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The voice is one of the most natural communication tools for human beings and it

provides not only linguistic information but also paralinguistic information, which

include speaker information and emotion. Voice conversion (VC) is a technique

for converting paralinguistic information in speech, while preserving the linguistic

information in the utterance. The most popular VC application is speaker conver-

sion however, VC is also being used for various tasks such as emotion conversion

and assistive technology.

The Gaussian mixture model (GMM) is widely used for VC because of its flex-

ibility and good performance, and a number of improvements have been proposed.

In this approach, the conversion function is interpreted as the expectation value

of the target spectral envelope. The conversion parameters are evaluated using

minimum mean square error (MMSE) or maximum likelihood (ML) methods on

a training set. In GMM-based approaches, low-dimensional spectral features (for

example mel-cepstrum) are used in order to avoid the “curse of dimensionality”.

Exemplar-based VC, which is a non-statistical approach, has attracted inter-

est. For example, an exemplar-based VC using non-negative matrix factorization

(NMF), in which linear transformation has been proposed. In this method, source

and target exemplars are extracted from a parallel training set, in which the same

texts are spoken by the source and target speakers. The input source signal is

expressed with sparse representation of the source exemplars using NMF. By re-

placing the source speaker exemplar with that of the target speaker, the original

speech spectrum is replaced with that of the target speaker.
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We assume that the NMF-based VC method has an advantage over conven-

tional VC methods as our approach results in a natural-sounding converted voice.

Over-smoothing and over-fitting problems have been reported in statistical ap-

proaches because of statistical averaging and the large number of parameters

involved. Because our approach is non-statistical one, it should avoid the over-

fitting problem.

This paper proposes four advanced VC algorithms based on NMF that resolve

each practical task. The four methods correspond to the following key words,

noise-robustness, assistive technology, small-parallel corpus, and many-to-many

VC.

The conventional VC method has been evaluated in a clean environment.

Background noise, which is unavoidable factor in real environments, has been

ignored in the VC tasks. The NMF-based VCmethod has noise-robustness and we

propose a framework to train the basis matrices of the source and target exemplars

so they have a common weight matrix. We call this method as “VC using sparse

spectrum mapping”. By using the basis matrices instead of the exemplars, the VC

performs in less computation time than the conventional exemplar-based method.

Assistive technology is one of the most important tasks of a VC system. This

paper focuses on an articulation disorder resulting from athetoid cerebral palsy.

Some people with articulation disorders need a VC system that can improve the

intelligibility of their disordered voice while preserving their voice intelligibility. In

order to preserve the speaker’s individuality, we used a combined dictionary that

was constructed from the source speaker’s vowels and target speaker’s consonants.

In this paper, in order to reduce the mismatching of phoneme alignment, we

propose a phoneme-categorized sub-dictionary and a dictionary selection method

using NMF.

The need to have a large amount of parallel data is great barrier to the prac-

tical application of VC. This paper presents a novel framework of an exemplar-

based VC that only requires a small number of parallel exemplars. An adaptation

matrix in an NMF framework is introduced to adapt the source dictionary to the

target dictionary. This adaptation matrix is estimated using only a small-parallel

speech corpus. We refer to this method as Affine-NMF, and its effectiveness is
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confirmed by comparison with those of a conventional NMF-based method and a

GMM-based method in noisy environments.

Many-to-many VC is a VC method for arbitrary speakers. Because NMF-

based VC requires parallel training data from source and target speakers, the

voices of arbitrary speakers cannot be converted in this framework. In this study,

we propose the multiple non-negative matrix factorization (Multi-NMF) to allow

the implementation of a many-to-many exemplar-based VC.

As explained above, this paper proposes new algorithms for four important

practical tasks VC tasks. In addition, we expands the use of VC systems. The

tasks are not only related to VC but also to speech recognition and other problems

in the field of signal processing.
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Chapter 1

Introduction

1.1 Background

The voice is one of the most natural communication tool for human beings and it

provides not only linguistic information but also paralinguistic information, which

includes speaker information and emotion. For decades researchers have tried to

extract certain information from voice signals. However, it remains a difficult task

to separate and extract certain information from voice signals because linguistic

and paralinguistic information are closely connected each other.

Voice conversion (VC) is a technique for converting specific information in

speech, while preserving the other information in the utterance. In general, speech

includes linguistic and paralinguistic information. The most popular VC appli-

cation is speaker conversion [1, 2, 3], which converts a source speaker’s voice

individuality to that of a specified target speaker, while preserving the linguis-

tic information. VC has also been applied to emotion conversion [4, 5, 6, 7],

which converts the emotional information in the input speech while preserving

the speaker and linguistic information. Other uses of VC include assistive technol-

ogy [8], text-to-speech (TTS) systems [9], spectrum restoring [10], and bandwidth

extension for audio [11].

VC is challenging as there is no unique correct answer to its task. Every time a

source speaker utters the same sentence, the observed spectrum is different. Fur-

thermore, the perception of conversion quality is subjective. Therefore, listening

tests must be used for evaluation of VC systems and these take a great deal of
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1. INTRODUCTION

time. Some objective measures such as mel-cepstral distortion (Mel-CD), spectral

distortion improvement ratio (SDIR) and normalized spectrum distortion (NSD)

are used to complement the subjective evaluation [12].

It is considered that some indications of a speaker’s identity are more apparent

in paralinguistic information more than in linguistic information. The paralin-

guistic factors can be categorized into two types: sociological and physiological

factors. Sociological factors, including the place of birth, social class, and age

of the speaker, mainly affect prosodic features (pitch contour, duration, rhythm,

etc.). On the other hand, physiological factors (the shape of the vocal tract)

directly affect the spectral information and determine the individuality. It has

been reported that the most important acoustic features for the identification of

a speaker include third formant, fourth formant, fundamental frequency, and the

closing phase of the glottal wave [13].

There are two approaches to VC methods. One is a combined approach of

automatic speech recognition (ASR) and TTS. In this approach, an input utter-

ance is recognized using ASR systems and estimated text is synthesized with the

target speaker’s voice using TTS systems. The other approach is a more direct

one, which does not recognize the text information of input utterances. The for-

mer approach may be effective because of recent developments in ASR and TTS.

However, the linguistic information of the output voice will be incorrect if the

ASR system fails to recognize the input utterance. Moreover, a large amount of

training data is required to develop ASR and TTS systems for arbitrary speakers.

Therefore, this paper adopts the latter approach.

Most existing VC systems use the direct approach to deal with the conver-

sion of spectral features, and this is used here. However, prosodic features, such

as fundamental frequency (F0), can also be seen as important factors in speaker

identity. Helander et al. showed that when true prosody features are used, we can

recognize a person who is familiar to us [14]. Nevertheless, we obtained good re-

sults from simple statistical mean and variance scaling methods for F0 conversion.

More advanced F0 conversion methods can be found in the literature [15, 16, 17].
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Feature extraction 
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Converted speech 
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Figure 1.1: Flowchart of a typical VC system
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1.2 Approaches

Most VC systems have a system flow as shown in Figure 1.1. The system can

broadly be divided into two stages: training and conversion. Both stages begin

with feature extraction. In this process, acoustic features, such as mel-frequency

cepstral coefficients (MFCC), cepstral coefficients (CC), or linear prediction co-

efficients (LPC) are extracted from the speech signals. In the training stage,

the extracted time-series features are aligned to adjust the time positions of the

source speaker’s features and target speakers’ features (such aligned data is called

parallel data). Therefore, typical VC systems require pairs of speech signals to

be produced by the source and the target speakers uttering the same sentence.

Dynamic time warping (DTW) [18] is often used for the alignment process. Any

statistical or non-statistical models is trained using the obtained parallel data. In

the conversion stage, the acoustic features are extracted from the source speaker’s

speech and fed to the model, resulting in acoustic features that are supposed to

be those of the target speakers. Finally, the features are back-projected into a

speech signal. In this way we obtain converted speech.

Various statistical approaches to VC have been studied over the past few

decades and can be divided into two broad categories, those which employ lin-

ear transformation and those which employ non-linear transformation. The most

widely researched example of the first approach is Gaussian mixture model (GMM)-

based VC [3]. In this approach, the conversion function is interpreted as the

expectation value of the target spectral envelope. The conversion parameters are

evaluated using minimum mean square error (MMSE) or maximum likelihood

(ML) methods on a training set [19]. An alternative approach is the artificial

neural network (ANN), a classic method adopting a non-linear transformation

function. Recent advances in deep learning for ASR have introduced VC ap-

proaches using deep neural networks (DNN) [20, 21, 22]. These approaches try

to capture the non-linear relationship between the source and target spectra.

In recent years, exemplar-based VC, a non-statistical approach, has attracted

interest [23, 24]. These approaches are based on non-negative matrix factorization

(NMF) [25] and employs a linear transformation [26]. In this method, source and

target exemplars are extracted from a parallel training set, in which the same
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texts are spoken by the source and target speakers. The input source signal is

expressed with a sparse representation of the source exemplars using NMF. By

replacing the source speaker exemplar with the that of the target speaker, the

original speech spectrum is replaced with that of the target speaker. We assume

that the NMF-based VC method has advantages over conventional VC methods.

This approach results in a natural-sounding converted voice [27]. Over-smoothing

and over-fitting problems have been reported [28] in statistical approaches because

of statistical averaging and the large number of parameters involved.

1.3 Purpose of This Thesis

This paper proposes four different VC algorithms for each practical task. All

our methods are based on NMF, which provides a natural-sounding converted

voice. The four methods correspond to the following key words; noise-robustness,

assistive technology, small-parallel corpus, and many-to-many VC. Fig. 1.2 shows

the relationships of our proposed method.

NMF-based VC 
(Chapter 3) 

VC using  
spectrum mapping 

(Chapter 3) 

VC using 
 phoneme-categorized 

exemplars 
(Chapter 4) 

VC using  
Affine-NMF 
(Chapter 5) 

VC using  
Multi-NMF 
(Chapter 6) 

Noise-robustness 

Assistive 
technology 

Small-parallel 
corpus 

Many-to-many 

NMF-based VC 
(Chapter 3) 

VC using  
spectrum mapping 

(Chapter 4) 

VC using 
 phoneme-categorized 

exemplars 
(Chapter 5) 

VC using  
Affine-NMF 
(Chapter 6) 

VC using  
Multi-NMF 
(Chapter 7) 

Noise-robustness 

Assistive 
technology 

Small-parallel 
corpus 

Many-to-many 

Figure 1.2: Flow of this thesis
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1.3.1 Four Practical VC Tasks

1.3.1.1 Noise-robust VC

The conventional VC method is evaluated in a clean environment. Background

noise, which is an unavoidable factor in real environments, has previously been

ignored in the VC tasks. Because NMF has been used for source separation

and a noise-robust ASR, the NMF-based VC method has noise robustness. In

Chapter 4, we propose a framework to train the basis matrices of the source and

target exemplars so they have a common weight matrix. We call this method

“VC using sparse spectrum mapping”. The basis matrix of the source exemplars

is trained using NMF, then their weight matrix can be obtained. Next, the

basis matrix of the target exemplars is trained using NMF, where the weight

matrix is fixed to the one obtained from the source exemplars. By using the basis

matrices instead of the exemplars, VC is performs in less computation time than

the conventional exemplar-based method.

1.3.1.2 Assistive Technology for Articulation Disorders

In Chapter 5, we present a VC method for a person with an articulation dis-

order resulting from athetoid cerebral palsy. The movements of such speakers

are limited by their athetoid symptoms, and their consonants are often unsta-

ble or unclear, which makes it difficult for them to communicate. In this paper,

exemplar-based spectral conversion using NMF is applied to a voice with an ar-

ticulation disorder. In order to preserve the speaker’s individuality, we used a

combined dictionary that was constructed from the source speaker’s vowels and

target speaker’s consonants. However, this exemplar-based approach needs to

hold all the training exemplars (frames), and may cause a mismatch of phonemes

between the input signals and selected exemplars. In this paper, in order to re-

duce the mismatching of phoneme alignment, we propose a phoneme-categorized

sub-dictionary and a dictionary selection method using NMF. The effectiveness of

this method is confirmed by comparing it with those of conventional GMM-based

and NMF-based methods.
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1.3.1.3 VC Using Small-parallel Training Data

The need to have a large amount of parallel data is a great barrier to the practi-

cal application of VC. This paper presents a novel framework for exemplar-based

VC that only requires a small number of parallel exemplars. In the framework

of conventional GMM-based VC, some approaches that do not need parallel ex-

emplars have been proposed. However, in the framework of exemplar-based VC

in noisy environments, such a method has never been proposed. In Chapter 6,

an adaptation matrix in an NMF framework is introduced to adapt the source

dictionary to the target dictionary. This adaptation matrix is estimated using

only a small-parallel speech corpus. We refer to this method as Affine-NMF,

and its effectiveness is confirmed by comparing its with those of a conventional

NMF-based method and a GMM-based method in noisy environments.

1.3.1.4 Many-to-many VC

A novel VC method for arbitrary speakers is proposed in Chapter 7. Because

NMF-based VC requires parallel training data from source and target speakers,

the voice of arbitrary speakers cannot be converted in this framework. In this

study, we propose Multi-NMF to allow the implementation of many-to-many,

exemplar-based VC. Our experimental results demonstrate that the conversion

quality of the proposed method is close to that of conventional one-to-one VC,

even though the proposed method requires neither the source nor the target

speakers’ spectra to be included in the training set.

1.3.2 Novelties of This Thesis

This paper proposes new algorithms for four practical VC tasks.

In “VC using sparse spectrummapping” both noise-robustness and low-computational

times are achieved. Background noise is problem not only in VC but also in other

speech problem tasks for example ASR. Our proposed method will also effective,

for such other tasks.

Assistive technology for a person with articulation disorders is proposed in

Chapter 5. A phoneme-categorized sub-dictionary and a dictionary selection

method enables individuality-preserving VC for articulation disorders.

7
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By using VC based on Affine-NMF, conversion using small-parallel corpus

is introduced. Affine-NMF enables speaker adaptation of the exemplars, which

is used for exemplar-based VC. This adaptation technique will also effective in

NMF-based speech separation.

Exemplar-based many-to-many VC is enabled by Multi-NMF. Experimental

results show that the conversion quality of the proposed method is almost the

same as that of conventional one-to-one VC, suggesting that it can be applied to

voice quality control and noise-robust VC.

1.4 Outline

Starting in Chapter 2, we list some feature extraction methods related to VC and

conventional GMM-based VC. In Chapter 3, basic NMF-based VC is described.

In Chapter 4, noise-robust VC based on sparse spectral mapping is described.

In Chapter 5, a VC method for articulation disorders is described. Chapter 6

describes a novel framework of NMF-based VC that only requires a small number

of parallel exemplars. In Chapter 7, a many-to-many VC method using Multi-

NMF is described. Finally, Chapter 8 concludes the thesis.

8



Chapter 2

Acoustic Features and

Conventional VC methods

In this chapter, we review common acoustic features used in voice conversion and

conventional VC methods. First, cepstrum analysis, which is the basis for the

extraction of important information from a speech signal, is presented. Second,

we discuss MFCC, which is a well-known feature in speech signal processing.

