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RELATIONS AMONG ALEXANDER-CONWAY POLYNOMIALS

OF TURK’S HEAD LINKS

ATSUSHI TAKEMURA

Abstract. The (m,n)-Turk’s head link is presented by the alternating dia-

gram which is obtained from the standard diagram of the (m,n)-torus link by
crossing changes. In this paper, we show the two properties. First, we show
that for any integers m ≥ 1 and n = 2, 3, the coefficients of zi in the Conway

polynomials of the (m,n)- and (n,m)-Turk’s head links coincide for i ≡ 0, 1
(mod 4) and differ by sign for i ≡ 2, 3 (mod 4). We conjecture that this prop-
erty holds for any n. Second, we show that for any positive integers a, b,m, n,
the Alexander polynomial of the (am, bn)-Turk’s head link is divisible by that

of the (m,n)-Turk’s head link.

1. Introduction

The (m,n)-Turk’s head link TH(m,n) is presented by the alternating diagram
which is obtained from the standard diagram of the (m,n)-torus link by crossing
changes. There are several studies on Turk’s head links (cf. [3, 4, 6, 10]).

It is well-known that the (m,n)- and (n,m)-torus links have the same link type,
and hence, their invariants are the same. However, the (m,n)- and (n,m)-Turk’s
head links have distinct link types ([10]) and their invariants are not the same
generally.

The Jones polynomials VTH(m,n)(t) and the Alexander polynomials ∆TH(m,n)(t)
for {m,n} = {6, 2} and {5, 3} are given by the following.

VTH(6,2)(t) = −t−
7
2 + 3t−

5
2 − 6t−

3
2 + 9t−

1
2

−11t
1
2 + 12t

3
2 − 11t

5
2 + 8t

7
2 − 6t

9
2 + 2t

11
2 − t

13
2 ,

VTH(2,6)(t) = −t
5
2 − t

9
2 + t

11
2 − t

13
2 + t

15
2 − t

17
2 ,

VTH(5,3)(t) = t−6 − 6t−5 + 16t−4 − 30t−3 + 44t−2 − 54t−1

+59− 54t+ 44t2 − 30t3 + 16t4 − 6t5 + t6,

VTH(3,5)(t) = −t−5 + 5t−4 − 10t−3 + 15t−2 − 19t−1

+21− 19t+ 15t2 − 10t3 + 5t4 − t5,{
∆TH(6,2)(t) = t−

5
2 − 9t−

3
2 + 25t−

1
2 − 25t

1
2 + 9t

3
2 − t

5
2 ,

∆TH(2,6)(t) = t−
5
2 − t−

3
2 + t−

1
2 − t

1
2 + t

3
2 − t

5
2 ,{

∆TH(5,3)(t) = t−4 − 10t−3 + 39t−2 − 80t−1 + 101− 80t+ 39t2 − 10t3 + t4, and

∆TH(3,5)(t) = t−4 − 6t−3 + 15t−2 − 24t−1 + 29− 24t+ 15t2 − 6t3 + t4.
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The Jones polynomials of the (m,n)- and (n,m)-Turk’s head links are quite differ-
ent. Although the Alexander polynomials also look different, their Conway poly-
nomials are similar as follows.{

∇TH(6,2)(z) = −3z + 4z3 − z5,

∇TH(2,6)(z) = −3z − 4z3 − z5,{
∇TH(5,3)(z) = 1 + 2z2 − z4 − 2z6 + z8, and

∇TH(3,5)(z) = 1− 2z2 − z4 + 2z6 + z8.

We observe that the coefficients of zi in ∇TH(m,n)(z) and ∇TH(n,m)(z) coincide or
differ by sign. In addition, we calculate the Conway polynomials of Turk’s head
links for n = 2, 3 as follows.{

∇TH(3,2)(z) = 1− z2,

∇TH(2,3)(z) = 1 + z2,{
∇TH(4,2)(z) = −2z + z3,

∇TH(2,4)(z) = −2z − z3,{
∇TH(5,2)(z) = 1− 3z2 + z4,

∇TH(2,5)(z) = 1 + 3z2 + z4,{
∇TH(10,2)(z) = −5z + 20z3 − 21z5 + 8z7 − z9,

∇TH(2,10)(z) = −5z − 20z3 − 21z5 − 8z7 − z9,{
∇TH(4,3)(z) = 1− z2 − z4 + z6,

∇TH(3,4)(z) = 1 + z2 − z4 − z6,{
∇TH(6,3)(z) = 4z4 − 3z8 + z10,

∇TH(3,6)(z) = 4z4 − 3z8 − z10,{
∇TH(10,3)(z) = 1− 3z2 − 6z4 + 18z6 + 11z8 − 29z10 + 2z12 + 14z14 − 7z16 + z18,

∇TH(3,10)(z) = 1 + 3z2 − 6z4 − 18z6 + 11z8 + 29z10 + 2z12 − 14z14 − 7z16 − z18,

∇TH(2,2)(z) = −z, and

∇TH(3,3)(z) = z4.

