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Chapter I 

General introduction 

 

Life on the earth depends ultimately on the photosynthesis performed by green plants. Through 

the process, oxygen and carbohydrates are generated from atmospheric carbon dioxide and 

water using energy provided from the sun. In other words, photosynthesis converts light energy 

to chemical energy and avails oxygen, both of which are essential for continuity of life. Plant 

roots gather and stems distribute sparse water and leaves absorb carbon dioxide through stomata 

and capture solar radiation. Higher plants are non-mobile and have to adapt to their environment. 

Accordingly, most plants, growing in natural environments that are, to a considerable degree, 

unfavorable for their growth, are often prevented from expressing their full potential for 

production and are considered “stressed”. Plant productivity usually falls far short of the 

potential under stressed conditions (Boyer, 1982).  

Unfavorable factors to which plants are exposed can be divided into two, biotic and 

abiotic stresses. Biotic stresses include pests, pathogens, fungi, bacteria, viruses, and nematodes 

(Bahmani, 2015). Abiotic stresses such as heat, cold, drought, and salinity are the most common 

factors that have huge adverse effects on plant growth, development and productivity. These 

stresses reduce the average yield by less than half of the potential (Boyer, 1982; Wang, 2010) 

and have a great impact on agricultural production and quality of the products (Chen, 2012). 

Accordingly, much attention has been paid to these abiotic factors in relation to plant growth, 

development and productivity. 

 

Plants under abiotic stress conditions 

Various abiotic stresses lead to production of reactive oxygen species (ROS), including H2O2, 

O2
・and 1O2. ROS are major determinants of the regulation of stress responses as well as 

phytohormones in plants (Oracz, 2016). For example, ROS enhanced under stress conditions 

functions as an alarm signal that triggers acclamatory /defense responses by specific signal 

transduction pathways that involve H2O2 as a secondary messenger (MHC de Carvalho, 2008).  

ROS are generated by non-enzymatic or enzymatic pathways under stress. Under 

environmental stress, disturbance of the metabolic balance in oxidative organelles often results 
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in enhanced production of ROS (Mittler, 2002). The chloroplast in stressed plants is one of the 

major site of ROS production.  Disturbance of the photochemical reactions leads to ROS 

production, which is enhanced by conditions limiting CO2 fixation such as drought and salt 

stresses and their combination with high light intensity (Mittler, 2002; Foyer, 2003). 

In enzymatic pathway, NADPH oxidases catalyze the production of superoxides (Sagi, 

2006). Superoxides is dismutated to H2O2 either spontaneously or by SOD activity (Sharma, 

2012).The Respiratory burst oxidase homolog (Rboh) gene family encodes the key enzymatic 

subunit of the plant NADPH oxidase (Ogasawara, 2008). Analyses of Rboh mutants and 

antisense lines provided genetic proof of the function of rboh in the pathogen-induced oxidative 

burst.  

ROS play two divergent roles in plants; at low concentrations they act as signaling 

molecules that mediate stress responses in plant cells, whereas at high concentrations they cause 

exacerbating damage to cellular components. When ROS reache above threshold level, they 

cause oxidative damage to lipids, proteins and DNA leading to altered intrinsic membrane 

properties like fluidity, ion transport and loss of enzyme activity, ultimately resulting in cell 

death. In order to avoid the oxidative damage, higher plants possess a complex anti-oxidative 

defense system comprising of non-enzymatic like ascorbic acid and enzymatic like superoxide 

reductase components (Sharma, 2012). 

 

Lipid peroxidation 

Two common sites of ROS attack on the membrane lipid molecules are the unsaturated (double) 

bond between two carbon atoms and the ester linkage between glycerol and the fatty acid. The 

polyunsaturated fatty acids present in membrane lipids are particularly sensitive to attack by 

ROS (Sharma, 2012). Lipid peroxidation aggravates the oxidative stress through production of 

lipid-derived radicals (LOOH) that increase in a chain-reaction manner and damage proteins and 

DNA. The level of lipid peroxidation has been widely used as an indicator of ROS mediated 

damage to cell membranes under stressful conditions. Increased peroxidation and degradation 

products of lipids have been reported in plants growing under environmental stresses (Sharma, 

2005; Han, 2009; Tanou, 2009; Mishra, 2011), accompanied by increased production of ROS.  
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Oxylipins, Reactive carbonyl species and RSLVs 

Oxidized fatty acids, termed oxylipins (Fig. 1-1), are an important class of signaling molecules 

in plants, especially related to plant stress responses and innate immunity. Oxylipins include the 

phytohormone, jasmonic acid, and a number of other molecules including hydroxy-, oxo- or 

keto-fatty acids or volatile aldehydes. The best-characterized oxylipins are jasmonic acid (JA) 

and its immediate precursor 12-oxo-phytodienoic acid (OPDA), which are formed 

enzymatically and accumulate in response to various stresses, in particular wounding and 

pathogen infection (Eckardt, 2008; Block et al., 2005). The structural diversity of oxylipins is 

further increased by esterification of the compounds in plastidial glycolipids, for instance the 

Arabidopsides, or by conjugation of oxylipins to amino acids. The biosynthesis of oxylipins is 

highly dynamic and occurs in both a constitutive mode and as a consequence of various stresses 

(Mosblech, 2009). 

Among the oxylipins, α, β-unsaturated aldehydes and ketones including OPDA, 

2-hexenal, phytoprostane and malondialdehyde, derived from LOOH, are designated as reactive 

carbonyl species (RCS) (Mano, 2012). Being reactive species like ROS, RCS have two 

biological aspects; toxicity and signaling function. Saturated carbonyls can react with amino 

group to form Schiff-bases. In addition to this reactivity, RCS have high electrophilicity due to 

the α, β-unsaturated bond and hence form Michael adducts with nucleophilic targets such as 

thiol and amino groups. Acrolein and methyl vinyl ketone negatively affect photosynthetic 

activity as determined by chlorophyll fluorescence (Almeras et al., 2003; Berger et al., 2007). 

Yamauchi et al. (2008), using antibodies against malondialdehyde (MDA), acrolein and 

crotonaldehyde, found that the OEC33 protein in photosystem II (PSII) and light-harvesting 

chlorophyll-binding proteins were preferentially modified by RCS in heat-stressed leaves. They 

further showed that the modification of OEC33, CP47 and CP43 was associated with the 

inactivation of water-oxidizing complex under strong light at high temperature (Yamauchi, 

2010). MDA is one of the final products of peroxidation of unsaturated fatty acids in membrane 

lipids and is responsible for cell membrane damage (Hegedüs, 2004). 

 Compounds containing α, β-unsaturated carbonyl groups are increasingly implicated 

as potent regulators of gene expression; some are powerful cytotoxins known to accumulate at 

the site of lesion formation in host–pathogen interaction (Alméras, 2003). Activities of 

octadecanoids (Howe and Schilmiller, 2002) and small and highly reactive compounds derived 



4 

 

from oxygenated lipid derivatives have also received much attention (Alméras, 2003).Small and 

highly reactive compounds, such as acrolein, crotonaldehyde, (2E)-pentenal and (2E)-hexenal 

accumulated in plants under abiotic stress conditions, such as high light intensity and heat 

(Mano, 2010; Loreto, 2006; Yamauchi, 2008). Based on reported biological activity of 

chemicals with an α,β-unsaturated carbonyl group, short-chain leaf volatiles having an 

α,β-unsaturated carbonyl bond in their structure, collectively named reactive short chain leaf 

volatiles(RSLVs), are presumed, despite lack of literature records, to act as signal molecules that 

induce expression of abiotic stress-related genes (Vokkenweider, 2000; Almeras, 2003). 

 

Biosynthesis and functions of green leaf volatiles 

The green odor of plants is characterized by green leaf volatiles (GLVs), which are 

composed of eight volatile compounds comprised of C6-aldehydes including 2-hexenal and 

C6-alcohols and their esters. GLVs are produced from thylakoid membrane-bound 

polyunsaturated fatty acids in chloroplasts by a series of enzymes as summarized in Fig. 1-2. 

Briefly, linolenic acid released by lipase from thylakoid membranes is peroxidized by 

13-lipoxygenase (LOX, Chen, 2004) and then cleaved by hydroperoxide lyase (HPL) to produce 

(3Z)-hexenal in the chloroplasts (Hatanaka, 1987, Howe, 2000). Branching from (3Z)-hexenal to 

(2E)-hexenal then forms unsaturated GLVs in two series, i.e., (3Z)- and (2E)-, based on the 

position of the unsaturated bond in their structures. (3Z)-Hexenal and (2E)-hexenal are 

subsequently reduced to alcohols by aldehyde reductases, aldo/keto reductases (Yamauchi, 

2011), and alcohol dehydrogenases (Bate, 1998). Alcohol forms of GLVs are further converted 

to ester forms by a BADH acyltransferase (D’Auria, 2007). A saturated form of GLV, n-hexanal, 

is produced through the oxidation of linoleic acid mediated by 13-lipoxygenase and 

hydroperoxide lyase along with the hydrogenation of the C–C double bond in (2E)-hexenal by 

alkenal reductase (Mano, 2002). Among GLV species, (2E)-hexenal was identified by Curtius 

and Franzen (1912) at an early stage in GLV research history and named the leaf aldehyde 

(originally named Blätteraldehyd in German). Despite this early discovery, biosynthetic 

pathway of (2E)-hexenal has remained unknown, although it has been assumed to be converted 

from (3Z)-hexenal by an isomerase (Phillips, 1979; Noordermeer, 1999). 

GLVs have recently emerged as key players in plant defense, plant–plant interactions 

and plant–insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, 
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including bacteria, viruses and fungi. In certain cases, GLVs released from plants under 

herbivore attack can serve as airborne messengers to neighbouring plants and to attract parasitic 

or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are 

primed and can then adapt in preparation for the oncoming challenges (HMN Ul, 2015). 

 

Outline of the Dissertation 

This study was designed to elucidate functions of RSLVs in stress responses in plants. First, a 

comprehensive microarray analysis was conducted using Arabidopsis thaliana. Exposure of the 

plant to the RSLVs (2E)-hexenal, (2E)-butenal and heptane-2-one, resulted in efficient induction 

of abiotic stress-related genes. Among the RSLVs (2E)-hexenal, a widely distributed GLV in 

plants, was selected for further studies. Then, hexenal isomerase (HI) responsible for the 

conversion of (3Z)-hexenal to (2E)-hexenal was purified and the corresponding HI gene was 

isolated. Tomato, which produces abundant (3Z)-hexenal with limited (2E)-hexenal, was 

transformed with the HI gene to verify the latter function in the plant and to modify RSLVs 

profile of tomato. Furthermore, physiological responses of the transgenic tomato plants to 

biological stresses were recorded. 

This dissertation is composed of four chapters. Following Chapter I reviewing 

background of the study, Chapter II describes functions and signal transduction of RSLVs 

through studies using microarray and mutant analyses. As a result, aldehyde molecules with 4 to 

10 carbons exhibited no inhibitory effect on PSII activity, a pivotal function of plants related to 

photosynthesis, but induced expression of abiotic stress-related genes, especially those induced 

by heat and oxidative stresses. Drastic reduction of heat stress-responses in Arabidopsis hsfa1 

mutant indicated partial involvement of HSFA1 in RSLVs signal transduction. However, no 

obvious changes were observed in induction of oxidative stress-responsive genes, suggesting 

the involvement of another pathway(s) than that associated with HSFA1 in the RSLVs signal 

transduction. In chapter III, hexenal isomerase responsible for the conversion of (3Z)-hexenal to 

(2E)-hexenal was isolated from Paprika fruit, the highest producer of (2E)-hexenal among the 

screened leaves and fruits of several plants. Based on the partial amino acid sequences, full 

length DNA encoding the protein was obtained. The protein was heterologously expressed in 

Escherichia coli and the purified enzyme was characterized. Tomato, which produces 

(3Z)-hexenal as a major volatile with a negligible amount of (2E)-hexenal, was transformed by 
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the HI gene to alter its RSLVs profile. (3Z)-Hexenal decreased to a negligible level and 

(2E)-hexenal increased in some transgenic tomato lines, thus establishing the in vivo function of 

HI in (3Z)-hexenal biological conversion to (2E)-hexenal in tomato. In Chapter IV, the results 

obtained in Chapter II and Chapter III are collectively discussed to get insight into the 

physiological importance of (2E)-hexenal.  
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Figure 1-1. Classification of oxylipins 

Oxylipin is a group of oxygenated lipid-derived compounds. RCS are compounds having α, β 

-unsaturated bonds. RSLVs are short chain leaf volatiles having α, β -unsaturated bonds. Green leaf 

volatiles are C6 compounds derived from linolenic acid or linoleic acid. 
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Figure 1-2. Biosynthetic pathway of GLVs. 

