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Summary  

In human machine systems where the risk of accident is closely related to human component such 

as in maritime operation, it is crucial to maintain an optimal Operator Functional State (OFS). The 

complexity of these modern systems, the rapid update of contemporary technologies and reduced 

manning level all contribute to the high cognitive demands experienced by on-board crewmembers. 

The purpose of this research is to categorize the human factors that lead to suboptimal operator 

performance and to develop different methods to recognize those suboptimal factors. The 

evaluation methods of OFS fall into three general categories: subjective rating scales, 

physiological signal based objective measures, and performance based measures.  

In the work environment of maritime domain, operators have to complete required tasks in an 

ambulatory situation. The necessity of pre-processing physiological signals is emphasized by the 

fact that many artefacts would decrease the signal quality, especially when the subject has many 

body movements. In chapter 2, a combination of recursive percentage filter and median filter is 

used to detect and replace outliers of RR interval series. In an attempt to eliminate artefact of single 

channel EEG, which is always contaminated across all relevant power bands, an accelerometer 

was directly attached to EEG electrodes to measure electrodes vibration. A linear model that based 

on calculating covariance and maximizing independence has been proved effective in reducing 

artefact of small amplitude across wide range of power bands (1-40 Hz). 

Chapter 3 is an experiment study of using physiological features to evaluate operator’s mental 

workload in conducting two kinds of tasks: standard reference task and engine-room simulator 

task. The difficulty of MEPS task is manipulated by varying the number of operation procedures 

and the type of pipeline involving in the operation. Six physiological features (alpha wave rate, 
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beta wave rate, theta wave rate, MHBI, sdHBI, LFHF), a subjective rating scale (NASA-TLX), 

and performance measures are used to correlate with task demand. The results shows that for n-

back task and MEPS task, different features are sensitive to the task difficulty. A ceiling effect of 

using alpha wave rate to infer operator mental workload is found through the experiment study.   

Human fatigue caused by either physical exertion or mental strain is one of the most significant 

factors that constrain operator’s functional capability to fulfil specific tasks. To ensure working 

performance and to improve occupational health, Chapter 4 aims to develop a quantitative method 

to evaluate operator fatigue during conducting pipeline works. A Japanese version of RPE scale 

and heart inter-beat intervals are measured in an experiment study. Hurst exponent (HE) is 

extracted from detrended fluctuation analysis to define the fractal structures of RR interval time 

series. The average RR interval highly correlates with RPE scale. Results show that HE during 

working condition is significantly higher than during rest condition. In addition, a weak positive 

correlation between Hurst exponent and work performance, which is represented by the torque 

variance, is found in 5 among the 10 subjects. 

In Chapter 5, a real world experiment that studies the mental workload of the first engineer of 

training ship Fukaemaru is described. One information flow model that divides operator’s mental 

capacity into four channels: visual, auditory, cognitive, and psychomotor (VACP) is used to 

analyse subject’s behavioural information. The weight of each channel is assigned with an orderly 

scale according to the mental workload exposed to the subject. Individualized combination of 

physiological features are decided based on the clustering quality in n-back task, which can be 

quantitatively evaluated from an I-index. Mental workload is estimated by Euclidean distance 

based classification method and Mahalanobis distance, respectively.  

Chapter 6 summarizes the findings of this paper and makes prospective research plans.    
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Chapter 1 Research background 

1.1 Background  

With current sophisticated shipping management and technology development, maritime industry 

has become an industry with a relatively good safety record compared to that of the last century. 

Catastrophic disasters such as Titanic (1912, UK) and Toya Maru (1954, Japan) are now part of 

history. Despite the advances, maritime accidents that lead to injuries or death, environmental 

pollution and financial losses continue to occur. The American Bureau of Shipping (ABS) 

analysed the maritime accident reports of the US, UK, Canada and Australia, and concluded that 

approximately 80 to 85% of all reported accidents involved human error. Of those, about 50% 

were initially caused by human error. Another 30% of accidents were partially associated with 

human error [1]. Nevertheless, maritime industry has characteristics that make human factor issues 

more complicated. Firstly, the safe transportation of cargo and people overseas require the 

fulfilment of various on-board tasks ranging from navigation, propulsion, cargo handling, to 

platform maintenance. Secondly, the work environment is characterized by lack of contact with 

family and friends, by a mix of cultures living and working together, and for the most part by a 

high degree of monotony [2]. Thirdly, human-computer interaction issues arise continuously, yet 

long remain unsolved. For instance, in order to avoid the drowsiness of officers on watch, the 

international convention of Safety of Life at Sea (SOLAS) currently requires all ships above 150 

tons to install a Bridge Navigation Watch Alarm System (BNWAS), to which the officer on watch 

has to respond by either directly pressing specific buttons or letting their movements be detected 

within a pre-set time interval. However, the intrusiveness and usability of BNWAS are problematic 

from the view of ergonomics. 
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In safety-critical systems such as piloting ships in busy ports, we expect that the operator can 

persistently monitor the system parameters (e.g. ship and wind speed) and adapt to unforeseen 

changes (e.g. fishing vessels) and avoid any incidents (e.g. collision), in other words, to perform 

their job perfectly. Hardware reliability has improved to such an extent that abnormal 

psychophysiological states of the operator are more likely to lead to system performance 

degradation [3]. It is essential to address ways to maintain optimal operator functional state (OFS) 

in the context of human-machine systems, where the risk of accident is negatively related to the 

human component [4]. 

To prevent marine accidents and to minimize their consequences, IMO came up with a series of 

conventions that are widely adopted around the world, including MARPOL, SOLAS, and STCW 

and so on. The IMO's International Convention on Standards of Training, Certification and Watch 

keeping for Seafarers (STCW), 1978 was the first internationally agreed Convention to address 

the issue of minimum standards of competence for seafarers. In 1995, the STCW Convention was 

completely revised and updated to clarify the standards of competence required and provide 

effective mechanisms for enforcement of its provisions. After that, a comprehensive review of the 

STCW Convention and the STCW Code commenced in January 2006, and culminated in a 

Conference of Parties to the STCW Convention that was held in Manila, Philippines from 21 to 

25 June 2010, that adopted a significant number of amendments to the STCW Convention. One of 

the most important changes is that the requirements concerning Bridge Resource Management and 

Engine-room Resource Management (BRM/ERM) have been introduced into the competence 

tables as mandatory requirements for navigation and engineer officers. ERM is a widely used 

approach to achieve ship’s safe navigation by effectively managing the resources of personnel, 

equipment and information in the machinery space. Engine-room resources are personnel 
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resources, equipment resources, consumables, information resources and environmental resources 

[5]. 

The core element of ERM and BRM is to appropriately allocate resources, among which personnel 

resource is the most important, considering the priority of tasks. While the condition of machinery 

and information resources are relatively straightforward, the condition of every crewmember is 

implicitly difficult to quantify. From a long-term prospective, the condition of crewmembers is 

related to non-technical skills, such as communication and leadership skills. The condition of 

crewmembers in a short-term period, especially when carrying out key operations, is crucial for 

system safety. If we are aware of a crewmember’s physiological and psychological conditions, the 

allocation of personnel resources can be conducted more reasonably and effectively.  

This paper is structured as follows. Chapter 1 introduces the research background, the risk factors 

and evaluation methods of OFS, and literature review is conducted. Section 1.4 proposed the 

potential applications of OFS online measuring technology in the maritime domain. To eliminate 

automatically the effect of artefact on signal qualities, Chapter 2 studies the characteristics of 

Operator 
functional 

state

Environmental 
factors

Task 
characteristics

Non-technical skills
Engine-room resource 

management

Individual state

Figure 1-1 Risk factors that affect operator functional state 
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physiological signal artefacts and developed pre-processing algorithms. Chapter 3 is an experiment 

study of using physiological features to evaluate operator’s mental workload in conducting two 

kinds of tasks: standard reference task and engine-room simulator task. By using detrended 

fluctuation analysis, Chapter 4 experimentally studies the heart rate based evaluation of operator’s 

fatigue. In Chapter 5, a real world experiment that studies the mental workload of the first engineer 

of training ship Fukaemaru is described. One information flow model that divides operator’s 

mental capacity into four channels: visual, auditory, cognitive, and psychomotor (VACP) is used 

as reference information. Mental workload is estimated by Euclidean distance based method and 

Mahalanobis distance, respectively. Chapter 6 summarizes this paper and makes prospective 

research plans.   

1.2  Operator functional states  

Operator functional states (OFS) refer to the physical, mental, and psychophysiological conditions 

that may mediate an operator’s performance in fulfilling specific tasks. OFS should be regarded 

as the result of many physiological and psychological processes that regulate brain and body in an 

attempt to maintain an individual in an optimal condition to meet the demands of the work 

environment [6]. 

Different operator’s capacity to fulfil some tasks are distinct and can be affected by many risk 

factors. In 2004, Research and Technology Organization of North Atlantic Treaty Organization 

(RTO-NATO) conducted a systematic investigation on the multidimensional OFS that can cause 

performance degradation of military personnel and the methods to detect these factors [7]. Both 

risk factors and evaluation methods were roughly divided into three categories. In consideration 

of the working environment of on-board crews, motion sickness is added to risk factors under the 

category ‘individual state’ and the time of continuous on-board service is added under the 
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‘environmental’ risk factors. These risk factors and evaluation methods are summarized in Table 

1-1. 

Table 1-1 Risk factors and evaluation methods of OFS 

Risk factors 

Environmental Hyperbaric environments, Noise and Vibration, Pharmacological 

Mediators (Drugs and Medicines), Sustained Acceleration, Thermal 

Stress, continuous onboard service time. 

Individual state Circadian rhythms, hydration, illness, mental fatigue, sleep loss, motion 

sickness 

Task characteristics Cognitive load, physical load, situation awareness  

Evaluation methods 

Physiological 

Measures 

Actigraphy, cardiorespiratory measures, core temperature, 

electroencephalography(EEG), electrodermal activity, 

electromyography(EMG), Eye activity, functional magnetic resonance 

imaging (fMRIs), near-infrared spectroscopy (fNIRs), oximetry, stress 

hormones.  

Performance tests Response time, accuracy in display monitoring, memory recall, multi-

tasking to evaluate attention and time-sharing resources 

Subjective measures  NASA task load index (NASA-TLX), Brooks-Samn Perelli’s Fatigue 

scale, Profile of mood states, Sleepiness scale, sleep diaries.  

 

In [7], RTO-NATO defines three concepts of OFS to evaluate the OFS variations: background 

state, baseline state, and operational state. The background state represents the averaged, unloaded 

(resting) state of the operator, without any responsibilities and goals. An operator’s value of 

evaluation features of this background state should be advanced measured in order to reflect 

meaningful changes in the other two states. Although it is expected that some aspects of the 

personality profile may exhibit small changes from day-to-day, in general the background state 
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would be expected to be stable. Christensen et al. [8] used EEG data obtained from asymptotically 

trained subjects in performing a complex multitask across five days in one month to classify OFS 

and their results demonstrate that with proper methods, pattern classification is stable enough 

across days and weeks to be a valid, useful approach. The operational baseline state is defined as 

the local non-stressed state of the operator prior to being actively engaged in a task. While clearly 

related to the background state, baselines may be above or below background levels (background 

is, theoretically, the average of all baseline states) and are naturally influenced by prior work, 

temporary individual state factors, and ambient environments [7]. However, if the purpose is to 

classify OFS into high, normal, low level, this paper suggests the use of calibration tasks that elicit 

corresponding OFS and use the features as the operational baseline state. The operational state 

represents the functional state of the operator that to be evaluated while engaged in a task under 

specific operational conditions and the operational state is critical to the successful implement of 

operation duties.  

1.3 Evaluation methods  

There are mainly three types of OFS measures based on the following techniques, subjective self-

report, primary/secondary task performance measures, and physiological metrics. The 

performance measurements are sometimes implemented together with task analysis. In maritime 

operation, the operators usually devote most of their attention to monitoring automation systems 

and information processing rather than on making instantaneous behavioral responses. There are 

almost no performance indices, such as accuracy or reaction time, for complex tasks of maritime 

operations. Performance indices are therefore unavailable. The largest obstacle in subjective self-

reporting as an OFS measure is its dependence on the operator and their time and ability to record 

their feelings. On the contrary, the importance of continuous online monitoring of OFS as 
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highlighted by the practical applications, physiological metrics offer higher feasibility for 

measurement of OFS.  

Lean and Shan (2012) [9] briefly reviewed the physiological and biochemical evaluations of 

human cognitive states and categorized physiological metrics into three main categories based on 

neurophysiological taxonomy. However, they did not report on the varied validity of these metrics 

when applied in real or quasi-real environments. In this section, in order to consider practical 

application, three types of physiological signals and their main features are reported according to 

the sensors used.  

Heart rate and heart rate variability (HRV) analyses are used for evaluating autonomic nervous 

system activities and are defined as peripheral physiological indices. Heart beat sensors are 

generally low-cost, simple and user friendly, and unobtrusive. Applications of heart rate related 

indices are becoming more and more a part of standard physiological monitoring. In addition to 

absolute heart rate, time domain, frequency domain, and nonlinear indices are also used as 

physiological computing inputs [10]. Typical heart rate related features include average heart beat 

interval, standard deviation of heart beat interval, LF/HF ration based on Discrete Fast Fourier 

Transformation (DFFT), where low frequency (LF) is defined as 0.04-0.15Hz and high frequency 

(HF) is defined as 0.15-0.4Hz. 

Functional brain imaging methods including EEG, functional magnetic resonance imaging (fMRI), 

magnetoencephalography (MEG), and positron emission tomography (PET), enable the study of 

cognitive and sensorimotor functions of the human brain across a wide range of behaviours [11]. 

EEG is used to map brain electrical activity. By attaching a set of electrodes to specific areas of 

the scalp, EEG measures voltage fluctuations resulting from ionic current within the neurons of 

the respective brain area. EEG signal features fall into two categories: short term time domain and 



8 

 

power spectrum. Event related potentials (ERP) measures brain response fluctuations that are 

related to a specific sensory, cognitive or motor event after a particular time delay. Prinzel et al. 

(2003) [12] used the P300 component of ERP to assess participants’ task engagement and 

performance in an adaptive automation situation. EEG waveforms are usually estimated by 

wavelet transformation or DFFT. Power spectral of EEG are divided into several bands: delta (1-

4 Hz), theta (4-7 Hz), alpha (8-15 Hz), beta (16-31 Hz), and gamma (32+), which sometimes can 

be slightly disparate. The power of these bands or their relative percentage of total power bands 

are often used as physiological indices [13]. 

