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RELATIONS AMONG ALEXANDER-CONWAY POLYNOMIALS
OF TURK’S HEAD LINKS

ATSUSHI TAKEMURA

ABSTRACT. The (m,n)-Turk’s head link is presented by the alternating dia-
gram which is obtained from the standard diagram of the (m,n)-torus link by
crossing changes. In this paper, we show the two properties. First, we show
that for any integers m > 1 and n = 2,3, the coefficients of z* in the Conway
polynomials of the (m,n)- and (n,m)-Turk’s head links coincide for ¢ = 0,1
(mod 4) and differ by sign for ¢ = 2,3 (mod 4). We conjecture that this prop-
erty holds for any n. Second, we show that for any positive integers a, b, m, n,
the Alexander polynomial of the (am, bn)-Turk’s head link is divisible by that
of the (m,n)-Turk’s head link.

1. INTRODUCTION

The (m,n)-Turk’s head link TH (m,n) is presented by the alternating diagram
which is obtained from the standard diagram of the (m,n)-torus link by crossing
changes. There are several studies on Turk’s head links (cf. [3, 4, 6, 10]).

It is well-known that the (m,n)- and (n, m)-torus links have the same link type,
and hence, their invariants are the same. However, the (m,n)- and (n,m)-Turk’s
head links have distinct link types ([10]) and their invariants are not the same
generally.

The Jones polynomials Vg, n) (t) and the Alexander polynomials Ag g, ) ()
for {m,n} = {6,2} and {5, 3} are given by the following.

Vine(t) =t~ +3t73 —6t72 + 9t~ 3

112 + 1263 — 1143 + 8t% — 62 + 2t — 5,
Vime)(t) = —t3 —t3 +t2 —t3 +t7 —t7,
Vrrs,s)(t) =t —6t7° +16t7% — 30672 + 44¢~2 — 54t~ !

+59 — 54t + 44t% — 30t3 + 16t* — 6t° + 5,
Vrnes) () = —t7° +567% = 10673 + 15¢72 — 19¢ 71

+21 — 19t + 152 — 10t3 + 5t* — 15,

Arpeo)(t) =t"3 —9t~3 + 25673 — 25¢3 + 93 — 13,
{ Armoe(t) =t73 —t72 4173 —t3 +13 — 13,

Arpis) () =t =10t +39¢2 — 80t~ + 101 — 80t + 39¢2 — 10¢® + t*, and
{ Arps(t) =t — 6673 + 15t72 — 24¢ 71 + 29 — 24t + 15> — 613 + ¢*.

2010 Mathematics Subject Classification. Primary 57TM25; Secondary 57M27.
Key words and phrases. Turk’s head link, periodic link, Alexander polynomial, Conway poly-
nomial,Seifert matrix, skein relation, braid.
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2 ATSUSHI TAKEMURA

The Jones polynomials of the (m,n)- and (n, m)-Turk’s head links are quite differ-
ent. Although the Alexander polynomials also look different, their Conway poly-
nomials are similar as follows.
VTH(6,2) (Z) =—-3z+ 42’3 — 25,
y(2) = =3z — 42% — 2°,
Vraes)(z) =1+ 222 — 24— 226428 and
)(2)

VTH(S,S z)=1-— 222 - Z4 + 226 + 2’8.

Vru@2:6)(2

We observe that the coefficients of 2% in VTH(m,n)(Z) and Vg (n,m)(2) coincide or
differ by sign. In addition, we calculate the Conway polynomials of Turk’s head
links for n = 2,3 as follows.

Vrnrsae)(z) =1- 22

Ve (z) =1+ 2%

Vrrae) (2) = =22 + 23,

Vrnea)(z) = =22 — 22,

Vrneae)(z) =1-322 + 24,

Vi (s) = 1+32% + 24

Vrro,2)(2) = =5z + 2023 — 212° + 827 — 2,
Vorueio(z) = =5z — 2023 — 212° — 827 — 29,

Vrmas)(z 1— 22 — 24 425,

Vrmes)(z) = 424 — 328 + 210,

Vruae(z) = 424 — 328 — 210,

Vruaos)(z) =1 - 322 — 624 + 1825 + 1128 — 29210 42212 4 14214 — 7216 4 218
)(

Vru@sa0)(z) = 14322 — 62 — 182° 4+ 112° + 29210 4 2212 — 14214 — 7216 — 218,

)
(2)
Vraeay(z) =1+ 22 — 2% — 25,
(2)
(2)

—N—

= —z, and

= 24.