Major GLV species are enclosed by round-shaped squares. Enzymes catalyzing each reaction are 

underlined. Isomerization step catalyzed by HI is shown by white arrow. Enzymatic reactions for 

alcohol- and acetate-forms formation need cofactors. The enzyme responsible for conversion of 

(3Z)-hexenal to (2E)-hexenal was unidentified when this work was started.  
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Chapter II 

Functional analysis of reactive short chain leaf volatiles 

 

Abiotic stresses cause serious damage to plants. Accordingly, plants undergo complicated stress 

responses through transduction of signals the production of which is triggered by environmental 

stimuli. In this chapter, activities of a series of short-chain leaf volatiles with an α, β-unsaturated 

carbonyl bond in their structures (reactive short-chain leaf volatiles, RSLVs) as candidate signal 

molecules were studied by performing a comprehensive microarray analysis using Arabidopsis 

thaliana. (2E)-Hexenal and (2E)-butenal strongly induced the gene expression of abiotic 

stress-related transcription factors including, HSFA2, MBF1c, DREB2A and ZATs. Expression of 

HSFA2 and MBF1c induced by the RSLVs was significantly decreased in the HSFA1-knockout 

mutants, whereas that of DREB2A and ZATs was kept at a high level. Considering that HSFA1s 

are well known master regulators of heat stress response, the results suggest that the RSLV 

signaling comprises of HSFA1-dependent and independent pathways. RSLV treatment of 

Arabidopsis plants induced production of chaperon, necessary for repairing impaired proteins, 

and alleviated delayed growth under heat stress, demonstrating enhanced abiotic stress 

tolerance.  

 

Material and methods 

Chemicals 

2-Propenal, (2E)-butenal, (2E)-pentenal, (2E)-heptenal, (2E)-octenal,(2E)-nonenal, (2E)-decenal, 

(3E)-hepten-2-one, (3E)-octen-2-one, (3E)-nonen-2-one, (3E)-decen-2-one, (2E)-hexenol, 

2-hexanal, and 2-heptanone were purchased from Tokyo Chemical Industry (Tokyo, Japan). 

1-Penten-3-one and 3- penten-2-one were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

(3Z)- Hexenal was obtained from Bedoukian Research Inc. (Danbury, CT, USA). (2E)- Hexenal, 

(E, Z)-4-hexen-3-one, and other reagents were purchased from Wako Pure Chemicals (Osaka, 

Japan). 

 

Plant materials 

Seeds of Arabidopsis thaliana (ecotype Columbia-0: Col-0; Wassilewskija: Ws-0) and tomato 
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(Solanum lycopersicum ‘Micro-Tom’) were sown on Jiffy-7 peat pellets (Sakata Seed Co., 

Yokohama, Japan) and kept at 4oC for 3 days in the dark. Then plants were transferred to the 

conditions of a 14-h–light (80 mmol photons m-2 s-1)/10-h–dark cycle at 23oC. The 

AOR-deficient Arabidopsis mutant aor, which was previously identified as a T-DNA knockout 

line of AOR (Yamauchi et al. 2008), was obtained from the Arabidopsis Biological Resource 

Center (ΑΒRC, Columbus, OH, USA). HSFA1s quadruple knock-out mutant (QK) was 

generously gifted by Dr Y.-Y. Charng, National Taiwan University, Taiwan. Seeds of rice (Oryza 

sativa L., cv. Nipponbare) were immersed in water for a day at 4oC, and the transferred to the 

conditions of a 14-h–light (80 mmol photons m-2 s-1)/10-h–dark cycle at 25oC. Oxidative 

treatment was performed by immersing the aerial parts of plants in 10 mM methylviologen (MP 

Biomedicals, Solon, OH, USA) under illumination (80 mmol photons m-2 s-1). UV-B treatment 

was performed by irradiation of UV light (VL- 6MC, 312 nm tube, VilberLourmat, France) with 

1 mW cm-2. Heat treatment was performed by exposing at 40oC in the presence of light (80 

mmol photons m-2 s-1). 

 

Volatile treatment 

Plants were placed in a transparent plastic box (340 cm3, NipponGenetics, Tokyo, Japan). 

Volatiles were diluted with MeCN, which does not induce HSFA2 mRNA. Each volatile tested 

(total volume of 3 ml) was absorbed into a piece of paper towel attached to the inside of the 

cover. The cover was immediately set on the box (Fig. 2-1A), and the plants were incubated at 

25oC under illumination (80 mmol photonsm-2 s-1). MeCN-treated plants were used as controls. 

 

Quantitative real-time RT-PCR (qRT-PCR) 

Total RNA was purified by using an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany), and 

then cDNA was synthesized by using a RevaTra Ace kit (Toyobo, Osaka, Japan). Gene-specific 

primers were chosen with the use of the Primer3 program (http://frodo.wi.mit.edu/). Primer 

sequences are shown in Table 2-2. Quantitative real-time RT-PCR (qRT-PCR) was performed 

with the use of Thunderbird SYBR Green qPCR Mix (Toyobo) and a LineGene Real-time PCR 

Detection System (FQD-33Α, ΒioFlux, Tokyo, Japan). For analysis of relative transcript levels, 

ACTIN2 mRNA was used as an internal standard in all qRT-PCR experiments; the expression 

levels of genes of interest were normalized to that of ACTIN2 by subtracting the cycle threshold 
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(CT) value of ACTIN2 from the CT value of the gene of interest. The expression level of MeCN 

treated controls was set to 1. For determination of absolute copy number of HSFA2, samples 

including equal amount of ACTIN2 determined by qRT-PCR and the pMD20 plasmid 

(Takarabio Inc., Otsu, Japan) containing the HSFA2 (3.6 kbp, 254 copies/fg) as a reference 

matrix was used.  

 

Microarray RNA sample preparation and hybridizations 

Total RNA was purified by using an RNeasy Plant Mini Kit (Qiagen) from at least 6 plants. The 

double-strand (ds) cDNA was generated with a modified procedure of the Superscript Choice 

System (Life Technologies, Carlsbad, CA). Briefly, the 1st strand cDNA was synthesized from 

10.0 mg total RNΑ, by 1.0 unit SuperScript II reverse transcriptase (Life Technologies) in the 

presence of 100 pmoles Oligo dT(20) primer. After 2nd strand synthesis, the template RNA was 

digested with RNase A, then the synthesized DNA was purified with phenol: chloroform: 

isoamyl alcohol. The purified DNA was precipitated in ethanol, and the pellet was washed, 

dried, reconstituted and quantified. cDNA samples were labeled using the random priming 

method with Cy3- labeled random nonamer as primers and Klenow DNA polymerase at 37oC 

for 2 h (NimbleGen One-color Labeling Kit, NimbleGen Roche, Madison, WI). The labeled 

DNA was precipitated in isopropanol, and the pellet was washed, dried, reconstituted and 

quantified. For each hybridizations, 4 mg of labeled DNA was diluted by NimbleGen sample 

tracking control kit buffers respectively, and be added with NimbleGen hybridization buffers 

according to the manufacturer’s protocols. The arrays (ATH6_60mer_expr X4) were hybridized 

with labeled DNA on a NimbleGen Hybridization System at 42oC for 16 h. Arrays were washed 

by NimbleGen wash buffer kit according to the manufacturer’s protocols and scanned using an 

Axon GenePix 4000B scanner at 5 mm resolution. The microarray experiments using the 

Agilent Arabidopsis ver4.0 (44 k) microarray (Agilent Technologies) with a onecolor method 

were performed according to the manufacturer’s instructions. Data extraction, normalization and 

production of heat map by UPGMA clustering were performed by Subio Platform software 

(Subio, Kagoshima, Japan), and Microsoft Excel was used to organize and interpret the data. 

‘‘Ratio’’ values are the mean of 3 independent experiments, and genes showing a value above 

2.0 or below 0.5 (99.8%confidence) were considered as up- or down-regulated, respectively. 

Datasets of gene expression under each stressed condition were obtained from AtGenExpress 
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database (The Arabidopsis Information Resource, The Ohio State University, OH, USA). 

Expression data used in this figure are data of shoot in time course (0.25, 0.5, 1, 3, 6 h of heat, 

UV-B, drought or wound stresses) and (0.5, 1, 3, 6, 12 h of oxidative, salt, osmotic or cold 

stresses) 

 

Identification of RSLVs 

Harvested plants were immersed in MeCN (2 ml), and 1 ml of 10 mM 2-ethylhexanal was 

added as an internal standard. After incubation for 30 min at 60oC, 1 ml of the solution was 

transferred to another glass tube, and 38 ml of HCOOH and 50 ml of 20 mM dinitrophenyl 

hydrazine dissolved in MeCN were added. After incubation for 60 min at room temperature, 1 

ml of saturated NaCl solution and 0.1 g of NaHCO3 were added and well mixed. After 

incubation for 20 min, 0.5 ml of the MeCN layer was transferred to a plastic tube and 

evaporated. The resultant residue was dissolved in 200 ml of MeCN, and the solution was 

filtered through a Cosmonice filter (pore size 0.45 mm, NacalaiTesque, Kyoto, Japan). The 

resultant cleared solution was used as the DNP-carbonyl preparation for HPLC analysis. HPLC 

analysis was performed by the method described previously（Yamauchi et al. 2008; Matsui et al. 

2009; Yin et al. 2009）. Data were analyzed by using PowerChrom software (eDAQ Pty Ltd., 

Denistone East, NSW, Australia). For accurate identification of DNP-RSLVs, DNP-RSLVs were 

subsequently analyzed by liquid chromatography-mass spectrometry (LC/MS/MS, Acquity 

UPLC/ TQD; Waters, Milford, MA, USA) using YMC-PACK C4 (Q2.0 3 100 mm, 3 mm, 

Waters). For reverse phase chromatography of RSLV-DNPs, the elution of the samples was 

carried out with 10% tetrahydrofuran (solvent A2) and acetonitrile (solvent B2), and the mobile 

phase was changed from 35% (v/v) B2–100% (vol/vol) at 2 and 21.5 min after the injection, 

respectively, at a flow rate of 0.3 mL min-1. Elution was monitored by Photodiode and MS 

analysis with ES-negative mode. The column temperature was 40oC. MS/MS analysis 

conditions were as follows: Declustering potential, 40; collision energy, 40 V; and parent ion 

(m/z), 249 for (2E)-butenal-DNP. 

 

Protein analysis 

Protein was extracted with 5 volumes of 50 mM HEPES-NaOH, pH 7.0. Proteins were 

separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in 10% 
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(HSP101) or 12% polyacrylamide gels (HSP17.6). The proteins were electroblotted onto 

polyvinylidene difluoride (PVDF) membranes (ATTO, Tokyo, Japan) according to the 

manufacturer’s instructions, and anti-HSP101 and anti-HSP17.6 antibodies (Agrisera, Vännäs, 

Sweden) were used for immunochemical detection. Alkaline phosphatase–conjugated secondary 

antibody was used for visualizing signals with 5-bromo-4-chloro-3-indolyl phosphate and nitro 

blue tetrazolium as substrates. The bands were quantified by densitometric analysis using 

ImageJ software after scanning the blotted membrane.  

 

Measurement of chlorophyll fluorescence 

The maximum quantum yield of PSII was estimated from chlorophyll fluorescence 

measurements by pulse-amplitude– modulated (PAM) fluorometer (Junior-PAM; Walz, 

Effeltrich, Germany). Plants were dark-adapted at room temperature for 5 min before measuring. 

The yield of PSII was calculated as the ratio of Fv/Fm. 

 

Thermotolerance test 

For a hypocotyl elongation test (Hong and Vierling 2000), seeds planted on MS plates were 

wrapped in foil and incubated at 4oC for 3 day, then at 23oC for 2.5 days (Col-0) or 5 days (QK). 

After length of cotyledons was measured, they were separately treated as follows. i) For 45oC 

treatment, seedlings were incubated at 45oC for 2 h. ii) For acquired thermotolerance treatment, 

seedlings were incubated at 38oC for 90 min followed by 2 h at 23oC and then 2 h at 45oC. ii) 

For volatile treatment, seedlings were treated with 10 nmol cm-3 of (2E)-butenal, (2E)-hexenal 

or 3-hepten-2-one for 2 h at 23oC and then 2 h at 45oC. After treatment, seedlings were 

incubated an additional 2.5 days in the dark, then length of seedlings was measured. For 

survival test, seeds (at least 30 plants) planted on MS plates were wrapped in foil and incubated 

at 4oC for 3 day, then at 23oC for 2.5 days. After the seedlings were subjected to the same 

treatments as elongation test, seedlings were additionally incubated under standard conditions of 

a 14-h–light (80 mmol photonsm-2 s-1)/10- h–dark cycle at 23oC. The percentage of survival 

plants was calculated by counting the continuously developing plants per total plants after 3 

days. Survival enhancement was determined by calculation using survival rate of RSLV 

treatment sample against that of 45oC sample. 
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Statistical analysis 

Data were analyzed by using the programs of Statistical analysis program (StatPlus, 

AnalystSoft). Data were subject to ANOVA with post hoc analysis, and means were compared 

by Tukey-Kramer test (P<0.05). 

