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Chapter 1 

 

General Introduction 

Interactions between a macromolecule (protein) and a small molecule (ligand) play a 

central role in many biological processes such as enzymatic reactions, signal transduction, gene 

transcription, and physiological regulations. Since a lot of key biological functions are regulated 

by protein-ligand interactions, receptor proteins often become prime targets for pharmaceutical 

research. According to the advent of the human genome project and functional genomics, the 

number of new therapeutic targets has been continuously increased. In response to these newly 

discovered targets and great efforts of pharmaceutical industry, many innovative drugs have 

been successfully developed. However, drug discovery is a highly time-consuming and 

expensive process. The average cost for the recent discovery of a new drug is estimated 

approximately $1.8 billion and still rising rapidly, and it takes over 12 years to launch a new 

drug in the market [1]. Thus, predictive techniques aimed at reducing the cost and accelerating 

the process of drug discovery are highly valued for further development. Computational 

approaches for drug design, called in silico drug design, are among the most mature and 

predictive, and yet areas for improvement remain. Coupled with a rapidly rising number of 

structures for target proteins and an increasing evolution of computational power, structure-

based drug design (SBDD) has become prominent in the successful drug discovery [2]. There 

are currently more than 100,000 entries of X-ray or nuclear magnetic resonance (NMR) 
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structures of proteins or nucleic acids available in the Protein Data Bank (PDB) [3], including 

many biological targets for the drug discovery [4]. Since understanding the principles by which 

ligands recognize and interact with protein is of great importance in pharmaceutical research, 

the three-dimensional structure of a protein target is much informative and beneficial for the 

rational drug design [5]. Furthermore, using such structural information, the recent 

computational methods enable to predict which compound is truly bind to a protein target [6].  

Among the various SBDD methods, the principal one is protein-ligand docking. Protein-

ligand docking is a widely used computational tool in drug discovery efforts that tries to 

accurately predict the three-dimensional structure of a binding ligand to a target protein and to 

correctly estimate its strength of binding [7]. Computational docking also offers a relatively fast 

and economic alternative to standard experimental techniques (in vitro experiments). For 

example, in the early phase of the drug design, large compound libraries are screened via 

experimental methods such as high-throughput screening (HTS) for the discovery of “hit” 

compounds to a specific target. Instead of such an experimental approach, virtual screening 

Figure 1.1 Diagram of structure-based virtual screening (SBVS) method by protein-ligand 

docking. 
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(VS) method is capable of selecting promising compounds from a huge chemical database by 

using the protein-ligand docking [8] (Figure 1.1). To date, the protein-ligand docking methods 

have been widely applied to many drug discovery efforts [9]. Despite many successes of 

protein-ligand docking, several aspects have remained important challenges, with significant 

margin for improvement [10,11]. In this thesis, three distinct strategies are presented for the 

further development and improvement of protein-ligand docking, focusing on optimization 

algorithm, scoring function, and protein flexibility.  

In chapter 2, we attempt to improve docking accuracy by applying a novel optimization 

algorithm. Protein-ligand docking is an optimization problem which aims to identify the 

binding pose of a ligand with the lowest energy in the active site of a target protein (Figure 1.2). 

Hence, two essential components of the successful docking method are an accurate scoring 

function and an efficient optimization algorithm. Recent docking programs consider the 

Figure 1.2 Diagram of protein-ligand docking as an optimization problem. (A) Input structure 

of a ligand. (B) Three-dimensional structure of a target protein. (C) Docking programs explore 

stable poses of the ligand bound to a specific site of the target protein using various 

optimization algorithms and rank their binding energies by scoring functions. 
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flexibility of a ligand and use a rigid structure of target protein so that the available 

conformations of the binding ligand are sufficiently explored with a rational computational cost 

[12]. However, since energy landscapes of the scoring functions are usually complicated and 

exhibit rugged funnel shape, it is still difficult to identify the correct binding pose of a ligand, 

in particular for the highly flexible ligand with many optimization parameters. Even though a 

large number of docking programs have been developed, it has been reported that major 

docking programs can identify the correct docking pose with an accuracy of only about 60% 

for the diverse protein-ligand complexes [13]. Traditionally, some variants of genetic algorithm 

(GA) have often been used to solve the docking problem. However, optimization algorithms 

based on GA do not have enough search ability in dealing with highly complicated or multi-

modal problems like docking [14]. Hence, we focused on the novel optimization algorithms of 

swarm intelligence (SI). In last decades, wide varieties of SI-based optimization algorithms 

have been proposed, such as artificial bee colony algorithm (ABC), particle swarm optimization 

(PSO), and ant colony optimization (ACO), and it has been reported that they show superior 

performance to GA especially for the highly multi-dimensional optimization problems. In this 

study, we apply a variant of ABC to the protein-ligand docking, called fitness learning-based 

artificial bee colony with proximity stimuli (FlABCps) [15]. FlABCps is a powerful 

optimization algorithm based on the intelligent behavior of honey bee swarm, which has higher 

global search ability than other algorithms. The docking performance of FlABCps was 

evaluated using 85 protein-ligand complexes and compared with four state-of-the-arts docking 

algorithms. Simulation results revealed that FlABCps significantly improved the success rate 

of docking compared to four state-of-the-art algorithms. The present results also showed 

superior docking performance of FlABCps, in particular for dealing with the highly flexible 
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ligands and the protein targets which have the wide and shallow binding pocket. 

In chapter 3, we introduce the thermodynamics of active-site water into the scoring 

function of the docking program. In the docking calculation, the binding strength between 

protein and ligand is estimated by a scoring function which is typically described as the 

summation of various pairwise interatomic potentials, such as hydrogen bonding, electrostatic, 

van der Waals, etc. The interaction between protein and ligand is a principal source of the 

molecular binding, but it is not all factor of the molecular binding. For example, an 

indispensable participant is a water molecule. It has been widely recognized that water plays a 

significant role in the binding process between protein and ligand [16]. However, the 

thermodynamics of water molecules are often underestimated, or even ignored in protein-ligand 

docking. In the physiological environment, the active sites of protein are filled with water 

molecules, and thermodynamics of these water molecules are diverse and quite different from 

those of bulk water. When a small molecule binds to a protein, it causes the displacement of 

water molecules from the active site to the bulk region, and the thermodynamics of this 

displacement process significantly contributes to the free energy change of protein-ligand 

binding (Figure 1.3). In recent years, it has become possible to calculate the free energy of 

Figure 1.3 Displacement of active-site water molecules upon ligand binding. Each colored 

object represents the following: target protein (green), ligand (gray), displaced active-site 

water (blue), and bulk water (red).  
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active-site water molecules by some computational methods, such as grid inhomogeneous 

solvation theory (GIST) [17]. Here, we show a case study of the combination of GIST and a 

docking program and discuss the effectiveness of the displacing gain of unfavorable water in 

protein-ligand docking. We combined the GIST-based desolvation function with the scoring 

function of AutoDock4, which is called AutoDock-GIST. The proposed scoring function was 

assessed employing 51 ligands of coagulation factor Xa (FXa), and results showed that both 

scoring accuracy and docking success rate were improved, thus finding that the displacing gain 

of unfavorable water is effective for a successful docking campaign. 

In chapter 4, we tackle the problem of protein flexibility in the protein-ligand docking. 

Protein flexibility is a major hurdle in current the protein-ligand docking methods that need to 

be more efficiently accounted for. Traditionally, the most docking methods only consider ligand 

flexibility and use a rigid structure of target protein for efficient calculations of numerous drug 

candidates. However, since proteins are intrinsically flexible and frequently undergo 

conformational changes on ligand binding, the static view of protein structure in classical 

docking is far from reality. In the last decades, the importance of protein flexibility upon ligand 

binding has been widely recognized [18]. The ideal approach is incorporating full protein 

flexibility to the docking. However, such a method requires the highly expensive cost of 

computation and thus impractical for large-scale docking studies like a VS experiment. Hence, 

a simplified model has been presented to incorporate limited protein motions while keeping 

computational time practical, called ensemble docking [19]. Ensemble docking makes use of 

multiple and discrete structures of a target protein. In standard ensemble docking procedure, 

each compound is sequentially docked to a set of protein conformers (i.e., ensemble) to find the 

best-fit protein structure for a particular ligand (Figure 1.4). Consequently, the flexibility of 
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target protein is implicitly introduced into the docking method. Although the ensemble docking 

is capable of accounting for any scale of protein motion, in practical, the coverage of protein 

flexibility completely depends on the quality of the structural ensemble. Thus, the critical issue 

of ensemble docking is how to select and/or generate a high-quality ensemble structure of the 

target protein. In this context, MD simulation is useful to produce distinct protein conformations 

without abundant experimental structures. In this study, we present a novel strategy that makes 

use of cosolvent-based molecular dynamics (CMD) simulation for the ensemble docking. CMD 

is a simple computational method which uses water and organic probe molecules for the solvent 

when performing the MD simulation of a protein target [20]. By mixing small organic 

molecules into a solvent, CMD can stimulate dynamic protein motions and induces partial 

conformational changes of binding pocket residues appropriate for the binding of diverse 

Figure 1.4 Diagram of ensemble docking procedure. By using the multiple conformations of 

a target protein, ensemble docking implicitly introduces flexibility of the target protein into 

protein-ligand docking. 
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ligands. In other words, CMD is capable of generating diverse conformations of a target protein 

and is expected to enhances the druggability of protein conformations [21]. The simulation 

results revealed that the present method is capable of generating diverse protein conformations 

and identifying many active ligands than the previous methods. Furthermore, the results also 

showed that present method is widely applicable for the diverse protein targets. 
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Chapter 2 

 

Protein-Ligand Docking Using Fitness Learning–based 

Artificial Bee Colony with Proximity Stimuli 

2.1 Introduction 

Protein-ligand docking plays an essential role in structure-based drug design (SBDD), 

which aims to identify the binding structure of a ligand with the high affinity to a target protein 

using computer simulation. In lead identification, virtual screening based on docking simulation 

enables us to perform more efficient drug screening than experimental high-throughput 

screening (HTS) in terms of cost and efficiency [22,23]. Also in lead optimization, successful 

docking leads to a rational molecular design based on the three-dimensional structure of a target 

protein and binding ligands [24]. Incorporating SBDD, a number of drugs have been 

successfully developed [25-31]. 

Protein-ligand docking is regarded as an optimization problem, which identifies the 

binding pose of a ligand with the lowest energy (i.e., the most stable binding conformation) in 

an active site of a target protein. Thus, successful docking program requires two essential 

components, an accurate scoring function, and an efficient optimization algorithm. In past 

decades, many scoring functions have been developed for an accurate estimation of binding 

affinity [32-35]. However, since energy landscapes of the scoring functions are usually 

complicated and exhibit rugged funnel shape [36], successful docking calculation requires an 
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efficient optimization algorithm which correctly finds the lowest energy conformation of ligand. 

Inefficient optimization algorithms often give solutions trapped in some local optimum points 

of a scoring function, which results in an incorrect binding pose of a ligand and a wrong 

estimation of the binding affinity. In particular, highly flexible ligands with many rotational 

bonds are known to be more difficult for the docking simulation, due to their large number of 

optimization parameters [37]. 

In recent years, various optimization algorithms have been developed for the protein-

ligand docking. Genetic algorithm (GA) based approaches are the most general, which are 

implemented, e.g., in GOLD [38] and AutoDock [39]. On the other hand, swarm intelligence 

(SI) [40] based algorithms are highly attracted in the field of optimizations recently. SI based 

approaches simulate the collective behavior of simple agents or boids interacting locally with 

one another and with their environment. Such behaviors are often found in nature, especially 

biological systems so that SI based approaches are also called nature-inspired algorithms or 

metaheuristics. The famous nature-inspired algorithms include particle swarm optimization 

(PSO) [41], ant colony optimization (ACO) [42], firefly algorithm (FA) [43], cuckoo search 

(CS) [44] and artificial bee colony (ABC) optimization [45]. In previous studies, some variants 

of PSO have been developed and introduced into protein-ligand docking programs, such as 

SODOCK [37] and PSO@AutoDock [46]. It was reported that the PSO based approaches 

improve the docking accuracy better than GA. Both GA and PSO quickly find the global 

optimum point for a simple problem, because of their high convergence ability. However, these 

algorithms potentially have the risk of premature convergence to some local optimum point, in 

particular for the multi-modal, non-convex or highly multi-dimensional problems [14,47]. In 

this meaning, a more efficient optimization algorithm is strongly required for protein-ligand 
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docking. 

In this study, we attempted to apply a novel nature-inspired optimization algorithm, called 

fitness learning-based artificial bee colony with proximity stimuli (FlABCps) [15], to the 

protein-ligand docking. Artificial bee colony (ABC) algorithm is a simple and powerful 

optimization algorithm for the multi-dimensional and multi-modal functions, inspired from 

intelligent behaviors of the honey bee swarm. ABC has been widely applied to various 

optimization problems, such as neural network [48], spanning tree [49], digital filter [50], 

clustering [51], constrained optimization problem [52]. It has been also reported that the ABC 

based algorithms give better results for some optimization problems than the conventional 

algorithms [53,54]. FlABCps is a variant of the ABC algorithm, extending its applicability to 

more complicated optimization problems like the protein-ligand docking.  

The docking performance of FlABCps was examined in comparison with four state-of-

the-arts algorithms: ABC, SODOCK, PSO and LGA. Lamarckian genetic algorithm (LGA) [55] 

is a variant of GA, which is implemented in AutoDock as a default algorithm. The present 

results revealed that FlABCps improved the success rate of the docking compared to the other 

algorithms, in particular for highly flexible ligands with many optimization parameters. In 

addition, we analyzed the relationship between the structure of the binding pocket and the 

energy landscape of the scoring function. This analysis clearly showed that FlABCps is a 

suitable algorithm for dealing with proteins which have a wide and shallow binding pocket. 

2.2 Material and Methods 

2.2.1 Protein-ligand Docking 

Protein-ligand docking searches the most stable conformation of binding ligand in the 
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active site of a target protein. The calculation of protein-ligand docking is considered as an 

optimization problem, which minimizes the interaction energy of protein and ligand in the 

consideration of ligand flexibility. The interaction energy is then estimated using scoring 

function described as the summation of pairwise atomic potentials between protein and ligand 

[56]. The present study used AutoDock4 scoring function [32] which is a force field based 

semiempirical scoring function. The AutoDock4 scoring function consists of five energy terms: 

hydrogen bonding, electrostatic, van der Waals, conformational entropy, and desolvation. The 

detailed description of the AutoDock4 scoring function is described in Chapter 3. 

Originally, protein-ligand docking should deal full flexibility of target protein, since the 

conformational change of protein significantly affects ligand binding [57]. However, proteins 

are large molecules and have numerous degree of freedom compared with that of small ligand, 

and a much higher computational cost is needed to search their available conformations. Then, 

most of the recent docking programs only consider the flexibility of ligand for rapid calculation, 

which enables docking calculation time from seconds to minutes order per ligand. The 

flexibility and rigid motion of ligand are described with translation, orientation and rotatable 

bonds (Figure 2.1). The following represents for each optimization parameters. 

 

 Translation: the three-dimensional coordinates of the mass center atom of ligand which 

are described with 𝑡𝑥, 𝑡𝑦, 𝑡𝑧. These three parameters are constrained within a user defined 

cubic region, which covers the binding pocket of a target protein. 

 Orientation: rigid rotation of ligand with the quaternion, 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 , 𝑟𝑤 . Here, three 

parameters of 𝑟𝑥, 𝑟𝑦 , 𝑟𝑧 ∈ [0,1] are unit vectors determining the direction of ligand; the 

parameter of 𝑟𝑤 ∈ [−𝜋, 𝜋]  represents rotation around the unit vector 𝑟𝑥, 𝑟𝑦, 𝑟𝑧 . The 
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orientational representation of quaternion is useful to avoid gimbal lock problem occurred 

in Euler angle [58].  

 Rotatable bonds: conformational changes of ligand which is defined as any single non-

ring bond, bounded to nonterminal heavy atom. Usually, amide C-N bonds are not 

considered because of their high rotational energy barrier [59]. Although a ligand has other 

degrees of freedoms, such as bond-stretching and angle-bending, these motions are 

sufficiently small compared with the bond rotations. Hence, protein-ligand docking 

programs realize efficient conformational sampling by allowing the degree of freedom of 

rotational bonds.  

 

Accordingly, the total number of optimization parameter is 𝐷 = 7 + 𝑇 in protein-ligand 

docking, where 𝑇 is the number of rotatable bonds of ligand. The number of rotatable bonds 

Figure 2.1 Optimization parameters in flexible docking: (a) translation, (b) orientation with 

quaternion, (c) rotatable bonds which represent flexibility of ligand. 
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is quite different by the type of ligand. For instance, a small ligand sometimes has no rotatable 

bond (𝑇 = 0), whereas a large ligand has over 20 rotatable bonds. Since many rotational bonds 

correspond to many optimization parameters, a highly flexible ligand is a difficult target for the 

protein-ligand docking. 

2.2.2 Classical Artificial Bee Colony Algorithm 

The artificial bee colony (ABC) is a swarm based meta-heuristic algorithm proposed by 

Karaboga et al. [14] for numerical optimization problems. It was inspired by the intelligent 

foraging behavior of honey bees. ABC is composed of three kinds of honey bees: employed 

bees, onlooker bees and scout bees (Figure 2.2). First, an employed bee is assigned to a 

particular food source. She carries nectar to the hive and shares information on the nectar 

amount of the food source with onlooker bees waiting on the hive. Second, an onlooker bee 

Figure 2.2 Diagram of ABC algorithm. The position of food source represents a possible 

solution to optimization problem, and the nectar amount of a food source corresponds to the 

quality of the associated solution. Employ bees, onlooker bees and scout bees are the foragers 

which search optimal solutions. 
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chooses a rich food source, based on the nectar information. If one food source has much nectar 

amounts, a large number of onlooker bees are assigned to the source. Finally, a scout bee carries 

out a random search for discovering new food sources.  

In ABC, a colony of artificial honey bees (agents) searches for rich food sources (good 

solutions to a given problem). The position of a food source represents a solution vector of the 

optimization problem, and a quality of the food source (nectar amount) is represented by a 

fitness value calculated with the scoring function. The number of food sources SN is equal to 

the number of employed bees or onlooker bees. The three kinds of bees search for a global 

optimum point in D-dimensional real parameter space, where D corresponds to the number of 

optimization parameters (e.g., translation, orientation and conformation of the ligand for the 

flexible protein-ligand docking). A D-dimensional solution vector on a food source is described 

as 

𝜽𝑖
𝐶 = [𝜃𝑖,1

𝐶 , 𝜃𝑖,2
𝐶 , 𝜃𝑖,3

𝐶 , ⋯ , 𝜃𝑖,𝐷
𝐶 ], (2.1) 

where 𝑖 = 1,2, ⋯ , 𝑆𝑁 is an index of food sources and 𝐶 = 1,2, ⋯ , 𝑀𝐶𝑁 (maximum count 

number) is a current cycle number. In the beginning of optimization (𝐶 = 0), each parameter 

of food sources is initialized with uniformly distributed random numbers restricted to certain 

ranges. A fitness value for a food source is then calculated as 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {
1 (1 + 𝑓𝑖)⁄ if  𝑓𝑖 ≥ 0 

1 + abs(𝑓𝑖) if  𝑓𝑖 < 0 ,
 (2.2) 

where fi is an actual value of scoring function F to be optimized (𝑓𝑖 = F(𝜽𝑖
𝐶)). Since we consider 

a minimization condition here, a food sources with a lower score of the scoring function have 

a higher fitness value (Figure 2.3). After the initialization, ABC performs the optimization 
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process through cycles of three exploration steps by employed bees, onlooker bees and scout 

bees until the termination criteria are satisfied. 

In the employed bee phase, the employed bees seek a new food source around the assigned 

food sources, where a new food source is explored in the direction to another food source by 

perturbing a single optimization parameter as 

𝑣𝑖,𝑗
𝐶 = 𝜃𝑖,𝑗

𝐶 + 𝜙(𝜃𝑘,𝑗
𝐶 − 𝜃𝑖,𝑗

𝐶 ), (2.3) 

Here, 𝑘 ∈ {1,2, ⋯ , 𝑆𝑁} is an index of randomly selected food source except for 𝑖. Similarly, 

𝑗 ∈ {1,2, ⋯ , 𝐷}  is an index randomly selected from the D-dimensional parameters. 𝜙  is a 

random number in the range of [-1,1]. If a new food source 𝒗𝑖
𝐶 has a higher fitness value than 

the current food source 𝜽𝑖
𝐶 , an employed bee updates 𝜽𝑖

𝐶  to 𝒗𝑖
𝐶. After all the employed bees 

finish exploiting, they go back to the hive and share the information on the food sources (nectar 

amounts) with the onlooker bees waiting on the hive. 