The first aim of this paper is to generalize this property as follows.

Theorem 1.1. For any integers m ≥ 1 and n = 2, 3, the Conway polynomials

∇TH(m,n)(z) =

∞∑
i=0

aiz
i and ∇TH(n,m)(z) =

∞∑
i=0

biz
i

of the (m,n)- and (n,m)-Turk’s head links satisfy{
ai = bi for i ≡ 0, 1 (mod 4), and

ai = −bi for i ≡ 2, 3 (mod 4).

We can not prove this Theorem for n ≥ 4 yet. To prove this Theorem for n ≥ 4,
Theorem 1.3 may be useful.

It is known that the Alexander polynomial ∆T (m,n)(t) of the (m,n)-torus link
T (m,n) is given by the following.
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Theorem 1.2 (cf. [8]). For any positive integers m and n, we have

∆T (m,n)(t) =
(t− 1)(t

mn
µ − 1)µ

(tm − 1)(tn − 1)
,

where µ is the greatest common divisor of m and n.

By this theorem, we can easily see that ∆T (am,bn)(t) is divisible by ∆T (m,n)(t) for
any positive integers a, b,m, n.

In this paper, we study the Alexander polynomial ∆TH(m,n)(t) of the (m,n)-
Turk’s head link TH(m,n). For example, we have

∆TH(2,3)(t) = t−1 − 1 + t,

∆TH(4,3)(t) = ∆TH(2,3)(t) · (t−1 − 3 + t)2,

∆TH(2,6)(t) = ∆TH(2,3)(t) · (t−
1
2 − t

1
2 )(t−1 + 1 + t), and

∆TH(4,6)(t) = ∆TH(2,3)(t) · (t−
1
2 − t

1
2 )(t−1 + 1 + t)(t−1 − 3 + t)2

·(t−1 − 1 + t)2(t−1 − 4 + t).

In particular, ∆TH(4,3)(t), ∆TH(2,6)(t), and ∆TH(4,6)(t) are divisible by ∆TH(2,3)(t).
The second aim of this paper is to generalize this property as follows.

Theorem 1.3. For any positive integers a, b,m, n, ∆TH(am,bn)(t) is divisible by
∆TH(m,n)(t).

Theorem 1.3 for a = 1 can be proved by a property of periodic links in [9, 11].
We remark that the (m, bn)-Turk’s head link is a periodic link of order b, and the
quotient is the (m,n)-Turk’s head link. In this paper, we give an alternative proof
from another viewpoint.

This paper is organized as follows. In Section 2, we review braids, Turk’s head
links, and the Conway polynomial. In Sections 3 and 4, we prove Theorem 1.1
for n = 2 and 3, respectively. In Section 5, we give supporting computational
evidence for the conjecture that Theorem 1.1 holds for any n ≥ 2 by the program
“knotGTK” ([12]), which is the Windows version of the program “KNOT” ([5]). In
Section 6, we give a Seifert matrix for TH(m,n). In Section 7, we give a formula
of ∆TH(m,n)(t) by the determinant of a certain matrix of size n− 1 (Theorem 7.1).
In Section 8, we prove that ∆TH(cm,n)(t) is divisible by ∆TH(m,n)(t). In Section 9,
we prove that ∆TH(m,cn)(t) is divisible by ∆TH(m,n)(t). The combination of these
results implies Theorem 1.3 immediately.

2. Definitions

A braid is a collection of n parallel strands such that adjacent strands are allowed
to cross over or under one another (cf. [1, 2]). Two braids on the same number
of strands can be composed by placing them end to end. The braid group on n
strands has a presentation with generators σ1, σ2, . . . , σn−1 and the relations

σiσi+1σi = σi+1σiσi+1, and σiσj = σjσi for |i− j| ≥ 2.

Here σi is the braid as shown in Figure 1. In this paper every braid is oriented
from top to bottom.

Given a braid α, the closure of α is the oriented link obtained by connecting the
top and bottom of α simply as shown in Figure 2. We denote it by Cl(α).
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Figure 1

→

Figure 2

A Markov move of type 1 takes an n-strand braid to another n-strand braid via
conjugation by σi for some i ∈ {1, 2, . . . , n− 1}. A Markov move of type 2 takes an
n-strand braid to an (n+1)-strand braid by adding σn or σ−1

n to the end. In other
words, an n-strand braid α becomes ασn or ασ−1

n .