 

Results and discussion 

RSLVs induced various abiotic-related transcription factors 

(2E)-hexenal was selected as a model RSLV because (2E)-hexenal is a widely distributed C6 

RSLV known as a green leaf volatile (GLV). An overview of the whole gene expression pattern 

obtained by a comprehensive microarray analysis showed that vaporized (2E)-hexenal treatment 

(10 nmol cm-3 for 30 min, Fig. 2-1A) induced genes upregulated in various abiotic stress 

responses (Fig. 2-1B, lane RSLV1). Comparing gene expression patterns under various abiotic 

stresses allowed us to classify up-regulated genes into the following 5 groups (Fig. 2-1B): heat, 

UV-B and oxidative stresses-responsive genes (Group A); various stresses-responsive genes 

(Group B); genes that respond to salt, oxidative, osmotic drought, cold and wounding (Group 

C); salt- and osmotic-responsive genes (Group D); and cold-responsive genes (Group E). 

Among these groups, gene expression of Groups A and B were stimulated by (2E)-hexenal 

treatment. Many of the 100 most highly up-regulated genes were abiotic stress-related genes 

(Fig. 2-1C, Table 2-1) as follows: genes encoding HSPs (21 genes); heat or oxidative stress 

related transcription factors (7 genes), including HSFA2 (Nishizawa et al. 2006), MBF1c 

(Suzuki et al., 2005) and ZATs (Kielbowicz-Matuk 2012); abiotic-related AP2/ERF transcription 

factors (10 genes), including DREB2A (Mizoi et al. 2012); and other transcription factors (5 

genes).  

 

RSLVs strongly and rapidly induced HSFA2 gene expression 

Because HSFA2 and HSPs were prominently induced by (2E)-hexenal treatment, detailed 

biological activity of (2E)-hexenal was examined using the heat shock factor (HSF)-heat shock 

protein (HSP) system. Vaporized (2E)-hexenal rapidly and powerfully induced HSFA2 

expression within 30 min (Fig. 2-2A). This expression was transient and terminated after 2 h. 

These treatments increased the internal (2E)-hexenal concentration comparable to the 

intracellular concentration of intact higher plants (Mano et al. 2010, Matsui et al. 2012). At 10 
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min after applying (2E)-hexenal at 10 nmol cm-3 to Arabidopsis, the internal concentration of 

(2E)- hexenal exhibited a transient increase of up to 25 nmol g-1 fresh weight (FW) (Fig. 2-2B, 

Fig. 2-3). The effects of other GLVs on HSFA2 expression were tested: (2E)-hexenol, 

(3Z)-hexenal, and n-hexanal did not induce HSFA2 expression (Fig. 2-2D). Among ketones, 

(3E)-hepten-2-one but not 2-heptanone induced HSFA2 expression, suggesting that the α, 

β-unsaturated carbonyl bond moiety was essential for HSFA2 induction. Induction of HSFA2 

was dose-dependent above 2.5 nmol cm-3 and saturated at 25 nmol cm-3 (Fig. 2-2C). 

 

RSLVs having longer hydrocarbon chains act as signal molecules with less cytotoxic effect 

To determine the effect of carbon chain length on HSFA2 induction, we compared the effects of 

a series of RSLVs with various carbon chain lengths, and found that RSLVs with chain lengths 

of C4 to C9 were effective with a slightly higher induction in the aldehyde form than in the 

ketone form (Fig. 2-4). Expression patterns obtained by microarray analyses using (2E)-butenal- 

or (3E)-hepten-2-one-treated Arabidopsis, were essentially homologous to that of (2E)-hexenal 

(Fig. 2-1B, lane RSLV2 and 3), suggesting that the RSLVs exhibit identical induction activity 

against abiotic stress-related genes. However, a member of RSLVs is potentially photosynthesis 

damaging agents, as shown by our previous in vitro study (Yamauchi and Sugimoto 2010). The 

ratio Fv/Fm, the maximum photochemical quantum efficiency of PSII, is used as a measure of 

stress response because PSII is one of the sites most sensitive to α, β-unsaturated carbonyls 

(Yamauchi and Sugimoto 2010; Almeras et al. 2003), thus we examined the photosynthesis 

damaging activity of RSLVs by measuring Fv/Fm in Arabidopsis at 23oC. As a result, except 

vinyl group (H2C=CH-) containing RSLVs such as 2-propenal, 1-buten-3-one, and 1- 

penten-3-one, RSLVs did not damage PSII (Fig. 2-4, right panel, Fig. 2-5). Therefore, the 

RSLVs with chain lengths of C4 to C9 having no vinyl group possibly act as signal molecules 

with less cytotoxic effect. 

 

Evaluation of endogenous RSLVs on HSFA2 expression 

Production of (2E)-hexenal via an enzymatic pathway (Fig.2-8) is assumed to be activated when 

plant tissues are disintegrated by physical factors, such as pest invasion, wounding or freezing 

(Matsui 2006). In Arabidopsis ecotype No-0, which can produce (2E)-hexenal enzymatically, 

the (2E)-hexenal content in leaves reached 110 nmol g-1 FW when the leaf was disrupted 
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(Matsui 2012). However, in Arabidopsis ecotype Col-0 used in this study, (2E)-hexenal is 

undetectable because hydroperoxide lyase, which is necessary for producing C6 GLVs, is 

nonfunctional truncated protein due to 10-nucleotide deletion in its first exon (Duan et al. 2005). 

This difference allowed us to determine which RSLVs were produced by non-enzymatic 

peroxidation of PUFAs. Oxidative stress caused by treatment with 10 mM methylviologen 

(MV) under illumination resulted in an increase of (2E)-butenal (Fig. 2-6). Full-scan spectra of 

fragment ions (Fig.2-6B) and selected reaction monitoring using major fragment ions (Fig. 

2-6C) confirmed the identity of this endogenous compound. Concomitant with increase in 

HSFA2 mRNA expression (Fig. 2-7A, column Col-0), these results suggest that (2E)-butenal 

produced by non-enzymatic peroxidation of PUFAs (possible pathway is shown in Fig. 2-8B) 

can act as signaling chemicals that induce HSFA2 expression. To assess the effect of endogenous 

RSLVs on HSFA2 expression, HSFA2 mRNA expression in aor mutants were analyzed. aor 

mutants are deficient in chloroplasticalkenal/one oxidoreductase (AOR) (Yamauchi et al. 2011), 

the enzyme that catalyzes the saturation of α, β-unsaturated carbonyl bonds in reactive 

carbonyls such as RSLVs (Fig. 2-7E). Previously, Yamauchi et al., 2012 found that aor 

exhibited high sensitivity to MV treatment concomitant with accumulation of reactive carbonyls 

including RSLVs. In this study, both aor and Col-0 showed similar levels of (2E)-butenal and 

HSFA2 expression under normal condition, and MV treatment enhanced accumulation of 

(2E)-butenal and HSFA2 expression in aor and Col-0 (Fig. 2-7A and 7B). The enhancement of 

HSFA2 expression in the MV-treated aor was higher than that in MV-treated Col-0, 

corresponding to higher (2E)-butenal accumulation in aor (Fig. 2-7A and 7B). This result 

indicates that total of RSLVs including (2E)-butenal and minor RSLVs whose concentration is 

lower than detection-limit of our analysis might induce HSFA2 higher in aor mutant than Col-0. 

Similar results were obtained from ultraviolet B (UV-B) stress treatment (Fig. 2-7C and 7D) that 

accompanies ROS production (AH-Mackerness et al. 2001) and lipid peroxidation (Takeuchi et 

al. 1995). These enhancements of HSFA2 expression by stress treatments support the hypothesis 

that RSLVs are involved in the induction of HSFA2 expression in vivo. 

 

RSLV signaling is transmitted via both HSFA1-dependent and -independent pathways 

In a heat-stress response, HSFA1s act as master regulators to drive the HSF-HSP system (Liu et 

al. 2011). To determine whether RSLV stimulates HSFA1-mediated HSP expression, an 
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HSFA1a/1b/1d/1e quadruple knockout mutant (QK) was used, which exhibited no HSFA2 

expression when exposed to heat conditions (Liu et al. 2011). In the genomic background 

ecotypes of QK, wild type Col-0 and Ws-0, HSFA2 and MBF1c (belonging to group A, Fig. 

2-9A), and DREB2A, ZAT10 and ZAT12 (belonging to group B, Fig. 2-9A) were induced by 

(2E)-hexenal treatment (Fig. 2-9B and 2C). In (2E)-hexenal–treated QK, HSFA2 and MBF1c 

expression was almost eliminated (Fig. 2-9B), whereas expression of DREB2A and ZAT10 

remained at a similar level to that of Ws-0 (Fig. 2-9C). These results suggested that 

RSLV-mediated gene expression involves heterogeneous pathways, i.e. the HSFA1-dependent 

and HSFA1-independent pathways.  

 

Tomato HSFA2s, and rice HSFA2s and DREB2A were also induced by (2E)-hexenal 

(2E)-Hexenal is a common RSLV that is also detected in tomato (Buttery et al. 1987) and rice 

(Hernandez et al. 1989), thus might act as a signal chemical among various plant species. To 

explore this possibility, the induction of HSFs by (2E)-hexenal in a model tomato cultivar 

(Solanum lycopersicum ‘Micro-Tom’) and rice (Oryza sativa ‘Nipponbare’) were examined 

because these species in which the heat-stress response mechanism has been well-characterized. 

The results of tomato were similar to those described for Arabidopsis in that the tomato HSFA2 

genes were induced by (2E)-hexenal. The induction profiles of other classes of HSFs—HSFA1 

and HSFB1 in tomato were similar to those in Arabidopsis (Fig. 2-10A and 10B). In the case of 

a monocotyledonous plant rice, (2E)-hexenal also upregulated heat-inducible OsHSFA2s and 

abiotic stress-inducible OsDREB2A (Fig. 2-10C). These similarities of gene expression profiles 

among species indicate that RSLVs might be common signal chemicals. 

 

RSLV treatment could enhance abiotic stress tolerance 

Because RSLVs induced HSF and HSP gene expression, protein expression enhancement by 

RSLV treatment was confirmed by detecting two HSPs: HSP101 (encoded by At1g74310) and 

HSP17.6 (encoded by At1g53540). As shown in Fig. 2-11A, HSP101 and HSP17.6 were 

induced by (2E)-hexenal, (2E)-butenal and (3E)-hepten-2-one treatment at 23oC within 2 h, 

whereas the levels in acetonitrile (MeCN)-treated control plants remained low. Finally, an effect 

of RSLV treatment on abiotic stress tolerance was investigated. RSLV-induced thermotolerance 

was assessed by evaluating hypocotyl elongation (Hong and Vierling, 2000) and survival tests, 
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because RSLV treatment could enhance HSFA2 expression and HSP17.6 production (Fig. 2-11) 

those confer acquired thermotolerance (Dafny-Yelin, 2008). After 2.5 days of growth on vertical 

plates in the dark, the seedlings were applied to the hypocotyl elongation test (Fig. 2-12A). 

After heat treatment at 45oC for 2 h, the control and solvent-control seedlings stopped 

developing, whereas seedlings pretreated at 38oC for 90 min (for gaining acquired 

thermotolerance) or RSLV-treated seedlings at 23oC for 120 min continued hypocotyl elongation. 

The thermotolerance enhancing effect of (2E)-hexenal was not observed in HSFA1s-deficient 

QK mutants (Fig. 2-13), indicating that the physiological importance of HSFA1-dependent 

pathway in heat stress response. In the survival enhancement test, RSLV treatments enhanced 

thermotolerance similar level to that of acquired thermotolerance (Fig. 2-12C). In addition, 

RSLV treatments could enhance protection of PSII from heat- or UV-B-derived damages 

(Fig.2-14B and 14C). 

 

Possible role of RSLVs in abiotic stress responses 

RSLVs have been widely detected among plant species, and increased RSLV production has 

been observed under abiotic stresses (Mueller, 2009) including heat stress (Fig. 2-15). 

Production of (2E)-hexenal was detected in a photoinhibition sensitive Arabidopsis mutant 

(Col-0 background) npq1 by intense light conditions (Loreto et al., 2006), which could cause 

ROS to be overproduced from the loss of energy dissipation. Additionally, in tomato plants, 

production of (2E)-hexenal was enhanced under heat and cold stresses (Copolovici et al. 2012). 