View trackers are used to record operators’ pupil diameter, blink interval, and gaze fixation. For a 

typical eye tracking device, a high resolution infrared camera is set to record a video of an eye or 

face. After image binarization processing, threshold values are chosen to recognize the centre of 

the pupil based on pixel differences. Thus, both pupil diameter variation and eyeball movement 

can be continuously recorded. Furthermore, by calibrating the subject’s eye fixation point before 

normal recording, his or her view path can also be recorded. One popular pupil metric that relates 

to cognition function is saccade, which is the fast unconscious movement of the pupil. Siegenthaler 

et al. (2014) [14] found that task difficulty in mental arithmetic affects micro saccadic rates and 

magnitudes. Wanyan et al. (2014) [15] found that pupil diameter and blink interval are effective 

to infer human MWL. 

In literature, flight simulator and driving simulator are frequently used to simulate relevant 

operation environment in these research and different physiological metrics are reported valid and 

sensitive to infer operators’ MWL. The sensitivity of those metrics are tested either by the 

significant result of Analysis of Variance (ANOVA) or regression models in distinctive level of 
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task difficulty. HRV features and cerebral cortex activity measured by fNIRs or EEG are widely 

used because the equipment is relatively low-cost and requires no medical expertise.  

Compare to that of civil aviation, MWL evaluation research in merchant shipping seems much 

inactive (Young et al. 2014 Table 2) [16]. One of the reasons is that there are considerable obstacles 

for applying MWL research in shipping. The obstacles include: a) more complex working 

environment in ship engine room; b) require ambulatory physiological sensors and noise reduction 

algorithms; c) complexity of maritime operation tasks. For instance, the operators generally have 

to move around engine room and engine control room in engine system operations, and these body 

movements will cause physiological data contamination.  

Table 1-2 Summary of literature 

Study Subject

ive 

measur

e 

Tasks Difficulty 

manipulat

ion 

Effective 

subjects 

Statistical 

significance 
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Statistical 
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G. 
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12; 

ANOVA

s 
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oxygenatio
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Piloting difficulty/ 

oxygenation(6) 

F(1,11)=5.82 

Interaction/Oxygenatio
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Oxygenation(3)/Perfor
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(2014)[

18] 

RSME 

(Zijlstra

) 

6*1.5h 

Driving 

simulator 
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density 

15; 

Repeated 

MANOV

A 

15*6=90 

Interaction/h

igh 

Frequency 

spectral 

HRV 

F(1,89)=4.98 

Ceiling 

effects of 

high load 

interaction/blood 

pressure F(1,89)=13.42 

Yufen

g Ke 

(2014)

* 

[19] 

NASA-

TLX 

9(4+4+1)

* 

3.5 min 

Verbal, 

spatial n-

back 

tasks and 

MATB 

N-back 

Multi 

attribute 

task 

battery 

17; 

Pair t test;  

Within or 

cross 

tasks  

  EEG 

Within task p<0.01; 

Cross-tasks  

Table 1-2 Continued in next Page 
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Table 1-2 continued  

Hasan 

Ayaz 

(2012)[

20] 

NASA-

TLX 

N-

back(28 

sessions) 

Air 

traffic 

control 

by 

simulator 

(6 

sessions) 

n-back 

voice/data 

based 

comm 

number of 

aircrafts(6,

12,18) 

24 

ANOVA 

Subjects 

as factor 

  fNIR 

“n”/oxygenation(2) 

F(3,69)=4.37, p<0.05; 

Vehicle 

number/oxygenation(8

) 

F(2,42)=4.52 

K. Ryu 

(2005)[

21] 

NASA-

TLX 

Tracking 

and 

mental 

arithmeti

c dual 

tasks 

Target 

speed (3 

level) 

Number 

digit(2/3, 2 

level) 

3*2 level 

10; 

Combine

d 

measures

. subjects 

as factor. 

HRV, /target 

speed, 

F(2,18)=5.02

, p<0.05; 

/number 

digit, null; 

interaction 

null. 

Blink 

interval 

/target 

speed, 

F(2,18)=7.

64, p<0.01; 

/number 

digit, null; 

interaction, 

null 

EEG, alpha 

suppression/target 

speed, null; /number 

digit, 

F(1,9)=5.87,p<0.05; 

Interaction, null  

Wanya

n, X. et 

al 

(2014)[

15] 

NASA-

TLX 

Three 

phases of 

flight 

simulatio

n, 

monitor 

flight 

indicator 

(9,6,3,0) 

indicators 

to be 

monitored. 

Four 

difficulties 

12; 

One-way 

repeated 

ANOVA 

Main effect 

HR/MW, 

p=0.252. 

RRCV/MW, 

p=0.019  

Main effect  

Pupil 

diameter 

p=0.076 

 

ERP P3 peak amplitude 

p=0.049 

Yung-

hui 

LEE 

(2003)[

22] 

NASA-

TLX 

Four 

stages of 

flight 

simulator

. 

Difficult

y by TLX 

Take-off, 

climb and 

cruise, 

descent 

and 

approach, 

Landing 

10; One-

way 

ANOVA 

_R RRMS
  

p<0.0001 

  

1.4 Potential applications  

1.4.1 OFS adaptive automation 

The automation methods currently used on board still mainly deal with elementary stages of human 

cognition, such as information generating and acquisition. Further, there are well-documented 

incidences of operator in effectiveness, often attributed to “clumsy automation,” because humans 

have been left with only tasks, which are too difficult or too expensive to automate [23]. It may be 

possible to involve computers with higher levels of automation such as system decision-making to 

reduce those problems. Adaptive automation or adaptive systems refer to the idea of an automated 



11 

 

system that can adapt to a changing environment [24]. Dorneich et al. [25] (2012) define adaptive 

systems as those ”allowing the system to invoke varying levels of automation support in real time 

during task execution, often on the basis of its assessment of the current context…only as needed”. 

OFS-adaptive automation (OFS-AA) is the adaptive automation system based on the ‘current 

context’ of operator functional state and some analogous proposals have appeared in the 

automobile industry, such as BMW’s new generation of driver assistance systems: workload-

adaptive cruise control [26]. The biocybernetic loop proposed by Pope et al. (1995) [27] is 

considered to be seminal research in OFS-AA. The biocybernetic loop [27] is formed by adjusting 

the mode of operation of a task set (e.g., level of automation) based on the brain activity criterion 

(EEG-based index of engagement) reflecting an operator’s engagement in the task set.  

Fig. 1-2 graphically depicts the conceptual model of OFS-AA, composed of two main parts, 

physiological computing and system adaption. Physiological computing is the determining 

EEG, HRV 

GSR, EOG 

Video 

Sensors 

Fatigue 

Workload  

Stress 

Functional State 

One-One 

Many-One 

One-Many 

Standard HMI 

Vehicle position 

Available resource  

Task priority 

Function allocation  

Task scheduling 

Decision support 

Safety 

Efficiency 

Health 

Adaptions 

Physiological computing 

Ambient Information 

Figure 1-2 Model of operator functional state based adaptive automation system 



12 

 

foundation of adaption strategies and performance-oriented adaption strategies provide feedback 

to improve the robustness of the former. Physiological computing correlates an operator’s 

physiological changes and their functional states based on simple selected features or complex 

algorithms such as support vector machine [4] or fuzzy modeling [23]. The physiological metrics 

mainly include heart rate variability (HRV) recorded from electrocardiogram (ECG), blood 

pressure, respiration, eye blinks and pupil diameter, skin potential, hemodynamic indices and 

cerebral cortex indices such as electroencephalogram (EEG) and event-related potentials (ERPs) 

[9]. The mapping models of these physiological indices and OFS fall into four possible categories: 

one-to-one (i.e. a physiological variable has a unique isomorphic relation with a psychological 

state), many-to-one, one-to-many and many-to-many [28].  

According to specific OFS and for certain applications, the computer can allocate one or several 

appropriate adaption strategies, including function allocation, task rescheduling and decision 

support, to maintain high level performance of the human-computer system. Feigh et al. (2012) 

[29] defined four main mechanisms of adaption and explained the trigger criterion and possible 

applications of those strategies. Nevertheless, adaption that may be invoked to adjust users’ OFS 

can be either explicit or implicit. Fairclough (2009) [30] reported the strengths and weaknesses of 

both approaches, to which the design of explicit and implicit system adaptions for physiological 

computing system must cater. The conspicuity of explicit adaption at the interface is possibly the 

more potent technique to directly influence the psychological state of the user. However, it also 

increases the possibility of ‘false alarm’. Contrarily, implicit adaptions represent subtle changes at 

the interface that may be used frequently without creating the potential for false alarms [30]. 

Therefore, to ensure the efficacy, as well as the users’ trust of system adaptions through a reduction 
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of false alarm, the designers should consider the invoking of explicit adaption, and only opt for 

them if the implicit ones fail to impact on users’ OFS.  

Among the cognitive human factor constructs that represent OFS, MWL is foremost. First, 

Bindewald et al. (2014) [24] proposed that if function allocation between human and machine 

within an OFS-AA was considered a multi-objective optimization, designers would optimize a 

combination of performance, safety, and robustness as a function of the task allocated to each 

component. The limitations of the system and human capability shape this optimization, where a 

significant component of human capability is quantified in terms of human workload. This claim 

is similar to the workload restriction of multiple resource theory proposed by Wickens (2008) [31]. 

Further, despite the apparent effect that exorbitant transitional MWL will result in stress, an 

accumulation of lower workload or task disengagement will contribute to drowsiness. Therefore, 

MWL is a causal factor of several different OFS. Hence, development of sensible and diagnostic 

measurement of MWL are crucial for the realization of OFS-AA.  
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1.4.2 Usability testing of human-cantered design 

As design companies see the benefits of adopting human-oriented design methods instead of 

technology-oriented ones, they pay more attention on testing the usability of their products. A 

common goal, for experts in HCI who conduct research on designing and evaluating user interfaces 

is to design an interface transparently [32], allowing the user to focus their MWL on the underlying 

task rather than on understanding and interpreting the user interface [33]. Correspondingly, 

human-oriented systems have also emerged in modern ship design. Figure1-3 shows multiple, 

distributed interaction interface with several interacting screens on a ship bridge. For a ship, 

favourable usability means that operators can accomplish required tasks using the limited on-board 

resources with efficiency, effectiveness and self-satisfaction. In the development of new 

innovative maritime systems, usability experts need to avoid creating distributed interfaces that 

can become technology “barriers”. The object is to support the operator and make technology as 

user friendly as possible. 

Figure 1-3 Modern ship's bridge, 18 screens in an operation room 

(adapted from Pan et al. 2015 [34]) 
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Usability testing of maritime products should be undertaken not only by designers but also by the 

operators (ship crew) who would use it. This is especially true for scenario-based products for 

situations of high uncertainty, such as collision avoidance systems. Robert et al. (2003) [35] using 

a ship control simulator found that higher levels of collision threat and impaired performance on 

the secondary oil pressure monitoring were associated with markedly increased ratings of MWL. 

Their work has relevance for the design of collision avoidance systems [35]. Gould et al. (2009) 

[36] examined the effects of two different navigation methods, the conventional system using 

paper charts, and an electronic chart display and information system (ECDIS), on workload and 

performance in simulated high-speed ship navigation. They reported that ECDIS navigation 

significantly improved course-keeping performance. They also used heart rate variability (HRV) 

and skin conductance as MWL measurements and the results indicated higher workload in 

conventional navigation, although the difference between the groups was not significant. In the 

engine room of a ship, the on watch engineer is required to simultaneously monitor and control a 

few complex sub-systems within one or several interaction interfaces, i.e. central cooling system 

and lubrication oil system. With the increase of human-cantered control systems, it should be a 

necessary requirement to conduct usability testing concerning MWL before adoption.  

1.4.3 Maritime training 

In professional education such as in the training of pilots, advanced seafarers and surgery operators, 

high fidelity simulators are widely used to help the trainees practice routine and emergency 

operation procedures with lower cost and shorter time. There are also cases when simulators can 

provide learning experience beyond that which can be learned in real systems, for example, in 

teaching students systematic trouble shooting skills, a simulator that can malfunction any single 

component in a system may provide more effective training than a real system. Therefore, although 
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many companies focus on developing the fidelity of simulators, high fidelity does not necessarily 

bring high effectiveness of training. Training procedures and instructions should be carried out to 

pace and train the trainees to maintain engagement with the operational process, and keep their 

MWL at the optimal point, where the learner is neither overloaded nor under loaded. Wiltshire and 

Fiore (2014) [37] argued for the advantages of training where the trainee’s social and affective 

cognition state can be handled timely. To improve the training regime, training institutions need 

to adjust their syllabus and pedagogics based on individual mental capacity and students’ 

engagement throughout the learning process.  A record of psychophysiological data such as brain 

activity and pupil movement can be used for a mental workload model, which can provide more 

reliable and objective data in addition to the usual subjective or experts’ ratings. It may also 

improve the following training related issues:  

 evaluate the effectiveness of training regimes 

 compare differences and similarities of simulator operation and real operation 

 elaborate on responses of experienced operators and novices  

 choose optimized pedagogics for individualized teaching 
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Chapter 2 Physiological features and the Pre-

processing of physiological signals 

Compared to the work environment of aviation pilots and vehicle drivers, where operators sit in 

relatively fixed positions and focus mainly on cognitive tasks, a marine engineer has to move 

around as part of their routine, either in an engine room or in engine control room, and their work 

includes a number of physical tasks. Therefore, wearable devices that reliably collect and 

wirelessly transform physiological data are necessary for applications in a ship environment. 

Kerick et al. (2009) [1] argued that some neurophysiological measurement technologies, e.g. fMRI, 

MEG and PET could be generally ruled out due to their machinery size. Even a single ectopic beat 

caused by body movement and/or poor sensor contact can have a serious impact on the 

interpretation of the results, especially for short-term cognitive state classification. Peltola (2012) 

[2] argued for the necessity of editing raw HBI data, and appropriate artefact correction methods 

must be chosen according to different study settings. 

A chest strap heart rate sensor RS800CX (Polar Electronics) was used to continuously measure 

the heart rate and a portable EEG device was used to measure brain electric voltage fluctuations 

caused by neural activities. EEG was measured by an ambulatory device (Digital Medic Inc.) 

consisted of a headset (17*16*1.5 cm 80g) and main part (5.8*12*2.4 cm 95g) with a sampling 

frequency of 128Hz. The headset is comprised of two electrodes and an accelerometer attached to 

the electrodes. The main part wirelessly connects to an online monitoring computer by Direct 

Sequence Spread Spectrum (DSSS). Effective wireless transmission distance were 10 meters. The 

detected brain area was posterior parietal cortex (P3-O1, P4-O2 of standard EEG channel 

nomenclature). Digital Medic Inc. (2013) [3] compared the measurement result in 128Hz between 
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this EEG device and a medical one, the average correlation coefficient was 0.94. In the experiment, 

the subject can wear these two sensors at the same time as shown in Fig. 2-1. 

