to the
left half in the Simon family. Then, when a plaintext is represented as (L0, F (L0)⊕R0), texts
encrypted by one round are represented as

L1 = F (L0)⊕ k1 ⊕ F (L0)⊕R0 = R0 ⊕ k1,
R1 = L1.

Therefore, we can easily get a 14-round integral characteristic from the 13-round one. The same
technique is used in [WLV+14]. Therefore, we conclude that 14-round Simon32 has the integral
characteristic with 231 chosen plaintexts.

8.4 Bit-Based Division Property using Three Subsets

8.4.1 Motivation

The conventional bit-based division property proved the existence of the 14-round integral char-
acteristic of Simon32. However, the experimental characteristic covers 15 rounds [WLV+14],
and there is still a one-round gap between the experiment and proof. In [WLV+14], the authors
experimentally confirmed the characteristic by randomly choosing 213 secret keys. Therefore,
they concluded that the success probability of the characteristic is at least 1 − 2−13. Thus, we
consider that this gap is derived from either the experimental result does not work for all keys
or the conventional bit-based division property cannot find the accurate characteristic.

We first show that the conventional bit-based division property is insufficient to find integral
characteristics on Simon32, and we then introduce a new variant of the bit-based division prop-
erty. The conventional bit-based division property focuses on that the parity

⨁
x⃗∈X πu⃗(x⃗) is 0 or

unknown. On the other hand, the new variant focuses on that the parity
⨁

x⃗∈X πu⃗(x⃗) is 0, 1, or
unknown. Therefore we call the new variant the bit-based division property using three subsets.
The new variant can find more accurate integral characteristics and prove that the experimental
characteristic shown in [WLV+14] works for all keys.

8.4.2 Characteristic that Conventional Bit-Based Division Property
cannot Find

The conventional division property divides the set of u⃗ according to whether the parity is 0 or
unknown. However, it sometimes overlooks useful characteristics. We show it by using a simple
example.

We again evaluate the propagation of the conventional bit-based division property for the
circuit in Fig 8.2, and F : F4

2 → F4
2 denotes the circuit. Moreover, let X and F (X) be the input
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and output multiset, respectively. Assuming that X has D14

{[1,1,0,0],[0,0,1,0]},
⨁

x⃗∈X π[1,1,0,0](x⃗) and⨁
x⃗∈X π[0,0,1,0](x⃗) are unknown. Then, the output multiset F (X) has D14

{[1,1,0,0],[0,0,1,0],[0,0,0,1]}
from Table 8.3.

Let us assume that both
⨁

x⃗∈X π[1,1,0,0](x⃗) and
⨁

x⃗∈X π[0,0,1,0](x⃗) are 1. Even if we know the

parity is always one, the division property of X is D14

{[1,1,0,0],[0,0,1,0]}. However, we can get the
following equation.

⨁

x⃗∈X
π[0,0,0,1](F (x⃗)) =

⨁

x⃗∈X
(x1x2 ⊕ x3 ⊕ x4)

=
⨁

x⃗∈X
(x1x2)

⨁

x⃗∈X
(x3)

⨁

x⃗∈X
(x4)

=
⨁

x⃗∈X
π[1,1,0,0](x⃗)

⨁

x⃗∈X
π[0,0,1,0](x⃗)

⨁

x⃗∈X
π[0,0,0,1](x⃗)

= 1⊕ 1⊕ 0 = 0.

Therefore, ⊕x⃗∈Xπ[0,0,0,1](F (x⃗)) is always 0 not unknown, and the division property of F (X) is

D14

{[1,1,0,0],[0,0,1,0],[0,1,0,1],[1,0,0,1]} not D14

{[1,1,0,0],[0,0,1,0],[0,0,0,1]}.
Since the conventional division property focuses on the case the parity is 0, it cannot find

characteristics that appear by cancelling like the above example. Therefore, we newly introduce
a variant of the bit-based division property to exploit this fact. The variant divides the set of u⃗
into three subsets, i.e., 0, 1, and unknown.

8.4.3 Definition of Bit-Based Division Property using Three Subsets

The conventional division property uses the set K to represent the subset of u⃗ such that⨁
x⃗∈X πu⃗(x⃗) is unknown. The bit-based division property using three subsets needs to rep-

resent not only the subset of u⃗ such that
⨁

x⃗∈X πu⃗(x⃗) is unknown but also the subset of u⃗
such that

⨁
x⃗∈X πu⃗(x⃗) is one. Therefore, we use the set K to represent the subset of u⃗ such

that
⨁

x⃗∈X πu⃗(x⃗) is unknown, and we also use the set L to represent the subset of u⃗ such that⨁
x⃗∈X πu⃗(x⃗) is one.

Definition 8.1 (Bit-based division property using three subsets). Let X be a multiset whose

elements take a value of (F2)
m, and k⃗ is an m-dimensional vector whose ith element takes 0 or

1. When the multiset X has the bit-based division property using three subsets D1m

K,L, it fulfils the
following conditions:

⨁

x⃗∈X
πu⃗(x⃗) =

⎧
⎪⎨
⎪⎩

unknown if there are k⃗ ∈ K s.t. W (u⃗) ⪰ k⃗,
1 else if there is ℓ⃗ ∈ L s.t. W (u⃗) = ℓ⃗,

0 otherwise.

If there are k⃗ ∈ K and k⃗′ ∈ K satisfying k⃗ ⪰ k⃗′, k⃗ can be removed from K because the vector
k⃗ is redundant. Moreover, when there is k⃗ ∈ K satisfying W (u⃗) ⪰ k⃗,

⨁
x⃗∈X πu⃗(x⃗) is unknown

even if there is ℓ⃗ ∈ L satisfying W (u⃗) = ℓ⃗. Therefore, if there are ℓ⃗ ∈ L and k⃗ ∈ K satisfying

ℓ⃗ ⪰ k⃗, the vector ℓ⃗ is redundant. Notice that redundant vectors in K and L do not affect whether⨁
x⃗∈X πu⃗(x⃗) is 0, 1, or unknown for any u⃗.

Example 8.2. Let X be a multiset whose elements take a value of (F2)
4. Assume the mul-

tiset X has the bit-based division property D14

K,L, where K = {[0, 0, 0, 1], [0, 1, 1, 0]} and L =
{[1, 0, 0, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 1]}. Then, every parity satisfies the following, where the
value of u⃗ is represented as hexadecimal notation of (u1∥u2∥u3∥u4).

u⃗ 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

Parity 0 ? 1 ? 0 ? ? ? 1 ? 1 ? 0 ? ? ?

Notice that the parity of π[0,0,1,1](x⃗) over all x⃗ ∈ X is unknown because there is [0, 0, 0, 1] ∈ K
and W ([0, 0, 1, 1]) ⪰W ([0, 0, 0, 1]). Thus, [0, 0, 1, 1] ∈ L is redundant.
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8.4.4 Propagation Rules

We show propagation rules for the bit-based division property using three subsets. There rules
are very similar to those of the conventional division property. Here, we show three rules, “Copy,”
“AND,” and “XOR,” because any Boolean function can be evaluated by using these three rules.

Proposition 8.4 (Copy for DK,L). Let F be a copy function, where the input (x1, x2, . . . , xm)
takes values of (F2)

m, and the output is calculated as (x1, x1, x2, x3, . . . , xm). Let X and F (X)
be the input multiset and output multiset, respectively. Assuming that X has D1m

K,L, F (X) has

D1m+1

K′,L′ , where K′ and L′ are computed as

K′ ←
{
(0, 0, k2, . . . , km), if k1 = 0

(1, 0, k2, . . . , km), (0, 1, k2, . . . , km), if k1 = 1
,

L′ ←
{
(0, 0, ℓ2, . . . , ℓm), if ℓ1 = 0

(1, 0, ℓ2, . . . , ℓm), (0, 1, ℓ2, . . . , ℓm), (1, 1, ℓ2, . . . , ℓm) if ℓ1 = 1
.

from all k⃗ ∈ K and all ℓ⃗ ∈ L, respectively.

Proof. Let F be a copy function, where the input (x1, x2, . . . , xm) takes values of Fm
2 , and the

output is calculated as (x1, x1, x2, x3, . . . , xm). Let X and F (X) be the input multiset and output
multiset, respectively. Now, we want to evaluate the parity

⨁
y⃗∈F (X) πv⃗(y⃗) for any v⃗ ∈ Fm+1

2 .

⨁

y⃗∈F (X)
πv⃗(y⃗) =

⨁

x⃗∈X
(πv⃗ ◦ F )(x⃗)

=
⨁

x⃗∈X
xv11 x

v2
1 x

v3
2 x

v4
3 · · ·xvm+1

m

=
⨁

x⃗∈X
π[v1∨v2,v3,...,vm+1](x⃗).

Assuming that X has D1m

K,L, πu⃗(x⃗) is satisfied as

⨁

x∈X
πu⃗(x) =

⎧
⎪⎨
⎪⎩

unknown if there are k⃗ ∈ K s.t. u⃗ ⪰ k⃗,
1 else if there is ℓ⃗ ∈ L s.t. u⃗ = ℓ⃗,

0 otherwise.

Therefore,
⨁

y⃗∈F (X) πv⃗(y⃗) is unknown if and only if there are k⃗ ∈ K satisfying

W ([v1 ∨ v2, v3, . . . , vm+1]) ⪰ k⃗.

Thus, the parity is unknown for any v⃗ satisfying

W (v⃗) ⪰ (1, 0, k2, k3, . . . , km) or W (v⃗) ⪰ (0, 1, k2, k3, . . . , km)

for all k⃗ ∈ K s.t. k1 = 1. Moreover, the parity is unknown for any v⃗ satisfying

W (v⃗) ⪰ (0, 0, k2, k3, . . . , km)

for all k⃗ ∈ K s.t. k1 = 0.
Next, if there are not k⃗ ∈ K satisfyingW ([v1∨v2, v3, . . . , vm+1]) ⪰ k⃗, the parity

⨁
y⃗∈F (X) πv⃗(y⃗)

is exactly determined. Then, the parity is 1 if there is ℓ⃗ ∈ L satisfyingW ([v1∨v2, v3, . . . , vm+1]) =

ℓ⃗. Otherwise, the parity is 0.

Proposition 8.5 (AND for DK,L). Let F be a function compressed by an AND, where the input
(x1, x2, . . . , xm) takes values of (F2)

m, and the output is calculated as (x1 ∧ x2, x3, . . . , xm). Let
X and F (X) be the input multiset and output multiset, respectively. Assuming that X has D1m

K,L,

F (X) has D1m−1

K′,L′ , where K′ is computed from all k⃗ ∈ K as

K′ ←
(⌈

k1 + k2
2

⌉
, k3, k4, . . . , km

)
.
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Moreover, L′ is computed from all ℓ⃗ ∈ L s.t. (ℓ1, ℓ2) = (0, 0) or (1, 1) as

L′ ←
(⌈

ℓ1 + ℓ2
2

⌉
, ℓ3, ℓ4, . . . , ℓm

)
.

Proof. Let F be a non-linear function, where the input (x1, x2, . . . , xm) takes values of (F2)
m,

and the output is calculated as (x1 ∧ x2, x3, . . . , xm). Let X and F (X) be the input multiset
and output multiset, respectively. Now, we want to evaluate the parity

⨁
y⃗∈F (X) πv⃗(y⃗) for any

v⃗ ∈ Fm−1
2 .

⨁

y⃗∈F (X)
πv⃗(y⃗) =

⨁

x⃗∈X
(πv⃗ ◦ F )(x⃗)

=
⨁

x⃗∈X
(x1x2)

v1xv23 x
v3
4 · · ·xvm−1

m

=
⨁

x⃗∈X
π[v1,v1,v2,v3,...,vm−1](x⃗).

Assuming that X has D1m

K,L, πu⃗(x⃗) is satisfied as

⨁

x⃗∈X
πu⃗(x) =

⎧
⎪⎨
⎪⎩

unknown if there are k⃗ ∈ K s.t. u⃗ ⪰ k⃗,
1 else if there is ℓ⃗ ∈ L s.t. u⃗ = ℓ⃗,

0 otherwise.