Furthermore, increased levels of (2E)-pentenal and (2E)-hexenal were also detected in tobacco 

plants under photooxidative stress condition (Mano et al. 2010). Consequently, non-enzymatic 

pathway-derived small 2-alkenals, and both enzymatic and non-enzymatic pathways derived 

(2E)-hexenal can act as endogenous signal chemicals that respond to abiotic stresses. Volatiles 

such as isoprenoids play important roles in various stresses tolerance (Vickers et al. 2009). Also 

in the case of RSLVs, the results indicate that RSLVs stimulate heterogeneous signal 

transduction in response to abiotic stress (Fig. 2-16). One signal transduction pathway is an 

HSFA1-dependent pathway expressing proteotoxic stress-related genes that contribute to HSP 

production to maintain protein homeostasis. The other signal transduction pathway is mediated 

by HSFA1-independentpathway expressing various abiotic stress-response genes. RSLVs 

stimulate both pathways as oxidative stress signals to induce proteotoxic and abiotic 
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stress-response genes. 
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Table2-1. Descending order of gene expression ratio [(2E)-hexenal versus control] calculated from results 

of microarray. The "Ratio" values are the mean of 3 independent experiments, 

TAIR_ID Ratio SD DESCRIPTION 

AT1G53540 117.26  21.24  HSP17.6C-Cl 

AT1G59860 91.02  10.82  HSP17.6A-Cl 

AT2G26150 80.58  10.75  ATHSFA2; DNA binding / transcription factor 

AT4G08555 75.44  9.27  unknown protein 

AT5G05410 73.62  14.17  DREB2A; DNA binding / transcription factor/ transcriptional activator 

AT1G05575 69.62  6.34  unknown protein 

AT5G27420 53.87  14.50  protein binding / ubiquitin-protein ligase/ zinc ion binding 

AT3G29000 51.18  4.64  calcium ion binding 

AT2G46240 44.81  3.64  protein binding 

AT2G44840 43.08  14.95  ATERF13; DNA binding / transcription factor 

AT5G47230 37.57  8.89  

ATERF-5/ATERF5; DNA binding / transcription factor/ 

transcriptional activator 

AT5G12020 35.85  6.22  HSP17.6II 

AT4G25200 35.52  11.69  

ATHSP23.6-MITO (MITOCHONDRION-LOCALIZED SMALL HEAT 

SHOCK PROTEIN 23.6) 

AT5G12030 34.67  1.35  AT-HSP17.6A 

AT2G32120 34.19  1.92  HSP70T-2; ATP binding 

AT2G29500 33.98  2.73  HSP17.6B-CI 

AT1G71000 33.91  27.28  heat shock protein binding / unfolded protein binding 

AT5G14470 33.67  5.74  

ATP binding / galactokinase/ kinase/ phosphotransferase, alcohol 

group as acceptor 

AT1G22810 32.79  10.12  DNA binding / transcription factor 

AT4G17500 28.60  10.25  

ATERF-1 (ETHYLENE RESPONSIVE ELEMENT BINDING 

FACTOR 1); DNA binding / transcription factor/ transcriptional 

activator 

AT1G03070 28.34  12.01  glutamate binding 

AT5G48570 28.32  4.83  

FK506 binding / calmodulin binding / peptidyl-prolyl cis-trans 

isomerase 

AT4G27654 28.04  8.09  unknown protein 

AT2G36800 26.91  3.27  

DOGT1 (DON-GLUCOSYLTRANSFERASE); 

UDP-glycosyltransferase/ transferase, transferring glycosyl groups 

AT5G51440 26.91  3.60  HSP23.5-M 

AT2G20560 25.61  1.28  heat shock protein binding / unfolded protein binding 
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Table 2-1. (Continued)    

AT1G02230 25.53  9.22  ANAC004; transcription factor 

AT5G37670 25.24  5.28  HSP15.7Cl 

AT4G10250 24.28  14.07  ATHSP22.0 

AT5G39670 22.16  2.08  calcium ion binding 

AT3G09350 22.12  4.51  unknown protein 

AT1G52560 22.11  3.25  HSP26.5-P 

AT5G52760 21.62  7.15  metal ion binding 

AT4G27670 21.22  16.48  HSP21 (HEAT SHOCK PROTEIN 21) 

AT3G08970 21.04  5.19  heat shock protein binding / unfolded protein binding 

AT4G17490 20.75  0.77  

ATERF6 (ETHYLENE RESPONSIVE ELEMENT BINDING 

FACTOR 6); DNA binding / transcription factor 

AT3G02800 20.44  1.81  phosphoprotein phosphatase 

AT3G50260 20.30  1.45  ERF DNA binding / transcription factor 

AT1G21550 20.11  3.32  calcium ion binding 

AT2G32030 19.95  3.29  N-acetyltransferase 

AT3G51910 19.49  2.17  AT-HSFA7A; DNA binding / transcription factor 

AT5G54490 19.27  0.73  PBP1 (PINOID-BINDING PROTEIN 1); calcium ion binding 

AT5G46295 19.10  6.63  unknown protein 

AT5G59820 18.94  2.37  

ZAT12 RHL41 (RESPONSIVE TO HIGH LIGHT 41); nucleic acid 

binding / transcription factor/ zinc ion binding 

AT5G47220 18.79  14.31  

ATERF-2/ATERF2/ERF2; DNA binding / transcription factor/ 

transcriptional activator 

AT1G78410 18.33  3.40  unknown protein 

AT1G61340 18.02  5.04  unknown protein 

AT1G30370 17.51  7.34  triacylglycerol lipase 

AT1G74930 17.49  9.35  ERF DNA binding / transcription factor 

AT4G34131 17.46  2.43  UDP-glycosyltransferase/ transferase, transferring hexosyl groups 

AT2G22880 17.45  7.62  unknown protein 

AT1G56240 17.44  2.75  ATPP2-B13 

AT5G45630 17.00  9.17  unknown protein 

AT3G23230 17.00  4.79  ERF DNA binding / transcription factor 

AT5G04340 16.97  0.57  

ZAT6 C2H2; nucleic acid binding / transcription factor/ zinc ion 

binding 

AT4G23493 16.76  4.41  unknown protein 
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Table 2-1. (Continued)   

AT5G52640 16.19  0.16  HSP81-1 (HEAT SHOCK PROTEIN 81-1); ATP binding / unfolded 

protein binding 

AT5G42380 15.85  2.66  calcium ion binding 

AT5G64510 15.60  3.06  unknown protein 

AT4G12400 15.56  1.06  unknown protein 

AT3G10930 14.87  4.96  unknown protein 

AT3G07150 14.69  3.05  unknown protein 

AT1G70420 14.54  2.99  unknown protein 

AT5G66650 14.30  1.51  unknown protein 

AT3G49570 14.27  3.38  unknown protein 

AT1G24140 13.77  1.09  metalloendopeptidase/ metallopeptidase/ zinc ion binding 

AT2G37430 13.62  3.15  ZAT11nucleic acid binding / transcription factor/ zinc ion binding 

AT3G25250 13.51  2.63  AGC2-1 (OXIDATIVE SIGNAL-INDUCIBLE1); kinase 

AT4G28703 13.47  0.20  unknown protein 

AT4G37290 13.46  0.47  unknown protein 

AT5G63790 13.34  1.83  ANAC102; transcription factor 

AT2G36750 13.14  4.54  

UGT72C1; UDP-glycosyltransferase/ transferase, transferring 

glycosyl groups 

AT3G54150 12.99  4.66  S-adenosylmethionine-dependent methyltransferase 

AT5G22140 12.91  1.81  disulfide oxidoreductase/ electron carrier 

AT3G17611 12.89  2.79  unknown protein 

AT3G50800 12.84  3.53  unknown protein 

AT4G21320 12.69  1.52  HSA32 

AT3G11840 12.55  4.22  ubiquitin-protein ligase 

AT5G16980 12.41  2.57  oxidoreductase/ zinc ion binding 

AT2G26560 12.23  6.65  nutrient reservoir 

AT2G29490 12.13  3.50  

ATGSTU1 (GLUTATHIONE S-TRANSFERASE 19); glutathione 

transferase 

AT5G24110 11.95  4.56  WRKY30; transcription factor 

AT1G16030 11.69  2.99  HSP70B; ATP binding 

AT1G79410 11.68  0.78  carbohydrate transporter/ sugar porter 

AT3G14660 11.42  5.25  

CYP72A13; heme binding / iron ion binding / monooxygenase/ 

oxygen binding 

AT3G61190 11.34  4.23  BAP1 (BON ASSOCIATION PROTEIN 1) 
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Table 2-1. (Continued)   

AT5G57220 11.21  2.91  CYP81F2; heme binding / iron ion binding / monooxygenase/ 

oxygen binding 

AT2G29060 11.06  1.60  transcription factor 

AT3G23170 11.00  4.14  unknown protein 

AT2G46400 10.97  3.82  WRKY46; transcription factor 

   

AT1G63820 10.74  0.38  unknown protein 

AT4G15975 10.70  3.28  protein binding / ubiquitin-protein ligase/ zinc ion binding 

AT1G27730 10.49  0.56  ZAT10; nucleic acid binding / transcription factor/ zinc ion binding 

AT1G54050 10.45  1.07  HSP17.4-CIII 

AT5G59720 10.32  3.75  HSP18.2 (HEAT SHOCK PROTEIN 18.2) 

AT1G50750 10.31  2.17  unknown protein 

AT4G34135 10.22  1.68  UDP-glycosyltransferase/ transferase, transferring hexosyl groups 

AT1G56060 10.14  2.44  unknown protein 

AT3G50770 9.96  1.39  calcium ion binding 
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Table 2-2  

 Primer sequences used in this study. 

 

   Target gene Forward Reverse 

Arabidopsis 

  Actin2 ACC AGC TCT TCC ATC GAG AA  GAA CCA CCG ATC CAG ACA CT 

HSFA1a GAC GGG TTC TCA TCT CCA AA TCA TCA ATC TCG GGG TCT TC 

HSFA1b GAG GTG GGG AAG TTT GGA AT TTG TGC TGC TTC GTT TAT CG 

HSFA1d TCA GAA GCA ACC GAG AAC TG CCA TCC ATT TTG TTC CTG CT 

HSFA1e ATC GAT GAA CGA TGC AAC AA CTG TCT CGC ATC CAA CAA GA 

HSFA2 GCA AGG AAC GTC ATC ATC TG ATC AGC AAG GAT CTG GGA TG 

HSFB1 TTG GTT CGC CTT CTG AGT CT CTT TCA ACC ACA CCC CAA AC 

ZAT12 GGC GAA TTG TTT GAT GCT TT CAA GCC ACT CTC TTC CCA CT 

ZAT10 GCT TCT CCG ATT CCT CCT TT GAC CAC CGA GAG CTT GGT AA 

MBF1c GAG CAG ATA CCC AGG AGC AG TGA TCT GTT TCG CCA AAT CC 

DREB2A GTG GAG TGG AGC CGA TGT AT ATC GTC GCC ATT TAG GTC AC 

   Tomato 

  Actin AGC AAT ACC AGG GAA CAT GG GGA TCT TGC TGG TCG TGA TT 

HSFA1 AGG AGG TCC CAC CAA CTT CT TCC CAC TTT TCC CTC AAC TG 

HSFA2 GAT CTG GTG CTT GCA TTG AA TGG GGG TCA TCG TTA GTC TC 

HSFB1 CAA AGG ATT TGC TTC CCA AA CCG TGA ACT GGG ACA ACT TT 
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Figure 2-1. Abiotic stress-related genes were up-regulated by RSLV treatment in Arabidopsis. 

A Arabidopsis plants vaporized (2E)-hexenal in plastic box. B Heat map constructed with the whole gene 

expression. Expression data used are data from shoots collected over the course (0.25, 0.5, 1, 3, 6 h of 

heat, UV-B, drought or wound stresses) and (0.5, 1, 3, 6, 12 h of oxidative, salt, osmotic or cold stresses) 

obtained from the AtGenExpress database. RSLVs used for obtaining expression data are (2E)-hexenal 

(lane 1), (2E)-butenal (lane 2) and 3-hepten-2-one (lane 3). Genes induced by heat and various stresses 

induced were classified into Groups A and B, respectively. In addition, responsive genes to salt, oxidative, 

osmotic drought, cold and wound (Group C), salt- and osmotic-responsive genes (Group D) and 

cold-responsive genes (Group E) are shown. C Transcription factors and HSPs in the 100 most highly 

up-regulated genes. Expressionwas induced by (2E)-hexenal treatment. Symbols indicate the HSF and 

ZAT genes (orange), AP2/ERF genes (blue), other transcription factor genes (black), and HSP genes (red). 

Symbols of other genes are omitted. Data are means±SE (n=3). Detailed list is shown in Table 2-1.  
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++++++++++ 

 

 

Figure 2-2. HSFA2 gene was specifically upregulated by (2E)-hexenal. 

A Arabidopsis plants were exposed to (2E)-hexenal (10 nmol cm-3) for various time periods (0 

to 2 h). B Changes in (2E)-hexenal content. Data are means ± SD (n = 3). C Arabidopsis plants 

were exposed to various concentrations of (2E)-hexenal for 30 min to determine 

dose-dependence of HSFA2 expression. Expression of the HSFA2 gene was determined using 

qRT-PCR. Relative transcript levels were normalized to ACTIN2 mRNA. Data are means ± SD 
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(n = 3). D Arabidopsis plants were exposed to series of C6 GLVs and their analogues (each 10 

nmol cm-3) for 30 min. 

 

 

Figure 2-3. Transient increase in (2E)-hexenal in Arabidopsis treated at 10 nmol cm–3.  

