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Abstract 

 

Invisibility cloaking, which used to be a science fiction until the pioneering theoretical 

works based on transformation optics, has recently attracted considerable attention 

because it is expected to apply to industrial uses, such as transparent pillars of 

automobile bodies, the transparent hands of surgery support robots, and highly efficient 

solar cells. Cloaking devices have been designed by using transformation optics. In 

general, the constitutive parameters obtained from transformation optics become 

anisotropic and inhomogeneous. Therefore, the Hamiltonian-based ray tracing, which 

can deal with anisotropy and inhomogeneity in the constitutive parameters, is the only 

one method that can evaluate cloaking effects for large-scale objects. 

However, the Hamiltonian-based ray tracing has been applied to only the regular 

shapes, such as spheres and cylinders. This thesis solves two technical issues for 

treatment of arbitrary shapes. The first issue is how to represent the surfaces of arbitrary 

shapes. The other issue is how to represent the constitutive parameters inside of cloaking 

devices with arbitrary shapes.  

The first issue is the Hamiltonian-based ray tracing technique with surface-mesh 

representation, where the surfaces of cloaking devices are represented by triangular 

mesh structure. The results of the cloaking simulations with the surface-mesh 

representation are compared with those with rigorous function representation, where the 

surfaces of cloaking devices are represented by rigorous functions. The numerical 

results have shown a cloaking performance with the surface-mesh representation using 

fine mesh resolution is comparable to one with the rigorous function representation, 

suggesting the verification of the surface-mesh representation. 
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 The second issue is the Hamiltonian-based ray tracing technique with full-mesh 

representation, where both the surface and the inner area of a cloaking device are 

represented by mesh structure and the constitutive parameters of the cloaking device are 

calculated by the finite element method using the mesh structure. The full-mesh 

representation has been verified by comparison between the results of the cloaking 

simulations with the full-mesh representation and those with the rigorous function 

representation. By using the Hamiltonian-based ray tracing with the full-mesh 

representation, cloaking characteristics of a double cylindrical cloaking device and a 

huge cloaking device with the completely arbitrary shape are evaluated. The numerical 

results have shown high performance, suggesting that the proposed Hamiltonian ray 

tracing can be applied to the evaluation of the performances of cloaking devices with 

arbitrary shapes.  

Furthermore, by utilizing the proposed Hamiltonian-based ray tracing, the 

improvement in cloaking performance by the design of the distributions of the 

constitutive parameters is investigated. The cloaking performances of cylindrical 

cloaking with various distributions of the constitutive parameters are evaluated. The 

distributions are varied by employing the Navier’s equation with various distributions of 

Young’s moduli as the partial differential equation solved by the finite element method. 

The numerical results suggest that the proposed design method for the distributions of 

the constitutive parameters can improve cloaking performance in coarser mesh 

resolution. Therefore, this design method will contribute to the realization of large-scale 

cloaking devices because it can enhance the cloaking performances of cloaking devices 

fabricated by using technologies with coarse resolution.  
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CHAPTER 1 

 

Introduction 

 

 

1.1. Invisibility cloaking 

 

Invisibility cloaking is a technology which makes an object transparent by making 

light guided around the hidden object as shown in Fig. 1-1. In order to realize invisibility 

cloaking, a special device is placed to cover the object to be hidden as shown in Fig. 1-2. 

Here, this device is called a cloaking device. 

Although invisibility cloaking used to be a science fiction, such as Harry Potter, it has 

recently attracted considerable attention because of its possible realization thanks to 

theoretical works [1,2] and developments in metamaterial science [3-13]. So far various 

methods to realize invisibility cloaking have been proposed such as the transformation 

optics approach [1,2,14-18], the scattering cancelling approach [19-29], etc.  

It is expected that invisibility cloaking opens many industrial applications. For 

example, a transparent pillar of an automobile body, as depicted in Fig. 1-3, is expected 

to reduce a dead zone of the view field of a driver leading to the decline of the number of 

car accidents [30-32]. In the medical field, if the hands of surgery support robots can be 

rendered as a transparent medium as shown in Figs. 1-4, the usability of these robots will 

be improved for their operators [33]. In addition, it has been reported that the efficiency 

of a solar cell can be enhanced by cloaking contact fingers which prevent light from 
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reaching the active area of the solar cell as shown Fig. 1-5. [34]. 

 

 

Fig. 1-1. The mechanism of invisibility cloaking. 

 

 

Fig. 1-2. A cloaking device. 

 

 

Fig. 1-3. A transparent pillar of an automobile body. 
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Fig. 1-4. A transparent hand of a surgery support robot. 

 

 

Fig. 1-5. The improvement of the efficiency of a solar cell by invisibility cloaking. 
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1.2. Transformation optics 

 

Among the methods to realize invisibility cloaking, the transformation optics approach 

is expected to be applied to cloaking devices for large-scale objects such as pillars of 

automobile bodies and surgery support robots at optical frequencies because the other 

approaches are not well suited for large-scale objects. 

 Transformation optics is based on the fact that a coordinate transformation does not 

change the form of Maxwell’s equation but changes the values of the electrical and 

magnetic field and the constitutive parameters. Let us consider the coordinate 

transformation as shown in Fig. 1-6. A ray of light can be bended at will by stretching 

and compressing the Cartesian space as shown in Fig. 1-6. Based on transformation 

optics, it is possible to re-interpret the light propagation in the transformed coordinate 

system as the propagation in the original coordinate system with specific distributions of 

the relative permittivity tensor,  and permeability tensor, . The derivation of  and  

will be described in SECTION 2.2.  

Next, the coordinate transformation which makes a hole at the center, as shown in Fig. 

1-7, is considered. By the coordinate transformation, a straight ray is transformed in to 

the curved ray which can avoid the hole. Assuming a cloaking device covers the light 

green area in Fig. 1-7, this ray path corresponds to that in the cloaking device. Therefore, 

invisibility cloaking can be realized by assigning  and  to the cloaking device. 

However, since some of the values of  and  obtained from transformation optics 

cannot be realized by any material in nature, metamaterial should be required for the 

realization of cloaking devices.  
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Fig. 1-6. A coordinate transformation for bending a ray of light. 

 

 
Fig. 1-7. A coordinate transformation which makes a hole at the center. 
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Invisibility cloaking based on transformation optics was proposed simultaneously and 

independently by Pendery [1] and by Leonhardt [2] in 2006. Since these propositions, 

research and development on invisibility cloaking have been progressed. 

The first experimental verification of invisibility cloaking was shown for a microwave 

(8.5GHz) [14]. The cloaking device used in the experiment was fabricated by using a 

metamaterial which consists of split-ring resonators. Although invisibility cloaking at 

optical frequencies were also designed based on transformation optics [15], it has not 

been verified experimentally yet since nanotechnology still cannot support well to 

fabricate the sufficient metamaterial in visible wavelength range. 

In addition to the design of invisible cloaking, transformation optics has been used 

for design of other optical devices. For example, based on force-loaded transformation 

optics, force-induced transformational devices, such as an optical escalator, have been 

proposed [35]. 

 

1.3. Design of cloaking device 

 

A scheme of the design of a cloaking device is shown in Fig. 1-8. At the first step, the 

size and shape of the cloaking device is determined. At the second step, ideal and 

continuous distributions of  and  in the cloaking device are obtained based on 

transformation optics. The continuous distributions of  and  can give perfect cloaking. 

However, the continuous distributions of  and  cannot be realized by the current 

fabrication technology. Therefore, at the third step, the continuous distributions of  and 

 are discretized by mesh structure with certain resolution depending on the technology 

used for the fabrication of the cloaking device. Here, each element of the mesh structure 

is called a cell. At the fourth step, the geometry of a metamaterial with the values of  
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and  at each cell is designed. Since the values of  and  of the metamaterial can be 

obtained by the retrieval method [36], the geometry of the metamaterial can be optimized 

so that the values of  and  calculated from the retrieval method get close to the values 

of  and  obtained at the third step. Finally, the metamaterial designed at each cell is 

located in the cloaking device, and then the design of the cloaking device is complete.   

In the third step, the resolution of the discretization should be so fine that the cloaking 

device can show a sufficiently high performance for industrial uses. Hence, in order to 

determine the resolution of the discretization, the evaluation of the cloaking performance 

by optical simulation is required.  

A classification table of optical simulation methods is shown in Table 1.1. As 

described in 1.2,  and  obtained by transformation optics become anisotropic and 

inhomogeous. Therefore, full-wave simulations, such as the Finite Difference Time 

Domain (FDTD) method, have been used for the evaluations because they can deal with 

anisotropy and inhomogeneity in  and  [37-43]. However, it is difficult to apply the 

full-wave simulations for large-scale objects such as pillars of automobile bodies and 

surgery support robots at optical frequencies because these simulations require large 

computational resources. 

On the other hand, although the ray-tracing method [44] is a practical method for 

large-scale objects with anisotropy [45-47] or without anisotropy in their constitutive 

parameters, it cannot deal with inhomogeneity. In order to deal with inhomogeneity, the 

special ray tracing method called the Hamiltonian-based ray tracing is available [48-57]. 

Currently, the Hamiltonian-based ray tracing is the only one method that can evaluate 

the cloaking effects for large-scale objects.  

Besides cloaking devices, an Eaton lens [58] and a graded negative-index metamaterial 

magnifier [59] have been investigated by the Hamiltonian-based ray tracing. Recently, 
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the Hamiltonian-based ray tracing has been extended to incorporate relativistic effects, 

such as relativistic Dopper effects and Fresnel-Fizeau drag [60, 61]. Furthermore, the 

method called “force tracing” to trace optical force has been proposed based on the 

Hamiltonian-based ray tracing [62]. 

However, the Hamiltonian-based ray tracing has been applied to only the regular 

shapes, such as spheres and cylinders. There are two technical issues to be solved for 

the treatment of arbitrary shapes. The first issue is how to represent the surfaces of 

arbitrary shapes. The other issue is how to represent the constitutive parameters inside 

cloaking devices with arbitrary shapes. On the other hand, in order to design and 

evaluate various practical cloaking devices for industrial uses, arbitrary shapes are 

needed to deal with by the Hamiltonian-based ray tracing.  

 

Fig. 1-8. A scheme of the design of a cloaking device. 

 

Table 1.1: Classification table of the optical simulation methods. 

Functionality 
Full-wave 

[1-3] 

Ray 

tracing 

Hamiltonian-based  

ray tracing 

[4-14] 

Hamiltonian-based 

ray tracing with mesh 

representation 

(Proposed Method) 

Anisotropy OK OK OK OK 

Inhomogeneity OK  OK OK 

Macroscopic 

objects 
 OK OK OK 

Arbitrary shapes OK OK  This Study 

OK: possible, : difficult 
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1.4. Objective of thesis 

 

The objective of this thesis is to establish a new Hamiltonian-based ray tracing method 

which can deal with arbitrary shapes and to apply this method to evaluation of cloaking 

devices. A strategy for the establishment of the new Hamiltonian-based ray tracing is 

shown in Fig. 1-9. In order to model the surfaces of arbitrary shapes, surface-mesh 

representation, where the surfaces are represented by mesh structure, is adapted. 

Furthermore, in order to represent the constitutive parameters inside cloaking devices 

with arbitrary shapes, full-mesh representation, where both the surface and the inner area 

of a cloaking device are represented by mesh structure and the constitutive parameters of 

the cloaking device are calculated by the finite element method using the mesh structure, 

is proposed. In addition, the improvement of cloaking performance by design of the 

distributions of the constitutive parameters in a cloaking device is investigated by using 

the Hamiltonian-based ray tracing with the full-mesh representation. 

 

Fig. 1-9. A strategy for establishment of the new Hamiltonian-based ray tracing which 

can deal with arbitrary shapes. 
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1.5. Thesis organization 

 

This dissertation is organized into six chapters as depicted in Fig. 1-10. Besides the 

current chapter which intends to give a brief introduction of invisibility cloaking, 

transformation optics, the design of cloaking devices and the motivations of this 

dissertation. Other five chapters are organized as following: 

CHAPTER 2 describes calculation methods for evaluation of cloaking performance. 

The Hamiltonian-based ray tracing, the derivation of the formalism for the constitutive 

parameters based on transformation optics, and a numerical method for calculation of 

the constitutive parameters are presented. 

In CHAPTER 3, the Hamiltonian-based ray-tracing technique with the surface-mesh 

representation is presented. In order to deal with cloaking devices with arbitrary shapes, 

the surfaces of the cloaking devices are represented by triangular mesh structure. 

Comparison between the results of cloaking simulations with the surface-mesh 

representation and those with rigorous function representation, where the surfaces of 

cloaking devices are represented by rigorous functions, is presented. The numerical 

results have shown that the cloaking performance with the surface-mesh representation 

using fine mesh resolution is comparable to one with the rigorous function 

representation. The results suggest the effectiveness of the surface-mesh representation. 

In CHAPTER 4, the Hamiltonian-based ray tracing technique with the full-mesh 

representation, where both the surface and the inner area of a cloaking device are 

represented by mesh structure and the constitutive parameters of the cloaking device are 

calculated by the finite element method using the mesh structure, is proposed. The 

full-mesh representation has been verified by comparison between the results of 

cloaking simulations with the full-mesh representation and those with the rigorous 
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function representation. By using the Hamiltonian-based ray tracing with the full-mesh 

representation, cloaking characteristics of a double cylindrical cloaking device and a 

huge cloaking device with completely arbitrary shape are evaluated. The numerical 

results have shown high performance, suggesting that the Hamiltonian ray tracing can be 

applied to the evaluation of the performances of large cloaking devices with arbitrary 

shapes. 

CHAPTER 5 describes the improvement of cloaking performance by the design of 

distributions of constitutive parameters. The cloaking performances of cylindrical 

cloaking with various distributions of the constitutive parameters are evaluated. The 

distributions are varied by employing the Navier’s equation with various distributions of 

Young’s moduli as the partial differential equation solved by the finite element method. 