Third, an analyzing speech synthesis method using vocoder is presented. Finally,

conventional statistical VC methods are explained [21].

2.1 Acoustic Features

2.1.1 Cepstrum

The speech signal is generated from vibrations of the vocal cord. The vibration

passes the vocal tract of the speaker and arrives at the listener’s ears or a micro-

phone. When we vibrate our vocal chords and change the shape of our mouth and

vocal tracts, the sounds of various phonemes such as /a/ or /i/ can be generated.

This speech generating process is modeled as a source-filter model (Figure 2.1).

The filter associated with the vocal tract is called the formant and the fundamen-

tal frequency from the vibration is called the pitch. In speech signal processing,

the information related to the formant that determines phonemes is reasonably

9



2. ACOUSTIC FEATURES AND CONVENTIONAL VC
METHODS

important. Therefore, when the system recognizes a given speech, we obtain

better results with the formant information than with the original spectrum.

One well-known technique for extracting formants is cepstrum analysis [29].

The cepstrum is obtained as follows: 1) execute Fourier transform to the given

speech, 2) take absolute and logarithm, and 3) execute inverse Fourier trans-

form. Letting G(ω) and H(ω) be the spectrum of the vocal cord and the tract,

respectively, the spectrum of the speech S(ω) is represented as

S(ω) = G(ω) ·H(ω). (2.1)

When we apply a logarithm and inverse Fourier transform to Eq. (2.1), we obtain

log |S(ω)| = log |G(ω)|+ log |H(ω)| (2.2)

and

Scep(d) = DFT−1{log |S(ω)|} (2.3)

= DFT−1{log |G(ω)|}+DFT−1{log |H(ω)|}, (2.4)

where Scep(d) indicates the d-th cepstrum (d is quefrency axis).

When we regard each spectrum in Figure 2.1 as a signal, we notice that

the vocal cord G(ω) signal changes rapidly, and the vocal tract H(ω) signal

changes slowly by contrast. By applying an inverse Fourier transform to these

signals, DFT−1{log |G(ω)|} appears in high quefrency and DFT−1{log |H(ω)|}
appears in low quefrency. Furthermore, as Eq. (2.4) shows, a speech signal is

represented as the sum of the vocal cord and vocal tract information. Therefore,

the vocal tract information DFT−1{log |H(ω)|} can be easily obtained by simple

subtraction. In other words, the formant information is extracted by liftering

(low-pass filtering in quefrency) as shown in Figure 2.2.

2.1.2 MFCC

The cepstrum feature introduced in the previous section was obtained as a linear

log spectrum and is called the linear frequency cepstral coefficient; LFCC). On

10



2.1 Acoustic Features

Frequency

P
o
w

er

Source (Vocal cord vibration)

×

Frequency

P
o
w

er

Filter (Vocal tract)

=

Frequency

P
o
w

er

Speech sound

Figure 2.1: Source filter model: speech sound can be generated by multiplying

spectra of the vocal cord vibration (source) and spectra of the vocal tract (filter).

the other hand, there is another formant extraction method, MFCC [30] is ex-

tracted from the transformation on the mel-scale, which approximates the human

auditory scale sensitive to pitch.

When we, human beings, hear something, auditory sensitivity becomes poorer

as pitch increases. That means that the frequency resolution is very low at high

frequencies and high at low frequencies. The relationship is not linear but non-

linear, as approximated by

f ′ = 1127.01048 log(1 +
f

700
), (2.5)

where f ′ is the mel frequency. Typically, we use filter-bank representation instead

of using the coefficients themselves. In the MFCC approach, mel-filter-banks as

shown in Figure 2.3 are used. Each filter is triangular, and outputs the sum value

of the multiplication. The power spectrum of the mel-scale frequency M(i) is

obtained by

M(i) =

f ′
i+1∑

f=f ′
i−1

Wi(f) · |X(f)|2. (2.6)

From Eq. (2.6), the MFCC can be calculated as follows:

Mcep(d) = DFT−1{logM(i)}. (2.7)

MFCC contains some useful information on representing speech using a small

numbers of dimensions, therefore most works in speech signal processing, specif-

ically in speech recognition, deal with these features. However, as the MFCC

is based on a filter-bank calculation, it is, in general, difficult to reconstruct

11
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Figure 2.2: Formant extraction using cepstrum analysis. This example uses a

speech signal where “a” is uttered.

the speech signal from the obtained MFCC because the values in a filter-bank

are summed up with the weights. Milner and Shao proposed an approximation

approach for speech reconstruction from MFCC using a source-filter model [31].

Other approaches such as using a z-transform [32, 33] and using a mel-log spectral

approximation (MLSA) filter [34] have also been proposed.

2.1.3 Vocoder

Vocoder is an analysis and synthesis method for speech signal processing. This

paper uses STRAIGHT [35, 36], which is a vocoder provided by Kawahara that

analyzes, modifies, and synthesizes speech, written as MATLAB codes. The tool

extracts three components from a speech signal: spectrum parameters, fundamen-

12
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Figure 2.3: Mel-scale filter banks

tal frequencies, and aperiodic parameters. The analysis and synthesis quality is

fairly high, so many researchers in speech signal processing use it. Figure 2.4

depicts the common way of using STRAIGHT to modify a speech signal. The

spectrum features extracted using STRAIGHT resemble formant information in

cepstrum analysis. Therefore, in voice conversion, we usually modify the spec-

trum features and the F0 to the desired ones; we do not change the aperiodic

features at the synthesis stage. The spectrum features are also referred to as the

STRAIGHT spectrum, STRAIGHT parameters, or just “the spectrum”. In the

rest of this thesis, we refer to spectrum parameters extracted from a speech signal

using STRAIGHT as the spectrum.

We can also extract MFCC features from the STRAIGHT spectrum. As

discussed in the previous section, the (approximate) MFCC can further be back-

projected into the spectrum space. The raw spectrum obtained using STRAIGHT

tends to be high-dimensional. If we focus on modifying acoustic features in MFCC

space after executing STRAIGHT, we can reduce the dimensional sizes of the

features of interest, which leads to high performance in the estimation of the

model, and obtain high-quality speech sounds.

In [37], Kawahara proposed advanced version of STRIAGHT, which is named

as “TANDEM-STRAIGHT”. In [38], Morise proposed another vocoder, WORLD

which reduces computational cost compared with STRAIGHT. Ahocoder [39] is

also used in some VC and TTS application.
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2.2 Conventional VC Methods

As discussed in section 2.1, in order to estimate the models, most existing VC

approaches need sets of speech signals where the same sentences are uttered by

a source and a target speaker. Furthermore, the training data must be aligned

at the frame level. The aligned data is called parallel data, and is often obtained

using DTW or dynamic programming (DP) [3, 18, 40]. Such feature vectors

are used for training each model. Let us refer to the D-dimensional feature

vectors in each frame of the source and target speakers as x and y, respectively.

Assuming the parallel data includes T frames, the training data consists of the

source speaker’s set X ∋ {xt}Tt=1 and the target speaker’s set Y ∋ {yt}Tt=1.

2.2.1 GMM-based VC

2.2.1.1 Gaussian Mixture Model (GMM)

A Gaussian mixture model (GMM) is a statistical probabilistic model for repre-

senting observed data that can be categorized into sub-components. Each com-

ponent is represented as a multivariate Gaussian distribution N(x;µ,Σ) with

parameters of a D-dimensional mean vector µ and a variance matrix Σ, defined

as

N(x;µ,Σ) =
1√

(2π)D|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2.8)
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where x, µ, and Σ have the elements as follows:

x =


x1
x2
...
xD

 , µ =


µ1

µ2
...
µD

 , Σ =


σ2
11 σ2

12 · · · σ2
1D

σ2
21 σ2

22

...
...

. . .
...

σ2
D1 · · · · · · σ2

DD

 , (2.9)

and (·)T and |·| indicate the transpose and determinant of the matrix, respectively.

GMM represents the overall distribution of the data using a weighted sum of

the components. The probability density function (pdf) of GMM is defined as

p(x|Θ) =
M∑

m=1

αmN(x;µm,Σm), (2.10)

where M indicates the number of mixtures. Θ is a set of parameters of GMM,

which contains αm, µm, and Σm for all m.

Figure 2.5 shows an example of a one-dimensional GMM that has two compo-

nents, depicted by a solid line. The GMM was obtained from the weighted sum

of the two Gaussian distributions, depicted by dotted lines.

GMM parameters can be estimated using the expectation maximization (EM)

algorithm [41]. The algorithm repeats E-step (expectation) and M-step (maxi-

mization) by turns. First, all parameters are randomly initialized. In the E-step,
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we calculate a Q-function (expectation of log-likelihood) defined as

Q(Θ̂|Θ) = E[log p(x,m|Θ̂)]p(m|x,Θ)

=
M∑

m=1

p(m|x,Θ) log p(x,m|Θ̂), (2.11)

where

p(x,m|Θ̂) =
N∏

n=1

p(xn,m|Θ̂)

=
N∏

n=1

α̂mN(xn; µ̂m, Σ̂m). (2.12)

Therefore, Eq. (2.11) becomes

Q(Θ̂|Θ) =
∑
k

∑
n

p(m = k|xn,Θ) log α̂k

+
∑
k

∑
n

p(m = k|xn,Θ) logN(xn; µ̂k, Σ̂k). (2.13)

In the M-step, update rules for each parameter are derived to maximize the

Q-function (Eq. (2.13)). The derived update rules are

α̂k =
1

N

N∑
n=1

p(k|xn,Θ), (2.14)

µ̂k =

∑
n p(k|xn,Θ)xn∑
n p(k|xn,Θ)

, (2.15)

Σ̂k =

∑
n p(k|xn,Θ)(xn − µ̂k)(xn − µ̂k)

T∑
n p(k|xn,Θ)

, (2.16)

where p(k|xn,Θ) is the probability that xn is sampled from the k-th component,

which is calculated by

p(k|xn,Θ) =
αkN(xn;µk,Σk)∑
k αkN(xn;µk,Σk)

. (2.17)

2.2.1.2 Conversion Based on Maximum Likelihood Estimation

When it comes to voice conversion based on GMM, we modeled a joint probability

of the source and the target speakers using GMM. Therefore, this model is called
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2.2 Conventional VC Methods

the joint density GMM (JD-GMM). In the training stage of the JD-GMM, we

use a joint vector Z that concatenates the source speakers vector X = [xT∆xT]T

and target speakers vector Y = [yT∆yT]T. (i.e., Z = [XTYT]T). The probability

p(Z) is modeled using GMM as follows:

p(Z|Θ(z)) =
M∑

m=1

αmN(Z;µ(z)
m ,Σ(z)

m ), (2.18)

where µ
(z)
m and Σ(z)

m consist of

µ(z)
m =

[
µ

(x)
m

µ
(y)
m

]
, Σ(z)

m =

[
Σ(xx)

m Σ(xy)
m

Σ(yx)
m Σ(yy)

m

]
. (2.19)

The parameters µ
(x)
m and Σ(xx)

m , and the parameters µ
(y)
m and Σ(yy)

m correspond

to the source speaker’s and target speaker’s Gaussian distributions, respectively.

The parameter Σ(xy)
m (= Σ(yx)

m

T
) indicates the covariance matrix between the ob-

served data X and Y. In voice conversion, we usually use a diagonal matrix for

Σ(xx)
m , Σ(xy)

m , and Σ(xx)
m because full-covariance matrices involve the estimation of

a lot of parameters.

At the conversion stage (assuming that the parameters Θ(z) have already been

estimated), we consider the probability of Y given an input X. That is

p(Y|X,Θ(z)) =
∑
allm

p(m|X,Θ(z))p(Y|X,m,Θ(z))

=
T∏
t=1

M∑
m=1

p(m|Xt,Θ
(z))p(Yt|Xt,m,Θ

(z)) (2.20)

where m = {m1,m2, · · · ,mT} is a mixture component sequence. The probabili-

ties on the right side in Eq. (2.20) are represented as

p(m|Xt,Θ
(z)) =

αmN(Xt;µ
(x)
m ,Σ(xx)

m )∑M
n=1 αnN(Xt;µ

(x)
n ,Σ(xx)

n )
(2.21)

p(Yt|Xt,m,Θ
(z)) = N(Yt;E

(y|x)
m,t ,D

(y|x)
m ) (2.22)

E
(y|x)
m,t = µ(y)

m +Σ(yx)
m (Σ(xx)

m )−1(Xt − µ(x)
m ) (2.23)

D(y|x)
m = Σ(yy)

m −Σ(yx)
m (Σ(xx)

m )−1Σ(xy)
m . (2.24)
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A time sequence of the converted feature vector ŷ is determined as follows:

ŷ = arg maxP (Y|X,Θ(z)). (2.25)

Eq. (2.25) is performed under the linear conversion between the static feature

vectors y and the static and dynamic feature vectors Y

Y = Wy (2.26)

where W is a transformation matrix [42].

Eq. (2.20) is approximated with a single mixture component sequence as fol-

lows:

p(Y|X,Θ(z)) ≃ p(m̂|X,Θ(z))p(Y|X, m̂,Θ(z)). (2.27)

m̂ denotes the suboptimum mixture component sequence, which is determined

as follows

m̂ = arg maxP (m|X,Θ(z)). (2.28)

The logarithm of the likelihood function is written as

log p(Y|X, m̂,Θ(z)) = −1

2
YTD

(y|x)
m̂

−1
Y +YTD

(y|x)
m̂

−1
E

(y|x)
m̂ + cons (2.29)

where

E
(y|x)
m̂ = [E

(y|x)
m̂1,1

,E
(y|x)
m̂2,2

, · · · ,E(y|x)
m̂T ,T ] (2.30)

D
(y|x)
m̂ = diag[D

(y|x)
m̂1,1

,D
(y|x)
m̂2,2

, · · · ,D(y|x)
m̂T ,T ]. (2.31)

we can estimate the most probable ŷ as follows:

ŷ = (WTD
(y|x)
m̂

−1
W)−1WTD

(y|x)
m̂

−1
E

(y|x)
m̂ . (2.32)

We can also maximize the logarithm of the likelihood function of Eq. (2.20) by

employing the EM algorithm, however, there is little difference in the conversion

accuracy between it and the suboptimum mixture component sequence [19].
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2.2 Conventional VC Methods

2.2.1.3 Problems

It is often reported that the GMM-based VC includes over-smoothing problems

and over-fitting. The over-smoothing arises because the parameters of multiple

Gaussian components are estimated by averaging observations with similar con-

text descriptions. As a result, the outputs distribute near the modes of each

component. Over-fitting problems come from this complexity. If we supply more

Gaussian components, the model is over-fitted to the training data.

Some methods to tackle the over-smoothing problems have been proposed.

Toda et. al. proposed a Global Variance (GV) of converted spectra over a time

sequence [19]. A modulation spectrum is used for advanced methods of GV in [43].