Vrro2) (2

)

~— ~—

Vorueas) (2
The first aim of this paper is to generalize this property as follows.

Theorem 1.1. For any integers m > 1 and n = 2,3, the Conway polynomials
o0 o0
Vrumn(z) = Z a;z"  and Vrppmm)(z) = Z b; 2"
i=0 i=0

of the (m,n)- and (n,m)-Turk’s head links satisfy

a;=0b; fori=0,1 (mod4), and
a; =—b; fori=2,3 (mod 4).

We can not prove this Theorem for n > 4 yet. To prove this Theorem for n > 4,
Theorem 1.3 may be useful.

It is known that the Alexander polynomial Ay, »)(t) of the (m,n)-torus link
T(m,n) is given by the following.
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Theorem 1.2 (cf. [8]). For any positive integers m and n, we have

mn

=1+ =1~
" =D — 1)

where [ is the greatest common divisor of m and n.

AT(m,n) (t) =

By this theorem, we can easily see that Ap(gm,pn)(t) is divisible by Aqy, n)(t) for
any positive integers a, b, m, n.

In this paper, we study the Alexander polynomial Apg(pm ,)(t) of the (m,n)-
Turk’s head link TH(m,n). For example, we have

Argest) =t =1+t

Arpas)(t) = Arg(as)(t) - (71 =3 +1)%,

Arpee) (t) = Arm(e,s(t) - (17 3 {3 YtTL+1+1¢), and

Arpae)(t) = ATH(2 gy(t) - (177 —t3)(t L+ (T — 3+ 1)?
(At —1+ 02 -4+ 1).

In particular, Apg(a,3)(t), Arm(2,6)(t), and Apg(a6)(t) are divisible by Apg(a 3)(t).
The second aim of this paper is to generalize this property as follows.

Theorem 1.3. For any positive integers a,b,m,n, App(am,n)(t) s divisible by
A7 H(mn)(t)-

Theorem 1.3 for a = 1 can be proved by a property of periodic links in [9, 11].
We remark that the (m,bn)-Turk’s head link is a periodic link of order b, and the
quotient is the (m,n)-Turk’s head link. In this paper, we give an alternative proof
from another viewpoint.

This paper is organized as follows. In Section 2, we review braids, Turk’s head
links, and the Conway polynomial. In Sections 3 and 4, we prove Theorem 1.1
for n = 2 and 3, respectively. In Section 5, we give supporting computational
evidence for the conjecture that Theorem 1.1 holds for any n > 2 by the program
“knotGTK” ([12]), which is the Windows version of the program “KNOT” ([5]). In
Section 6, we give a Seifert matrix for TH(m,n). In Section 7, we give a formula
of A7 (m,n)(t) by the determinant of a certain matrix of size n — 1 (Theorem 7.1).
In Section 8, we prove that Apg(cm,n)(t) is divisible by A (m n)(t). In Section 9,
we prove that Apg(m,cn)(t) is divisible by Aqgr(m,n)(t). The combination of these
results implies Theorem 1.3 immediately.

2. DEFINITIONS

A braid is a collection of n parallel strands such that adjacent strands are allowed
to cross over or under one another (cf. [1, 2]). Two braids on the same number
of strands can be composed by placing them end to end. The braid group on n
strands has a presentation with generators o1, 09,...,0,_1 and the relations

0i0i410; = 04100541, and o;0; = o;0; for |i — j| > 2.

Here o; is the braid as shown in Figure 1. In this paper every braid is oriented
from top to bottom.

Given a braid «, the closure of « is the oriented link obtained by connecting the
top and bottom of « simply as shown in Figure 2. We denote it by Cl(«).
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1 1 1+1 n
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FIGURE 1
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(Y — K
B
Cl(a)
FIGURE 2

A Markov move of type 1 takes an n-strand braid to another n-strand braid via
conjugation by o; for some ¢ € {1,2,...,n—1}. A Markov move of type 2 takes an
n-strand braid to an (n + 1)-strand braid by adding o, or o,; ! to the end. In other

words, an n-strand braid o becomes ao, or ac,, .

Theorem 2.1 ([7]). The closures of two braids present the same knot or link if
and only if one braid can be deformed into the other by a finite number of Markov
moves or their inverses. ]

We denote by A,, and A%, the m-strand braids as shown in Figure 3.

m strands m strands

FIGURE 3

Definition 2.2 ([10]). For any integrs m,n > 2, the (m,n)-Turk’s head link is the
closure of the m-strand braid (A,,)". We denote it by TH(m,n).
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We remark that the number of components of T H(m,n) is the greatest common
divisor GCD(m,n).