 

Figure 2-1 (a) sketch of subject wearing EEG device and hear rate sensor; (b) Muse EEG device; 

(c) Polar chest strap heart rate monitor (RS800CX) 

2.1 Heart Rate Monitoring and Signal Pre-processing 

RR interval series in units of milliseconds were extracted and analysed post-experiment. In a 

practical environment, the RR interval series is often contaminated by artefacts caused by poor 

skin-electrode contact, body motions, and/or sweating. The necessity of pre-processing of the RR 

interval series has been widely agreed upon since the loss of even single ectopic RR interval data 

point can have a serious impact on the interpretation of the results, especially for short-term 

analysis [2]. In addition, the deletion of ectopic beats can cause information loss and error of 

spectrum features. Therefore, automatic recognition and replacement of outliers must be conducted 

(a)  (b) 

(c)  
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before extracting features from RR interval data. In this study, we utilized a pre-processing method 

that combined recursive percentage filter and median filter, which was similar to that proposed by 

Mishra and Swati [4]. As shown in equation (2-1), consider an RR interval series (𝑛) , the first 

step is to recognize any data point that is more than t1 larger or smaller than the last sample, then 

replace it using a moving average window. 𝑎𝑏𝑠{·} is absolute value operator and  𝑤𝑚 is length of 

the moving window. 

𝑖𝑓 
𝑎𝑏𝑠{𝑥(𝑛)−𝑥(𝑛−1)}

𝑥(𝑛−1)
> 𝑡1 , 𝑥̂(𝑛) = 𝑚𝑒𝑎𝑛 {𝑥(𝑛 + 𝑚): 𝑎𝑏𝑠{𝑚} ≤

𝑤𝑚−1

2
} . 

 The second step is to segment the original data into 5-minute samples and a median based pulse 

rejection filter is applied [5]. The recognition of outlier is based on equation (2-2), where med [·] 

is the median operator and 𝑥𝑚 is the median value of the segmented signal (𝑛) . The recognized 

outlier is then replaced by the median value of the moving window as shown in equation (2-3) and 

(2-4).  

𝐷(𝑛) =
𝑎𝑏𝑠{𝑥(𝑛) − 𝑥𝑚}

1.483𝑚𝑒𝑑[𝑎𝑏𝑠{𝑥(𝑛) − 𝑥𝑚}]
  

𝑥̂(𝑛) = {
 𝑥(𝑛)       𝑖𝑓 𝐷(𝑛) ≤ 𝑡2 

𝑥𝑖(𝑛)       𝑖𝑓𝐷(𝑛) > 𝑡2
 

𝑥𝑖(𝑛) = 𝑚𝑒𝑑 {𝑥(𝑛 + 𝑚): 𝑎𝑏𝑠{𝑚} ≤
𝑤𝑚 − 1

2
} 

The threshold value 𝑡1 was set as 30%, 𝑡2 was set as four and window length 𝑤𝑚  was five. 

According to the above method, one typical example of RR interval series preprocessing is shown 

in Figure 2-2. The total length of measured signal is 3445, and 9 points are edited by percentage 

filter, after 23 points are edited by median filter.   

(2-1) 

(2-2) 

(2-3) 

(2-4) 
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Figure 2-2 one example of RR interval time series pre-processing 

2.2 EEG artefact reduction 

An EEG device generally uses silver electrodes to measure the extremely weak signal (µv) of 

voltage fluctuations along the scalp, and the signal is usually contaminated by artefacts resulting 

from different sources. These sources include biological activities (muscle, eyeball, cardiac etc.), 

baseline artefact, powerline noise, and body movement artefact. In the real working environment, 

body movement artefact is the sum of electrode-scalp interface impedance fluctuations caused by 

walking, loud talking, irregular ship motions, and head movement. EEG wave bands of up to 40 

Hz have been found useful in evaluating human cognitive states [6]. It is still difficult to know to 

what degree and in what power band EEG data is contaminated by body movement artefact. Ferris 

and colleagues used advanced hardware settings and algorithms (e.g. independent component 

analysis) to remove gait related movement artefact in experiments of subjects walking and running 
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on a treadmill [7,8]. Although their work showed some promising results, regular gait events do 

not fully represent the complex nature of a working environment on a ship. 

We used a portable EEG device (Digital electronic, Japan) with two channels. Channel 1 is for 

scalp voltage measurement (EEG electrodes), and channel 2 is an accelerometer attached directly 

to the electrodes to measure electrodes vibration. EEG epochs that are contaminated by movement 

artefact can be detected based on the power of channel 2. Figure 2-3 shows the signal measured 

by EEG electrodes and accelerometer in three body movement conditions: motionless, speaking, 

and walking around. The respective frequency domain of each condition is estimated from the 

epochs and marked by the dotted rectangle, of which the standard deviation of time series of 

channel 2 is relatively large. Compared to the stable signal in motionless condition, the amplitude 

fluctuations in speaking condition is acute and even more acute when walking around. Accordingly, 

while EEG wave bands in motionless condition are rarely affected by body movement artefact, 

speaking may affect EEG wave bands of about <15Hz. Possible harmonic oscillations occur 

around 5Hz, 9Hz, and 12Hz, which are components of theta wave (4-7Hz) or beta wave (8-15Hz). 

The influence of body movement artefacts on EEG signal is much more obvious in the walking 

around situation. EEG signal is almost fully contaminated through all effective wave bands during 

continuous fast walking, and when turning inside a room. Since different body movement can 

cause distinct EEG signal contamination in a wide range of power bands, it is not possible to use 

specific filters to effectively reduce artefact and remain the EEG signal unaffected. Figure 2-3 

shows time domain and frequency domain analysis of EEG in three situations (Top to bottom): a. 

motionless; b. speaking; c. walking around. Frequency domain is estimated from the epochs 

marked by dotted rectangle. Red line is EEG electrodes signal, black line is accelerometer signal.  
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To eliminate the effect of body movement artefact on EEG signal, the following linear method is 

proposed. If it is hypothesized that the signal measured by EEG electrode E (channel 1) is the 

linear sum of clean EEG signal S and artefact caused by electrode movement measured 

accelerometer V (channel 2), we can have the following linear model with two unknown constants:  

 

Calculate the covariance between E and V,  

 

As S and V are from different resource and if we maximize the independence between S and V, 

we can have 

 

 

In actual situation, both head movement and verbal communication happen occasionally, resulting 

intermittent contaminated signal. Therefore, the solution of k and b can be different when signals 

are contaminated by different source. Epochs are recognized as contaminated by body movement 

artefact when the power of channel 2 exceeds a pre-set threshold value. The standard deviation of 

channel 2 signal is calculated with a step of 0.25 seconds to detect contaminated epochs and the 

corresponding epochs of channel 1 is processed by the linear model. 

In an experiment, a subject was required to sit still and read a same page of a book in two 

conditions: read silently and read loudly. In read loudly situation, the subject occasionally shake 

his head. Figure 2-4 shows the power spectrum of a 2-second segment of reading silently condition. 

The Red line is the power spectrum of original signal measured by channel 1 and black line is 

E S k V b   

( ) (, , (V,) V) ( , )cov E V cov S V k cov cov b V   

   , /k cov E V D V

S b E k V   

(2-5) 

(2-6) 

(2-7) 

(2-8) 
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measured result of channel 2. Channel 1 falls between 0-15 dB in the power bands of 0-40Hz, 

which is found related to different physiological or cognitive activities, and becomes smaller than 

0 dB in >40Hz band. Channel 2 measured by accelerometer is smaller than -10 dB and rarely 

overlaps with that of channel 1. In this condition, we consider the signal measured by EEG 

electrode are clean EEG signal and it is not contaminated by vibration artefact measured by 

accelerometer. Besides, the peak of power in 60Hz is artefact caused by the alternating electricity 

line, the frequency of which in Kansei area Japan is 60Hz. Since we only extract EEG 

physiological features from power bands of <40Hz, this artefact is not processed.  

 

Figure 2-4 Power spectrum of a 2-second segment: subject kept still and read a book silently 

Figure 2-5 and Figure 2-6 shows the two cases of reading loudly condition. In Figure 2-5 subject 

kept still and read a book loudly, and in Figure 2-6 head movement happened once. Using the 

above linear model, Figure 2-5 also shows the pre-processing result of two epochs that are detected 
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as contaminated by body movement artefact. In Figure 2-5, black line (vibration artefact) is large 

enough to influence the red line (EEG electrode) at around 18 Hz, and channel 1 remain unaffected 

for other power bands. In addition, the difference between red line (original EEG) and green line 

(pre-processed signal) is bigger at corresponding power band compared to other power bands. In 

Figure 2-6, the subject shake his head for one time and the power of original EEG is abnormally 

high (up to 28 dB) in 0-5Hz band. The large difference between green line and red line indicates 

that the regression effect is obvious. The processed signal (green line) is more close to the nature 

of clean EEG power spectrum as shown in Figure 2-4.  
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Figure 2-5 Processing of contaminated EEG signals. Subject kept still and read a book loudly 

k=0.486, b=68.7. Top: time domain; bottom: frequency domain 
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Figure 2-6 Processing of contaminated EEG signals: head movement happened once in reading a 

book loudly k=0.552, b=59.5. Top: time domain; bottom: frequency domain 
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Chapter 3 Evaluation of mental workload of 

standard task and simulator task 

3.1 Introduction 

Generally, mental workload (MWL) or cognitive workload is described as the degree of mismatch 

between operator’s available cognitive resources and those that are demanded for specific tasks. 

From an operational point of view, workload refers to the individual effort and subjective 

experience of a particular person performing tasks under a certain working environment and in 

time during which those duties must be accomplished [1]. What we should keep in mind, is that 

whilst one side of the ‘mismatch’ of MWL theory refers to the difficulty, amount, duration and 

types of specific tasks, usually named as objective task load, the other side refers to the individual 

cognition capacities. In other words, the same tasks may arouse different levels of individual MWL 

because operators may have unlikeness in cognitive capabilities, efforts and skills, or they may be 

in different personal states such as fatigue, excitement and stress. A more general definition is 

provided by Young and Stanton (2005) [2], who suggested that MWL reflects “the level of 

attentional resources required to meet both objective and subjective performance criteria, which 

may be mediated by task demands, external support, and past experience”. 

Considering the operation characteristics of shipping, both under load and overload of key 

operators are potential precursors to human error, as the former leads to reduced vigilance and 

engagement to task, and the latter leads to inadequate cognitive resources to cope with an 

emergency. However, a continuous and exact relationship between MWL and performance 

degradation is rarely easy to build. Young et al. (2014) [3] reviewed related research and proposed 
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a model of performance, task demand and arousal level (see Figure 3-1), which is originated from 

De Waard (1996) [4] that there is an optimum range of MWL associated with good performance.  

An appropriate human information-processing model is crucial to understand the mechanism of 

operators limited cognitive resources because the channels or dimensions of human information 

processing determine that of cognitive resources. Mesulam (1998) [5] reviewed research articles 

in neuropsychology and reported that the human brain contains at least five anatomically distinct 

networks. Each of the five networks is related to a distinct brain area and is responsible for a 

different cognition function. For instance, the network for spatial awareness is based in trans-

modal epicentres in the posterior parietal cortex, and in the frontal eye fields. The working 

memory-executive function network is in epicentres in the lateral prefrontal cortex and perhaps 

the posterior parietal cortex [5]. To some extent, these anatomical findings support the 

development of multiple resource models proposed by Wickens (1980) [6], first a 3-dimensional 

model which evolved to a 4-dimensional model by adding visual channels (focal and ambient 
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High Good 
Upper limit of resources 

Performance Arousal Mental workload 

Figure 3-1 Model of task demands, arousal level and performance 

(adapted from Young et al. 2014 [3]) 
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vision) [7].  In general, the 4-dimensional multiple resource model differentiates pools of mental 

resources based on four dichotomous dimensions:  

 Stage of processing: perception, cognition, responding 

 Codes of information processing: spatial and verbal 

 Perception modalities dimension: visual and auditory 

 Visual Channels: focal and ambient versions 

Multiple resource theory makes an important contribution to MWL by predicting the types of 

performance degradation once the multi-tasking overload has been reached. Many maritime 

operations need operators’ multi-tasking during stressed situations. For example, when leaving or 

entering a port, navigation officer may simultaneously need to monitor the radar and communicate 

with engine room regarding changes of ship speed. Additionally, the dimensions of the multiple 

resource model coincide with relatively straightforward decisions that designers could make when 

configuring tasks or work spaces to support multi-tasking activities, such as to design the 

communication methods (auditory or visual) in emergency operation procedures [7]. 

However, compare to that of civil aviation and road transportation, MWL evaluation research in 

maritime domain seems much inactive [3] (Table 2). The obstacles of measuring MWL in shipping 

include: (1) working environment is complex (2) ambulatory physiological sensors are required 

(3) complexity setting of maritime tasks is challenging. To address these issues, this Chapter 

studies the conceptual models of MWL and develops MWL measures in standard psychological 

task and engine-room simulator task. In section 3.2, details of experiment setting are introduced. 

Section 3.3 describes the performance measures, subjective measure, and physiological measures 

developed to evaluate MWL in the two types of task. Experiment results are summarized in section 

3.4 and section 3.5 is the discussion of these results.  
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3.2 Experiment 

Ten males and one female voluntarily participated in this experiment (age 23.2±2.4). Seven 

participants were senior students in the bachelor’s program at Marine engineering and four 

graduate participants from a similar program. They all had three to five months on-board cadet 

experience and grasped the knowledge and technical skills of ship engine system operation. One 

participant’s EEG data were contaminated and excluded from the analysis. For the female 

participant, HRV data were not available. Therefore, there were 10 sets of data available for both 

EEG and HRV analysis. 

All experiments were conducted in a Marine Engine Plant Simulator (MEPS) room with constant 

illumination and temperature (Figure 3-2). The experiment tasks were two types: standard visual 

n-back task and MEPS task each with four difficulty levels. Each experiment for a subject lasted 

approximately 90 minutes.  

Engine Room

Displays for machineries

Engine Control Room Instructor's space

Control console

Group starter panel

Engine monitor 

(a)  

(b) 

(c)  

Figure 3-2 (a) outline of MEPS; (b) photograph of simulated engine 

room; (c) control console 
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The experiment purpose outlines and their rights were firstly explained to participants. After they 

agreed to sign the consent form, experiment instructor introduced them n-back task and the 

participants learned how to fill NASA-TLX. It took about 120 seconds for the participants to wear 

physiological sensors. The EEG electrodes impedance was then adjusted to acceptable value. 

Between n-back task and MEPS task, the participants took a rest for about 5 minutes. 