Therefore,
⨁

y⃗∈F (X) πv⃗(y⃗) is unknown if and only if there is k⃗ ∈ K satisfying

W ([v1, v1, v2, v3, . . . , vm−1]) ⪰ k⃗.

It means that the parity is unknown for any v⃗ satisfying

W (v⃗) ⪰
(⌈

k1 + k2
2

⌉
, k3, k4, . . . , km

)
.

Next, if there are not k⃗ ∈ K satisfying

W ([v1, v1, v2, v3, . . . , vm−1]) ⪰ k⃗,

the parity
⨁

y∈F (X) πv⃗(y) is exactly determined. Then, the parity is 1 if there is ℓ ∈ L satisfying

W ([v1, v1, v2, v3, . . . , vm−1]) = ℓ⃗.

Otherwise, the parity is 0.

Proposition 8.6 (XOR for DK,L). Let F be a function compressed by an XOR, where the input
(x1, x2, . . . , xm) takes values of (F2)

m, and the output is calculated as (x1 ⊕ x2, x3, . . . , xm). Let
X and F (X) be the input multiset and output multiset, respectively. Assuming that X has D1m

K,L,

F (X) has D1m−1

K′,L′ , where K′ is computed from all k⃗ ∈ K s.t. (k1, k2) = (0, 0), (1, 0), or (0, 1) as

K′ ← (k1 + k2, k3, k4, . . . , km).

Moreover, L′ is computed from all ℓ⃗ ∈ L s.t. (ℓ1, ℓ2) = (0, 0), (1, 0), or (0, 1) as

L′ x←− (ℓ1 + ℓ2, ℓ3, ℓ4, . . . , ℓm) .

Proof. Let F be a function compressed by an XOR, where the input (x1, x2, . . . , xm) takes values
of Fm

2 , and the output is calculated as (x1⊕x2, x3, . . . , xm). Let X and F (X) be the input multiset

122



and output multiset, respectively. Now, we want to evaluate the parity
⨁

y⃗∈F (X) πv⃗(y⃗) for any

v⃗ ∈ Fm−1
2 .

⨁

y⃗∈F (X)
πv⃗(y⃗) =

⨁

x⃗∈X
(πv⃗ ◦ F )(x⃗)

=
⨁

x⃗∈X
(x1 ⊕ x2)v1xv23 xv34 · · ·xvm−1

m

=
⨁

x⃗∈X
xv11 x

v2
3 x

v3
4 · · ·xvm−1

m ⊕ xv12 xv23 xv34 · · ·xvm−1
m

=
⨁

x⃗∈X
π[v1,0,v2,v3,...,vm−1](x⃗)

⨁

x⃗∈X
π[0,v1,v2,v3,...,vm−1](x⃗).

Assuming that X has D1m

K,L, πu⃗(x⃗) is satisfied as

⨁

x⃗∈X
πu⃗(x) =

⎧
⎪⎨
⎪⎩

unknown if there are k⃗ ∈ K s.t. u⃗ ⪰ k⃗,
1 else if there is ℓ⃗ ∈ L s.t. u⃗ = ℓ⃗,

0 otherwise.

Therefore,
⨁

y⃗∈F (X) πv⃗(y⃗) is unknown if and only if there are k⃗ ∈ K satisfying

W ([v1, 0, v2, v3, . . . , vm−1]) ⪰ k⃗ or W ([0, v1, v2, v3, . . . , vm−1]) ⪰ k⃗.

It means that the parity is unknown for any v⃗ satisfying

W (v⃗) ⪰ (k1 + k2, k3, k4, . . . , km) ,

where (k1, k2) = (0, 0), (1, 0), or (0, 1). From k⃗ ∈ K satisfying (k1, k2) = (1, 1), we cannot get v⃗
that the parity is unknown.

Next, if there is not k⃗ ∈ K satisfying

W ([v1, 0, v2, v3, . . . , vm−1]) ⪰ k⃗ or W ([0, v1, v2, v3, . . . , vm−1]) ⪰ k⃗,

the parity
⨁

y⃗∈F (X) πv⃗(y⃗) is exactly determined. If there is either

ℓ⃗1 =W ([v1, 0, v2, v3, . . . , vm−1]) or ℓ⃗2 =W ([0, v1, v2, v3, . . . , vm−1])

in L, the parity is 1. If there are both ℓ⃗1 and ℓ⃗2 in L, the parity is 0. Otherwise, the parity is
0.

8.4.5 Dependencies between K and L
Propagation for Public Function. In the propagation rules shown in Sect. 8.4.4, K′ and L′

are computed from K and L, respectively. Therefore, we can evaluate the propagation from K
and that from L independently. However, independent propagations generate many redundant
vectors in K′ and L′. Note that redundant vectors in K′ and L′ do not affect whether the parity
is 0, 1, or unknown for any u⃗. Therefore, when we consider the propagation for public functions,
we do not need to care about the dependencies between K and L. On the other hand, if there are
many redundant vectors, the propagation requires much time complexity. Therefore, we should
remove redundant vectors if possible because of the reason of only complexity.

XORing with Secret Round Key. For the public function, the propagation from K and
that from L are independently evaluated. However, if the secret round key is XORed, every
vector in L affects K.

Let X and F (X) be the input and output multiset, respectively. Then, y⃗ ∈ F (X) is computed

as y⃗ = x⃗ ⊕ r⃗k for x⃗ ∈ X, where r⃗k is the secret round key. Moreover, let D1m

K,L and D1m

K′,L′ be
the bit-based division property using three subsets on X and F (X), respectively. We want to
get K′ and L′ from K and L. We cannot know the secret round key. Therefore, the parity
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⨁
x⃗∈X πv⃗(x⃗ ⊕ r⃗k) satisfying v⃗ ≻ ℓ⃗ is unknown because the parity depends on the secret round

key.
In many ciphers, round keys are XORed with a part of entire bits. Assuming a round key is

XORed with the ith bit, K′ is computed as

K′ ← (ℓ1, ℓ2, . . . , ℓi ∨ 1, . . . , ℓm)

for all ℓ⃗ ∈ L satisfying ℓi = 0.

8.4.6 Propagation for Core Operation of Simon

We search for integral characteristics on Simon32 by the bit-based division property using three
subsets. Similar to the conventional bit-based division property, we focus on only one bit of the
right half and consider the core operation of the Simon family (see Fig. 8.2).

Table 8.5: Propagation of the bit-based division property using three subsets for the core oper-
ation in the Simon family

Input D14

K,{ℓ⃗} Output D14

K′,L′

ℓ⃗ = [0, 0, 0, 0] L′ = {[0, 0, 0, 0]}
ℓ⃗ = [1, 0, 0, 0] L′ = {[1, 0, 0, 0]}
ℓ⃗ = [0, 1, 0, 0] L′ = {[0, 1, 0, 0]}
ℓ⃗ = [1, 1, 0, 0] L′ = {[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1], [1, 1, 0, 1]}
ℓ⃗ = [0, 0, 1, 0] L′ = {[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 1]}
ℓ⃗ = [1, 0, 1, 0] L′ = {[1, 0, 1, 0], [1, 0, 0, 1], [1, 0, 1, 1]}
ℓ⃗ = [0, 1, 1, 0] L′ = {[0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1]}
ℓ⃗ = [1, 1, 1, 0] L′ = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 0, 1]}
ℓ⃗ = [ℓ1, ℓ2, ℓ3, 1] L′ = {[ℓ1, ℓ2, ℓ3, 1]}

The core operation is a public function and it does not involve any secret information. There-
fore, we can evaluate the propagation from K and that from L independently. Table 8.5 sum-
marizes the propagation characteristics from D14

K,{ℓ⃗} to D14

K′,L′ , where the propagation from K to

K′ is the same as that in Table 8.3. To help readers understand the propagation, we show an
example as follows.

Example 8.3 (Example of Propagation of Bit-Based Division Property using Three Subsets).

x1

w1

w2 w4

w5w3

x2 x3 x4

y1 y2 y3 y4

Figure 8.4: Core operation of the Simon family

We show an example of the propagation of the bit-based division property using three subsets.
Let F be the core operation of the Simon family (see 8.4). Let X and F (X) be the input multiset
and the output multiset, respectively.

Assuming the input multiset has the division property D14

ϕ,[1,1,1,0]. We consider the interme-

diate state [y1, y2, y3, w1, w2, w3, x4], and evaluate the division property. From Proposition 8.4,
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such state has D17

ϕ,L, where L is represented as

[1, 1, 1, 0, 0, 0, 0][1, 1, 0, 0, 0, 1, 0][1, 1, 1, 0, 0, 1, 0][1, 0, 1, 0, 1, 0, 0],

[1, 0, 0, 0, 1, 1, 0][1, 0, 1, 0, 1, 1, 0][1, 1, 1, 0, 1, 0, 0][1, 1, 0, 0, 1, 1, 0],

[1, 1, 1, 0, 1, 1, 0][0, 1, 1, 1, 0, 0, 0][0, 1, 0, 1, 0, 1, 0][0, 1, 1, 1, 0, 1, 0],

[0, 0, 1, 1, 1, 0, 0][0, 0, 0, 1, 1, 1, 0][0, 0, 1, 1, 1, 1, 0][0, 1, 1, 1, 1, 0, 0],

[0, 1, 0, 1, 1, 1, 0][0, 1, 1, 1, 1, 1, 0][1, 1, 1, 1, 0, 0, 0][1, 1, 0, 1, 0, 1, 0],

[1, 1, 1, 1, 0, 1, 0][1, 0, 1, 1, 1, 0, 0][1, 0, 0, 1, 1, 1, 0][1, 0, 1, 1, 1, 1, 0],

[1, 1, 1, 1, 1, 0, 0][1, 1, 0, 1, 1, 1, 0][1, 1, 1, 1, 1, 1, 0].

Next, we consider the intermediate state [y1, y2, y3, w4, w3, x4], and evaluate the division property.

From Proposition 8.5, such state has D16

ϕ,L′ , where L′ is represented as

[1, 1, 1, 0, 0, 0][1, 1, 0, 0, 1, 0][1, 1, 1, 0, 1, 0][0, 0, 1, 1, 0, 0],

[0, 0, 0, 1, 1, 0][0, 0, 1, 1, 1, 0][0, 1, 1, 1, 0, 0][0, 1, 0, 1, 1, 0],

[0, 1, 1, 1, 1, 0][1, 0, 1, 1, 0, 0][1, 0, 0, 1, 1, 0][1, 0, 1, 1, 1, 0],

[1, 1, 1, 1, 0, 0][1, 1, 0, 1, 1, 0][1, 1, 1, 1, 1, 0].

Third, we consider the intermediate state [y1, y2, y3, w5, x4], and evaluate the division property.

From Proposition 8.6, such state has D15

ϕ,L′′ , where L′′ is represented as

[1, 1, 1, 0, 0][1, 1, 0, 1, 0][0, 0, 1, 1, 0][0, 1, 1, 1, 0][1, 0, 1, 1, 0].

Here, two [1, 1, 1, 1, 0] is propagated from [1, 1, 1, 0, 1, 0] and [1, 1, 1, 1, 0, 0], and [1, 1, 1, 1, 0] is

removed from L. Finally, we get [y1, y2, y3, y4] has the division property D15

ϕ,L′′′ , where L′′′ is
represented as

[1, 1, 1, 0][1, 1, 0, 1][0, 0, 1, 1][0, 1, 1, 1][1, 0, 1, 1].

Next, the propagation on the round function can be evaluated by repeating for all bits of the
right half. Finally, when round keys are XORed with the right half, new vectors are generated
from L, and the new vectors are inserted into K. The following shows a toy example, which is
the same as Example 8.1, to help readers understand the propagation.