The Conway polynomial V1 (z) of an oriented link L is a polynomial on z, which
is computed by the following recursive formulas:

{ Vi (2) = Vi (2) =2Vi,(2), and
Vol(z) =1,

where O is the trivial knot and (L4, L_, Ly) is a skein triple of oriented knots or
links that are identical except in a crossing neighborhood where they look as in
Figure 4. We often abbreviate V1 (z) to V.

ARATA

FIGURE 4

We denote by L* the mirror image of a link L. The Conway polynomial V.«
satisfies

v { Vi if the number of components of L is odd,
L* =

—V if the number of components of L is even.

3. THE CONWAY POLYNOMIALS OF T'H(m,2) AND TH(2,m)
In this section, we prove Theorem 1.1 for n = 2.

Lemma 3.1. The Conway polynomial of TH(m,2) satisfies

VTH(1,2) =1,
VrHe2 =—%, and
Vruam2) = Vram—22 — (=1)"2Vrgm-12) (m > 3).
Proof. Since TH(1,2) is the trivial knot, we have Vrg12) = 1. By the skein
relation, it holds that
V.2 = Voi(o,o)
= VC’l(Ufltn) - ZVCZ(Ul)
= —z.
By the skein relation as shown in Figure 5, where a crossing in the skein relation is
marked by a dot, we have
Vriam2) = Vram—22) — 2VTH*(m-1,2)

for m > 3. Since the number of components of TH(m — 1,2) is GCD(m — 1, 2), we
have

Vorusm-1,2) = (=1)"Vram-1,2)-
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A |
S .
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FIGURE 5

Lemma 3.2. The Conway polynomial of TH(2,m) satisfies
Vraen =1,
Vrre2 =—2, and
Vruaem) = Vruem—2 — 2VrHEm-1) (M > 3).

Proof. Since TH(2,1) is the trivial knot, we have Vg (2,1) = 1. The second equa-
tion is given in Lemma 3.1. For m > 3, we have

Vru@em) =Voier)

:VCZ(UYHQ) — zVCl(oinfl)

=Vru@2m-2) — 2VTH2,m-1)-

Theorem 3.3. For any integer m > 1, the Conway polynomials
Vrrme = Y ez and Veu@m) = Y biz'
i=0 i=0
satisfy
a;="b; fori=0,1 (mod4), and
a; =—=b; fori=2,3 (mod 4).

Proof. We prove the theorem by induction on m. For m = 1, we have

Vrua,2) = Vruen =1
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Hence it holds that ag = by = 1 and a; = b; = 0 for i > 1. For m = 2, we have

vTH(2,2) = —=Z.

Hence it holds that a; = b; = —1 and a; = b; = 0 for i # 1.
Assume that the theorem holds for m = k — 2 and k — 1 with k¥ > 3. In other
words, there are polynomials f; and g; € Z[z%] (i = 0, 1,2,3) such that

Vrrg—22) = fo+2fi + 22 f2+ 22 fs,
Vrrek-2 = fo+z2fi — 22 f2 — 22 fs,
VrHk-1,2) = 90 + 201 + 2°g2 + 2°g3, and
Vrr@eke-1) = 90 + 291 — 2°ga — 2°g3.

By Lemmas 3.1 and 3.2, we have

Vrrw) = Vrug—22) — (—1)*2Vrpp—1.2)

= (fo+ (=1 "24gs) + 2(fi + (=1)" " go)

+22(fo+ (=) g1) + 22 (fs + (=1)"'g2), and
Vrraek = Vraek-2) — 2VTH2,E-1)

= (fo+2%g3) + 2(f1 — 90) — 22 (f2 + 1) — 2(f3 — g2).

(i) Assume that k is odd. The number of components of TH(k — 2,2) and
TH(k —1,2) are one and two, respectively. Hence we have

fi=fs=g0=g2=0,
Vrrwe) = (fo+2%gs) + 2°(f2+g1), and
Vrrer = (fo+ 2*gs) — 22(f2 + g1).

Therefore the theorem holds for m = k.
(ii) Assume that k is even. The number of components of TH(k — 2,2) and
TH(k —1,2) are two and one, respectively. Hence we have

fo=fo=g=93=0,
Vg = 2(f1 — 90) + 2°(fs — g2), and
Vrrer = 2(fi = g0) = 2°(fs — g2).