N-back task appears to originate as a paradigmatic case for quantifying working memory through 

brain activity monitoring research [8]. In the most typical variant of n-back task, participants are 

required to monitor and remember a series of stimuli and to respond whenever a stimulus is 

presented that is the same as the one presented n trials previously, where n is a specified integer, 

usually 0,1,2 and 3. In this research n-back task was designed and presented by E-prime 2.0 

(Psychology Software Tools), in which capital letters were presented one-by-one for 500ms on a 

computer screen and blank time between stimulus was 2000ms. Participants were asked to monitor 

the presented letter and to press predefined target-key when the letter was a target and to press 

non-target-key when it was not. The task difficulty was incrementally controlled by varying the 

number of ‘n’ from 0 to 3. In the easiest 0-back task, participants were required to remember a 

specific letter (X) as the target and they had to press target-key when the letter was presented. In 

the1-back task, 2-back and 3-back tasks, the target was defined as the letter presented 1, 2 and 3 

times before, respectively. Before the beginning of formal experiment, participants were free to 

practice until they wanted to begin formal experiment. The formal experiment of each difficulty 

level lasted 75-78 seconds. 
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Figure 3-3 Subject conducting MEPS tasks 

MEPS was a full scale simulator of the engine system of a real ocean-going container ship. MEPS 

tasks were designed based on the combination of engine system components. Four routine tasks 

of engine department with different level of difficulty were designed: (1) Transfer diesel oil from 

settling tank to service tank; (2) Prepare and start the central cooling system; (3) Start diesel engine 

of NO.2 generator; (4) Start lubrication oil purifier. These tasks were denoted as MEPS-1, MEPS-

2, MEPS-3 and MEPS-4 respectively. MEPS-1 required 5 procedures within fuel oil pipes, MEPS-

2 required 14 procedures within sea water pipes and fresh water pipes, MEPS-3 required 14 

procedures within lubrication oil pipes, fuel oil pipes, compressed air pipes and cooling water 

pipes, and MEPS-4 required 12 procedures within fresh water pipes, sludge pipes, steam pipes and 

lubrication oil pipes. Despite the inaccuracy to hastily conclude that one task was absolutely more 

demanding than another, we generally expected that task with less operation procedures and 

involving pipes was less demanding than that with more of those. As all participants had marine 

operation skills, practice session was not arranged except an instruction of task goal. 
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Table 3-1 Operation procedures of MEPS1 

  [MEPS1]              

  Diesel Oil (D.O.) TRANS LINE   scenario:INDOCK2 (Power supply is required)   

□ (D03) OUTLET VALVE on D.O TANK Open     

□ 
(D04) SUC. VALVE for DO TRANS. PUMP 

Open 
   

□ 
(D05) DISCH. VALVE for DO TRANS. PUMP 

Open 
   

□ (D06) INLET VALVE for DO SETT.TANK Open    

□ D.O. TRANS. PUMP Start         
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Table 3-2 Operation procedures of MEPS2 

  [MEPS2]             

   CCFW & SW LINE   scenario:INDOCK2 (Power supply is required)   

  ・CENTRAL CSW LINE (S/B PUMP is not need)    

□ (C01) HIGH SEA CHEST OUTLET VALVE remote Opened   

■ *(C02) HIGH SEA CHEST OUTLET VALVE Opend @ECC   

□ (C09) No.1 CENTRAL FW CLR SW INLET VALVE Open    

□ (C10) No.1 CENTRAL FW CLR SW OUTLET VALVE Open   

□ (C11) No.2 CENTRAL FW CLR SW INLET VALVE Open    

□ (C12) No.2 CENTRAL FW CLR SW OUTLET VALVE Open   

□ (C13) MAIN SW CIRC. LINE SW over board valve Open   

□ (C05) No.1 CENTRAL CSW PUMP INLET VALVE Open    

□ 
No.1 CENTRAL CSW PUMP 

Start(low) 
    

□ (C06) No.1 CENTRAL CSW PUMP OUTLET VALVE Open   

■ *(C07) No.2 CENTRAL CSW PUMP INLET VALVE Open   

■ *(C08) No.2 CENTRAL CSW PUMP OUTLET VALVE Open    

■ *No.2 CENTRAL CSW PUMP STANDBY @GSP     

■ 
*(No.1 No.2 CENTRAL CSW PUMP 

AUTO) 
    

  ・M/E LO COOLER CFW LINE (S/B PUMP is not need)   

□ (C20) No.1 CENTRAL FW CLR INLET VALVE Open    

□ (C21) No.1 CENTRAL FW CLR OUTLET VALVE Open    

□ (C22) No.2 CENTRAL FW CLR INLET VALVE Open    

□ (C23) No.2 CENTRAL FW CLR OUTLET VALVE Open    

□ 
(C37) M/E LO CLR INLET VALVE 

Open 
    

□ (C38) from M/E LO CLR OUTLET VALVE Open    

□ (C  ) No.1 CENTRAL CFW PUMP INLET VALVE Open    

□ 
No.1 CENTRAL CFW PUMP  Start 

(low) 
    

□ (C  ) No.1 CENTRAL CFW PUMP OUTLET VALVE Open     
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Table 3-3 Operation procedures of MEPS3 

  
 

[MEPS3] 
            

   START No.2 DIESEL GENERATOR．Scenario: IN PORT    

  ( D/G control position REMOTO → LOCAL)    

  ・No.2 D/G LO LINE       

□ (L89) No.2 D/G PRIMING LO PUMP OUTLET VALVE Open   

□ (L90) No.2 D/G LO PUMP OUTLET VALVE Open    

  *No.2 LO PRIM PUMP AUTO on GSP     

  ・No.2 D/G FO LINE       

□ (D21) DRIVEN PUMP INLET VALVE (No.2 D/G) Open    

□ (D35) DRIVEN PUMP OUTLET VALVE (No.2 D/G) Open   

□ 
(F80) No.2 D/G SUPPLY VALVE 

Open 
    

□ (D23) No.2 D/G OUTLET VALVE (to DO RETURN RECEIVER) Open   

  ・No.2 D/G AIR LINE      

□ (A09) No.2 D/G INLET (double valve) D/G side Open    

  ・No.2 D/G CFW LINE      

□ (C55) INLET VALVE for No.2 D/G LO CLR Open    

□ (C56) OUTLET VALVE No.2 D/G AIR CLR Open    

□ 
(C59) OUTLET VALVE No.2 D/G 

Open 
    

□ (C58) OUTLET VALVE No.2 D/G CFW PUMP Open    

  ・TURNING       

□ TURNING BAR SET on No.2 D/G OPERATION PANEL     

□ No.2 D/G Start           
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Table 3-4 Operation procedures of MEPS4 

  [MEPS4]             

  
 START LO PURIFIER. Scenario:IN 

PORT 
    

  ・OPERATION WATER      

□ (W18) FW INLET VALVE for No.1 LO PURIFIER Open    

  ・SLUDGE LINE       

□ (L47) No.1 LO PURIFIER OUTLET VALVE Open    

  
・ STEAM LINE for LO 

HEATER 
     

□ (S40) INLET VALVE for No.1 LO PURIFIER HEATER Open   

  ・NO.1 LO PURIFIER LINE      

■ *(L17) OUTLET VALVE on M/E LO SUMP TANK Opened   

■ *(L18) SUPPLY VALVE to LO PURIFIER Opened    

■ *(L06) INLET VALVE on M/E LO SUMP TANK Opened    

□ (L19) INTERMID. VALVE to LO PURIFIER Open    

□ (L20) INLET VALVE for No.1 LO PURIFIER Open    

□ (L20) INLET VALVE for No.1 LO PURIFIER GEAR PUMP Open   

□ (L22) INLET VALVE for No.1 LO PURIFIER Open    

□ (L26) RETUERN VALVE from 3WAY VALVE to GEAR PUMP Open   

□ (L23) DISCHARGE VALVE from No.1 LO PURIFIER Open    

□ (L24) INTERMID. VALVE (non return) from NO.1 LO PURIFIER Open   

□ (L25) INTERMID. VALVE to M/E LO SUMP TANK Open   

□ No.1 LO PURIFIER Start         

 

3.3 Measures 

NASA task load index is one of the most widely used subjective MWL measures and its validity 

has been recurrently tested in laboratory and field studies since its first proposal, developed by 

Hart and Staveland [9]. Nevertheless, quite lot variants of original NASA-TLX technique, appear 
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in various industries. Some noticeable developments are the software-based rating techniques and 

the simplified ones [10].  The NASA-TLX uses six dimensions to assess mental workload: mental 

demand, physical demand, temporal demand, performance, effort, and frustration. Table 3-2 shows 

the definitions of NASA-TLX dimensions. Twenty-step bipolar scales are used to obtain ratings 

for these dimensions. A score from 0 to 100 (assigned to the nearest point 5) is obtained on each 

scale. A weighting procedure is used to combine the six individual scale ratings into a global score; 

this procedure requires a paired comparison task to be performed prior to the workload assessments. 

Paired comparisons require the operator to choose which dimension is more relevant to workload 

across all pairs of the six dimensions. The number of times a dimension is chosen as more relevant 

is the weighting of that dimension scale for a given task for that operator. A workload score from 

0 to 100 is obtained for each rated task by multiplying the weight by the individual dimension 

scale score, summing across scales, and dividing by 15 (the total number of paired comparisons). 

Table 3-5 Six dimensions of NASA-TLX 

Title  Description  

Mental 

Demand  

How much mental and perceptual activity was required (e.g. Thinking, deciding, 

calculating, remembering, looking, searching.)? Was the task easy or demanding, 

simple or complex, exacting or forgiving  

Physical 

Demand  

How much physical activity was required (e.g. pushing, pulling, turning, 

controlling, activating.)? Was the task easy or demanding, slow or brisk, slack or 

strenuous, restful or laborious?  

Temporal 

Demand 

How much time pressure did you feel due to the rate or pace at which the task or 

task elements occurred? Was the pace slow and leisurely or rapid and frantic?  

Performance  How successful do you think you were in accomplishing the goals of the task set 

by the experimenter?  How satisfied were you with your performance in 

accomplishing these goals?  

Table 3-5 continued in the next page 
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Table 3-5 continued 

Effort  How hard did you have to work (mentally and physically) to accomplish your 

level of performance?  

Frustration 

Level 

How insecure, discouraged, irritated, stressed, and annoyed versus secure, 

gratified, content, relaxed, and complacent did you feel during the task? 

 

A paper-based Japanese version of NASA-TLX (show in Appendix 1) was used in this experiment 

to collect the participants’ feeling immediately after each difficulty level of task. A weighted score 

of six MWL dimensions was calculated.  

EEG was measured by an ambulatory device (Digital Medic Inc.) consisted of a headset 

(17*16*1.5 cm 80g) and main part (5.8*12*2.4 cm 95g) with a sampling frequency of 128Hz. The 

headset is comprised of two electrodes and an accelerometer attached to the electrodes. Body 

movement such as walking and jogging has been found to be one of the most influential origin of 

EEG signal artefact [11]. When the acceleration of the electrodes exceeds certain value, 

corresponding epochs of EEG data were removed from further analysis. The main part wirelessly 

connects to an online monitoring computer by Direct Sequence Spread Spectrum (DSSS). 

Effective wireless transmission distance were 10 meters. The detected brain area was posterior 

parietal cortex (P3-O1, P4-O2 of standard EEG channel nomenclature). Digital Medic Inc. [12] 

compared the measurement result in 128Hz between this EEG device and a medical one, the 

average correlation coefficient was 0.94. Time domain data for each difficulty level of two types 

of tasks were discrete fast Fourier transformed (DFFT) to three wave bands in every second. These 

bands were theta (4-7Hz), alpha (8-13Hz) and beta (20-25Hz) and the power spectral was 

estimated based on period-gram method. Alpha wave rate was defined as  
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 ( l was time length of each task) were chosen as EEG indices of each task. 

HRV data was measured by a chest belt heart beat sensor RS800CX (Polar Electronics). Raw, 

continuous HRV data for each difficulty level of two types of tasks were cropped to epochs when 

participants were performing tasks.  Three measures were analysed: (1) mean value of heart beat 

interval (MHBI) (2) standard deviation of heart beat interval (SDHBI) (3) FFT-based LF/HF 

ration. Low Frequency (LF) was defined as 0.04-0.15Hz and High Frequency (HF) was defined as 

0.15-0.4Hz. 

3.4 Results  

Less than one percent of EEG signal for n-back task and 5 percent for MEPS task was 

contaminated by body movement and removed from analysis. 

 

 

 

 

 

 

(3-1) 
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3.4.1 Descriptive statistics 

Table 3-6 Descriptive statistics of n-back task and MEPS task each with four difficulty levels 

Mean 

SD 

n-back task MEPS task 

0-back 1-back 2-back 3-back 1(5+1) 2(14+2) 3(14+4) 4(12+4) 

Performance 
0.3 

0.7 

0.6 

0.7 

1.6 

1.3 

3.8 

2.6 

72.3 

61.8 

141.6 

118.2 

227.7 

148.6 

220.7 

174.6 

NASA-TLX 
4.2 

2.0 

5.9 

2.5 

9.6 

2.8 

12.6 

2.5 

4.4 

4.9 

6.2 

5.6 

7.6 

5.7 

6.9 

5.6 

Alpha wave rate 

(%) 

54.8 

6.6 

52.0 

5.7 

50.2 

4.0 

49.4 

6.9 

43.6 

4.2 

48.0 

4.2 

41.3 

3.9 

44.3 

2.8 

Beta wave rate 

(%) 

18.2 

7.3 

19.1 

8.5 

21.1 

7.3 

20.2 

8.7 

19.1 

7.1 

20.8 

7.1 

15.6 

5.4 

15.6 

4.7 

Theta wave  rate 

(%) 

26.9 

9.1 

29.1 

8.3 

29.2 

8.2 

30.5 

10.7 

35.5 

9.0 

31.2 

8.5 

42.9 

6.8 

40.6 

5.9 

MHBI(ms) 
760.6 

163.2 

776.1 

142.7 

724.7 

117.9 

762.8 

104.7 

741.1 

109.7 

746.5 

105.5 

729.9 

97.6 

734.6 

93.5 

SDHBI 
41.9 

19.6 

48.0 

34.6 

43.2 

20.5 

46.9 

16.9 

43.0 

19.6 

41.2 

12.8 

43.8 

13.1 

42.2 

12.4 

LF/HF 
1.8 

1.5 

1.8 

1.4 

2.6 

2.8 

4.2 

4.2 

4.5 

4.0 

5.4 

4.4 

5.0 

4.7 

5.4 

5.6 

 

The results (mean and standard deviation of 10 participants) of seven measures, NASA-TLX, alpha 

wave rate, beta wave rate, theta wave rate, MHBI, SDHBI, and LF/HF were summarized in Table 

3-6. The objective difficulty of MEPS tasks were manipulated by the sum of operation steps and 

pipe types, noted in brackets after task serial number, in incremental order of MEPS-1, MEPS-2, 

MEPS-4, and MEPS-3. The performance of n-back task was evaluated by the number of mistaken 

responses while the performance of MEPS task was evaluated by total time that operator consumed 

to achieve task goal. The unit of MEPS task performance measure was second. As shown in Figure 
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3-4, the average value of NASA-TLX and performance measure corresponded with objective 

difficulty for both n-back task and MEPS task.  