The numerical results have suggested that the proposed design method for the 

distributions of the constitutive parameters can improve cloaking performance in coarser 

mesh resolution. Therefore, this design method will contribute to the realization of 

large-scale cloaking devices because it can enhance the cloaking performances of 

cloaking devices fabricated by using technologies even with coarse resolution.  

CHAPTER 6 describes the conclusions of this thesis and the future work. 
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Fig. 1-10.  Structure of thesis 
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CHAPTER 2 

 

Calculation Methods 

 

 

2.1. Hamiltonian-based ray tracing 

 

In order to design a cloaking device for a large-scale object, such as pillars of 

automobile bodies and surgery support robots, for which full-wave simulations cannot be 

applied due to too many computational resources required, the Hamiltonian-based ray 

tracing [1-17] has been employed in this thesis. This ray tracing is based on Hamiltonian 

equations can deal with the media with inhomogeneity and anisotropy in their electric 

permittivity and magnetic permeability, which cannot be dealt with by the general ray 

tracing. The Hamiltonian-based ray tracing described in Ref. [1] is explained briefly. 

In order to derive its governing equations, let us consider Maxwell’s equations in a 

medium with no sources or currents as follows, 

   
,DH,BE

tt 





       (2-1) 

where E represents the electric field, B the magnetic flux density, H the magnetic field, 

D the electric flux density. With the wavelength () to be very short compared with the 

scales of the changes of the components of the electric permittivity  and magnetic 

permeability  in the cloaking medium, the following relation is obtained: 
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With this relation, plane wave solutions can be assumed for Eq. (2-1), which are 

appropriate for the geometric limit,  
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where 0 = √𝜇0 𝜀0⁄  is the impedance of free space, giving E0 and H0 the same units, 

and k0 =/c making k dimensionless. The constitutive relations for a linear medium are 

given by the equations with dimensionless tensors  and , 

.HBE,D με 00  
                (2-4) 

Plugging Eq. (2-3) and Eq. (2-4) into the curl equations described in Eq. (2-1), the 

following equations are obtain, 

.EHk,HEk 00  0000 εμ
          (2-5) 

By eliminating the magnetic field, the following equation is obtained, 

   .EEkk 01  
00 εμ                 (2-6) 

Equation (2-6) can be expressed as a single operator on E0, 

  ,E 01 
0εKKμ

                     (2-7) 

where the operator K is defined as 
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where ijk is the Levi-Civita permutation tensor defined as 

        
        

 
.,,,,,,,,,,

,,,,,,,,,,















otherwise

312123231

213132321

0

1

1







             (2-9) 

Since Eq. (2-7) must be singular for non-zero field solutions, the dispersion relation can 

be derived from the condition that this operator must have zero determinate, 

  .0det 1 
εKKμ                    (2-10) 

Now  and  are the same symmetric tensor, which is called as n, since material 

properties are derived from transforming free space. In this case, an alternate expression 

of the dispersion relation can be obtained,  
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        (2-11) 

Although the latter expression clearly has fourth order in k, it has only two unique 

solutions. This suggests that media with  =  are singly refracting.  

Equation (2-11) finally gives the Hamilton-Jacobi equation, 

  .kk 0det  nn                    (2-12) 

Note that this equation can be multiplied by an arbitrary scalar function, h(r), of the 

position vector r. 

Equation (2-12) can be solved using characteristics of light rays [16, 17]. Let us 
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parametrize the characteristics by the parameter τ. Then the following equation is 

obtained, 
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Let us rewrite Eq. (2-12) as  

       ,kkrkr 0det,  nnhH              (2-14) 

where h(r) is an arbitrary function of r. Equation (2-14) is the definition of the 

Hamiltonian. By differentiating the equation H(r, k) = 0 with respect to r, the following 

equation can be obtained, 
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If the following equation is chosen, 
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Eq. (2-13) and Eq. (2-15) reveal 
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as well as 
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In other words, the ray trajectories corresponding to Eq. (2-12) can be described by the 

Hamiltonian system, 
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k
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                  (2-19b) 

with H(r, k) = 0. Therefore, the ray trajectories can be obtained by solving the pair of 

coupled, first order ordinary differential ray equations. 

Although the ray trajectories throughout the cloaking device can be obtained by 

solving Eqs. (2-19a) and (2-19b), special care is needed at the interface between the 

cloaking medium and the surrounding medium because the direction of an incident ray 

changes discontinuously, i.e., the refraction of ray occurs. The direction of the refracted 

ray can be determined by solving the following equations resulting from the boundary 

conditions at the interface, 

                      ,nkk 021                       (2-20) 

                               ,k 02 H                       (2-21) 

where k1 is the wave vector of the incident ray, k2 is the wave vector of the refracted ray 

inside the cloaking medium, n is the normal vector pointing into the cloaking medium as 

shown in Fig.2-1 (a) and H is the Hamiltonian of the cloaking medium. 
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Fig. 2-1. (a) Refraction at the surface of the cloaking device from the air into medium, 

and n is the normal vector from the air into the cloaking medium. In the cloaking medium , 

k1 is the wave vector of the incident ray, k2 is the wave vector of the refracted ray inside 

the cloaking medium, and n is the normal vector from the cloaking medium into the air. 

(b) Refraction at the surface of the cloaking device from the cloaking medium into the air: 

k1 is the wave vector of of the incident ray, and k2 is the wave vector of the refracted ray 

outside the cloaking medium. 

 

Equation (2-21) has two solutions where the light carries energy into the cloaking 

medium and the light carries energy out from the cloaking medium. Hence the desired 

solution corresponds to the former. On the other hand, the direction of the energy flow is 

determined by the path of the ray, i.e., Eq. (2-19a). Therefore, the desired solution can be 

chosen by the following condition: 

                                ,n
k

0


H
                    (2-22) 

where n is the normal vector from the surrounding medium into the cloaking medium. 

In the case of refraction out of the cloaking medium as shown in Fig. 2-1(b), the 

direction of the refracted ray can be determined by solving the following equations 
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instead of Eqs. (2-20), (2-21) and (2-22), 

                          ,nkk 0 21                   (2-23) 

                            ,k 00 2H                      (2-24) 

                            ,n
k

00 


H
                   (2-25) 

where k1 is the wave vector of the incident ray, k2 is the wave vector of the refracted ray 

outside the cloaking medium, n is the normal vector from the medium into the 

surrounding medium (air) and H0 is the Hamiltonian of the surrounding medium,  

                       .kk 1T
0 H                      (2-26) 

 

 

2.2. Derivation of the formalism of the constitutive 

parameters based on transformation optics 

 

In order to derive the formalism of the constitutive parameters based on 

transformation optics, the invariance of Maxwell’s equations under a spatial coordinate 

transformation is exploited following Refs. [18-21]. Let us consider Maxwell’s 

equations in a medium with no sources or currents in the Cartesian coordinate r, 

,BE
t


                    (2-27) 
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,DH
t


                     (2-28) 

,D 0                        (2-29) 

,B 0                        (2-30) 

where E represents the electric field, B the magnetic induction, H the magnetic field, D 

the electric displacement field. The constitutive relations for a linear medium are given 

by the following equations with dimensionless tensors  and , 

E,D ε0                       (2-31) 

.HB μ0                      (2-32) 

In index notation, the Einstein convention is employed whereby repeated indices are 

summed over. Eq. (2-27) is now expressed as 

.
t

H
E







                  (2-33) 

where  is the Levi-Civita permutation tensor and  = /r. 

Now suppose that the coordinate is changed from r = (x, y, z) to r = (x, y, z). Let A 

denote the Jacobian transformation matrix, 

,
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27 

 

or  

.






r

r
A




                        (2-35) 

Under the coordinate change, the following equations are obtained, 

,  A                      (2-36) 

, EAE                       (2-37) 

. HAH                      (2-38) 

Hence, Eq. (2-27) can be expressed as follows, 

.
t

H
AEAA s

sqpoo



                (2-39) 

Here, the 𝐴𝑜𝛼𝜕𝛼
′ = ∂𝛼 derivative falls on both the 𝐴𝑝𝛽 and 𝐸𝑝

′  terms, but the former 

can be eliminated due to the : ∂𝛼𝐴𝑝𝛽𝜀𝛼𝛽𝛾 = 0 because of ∂𝛼𝐴𝑝𝛽 = ∂𝛽𝐴𝑝𝛼. Then, 

multiplying both sides by the Jacobian Aq, the following equation can be obtain 

.
t

H
AAEAAA s

sqpopoq



            (2-40) 

Noting that 𝐴𝑜𝛼𝐴𝑝𝛽𝐴𝑞𝛾𝜀𝛼𝛽𝛾 = 𝜀𝑜𝑝𝑞detA  by definition of the determinant, the 

following equation is finally derived, 

,
t

H
AAE s

sqopqpo
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1
            (2-41) 

or, in vector notation, 
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det                 (2-42) 

By the same argument, the following equation can be obtained, 
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det                   (2-43) 

Equation (2-28) becomes 
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(2-44) 

Here, from the cofactor formula for the matrix inverse, and ∂𝛼𝐴𝑝𝛽𝜀𝛼𝛽𝛾 = 0,  

     0
2

1
det1 








 

pvouuvqopqq AAAA  A ,      (2-45) 

where �̅�𝛼𝑞 is the cofactor of A at the th
 row and the q

th
 column. Therefore, the 

following equation can be obtained, 

.0
det

 p
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o E
AA
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                    (2-46) 
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or, in vector notation, 

.E 0
det


A

AεA
T

                     (2-47) 

Similarly, Equation (2-30) becomes 

.H 0
det


A

AμA
T

                     (2-48) 

From Eqs. (2-42), (2-43), (2-47), and (2-48), it can be shown that Maxwell’s equations 

take on the same form in the transformed coordinate system if the following 

transformations are made, 

,
A

AεA
ε

T

det


                    (2-49) 

,
A

AμA
μ

T

det


                    (2-50) 

Using the above transformation rules, the curved rays in the transformed space can be 

reinterpreted as the physical rays propagating through the medium with the transformed 

relative electric permeability and magnetic permittivity tensors  and , given by Eqs. 

(2-49) and (2-50). 
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2.3. Numerical method for calculation of the constitutive 

parameters 

 

A space transformation from the original space, r=(x,y,z), to the transformed space, 

r=(x, y, z), as shown in Fig. 2-2, is considered. The relative permittivity tensor and the 

permeability tensor in the transformed space,  and , are obtained from transformation 

optics as 

                               
 

,
A

AεA
ε

T

det
　


                    (2-51) 

                              
 

,
A

AμA
μ

T

det
　


                   (2-52) 

where  and  are the relative permittivity tensor and the permeability tensor in the 

original space. A is the Jacobian transformation matrix defined as 

                    ,
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A              (2-53) 

Therefore,  and  can be calculated if the components of A are obtained. 
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Fig. 2-2. The space transformation from the original space, r=(x,y,z), to the transformed 

space, r=(x, y, z) for cylindrical cloaking (a) and for arbitrary shaped cloaking (b). 

 

Subsequently, the calculation of the components of A is considered. If the transformed 

coordinate, r= (x, y, z), can be expressed by analytical functions of the components of r, 

that is, x, y or z, the components of A can also be described analytically, resulting in 

analytical solutions for  and .  

For instance,  and  for a cylinder cloaking device with its rotational symmetry axis 

aligned along the z-axis as shown in Fig. 2-2 (a) [1] is given by,  
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where =(x, y, 0) is the transverse coordinate with its coordinate origin to be the 

rotational symmetry axis of the cylindrical cloaking device,  is the magnitude of , Ra 

and Rb are the inner radius and the outer radius of the cylindrical shell, respectively, T and 

Z are the following matrixes,  

            ,
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                         ,



















100

000

000

Z                       (2-56) 

On the other hand, in the case of cloaking devices with arbitrary shapes as shown in 

Fig. 2-2 (b), it is difficult to express r as analytical functions of the components of r. 

Hence, expressing  and  as analytical functions is also difficult. In order to solve the 

issue, a numerical technique for calculation of  and  has been proposed in Ref. [21]. 

The technique described in Ref. [21] is explained briefly as follows.  

A scheme of the numerical method is shown in Fig. 2-3. The space transformation 

depicted in Fig. 2-2 can be supposed to be a forced deformation problem in the continuum 

mechanics. Hence, the transformed coordinates are expressed as follows, 
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where U (=x,y,z) are called the displacement field in the continuum mechanics. 

Therefore, the components of A can be expressed as 
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where the tensor G is called the deformation gradient tensor in the continuum mechanics 

and I is the identity matrix.  

Let us consider the boundary conditions for the forced deformation problem shown in 

Fig. 2-2. The outer boundary of the transformed region, b, is the same as that of the 

original region, b. On the other hand, the inner boundary of the transformed region, a, is 

extended from the point of the original region, a. Consequently, the boundary conditions 

for the forced deformation problem are given by 
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where ra = (xa, ya, za) = (0, 0, 0) and rb = (xb, yb, zb) are position vectors at the point, a and 

the outer boundary of the original region, b, and ra = (xa, ya, za) is the position vector at 

the inner boundary of the transformed region, a.  

U and G can be obtained by solving the Laplace’s equation as 
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with the Dirichlet boundary conditions shown in Eqs. (2-58) and (2-59). 

Nevertheless, the solution of the Laplace’s equation, Eq. (2-61), becomes singular at 

the point, a. In order to prevent the singular solution, the inverse transformation, rr, is 

considered. In the inverse transformation, the original coordinates are described as 
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where U (=x,y,z) are the displacement fields. Then, the inverse form of the Laplace’s 

equation is obtained as, 
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The Dirichlet boundary conditions correspondingly become 
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where rb = (xb, yb, zb) is the position vector at the outer boundary of the transformed 

region, b. 
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By solving Eqs. (2-62), (2-63), and (2-64), the deformation gradient tensor G’ can be 

obtained as follows, 
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From the components of G, the components of Jacobian transformation matrix of the 

inverse transformation can be calculated as follows, 
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By the inversion of A, the components of A can be calculated. Finally, by applying A 

into Eqs. (2-50) and (2-51), respectively,  and  can be obtained. 