In the onlooker bee phase, the onlooker bees perform a probabilistic selection of food 

sources for exploiting. A probability of a food source to be selected is calculated with the fitness 

Figure 2.3 Plot of fitness value 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 according to the scoring function 𝑓𝑖 = F(𝜽𝑖
𝐶) in a 

minimization condition. 
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values, given by 

𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑙
𝑆𝑁
𝑙=1

 . (2.4) 

Based on this probability, the onlooker bees perform the roulette wheel selection for the 

decision of the food source, so that a higher fitness food source is intensively explored by a 

large number of the onlooker bees. The onlooker bee searches for a new food source around the 

selected food source using Equation (2.3), and updates the current food source with the greedy 

selection in the same way as the employed bee. 

In the scout bee phase, a food source which cannot be improved anymore is replaced by a 

new food source created with random numbers. To find these exhausted food sources, a trial 

counter 𝑡𝑖  is used at each 𝑖 th food source. If the employed or onlooker bee is unable to 

Figure 2.4 Flowchart of the artificial bee colony (ABC) algorithm. 
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improve the previous fitness value of the 𝑖th food source, 𝑡𝑖is increased by unity. The trial 

counter 𝑡𝑖  is reset to zero when the 𝑖 th food source is successfully improved. When 𝑡𝑖 

reaches the maximum trial number, limit, the 𝑖th food source is replaced with random numbers 

and 𝑡𝑖 is reset to zero. In this way, the scout bees play an important role in keeping the diversity 

of population. The algorithm of ABC is summarized as flowchart in Figure 2.4. 

2.2.3 Fitness Learning-based Artificial Bee Colony with Proximity Stimuli 

(FlABCps) Algorithm 

Fitness learning-based ABC with proximity stimuli (FlABCps) is a variant of ABC 

proposed by Das et al. [15]. They introduced three vital modifications to the classical ABC, to 

achieve the superior performance for real-world optimization problems.  

First, an improved positional modification scheme is introduced. This scheme is developed 

on the basis of the fitness learning mechanism and the directive component towards adjacent 

food sites. In the classical ABC, the positional modification given by Equation (2.3) is 

performed with a randomly selected food source 𝜽𝑘
𝐶  . Alternatively, elite food sources and 

neighbor food sources are used in FlABCps for the positional modification, which gives a 

superior balance of bee’s exploration between global search and local search.  

Second, a multi-dimensional perturbation scheme is introduced to the positional 

modification. As mentioned above, the single parameter perturbation is used in the classical 

ABC, which sometimes leads to the slow convergence for highly multi-dimensional problems. 

[60] On the other hands, all optimization parameters are updated in PSO and GA, which result 

in the premature convergence for the complicated problems (i.e., trapped solutions in some 

local optimum points of scoring function). In FlABCps, a subset of the D-dimensional 
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parameters is randomly selected for the positional modification, based on the Rechenberg’s 

1/5th mutation rule [61]. It helps in an efficient convergence of solutions, properly avoiding the 

premature convergence.   

Third, proximity-based stimuli are employed for the food site selection by the onlooker 

bees. In the classical ABC, the onlooker bees perform the roulette wheel selection of food 

sources using the probability of Equation (2.4), which contributes to an intensive exploitation 

around a high fitness food sources. However, this selection scheme sometimes causes the 

overcrowding of the onlooker bees at the best-so-far food source, which results in the premature 

convergence. To circumvent this problem, FlABCps introduces a weighted probability based 

on the proximity-based stimuli. Since the weighted probability reflects the locality of the food 

sources, neighbor food sources around the high fitness food sources get more chances to be 

selected by the onlooker bees. 

FlABCps proceeds in the same way as the classical ABC through the employed bee phase, 

the onlooker bee phase and the scout bee phase. The position of a food source represents a 

solution vector to the optimization problem, and the quality of a food source (nectar amount) 

corresponds to the fitness value calculated with the scoring function. The number of food 

sources SN is equal to the number of the employed bees or the onlooker bees. The three kinds 

of bees search for a global optimum point in D-dimensional real parameter space, where D 

corresponds to the number of optimization parameters. Each D-dimensional solution vector at 

the 𝑖th food sources, 𝜽𝑖
𝐶 , is described as Equation (2.1). In the beginning of optimization (C=0), 

each parameter of food sources is initialized with uniformly distributed random numbers which 

are restricted to certain ranges. After the initialization, the following procedures are repeated in 

each cycle until the termination criteria are satisfied.  
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First, the fitness value of a food sources, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖, is calculated as Equation (2.2). Since 

we consider a minimization condition, a food source with the lower score of function has a 

higher fitness value. Fitness learning mechanism is described with mixing with the elite 

components 

where j=1,2,…,D is D-dimensional parameter index of a food source. Indices of r1 and r2 

represent two different elite food sources randomly selected from the top q % of the population. 

The value of q is varied from the top 20 % (0.2) members initially, to the 10 % (0.1) at the end 

of the cycle. This variation of q that occurs nonlinearly is given by 

with an uniform random number m, lying in the range [0,1]. In addition, FlABCps uses a 

selective parameter scheme for multi-dimensional perturbation, based on the Rechenberg’s 

1/5th mutation rule [45] The perturbation parameters for the positional modification are 

selected by 

Here, n is a random integer corresponding to the number of components of 𝐽∗. It is noted that 

𝐽∗ is a subset of D-dimensional parameters which are composed of randomly selected n indices.  

In the employed bee phase, the employed bee seeks a new food source 𝒗𝑖
𝐶 around the 

assigned food source 𝜽𝑖
𝐶  by using the perturbation parameters 𝐽∗. The positional modification 

scheme in FlABCps is performed with a combination of the directive component towards 

𝜃𝑖,𝑗
𝐹𝐶 = {

𝜃𝑟1,𝑗
𝐶 if  𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑟1 ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑟2  

𝜃𝑟2,𝑗
𝐶 if  𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑟1 < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑟2 ,

 (2.5) 

𝑞 = 0.2 − 0.1 (
𝑒𝑚∙𝐶 𝑀𝐶𝑁⁄ − 1

𝑒𝑚 − 1
), (2.6) 

𝐽∗ = {𝑗1, 𝑗2, 𝑗3, ⋯ , 𝑗𝑛};   𝑗𝜈𝜖{1,2, ⋯ , 𝐷};   1 ≤ 𝑛 ≤ [
1

5
𝐷] (2.7) 
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adjacent food sites and the fitness learning mechanism of 𝜽𝑖
𝐹𝐶  (Equation (2.5)) 

where 𝜽𝑘𝑖

𝑁𝐶  represents one of the 𝑘 th-nearest food sources from 𝜽𝑖
𝐶   according to the 

Euclidean distance. The parameter k is a random integer, lying in the range [0, √𝑆𝑁 2⁄ ]. Two 

control parameters, 𝜙𝐺  and 𝜙𝐶 , are different random numbers, generated as 

where 𝑁(𝜇, 𝜎2)  denotes the Gaussian distributed number with mean 𝜇  and variance 𝜎2 ; 

𝑄(𝑟; 𝑥0, 𝛾) denotes the quantile function of Cauchy distribution with location 𝑥0, scale 𝛾 and 

restrict range 𝑟. The Gaussian distribution has a short tail property, and is suitable for the fine 

local search. On the other hand, the Cauchy distribution has a far wider tail than the Gaussian 

distribution, and is useful when the global optimum is far away from the current search point. 

If a new food source 𝒗𝑖
𝐶 has the higher fitness value than the current food source 𝜽𝑖

𝐶 , the 

employed bee updates 𝜽𝑖
𝐶  to 𝒗𝑖

𝐶.  

In the onlooker bee phase, the onlooker bee performs a probabilistic selection of the food 

source for exploitation. In the classical ABC, a probability of a food source to be selected, 𝑝𝑖, 

is calculated with the fitness values, given by Equation (2.4). The selection scheme using 

Equation (2.4) sometimes causes the overcrowding of the onlooker bees at the best-so-far food 

source, which results in the premature convergence. To circumvent this problem, FlABCps 

introduces a weighted probability based on the proximity-based stimuli 

𝑝𝑖
𝑤 =

1

2𝑚𝑖
∑ (𝑝(𝑁𝑙

𝑖) + 𝑝(𝐹𝑙))

𝑚𝑖

𝑙=1

, (2.10) 

𝑣𝑖,𝐽∗
𝐶 = 𝜃𝑖,𝐽∗

𝐶 + 𝜙𝐺(𝜃𝑘𝑖,𝐽∗
𝑁𝐶 − 𝜃𝑖,𝐽∗

𝐶 ) + 𝜙𝐶(𝜃𝑖,𝐽∗
𝐹𝐶 − 𝜃𝑖,𝐽∗

𝐶 ), (2.8) 

   𝜙𝐺 = 𝑁(𝜇, 𝜎2);      𝜇 = 0, 𝜎2 = 1,                     

𝜙𝐶 = 𝑄(𝑟; 𝑥0, 𝛾); 𝑥0 = 0, 𝛾 = 0.5, 𝑟 ∈ (0,1),
 (2.9) 
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where 𝑝(∙)  represents the probability Equation (2.4) of a selected food source taken as an 

argument (𝑝(𝑖) = 𝑝𝑖 ). 𝑁𝑙
𝑖  is an index representing the 𝑙 th-nearest food sources calculated 

with the Euclidean distance from the 𝑙th food source. Similarly, 𝐹𝑙 is an index which refers to 

the lth-best food source calculated with the fitness value. The parameter 𝑚𝑖  is a random 

integer, lying in the range [0, 𝑆𝑁 √𝐷⁄ ]. If the weighted probability 𝑝𝑖
𝑤 is larger than 𝑝𝑖, the 

𝑖th food source is selected by an onlooker bee for exploitation. The onlooker bee searches for 

a new food source 𝒗𝑖
𝐶 around the selected food source 𝜽𝑖

𝐶  using Equation (2.10), and updates 

𝜽𝑖
𝐶  to 𝒗𝑖

𝐶 with the greedy selection in the same way as the employed bee. This selection is 

repeated until all the onlooker bees are assigned to any of the food sources. 

In the scout bee phase, the food source that cannot be improved anymore is replaced 

randomly by a scout bee, which is the same procedure as the classical ABC. To find these 

exhausted food sources, a trial counter 𝑡𝑖 is used at each 𝑖th food source. If an employed or 

onlooker bee is unable to improve the previous fitness value of the 𝑖 th food source, 𝑡𝑖  is 

increased by unity. The trial counter 𝑡𝑖 is reset to zero when the 𝑖th food source is successfully 

improved. When 𝑡𝑖 reaches the maximum trial number limit, the 𝑖th food source is replaced 

with random numbers and 𝑡𝑖 is reset to zero. 

The performance of FlABCps was examined for two real-world optimization problems 

including numerous local peaks, non-linearity, interdependence and bound constraints [15]. As 

a result, FlABCps provided the best solutions among nine state-of-the-arts optimization 

algorithms. Pseudocode of FlABCps is described in Appendix A (Table A1). 
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2.2.4 Simulation Set-up 

2.2.4.1 Comparative Algorithms and Parameter Setting 

The docking performance of FlABCps was evaluated by comparison with four state-of-

the-art algorithms: ABC, SODOCK, PSO and LGA. Lamarckian genetic algorithm (LGA) is a 

variant of GA and default algorithms of AutoDock4, which enhanced global search efficiency 

by combining local search algorithms with classical GA [55]. The same strategy is applied in 

SODOCK. SODOCK is a hybrid algorithm of PSO and local search algorithm [37]. Other two 

algorithms represent classical ABC and PSO. LGA and PSO are available in the docking 

program of AutoDock4 [62]. AutoDock4 is one of most famous docking program, which is 

open source and freely available for academic users. We introduced ABC, SODOCK and 

FlABCps into AutoDock4 for comparison of docking accuracy. We assessed five algorithms 

under the identical conditions: (I) Examinations were performed in the framework of 

AutoDock4; (II) A flexibility of a ligand was described with translation, orientation, and 

conformation, and a protein was treated as a rigid object; (III) 85 complexes in Astex diverse 

set [63] was used for the evaluation of docking performances; (IV) A binding pocket was set 

with a cubic box (22.5×22.5×22.5 Å3)  centered at the crystal ligand; (V) AutoDock4 

scoring function [32] was used; (VI) The maximum number of energy evaluations was set to 

2,500,000. The parameters for FlABCps were determined empirically, so that the population 

number SN and the maximum trial number limit were set to 500 and 200, respectively. The 

parameters for other algorithms were basically default values. Setting parameters for the five 

algorithms are summarized in Appendix A (Table A2). 
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2.2.4.2 Astex Diverse Dataset 

In this work, we used astex diverse set for the data set of protein-ligand docking. Astex 

diverse set was developed for the evaluation of docking programs, which consists of high-

quality X-ray crystallographic structures of 85 protein-ligand complex [63]. All of the ligands 

in astex diverse set have drug-like structures; 23 ligands are approved drug, and 6 ligands are 

under clinical trial. These 85 ligands cover wide chemical structure, and 85 target proteins also 

cover diverse protein families. Note that hydrogens were properly added for all proteins and 

ligands, and astex diverse set is available in Chembridge Crystallographic Data Center 

(http://www.ccdc.cam.ac.uk)． 

Since our study focused on optimization, the number of rotatable bonds of ligand is an 

important index for the evaluation of docking accuracy. We divided astex diverse set into three 

Figure 2.5 The histogram of complexes for astex diverse set in term of the number of rotatable 

bonds of ligand. These ligands are clustered in three groups: blue colored bars represent 

“small” group which is composed 25 complexes, red colored bars represent “medium” group 

which is composed 31 complexes, green colored bars represent “large” group which is 

composed 29 complexes. 
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groups, small, medium and large, on the basis of the number of the rotatable bonds of ligand 

(Figure 2.5); Small group consists of 25 ligands with the number of rotatable bonds 0~4; 

Medium group consists of 31 ligands with the number of rotatable bonds 5~7; Large group 

consists of 31 ligands with the number of rotatable bonds over 8. 

2.2.4.3 Evaluation of Docking Accuracy 

We evaluated docking performance based on the success rate of binding pose prediction. 

In other word, it is called re-docking experiments, which performs docking calculation to 

known protein-ligand complex, and evaluates how well to reproduce crystalized pose of bound 

ligand (Figure 2.6). The structural similarity is measured by root mean square deviation 

(RMSD) described as:  

RMSD = √
∑ 𝑟𝑖

2𝑛
𝑖=1

𝑛
 (2.11) 

Figure 2.6 Re-docking experiment for evaluation of docking program: (a) Results of re-

docking calculation. (b) Successful docking with small RMSD. (c) Unsuccessful docking with 

large RMSD. Green colored pose represents crystallized structure, and red and yellow colored 

poses correspond to two different binding poses which are obtained by docking. 
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where, 𝑛 is the number of ligand atom; 𝑟𝑖 is the distance between corresponding atom 𝑖. In 

this work, we set RMSD criteria 2 Å. In other word, if RMSD between docking pose and native 

pose of ligand is less than 2 Å, the binding pose prediction is success.  

2.3 Results and Discussion 

2.3.1 Docking Accuracy of FlABCps 

Table 2.1 shows the results of the docking calculations obtained with FlABCps, ABC, 

SODOCK, PSO and LGA for 85 complexes of Astex diverse set. The docking performances 

were examined in terms of the success rate of the pose prediction and the searching ability of 

the lowest energy. In addition, 85 complexes in Astex diverse set were divided into three groups 

according to the number of rotational bonds of ligands, which were used for examining the 

dependence of the docking accuracy on the number of optimization parameters. The success 

rate of the docking was evaluated with root mean square deviation (RMSD) of the predicted 

ligand pose from the crystal structure. The simulation results showed that FlABCps provided 

the best performance of all the five algorithms with the success rate of 87.1 %. In general, the 

docking for highly flexible ligands is more difficult than that for less flexible ligands, due to 

their large number of optimization parameters [37]. Even for such highly flexible ligands(Nr =

8~16), FlABCps can successfully find the correct binding poses with 89.7 %, whereas the 

other methods lowered their success rates. This result indicated that FlABCps might be 

extended to more complicated systems, such as the partially flexible protein docking including 

side-chain flexibility of proteins [64-66] or the docking under explicit water molecules [67-69].  
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Table 2.1 Docking results by comparison of five algorithms for 85 complexes of Astex diverse set. 

Nr
a Nc

b 
 Success rate [%]c  No. of winsd  

FlABCps ABC SODOCK PSO LGA FlABCps ABC SODOCK PSO LGA 

0~4 25 84.0 84.0 84.0 80.0 84.0 19 4 1 0 1 

5~7 31 87.1 80.6 83.9 64.5 77.4 23 3 1 2 2 

8~16 29 89.7 79.3 79.3 44.8 55.2 17 4 5 3 0 

Total 85 87.1 81.2 82.4 62.4 71.8 59 11 7 5 3 

a Nr represents the number of rotational bonds for ligands. b Nc represents the number of complexes. c Rate 

of successful docking that RMSD from the crystal structure is less than 2 Å. dThe number of wins in 

finding the lowest energy in the scoring function among the five algorithms. 

 

The present results also showed that FlABCps gave the best results (i.e., the lowest energy) 

for the 59 complexes. Assuming that the scoring function can describe the correct binding 

energy, the lowest energy in the scoring function corresponds to the actual binding affinity 

between a ligand and a protein. Thus, FlABCps is found to give more accurate estimations of 

the binding affinity, compared with the other four algorithms. The classical ABC gave the 

success rate of 81.2 %, which was better than PSO and LGA. Thus, the basic strategy of ABC 

is superior to that of GA and PSO for the protein-ligand docking. From these results, FlABCps 

is found to be a more suitable algorithm for solving the protein-ligand docking than the 

conventional algorithms.  

2.3.2 Structural Analysis of the Binding Pocket of Neprilysin 

Next, we analyzed the performance of FlABCps with respect to the binding pocket 

structure and the energy landscape of the scoring function. The performance of FlABCps was 

compared with LGA which is a major algorithm implemented in AutoDock. For this analysis, 

we used the crystal structure of neprilysin (PDB-ID: 1R1H) [70] and its potent inhibitor N -[ 3 
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-[ ( 1-aminoethyl ) ( hydroxyl ) phosphoryl ] -2 -( 1, 1' -biphenyl -4 -ylmethyl ) propanoyl ] 

alanine (BIR), because LGA could hardly find the correct binding pose of this ligand.  We 

performed 1000 times of docking calculations with LGA and sampled 1000 different docking 

poses of the ligand. As a result, two specific clusters named cluster-1 and cluster-2 were found 

on the basis of the structural similarity of their binding poses (Figure 2.7A). The population of 

cluster-1 and cluster-2 totally accounts for 58 % of all the sampled poses. The main difference 

between the two clusters was in the direction of two aromatic rings of the ligand (Figure 2.7B).  

The 1000 sampled poses were also calculated with FlABCps, which resulted in the same 

two clusters as the LGA ones. Figure 2.8 shows distributions of cluster-1 and cluster-2 with 

respect to the RMSD from the crystal structure of the ligand. The distributions obtained with 

Figure 2.7 (A) Superposition of 1000 sampled poses of BIR. Poses of cluster-1, cluster-2, and 

the others are shown in green, red and cyan, respectively. (B) Definitions of cluster-1 and 

cluster-2. White ribbon represents the backbone of neprilysin. Green colored pose is a 

representative structure of cluster-1 where the distance between the center of the aromatic ring 

of the ligand and VAL692 (blue) is less than 6.5 Å. Red colored pose is a representative 

structure of cluster-2 where the distance between the center of the aromatic ring of the ligand 

and GLY645 (orange) is less than 6.5 Å.  
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FlABCps are completely different from those with LGA. In LGA, we found 10 % population 

for cluster-1 and 48 % population for cluster-2, whereas 40 % population for cluster-1 and 9 % 

population for cluster-2 were observed in FlABCps. In common, the docking pose with the 

RMSD less than 2 Å is regarded as the successful reproduction of the crystal structure of the 

ligand. Therefore, the poses of cluster-1 correspond to the crystal structure (see Figure 2.9). The 

lowest binding energies for cluster-1 and cluster-2 were -15.53 kcal/mol and -11.97 kcal/mol, 

respectively. These results showed that FlABCps successfully found the correct binding poses 

at the global minimum (poses of cluster-1). In contrast, LGA gave the binding poses trapped in 

the local minimum of the scoring function (poses of cluster-2). 