Theorem 2.1 ([7]). The closures of two braids present the same knot or link if
and only if one braid can be deformed into the other by a finite number of Markov
moves or their inverses. □

We denote by Am and A∗
m the m-strand braids as shown in Figure 3.

...

...

...

...

Figure 3

Definition 2.2 ([10]). For any integrs m,n ≥ 2, the (m,n)-Turk’s head link is the
closure of the m-strand braid (Am)n. We denote it by TH(m,n).
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We remark that the number of components of TH(m,n) is the greatest common
divisor GCD(m,n).

The Conway polynomial ∇L(z) of an oriented link L is a polynomial on z, which
is computed by the following recursive formulas:{

∇L+(z)−∇L−(z) = z∇L0(z), and

∇⃝(z) = 1,

where ⃝ is the trivial knot and (L+, L−, L0) is a skein triple of oriented knots or
links that are identical except in a crossing neighborhood where they look as in
Figure 4. We often abbreviate ∇L(z) to ∇L.

Figure 4

We denote by L∗ the mirror image of a link L. The Conway polynomial ∇L∗

satisfies

∇L∗ =

{
∇L if the number of components of L is odd,

−∇L if the number of components of L is even.

3. The Conway polynomials of TH(m, 2) and TH(2,m)

In this section, we prove Theorem 1.1 for n = 2.

Lemma 3.1. The Conway polynomial of TH(m, 2) satisfies
∇TH(1,2) = 1,

∇TH(2,2) = −z, and

∇TH(m,2) = ∇TH(m−2,2) − (−1)mz∇TH(m−1,2) (m ≥ 3).

Proof. Since TH(1, 2) is the trivial knot, we have ∇TH(1,2) = 1. By the skein
relation, it holds that

∇TH(2,2) = ∇Cl(σ1σ1)

= ∇Cl(σ−1
1 σ1)

− z∇Cl(σ1)

= −z.

By the skein relation as shown in Figure 5, where a crossing in the skein relation is
marked by a dot, we have

∇TH(m,2) = ∇TH(m−2,2) − z∇TH∗(m−1,2)

for m ≥ 3. Since the number of components of TH(m− 1, 2) is GCD(m− 1, 2), we
have

∇TH∗(m−1,2) = (−1)m∇TH(m−1,2).

□
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...
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...

...

...

...

...

...

...

...

Figure 5

Lemma 3.2. The Conway polynomial of TH(2,m) satisfies
∇TH(2,1) = 1,

∇TH(2,2) = −z, and

∇TH(2,m) = ∇TH(2,m−2) − z∇TH(2,m−1) (m ≥ 3).

Proof. Since TH(2, 1) is the trivial knot, we have ∇TH(2,1) = 1. The second equa-
tion is given in Lemma 3.1. For m ≥ 3, we have

∇TH(2,m) =∇Cl(σm
1 )

=∇Cl(σm−2
1 ) − z∇Cl(σm−1

1 )

=∇TH(2,m−2) − z∇TH(2,m−1).

□

Theorem 3.3. For any integer m ≥ 1, the Conway polynomials

∇TH(m,2) =

∞∑
i=0

aiz
i and ∇TH(2,m) =

∞∑
i=0

biz
i

satisfy {
ai = bi for i ≡ 0, 1 (mod 4), and

ai = −bi for i ≡ 2, 3 (mod 4).

Proof. We prove the theorem by induction on m. For m = 1, we have

∇TH(1,2) = ∇TH(2,1) = 1.
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Hence it holds that a0 = b0 = 1 and ai = bi = 0 for i ≥ 1. For m = 2, we have

∇TH(2,2) = −z.

Hence it holds that a1 = b1 = −1 and ai = bi = 0 for i ̸= 1.
Assume that the theorem holds for m = k − 2 and k − 1 with k ≥ 3. In other

words, there are polynomials fi and gi ∈ Z[z4] (i = 0, 1, 2, 3) such that
∇TH(k−2,2) = f0 + zf1 + z2f2 + z3f3,

∇TH(2,k−2) = f0 + zf1 − z2f2 − z3f3,

∇TH(k−1,2) = g0 + zg1 + z2g2 + z3g3, and

∇TH(2,k−1) = g0 + zg1 − z2g2 − z3g3.

By Lemmas 3.1 and 3.2, we have

∇TH(k,2) = ∇TH(k−2,2) − (−1)kz∇TH(k−1,2)

= (f0 + (−1)k−1z4g3) + z(f1 + (−1)k−1g0)

+z2(f2 + (−1)k−1g1) + z3(f3 + (−1)k−1g2), and

∇TH(2,k) = ∇TH(2,k−2) − z∇TH(2,k−1)

= (f0 + z4g3) + z(f1 − g0)− z2(f2 + g1)− z3(f3 − g2).