Example 8.4 (Propagation of Bit-Based Division Property Using Three Subsets.). To help
readers understand the propagation of the bit-based division property using three subsets, we
revisit the toy Simon-like cipher shown in Example 8.1 (see Fig. 8.3).

Let us consider the propagation of the bit-based division property D18

K,L. We evaluate the
propagation on the equivalent circuit shown in the right figure in Fig. 8.3.

As an example, let us consider 23 chosen plaintexts that all bits in L0 and the first one
bit in R0 is constant and the others are active. Such set has the bit-based division property
D18

ϕ,{[0,0,0,0,0,1,1,1]}. Hereinafter, [0, 0, 0, 0, 0, 1, 1, 1] is referred to as [00000111] for the simplicity.

Round 1 Now, the bit-based division property of (L0, R0) is D18

ϕ,{[00000111]}.

Step 1 Since the 8th bit of [00000111] is one, there is no change in L. Moreover, there is
no vector in K.

Step 2 Since the 7th bit of [00000111] is one, there is no change in L. Moreover, there is
no vector in K.

Step 3 Since the 6th bit of [00000111] is one, there is no change in L. Moreover, there is
no vector in K.

Step 4 Since the 1st, 2nd, and 4th bits of [00000111] are zero, there is no change in L.
Moreover, there is no vector in K.

Finally, since the round key is XORed with the right half, the parity of π[00001111](x⃗) for all
x⃗ ∈ X becomes unknown. After the swapping, the bit-based division property of (L1, R1) is

D18

{[11110000]},{[01110000]}.
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Round 2 Now, the bit-based division property of (L1, R1) is D18

{[11110000]},{[01110000]}.

Step 1 The propagation from [11110000] ∈ K generates three vectors as

[11110000]⇒ [11110000], [01100001], [10110001].

Moreover, the propagation from [01110000] ∈ L generates three vectors as

[01110000]⇒ [01110000], [00110001], [01110001],

where [01110001] is redundant because [01110001] ⪰ [01100001].

Step 2 From every vector in K, the following eight vectors

[11110000]⇒ [11110000], [11000010], [01110010],

[01100001]⇒ [01100001], [01000011],

[10110001]⇒ [10110001], [10000011], [00110011],

are generated. Moreover, from every vector in L, the following 10 vectors

[01110000]⇒ [01110000], [01000010], [01010010], [01100010], [01110010],

[00110001]⇒ [00110001], [00000011], [00010011], [00100011], [00110011],

are generated. Here, [01110010] and [00110011] are redundant because there are the
same vector in K′.

Step 3 From every vector in K, the following 19 vectors

[11110000]⇒ [11110000], [10010100], [11100100],

[11000010]⇒ [11000010], [10000110],

[01110010]⇒ [01110010], [00010110], [01100110],

[01100001]⇒ [01100001], [00000101],

[01000011]⇒ [01000011], [00000111],

[10110001]⇒ [10110001], [10010101], [10100101],

[10000011]⇒ [10000011],

[00110011]⇒ [00110011], [00010111], [00100111],

are generated. Here, [00000111], [10010101], [10100101], [00010111], and [00100111]
are redundant. Moreover, from every vector in L, the following 22 vectors

[01110000]⇒ [01110000], [00010100], [01010100], [00110100], [01100100],

[01000010]⇒ [01000010],

[01010010]⇒ [01010010], [01000110], [01010110],

[01100010]⇒ [01100010], [00000110], [01000110], [00100110], [01100110],

[00110001]⇒ [00110001], [00100101], [00110101],

[00000011]⇒ [00000011],

[00010011]⇒ [00010011], [00000111], [00010111],

[00100011]⇒ [00100011],

are generated. where [01000110] is cancelled because it is propagated from [01010010]
and [01100010] twice. Moreover, [01010110], [00100101], [00110101], [01100110], [00000111],
and [00010111] are redundant.

Step 4 Repeating the similar procedure, elements in K are represented as

[11110000], [01100001], [10110001], [01110010], [11000010], [00110011],

[01000011], [10000011], [10010100], [11100100], [00000101], [00010110],

[01100110], [10000110], [00111000], [11011000], [00101001], [01001001],

[10011001], [00001010], [00011100], [00101100], [11001100].

126



Moreover, elements in L are represented as

[01110000], [00110001], [01000010], [01010010], [01100010], [00000011],

[00010011], [00100011], [00010100], [00110100], [01010100], [01100100],

[00000110], [00100110], [01011000], [00011001], [01001100].

Finally, the round key is XORed with the right half. Some new vectors, which are generated
from ℓ⃗ ∈ L, are inserted into K. Moreover, some vectors in L becomes redundant because
of the new vectors of K. As a result, we get 17 vectors in L and 29 vectors in K.

After the 2nd round, we similarly evaluate the propagation of the bit-based division property. As
a result, the bit-based division property of (L4, R4) is D18

K,L, where

K = {[00010000], [00100000], [01000000], [10000000], [00000011],
[00000101], [00000110], [00001001], [00001010], [00001100]},

and

L = {[00000010], [00000100]}.
It means that the sum of R4 is 0x6. The conventional bit-based division property proves that the
first and last bits of R4 are balanced in Example 8.1. By using the bit-based division property
using three subsets, we additionally know that the second and third bits of R4 are always one.

8.4.7 Application to Simon32

We evaluate the propagation characteristic of the bit-based division property using three subsets
on Simon32. We prepare chosen plaintexts such that the first bit is constant and the others are
active, and the set of chosen plaintexts has D132

{[1,1,1,...,1]},{[0,1,1,...,1]}.

Table 8.6: Propagation of the bit-based division property using three subsets on Simon32
#rounds |K| minw(K) maxw(K) |L| minw(L) maxw(L)

0 (plaintexts) 1 32 32 1 31 31
1 1 32 32 1 31 31
2 1 32 32 5 30 31
3 6 30 31 19 29 31
4 43 28 30 138 27 31
5 722 25 29 2236 24 31
6 23321 20 29 89878 19 31
7 996837 15 28 4485379 14 30
8 9849735 8 26 47149981 8 25
9 2524718 5 19 2453101 5 18
10 130724 3 14 20360 3 13
11 7483 2 7 168 2 6
12 852 2 4 8 2 3
13 181 1 2 0 - -
14 32 1 2 0 - -
15 32 1 1 0 - -

Table 8.6 shows the propagation characteristic, where there are not redundant vectors in K
and L, and minw(K), maxw(K), minw(L), and maxw(L) are defined as

minw(K) = min
k⃗∈K

(
32∑

i=1

w(ki)

)
, maxw(K) = max

k⃗∈K

(
32∑

i=1

w(ki)

)
,

minw(L) = min
ℓ⃗∈L

(
32∑

i=1

w(ℓi)

)
, maxw(L) = max

ℓ⃗∈L

(
32∑

i=1

w(ℓi)

)
,

where we perfectly remove redundant vectors from K and L. As a result, the output of the 14th
round function has D132

K,ϕ, where vector in K are represented by hexadecimal notation as
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(0001 0000) (0002 0000) (0004 0000) (0008 0000) (0010 0000) (0020 0000)

(0040 0000) (0080 0000) (0100 0000) (0200 0000) (0400 0000) (0800 0000)

(1000 0000) (2000 0000) (4000 0000) (8000 0000) (0000 0002) (0000 0004)

(0000 0008) (0000 0010) (0000 0020) (0000 0040) (0000 0081) (0000 0100)

(0000 0200) (0000 0400) (0000 0800) (0000 1000) (0000 2000) (0000 4001)

(0000 4080) (0000 8000),

and ϕ denotes the empty set. This division property means that the output of the 14th round
function takes the following integral property

(????,????,????,????, ?b??,????,b???,???b),

where balanced and unknown bits are labeled as b and ?, respectively. In the Simon family, we
can easily get a 15-round integral characteristic from the 14-round one, and this proved integral
characteristic is completely the same as the experimental one. Therefore, we conclude that the
experimental characteristic is not probabilistic characteristic, and it works for all keys.

Experimental Verification. Table 8.6 shows that the output of the 12th round function has
the division property D132

K,L, where |K| = 852 and |L| = 8. Here, eight vectors in L are represented
by hexadecimal notation as

(0004 0001) (0004 0003) (0004 0401) (0004 0402)

(0000 0403) (0000 0440) (0000 1001) (0000 2100).

We experimentally confirmed whether or not the parity is 1 by randomly choosing the secret key,
and we repeat the confirmation 20 times. As a result, we confirmed that the parity is always 1.

8.4.8 Application to Simeck32

Simeck was recently proposed in [YZS+15], and its round function is very similar to that of
Simon. Let (Li, Ri) be the output of the ith round function, and it is calculated as

(Li, Ri) = (Li−1 ∧ L≪5
i−1 )⊕ L≪1

i−1 ⊕Ri−1 ⊕ ki, Li−1).

The rotation number is changed from (1, 8, 2) to (0,5,1). Similar to Simon, Simeck has different
parameters according to the block length. Let Simeck2n be the Simeck block ciphers with 2n-bit
block length, where n is chosen from 16, 24, and 32.

We also evaluated the propagation of the bit-based division property using three subsets
against Simeck32. As a result, the output of the 14th round function has D132

K,ϕ, where vectors in
K are represented by hexadecimal notation as

(0001 0000) (0002 0000) (0004 0000) (0008 0000) (0010 0000) (0020 0000)

(0040 0000) (0080 0000) (0100 0000) (0200 0000) (0400 0000) (0800 0000)

(1000 0000) (2000 0000) (4000 0000) (8000 0000) (0000 0002) (0000 0004)

(0000 0008) (0000 0011) (0000 0021) (0000 0030) (0000 0040) (0000 0080)

(0000 0100) (0000 0201) (0000 0210) (0000 0220) (0000 0401) (0000 0410)

(0000 0420) (0000 0600) (0000 0800) (0000 1000) (0000 2000) (0000 4001)

(0000 4010) (0000 4020) (0000 4200) (0000 4400) (0000 8001) (0000 8010)

(0000 8020) (0000 8200) (0000 8400) (0000 C000).

This division property means that the output of the 14th round function takes the following
integral property

(????,????,????,????, bb??,?bb?,??bb,???b).

Since round keys are XORed after the round function in Simeck, we can trivially get the 15-round
integral characteristic. Here, 231 plaintexts are chosen as (L0, F (L0) ⊕ R0), where the first bit
of R0 is constant and the others are active.
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8.5 Provable Security against Integral Cryptanalysis

We introduced the bit-based division property using three subsets in Sect. 8.4, and we proved
that this method can find more accurate integral characteristics than those found by the conven-
tional division property. In particular, we showed that the new method can discover the tight
characteristic on Simon32. However, a problem is left about the feasibility, i.e., the propagation
of the division property requires much time and memory complexity. For instance, if we want
to evaluate the propagation of the division property Dnm

K , the time and memory complexity is
upper-bounded by (n + 1)m. Therefore, if the upper bound is too large, e.g., (n + 1)m ≫ 232,
it is difficult to evaluate the propagation 3. In the bit-based division property, the time and
memory complexity is upper-bounded by 2n, where n denotes the block length. Moreover, the
bit-based division property using three subsets requires more complexity than that using two
subsets. Therefore, we cannot apply the bit-based division property to the Simon family except
for Simon32.

8.5.1 Provable Security for Designers

We cannot apply the bit-based division property to the Simon family except for Simon32, but we
can show the “provable security” alternatively. When we design new symmetric-key primitives,
we have to guarantee the security against several cryptanalyses. Provable security has been
discussed in detail for differential and linear cryptanalyses [Mat96, NK95], but such tools do not
exist for integral cryptanalysis.

Let D1m

Ki,Li
denotes the division property of the output set of the ith round function. We want

to find R-round integral characteristics. Then, for any u⃗ with w(u⃗) = 1, we have to evaluate that

there are not k⃗ ∈ KR satisfying W (u⃗) ⪰ k⃗ and ℓ⃗ ∈ LR satisfying W (u⃗) = ℓ⃗. Therefore, we have
to get all vectors in KR and LR, and such vectors are searched by an algorithm like breadth-first
search. On the other hand, we want to show that an R-round integral characteristic cannot
exist. Then, it is enough to show that KR has m distinct vectors whose Hamming weight is one,
i.e., there is not balanced bits, and such vectors are searched by an algorithm like depth-first
search. In our provable security, we aim to get such number of rounds efficiently, and a lazy
propagation is useful to find such number of rounds.