Regarding the molecular structures, the neprilysin has two specific docking regions in its 

binding pocket: the wide and shallow region on which the poses of cluster-2 are located, and 

the narrow and deep region on which the poses of cluster-1 and the crystal ligand are located 

Figure 2.8 Distribution of cluster-1 and cluster-2 with respect to the RMSD from the crystal 

structure of BIR: (A) 1000 docking poses with LGA; (B) 1000 docking poses with FlABCps. 

Green and red colored bars refer to cluster-1 and cluster-2, respectively.  
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(Figure 2.9). In other words, the narrow and deep region corresponds to the global minimum, 

and the wide and shallow region corresponds to one of the local minima of the scoring function.  

Next, we analyzed the energy landscape of the scoring function around the two clusters. 

Here, we used the RMSD from the crystal structure for simplicity. Figure 2.10 shows the energy 

distributions of cluster-1 and cluster-2 with respect to the RMSD from the crystal structure. The 

energy distributions plotted on the RMSD space can approximate the multi-dimensional energy 

landscape of the scoring function. In addition, the RMSD standard deviations of two clusters 

can be regarded as the widths of the energy wells in the multi-dimensional spaces. Supposing 

that these distributions refer to the normal distribution, the energy landscape can be 

approximated by a Gaussian function. If the centers of these energy wells are set to the 

Figure 2.9 Molecular structures of the binding pocket of neprilysin and BIR. Blue colored 

pose is the crystal structure, green colored pose is a representative structure of cluster-1, and 

red colored pose is a representative structure of cluster-2. 
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individual lowest energy structures, these bell curves reflect the shapes of the multi-dimensional 

energy landscape around cluster-1 and cluster-2. The standard deviations of cluster-1 and 

cluster-2 from the individual lowest energy structures were 1.8 Å and 2.9 Å, respectively. 

Therefore, the poses of cluster-1 were located on the narrow and steep energy well of the global 

minimum, whereas the poses of cluster-2 were trapped in the wide and gradual energy well of 

the local minimum. These results can be interpreted as follows. The neprilysin has the wide and 

shallow region in its binding pocket on which the poses of cluster-2 are located. Around this 

region, the scoring function gives the wide and gradual energy well of the local minimum. The 

conventional algorithms, including GA and PSO, usually show the high convergence ability for 

simple problems. However, they often give solutions trapped in some local minima, when 

Figure 2.10 Scatter plots of the binding energies of cluster-1 and cluster-2 with respect to the 

RMSD from the crystal structure. Poses of cluster-1 are shown by green circles and those for 

cluster-2 are shown by red crosses. Solid lines in the individual clusters show Gaussian 

distributions of the RMSD from the pose with the lowest energy; standard deviation of cluster-

1 is 1.8 Å and that of cluster-2 is 2.9 Å. 

. 
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dealing with multi-modal and multi-dimensional problems [35,36]. Also in our simulation 

results, most of the LGA calculations gave the binding poses trapped in the local minimum 

(cluster-2). In contrast, FlABCps successfully found the correct binding poses existing in the 

global minimum (cluster-1), properly avoiding such a local minimum. Some kinds of proteins 

which have a wide and shallow binding pocket were supposed to provide a challenging task for 

in silico docking. This is because such kinds of proteins usually contain a large number of local 

minima on their energy landscape of the scoring function. FlABCps would be a suitable 

algorithm for such proteins with these features as kinases. 

The scoring (objective) functions for protein-ligand docking are generally constructed by 

summation of interatomic potentials between all pairs of protein and ligand atoms [56]. 

Eventually, these functions with numerous terms describe non-convex and multi-modal 

solution space, even if the pairwise interatomic potentials are simple convex functions. These 

kinds of objective functions are often used for optimization problems of molecular sciences in 

which any interatomic potentials are calculated. Nature-inspired metaheuristic optimization 

algorithms are then developed to solve such kinds of problems with non-convex or multi-modal 

functions that are not amenable to the approach via differentiations as in the steepest descent 

method. FlABCps is one of the most robust optimization algorithms for the problems containing 

a number of local minima and/or highly multi-dimensional solution space. 

2.4 Conclusions 

In this work, we introduced a novel optimization algorithm FlABCps for the protein-ligand 

docking. The performance of FlABCps was assessed in comparison with the four state-of-the-

art docking algorithms. Simulation results revealed that FlABCps gave significantly accurate 
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docking poses of the ligands, compared with the other four algorithms. The results also showed 

that FlABCps provided the best performance for the highly flexible ligands with many 

optimization parameters. In addition, we analyzed the simulation regarding the energy 

landscape of the scoring function and the shape of the binding pocket of the receptor protein. 

Some kinds of proteins were supposed to be a challenging task for the docking because they 

usually possess a large number of wide and gradual energy wells corresponding to the local 

minima in the scoring function. For these proteins, the conventional optimization algorithms 

can hardly find the correct binding pose of ligand. In contrast, FlABCps successfully find the 

correct binding poses, properly avoiding such local minima. Consequently, FlABCps would 

become a useful algorithm for more complicated optimization problems concerning in silico 

drug discovery. 
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Chapter 3 

 

AutoDock-GIST: Incorporating Thermodynamics of 

Active-Site Water into Scoring Function for Accurate 

Protein-Ligand Docking 

3.1 Introduction 

Water is an indispensable participant in the binding process of a protein and a small 

molecule [71–77]. In an in vivo environment, the active sites of a proteins are filled with water 

molecules, and thermodynamics of these water molecules are diverse and quite different from 

those of bulk water [78-80]. When a small molecule binds to a protein, it causes the 

displacement of water molecules from the active site to the bulk region, and the 

thermodynamics of this displacement process is a principal source of binding free energy of 

ligands [81-83]. For instance, a water molecule enclosed by hydrophobic residues of protein 

that cannot make appropriate hydrogen bonds is enthalpically unfavorable, and the 

displacement of such water earns an enthalpic contribution in binding free energy. On the other 

hand, a water molecule forming tight hydrogen bonds to hydrophilic residues of a protein is 

enthalpically favorable, and the displacement of such water may incur the penalty of protein-

ligand binding. Thus, the role of active-site water molecules is widely appreciated in the study 

of molecular recognitions [84-88]. 

Computational approaches for analyzing active-site water properties have become 
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essential to our better understanding of protein-ligand binding [89-92]. Many computational 

methods have been developed to predict the location of binding-site water and/or its binding 

properties [93-98]. In recent years, molecular dynamics (MD) based methods have led to 

important advances in the study of active-site water and its thermodynamic role in ligand 

binding. The early key contributions include WaterMap [99], STOW [100], WATsite [101], and 

other approaches [102,103]. These methods usually determine high-density water locations as 

a spherical site, termed the “hydration site”, by analyzing the MD trajectory of protein and 

explicit water molecules, and calculate various thermodynamic quantities. For example, 

WaterMap locates hydration sites using a clustering algorithm, and calculates enthalpic and 

entropic contributions of individual hydration sites based on inhomogeneous solvation theory 

(IST) [104,105]. The hydration site analysis (HSA) helps researchers intuitively understand 

crucial water upon ligand binding, although it cannot represent the complex shape of high-

density water regions by a collection of spheres [17]. Moreover, there is another MD-based 

approach called grid inhomogeneous solvation theory (GIST) [17,106]. Instead of locating 

hydration sites, GIST discretizes the continuous distribution of water density and 

thermodynamic properties onto three-dimensional grids. Accordingly, compared to HSA based 

methods, GIST can capture the complex shape of water distribution, covering high- and low-

occupancy water regions. 

Protein-ligand docking simulation is a powerful tool for the rational and efficient design 

of small molecules in structure-based drug design (SBDD) [107,108]. The atom-atom pairwise 

potentials, used in most of the scoring functions of docking programs, give a relevant 

approximation of interaction energy between proteins and ligands. However, the accurate 

estimation of thermodynamics of water molecules is still challenging due to the highly 
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expensive cost of computation for virtual screening [109]. In recent years, the precise modeling 

and scoring of water molecules has become a critical issue of protein-ligand docking [110-112]. 

For example, some early works introduced hydration water molecules which remain in the 

binding site and form hydrogen bonds to proteins and ligands into docking program, and 

improved docking performances [113,114]. However, thermodynamics of displaced water 

molecules are still underestimated or even ignored in protein-ligand docking. Many scoring 

functions of docking software, including AutoDock, use an implicit solvent model in the form 

of a continuous desolvation function [32,115,116] which cannot describe in homogeneousness 

of active-site water molecules. The thermodynamics of displaced water molecules is a 

fundamental component of protein-ligand binding that contributes not only to the binding 

affinity but also to the binding conformation of ligands, since the ligand replaces unfavorable 

water molecules more easily than tightly bound water molecules [117]. Thus, the appropriate 

description of active-site water molecules should be essential for the improvement of docking 

performance. 

Here, we incorporate thermodynamics of active-site water molecules into AutoDock4 [62] 

by combining a new desolvation function based on grid inhomogeneous solvation theory 

(GIST), which is called AutoDock-GIST. The GIST-based desolvation function was designed 

to formulate the driving force for unfavorable water molecules displaced by the binding ligand. 

Similar desolvation functions were proposed in previous studies of WaterMap and GIST 

[99,106]. Notably, they estimated the affinity difference between the closely related congeneric 

pair of ligands, where the difference in binding affinity results from dominant contributions of 

solvation rather than protein-ligand interaction [99,106]. Following these two key studies, the 

present work attempted to estimate binding affinities of diverse ligands and to improve docking 
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success rates by combining the scoring function of AutoDock and GIST-based desolvation 

function. Since AutoDock uses a gridded energy map for fast calculation of scoring function 

[118], the grid water properties of GIST are tractable to be incorporated into AutoDock. 

Furthermore, after calculating active-site water properties from single MD trajectory of the 

apoprotein and explicit water, the GIST-based desolvation function can be used for virtual 

screening campaign via docking with almost the same computational cost as in AutoDock4. 

To validate the capability of our proposed scoring function, we study the complex system 

of coagulation factor Xa (FXa) and its small molecule inhibitors of 51 ligands which have 

experimentally measured binding affinities and X-ray crystal structures, including 28 ligands 

used in a previous work by WaterMap [99]. Using this dataset, we discuss the performance of 

AutoDock-GIST concerning the binding affinity estimation and the binding pose prediction. 

Furthermore, we evaluate the virtual screening performance, employing 793 active and 20,418 

decoy compounds of FXa from the directory of useful decoys-enhanced (DUD-E) [119]. The 

results have revealed that scoring accuracy, docking success rate, and screening performance 

are significantly improved. Note that our work is a case study for a single target protein of FXa, 

but the finding generally supports the applicability of GIST for successful docking campaign. 

3.2 Material and Methods 

3.2.1 Grid Inhomogeneous Solvation Theory (GIST) 

Grid inhomogeneous solvation theory (GIST) is a powerful and tractable computational 

method to calculate the hydration structure and thermodynamics of water around 

macromolecules, proposed by Nguyen et al. [17]. The thermodynamic properties of water 

molecules can be calculated based on inhomogeneous solvation theory (IST) [104,105], using 
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the snapshots of trajectories obtained from MD simulation of explicit water and protein. Most 

other computational methods, except GIST, use hydration site analysis (HSA) to identify the 

high-density and localized water region, called the hydration site. Although HSA-based 

approaches provide valuable insights into the role of specific water sites, they still have a 

significant limitation that they do not provide information on larger high-density water regions 

and other regions where the water density is low, rather than high, relative to bulk value [121]. 

To overcome these limitations, GIST discretizes IST onto a three-dimensional grid that fills the 

active site of protein, covering all occupancy regions of water (Figure 3.1). Thus, GIST provides 

more informative pictures of hydration water as the distribution of density and its 

thermodynamic properties. 

GIST calculates various thermodynamic quantities of water molecules on the three-

dimensional rectangular grid of cubic voxel 𝑘  in the region of interest. The complete 

description of the GIST method is compiled in the original paper [17]. In the present work, we 

studied the following five properties of water molecules in voxel 𝑘, computed by GIST: 

 

Figure 3.1 (A) Diagram of grid inhomogeneous solvation theory (GIST) calculation. The grid 

water properties of GIST are calculated using molecular dynamics (MD) trajectory of protein 

and explicit water; (B) The two-fold denser water regions (orange) than bulk in the active site 

of coagulation factor Xa (FXa) (gray) calculated by GIST. Figure prepared by using Visual 

Molecular Dynamics (VMD) [120]. 
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 𝜌𝑘, the number density of oxygen atom of water molecule found in a voxel 𝑘, in units of 

the density in bulk region (i.e., the number density of bulk water 𝜌bulk = 1). 

 ∆𝐸𝑘,sw
norm , the mean energy of solute-water interaction per water molecule in a voxel 𝑘 

(kcal/mol/water). This quantity is referenced to bulk water, in the trivial sense that the 

energetic contribution of solute-water interaction is zero in bulk region. 

 𝐸𝑘,ww
norm, one-half the mean energy of water-water interaction per water molecule in a voxel 

𝑘  with all other water molecules (kcal/mol/water). The factor 1/2 prevents double 

counting of two water-water interaction and preserves the total energy of neat water being 

written as the sum of the single water energy [106]. 

 −𝑇∆𝑆𝑘,orient
norm  , first-order orientational entropy per water molecule in a voxel 𝑘 

(kcal/mole/water), referenced to bulk water (i.e., the orientational entropy of bulk water is 

set to be zero).  

 −𝑇∆𝑆𝑘,trans
norm  , first-order translational entropy per water molecules in a voxel 𝑘 

(kcal/mol/water), referenced to bulk water (i.e., the translational entropy of bulk water is 

set to be zero). 

 

Based on these quantities, thermodynamic properties of water molecules are described by 

following equations. Here, we regard the interaction energy as enthalpic contribution in this 

paper. The total enthalpy of a water molecule in a voxel 𝑘, relative to bulk, is defined as 

∆𝐻𝑘
norm = ∆𝐸𝑘,sw

norm + 2(𝐸𝑘,ww
norm − 𝐸bulk,ww

norm ) , (3.1) 

where 𝐸bulk,ww
norm   represents the mean energy of water-water interaction in bulk region. The 

value of ∆𝐻𝑘
norm represents the mean interaction of a water molecule with the protein and all 
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other water molecules, referenced to that of bulk, 2𝐸bulk,ww
norm . Similarly, the total entropy of a 

water molecule in voxel 𝑘, relative to bulk, is defined as 

−𝑇∆𝑆𝑘
norm = −𝑇∆𝑆𝑘,orient

norm − 𝑇∆𝑆𝑘,trans
norm  , (3.2) 

where 𝑇 is the absolute temperature (that is included in the entropy terms of GIST by default). 

Accordingly, the free energy of a water molecule in voxel 𝑘, relative to bulk, is the sum of total 

enthalpy and entropy written as 

∆𝐺𝑘
norm = ∆𝐻𝑘

norm − 𝑇∆𝑆𝑘
norm . (3.3) 

Then, the unfavorable water molecule has a positive free energy (∆𝐺𝑘
norm > 0); in contrast, the 

favorable water molecule has a negative free energy (∆𝐺𝑘
norm < 0). As mentioned above, these 

thermodynamic quantities represent the differences from those of bulk water, which means that 

the displacement of high free-energy water is considered to be a driving force of protein-ligand 

binding.  

3.2.2 AutoDock4 

Our present method incorporates the GIST result into AutoDock4. AutoDock is one of the 

most widely used docking programs which is capable of quickly and accurately predicting 

bound conformation and binding energies [62]. In addition, AutoDock is widely used as a 

platform for the development of novel docking methodologies [114,122,123]. Two essential 

components of a docking program are an efficient search algorithm to find the conformation of 

the binding ligand and an accurate scoring function to estimate the binding free energy. 

AutoDock4 employs Lamarckian Genetic Algorithm (LGA) [39] for search algorithm and 

AutoDock4.2 force field [32] for the scoring function. The scoring function of AutoDock4 is a 
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semiempirical free-energy force field written as: 

∆𝐺bind
AutoDock = ∆𝐻vdW + ∆𝐻hbond + ∆𝐻elec + ∆𝑆conf + ∆𝐺desolv 

                        = 𝑊vdW ∑ ∑ (
𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐵𝑖𝑗

𝑟𝑖𝑗
6 )

prot

𝑗

lig

𝑖

 

                        +𝑊hbond ∑ ∑ 𝐸(𝜃) (
𝐶𝑖𝑗

𝑟𝑖𝑗
12 −

𝐷𝑖𝑗

𝑟𝑖𝑗
10)

prot

𝑗

lig

𝑖

 

                        +𝑊elec ∑ ∑ (
𝑞𝑖𝑞𝑗

휀(𝑟𝑖𝑗)𝑟𝑖𝑗

)

prot

𝑗

lig

𝑖

 

                        +𝑊conf𝑁tor 

                        +𝑊desolv ∑ ∑(𝑆𝑖𝑉𝑗 + 𝑆𝑗𝑉𝑖)𝑒(−𝑟𝑖𝑗
2 2𝜎2⁄ )

prot

𝑗

lig

𝑖

 . 

(3.4) 

Here, the scoring function consists of five potential energy terms, including van der Waals 

∆𝐻vdW , hydrogen bonding ∆𝐻hbond , electrostatic ∆𝐻elec , the conformational entropy of 

ligand ∆𝑆conf , and desolvation ∆𝐺desolv . The intermolecular potentials are calculated by 

summation over all pairs of ligand atom 𝑖 and protein atom 𝑗 as the function of their distance. 

The van der Waals term is a typical Lennard-Jones 12-6 dispersion/repulsion potential. The 

parameters 𝐴 and 𝐵 are taken from Amber force field [124]. The hydrogen bonding term is 

a Lennard-Jones 12-10 dispersion/repulsion potential with the directionality of hydrogen bond 

𝐸(𝜃) depending on the angle 𝜃 and the parameters 𝐶 and 𝐷 [125]. The electrostatic term 

is a screened Coulomb potential with the distance-dependent dielectric function 휀(𝑟𝑖𝑗) [126]. 

The conformational entropy term represents the loss of torsional entropy upon binding, 

depending on the number of rotatable bonds of ligand 𝑁tor . The last term is a desolvation 

potential based on the volume 𝑉 of atoms that surround a given atom and shelter it from the 
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solvent, weighted by the charge-based solvation parameter 𝑆 and the exponential term with 

distance-weighting factor 𝜎  [127]. The coefficients 𝑊  are weight factors fitted using the 

training set of the crystal structure of protein-ligand complexes and the experimentally 

measured binding affinities. Since the scoring function of AutoDock4 has these weight factors, 

it is called a semiempirical scoring function.  

Using this scoring function and the optimization algorithm, AutoDock4 searches the most 

stable (i.e., the lowest energy) binding conformation of the ligand in the user-defined cubic 

docking site (Figure 3.2). To enable searching for a large conformational space available to a 

ligand in protein, AutoDock4 introduced a grid-based energy calculation method. In this 

approach, the binding site of a target protein is embedded in the grid map. Before the docking 

simulation, a probe atom is sequentially set on each grid center, and the interaction energy 

between a probe atom and the target protein is calculated and stored in the grid map. This grid 

Figure 3.2 Co-crystal structure of FXa (cartoon) with ligand, Protein Data Bank (PDB) ligand-

id (HET) XLD, in van der Waals representation (cyan). The cubic region represents the 

docking site of AutoDock4 (gray). Figure prepared by using VMD [120]. 
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map is used as a lookup table during the docking simulation for rapid energy evaluation of 

ligand conformations. This cubic docking region and grid-based potential calculation approach 

are quite suitable to be combined with the description of water properties by GIST. 

3.2.3 Development of GIST-based Desolvation Function 

Although the free energy change of displacing water can be calculated by GIST results 

directly, many previous studies reported that there was no direct correlation between the free 

energy of water molecules in the binding site and the affinity of bound ligands and that the use 

of the simplified scoring function performed well [81,99,106]. Hence, we developed GIST-

based desolvation function according to a simple physical principle: If a heavy atom of ligand 

displaced a high-occupancy and unfavorable water molecule, the ligand earned a favorable 

contribution in binding free energy. The unfavorable water in this context corresponds to the 

high free-energy water for which the enthalpy-entropy compensation breaks down and either 

enthalpy or entropy is significantly unfavorable. Based on this physical principle, we design 

and propose a desolvation function suitable for grid-based energy calculation of AutoDock4. 