  The solution of Laplace’s equation is attained by means of the Finite Element Method 

(FEM). As a program for the FEM, Elmer from CSC, which is an open source program, 

is employed [22]. 

Since space transformations, as shown in Fig. 2-2, can be specified for cloaking 

devices with arbitrary shapes,  and  of each of cloaking devices can be obtained 

through transformation optics [23]. The space transformations can be expressed 

numerically as described in Eq. (2-57). Consequently, the FEM-based numerical 

technique for the calculation of  and  described above can be utilized for cloaking 
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devices with arbitrary shapes including irregular shapes [24-27]. It is noted that the 

sufficient accuracy of the solution of the FEM is required when the FEM-based 

numerical technique is used. The accuracy of the solution affects the performances of 

cloaking devices through the accuracy of  and .  

 

Fig. 2-3. A scheme of the numerical method for calculation of the relative permittivity 

tensor and permeability tensor.  
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CHAPTER 3 

 

Surface-mesh Representation with Hamiltonian-based 

Ray Tracing Method  

 

 

3.1. Introduction 

 

A new Hamiltonian-based ray tracing method is proposed. In the proposed method, the 

surfaces of three-dimensional arbitrary shapes are modeled by triangular mesh 

representation in order to verify the cloaking effects for large-scale objects. Table 3-1 

shows the classification of optical simulation methods. Full wave simulation is an ideal 

and can deal with arbitrary shapes [1-3], but it is impossible to calculate large-scale 

objects for the industrial applications. Although the ray tracing method is a practical 

method for large-scale objects with anisotropy or without anisotropy in their constitutive 

parameters, it cannot deal with inhomogeneity. Thus, Hamiltonian-based ray tracing is 

the only one method which can evaluate the cloaking effects for large-scale objects.  

The remaining problem is how to implement arbitrary shapes of the large-scale 

cloaking devices. Hamiltonian-based ray tracing has two technical issues for the 

treatment of arbitrary shapes. The first issue is how to represent the surfaces of arbitrary 

shapes. The other issue is how to obtain  and  for arbitrary shapes.  

The proposed Hamiltonian-based ray tracing with triangular mesh representation can 

deal with the first issue. This is the first time of the optical simulation for evaluation of 
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the cloaking effects of large-scale objects. 

 

Table 3-1: Classification table of the optical simulation methods. 

Functionality 
Full-wave 

[1-3] 

Ray 

Tracing 

Hamiltonian-based  

ray tracing 

[4-14] 

Hamiltonian-based 

ray tracing with mesh 

representation 

(Proposed Method) 

Anisotropy OK OK OK OK 

Inhomogeneity OK  OK OK 

Macroscopic 

objects 
 OK OK OK 

Arbitrary shapes OK OK  OK 

        OK: possible, : difficult 

 

3.2. Calculation method 

 

Cloaking performances are evaluated by using Hamiltonian-based ray tracing [4-14] 

as described in 2.1. In order to design a cloaking device with an arbitrary shape, the 

surface of the cloaking device is represented by the triangular meshes as shown in Fig. 

3-1(a). This representation of a surface is called surface-mesh representation in this 

thesis. These meshes are prepared by using the commercial mesh generation software, 

HyperMesh from Altair Engineering Inc. On the other hand, if a cloaking device has a 

simple shape, such as sphere or cylinder, the surface of the cloaking device can be 

represented by a rigorous function as shown in Fig. 3-1(b). This representation of a 

surface is called rigorous function representation in this thesis.  
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Fig. 3-1. (a) Surface-mesh represention for the surface of the cloaking device; 

(b) rigorous function representation for the surface of the cloaking deivice. 

 

The relative permittivity tensor  and permeability tensor inside the cloaking device 

are input as functions of the position vector r=(x, y, z), where the coordinate origin is set 

to the center of the cloaking device. For example, in the case of sphere cloaking [4],  and 

can be expressed as 
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where Ra and Rb are the inner radius and the outer radius of the spherical shell, 

respectively, r is the magnitude of r, I is the identity matrix and rr is the outer product of 

the position vector r with itself. 

In the case of cylinder cloaking with the rotational symmetry axis aligned along the 

z-axis [4], the following  and can be chosen, 
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where =(x,y,0),  is the magnitude of , Ra and Rb are the inner radius and the outer 

radius of the cylindrical shell, respectively, T and Z are the following matrixes, 

                          ,
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These relative permittivity tensor and permeability tensor are derived by using 

transformation optics. 

In the simulation, rendering technique [5-12] is implemented to the geometrical ray 

tracing in order to evaluate the performance of the cloaking device. The performance is 

qualified by computing the cross-correlations as described in Eq. (3-5) [5],       
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where f(x,y) and g(x,y) are the gray levels of the reference image without any hidden 

object and any cloak device, and the image with a hidden object and a cloak device, f 

and g are the spatial average values of f and g, and (f) and  (g) are the values of the 

standard deviations of f and g. The integration was done in the region where the hidden 

object was seen without any cloaking device. For the case of the perfect cloaking, the 

value of C equals to 1.0. On the other hand, the decrease of value of C from 1.0 shows 
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deterioration of the performance of the cloaking device. 

 

3.3. Numerical results 

 

The results from the surface-mesh representation are compared with those from the 

rigorous function representation in order to verify the effectiveness of the proposed 

Hamiltonian ray tracing with the surface-mesh representation. Here, a spherical cloaking 

device and a cylindrical cloaking device are simulated as examples of cloaking devices.  

Calculation models for the spherical cloaking device and the cylindrical cloaking 

device are illustrated in Figs. 3-2 and 3-3, respectively. In front of the cylinder-like object, 

the spherical object with a diameter of 10 mm is placed. The role of the spherical object is 

to disturb the visibility of an observer who looks at the cylinder-like object from the 

camera position. For the evaluation of the cloaking performances, the cloaking devices 

are placed to cover the spherical object. The inner diameter and the outer diameter of both 

the spherical device and the cylindrical cloaking device are 20 mm and 60 mm, 

respectively. The virtual point camera with a horizontal angle of view of 30, a vertical 

angle of view of 22.5, and a focal length of 50 mm is located at a distance of 150 mm 

from the center of the spherical object. The views of the camera are rendered by the 

Hamiltonian-based ray tracing. 
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Fig. 3-2. Calculation model for the spherical cloaking. 

  

Fig. 3-3. Calculation model for the cylindrical cloaking. 
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3.3.1. Spherical cloaking  

 

The rendered image without any cloaking device is depicted in Fig. 3-4(a). The 

spherical object to be hidden can be seen in Fig. 3-4(a). The rendered image for the 

spherical cloaking by the rigorous function representation is shown in Fig. 3-4(b). In Fig. 

3-4(b), the spherical object to be hidden cannot be seen. In addition, no distortions of the 

image are found. The value of C is shown in Table 3.2., which shows C=1.00. Therefore, 

Fig. 3-4(b) and Table 3.2 reveal that the perfect cloaking can be obtained by the rigorous 

function representation. 

The rendered image by the surface-mesh representation is depicted in Fig. 3-5(a), 

where the average length of sides of the triangle meshes is 5.0 mm (mesh1). Fig. 3-5(a) 

reveals that small distortion has occurred around the boundary. The distortion can also be 

verified from the value of C shown in Table 3-2. It is found that the value of C for the 

surface-mesh representation with mesh1 is smaller than that for the rigorous function 

representation. This suggests that the cloaking performance for the surface-mesh 

representation is lower than that for the rigorous function representation.  

The reason for the distortion is considered to be due to the coarse surface-mesh 

resolution for representation of the surface of the cloaking device. The distortion should 

be suppressed because the distortion might affect the evaluation of a cloaking device. 

Accordingly, in order to suppress the distortion in the rendered image, rendering 

simulations with three kinds of refined mesh resolution, where the average lengths of 

sides of triangle meshes are 2.5 mm (mesh2), 1.0 mm (mesh3) and 0.5 mm (mesh4), have 

been executed. 
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Fig. 3-4. Rendered images (a) without cloaking device, (b) for spherical cloaking by the 

rigorous function representation approach and (c) for cylindrical cloaking by the rigorous 

function representation approach. 

 The rendered images for the spherical cloaking device with mesh2, mesh3 and 

mesh4 are shown in Figs. 3-5(b)-(d), respectively. Although the refinement of the mesh 

resolution from mesh1 to mesh3 through mesh2 is found to suppress the distortion in the 

rendered image, the effect of the refinement of the mesh resolution from mesh3 to mesh4 

is found to be very small. The values of C shown in Table 3-2 support this finding. The 

value of C increases from mesh1 (C=0.72) to mesh2 (C=0.76) and from mesh2 to mesh3 

(C=0.83) more significantly than from mesh3 to mesh4 (C=0.83).  

Table 3-2: Cross-correlations for spherical cloaking. 

Models cross-correlations 

rigorous function representation 1.00 

surface-mesh 

representation 

mesh1 0.72 

mesh2 0.76 

mesh3 0.83 

mesh4 0.83 
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Fig. 3-5. Rendered images for spherical cloaking by the surface-mesh representation 

approach where the average lengths of sides of triangle meshes are (a) 5.0 mm, (b) 2.5 

mm, (c) 1.0 mm, and (d) 0.5 mm. 

 

3.3.2. Cylindrical cloaking  

 

The rendered image for the cylindrical cloaking by the rigorous function representation 

approach is depicted in Fig. 3-6(a) and the rendered images by the surface-mesh 

representation approach with mesh1-4 are depicted in Figs. 3-6(b)-(e), respectively. 

Comparing Fig. 3-6(a) with Fig. 3-6(b), the distortion due to coarse surface-mesh 

resolution is seen with mesh1 in the case of cylindrical cloaking, too. Nevertheless, the 

refinement of the mesh resolution is found to suppress the distortion in the rendered 

image from Figs. 3-6(b)-(e). This finding can also be verified by the values of C shown in 
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Table 3-3.  

 

Fig. 3-6. Rendered images for cylindrical cloaking (a) by the rigorous function 

representation approach and by the surface-mesh representation approach where the 

average lengths of sides of triangle meshes are (b) 5.0 mm , (c) 2.5 mm, (d) 1.0 mm, and 

(e) 0.5 mm. 
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Table 3-3: Cross-correlations for cylindrical cloaking. 

models cross-correlations 

rigorous function representation 1.00 

surface-mesh 

representation 

mesh1 0.60 

mesh2 0.60 

mesh3 0.72 

mesh4 0.76 

 

3.4. Discussion 

 

Comparing Table 3-2 with Table 3-3, it is found that the values of C of the spherical 

cloaking are larger than those of the cylindrical cloaking, which suggests that the 

distortion of the former is smaller than that of the latter. This is because the area of 

cloaking errors colored by deep blue, which is the color of the hidden object, is smaller in 

the spherical cloaking than in the cylindrical cloaking. In the case of the spherical 

cloaking, the cloaking errors are occurred as point-like as shown in Fig. 3-5(d), while in 

the case of the cylindrical cloaking, the cloaking errors are occurred in a straight line as 

shown in Fig. 3-6(e). Therefore, the former error is smaller than the latter error.  

To illustrate how the cloaking errors are generated, the incident of the ray into the 

cloaking device as shown in Fig. 3-7(a) is considered. Since the normal vector of the 

surface in the surface-mesh representation is slightly different from that in the rigorous 

function representation, the direction of the refracted ray in the surface-mesh 

representation has an error from the correct direction. The error of the direction of the 

refracted ray causes the trajectory of the ray to change. Especially, some rays passing near 

the inner boundary incident into the inner boundary, and then refract out of the cloaking 

device as shown in Fig. 3-7(a). These rays finally incident the hidden object, resulting in 

the cloaking errors. 
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In the case of the spherical cloaking, by means of analysis of the ray trajectories, some 

rays passing near the inner boundary are found to incident into the cloaking device near 

the point P as shown in Fig. 3-7 (b). The point P is the cross point of the line, passing the 

center of the spherical cloaking device (O) and the camera position (C), and the outer 

boundary of the spherical cloaking device. Therefore, the deep blue point-like error 

region appeared near the point P. On the other hand, in the case of the cylindrical cloaking, 

some rays passing near the inner boundary are found to incident into the cloaking device 

near the line QR as shown in Fig. 3-7 (c). The line QR is the cross line of the plane S, 

passing the axis of the cylindrical cloaking device and the camera position (C), and the 

outer boundary of the cloaking device. Therefore, the error regions represented by deep 

blue becomes straight line appeared near the line QR.  From the above results, it is found 

that it is necessary to employ very refine mesh resolution in order to suppress completely 

the distortion in the rendered image.  

 Here, the computational memory and the computational speed for the proposed 

Hamiltonian-based ray tracing are estimated. The calculation of the spherical cloaking 

device with a diameter of 60 mm requires less than 2.0 GB of memory. This suggests that 

the proposed Hamiltonian-based ray tracing can deal with large-scale objects with 

arbitrary shapes in terms of memory usages. On the other hand, in terms of 

computational speed, it takes approximately a day to obtain a rendered image by using 5 

CPU cores (Intel Xeon E5-2687W 3.1GHz). Since the computational speed is in 

proportion to the number of CPU cores, sufficient computational speed for design of 

large-scale cloaking devices can be obtained by the parallel computation with more CPU 

cores.  
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Fig. 3-7. The cloaking error in the surface-mesh representation (a). The Ray paths for 

the rigorous representation and the surface-mesh representation in the case of spherical 

cloaking (b) and cylindrical cloaking (c).  
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3.5. Conclusion 

 

The simulation tool has been proposed for checking a cloaking device with an arbitrary 

shape by using Hamiltonian-based ray tracing. Since the media considered here are 

inhomogeneous and anisotropic in their electric permittivity and magnetic permeability, 

the ray trajectories have been calculated based on Hamiltonian equations. In order to 

make a model of the cloaking device with the arbitrary shape, the surface of the cloaking 

device is represented by triangular meshes.  