Typical HPLC chromatogram. Arrows indicate peaks of DNP-(2E)-hexenal. The retention times 

of authentic DNP-RSLVs and the internal standard (IS) are shown above the chromatogram.  
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Figure 2-4. Effect of chain-length of RSLVs on Induction of HSFA2 expression and PSII 

activity. Arabidopsis plants were exposed to (2E)-hexenal (10 nmol cm-3) a series of RSLVs of 

aldehyde form (each 10 nmol cm-3) for 30 min, or a series of RSLVs of ketone form (each 10 

nmol cm-3) for 30 min (upper panel). Expression of the HSFA2 gene was determined using 

qRT-PCR. Relative transcript levels were normalized to ACTIN2 mRNA. The expression level 

of the 0 h exposure sample was set to 1. Effect of RSLVs on PSII activity was determined by 

treatment of the indicated a, b-unsaturated aldehydes or ketones (each 25 nmol cm-3) for 90 min 

to Arabidopsis plants, and then PSII activity was measured (lower panel). The chemical 

structures of the RSLVs are shown above the graphs. Dotted and solid circles indicate the a, 

b-unsaturated carbonyl bond moieties and vinyl group, respectively. Data are means ± SE (n=3 

in upper panel, n=5 in lower panel). Values followed by the same letter are not significantly 

different according to Tukey-Kramer (P＜0.05). 
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 Figure 2-5. Effect of RSLVs on PSII activity 

To determine toxicity of the RSLVs, Arabidopsis plants were exposed to various concentrations 

of 2-propenal (open square), (2E)-butenal (open diamond), (2E)-pentenal (open circle), 

(2E)-hexenal (open triangle), or (3E)-hepten-2-one. After 90 min, residual PSII activity (Fv/Fm) 

was measured. Data are means ± SE (n = 3). 
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Figure 2-6. Determination of (2E)-butenal as endogeneous RSLV produced under 

oxidative stress. 

Arabidopsis leaflets were treated with 10 µM MV in the presence of light (80 µmol m–2 s–1) for 

an hour. A Typical chromatogram of HPLC analysis of DNP-carbonyls of MV-untreated (top) 

and MV-treated Arabidopsis (bottom). Arrow indicates peak of DNP-(2E)-butenal. The 

retention times of authentic DNP-RSLVs and the internal standard (IS) are shown above the 

chromatogram. B Typical chromatogram (selected reaction monitoring) of 2-butenal-DNP by 

LC-MS/MS analysis. Other RSLVs did not increase significantly after MV treatment. C 

Full-scan spectra of fragment ions of endogenous (top) and authentic 2-butenal (bottom). 
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Figure 2-7. Estimation of (2E)-butenal contents and HSFA2 expression in MV-treated (A, 

B) or UVB-treated (C, D) Arabidopsis. A and C (2E)-butenal contents at 0 time (-) and after 

stress treatment (+). Data are means ± SD (n = 4). Values followed by the same letter are not 

significantly different according to Tukey-Kramer (P <0.05). B and D Expression of HSFA2 was 

enhanced in aor mutant under oxidative stress. HSFA2 mRNA expression in Col-0 and aor was 

determined by qRT-PCR. Relative transcript levels were normalized to ACTIN2 mRNA. The 

expression level of the 0 time sample was set to1. Data are means ± SE (n = 3). (*, P < 0.05 vs Col-0, 

Student’s t-test). Absolute HSFA2 transcripts were approximately 5 copies ng-1 RNA in both Col-0 

and aor. E alkenal/one oxidoreductase (AOR) catalyzes saturation of α, β-unsaturated carbonyl 

bonds by using NADPH (shown in dotted box). RSLVs are food substrates for AOR (Yamauchi, 

2011). 
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Figure 2-8. Pathways for production of RSLVs in plants. (2E)-Hexenal and (2E)-butenal are 

mainly produced via enzymatical A and non-enzymatical (B, referred from Frankel 1980) pathways, 

respectively.  

 



33 

 

Figure 2-9. RSLV-induced genes are divided into HSFA1-dependent or –independent 

groups. A Heat map constructed with the 100 most highly upregulated genes by (2E)-hexenal 

treatment. B and C Expression of transcription factors in (2E)-hexenal treated Col-0 (Col, open 

column), Ws-0 (Ws, shaded column) and HSFA1quardruple knockout mutant (QK, gray column). A 

and B mean groups in panel a.  
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Figure 2-10. Expression of related transctiption factors by (2E)-hexenal treatment in 

Arabidopsis (a), tomato (b) and rice(c). 

Tested plants were treated with (2E)-hexenal (10 nmol cm-3) for 30 min, and then expression of each 

transcription factor gene was determined by qRT-PCR. Relative transcript levels were normalized 

ACTIN mRNA. For each gene examined, the expression level in the MeCN-treated control sample 

was set to 1. Data are means ± SD (n = 3). 



35 

 

 

 

Figure 2-11. Biological effects of RSLV treatment of Arabidopsis.  

A After the indicated RSLV treatment or heat treatment at 38oC, expression of HSP101 and 

HSP17.6 proteins was detected by western blot analysis. Rubisco was stained using Coomassie 

Brilliant Blue R-250 as a loading control. B Induction of HSFA2 expression and HSP17.6 

production by RSLVs in Arabidopsis seedlings. Quantified value of each band by densitometric 

analysis is indicated in parenthesis. Maximal intensity is set to 100. Rubisco was stained using 

Coomassie Brilliant Blue R-250 as a loading control.  
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Figure 2-12. Biological effects of RSLV treatment of Arabidopsis  

A The 2.5-day-old dark-grown seedlings (Before) were pretreated at 38oC for 90 min to acquire 

thermotolerance (AT) or 10 mM indicated RSLVs or solvent control (MeCN) for 2 h and then 

heat-stressed at 45oC for 2 h. Seedling were returned to 23oC in the dark and length was measured 

after 2.5 days. Length of seedlings before treatment was set to 100%, and elongation of each 

treatment was calculated. Schemes of treatment are shown above the graph. B Survival enhancement 

was calculated by survival rate determined on 3 days after treatments with same scheme as shown in 

panel A. Left; Representative photographs of Arabidopsis plants on 7 days after heat stress 

treatments. Right; Survival enhancement by RSLV treatment calculated from 3 independent assays. 

Survival rate of 45oC sample was set to 100%. Values followed by the same letter are not 

significantly different according to Tukey-Kramer (n = 4 or 5; P <0.05). 
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Figure 2-13. Effect of (2E)-hexenal treatment on thermotolerance of QK.  

The 5-day-old dark-grown QK seedlings (Before) were pretreated at 38°C for 90 min to acquire 

thermotolerance (AT) or 10 µM (2E)-hexenal for 2 h and then heat-stressed at 45°C for 2 h. 

Seedling were returned to 23°C in the dark and length was measured after 2.5 days. Length of 

seedlings before treatment was set to 100%, and elongation of each treatment was calculated (n 

= 4 or 5; *, P < 0.05 vs. before treatment seedlings; Student’s t-test). Schemes of treatment are 

shown in Fig. 2-12B.  
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Figure 2-14. Effect of RSLV treatment on thermotolerance.  

A The 5-day-old dark-grown QK seedlings (Before) were pretreated at 38°C for 90 min to acquire 

thermotolerance (AT) or 10 µM (2E)-hexenal for 2 h and then heat-stressed at 45°C for 2 h. Seedling 

were returned to 23°C in the dark and length was measured after 3 days. Length of seedlings before 

treatment was set to 100%, and elongation of each treatment was calculated. Schemes of treatment 

are shown in Fig. 2-12B. B and C, Effect of RSLVs on protection of PSII from heat B or UV-B 

treatment C. Two-week-old Arabidopsis (Col-0) were pretreated with 10 nmol cm-3 RGLV for an 

hour, and then treated with heat (45°C for 2h) or UV-B (1 mW cm–2 for 30 min). Data are means ± 

SE (n = 4 or 5). Values followed by the same letter are not significantly different according to 

Tukey-Kramer (P <0.05).  
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Figure 2-15. 2-Butenal contents in Arabidopsis plants under heat stress.  

Data are means ± SE (n = 3). Values followed by the same letter are not significantly different 

according to Tukey-Kramer (P <0.05).  
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Figure 2-16. Hypothesized RSLVs-related signaling pathway in abiotic stress accompanied 

by oxidative stress. RSLV stimulates both HSFA1-dependent and independent pathways (white 

arrows). RSLVs are possibly involved in the upstream of signaling pathway triggered by abiotic 

stresses accompanied by oxidative stress. Proteotoxic stress such as heat and ROS are accepted by 

HSFA1s to drive HSFA1-denpendent pathway (black arrows). 
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Chapter III 

Identification of hexenal isomerase and manipulation of RSLVs production 

 

(2E)-Hexenal, a member of green leaf volatiles (GLVs), is a widely distributed RSLV in planta. 

GLVs act as semiochemicals involved in plant-insect and plant-plant interactions. In addition, as 

described in Chapter II, (2E)-hexenal induced expression of abiotic stress-responsive 

transcription factors such as HSFs, DREB2A and ZATs, and Arabidopsis plants treated with (2E) 

-hexenal exhibited enhanced heat stress tolerance. Biosynthesis of (2E)-hexenal from 

(3Z)-hexenal had been proposed in plants although the enzyme hexenal isomerase (HI) 

responsible for the conversion remained unidentified. In this chapter, purification and 

characterization of HI was undertaken. HI from paprika fruits was purified to homogeneity. 

Based on internal amino acid sequences determined by Edman analysis, cDNA encoding the full 

length of the isomerase was cloned. The protein was heterologously expressed in Escherichia 

coli and the purified enzyme was characterized. Tomato, which produces (3Z)-hexenal as a 

major volatile with a negligible amount of (2E)-hexenal, was transformed by the HI gene to 

alter its RSLVs profile. (3Z)-Hexenal decreased to a negligible level and (2E)-hexenal 

significantly increased in some transgenic lines, thus verifying the in vivo involvement of HI in 

biological conversion of (3Z)-hexenal to (2E)-hexeanal in transgenic tomato. 

 

Materials and methods 

 

Materials 

Paprika (Capsicum annuum L.), Arabidopsis (Arabidopsis thaliana, Columbia-0), tomato 

(Solanum lycopersicum, cv. Micro-Tom), potato (Solanum tuberosum cv. Sassy), tobacco 

(Nicotianabenthamiana), alfalfa (Medicago sativa), and rice (Oryza sativa, cv Nipponbare) 

were sown on Jiffy-7 peat pellets (Sakata Seed Co., Yokohama, Japan) and kept at 4°C for 3 

days in the dark. The plants were then transferred to the conditions of a 14-h-light (80 µmol 

photons m–2 s–1)/10-h-dark cycle at 23°C (for Arabidopsis, tomato, potato, tobacco, alfalfa, and 

rice) or 28°C (for paprika). (3Z)-hexenal was obtained from Bedoukian Research Inc. (Danbury, 

CT, USA). Other chemicals of research grade were purchased from Wako Pure Chemicals 

(Osaka, Japan) or NacalaiTesque (Kyoto, Japan). 
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Crude extract preparation and HI activity measurement 

Plant material was homogenized with two volumes of 50 mM Hepes-KOH, pH 7.0. After 

centrifugation at 10,000g for 10 min, the supernatant was used as a crude extract. Crude extract 

was incubated in 1 ml of reaction mixture containing 10 mM (3Z)-hexenal in 50 mM 

Hepes-NaOH, pH 7.0 for 30 min at 25°C. The reaction was stopped and derivatized with 

2,4-dinitrophenylhydrazine (DNPH) by addition of 25 µl of 20 mM DNPH in acetonitrile and 

20 µl of HCOOH. After 10 min, dinitrophenylhydrazine (DNP) derivatives were extracted with 

300 µl of n-hexane. After centrifugation, 150 µl of the hexane layer was recovered and dried in 

vacuo. The residue was dissolved in 50 µl acetonitrile and filtered through a Cosmonice Filter 

(NacalaiTesque, Kyoto, Japan), after which 10 µl aliquots were subjected to HPLC as described 

previously (Yamauchi et al. 2012). 

 

Purification of CaHI 

Paprika pericarp (640 g) was homogenized with 1.5 volumes of 50 mM Hepes-NaOH, pH 7.0. 

Debris was removed by filtration through two layers of gauze, and the filtrate was centrifuged at 

10,000g for 10 min. Ammonium sulfate was added to the supernatant to 30% saturation, 

followed by centrifugation at 10,000g for 10 min. After lipids floating on the supernatant were 

removed by filtration through two layers of gauze, the supernatant was applied to a 

phenyl-sepharose column (40 ml, GE Healthcare UK, Ltd., England) equilibrated with 30% 

saturated ammonium sulfate in 50 mM potassium phosphate buffer (K-PB), pH 7.0. Proteins 

were eluted with 50 mM K-PB, pH 7.0, and the eluent was applied directly to a hydroxyapatite 

(NacalaiTesque) column equilibrated with 50 mM K-PB, pH 7.0. After washing with 250 mM 

K-PB, pH 7.0, HI activity was eluted with 250 mM K-phosphate, pH 7.0, containing 1% Triton 

X-100. Nine volumes of 20 mM Hepes-NaOH, pH 7.0, containing 0.1% α-D-dodecyl maltoside 

(DDM) was added to the fraction containing activity, which was then applied to a Mono Q mini 

column (total volume 2 ml, GE Healthcare). After washing with 20 mM Hepes-NaOH, pH 7.0, 

containing 0.1% DDM, proteins were eluted with 20 mM Hepes-NaOH, pH 7.0, containing 

0.1% DDM and 1 M NaCl. The enzyme solution was concentrated with Centricon-30 (Merck 

Millipore, Germany) and diluted by nine volumes of 20 mM Hepes-NaOH, pH 7.0, containing 

0.1% DDM. The proteins were subjected to anion exchange column chromatography (Mono Q, 
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GE Healthcare) and fractionated with a gradient of 0–0.3 M NaCl. Protein concentration was 

determined by the method of Bradford. 