Once running MD simulation of apoprotein and explicit water and calculating thermodynamics 

of water with GIST, the grid water properties are readily converted to the map of unfavorable 

water according to two criteria as follows: (I) The free energy of a water molecule in a voxel 

𝑘, ∆𝐺𝑘
norm, is higher than a cutoff value ∆𝐺co; (II) The number density of a water molecule in 

a voxel 𝑘, 𝜌𝑘, is greater than a cutoff value 𝜌co. Using this map of unfavorable water, the 

displacing gain of an unfavorable water molecule is calculated as: 
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∆𝐺watdisp =  ∑ 𝛿𝑖∆𝐺aff

lig

𝑖

 , (3.5) 

𝛿𝑖 = {
1 if vdW radius of ligand atom 𝑖 covers unfavorable water grid 𝑘
0 otherwise

 . (3.6) 

Here, ∆𝐺aff is a fitting parameter which specifies the free energy gain by displacement of the 

unfavorable water molecule; 𝛿𝑖 is a binary displacement indicator which equals 1 if the vdW 

radius of a ligand atom 𝑖 covers any unfavorable water grid 𝑘 and 0 otherwise. Figure 3.3 

shows the diagram of this method. Note that our proposed method has three parameters, 𝜌co, 

Δ𝐺co, and Δ𝐺aff, which have to be fitted according to the binding thermodynamics of ligands.  

The GIST-based solvation function 𝛥𝐺watdispwas incorporated into the scoring function 

of AutoDock4, which is called AutoDock-GIST. This incorporation is achieved by a simple 

summation of the AutoDock4.2 force field and the GIST-based solvation function, expressed 

as: 

∆𝐺bind
AutoDock−GIST = ∆𝐺bind

AutoDock + ∆𝐺watdisp (3.7) 

Note that we retained the original desolvation term Δ𝐺desolv of AutoDock4 (Equation 

(3.4)) in the proposed scoring function. Since the desolvation term Δ𝐺desolv is based on the 

Figure 3.3 Diagram of GIST-based desolvation function employed here. A ligand atom 𝑖 

and unfavorable water grid 𝑘 are represented by a blue sphere and red cubes, respectively. 
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continuous solvation model and represents a penalty of binding free energy [32], we assumed 

that the displacing gain of unfavorable water ∆𝐺watdisp does not conflict with Δ𝐺desolv. The 

AutoDock-GIST approach takes advantage of on-the-fly evaluation to search binding 

conformations in the docking process, as compared with other rescoring-after-docking models 

[128-130]. Since AutoDock uses the optimization algorithm to search the binding poses of 

ligand, the scoring function significantly affects the conformations of sampled binding poses. 

The pre-configured scoring function of AutoDock-GIST is capable of docking the ligand while 

taking into account the displacement of unfavorable water molecules. Furthermore, once 

calculating the GIST-based desolvation function, the AutoDock-GIST calculation can be 

implemented in high-throughput docking with almost the same computational cost as in 

AutoDock4. 

The three fitting parameters of proposed scoring function, 𝜌co, Δ𝐺co, and ΔGaff, were 

adjusted and validated using 51 ligands of FXa consisting of 28 training set ligands and 23 test 

set ligands. In this work, we sought two sets of optimal parameters for protein-ligand docking: 

(I) Affinity parameter set, which maximized the correlation between calculated score 

∆𝐺bind
AutoDock−GISTand experimentally measured binding affinity ∆𝐺exp; (II) Pose parameter set, 

which maximized the success rate of binding pose prediction yielding root mean square 

deviation (RMSD) between docking pose and native pose of ligands less than 2 Å. To find these 

parameters, we scanned the value of 𝜌co from 1.0 to 6.0 by increments of 0.1, the value of 

Δ𝐺co from 0.0 to 4.0 kcal/mol by increments of 0.1 kcal/mol, and the value of Δ𝐺aff from 0.0 

to −2.0 kcal/mol by decrements of 0.01 kcal/mol, respectively. This scan yields 

61×41×201 = 50,271  combinations of the three parameters. For each combination, the 

training set ligands are calculated with AutoDock-GIST, and evaluated by each of the two 
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conditions above. The optimal parameters found in this procedure were then validated using 

the test set ligands. 

3.2.4. Datasets and Preparation 

3.2.4.1 Structure Preparation and MD Simulation for FXa 

In this work, we studied the coagulation factor Xa (FXa) to assess the performance of 

AutoDock-GIST. To analyze thermodynamics of active-site water molecules of FXa by GIST, 

we performed MD simulation of apoprotein and explicit surrounding water. The crystal 

structure of FXa was obtained from Protein Data Bank (PDB) [3] entry 1FJS [131], as studied 

previously [99,106]. First, we removed all crystallographic water molecules and bound ligands, 

keeping ions, from the system, and added hydrogens using the program Reduce [132]. We also 

removed the chain L of the crystal structure. We then used Tleap program from AmberTools 

[133] to prepare the system. We assigned protein parameters from AMBER99SB force field 

[134] and solvated the system in a TIP3P [135] water box with the periodic boundary condition, 

keeping the minimum distance of 10 Å away from any atom of the protein. Four disulfide bonds 

were set up and two crystal ions, Ca2+ and Cl−, were restrained at their original positions. 

After preparing the system, we minimized the energy of the system and ran MD simulation. 

All following procedures were carried out with the Amber 14 software using pmemd.cuda [136]. 

First, we minimized the system energy in two steps: (I) Only the water while restraining all 

protein atoms; (II) The water and the protein hydrogen atoms while restraining the protein 

heavy atoms. Both minimization steps used 1500 cycles of the steepest descent algorithm 

followed by the conjugate gradient method for the maximum of 20,000 cycles, where the atoms 
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were harmonically restrained with force constant of 100 kcal/mol/Å. Next, the system was 

heated for 200 ps from 0 K to 50 K in the NVT ensemble with the first simulation and the 

temperature was incremented by 50 K for 200 ps in the NPT ensemble until 300 K was reached. 

The system was then equilibrated for 10 ns at 300 K in the NPT ensemble. At the final volume, 

the system was equilibrated again for 5 ns at 300 K in the NVT ensemble. The final production 

MD run of 100 ns was performed in the NVT ensemble, and snapshots of this simulation were 

saved every 1 ps, for a total 10,000 frames of snapshots stored. Notably, during all MD 

simulations, all protein atoms were harmonically restrained with a force constant of 100 

kcal/mol/Å. A time step of 2 fs was employed with SHAKE algorithm [137]. The temperature 

was regulated by Langevin thermostat; the nonbonded interactions were truncated at 9 Å and 

the particle mesh Ewald method was implemented to account for the long-range electrostatic 

interaction [138]. After all, for the GIST calculation, the trajectory of production MD was 

aligned across all frames referenced to the initial position of the protein, using the cpptraj 

program [139]. 

3.2.4.2 GIST Calculation and Docking Set-up 

Before the GIST calculation, we prepared the FXa structure for docking simulation, 

following the standard AutoDock protocol. First, the protein structure of 1FJS was aligned to 

the initial coordinate of MD trajectory, to superpose the GIST region and docking region of 

AutoDock. The bound ligand, water, and ions were removed from the system and polar 

hydrogens were added to the protein using AutoDockTools [62]. The docking site was set to 

22.5×22.5×22.5 Å3 cubic region centered at bound ligand of 1FJS, which was the range to 

cover the active site of FXa. In this docking site, grid-based potential maps were calculated by 
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AutoGrid (included in AutoDock suit). We then used a default grid size of 0.375 Å 

(approximately a quarter of the vdW radius of carbon atom) to calculate the grid-based potential 

maps of AutoDock, which resulted in the number of grid points of map 60×60×60. 

The GIST calculation was performed using cpptraj program included in AmberTools 

[139,140]. The cubic region of GIST analysis was set to the active site of FXa, corresponding 

to the docking region set above. The grid centroid position was the center of docking site. The 

grid size was 60×60×60 . The voxel side length (grid spacing) was 0.375 Å, the same as 

default grid size of AutoDock4. The thermodynamic properties of active-site water molecules 

were then calculated by GIST using MD snapshots, and the free energies of water molecules 

were calculated based on Equations (3.1)–(3.3), and subsequently, the GIST-based desolvation 

function was adjusted using the training set described below.  

3.2.4.3 Dataset Preparation and Docking Metrics 

For the evaluation of proposed method, we used diverse 51 ligands of FXa for which both 

experimentally measured binding affinities and X-ray crystal structures are known. The 51 

ligands were grouped into the training set and the test set to optimize and validate fitting 

parameters of GIST-based desolvation function. First, for the training set, we used 28 ligands 

of FXa which were used in a previous computational study [99] (see Table B1 in Appendix B). 

Next, for the test set, we selected an additional 23 ligands of FXa from PDBbind 2007 refined 

set [141] (see Table B2 in Appendix B). Note that we then eliminated some FXa ligands from 

original PDBbind dataset, which have the adverse correlation between molecular weight and 

binding affinity (e.g., a ligand with low molecular weight but high binding affinity or a ligand 

with high molecular weight but low binding affinity), since with such ligands it is quite difficult 
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to estimate the correct binding affinity by scoring functions of docking programs [142,143]. As 

a result, the correlations between molecular weight and binding affinity of the training set and 

the test set are 0.48 and 0.33 in R2 values, respectively. All ligands in the training set and the 

test set were carefully aligned on the initial structure of simulated protein (1FJS) and their 

energies were minimized by AMBER12:EHT force field using Molecular Operating 

Environment (MOE) [144]. In addition, we used a compound dataset of FXa obtained from the 

directory of useful decoys-enhanced (DUD-E) [119] to validate the virtual screening 

performance of AutoDock-GIST. The virtual screening dataset includes 793 active and 20418 

decoy compounds of FXa. All of the ligands used in this study were prepared for docking 

simulation, by using AutoDockTools [62]. 

The capability of AutoDock-GIST was assessed in terms of binding affinity prediction, 

docking success rate, and virtual screening performance. First, the accuracy of binding affinity 

prediction was measured by the correlation between the calculated score of native pose ligand 

and the experimentally measured binding affinity, for the R2 value of Pearson correlation 

coefficient. Next, the docking calculation was performed 10 times for each ligand, and the 

lowest energy conformation was selected. The docking success rate was then calculated based 

on RMSD between the predicted binding pose and crystal pose of ligand. In this work, an 

RMSD of less than 2 Å was regarded as a success of binding pose prediction. At last, the 

performance of virtual screening was evaluated by area under the curve (AUC) of receiver 

operating characteristic (ROC) [145] and enrichment factor (EF) [146]. The ROC curve plots 

the true positive rate against the false positive rate of virtual screening results, and the context 

of AUC represents the area under the ROC curve. The range of the AUC is 0 to 1: the value 1 

represents ideal virtual screening result, and the value 0.5 represents random selection. The 
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enrichment factor is a characteristic of a rank-ordered list of a given first 𝑥% subset, calculated 

as: 

EF(𝑥%) =
hits𝑥 N𝑥⁄

hitst Nt⁄
 , (3.8) 

where hits𝑥 is the number of actives found in the first 𝑥% subset, N𝑥 is the total number of 

compounds at first 𝑥%  subset; hitst  and Nt  are the total number of actives and the total 

number of compounds in the entire docked dataset, respectively. Therefore, EF(𝑥%) estimates 

how many times a docking program can pick out actives relative to random, in the first 𝑥% 

subset of a rank-ordered docking result. 

3.3 Results and Discussion 

3.3.1 Parameter Fitting for GIST-based Desolvation Function 

In this section, we discuss adjusted parameters of GIST-based desolvation function and 

the unfavorable water distributions in the active site of FXa. As mentioned above, we 

constructed the two sets of parameters: (I) The affinity parameter set which maximized the 

correlation between docking score and experimentally measured binding affinity; and (II) The 

pose parameter set which maximized the success rate of binding pose prediction in docking. 

The values of three parameters were systematically searched from the parameter space using 

28 training set ligands of FXa. As a result, we found optimal values of 𝜌co, Δ𝐺co, and Δ𝐺aff 

for each parameter set (Table 3.1), so that docking and scoring performances were significantly 

improved, as will be discussed in the following sections.  
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Table 3.1 Adjusted parameters for GIST-based desolvation function of AutoDock-GIST.a  

Parameter set 𝜌co 𝛥𝐺co [kcal/mol/water] 𝛥𝐺aff [kcal/mol] 

Affinity parameter set 4.8 1.0 -0.50 

Pose parameter set 4.3 1.9 -0.25 

a 𝜌co is a density cutoff parameter for unfavorable water molecules in active site; 𝛥𝐺co is a free-energy 

cutoff parameter for active-site water; 𝛥𝐺aff  is a free-energy gain of unfavorable water molecule 

displaced by a ligand heavy atom. Parameter fitting methods are described in Materials and Methods 

section. 

 

In both parameter sets, density cutoff parameters 𝜌co have high values beyond 4, in other 

words, the unfavorable water region of GIST-based desolvation function has over four-fold 

higher density than that for bulk water. The value of 𝜌co in the affinity parameter set is slightly 

greater than that in the pose parameter set. On the other hand, the value of free-energy cutoff 

parameter Δ𝐺co  in the affinity parameter set is approximately a half of that in the pose 

parameter set, that is, the affinity parameter set picks up less unfavorable water molecules than 

the pose parameter set. The displacing gain of unfavorable water, Δ𝐺aff, is two-fold higher in 

the affinity parameter set than that in the pose parameter set. In summary, the affinity parameter 

set gives high free-energy gain to the displacement of unfavorable water molecules, while the 

pose parameter set gives low free-energy gain to displacement of highly unfavorable water 

molecules. 

The active site of FXa and the distribution of unfavorable water for each parameter set are 

shown in Figure 3.4. The active site of FXa includes two important subpockets for bound 

inhibitors, S1 and S4 [147] (Figure 3.4A). The S1 pocket is a deeply concave region and 

determines the major component of selectivity and binding by residues Asp189, Ser195, and 

Tyr228. The S4 pocket, called hydrophobic box, is formed from three aromatic residues Tyr99, 
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Phe174, and Trp215. FXa inhibitors are generally bound in an L-shaped conformation, where 

one group of the ligand occupies the anionic S1 pocket, and another group of the ligand 

occupies the aromatic S4 pocket; a fairly rigid linker group connects these two interaction sites 

[148]. The unfavorable water region of GIST-based desolvation function was determined by 

two cutoff parameters, density cutoff parameter 𝜌co and free-energy cutoff parameter Δ𝐺co. 

In both parameter sets, the unfavorable water molecules were found in both S1 and S4 pockets; 

in other words, GIST analysis indicated that high-occupancy and high free-energy water 

molecules exist in S1 and S4 pockets. This result coincides with an early computational study 

Figure 3.4 Binding ligand and distributions of unfavorable water for GIST-based desolvation 

function in the active site of FXa (PDB-id: 1FJS, gray): (A) Binding hot spots of FXa, S1 

pocket (yellow), and S4 pocket (purple); (B) The bound ligand of 1FJS (residue-id: Z34), in 

van der Waals representation (cyan); (C) The unfavorable water distribution for pose 

parameter set (green); (D) The unfavorable water distribution for affinity parameter set 

(orange). Figure prepared by using VMD [120]. 
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of FXa by WaterMap [99]. However, the unfavorable water regions of the pose parameter set 

and affinity parameter set showed somewhat different configurations. For the pose parameter 

set, the high value of Δ𝐺co caused the tight distribution of unfavorable water on the binding 

hot spots of FXa (Figure 3.4C). In contrast, for the affinity parameter set, the low value of Δ𝐺co 

caused the broad water distribution covering the active-site surface of FXa (Figure 3.4D).  

For further discussion, we analyzed the free energy components of unfavorable waters in 

the active site of FXa. We have discussed the unfavorable active-site water in a term of high 

free energy so far. However, there are two types of unfavorable water regions which comprise 

enthalpically unstable water or entropically unstable water in an active-site of protein. It is 

widely known that enthalpy and entropy compensate each other in biomolecular systems 

[87,149-151]. For instance, a water molecule placed on a hydrophobic surface is enthalpically 

unfavorable, since it cannot make appropriate hydrogen bonds. However, at the same time, such 

water molecules are entropically favorable, because the missing hydrogen bond relaxes its 

orientation and earns orientational entropy. In contrast, a tightly bound water molecule is 

enthalpically favorable but entropically unfavorable due to its fixed orientation. The high free-

energy water then causes the breakdown of enthalpy-entropy compensation and either enthalpy 

or entropy is significantly unfavorable. For each parameter set of GIST-based desolvation 

function, we decomposed unfavorable water region into an enthalpically unfavorable water and 

an entropically unfavorable water regions (Figure 3.5). Here, the enthalpically dominant water 

represents ∆𝐻𝑘
norm > −𝑇∆𝑆𝑘

norm , whereas the entropically dominant water represents 
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∆𝐻𝑘
norm < −𝑇∆𝑆𝑘

norm. The results showed that the unfavorable water for pose parameter set 

was more enthalpically unfavorable (Figure 3.5A), whereas that of affinity parameter set was 

more entropically unfavorable (Figure 3.5B). The main difference in two parameter sets was 

the value of free-energy cutoff Δ𝐺co : The value of Δ𝐺co  in the affinity parameter set is 

approximately a half of that in the pose parameter set. Hence, the results also indicate that the 

enthalpically unfavorable water is highly unfavorable in its free energy more than the 

entropically unfavorable water. In other words, the entropically unfavorable water is not so 

unfavorable in its free energy than the enthalpically unfavorable water. 

3.3.2 Accuracy of Binding Affinity Prediction for FXa ligands 

After the fitting parameters of GIST-based desolvation function were adjusted by 28 

training sets ligands, the scoring accuracy of AutoDock-GIST was assessed for 23 test set 

ligands. Figure 3.6 shows the results of binding affinity predictions for FXa ligands. The R2 

Figure 3.5 Enthalpy-entropy decomposition of unfavorable water distributions for GIST-

based desolvation function in the active site of FXa (gray): (A) pose parameter set; (B) affinity 

parameter set. More enthalpically unfavorable water regions are shown in purple (∆𝐻𝑘
norm >

−𝑇∆𝑆𝑘
norm ), whereas more entropically unfavorable water regions are shown in yellow 

(∆𝐻𝑘
norm < −𝑇∆𝑆𝑘

norm). Figure prepared by using VMD [120]. 
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values between calculated score of AutoDock4 and experimentally measured binding affinity 

were 0.38 for the training set ligands and 0.49 for the test set ligands, respectively. In contrast, 

the affinity parameter set of AutoDock-GIST found the optimal parameters achieving the R2 

value 0.60 for the training set ligands, and also improved the R2 value to 0.58 for the test set of 

ligands. Hence, this result has proved that the displacing gain of unfavorable water is an 

essential factor to improve the scoring function of docking. Some typical improvements are 

highlighted in Figure 3.6. For instance, AutoDock4 scoring function underestimated the binding 

free energy for the ligand of 1FJS (blue), since its interaction energy with the protein was not 

so high. On the other hand, the ligand of 1FJS successfully displaced some unfavorable water 

molecules and earned favorable free energy gain whose value of ∆𝐺watdisp  was −17.5 

kcal/mol. A similar improvement was observed in the ligand of 2Y5F (red), which had poor 

interaction with the protein but displaced a great deal of unfavorable water. The value of 

∆𝐺watdisp was −16.0 kcal/mol for 2Y5F ligand. In contrast, the binding free energy of ligand 

of 2J34 (green) was overestimated by AutoDock4 scoring function, since it had favorable vdW 

interactions with protein atoms. However, the ligand of 2J34 earned little displacing gain of 

unfavorable water molecules so that the value of ∆𝐺watdisp was −14.0 kcal/mol. As a result, 

these differences in the values of ∆𝐺watdisp significantly improved the scoring accuracy of the 

affinity parameter set. 

The same calculation was performed with the pose parameter set of AutoDock-GIST. Even 

though the pose parameter set was not adjusted in consideration of the accuracy of binding 

affinity prediction, interestingly, the R2 values were slightly improved, which are 0.41 and 0.50 

for the training set and the test set, respectively. This result also supported the fact that the 

GIST-based desolvation function correctly described an essence of binding thermodynamics of 



 
Chapter 3 

56 

Figure 3.6 Scatter plots and regression lines of experimentally measured binding affinities 

versus docking scores of AutoDock4 (left), AutoDock-GIST with affinity parameter set 

(middle), and AutoDock-GIST with pose parameter set (right) for FXa ligands of training set 

(upper), test set (middle) and all data (lower). R2 values represent the squares of Pearson 

correlation coefficients. Color plots show specific examples of improvements: blue, green, 

and red circles represent the ligands of 1FJS, 2J34, and 2Y5F, respectively. 
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ligand. On the other hand, since the pose parameter set had the higher value of free-energy 

cutoff Δ𝐺co and the lower value of displacing gain Δ𝐺aff than those of the affinity parameter 

set, the calculated result showed that these parameters did not significantly affect scoring 

accuracy. In other words, the result suggested that low free-energy cutoff value of unfavorable 

water and high displacing gain were effective for quantitative scoring of binding free energy. 