In order to verify the proposed Hamiltonian ray tracing adapting the surface-mesh 

representation approach, the results from the surface-mesh representation approach have 

been compared with those from the approach where the surfaces of cloaking devices are 

represented by rigorous functions, adapting the spherical cloaking and the cylindrical 

cloaking as examples. From the comparison, it is found that the distortion due to the 

coarse mesh resolution has occurred with the surface-mesh representation approach, 

while by increasing the mesh resolution the distortion is suppressed. Because the 

distortion due to coarse mesh resolution might influence the evaluation of cloaking 

performance, it suggests that rendering simulations with high mesh resolution are 

necessary for accurate evaluation of cloaking performance. 
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CHAPTER 4 

 

Full-mesh Representation with Hamiltonian-based 

Ray-tracing Method  

 

 

4.1. Introduction 

 

There are two technical issues to be solved in order to simulate cloaking devices with 

arbitrary large-scale shapes by the Hamiltonian-based ray-tracing [1-11]. One issue is 

how to represent the surfaces of cloaking devices with arbitrary shapes. In CHAPTER 3, 

a Hamiltonian-based ray-tracing method with surface-mesh representation, where the 

surfaces of arbitrary shapes are represented by the mesh structure as shown in Fig. 4-1 (a), 

has been proposed. It has been found that the surface-mesh representation with fine mesh 

resolution yields the similar cloaking performance to rigorous function representation, 

where the surfaces of cloaking devices are represented by analytical functions. The other 

issue is how to determine the constitutive parameters of cloaking devices with arbitrary 

shapes. This issue is expected to be solved by the numerical technique based on the finite 

element method (FEM) for the calculation of the constitutive parameters proposed in 

[12].   

In this chapter, the FEM-based numerical modeling of the constitutive parameters is 

integrated into the Hamiltonian-based ray tracing through full-mesh representation, 

where both the surface and the inner part of a cloaking device are represented by the mesh 
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structure as shown in Fig. 4-1(b). The full-mesh representation is verified by comparing it 

with the rigorous function representation and the surface-mesh representation with 

respect to the performance of cylindrical cloaking. Subsequently, the full-mesh 

representation is applied to the evaluation of examples of cloaking devices with arbitrary 

shapes.  

 

 

Fig. 4-1. (a) Example of linear meshes that represent the surfaces of the cloaking device. 

(b) Example of triangular meshes inside of the cloaking device. 

 

4.2. Full-mesh representation of cloaking device and 

evaluation method for cloaking performance 

 

The numerical technique with the FEM-based solution of the Laplace’s equation [12], 

which is explained in 2.2., is employed to calculate  and  of cloaking devices with 

arbitrary shapes. The distributions of  and  obtained from the FEM-based solutions are 

discretized in triangular meshes inside of the cloaking device. In order to implement the 

discretized distributions of  and  into the Hamiltonian-based ray tracing, the full-mesh 

representation of cloaking devices as shown in Fig. 4-1 (b) is required. Additionally, 

since  and  at any position in cloaking devices are required for the Hamiltonian-based 
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ray tracing, interpolation between the discretized  and  is necessary. In the full-mesh 

representation,  and  are interpolated by linear functions of the components of the 

position vector inside each element employed for the solution of the Laplace’s equation. 

A calculation model is depicted in Fig. 4-2. One hundred rays are radiated from the 

point located in front of the cloaking device, within an angle of view of 60. The ray 

trajectories are calculated by the Hamiltonian-based ray tracing described in 2.1. If the 

incidence of a ray into the inner surface of the cloaking device occurs, the ray is supposed 

to be absorbed by the surface. The screen for the observation of the rays is located on the 

back of the cloaking device as shown in Fig. 4-2. Each of the intersection points of the 

rays and the screen for successful cloaking is close to that without the cloaking device. 

By contrast, each of the intersection points for unsuccessful cloaking is different from 

that without the cloaking device.  

For the evaluation of cloaking performance, the angle between the straight line passing 

the source point and the intersection point, and the y axis as shown in Fig. 4-3, is 

considered. The performance of the cloaking device is qualified by the root mean 

squared error between the angles with the cloaking device and without the cloaking 

device given by 

        

 

ray

N
ref

N

ray

 

 
 



2

,                      (4-1) 

where  is the index of a ray,  and ref
 are the angle with the cloaking device and 

without the cloaking device, respectively. Nray is the number of the total rays. Nray is set to 

be 100. The dependence of cloaking performance on the radiation angle is calculated by 

 ref
   .                        (4-2) 
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If the calculated value of  ref
 is out of the range 30 <   

ref
 < 30 or the ray 

doesn’t intersect the screen, the value of |  
ref
 | is set to be 30.  of 0.0reveals 

that perfect cloaking is obtained. On the other hand, large values of  indicate the 

degradation of the performance of the cloaking device.  

 

 

Fig. 4-2. Calculation model for the cylindrical cloaking device. 
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Fig. 4-3. The angle for the evaluation of cloaking performance. The red solid arrow 

corresponds to the ray trajectory without the cloaking device. The blue solid arrow 

corresponds to the ray trajectory with the cloaking device.  The blue dashed line is the 

straight line passing the source point and the intersection point between the ray trajectory 

and the screen. 

 

4.3. Numerical results and discussion 

 

In this section, the full-mesh representation is verified by comparing with the 

rigorous function representation and the surface-mesh representation with respect to the 

performance of cylindrical cloaking. Subsequently, examples of cloaking devices with 

arbitrary shapes are evaluated by the full-mesh representation. 

 

4.3.1. Cloaking performance of rigorous function representation and 

surface-mesh representation 

 

In this subsection, ideal cloaking features are given by evaluation of the cloaking 

performance of cylindrical cloaking with the rigorous function representation and the 
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surface-mesh representation. In the rigorous function representation, both the geometry 

of the surface and the values of  and  inside the device are represented by analytical 

functions, whereas in the surface-mesh representation, the geometry of the surface is 

represented by meshes and the values of  and  inside the device are represented by 

analytical functions. The values of  and  inside the cloaking device are given by the 

analytical functions of the position vector, r=(x,y), as shown in Eq. (2-52). The results 

present the ideal performances for the verification of the full-mesh representation in 

4.3.2. 

The cloaking performances are evaluated by the surface-mesh representation approach 

with six kinds of surface-mesh resolution where the average lengths are 2.5, 1.0, 0.5, 0.25, 

0.10, and 0.05 mm.  

Here, the relative mesh resolution is defined as the ratio of the mesh size to the size of 

the cloaking device. Therefore, it can be universally applied to any other structure. When 

the size of the cloaking device is 60 mm and the mesh sizes are 2.5, 1.0, 0.5, 0.25, 0.10, 

and 0.05 mm, the relative mesh resolutions correspond to 4.17e02, 1.67e02, 8.33e03, 

4.17e03, 1.67e03, and 8.33e04, respectively. Hereafter, the numerical results are 

investigated based on the relative mesh resolution. 

The ray trajectories without a cloaking device are depicted in Fig. 4-4 (a), while those 

with the cloaking device calculated by the rigorous function representation are depicted 

in Fig. 4-4 (b). It is found that the ray trajectories after passing through the cloaking 

device shown in Fig. 4-4 (a) and the corresponding ray trajectories shown in Fig. 4-4 (b) 

are almost identical. The dependence of the cloaking performance on the radiation angle 

for the rigorous function approach is illustrated in Fig. 4-5. This suggests that the 

cloaking performance gets degraded in little amounts at radiation angles close to 0. 

Table 4-1 shows performances of cylindrical cloaking for the rigorous function 
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representation and the surface-mesh representation. It indicates that the value of  for 

the rigorous function approach, =7.90e05, is very close to 0.0, which suggests that 

the rigorous function representation yields the almost perfect cloaking.  

 

 

Fig. 4-4. (a) The ray paths without a cloaking device. (b) The ray paths with the 

cylindrical cloaking device calculated by the rigorous function representation. 

 

 

Fig. 4-5. The dependence of the cloaking performance on the radiation angle calculated 

by the rigorous function representation. 
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The ray trajectories calculated by the surface-mesh representation with the six 

surface-mesh resolutions are shown in Figs. 4-6 (a)-(f), respectively. The dependence of 

the performance on the surface-mesh resolution calculated based on the ray trajectories is 

shown in Table 4-1. It reveals that the performance is improved as the surface-mesh 

resolution becomes finer. 

The reason why the degraded performance is obtained for the coarse surface-mesh 

resolution can be considered as follows. Since the normal vector of the surface in the 

surface-mesh representation slightly differs from that in the rigorous function 

representation, an error in the direction of the refracted ray occurs in the surface-mesh 

representation. The error of the direction of the refracted ray causes the change of the ray 

trajectory, resulting in the degraded cloaking performance. 

The dependence of the cloaking performance on the radiation angle for six relative 

mesh resolutions is depicted in Figs. 4-7 (a)-(f), respectively. It can be noticed that the 

cloaking performance oscillates with the radiation angle. Furthermore, the amplitude and 

the period of the oscillation are found to be reduced as the relative mesh resolution 

becomes finer.  

The reason for the oscillation can be explained by the two ray trajectories for the 

relative mesh resolution of 4.17e02 shown in Fig. 4-8. The red trajectory at a radiation 

angle of 27.9° yields degraded performance while the blue trajectory at a radiation angle 

of 26.3° yields high performance. From Fig. 4-8, the difference between the two 

trajectories in the position of the intersection point of the ray and the surface can be 

noticed. The intersection point of the red ray and the surface is near the end of the 

surface-mesh. In contrast, the intersection point of the blue ray and the surface is at the 

middle of the surface-mesh.  

From the geometrical consideration illustrated in Fig. 4-8, the difference of the normal 
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vector at the intersection point in the surface-mesh representation and that in the rigorous 

function representation is considered to become larger for the intersection point near the 

end of the surface-mesh than for that at the middle of the surface-mesh. The large 

difference of the normal vectors in the surface-mesh representation and in the rigorous 

function representation leads to the inaccuracy of the direction of the refracted ray, 

resulting in degraded performance as mentioned above. On the other hand, the small 

difference of the normal vectors leads to high performance. Therefore, since the position 

of the intersection point has an influence on the cloaking performance, the cloaking 

performance oscillates with the radiation angle as shown in 4-7 (a)-(f).  

The difference of the normal vectors becomes smaller for the smaller size of the 

surface-mesh, that is, the finer surface-mesh resolution, leading to the smaller 

inaccuracy. Therefore, the amplitude of the oscillation of the cloaking performance is 

decreased for the finer surface-mesh resolution. Furthermore, the period of the 

oscillation of the cloaking performance is determined by the size of the surface-mesh. 

That is, the smaller size of the surface-mesh yields the shorter period of the oscillation.  

Here, a criterion for high cloaking performance is set to=1.0. From Table 4-1, it is 

found that the relative mesh resolution of the surface finer than 4.17e03 can fulfill the 

criterion. 
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Table 4-1: Performances of cylindrical cloaking calculated for the 

rigorous function representation and the surface-mesh representation. 

Number  Representation 
Relative Mesh  

Resolution 
 () 

1 Rigorous function - 7.99e05 

2 

Surface-Mesh 

4.17e02 0.586 

3 1.67e02 0.270 

4 8.33e03 0.115 

5 4.17e03 0.0560 

6 1.67e03 0.0244 

7 8.33e04 0.0114 
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Fig. 4-6. The ray trajectories with the cylindrical cloaking device for the surface-mesh 

representation. The relative surface-mesh resolutions are (a) 4.17e02, (b) 1.67e02, (c) 

8.33e03, (d) 4.17e03, (e) 1.67e03, and (f) 8.33e04.  
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Fig. 4-7. The dependence of the cloaking performance on the radiation angle for the 

surface-mesh representation The relative surface-mesh resolutions are(a) 4.17e02, (b) 

1.67e02, (c) 8.33e03, (d) 4.17e03, (e) 1.67e03, and (f) 8.33e04.  
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Fig. 4-8. The explanation for the oscillation of the perfomance with the radiation angle 

in Fig. 4-7. 

 

4.3.2. Cloaking performance of full-mesh representation  

 

The numerical technique for the calculation of  and  described in 2.2 relies on the 

FEM-based solution of the Laplace’s equation. Therefore, the full-mesh resolution of a 

cloaking device is considered to contribute the cloaking performance. Here, the 

dependence of cloaking performance on the full-mesh resolution is investigated by 

calculating the cloaking performance of cylindrical cloaking with six full-mesh 

resolutions where the average lengths are 2.5, 1.0, 0.5, 0.25, 0.10, and 0.05 mm. Their 

relative mesh resolutions correspond to 4.17e02, 1.67e02, 8.33e03, 4.17e03, 

1.67e03, and 8.33e04.  

 The ray trajectories calculated for the six full-mesh resolutions are depicted in Figs. 

4-9 (a)-(f), respectively. The dependence of the cloaking performance on the radiation 

angle for the six full-mesh resolutions is shown in Figs. 4-10 (a)-(f), respectively. From 
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Fig. 4-9 and Fig. 4-10, it can be seen that some ray trajectories near the radiation angle of 

0 are significantly degraded from the ideal ones at the full-mesh resolution from 

4.17e02 to 4.17e03. However, as the full-mesh resolution gets finer, the number of the 

largely deviated rays decreases. Eventually, at the full-mesh resolution of 1.67e03, 

largely deviated rays disappear. The dependence of the cloaking performance on the 

full-mesh resolution is shown in Table 4-2 and Fig. 4-11. It is found that the finer 

full-mesh resolution reveals the higher cloaking performance. It is noted that the cloaking 

performances at the full-mesh resolutions of 1.67e03 and 8.33e04 are comparable to 

those for the surface-mesh representation. 

From the above results, it is confirmed that a full-mesh representation with a relative 

resolution finer than 1.67e03 can yield the performance comparable to the surface-mesh 

representation. 

 

Table 4-2: Performances of cylindrical cloaking devices calculated for 

the full mesh representation with the interpolation of the FEM-based 

solution of the Laplace’s equation. 