Definition 8.2 (Lazy propagation). Let D1m

Ki−1,Li−1
be the bit-based division property of the input

set of the ith round function. The ith round function is applied, and let D1m

K̄i,L̄i
be the bit-based

division property from the lazy propagation. Then, K̄i is computed from only a part of vectors
in Ki−1, and L̄i always becomes the empty set ϕ.

The lazy propagation first removes all vectors from Li−1. Moreover, it only evaluates the
propagation from vectors with low Hamming weight in Ki−1 because such vectors are more close
to unknown. Therefore, it is more efficiently evaluated than the accurate propagation.

Let us consider the meaning of the lazy propagation. Assuming the input set of the (i− 1)th
round function has D1m

Ki−1,Li−1
, we get D1m

Ki,Li
and D1m

K̄i,ϕ
by the accurate propagation and the

lazy propagation, respectively. Then, the set of u⃗ that the parity is unknown is represented as

SK :=
{
u⃗ ∈ (F2)

m | there are k⃗ ∈ Ki satisfying W (u⃗) ⪰ k⃗
}
.

On the other hand, SK̄i
cannot completely represent the set of u⃗ that the parity is unknown.

However, SK̄i
⊆ SKi

always holds.

Next, we repeat the lazy propagation, and we assume that D1m

K̄i+1,ϕ
is propagated from D1m

K̄i,ϕ

by the lazy propagation. Similarly, assuming that D1m

Ki+1,Li+1
is the division property from D1m

Ki,Li

by the accurate propagation, SK̄i+1
⊆ SKi+1

always holds because SK̄i
⊆ SKi

. Therefore, if the

lazy propagation creates D1m

K̄R,ϕ
, where K̄R has m distinct vectors whose Hamming weight is one,

the accurate propagation also creates the same m distinct vectors in at least the same round.

3 In [Tod15a], the propagation for MISTY1 was evaluated, and the division property D7,2,7,7,2,7,7,2,7,7,2,7
K was

used. Then, |K| is upper bounded by 88 × 34 = 1358954496 ≈ 230.3, and it is feasible.
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Table 8.7: Accurate propagations up to six rounds
#rounds Simon48 Simon64 Simon96 Simon128

minw(L) minw(K) minw(L) minw(K) minw(L) minw(K) minw(L) minw(K)
0 47 48 63 64 95 96 127 128
1 47 48 63 64 95 96 127 128
2 46 47 62 63 94 96 126 128
3 45 46 61 62 93 94 125 126
4 43 44 59 60 91 92 123 124
5 40 41 56 57 88 89 120 121
6 35 36 51 52 83 84 115 116

Table 8.8: Lazy propagation of the bit-based division property for the Simon family
#rounds Simon48 Simon64 Simon96 Simon128

minw(K) Limit minw(K) Limit minw(K) Limit minw(K) Limit
7 30 33 46 61 78 81 110 113
8 20 23 35 38 68 71 100 103
9 11 14 23 26 55 57 87 88
10 7 10 13 15 40 41 71 71
11 5 8 9 10 27 28 59 59
12 3 8 6 8 17 17 42 42
13 2 5 4 7 11 11 32 32
14 2 3 3 7 8 9 21 21
15 1 2 2 7 5 6 15 15
16 1(u) 1 2 4 4 6 10 10
17 1 3 3 6 8 8
18 1 1 2 6 5 6
19 1(u) 1 2 6 4 6
20 1 6 3 6
21 1 6 2 6
22 1 6 2 6
23 1 1 2 6
24 1(u) 1 1 6
25 1 6
26 1 6
27 1 6
28 1(u) 1

8.5.2 Application to Simon Family

We evaluate the lazy propagation of the bit-based division property on Simon48, Simon64,
Simon96, and Simon128. Here, we only evaluate integral characteristics when they use chosen
plaintexts that only one bit of the left half is constant and the other bits are active. We calculate
the accurate propagation up to 6 rounds4. Table 8.7 shows minw(L) and minw(K) in the accurate

propagation of D12n

K,L up to 6 rounds, where minw(L) and minw(K) are calculated as

minw(K) = min
k⃗∈K

(
2n∑

i=1

w(ki)

)
, minw(L) = max

ℓ⃗∈L

(
2n∑

i=1

w(ℓi)

)
.

From the 7th round function, we repeat the lazy propagation. We first remove all vectors from
L, and then the bit-based division property is represented as D12n

K,ϕ, where ϕ denotes the empty
set. Moreover, we remove vectors with high Hamming weight from K. Table 8.8 shows the lazy

4 In our implementation, we could not calculate the accurate propagation up to 7 rounds because of the
limitation of the memory size.
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propagation of the bit-based division property D12n

K,ϕ, where we only store vectors k⃗ ∈ K satisfying

minw(K) ≤
2n∑

i=1

w(ki) ≤ Limit.

Here, u means that the K has 2n distinct vectors whose Hamming weight is one, and then, we
simply say that the propagation reaches the unknown.

Even if there is a vector k⃗ ∈ K satisfying Limit <
∑2n

i=1 w(ki), we do not evaluate the

propagation from such k⃗. Therefore, if the propagation from the removed vector k⃗ immediately
reaches the unknown, there is a gap between the accurate propagation and lazy propagation.
However, if the lazy propagation reaches the unknown in a specific number of rounds, the
accurate propagation at least reaches the unknown in the same number of rounds. Therefore,
the lazy propagation is not useful for attackers, but it guarantees the number of rounds that the
bit-based division property cannot find integral characteristics.

As a result, the lazy propagation shows that 16-, 19-, 24-, and 28-round Simon48, 64, 96, and
128 probably do not have integral characteristics, respectively. However, we can get (r+1)-round
integral characteristics from r-round integral characteristics because round keys are XORed after
the round function. Therefore, we expect that 17-, 20-, 25-, and 29-round Simon48, 64, 96, and
128 probably do not have integral characteristics, respectively.

8.5.3 Characteristics that Bit-Based Division Property cannot Find

We consider characteristics that the bit-based division property cannot find. Our provable
security supposes that all round keys are randomly and secretly chosen. However, practical
ciphers generate round keys from the secret key using the key schedule. Therefore, our provable
security does not suppose integral characteristics that exploit the key scheduling algorithm.

The bit-based division property using three subsets focuses on the parity
⨁

x⃗∈X πu⃗(x⃗) and di-
vides the set of u⃗ into three subsets. Then, the propagation simply regards

⨁
x⃗∈X πu⃗1

(x⃗)⊕πu⃗2
(x⃗)

as unknown if either
⨁

x⃗∈X πu⃗1
(x⃗) or

⨁
x⃗∈X πu⃗2

(x⃗) is unknown. For instance, if
⨁

x⃗∈X πu⃗1
(x⃗)⊕

πu⃗2
(x⃗) is always 0 or 1 although

⨁
x⃗∈X πu⃗1

(x⃗) and
⨁

x⃗∈X πu⃗2
(x⃗) are unknown, the bit-based

division property cannot exploit such property.

8.6 Conclusion

The division property is a useful technique to find integral characteristics, but it has not been
applied to non-S-box-based ciphers effectively. This chapter focused on the bit-based division
property. More precisely, this chapter proposed a new variant using three subsets. The con-
ventional bit-based division property divides the set of u⃗ into two subsets, but the new variant
divides the set of u⃗ into three subsets. The bit-based division property using three subsets can
prove that the experimental integral characteristic for Simon32 shown in [WLV+14] works for
all keys. Moreover, we focused on the propagation of the division property and showed that
the lazy propagation is useful to guarantee the security against integral cryptanalyses using the
division property. As a result, we showed that 17-, 20-, 25-, and 29-round Simon48, 64, 96, and
128 probably do not have integral characteristics, respectively.
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Chapter 9

Compact Representation for
Bit-Based Division Property and
Application to PRESENT

Abstract– After the proposal of the division property, some applications and improvements
have been proposed. The bit-based division property is also one of such improvements, and
the accurate integral characteristic of Simon32 is theoretically proved. In this chapter, we
propose the compact representation for the bit-based division property. The drawback of the
bit-based division property is that it cannot be applied to block ciphers whose block length is
over 32 because of high time and memory complexity. The compact representation partially
solves this problem, and we apply this technique to 64-bit block cipher PRESENT to illustrate
our method. We can accurately evaluate the propagation of the bit-based division property
thanks to the compact representation. As a result, we find 9-round integral characteristics, and
it is improved by two rounds than previous best characteristic. Moreover, we attack 12-round
PRESENT-80 and 13-round PRESENT-128 by using this new characteristic.
Keywords– Integral cryptanalysis, Division property, Compact representation, PRESENT

9.1 Introduction

The concept of an integral cryptanalysis was first introduced as the dedicated attack against
block cipher Square [DKR97], and Knudsen and Wagner then formalized the dedicated attack
as the integral attack [KW02]. The integral cryptanalysis is applied to many ciphers, and this
is nowadays one of the most powerful cryptanalyses [KW02, LWZ11, YPK02, ZRHD08]. The
integral cryptanalysis mainly consists of two parts: a search for integral characteristics and key
recovery. The propagation of the integral property [KW02] and the degree estimation1 [Knu94,
Lai94] have been used as well-known methods to find integral characteristics.

The division property, which is a novel technique to find integral characteristics, was pro-
posed [Tod15b]. This technique is the generalization of the integral property that can also exploit
the algebraic degree at the same time. After the proposal, the new understanding of the division
property and new applications have been proposed [BC16, SHZ+15, Tod15a, TM16a, ZW15].

The bit-based division property, which is a new variant of the division property, was pro-
posed [TM16a], and please refer to Chap. 8 in detail2. To analyze n-bit block ciphers with m
ℓ-bit S-boxes, the conventional division property decomposes n-bit value into m ℓ-bit values,
and the division property Dℓm

K is used. For convenience, we call this-type division property an
integer-based division property. On the other hand, the bit-based division property decomposes
n-bit value into n 1-bit values, i.e., D1n

K is used. The bit-based division property can find more
accurate integral characteristics than the integer-based division property. Actually, the bit-based
division property proves the 15-round integral characteristic of Simon32, and it is tight [TM16a].

1This method is often called the higher-order differential attack [Knu94, Lai94].
2 In Chap. 8, we proposed two variants of the bit-based division property: the conventional bit-based division

property and the bit-based division property using three subsets. However, we focus on the conventional bit-based
division property in this chapter.
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Our Contribution. In this chapter, we propose a compact representation for the bit-based
division property against S-box-based ciphers. A drawback of the bit-based division property is
that it requires about 2n time and memory complexity to evaluate n-bit block ciphers. Therefore,
the application is limited to block ciphers with small block length like Simon32 in [TM16a].
Moreover, at CRYPTO 2016, Boura and Canteaut introduced the parity set, which is the so-
called bit-based division property for an S-box [BC16], but the application is also limited to the
low-data distinguisher for a few rounds of PRESENT [BKL+07]. The compact representation
partially solves this problem, and we can get high-data distinguishers by reducing time and
memory complexity. To demonstrate the advantage of the compact representation, we apply our
new technique to PRESENT. As a result, we find new 9-round integral characteristics. Since
the previous best characteristic is 7-round one [WW13], our new characteristic is improved by
two rounds. Moreover, we attack 12-round PRESENT-80 and 13-round PRESENT-128 by using
the new integral characteristic. Zhang et al. discussed the security of PRESENT against the
integral attack in [ZWW15] and attacked 10-round PRESENT-80 and 11-round PRESENT-128
by using the match-through-the-S-box (MTTS) technique. Therefore, our new attack is also
improved by two rounds.