(i) Assume that k is odd. The number of components of TH(k − 2, 2) and
TH(k − 1, 2) are one and two, respectively. Hence we have

f1 = f3 = g0 = g2 = 0,

∇TH(k,2) = (f0 + z4g3) + z2(f2 + g1), and

∇TH(2,k) = (f0 + z4g3)− z2(f2 + g1).

Therefore the theorem holds for m = k.
(ii) Assume that k is even. The number of components of TH(k − 2, 2) and

TH(k − 1, 2) are two and one, respectively. Hence we have
f0 = f2 = g1 = g3 = 0,

∇TH(k,2) = z(f1 − g0) + z3(f3 − g2), and

∇TH(2,k) = z(f1 − g0)− z3(f3 − g2).

Therefore the theorem holds for m = k. □

4. The Conway polynomials of TH(m, 3) and TH(3,m)

In this section, we prove Theorem 1.1 for n = 3.

Lemma 4.1. The Conway polynomial of TH(m, 3) satisfies
∇TH(1,3) = 1,

∇TH(2,3) = 1 + z2, and

∇TH(m,3) = (−1 + z2)∇TH(m−1,3) −∇TH(m−2,3) + 2 (m ≥ 3).
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Proof. Since TH(1, 3) is the trivial knot, we have ∇TH(1,3) = 1. By the skein
relation, it holds that

∇TH(2,3) = ∇Cl(σ3
1)

= ∇Cl(σ1) − z∇Cl(σ2
1)

= 1 + z2.

For m = 3, we have

∇TH(3,3) = ∇a split link − z(∇TH(2,2) + z∇TH(3,2))

= −z(−z + z(∇⃝ + z∇TH(2,2)))

= z2 − z2 + z4

= z4

as shown in Figure 6. Then it holds that

(−1 + z2)∇TH(2,3) −∇TH(1,3) + 2 =(−1 + z2)(1 + z2)− 1 + 2

=− 1 + z4 − 1 + 2

=z4

=∇TH(3,3).

Let P (m) be the link Cl(σ−1
1 A3

m). By the skein relations as shown in Figures 7

Figure 6
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and 8, we have{
∇TH(m,3) = ∇TH∗(m−3,3) + z∇P (m−2) − z∇P (m) for m ≥ 4, and

∇P (m) = ∇P∗(m−1) − z∇TH∗(m−1,3) for m ≥ 3.

We remark that the numbers of components of TH(m, 3) and P (m) are odd and
even, respectively. Then it holds that

∇TH(m,3) =∇TH∗(m−3,3) + z∇P (m−2) − z∇P (m)

=∇TH∗(m−3,3) + z∇P (m−2) − z(∇P∗(m−1) − z∇TH∗(m−1,3))

=∇TH∗(m−3,3) + z∇P (m−2)

− z((−∇P∗(m−2) + z∇TH∗(m−2,3))− z∇TH∗(m−1,3))

=∇TH∗(m−3,3) + z∇P (m−2)

+ z∇P∗(m−2) − z2∇TH∗(m−2,3) + z2∇TH∗(m−1,3)

=∇TH(m−3,3) + z∇P (m−2)

− z∇P (m−2) − z2∇TH(m−2,3) + z2∇TH(m−1,3)

=∇TH(m−3,3) − z2∇TH(m−2,3) + z2∇TH(m−1,3).

Hence we have

∇TH(m,3) + (1− z2)∇TH(m−1,3) +∇TH(m−2,3)

= ∇TH(m−1,3) + (1− z2)∇TH(m−2,3) +∇TH(m−3,3)

= ∇TH(m−2,3) + (1− z2)∇TH(m−3,3) +∇TH(m−4,3)

= ∇TH(3,3) + (1− z2)∇TH(2,3) +∇TH(1,3).

Then we have

∇TH(m,3) + (1− z2)∇TH(m−1,3) +∇TH(m−2,3)

= ∇TH(3,3) + (1− z2)∇TH(2,3) +∇TH(1,3)

= z4 + (1− z2)(1 + z2) + 1

= 2.

□

Lemma 4.2. The Conway polynomial of TH(3,m) satisfies
∇TH(3,1) = 1,

∇TH(3,2) = 1− z2, and

∇TH(3,m) = (−1− z2)∇TH(3,m−1) −∇TH(3,m−2) + 2 (m ≥ 3).