Therefore the theorem holds for m = k. O

4. THE CONWAY POLYNOMIALS OF TH(m,3) AND TH(3,m)

In this section, we prove Theorem 1.1 for n = 3.
Lemma 4.1. The Conway polynomial of TH(m,3) satisfies
Vrmaas =1,

VTH(273) =1+ ZQ, and
Vrrms) = (—1+2)Vrumm-1,3) — Vra@m-23) +2 (m > 3).
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Proof. Since TH(1,3) is the trivial knot, we have Vrg1 3 = 1. By the skein
relation, it holds that
Vrues) = Veies)
= Vei(o) = 2V
=1+ 22
For m = 3, we have
Vorua,s) = Vasplit link — 2(Vrr2,2) + 2V7rH@3,2))
= —z(=2+2(Vo + 2VrH2,2))
— 22
= Z4
as shown in Figure 6. Then it holds that
(=14 2°)Vrmes — Vouas +2=(-1+2%)(1+2%) =142
=—1+4+2'-142
224
=V7rH@3,3)

Let P(m) be the link Cl(o;*A2,). By the skein relations as shown in Figures 7

m

J
Q ~  the trivial knot

FIGURE 6
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and 8, we have

{ Vramas) = Vra-m-33) + 2Vpm-2) — 2Vpum) for m =>4, and
Vem) = Vpsm-1) = 2VrH+(m-1,3) for m>3.
We remark that the numbers of components of TH(m,3) and P(m) are odd and
even, respectively. Then it holds that
Vruams) =Vra(m-33) T 2Vpm—2) — 2Vp@m)
=Vra<(m-33) T 2VpPun-2) = 2(VPr(m-1) = 2VrH*(m-13))
=Vrys(m-33) + 2Vpm-2)
= 2((=Vpem-2) + 2Vra-(m-23)) = 2VrH*(m-1,3))
=V (m-33) T 2VPm-2)
+ 2V pr(m—2) = 22V (m—23) + 2°V1H(m-1,3)
=VrH(m-33) + 2V P@m-2)
— 2V pm—2) — 2V rH(m-23) + 2V TH(m-1,3)

=VrHm—33) — 2 VTHm-23) + 2°VTHm-13)-
Hence we have

Vrums) + (1= 2)Vrrmm—13) + Vrrm—2.3)
= Vrum-13 + (1= 2)Vrum-23 + Vru(m-33)
= Vrum-23 + (1= 2)Vram-33 + Vru(m-13)
=Vrueas + (1= 25)Vrues) + Vrua,s)-

Then we have

Vrrams) + (1= 22)Vram-13) + Vram-2.3)
=Vrueas + (1= 2)Vrues) + Vrua,s)
=2+ (1 -2+ +1
= 2.

Lemma 4.2. The Conway polynomial of TH(3,m) satisfies

Vruasy =1,
VTH(3,2) =1- 2’2, and
Vruam) = (=1 = 2)Vru@m-1) — Vru@Em—2) + 2 (m > 3).

Proof. Since TH(3,1) is the trivial knot, we have Vrg(31) = 1. By the skein
relation as shown in a lower part of Figure 6, it holds that

Vruaz2 = Vo +2Vrres)

=1-22



10 ATSUSHI TAKEMURA

A:n 3 A;kn,—?)
A, AT,
/ A:;173 Am,73
Al 3 Al s e e
\ o) TH*(m —3,3)
A3 Al s
N A
ull iAo T
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J A3 Al s A3
—z Y
N l
A3 Al s Al s
e Atn 3 A:‘n,—?) N S
TH(m,3) N P(m —2)
A, AT,
A
A:;173 A;kn73
T - KD
P(m)
FIGURE 7

For m = 3, it holds that

(—1=2)Vru@e2) — Vemen +2=(-1-2°)(1-2%) - 1+2
_ A
=z
=VrH@3,3)-
Let Q(m) and R(m) be the links Cl(o10102A%") and Cl(o101AY"), respectively.
By the skein relations as shown in Figures 9 and 10, we have

VruEm) = Vem-3) + 2(Vom-2) + 2VR@m—2))
= VR(mfg) + ZVQ(m,Q) + ZQVR(m,g), and
Vim) = Vruaem) = 2(Vom-1) + 2VR@m-1))
= Vruem) —2Vqm-1) = 2*VR(n-1)
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Afn—3 Afn—3
S ~J
A3 A3
l N
/ A3 A s
Ajn—3 ! !
P*(m —1)
Als
E N | l
Al s
e Afn—?, Afn—?,
P(m) ~
Al 4 Al 4
AN
Ans A s
XD T -~
TH*(m —1,3)
FIGURE 8

for m > 4. By Figure 11, we have
Vam) = Vam-2) = VrHe2) = —%
Then it holds that
{ Vra@m) = VRm—3) — 22 4+ 22VR(m_2) for m >4, and
Vrm) = Vrrsm) + 2% — z2VR(m,1) for m > 2.
By these equations, we have

1
VR(m—Q) = A 1(ZQVTH(3,m) - vTH(3,777,—2) + 2t — 22)7 and

VR(m-3) = T<_VTH(3,m) + 22V rH@,m—2) + 24 — 2%).