9.2 Preliminaries

9.2.1 Notations

We make the distinction between the addition of Fn
2 and addition of Z, and we use ⊕ and

+ as the addition of Fn
2 and addition of Z, respectively. For any a ∈ Fn

2 , the ith element
is expressed in a[i], and the Hamming weight w(a) is calculated as w(a) =

∑n
i=1 a[i]. For

any a⃗ ∈ (Fn1
2 × Fn2

2 × · · · × Fnm
2 ), the vectorial Hamming weight of a⃗ is defined as W (⃗a) =

(w(a1), w(a2), . . . , w(am)) ∈ Zm. Moreover, for any k⃗ ∈ Zm and k⃗′ ∈ Zm, we define k⃗ ⪰ k⃗′ if
ki ≥ k′i for all i (1 ≤ i ≤ m). Otherwise, k⃗ ⪰̸ k⃗′. Let K be the set of k⃗, and |K| denotes the
number of elements in K.

9.2.2 Integral Attack

The integral attack was first introduced by Daemen et al. to evaluate the security of Square
[DKR97], and then it was formalized by Knudsen and Wagner [KW02]. Attackers first prepare N
chosen plaintexts and encrypt them R rounds. If the XOR of all encrypted texts becomes 0, we
say that the cipher has an R-round integral characteristic with N chosen plaintexts. Finally, we
analyze the entire cipher by using the integral characteristic. There are two classical approaches
to find integral characteristics. The first one is the propagation of the integral property [KW02]
and another is based on the degree estimation [Knu94, Lai94].

9.2.3 Division Property

The division property proposed in [Tod15b] is a new method to find integral characteristics. This
section briefly shows the definition and propagation rules. Please refer to Chap. 5 in detail.

Bit Product Function. The division property of a multiset is evaluated by using the bit
product function defined as follows. Let πu : Fn

2 → F2 be a bit product function for any u ∈ Fn
2 .

Let x ∈ Fn
2 be the input and πu(x) be the AND of x[i] satisfying u[i] = 1, i.e., it is defined as

πu(x) :=

n∏

i=1

x[i]u[i].

Notice that x[i]1 = x[i] and x[i]0 = 1. Let πu⃗ : (Fn1
2 × Fn2

2 × · · · × Fnm
2 ) → F2 be a bit product

function for any u⃗ ∈ (Fn1
2 × Fn2

2 × · · · × Fnm
2 ). Let x⃗ ∈ (Fn1

2 × Fn2
2 × · · · × Fnm

2 ) be the input and
πu⃗(x⃗) be defined as

πu⃗(x⃗) :=

m∏

i=1

πui(xi).
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The bit product function also appears in the Algebraic Normal Form (ANF) of a Boolean
function. The ANF of a Boolean function f is represented as

f(x) =
⨁

u∈Fn
2

afu

(
n∏

i=1

x[i]u[i]

)
=
⨁

u∈Fn
2

afuπu(x),

where afu ∈ F2 is a constant value depending on f and u.

Definition of Division Property.

Definition 5.3 (Division Property). Let X be a multiset whose elements take a value of (Fn1
2 ×

Fn2
2 × · · · × Fnm

2 ). When the multiset X has the division property Dn1,n2,...,nm

K , where K denotes
a set of m-dimensional vectors whose elements take a value between 0 and ni, it fulfills the
following conditions:

⨁

x⃗∈X
πu⃗(x⃗) =

{
unknown if there are k⃗ ∈ K s.t. W (u⃗) ⪰ k⃗,
0 otherwise.

See Chap. 5 to better understand the concept in detail. In this chapter, the division property
for (Fn

2 )
m is referred to as Dnm

K for the simplicity. If there are k⃗ ∈ K and k⃗′ ∈ K satisfying

k⃗ ⪰ k⃗′ in the division property Dn1,n2,...,nm

K , k⃗ can be removed from K because the vector k⃗ is
redundant.

Some propagation rules for the division property are proven and summarized in Chap. 5. We
omit the description of the propagation rules in this chapter because it is not always necessary
to understand this chapter.

9.2.4 Bit-Based Division Property

The bit-based division property introduced in [TM16a] is variant of the division property. There
are two bit-based division properties: the conventional bit-based division property and the bit-
based division property using three subsets. Please refer to Chap 8 in detail.

In this chapter, we only focus on the conventional bit-based division property. To analyze
n-bit block ciphers, the conventional division property uses Dℓ1,ℓ2,...,ℓm

K , where ℓi and m are
chosen by attackers in the range of n =

∑m
i=1 ℓi. The conventional bit-based division property

uses D1n

K , and it is not against the definition of the conventional division property.

Propagation Characteristic for S-box. Let us consider the propagation characteristic of
the bit-based division property for an S-box. Similar observation was shown by Boura and
Canteaut in [BC16], and they introduced a new concept called the parity set as follows.

Definition 9.1 (Parity Set). Let X be a set whose elements take a value of Fn
2 . Its parity set is

defined as

U(X) =
{
u ∈ Fn

2 |
⨁

x∈X
πu(x) = 1

}
.

Assuming X has the division property Dn
k ,

U(X) ⊆ {u ∈ Fn
2 : w(u) ≥ k}.

Let X and S(X) denote the input set and output set of the S-box, respectively. Then, the parity
set of S(X) fulfills

U(S(X)) ⊆ ∪u∈U(X)Vs(u),

where
Vs(u) = {v ∈ Fn

2 | ANF of (πv ◦ S) contains πu(x)}.
The definition of the parity set trivially derives the following proposition.
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Table 9.1: Sets VS(u) for all u ∈ F4
2 for the PRESENT S-box. All four-bit values are represented

in hexadecimal notation. The rightmost bit of the word corresponds to the least significant bit.
VS(u)

0x0 0x1 0x2 0x4 0x8 0x3 0x5 0x9 0x6 0xA 0xC 0x7 0xB 0xD 0xE 0xF

u = 0x0 x x x x

u = 0x1 x x x x

u = 0x2 x x x x

u = 0x4 x x x x

u = 0x8 x x x x x x

u = 0x3 x x x x x x x x

u = 0x5 x x x

u = 0x9 x x x x x x

u = 0x6 x x x x x x

u = 0xA x x x x x x x x x x

u = 0xC x x x x

u = 0x7 x x x x x x x

u = 0xB x x x x x x x x x x

u = 0xD x x x x x x x

u = 0xE x x x x x x

u = 0xF x

Proposition 9.1. Let X be a multiset whose elements take a value of Fn
2 . When the multiset X

has the bit-based division property D1n

K , the parity set of X fulfills

U(X) ⊆ {u ∈ Fn
2 : there are k ∈ K satisfying u ⪰ k}.

Moreover, assuming U(X) ⊆ K′, the set X has the bit-based division property D1n

K′ .

Proposition 9.1 shows that the bit-based division property of S(X) can be evaluated from
that of X via the parity set.

Case of PRESENT S-box. As an example, let us consider the case of the PRESENT S-box.
Let (x4, x3, x2, x1) and (y4, y3, y2, y1) be the input and output of the S-box, respectively, and the
algebraic normal form of the PRESENT S-box is described as

y4 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3 + x1 + x2 + x4 + 1,

y3 = x1x2x4 + x1x3x4 + x1x2 + x1x4 + x2x4 + x3 + x4 + 1,

y2 = x1x2x3 + x1x2x4 + x1x3x4 + x2x4 + x3x4 + x2 + x4,

y1 = x2x3 + x1 + x3 + x4.

Table 9.1 shows sets of VS(u) for all u ∈ F4
2 for the PRESENT S-box. Assuming that X fulfills

D14

k , let D14

K′ be the bit-based division property of S(X) and K′ is

K′ = ∪u∈U(X)Vs(u), U(X) ⊆ {u ∈ Fn
2 : u ⪰ k}

from Proposition 9.1. We compute K′ for any k ∈ F4
2 and then remove redundant vectors. Ta-

ble 9.2 shows the propagation characteristic of the bit-based division property for the PRESENT
S-box.

9.3 Compact Representation for Division Property

9.3.1 Motivation

We can find more accurate integral characteristics by using the bit-based division property
than the integer-based division property. However, this evaluation requires about 2n time and
memory complexity for n-bit block ciphers. Therefore, the bit-based division property is applied
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Table 9.2: Propagation of the bit-based division property for PRESENT S-box. Vectors on F4
2

are represented an hexadecimal notation.

k⃗ of input D14

k⃗
K of output D14

K k⃗ of input D14

k⃗
K of output D14

K
0x0 {0x0} 0x8 {0x1, 0x2, 0x4, 0x8}
0x1 {0x1, 0x2, 0x4, 0x8} 0x9 {0x2, 0x4, 0x8}
0x2 {0x1, 0x2, 0x4, 0x8} 0xA {0x2, 0x4, 0x8}
0x3 {0x2, 0x4, 0x8} 0xB {0x2, 0x4, 0x8}
0x4 {0x1, 0x2, 0x4, 0x8} 0xC {0x2, 0x4, 0x8}
0x5 {0x2, 0x4, 0x8} 0xD {0x2, 0x4, 0x8}
0x6 {0x1, 0x2, 0x8} 0xE {0x5, 0xB, 0xE}
0x7 {0x2, 0x8} 0xF {0xF}

Table 9.3: Compact representation for PRESENT S-box
Compact Real property Output property Redundant

0̄ {0x0} {0x0} 0̄, 1̄, 3̄, 6̄, 7̄, Ē, F̄
1̄ {0x1, 0x2, 0x4, 0x8} {0x1, 0x2, 0x4, 0x8} 1̄, 3̄, 6̄, 7̄, Ē, F̄
3̄ {0x3, 0x5, 0x9, 0xA, 0xB, 0xC, 0xD} {0x2, 0x4, 0x8} 3̄, 7̄, Ē, F̄
6̄ {0x6} {0x1, 0x2, 0x8} 6̄, 7̄, Ē, F̄
7̄ {0x7} {0x2, 0x8} 7̄, F̄
Ē {0xE} {0x5, 0xB, 0xE} Ē, F̄
F̄ {0xF} {0xF} F̄

to small block-length ciphers like Simon32 in [TM16a]. Moreover, the application of the parity
set is limited to the low-data distinguisher for a few rounds of PRESENT [BC16]. It is an
open problem to apply the bit-based division property to high-data distinguishers for non small
block-length ciphers.

9.3.2 General Idea

The compact representation for the bit-based division property partially solves this problem. We
focus on the fact that different division properties cause the same division property through an
S-box. Then, we regard the different properties as the same property, and it helps us to evaluate
the propagation characteristic efficiently.

Compact Representation for PRESENT S-box. The focus is that there are some input
division properties whose output division property is the same. For example, the output division
property from D14

{0x1} is D14

{0x1,0x2,0x4,0x8}, which is the same as that from D14

{0x2}. In the compact
representation, we regard their input properties as the same input property. Table 9.3 shows
the compact representation for PRESENT S-box. While sixteen values are used to represent
the bit-based division property, only seven values {0̄, 1̄, 3̄, 6̄, 7̄, Ē, F̄} are used in the compact
representation. For simplicity, let Sc be

Sc = {0̄, 1̄, 3̄, 6̄, 7̄, Ē, F̄}.
Note that we have to check the original vectors when we remove redundant vectors. Assuming

that the division property is D{3̄,6̄,Ē}, each original vectors are represented as

3̄→ {0x3, 0x5, 0x9, 0xA, 0xB, 0xC, 0xD}, 6̄→ {0x6}, Ē→ {0xE}.

Therefore, Ē is redundant because 0xE ⪰ 0xA. On the other hand, there is not a vector k⃗
satisfying 0x6 ⪰ ~k in k⃗ ∈ {0x3, 0x5, 0x9, 0xA, 0xB, 0xC, 0xD}. As a result, after remove redun-
dant vectors, the division property becomes D{3̄,6̄}. The right-end column in Table 9.3 shows
redundant vectors by the compact representation.