Proof. Since TH(3, 1) is the trivial knot, we have ∇TH(3,1) = 1. By the skein
relation as shown in a lower part of Figure 6, it holds that

∇TH(3,2) = ∇⃝ + z∇TH(2,2)

= 1− z2.
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Figure 7

For m = 3, it holds that

(−1− z2)∇TH(3,2) −∇TH(3,1) + 2 =(−1− z2)(1− z2)− 1 + 2

=z4

=∇TH(3,3).

Let Q(m) and R(m) be the links Cl(σ1σ1σ2A
m
3 ) and Cl(σ1σ1A

m
3 ), respectively.

By the skein relations as shown in Figures 9 and 10, we have
∇TH(3,m) = ∇R(m−3) + z(∇Q(m−2) + z∇R(m−2))

= ∇R(m−3) + z∇Q(m−2) + z2∇R(m−2), and

∇R(m) = ∇TH(3,m) − z(∇Q(m−1) + z∇R(m−1))

= ∇TH(3,m) − z∇Q(m−1) − z2∇R(m−1)
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Figure 8

for m ≥ 4. By Figure 11, we have

∇Q(m) = ∇Q(m−2) = ∇TH(2,2) = −z.

Then it holds that{
∇TH(3,m) = ∇R(m−3) − z2 + z2∇R(m−2) for m ≥ 4, and

∇R(m) = ∇TH(3,m) + z2 − z2∇R(m−1) for m ≥ 2.

By these equations, we have
∇R(m−2) =

1

z4 − 1
(z2∇TH(3,m) −∇TH(3,m−2) + z4 − z2), and

∇R(m−3) =
1

z4 − 1
(−∇TH(3,m) + z2∇TH(3,m−2) + z4 − z2).

Therefore we obtain

z2∇TH(3,m) −∇TH(3,m−2) = −∇TH(3,m+1) + z2∇TH(3,m−1) for m ≥ 4

and hence

∇TH(3,m+1) + (1 + z2)∇TH(3,m) +∇TH(3,m−1)

= ∇TH(3,m) + (1 + z2)∇TH(3,m−1) +∇TH(3,m−2)

= ∇TH(3,3) + (1 + z2)∇TH(3,2) +∇TH(3,1).
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Then we have

∇TH(3,m) + (1 + z2)∇TH(3,m−1) +∇TH(3,m−2)

= ∇TH(3,3) + (1 + z2)∇TH(3,2) +∇TH(3,1)

= z4 + (1 + z2)(1− z2) + 1

= 2.

□

Figure 9

Theorem 4.3. For any integer m ≥ 1, the Conway polynomials

∇TH(m,3) =

∞∑
i=0

aiz
i and ∇TH(3,m) =

∞∑
i=0

biz
i

satisfy {
ai = bi for i ≡ 0, 1 (mod 4), and

ai = −bi for i ≡ 2, 3 (mod 4).

Proof. We prove the theorem by induction on m. For m = 1, we have

∇TH(1,3) = ∇TH(3,1) = 1.
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Figure 10

...

Figure 11

Hence it holds that a0 = b0 = −1 and ai = bi = 0 for i ≥ 1. For m = 2, we have{
∇TH(2,3) = 1 + z2, and

∇TH(3,2) = 1− z2.

Hence it holds that a0 = b0 = 1, a2 = −b2 = 1 and ai = bi = 0 for i ̸= 0, 2.
Assume that the theorem holds for m = k − 2 and k − 1 with k ≥ 3. In other

words, there are polynomials fi and gi ∈ Z[z4] (i = 0, 2) such that
∇TH(k−2,3) = f0 + z2f2,

∇TH(3,k−2) = f0 − z2f2,

∇TH(k−1,3) = g0 + z2g2, and

∇TH(3,k−1) = g0 − z2g2.
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By Lemmas 4.1 and 4.2, we have
∇TH(k,3) = (−1 + z2)∇TH(k−1,3) −∇TH(k−2,3) + 2

= (−f0 − g0 + z4g2 + 2) + z2(−f2 + g0 − g2), and

∇TH(3,k) = (−1− z2)∇TH(3,k−1) −∇TH(3,k−2) + 2

= (−f0 − g0 + z4g2 + 2)− z2(−f2 + g0 − g2).