Number  Representation 
Relative Mesh  

Resolution 
 () 

1 

Full-Mesh 

(Interpolation ofThe FEM 

solution of Laplace’s Eqn) 

4.17e02 12.1 

2 1.67e02 5.19 

3 8.33e03 4.51 

4 4.17e03 1.43 

5 1.67e03 0.113 

6 8.33e04 0.0803 

 

 

 

 



70 

 

 

Fig. 4-9. The ray trajectories with the cylindrical cloaking device for the full-mesh 

representation with the interpolation of the FEM-based solution of the Laplace’s equation. 

The relative full-mesh resolutions are (a) 4.17e02, (b) 1.67e02, (c) 8.33e03, (d) 

4.17e03, (e) 1.67e03, and (f) 8.33e04. 
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Fig. 4-10. The dependence of the cloaking performance on the radiation angle for the 

full-mesh representation with the FEM-based solution of the Laplace’s equation. The 

relative full-mesh resolutions are (a) 4.17e02, (b) 1.67e02, (c) 8.33e03, (d) 4.17e03, 

(e) 1.67e03, and (f) 8.33e04. 
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Fig. 4-11. The dependence of the cloaking performance on the full-mesh resolution.   

 

4.3.3. Accuracy of full-mesh representation  

 

 and  in the full-mesh representation are represented by the interpolation function 

using the values of the FEM solution. Therefore, there are two types of the accuracy of  

and  in the full-mesh representation. One type is the accuracy of the FEM, that is, how 

close the FEM solution is to the rigorous solution. The other type is the accuracy of the 

interpolation, that is, how close the interpolation function is to the rigorous function.  

Figure 4-12 illustrates the two types of accuracy schematically. As the full-mesh 

resolution gets finer, both of the two types of accuracy are improved, suggesting that  

and  in the full-mesh representation converge to those in the rigorous function.  and 

with the best accuracy of the FEM at a certain accuracy of the interpolation corresponds 
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to those represented by the interpolation function using the values of the rigorous 

solution of the Laplace’s equation. Therefore, the accuracy of the FEM can be 

investigated by comparing the cloaking performance for  and  represented by the linear 

interpolation of the values of the FEM solution and that for  and represented by the 

linear interpolation of the values of the rigorous solution at the same full-mesh resolution, 

as illustrated by the green arrow in Fig. 4-12. On the other hand, the accuracy of the 

interpolation is investigated by comparing the cloaking performance for  and  

represented by the interpolation function using the values of the rigorous solution at 

various full-mesh resolutions, as illustrated by the blue arrow in Fig. 4-12, since no 

error in terms of the accuracy of the FEM is included in the rigorous solution. Therefore, 

if the cloaking performance for  and  represented by the interpolation function using 

the values of the rigorous solution is obtained, the accuracy can be divided into the 

accuracy of the FEM and the accuracy of the interpolation. 

Rigorous function 
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Fig. 4-12. Two types of accuracy in the full-mesh resolution: the accuracy of the 

interpolation and the accuracy of the FEM. 

 

In order to divide the accuracy into the two types, the cloaking performance of 

cylindrical cloaking with six relative full-mesh resolutions, 4.17e02, 1.67e02, 

8.33e03, 4.17e03, 1.67e03, and 8.33e04, is calculated by employing  and  

represented by linear interpolations of the values of the rigorous solution of the 

Laplace’s equation. 

The ray trajectories calculated with the six relative full-mesh resolutions are illustrated 

in Figs. 4-13 (a)-(f), respectively. The dependence of the cloaking performance on the 

full-mesh resolution is shown in Table 4-3. Figure 4-13 and Table 4-3 indicate that low 

accuracy of the interpolation degrade the cloaking performance significantly.  

The dependence of the cloaking performance on the radiation angle for the six relative 
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full-mesh resolutions is depicted in Figs. 4-14 (a)-(f), respectively. From Fig. 4-14, the 

difference of the accuracy of the interpolation is distinct in small radiation angles, which 

correspond to the significantly errored ray trajectories depicted in Fig. 4-13.  

 

Table 4-3: Performances of cylindrical cloaking devices calculated for 

the full mesh representation with the interpolation of the rigorous 

solution of the Laplace’s equation. 

Number  Representation 
Mesh  

resolution 
 () 

1 

Full-Mesh 

(Interpolation ofThe Rigorous 

solution of Laplace’s Eqn) 

4.17e02 11.0 

2 1.67e02 5.36 

3 8.33e03 3.62 

4 4.17e03 1.13 

5 1.67e03 0.182 

6 8.33e04 0.0874 
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Fig. 4-13. The ray trajectories with the cylindrical cloaking device for the full-mesh 

representation with the interpolation of the rigorous solution of the Laplace’s equation. 

The relative full-mesh resolutions are (a) 4.17e02, (b) 1.67e02, (c) 8.33e03, (d) 

4.17e03, (e) 1.67e03, and (f) 8.33e04.  



77 

 

 

Fig. 4-14. The dependence of the cloaking performance on the radiation angle for the 

full-mesh representation with the interpolation of the rigorous solution of the Laplace’s 

equation. The relative full-mesh resolutions are (a) 4.17e02, (b) 1.67e02, (c) 8.33e03, 

(d) 4.17e03, (e) 1.67e03, and (f) 8.33e04.  
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Here, let us consider the reason why the rays in the small radiation angles have large 

error with the low accuracy of the interpolation. The profiles of the rigorous solution of 

 and the linear interpolation of the rigorous solution of  are depicted in Fig. 4-15. The 

interpolation can approximate the rigorous solution except for the area near the inner 

boundary because the variation of  is gradual. On the other hand, near the inner 

boundary, the variation of  is very steep since the values on the inner boundary are 

infinity. Therefore, the difference between the interpolation and the rigorous solution 

becomes very large with the interpolation with a low accuracy as shown in Fig 4-15 (a). 

When a ray enters into an element with the inner boundary where the difference is large, 

the ray trajectory cannot be calculated accurately as shown in Fig. 4-16. That is why the 

rays in the small radiation angles, which can approach the inner boundary sufficiently, 

cause large error. As the accuracy of the interpolation is improved by using fine full-mesh, 

the area near the inner boundary with large error can be reduced as shown in Fig. 4-15 (b), 

leading to the decline of the number of the largely deviated rays.  

By comparing Fig. 4-13 with Fig. 4-9, or Fig. 4-14 with Fig. 4-10, it is found that the 

ray trajectories from the rigorous solution are similar to those from the FEM-based 

solution. In addition, the cloaking performance for  and  represented by linear 

interpolations of the rigorous solution are compared with that for  and  represented by 

linear interpolations of the FEM solution in Fig 4-17. Figure 4-17 shows the very small 

difference between the cloaking performances at a certain full-mesh resolution, which 

suggests that the FEM solution is close to the rigorous solution. Therefore, the accuracy 

of the FEM is sufficiently high with six relative full-mesh resolutions. In other word, the 

effect of the accuracy of the interpolation is very large. 
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Fig. 4-15. The profiles of the rigorous solution of  and the linear interpolation of the 

rigorous solution of : (a) the interpolation with the coarse mesh, (b) the interpolation  

with the fine mesh. 

 

Fig. 4-16. The three ray trajectories passing near the inner boundary. 
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Fig. 4-17. The relationship between mesh resolution and cloaking performance for the 

surface-mesh representation, the full-mesh representation with the FEM-based solution 

of the Laplace’s equation, and the full-mesh representation with the rigorous solution of 

the Laplace’s equation.  

 

4.3.4. Analysis of double cylindrical cloaking device 

 

 A double cylindrical cloaking device shown in Fig. 4-18 is analyzed as an example of 

cloaking devices with arbitrary shapes. Based on the results obtained in 4.3.2., the 

relative full-mesh resolution of 1.67e03 is employed.  

Shown in Fig. 4-19 (a) are the calculated ray trajectories. The performance calculated 

from the ray trajectories is  = 0.215. The value of  suggests that the performance of 

the double cylindrical cloaking device is comparable to the cylindrical cloaking device. 

Shown in Fig. 4-20 (a) is the dependence of the cloaking performance on the radiation 
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angle. From Fig. 4-20 (a), it is found that performances around the radiation angle of 0, 

which correspond to the ray trajectories passing near the inner boundary, are degraded 

significantly as well as the cylindrical cloaking device. Additionally, it is noticed that 

performances around the radiation angle of 18 are degraded. The radiation angle 

corresponds to the ray trajectory passing near one of the two points where the two 

cylinders are connected. These points are considered to show singularity in the solution of 

the FEM, leading to the steep variation of  and  near the points. Because the linear 

interpolation of the solution of the FEM cannot approximate the steep variation correctly, 

the ray trajectories passing near the points cannot be calculated accurately. This is the 

same issue as the low accuracy of the interpolation described in 4.3.2.  

The degradation of the cloaking performance due to the singularity is expected to be 

reduced by refinement of mesh resolution because the accuracy of the linear 

interpolation is improved by employing finer mesh resolution. Here, the double 

cylindrical cloaking device with a finer relative full-mesh resolution of 8.33e04 is 

analyzed in order to elucidate whether the degradation can be reduced by refinement of 

mesh resolution. The calculated ray trajectories are depicted in Fig. 4-19 (b). The 

performance calculated from the ray trajectories is  = 0.125. Hence, declines 

from 0.215 to 0.125 by refinement of mesh resolution, which suggests the degradation 

of the cloaking performance is reduced by refinement of mesh resolution. The 

dependence of the cloaking performance on the radiation angle is shown in Fig. 4-20 (b). 

From Fig. 4-20 (b), it is found that performances around the radiation angle of 0and 

18 are improved by refining mesh resolution, resulting in the decline of . 

Therefore, it is considered to be possible to reduce the degradation of cloaking 

performance due to the singularity in the solution of the FEM by refining mesh 

resolution. 
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 Fig. 4-18. Calculation model for the double-cylindrical cloaking device. 
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Fig. 4-19. The ray trajectories with the double-cylindrical cloaking device. The 

relative full-mesh resolutions are (a) 1.67e03 and (b) 8.33e04.  
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Fig. 4-20. The dependence of the double-cloaking performance on the radiation angle. 

The relative full-mesh resolutions are (a) 1.67e03 and (b) 8.33e04. 
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4.3.5. Analysis of huge arbitrary cloaking device  

 

As the other example of cloaking devices with arbitrary shapes, a huge cloaking 

device with the completely arbitrary shape as shown in Fig. 4-20 [1], whose size is 

approximately 6 m, is analyzed. The relative full-mesh resolution of 1.67e03 is 

employed as well as the double cylindrical cloaking device described in 4.3.3. The 

representative length for determining the relative full-mesh resolution is determined to 

be 6 m from the size of the cloaking device. Therefore, the actual full-mesh resolution 

corresponds to 0.01 m.  

The calculated ray trajectories are shown in Fig. 4-22 (a). The performance calculated 

from the ray trajectories is  = 2.54, which suggests that the performance for the 

cloaking device is not higher than that for the cylindrical cloaking device. The 

dependence of the cloaking performance on the radiation angle is shown in Fig. 4-23 (a). 

It is found that the performance is degraded at the radiation angle close to 0.0. The 

reason for the degradation of the performance is considered to be the low accuracy of 

the interpolation described in 4.3.2.  

Since the accuracy of the interpolation can be improved by refining the full-mesh 

resolution, ray trajectories is calculated with a finer relative full-mesh resolution of 

8.33e04. Shown in Fig. 4-22 (b) are the calculated ray trajectories. By comparing Fig. 

4-22 (b) with Fig. 4-22 (a), it is found that the error of the ray trajectories becomes 

smaller at the relative full-mesh resolution of 8.33e04 than at that of 1.67e03. The 

performance calculated from the ray trajectories is  = 0.343 that is smaller than that at 

the full-mesh resolution of 1.67e03.  

The dependence of the cloaking performance on the radiation angle is shown in Fig. 

4-23 (b). By comparing Fig. 4-23 (b) with Fig. 4-23 (a), it is found that performances 
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around a radiation angle of 0.0are improved significantly by refining the full-mesh 

resolution. 

From the above results, it can be seen that a finer full-mesh resolution is required for 

high performance of cloaking devices with general shapes than with regular shapes like 

a cylinder. The reason why a fine full-mesh resolution is required for cloaking devices 

with general shapes is considered as follows. A cloaking device with an inner boundary 

as shown in Fig. 4-21, shows steeper variation of  and  near the inner boundary than a 

cylindrical cloaking device. Therefore, in order to approximate the variation of  and  

in the cloaking device by linear interpolation, finer full-mesh resolution is required than 

a cylindrical cloaking device. 

 

 

Fig. 4-21. Calculation model for the huge arbitrary cloaking device. 
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Fig. 4-22. The ray trajectories with the huge arbitrary cloaking device. The relative 

full-mesh resolutions are (a) 1.67e03 and (b) 8.33e04.  

 

Fig. 4-23. The dependence of the cloaking performance of the huge arbitrary cloaking 

device on the radiation angle. The relative full-mesh resolutions are (a) 1.67e03 and 

(b) 8.33e04. 
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4.3.6. Computational memory and speed 

 

Here, the computational memory and the computational speed is estimated for the 

proposed Hamiltonian-based ray tracing. In the case of the huge cloaking device with 

the completely arbitrary shape with the full-mesh resolution of 8.33e04, less than 2.5 

GB of memory is required for the proposed Hamiltonian-based ray tracing. If the same 

model is calculated by full-wave simulation, more than 300 PB of memory is estimated 

to be required. The usage of such a huge amount of memory is beyond the capacities of 

current supercomputers. Therefore, in terms of memory usages, the proposed 

Hamiltonian-based ray tracing is efficient for large-scale objects.  

In terms of computational speed, it takes approximately 5 hours to obtain ray 

trajectories by using 5 CPU cores (Intel Xeon E5-2687W 3.1GHz). This calculation 

speed is much faster than full-wave simulation. If more CPU cores are available in the 

parallel computation, the computational speed can be faster in proportion to the number 

of CPU cores, leading to sufficient computational speed for the design of large-scale 

cloaking devices. 