9.3.3 Toy Cipher using PRESENT S-box

Even if we apply the compact representation to the input division property of S-boxes, the
propagated output division property is not represented by the compact representation. We need
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Figure 9.1: Key-alternating cipher underlying PRESENT S-box

to carefully apply the compact representation to the output division property, which depends
on the structure of a target cipher. For simplicity, let us consider a key-alternating cipher
underlying PRESENT S-box, where the block length is 4 bits, and Figure 9.1 shows the 2-round
cipher. Let p and c be the plaintext and ciphertext, and xi and yi denote the input and output
of the ith S-box, respectively. Note that the division property does not change for constant
addition. Then, our aim is to evaluate the division property of c, and it is enough to manage
only the compact representation of the division property in x2. Our next aim is to evaluate the
compact representation in x2. Then, it is enough to manage only the compact representation in
x1, and the following propagation characteristic is applied.

{0̄} → {0x0} → {0̄},
{1̄} → {0x1, 0x2, 0x4, 0x8} → {1̄},
{3̄} → {0x2, 0x4, 0x8} → {1̄},
{6̄} → {0x1, 0x2, 0x8} → {1̄},
{7̄} → {0x2, 0x8} → {1̄},
{Ē} → {0x5, 0xB, 0xE} → {3̄, (Ē)},
{F̄} → {0xF} → {F̄}.

Note that the property Ē derives 3̄ and Ē, but Ē is redundant.

Example 9.1. Assuming the division property of p is {Ē}, the division property of x1 is also
{Ē} because the division property is independent of the constant XORing. Applying the first
S-box, the division property of y1 is {3̄, Ē}, and Ē is redundant. Since the division property is
independent of the constant XORing, the division property of x2 is {3̄}. Applying the second

S-box, the bit-based division property of y2 is D14

{0x2,0x4,0x8}, and the bit-based division property of

c is also D14

{0x2,0x4,0x8}. Therefore, the least significant bit of c is balanced.

9.3.4 Core Function of PRESENT

PRESENT does not have simple key-alternating structure like Fig. 9.1. There is a bit permu-
tation in the diffusion part of the round function, and we can decompose the round function of
PRESENT into four subfunctions. Figure 9.3 shows the equivalent circuit of the round function
of PRESENT. The input and output of every sub function are four four-bit values, and the po-
sition of each four-bit value then moves. Since this equivalent circuit does not have bit-oriented
permutation except the interior of sub functions, we first generate the propagation characteristic
table of sub functions under the compact representation. Then, we evaluate the propagation
characteristic of round functions from the table under the compact representation.

Propagation Characteristic for Sub Function. Let k⃗ = (k4, k3, k2, k1) ∈ (Sc)4 be the
input division property of the sub function. Then, the output division property K is the set
whose elements are vectors in (Sc)4. Algorithm10 generates the propagation characteristic table
under the compact representation for the sub function. Here, compact is a function that converts
from the bit-based division property to the compact representation.

Example 9.2 (Propagation characteristic from (3̄, 6̄, 7̄, F̄)). The output bit-based division prop-
erty of each S-box is evaluated from the corresponding compact representation as

3̄→ {0x2, 0x4, 0x8}, 6̄→ {0x1, 0x2, 0x8}, 7̄→ {0x2, 0x8}, F̄→ {0xF}.
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Figure 9.2: Round function of PRESENT
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Figure 9.3: Equivalent circuit of round function of PRESENT

Then, let D14

K′ be the output bit-based division property, and K′ is represented as 18(= 3×3×2×1)
vectors

(0x11B5), (0x3195), (0x11F1), (0x31D1), (0x51B1), (0x7191),

(0x1935), (0x3915), (0x1971), (0x3951), (0x5931), (0x7911),

(0x9135), (0xB115), (0x9171), (0xB151), (0xD131), (0xF111).

Then, the compact representation of 18 vectors is

(1̄1̄3̄3̄), (3̄1̄3̄3̄), (1̄1̄F̄1̄), (3̄1̄3̄1̄), (3̄1̄3̄1̄), (7̄1̄3̄1̄), (1̄3̄3̄3̄), (3̄3̄1̄3̄), (1̄3̄7̄1̄),

(3̄3̄3̄1̄), (3̄3̄3̄1̄), (7̄3̄1̄1̄), (3̄1̄3̄3̄), (3̄1̄1̄3̄), (3̄1̄7̄1̄), (3̄1̄3̄1̄), (3̄1̄3̄1̄), (F̄1̄1̄1̄).

After remove redundant vectors, the output division property is represented as

(1̄1̄3̄3̄), (1̄1̄F̄1̄), (3̄1̄3̄1̄), (1̄3̄7̄1̄), (7̄3̄1̄1̄), (3̄1̄1̄3̄), (F̄1̄1̄1̄)

by the compact representation.

9.4 Improved Integral Attack on PRESENT

9.4.1 New Algorithm to Find Integral Characteristics

We show a new algorithm to find integral characteristics of PRESENT by using the compact
representation of the division property. Note that the given integral characteristic is the same
as that given by the accurate propagation characteristic of the bit-based division property.

The input of the algorithm is the bit-based division property of the plaintext set. The
algorithm first converts from this bit-based division property to the corresponding compact
representation. In every round function, the algorithm evaluates the propagation characteristic
for four sub functions independently and the relocation of 16 four-bit values. Algorithm11
evaluates the propagation characteristic for round functions. This evaluation is repeated until
there is no integral characteristic in the output of the round function.
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Algorithm 10 Generate propagation characteristic table for the sub function

1: procedure evalSubFunction(k⃗ ∈ (Sc)4)
2: Ki is the set of the propagated division property from ki through the S-box.
3: K′ is an empty set.
4: for all (x, y, z, w) ∈ (K4 ×K3 ×K2 ×K1) do
5: k′4 ⇐ compact(x4∥y4∥z4∥w4)
6: k′3 ⇐ compact(x3∥y3∥z3∥w3)
7: k′2 ⇐ compact(x2∥y2∥z2∥w2)
8: k′1 ⇐ compact(x1∥y1∥z1∥w1)

9: K′ = K′ ∪ {k⃗′}
10: end for
11: remove redundant vectors from K′

12: return K′

13: end procedure

Algorithm 11 Generate propagation characteristic table for the sub function

1: procedure evalRoundFunction(k⃗ ∈ (Sc)16)
2: Ki ⇐ evalSubFunction([k4∗i+4, k4∗i+3, k4∗i+2, k4∗i+1])
3: for all (x⃗, y⃗, z⃗, w⃗) ∈ (K4 ×K3 ×K2 ×K1) do
4: k′16 = x4, k

′
12 = x3, k

′
8 = x2, k

′
4 = x1

5: k′15 = y4, k
′
11 = y3, k

′
7 = y2, k

′
3 = y1

6: k′14 = z4, k
′
10 = z3, k

′
6 = z2, k

′
2 = z1

7: k′13 = w4, k
′
9 = w3, k

′
5 = w2, k

′
1 = w1

8: K′ = K′ ∪ {k⃗′}
9: end for

10: remove redundant vectors from K′

11: return K′

12: end procedure

7-Round Integral Characteristic Revisited. We first revisit the 16th order integral char-
acteristic [WW13], where the least significant bit (lsb) in the output of the 7-round PRESENT
is balanced when the least sixteen bits are active and the others are constant. The bit-based
division property of the plaintext set is D164

0x00000000000000FF, and the compact representation is

0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄0̄F̄F̄.

Ciphertexts encrypted by one round have the following compact representation

0̄0̄0̄F̄0̄0̄0̄F̄0̄0̄0̄F̄0̄0̄0̄F̄.

Moreover, ciphertexts encrypted by two rounds have the following compact representation

1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄1̄.

Table 9.4 shows the propagation characteristic, where we perfectly remove redundant vectors.
After six rounds, we get 70 elements in the compact representation. We finally apply addi-
tional one-round function, and the propagated bit-based division property does not include
0x0000000000000001. Therefore, the lsb in the output of the 7-round PRESENT is balanced.

New 9-Round Integral Characteristic. We next search for integral characteristics exploit-
ing more number of active bits. Let us recall Table 9.3. Then, the propagated characteristic

Table 9.4: Propagation from D164

0x00000000000000FF

#rounds 0 1 2 3 4 5 6 7 ⋆
|K| 1 1 1 707281 349316 1450 70 63

⋆We do not use the compact representation in the final round.
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Table 9.5: Propagation from D164

0xFFFFFFFFFFFFFFF0

#rounds 0 1 2 3 4 5 6 7 8 9 ⋆
|K| 1 1 81 8277 136421 2497368 343121 1393 70 63

⋆We do not use the compact representation in the final round.

Table 9.6: Propagation from D164

0xFFFFFFFFFFFFFFFE

#rounds 0 1 2 3 4 5 6 7 8 9 ⋆
|K| 1 3 15 174 1053 9s6251 444174 19749 188 376

⋆We do not use the compact representation in the final round.

from Ē is {0x5, 0xB, 0xE}, and the output bit-based division property is most far from unknown
property except for F̄.

We prepare the plaintext set that the least significant four bits are passive and the others
are active, and the compact representation is

F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄0̄.

Ciphertexts encrypted by one round have the following compact representation

F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄Ē.

Moreover, the compact representation of ciphertexts encrypted by two rounds consists of 81
elements, where all representations are represented by only Ē and F̄. After eight rounds, we get
70 elements in the compact representation. We finally apply additional one-round function, and
the propagated bit-based division property does not include 0x0000000000000001. Therefore,
the lsb in the output of the 9-round PRESENT is balanced. Table 9.5 shows the propagation
characteristic, where we perfectly remove redundant vectors.

Integral Characteristics with Maximum Number of Chosen Plaintexts. The number
of rounds that integral characteristics cover is clearly maximized when the number of active bits
is 63. Therefore, we moreover search for integral characteristics exploiting 263 chosen plaintexts.
Then, we prepare the plaintext set that the lsb is passive and the others are active, and the
compact representation is

F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄Ē.

Ciphertexts encrypted by one round have the following compact representation

F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄ĒF̄F̄F̄F̄F̄F̄F̄F̄, F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄F̄Ē.

Moreover, the compact representation of ciphertexts encrypted by two rounds consists of 15
elements, where all compact representations are represented by only Ē and F̄. After eight rounds,
we get 188 elements in the compact representation. We finally apply additional one-round
function, and the integral property is

0xEEE0EEE0EEE0EEE0,

where E means that the 1st bit is balanced, and 0 means that all bits are balanced, i.e., 28
bits are balanced. Table 9.6 shows the propagation characteristic, where we perfectly remove
redundant vectors.

9.4.2 Key Recovery with MTTS Technique and FFT Key Recovery

We attack 12-round PRESENT-80 and 13-round PRESENT-128 by using new 9-round integral
characteristics. Our attack uses the match-through-the-S-box (MTTS) technique [ZWW15] and
FFT key recovery shown in Chap. 4 [TA14, TA15]. We briefly explain their previous techniques.
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Figure 9.4: 3-Round key recovery for PRESENT

Match-through-the-S-box (MTTS) Technique [ZWW15]. The MTTS technique was pro-
posed by Zhang et al., and it is the extension of the meet-in-the-middle technique [SW12b].
Let x = (x4, x3, x2, x1) and y = (y4, y3, y2, y1) be the input and output of the PRESENT
S-box. Assuming that x1 is balanced over a chosen plaintext set Λ, the aim is to recover
round keys such that

⨁
Λ x1 = 0. Then, x1 = y4y2 ⊕ y3 ⊕ y1 ⊕ 1 from the ANF of S−1,

and
⨁

Λ y4y2 =
⨁

Λ y3⊕ y1 because
⨁

Λ x1 = 0. Therefore, we independently evaluate the
XOR of y4y2 and that of y3 ⊕ y1, and we then search for round keys that two XORs take
the same value. In [ZWW15], Zhang et al. attacked 10-round PRESENT-80 and 11-round
PRESENT-128 by using the MTTS technique.