 

Internal amino acid sequencing of purified enzyme 

Purified paprika enzyme (2 µg) dissolved in 1 ml of 70% formic acid was chemically 

fragmented with BrCN at room temperature overnight in the dark. Fragmented peptides 

recovered by centrifugal evaporation were dissolved in SDS-sample buffer and then separated 

by Tricine-SDS-PAGE. After electrophoresis, the separated peptides were blotted onto a PVDF 

membrane with a semidry blotting system (Atto Corp., Tokyo, Japan), and peptides were 

visualized by CBB R-250 staining. Stained bands were excised from the membrane, and their 

amino acid sequences were determined with a protein sequencer (Procise Model 492, Applied 

Biosystems, Foster City, CA, USA). 

 

Cloning of CaHI and quantitative RT-PCR (qRT-PCR) 

Similarity search of internal amino acid sequences was performed against a Solanaceae-specific 

database (Solcyc.solgenomics.net). To confirm that Ca08g14620, including both internal amino 

acid sequences, was identical to CaHI, the open reading frame (ORF) of Ca08g14620 was 

cloned as follows. Total RNA was isolated from paprika fruits with an RNeasy Plant Mini Kit 

(QIAGEN), and cDNA was then synthesized with ReverTra Ace® qPCR RT Master Mix with 

gDNA Remover (TOYOBO, Osaka, Japan). To obtain the ORF of Ca08g14620, PCR was 

performed with ExTaq DNA polymerase (Takara Bio Inc., Shiga, Japan) using primers 

CaHIBamHI 5′ (5′-GGATCCATGGATTTAATATTGGCATCG-3′) and CaHISalI 3′ 

(5′-GTCGACTTAAGGTGGGGCAATGACTGC-3′). The PCR product was cloned into the TA 

Cloning vector pMD19 and then sequenced with a BigDye○R Terminator v3.1 Cycle 

Sequencing Kit for confirmation. Quantitative real-time RT-PCR (qRT-PCR) was performed 

with Thunderbird SYBR Green qPCR Mix (TOYOBO) and a Light Cycler Nano System (Roche, 

Basel, Switzerland) using template cDNA prepared as described above. Primers used for 

qRT-PCR are shown in Table S1. For analysis of relative transcript levels, internal standard 

mRNA was used in all qRT-PCR experiments, and the expression levels of genes of interest 

were normalized to that of the internal standard by subtraction of the cycle threshold (CT) value 

of the internal standard from the CT value of the gene of interest. 
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Heterogeneous expression of HIs 

The ORF of HI was amplified by PCR using the primers shown in Table S2 and then subcloned 

into pMD19 (Takara Bio). After confirming DNA sequence, each HI gene was inserted into 

pColdProS2 vector (Takara Bio), and Escherichia coli was transformed with the resultant 

expression plasmid. E. coli harboring the expression vector was grown with shaking at 37oC in 

LB broth with 50 µg/ml ampicillin to midlogarithmic phase. Expression was induced by 

addition of IPTG to 0.1 mM, and cultures were grown for a further 16 h at 15°C and harvested 

by centrifugation. The pellet was washed twice with phosphate-buffered saline (PBS) and then 

resuspended with 400 µl of PBS. After disruption of the cells by sonication, recombinant HI 

protein in the soluble fraction was purified on a His SpinTrap column (GE healthcare) according 

to the manufacturer’s instructions. Electrophoretically homogenous HI fraction was used for 

enzyme assays. Point mutation of recombinant CaHI (rCaHI) was performed with a PrimeSTAR 

Mutagenesis Basal Kit (Takara Bio) using primers shown in Table S3. 

 

3-Hexyn-1-al synthesis and measurement of its inhibitory activity against HI 

3-Hexyn-1-al was chemically synthesized from 3-hexyn-1-ol (Tokyo Chemical Industry, Tokyo, 

Japan) by oxidation with the Dess–Martin periodinane (Wako Pure Chemical) reagent according 

to the method of Wavrin and Viala (2002). To confirm its purity, synthesized 3-hexyn-1-al was 

derivatized with DNPH as described above and then analyzed by LC–MS and NMR. 

Synthesized 3-hexyn-1-al was incubated with purified rCaHI for 4 h on ice, and free 

3-hexyn-1-al was then removed by ultrafiltration using Vivaspin 500-30K (GE Healthcare). 

Residual HI activity was measured by standard assay as described above. 

 

1H-NMR analysis 

All NMR experiments were performed on a JEOL JNM-AL300 (300 MHz at 1H, JEOL Ltd., 

Tokyo, Japan), and chemical shifts were assigned relative to the solvent signal. Hexenal-DNP 

derivatives were dissolved in chloroform-d2, and the diameter of the tube was 5 mm. 

 

Production of transgenic tomato overexpressing CaHI 

A DNA fragment of CaHI amplified with primers (CaHINdeI 5′: 
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5′-CATATGGATTTAATATTGGCATCG-3′, CaHISalI 3′: 

5′-GTCGACTTAAGGTGGGGCAATGACTGC-3′) was digested with NdeI and SalI and 

ligated into the pRI101-AN vector (Takara Bio Inc., Shiga, Japan) to construct a 35S 

promoter-driven expression plasmid. After Agrobacterium tumefaciens (strain C58C1Rifr) was 

transformed by pRI101-AN::35S::CaHI, cotyledons of tomato plants (cv Micro-Tom) were 

transformed by Agrobacterium-mediated transformation with kanamycin resistance as a 

selectable marker (Sun et al. 2006). For confirmation of insertion of CaHI and the neomycin 

phosphotransferase II gene in regenerated transgenic tomato plants, genome PCR was 

performed using the primers shown in Table 3-3. Candidates were further examined by 

qRT-PCR and volatile analysis to establish transgenic lines. Finally, transgenic lines showing 

stable seed production were used for analysis. 

 

Volatile analysis 

Harvested tomato materials were placed in a Falcon tube (15 ml) with three stainless steel beads 

(5 mm i.d.), and the tube was then sealed tightly with Parafilm. After samples were frozen in 

liquid N2, the tissues were completely disrupted by vigorous vortexing. When volatiles in intact 

tissues were analyzed, 1 ml saturated CaCl2 solution was added to inactivate enzymes. An 

SPME fiber (50/30 µm DVB/Carboxen/PDMS, Supelco, Bellefonte, PA, USA) was exposed to 

the headspace of the vial for 30 min (for leaf) or 60 min (for fruit) at 25°C. The fiber was 

inserted into the insertion port of a GC–MS (QP-5050, Shimadzu, Kyoto, Japan) equipped with 

a 0.25 µm × 30 m Stabiliwax column (Restek, Bellefonte, PA, USA). The column temperature 

was programmed as follows: 40°C for 1 min, increasing by 15°C min−1 to 180°C for 1 min. The 

carrier gas (He) was delivered at a flow rate of 1 ml min−1. The glass insert was an SPME 

Sleeve (Supelco). Splitless injection with a sampling time of 1 min was used. The fiber was held 

in the injection port for 1 min to remove all compounds fully from the matrix. The temperatures 

of the injector and interface were 200°C and 230°C, respectively. The mass detector was 

operated in electron impact mode with ionization energy of 70 eV. To identify compounds, 

retention indices and MS profiles of corresponding authentic specimens were used. 

 

Homology modeling 

Three-dimensional structures of HI proteins were deduced by homology modeling using 
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SWISS-MODEL (Arnold et al. 2002; Bordoli et al. 2009; Biasini et al. 2014). The amino acid 

sequences of HIs were used to search for templates in the database. The templates were selected 

based on the Global Model Quality Estimation values and the QMEAN4 scores. Templates and 

the sequence identity between the HIs and their corresponding templates are shown in the 

figures. The protein structures were analyzed with Swiss PdbViewer (Guex et al. 1997). 

 

Results 

Purification of CaHI from red paprika 

At the start of this study, plant materials for high HI activity were screened. First activity in red 

bell pepper (Capsicum annuum L.) fruits was assayed because bell pepper showed a large 

change in leaf aldehyde composition during ripening; (3Z)-hexenal was the predominant GLV in 

green bell pepper, whereas (2E)-hexenal became the predominant GLV during the change in 

fruit color from green to red (Luning et al. 1995). This phenomenon suggested that abundant HI 

activity occurs in ripening bell pepper. As expected, activity in red pepper fruits was detected, 

and another bell pepper variant, red paprika, showed the most abundant activity. No isomerase 

activities were detected in Arabidopsis leaves, tobacco leaves, or tomato fruits (Fig. 3-1). 

Accordingly, red paprika was used as a source for purification of HI. CaHI was purified from 

pericarp of red paprika fruits by successive column chromatography steps (Table 3-1). At the 

final step of purification, fractions containing activity matched elution peaks of proteins (Fig. 

3-2A). SDS-PAGE analysis showed that each fraction contained a single protein of 35 kDa (Fig. 

3-2B), suggesting that CaHI was purified to homogeneity. Native CaHI is a trimetric protein, 

given that the molecular mass of nondenatured isomerase was estimated by BN-PAGE to be 110 

kDa (Fig. 3-2C). Isomerization of hexenal by purified CaHI is unidirectional, given that CaHI 

did not convert (2E)-hexenal to (3Z)-hexenal (Fig. 3-3). Kinetic parameters are shown in Table 

3-2. CaHI showed high activity at acidic to neutral pH (Fig. 3-4). 

 

Cloning of CaHI 

To clone the cDNA encoding CaHI, the internal amino acid sequences were determined. After 

the purified protein was chemically cleaved by BrCN, polypeptide fragments were separated by 

Tricine-SDS-PAGE and blotted onto PVDF membrane (Fig. 3-5A). Among the blotted peptides, 

amino acid sequences of two major polypeptides could be determined (Fig. 3-5B). Homology 



47 

 

search of these sequences using a Solanaceae-specific database (Sol Genomics Network) 

indicated that the amino acid sequence of an unknown protein encoded by Ca08g14620 

contained both sequences. To confirm that this unknown protein was identical to CaHI, the ORF 

of the unknown protein was cloned into pColdProS2 plasmid and then produced as a 

recombinant protein (Fig. 3-6A). The purified recombinant protein in soluble form showed high 

HI activity (Fig. 3-6B), indicating that Ca08g14620 encoded CaHI. 

 

HI belongs to the cupin superfamily 

BLAST search using the amino acid sequence of CaHI indicated that it is a member of the cupin 

superfamily. This superfamily is a large protein family containing diverse functional proteins 

such as storage proteins and various enzymes (Dunwell et al. 2004). A subfamily including 

CaHI is located near those of various seed storage protein families such as 11S globulin and 

vicilin (Fig. 3-7). CaHI and highly homologous proteins in Solanaceae species such as tomato 

and potato are included in a clade named Solanaceae HI, and another clade closely related to HI 

is named Solanaceae HI-like. Proteins belonging to clade HI and HI-like were produced as 

recombinant proteins and assayed their activity. Proteins belonging to clade HI showed activity, 

but those belonging to clade HI-like did not (Fig. 3-6C). To investigate the physiological role of 

HIs, their gene expression levels at different developmental stages were analyzed. Expression 

levels of HIs in paprika and potato showed developmental stage-specific expression, being 

extremely high in ripe fruits and sprouts, respectively (Fig. 3-8A and 8B). In contrast, 

expression levels of tomato HIs were consistently low (Fig. 3-8C), consistent with our inability 

to detect HI activity in tomato tissues (data not shown). 

 

Determination of amino acid residues essential for enzymatic activity 

To identify amino acid residues essential for the isomerization reaction, the action mode of 

bacterial β-hydroxydecanoylthiolester dehydrase (Leesong et al. 1996) was considered in which 

a His residue plays a critical role in the isomerization reaction. Among 357 amino acid residues, 

38 differed among proteins belonging to Solanaceae HI and HI-like clades, and only His54 was 

conserved in all proteins in the HI clade but not in the HI-like clade, suggesting this His as a 

candidate catalytic amino acid in HIs. To test this hypothesis, point-mutated rCaHI (H54A) was 

produced. As expected, rCaHI (H54A) showed no activity (Fig. 3-9A), indicating that His54 
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plays a critical role in enzymatic reaction. By homology modeling to deduce other catalytic 

amino acids, K60 and Y128 were found to be candidates owing to their locations near H54 (Fig. 