Notably, in this study, the absolute values of AutoDock-GIST scores were greater than those of 

AutoDock4 since we did not scale them in comparison to the experimental values. 

3.3.3 Docking Success Rate for FXa ligands 

We expected that the displacement of unfavorable water molecules might contribute to the 

favorable conformation of binding ligand and inclusion of displacing gain should improve the 

docking performance. Based on this assumption, the pose parameter set of the GIST-based 

desolvation function was adjusted to be optimal for binding pose prediction using 28 training 

set ligands, and evaluated by 23 test set ligands. Table 3.2 shows the results of docking 

calculation of pose prediction success rates for FXa ligands. The docking success rates of 

AutoDock4 were 75.0% and 82.6% for the training set and the test set, respectively. As expected, 

the pose parameter set of AutoDock-GIST found the suitable parameters for binding pose 

prediction which resulted in a docking success rate 89.3% for the training set ligands, and also 

improved the docking success rate up to 95.7% for the test set ligands. On the other hand, for 

the affinity parameter set of AutoDock-GIST, the docking success rates were almost unchanged 

or were a little bit improved, which were 71.4% for the training set and 90.4% for the test set. 
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Table 3.2 Accuracies of binding pose predictions: docking success ratesa for FXa ligands.  

Data set AutoDock4 
AutoDock-GIST 

(pose parameter set) 

AutoDock-GIST 

(affinity parameter set) 

Training set 75.0% 89.3% 71.4% 

Test set 82.6% 95.7% 90.4% 

All data 78.4% 92.1% 80.4% 

a RMSD between the native structure and the docking pose of ligand being less than 2Å was regarded as 

a success of binding pose prediction. 

 

For further discussion, we carefully analyzed docking results and found three typical cases 

that displacement of unfavorable water molecules affected conformations of docking ligands 

(Figure 3.7). First, for the ligand of 1NFX (residue-id: RDR), AutoDock4 successfully found 

the native-like pose of the bound ligand with RMSD of 1.24, and the pose parameter of 

AutoDock-GIST also reproduced the native-like pose of the bound ligand with RMSD of 1.42 

(Figure 3.7A). However, the affinity parameter set of AutoDock-GIST failed to dock the ligand 

with RMSD of 6.18. In the other two cases for the ligands of 1MQ6 (residue-id: XLD) and 

1NFU (residue-id: RRP), only the pose parameter set of AutoDock-GIST successfully 

reproduced the native-like poses, whereas AutoDock4 and the affinity set of AutoDock-GIST 

docked the ligands at far from native pose (Figure 3.7B,C). As mentioned above, the 

unfavorable water regions of the pose parameter set were mostly placed on the important 

binding pockets of FXa, S1, and S4 (see Figure 3.4). The docking results clearly showed that 

the displacing gain of such unfavorable water molecules was an essential factor in determining 

the binding conformations of FXa ligands. In fact, the displacement of some unfavorable water 

in the pose parameter set indicated with blue arrows in Figure 3.7 seem to contribute to 

successful docking simulations. On the other hand, the affinity parameter set of AutoDock-
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GIST did not improve the docking success rate significantly, and found some unusual docking 

poses that were different from those of AutoDock4. In the cases of the affinity parameter set, 

we supposed possibilities that broad distribution of the unfavorable water and high displacing 

gain might yield unnecessary local minima in the free energy landscape of scoring function and 

merely caused docking failures. 

Figure 3.7 Docking results for FXa ligands of PDB entries: (A) 1NFX, (B) 1MQ6 and (C) 

1NFU. Native crystallographic structures of bound ligands are shown as cyan sticks. Docking 

results of AutoDock4 are shown as red sticks (left), those of AutoDock-GIST with the pose 

parameter set are shown as yellow sticks and transparent surface (middle), and those of 

AutoDock-GIST with the affinity parameter set are shown as purple sticks and transparent 

surface (right). The unfavorable water distributions for the pose parameter set and the affinity 

parameter set are shown as green and orange regions, respectively. The blue arrows point to 

unfavorable water molecules which contribute to the successful docking. Figure prepared by 

using VMD [120]. 
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3.3.4 Virtual Screening Performance of AutoDock-GIST 

Another key measure of the docking performance is the enrichment of ligands among the 

top ranking docked compounds. We evaluated virtual screening performance of AutoDock-

GIST through the docking calculation for 793 active and 20,418 decoy compounds of FXa from 

the directory of useful decoys-enhanced (DUD-E) [119]. Figure 3.8 shows the ROC plot and 

AUC of docking results. Though AutoDock4 showed good screening performance with AUC 

of 80.4%, both parameter sets of AutoDock-GIST improved the value of AUC compared with 

AutoDock4, which were 85.6% for the affinity parameter set and 86.4% for the pose parameter 

set. Interestingly, even though the pose parameter set of AutoDock-GIST was not adjusted in 

consideration of quantitative binding affinity of FXa ligands, it showed a slightly better 

performance than that of the affinity parameter set. 

Figure 3.8 Receiver operating characteristic (ROC) plots of docking results for FXa ligands: 

AutoDock4 (blue), AutoDock-GIST with the affinity parameter set (orange), and AutoDock-

GIST with the pose parameter set (green). The values represent the percentages of the AUC.  
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We also assessed the early enrichment of docking results by enrichment factor EF (Table 

3.3). For all subset sizes, AutoDock-GIST resulted in superior performance to AutoDock4. The 

values 26.75 of EF(0.1%) in both parameter sets of AutoDock-GIST represent that 21 

compounds of the top 0.1% subset were all active compounds, which are calculated by 

EF(0.1%) = (21 21⁄ ) (793 (20,418 + 793)⁄ )⁄   with Equation (3.8). The affinity parameter 

set of AutoDock-GIST showed the best value of EF(0.5), 25.23. For the larger subset, the pose 

parameter set of AutoDock-GIST performed the best. As mentioned above, the affinity 

parameter set of AutoDock-GIST tended to cause the docking failure frequently compared with 

that of the pose parameter set, and the incorrect binding pose then resulted in the wrong 

estimation of the binding affinity [13]. In other words, improvement of docking success rate 

with the pose parameter set contributed more positively to the virtual screening campaign than 

the affinity parameter set. Eventually, the virtual screening results indicated that our method 

was feasible to deal with diverse ligands of FXa and inclusion of displacing gain of unfavorable 

water molecules had a significant advantage in the docking campaign. 

 

Table 3.3 Enrichment factors for DUD-E ligands of FXa.a  

Metrics AutoDock4 
AutoDock-GIST (affinity 

parameter set) 

AutoDock-GIST  

(pose parameter set) 

EF(0.1%) 25.47 26.75 26.75 

EF(0.5%) 23.22 25.23 24.73 

EF(1%) 21.45 22.84 23.34 

EF(2%) 16.65 17.92 19.11 

EF(5%) 10.30 10.57 12.26 

EF(10%) 6.44 6.61 7.59 

a The percentage in parenthesis represents the ratio of subset of rank-ordered list in docking result. 
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3.4 Conclusions  

Although the thermodynamics of active-site water molecules are widely appreciated in the 

studies of molecular recognition, it is still challenging to estimate its contributions in protein-

ligand docking quantitatively. Here, we showed a case study of the combination of GIST and 

AutoDock4, called AutoDock-GIST, and discussed the effectiveness of displacing gain of 

unfavorable water in protein-ligand docking. Following early key studies of GIST [106] and 

WaterMap [99], the present GIST-based desolvation function was designed on the basis of a 

simple physical principle: if a heavy atom of ligand displaced a high-occupancy and 

unfavorable water molecule, the ligand earned a favorable contribution in binding free energy. 

We studied diverse ligands of FXa by the proposed docking method and concluded that 

displacing gain of unfavorable water molecules was an essential factor for protein-ligand 

docking. The computational results showed that inclusion of water thermodynamics could 

improve not only quantitative scoring of binding affinity but also a conformational prediction 

of binding ligand. The result also indicated that the proposed method had a significant 

advantage in the virtual screening of the large compound set of FXa via docking. 

Another interesting finding was that the high free-energy water molecules in the active site 

of FXa were mostly enthalpically unfavorable, rather than entropically unfavorable. This result 

is consistent with many previous studies that enthalpically unfavorable water molecules are 

more important for molecular recognition when they are displaced by a binding ligand [81,106]. 

In addition, our result revealed that the entropically unfavorable water molecules are also 

effective for quantitative binding affinity calculation when we consider the free energy of water 

molecules. However, our enthalpy dominant water model for the pose parameter set did not 

significantly improve the accuracy of binding affinity calculation. It implies that the 
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displacement gain of enthalpically unfavorable water has a similar property to the scoring 

function of AutoDock4. It is possible that, since empirical or semiempirical scoring functions 

fit their interaction potentials to experimentally measured binding affinity ignoring the 

displacement of water molecules, they implicitly include a part of water replacement energies 

[33,152]. In fact, the weight factor of vdW potential in AutoDock4 scoring function is 1.37 

times higher than that of hydrogen bonding potential. It might be modeling the difference of 

the displacement energy of active-site water molecules between a hydrophobically enclosed 

one (enthalpically unfavorable) and a hydrogen bonded one (enthalpically favorable). Hence, 

this presumption indicates that we should re-adjust potential parameters of scoring function 

with explicit water replacement terms for a more rigorous description of displacing water 

molecules. 

Though the displacement of unfavorable water molecules is a principal driving force of 

the protein-ligand binding, it is worth mentioning that it is only a part of water thermodynamics 

upon ligand binding. For instance, some research groups reported that the displacement of 

tightly bound water molecules incurs a penalty in binding free energy [153-155]. It is also 

important to consider the contribution of hydrated water molecules, which remain and form a 

bridge of hydrogen bonds to proteins and binding ligands [72,156-158]. In both cases, GIST is 

capable of capturing such water molecules. However, an accurate modeling of water molecules 

becomes even more complicated in consideration of various thermodynamics of active-site 

water. It also needs a large dataset of protein-ligand complexes for further development of the 

scoring function because different protein binding site affect water differently so that a different 

result might be obtained for a different protein target. Some scoring functions attempted to cope 

with these kinds of challenging work, such as the WScore developed by Schrödinger, Inc., New 
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York City, NY, USA [159]. Notably, while our work is a case study for a single target protein 

of FXa and further studies would be needed to show that this is a general result, our result 

supports the applicability of GIST for successful docking campaigns. We also hope that the 

present results would activate more quantitative studies of molecular docking for drug design. 
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Chapter 4 

 

Cosolvent-based Molecular Dynamics for Ensemble 

Docking: Practical Method for Generating Flexible 

Protein Conformations 

4.1 Introduction 

Protein-ligand docking is one of the most promising computational tools in the large-scale 

discovery of compound hits for target macromolecules, which potentially reduces the costs and 

improves the efficiency of modern high-throughput screening (HTS) for drug design [160]. The 

docking calculation is applied to rank database compounds for a specific target, and the use of 

high-quality compound libraries and appropriately constructed docking model can lead hit rate 

several folds above random [161-163]. Docking-based virtual screening (VS) methods have 

successfully contributed to the discovery of novel inhibitors of various targets, including HIV-

1 integrase [164], human estrogen receptor alpha [165], cytochrome P450 aromatase [166], and 

many others [167-172]. Despite these successes, docking still has some limitations in its 

applicability for diverse target proteins. The weakness often comes from the deficient 

representation of protein flexibility. Traditionally, most of the docking methods only consider 

ligand flexibility and use a single and rigid structure of target protein for fast calculation. 

However, since proteins are intrinsically flexible and frequently undergo conformational 

changes on ligand binding, the static view of protein structure in classical docking is far from 
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reality. For instance, protein kinases are widely known as a difficult target for docking due to 

its flexible binding pocket [173]. Moreover, some cross-docking studies have shown that 

docking ligand to the non-native structure of target protein leads to failure of docking in 

mode/affinity prediction [174-177]. These results also imply that the use of single protein 

structure might lead the poor enrichment of VS experiments. To overcome this limitation, recent 

approaches for improving docking methods have focused on the efficient incorporation of 

protein flexibility [178-183]. 

In the last decades, the importance of protein flexibility upon ligand binding has been 

widely recognized [18,184,185]. The first proposal was the induced fit model proposed by 

Koshland [186] in 1958, which suggested that ligand binding induces a conformational change 

of protein. A more recent explanation was given by the conformational selection model, in 

which a ligand binds to a particular conformation of the unbound protein and stabilizes the 

potential energy of such a conformation by forming protein-ligand complex [187-189]. It is 

well understood that the binding process of protein and ligand is not so simple, and the induced 

fit model and the conformational selection model are not contradictory. For instance, a ligand 

may bind to a particular conformation of protein fluctuating between several metastable 

conformations and may induce a small conformational change of protein to stabilize it. A small 

induced fit effect has been successfully introduced into docking methods by allowing the 

rearrangement of several protein side chains when the docking calculation is performed 

[190,191]. However, for some targets, major backbone movements are observed, in which case 

the full receptor flexibility in docking calculation might be required [192-194]. The ideal 

approach to incorporating protein flexibility would be to explore the full degrees of freedom of 

the protein-ligand system, using the computational simulations such as Monte Carlo (MC) or 
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molecular dynamics (MD). Unfortunately, such a method is computationally expensive and 

impractical for large-scale docking experiments like a virtual screening [195]. Thus, a 

simplified model has been presented to incorporate limited protein motions while keeping 

computational time practical; that is an ensemble docking [19]. 

Recently, numerous studies have focused on the ensemble docking approach [196-200]. 

In contrast to explicit modeling of protein flexibility, the ensemble docking makes use of 

multiple and discrete structures of a target protein. In the standard ensemble docking procedure, 

each compound is sequentially docked to a set of protein conformers (i.e., ensemble) to find the 

best-fit protein structure for a particular ligand. Consequently, the flexibility of target protein is 

implicitly introduced into the docking method. The ensemble docking has been successfully 

applied to diverse protein targets, for example, nuclear receptors [201], protein kinases [202-

204], proteases [205-207], and oxidoreductases [208,209]. A certain advantage is that the 

ensemble docking is capable of accounting for any scale of protein motions, including large-

scale backbone movement, loop activation of protein kinases, and side-chain rearrangement 

around the bound ligand. Nevertheless, in practical, the coverage of protein flexibility 

completely depends on the quality of the structural ensemble. In other words, the ensemble 

docking method never finds a new protein conformation not included in the prepared ensemble. 

Thus, the critical issue of ensemble docking is how to select and/or generate a high-quality 

ensemble structures of the target protein. 

In early studies of ensemble docking, multiple protein conformations have often been 

collected from the experimental structures determined by X-ray crystallography or/and nuclear 

magnetic resonance (NMR), and most of these studies have concluded that the use of multiple 

protein structures is beneficial in VS experiments [201-205,210-213]. Similarly, some studies 
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using homology modeling for ensemble construction have also shown a better performance of 

ensemble docking than the use of single protein structure [214-216]. Since experimentally 

determined protein structures contain diverse ligand-bound conformations, the methods above 

are capable of including those distinct protein conformations in the ensemble appropriate for 

the binding of diverse database ligands. However, it is worth noting that the success of such 

approaches requires rich experimental structures of the target protein.  

On the other hand, a more challenging approach can be provided by the molecular 

dynamics (MD) simulation to generate multiple protein conformations [217-220]. The use of 

MD simulation has two certain advantages. First, the MD simulation only needs one 

experimental structure of the target protein. Hence, it is widely applicable to diverse targets, 

even though the target structure is few, of low resolution, or even a computationally modeled 

one. Second, the MD simulation might find a completely new conformation of the target protein 

superior to the experimental one for the VS study. In fact, some early studies reported that the 

best snapshot of MD simulation was more predictive than the X-ray or NMR structures 

[221,222]. However, at the same time, MD snapshots include many poor structures, and it is 

still difficult to select the promising structure for the VS experiments. Therefore, a rational 

selection method of protein conformations from the MD trajectory is needed for the successful 

ensemble docking. Another question is whether the MD simulation with pure water molecules 

is the best approach to generating druggable protein conformations. As mentioned above, there 

are two fundamental models of protein flexibility upon ligand binding: induced fit model and 

conformational selection model. For instance, the use of an apoprotein for the MD simulation 

might cause conformational changes of the binding pocket and represent the conformational 

selection model, whereas it could not take into account the induced-fit effects of a specific 
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ligand binding. In contrast, the use of holoprotein successfully accounts for a specific induced 

fit model, whereas it might restrict dynamic motions of the target protein. Hence, our interest 

is focused on those more sophisticated simulation methods to generate the druggable 

conformations of a target protein. In this study, we present novel ensemble docking procedures 

by combining the inexpensive conformational selection method and the cosolvent-based 

molecular dynamics (CMD) simulation. 

The selection of multiple protein conformations is an essential process for the success of 

ensemble docking. Since the MD simulation generates numerous protein conformations, they 

have to be narrowed down to an appropriate size of ensemble. The use of a large conformational 

ensemble is tremendously time-consuming and increases the false positive rate of the VS 

experiment. Applying a clustering algorithm is a general approach to picking up distinct protein 

conformations from the MD trajectory. However, it has been reported that the clustered protein 

conformations include not only good structures but also poor structures for VS study [223]. 

One promising technique for relevantly selecting protein structures involves docking a library 

containing known actives and a large number of decoys to the target protein [224,225]. The 

larger the number of actives found among the top hits and the higher the rank of the actives, the 

better is the receptor structure for virtual screening. However, this method could be 

computationally expensive when this analysis is repeated to the numerous snapshots of MD 

simulation. A more practical method has been proposed by Huang and Wong, called screening 

performance index (SPI) [226]. They showed SPI is capable of selecting a good experimental 

structure for the VS experiments through the docking of a set of known actives only. We 

introduce a little modification to SPI to be stable for the selection of MD snapshots and apply 

it to our study. 
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In addition to the conformational selection method, we propose the use of cosolvent-based 

molecular dynamics (CMD) simulation for the generation of druggable protein conformations. 

Cosolvent-based MD, so-called mixed-solvent MD or ligand-mapping MD, is a simple but a 

highly attracting computational method which uses water and organic probe molecules for the 

solvent when performing the MD simulation of a protein target. The first cosolvent-based 

simulation method was reported by Barril and co-workers in 2009, called MDmix [227]. 

Following this study, some similar methods have been proposed to date, such as SILCS [228], 

MixMD [229], pMD [230], and many others [231-234]. Various probe molecules, resembling 

certain chemical moieties found in drug-like ligands, have been used for mapping the protein 

surface, finding the binding hotspots, and identifying the pharmacophore feature of hotspots 

where high-affinity ligands are attainable. At the same time, the CMD simulation often brings 

about the probe-induced conformational changes of a target protein. In fact, it has been reported 

that the cosolvent simulations are capable of finding the allosteric sites or new binding hotspots 

which the standard MD could not identify [235-237]. More recently, Yang and co-workers have 

applied the CMD to the complex system of Bcl-xL and showed that the use of conformations 

obtained from the CMD improved the docking performance for the known ligands of Bcl-xL 

[21]. Based on these impressive studies, we attempt to incorporate the CMD simulation into the 

ensemble docking, expecting the CMD generates more druggable conformations of a target 

protein than the experimental structures and enhances the enrichment of the VS study. 

In the present study, CMD was performed for six diverse protein targets using three 

different probe molecules to evaluate the applicability of the CMD-based ensemble docking. 

We then used apo forms of protein structures for the input of MD simulations so that the 

difference of conformational changes could be clearly observed. The present method was 
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validated by the VS performance using diverse active and decoy compounds taken from 

DEKOIS 2.0 library [238] and compared with the single structure docking to the X-ray 

structures of the apo and holo form proteins. The present method was also assessed in 

comparison with the standard MD simulation (i.e., only using water and ions for solvents) based 

ensemble docking. The results have revealed that the present method is capable of identifying 

more diverse active ligands than the previous methods, and is widely applicable for the diverse 

protein targets. 