 

Figure 3-4 Result of NASA-TLX and task performance, error bar is standard deviation 

3.4.2 Sensitivity of MWL measures 

If MWL measures were sensitive to task demand, the average value under different level of task 

should be significantly different. The null hypothesis of ANOVA was then “there is no significant 

difference between MWL measures that under each difficulty level of task”. Each subject’s 

physiological data and NASA-TLX score for eight tasks were pre-processed through zero-mean 

normalization to eliminate the effect of individual difference. Since the measurements of n-back 

task performance and MEPS task performance were in different orders of magnitude, performance 

measures were normalized within task type. The zero-mean normalization function was 
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* x
x






  , where  is the mean value and   is the standard deviation. For n-back tasks and 

MEPS tasks, the main effect of difficulty level on the seven measures was tested separately using 

one-way repeated measure ANOVA, significance criterion is set at p=0.05. 

Table 3-7 Main effect analysis of variance for n-back task and MEPS task 

Measures n-back task MEPS task 

Performance F(3,36)=9.66, p<<0.001 F(3,36)=33.9, p<<0.001 

NASA-TLX F(3,36)=21.7, p<<0.001 Non-significant 

Alpha wave rate F(3,36)=14.2, p<0.001 F(3,36)=17.4, p<<0.001 

Beta wave rate Non-significant F(3,36)=7.03, p<0.001 

Theta wave  rate Non-significant F(3,36)=18.0, p<0.001 

MHBI Non-significant Non-significant 

SDHBI Non-significant Non-significant 

LF/HF Non-significant Non-significant 

Table 3-7 shows the main effect results of ANOVA. For n-back tasks, main effect on performance 

measures, NASA-TLX, and alpha wave rate were significant. Post-hoc tests for pairwise 

comparison (6 pairs) showed that beta wave rate difference between 0-2 back (p=0.015) tasks was 

significant, theta wave rate difference between 0-3 back (p=0.033) tasks was significant. For heart 

ratio related measures, post-hoc tests showed that MHBI difference for 1-2 back (p=0.036) and 2-

3 back (p=0.039) were significant, and LF/HF difference between 0-3 back (p=0.021) was 

significant. 

For MEPS tasks, significant main effect on performance measures and all three EEG related 

measures were found while main effect on NASA-TLX, NHBI, SDHBI and LF/HF were not 
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significant. Post-hoc tests for pairwise comparison showed that NASA-TLX difference of MEPS1-

MEPS3 (p=0.011) and MEPS1-MEPS4 (p=0.030) were significant. Post-hoc tests found no 

significant difference for HRV related measures. 

3.4.3 Validity of MWL measures 

Pearson’s correlation coefficient was calculated to examine the linear correlation among 

performance measures, NASA-TLX, and physiological indices (Table 3-8). Each subject’s data 

was pre-processed through within task type zero-mean normalization. There were four difficulty 

levels and ten participants, and then the data length was 4*10=40. For n-back task, performance 

measure correlated strongly with NASA-TLX at a significance level (r=0.634, p<<0.001), 

indicating that with the increase of subjective MWL score, the number of mistaken response also 

increased. Alpha wave rate (r=-0.653, p<<0.001), beta wave rate (r=0.404, p=0.01) and LF/HF 

(r=0.313, p=0.049) also showed different degree of correlation with NASA-TLX. The strong 

negative correlation of alpha wave rate indicated that higher task demand induced higher 

subjective MWL and lower alpha wave rate. This finding of alpha wave suppression corresponded 

with the findings of Fairclough et al. (2005) [13] and Slobounov et al. (2000) [14], who reported 

that EEG spectral power in the alpha band decreased during complex and cognitively demanding 

tasks. For MEPS task, performance measure correlated strongly with NASA-TLX at a significance 

level (r=0.717, p<<0.001), indicating that with the increase of subjective MWL score, the complete 

time of MEPS operation increased. Compare to that of n-back task, the correlation between alpha 

wave rate and NASA-TLX of MEPS task was not significant (p>0.5), and the correlation between 

beta wave rate and NASA-TLX was negative (r=-0.565, p<0.001). Theta wave rate seemed to be 

the universal physiological indices in both n-back task (r=0.404, p=0.01) and MEPS task (r=0.531, 

p<0.001). 
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Table 3-8 Pearson’s correlation coefficients between performance measures, NASA-TLX and 

Physiological indices 

Measures 
n-back task MEPS task 

Performance NASA-TLX Performance NASA-TLX 

NASA-TLX 0.634 1.000 0.717 1.000 

Alpha wave rate -0.393 -0.653 -0.254 -0.063 

Beta wave rate 0.241 0.404 -0.525 -0.565 

Theta wave  rate 0.170 0.237 0.568 0.531 

MHBI 0.062 -0.219 -0.263 -0.149 

SDHBI 0.060 -0.081 -0.008 0.093 

LF/HF 0.275 0.313 0.032 -0.016 
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3.4.4 Clustering analysis  

To further study the physiological response during the process of conducting n-back tasks, 

physiological features were calculated in a window of 4-second. Then each data point is considered 

as a sample of a corresponding cluster and each physiological feature is considered as a variable. 

As the experiment time of n-back tasks were 76-78 seconds, there were 19 data points of each 

level of task. Cluster centre is calculated as the mean value of each cluster. As shown in Figure 3-

5 shows the clustering result of subject 8. Figure 3-5 (a), along with the difficulty increase from 0-

Figure 3-5 Subject 8: ceiling effect. (a) without 3-back cluster; (b) with 3-back cluster 
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back to 2-back task, both sdHBI and MHBI shows decreasing tendency. However, the clustering 

of 3-back task falls between 2-back and 1-back task, which is inconsistent with the difficulty 

setting.   

3.5 Discussions 

Participants reported higher MWL in n-back task than in MEPS task while they had lower alpha 

wave suppression in n-back task than in MEPS task. This contradiction between subjective report 

and physiological indices could be explained by that MEPS task required more than one channel 

of cognitive information processing that corresponded with multidimensional limited cognitive 

resource model proposed by Wickens (1984) [6], first a 3-dimensional model which evolved to a 

4-dimensional model by adding visual channels [7]. In general, the 4-dimensional limited resource 

model differentiates pools of cognitive resources based on four dichotomous dimensions: Stage of 

processing: perception, cognition, responding; Codes of information processing: spatial and 

verbal; Perception modalities dimension: visual and auditory; Visual Channels: focal and ambient 

versions. Additionally, there were more significant physiological indices in MEPS task than in n-

back task, and the physiological indices correlated to subjective mental workload were different 

in MEPS and n-back task. Chen and Epps (2014) [15] found that cognitive load measurement was 

affected by different task types through using pupil diameter and blink measures to infer cognitive 

load and perceptual load. Similarly, this disparity could be explained by that MEPS task required 

visual and auditory perception, spatial information processing, and long and short term working 

memory while n-back task only required visual perception, verbal information processing, and 

short-term working memory. 
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Figure 3-6 Alpha wave suppression with increasing task demand 

 

As shown in Figure 3-7, four participants had higher alpha wave rate in 3-back task than in 2-back 

task, and another two participants had higher alpha wave rate in 2-back task than in 1-back task. 

When task demand exceeded the capacity of mental resource, the operator failed to catch up with 

the pace of task and showed lower activation level, and this was generally associated with different 

degree of performance degradation. However, individuals’ capacity of mental resources were 
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different. In Figure 3-6, four participants’ alpha wave rate (subject 4, 5, 7, and 10) showed 

decreasing tendency from 0-back to 3-back task, indicating that even 3-back task did not exceed 

their mental capacity. This effect was reported by Stuiver et al. (2014) [16] as a ceiling effect and 

by Durantin et al. (2014) as an inverted U-shape curve of using physiological indices to infer 

human MWL. Ceiling effect was also found in MEPS tasks, two participants had higher alpha 

wave rate in the task that they subjectively reported as most difficult (highest NASA-TLX). 

Regarding the implications of the findings for maritime safety, measuring operators’ MWL based 

on physiological metrics makes OFS-AA systems more applicable to be adopted in maritime 

operation. In MEPS task, while the difficulty level did not have main effect on subjective ratings, 

EEG indices showed higher sensitivity. This result evidently supported the opinion of De Waard 

(2014) [17] that self-report scales, which are used on-board to ensure seafarer’s rest time, alone 

cannot capture MWL. Besides, alpha wave rate was extracted from EEG measured by a portable 

and low-cost device, the shortcomings of physiological data collection, including vulnerability to 

artefact and prolonged device wearing time, were alleviated in this research. Shipping companies 

have long been suffering from a lack of competent seafarers because the training, evaluation and 

certificating of seafarers were carried out in a relatively low level. With knowing the trainee’s real-

time MWL, the instructors are able to conduct an instruction in an appropriate pace for seafarer’s 

training in simulator environment. Besides, objective measurement of MWL can also provide a 

more reliable method to evaluate the trainee’s competence of technical and nontechnical skills. 

This paper conducted a systematic research on MWL to fill the gap between practical applications 

and the theoretic human factor models. An experiment study was designed to further extend the 

available physiological metrics based on wearable and portable devices that are feasible in 

maritime environment. Task demand of maritime operation was successfully manipulated by 
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involving different number of operation steps and pipeline types. ANOVA was used to test the 

sensitivity of MWL measures and Pearson’s correlation coefficient was calculated between 

NASA-TLX, performance measures, and physiological indices to check the validity of these 

measures. The conclusions of this paper include: 

(1) Mental workload models have potential applications in shipping industry, but these 

applications require reliable, sensitive, and online measurement of MWL.  

(2) Alpha band wave suppression and subjective self-report MWL are sensitive to n-back task 

demand while heart ratio related measures are not. Alpha (8-13Hz) band wave suppression, beta 

wave band (20-25Hz), and LF/HF correlate with subjective MWL in n-back task 

(3) Three EEG features are sensitive to MEPS task demand. Beta band (20-25Hz) and theta 

band (4-7Hz) correlate with subjective MWL in MEPS task. 

(4) Ceiling effect of using physiological metrics to infer human MWL are found. 

As different physiological indices are found to be sensitive for n-back task and MEPS task, one 

important implication of this finding is that development of cross-task MWL measures must be 

implemented based on sufficient analysis of task attributes. Maritime operations require 

multidimensional mental resource whilst standard tasks, such as n-back task and mental arithmetic 

task, require one or two dimensions in a relatively constant manner. A combination of reference 

tasks that can effectively account for complex operation tasks should be utilized to provide training 

data for MWL prediction.  
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Chapter 4 Evaluation of Operator Fatigue and 

Performance during Pipeline Work 

4.1 Introduction 

Fatigue has been identified as one of the most significant factors that leads to accidents in a wide 

range of industries. Just like many other conceptual constructs of human factor, fatigue is rarely 

well defined since its complexity in practical situations. Fatigue is caused by many factors and 

linked to a series of degradation of human capability. It generally falls into two categories: mental 

and physical according to the definition given by the International Maritime Organization, “A 

reduction in physical and/or mental capability as the result of physical, mental or emotional 

exertion which may impair nearly all physical abilities including: strength; speed; reaction time; 

coordination; decision making; or balance” [1]. Furthermore, operators always have to utilize both 

physical exertion and mental attention when conducting real-world tasks, such as connecting and 

tightening pipe flanges, whose perfect sealability is crucial for the safety of the entire power plant. 

Generally, an operator’s competence to fulfil a specific task degrades along with as physical and 

mental fatigue accumulates.  

In the maintenance of power plants, the operators have to conduct much pipeline work to keep the 

machinery system run normally, especially for ocean-going ships that are characterized by a closed 

environment. The engineer crew have to fulfil specific maintenance work with limited personnel 

and equipment resource. In many circumstances, they continuously work for prolonged time in a 

high intensity. Operators would seek for a rest to recovery from fatigue when they feel tired, but 

sometimes their subjective feelings may drift from the objective degree of fatigue and affect their 

work performance. An objective detection and alarm of a high degree of fatigue can improve this 
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situation in two aspects: the operator can actively adopt a rest and/or the manager can take 

intervention counter measures. 

The Borg’s Rating of Perceived Exertion (RPE) is one subjective method to measure an 

individual’s perception of exertion during physical work or exercise [2]. RPE provides a way to 

measure the intensity of physical exertion and has been found to correlate positively with an 

increase of heart rate (HR) [3]. However, the accumulation of fatigue and exhaustion also happens 

when workload decreases and HR keeps constant. HR dynamics is a complex interactive process 

that reflects instantaneous changes of body position, physical movement, and mental state. It is 

therefore inaccurate to simply use the value of HR as an objective measure of physical fatigue. In 

addition to absolute HR value, features extracted from time/frequency/nonlinear based methods of 

heart rate variability (HRV) have been developed for clinical diagnosis and athletic exercise [4,5]. 

Based on detrended fluctuation analysis (DFA), Chen et al. [6, 7] studied the fractal properties and 

developed a cardiac stress index (CSI) to measure a subject’s cardiac stress status during a cycling 

exercise of a relatively short term. Nevertheless, little research attention has been paid to an 

operator’s short-term fatigue in actual or quasi-actual working situations.  

This paper aims to study the accumulation of fatigue and its effect on working accuracy during 

pipeline work. Section 2 elaborates the methods and materials, including the pre-processing of 

original RR interval series, the methods of DFA, and the experiment setting. Section 3 presents 

and discusses results of the experimental study. Finally, conclusions are drawn in section 4.  
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4.2 Methods and Materials 

4.2.1 Experiment Settings  

Eleven male university students (age 26±2.8) voluntarily participated in the experiment study, 

which was approved and conducted complying with the Kobe University Guidance of Research 

on Human Subjects. All experiments were conducted between 1-4 o’clock p.m. Caffeine intake 

and strenuous exercise were prohibited on the day of the experiment. Figure 4-1 shows the flow 

of the experiment settings. Before the participants signed the consent form, experiment purpose, 

its outline and their rights were explained. The experiments were arranged in the following 

temporal order: instruction and preparation (wear heart rate sensor), practice, two-minute rest, 

formal experiment, and two-minute recovery baseline. The recovery baseline condition was 
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measured three minutes after the formal experiment. Heart rate monitoring started before the two-

minute rest.  