Fast Fourier Transform (FFT) Key Recovery Technique [TA14, TA15]. The FFT key
recovery was proposed in Chap. 4, and it was originally used for the linear cryptanalysis
in [CSQ07]. We now evaluate the XOR

⨁

Λ

fk1
(c⊕ k2),

where fk1
is a Boolean function depending on a round key k1. Moreover, κ1 and κ2

are bit lengths of k1 and k2, respectively. Then, we can evaluate XORs over all (k1, k2)
with 3κ22

κ1+κ2 time complexity. Note that the time complexity does not depend on the
number of chosen plaintexts. Therefore, we can easily evaluate the time complexity by
only counting the bit length of involved round keys. Please refer to Chap. 4 in detail.

Integral Attack against 12-round PRESENT-80. Let Xi be the input of the (i + 1)th
round function, and Y i is computed as Y i = Xi⊕Ki, whereKi denotes the round key. Moreover,
Xi[j], Y i[j], and Ki[j] denote the jth bit of Xi, Y i, and Ki from the right hand, respectively.
Here, X0 is plaintexts, and Y i is ciphertexts in i-round PRESENT. Figure 9.4 shows the 3-round
key recovery for PRESENT.

In the first step, we choose 260-plaintext sets (denoted by Λ) and get corresponding cipher-
texts after 12-round encryption. We store frequencies of two 32-bit values

YE = (Y 12[0], Y 12[2], . . . , Y 12[62]) YO = (Y 12[1], Y 12[3], . . . , Y 12[63])
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into voting tables.
In the second step, we compute the XOR of (X10[16]×X10[48]) from YE by guessing involved

round keys. The XOR is computed as

⨁

Λ

(X10[16]×X10[48]) = fK10[16,48],K11[0,8,...,56](YE ⊕K12
E ),

where K12
E = (K12[0],K12[2], . . . ,K12[62]). The FFT key recovery can evaluate the XOR with

the time complexity 3 × 32 × 22+8+32 = 3 × 247. Note that this time complexity is negligible
because we already use 260 time complexity to prepare chosen plaintexts.

In the third step, we compute the XOR of (X10[0]⊕X10[32]) from YO by guessing involved
round keys. The XOR is computed as

⨁

Λ

(X10[0]⊕X10[32]) = f ′K11[4,12,...,60](YO ⊕K12
O ).

where K12
O = (K12[1],K12[3], . . . ,K12[63]). Note that we do not need to guess K10[0] and

K10[32] because they are linearly involved to
⨁

Λ(X
10[0]⊕X10[32]). Then, the XOR is evaluated

with the time complexity 3× 32× 28+32 = 3× 245, and it is also negligible.
In the fourth step, we search for round keys satisfying

⨁

Λ

(X10[16]X10[48]) =
⨁

Λ

(X10[0]⊕X10[32]).

Since involved round keys are 42 bits and 40 bits, the total is over 80 bits. However, the total bit
length of involved round keys reduces to 68 bits from the key schedule (see Fig. 9.5). Therefore,
by repeating this procedure N times, we can reduce the key space to 268−N .

Finally, we exhaustively search remaining keys, and the time complexity is 280−N . Therefore,
the data complexity isN×260, and the time complexity is (N×260+280−N ) forN ∈ {1, 2, . . . , 16}.

Integral Attack against 13-round PRESENT-128. We attack 13-round PRESENT-128
by using the similar strategy as the 12-round attack.

As a result, the FFT key recovery can evaluate the XOR of (X10[16]×X10[48]) with the time
complexity 3 × 64 × 22+8+32+64 = 3 × 2112. Moreover, the FFT key recovery can evaluate the
XOR of (X10[0]⊕X10[32]) with the time complexity 3×64×28+32+64 = 3×2110. While involved
round keys are 112 bits and 110 bits, the total bit length of involved round keys reduces to 126
bits because of the key schedule (see Fig. 9.6). Therefore, by repeating the procedure N times,
we can reduce the key space to 2126−N . Finally, we exhaustively search remaining keys. The
time complexity is 2128−N , and it is the dominant complexity. Therefore, the data complexity
is N × 260, and the time complexity is 2128−N for N ∈ {1, 2, . . . , 16}.
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9.5 Conclusion

We proposed the compact representation for the bit-based division property in this chapter. It
is difficult to apply the bit-based division property to block ciphers whose block length is over 32
because of high time and memory complexity. The compact representation partially solves this
problem. To demonstrate the advantage of our method, we applied this technique to 64-bit block
cipher PRESENT. As a result, we attacked 12-round PRESENT-80 and 13-round PRESENT-
128 by using new 9-round integral characteristic, and they are improved by two rounds than the
previous best integral attacks.
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Chapter 10

Follow-Up Works and Conclusion

After the proposal of the division property at EUROCRYPT 2015 [Tod15b], many third-party
follow-up results have been reported. At INDOCRYPT 2015, Zhang and Wu applied the divi-
sion property to generalized Feistel networks [ZW15] and analyzed two lightweight block ciphers
LBlock [WZ11] and TWINE [SMMK12]. At CRYPTO 2016, Boura and Canteaut showed an-
other view of the division property called the parity set. At ASIACRYPT 2016, Xiang, Zhang,
Bao, and Lin proposed that the propagation of the division property can be easily evaluated
by using mixed integer linear programming [XZBL16]. Nowadays, new ciphers that discuss the
security for the analysis using the division property in advance have been proposed like SKINNY
[BJK+16], Mysterion [JSV16], and Sparx and LAX [DPU+16].

10.1 Technical Improvement

This section summarizes two important third-party follow-up works.

10.1.1 Parity Set.

Independently of the bit-based division property, Boura and Canteaut also showed another view
of the division property and introduced the concept of the parity set [BC16] and the link with
the Reed-Muller codes. Actually, the parity set is regarded as the bit-based division property for
an S-box. While the propagation of the integer-based division property focuses on the Hamming
weight of u ∈ Fn

2 that the parity is unknown, the parity set focus on u ∈ Fn
2 itself that the

parity is unknown. They evaluated the propagation for the PRESENT S-box and showed the
low-data distinguishers. Moreover, the relationship between the parity set and the bit-based
division property were discussed in [TM16b].

10.1.2 MILP-Based Propagation Search.

The most important and difficult open problem that we left is to construct efficient algorithm
to evaluate the propagation of the division property. In the application to MISTY1 [Tod15b],
we implemented the propagation using C++, but it requires much memory and time complex-
ities. Moreover, at FSE2016 [TM16a], we could not apply the bit-based division property to
Simon family except for Simon32 because of the high complexity. This problem was solved by
using the state-of-the-art technique using mixed integer linear programming by Xiang et al. at
ASIACRYPT 2016 [XZBL16]. The approach using MILP was first introduced by Mouha et al. for
evaluating the lower bound of the number of active S-boxes on word-oriented ciphers,[MWGP11].
However, several ciphers do not have word-oriented structure. Therefore, Sun et al. then de-
veloped a method to model all possible differential propagations bit by bit even for the S-box
[SHW+14]. At ASIACRYPT 2016, Xiang et al. first introduced the division trail. To analyze
r-round ciphers, the following propagation of the division property

K0 → K1 → · · · → Kr

is evaluated, where DKi−1
is the division property for the input of ith round function. Then,

for (k⃗0, k⃗1, . . . , k⃗r) ∈ (K0 × K1 × · · · × Kr), if k⃗i−1 can propagate to k⃗i for all i ∈ {1, 2, . . . , r},
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(k⃗0, k⃗1, . . . , k⃗r) is called r-round division trail. If there is a division trail that r-round output
becomes unknown, the r-round output is unknown. They developed a method to model the prop-
agation rules for the division property and showed that all division trails are effectively evaluated
using MILP. As a result, they get new integral characteristics on Simon family, Simeck family,
PRESENT, and RECTANGLE 1.

10.2 Summary of Works about Division Property

Table 10.1: Summary of works related to the division property

Author Note Month Year Reference
Todo proposal of Division Property May 2015 EUROCRYPT [Tod15b]
Todo break of full MISTY1 Aug. 2015 CRYPTO [Tod15a]
Zhang and Wu application to GFN Dec. 2015 INDOCRYPT [ZW15]
Todo and Morii bit-based division property Mar. 2016 FSE [TM16a]
Journault et al. Mysterion Mar. 2016 DCC [JSV16]
Sasaki and Todo application to Lilliput Aug. 2016 SAC [ST16]
Boura and Canteaut parity set Aug. 2016 CRYPTO [BC16]
Bar-On and Keller improved analysis on MISTY1 Aug. 2016 CRYPTO [BK16]
Beierle et al. SKINNY and MANTIS Aug. 2016 CRYPTO [BJK+16]
Todo and Morii application to PRESENT Nov. 2016 CANS [TM16b]
Xiang et al. MILP-based evaluation Dec. 2016 ASIACRYPT [XZBL16]
Diny et al. Sparx and LAX Dec. 2016 ASIACRYPT [DPU+16]

2015 May

Aug.

Aug.

2016 Mar.

Dec.

proposal of division property,
(EUROCRYPT 2015)

bit-based division property,
(FSE 2016)

MILP-based propagation search,
[Xiang et al.]
(ASIACRYPT 2016)

break of full MISTY1,
(CRYPTO 2015)

technical improvement wide application design tool

application to GFN,
[Zhang and Wu]
(INDOCRYPT 2015)

Skinny and MANTIS,
[Beierle et atl]
(CRYPTO 2016)

Mysterion,
[Journault et atl]
(DCC)

SPARC and LAX,
[Dinu et atl]
(ASIACRYPT 2016)

application to PRESENT,
(CANS 2016)

application to Lilliput,
(SAC 2016)

improved analysis on MISTY1,
[Bar-On and Keller]
(CRYPTO 2016)

Parity set,
[Boura and Canteaut]
(CRYPTO 2016)

parity set,
[Boura and Canteaut]
(CRYPTO 2016)

Figure 10.1: Summary of works related to the division property

1We also independently evaluated the propagation of the division property on PRESENT in [TM16b] and
get the same integral characteristics. In that paper, we introduced the compact representation for the division
property to evaluate the propagation efficiently.
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We finally summarize all works 2 related to the division property. Table 10.1 summarizes
the publication list. Figure 10.1 shows each relationship, where papers labeled red color are
proposed by ourself and ones labeled blue color are proposed by third party. We expect further
improvement and evolution of the division property.