4.2 Material and Methods 

4.2.1 Target Protein and Structure Preparation 

Six diverse target proteins taken from DEKOIS 2.0 were used for the ensemble docking 

studies, which include progesterone receptor (PR), cyclin-dependent kinase 2 (CDK2), NAD-

dependent protein deacetylase sirtuin-2 (SIRT2), human immunodeficiency virus-1 protease 

(HIV1PR), thymidine phosphorylase (TP), and epidermal growth factor receptor (EFGR). 

These six proteins have been shown to be difficult targets for the virtual screening in the original 

DEKOIS 2.0 study [238]. We selected each one of apo (or apo-like) and holo form (inhibitor 

bound) structures for the six target proteins from the protein data bank (PDB). The apoproteins 

were used for the MD simulations and the ensemble docking studies, whereas the holoproteins 

were only used in the single structure docking for the comparison of the ensemble docking 

performances. The six target proteins and the selected twelve structures are summarized in 

Table 4.1. Note that since an apo form structure of PR was not available in PDB, we selected 

progesterone (hormone) bound structures for PR (PDB-ID: 1A28). For the descriptive purposes, 

we call this structure “apo” in this paper. 
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Table 4.1 X-ray structures for the six target proteins used in this study. 

Target protein 
Protein structure (PDB ID) 

Apo Holo 

Progesterone receptor (PR) 1A28 a 2W8Y b 

Cyclin-dependent kinase 2 (CDK2) 1HCL 1CKP b 

NAD-dependent protein deacetylase sirtuin-2 (SIRT2) 1J8F b 5D7P 

Human immunodeficiency virus-1 protease (HIV1PR) 2PC0 3NU3 b 

Thymidine phosphorylase (TP) 2WK5 1UOU b 

Epidermal growth factor receptor (EFGR) 5EDP 1M17 b 

a Progesterone (hormone) is bound in the binding pocket. b Structures used in the original DEKOIS 2.0 

study. 

 

In the present study, all protein structures were prepared by using molecular operating 

environment (MOE) [114]. First, all the twelve structures were prepared for the docking 

calculation. All water molecules, ions, and, bound ligands were removed from the systems 

(including the progesterone), and hydrogens were added by using Protonate3D [239] in MOE. 

Next, the six apo form structures were prepared for the MD simulation as follows: (I) 

compensating the missing atoms and residues; (II) modeling the missing loops; (III) fixing 

engineered mutations. Following the structure preparations, the systems of six apoproteins were 

set up for the MD simulation. 

4.2.2 Choice of Cosolvents and System Set-up for MD 

In addition to the standard MD, we tested three different CMDs with isopropanol, benzene, 

and purine. We selected these probe molecules based on the size and their chemical features. 

The isopropanol is the most widely used probe molecule for the cosolvent simulations, which 

is miscible in the water but capable of interacting with the hydrophobic surfaces of proteins. In 
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contrast, the benzene is an insoluble molecule in water, whereas its aromatic interaction is 

essential for the molecular recognition between the protein and the drug-like ligand. The purine 

is also an aromatic probe but a little bit larger than benzene, and capable of forming hydrogen 

bonds. While the purine has rarely been used for the cosolvent simulation, it is a representative 

moiety often found in the biomolecules or the approved drugs. In this study, the probe-water 

concentrations were set to ~0.25M for all simulations, since some previous studies concluded 

that a low concentration resulted in a clear occupancy of probe molecules in the binding 

hotspots [240-242]. 

Consequently, we tested the total 24 systems (the four different solvents for the six protein 

systems) for the MD simulation. All the systems were prepared with the identical procedure. 

First, the systems were solvated using Packmol [243]. The target proteins were randomly 

shelled with the probe molecules and solvated in the cubic box with water molecules, and the 

minimal number of Na or Cl ions were then added to electrically neutralize the systems. Next, 

the force field parameters were assigned to the solvated systems using the Tleap program from 

AmberTools 16 [244]. We used AMBER14SB force field [245] for the proteins, TIP3P water 

model [135] for the solvent water molecules, and the generalized amber force field (GAFF) 

[246] for the probe molecules. The partial atomic charges of the probe molecules were then 

calculated by the restrained electrostatic potential (RESP) method, using quantum-

mechanically derived electrostatic potentials at the Hartree-Fock level with the 6-31G* basis 

set. At last, the periodic boundary condition was set to the cubic box. As an example, Figure 

4.1 shows the prepared system and the final system of cosolvent simulation for PR and benzene 

probes. Throughout the simulation, most of probe molecules spread into water solvent, whereas 

some probes concentrate on a particular surface of the protein target. 
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4.2.3 Molecular Dynamics Protocols 

To generate multiple protein conformations, the MD simulations of the prepared systems 

were performed with the identical protocols. Following procedures were carried out with the 

Amber 14 software using pmemd.cuda [136]. First, the system energies were minimized in two 

steps: (I) Only solvents and protein hydrogens while restraining protein heavy atoms; (II) The 

whole system without any restraint. Both minimization steps used 1500 cycles of the steepest 

descent algorithm followed by the conjugate gradient method for the maximum of 20000 cycles, 

and the restraint was harmonic with force constant of 100 kcal/mol/Å. Next, the system was 

heated in three steps: (I) for 50 ps from 0 K to 50 K in the NPT ensemble while tightly 

restraining protein heavy atoms with force constant of 100 kcal/mol/Å; (II) for 150 ps from 50 

K to 150 K in the NPT ensemble while weakly restraining protein heavy atoms with force 

Figure 4.1 Snapshots of cosolvent simulation for PR (white ribbon) and benzene probes 

(magenta sticks). (A) Initial structure of MD simulation. (B) Final structure (after 50 ns 

product run) of MD simulation. Water and ions are not displayed.   
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constant of 10 kcal/mol/Å; (III) for 200 ps from 150 K to 300 K in the NPT ensemble. The first 

two steps were performed to relax the solvents, in particular for probe molecules. The system 

was then equilibrated for 2 ns at 300 K in the NPT ensemble. At the final volume, the system 

was equilibrated again for 2 ns at 300 K in the NVT ensemble. The final production MD run of 

50 ns was performed in the NVT ensemble, and snapshots of this simulation were saved every 

1 ps, for a total 50,000 frames of snapshots stored. During the MD simulations, a time step of 

2 fs was employed with the SHAKE algorithm [137], a temperature was regulated by Langevin 

thermostat, the nonbonded interactions were truncated at 9 Å, and the particle mesh Ewald 

method was employed to account for the long-range electrostatic interaction [138]. As a result, 

we performed totally 1.2 µs production MD run (50ns for the 24 systems). On the post-

processing, all water, probes, and ions were stripped from the trajectory, and each frame of 

protein snapshot was aligned on the initial structure to remove translational and orientational 

movement of the entire protein using the Cpptraj program from AmberTools 16. 

4.2.4 Selection of Conformational Ensemble from MD Trajectory 

We here present an ensemble selection procedure by combining the rough clustering and 

the inexpensive structure ranking method. First, we performed the structure clustering to the 

MD trajectory. The purpose of this procedure was the reduction of MD snapshots with 

maintaining the structural diversity of a target protein. Since we focused on the dynamics of the 

binding pocket, we only used atoms around the binding pocket for the clustering. The positions 

of binding pockets were selected according to the bound ligands of holoproteins used in this 

study. The binding pocket atoms were then selected using the fpocket program [247], which 

selected the atoms contacting to the alpha spheres. The alpha sphere was used in the binding 
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pocket detection by the fpocket algorithm, which is defined as a sphere that contacts four atoms 

on its boundary and contains no internal protein atoms. The selected pocket atoms for each 

target are summarized in Appendix C (Table C1). Using these pocket atoms, we applied k-

means clustering algorithm to the snapshots of MD simulation using the Cpptraj from 

AmberTools 16 and selected centroids from each cluster for the candidates of the 

conformational ensemble. We then used the RMSD-based pairwise distance and set the cluster 

number k to 500. Throughout this process, 50,000 frames of MD snapshots were narrowed 

down to the 500 specific protein conformations.  

Before the ensemble selection, we introduced a structure selection measurement. An 

efficient conformational selection method, screening performance index (SPI), was proposed 

by Huang and Wong [226] in 2015. They showed that SPI is capable of selecting a good 

structure for VS experiments through the docking of a few known active compounds. The 

rationale of SPI is simple: If many actives can dock to a protein structure with docking energies 

more favorable than the overall average docking energies to all protein structures, such structure 

might be more likely to pick out many actives in virtual screening. On the basis of this rationale, 

SPI is formulated as: 

SPI𝑗 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑙
 , 𝑥𝑖 =  {   1 if 𝐸𝑖 ≤ �̅�

0 otherwise
 . (4.1) 

Here, 𝑖 ∈ [1,2, ⋯ , 𝑛]  and 𝑗 ∈ [1,2, ⋯ , 𝑚]  represent the indices of an active and a protein 

structure, respectively. Terms 𝑙 , 𝑛 , and 𝑚  are the total number of actives, the actives 

successfully docked to a specific protein structure, and the total number of protein structures, 

respectively.  �̅�  is the overall averaged docking energies across all actives and all protein 
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structures. The range of SPI is [0,1], and a good structure shows the high value. In the previous 

study, SPI was applied to the several X-ray structures of eight target proteins, and its effectivity 

was validated [226]. However, we found that SPI was not predictive for the large number of 

protein structures generated by the MD simulation, in particular for the high-rank region near 

the SPI value of 1. In other words, it means that many protein structures easily reach the SPI 

value of 1. Hence, we introduced a slight modification into SPI, called ranking-based SPI 

(RSPI). The idea is simple: The more actives dock to a protein structure with lower docking 

energies relative to the other structures, the more favorably such structure picks out many 

actives in virtual screening. RSPI is described as: 

RSPI𝑗 = 1 −
∑ 𝑟𝑗𝑖

𝑙
𝑖=1

𝑙×𝑚
 , 

(4.2) 

where 𝑖, 𝑗, 𝑙, and 𝑚 are the same as SPI; 𝑟𝑗𝑖 is the rank of the 𝑖th active docked to 𝑗th 

protein structure in the descending ordered list of docking energies of 𝑖th active against all 

protein structures 𝑚. RSPI is highly correlated to SPI, but more distinguishable for high ranked 

structures.  

The clustered 500 protein structures were then ranked for the ensemble construction using 

RSPI. We used 40 known actives from DEKOIS 2.0 for each one of the six target proteins, and 

the docking was performed using AutoDock Vina [248]. The compounds and docking protocols 

used in this work are described in the following sections. Eventually, we selected top ten protein 

structures from each MD trajectory based on RSPI for the use of ensemble docking studies. 

4.2.5 Dataset for Virtual Screening Experiment 

DEKOIS 2.0 [238] was used in this work, which is a useful benchmarking dataset for the 
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evaluation of VS performance through the docking. In DEKOIS 2.0, the benchmarking set was 

constructed using an original protocol for the selection of both actives and decoys. For each 

target, the DEKOIS 2.0 includes 40 known actives and 1200 decoys. The active ligands were 

retrieved from the BindingDB [249] using several filters. The decoy sets were selected from 

the 15 million ZINC [250] compounds to be of similar physiochemical properties but 

structurally dissimilar to the actives. It is worth noting that decoy sets of DEKOIS 2.0 are not 

true inactive compounds and may adversely affect the evaluation of the VS performance [62].  

4.2.6 Docking Protocols 

All docking calculations were carried out using AutoDock Vina [248]. The totally 

6×1240 = 7440  dataset compounds were prepared for the docking study using the 

prepare_ligand4.py program of AutoDockTools [251]. The preparation procedure of protein 

targets was mentioned above. To define the search volume, all the protein structures were 

aligned to the holo form of the same target protein, and then a cubic box of 

22.5 Å × 22.5 Å × 22.5 Å  was placed around the center of the co-crystallized ligands. 

Default settings were used for all docking calculations, and the highest score (i.e., the lowest 

energy) was selected from each docking run and used for the compound ranking. 

4.2.7 Ensemble Docking and Scoring 

In ensemble docking protocol, each compound is sequentially docked to a set of protein 

conformers (ensemble), resulting in multiple docking scores obtained depending on the number 

of protein structures. Hence, a method to determine the single scoring value of a given 

compound is needed for ensemble docking. Several different methods for combining multiple 
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docking scores into a single docking score have been suggested. Reported protocols include 

selecting the best score across all structures [199,208], creating composite grids of all ensemble 

members [19,252], and using different weighted averages which include arithmetic [253] and 

Boltzmann weighted averages [254] as well as averages using weights determined by 

knowledge-based methods [196]. In this work, we used two simple approaches for the ensemble 

scoring: (I) Minimum scoring method, which adopts the best scoring function value (i.e., 

minimum energy) across all ensemble members; (II) Average scoring method, which calculates 

the arithmetic mean of docking scores across all ensemble members. These two ensemble 

scoring methods are compared in Results and Discussion section. 

4.2.8 Enrichment Measurements 

Early enrichment is an essential measurement of the VS performance. In the structure-

based virtual screening, a large number of compounds in a database are sequentially docked to 

a target protein and ranked by its docking score. Usually, only top few percent compounds are 

selected from the rank ordered list of the large compound database for more rigorous evaluation 

of in vitro or in vivo experiments. Hence, a metric to measure how many true actives are 

included on the top ranked list is suitable for the evaluation of VS methods. In this study, we 

used the Boltzmann-enhanced discrimination receiver operating characteristic (BEDROC) 

[255] for the statistical measurement of screening efficiency. BEDROC is regarded as one of 

the most useful metrics for gauging the performance of screening models, in particular for the 

measurement of early recognition problem. The metric is given by 
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BEDROC =
∑ 𝑒−𝛼𝑟𝑖 𝑁⁄𝑛

𝑖=1

𝑛
𝑁 (

1 − 𝑒−𝛼

𝑒𝛼 𝑁⁄ − 1
)

𝑅𝑎𝑒𝛼𝑅𝑎(𝑒𝛼 − 1)

(𝑒𝛼 − 𝑒𝛼𝑅𝑎)(𝑒𝛼𝑅𝑎 − 1)
+

1

1 − 𝑒𝛼(1−𝑅𝑎)
 , (4.3) 

where 𝑅𝑎  is the ratio of the total number of actives 𝑛  to the total number of database 

compounds 𝑁, and 𝑟𝑖 is the relative rank of the 𝑖th active in the rank ordered list. BEDROC 

gives the probability that an active is ranked ahead of a compound randomly selected from a 

hypothetical exponential probability distribution function with parameter 𝛼. It is bound by the 

interval [0,1], with 1 reflecting the best possible screening performance. In this work, we select 

the most widely used value, 𝛼 = 20.0, which corresponds to the top 8% of the relative rank 

accounting for 80% of the BEDROC score. 

4.3 Results and Discussion 

4.3.1 Virtual Screening Performances 

Using the snapshots of individual MD runs, conformational ensembles were selected based 

on RSPI score. In this work, we constructed an ensemble with top ten structures of RSPI score 

for each simulation. The performances of docking methods were assessed by the VS 

experiments using 40 actives and 1200 decoys of the DEKOIS 2.0 library for each protein target. 

The ensemble dockings were then performed for the 24 ensemble systems (the six protein 

targets for the three different CMDs and the standard MD) and compared with single structure 

docking to the X-ray structure of apo and holo form proteins. The BEDROC values of VS 

experiments are provided in Table 4.2. The results revealed that, compared to virtual screening 

using the single X-ray structure, the use of the CMD-based ensembles resulted in significant 

improvement of early enrichments. The results also showed the superior performance by using 
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the cosolvent simulation to the standard water simulation. 

 

Table 4.2 BEDROC values of virtual screening experiments for the six target proteins. a 

Protein structure PR CDK2 SIRT2 HIV1PR TP EGFR Average 

X-ray structure (single docking)        

          Apoprotein 0.104 0.018 0.125 0.223 0.116 0.180 0.128 

          Holoprotein 0.153 0.088 0.131 0.229 0.083 0.153 0.139 

Minimum scoring (ensemble docking)        

          Pure water MD 0.083 0.028 0.138 0.195 0.068 0.068 0.097 

          Isopropanol probe MD 0.137 0.027 0.193 0.134 0.155 0.165 0.136 

          Benzene probe MD 0.255 0.030 0.197 0.233 0.200 0.233 0.191 

          Purine probe MD 0.247 0.055 0.208 0.285 0.186 0.187 0.195 

Average scoring (ensemble docking)        

          Pure water MD 0.127 0.020 0.195 0.240 0.052 0.052 0.113 

          Isopropanol probe MD 0.097 0.028 0.195 0.326 0.157 0.194 0.156 

          Benzene probe MD 0.186 0.015 0.164 0.281 0.216 0.223 0.180 

          Purine probe MD 0.231 0.051 0.229 0.329 0.013 0.191 0.170 

Best snapshotb (single docking)        

          Pure water MD 0.179 0.073 0.173 0.352 0.198 0.234 0.202 

          Isopropanol probe MD 0.156 0.094 0.219 0.393 0.189 0.229 0.213 

          Benzene probe MD 0.217 0.051 0.209 0.392 0.269 0.263 0.234 

          Purine probe MD 0.276 0.092 0.202 0.389 0.094 0.209 0.210 

a Bold represent superior BEDROC values to X-ray structures. Underlines represent the best BEDROC 

values among the four different MDs in the same scoring protocols. b Best structure represents the best 

result of single structure docking among the ten ensemble structures obtained by different probe 

simulation. 

 

First, we discuss the result of the minimum scoring method. The log-scaled receiver 

operating characteristic (ROC) plots for the minimum scoring results are shown in Figure 4.2. 

The significant improvements were found especially in the benzene probe CMD and purine 

probe CMD. These two probe-based ensembles successfully improved BEDROC values of five 

of all the six protein targets, PR, SIRT2, HIV1PR, TP, and EGFR. For example, the ensemble 



 
Chapter 4 

82 

of benzene probe CMD improved BEDROC value (0.255) for PR, which is approximately 2.5-

fold higher than that of single apo form X-ray structure (BEDROC = 0.104). Similarly, the 

ensemble of purine probe CMD resulted in BEDROC value 0.247 for PR. Next to the PR, the 

early enrichments of SIRT2 and TP were clearly improved by utilizing the cosolvent simulation 

for the ensemble docking. On the other hand, the ensemble docking of isopropanol probe based 

CMD only improved the VS performance only for two targets, SIRT2 and TP, and interestingly, 

its BEDROC values were worse than those of benzene and purine probes across all the six 

targets. 

Another considerable finding was that the pure water MD-based ensemble docking 

lowered the BEDROC value than the single docking of X-ray structure, only except for SIRT2. 

Introducing protein flexibility by ensemble docking may enable accurate prediction of native 

binding poses and quantification of ligand binding affinities [178,181]. However, it also results 

in an increased number of false positives in the VS study [208]. In other words, the latter can 

result in a poor enrichment performance compared to using a single static structure for the VS 

study. The ensemble docking results of pure water MD indicated such increases of false positive 

rates. In fact, the best single docking result of ensemble structures was always better than the 

ensemble docking result in the pure water MD systems (see Table 4.2). Similarly, in other 

ensembles produced by CMDs, the single docking result of the best snapshot in the ensemble 

structures tended to be better than the ensemble docking results. Nevertheless, by combining 

the cosolvent simulation, our results suggested that the CMD-based ensemble docking is 

capable of resulting in comparable performance to the best single docking (see Figure C3-C8 

in Appendix C). Furthermore, in the case of benzene probe simulation for PR, the ensemble 

docking led to the improvement of screening performance compared to every single docking 
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Figure 4.2 Log-scaled receiver operating characteristic (ROC) plots with the minimum 

scoring method of ensemble docking for the six targets. Each line represents the following: 

apo X-ray (red), holo X-ray (blue), pure water MD (magenta), isopropanol probe MD 

(yellow), benzene probe MD (cyan), purine probe MD (green), and theoretical result of 

random selection (black dots). 
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(Figure C3 in Appendix C). The similar results were found in the case of purine probe 

simulation for TP (Figure C7 in Appendix C). Surprisingly, in the case of purine probe 

simulation for TP, the minimum score of ensemble docking improved the BEDROC value to 

0.186, which is approximately twice higher than the best single docking (BEDROC = 0.094). 

These two results were typical cases successfully introducing protein flexibility into protein-

ligand docking. 