Therefore the theorem holds for m = k. □

5. Conjecture

By computer calculations, we have{
∇TH(4,5) = 1 + 5z2 + 6z4 − 3z6 − 6z8 + z10 + z12,

∇TH(5,4) = 1− 5z2 + 6z4 + 3z6 − 6z8 − z10 + z12,{
∇TH(4,6) = −6z − 5z3 + 14z5 + 11z7 − 10z9 − 7z11 + 2z13 + z15,

∇TH(6,4) = −6z + 5z3 + 14z5 − 11z7 − 10z9 + 7z11 + 2z13 − z15,
∇TH(5,7) = 1− 8z2 − 2z4 + 82z6 + 57z8 − 156z10

−113z12 + 106z14 + 72z16 − 26z18 − 15z20 + 2z22 + z24,

∇TH(7,5) = 1 + 8z2 − 2z4 − 82z6 + 57z8 + 156z10

−113z12 − 106z14 + 72z16 + 26z18 − 15z20 − 2z22 + z24,

∇TH(4,4) = −4z5 + z9,

∇TH(5,5) = 25z8 − 10z12 + z16, and

∇TH(6,6) = −144z9 + 232z13 − 105z17 + 18z21 − z25.

By these equations, we conjecture the following.

Conjecture 5.1. For any integers m ≥ 1 and n ≥ 2, the Conway polynomials

∇TH(m,n) =
∞∑
i=0

aiz
i and ∇TH(n,m) =

∞∑
i=0

biz
i

satisfy {
ai = bi for i ≡ 0, 1 (mod 4), and

ai = −bi for i ≡ 2, 3 (mod 4).

6. A Seifert matrix of TH(m,n)

Let L be a link in S3, F a Seifert surface for L, and V a Seifert matrix as-
sociated with F . The Alexander polynomial ∆L(t) of L is defined by ∆L(t)

.
=∣∣∣t 1

2V − t−
1
2V T

∣∣∣. Here, f(t) .
= g(t) means that f(t) = ±tcg(t) for some integer c.

A Seifert matrix of TH(m,n) is obtained as follows. Let Mn be the square
matrix of size n− 1 of the following form.

Mn =


1 −1 0

. . .
. . .

. . . −1

0 1

 .
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Let Vmn be the square matrix of size (m− 1)(n− 1) of the following form.

Vmn =





Mn 0
−Mn −MT

n

−Mn Mn

. . .
. . .

−Mn −MT
n

0 −Mn Mn


(m : even),



Mn 0
−Mn −MT

n

−Mn Mn

. . .
. . .

−Mn Mn

0 −Mn −MT
n


(m : odd),

where MT
n denotes the transposed matrix of Mn.

Lemma 6.1. Vmn is a Seifert matrix of TH(m,n).

Proof. Let F and {aij |1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1} be the Seifert surface for
TH(m,n) and the basis of H1(F ;Z) as shown in Figure 12, respectively. Then we
see that Vmn is a Seifert matrix of TH(m,n) associated with the basis. □

Figure 12

7. The Alexander polynomial of TH(m,n)

For any integer n ≥ 2, let Bn be the square matrix of size n− 1 defined by

B2 = (1) and Bn =


0 · · · 0 1

−1 0 ...

. . . 1

0 −1 1

 (n ≥ 3),
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We remark that |Bn| = 1. Let Xn = Xn(t) and Yn = Yn(t) be the matrices defined
by

Xn(t) = t
1
2En−1 − t−

1
2Bn and Yn(t) = Xn(t

−1),

respectively. Here, En−1 is the unit matrix of size n− 1.
We define the square matrix Pmn = Pmn(t) of size n− 1 inductively as follows.

For m = 2, 3, we have

P2n = Xn, P3n = t−
1
2XnYn + t−

1
2Bn.

for m ≥ 4, we have

Pmn =

{
t−

1
2XnPm−1,n + t−1BnPm−2,n (m : even),

t−
1
2YnPm−1,n + t−1BnPm−2,n (m : odd).

Then the Alexander polynomial of TH(m,n) is obtained as follows.

Theorem 7.1. For any integers m,n ≥ 2, we have

∆TH(m,n)(t)
.
= |Pmn(t)| .

Proof. Let X ′
n = X ′

n(t) and Y ′
n = Y ′

n(t) be the matrices defined by

X ′
n(t) = t

1
2Mn − t−

1
2MT

n and Y ′
n(t) = X ′

n(t
−1).

First, we concider the case when m is odd.

∆TH(m,n)
.
=

∣∣∣t 1
2Vmn − t−

1
2V T

mn

∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X ′
n t−

1
2MT

n 0

−t
1
2Mn Y ′

n t−
1
2MT

n

−t
1
2Mn X ′

n

. . .

. . .
. . . t−

1
2MT

n

−t
1
2Mn X ′

n t−
1
2MT

n

0 −t
1
2Mn Y ′

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For each 0 ≤ i ≤ m − 2, we perform the fundamental deformations on this
determinant as follows.

• Add the sum of i(n− 1) + jth rows for 2 ≤ j ≤ n− 1 to the i(n− 1) + 1st
row.

• Add the sum of i(n− 1) + jth rows for 3 ≤ j ≤ n− 1 to the i(n− 1) + 2nd
row.