Figure 4-2 shows the experiment apparatus, each flange that connected pipes consisted of four 

bolts. The bolts need to be tightened evenly and moderately to ensure sealability. In the practice 

session, the participants used a torque-measuring wrench to get used to a torque of 20Nm. During 

the formal experiment, the participants were instructed to tighten each of the bolts in a diagonally 

pattern, as evenly as possible using two traditional wrenches. The torque variance of the four bolts 

on each flange was used as a measure of work performance. Participants reported their subjective 

degree of fatigue corresponding to a number in Borg’s RPE scale every two flanges. The 

Instruction, practice, wear sensor, start HR 

monitoring 

Rest(2 mins) 

Conducting task 

RPE filled per 2 flanges 

RPE reaches 20 

Or finish tightening 26 flanges 

Baseline recovery 

situation 

(2 mins) 

 

Task Ends 

NO 

YES 

After 3 mins recovery 

Figure 4-1 Flow chart of experiment settings 
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experiment ended if a participant reported an RPE scale of 20 (exhausted) or finished tightening 

all 26 flanges.  

 

 

4.2.2 Detrended Fluctuation Analysis (DFA) 

DFA was firstly proposed by Peng et al. [8] and has been widely used to study the fractal properties 

and the long-term autocorrelations of a nonstationary time series. Fractal geometry was originally 

used to depict the roughness of a surface, but is applicable to time series data of the following 

essence: a process with stronger fractal characteristics does not adhere to equilibrium around any 

specific scale such as a constant heart rate [9]. According to [8,10], monofractal DFA consists of 

four steps as shown in equation (4-1) to (4-4). First, calculate the cumulative deviation of signal x, 

where 𝑥̅ is the mean of x:   

 

𝑌(𝑖) =  ∑ [𝑥𝑘 − 𝑥̅] 𝑖
𝑘=1 , 𝑖 = 1, … , 𝑁 

 

(4-1) 

 

Bolt & nut (M10) 

Flange (25A) 

Pipe (25A) 

Figure 4-2 Sketch of experiment apparatus, flanges and bolts 
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Then divide 𝑌(𝑖) into 𝑁𝑠 =  𝑖𝑛𝑡(𝑁/𝑠) nonoverlapping segments of length s. Calculate the local 

trend for each 𝑁𝑠 segment by a least-square fit of the series and determine the variance for each 

segment v=1,…,Ns: 

𝐹2(𝑣, 𝑠) =
1

𝑠
∑{𝑌[(𝑣 − 1)𝑠 + 𝑖] − 𝑦𝑣(𝑖)}2

𝑠

𝑖=1

 

For monofractal analysis, average 𝐹2(𝑣, 𝑠)  over all segments to obtain the second order 

fluctuation 𝐹(𝑠): 

𝐹(𝑠) = √
1

𝑁𝑠
∑ 𝐹2(𝑣, 𝑠)

𝑁𝑠

𝑣=1

 

Hurst exponent (HE) ℎ that characterizes fractal properties is then extracted from the slope by 

fitting the log-log linear relationship between 𝐹(𝑠) and s. s ranged from 4 to 60 with a step size of 

2 in this paper. 

ℎ =
𝑙𝑜𝑔2

𝐹(𝑠)

𝑙𝑜𝑔2
𝑠 + 𝑐 

According to [11], HE of biomedical signals generally ranges from 0.5 to 1.5. HE is 0.5 when the 

signal is white noise (Gauss distributed), while 1.0 indicates pink noise and 1.5 indicates brown 

noise.  

(4-2) 

(4-3) 

(4-4) 
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Figure 4-3 The range of Hurst exponents defines a continuum of fractal structures between white 

noise (H =0.5) and Brown noise (H =1.5). [14] 

4.2.3 Borg’s rating of perceived exertion 

 The Borg’s RPE is a ratio scaling methods to describe how subjective intensity varies with the 

physical intensity in exercise, heavy physical work, and diagnostic situations. The scale is a 

linearly increase from 6 to 20 (total 15 scales) rating of the interaction of physical exertion and 

muscle fatigue. The semantic definitions and the corresponding scale number is shown in Table 4-

1. 
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Table 4-1 The 15-grade rating and semantic definitions of Borg’s RPE scale 

Rating Perceived exertion 

6 No exertion at all 

7 Extremely light 

8  

9 Very light 

10  

11 Light 

12  

13 Somewhat hard 

14  

15 Hard 

16  

17 Very hard 

18  

19 Extremely hard 

20 Maximal exertion 

 

4.3 Results 

A Japanese translation of Borg’s RPE proposed and tested by [3] (Scheme C) was used as a 

subjective fatigue measure. Experiment data of one participant was not correctly recorded and was 

excluded from further analysis. Ten sets of experiment data are available for analysis and all data 

are presented in the form of means ± standard deviation (SD) over ten participants. RR interval 

data series were preprocessed using the combined filter (Section 2.2) to eliminate the effect of 

outliers on signal quality. The threshold value 𝑡1 was set as 30%, 𝑡2 was set as four and window 

length 𝑤𝑚 was five. Paired t test was used to check the statistical significance and p=0.05. The 

experiment ended after 24.6±2.5 flanges were tightened. Seven among the ten participants finished 

all 26 flanges without being exhausted. 
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4.3.1 Borg’s RPE and Heart rate 

HR of rest, pipeline work, and recovery baseline were 72.5±8.0, 98.0±11, and 83.7±12, 

respectively. The maximal rate of increase in heart rate during work condition was 62%±15%, 

indicating that heart rate significantly increased to adapt to workload. After cropping RR interval 

series into epochs of tightening every two flanges, Borg’s RPE highly correlated with the decrease 

of RR interval. The Pearson’s correlation coefficient was -0.81±0.2 and corresponds with the 

former study [2,3] that shows RPE scale is able to track the changes in HR. However, working 

performance (variance of torque) correlated neither with RPE scale nor with mean RR interval as 

shown in Figure 4-4. 

 

Figure 4-4 Participant 6: Negative correlation between mean RR interval and RPE scale. Green 

line shows SD of tightened torque of each flange and is considered as a measure of work 

accuracy 
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4.3.2 Working Accuracy and Hurst Exponent 

SD of tightened torque of each flange was considered as one performance measure since evenly 

tightened bolts were crucial for the sealability of connecting flanges. The first and the latter half 

of torque variance were 5.6±2.1 Nm and 6.2±2.0 Nm respectively, indicating that the bolts were 

more evenly tightened in the first half when participants’ degree of fatigue was lower, although 

the difference is not statistically significant (p=0.16) (Figure 4-5 b).  

 

Figure 4-5 (a). HE of rest, first half of pipeline work, second half of pipeline work, and recovery 

condition. (b). Torque variance during first half and second half of pipeline work. Error bar is SD 

over all participants 

To check the robustness of applying DFA to RR interval series, we randomly shuffled the RR 

interval series of one experiment 100 times. Randomly shuffled signals almost become white noise 

as h = 0.52±0.01. HE of rest, first half of pipeline work, second half of pipeline work, and recovery 

baseline were 0.91±0.17, 1.12±0.07, 1.19±0.10, and 1.08±0.18, respectively. HE of working 

condition was significantly higher than that of the rest condition (p=0.003). This result corresponds 

with the findings of [12], in which HE was found higher under the shooting exercise than under 

(a) (b) 
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the rest condition. In addition, HE during the second half of pipeline work was significantly higher 

than the first half (p=0.04), which might be explained by the accumulation of fatigue.  

Furthermore, RR interval series were cropped into segments that corresponded with the onset of 

tightening each flange and ended 40 seconds after the accomplishment of the tightening of each 

flange. HEs were then calculated as shown in Figure 4-6 and Figure 4-7. A weak positive 

correlation between HE and torque variance was found for five participants. The average Pearson’s 

correlation coefficient was 0.26±0.1. This indicates that the participant’s working accuracy was 

lower when HE was higher, although this relationship of cause-and-effect is unclear. 

 

 
Figure 4-6 Participant 6: Correlation between Hurst exponent and work accuracy 
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Figure 4-7 Participant 9: Correlation between Hurst exponent and work accuracy 

4.3.3 Cardiac Stress Index (CSI) 

Chen et al. developed a cardiac stress index to monitor human cardiac stress online during cycling 

exercise [6] and CSI was further proved in [7]. According to [7], CSI was defined as  

CSI = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ ℎ 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑎𝑛 1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠
 

In [7], HE h was calculated in a one-minute sliding window with a step of 20 seconds. In this study, 

tightening of every flange was considered as an event and the RR interval series were cropped into 

corresponding segments with a delay of 40 seconds. CSI of each participant was then calculated. 

However, from the beginning to the end of the pipeline work, CSI showed a decreasing trend rather 

than an increasing trend although the RPE scale indicated an increase in subjective fatigue. This 

inconsistency with former study [6,7] may be caused by the following: First, the Hurst exponent 

extracted from DFA is affected by the setting of scale s in equation (4-2) and (4-3), especially 

when the signal length is different. Second, in [6,7], the experiment task was a cycling exercise 
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that required relatively monotonous physical exertion of the lower extremities, while this paper 

studied a real-world task that required both complex physical exertion and mental attention.  

4.4 Discussions 

Early detection and avoidance of an operator’s fatigue and the following performance degradation 

would be helpful to improve safety as well as operator’s comfort. In an effort to develop a 

quantitative evaluation of the degree of operator fatigue in the conducting of pipeline work, an 

experiment was designed and conducted in this paper. Borg’s RPE scale, performance measure, 

and RR interval series were measured and analysed. These are the results:  

In the continuous pipeline work, RPE scale generally increases while RR interval decreases, and 

they are highly correlated (Pearson’s correlation coefficient r=-0.81±0.2);  

HE of working condition (h1=1.16±0.08) is significantly (paired T test, p=0.003) higher than 

baseline condition (h2=0.91±0.17), which indicates that RR interval series show more auto-

correlation structures in working condition compared to rest condition;  

Working performance in the first half (5.6±2.1 Nm) is better than the latter half (6.2±2.0 Nm), 

indicating that the bolts are more evenly tightened in the first half when participants’ degree of 

fatigue is lower, but the difference is not statistically significant;  

CSI derived from cycling exercise is not applicable to pipeline work in this study.  

The main limitation of this on-going study is the small sample size and this paper fails to develop 

a cross-individual regression model to predict working accuracy. Another limitation is that an error 

of performance measure existed since the measured torque of the tightened bolts was affected by 

the order of measuring. We expect to solve these limitations in a future study.  
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Chapter 5 Estimation of mental workload in actual 

ship operation 

In chapter 3, experiments were conducted in laboratory and simulator environment. Physiological 

signals were successfully measured under a relative controlled situation. However, real on-board 

environment is subject to many noise resources such as vibration and ship motions.  

For different individual subject, reference tasks whose difficulty is manipulated in a same range 

and pace, may elicit different arousal level. This is partially reflected by the results in chapter 3 

that subjects show different tendency of ceiling effect. In addition, task of different difficulty level 

can elicit similar arousal level, represented by close values of physiological features. 

5.1 Experiment settings 

The first engineer of the training ship ‘Fukae Maru’ participated in the experiment as the subject. 

The gross tonnage of Fukae maru is 674 ton, with a length of 49.95 meter. The main engine is a 4-

stroke diesel engine, and two diesel generators and a shaft generator are installed.  Fukae maru has 

a bow thruster and a stern thruster to increase manoeuvrability. The engine control console is 

installed at the bridge, but the distributor panel of electrical devices is installed inside the engine 

room. The subject was male, 60 years old, right handed, and had no disability. Caffeine intake and 

strenuous exercise were prohibited on the day of the experiment. Before the participants signed 

the consent form, experiment purpose, its outline and his rights were explained. The voyage was 
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arranged for a training course of large rudder-angle steering, started from around 15:00 pm and 

ended at 17:00 pm. The subject conducted n-back tasks at around 13:00 pm on the ship.  

 

Figure 5-2 Experiment apparutus, engine control console and distributed monitoring screen 

During the leaving port and entering port condition, the subject was in charge of operating and 

monitoring the engine system in the engine control console area. The subject had to verbal 

communicate with other engineers inside the engine room, the on-duty navigation officers, and the 

EEG sensor 

CCTV system Engine room monitoring 

Engine plant monitor 

Nautical map 

Engine control console 

Figure 5-1 Experiment apparutus, training ship fukae maru 
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chief engineer. He was free to walk around in the ship bridge, where the engine control console 

was set. Video recording and measurement of heart rate and EEG simultaneously started at 14:57 

and lasted 36 minutes and 13 seconds in leaving port condition. The entering port condition started 

at 16:25 and lasted 18 minutes and 41 seconds. Major events of the operation are summarized in 

Table 5-1, where the time is presented in the format of 2-digit minutes and seconds.  

Table 5-1 Major events of leaving port and entering port operations 

Leaving Port Entering Port 

Time Events Time Events 

0000 Start Recording 0:00 Start Recording 

0022 Start operation sequence 0037 Start Diesel generator 2(D.G 2) 

0109 

0114 

Clutch disengagement stop** 0155 

0220 

Dailogue 

0115 

0152 

Test hydraulic system of controllable 

pitch propeller (CPP) 

0206 

0210 

Anwser call from  E.R: confirm start 

diesel generator 

0158 Give start main engine order to E.R 0222 Button operation parallel generators 

0202 Watch main engine(M.E) monitor 0253 

0257 

Stand up and serch for C.E 

0216 Start M.E** 0342 Report to C.E: D.G 2 started  

0236     Turn prime pump to auto mode    0405 

0413 

Dialogue with C.E 

0550 Receive report: M.E normal  0414 Entering port ordered 

0553 

0720 

Report to captain: M.E normal 

Walk around bridge 

0424 

0443 

Stand up and dialogue with C.E 

1153 Leaving port ordered 0526 

0648 

Dialogue with C.E 

2313 Clutch engagement reported 

navigation officer (N.O) 

0758 

0811 

Prepare for starting S.G 

2324 

2335 

Prepare for starting shaft generator 

(S.G) 

0812 Button operation: start S.G 

2338 Start shaft generator 0843 Report to C.E: S.G normally start  

2411 Report to N.O: SG start 0845 Report to N.O: S.G normal 

2425 Transfer M.E control authority to 

Bridge, confirm from N.O 

0852 Bow thruster start, reported from 

N.O 

2439 CPP operated, reported from N.O 1420 Anwser call from E.R 

2447  Start thruster, reported from N.O 1516 

1518 

Dialogue with C.E 

2635 Leaving Port, from C.E 1531 

1535 

Dialogue with C.E 

Table 5-1 continued in next page  
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Table 5-1 continued 

3524 Call E.R: leaving port finish 1815 Button operation: stop S.G 

3710 Bow thruster stop, reported from 

captain 

1820 S.G clutch disengagement**  

3717 Button operation: stop S.G 1828 Finish Engine 

3728 S.G clutch disengagement**   

** Operated by Chief Engineer (C.E), First engineer (subject) confirm the operation 

The RS800CX (Polar Electronic) and the portable EEG device (Digital Medic Inc.) were used to 

continuously measure the subject’s RR interval series and EEG in conducting experiment tasks. 