Regarding the average scoring method, the results were not significantly different from 

the minimum scoring method. The log-scaled ROC plots for the average scoring results are 

shown in Figure 4.3. For the pure water MD and isopropanol probe CMD, the BEDROC values 

of the average scoring results were slightly better than those of the minimum scoring results. In 

contrast, for the benzene probe CMD and purine probe CMD, the average scoring method 

resulted in lower BEDROC values than those of the minimum scoring. Significant 

improvements were found in the case of HIVPR, that the average scoring method showed clear 

improvements of the BEDROC value compared to the minimum scoring method across all the 

simulation methods. In particular, the average score of isopropanol probe based ensemble 

achieved the BEDROC value of 0.326 for HIV1PR, which is over 2-fold higher than the that 

of the minimum score (BEDROC = 0.134). On the contrary, in the purine probe simulation, the 

BEDROC value of average scoring for TP was severely got worse (0.031). This result suggested 

that the multiple conformations of TP generated by the purine probe simulation might be 

substantially different from each other and highly selective for the typical ligands. Owing to 

such reasons, an active might be successfully docked to a particular conformation of the 

ensemble but could not fit other conformations, resulting in the worse average score and the 

good minimum score of the ensemble docking (Figure C7 in Appendix C). It is speculated that 
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Figure 4.3 Log-scaled receiver operating characteristic (ROC) plots with the average scoring 

method of ensemble docking for the six targets. Each line represents the following: apo X-ray 

(red), holo X-ray (blue), pure water MD (magenta), isopropanol probe MD (yellow), benzene 

probe MD (cyan), purine probe MD (green), and theoretical result of random selection (black 

dots). 
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the contrastive situation, good average score and worse minimum score, was found in the 

ensemble docking to HIV1PR, in particular for the isopropanol probe CMD (Figure C6 in 

Appendix C). 

To sum up, comparing the two ensemble scoring methods, the minimum scoring method 

was slightly better than the average scoring method for the benzene probe CMD and purine 

probe CMD. In contrast, for the pure water MD and the isopropanol probe CMD, the average 

scoring method was superior to the minimum scoring method. The difference of two scoring 

method did not seem to depend on targets or probe molecules. It still needs further studies to 

find the consistent rule for selecting ensemble scoring methods.  

4.3.2 Binding Pocket Conformation and Probe Concentration 

For further analysis of the effect of the probe molecules, the principal component analysis 

(PCA) was performed to all the ensemble structures. PCA is a valuable tool for comparing 

conformations obtained through the MD simulations to the experimental structures. In this study, 

PCA was carried out on the Cartesian coordinates of binding pocket atoms, using the ptraj 

module in AmberTools 16. The resulting projections along the first two principal components 

(PC1 and PC2) are plotted in Figure 4.4. As expected, PCA results clearly showed distinct 

distributions of binding pocket conformations in response to the different probe molecules 

except for HIV1PR. This result also suggested that the probe molecules induced conformational 

changes of binding pockets. 

Particular probe bindings have been found in several snapshots of MD trajectories. For 

instance, Figure 4.5 shows the benzene and purine probes concentrating to the binding pocket 

of the PR system. Figure 4.5A shows a snapshot of the benzene probe simulation at around 46 
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ns, which has the best BEDROC value of 0.217 of the VS experiments in the benzene systems. 

Through the MD simulation, three benzene probes were bound to the binding pocket of PR. 

Interestingly, the bound structures of these benzene probes overlapped well the ring moieties of 

the co-crystalized ligand of PR (PDB ID: 2W8Y). The result suggested that the benzene probes 

reproduced a part of essential interactions between protein and ligand, and such probe-induced 

conformational change was beneficial for the docking of diverse ligand. The similar probe 

concentrations were found in the purine probe system of PR. The purine probes were bound to 

the binding pocket during the equilibrium phase of the MD simulation and stayed in the binding 

pocket during 50 ns of the production run. Figure 4.5B shows a snapshot of this simulation at 

Figure 4.4 Principal component analysis (PCA) of binding pocket atoms for top 10 structures 

of RSPI obtained from each MD run. Each color circle represents the following: apo form X-

ray structure (red), pure water MD (magenta), isopropanol probe MD (yellow), benzene probe 

MD (cyan), and purine probe MD (green). 
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around 25 ns, which has the best BEDROC value of 0.276 of the VS study in the purine system. 

The number of purine probe in the binding pocket was the same as that of the benzene system, 

but the bound structures were different. The purine probes successfully overlapped the two-

membered ring moieties of the same ligand. Such kinds of probe concentrations were similarly 

found in other systems, and it might affect the binding pocket conformations of protein targets. 

4.3.3 Protein Motion of Cosolvent-based Molecular Dynamics 

Although the CMD simulation might cause the protein unfolding or aggregation of probe 

molecules [232], all the MD runs performed in this work have been finished without such 

difficulties. We have checked protein dynamics of each MD run in terms of the root mean square 

deviation (RMSD) plots of backbone Cα atoms and binding pocket atoms with the lapse of time 

(see Figure C1, C2 in Appendix C). Contrary to our expectations, there has not been any 

consistent change of protein dynamics according to the difference of probe molecules. The 

motions of backbone and binding pocket atoms have also not been correlated for all cases. 

Figure 4.5 Concentrations of probe molecules in the binding pocket of progesterone receptor 

(white ribbon) and superposed ligand of PDB entry 2W8Y (red sticks). (A) Snapshot of 

cosolvent molecular dynamics simulation with benzene probe (cyan sticks). (B) Snapshot of 

cosolvent molecular dynamics simulation with purine probe (green sticks). 
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However, depending on the combination of protein and probes, the results have clearly shown 

that the different probe molecules induce distinct protein motions. For example, purine probe 

significantly stabilized the binding pocket of PR (average RMSD was 1.02 Å), whereas it 

destabilized the binding pocket movement of SIRT2 compared with other probe molecules. 

Interestingly, in the cases of HIV1PR and TP, the probe molecules suppressed the backbone 

movement of proteins in comparison to the standard MD without probes, even though we 

expected that the hydrophobic probes enhance the protein dynamics. We then found that some 

probe molecules concentrate into specific sites of the protein surface. Accordingly, these results 

have suggested that such probe binding might stabilize the whole dynamics of protein target. 

In fact, the similar mechanism has been reported that the cosolvent of water and glycerol 

enhances the protein stability [256]. 

4.3.4 Ensemble Selection from MD trajectory by RSPI 

Although the CMD-based ensemble docking has showed the superior VS performances to 

the use of single X-ray structure, it should be noted that the structure selection method presented 

here still has a room for improvement, and further discussion is needed. The RSPI method 

successfully selects many useful structures from the MD snapshots, whereas it also includes 

some poor structures which enhance the false positive rate of the VS experiments. In fact, there 

were no correlations between the BEDROC values and the RSPI scores in the selected ten 

structures across all cases (Table 4.3). It might be concluded from the results that our 

assumption for the RSPI score is not correct. It also indicated the fact that; if many actives dock 

to a protein structure with lower docking energies relative to the other structures, such structure 

not always distinguish actives and decoys in virtual screening. However, at the same time, it 
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means that there remains a possibility for further improvement of the CMD-based ensemble 

docking. For instance, Xu and Lill [224] reported that the use of a small subset of actives and 

decoys is capable of selecting appropriate protein structures for the VS study. They also 

suggested that a very small number (3-5) of protein structures can perform good ensemble 

docking with the feasible training process. 

 

Table 4.3. Correlations (R2) between the RSPI scores and BEDROC values among top ten protein structures 

of RSPI score obtained from each MD run. a 

Target Pure water Benzene probe Isopropanol probe Purine probe 

PR 0.025 (1) 0.001 (4) 0.036 (1) 0.205 (8) 

CDK2 0.003 (0) 0.029 (0) 0.444 (1) 0.018 (1) 

SIRT2 0.362 (6) 0.000 (7) 0.229 (10) 0.188 (8) 

HIV1PR 0.017 (5) 0.051 (2) 0.162 (3) 0.066 (8) 

EGFR 0.052 (3) 0.001 (5) 0.025 (2) 0.005 (6) 

TP 0.162 (2) 0.001 (9) 0.141 (6) 0.001 (0) 

a The values in the parentheses represent the number of structures which show better BEDROC values 

than that of the X-ray structures, among the ten ensemble structures used in the VS experiments.  

 

4.4 Conclusions 

In this study, we have presented a novel ensemble docking strategy by combining the 

inexpensive conformational selection method and the cosolvent-based MD simulation. The 

present method has been evaluated using the six diverse protein targets with the three different 

probe molecules. The ensemble docking results revealed that multiple protein conformations 

produced by the CMD simulations are surely suitable to be used in the VS studies. Moreover, 

the PCA of binding pocket atoms has shown that different probe molecules induce different 

binding pocket movements, and such a difference significantly affects the VS performance. The 
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results could lead to a conclusion that the use of the CMD simulation is more beneficial than 

standard MD with pure water. It was also more predictive than the single structure docking with 

X-ray structures of both apo and holo form proteins. In almost all cases, using an ensemble of 

proteins performs better than the average of a single protein structure result. Furthermore, in 

some cases, such as PR and SIRT2, the use of ensemble conformations outperformed the best 

or almost the same as the best BEDROC values among all the single structure dockings. This 

result also indicated that the present method appropriately introduces the essential protein 

conformational changes into the protein-ligand docking. However, the choice of probe 

molecule is still a delicate issue. In this work, we tested three probe molecules of isopropanol, 

benzene, and purine for the CMD simulations. The ensemble docking results showed that the 

use of different probe molecules significantly affects the VS performance. Although the use of 

the benzene and purine probes seems good in this study, more sophisticated selection of probe 

molecules may further improve the VS performance. We suggest the utilization of a small 

moiety of a high-affinity ligand or a small fragment hit for the advance. On the other hand, the 

simple ensemble selection method has been far from satisfactory. We presented the RSPI 

method for the structure selection of the ensemble docking. The present method successfully 

selects many useful structures from the MD snapshots, whereas it also includes some poor 

structures which enhance the false positive rate of the VS experiments. For further improvement 

of the MD-based ensemble docking method, an advanced structure selection method is strongly 

needed. Although there remain several challenges to brush up the cosolvent simulation to a 

practical tool for the structure-based VS study, we believe that the present study would 

contribute to the future drug design. 

 



 

92 

Chapter 5 

 

General Conclusions 

The great goals of protein-ligand docking are accurately predicting the bonding pose of 

ligand, correctly estimating binding strength of drug candidate, and ranking the huge database 

compounds for promising “hit” discovery. Although the protein-ligand docking is a powerful 

tool for the rational drug design, it is still far away from ideal performance. The challenges 

remain especially with efficient search algorithm, desolvation energy of scoring function, and 

protein flexibility upon ligand binding. In this thesis, the three strategies have been presented 

for the further improvement of protein-ligand docking. In chapter 2, a swarm-based 

optimization algorithm, fitness learning-based artificial bee colony with proximity stimuli 

(FlABCps) have been introduced to the docking program, finding that FlABCps significantly 

improve the accuracy of pose prediction in particular for the highly flexible ligands with many 

optimization parameters. In chapter 3, the thermodynamics of active-site water molecules have 

been incorporated into the scoring function of the docking program. The computational 

experiments have revealed that the incorporation of water thermodynamics is substantially 

beneficial for the pose prediction and the affinity estimation, further the success of virtual 

screening. In chapter 4, novel ensemble docking method have been presented by combining the 

cosolvent-based molecular dynamics simulation, aiming to the practical incorporation of the 

protein flexibility into protein-ligand docking. The simulation results have been revealed that 
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the present method is capable of generating diverse protein conformations and identifying many 

active ligands than the previous methods. The methods presented here are not definitive and 

still on the way to the ultimate goal of protein-ligand docking. However, I believe the finding 

and results of this thesis would encourage and support further development of protein-ligand 

docking methodologies. 
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Appendix A  

Table A1 Pseudocode of FlABCps algorithm. 
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Table A2 Setting parameters of the five algorithms for docking experiments. 

FlABCps 
 

Number of food soures, SN 500 

Maximum trial number, limit 200 

ABC 
 

Number of food sources, SN 500 

Maximum trial number, limit 200 

SODOCK 
 

Number of particles, Np 500 

Number of immediate neighbors, K 4 

Inertia weight, w 0.9~0.4 (liner decreasing) 

Cognitive weight, c1 2.0 

Social weight, c2 2.0 

Maximal velocity, Vmax 2.0 Å (for translation) 
 

1.0, 180 deg (for orientation) 
 

50 deg (for conformation) 

Maxmal steps of local search 50 

PSO 
 

Number of particles, Np 150 

Inertia weight, w 0.9~0.4 (liner decreasing) 

Cognitive weight, c1 2.0 

Social weight, c2 2.0 

Maximal velocity, Vmax 2.0 Å (for translation) 
 

1.0, 180 deg (for orientation) 
 

50 deg (for conformation) 

LGA 
 

Population size (ga_pop_size) 150 

Survive elite (ga_elitism) 1 

Mutation rate (ga_mutation_rate) 0.02 

Crossover rate (ga_crossover_rate) 0.8 

Window size (ga_window_size) 10 

ga_cauchy_alpha 0.0 

ga_cauchy_beta 1.0 

Maximum iteration of local search (sw_max_its) 300 

Maximum number of success (sw_max_succ) 4 

Maximum number of fail (sw_max_fail) 4 

sw_rho 1.0 

sw_lb_rho 0.01 

ls_search_freq 0.06 
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Table B1 28 ligands of coagulation factor Xa used in this work for the training set. 

ID 
PDB-ID/ 

res-ID 
Chemical Structure Compound Name 

MW 

(g/mol) 

∆Gexp 

(kcal/mol) 

[reference] 

1 1EZQ/RPR 

 

3-[(3'-AMINOMETHYL-BIPHENYL-

4-CARBONYL)-AMINO]- 2-(3-

CARBAMIMIDOYL-BENZYL)-

BUTYRIC ACID METHYL ESTER 

458.5 
-12.21 

[257] 

2 1F0R/815 

 

THIENO[3,2-B]PYRIDINE-2-

SULFONIC ACID [1- (1-AMINO-

ISOQUINOLIN-7-YLMETHYL)-2-

OXO-PYRROLDIN- 3-YL]-AMIDE 

453.5 
-10.34 

[258] 

3 1F0S/PR2 

 

THIENO[3,2-B]PYRIDINE-2-

SULFONIC ACID [2- OXO-1-(1H-

PYRROLO[2,3-C]PYRIDIN-2-

YLMETHYL)- PYRROLIDIN-3-YL]-

AMIDE 

427.5 
-10.45 

[258] 

4 1FJS/Z34 

 

N-[2-[5-[AMINO(IMINO)METHYL]-

2-HYDROXYPHENOXY]- 3,5-

DIFLUORO-6-[3-(4,5-DIHYDRO-1-

METHYL-1H- IMIDAZOL-2-

YL)PHENOXY]PYRIDIN-4-YL]-N-

METHYLGLYCINE 

526.5 
-13.44 

[259] 

5 1G2L/T87 

 

[(1-{2[(4-CARBAMIMIDOYL-

PHENYLAMINO)-METHYL]- 1-

METHYL-1H-BENZOIMIDAZOL-5-

YL}-CYCLOPROPYL)- PYRIDIN-2-

YL-METHYLENEAMINOOXY]-

ACETIC ACID ETHYL ESTER 

525.6 
-10.28 

[260] 

6 1G2M/R11 

 

4-{[1-METHYL-5-(2-METHYL-

BENZOIMIDAZOL-1- YLMETHYL)-

1H-BENZOIMIDAZOL-2-

YLMETHYL]-AMINO}- 

BENZAMIDINE 

423.5 
-10.49 

[260] 
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7 1KSN/FXV 

 

METHYL-3-(4'-N-

OXOPYRIDYLPHENOYL)-3-

METHYL- 2-(M-

AMIDINOBENZYL)-PROPIONATE 

447.5 
-12.82 

[261] 

8 1LQD/CMI 

 

1-(3-CARBAMIMIDOYL-BENZYL)-

4-METHYL-1H-INDOLE- 2-

CARBOXYLIC ACID 3,5-

DIMETHYL-BENZYLAMIDE 

424.5 
-10.97 

[262] 

9 1MQ5/XLC 

 

3-CHLORO-N-[4-CHLORO-2-[[(4-

CHLOROPHENYL)AMINO]CARBO

NYL]PHENYL]- 4-[(4-METHYL-1-

PIPERAZINYL)METHYL]-2-

THIOPHENECARBOXAMIDE 

537.9 
-12.31 

[263] 

10 1MQ6/XLD 

 

3-CHLORO-N-[4-CHLORO-2-[[(5-

CHLORO-2-

PYRIDINYL)AMINO]CARBONYL]- 

6-METHOXYPHENYL]-4-[[(4,5-

DIHYDRO-2-

OXAZOLYL)METHYLAMINO]MET

HYL]- 2-

THIOPHENECARBOXAMIDE 

568.9 
-15.06 

[263] 

11 1NFU/RRP 

 

3-({4-[(6-CHLORO-1-BENZOTHIEN-

2-YL)SULFONYL]- 2-

OXOPIPERAZIN-1-

YL}METHYL)BENZENECARBOXI

MIDAMIDE 

463.0 
-10.45 

[257] 

12 1NFW/RRR 

 

4-{[(E)-2-(5-CHLOROTHIEN-2-

YL)VINYL]SULFONYL}- 1-(1H-

PYRROLO[3,2-C]PYRIDIN-2-

YLMETHYL)PIPERAZIN- 2-ONE 

436.9 
-12.09 

[257] 

13 1NFX/RDR 

 

4-[(6-CHLORO-1-BENZOTHIEN-2-

YL)SULFONYL]- 1-{[1-(2-

HYDROXYETHYL)-1H-

PYRROLO[3,2-C]PYRIDIN- 2-

YL]METHYL}PIPERAZIN-2-ONE 

505.0 
-11.51 

[257] 

14 1NFY/RTR 

 

4-({4-[(6-CHLORO-1-BENZOTHIEN-

2-YL)SULFONYL]- 2-

OXOPIPERAZIN-1-

YL}METHYL)BENZENECARBOXI

MIDAMIDE 

463.0 
-12.00 

[257] 
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15 1Z6E/IK8 

 

1-(3-AMINO-1,2-BENZISOXAZOL-5-

YL)-N-(4-{2- 

[(DIMETHYLAMINO)METHYL]-1H-

IMIDAZOL-1-YL}- 2-

FLUOROPHENYL)-3-

(TRIFLUOROMETHYL)-1H-

PYRAZOLE- 5-CARBOXAMIDE 

528.5 
-13.12 

[264] 

16 2BMG/I1H 

 

3-[2-(2,4-

DICHLOROPHENYL)ETHOXY]-4-

METHOXY- N-[(1-PYRIDIN-4-

YLPIPERIDIN-4-

YL)METHYL]BENZAMIDE 

514.4 
-10.56 

[265] 

17 2BOH/IIA 

 

1-{[5-(5-CHLORO-2-

THIENYL)ISOXAZOL-3-

YL]METHYL}- N-(1-

ISOPROPYLPIPERIDIN-4-YL)-1H-

INDOLE-2- CARBOXAMIDE 

483.0 
-11.62 

[266] 

18 2BOK/784 

 

[AMINO (4-{(3AS,4R,8AS,8BR)-1,3-

DIOXO-2- [3- 

(TRIMETHYLAMMONIO) 

PROPYL]DECAHYDROPYRROLO[3

,4- A] PYRROLIZIN-4-YL}PHENYL) 

METHYLENE]AMMONIUM 

398.5 
-9.173 

[267] 

19 2BQ7/IID 

 

N-(1-ISOPROPYLPIPERIDIN-4-YL)-

1-(3-METHOXYBENZYL)- 1H-

INDOLE-2-CARBOXAMIDE 

405.5 
-9.61 

[266] 

20 2BQW/IIE 

 

1-{2-[(4-CHLOROPHENYL)AMINO]-

2-OXOETHYL}- N-(1-

ISOPROPYLPIPERIDIN-4-YL)-1H-

INDOLE-2- CARBOXAMIDE 

453.0 
-11.62 

[266] 

21 2CJI/GSK 

 

6-CHLORO-N-{(3S)-1-[(1S)-1-

METHYL-2-(4-MORPHOLINYL)- 2-

OXO ETHYL]-2-OXO-3-

PYRROLIDINYL}-2-

NAPHTHALENESULFONAMIDE 

466.0 
-11.21 

[268] 

22 2FZZ/5QC 

 

1-(3-AMINO-1,2-BENZISOXAZOL-5-

YL)-6-(2'-{[(3R)- 3-

HYDROXYPYRROLIDIN-1-

YL]METHYL}BIPHENYL- 4-YL)-3-

(TRIFLUOROMETHYL)-1,4,5,6-

TETRAHYDRO- 7H-

PYRAZOLO[3,4-C]PYRIDIN-7-ONE 

588.6 
-14.21 

[269] 
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23 2G00/4QC 

 

3-[6-{2'-

[(DIMETHYLAMINO)METHYL]BIP

HENYL- 4-YL}-7-OXO-3-

(TRIFLUOROMETHYL)-4,5,6,7-

TETRAHYDRO- 1H-

PYRAZOLO[3,4-C]PYRIDIN-1-

YL]BENZAMIDE 

533.5 
-13.16 

[269] 

24 2J2U/GSQ 

 

5-CHLORO-N-{(3S)-1-[(1S)-1-

METHYL-2-MORPHOLIN- 4-YL-2-5-

CHLORO-N-{(3S)-1-[(1S)-1-

METHYL- 2-MORPHOLIN-4-YL-2-

SULFONAMIDE 

454.9 
-9.61 

[270] 

25 2J34/GS6 

 

6-CHLORO-N-{(3S)-1-[(1S)-1-

METHYL-2-MORPHOLIN- 4-YL-2-

OXOETHYL]-2-OXOPYRROLIDIN-

3-YL}-1- BENZOTHIOPHENE-2-

SULFONAMIDE 

472.0 
-10.67 

[270] 

26 2J38/GS5 

 

5-CHLORO-N-{(3S)-1-[(1S)-1-

METHYL-2-MORPHOLIN- 4-YL-2-

OXOETHYL]-2-OXOPYRROLIDIN-

3-YL}-1- BENZOTHIOPHENE-2-

SULFONAMIDE 

472.0 
-9.99 

[270] 

27 2J4I/GSJ 

 

1-PYRROLIDINEACETAMIDE, 3-

[[(6-CHLORO-2-

NAPHTHALENYL)SULFONYL]AMI

NO]-ALPHA-METHYL-N-(1-

METHYLETHYL)-N-[2-

[(METHYLSULFONYL)AMINO]ETH

YL]-2-OXO-, (ALPHAS,3S)- 

559.1 
-12.27 

[268] 

28 3LIW/RUP 

 

(R)-2-(3-ADAMANTAN-1-YL-

UREIDO)-3-(3-CARBAMIMIDOYL- 

PHENYL)-N-PHENETHYL-

PROPIONAMIDE 

487.6 
-10.37 

[271] 
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Table B2 23 ligands of coagulation factor Xa used in this work for the test set. 