• . . .
• Add the i(n− 1) + (n− 1)st row to the i(n− 1) + (n− 2)nd row.

Then we have
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∆TH(m,n)

.
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Xn t−
1
2Bn 0

−t
1
2En−1 Yn t−

1
2Bn

−t
1
2En−1 Xn

. . .

. . .
. . . t−

1
2Bn

−t
1
2En−1 Xn t−

1
2Bn

0 −t
1
2En−1 Yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This matrix is divided into (m − 1)2 blocks of size n − 1. We perform the
fundamental deformation on this determinant as follows.

• Multiply the 2nd row of blocks by t−
1
2Xn = t−

1
2P2n from the left, and add

them to the 1st row of blocks.
• Multiply the 3rd row of blocks by t−

1
2P3n from the left, and add them to

the 1st row of blocks.
• . . .
• Multiply the m − 1st row of blocks by t−

1
2Pm−1,n from the left, and add

them to the 1st row of blocks.

By the definiton of Pmn, we have

∆TH(m,n)

.
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 Pmn

−t
1
2En−1 Yn t−

1
2Bn 0

−t
1
2En−1 Xn

. . .

. . .
. . . t−

1
2Bn

−t
1
2En−1 Xn t−

1
2Bn

0 −t
1
2En−1 Yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
(−1)n(−t

1
2 )
)(m−2)(n−1)

|Pmn|
.
= |Pmn| .

□

There is an explicit formula for Pmn as follows.
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Lemma 7.2. For any m,n ≥ 2, it holds that

Pmn =



t−
m−2

2 XnB
m−2

2
n

1
2 (m−2)∑
k=0

( m
2 + k

m−2
2 − k

)
Xk

nY
k
n B−k

n (m : even),

t−
m−2

2 B
m−1

2
n

1
2 (m−1)∑
k=0

(m−1
2 + k

m−1
2 − k

)
Xk

nY
k
n B−k

n (m : odd).

Proof. The lemma can be proved by the induction on m. □

8. First divisibility on ∆TH(m,n)(t)

In this section, we prove the following.

Theorem 8.1. For any positive integers c,m, n, ∆TH(cm,n)(t) is divisible by ∆TH(m,n)(t).

For any integer m ≥ 0, let fm = fm(x) be the polynomial defined as follows. For
m = 0, 1, 2, we have

f0(x) = 0, f1(x) = 1, f2(x) = 1,

For m ≥ 3, we have

fm(x) =



m−2
2∑

k=0

( m
2 + k

m−2
2 − k

)
xk (m : even),

m−1
2∑

k=0

(m−1
2 + k

m−1
2 − k

)
xk (m : odd).

The sequence of polynomials {fm(x)|m ≥ 0} satisfies the Fibonacci property as
follows. The proof is straightforward, and we omit it.

Lemma 8.2. For any integers m,n ≥ 0 and c ≥ 2, {fm(x)} satisfies the following.

(i) fm+2 =

{
fm+1 + fm (m ≡ 0 (mod 2)) and

xfm+1 + fm (m ≡ 1 (mod 2)).

(ii) fm+n+1 =


fmfn + fm+1fn+1 (m ̸≡ n (mod 2)),

fmfn + xfm+1fn+1 (m ≡ n ≡ 1 (mod 2)) and

xfmfn + fm+1fn+1 (m ≡ n ≡ 0 (mod 2)).

(iii) fcm is divisible by fm. □

Proof of Theorem 8.1. By Theorem 7.1 and Lemma 7.2, we have

∆TH(m,n)(t)
.
=

{
|Xn|

∣∣fm(XnYnB
−1
n )

∣∣ (m : even),∣∣fm(XnYnB
−1
n )

∣∣ (m : odd).
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Hence we have

∆TH(cm,n)(t)

∆TH(m,n)(t)

.
=



|Xn|
∣∣fcm(XnYnB

−1
n )

∣∣∣∣fm(XnYnB
−1
n )

∣∣ (m : odd and c : even),

∣∣fcm(XnYnB
−1
n )

∣∣∣∣fm(XnYnB
−1
n )

∣∣ (otherwise).

By Lemma 8.2, we have fcm(x) = g(x)fm(x) for some polynomial g(x) and

fcm(XnYnB
−1
n ) = g(XnYnB

−1
n )fm(XnYnB

−1
n ).

Then we have

∆TH(cm,n)(t)

∆TH(m,n)(t)

.
=


|Xn|

∣∣g(XnYnB
−1
n )

∣∣ (m : odd and c : even),

∣∣g(XnYnB
−1
n )

∣∣ (otherwise).