Notice that there exist slight delays among the recording of EEG, HR, and video data. The delay 

is processed to align the calculation of physiological features in the following data-analysis.   
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5.2 VACP Models 

Table 5-2 Checklist of VACP model 

 

Based on the multiple resource model [1], the basic idea of evaluating operator’s information 

processing density is to divide the resource pool into four different channels: Visual, Auditory, 

Cognitive, Psychomotor (VACP).VACP model originates from the study of workload components 

INP

UT 

VISUAL 

No. Description Action Code Weight 

V1 Visual Detection Gaze <=2s 1 

V2 Visual Discrimination Gaze >2s, Static, Target-oriented 2 

V3 Visual Tracking Gaze >2s, Dynamic, Target-oriented. Moving ship 3 

V4 Visual Read, Searching, Orienting Dynamic, Visually high attentive. Find out target 4 

AUDITORY 

No. Description Action Code Weight 

A1 Auditory Detection Digital Signal, Sound. e.g. Telephone ring 1 

A2 Auditory Verification Auditory Feedback. e.g. confirm order 2 

A3 Auditory Decoding Speech, Semantic Content 3 

A4 Auditory Interpretation Sound patterns, Auditory high attentive 4 

Auditory Disturbance Background noise (non-directive) each 1 

COGNITIVE 

No. Description Action Code Weight 

C1 Automatic, Alternative Selection e.g. start one pump between two 1 

C2 Sign/Signal Recognition e.g. Alarm information CFW pressure 2 

C3 Evaluation/Judgement (Single Aspect) e.g. AB, linear cause and effect relation 3 

C4 Evaluation/Judgement (Several Aspect) e.g. ABC, interactive complex relationship 4 

OUT

PUT 

PSYCHOMOTOR 

No. Description Action Code Weight 

P1 Discrete Actuation, Speech, Walk e.g. Push Button, Talk, Walk, momonitoring 1 

P2 Continuous Adjusting Unimanual, e.g. Governer operation 2 

P3 Symbolic Production e.g. Writing, typing 3 

P4 Convergent Multiple Operations >=2 Extremities, 1 goal 4 

P5 Divergent Multiple Operations >=2 Extremities, >=1 goal, multi-tasking 5 
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in the operation of light weight helicopter [2]. They recognized four workload components: visual, 

auditory, cognitive, and psychomotor, and the respective overload threshold is defined. The 

semantic describe of the interval scale was further improved in [3]. There are also variants of 

VACP model adapted to apply in different context. For instance, Pfeffer et al. (2013) [4] replaced 

Cognitive component with a Haptic component and applied this VAHP model to the evaluation of 

workload in Anaesthesiology. Based on their study, a modified VACP model and semantic 

definitions of the weights of each component were designed as shown in Table 5-2. The weight of 

each channel is assigned with an orderly number according to the level of mental workload 

exposed to the subject. The standards of each scale are adjusted according to the characteristics of 

ship operation. As the engine control console is set on the ship bridge, where the captain 

communicate with the N.O occasionally, background noises on the bridge that affect the subject’s 

MWL is defined as V1 (Visual channel, weight 1, same in the following). Some operations require 

utilization of different channels. For example, when the subject verbal confirmed orders from C.E 

by face-to-face, the auditory weight is A2. However, when the subject confirm information by 

telephone, VACP score should include a P1 since the operator have to use on hand to hold the 

telephone. Besides, P1 is added to VACP when the subject moved his view focus from one screen 

to another screen. Furthermore, notice that V4 is defined as the discrimination of high attentional 

auditory signal, mainly the pre-set alarm signals, which rarely happen in actual situation. The 

weight of cognitive item is decided based on the background knowledge. Large weight cognitive 

activities would happen more frequently in emergency. Since leaving port and entering port are 

relatively routine operation procedures, the weight of cognitive item is generally small through the 

experiment.  
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In leaving port and entering port operation, we continuously recorded the video of the first engineer 

and the engine control console. The video data was analyzed after experiment and VACP score 

were summed each for a four-second window.  

The total VACP score is calculated by summing up the weight of four channels, 

V A C PVACP w w w w     

5.3 Evaluation of clustering quality 

The results of Chapter 3 shows that different physiological features are sensitive to mental 

workload for different subjects. In using a combination of physiological features to evaluate MWL, 

the effectiveness must be quantitatively defined. In cross-task classification, training data are from 

standard n-back task whose difficulty is orderly manipulated. Data sets with a large number of 

features and a limited number of observations, usually many features are not useful for producing 

a desired learning result and the limited observations may lead the learning algorithm to overfit to 

the noise. Furthermore, a smaller number of features can also reduce computation complexity and 

increase comprehensibility. Thus, it is necessary to choose a proper combination of features to 

estimate OFS. If the data points of one difficulty level cluster more compact, then it is more 

accurate to use these data points as training data of the corresponded classification label. Therefore, 

this section proposes an I-index to evaluate the quality of clustering in reference tasks.  

5.3.1 I-index  

The index I is a composition of three factors, namely, 1/K, E1/EK  and DK. The first factor will 

try to reduce index I as K is increased. The second factor consists of the ratio of E1, which is 

constant for a given data set, and EK, which decreases with increase in K. Hence, because of this 

term, index I increases as EK decreases. This, in turn, indicates that formation of more numbers of 
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clusters, which are compact in nature, would be encouraged. Finally, the third factor, DK (which 

measures the maximum separation between two clusters over all possible pairs of clusters), will 

increase with the value of K. However, note that this value is upper bounded by the maximum 

separation between two points in the data set. Thus, the three factors are found to compete with 

and balance each other critically [5]. The power p is used to control the contrast between the 

different cluster configurations. In this article, we have taken p=2. The i-index is considered  

11
(K) ,

p

K

K

E
I D

K E

 
   
   

Where E1 is to assume that all data points belong to one single cluster, and calculated as  

1 1

1

n

j

j

E x z


 
 

Ek is the sum of the within cluster distance in the kth cluster, 

1 1

K n

K j k

k j

E x z
 

 
 

Dk is the maximum distance between different clusters, calculated as 

, 1
max

K

K i j
i j

D z z


 
 

 K is Number of clusters, 

 zj is center of jth cluster, 

 xj is the points in jth cluster. 

 

(5-1) 

(5-2) 

(5-3) 

(5-4) 
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5.3.2 Euclidian distance and Mahalanobis distance  

Two methods are used to calculate the distance. Euclidean distance is generally defined as point-

to-point distance. Euclidean distance is also known as geometrical distance. Before calculating 

Euclidean distance, the variables of input features must be normalized to eliminate the effect of 

different scales and units. In this chapter, for a single feature, the 0-1 normalization is utilized 

across all data included in analysis. Equation (5-5) shows the definition of 0-1 normalization, 

where 
maxx , 

minx  is the maximum and minimum value of a series 
ix , and 

iz  is the corresponded 

0-1 normalized data. Equation (5-6) shows the definition of Euclidean distance between two data 

points 
ix and 

iy . 

min

max min

i
i

x x
z

x x





 

2

1

( , ) ( )
n

E i i

i

d x y x y


   

The Mahalanobis distance is a measure of the distance between a point P and a sample G of a 

distribution, introduced by Indian statistician P. C. Mahalanobis in 1936. It is a multi-dimensional 

generalization of the idea of measuring how many standard deviations away a point is from the 

mean of a sample. Equation (5-7) shows the definition of Mahalanobis distance, where  is the 

means vector of variables,   is the covariance matrix of sample G. In calculating Mahalanobis 

distance, it is not necessary to normalize data series. 

1

1( ,G) ( ) ( )T

Md x x x    
 

(5-5) 

(5-6) 

(5-7) 
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Mahalanobis distance between two samples 
1 2G ,G  from a distribution can also be calculated as 

shown in (5-8), where the covariance matrix of this distribution can be estimated from the 

respective samples as shown in Equation (5-9).  

1

2 1 2 1 2 1 2(G ,G ) ( ) ( )T

Md         

1 1 2 2

1 2

(n 1) (n 1)

n n 2

    
 

 
 

Where 1 2 ，  are the mean vector, 
1  and 

2  are the covariance matrices of 
1G  and 

2G . 
1n  

and 
2n  are the respective size of sample 

1G  and 
2G .  

(5-8) 

(5-9) 
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 Figure 5-3 shows the flow chart of the feature selection process. After extracting the six features 

from the clean HBI and EEG signals, the combination consisted of 2, 3 ,4, 5, and all 6 features are 

formed successively. The number of combination each with 2, 3, 4, 5, 6 input features are 15, 20, 

15, 6, and 1 respectively. For each combination, I-index are calculated in three conditions and the 

Measuring raw physiological signals 

Extract physiological features 

Choose combinations of features 

(2,3,4,5,6) 

4-level to 3-level clustering 

Merge 

Find a pair of 

clusters with 

minimum distance 

Find the cluster 

of max within 

cluster distance 

Delete 

I-index of 

three clusters 

I-index of 

three clusters 
I-index of four 

clusters 

Choose maximum I-index of a combination 

Artefact/outlier reduction 

Next 

Decide input features 

Figure 5-3 Flow chart of clustering quality analysis and feature selection 
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maximum I-index is chosen as the I-index of the combination. First, find out a pair of clusters with 

minimum distance and merge these two clusters. Second, find out the cluster that have maximum 

within cluster distance and delete this cluster from the 4-level clustering. Third, keep the 4-level 

clustering.  Last, compare the I-index of each combination and choose the combination and method 

that make the I-index maximum.  

5.3.3 N-back task clustering 

Six physiological features were extracted for both n-back task, leaving port, and entering port 

operation tasks. Three HR based features are same to that in Chapter 4, namely MHBI, sdHBI, 

LF/HF ratio. MHBI and sdHBI were calculated in a non-overlapped 4-second window. To ensure 

the minimum length (30 seconds) for calculating frequency domain of RR interval, a moving 

window with 13-second advance and 13-second delay, centered at the four-second segment, was 

used to calculate LFHF.  For EEG based features, time domain data for each difficulty level of two 

types of tasks were DFFT to three wave bands in a non-overlapped 4-second window. These bands 

were theta (4-7Hz), alpha (8-13Hz) and beta (20-25Hz) and the power spectral was estimated based 

on period-gram method. Alpha wave rate r  was defined as  

sum

P
r

P


    

P P P     was the power of alpha band in one second and 
sumP was the sum of power bands from 

1Hz to 30Hz. Notice that herein 
sumP  is used as the denominator instead of P P P     because if 

so one EEG feature will be linear represented by the other two EEG features in the use of 

P P P    . Under this circumstance, the input matrix will not be full rank, and the Mahalanobis 
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distance will not be available. The length of each level of n-back task is 77-78 seconds, thus there 

are 19 data points for each level.  

 

 

Figure 5-4 Clustering quality, using MHBI and LFHF as features 

By calculating Euclidean distance, Figure 5-4 shows the clustering quality in using a combination 

of two features, MHBI and LFHF. The I-index of four-level clustering is 0.83 and increases to 

1.54 if the cluster of 3-back task is delete from analysis. Therefore, if it is limited that only use a 

combination of two features as input, then the training strategy is to use 0-back, 1-back, and 2-

back as low, normal, high mental workload cluster, and the input features are MHBI and LFHF(as 

shown in Table 5-3). The I-index of four-level clustering I4 = 1.00. The cluster of 1-back and 2-

back task is found with minimum between-cluster distance, therefore 1-back and 2-back are 

combined as the normal MWL cluster while 0-back is considered as the low condition and 3-back 

is considered as high MWL condition. The maximum I-index of merge-method is Im = 1.18 when 

use the combination of [alpha wave rate, theta wave rate, MHBI, sdHBI, LFHF] as the input 

features. On the other hand, by delete the cluster of 3-back, the maximum I-index is Id=1.66 when 

use the combination of [alpha wave rate, theta wave rate, MHBI, sdHBI, LFHF] as the input 
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features. Since Id > Im> I4, delete-method is used to construct the three-level training data. In detail, 

feature vector of [ r  , r ,MHBI, sdHBI, LFHF] under 0-back, 1-back, and 2-back task are 

considered as low, normal, and high MWL training data set respectively.  

Table 5-3 I-index results of selection process 

 Combination Merge Delete Four cluster 

Euclidean 

distance 

alpha, theta, MHBI, 

sdHBI, LFHF 

1-back and 2-

back  

1.18 

4-back 

1.66 

1.00 

Mahalanobis 

distance 

alpha, beta, MHBI, 

sdHBI, LFHF 

2-back & 3-

back 

0.60 

4-back 

0.80 

0.57 

 

5.4 Estimation of mental workload 

The estimation of mental workload was calculated by two methods: k-NN algorithms and 

Euclidean distance, and Mahalanobis distance based estimation 

5.4.1 Classification based on Euclidean distance and k-NN algorithms 

 The k nearest neighbour (k-NN) classifier is one of the most basic pattern recognition methods, 

first proposed by Cover and Hart in 1967 [6]. The basic principle of k-NN is the intuitive idea that 

data points belong to a same cluster should be close to each other in the feature space. The input 

of k-NN classifier is feature vector f , corresponding to a point in the feature space. The output is 

classification label l , which can be dichotomous or multiple levelled. In this paper, cluster label 

set c =[low, normal, high]. The training data set is built as shown in Equation (5-10) 

2 2{( ),( ),..., ( )}1 1 N NT f ,l f ,l f ,l  (5-10) 
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Where N is the size of training data set. If we have a point ( )t tf ,l  to be classified, find out k nearest 

points and denote this neighbour-space as ( )kN f . The estimated label is  

( )

arg max ( ), 1,2,..., ; 1,2,...
j

j k

i j
c

f N f

l I l c i N j K


     

Where ( )i jI l c =1 when 
i jl c and ( )i jI l c =0 when  

i jl c . 

In the choice of parameter k, a smaller k would cause the increase of estimation error. In other 

words, the predicted label would be very sensitive to the outlier points within the neighbour-space 

( )kN f . A bigger k would cause the increase of approximation error, namely even point far from 

test data would also have impact on the predicted result. The classification model would become 

simpler when parameter k is bigger. 