ID 
PDB-

ID/res-ID 
Chemical Structure Compound Name 

MW 

(g/mol) 

∆Gexp 

(kcal/mol) 

[reference] 

1 1LPK/CBB 

 

1-(3-CARBAMIMIDOYL-BENZYL)-

1H-INDOLE-2-CARBOXYLIC ACID 3- 

CARBAMIMIDOYL-BENZYLESTER 

433.6 
-10.20 

[262] 

2 1LPZ/CMB 

 

1-(3-CARBAMIMIDOYLBENZYL)-N-

(3,5-DICHLOROBENZYL)- 4-

METHYL-1H-INDOLE-2-

CARBOXAMIDE 

465.4 
-10.26 

[262] 

3 1XKA/4PP 

 

(2S)-(3'-AMIDINO-3-BIPHENYL)-5-(4-

PYRIDYLAMINO)PENTANOIC ACID 
388.5 

-9.29 

[272] 

4 2JKH/BI7 

 

3-[(3AS,4R,8AS,8BR)-4-[5-(5-

CHLORO-2-THIENYL)ISOXAZOL- 3-

YL]-1,3-

DIOXOOCTAHYDROPYRROLO[3,4-

A]PYRROLIZIN- 2(3H)-YL]-N,N,N-

TRIMETHYLPROPAN-1-AMINIUM 

464.0 
-10.86 

[273] 

5 2P16/GG2 

 

1-(4-METHOXYPHENYL)-7-OXO-6-[4-

(2-OXOPIPERIDIN- 1-YL)PHENYL]-

4,5,6,7-TETRAHYDRO-1H-

PYRAZOLO[3,4- C]PYRIDINE-3-

CARBOXAMIDE 

459.5 
-13.63 

[274] 

6 2VH6/GSV 

 

2-(5-CHLOROTHIOPHEN-2-YL)-N-

{(3S)-1-[3-FLUORO- 2'-

(METHYLSULFONYL)BIPHENYL-4-

YL]-2-OXOPYRROLIDIN- 3-

YL}ETHANESULFONAMIDE 

557.1 
-13.09 

[275] 
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7 2VVC/LZF 

 

5-CHLORO-N-[(3S,4S)-1-(2-{[2-

FLUORO-4-(2- OXOPYRIDIN-1(2H)-

YL)PHENYL]AMINO}-2-

OXOETHYL)- 4-

METHOXYPYRROLIDIN-3-

YL]THIOPHENE-2-CARBOXAMIDE 

505.0 
-11.51 

[276] 

8 2VVU/H22 

 

5-CHLORO-N-[(3R)-1-(2-{[2-FLUORO-

4-(2-OXOPYRIDIN- 1(2H)-

YL)PHENYL]AMINO}-2-

OXOETHYL)PYRROLIDIN- 3-

YL]THIOPHENE-2-CARBOXAMIDE 

474.9 
-10.93 

[276] 

9 2VVV/H21 

 

5-CHLORO-N-[1-(2-{[2-FLUORO-4-(2-

OXOPYRIDIN- 1(2H)-

YL)PHENYL]AMINO}-2-

OXOETHYL)-1H-1,2,4- TRIAZOL-3-

YL]THIOPHENE-2-CARBOXAMIDE 

472.9 
-11.10 

[276] 

10 2VWN/H25 

 

5-CHLORO-THIOPHENE-2-

CARBOXYLIC ACID ((3S,4S)- 1-{[2-

FLUORO-4-(2-OXO-2H-PYRIDIN-1-

YL)-PHENYLCARBAMOYL]- 

METHYL}-4-HYDROXY-

PYRROLIDIN-3-YL)-AMIDE 

490.9 
-10.80 

[276] 

11 
2VWO/LZ

G 

 

5-CHLORO-THIOPHENE-2-

CARBOXYLIC ACID ((3S,4S)- 4-

FLUORO- 1-{[2-FLUORO-4-(2-OXO-

2H-PYRIDIN- 1-YL)-

PHENYLCARBAMOYL]-METHYL}-

PYRROLIDIN- 3-YL)-AMIDE 

492.9 
-10.14 

[276] 

12 2WYG/461 

 

(E)-2-(5-CHLOROTHIOPHEN-2-YL)-N-

[(3S)-1-{4- [(1R)-1-

(DIMETHYLAMINO)ETHYL]-2-

FLUOROPHENYL}- 2-

OXOPYRROLIDIN-3-

YL]ETHENESULFONAMIDE 

472.0 
-11.74 

[277] 

13 2WYJ/898 

 

(E)-2-(5-CHLOROTHIOPHEN-2-YL)-N-

[(3S)-1-{4- [(1S)-1-

(DIMETHYLAMINO)ETHYL]-2-

FLUOROPHENYL}- 2-

OXOPYRROLIDIN-3-

YL]ETHENESULFONAMIDE 

472.0 
-12.15 

[277] 
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14 2Y5F/XWG 

 

(3AS,4R,5S,8AS,8BR)-4-[5-(5-

CHLOROTHIOPHEN- 2-YL)-1,2-

OXAZOL-3-YL]-2-[3-[1-(2-

HYDROXYETHYL)PYRROLIDIN- 1-

IUM-1-YL]PROPYL]-4,6,7,8,8A,8B-

HEXAHYDRO- 3AH-PYRROLO[3,4-

A]PYRROLIZINE-1,3-DIONE 

520.1 
-11.74 

[278] 

15 2Y5G/FJD 

 

3-[(3AS,4R,5S,8AS,8BR)-4-[5-(5-

CHLOROTHIOPHEN- 2-YL)-1,3-

OXAZOL-2-YL]-1,3-DIOXO-

4,6,7,8,8A,8B- HEXAHYDRO-3AH-

PYRROLO[3,4-A]PYRROLIZIN-2- 

YL]PROPYL-TRIMETHYL-AZANIUM 

464.0 
-9.23 

[278] 

16 2Y5H/Y5H 

 

3-[(3AS,4R,5S,8AS,8BR)-4-[2-(5-

CHLOROTHIOPHEN- 2-YL)-1,3-

OXAZOL-4-YL]-1,3-DIOXO-

4,6,7,8,8A,8B- HEXAHYDRO-3AH-

PYRROLO[3,4-A]PYRROLIZIN-2- 

YL]PROPYL-TRIMETHYL-AZANIUM 

464.0 
-7.82 

[278] 

17 2Y7X/MZA 

 

6-CHLORO-N-[(3S)-1-(5-FLUORO-

1,2,3,4-TETRAHYDROISOQUINOLIN- 

6-YL)-2-OXO-PYRROLIDIN-3-

YL]NAPHTHALENE-2- 

SULFONAMIDE 

474.0 
-12.00 

[279] 

18 2Y7Z/C0Z 

 

6-CHLORO-N-[(3S)-1-[(1S)-1-

DIMETHYLAMINO- 2,3-DIHYDRO-

1H-INDEN-5-YL]-2-OXO-

PYRROLIDIN- 3-YL]NAPHTHALENE-

2-SULFONAMIDE 

484.0 
-11.74 

[280] 

19 2Y80/439 

 

6-CHLORO-N-{(3S)-1-[(1S)-1-

(DIMETHYLAMINO)- 2,3-DIHYDRO-

1H-INDEN-5-YL]-2-OXO-3-

PYRROLIDINYL}- 2-

NAPHTHALENESULFONAMIDE 

484.0 
-10.86 

[280] 

20 2Y81/931 

 

6-CHLORO-N-((3S)-2-OXO-1-{4-[(2R)-

2--PYRROLIDINYL] PHENYL}- 3-

PYRROLIDINYL)-2-

NAPHTHALENESULFONAMIDE 

488.0 
-11.74 

[280] 
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21 2Y82/930 

 

6-CHLORO-N-((3S)-2-OXO-1-{4-[(2S)-

2-PYRROLIDINYL]PHENYL}- 3-

PYRROLIDINYL)-2-

NAPHTHALENESULFONAMIDE 

488.0 
-11.34 

[280] 

22 3M36/M35 

 

1-[3-(AMINOMETHYL)PHENYL]-N-

[3-FLUORO-2'- 

(METHYLSULFONYL)BIPHENYL-4-

YL]-3-(TRIFLUOROMETHYL)- 1H-

PYRAZOLE-5-CARBOXAMIDE 

532.5 
-13.26 

[264] 

23 3M37/M37 

 

1-[2-(AMINOMETHYL)PHENYL]-N-

(3-FLUORO-2'- 

SULFAMOYLBIPHENYL-4-YL)-3-

(TRIFLUOROMETHYL)- 1H-

PYRAZOLE-5-CARBOXAMIDE 

533.5 
-12.21 

[281] 
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Table C1 Selected binding pocket atoms for the six target proteins. 

Targets Selected pocket atoms (residue-id@atom-name) 

PR  

(62 atoms) 

39@OD1:38@O:38@C:38@CB:210@CD1:210@CE1:114@CE1:35@CD2:117@CD2:114@CD1:76@SD:207@C

D2:207@CD1:121@SD:207@CB:207@O:76@CE:207@CA:211@CB:211@SG:211@CA:225@CE2:229@CE:38

@CD1:114@CZ:98@CZ:121@CE:98@CE2:79@CB:98@CD2:38@CD2:45@NE2:86@NH2:41@CD2:98@O:45@

OE1:41@CG:42@N:45@CD:83@CB:79@O:83@CD2:79@C:80@CA:80@CB:80@CG2:80@N:76@O:79@SD:75

@CZ3:42@CA:35@O:35@CB:39@ND2:225@CZ:214@CB:214@CG2:214@OG1:35@CD1:223@CG1:211@N:2

10@CB 

CDK2 

(103 atoms) 

80@CD1:145@N:145@OD1:144@CB:64@CG1:64@CB:31@CB:134@CD1:33@CE:33@NZ:80@CB:81@O:80@

CG:80@CD2:127@OD2:127@CB:15@OH:154@CB:149@CB:154@CG2:14@CG2:14@OG1:15@CE2:14@CB:1

32@ND2:145@OD2:145@CB:129@NZ:125@CE1:125@ND1:125@O:145@O:149@N:148@CB:16@O:33@CB:1

7@O:34@O:16@N:18@CG2:35@CD1:33@CD:15@N:13@CA:15@CB:15@CD2:14@N:148@CD2:78@CD1:80

@CE2:134@CD2:131@O:132@CA:132@CB:131@CB:132@N:131@C:83@N:83@O:82@CD1:18@CG1:10@CG

2:10@CD1:82@CA:82@CE1:86@OD2:11@CA:10@O:18@CB:11@C:13@N:11@N:10@C:12@N:12@O:131@C

G:12@C:162@OE2:129@CD:163@O:158@CG2:162@CB:162@O:13@C:129@CE:164@CG2:164@CA:165@N:

162@CD:131@NE2:162@OE1:131@CD:164@CG1:165@CG2:84@O:85@CA:85@N:84@C:85@C:89@NZ:86@

N:86@CB:85@O 

SIRT2 

(120 atoms) 

42@N:41@O:41@C:40@O:36@OG1:36@CG2:42@CB:32@O:35@C:35@CB:40@CB:40@CG2:36@N:43@CE1:

41@CD:84@O:41@CG:50@CD1:85@CA:85@O:90@CE2:85@CD2:43@CZ:40@CD1:90@CD2:117@CB:86@O:

87@CA:117@O:50@CD2:116@O:116@CG1:85@CB:116@C:117@CA:117@N:115@OD1:115@CB:117@OD2:1

15@CG:43@CE2:116@N:114@O:43@CD2:32@CB:115@CA:32@CA:85@CD1:36@CA:42@CA:44@NH2:42@

CG:42@OD1:237@O:211@CD1:237@N:236@CB:236@CA:212@OE1:237@CB:236@CG:235@O:231@CD2:21

0@CA:211@CG:211@N:209@O:256@CE2:231@CD1:233@ND2:208@O:33@N:233@OD1:33@CA:234@CB:23

5@CD:234@CD:235@OE2:235@OE1:235@CG:235@CB:237@CA:236@C:236@O:210@CB:210@N:44@NH1:4

4@CZ:235@N:209@CA:208@C:182@CZ:182@N:180@O:182@CG:182@CE1:182@CE2:182@CD2:134@CE1:1

34@CG:134@ND1:66@CE2:66@CD2:134@CD2:179@CG2:181@CD1:66@CB:66@CD1:66@CG:66@CE1:66@

CZ:134@O:134@CB:116@CD1:134@NE2:66@O:182@CD1:116@CG2:116@CG1:114@O 

HIV1PR 

(23 atoms) 

84@CG2:28@CB:84@CD1:30@O:32@CG1:30@CB:30@OD2:30@N:47@CD1:29@N:27@O:48@CA:29@OD2:

48@O:48@N:25@OD2:28@CA:50@CD1:29@CB:47@CB:32@CB:76@CD1:47@CG2 

TP 

(102 atoms) 

221@CG:88@CG2:225@CD1:184@CG2:221@CD2:204@CG1:221@O:204@CG2:205@O:218@CB:212@CB:21

2@N:88@CA:88@C:88@O:118@CD2:211@CG2:88@CB:211@CB:184@CD1:88@OG1:184@CG1:178@CG1:17

2@NH2:211@CG1:188@CG1:187@OG:86@NE2:169@CE2:169@OH:87@O:188@CD1:184@CA:187@CB:184

@O:211@N:212@CD1:210@CB:178@CB:179@N:179@OD1:176@CA:179@OD2:119@CA:179@CG:178@N:17

6@C:176@O:178@CG2:173@O:172@O:120@ND1:176@CB:179@CB:120@CE1:118@O:119@N:121@OG1:118

@CB:121@CG2:120@N:211@O:211@CA:90@CA:93@CB:122@O:90@O:127@NZ:89@O:123@CA:169@OH:1

16@O:115@O:124@N:124@OG1:114@OG:124@CG2:87@N:87@CB:96@OG:93@O:93@OD1:85@NZ:87@OG

:121@O:88@O:121@OG1:118@CB:118@CD2:86@CE1:86@NE2:87@O:115@N:118@N:87@C:112@CE:86@N

D1:86@CA:93@N:115@C:115@CA:85@CE 

EGFR 

(65 atoms) 

159@CG2:146@O:160@OD1:149@CD2:147@OD1:97@CD1:23@CD1:98@O:48@CB:98@N:98@CB:149@CD1

:101@O:31@CG1:101@CA:31@CG2:24@CA:31@CB:23@O:105@OD1:102@N:28@CZ:102@CB:102@SG:28

@CE2:146@CG:146@CB:23@CB:98@CG:96@O:101@C:146@CD:95@OG1:71@SD:82@CD1:95@CG2:93@C

B:93@CD1:67@OE1:50@NZ:71@CE:159@OG1:50@CE:50@CB:48@O:93@O:48@C:50@N:49@C:95@CB:80

@SG:96@CB:98@SD:96@OE1:80@CB:81@O:96@N:81@N:80@CA:157@CD:68@N:67@C:67@O:68@CA:93

@CD2 
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Figure C1 Root mean square deviation (RMSD) plots of molecular dynamics simulation for PR 

(top), CDK2 (middle), and SIRT2 (bottom); Bilateral represents RMSD of backbone Ca atoms 

(left) and RMSD of binding pocket atoms (right).    
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Figure C2 Root mean square deviation (RMSD) plots of molecular dynamics simulation for 

HIV1PR (top), TP (middle), and EGFR (bottom); Bilateral represents RMSD of backbone Ca 

atoms (left) and RMSD of binding pocket atoms (right). 
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Figure C3 Log-scaled receiver operating characteristic (ROC) plots for all MD-generated 

structures of progesterone receptor (PR): standard MD (upper left), benzene probe MD (upper 

right), isopropanol probe MD (bottom left), purine probe MD (bottom right). Each line 

represents the following: the best snapshot (red), minimum score of ensemble docking (yellow), 

average score of ensemble docking (magenta), single docking score of ensemble structures (cyan), 

and theoretical result of random selection (black dots). 
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Figure C4 Log-scaled receiver operating characteristic (ROC) plots for all MD-generated 

structures of cyclin-dependent kinase 2 (CDK2): standard MD (upper left), benzene probe MD 

(upper right), isopropanol probe MD (bottom left), purine probe MD (bottom right). Each line 

represents the following: the best snapshot (red), minimum score of ensemble docking (yellow), 

average score of ensemble docking (magenta), single docking score of ensemble structures (cyan), 

and theoretical result of random selection (black dots). 
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Figure C5 Log-scaled receiver operating characteristic (ROC) plots for all MD-generated 

structures of NAD-dependent protein deacetylase sirtuin-2 (SIRT2): standard MD (upper left), 

benzene probe MD (upper right), isopropanol probe MD (bottom left), purine probe MD 

(bottom right). Each line represents the following: the best snapshot (red), minimum score of 

ensemble docking (yellow), average score of ensemble docking (magenta), single docking score 

of ensemble structures (cyan), and theoretical result of random selection (black dots). 
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Figure C6 Log-scaled receiver operating characteristic (ROC) plots for all MD-generated 

structures of human immunodeficiency virus-1 protease (HIV1PR): standard MD (upper left), 

benzene probe MD (upper right), isopropanol probe MD (bottom left), purine probe MD 

(bottom right). Each line represents the following: the best snapshot (red), minimum score of 

ensemble docking (yellow), average score of ensemble docking (magenta), single docking score 

of ensemble structures (cyan), and theoretical result of random selection (black dots). 
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Figure C7 Log-scaled receiver operating characteristic (ROC) plots for all MD-generated 

structures of thymidine phosphorylase (TP): standard MD (upper left), benzene probe MD 

(upper right), isopropanol probe MD (bottom left), purine probe MD (bottom right). Each line 

represents the following: the best snapshot (red), minimum score of ensemble docking (yellow), 

average score of ensemble docking (magenta), single docking score of ensemble structures (cyan), 

and theoretical result of random selection (black dots). 
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Figure C8 Log-scaled receiver operating characteristic (ROC) plots for all MD-generated 

structures of epidermal growth factor receptor (EGFR): standard MD (upper left), benzene probe 

MD (upper right), isopropanol probe MD (bottom left), purine probe MD (bottom right). Each 

line represents the following: the best snapshot (red), minimum score of ensemble docking 

(yellow), average score of ensemble docking (magenta), single docking score of ensemble 

structures (cyan), and theoretical result of random selection (black dots). 
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