 

4.3.7. Feasibility of fabrication of cloaking devices 

 

From 4.3.2, 4.3.4, and 4.3.5, a relative mesh resolution finer than 1.67e03 is found 

to be required for high performance for cloaking devices with regular shapes like a 

cylinder, whereas a relative full-mesh resolution finer than 8.33e04 is found to be 

required for cloaking devices with general shapes. The relative mesh resolution of 

1.67e3 corresponds to the mesh resolution of 0.1 mm for the cylindrical cloaking 

device with the diameter of 60 mm. This suggests that a resolution for the fabrication 
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finer than 0.1 mm is required at least. Here, let us consider the feasibility of the 

fabrication of the cloaking device which is divided with a resolution of 0.1 mm by 

assuming that a unit structure of metamaterial which yields the constitutive parameter at 

each region can be found.  

Two approaches can be considered for assignment of the constitutive parameter by 

using metamaterial at each region. A first approach is that each region is represented by 

one unit structure of the metamaterial as shown in Fig. 4-24 (a). Therefore, since the 

size of each region is the same as that of the unit structure of the metamaterial, one unit 

structure of the metamaterial is assigned to each region with a size of 0.1 mm. By 

employing this approach, cloaking devices have been realized at microwave 

wavelengths [13, 15]. Furthermore, cloaking devices based on carpet cloaking, which is 

another type of cloaking, have been validated in the wavelength range of visible light 

[40-43].  
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Fig. 4-24. Two approaches for assignment of the constitutive parameter by using 

metamaterial at each region. (a) Each region is represented by one unit structure of the 

metamaterial. (b) Each region is represented by the array of unit structure of the 

metamaterial. 

 

Here, the relation between the operation wavelength () and the size of the unit 

structure of each of metamaterials which have been fabricated is shown in Table 4-4 

[13-48]. The relation is plotted in Fig. 4-25. As  becomes shorter, the size of the unit 

structure is found to become smaller. It is also seen that most of the sizes of the unit 

structures are smaller than . This indicates that the size of the unit structure of a 

metamaterial is required to be smaller than  in order for the metamaterial to behave as 

an effective medium [13]. In the wavelength range of visible light, the size of the unit 

structure needs to be less than 400 nm - 800 nm. Therefore, one unit structure cannot be  

assigned to the region with a size of 0.1 mm in the wavelength range of visible light. 

The other approach is that each region is represented by the array of a unit structure 
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of the metamaterial as shown in Fig. 4-24 (b), which suggests that the size of the region 

can be larger than that of the unit structure. By using a unit structure with a size smaller 

than , the metamaterial behaves as an effective medium. From Fig. 4-25, at the 

wavelengths longer than 1e05 m (10 m), the sizes of the unit structures are found to 

close to /10, whereas at the wavelengths shorter than 1e05 m (10 m), most of the 

sizes of the unit structures are found to range from /10 to . This indicates that for long 

, the sizes of the unit structures can be sufficiently small compared with , whereas for 

short , fabricating a metamaterial with a sufficiently small unit structure compared 

with  is difficult. 

In Table 4-4, the relation between the size of the unit structure of each of 

metamaterials which have been fabricated and the year when each study was published 

is also shown. The relation is plotted in Fig. 4-26. It is found that the size of the unit 

structure can be reduced from the order of 1e03 m to the order of 1e06 m in 2005. 

The reduction of the size of the unit structure was due to the utilization of electron-beam 

lithography, which enables a fabrication with a resolution finer than the wavelength of 

visible light. 

 

Table 4-4: The relation between the wavelength and the size of the unit 

structure of metamaterial. 

Frequency 

(GHz) 

Wavelength 

(m) 

Size of unit  

structure (m) 

Year  Ref. 

5.00e+00 6.00e02 8.00e03 2000 [13] 

5.45e+00 5.50e02 4.00e03 2013 [14] 

8.50e+00 3.53e02 3.18e03 2006 [15] 

1.00e+01 3.00e02 5.00e03 2001 [16] 

1.00e+01 3.00e02 5.00e03 2002 [17] 

1.30e+01 2.31e02 3.30e03 2003 [18] 

5.00e+02 6.00e04 1.70e04 2010 [19] 
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1.00e+03 3.00e04 4.30e05 2004 [20] 

6.00e+03 5.00e05 7.00e06 2005 [21] 

6.00e+04 5.00e06 6.00e07 2005 [22] 

1.00e+05 3.00e06 6.75e07 2004 [23] 

1.50e+05 2.00e06 8.38e07 2005 [24] 

1.50e+05 2.00e06 7.00e07 2008 [25] 

1.54e+05 1.95e06 8.50e07 2011 [26] 

1.76e+05 1.70e06 6.00e07 2007 [27] 

2.00e+05 1.50e06 3.00e07 2005 [28] 

2.00e+05 1.50e06 1.80e06 2005 [29] 

2.00e+05 1.50e06 6.00e07 2006 [30] 

2.00e+05 1.50e06 6.00e07 2006 [31] 

2.00e+05 1.50e06 8.00e07 2015 [32] 

2.00e+05 1.50e06 8.00e07 2010 [33] 

2.00e+05 1.50e06 6.50e07 2010 [34] 

2.13e+05 1.41e06 6.45e07 2007 [35] 

2.14e+05 1.40e06 4.00e07 2011 [36] 

3.00e+05 1.00e06 1.00e06 2005 [37] 

3.33e+05 9.00e07 2.40e07 2006 [38] 

3.85e+05 7.80e07 3.00e07 2007 [39] 

3.89e+05 7.72e07 3.00e07 2007 [40] 

3.90e+05 7.70e07 3.65e07 2013 [41] 

4.29e+05 7.00e07 3.50e07 2011 [42] 

4.48e+05 6.70e07 3.50e07 2011 [43] 

4.55e+05 6.60e07 1.10e07 2008 [44] 

5.00e+05 6.00e07 3.00e07 2014 [45] 

5.00e+05 6.00e07 4.00e07 2005 [46] 

5.00e+05 6.00e07 1.30e07 2011 [47] 

5.17e+05 5.80e07 2.20e07 2009 [48] 
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Fig. 4-25. The relation between the wavelength and the size of the unit structure of 

metamaterial. 
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Fig. 4-26. The relation between the size of the unit structure of each of metamaterials 

which have been fabricated and the year when each study was published. 

 

On the other hand, it is necessary to discuss the feasibility that a metamaterial with 

such a large size as 0.1 mm can be fabricated by repeating a unit structure with a size 

smaller than 400 nm - 800 nm. Recently, large-area metamaterials have been fabricated 

by using standard electron-beam lithography (EBL) [23, 25, 28-31, 37-39], deep UV 

(DUV) lithography [34], interferometric lithography [24], direct laser writing (DLW) 

[33, 42] and nanoimprint lithography (NIL) [26, 27, 36, 41, 45]. Table 4-5 shows the 

summary of the size of the total dimension fabricated by using these technologies. 

Many studies have used standard EBL since it can very easily lead to devices with 

feature sizes on the order of a few tens of nanometers. Table 4-5 indicates that EBL can 

fabricate the metamaterial with a large area of 0.1mm
2
. However, large-area fabrication 

can be prohibitively expensive and time consuming. DLW, which has an advantage in 

fabrication of three-dimensional metamaterial, can also realize the metamaterial with a 

large area of several tens m. Nevertheless it suffers from low throughput as well as 



95 

 

EBL. On the other hand, DUV lithography, interferometric lithography, and NIL can 

fabricate metamaterial with high throughput. DUV lithography is compatible to the 

current fabrication process of semiconductor, potentially leading to the mass fabrication. 

From Table 4-5, NIL has the highest potential to yield large metamaterial.  

Therefore, although any of standard EBL, DUV lithography, interferometric 

lithography, DLW or NIL is considered to have the ability to fabricate metamaterial with 

a size of 0.1 mm (100 m), either of DUV lithography, interferometric lithography or 

NIL is preferred for the fabrication method in terms of throughput. 
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Table 4-5: Total dimension of metamaterial fabricated by various 

methods. 

Frequency 

(THz) 

Wavelength 

(nm) 

Size of 

unit 

structure 

(nm) 

Total 

dimension 

(mm) 

Method Year Ref. 

100 3000 675 0.025 EBL 2004 [23] 

150 2000 838 10 
Interferometric 

lithography 
2005 [24] 

150 2000 700 0.2 EBL 2008 [25] 

154 1950 850 87 NIL 2011 [26] 

176 1700 600 0.5 NIL 2007 [27] 

200 1500 300 0.1 EBL 2005 [28] 

200 1500 1800 2 EBL 2005 [29] 

200 1500 600 0.1 EBL 2006 [30] 

200 1500 600 0.1 EBL 2006 [31] 

200 1500 800 0.03 DLW 2010 [33] 

200 1500 650 2 
DUV 

lithography 
2010 [34] 

214 1400 400 9 NIL 2011 [36] 

300 1000 1000 0.08 EBL 2005 [37] 

333 900 240 0.02 EBL 2006 [38] 

385 780 300 0.1 EBL 2007 [39] 

390 770 365 10 NIL 2013 [41] 

429 700 350 0.05 DLW 2011 [42] 

500 600 300 25 NIL 2014 [45] 
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4.4. Conclusion 

 

The Hamiltonian-based ray tracing method integrating the numerical modeling of the 

constitutive parameters based on the FEM by adapting the full-mesh representation for 

dealing with large-scale cloaking devices with arbitrary shapes has been proposed. The 

full-mesh representation has been evaluated by comparing the rigorous function 

representation and the surface-mesh representation with respect to the performance of 

cylindrical cloaking to show the effectiveness of the proposed method.  

Subsequently, the proposed Hamiltonian-based ray tracing with the full-mesh 

representation has been applied to the evaluation of the two examples of cloaking devices 

with arbitrary shapes, the double cylindrical cloaking device and the huge arbitrary 

cloaking device. The numerical results of these cloaking devices have shown high 

performance. Therefore, the proposed Hamiltonian ray tracing with the full-mesh 

representation can be applied to the evaluation of the performance of cloaking devices 

with arbitrary shapes.   

From the obtained results, a general guideline for the full-mesh resolution can be 

proposed as follows. A relative full-mesh resolution finer than 1.67e03 is required for 

high performance for cloaking devices with regular shapes like a cylinder, whereas a 

relative full-mesh resolution finer than 8.33e04 is required for cloaking devices with 

general shapes.  

The full-mesh representation also has an advantage in terms of the fabrication of 

cloaking devices. Since the continuous distributions of the constitutive parameters 

obtained from transformation optics rigorously cannot be realized by the current 

fabrication technology, the continuous distributions of the constitutive parameters have to 

be discretized with certain resolution depending on the technology used for the 
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fabrication of cloaking devices. On the other hand, since the resolution of the full-mesh 

representation corresponds to that for the fabrication, cloaking devices can be designed 

taking the resolution for the fabrication into account. Therefore, the full-mesh 

representation is useful to fabricate actual devices. 
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CHAPTER 5 

 

Design of the Distribution of Constitutive Parameters 

 

 

5.1. Introduction 

 

From the analysis of cloaking devices by using the proposed Hamiltonian ray tracing in 

CHAPTER 4, the following issue for design of cloaking devices has been revealed. A 

coarse mesh representation causes the degradation of cloaking performance, especially 

for the ray passing through near the inner boundary. This degradation is considered to be 

due to the abrupt changes of relative permittivity and permeability near the inner 

boundary, which cannot be modelled by full-mesh representation accurately. 

This issue will become very serious when cloaking devices are manufactured because 

the processing technology can realize the distributions of constituent parameters with 

finite resolution, but not rigorously. The resolution depends on the processing method. 

If only the processing method with low resolution can be utilized, the cloaking devices 

have to be designed by using coarse mesh representation, resulting in the degradation of 

cloaking performance. Therefore, the countermeasure has to be considered in order to 

improve cloaking performance with coarse mesh representation. 

On the other hand, the distribution of the constituent parameters can be modified by 

changing the partial differential equation used in the numerical technique for the 

calculation of the constitutive parameters based on the Finite Element Method (FEM) [1]. 
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If the distribution near the inner boundary can be made less decent, the cloaking 

performance is expected to be improved because the distribution can be modelled by the 

full-mesh representation accurately. 

In this chapter, the improvement of performance of cylindrical cloaking is investigated 

by the design of distributions of constitutive parameters. The distributions of the 

constituent parameters are modified by employing the Navier’s equation with various 

distributions of Young’s modulus as the partial differential equation for the numerical 

technique for the calculation of the constitutive parameters. The performance of 

cylindrical cloaking is evaluated by Hamiltonian ray tracing. 

  

5.2.  Calculation of relative permittivity tensor and 

permeability tensor 

 

As described in 2.2., relative permittivity tensor  and relative permeability tensor  

of cloaking devices with arbitrary shapes can be calculated by using the numerical 

technique with the FEM-based solution of the Laplace’s equation. Besides the Laplace’s 

equation, other partial differential equation can be adopted in order to calculate the 

displacement field and the deformation gradient tensor [2], resulting in the different 

distributions of  and . In this thesis, the Navier’s equation, corresponding to linear 

theory of elastic deformation of solids, is used to modify the distributions of  and . The 

Navier’s equation is expressed as follows, 

                                 ,0 τ                       (5-1) 

where  is the stress tensor given by 
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             (5-2) 

where Y is Young’s modulus,   Poisson ratio, I the identify matrix, tr(•) the trace 

function, and  the strain tensor given by 

                                ,UU
T


2

1
ζ                  (5-3) 

where U is the displacement field. 

Equations (5-1)-(5-3) indicate that the displacement field and the deformation gradient 

tensor can be changed by adjusting the distribution of Young’s modulus, resulting in 

various distributions of  and .  

The solutions of the Laplace’s equation and the Navier’s equation are attained based on 

the FEM by employing the open source program, Elmer from CSC [3].  

The FEM-based solution for  and  are discretized in triangular meshes inside of the 

cloaking device as shown in Fig. 5-1. On the other hand, the Hamiltonian-based ray 

tracing requires  and  in the entire region of cloaking devices. Therefore, interpolation 

of  and  is necessary for the Hamiltonian-based ray tracing. In this thesis,  and  are 

expressed as linear functions of the components of position vector inside each element 

used for the solution of the Laplace’s equation or the Navier’s equation. 