2Only internationally published works are surveyed.
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Appendix A

Division Property of Texts
Encrypted by Six Rounds with
Two FL Layers

When the input set has the division property D7,2,7,7,2,7,7,2,7,7,2,7
{[6,2,7,7,2,7,7,2,7,7,2,7]}, the division property of

the set of texts encrypted by 6 rounds without the first and last FL layers is represented as
D7,2,7,7,2,7,7,2,7,7,2,7

K , where K has 131 vectors as follows:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2] [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2] [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1] [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2] [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1] [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3] [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2] [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1] [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2]

[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1] [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0] [0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1] [0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2] [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1] [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1] [0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 1]

[0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0] [0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0] [0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3]

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2] [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1] [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2] [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1]

[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0] [0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1] [0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0] [0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2] [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1] [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0] [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1]

[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0] [0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1] [0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0]

[0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0] [0, 0, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0] [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2] [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1]

[0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0] [0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1] [0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0] [0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1] [0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0] [0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0] [0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3] [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2] [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1] [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1] [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0] [0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1] [0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0] [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2] [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1] [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0]

[0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1] [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0] [0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0, 0] [0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1]

[0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0] [0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0] [0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 0, 0] [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2]

[0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1] [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0] [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1] [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0]

[0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0] [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 1, 4, 0, 0, 0] [0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1] [0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1, 0] [0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0] [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2] [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1] [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0]

[0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1] [0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0] [0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0] [0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1]

[0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0] [0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0] [0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 0] [0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1]

[0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0] [0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0] [0, 0, 0, 0, 0, 0, 2, 1, 3, 0, 0, 0] [0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1] [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0] [0, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0] [0, 0, 0, 0, 0, 0, 3, 1, 2, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 0] [0, 0, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0] [0, 0, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0] [0, 0, 0, 0, 0, 0, 5, 1, 1, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 5, 2, 0, 0, 0, 0] [0, 0, 0, 0, 0, 0, 7, 0, 1, 0, 0, 0] [0, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

[1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Assume that X has the division property D7,2,7,7,2,7,7,2,7,7,2,7
K . Let ei ∈ Z12 be a unit vector

whose ith element is one and the others are zero. When there is not ei in K,
⨁

x⃗∈X xi = 0. Since
the vector [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] is not included in 131 vectors, the first 7 bits are balanced.
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Appendix B

Propagation Characteristic Table
for FI function

Table B.1: Propagation from D7,2,7
{[0,∗,∗]} to D7,2,7

K
k⃗ K

[0 0 0] [0 0 0]

[0 0 1] [0 0 1] [0 1 0] [1 0 0]

[0 0 2] [0 0 1] [0 1 0] [1 0 0]

[0 0 3] [0 0 1] [0 2 0] [1 0 0]

[0 0 4] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[0 0 5] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [2 0 0]

[0 0 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]

[0 0 7] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[0 1 0] [0 0 1] [0 1 0] [1 0 0]

[0 1 1] [0 0 1] [0 1 0] [2 0 0]

[0 1 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[0 1 3] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[0 1 4] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[0 1 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]

[0 1 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[0 1 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[0 2 0] [0 0 1] [0 1 0] [1 0 0]

[0 2 1] [0 0 1] [0 1 0] [2 0 0]

[0 2 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[0 2 3] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[0 2 4] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[0 2 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]

[0 2 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[0 2 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

Table B.2: Propagation from D7,2,7
{[1,∗,∗]} to D7,2,7

K
k⃗ K

[1 0 0] [0 0 1] [0 1 0] [1 0 0]

[1 0 1] [0 0 1] [0 1 0] [2 0 0]

[1 0 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[1 0 3] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[1 0 4] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[1 0 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]

[1 0 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[1 0 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[1 1 0] [0 0 1] [0 1 0] [1 0 0]

[1 1 1] [0 0 1] [0 1 0] [2 0 0]

[1 1 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[1 1 3] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[1 1 4] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[1 1 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]

[1 1 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[1 1 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[1 2 0] [0 0 1] [0 1 0] [2 0 0]

[1 2 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[1 2 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[1 2 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[1 2 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[1 2 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[1 2 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[1 2 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]
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Table B.3: Propagation from D7,2,7
{[2,∗,∗]} to D7,2,7

K
k⃗ K

[2 0 0] [0 0 1] [0 1 0] [1 0 0]

[2 0 1] [0 0 1] [0 1 0] [2 0 0]

[2 0 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[2 0 3] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [2 0 0]

[2 0 4] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[2 0 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [3 0 0]

[2 0 6] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[2 0 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[2 1 0] [0 0 1] [0 1 0] [2 0 0]

[2 1 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[2 1 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[2 1 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[2 1 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[2 1 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[2 1 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[2 1 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[2 2 0] [0 0 1] [0 1 0] [2 0 0]

[2 2 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[2 2 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[2 2 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[2 2 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[2 2 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[2 2 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[2 2 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

Table B.4: Propagation from D7,2,7
{[3,∗,∗]} to D7,2,7

K
k⃗ K

[3 0 0] [0 0 1] [0 1 0] [2 0 0]

[3 0 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[3 0 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[3 0 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[3 0 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[3 0 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[3 0 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[3 0 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[3 1 0] [0 0 1] [0 1 0] [2 0 0]

[3 1 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[3 1 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[3 1 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[3 1 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[3 1 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[3 1 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[3 1 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[3 2 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[3 2 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[3 2 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[3 2 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[3 2 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[3 2 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[3 2 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[3 2 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]
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Table B.5: Propagation from D7,2,7
{[4,∗,∗]} to D7,2,7

K
k⃗ K

[4 0 0] [0 0 1] [0 1 0] [2 0 0]

[4 0 1] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[4 0 2] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[4 0 3] [0 0 2] [0 1 1] [1 0 1] [1 1 0] [3 0 0]

[4 0 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[4 0 5] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[4 0 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[4 0 7] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[4 1 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[4 1 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[4 1 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[4 1 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[4 1 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[4 1 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[4 1 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[4 1 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]

[4 2 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[4 2 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[4 2 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[4 2 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[4 2 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[4 2 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[4 2 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[4 2 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]

Table B.6: Propagation from D7,2,7
{[5,∗,∗]} to D7,2,7

K
k⃗ K

[5 0 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[5 0 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[5 0 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[5 0 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[5 0 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[5 0 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[5 0 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[5 0 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]

[5 1 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[5 1 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[5 1 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[5 1 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[5 1 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[5 1 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[5 1 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[5 1 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]

[5 2 0] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[5 2 1] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[5 2 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[5 2 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[5 2 4] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[5 2 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[5 2 6] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]

[5 2 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [4 0 2] [4 1 1] [4 2 0]
[6 0 1] [6 1 0]
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Table B.7: Propagation from D7,2,7
{[6,∗,∗]} to D7,2,7

K
k⃗ K

[6 0 0] [0 0 2] [0 1 1] [0 2 0] [1 0 1] [1 1 0] [3 0 0]

[6 0 1] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[6 0 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[6 0 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [2 0 1] [2 1 0] [4 0 0]

[6 0 4] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[6 0 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [3 0 1] [3 1 0] [5 0 0]

[6 0 6] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[6 0 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]

[6 1 0] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[6 1 1] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[6 1 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[6 1 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[6 1 4] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[6 1 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[6 1 6] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]

[6 1 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [4 0 2] [4 1 1] [4 2 0]
[6 0 1] [6 1 0]

[6 2 0] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[6 2 1] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[6 2 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[6 2 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[6 2 4] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[6 2 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[6 2 6] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]

[6 2 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [4 0 2] [4 1 1] [4 2 0]
[6 0 1] [6 1 0]

Table B.8: Propagation from D7,2,7
{[7,∗,∗]} to D7,2,7

K
k⃗ K

[7 0 0] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[7 0 1] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[7 0 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[7 0 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[7 0 4] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[7 0 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[7 0 6] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]

[7 0 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [4 0 2] [4 1 1] [4 2 0]
[6 0 1] [6 1 0]

[7 1 0] [0 0 2] [0 1 1] [0 2 0] [2 0 1] [2 1 0] [4 0 0]

[7 1 1] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[7 1 2] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[7 1 3] [0 0 3] [0 1 2] [0 2 1] [1 0 2] [1 1 1] [1 2 0] [3 0 1] [3 1 0] [5 0 0]

[7 1 4] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[7 1 5] [0 0 4] [0 1 3] [0 2 2] [1 0 3] [1 1 2] [1 2 1] [2 0 2] [2 1 1] [2 2 0] [4 0 1] [4 1 0] [6 0 0]

[7 1 6] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [3 0 2] [3 1 1] [3 2 0]
[5 0 1] [5 1 0] [7 0 0]

[7 1 7] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [2 0 3] [2 1 2] [2 2 1] [4 0 2] [4 1 1] [4 2 0]
[6 0 1] [6 1 0]

[7 2 0] [0 0 5] [0 1 4] [0 2 3] [1 0 4] [1 1 3] [1 2 2] [3 0 3] [3 1 2] [3 2 1] [5 0 2] [5 1 1] [5 2 0]
[7 0 1] [7 1 0]

[7 2 1] [0 0 6] [0 1 5] [0 2 4] [1 0 5] [1 1 4] [1 2 3] [2 0 4] [2 1 3] [2 2 2] [4 0 3] [4 1 2] [4 2 1]
[6 0 2] [6 1 1] [6 2 0]

[7 2 2] [0 0 6] [0 1 5] [0 2 4] [1 0 5] [1 1 4] [1 2 3] [2 0 4] [2 1 3] [2 2 2] [4 0 3] [4 1 2] [4 2 1]
[6 0 2] [6 1 1] [6 2 0]

[7 2 3] [0 0 6] [0 1 5] [0 2 4] [1 0 5] [1 1 4] [1 2 3] [2 0 4] [2 1 3] [2 2 2] [4 0 3] [4 1 2] [4 2 1]
[6 0 2] [6 1 1] [6 2 0]

[7 2 4] [0 0 7] [0 1 6] [0 2 5] [1 0 6] [1 1 5] [1 2 4] [2 0 5] [2 1 4] [2 2 3] [3 0 4] [3 1 3] [3 2 2]
[5 0 3] [5 1 2] [5 2 1] [7 0 2] [7 1 1] [7 2 0]

[7 2 5] [0 0 7] [0 1 6] [0 2 5] [1 0 6] [1 1 5] [1 2 4] [2 0 5] [2 1 4] [2 2 3] [3 0 4] [3 1 3] [3 2 2]
[5 0 3] [5 1 2] [5 2 1] [7 0 2] [7 1 1] [7 2 0]

[7 2 6] [0 2 7] [1 1 7] [1 2 6] [2 0 7] [2 1 6] [2 2 5] [3 0 6] [3 1 5] [3 2 4] [4 0 5] [4 1 4] [4 2 3]
[5 0 4] [5 1 3] [5 2 2] [7 0 3] [7 1 2] [7 2 1]

[7 2 7] [7 2 7]
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tography. https://www.cryptolux.org/index.php/Lightweight_Cryptography,
2015.

[ABB+14] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel, Bart
Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs v1.02, 2014.
Submission to CAESAR competition.

[ABD+13] Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P.
Steinberger. On the indifferentiability of key-alternating ciphers. In Ran Canetti
and Juan A. Garay, editors, CRYPTO Part I, volume 8042 of LNCS, pages 531–550,
2013.

[ABK98] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for the Ad-
vanced Encryption Standard, 1998. One of the five finalists of the AES contest.

[AIK+00] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Moriai,
Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit block cipher suitable for
multiple platforms - design and analysis. In Douglas R. Stinson and Stafford E.
Tavares, editors, SAC, volume 2012 of LNCS, pages 39–56. Springer, 2000.

[AJN15] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v2.0, 2015.
Submission to CAESAR competition.

[ALLW14] Farzaneh Abed, Eik List, Stefan Lucks, and JakobWenzel. Differential cryptanalysis
of round-reduced Simon and Speck. In Carlos Cid and Christian Rechberger, editors,
FSE, volume 8540 of LNCS, pages 525–545. Springer, 2014.

[Bar15a] Achiya Bar-On. A 270 attack on the full MISTY1. IACR Cryptology ePrint Archive,
Report 2015/746, available at http://eprint.iacr.org/2015/746, 2015.

[Bar15b] Achiya Bar-On. Improved higher-order differential attacks on MISTY1. In Gregor
Leander, editor, FSE, volume 9054 of LNCS, pages 28–47. Springer, 2015.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack reduced to
31 rounds using impossible differentials. In Jacques Stern, editor, EUROCRYPT,
volume 1592 of LNCS, pages 12–23. Springer, 1999.

[BC13] Christina Boura and Anne Canteaut. On the influence of the algebraic degree of

f-1 on the algebraic degree of G ◦ F. IEEE Transactions on Information Theory,
59(1):691–702, 2013.

[BC16] Christina Boura and Anne Canteaut. Another view of the division property. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO Part I, volume 9814 of
LNCS, pages 654–682. Springer, 2016.

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-order differ-
ential properties of Keccak and Luffa. In Antoine Joux, editor, FSE, volume 6733
of LNCS, pages 252–269. Springer, 2011.

153

https://www.cryptolux.org/index.php/Lightweight_Cryptography
http://eprint.iacr.org/2015/746


[BF00] Steve Babbage and Laurent Frisch. On MISTY1 higher order differential cryptanal-
ysis. In Dongho Won, editor, ICISC, volume 2015 of LNCS, pages 22–36. Springer,
2000.

[BFMT15] Thierry P. Berger, Julien Francq, Marine Minier, and Gaël Thomas. Extended gen-
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