2.2.2 PLS-based VC

Partial least squares (PLS) regression is a statistical method that combines PCA

and multivariate regression. The observed variable is generated by a small number

of latent variables, which explains most of the variations in the target.

In PLS-based VC, a source speaker’s vector X is generated by a small number

of latent variables, which explains most of the variations in the target speaker’s

vector Y. Xt and Yt are represented by a linear transformation of the speaker-

independent latent variable vector ht as follows:

Xt = Qht + ext (2.33)

Yt = Pht + eyt (2.34)

where Q and P denote the speaker specific matrix. ext and eyt denote residual

terms. SolvingQ and P, the speaker-transformation matrix β is estimated based-

on the SIMPLS algorithm [44].

In the test phase, segmental features X are constructed from the phonetic

discriminative source features of test data. The converted spectral feature Ŷ is

obtained as follows [28]:

Ŷt = βXt (2.35)

Helander et. al. proposed dynamic kernel PLS (DKPLS)-based VC in [45].

In this, source spectral features are projected to high-dimensional feature space
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using kernel transformation, and the transformed source features are regressed

with target spectral features. Their approaches was evaluated using a small

number of parallel training data and it outperformed GMM-based VC However,

it has not been evaluated in a situation involving a standard setting of parallel

training data.
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Chapter 3

Voice Conversion Based on

Non-negative Matrix

Factorization

3.1 Non-negative Matrix Factorization

NMF is a sparse representation method with non-negativity constraints. In the

sparse representation approach, the observed signal is represented by a linear

combination of a small number of bases:

vl ≈
∑J

j=1wjhjl = Whl (3.1)

where vl represents the l-th frame of the observation, wj and hjl represent the j-

th basis and the weight, respectively, and W = [w1 . . .wJ ] and hl = [h1l . . . hJl]
T

are the collection of the bases and weights. In this paper, the collection of the

bases are called the “dictionary” and weights are called the “activity”.

Approaches using NMF are divided into two categories: supervised NMF and

unsupervised NMF. Supervised NMF estimates only activity from observation:

the dictionary must be provided. In contrast, unsupervised NMF generates both a

dictionary and an activity from observation. Exemplar-based VC, is a supervised

technique.

Lee et al. proposed an NMF algorithm [25]. The cost function used was the

Euclidean distance and the Kullback-Leibler (KL) divergence. NMF using other
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divergence functions have been proposed [46]. This paper adopts KL-NMF, which

is widely used in speech signal processing.

A number of sparseness criteria have been proposed, among which L1 norm

regularization has been most widely used [47]. We also use it in our NMF-based

VC. A quantitative definition of sparseness was proposed in [48], however this is

not a closed-form. Group sparsity was introduced in [49].

In almost all approaches using NMF, a maximization-minimization algorithm [25]

is used for optimization, and we adopt it in our proposed Multi-NMF. In recent

research, Newton’s method has been employed, through other optimization meth-

ods have also been proposed [50]. Virtanen et al. [51] used an active-set Newton

method to reduce the computational time of supervised-NMF.

NMF has been applied to a range of speech processing tasks. Gemmeke et

al. [47, 52] proposed noise robust automatic speech recognition using supervised

NMF. Unsupervised NMF has been used in single channel speech separation [53,

54] and music transcription [55, 56], among other application. NMF has formed

the basis for Non-negative Tensor Factorization (NTF) and applied to the analysis

of brain data [57] and source separation [58]. Our proposed Multi-NMF is an

extension of conventional NMF, and one of the simplest forms of NTF.

3.2 Exemplar-based VC

3.2.1 Basic Idea

In the exemplar-based approach, the observed signal is represented by a linear

combination of a small number of bases. Each basis represents an exemplar of the

spectrum, calculated from the training data. The observed spectra can therefore

be represented by a linear combination of a small number of bases with non-zero

weights:

V ≈ WH (3.2)

V = [v1, . . . ,vL], H = [h1, . . . ,hL] (3.3)

where V,W,H, and L represent the observed spectra, the collection of bases,

the collection of weights, and the number of frames of the observed spectra,
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3.2 Exemplar-based VC

respectively. The collection of bases and weights are referred to hereafter as

the dictionary and the activity, respectively. In this exemplar-based VC, we use

supervised NMF [25]. The dictionary is fixed and NMF is used only to estimate

activity.

Fig. 3.1 shows the basic approach of our exemplar-based VC, where D,L,

and J represent the numbers of dimensions, frames, and bases, respectively. Our

method requires two parallel dictionaries. Ws represents a source dictionary that

consists of the source speaker exemplars, and Wt represents a target dictionary

that consists of the target speaker exemplars. The two dictionaries contain the

same set of words, and are aligned using dynamic time warping (DTW), just as

in conventional GMM-based VC. Hence, these dictionaries have the same number

of bases.

A matrix of input source spectra Vs is decomposed into the source dictionary

Ws and the activity matrix Hs. This method assumes that the obtained activity

matrices will be approximately equivalent, when the source signal and the tar-

get signal (the same words but spoken by different speakers) are expressed with

sparse representations of the source dictionary and the target dictionary, respec-

tively. Fig. 3.2 shows the activity matrices estimated from the parallel dictionar-

ies. As can be seen, the shapes of these two activity matrices are similar. This

phenomenon shows that parallel activity matrices capture speaker-independent

information when they are estimated from parallel dictionaries. Therefore, a ma-

trix of target spectra V̂t can be constructed using the target dictionary Wt and

the activity matrix of the source signal Hs, as shown in Fig. 3.1.

3.2.2 Dictionary Construction

Fig. 3.3 illustrates the process for constructing parallel dictionaries. First, we

construct the parallel dictionaries of the source and target speakers. To do so,

parallel spectra are extracted from the parallel words of the source and target

speakers. Using Dynamic Time Warping (DTW), these spectra are then aligned

so that they have the same number of frames. Then, the source and target

dictionaries are obtained by lining up the parallel spectra, which are used as

parallel training data in GMM-based VC [19]. Therefore, the dictionary consists
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Figure 3.2: Activity matrices for parallel utterances.
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3.2 Exemplar-based VC

of short-time spectra obtained from all training speech data using Short-Time

Fourier Transform (STFT), where one spectrum corresponds to one basis of the

dictionary. Using this method, unlike GMM-based VC, no dictionary training

procedure is required.

Source 

training speech 

Target 

training speech 

Parallel data 

V
s

Parallel  

spectra 

STFT STFT 

DTW 

V
t

Parallel  

words 

Parallel  

dictionaries 

Figure 3.3: Construction of parallel dictionaries

3.2.3 Activity Estimation

Ws and Wt are fixed, and the source speaker’s activity matrix Hs is estimated

using NMF. The cost function of NMF is defined as follows:

d(Vs,WsHs) + λ||Hs||1 s.t. H ≥ 0. (3.4)

In (3.4), the first term is the KL divergence betweenVs andWsHs and the second

term is the sparse constraint with the L1-norm regularization term that causes

the activity matrix to be sparse. λ represents a weighting of sparse constraints.

This function is minimized by iteratively updating the following equation [47]:

Hs ← Hs. ∗ (WsT(Vs./(WsHs)))

./(WsT1D×L + λ1J×L) (3.5)
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where .∗, ./, and 1 denote element-wise multiplication, element-wise division, and

an all-ones matrix, respectively. The derivation of (3.5) is shown in Appendix 8.

The estimated source activity Hs is multiplied to the target dictionary Wt,

and the target spectra V̂t are constructed.

V̂t = WtHs (3.6)
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Chapter 4

Noise-Robust Voice Conversion

Based on Sparse Spectral

Mapping

The related publications for this chapter are [59].

4.1 The Motivation and Related Work

4.1.1 Motivation

Background noise is an unavoidable factor in speech processing. In the task of

automatic speech recognition (ASR), one problem is that the recognition perfor-

mance remarkably decreases under noisy environments, and this creates a signif-

icant problem in regard to the development of a practical use of ASR.

The problem of background noise is also troublesome in the task of VC. The

noise in the input signal is not only output with the converted signal, but may

also degrade the conversion performance itself due to unexpected mapping of

source features. Hence, a VC technique that takes into consideration the effect of

noise is of interest. In this capter, we propose noise-robust VC based on sparse

representation.

NMF [25] is a popular approach for source separation or speech enhance-

ment [53, 54]. In some approaches for NMF-based source separation, the ex-
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emplars, which are called “bases”, are grouped for each source, and the mixed

signals are expressed with a sparse representation of these bases. By using only

the weights of the atoms related to the target signal, the target signal can be

reconstructed. Gemmeke et al. [47] also propose an exemplar-based method for

noise-robust speech recognition using NMF. Noise-robust ASR using NMF has

also been proposed in [60].

In our previous work, we proposed an exemplar-based method for noise-

robust Voice Conversion (VC) using NMF. VC is a technique for converting a

speaker’s voice individuality while maintaining phonetic information in the ut-

terance. In [23], we evaluated the conventional statistical VC method in a noisy

environment and revealed that noise in the input signal is not only output with

the converted signal, but also tends to degrade the conversion performance itself

due to unexpected mapping of source features. In NMF-based VC, noise exem-

plars are extracted from before- and after- utterance sections and input noisy

signals are decomposed into a linear combination of noise and speaker’s clean

exemplars. For this reason, no training processes related to noise signals are

required. Only the weights related to the source exemplars are taken, and the

target signal is constructed from the target exemplars and the weights. This

method showed better performances than the conventional GMM-based method

in speaker conversion experiments using noise-added speech data. However, this

exemplar-based approach needs to hold all training exemplars (frames), and it

requires high computation times to obtain the weights of the source exemplars.

Therefore, this chapter propose a novel noise robust VC which requires less

computational times compared to the conventional VC method. We propose a

framework to train the basis matrices of source and target exemplars so that

they have a common weight matrix. The basis matrix of the source exemplars

is trained using NMF, and then the weight matrix of the source exemplars is

obtained. Next, the basis matrix of the target exemplars is trained using NMF,

where the weight matrix is fixed to that obtained from the source exemplars. By

using the basis matrices instead of the exemplars, the VC is performed with lower

computation times than with the exemplar-based method. The effectiveness of

this method was confirmed by comparing its effectiveness (in speaker conversion

experiments using clean speech data and noise-added speech data) with that of an
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exemplar-based method and the conventional Gaussian mixture model (GMM)-

based method.

4.2 Proposed Method

4.2.1 Dictionary Construction for a Noisy Environment

In the preceding section, both dictionaries (source and target) consisted of the

same spectral envelope features (STRAIGHT spectrum) for simplicity in explain-

ing the proposed method. Indeed, the use of these features worked without any

problems in a preliminary experiment using clean speech data. However, when

it came to constructing a noise dictionary, STRAIGHT analysis could not ex-

press the noise spectrum well since STRAIGHT itself is an analysis and synthesis

method for speech data. In order to express the noisy source speech with a sparse

representation of source and noise dictionaries, a simple magnitude spectrum cal-

culated using short-time Fourier transform (STFT) is used to construct the source

and noise dictionaries.

Parallel dictionaries are constructed from clean speech data. For the target

training speech, a STRAIGHT spectrum is used to extract its dictionary. Mel-

cepstral coefficients are estimated from the STRAIGHT spectrum and used for

DTW. For the source training speech, on the other hand, the STRAIGHT spec-

trum is converted into mel-cepstral coefficients and only used for DTW in order

to align the temporal fluctuation, and the magnitude spectrum is used to extract

its dictionary. When an input source signal is converted, the source signal is also

applied to STFT and STRAIGHT analysis. The magnitude spectrum is used

to extract the noise dictionary and to estimate the activity. The STRAIGHT

spectrum, F0 and aperiodic components are used to synthesize the converted

signal.

4.2.2 Training of the Parallel Basis Matrices

We optimize the source basis matrix As and target basis matrix At so that when

the source signal and target signal are expressed with the sparse representations
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ofAs andAt, respectively, the obtained activity matrices are equivalent, as shown

in Fig. 3.2.

Table 4.1 shows the algorithm of the training of the parallel basis matrices.

At first, for the training source data (exemplars) Xs, the basis matrix As and

the activity matrix Hs are optimized using NMF with the sparse constraint [47].

In the framework of NMF with the sparse constraint, it minimizes the following

cost function:

d(Xs,AsHs) + ||(λtrain1(1×L)). ∗Hs||1
s.t. As, Hs ≥ 0. (4.1)

Here, .∗ and 1 are an element-wise multiplication and an all-one vector, respec-

tively. The first term is the Kullback-Leibler (KL) divergence between Xs and

AsHs. The second term is the sparse constraint with the L1-norm regularization

term that causesHs to be sparse. λtrain is the weight of the sparse constraint. As

and Hs minimizing (4.1) are estimated iteratively applying the following update

rules:

As
n+1 = As

n. ∗ (Hs
n(X

s./As
nH

s
n)

T./(Hs
n1

(L×D)))
T

(4.2)

Hs
n+1 = Hs

n. ∗ (AsT

n (Xs./(As
nH

s
n)))

./(AsT

n 1(J×L) + λtrain1
(1×L)) (4.3)

where ./ is an element-wise division.

Next, using the activity matrix Hs obtained by (4.3), the target basis matrix

At of the training target exemplars Xt is optimized. Then, At is optimized so

that the activity matrix is equivalent to Hs, i.e. At is optimized to minimize the

following cost function:

d(Xt,AtHs) s.t. At ≥ 0. (4.4)

In this optimization, the activity matrix is fixed to Hs, and only At is updated

by the following update rule:

At
n+1 = At

n. ∗ (Hs(Xt./At
nH

s)T./(Hs1(L×D)))T. (4.5)

At
n and At

n+1 represent the target basis matrices of the n-th and the (n + 1)-th

iteration, respectively.
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Table 4.1: Algorithm of the training of the parallel basis matrices

Training of source basis matrix As

• Set source training exemplars to Xs

• Optimize As and Hs by (4.2) and (4.3)

Training of target basis matrix At

• Set target training exemplars to Xt

• Fix the activity matrix to Hs, and optimize At by (4.5)

4.2.3 Voice Conversion of Noisy Source Signal

4.2.3.1 Estimation of Activity from Noisy Source Signal

Figure 4.1 shows the conversion framework of our method. The exemplars (frames)

of the noise are extracted from the before- and after-utterance sections in the

observed (noisy) signal, and the noise dictionary is structured from the noise

exemplars for each utterance. For this reason, no training processes related to

noise signals are required. In the approach based on the sparse representation,

the spectrum of the noisy source signal at frame l is approximately expressed by

a non-negative linear combination of the clean source dictionary, noise dictionary,

and their activities.

xl = xs
l + xn

l

≈
J∑

j=1

as
jh

s
j,l +

K∑
k=1

an
kh

n
k,l

= [ÂsAn]

[
hs
l

hn
l

]
s.t. hs

l ,h
n
l ≥ 0

= Ahl s.t. hl ≥ 0 (4.6)

xs
l and xn

l are the magnitude spectra of the source signal and the noise, respec-

tively. Âs, An, hs
l and hn

l are the source dictionary (basis matrix) trained by

(4.2), noise dictionary (exemplars), and their activities at frame l, respectively.
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Given the spectrogram, (4.6) can be written as follows:

X ≈ [ÂsAn]

[
Hs

Hn

]
s.t. Hs,Hn ≥ 0

= AH s.t. H ≥ 0. (4.7)

In order to consider only the shape of the spectrum, X, Âs and An are first

normalized for each frame so that the sum of the magnitudes over frequency bins

equals unity.