3-9B). Accordingly, rCaHI (K60A) and rCaHI (Y128A) were produced and found that these 

point mutations caused loss of isomerase activity (Fig. 3-9A). These results suggested that these 

three amino acid residues (named catalytic HKY) form a catalytic site in HI. 

 

HIs are distributed among various plant species 

Given that (2E)-hexenal has been detected in various plant species other than Solanaceae 

(Hatanaka et al. 1987), the presence of other types of HI was expected. To identify other HIs, 

proteins showing lower similarity but conserving the catalytic HKY were searched. As a result, 

candidates were formed in alfalfa, cucumber, and rice sequences (alignment is shown in Fig. 

3-10). Recombinant HIs were produced and assayed their activity. All recombinant proteins 

having catalytic HKY showed HI activity (Fig. 3-11), confirming that HIs are widely distributed 

among various plant species. Phylogenetic tree analysis showed that these miscellaneous HIs 

form a branched clade from Solanaceae HI, and HI-like proteins having no HKY catalytic 

amino acids are present as in the case of Solanaceae HI (Fig. 3-7). HIs of monocotyledonous 

plants (OsHIs) are located far from those of dicotyledonous plants. 

 

Catalysis mode of HI 

To investigate the catalytic mechanism of HI, (3Z)-hexenal was incubated with rCaHI in the 

presence of D2O as a solvent, and the enzymatic product was analyzed by 1H-NMR to identify 

the positions and geometry of the C–C double bond in 2-hexenal. 1H-NMR spectra of authentic 

(2E)-hexenal-DNP and enzymatic D-labeled 2-hexenal are shown in Fig. 3-12. The signals H-2 

(6.35 ppm, m, 1H) and H-3 (6.27 ppm, m, 1H) were identified as the protons on the double bond, 

and the coupling constants between H-2 and H-3 (J=15.6 Hz) were determined to be E. By 

comparison of the authentic and enzymatic products, deuterium was introduced mainly at the 

C4 position (H-4) given that the integrated area of H-4 in enzymatically produced hexenal-DNP 

was half that in authentic 2-hexenal-DNP. These results indicate that rCaHI isomerized 

(3Z)-hexenal to (2E)-hexenal by abstraction of H+ at the C2 position and subsequent H+ 

donation at the C4 position in a keto–enol tautomerism reaction mode (a plausible catalytic 

mechanism is shown in Fig. 3-13A). 
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3-Hexyn-1-al acts as a suicidal substrate for HI 

As suggested by studies of bacterial isomerases (Endo et al. 1970; Leesong 1996), an analogous 

compound having a C–C triple bond can behave as a suicidal substrate in an isomerization 

reaction by binding irreversibly to the catalytic His. Accordingly, 3-hexyn-1-al, a triple 

bond-containing analog of (3Z)-hexenal, was prepared and tested its inhibitory activity. As 

shown in Figure 3-13C, 3-hexyn-1-al inhibited rCaHI stoichiometrically. Ultracentrifugation 

after HI and 3-hexyn-1-al incubation did not restore activity, showing that inhibition by 

3-hexyn-1-al was irreversible. This finding showed that plant HI shares a similar enzymatic 

property with bacterial isomerases that are irreversibly inhibited by suicidal substrates (a 

plausible inhibitory mechanism is shown in Fig. 3-13B). 

 

Wounding treatment induced HI gene expression 

(2E)-hexenal is assumed to play a protective role in wounding response because it shows 

antifungal activity (Croft et al. 1993; Kishimoto et al. 2006), leading to a hypothesis that HI 

genes are induced by wound treatment. To test this hypothesis, induction of HI gene expression 

in wounded paprika and tomato leaves was investigated. Expression of SlHI1, CaHI, and PINII 

genes, known as typical wound-inducible genes, was enhanced by wounding treatment (Fig. 

3-14), suggesting that HIs may be regulated at the transcriptional level in response to wounding, 

leading to enhanced (2E)-hexenal production. 

 

Overexpression of CaHI in transgenic tomatoes drastically changes the (3Z)-hexenal 

versus (2E)-hexenal proportion in planta 

(3Z)-hexenal is known to be the most abundant volatile in tomato fruits and is thus recognized 

as a tomato-like flavor (Tandon et al. 2000). To assess the biological impact of HI on hexenal 

composition, transgenic tomato plants overexpressing CaHI was produced and their hexenal 

composition was assayed. In both leaves and fruits of wild-type tomatoes, (3Z)-hexenal was 

detected as the main hexenal, as reported by previous authors (Fig. 3-15), suggesting that the 

very low expression of inherited tomato HI genes does not contribute to production of 

(2E)-hexenal. In contrast, overexpression of CaHI in transgenic tomato plants resulted in a 

drastic change in (3Z)/(2E)-hexenal proportion in leaves (Fig. 3-15A), corresponding to the 
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much higher expression of CaHI introduced exogenously (Fig. 3-15A, inset). In fruits, the wild 

type contained (3Z)-hexenal as the main hexenal (85% ± 5.8%), but (2E)-hexenal occupied 

almost part of hexenals in transgenic plants (Fig. 3-15B). These results suggest that the CaHI 

transgene CaHI functions effectively and thus determines hexenal composition in planta. 

 

Discussion 

In this chapter, HIs responsible for (2E)-hexenal production was identified in various plant 

species and evidence was shown that plants produce (2E)-hexenal by enzymatic reaction. 

Expression analysis of HIs indicated that HI levels remained low except under several 

physiological conditions such as wounding and at specific developmental stages (Fig. 3-8), 

suggesting that the physiological roles of (2E)-hexenal are limited to certain conditions. 

Previous reports suggested that (2E)-hexenal as well as (3Z)-hexenal were wounding-responsive 

volatiles, given that they showed antibiotic and defense gene-inducing activities (Croft et al. 

1993; Kishimoto et al., 2005, 2006). In response to wounding, the production of GLVs including 

both (3Z)- and (2E)-hexenals is an early event, a reflexive response that starts within a few 

minutes after wounding and leads to the presence of large amounts of detectable GLVs after 10 

min (Fall et al. 1999). (3Z)- and (2E)-hexenal production is mediated by a series of enzymes 

including lipase, 13-LOX, HPL, and HI (Fig. 1-2), and these enzymes need no cofactors for 

their reactions. This biochemical property would facilitate the rapid hexenal burst after 

wounding. At the transcriptional level, expression of HIs was low except a specific 

developmental stage (Fig. 3-8) and was induced by wounding treatment over a period of hours 

(Fig. 3-14). Given that emission of (2E)-hexenal continues for hours after wounding (Fall et al. 

1999), this transcriptional regulation of HIs in wounding response supports this long-term 

emission. 

HIs showed characteristic expression at specific developmental stages. In the case of paprika, 

higher expression of CaHI was observed in ripe fruits (Fig. 3-8A). This expression might 

contribute to producing (2E)-hexenal as an antifungal volatile as in strawberry (Myung et al. 

2006). In potato, higher expression of StHI1 and StHI2 was observed in sprouts (Fig. 3-8B). 

Because in transgenic potato, depletion of HPL to decrease GLV contents caused an increase in 

aphid performance (Vancanneyt 2001), higher expression of StHIs may promote the production 

of (2E)-hexenal as an insect repellent to protect sprouts from pests (De Moraes et al. 2001). 
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The isomerization mechanism of HI is likely to be the keto–enol tautomerism reaction mode 

(Fig. 3-13A), similar to that of the keto–enol tautomerism-mediated isomerization of the double 

bond of fatty acid derivatives, which has been well studied in bacterial fatty acid metabolism. 

β-Hydroxydecanoyl thioester dehydrase, which catalyzes the reaction of double bond 

isomerization on 10-carbon thioesters of acyl carrier protein in the biosynthesis of unsaturated 

fatty acids under anaerobic conditions (Bloch 1971). The catalytic mode of the dehydrase is the 

keto–enol tautomerism mediated by a catalytic His, and a specific suicidal substrate, 

3-decynoyl-N-acetylcysteamine, inactivated the enzyme by irreversible binding to the catalytic 

His (Leesong et al. 1996). Also in HIs, a specific suicidal substrate, 3-hexyn-1-al, completely 

inhibited HI activities irreversibly (Fig. 3-13B), suggesting that the His residue plays a critical 

role in catalytic function, plausibly the immigration of H+. The importance of two other catalytic 

amino acids (Lys and Tyr) was also shown by complete loss of HI activity of point-mutated HIs 

(Fig. 3-9), thus detailed property of the catalytic amino acids to be elucidated. 

Identification of quantitative trait loci that affect the volatile emissions of tomato fruits has 

been studied, because tomato breeders wish to combine good flavor with high fruit firmness, 

long shelf life, and high disease resistance (Mathieu et al. 2009). However, conventional 

breeding for sensory quality has been severely limited (Alonso et al. 2009). For this reason, 

genetic manipulation is applied for improvement of tomato flavor. Changes in expression level 

of alcohol dehydrogenase (Speirs et al 1998), fatty acid desaturase (Wang et al. 2001), and 

linalool synthase (Lewinsohn et al. 2001) resulted in changes in composition of volatiles. 

Among tomato volatiles, (3Z)-hexenal is the main flavor volatile determining tomato flavor, 

thus that (3Z)-hexenal is assigned as tomato-like flavor (Tandon et al. 2000). As shown in this 

study (Fig. 3-15), both leaves and fruits of transgenic tomatoes overexpressing CaHI contained 

(2E)-hexenal as the main green odor but not (3Z)-hexenal. Alonso et al. (2009) found that 

(2E)-hexenal is one of the major contributors determining differences among conventional and 

hybrid tomato types, suggesting that gene manipulation of HI is a candidate approach with high 

potential in molecular breeding for tomato flavor. 

In conclusion, HIs were identified in various plant species, and the identification of HIs 

allows the completion of the scheme of GLV biosynthesis in plants. HIs share a small number of 

catalytic amino acids, and catalytic His is plausibly responsible for the keto–enol tautomerism 

involved in isomerization of (3Z)-hexenal to (2E)-hexenal. Higher expression of the gene 
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encoding HI in transgenic tomatoes led to enhanced (2E)-hexenal production, suggesting that HI 

plays a key role in the production of (2E)-hexenal in planta. 

 

Table 3-1. Summary of purification of CaHI from red paprika 

 Total 

protein 

(mg) 

Total 

activity 

(nmol/min) 

Specific 

activity 

(nmol/min mg) 

Purification 

(fold) 

Yield 

(%) 

Crude extracta 16,800 647,000 38.3 1.0 100 

Phenyl-sepharose 866 130,000 150 3.92 20.1 

Hydroxyapatite 153 98,700 646 16.9 15.3 

Mono Q5/5 0.80b 10,000 12,600 328 1.56 

Mono Q1.6/5 0.012b 3,840 320,000 8,350 0.59 

aPrepared from 640 g of red paprika pericarp. 

bProtein concentration was estimated using EA280 (0.1% protein) = 1. 

 

Table 3-2. Kinetic parameters of purified CaHI and recombinant HIs 

 kcat (s
1) Km(mM) 

 

kcat/Km (s1mM1) 

CaHI 

rCaHI 

rSlHI1 

rStHI1 

rStHI2 

rMsHI 

rCsHI 

760 

521 ± 13.0 

264 ± 18.1 

27.7 ± 13.9 

159 ± 13.9 

308 ± 13.9 

951 ± 66.2 

0.73 

1.78 ± 0.06 

0.20 ± 0.04 

0.33 ± 0.03 

0.72 ± 0.10 

0.32 ± 0.04 

0.56 ± 0.08 

1040 

293 ± 2.60 

1349 ± 126 

83.7 ± 1.08 

224 ± 13.7 

990 ± 79.1 

1749 ± 172 

rOsHI 43.5 ± 2.23 1.23 ± 0.12 35.8 ± 1.61 

HI, (3Z):(2E)-hexenal isomerase. 

 

  



53 

 

Table 3-3. Primers used for point-muted recombinant CaHI.  

Mutated codons are underlined. 

 Forward primer  Reverse primer 

CaHI H54A TTTACCTGCCTATGCTGATTCCTCAAA AGCATAGGCAGGTAAAGCAAATCCACG 

CaHI D57A  TATGCTGCTTCCTCAAAAATTGCTTAT TGAGGAAGCAGCATAGTGAGGTAAAGC 

CaHI K60A TCCTCAGCCATTGCTTATGTTATTGAA AGCAATGGCTGAGGAATCAGCATAGTG 

CaHI K60R  TCCTCAAGAATTGCTTATGTTATTGAA AGCAATTCTTGAGGAATCAGCATAGTG 

CaHI S100A AGCAACGGCATGGTGGTACAATGGAGG CACCATGCCGTTGCTCCTATTGGAACT 

CaHI S118A GGAGAAGCTGGTGAATACACACCTGGT TTCACCAGCTTCTCCCAAAAAAATTAT 

CaHI Y128A TTTTGCGCATTCTTTTTAACTGGAGCT AAAGAATGCGCAAAATTCACCAGGTGT 

CaHI Y128F    TTTTGCTTTTTCTTTTTAACTGGAGCT AAAGAAAAAGCAAAATTCACCAGGTGT 

CaHI K304A TCTGTGGCAACATCGTCAAAGCAAATA CGATGTTGCCACAGAGAAGAATTCAAT 

CaHI K342A TTTACCGCGTCCTTCAAGTCCAAGATT GAAGGACGCGGTAAAATCTGGAGTCAT 
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Figure 3-1. Screening of plant materials.  