 



108 

 

 

Fig. 5-1. The full-mesh representation approach. 

 

5.3. Numerical results 

 

5.3.1. Distributions of  and  for various Young’s moduli 

 

The distributions of  and  for the cylindrical cloaking device with the inner radius of 

10 mm and the outer radius of 30 mm are calculated by the FEM-based numerical 

technique with five full-mesh resolutions of 2.5, 1.0, 0.5, 0.25, and 0.10 mm. As a partial 

differential equation, the Navier’s equation with various distributions of Young’s 

modulus is employed. In addition, the distributions of  and  for the Laplace’s equation 

are calculated for comparison with those for the Navier’s equation. Here, the relative 

full-mesh resolution defined as the ratio of the mesh size and the representative length of 

the cloaking device in 4.3.1, is adopted so that it can be generally applied to any other 
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structure. The representative length is determined to be the size of the cloaking device. 

The size of the cloaking device corresponds to 60 mm, the diameter of the outer cylinder 

of the cylindrical cloaking device. Therefore, the relative mesh resolutions for 2.5, 1.0, 

0.5, 0.25, and 0.10 mm correspond to 4.17e02, 1.67e02, 8.33e03, 4.17e03, and 

1.67e03. Hereafter, the numerical results are investigated based on the relative mesh 

resolution. 

The value of the Young’s modulus (Y) depends on the distance between the position 

and the center of the cylinder represented by d. In the numerical evaluation, the following 

seven distributions are considered: (i) Y = d
5

, (ii) Y = d
3

, (iii) Y = d
1

, (vi) Y = d
0
, (v) Y = 

d
1
, (vi) Y = d

3
, and (vii) Y= d

5
. The seven distributions of Young’s modulus are depicted 

in Fig. 5-2. Here, since the cloaking media are supposed to be impedance-matched with 

the surrounding medium,  is equal to . Therefore, only the calculation results of  are 

shown hereafter. 
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Fig. 5-2. The various distributions of Young’s modulus. 

 

The distributions of the three principal permittivities, r, , and z calculated for the 

Laplace’s equation at the relative full-mesh resolution of 1.67e03 are illustrated in Fig. 

5-3. The principal axes for r, , and z correspond to the radial axis, the azimuthal axis, 

and the z axis, respectively. Figure 5-3 reveals that each distribution has the axial 

symmetry. In the same way, the distributions of the three principal permittivities 

calculated for the Navier’s equation with various distributions of Y have the axial 

symmetry.  

The profiles of r, , and z along the radial axis at the relative full-mesh resolution of 

1.67e03 are depicted in Fig. 5-4. In addition, the profiles of  near the inner boundary 

and the outer boundary are extended in Fig. 5-5. From Fig. 5-4 and Fig. 5-5, the 

following common characteristics for the different distributions of Y in each of the three 

principal permittivities can be noticed.  increases drastically near the inner boundary, 
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while r and z approach 0.0. Although these characteristics lead to superluminal 

propagation, they are required to realize invisibility cloaking.  

Generally, the three principal permittivities of the cylindrical cloaking device with the 

inner radius of a and the outer radius of b can be represented by considering the space 

transformation from (r, , z) to (r, , z) as [1] 

,
r

r
r 





                                 (5-4a) 

,
r

r







                                 (5-4b) 

,
r

r
z 



                                 (5-4c) 

where  is the derivative of r with respect of r expressed as  

  .
dr

rd 
                                   (5-5) 

Equations (5-4a)-(5-4c) can explain the characteristics of the distributions of the three 

principal permittivities described above as follows, 

.,,, 000  zrrar                  (5-6) 

By contrast, the variation of distribution of Y can yield the following differences in the 

profiles. The increase rate of r and the decrease rate of  with the increase of d can be 

changed. The increase rate of r gets larger in the order from Y=d
5

 to Y=d
5
, resulting in 

the increase of the value of r at the outer boundary in the same order. On the other hand, 

the decrease rate of  decreases in the same order, leading to the decrease of the value of 

 at the outer boundary in the same order. Furthermore, it can be noticed that the profiles 

of z have a turning point around d=22 mm. The increase rate of z increases in the order 
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from Y=d
5

 to Y=d
5
 in the range between the inner boundary and the turning point, while 

it increases in the order from Y=d
5
 to Y=d

5
 in the range between the turning point and 

the outer boundary. Hence, the value of z at the outer boundary increases in the order 

from Y=d
5
 to Y=d

5
. 

By comparing the profiles from the Navier’s equation with those from the Laplace’s 

equation, it can be seen that the profiles from Laplace’s equation are very similar to those 

from the Navier’s equation with Y=d
0
.   
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Fig. 5-3. The distributions of the three principal permittivities, (a) r, (b) , and  (c) z for 

the Laplace’s equation. 



114 

 

 

Fig. 5-4. The profiles of (a) r, (b) , and (c) Z along the radial axis. 
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Fig. 5-5. The profiles of  along the radial axis; (a) near the inner boundary, (b) near the 

outer boundary.  
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5.3.2. Performance for various Young’s modulus 

 

The performance of the cylindrical cloaking device is calculated by the 

Hamiltonian-based ray tracing with the distributions of  and  obtained in 5.3.1. The 

cloaking device is represented by the full-mesh representation with five relative full-mesh 

resolutions of 4.17e02, 1.67e02, 8.33e03, 4.17e03, and 1.67e03. 

The ray trajectories calculated for the five relative full-mesh resolutions are depicted in 

Figs. 5-6, 5-8, 5-10, 5-12, and 5-14, respectively. The dependence of the cloaking 

performance on the radiation angle for the five relative full-mesh resolutions are shown in 

Figs. 5-7, 5-9, 5-11, 5-13, and 5-15, respectively. Table 5-1 summarizes the calculated 

cloaking performance. Table 5-1 reveals the tendency that the cloaking performance 

becomes higher in the order from Y=d
5
 to Y=d

5
. Especially, this trend is found to be 

distinct at the relative full-mesh resolution of 4.17e03 as shown in Fig. 5-16. 

Figures 5-12 and 5-13 indicate that the performance at the relative full-mesh resolution 

of 4.17e03 is degraded around a radiation angle of 0.0 for the Navier’s equation with 

Y=d
m 

(m=1, 1, 3, and 5) as well as for the Laplace’s equation. By contrast, it is found to 

be improved for Y=d
m 

(m=3, 5) in comparison with the Laplace’s equation. These 

results suggest the possibility that the modification of the distribution of Y can heighten 

the cloaking performance.  

Additionally, the performance for the Laplace’s equation is found to be similar to that 

for the Navier’s equation with Y=d
0
. This can be explained by the very similar 

distributions of  and  for the two cases as described in 5.3.1. 
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Fig. 5-6. The ray trajectoriess with the cylindrical cloaking device for the distributions 

of  and  obtained by the FEM-based solution of the Navier’s equation with various 

distribution of Young modulus (Y); (a) Y = d
5

, (b) Y = d
3

, (c) Y = d
1

, (d) Y = d
0
, (e) Y = 

d
1
, (f) Y = d

3
, and (g) Y= d

5
. As a reference, the rays trajectories for the Laplace’s 

equation is shown in (h). The relative full-mesh resolution is 4.17e02. 
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Fig. 5-7. The dependences of the cloaking performance on the radiation angle for the 

distributions of  and  obtained by the FEM-based solution of the Navier’s equation with 

various distribution of Young modulus (Y); (a) Y = d
5

, (b) Y = d
3

, (c) Y = d
1

, (d) Y = d
0
, 

(e) Y = d
1
, (f) Y = d

3
, and (g) Y= d

5
. As a reference, the profile for the Laplace’s equation 

is shown in (h). The relative full-mesh resolution is 4.17e02. 
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Fig. 5-8. The ray trajectoriess with the cylindrical cloaking device for the distributions 

of  and  obtained by the FEM-based solution of the Navier’s equation with various 

distribution of Young modulus (Y); (a) Y = d
5

, (b) Y = d
3

, (c) Y = d
1

, (d) Y = d
0
, (e) Y = 

d
1
, (f) Y = d

3
, and (g) Y= d

5
. As a reference, the rays trajectories for the Laplace’s 

equation is shown in (h). The relative full-mesh resolution is 1.67e02. 
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Fig. 5-9. The dependences of the cloaking performance on the radiation angle for the 

distributions of  and  obtained by the FEM-based solution of the Navier’s equation with 

various distribution of Young modulus (Y); (a) Y = d
5

, (b) Y = d
3

, (c) Y = d
1

, (d) Y = d
0
, 

(e) Y = d
1
, (f) Y = d

3
, and (g) Y= d

5
. As a reference, the profile for the Laplace’s equation 

is shown in (h). The relative full-mesh resolution is 1.67e02. 
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Fig. 5-10. The ray trajectoriess with the cylindrical cloaking device for the 

distributions of  and  obtained by the FEM-based solution of the Navier’s equation with 

various distribution of Young modulus (Y); (a) Y = d
5

, (b) Y = d
3

, (c) Y = d
1

, (d) Y = d
0
, 

(e) Y = d
1
, (f) Y = d

3
, and (g) Y= d

5
. As a reference, the rays trajectories for the Laplace’s 

equation is shown in (h). The relative full-mesh resolution is 8.33e03. 
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Fig. 5-11. The dependences of the cloaking performance on the radiation angle for the 

distributions of  and  obtained by the FEM-based solution of the Navier’s equation with 

various distribution of Young modulus (Y); (a) Y = d
5

, (b) Y = d
3

, (c) Y = d
1

, (d) Y = d
0
, 

(e) Y = d
1
, (f) Y = d

3
, and (g) Y= d

5
. As a reference, the profile for the Laplace’s equation 

is shown in (h). The relative full-mesh resolution is 8.33e03. 
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Fig. 5-12. The ray trajectoriess with the cylindrical cloaking device for the 

distributions of  and  obtained by the FEM-based solution of the Navier’s equation with 

various distribution of Young modulus (Y); (a) Y = d
5

, (b) Y = d
3

, (c) Y = d
1

, (d) Y = d
0
, 

(e) Y = d
1
, (f) Y = d

3
, and (g) Y= d

5
. As a reference, the rays trajectories for the Laplace’s 

equation is shown in (h). The relative full-mesh resolution is 4.17e03. 
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Fig. 5-13. The dependences of the cloaking performance on the radiation angle for the 

distributions of  and  obtained by the FEM-based solution of the Navier’s equation with 

various distribution of Young modulus (Y); (a) Y = d
5

, (b) Y = d
3

, (c) Y = d
1

, (d) Y = d
0
, 

(e) Y = d
1
, (f) Y = d

3
, and (g) Y= d

5
. As a reference, the profile for the Laplace’s equation 

is shown in (h). The relative full-mesh resolution is 4.17e03. 
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Fig. 5-14. The ray trajectoriess with the cylindrical cloaking device for the 

distributions of  and  obtained by the FEM-based solution of the Navier’s equation with 

various distribution of Young modulus (Y); (a) Y = d
5

, (b) Y = d
3

, (c) Y = d
1

, (d) Y = d
0
, 

(e) Y = d
1
, (f) Y = d

3
, and (g) Y= d

5
. As a reference, the rays trajectories for the Laplace’s 

equation is shown in (h). The relative full-mesh resolution is 1.67e03. 
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Fig. 5-15. The dependences of the cloaking performance on the radiation angle for the 

distributions of  and  obtained by the FEM-based solution of the Navier’s equation with 

various distribution of Young modulus (Y); (a) Y = d
5

, (b) Y = d
3

, (c) Y = d
1

, (d) Y = d
0
, 

(e) Y = d
1
, (f) Y = d

3
, and (g) Y= d

5
. As a reference, the profile for the Laplace’s equation 

is shown in (h). The relative full-mesh resolution is 1.67e03. 
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Table 5-1: Performances of cylindrical cloaking calculated for the 

distributions of  and  obtained by the FEM-based solution of the 

Navier’s equation with various distribution of Young modulus (Y) and 

the Laplace’s equation. 

Number 

Relative 

full-mesh  

resolution 

Equations () 

1 

4.17e02 
Navier’s Eqn. 

Y=d
5

 11.1 

2 Y=d
3

 11.7 

3 Y=d
1

 12.2 

4 Y=d
0
 12.4 

5 Y=d
1
 12.9 

6 Y=d
3
 13.1 

7 Y=d
5
 14.2 

8 Laplace’s Eqn. 12.1 

9 

1.67e02 

 Navier’s 

Eqn. 

Y=d
5

 4.12 

10 Y=d
3

 5.04 

11 Y=d
1

 5.31 

12 Y=d
0
 5.26 

13 Y=d
1
 5.32 

14 Y=d
3
 6.74 

15 Y=d
5
 7.20 

16 Laplace’s Eqn. 5.19 

17 

8.33e03 
Navier’s Eqn. 

Y=d
5

 4.26 

18 Y=d
3

 4.12 

19 Y=d
1

 4.50 

20 Y=d
0
 4.63 

21 Y=d
1
 4.62 

22 Y=d
3
 4.70 

23 Y=d
5
 4.61 

24 Laplace’s Eqn. 4.51 

25 

4.17e03 Navier’s Eqn. 

Y=d
5

 0.729 

26 Y=d
3

 0.887 

27 Y=d
1

 1.46 

28 Y=d
0
 1.51 
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29 Y=d
1
 2.48 

30 Y=d
3
 2.74 

31 Y=d
5
 1.74 

32 Laplace’s Eqn. 1.43 

33 

1.67e03 
Navier’s Eqn. 

Y=d
5

 0.144 

34 Y=d
3

 0.198 

35 Y=d
1

 0.108 

36 Y=d
0
 0.154 

37 Y=d
1
 0.151 

38 Y=d
3
 0.340 

39 Y=d
5
 0.374 

40 Laplace’s Eqn. 0.113 

 

 
 

Fig. 5-16. The dependence of cloaking performance on the distribution of Y at the 

relative mesh resolution of 4.17e2. 
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5.4. Discussion 

 

5.4.1. Effects of Young’s modulus on the distribution of  and   

 

Here, the effects of Young’s modulus on the distributions of  and  are investigated. 