M = 1(D×D)X

X̄ ← X./M

Ā ← A./(1(D×D)A) (4.8)

X̄ and Ā are normalized A and X, respectively. The joint matrix H is esti-

mated based on NMF with the sparse constraint that minimizes the following

cost function:

d(X̄, ĀH) + ||(λconv1(1×L)). ∗H||1 s.t. H ≥ 0. (4.9)

The weights of the sparsity constraints can be defined for each basis and exemplar

by defining λconv
T = [λ1 . . . λJ . . . λJ+K ]. In this paper, the weights for source

bases [λ1 . . . λJ ] were set to 0.15, and those for noise exemplars [λJ+1 . . . λJ+K ]

were set to 0. H minimizing (4.9) is estimated iteratively applying the following

update rule:

Hn+1 = Hn. ∗ (ĀT(X̄./(ĀHn)))

./(1((J+K)×L) + λconv1
(1×L)). (4.10)

Hn and Hn+1 represent the activity matrices of the n-th and the (n + 1)-th

iteration, respectively.

4.2.3.2 Target Speech Construction

From the estimated joint matrix H, the activity of source signal Hs is extracted,

and by using the activity and the target dictionary, the converted spectral features

are constructed.

32



4.2 Proposed Method

sX sÂ sHD
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Figure 4.1: Proposed noise-robust voice conversion

Then, the target dictionary is also normalized for each basis in the same way

the source dictionary was.

Ât ← Ât./(1(D×D)Ât) (4.11)

Ât is the target dictionary (basis matrix) trained by (4.5) and Ât is the nor-

malized target dictionary of Ât. Next, the normalized target spectral feature

is constructed, and the magnitudes of the source signal calculated in (4.8) are

applied to the normalized target spectral feature.

X̂t = (ÂtHs). ∗M (4.12)

The target speech is synthesized using a STRAIGHT synthesizer. Then, F0

information is converted using a conventional linear regression based on the mean

and standard deviation as follows:

ŷt =
σ(y)

σ(x)
(xt − µ(x)) + µ(y) (4.13)

where xt, ŷt, µ
(x), µ(y), σ(x), and σ(y) are a log F0 of the source speaker and

the converted F0 at frame t, mean of the source and target speaker’s log F0,
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standard deviation of the source and target speaker’s log F0, respectively. Mean

and standard deviation are calculated from training data of the source and target

speaker.

4.3 Experiments

4.3.1 Experimental Conditions

The proposed VC technique was evaluated by comparing it with an exemplar-

based method [23] and a conventional GMM-based method [3] in a speaker-

conversion task using clean speech data and noise-added speech data. The source

speaker and target speaker were one male and one female speaker, whose speech

is stored in the ATR Japanese speech database [61], respectively. The sampling

rate was 8 kHz.

A total of 216 words of clean speech were used to construct parallel dictio-

naries in the methods based on the sparse representation and used to train the

GMM in the GMM-based method. In the exemplar-based method, the num-

ber of exemplars of the source and target dictionaries was 58,426. Then, in our

proposed method, several bases were trained from the exemplars for each dic-

tionary. Twenty-five sentences of clean speech or noisy speech were used in the

evaluation. The noisy speech was created by adding a noise signal recorded in

a restaurant (taken from the CENSREC-1-C database [62]) to the clean speech

sentences. The SNR was 15 dB. The noise dictionary is extracted from the before-

and after-utterance sections in the evaluation sentence. The average number of

exemplars in the noise dictionary for one sentence was 110.

In the methods based on sparse representation, a 257-dimensional magnitude

spectrum was used as the feature vectors for the input signal, source dictionary

and noise dictionary, and a 513-dimensional STRAIGHT spectrum was used for

the target dictionary. The number of iterations used to estimate the activity was

500. In the GMM-based method, the 1st through 40th linear-cepstral coefficients

obtained from the STRAIGHT spectrum were used as the feature vectors. The

number of mixtures was 64.
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4.3.2 Experimental Results

Table 4.2 shows the spectral distortion improvement ratio (SDIR) [dB] and the

computation time of the conversion method (1 sentence on Intel Core i7 2.80

GHz personal computer) for noisy input source signal. In our proposed method,

1,000, 2,500 and 5,000 bases were trained from the exemplars for each dictionary.

In the exemplar-based method, all 58,426 exemplars and 1,000 exemplars (which

are chosen randomly) are used. The SDIR is defined as follows.

SDIR[dB] = 10 log10

∑
d |Xt(d)−Xs(d)|2∑
d |Xt(d)− X̂t(d)|2

(4.14)

Here, Xs, Xt and X̂t are normalized so that the sum of the magnitudes over

frequency bins equals unity. As shown in this table, the distortion improvement

for the methods based on the sparse representation was higher than the GMM-

based method regardless of the number of the trained bases. In our proposed

method, the case of 1,000 bases shows the best distortion improvement. The dis-

tortion improvement of the proposed method was slightly lower than that of the

exemplar-based method which uses all 58,426 exemplars. However, compared to

the exemplar-based method (which uses 1,000 exemplars) our proposed method

obtained higher distortion improvement. Moreover, for obtaining the activity ma-

trix, the computation time of the proposed method (which uses 1,000 exemplars)

was about 30 times faster than that of the exemplar-based method, which uses all

58,426 exemplars. The computation time is reduced as the number of the bases

is reduced.

We performed a mean opinion score (MOS) test [63] on the naturalness and

speaker individuality of the converted speech. In the opinion test, the opinion

score was set to a 5-point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad).

The tests were carried out with 7 subjects. For the evaluation of naturalness, each

subject listened to the converted speech and evaluated how natural the sample

sounded. For the evaluation of speaker individuality, each subject listened to the

target speech. Then the subject listened to the converted speech and evaluated

how similar the converted speech and the target one were.

Figure 7.4 shows the mean opinion scores (MOS) for each method. The er-

ror bars show 95% confidence intervals. As shown in this figure, when clean
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Table 4.2: Spectral distortion improvement ratio (SDIR) [dB] for noisy speech

SDIR [dB] time [s]

Proposed (1,000 bases) 5.14 30

Proposed (2,500 bases) 4.68 75

Proposed (5,000 bases) 4.38 137

Exemplar-based (58,426 exemplars) 5.23 910

Exemplar-based (1,000 exemplars) 4.91 30

GMM-based (64 mixtures) 4.11 1

speech data was used, the performances of the three methods were not so differ-

ent under both evaluation criteria. However, when noisy speech data was used,

the performances of the GMM-based method degraded considerably, especially in

naturalness. This might be because the noise caused unexpected mapping in the

GMM-based method, and the speech was converted with a lack of naturalness. On

the other hand, the degradations of the performances of the VC methods based

on the sparse representation were less than those of the GMM-based method.

The performances of the proposed method were slightly lower than those of the

exemplar-based method when noisy speech data was used.

4.4 Chapter Conclusions

In this paper, we discussed a noise-robust VC technique based on sparse represen-

tation. We proposed a framework to train the basis matrices of source and target

exemplars so that they have a common activity matrix. The basis matrix of the

source exemplars is trained using NMF. Then, the basis matrix of the target ex-

emplars is trained using NMF, where the weight matrix is fixed to that obtained

from the source exemplars. By using the basis matrices instead of the exemplars,

the VC is performed with lower computation times than with the exemplar-based

method. When a noisy input signal is converted to the target signal, the noise

exemplars are extracted from the before- and after-utterance sections in an ob-

served signal. The noisy signal is expressed with a sparse representation of the
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source basis matrix and noise exemplars. The target signal is constructed from

the target basis matrix and the activity matrix related to the source basis matrix.

In comparison experiments between the proposed method, an exemplar-based

method and a conventional GMM-based method, the proposed method showed

better performances than the GMM-based method when evaluating noisy speech.

The performances of the proposed method were slightly lower than those of the

exemplar-based method when noisy speech data was used. But for obtaining

the activity matrix, the computation time of the proposed method was about 30

times faster than that of the exemplar-based method.

However, the proposed method still requires higher computation times than

that of the GMM-based method. While our proposed method took about 30

seconds to convert the speech features for 1 sentence, the GMM-based method

took about 1 second to do this. In future work, we will investigate the optimal

number of bases and evaluate the performances under other noise conditions.

In this paper, the source and target dictionaries are estimated separately. We

can estimate the source and target dictionaries simultaneously by using the joint

vector of the source and the target features just as is done in the conventional

GMM-based VC. However, the performance of that method, which was evaluated
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experimentally, is worse than our proposed method. We will also try to improve

the performance of that method. In [64] we have proposed multimodal-VC and

we try to improve our proposed method by applying multimodal features.

In [65], exemplar-based VC using temporal information is proposed. We will

also try to introduce dynamic information, such as segment features. In addition,

this method has a limitation in that it can be applied to only one-to-one voice

conversation because it requires parallel speech data having the same texts uttered

by the source and target speakers. Hence, we will investigate a method that does

not use parallel data. Future work will also include efforts to study other noise

conditions, such as a low-SNR condition, and apply this method to other VC

applications.
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Chapter 5

Voice Conversion for Articulation

Disorders Using

Phoneme-categorized Exemplars

The related publications for this chapter are [27, 66, 67, 68].

5.1 The Motivation and Related Work

5.1.1 Motivation

An articulation disorder is a speech impediment in which a person has difficulty

producing speech sounds or phonemes correctly. Articulation disorders are clas-

sified into three categories. Organic articulation disorders are mainly caused by

hearing loss or mouth injuries; motor speech disorders are caused by motor paral-

ysis; and functional articulation disorders are any articulation disorders that do

not fit well in either of the other two categories.

In this study, we focused on a person with an articulation disorder resulting

from the athetoid type of cerebral palsy. Cerebral palsy is a non-progressive

disorder of movement, and most cerebral palsy sufferers are born with the athetoid

type. About two babies in 1,000 are born with cerebral palsy [69]. Cerebral

palsy results from damage to the central nervous system, and the damage causes

movement disorders. Three general times are given for the onset of the disorder:
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before birth, at the time of delivery, and after birth. Cerebral palsy is classified

into the following types: 1) spastic, 2) athetoid, 3) ataxic, 4) atonic, 5) rigid, and

a mixture of these types [70].

Athetoid symptoms develop in about 10-15% of cerebral palsy sufferers [69].

In the case of a person with this type of articulation disorder, his/her movements

are sometimes more unstable than usual. That means their utterances (especially

their consonants) are often unstable or unclear due to the athetoid symptoms.

Athetoid symptoms also restrict the movement of their arms and legs. Most peo-

ple suffering from athetoid cerebral palsy cannot communicate by sign language

or writing, so there is great need for voice systems for them.

In [71], we proposed robust feature extraction based on PCA (Principal Com-

ponent Analysis) with more stable utterance data instead of DCT. In [72], we

used multiple acoustic frames (MAF) as an acoustic dynamic feature to improve

the recognition rate of a person with an articulation disorder, especially in speech

recognition using dynamic features only. In spite of these efforts, the recognition

rate for articulation disorders is still lower than that of physically unimpaired per-

sons. The recognition rate using a speaker-independent model which is trained by

well-ordered speech, is 3.5% [71]. This recognition rate suggests that for people

who have not communicated with a person with athetoid cerebral palsy, it will

be very hard for them to understand what that person is trying to say.

In this chapter, we propose a voice conversion (VC) method for articulation

disorders. VC is a hands-free system that converts one’s voice to another’s voice.

In recent years, people with an articulation disorder may use slideshows and a

previously synthesized voice when they give a lecture. However, because their

movement is restricted by their athetoid symptoms, it is hard for them to make

slides or synthesize their voice in advance. People with articulation disorders de-

sire a VC system that converts their voice into a clear voice that preserves their

voice’s individuality. However, a speech conversion method for people with artic-

ulation disorders resulting from athetoid cerebral palsy has not been successfully

developed.

In [66], we proposed individuality-preserving VC for articulation disorders. In

our VC, source exemplars and target exemplars are extracted from the parallel
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training data, having the same texts uttered by the source and target speak-

ers. The input source signal is expressed with a sparse representation of the

source exemplars using NMF. By replacing a source speaker’s exemplar with a

target speaker’s exemplar, the original speech spectrum is replaced with the tar-

get speaker’s spectrum. People with articulation disorders wish to communicate

by their own voice if they can; therefore, we proposed a combined-dictionary that

consists of a source speaker’s vowels and target speaker’s well-ordered consonants.

In the voice of a person with an articulation disorder, their consonants are often

unstable and that makes their voices unclear. Their vowels are relatively stable

compared to their consonants. Hence, by replacing the articulation-disordered

basis of consonants only, a voice with an articulation disorder is converted into a

non-disordered voice that preserves the individuality of the speaker’s voice.

In this chapter, we propose advanced individuality-preserving VC using NMF.

In order to avoid a mixture of the source and target spectra in a converted

phoneme, we applied a phoneme-categorized dictionary and a dictionary selection

method to our VC using NMF. In conventional NMF-based VC, the number of

dictionary frames becomes large because the dictionary holds all the training

exemplar frames. Therefore, it may cause phoneme mismatching between input

signals and selected exemplars, and some frames of converted spectra are mixed

with the source and target spectra. In this paper, a training exemplar is divided

into a phoneme-categorized sub-dictionary, and an input signal is converted by

using the selected sub-dictionary. The effectiveness of this method was confirmed

by comparing it with the conventional NMF-based method and the conventional

GMM-based method.

5.1.2 Related Work

In recent years, a number of assistive technologies using information process-

ing have been proposed. For example, sign language recognition using image

recognition technology [73, 74, 75], text reading systems from natural scene im-

ages [76, 77, 78], and the design of wearable speech synthesizers [79].

In the field of assistive technology, Nakamura et al. [8, 80] proposed GMM-

based VC systems that reconstruct a speaker’s individuality in electrolaryngeal
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speech and speech recorded by NAM microphones. These systems are effective

for electrolaryngeal speech and speech recorded by NAM microphones however,

because these statistical approaches are mainly proposed for speaker conversion,

the target speaker’s individuality will be changed to the source speaker’s indi-

viduality. People with articulation disorders wish to communicate by their own

voice if they can and there is a needs for individuality-preserving VC.

Text-to-speech synthesis (TTS) is similar voice application to VC. Veaux et

al. [81] used HMM-based speech synthesis to reconstruct the voice of individuals

with degenerative speech disorders resulting from Amyotrophic Lateral Sclerosis

(ALS). Yamagishi et al. [82] proposed a project which is named “Voice Banking

and reconstruction”. In that project, various types of voices are collected and

they proposed TTS for ALS using that database. The difference between TTS

and VC is that TTS needs text input to synthesize speech however VC does

not need text input. In the case of people with articulation disorders resulting

from athetoid cerebral palsy, it is difficult for them to input text because of their

athetoid symptoms.