HI activity in crude extract prepared from each plant material was determined by standard assay. 

Data are means ± SE (n=3). ND, not detected. 
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 Figure 3-2. Purification of CaHI from paprika pericarp. 

A Elution profile of CaHI in the final step of purification. HI activity in fractions containing 

proteins was measured by standard assay. Activity is shown by gray bar. B Protein profile in 

each fraction (alphabets in small letter are same as panel A; M, molecular marker) was analyzed 

by SDS-PAGE. C Molecular mass of native HI was determined by BN-PAGE. Arrowheads 

indicate bands of purified CaHI.  
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Figure 3-3. Detection of HI activity by HPLC.  

Typical chromatograms of DNP-derivatized samples prepared from reaction mixtures before and 

after reaction are shown. Arrows indicate peaks of which retention time were identical to those of 

authentic compound-DNPs, respectively. Substrates are (3Z)-hexenal A, (2E)-hexenal B, 

(2E)-nonenal C, and (3Z, 6Z)-nonadienal D. (2E)-Hexenal was not isomerized B.  
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 Figure 3-4. pH dependence of activities of native CaHI. 

Enzyme activity was determined by standard assay in 50 mM Na-acetate buffer (pH 3.0-7.0) or 

50 mM Tris-HCl buffer (pH 8.0-10.0). Data of native CaHI and rCaHI are from single assay and 

triplicate assays (means ±SE), respectively. Maximum activity was set to 100%. 
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Figure 3-5. Determination of internal amino acid sequence of CaHI.  

A Purified CaHI was cleaved by BrCN and then the resultant peptide fragments were separated 

with Tricine-SDS-PAGE. Peptides blotted onto PVDF membrane were stained by CBB R-250. 

Arrows indicate peptides of which sequences could be determined. B Determined internal 

amino acid sequences are underlined on the whole amino acid sequence of CaHI. 
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 Figure 3-6. Production of recombinant HI by heterogeneous expression in E. coli 

A Purification of recombinant CaHI (rCaHI). Proteins in each fraction were electrophoresed by 

SDS-PAGE. Purified rCaHI is indicated by an arrowhead (60 kD = 35 kD(CaHI) + 25kD (Tag)). 

B Activity of the purified rCaHI was confirmed by the production of (2E)-hexenal. 
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 Figure 3-6(Continued). C By same strategy, activities of recombinant HIs from tomato 

(rSlHI1) and potato (rStHI1 and 2) were confirmed, on the contrary, recombinant HI-like 

protein from tomato (rSlHI-like1) did not show activity. 
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Figure 3-7. Phylogenic tree of HIs. 

Proteins having catalytic HKY and homologous proteins but not having catalytic HKY are 

named as HI and HI-like, respectively. Left, HI and HI-like clades (shown by a dotted circle) 

belong to germin and germin-like protein family in the cupin superfamily. Right, Enlarged view 

of HI and HI-like clades. Recombinant proteins showing HI activity or no activity are marked 

with “o” or “-“, respectively. Numbers in parentheses indicate identity against CaHI. Values at 

the nodes indicate percentage of bootstrap support (of 1,000 bootstrap replicates).  

  



62 

 

 

 

Figure 3-8. HI gene expression analysis of different tissues.  

Paprika A, potato B, and Tomato C. Data are means ± SE (n = 3). Internal standard genes were 

elongation factor 1 for potato (StEF1), and actins for paprika (CaACT) and tomato (SlACT).  
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Figure 3-9. Determination of catalytic amino acids of HI. 

A Effect of point mutation on HI activity. Amino acids written by large size indicate 

point-muted amino acids, and chromatograms of the point-muted proteins completely losing 

activity are shown. Asterisks suggest essential amino acids to show the HI activity, and 

point-mutated amino acids with no effect on the HI activity are indicated by “WT”. Black boxes 

under amino acid sequence of CaHI indicate amino acids conserved in all proteins belonging to 

HI clade but not in HI-like clade. Gray boxes show amino acids not conserved in HI clade, or 

conserved both HI and HI-like clades. 3-H and 2-H in chromatograms indicate (3Z)- and 

(2E)-hexenal-DNPs, respectively. B Homology modeling of CaHI to deduce catalytic amino 

acids. Catalytic amino acids locate in the same pocket and near substrate (3Z)-hexenal. PDB ID 

of template protein, identity between CaHI and template protein, and QMEAN score are 2e9q, 

23%, and 0.62, respectively.  
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Figure 3-10. Alignment of HI and HI-like proteins. Positions of catalytic HKY are boxed. 

Red and blue dots indicate that their recombinant proteins showed activities and not, 

respectively. 
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 Figure 3-11. HI homologs of alfalfa A, cucumber B, and rice C showed HI activity. Catalytic 

pocket of each HI by homology modeling is shown in lower panel.  Catalytic HKY locate in 

the same pocket. PDB ID of template protein and homology between CaHI and template protein 

are shown in parentheses.   
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Figure 3-12.1H-NMR spectra of authentic (upper) and D-labeled (lower) 

(2E)-hexenal-DNPs.  

The letters indicate the position of protons and their corresponding signals. Arrows indicate 

integrated values of signals (that of H-1’ is set to 1).  
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Figure 3-13. Hypothetical catalytic mechanism of HI. 

A His-mediated isomerization from (3Z)-hexenal to (2E)-hexenal catalyzed by HI. In this 

scheme, γ-nitrogen of His is depicted as a representative example of the catalyst. B Inhibition of 

rCaHI activity by suicidal substrate, 3-hexyn-1-al. Numbers in parentheses indicate pmol of 

3-hexyn-1-al and enzyme used for analysis, respectively. Activity without 3-hexyn-1-al was 

defined as 100% activity. Theoretically stoichiometrical relationship between enzyme and 

suicidal substrate is indicated by a dotted line. C Suicidal substrate inhibitory mechanism of HI. 

Also in this scheme, γ-nitrogen of His is depicted as a representative example.  
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Figure 3-14. Induction of HIs and PINII by wounding treatment. 

After leaves of tomato A and paprika B were wounded by tweezers, expressed genes were 

quantified by qRT-PCR. Relative expression level of 0 time sample against internal standard 

gene (the actin genes SlACT and CaACT for tomato and paprika samples, respectively) was set 

to 1. Data are means ± SE (n = 3).  
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Figure 3-15. Overexpression of CaHI drastically changed (3Z)-hexenal and (2E)-hexenal 

composition in transgenic tomatoes. 

A (3Z)- and (2E)-Hexenal analysis in wild-type and CaHI-overexpressing tomato (oxCaHI) 

leaves. Volatiles were collected by SPME, and then analyzed by GC-MS. SIM (m/z=98) 

chromatograms to detect (3Z)- and (2E)-hexenals are shown. Inset, confirmation of enhanced 

expression of CaHI in transgenic tomatoes by qRT-PCR (the actin gene SlACT was used as an 

internal standard). Numbers indicate transgenic tomato lines showing high CaHI expression. B 

SIM chromatogram (m/z=98) of volatiles from ripe tomato fruits. 
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Chapter IV 

General discussion 

 

Reactive carbonyl species (RCS) having α, β-unsaturated carbonyl group are generated by lipid 

peroxidation in plants under stress. The signaling functions of RCS under biotic stress have 

been reported (Famer, 2007; Mueller, 2009). Among RCS, reactive short-chain leaf volatiles 

(RSLVs) are reported to accumulate in plants subjected to abiotic stresses. However, there has 

been little information about their functions. This study was designed and implemented with the 

primary objective of getting more insight into the physiological functions of RSLVs in plants 

under abiotic stress. 

In Chapter II, a comprehensive DNA microarray analysis was performed using 

Arabidopsis thaliana exposed to RSLVs (Fig. 2-1B). Up-regulated genes included those 

renowned for modulating responses to heat, UV-B, oxidative, salt, osmotic, drought, cold and 

wounding stresses. The 100 most highly up-regulated genes include those encoding HSPs and 

heat or oxidative stress related transcription factors. (2E)-Hexenal, vapour, rapidly and 

powerfully induced HSFA2 expression within 30 min (Fig. 2-2A). RSLVs with carbon chain 

length of 4 to 9 were effective in induction of HSFA2 gene expression, with a slightly higher 

efficacy out turn in aldehydes than in ketones (Fig. 2-4). Among the compounds, those having 

the vinyl ketone group adversely affected PSII activity. The RSLVs with chain length of C4 to 

C9 having no vinyl group possibly act as signal molecules with less cytotoxic effects. RSLVs 

have been widely distributed among plant species, and their increased production has been 

observed under abiotic stress conditions (Mueller, 2009) including oxidative, UV-B and heat 

stress (Figs. 2-7 and 2-15). aor knockout mutant accumulated more RSLVs than the wild type 

Col-0. HSFA2 expression was enhanced in aor mutant than in Col-0(Fig. 2-7). In hsfa1 knock 

out mutant, expression of HSFA2 significantly decreased, whereas expression of DREB2A, 

ZAT10 and ZAT12 (Fig. 2-9B and 9C) was comparable to that in Col-0. These results support 

the hypothesis that RSLVs are involved in the induction of HSFA2 expression in vivo and 

RSLV-mediated gene expression involves HSFA1-dependent and HSFA1-independent 

pathways.  

(2E)-hexenal knows as the leaf aldehyde is a representative member of RSLVs. 

Although (2E)-hexenal is emitted immediately after wounding, enzymes involved in the 
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synthesis had not been identified. Therefore, in Chapter III, hexenal isomerase (HI) responsible 

for the conversion of (3Z)-hexenal to (2E)-hexenal was isolated from Paprika fruit (Fig. 3-2), 

the highest producer of (2E)-hexenal among tested plants (Fig. 3-1), and subsequently purified, 

identified and characterized. Based on partial amino acid sequences, full length DNA encoding 

the protein was obtained (Fig. 3-5). The protein was heterologously expressed in E. coli and the 

purified enzyme was characterized (Fig. 3-6). Phylogenetic analysis revealed that HI belongs to 

the Cupin super family and is widely distributed in plants (Fig. 3-7). Expression analysis of the 

HI genes in various plants, at different developmental stages, revealed that HIs showed 

characteristic expression in each plant (Fig. 3-8). Analysis, using point mutated recombinant 

CaHI, showed that H54, K60 and 128Y are necessary for HI activity (Fig. 3-9). To investigate 

the catalytic mechanism of HI, (3Z)-hexenal was incubated with recombinant CaHI in D2O and 

the (2E)-hexenal formed was analyzed by 1H-NMR. The spectrum revealed that deuterium was 

introduced, predominantly, at the C4 position of (2E)-hexenal (Fig. 3-13). Based on the effects 

of HI obtained in this study and those reported elsewhere on bacterial isomerase, a catalytic 

mechanism was proposed (Fig. 3-13). To give an experimental proof to the proposal, a suicidal 

substrate 3-hexynal was designed and prepared. Efficient inhibition of HI activity with the 

suicidal substrate supported the proposed catalytic mechanism. To elucidate physiological roles 

of HI, gene expression level of the enzyme was analyzed in wounded tomato leaves. As a result, 

induction of HI genes was observed within 3h (Fig. 3-14). Transgenic plants overexpressing HI 

displayed a drastic increase in (2E)-hexenal production with decreased (3Z)-hexenal production 

(Fig. 3-15). 

In conclusion, this study revealed that RSLVs act as efficient inducers of abiotic 

stress-related gene expression, HI is a member of the Cupin superfamily, HI gene expression 

was induced by wound treatment, and GLVs profile can be altered by manipulating the HI gene. 

It has been reported that (2E)-hexenal is involved in plant-pathogen, plant-insect and plant-plant 

interactions. However, detailed studies including functional analysis of (2E)-hexenal under 

biotic stress conditions have not been reported because, in part, the knowledge about the 

biochemical and molecular mechanisms pertaining to (2E)-hexenal biosynthesis are not 

available. It is noteworthy that HI, identified for the first time in this study, shed light on a 

hidden mechanism of (2E)-hexenal formation. HI protein and HI gene elucidated in this study 

bridged the only missing link and completed the overall biosynthetic pathway of GLVs. In 
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addition, an HI inhibitor was developed based on the catalytic mechanism of the enzyme. These 

molecular and chemical findings are useful to alter RSLVs profile of plants. The author wishes 

the results obtained in this study, provide an additional intellectual basis for the formation of 

GLVs and make a significant contribution to deepen understanding of the physiological roles of 

this important class of plant volatiles. 
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