Therefore, ∆TH(cm,n)(t) is divisible by ∆TH(m.n)(t). □

9. Second divisibility on ∆TH(m,n)(t).

In this section, we prove the following.

Theorem 9.1. For any positive integers c,m, n, ∆TH(m,cn)(t) is divisible by ∆TH(m,n)(t).

For the proof of this theorem, we use the following lemma.

Lemma 9.2. |Bn + αEn−1| =
n−1∑
k=0

αk.

Proof. We have

|Bn + αEn−1| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

α 0 1

−1 α 1

. . .
. . .

...

−1 α 1

0 −1 1 + α

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

α 0 1

−1 α 1

. . .
. . .

...

−1 α 1

0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣

α 0 1

−1 α 1

. . .
. . .

...

−1 α 1

0 α

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n−2∑
k=0

αk + αn−1 =

n−1∑
k=0

αk.

□
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Proof of Theorem 9.1. By Theorem 7.1, Lemmas 7.2 and 9.2, we have

∆TH(m,n)(t)

.
=



n−1∑
k=0

(−t)k

×

∣∣∣∣∣∣
1
2 (m−2)∑
k=0

( m
2 + k

m−2
2 − k

)
(B2

n − (t−1 + t)Bn + En−1)
kB

m−2
2 −k

n

∣∣∣∣∣∣ (m : even),

∣∣∣∣∣∣
1
2 (m−1)∑
k=0

(m−1
2 + k

m−1
2 − k

)
(B2

n − (t−1 + t)Bn + En−1)
kB

m−1
2 −k

n

∣∣∣∣∣∣ (m : odd).

Then we represent ∆TH(m,n)(t) as follows.

∆TH(m,n)(t)
.
=



n−1∑
k=0

(−t)k

∣∣∣∣∣
m−2∑
k=0

amkB
k
n

∣∣∣∣∣ (m : even),

∣∣∣∣∣
m−1∑
k=0

amkB
k
n

∣∣∣∣∣ (m : odd)

for some am0, am1, . . . , am,m−1 ∈ Z[t, t−1]. Here am,m−2 = 1 for even m and
am,m−1 = 1 for odd m. Hence we have

∆TH(m,cn)(t)

∆TH(m,n)(t)

.
=



c−1∑
k=0

(−t)kn

∣∣∣∣∣
m−2∑
k=0

amkB
k
cn

∣∣∣∣∣∣∣∣∣∣
m−2∑
k=0

amkB
k
n

∣∣∣∣∣
(m : even),

∣∣∣∣∣∣∣
m−1∑
k=0

amkB
k
cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
m−1∑
k=0

amkB
k
n

∣∣∣∣∣∣∣
(m : odd).

Hence we have the conclusion by Lemma 9.3 below. □

Lemma 9.3. For any ℓ Laurent polynomials h0, h1, . . . , hℓ−1 ∈ Z[t, t−1] and hℓ = 1,∣∣∣∑ℓ
k=0 hkB

k
cn

∣∣∣ is divisible by
∣∣∣∑ℓ

k=0 hkB
k
n

∣∣∣.
Proof. We consider a factorization of the polynomial

∑ℓ
k=0 hkx

k such that

ℓ∑
k=0

hkx
k =

ℓ∏
k=1

(x+ αk),

where α1, α2, . . . , αℓ are elements in some finite extension field of a quotient field
of Z[t, t−1]. We remark that any symmetric polynomial in α1, α2, . . . , αℓ can be
expressed as a polynomial in h0, h1, . . . , hℓ−1.
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By substituting the matrix Bn for x, we have∣∣∣∣∣
ℓ∑

k=0

hkB
k
n

∣∣∣∣∣ =
ℓ∏

k=1

|Bn + αkEn−1| =
ℓ∏

k=1

n−1∑
i=0

αi
k

by Lemma 9.2. Similarly by substituting Bcn for x, we have∣∣∣∣∣
ℓ∑

k=0

hkB
k
cn

∣∣∣∣∣∣∣∣∣∣
ℓ∑

k=0

hkB
k
n

∣∣∣∣∣
=

ℓ∏
k=1

cn−1∑
i=0

αi
k

n−1∑
i=0

αi
k

=

ℓ∏
k=1

c−1∑
i=0

αin
k .

Since
∏ℓ

k=1

∑c−1
i=0 α

in
k is a symmetric polynomial in α1, α2, . . . , αℓ, it is expressed

as a polynomial in h0, h1, . . . , hℓ−1 and hence in Z[t, t−1]. Therefore
∣∣∣∑ℓ

k=0 hkB
k
cn

∣∣∣
is divisible by

∣∣∣∑ℓ
k=0 hkB

k
n

∣∣∣. □
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