From Eqs. (5-4a)-(5-4c), Young’s modulus is found to modify the distributions of  and  

through the value of  given by Eq. (5-5). The expression of  can be rewritten by 

,
)(

dr

dU

dr

Urd

dr

rd rr 





 1                    (5-7) 

where Ur is the displacement in the radial direction and dUr/dr the strain in the radial 

direction. From Eq. (5-7), the value of  is found to increase with increasing the value of 

the strain. Because the space transformation from (r, , z) to (r, , z) compresses the 

region in the radial direction, the value of dUr/dr becomes negative. In contrast, the 

larger value of Young’s modulus is considered to yield the smaller absolute value of 

dUr/dr from the viewpoint of continuum mechanics. Therefore, by increasing the value of 

Young’s modulus, the value of dUr/dr gets close to 0, resulting in the larger value of .  

From the effects of Young’s modulus on the value of  described above, the 

distributions of Young’s modulus which increase from the inner boundary to the outer 

boundary, such as Y= d
1
, d

3
, and d

5
, are considered to yield smaller values of  at the 

inner boundary than those which decrease from the inner boundary to the outer boundary, 

such as Y= d
1

, d
3

, and d
5

. On the other hand, the distributions of Young’s modulus 

which increase from the inner boundary to the outer boundary are considered to yield 

larger values of  at the outer boundary than those which decrease from the inner 

boundary to the outer boundary. 

The relationship between r and r for various distributions of Young’s modulus is 
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shown in Fig. 5-17. The slopes of the curves correspond to the values of  as described in 

Eq. (5-7). From Fig. 5-17, the value of  at the inner boundary is found to increase in the 

order from Y= d
5
 to Y=d

5
. On the other hand, the value of  at the outer boundary is 

found to increase in the order from Y= d
5

 to Y=d
5
. These trends are in agreement with 

the effects of Young’s modulus on the value of . 

The calculated results shown in Fig. 5-4 and Fig. 5-5 can be explained by the value of  

as follows. Looking at r, , and z at the outer boundary, these values can be expressed as 

follows: 





 

11
 zrbrbr ,,, .          (5-8) 

Therefore, r at the outer boundary increases with the increase of . This suggests that r 

at the outer boundary increases in the order from Y= d
5

 to Y=d
5
. On the other hand,  

and z at the outer boundary decrease with the decrease of . This suggests that z at the 

outer boundary increases in the order from Y=d
5
 to Y=d

5
. 

Subsequently, the slopes of r and z, at the inner boundary are investigated. The slopes 

of them can be written as 







adr

d

adr

d
rar zr 1

0 ,, .                (5-9) 

Equation (5-9) suggests that the slope of r at the inner boundary increase with increasing 

, whereas that of z at the inner boundary increases with decreasing . Therefore, the 

slope of r at the inner boundary increases in the order from Y=d
5

 to Y=d
5
, while that of 

z at the inner boundary increases in the order from Y=d
5
 to Y=d

5
. 

Finally, the value of  near the inner boundary, that is, at r=, is considered. Here,  is 

a very small value. The value of  at r= can be calculated as follows: 
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a

                           (5-10) 

This suggests that the value of  near the inner boundary increases with the decrease 

of . That is, the value of  increases in the order from Y=d
5
 to Y= d

5
. 

 

 

Fig. 5-17. The relationship between r and r for various distributions of Young’s modulus. 

 

5.4.2. Effects of Young’s modulus on cloaking performance  

 

The cloaking performance calculated for the five relative full-mesh resolutions and the 

seven distributions of  and  is shown in Fig. 5-18. Figure 5-18 shows that distributions 

of Y decreasing from the inner boundary to the outer boundary, such as Y=d
5

 and Y=d
3

 

tend to give high performance. From Figs. 5-7, 5-9, 5-11, 5-13, and 5-15, the most 
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dominant error contributing to the cloaking performance is found to be the deviation of 

ray trajectories passing near the inner boundary. This deviation is caused by the low 

accuracy of the interpolation of distributions of  and  inside the elements neighboring 

the inner boundary as described in 4.3.3. From Figs. 5-615, the deviation of the ray 

trajectories can be reduced by changing from Y=d
5
 to Y=d

5
. 

This tendency can be explained by the characteristics of the distributions of  and  

described in 5.4.1. Figures 5-4 and 5-5 show that with changing from Y=d
5
 to Y=d

5
, r 

and z can approach zero at larger d, and  can approach the unlimited value at larger d. 

By these characteristics, the ray passing near the inner boundary can be guided around the 

inner boundary at the larger d as shown in Fig. 5-19. Hence, these characteristics can 

prevent the ray from entering the region with the low accuracy, resulting in the successful 

cloaking. 
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Fig. 5-18. The cloaking performance for the five relative full-mesh resolutions and the 

seven distributions of  and . 
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Fig. 5-19. The ray trajectories passing near the inner boundary for Y=d
5

 (the red points) 

and Y=d
5
 (the blue points). 

 

5.4.3. Validation of the improvement of cloaking performance for huge 

arbitrary cloaking 

 

In order to confirm that the performance of cloaking devices with other shapes can be 

improved by modifying of the distribution of Y, the cloaking performance of a cloaking 

device with a more complicated shape, which has been investigated in 4.3.5, is calculated. 

The distributions of  and  is obtained by the FEM-based numerical technique using the 

Laplace’s equation and the Navier’s equation with the following three distributions of 

Young’s modulus: (i) Y = d
5

, (ii) Y = d
3

, and (iii) Y = d
1

.
 
The cloaking device is 

modelled by the full-mesh representation with the relative full-mesh resolution of 
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1.67e03. 

The calculated ray trajectories are illustrated in Fig. 5-20. The numerical results of the 

cloaking performance are shown in Table 5-2. Table 5-2 indicates that the performance 

can be improved by employing the distributions of Y decreasing from the inner boundary 

to the outer boundary in comparison with the Laplace’s equation in the same way as the 

cylindrical cloaking device. 

 

 

Fig. 5-20. The ray trajectories with the huge arbitrary cloaking device for the distributions 

of  and  obtained by the FEM-based solution of the Navier’s equation with various 

distribution of Young’s modulus (Y); (a) Y = d
5

, (b) Y = d
3

, and (c) Y = d
1

. As a 

reference, the ray paths for the Laplace’s equation is shown in (d). The relative full-mesh 

resolution is 1.67e03. 
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Table 5-2: Performances of the huge arbitrary cloaking device 

calculated for the distributions of  and  obtained by the FEM-based 

solution of the Navier’s equation with various distribution of Young’s 

modulus (Y) and the Laplace’s equation. 

Number 

Relative 

full-mesh  

resolution 

Equations () 

1 

1.67e03 
Navier’s Eq. 

Y=d
5

 0.259 

2 Y=d
3

 0.458 

3 Y=d
1

 0.447 

4 Laplace’s Eq. 2.54 

 

 

5.5. Conclusion 

 

The improvement of the cloaking performance of the cylindrical cloaking device by 

the design of the distributions of  and  has been investigated. The distributions of  and 

 are changed by employing the Navier’s equation with various distributions of Young’s 

modulus as a partial differential equation for the numerical technique for the calculation 

of  and  based on the FEM. The cloaking performance has been evaluated by the 

Hamiltonian ray tracing with the full-mesh representation. 

The numerical results have shown that the cloaking performance can be improved by 

employing distributions of Young’s modulus where the value of Young’s modulus 

decreases from the inner boundary to the outer boundary. These distributions of Young’s 

modulus can generate the distributions of  and  which can guide the ray around the 

inner boundary at the larger distance from the inner boundary. Therefore, these 

distributions of Young’s modulus can prevent the ray from entering the region with the 

low accuracy, resulting in the successful cloaking. From the obtained results, the 
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following guideline for the design of the distributions of  and  can be proposed: Higher 

values of Young’s modulus near the inner boundary compared with other regions can lead 

to the improvement of the cloaking performance. Furthermore, it has been confirmed that 

the guideline can be applied to the example of huge cloaking devices with completely 

arbitrary shapes.  

From the viewpoint of the manufacture, this design method of distributions of  and  

can reduce the resolution required for successful cloaking since the method can improve 

the cloaking performance at a coarse full-mesh resolution. Therefore, the design of 

distributions of  and  will contribute to the realization of cloaking devices with large 

scale, taking the finite resolution of the manufacture into account.  
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CHAPTER 6 

 

Conclusions and Suggested Future Work 

 

 

6.1. Summary 

 

In this thesis, a novel Hamiltonian-based ray tracing has been proposed in order to 

evaluate the performance of macroscopic cloaking devices with arbitrary shapes, by 

solving the two technical issues for treatment of arbitrary shapes; (i) how to represent 

the surfaces of arbitrary shapes, (ii) how to represent the constitutive parameters inside of 

cloaking devices with arbitrary shapes. By using the Hamiltonian-based ray tracing, the 

analyses of examples of macroscopic cloaking devices with arbitrary shapes have been 

performed for the first time. In addition, the design of the distributions of the 

constitutive parameters has been proposed for improvement of cloaking performance.  

  In CHAPTER 3, in order to make a model of the cloaking device with the arbitrary 

shape, the surface of the cloaking device is represented by triangular meshes. In order to 

verify the proposed Hamiltonian ray tracing adapting the surface-mesh representation 

approach, the results of the spherical cloaking and the cylindrical cloaking from the 

surface-mesh representation approach have been compared with those from the 

approach where the surfaces of cloaking devices are represented by rigorous functions. 

From the comparison, the distortion due to the coarse mesh resolution has been found to 

occur with the surface-mesh representation approach, while by increasing the 
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surface-mesh resolution the distortion has been suppressed. Therefore, the cloaking 

performance of the surface-mesh representation with fine mesh resolution have been 

found to be in good agreement with that of the rigorous function representation, 

suggesting the verification of the surface-mesh representation. 

In CHAPTER 4, a Hamiltonian ray tracing with the full-mesh representation, where 

the constitutive parameters of cloaking devices are calculated by the finite element 

method, has been proposed. The full-mesh representation was verified by comparison 

the result of cloaking simulations of the cylindrical cloaking device with the full-mesh 

representation and that with the rigorous function representation. The 

Hamiltonian-based ray tracing with the full-mesh representation have been applied to 

the double cylindrical cloaking device and the huge arbitrary cloaking device as 

examples of cloaking devices with arbitrary shapes. For the calculation of  and  of the 

cloaking device, the numerical method by using the solution of Laplace’s equation 

based on the FEM was employed. This is the first time of analysis of macroscopic 

cloaking devices with arbitrary shapes. The numerical results of the double cylindrical 

cloaking device and the huge arbitrary cloaking device have shown high performance. 

This result suggests that the Hamiltonian ray tracing can be applied to evaluation of 

performance of cloaking devices with arbitrary shapes. The full-mesh representation is 

also found to be useful to fabricate the actual devices. 

In CHAPTER 5, the improvement of performance of cylindrical cloaking by the 

design of distributions of constitutive parameters has been investigated. The 

distributions of the constituent parameters have been modified by employing the 

Navier’s equation with various distributions of Young moduli as the partial differential 

equation for the numerical method calculation of the constitutive parameters based on 

FEM. The performances of cylindrical cloaking have been evaluated by the Hamiltonian 
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ray tracing with the full-mesh representation. The numerical results have revealed that 

cloaking performance can be improved by modifying the distributions of constitutive 

parameters.  

The proposed novel Hamiltonian-based ray tracing can evaluate performance of 

macroscopic cloaking devices with arbitrary shapes. Therefore, the proposed method 

will significantly contribute to the realization of macroscopic cloaking devices. 

Especially, the full-mesh representation will be very useful since it can take account of 

resolution of fabrication. Moreover, the proposed design of distributions of constitutive 

parameters is expected to improve the cloaking performance for coarser resolution of 

fabrication technology.  

 

6.2. Suggested Future Work 

 

In order to realize cloaking devices in the future, the following two technical issues 

are addressed; (i) design of metamaterial which give  and  required, (ii) fabrication 

technology for layout of metamaterials which show different values of  and  in 

cloaking devices.  

In order to resolve the technical issue (i), many types of metamaterial have been 

designed by using full-wave simulations, e.g. split ring resonator (SRR), metallic 

cut-wire pairs, fishnet structure, etc. Actually cloaking devices for visible light have 

been designed. However, since most of the metamaterials involve metals, they show 

large inherent losses, especially at visible frequencies. In order to decrease the loss, 

all-dielectric metamaterial has been investigated by utilization of Mie resonances. 

Although material which has large refractive index is required to induce the Mie 

resonances, such a material is available at microwave, terahertz and infrared frequencies, 
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leading to all-dielectric metamaterial. Furthermore, all-dielectric cloaking devices have 

been proposed at these frequencies. However, at visible frequencies, no experiment has 

been published since it is difficult to find material which has large refractive index.  

Another approach to alleviate the issue of the loss is to introduce gain materials into 

the metamaterial structure. However, gain coefficients for the compensation of the loss 

are hard to obtain in practice.  

In order to overcome the technical issue (i) fundamentally, new man-made magnetic 

materials with reduced loss are required at visible frequencies. 

In terms of the technical issue (ii), few researches have been performed in order to 

layout metamaterials which show different values of  and  whereas fabrications of 

metamaterials which uniformly show certain values of  and  have been investigated 

intensively. On the other hand, it is expected that alinement technology used in 

semiconductor processing can be applied to the layout of metamaterials because current 

steppers or scanners have an alinement accuracy of several of nanometers. This study 

has shown that a resolution of the order of micrometer is required for high cloaking 

performance. I consider that this resolution can be realized by the current alinement 

technology. However, most of the fabrication methods for metamaterials, such as 

electron beam lithography (EBL), nanoimprint lithography (NIL), and direct laser 

writing (DLW), are not compatible with the current semiconductor processing. 

Therefore, the integration of these fabrication methods into the current semiconductor 

processing is necessary to overcome the technical issues (ii). 
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