Maier et. al. [83] proposed automatic speech recognition systems for the eval-

uation of speech disorders resulting from head and neck cancer. ASR-based home

appliance control system for articulation disorders has also been proposed [84].

5.2 Proposed Method

5.2.1 Phoneme-categorized Dictionary

Fig. 5.1 shows how to construct the sub-dictionary. As and At imply the source

and target dictionary which hold all the bases from training data. These dictio-

naries are divided into K dictionaries. In this paper, the dictionaries are divided

into 10 categories according to the Japanese phoneme categories shown in Ta-

ble 5.1.

In order to select the sub-dictionary, a “categorizing-dictionary”, which con-

sists of the representative vector from each sub-dictionary, is constructed. The

representative vectors for each phoneme category consist of the mean vectors of
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the Gaussian Mixture Model (GMM).

p(x(k)
n ) =

Mk∑
m=1

α(k)
m N(x(k)

n ,µ(k)
m ,Σ(k)

m ) (5.1)

Mk, α
(k)
m , µ

(k)
m andΣ

(k)
m represent the number of the Gaussian mixture, the weights

of mixture, mean and variance of the m-th mixture of the Gaussian, in the k-

th sub-dictionary, respectively. Each parameter is estimated by using an EM

algorithm.

The basis of the categorizing-dictionary, which corresponds to the k-th sub-

dictionary Φs
k, is represented using the estimated phoneme GMM as follows:

θk = [µ
(k)
1 , . . . ,µ

(k)
Mk

] (5.2)

Φs
k = [x

(k)
1 , . . . ,x

(k)
Nk
] (5.3)

Nk represents the number of frames of the k-th sub-dictionary. The categorizing-

dictionary Θ is given as follows:

Θ = [θ1, . . . ,θK ] (5.4)

5.2.2 Dictionary Selection and Voice Conversion

Fig. 5.2 shows the flow of the dictionary selection and VC. The input spectral

featuresXs are represented by a linear combination of bases from the categorizing-

dictionary Θ. The weights of the bases are represented as activities Hs
Θ.

Xs ≈ ΘHs
Θ s.t. Hs

Θ ≥ 0 (5.5)

Xs = [xs
1, . . . ,x

s
L] (5.6)

Hs
Θ = [hs

Θ1, . . . ,h
s
ΘL] (5.7)

hs
Θl = [hs

θ1l
, . . . ,hs

θK l]
T (5.8)

hs
θkl

= [hsθ1l
, . . . , hsθMkl

]T (5.9)

Then, the l-th frame of input feature xs
l is represented by a linear combination

of bases from the sub-dictionary of the source speaker. The sub-dictionary Φs
k̂
,
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which corresponds to xl, is selected as follows:

k̂ = arg max
k

11×Mkhs
θkl

= arg max
k

Mk∑
m=1

hsθml (5.10)

xl = Φs
k̂
hk̂,l (5.11)

The activity hl,k̂ in Eq. (5.11) is estimated from the selected source speaker sub-

dictionary.

If the selected sub-dictionary Φs
k̂
is related to consonants, the l-th frame of

the converted spectral feature ŷl is constructed by using the activity and the

sub-dictionary of the target speaker Φt
k̂
.

ŷl = Φt
k̂
hk̂,l (5.12)

On the other hand, if the selected sub-dictionary Φs
k̂
is related to vowels, the l-th

frame of the converted spectral feature ŷl is constructed by using the activity and

the sub-dictionary of the source speaker Φs
k̂
.

ŷl = Φs
k̂
hk̂,l (5.13)

5.3 Experiments

5.3.1 Experimental Conditions

The proposed VC technique was evaluated by comparing it with the conven-

tional NMF-based method [66] (referred as the “sample-based method” in this

paper) and the conventional GMM-based method [3] using clean speech data. We

recorded 432 utterances (216 words, repeating each two times) included in the

ATR Japanese speech database [61]. The speech signals were sampled at 12 kHz

and windowed with a 25-msec Hamming window every 10 msec. A physically

unimpaired Japanese male in the ATR Japanese speech database, was chosen as

a target speaker.
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Table 5.1: Japanese phoneme categories

Category phoneme

a a

e e

vowels i i

o o

u u

plosives Q, b, d, dy, g, gy, k, ky, p, t

fricatives ch, f, h, hy, j, s, sh, ts, z

consonants nasals m, my ny, N

semivowels w,y

liquid r, ry
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In the proposed and sample-based methods, the number of dimensions of the

spectral feature is 2,565. It consists of 513 dimensional STRAIGHT spectrum [35]

and its consecutive frames (the 2 frames coming before and the 2 frames coming

after). The Gaussian mixture, which is used to construct categorizing-dictionary,

is 1/500 of the number of bases of each sub-dictionary. The number of iterations

for estimating the activity in proposed and sample-based methods was 300. In

the conventional GMM-based method, MFCC+∆MFCC+∆∆MFCC is used as

a spectral feature. Its number of dimensions is 74. The number of Gaussian

mixture is set to 64, which is experimentally selected.

In this paper, F0 information is converted using a conventional linear regres-

sion based on the mean and standard deviation [19]. The other information such

as aperiodic components is synthesized without any conversion.

5.3.2 Objective Evaluations

5.3.2.1 Weights of Activities

Table 5.2 shows the rates of activities in each category using a combined-dictionary.

The rows of the table show the target categories of each frame and the columns

show the estimated categories. The total classification rate for the correct cat-

egory is 0.22. This result indicates that in case where a combined-dictionary

was used, most of the input spectra frames are decomposed into the bases from

incorrect phoneme categories.

5.3.2.2 Phoneme Classification

We conducted phoneme classification using a categorizing-dictionary. Input spec-

tra are categorized by using Eq. (5.11).

Table 5.3 shows the classification rates using the categorizing-dictionary, in

which the number of bases is fixed. The second row of the table (Exemplar)

shows the classification rates using all training data bases.

Table 5.4 shows the classification rates using the categorizing-dictionary, in

which numbers of bases is changed. These tables show the effectiveness of the

categorizing dictionary. As can be seen in Table 5.4, changing the number of
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Tar. Categ. a e i o u plos. fric. nas. semi. liq.

a 0.18 0.05 0.07 0.07 0.08 0.30 0.14 0.07 0.03 0.02

e 0.05 0.15 0.14 0.06 0.08 0.23 0.14 0.07 0.02 0.04

i 0.07 0.08 0.30 0.05 0.09 0.20 0.09 0.07 0.04 0.03

o 0.05 0.02 0.04 0.29 0.10 0.25 0.15 0.06 0.02 0.02

u 0.05 0.04 0.08 0.08 0.15 0.26 0.19 0.09 0.03 0.03

plos. 0.05 0.04 0.07 0.08 0.10 0.34 0.15 0.09 0.02 0.03

fric. 0.07 0.07 0.08 0.11 0.08 0.25 023 0.06 0.01 0.01

nas. 0.05 0.04 0.09 0.10 0.13 0.26 0.13 0.15 0.02 00.0

semi. 0.13 0.04 0.06 0.21 0.12 0.20 0.09 0.09 0.04 0.02

liq. 0.07 0.08 0.15 0.07 0.13 0.20 0.14 0.07 0.03 0.15

Table 5.2: Confusion matrix of activity estimation

Category
Exemplar Dictionary A Dictionary B

#basis rate #basis rate #basis rate

a 8400 0.49 1 0.22 3 0.07

e 5301 0.34 1 0.60 3 0.52

i 5487 0.59 1 0.43 3 0.30

o 10648 0.66 1 0.73 3 0.73

u 8289 0.25 1 0.12 3 0.48

plosives 9917 0.54 1 0.10 3 0.27

fricatives 8343 0.44 1 0.62 3 0.45

nasals 6435 0.19 1 0.78 3 0.72

semivowels 1325 0.00 1 0.04 3 0.27

liquid 1790 0.10 1 0.33 3 0.30

total 65935 0.41 9 0.43 27 0.42

Table 5.3: Classification rates of each dictionary
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bases in the categorizing-dictionary is effective. In these experiments, the most

effective dictionary was Dictionary D.

Category
Dictionary C Dictionary D Dictionary E

#basis rate #basis rate #basis rate

a 4 0.02 8 0.05 16 0.02

e 3 0.67 5 0.78 10 0.48

i 3 0.37 5 0.37 10 0.43

o 5 0.68 10 0.71 25 0.76

u 4 0.44 8 0.52 10 0.63

plosives 4 0.54 9 0.67 10 0.69

fricatives 4 0.53 8 0.53 10 0.53

nasals 3 0.39 6 0.23 10 0.16

semivowels 3 0.25 3 0.23 3 0.13

liquid 3 0.31 3 0.29 3 0.02

total 36 0.44 65 0.47 107 0.44

Table 5.4: Classification rates of categorizing dictionary

Table 5.5 shows the confusion matrix of the phoneme classification using Dic-

tionary D. Category “a”, “nasals”, “semivowels” and “liquid” are not well clas-

sified. The other categories had a greater than 50% classification rate.

5.3.2.3 Discussion

Phoneme category classification rates using all the training data bases was 0.22.

This result suggests that, without sub-dictionary selection, a frame of input data

is decomposed into many bases from different phoneme categories. We can avoid

such a situation by using phoneme-categorized sub-dictionary selection because

the input data frame is decomposed into bases from the selected sub-dictionary.

The effectiveness of using a categorizing dictionary was confirmed in our ex-

periments. Sub-dictionaries were correctly selected in most categories. How-

ever, some categories were not well-classified. For example, the category “nasals”

tended to be classified as “fricatives”. This may be because it is difficult for a per-

son with an articulation disorder to move their tongue. In the case of “semivow-
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Tar. Categ. a e i o u plos. fric. nas. semi. liq.

a 0.05 0.13 0.07 0.11 0.02 0.31 0.15 0.02 0.17 0.01

e 0 0.78 0.03 0.04 0.02 0.09 0.00 0.00 0.02 0.03

i 0 0.25 0.37 0.08 0.07 0.11 0.01 0.01 0.08 0.04

o 0 0.02 0.01 0.71 0.07 0.11 0.00 0.01 0.02 0.00

u 0 0.05 0.02 0.05 0.52 0.27 0.02 0.02 0.02 0.05

plos. 0.00 0.02 0.03 0.02 0.04 0.67 0.00 0.13 0.03 0.03

fric. 0 0.02 0.06 0.03 0.02 0.29 0.53 0.01 0.01 0.03

nas. 0 0.03 0.04 0.04 0.14 0.46 0.00 0.23 0.03 0.03

semi. 0 0.08 0.07 0.26 0.11 0.21 0.00 0.00 0.24 0.02

liq. 0 0.12 0.02 0.09 0.09 0.25 0.04 0.04 0.06 0.29

Table 5.5: Confusion matrix of dictionary D

els” and “liquid”, misclassification occurred because the number of training ex-

emplars is too small to categorize the utterances correctly. The classification rate

of “a” is significantly low compared to other categories. Compared to other vowel

phonemes, “a” is easy to articulate. Because of this, the vague articulation of a

person with an articulation disorder may become similar to “a”.

5.3.3 Subjective Evaluations

5.3.3.1 Listening Tests

We conducted subjective evaluation on 3 topics. A total of 10 Japanese speakers

took part in the test using headphones. For the “listening intelligibility” evalua-

tion, we performed a MOS (Mean Opinion Score) test [63]. The opinion score was

set to a 5-point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad). Twenty-

two words, which are difficult for a person with an articulation disorder to utter,

were evaluated. The subjects were asked about the listening intelligibility in the

articulation-disordered voice, the voice converted by our proposed method, and

the GMM-based converted voice.

On the “similarity” evaluation, the XAB test was carried out. In the XAB

test, each subject listened to the articulation disordered voice. Then the subject
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listened to the voice converted by the two methods and selected which sample

sounded most similar to the articulation disordered voice. On the “naturalness”

evaluation, a paired comparison test was carried out, where each subject lis-

tened to pairs of speech converted by the two methods and selected which sample

sounded more natural.
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(b) Converted by GMM-based VC

Figure 5.3: Examples of converted spectrogram //i k i oi

5.3.3.2 Results and Discussion

Fig. 5.3(a) and 5.3(b) show examples of converted spectrogram using our proposed

method and the conventional GMM-based method, respectively. In Fig. 5.3(a),

there are less misconversions in vowel part compared to Fig. 5.4(c). Moreover, by
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(c) Converted by NMF-based VC

Figure 5.4: Examples of spectrogram //i k i oi
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using GMM-based conversion, the area labeled “oi” becomes unclear compared

to NMF-based conversion.

Fig. 5.5 shows the results of the MOS test for listening intelligibility. The

error bars show a 95% confidence score. Our proposed VC can improve the

listening intelligibility and clarity of consonants. On the other hand, GMM-

based conversion can improve the clarity of consonants, but it deteriorates the

listening intelligibility. This is because GMM-based conversion has the effect of

noise resulting from measurement error. Proposed VC also has the effect of noise,

but it is less than that created by GMM-based conversion.

Fig. 5.6 shows the results of the XAB test on the similarity to the source

speaker and naturalness of the converted voice. The error bars show a 95%

confidence score. Our proposed VC obtained a higher score than Sample-based

and GMM-based conversion on similarity. Fig. 5.7 shows the preference score on

the naturalness. The error bars show a 95% confidence score. Our proposed VC

also obtained a higher score than Sample-based and GMM-based conversion on

naturalness.
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Figure 5.5: Results of MOS test on listening intelligibility
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Figure 5.6: Preference scores for the individuality
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Figure 5.7: Preference scores for the naturalness

5.4 Chapter Conclusions

We proposed a spectral conversion method based on NMF for a voice with an

articulation disorder. Our proposed method introduced a dictionary-selection

method to conventional NMF-based VC. The results of our experiments demon-

strated that our VC method can improve the listening intelligibility of words

uttered by a person with an articulation disorder. Moreover, compared to con-

ventional GMM-based VC and conventional NMF-based VC, our proposed VC

can preserve the individuality of the source speaker’s voice and the naturalness

of the voice.
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In this study, there was only one subject person, so in future experiments,

we will increase the number of subjects and further examine the effectiveness of

our method. In addition, the structure of a phoneme-categorized sub-dictionary

is not completely suitable for a person with an articulation disorder. We will

examine other phoneme categories that are more suitable to a person with an

articulation disorder.

Regarding computational times, the proposed method requires higher compu-

tation times than a GMM-based method. In [26], we proposed a novel NMF-based

VC method that has lower computation times than exemplar-based VC. By us-

ing this method, we can reduce the computational time of VC for articulation

disorders.

Future work will also include efforts to study the co-articulation effect between

phonemes. In order to preserve voice individuality, our VC method retains their

vowel. Solving this problem in the vowel portion will be a focus of our future

work.
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Chapter 6

Small-parallel Exemplar-based

Voice Conversion Using

Affine-NMF

The related publications for this chapter are [85, 86].