To decide the choice of parameter k, ten-fold cross validation is used to check the within n-back 

task classification accuracy. Ten-fold cross validation is to randomly and averagely divide the 

sample into ten sets, nine sets of data as training data and the left one set is used as test data set. 

This validation process is repeated ten times to ensure all data has been used as test data. The 

parameter k varies from 1 to 19, and the result shows that the error rate is minimum when k=3.  

The input feature vector is [ r  , r ,MHBI, sdHBI, LFHF], parameter k = 3, and the  knnclassify 

function integrated in matlab is used as calculation algorithms.  

(5-11) 
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Figure 5-5 Estimated mental workload based on Euclidean distance: Leaving port 

Figure 5-5 shows one analysis result of leaving port condition. The classification period is 23:00-

27:16, lasted 256 seconds. By using the training data of n-back task, MWL in conducting maritime 

operation tasks is estimated. The red, green, and blue rectangle represent high, normal, and low 

MWL. The blue and red line show the instantaneous change of heart rate and theta wave rate. The 

rectangles with different gray scale represent different weights of VACP score. Higher gray scale 

represents higher weight of VACP. The red, green, and blue squares in the upper part of Figure 5-

5 represents the estimated MWL is high, normal, and low respectively.  

The linear correlation between estimated MWL and VACP score is checked by calculating Pearson’ 

correlation coefficient r. A low positive correlation is found, with r=0.16. 
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Figure 5-6 shows one analysis result of entering port condition. The classification period is 7:00-

11:16, lasted 256 seconds.  No linear correlation is found between estimated MWL and VACP 

score.  

 

Figure 5-6 Estimated mental workload based on Euclidean distance: Entering port 

5.4.2 Classification based on Mahalanobis distance 

Based on the Mahalanobis distance method, the choice of significant features were chosen 

according to the flowchart shown in Figure 5-3. The cluster of 2-back and 3-back is found with 

minimum cross cluster distance, the I-index of merging 2-back and 3-back cluster is 0.60. 3-back 

task cluster is found to have the maximum within cluster distance. By deleting 3-back cluster, the 

I-index of three level clustering is 0.80. Therefore, 4-level clustering is changed to 3-level 
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clustering by deleting the cluster of 3-back task. The feature combination is [ r  , r , MHBI, sdHBI, 

LFHF].  

Mahalanobis distance based classification is to calculate the mahalanobis distance between a test 

data point and a sample, and assign the point to the cluster with minimum distance.  

 

 Figure 5-7 Estimated mental workload based on Mahalanobis distance: Leaving port  

In leaving port condition, no significant correlation was found between VACP and mahalanobis 

based estimated MWL. Most of the points are assigned to low MWL situation because the 

covariance of 0-back cluster is obviously bigger, making the mahalanobis distance between a point 

and 0-back cluster smaller.  

Figure 5-8 shows the mahalanobis distance based analysis of example of entering port condition. 

No linear correlation between VACP score and estimated MWL level is found.  
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Figure 5-8 Estimated mental workload based on Mahalanobis distance: Entering port 

5.5 Discussions 

The subject was asked to answer NASA-TLX after each level of n-back task, leaving port, and 

entering port situation. From 0-back to 3-back task, the weighted NASA-TLX monotonously 

increases. Meanwhile, mental demand of 3-back task decreases compare to the increasing tendency 

from 0-back to 2-back, which corresponds with the finding of ceiling effect. The first item of the 

six items in the NASA-TLX scale is mental demand, representing the degree of mental and 

perceptual activities required in the task. Compare to the weighted TLX, mental demand is a pure 

measure of subjective mental stress. Therefore, the rating of mental demand is also examined in 

the analysis. As shown in Figure 5-9, both mental demand and weighted TLX are lower in entering 

port compared to leaving port, indicating that the subject felt lower MWL in entering port 
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condition. This is corresponded with the fact that there were less events happened recognized by 

VACP model in entering port. 

 

Figure 5-9 Mental demand and NASA-TLX 

Based on k-NN classifier, the estimated NASA-TLX in leaving port condition is 10.4  and in 

entering port condition it is 9.5. Based on mahalanobis distance classifier, the estimated NASA-

TLX in leaving port condition is 6.1 and in entering port condition it is 5.9. The estimated NASA-

TLX corresponds with the reported NASA-TLX that the operator felt more mentally demanded in 

leaving port condtion than in entering port condition.  

Both the subjective measure and the physiological features based estimation shows that the 

subject’s MWL in leaving port condition is higher than in entering port condition. This might be 

explained by the following two reasons. First, start the engine system and maintain it work 

normally requires more mental resources than simply switching off the engine system. Second, 

after leaving port condition, the engine system continues to work and the subject has to continue 

his on watch duty, while the subject has free time after entering the port. This provides information 
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that MWL should be noticed more in leaving port operation and the authority should try to reduce 

the quantity of work during leaving port operations and tasks with lower priority should be 

arranged during ocean going condition. Although it is found that leaving port condition is more 

demanding than entering port condition, it is also true that the subject’s degree of fatigue may be 

higher after the voyage compared to before the voyage.  

By using physiological features as the input of classification algorithms, the operator’s MWL can 

be continuouly monitored. The operation periodes marked as high MWL are more demanding and 

countermeasures should be taken to avoide prolonged high MWL operations.   
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Chapter 6 Conclusions, summary, and future 

research 

The effectiveness and safety of many real-world complex human-machine systems rely on the 

normal functional states of both human operators and the machinery systems, and their cooperative 

interactions. This paper focuses on the research of modelling and quantitatively evaluating the 

human operator functional state and its interaction with machinery systems. The findings of this 

paper provide a potential solution to reduce human error and to improve human operator’s comfort 

in the maritime domain.  

To manipulate the subjects’ cognitive state, standard psychological experiment schemes (e.g. 

auditory/visual n-back) were developed by using E-prime Software. Simulator based operation 

scenario, on-board field study, and quasi real-world tasks were designed to ensure the successful 

manipulation of physical and mental state in various environment. In Chapter 5, human functions 

were decomposed into four channels: Visual, Auditory, Cognitive, and Psychomotor (VACP), 

whose quantitative integration was used as one of the ground truth measure. Subjective 

questionnaires (NASA-TLX, Borg’s RPE scale etc.) were also collected as reference information. 

Body movement, vehicle vibration, loose electrodes contact, and verbal communication can easily 

contaminate EEG and HRV signals. A combination of recursive percentage filter and median filter 

was used to detect and replace outliers of RR interval series. In my attempt to eliminate artifact of 

single-channel EEG, which is always contaminated across all relevant power bands, an 

accelerometer was directly attached to EEG electrodes to measure electrodes vibration. A linear 

model that based on calculating covariance and maximizing independence has been proved 

effective in reducing artifact of small amplitude across wide range of power bands (1-40 Hz). In 



96 

 

an experimental study, the subject’s EEG signal was measured in three situations, keep still, verbal 

speaking, and walking around. The linear model eliminates body movement artefact caused by 

verbal communication. 

Both time-domain and frequency domain (FFT based) features are extracted and their effectiveness 

are firstly studied by using ANOVA, T-test, and Correlation analysis. In choosing proper 

combination of these features, clustering quality is determined by I-index, which is based on the 

ratio between cross clusters distance and within cluster distance. The distance between cluster 

centres are calculated by Euclidean distance and Mahalanobis distance. The best combination of 

features are chosen when I-index reaches its maximum value. In using RR interval data to evaluate 

operator fatigue, Hurst exponent is extracted by Detrended fluctuation analysis (DFA), it is found 

that RR interval shows more autocorrelation structures during work situation than in rest situation, 

representing a larger Hurst exponent in work situation. Furthermore, average RR interval highly 

correlates with the subjective fatigue scale, Borg’s RPE scale.  

With the rapid development of Interne of Things (IoT) technology, the proposal of connecting the 

offshore machinery systems and onshore management centre has appeared. Sensors are used to 

monitor the status of main engine and auxiliary machineries, and these data are transformed to 

onshore centre to make high-level support for shipping decisions such as whether routing and 

condition based maintenance. Meanwhile, the OFS evaluation methods developed in this thesis 

provide the potential to extend this proposal by further transforming the physiological data of 

offshore ship operator, which is measured by wearable sensors, to the onshore centre. The OFS of 

key operator can be modelled and evaluated based physiological features. As the abnormal 

function of key operator is the major precursor of human error accident, the onshore centre and 
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the offshore authority thus can take measures to avoid human error from the root as long as the 

foreboding such as high fatigue level appears.  

Using neurophysiological signals to estimate cognitive or affective states and designing 

applications that make use of this information require multidisciplinary expertise such as 

neurophysiology, machine learning, experimental psychology, and human factors. As a researcher 

with an engineering background, I am highly motivated to overcome the obstacles of applying this 

promising technology to a wide range of real-world scenarios in my future research. The basic 

concept of application is Operator Functional State based Adaptive Automation (OFS-AA). 

Adaptive automation refers to the idea of an automated system that can adapt to a changing 

environment, herein the operator’s functional states. Based on my previous research experience, I 

aim to design an OFS-AA system and plan to solve the following specific problems in future 

research (short-term). In current lab-level studies, one single human state (i.e. workload) is usually 

targeted because it is easy to control and we can avoid other factors that may affect 

neurophysiological signals. However, according to my previous research, when task demand 

exceeds the capacity of mental resources, the operator will tend to fall behind with the pace of the 

task and show a lower activation level, and this is generally associated with a degree of 

performance degradation. The neurophysiological features during lower activation caused by over-

load or fatigue are mixed with the features extracted from proper lower workload situations. 

Features of high diagnostic quality, namely the ability of one feature (i.e. Alpha band) to infer a 

specific cognitive state (i.e. boring) and remain unaffected by related factors (i.e. fatigue), should 

be developed. From the viewpoint of data driven methods, we can directly delete the cluster 

showing ceiling effect by calculating maximum within-cluster distance. From the viewpoint go 

mechanism study, it is promising to build a trigger mechanism by studying the transitional variance 
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of activation in different brain areas (i.e. frontal to post cerebral). Physiological activity and its 

effect on measured electrical signals are affected by the complex interaction between external 

stimulus and internal physiological compensation mechanisms. Regarding the process as a black 

box, this paper used data-driven methods to check the temporal delay between stimulus and signal 

fluctuation. For example, by using RR interval series to evaluate fatigue, and setting the time lag 

as [-10:5:40] seconds, goal-driven optimization objective functions were defined. However, the 

solutions oscillated greatly under situations with different evaluation goals. an experiment that is 

more elaborate and utilize methods that are more complicated (i.e. Granger Causal Relation Test) 

should be designed to unravel the causal inference issue, thus to improve prediction accuracy. In 

detail, the findings of this paper would become more applicable to real world scenarios if the 

following aspects can be improved. First, in EEG measurements, eliminating artefacts caused by 

body movement is still a troublesome issue. According to the finds in this paper, I plan to focus 

on developing decomposition methods that utilize information of electrode vibration measured by 

accelerometer. Second, wearable sensors are rapidly being improved; a possible future direction 

may be to integrate these sensors into objects of daily use, e.g. EEG measuring safety helmet, heart 

rate monitoring undergarments, and view tracking glasses. Third, gain high-quality training data 

by having subjects conduct standard psychological task schemes that are able to elicit 

physiological responses close to real-world tasks.  
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Appendix 

Original NASA Task Load Index and Japanese translation 

Title 

項目 

Description 

説明 

Mental 

Demand 

知的・知覚

要求 

How much mental and perceptual activity was required (e.g. Thinking, deciding, 

calculating, remembering, looking, searching.)? Was the task easy or demanding, simple 

or complex, exacting or forgiving 

どの程度の知的・知覚的活動を必要とするか． 

（例えば，思考する/判断する/計算する/思い出す/見る/検索する） 

課題は，簡単/厳しい．単純/複雑．正確さが求められる/大雑把でよかったか． 

Physical 

Demand 

身体的要求 

How much physical activity was required (e.g. pushing, pulling, turning, controlling, 

activating.)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or 

laborious?  

どの程度の身体活動を必要としたか。（例えば、押す/引く/回す/制御する/活性

する） 

仕事は，簡単/厳しい，ゆっくり/きびきび，緩い/きつい，安らか/骨の折れる，

でしたか． 

Temporal 

Demand 

タイムプレ

ッシャー 

How much time pressure did you feel due to the rate or pace at which the task or task 

elements occurred? Was the pace slow and leisurely or rapid and frantic?  

仕事のペースまたは課題が発生する頻度のために感じる時間的な切迫感がどの

程度か． 

ペースは，ゆっくりで余裕のあるもの/速くて余裕のないもの，でしたか． 

Performance 

作業成績 

How successful do you think you were in accomplishing the goals of the task set by the 

experimenter?  How satisfied were you with your performance in accomplishing these 

goals?  

実験指示者によって設定された課題の目標をどのくらい到達していると考える

か． 

目標の達成に関して自分の作業成績にどの程度満足しているか． 

Effort 

労力 

How hard did you have to work (mentally and physically) to accomplish your level of 

performance?  

作業成績のレベルを達成・維持するために，精神的・身体的にどの程度いっし

ょうけんめいに作業しなければならないか． 

Frustration 

Level 

フラストレ

ーション 

How insecure, discouraged, irritated, stressed, and annoyed versus secure, gratified, 

content, relaxed, and complacent did you feel during the task? 

作業中に，不安，落胆，イライラ，ストレス，悩みをどの程度感じたか。ある

いは逆に安心感，満足感，楽しさ，リラックスをどの程度感じるか． 
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Borg’s Rating of Perceived Exertion and Japanese translation 
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Research Participation Consent Form (In Japanese) 

研究参加に関する同意書 

 

 このたび、MEPS（Marine Engine Plant Simulator）を使用した人間反応計測に関する研究に参加す

るに当たり、担当者より以下の項目につきまして、十分に説明を受けました。 

 

① 研究の目的。（別紙） 

 

② 実験の方法。(別紙) 

 

③ 実験への参加は協力者の自由意思によるものであり、研究への参加を随時拒否、撤回出来るこ

と。また、これによって協力者が不利な扱いを受けないこと。 

 

④ データの管理には細心の注意を払うこと。 

 

⑤ 結果の公表の仕方について。また、結果が公表される場合であっても、協力者のプライバシー

は確保されること。 

 

⑥ 研究責任者の氏名、職名、連絡先。 

 

本実験は人間反応を計測するためのもので、個人の能力を測るためのものではございません。上記

の内容を十分に理解し、承知した上で、自ら本研究に参加することに同意します。 

 

説明日：     年   月   日 

 

説明者：                   

 

説明者所属：                     

 

同意年月日：     年   月   日 

 

研究協力者：                    

 

本同意書は、研究協力者と研究責任者が一部ずつ保管する。 
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