6.1 The Motivation and Related Work

6.1.1 Motivation

The need to have a large amount of parallel data is a large hurdle for the prac-

tical use of VC. For example, the conventional GMM-based VC method requires

50 parallel sentences or 216 parallel words between the source and the target

speakers. In recent years, some statistical approaches that do not require parallel

training data have been proposed [87, 88, 89, 90]. In this chapter, we propose

noise-robust VC using a small parallel corpus based on an NMF-based speaker

adaptation technique.

In [91], adaptation of speaker-specific bases in NMF for single channel speech-

music separation has been presented. In this framework, speaker-specific bases are

adapted to the other speaker using an affine matrix. We call this method Affine

NMF (A-NMF) and apply it to VC. In VC, the source dictionary is constructed

using sufficient source speaker data, and it is adapted using a small amount of
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parallel data (about ten words only) in order to obtain the target dictionary,

where a linear regression transformation matrix (affine matrix) is trained based

on NMF.

The contributions of this paper are summarized in two points. First, we have

decreased the total amount of parallel training data required for NMF-based VC.

Conventional NMF-based VC requires 216-word parallel data for dictionary con-

struction. However, experimental results using our proposed approach, which

requires only a small amount of parallel data, demonstrate a the conversion qual-

ity that is almost the same as that of conventional NMF-based VC. The second

contribution is that there needs to be no concern about differences between par-

allel dictionaries.

6.1.2 Related Work

Statistical VCs require a large-volume parallel corpus of the source and target

speakers. In this paper, “parallel” means that the texts of the corpus of the

source speaker are the same as those of the target speaker. This can be a diffi-

cult requirement to meet in practice. Within the GMM-based framework, several

approaches have been proposed that relax this constraint. Non-parallel train-

ing based on maximum a posteriori probability (MAP) was proposed in [87].

Mouchtaris et al. [88] proposed non-parallel training for GMM-based VC using

ML constrained parameter adaptation. These methods require utterances by both

source and target speakers, however the texts used do not have to be parallel.

6.2 Proposed Method Using Affine-NMF

In the framework of conventional NMF-based VC which is described in chapter 3,

a large-parallel corpus of source and target speakers is needed for dictionary

construction. In this section, we propose target dictionary estimation from a

small-parallel corpus only.

Fig. 6.1 shows the estimation procedure of our proposed method. Xs and Xt

show a small amount of parallel data between source and target speakers. In the

Activity Estimation stage, a source spectral exemplar matrix Xs is decomposed
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6.2 Proposed Method Using Affine-NMF

into a linear combination of bases from the source dictionary As. The source dic-

tionary consists of the source speaker’s exemplars. It is constructed the same way

the dictionary constructed when using conventional NMF-based VC, as explained

in chapter 3.

In the Dictionary Adaptation stage, speaker adaptation is conducted in or-

der to obtain a target dictionary from a source dictionary using a small amount

of (parallel) target speech data. The adaptation is performed using a linear

regression transformation matrix based on an NMF framework. Given the trans-

formation matrix, W, the target feature vector at the l-th frame is obtained as

follows:

xt
l ≈WAshs

l (6.1)

where As is the source dictionary and hs
l is the activity vector of the source signal

at the l-th frame.

In order to find the transformation matrix, an NMF framework, which mini-

mizes the KL divergence between Xt and WAsHs is used.

W = argmin
W

d(Xt,WAsHs) s.t. W ≥0. (6.2)

The transformation matrix, W, is estimated using As, Hs and a small amount

of the parallel target speech data, Xt, as follows:

Wn+1 = Wn. ∗ ((Xt./(Wn(A
sHs)))(AsHs)T)

./(1(D×L)(AsHs)T). (6.3)

The new parallel target dictionary is given by Ât = WAs .

In the test stage, the noisy input source speaker’s spectra matrix X is de-

composed into the multiplication of dictionary A = [AsAn] by its activity H =

[HsTHnT]T as follows:

X = AH. (6.4)

The converted spectra matrix X̂t is constructed from the estimated target dic-

tionary Ât, and the clean activity Hs as follows:

X̂t = ÂtHs. (6.5)
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In this method, we do not have to consider the difference between parallel

dictionaries because the parallel utterances are used as adaptation data, not as

a dictionary. The activity matrix estimated from the source dictionary contains

both the phoneme information and speaker information of the input utterance.In

this method, the adaptation matrix is estimated from the fixed source dictionary

and source activity matrix, and target speaker information is extracted using the

adaptation matrix in this procedure. In other words, the adaptation matrix is

independent of the phoneme, and it is the conversion matrix from the source to

the target speaker.

tXD

L

A s

Source dictionary
(D x J)

sH
Target

spectral features
(D x L)

W

Adaptation matrix
(D x D)

Activity of source signal
(J x L)

Ât

Target dictionary
(D x J)

sX
L

A s

J

sH

Source
spectral features

(D x L)

Small parallel Corpus

Activity Estimation

Dictionary Adaptation

Figure 6.1: Estimation of parallel dictionary using a speaker transformation ma-

trix
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6.3 Experiments

6.3.1 Experimental Conditions

The new VC technique was evaluated by comparing it with conventional tech-

niques based on GMM [3] and NMF [23] in a speaker conversion task using noisy

speech data. Speaker MMY, MAU, MNM, FTK, FYN and FMS were selected

from the ATR Japanese speech database [61], and we conducted male-to-female

(MMY→FTK andMAU→FYN), male-to-male (MMY→MAU andMNM→MMY),

and female-to-female (FTK→FYN and FMS→FTK) conversions. The sampling

rate, frame shift, and window length are 8 kHz, 5 ms, and 25 ms, respectively.

We used 216 words of clean speech per each speaker to construct a source

dictionary in NMF with a speaker adaptation and to train the GMM using the

conventional method. Table 6.1 shows the average number of frames in each

parallel dictionary. These training data were taken from the ATR Japanese speech

database set A (all of task code B). The number of adaptation words was 10, 25,

and 50 per each speaker. These adaptation words were randomly chosen from

the ATR Japanese speech database set A (task code A). Fifty words, which are

included in the ATR Japanese speech database set A (task code A) and are

different from the training and adaptation data, were randomly chosen as test

data.

The noisy speech signals were obtained by adding noise signals to clean speech

data. We used three types of noise signal (restaurant, station, and exhibition)

and these are randomly taken from the non-utterance section of CENSREC-1-C

database [62]. The SNRs for each noise was set to 20 and 10 dB. They are added

to a test word independently to each other. (A noisy speech signal includes one

type of noise signal.) The average number of exemplars in the noise dictionary

for each word was 104.

In objective evaluation, all 50 test words with three types of noisy signal at

two different types of SNRs were converted. Therefore, total 1,800 words (6 pairs

× 50 words × 3 noise types × 2 SNRs) were used for subjective evaluation. In

subjective evaluation, the half of test data with restaurant-noise at 10 dB were
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used. Therefore, total amount of test words was 150 (6 pairs × 25 words) in

subjective evaluation.

The spectrum, F0, and aperiodic components were extracted using STRAIGHT [92].

In the NMF-based method, a 513-dimensional spectrum extracted using STRAIGHT,

was used as the feature vector in the input signal and source dictionary. The

number of iterations used to estimate the activity was 300 [27]. The activity

and the transformation matrix were initialized with non-negative random val-

ues. In the GMM-based method, 40 linear-cepstral coefficients obtained from

the STRAIGHT [92] spectrum were used as the feature vectors. The number of

Gaussian mixtures was 64 which was chosen to obtain minimum distortion on

test data. In this study, F0 information was converted using conventional linear

regression in all VC methods based on the mean and standard deviation [19] as

follows:

ŷt =
σ(y)

σ(x)
(xt − µ(x)) + µ(y), (6.6)

where xt and ŷt denote the log-scaled F0 of the source speaker and the converted

word at frame t, respectively. µ(x) and σ(x) denote the mean and standard de-

viation of the log-scaled F0, as calculated from source speaker’s training data.

µ(y) and σ(y) are the mean and standard deviation of the target speaker data.

We made no conversions to the aperiodic components. With STRAIGHT, we

used converted spectra, F0, and source aperiodic components for synthesizing

the target voice.

Table 6.1: Number of frames in each parallel dictionary

# training data 216 50 25 10

# frames 61,168 13,839 6,782 2,826

6.3.2 Experimental Results

Objective tests were carried out using the Normalized Spectrum Distortion (NSD) [93]

NSD =

√
||Xt − X̂t||2/||Xt −Xs||2, (6.7)
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where Xs, Xt, and X̂t denote the source, target, and converted spectrum, respec-

tively.

Figs. 6.2 to 6.4 show the NSD for each speaker at 10 dB. “NMF” shows the

result using conventional NMF without speaker adaptation and “A-NMF” shows

the result using NMF with speaker adaptation. As shown in these figures, the

performance of NMF without speaker adaptation decreases as the number of

words used for the parallel dictionaries decreases. On the other hand, the perfor-

mance of NMF with speaker adaptation does not decrease in comparison to the

conventional NMF without speaker adaptation. Our A-NMF method obtained a

better result than NMF when we used 216 parallel words for most speakers. We

assume this to be due to the fact that the difference between parallel dictionaries

degrades the performance of NMF.
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Figure 6.2: NSD for male-to-female conversion at 10 dB

Figs. 6.5 to 6.7 show the NSD for each speaker at 20 dB. Because of the low

SNR conditions, the noise robustness of NMF-based VC is lower, compared to

Figs. 6.2 to 6.4. However, the performance of NMF with speaker adaptation does

not decrease as the number of words used for the parallel dictionaries decreases in

comparison with the conventional NMF without speaker adaptation. Moreover,

the performance of NMF with speaker adaptation is better than conventional

GMM-based VC. These results show the effectiveness of our NMF-based speaker

adaptation technique.
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Figure 6.3: NSD for male-to-male conversion at 10 dB
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Figure 6.4: NSD for female-to-female conversion at 10 dB

For the speech quality evaluation, a mean opinion score (MOS) [63] test was

performed. The opinion score was set to a five-point scale (5 excellent, 4 good, 3

fair, 2 poor, 1 bad). The number of participants was 8, and the SNR was 10 dB.

Fig. 6.8 (left side) shows the MOS test on the speech quality. As shown in Fig. 6.8,

NMF-based VC with speaker adaptation (25 adaptation words) obtained a better

score than conventional NMF-based VC (25 words). The result was confirmed

by a p-value test of 0.05.
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Figure 6.5: NSD for male-to-female conversion at 20 dB
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Figure 6.6: NSD for male-to-male conversion at 20 dB

For the evaluation of speaker individuality, an XAB test was carried out.

In the XAB test, each participant listened to the target speech. The participant

then listened to the speech converted by the two methods and selected the sample

that sounded more similar to the target speech. Fig. 6.8 (right side) shows that

the NMF-based VC with speaker adaptation obtained a higher score than the

conventional NMF-based VC without speaker adaptation. We confirmed this

result by a 0.05 p-value test.
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Figure 6.7: NSD for female-to-female conversion at 20 dB
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Figure 6.8: Results of MOS test and XAB test

6.4 Chapter Conclusions

In this chapter, an exemplar-based VC technique using speaker adaptation was

presented. This method requires only a small amount of parallel data, where a

linear regression transformation matrix is used to adapt a source dictionary to a

target dictionary and it is estimated in an NMF framework. In comparison exper-
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iments between GMM-based VC, NMF without speaker adaptation, and NMF

with speaker adaptation, the NMF-based VC with speaker adaptation showed

better performance.

Some problems remain with this method. The proposed method requires

higher computation times than the GMM-based method. In [59], we proposed a

frame-work that reduces computational time for NMF-based VC. In future work,

we will investigate the optimal number of bases and evaluate performance under

other noise conditions. In addition, this method is limited to only one-to-one voice

conversion because it requires a small amount of parallel data. Hence, we will

research a method for many-to-many VC within this framework, and apply this

method to other VC applications, such as assistive technology [67] or emotional

VC [4].
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Chapter 7

Many-to-many Voice Conversion

Using Multi-NMF

The related publications for this chapter are [94, 95, 96].

7.1 The Motivation and Related Work

7.1.1 Motivation

Many-to-many VC is approaches that do not require the use of source or target

speaker utterances as training data. In this approach, parallel training data from

many speakers are used as training data and the source and the target speakers

are represented as a linear combination of trained speakers.

Within the GMM-based framework, eigen-voice GMM (EV-GMM) [89] has

been proposed for many-to-many VC. However, an exemplar-based approach

without a parallel data set has not yet been demonstrated. Because exemplar-

based approach enables to create natural-sounding converted voice [27], exemplar-

based many-to-many VC method have been needed.

This chapter proposes multiple non-negative matrix factorization (Multi-NMF)

which allows many-to-many VC to be applied. The parallel dictionaries that are

needed in a conventional NMF-based VC are replaced by dictionaries that repre-

sent the voice of many speakers. In a conventional GMM-based many-to-many VC

approach [97], the reference voice must be chosen from the training data, because
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the method combines many-to-one VC and one-to-many VC. Our NMF-based ap-

proach does not require this. Moreover, because our approach is exemplar-based,

we assume our proposed VC method can create natural sounding voice compared

to GMM-based VC method.

Experimental results show that the conversion quality of the proposed method

is almost the same as that of conventional one-to-one VC, suggesting that it can

be applied to voice quality control and noise-robust VC.

7.1.2 Related Work

Inspired by a speaker adaptation technique using hidden Markov models (HMM),

Toda et al. [89] proposed eigen-voice GMM (EV-GMM). In this approach, the

eigen-vector of an arbitrary speaker is estimated using parallel training data from

many speakers. EV-GMM enables one-to-many VC and many-to-one VC. Saito

et al. [90] used tensor representation to improve the performance of one-to-many

GMM-based VC. Masuda et al. [98] proposed multistep VC, which was the first

approach to many-to-many VC. Many-to-many VC using EV-GMM was pro-

posed by Ohtani et al. [97] and EV-GMM has been expanded to voice quality

control [99]. In these approach, many-to-one VC and one-to-many VC are com-

bined by using a reference speaker’s voice. They noted that the conversion quality

was sensitive to the choice of reference speaker.

7.2 Proposed Method

Speaker conversion is a method which converts a source speaker’s individual voice

to that of a target speaker while preserving the linguistic information. Our pro-

posed method is based on the following assumptions:

1. The spectra of an arbitrary speaker are represented by a linear combination

of the bases of many speakers.

2. An activity matrix captures speaker-independent information.

Multi-NMF decomposes three factors (speaker weight vector, dictionary, and ac-

tivity) from the observed spectra. Our approach is exemplar-based, and so the
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spectra of training data are used as the dictionary, and only the speaker weight

vector and activity are estimated. Based on the above assumptions, the speaker

weight vector captures the speaker individuality, while the activity captures the

speaker-independent information. The detailed flow is described in the following

subsections.

7.2.1 Dictionary Construction

A multi-speaker dictionary is constructed from all parallel training utterances

of multiple speakers. Linear spectra are extracted from the training utterance

as exemplars using STRAIGHT [36]. A pivot speaker is randomly chosen from

multiple speakers and training exemplars of the other speakers are aligned with

the exemplars of the pivot speaker by using DTW. Therefore, the dictionary is a

3-dimensional matrix that consists of (the number of dimensions of the spectrum)

× (the number of frames) × (the number of speakers).

7.2.2 Flow of the Proposed Method

In our proposed method, the flow is different for inter-gender conversion and

cross-gender conversion.

7.2.2.1 Inter-gender Conversion

Fig. 7.1 shows the flow of the proposed method. Vs, Vt, V̂t, as, at, Hs, and

Ht denote the matrix of input source spectra, the matrix of the adaptation tar-

get speaker’s spectra, the matrix of the converted spectra, the source speaker’s

weight vector, the target speaker’s weight vector, the activity matrix of the source

speaker, and the activity matrix of the target speaker, respectively. D, L, L′, and

J denote the number of dimensions of a spectrum, the frame of the source spectra,

the frame of the adaptive spectra, and the frame of the dictionary, respectively.

WM ∈ R(D×J×K) denotes the dictionary matrix, which consists of the parallel ex-

emplars of many speakers, where K is the number of speakers in the corpus. The

superscript on WM means that it combines the dictionaries of many speakers.
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7.2 Proposed Method

In inter-gender conversion, the dictionary consists of either male only or female

only spectra. The k-th speaker’s dictionary is denoted by WM
k ∈ R(D×J).

First, the matrix of input source spectra Vs is represented as follows, based

on Assumption 1,

Vs ≈

(
K∑
k=1

askW
M
k

)
Hs (7.1)

where ask denotes the k-th element of as. We stress that each speaker’s dictionary

is multiplied by the same activity matrix element of Hs in (7.1).

Next, sample frames of the target speaker spectra Vt are used as adaptive

spectra, and the target speaker’s weight vector and the activity matrix for the

adaptive data are estimated as at and Ht, respectively.

Vt ≈

(
K∑
k=1

atkW
M
k

)
Ht (7.2)

Finally, the converted spectra V̂t are constructed from the estimated target

speaker’s weight vector at and the source speaker’s activity matrix Hs, based on

Assumption 2.

V̂t =

(
K∑
k=1

atkW
M
k

)
Hs (7.3)

7.2.2.2 Cross-gender Conversion

In order to reduce computational time and memory usage, two dictionaries are

used in the case of cross-gender conversion. The dictionary of source gender is

represented as WMs ∈ R(D×J×Ks) and the dictionary of target gender is repre-

sented as WMt ∈ R(D×J×Kt). Ks and Kt denote the number of speakers whose

samples are included in the source and target dictionaries.

First, the activity matrix is estimated from the source spectra and source

dictionary as follows, based on Assumption 1,

Vs ≈

(
Ks∑
k=1

askW
Ms
k

)
Hs (7.4)
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Next, the target speaker’s weight vector and the activity matrix for adaptive data

are estimated from adaptive data and the target dictionary.

Vt ≈

(
Kt∑
k=1

atkW
Mt
k

)
Ht (7.5)

Finally, the converted spectra V̂t are constructed from the estimated target

speaker’s weight vector, the source speaker’s activity matrix, and the target dic-

tionary based on Assumption 2.

V̂t =

(
Kt∑
k=1

atkW
Mt
k

)
Hs (7.6)

7.2.3 Multi-NMF

We are proposing Multi-NMF, which estimates a speaker vector a ∈ R(1×1×K) and

an activity matrix H ∈ R(J×L) from input spectra V ∈ R(D×L), given a dictionary

WM ∈ R(D×J×K). The cost function of Multi-NMF is defined as follows:

d(V,
K∑
k=1

akW
M
k H) + λ||H||1

s.t. H ≥ 0, a ≥ 0,
K∑
k=1

ak = 1. (7.7)

where the first term is the KL divergence between V and
∑K

k=1 akW
M
k H, and the

second term is the L1-norm regularization term that causes the activity matrix

to be sparse. λ represents the weight of the sparse constraint.

WM
k is fixed, and H and a are estimated by minimizing (7.7). The updating

rule is determined by adapting Jensen’s inequality. The derivation of (7.8) and

(7.9) is given in Appendix 8.

ak ←
ak∑

d,l(W
M
k H)dl

∑
d,l

(
vdl(W

M
k H)dl∑

k ak(W
M
k H)dl

)
(7.8)

H ← H. ∗ ((
K∑
k=1

akW
M
k )T(V./(

K∑
k=1

akW
M
k H)))

./((
K∑
k=1

akW
M
k )T1D×L + λ1J×L) (7.9)
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where vdl denotes the element of V and .∗, ./, and 1 denote element-wise multi-

plication, element-wise division, and an all-ones matrix, respectively. A speaker

vector is normalized in each iteration so that the sum of the vector equals unity.

7.3 Experiments

7.3.1 Experimental Conditions

We used the ATR Japanese speech database set C [61], a corpus of the speech of 20

males and 20 females. In the case of inter-gender conversion, samples of 10 males

or 10 females were used as training data and those from the other 10 males or 10

females were used as test data. In the case of cross-gender conversion, 10 males

and 10 females were used as training data and the rest were used as test data.

The sampling rate was 12 kHz. We compared our method with conventional one-

to-one NMF-based VC and one-to-one GMM-based VC [19], which use parallel

data from the source and the target speakers as training data. For each method,

50 parallel sentences spoken by each speaker were used for dictionary construction

or training of the GMM. In the proposed method, two sentences uttered by the

target speaker, which were not included in the test or training data, were used

as adaptation data.

In the proposed and conventional NMF-based methods, the dimension number

of the spectral features was 2,565. It consisted of a 513-dimensional STRAIGHT

spectrum and its consecutive frames (the 2 frames coming before and the 2 frames

coming after). These features are used instead of ∆ features because we cannot

use a negative value in a NMF-based method. The number of iterations for NMF

and Multi-NMF was 300, and λ in (7.7) was set to 0.1. The activity matrix in

the proposed and conventional NMF-based methods was initialized with positive

random values. The speaker weight vector in the proposed method was initialized

with the same positive value, 1/K, where K is the number of speakers in the

dictionary.

In the conventional GMM-based method, mel-cepstrum+∆+∆∆ was used as

a spectral feature. Its number of dimensions was 60. In order to reduce the

number of parameters, diagonal covariance matrices were used in GMM [19] . In
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this paper, GV is not used. The number of Gaussian mixtures was set to 64,

which was chosen experimentally.

In the conventional GMM and NMF-based methods, F0 information was con-

verted using conventional linear regression based on the mean and standard de-

viation [19] as follows:

ŷt =
σ(y)

σ(x)
(xt − µ(x)) + µ(y), (7.10)

where xt and ŷt denote the log-scaled F0 of the source speaker and the converted

word at frame t, respectively. µ(x) and σ(x) denote the mean and standard devi-

ation of the log-scaled F0, as calculated from the source speaker’s training data.

µ(y) and σ(y) are the mean and standard deviation of the target speaker data, re-

spectively. In our proposed method, in order to focus on the spectra conversion,

F0 information was converted using (7.10) and the mean and standard deviation

of the log-scaled F0 were calculated form the parallel training data of the source

and target speakers. We made no conversions to the aperiodic components.

In order to evaluate our proposed method, we conducted both objective and

subjective evaluations. In section 7.3.3, 50 sentences that were not in the training

data were used for the objective evaluation and the half of them are used in section

7.3.2. We used mel-cepstrum distortion (Mel-CD) [dB] [100] as a measure of the

objective evaluations, defined as follows:

Mel-CD = (10/ ln 10)

√√√√2
24∑
d=1

(mcconvd −mctard )2 (7.11)

where mcconvd and mctard denote the d-th dimension of the converted and target

mel-cepstral coefficients, respectively.

The subjective evaluation was based on “speech quality” and “similarity to

the target speaker”. For the subjective evaluation, 25 sentences were evaluated by

10 Japanese native speakers. For the evaluation of speech quality, we performed

a mean opinion score (MOS) test [63]. The opinion score was calibrated by a

5-point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad). For the similarity

evaluation, an XAB test was carried out, in which each participant listened to

the voice of the target speaker then to the voice converted by the two methods.

76



7.3 Experiments

The participant was asked to judge which sample sounded most similar to the

target speaker’s voice.

7.3.2 Parameters

In this section, we evaluated the performance of our proposed method using

different parameters. The default setting is explained in section 7.3.1.

First, we evaluated the performance of our proposed method using differ-

ent numbers of bases in the multiple-dictionary. The results are shown in Ta-

ble 7.1. M→M, F→F, M→F, and F→M denote male-to-male conversion, female-

to-female conversion, male-to-female conversion, and female-to-male conversion,

respectively. In “All bases”, the default multiple-dictionary was used (its mean

number of bases is 35,439). In “20,000 bases” and “10,000 bases”, the indicated

numbers of bases, which are randomly chosen from the default dictionary, were

used. There is no significant difference between the number of bases in the dictio-

nary and the performance; however we did confirm that there is some performance

variation between speakers when we use a small dictionary. Therefore, we used

all the bases in the following experiments.

Next, we evaluated the performance of our proposed method using different

amounts of adaptation data. The results are shown in Table 7.2. There are no

significant differences between the performance and the amount of adaptation

data. Therefore, we assume the default setting (2 sentences) is good enough to

estimate the target speaker weight vector.

Finally, we evaluated the performance of our proposed method using different

numbers of speakers in the multiple-dictionary. In “10 speakers”, all 10 speakers

were stored in the multiple-dictionary. In “5 speakers”, 5 speakers were randomly

chosen from the full multiple-dictionary. Table 7.3 indicates that the reduced

number of training speakers tends to degrade the conversion performance.

7.3.3 Results

Fig. 7.2 shows a mean vector calculated from the speaker weight vectors of a male,

and Fig. 7.3 shows that of a female speaker. The error bar shows its variance.

These figures show the robustness of the estimation of speaker weight vectors.
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Table 7.1: Mel-CD [dB] using a different number of bases

M→M F→F M→F F→M

Source 4.79 4.79 5.42 5.42

All bases 4.42 4.38 4.66 4.63

20,000 bases 4.42 4.37 4.66 4.63

10,000 bases 4.43 4.38 4.65 4.63

Table 7.2: Mel-CD [dB] using the differing amounts of adaptation data

M→M F→F M→F F→M

Source 4.79 4.79 5.42 5.42

2 sentences 4.42 4.38 4.66 4.63

1 sentence 4.41 4.39 4.66 4.63

Table 7.3: Mel-CD [dB] using different number of speakers

M→M F→F M→F F→M

Source 4.79 4.79 5.42 5.42

10 speakers 4.42 4.38 4.66 4.63

5 speakers 4.45 4.48 4.70 4.60
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Figure 7.2: Mean and variance of the speaker weight vector (M105)
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Figure 7.3: Mean and variance of the speaker weight vector (F105)

Tables 7.4 to 7.7 show the Mel-CD for male-to-male conversion, female-to-

female conversion, male-to-female conversion, and female-to-male conversion, re-

spectively. In these tables, a lower value indicates a better result. Source, Multi,

NMF, and GMM denote Mel-CD between the target and the source speech, when

converted by the proposed method, converted by one-to-one NMF, and by one-

to-one GMM, respectively. Although the dictionaries in our proposed method in-

cluded neither the source nor target speaker spectra, the difference in distortion

between one-to-one VC methods and our proposed many-to-many VC method

were small. For some pairs of speakers, the distortion of the proposed method

was almost identical to that of the one-to-one conversions (for example, F5→F10

and F2→M2).

Table 7.4: Mel-CD [dB] of male-to-male conversion

Source Multi NMF GMM

M1→M6 4.76 4.16 4.06 3.93

M2→M7 5.29 4.92 4.71 4.74

M3→M8 4.68 4.47 4.15 4.23

M4→M9 4.59 4.18 3.92 3.92

M5→M10 4.29 4.02 3.69 3.62

Mean 4.72 4.35 4.11 4.09
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Table 7.5: Mel-CD [dB] of female-to-female conversion

Source Multi NMF GMM

F1→F6 4.74 4.38 4.19 4.20

F2→F7 4.88 4.52 4.51 4.51

F3→F8 4.77 4.25 4.07 3.99

F4→F9 4.78 4.40 4.18 4.10

F5→F10 4.50 4.07 4.06 4.01

Mean 4.73 4.32 4.20 4.16

Table 7.6: Mel-CD [dB] of male-to-female conversion

Source Multi NMF GMM

M1→F1 5.46 4.59 4.32 4.59

M2→F2 5.05 4.59 4.32 4.37

M3→F3 5.22 4.44 4.24 4.27

M4→F4 5.89 4.95 4.83 4.73

M5→F5 5.05 4.39 4.04 4.06

Mean 5.34 4.57 4.35 4.41

Table 7.7: Mel-CD [dB] of female-to-male conversion

Source Multi NMF GMM

F1→M1 5.46 4.69 4.48 4.67

F2→M2 5.05 4.42 4.24 4.42

F3→M3 5.22 4.37 4.11 4.24

F4→M4 5.89 4.99 4.75 4.75

F5→M5 5.05 4.34 4.07 4.10

Mean 5.34 4.56 4.33 4.43
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Fig. 7.4 shows the results of the MOS test on speech quality. The error bars

show a 95% confidence score. Here, a higher value indicates a better result.

M-to-M, F-to-F, M-to-F, and F-to-M denote male-to-male conversion, female-

to-female conversion, male-to-female conversion, and female-to-male conversion,

respectively. In inter-gender conversion, our proposed method achieved a signif-

icantly better score than both conventional one-to-one NMF and GMM-based

VC, using a p-value test of 0.05. In cross-gender conversion, the difference be-

tween our proposed method and one-to-one NMF-based VC was non-significant.

However, the proposed method achieved a significantly the better score than to

one-to-one GMM-based VC.
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Figure 7.4: MOS of speech quality

Fig. 7.5 and Fig. 7.6 show the results of the XAB test. The error bars show

a 95% confidence score. With this test, a higher value indicates a better result.

Fig. 7.5 compares the results of the proposed method and one-to-one NMF-based

VC. The difference in female-to-female conversion in Fig. 7.5 is not statistically

significant because p > 0.1 in the p-value test. The difference in the other con-

version in Fig. 7.5 is significant in p < 0.05. Fig. 7.6 compares the results of

the proposed method and one-to-one GMM-based VC. The difference in Fig. 7.6

is not significant in p > 0.1. The score achieved by our proposed method was

lower than that of the one-to-one NMF-based method except for female-to-female
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conversion. However, the difference between our proposed method and the one-to-

one GMM-based method was not statistically significant. These speaker similarity

tests show that our proposed many-to-many VC approach effectively converts the

individuality of the source speaker’s voice to the target speaker’s voice.
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Figure 7.5: XAB test between proposed method and NMF
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Figure 7.6: XAB test between proposed method and GMM

82



7.4 Chapter Conclusions

7.3.4 Discussion

In the objective evaluations, the difference in Mel-CD between our proposed

method and the conventional one-to-one VC method was about 0.3 dB. We con-

sider this difference quite small, considering that the Multi-NMF method stores

neither the source nor target speakers’ spectra in the dictionaries. We also assume

that Mel-CD is superior to the GMM-based method because it uses mel-cepstrum

as an input feature, whereas NMF-based methods use a STRAIGHT spectrum.

In the subjective evaluation of speech quality, the results were different for

inter-gender conversion and cross-gender conversion. In inter-gender conversion,

our Multi-NMF based method achieved a better score than conventional one-

to-one VC methods, whereas in cross-gender conversion, the scores were almost

the same. We assume that the performance difference across the two conditions

reflects the difference between the dictionaries. In inter-gender conversion, the

activity of the input spectra is estimated from a given dictionary, and the target

spectra are constructed using the same dictionary and activity. In the case of

cross-gender conversion, the activity of the input spectra is estimated from the

source dictionary, while the target spectra are constructed from a different target

dictionary. The same problem was also observed in one-to-one NMF-based VC.

Our proposed method achieved a better score in inter-gender conversion because

it avoids this problem by using Multi-NMF. In [101], we discussed this problem

in one-to-one NMF-based VC and resolved it using an activity-mapping method.

In subjective evaluations of speaker similarity, our proposed method achieved

almost the same score as the conventional GMM-based one-to-one VC method.

The scores were slightly lower than those of the one-to-one NMF-based method,

except for female-to-female conversion. We assume that this reflects the fact that

the difference between Multi-NMF and NMF in female-to-female conversion is

smaller than that for other conversions (Tables 7.4 to 7.7).

7.4 Chapter Conclusions

This study proposed a novel sparse representation of NMF-based framework,

which allows exemplar-based VC for arbitrary speakers. Conventional one-to-one
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exemplar-based VC methods require source and target dictionaries, comprising

parallel utterances by the source and target speakers. The input speaker’s spectra

are represented by linear combinations of spectra (bases) from a source dictionary

and their weights. Converted spectra are constructed from the parallel bases from

a target dictionary, and weights estimated by input spectra. Our proposed VC

method does not require the utterances of the source and target speakers to be

parallel. The proposed Multi-NMF estimates the source speaker weight vector

and its activities from input spectra, using a dictionary of the spectra of many

speakers. A target speaker weight vector is estimated from adaptation data, and

the target speech is synthesized from the target speaker weight vector and the

activities of the input speech. We assume that Multi-NMF makes it possible to

decompose input speech into two parts: phonetic information, which is estimated

as activities, and speaker information, which is estimated as the speaker weight

vector. Moreover, our many-to-many VC method does not require the reference

speaker’s voice used in many-to-many EV-GMM-based VC. The experimental

results demonstrate that the conversion quality of the proposed method is almost

the same as that of conventional one-to-one VC, although our proposed method

includes neither the source speakers’ spectra, nor the target speakers’ spectra.

Some problems remain. Our proposed method requires longer computation

times than those of the GMM-based and one-to-one NMF-based methods. In

NMF-based methods, the computation times reflect the size of the dictionary

used. In [59], we proposed an NMF-based dictionary learning approach which

reduces the computation time of NMF-based VC methods. In future research, we

will therefore seek more compact representations of dictionaries for many-to-many

VC. A more compact dictionary should also improve cross-gender conversion.

In future work, we will apply our method to noisy environments and to as-

sistive technology for speakers with articulation disorders. We will also extend

the comparisons between our method and other many-to-many VC methods.

The proposed method should be easily applied to voice quality control, using

regression of speaker weight vectors and voice expression words. We also plan to

conduct research on speaker identification using the speaker weight vector.
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Chapter 8

Conclusions

This thesis forces on VC methods based on NMF. We systematically propose

methods for four practical VC tasks using NMF-based VC. We organize these

novel and effective proposed methods in the thesis and cover major research

themes this field of research.

In Chapter 4, we propose a framework to train the basis matrices of source

and target exemplars to give then a common weight matrix. We discuss a noise-

robust VC technique based on sparse representation. We propose a framework to

train the basis matrices of source and target exemplars to give them a common

activity matrix. The basis matrix of the source exemplars was trained using NMF.

Then, the basis matrix of the target exemplars is trained using NMF, where the

weight matrix was fixed to that obtained from the source exemplars. By using the

basis matrices instead of the exemplars, the VC performed with less computation

times than the exemplar-based method. In comparison experiments, exemplar-

based and proposed methods showed better performance than the GMM-based

method when evaluating noisy speech.

In Chapter 5, we present a VC method for a person with an articulation dis-

order resulting from athetoid cerebral palsy. We propose a spectral conversion

method based on NMF for a voice with this articulation disorder. Our proposed

method introduces a dictionary selection method to conventional NMF-based

VC. The results demonstrated that our VC method improves the listening in-

telligibility of words uttered by a person with an articulation disorder. More-

over, compared to conventional GMM-based and conventional NMF-based VCs,
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our proposed VC preserves the individuality and the naturalness of the source

speaker’s voice. The idea of dictionary selection for articulation disorders are also

adopted for TTS [102].

In Chapter 6, an adaptation matrix in an NMF framework is introduced to

adapt the source dictionary to the target dictionary. This method requires only a

small amount of parallel data, A linear regression transformation matrix is used

to adapt a source dictionary to a target dictionary and is estimated in an NMF

framework. In comparison experiments between GMM-based VC, NMF without

speaker adaptation, and NMF with speaker adaptation, the NMF-based VC with

speaker adaptation gives the best performance.

In Chapter 7, we propose Multi-NMF to allow the implementation of many-

to-many, exemplar-based VC. Our proposed VC method does not require the

utterances of the source and target speakers to be parallel. The proposed Multi-

NMF estimates the source speaker weight vector and its activity from the input

spectra, using a dictionary of the spectra of many speakers. A target speaker

weight vector is estimated from adaptation data, and the target speech is syn-

thesized from the target speaker’s weight vector and activity of the input speech.

We assume that Multi-NMF makes it possible to decompose input speech into

two parts: phonetic information, estimated as activity, and speaker information,

estimated as the speaker’s weight vector.

As explained above, this paper proposes new algorithms for four important

VC tasks. and expands the use of VC systems. These tasks are not only related

to VC but also to speech recognition and other problems in the field of signal

processing.

Some problems remain. Our proposed method requires longer computation

times than those of the GMM-based and one-to-one NMF-based methods. In

NMF-based methods, the computation times reflect the size of the dictionary

used. In [103], we proposed NMF-based dictionary learning based on an Al-

ternating Direction Method of Multipliers (ADMM) [50]. By combining with

ADMM-based dictionary learning, our proposed algorithm can be adopted to

real time VC. NMF-based dictionary learning using graph-embedded have also

been proposed in [96].
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Appendix

Update rule of NMF

The cost function of NMF (3.4) can be rewritten as

d(V,WH) + λ||H||1 (8.1)

=
∑
d,l

{
vdl log vdl − vdl log(

∑
j

wdjhjl)− vdl +
∑
j

wdjhjl

}
+ λ

∑
j,l

hjl

≤
∑
d,l

{
vdl log vdl − vdl

∑
j

ψj log(
wdjhjl
ψj

)− vdl +
∑
j

wdjhjl

}
+ λ

∑
j,l

hjl

=P (V,W,H, ψj) (8.2)

where vdl, wdl, and hjl represent the element of V, W, and H, respectively, using

Jensen’s inequality, ψj defined as follows:

ψj =
wdjhjl∑
nwdnhnl

(8.3)

The partial derivative of P in hjl is written as

∂P

∂hjl
=
∑
d

{
−vdlψj

1

hjl
+ wdj

}
+ λ (8.4)

Setting ∂P
∂hjl

= 0, the updating rule is derived as

hjl ←
∑
d

vdl
wdjhjl/

∑
nwdnhnl∑

f wfj + λ
(8.5)

(8.5) can be rewritten to matrix form as

H← H. ∗ (WT(V./(WH)))./(WT1D×L + λ1J×L) (8.6)
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8. APPENDIX

Update rule of Multi-NMF

Activity matrix

The update rule of H in the proposed Multi-NMF is derived by replacing W in

(8.6) with
∑K

k=1 akW
M
k , as follows:

H ← H. ∗ ((
K∑
k=1

akW
M
k )T(V./(

K∑
k=1

akW
M
k H)))

./((
K∑
k=1

akW
M
k )T1D×L + λ1J×L) (8.7)

Speaker weight vector

Here, the sparse function can be omitted. By using Jensen’s inequality, the upper

bound of the cost function (7.7) is derived as follows:

d(V,
K∑
k=1

akW
M
k H) (8.8)

=
∑
d,l

{
vdl log vdl − vdl log(

K∑
k

akW
M
k H)dl − vdl +

K∑
k

(akW
M
k H)dl

}

≤
∑
d,l

{
vdl log vdl − vdl

K∑
k

αk log(
akW

M
k H

αk

)dl − vdl +
K∑
k

(akW
M
k H)dl

}

=Q(V,
K∑
k=1

akW
M
k H, αk) (8.9)

≤
∑
d,l

{
log vdl − vdl

∑
k

αk

∑
j

βj log(
akw

k
djhjl

βj
) + vdlαk logαk − vdl

+
∑
k

(ak
∑
j

wk
djhjl)

}

=R(V,
K∑
k=1

akW
M
k H, αk, βj) (8.10)

100



where vdl, w
k
dl, hjl, and ak represent the element ofV,WM

k ,H, and a, respectively.

αk and βj are defined as follows:

αk =
ak
∑

j(w
k
djhjl)∑

m am
∑

j(w
k
djhjl)

(8.11)

βj =
wk

djhjl∑
nw

k
dnhnl

(8.12)

The partial derivative of R in ak is written as

∂R

∂ak
=
∑
d,l

{
−vdl

∑
k

αk

∑
j

βj
1

ak
+
∑
k

∑
j

wk
djhjl

}
(8.13)

Setting ∂R
∂ak

= 0, the updating rule is derived as follows:

ak ←
ak∑

d,l(W
M
k H)dl

∑
d,l

(
vdl(W

M
k H)dl∑

k ak(W
M
k H)dl

)
(8.14)

101





Acknowledgements

First, I would like to thank my supervisors, Emeritus Professor Yasuo Ariki and

Associate Professor Tetsuya Takiguchi at Kobe University, who have given me

helpful advice and continued support during my research and writing up. Their

broad knowledge in the field and his down-to-earth attitude has been of great help

to my study. I also thank Professor Ohkawa, Professor Tamaki, and Professor

Matoba for their constructive comments and valuable suggestions, which helped

to improve this thesis.

Meanwhile, I would like to thank the past and the present members in CS 17

Media Lab., where we have done efforts together and shared joys and sorrows of

research life.

Finally, to my family and my friends, it cannot be described in words, yet I

would like to show my full gratitude for their love, encouragements, and uncon-

ditional support throughout my study.

103





BibTeX Citation for This Thesis

@article {R. AiharaKBUPhDThesis2017,
title={{Voice Conversion Based on Non-negative Matrix Factorization

and Its Application to Practical Tasks}},
journal={Doctoral Thesis},
author={Ryo Aihara},
institution={Kobe University},
month={Mar.},
year={2017}
}

105



Doctor Thesis, Kobe University

“Voice Conversion Based on Non-negative Matrix Factorization and Its Applica-

tion to Practical Tasks”, 130 pages

Submitted on January, 19, 2017.

The date of publication is printed in the cover of repository version published in

Kobe University Repository Kernel.

c⃝Ryo AIHARA

All Rights Reserved, 2017.


	List of Figures
	List of Tables
	Publication List
	Glossary
	1 Introduction
	1.1 Background
	1.2 Approaches
	1.3 Purpose of This Thesis
	1.3.1 Four Practical VC Tasks
	1.3.1.1 Noise-robust VC
	1.3.1.2 Assistive Technology for Articulation Disorders
	1.3.1.3 VC Using Small-parallel Training Data
	1.3.1.4 Many-to-many VC

	1.3.2 Novelties of This Thesis

	1.4 Outline

	2 Acoustic Features and Conventional VC methods
	2.1 Acoustic Features
	2.1.1 Cepstrum
	2.1.2 MFCC
	2.1.3 Vocoder

	2.2 Conventional VC Methods
	2.2.1 GMM-based VC
	2.2.1.1 Gaussian Mixture Model (GMM)
	2.2.1.2 Conversion Based on Maximum Likelihood Estimation
	2.2.1.3 Problems

	2.2.2 PLS-based VC


	3 Voice Conversion Based on Non-negative Matrix Factorization
	3.1 Non-negative Matrix Factorization
	3.2 Exemplar-based VC
	3.2.1 Basic Idea
	3.2.2 Dictionary Construction
	3.2.3 Activity Estimation


	4 Noise-Robust Voice Conversion Based on Sparse Spectral Mapping
	4.1 The Motivation and Related Work
	4.1.1 Motivation

	4.2 Proposed Method
	4.2.1 Dictionary Construction for a Noisy Environment
	4.2.2 Training of the Parallel Basis Matrices
	4.2.3 Voice Conversion of Noisy Source Signal
	4.2.3.1 Estimation of Activity from Noisy Source Signal
	4.2.3.2 Target Speech Construction


	4.3 Experiments
	4.3.1 Experimental Conditions
	4.3.2 Experimental Results

	4.4 Chapter Conclusions

	5 Voice Conversion for Articulation Disorders Using Phoneme-categorized Exemplars
	5.1 The Motivation and Related Work
	5.1.1 Motivation
	5.1.2 Related Work

	5.2 Proposed Method
	5.2.1 Phoneme-categorized Dictionary
	5.2.2 Dictionary Selection and Voice Conversion

	5.3 Experiments
	5.3.1 Experimental Conditions
	5.3.2 Objective Evaluations
	5.3.2.1 Weights of Activities
	5.3.2.2 Phoneme Classification
	5.3.2.3 Discussion

	5.3.3 Subjective Evaluations
	5.3.3.1 Listening Tests
	5.3.3.2 Results and Discussion


	5.4 Chapter Conclusions

	6 Small-parallel Exemplar-based Voice Conversion Using Affine-NMF
	6.1 The Motivation and Related Work
	6.1.1 Motivation
	6.1.2 Related Work

	6.2 Proposed Method Using Affine-NMF
	6.3 Experiments
	6.3.1 Experimental Conditions
	6.3.2 Experimental Results

	6.4 Chapter Conclusions

	7 Many-to-many Voice Conversion Using Multi-NMF
	7.1 The Motivation and Related Work
	7.1.1 Motivation
	7.1.2 Related Work

	7.2 Proposed Method
	7.2.1 Dictionary Construction
	7.2.2 Flow of the Proposed Method
	7.2.2.1 Inter-gender Conversion
	7.2.2.2 Cross-gender Conversion

	7.2.3 Multi-NMF

	7.3 Experiments
	7.3.1 Experimental Conditions
	7.3.2 Parameters
	7.3.3 Results
	7.3.4 Discussion

	7.4 Chapter Conclusions

	8 Conclusions
	References
	Appendix
	Acknowledgements
	BibTeX Citation for This Thesis 