—1
Therefore we obtain
ZVruem) — Vra@Em-2 = —Vraemin + 2 Vra@m-1) for m>4
and hence
Vru@men + 1+ 22)Veu@m) + Vrrem-1)
=Vruem + 1+ 2)Vru@m-1) + Vru@Em—2)
=Vraes + (1+23)Vruee) + Vrus)-
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Then we have

Vruem + 1+ 2)Vraem-1) + Vraem—2)
=Vrues + (1+2°)Vruse) + Vrre)
=2+ (1+2H0-2H+1
= 2.

J -
>
Ay X > 3

| m—2
TH(3,m) RJ A3|

FIGURE 9

Theorem 4.3. For any integer m > 1, the Conway polynomials
VrH(m,3) = Z a;z' and Vrpem) = Z bz
i=0 i=0
satisfy
a;=0b, fori=0,1 (mod4), and
a;=—b; fori=2,3 (mod4).

Proof. We prove the theorem by induction on m. For m = 1, we have

Vruaa,s) = Vruan = 1.
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FIGURE 11

Hence it holds that ag = bg = —1 and a; = b; = 0 for ¢ > 1. For m = 2, we have

2

VTH(2}3) =1 —+ 2’2, and
VTH(3,2) =1-2z%

Hence it holds that ag = by =1, as = —by =1 and a; = b; = 0 for i # 0, 2.
Assume that the theorem holds for m = k — 2 and & — 1 with k& > 3. In other
words, there are polynomials f; and g; € Z[z*] (i = 0,2) such that
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By Lemmas 4.1 and 4.2, we have

Vorrws) = (=14 2°)Vrrw-13) — Vrr—23) + 2
= (—fo—g0+2'g2+2) + 2*(—f2+ g0 — g2), and
Vruer = (=1 = 2)Vra@e—1) — Vru@Ek—2) + 2
=(—fo—g0+ 292 +2) — 22 (—f2 + g0 — 92)-
Therefore the theorem holds for m = k. O

5. CONJECTURE
By computer calculations, we have

Vrnas) = 1+52% 4 621 — 320 — 628 + 210 + 212
{ Vrneae =1—52%2 4621 + 320 — 628 — 210 + 212
Vrr@ae) = —6z — 52° +142° + 1127 — 102° — 721 4 2213 + 215,
{ Vrne,a) = —62 +52% 4+ 1425 — 1127 — 1029 + 721 + 2213 — 215,
Vrnes =1 —82% — 224 + 8220 4 5728 — 15620
—113212 + 1062 + 72216 — 26218 — 15220 4 2222 1 224,
Vrnrs =1+ 822 — 22% — 8220 4 5728 4 156210
—1132'2 — 1062 + 72210 + 26218 — 15220 — 2222 4 224,
Vrma = —42° + 29,
Vrues) = 2628 — 1022 + 2% and
Vrme,e = —1442° + 232213 — 105217 + 18221 — 225,
By these equations, we conjecture the following.

Conjecture 5.1. For any integers m > 1 and n > 2, the Conway polynomials

vTH(TrL,n) = Z aizi and VTH(an) = Z bizi
i=0 =0
satisfy
a;="b; for i=0,1 (mod4), and
a; = —=b; for i=2,3 (mod 4).

6. A SEIFERT MATRIX OF TH(m,n)
Let L be a link in S3, F a Seifert surface for L, and V a Seifert matrix as-
sociated with F'. The Alexander polynomial Ay (t) of L is defined by Ap(t) =
t2V — t*%VT’. Here, f(t) = g(t) means that f(t) = +t°g(t) for some integer c.

A Seifert matrix of TH(m,n) is obtained as follows. Let M, be the square
matrix of size n — 1 of the following form.

1 -1 0
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Let Vi, be the square matrix of size (m — 1)(n — 1) of the following form.

M, 0
—-M, —ME
-M, M,
(m : even),
~M, —M"
0 —M, M,
Vin =
M, 0
~ M, —MT
-M, M,
(m : odd),
M, M,
0 ~M, —M"

where M denotes the transposed matrix of M,,.
Lemma 6.1. V,,,, is a Seifert matriz of TH(m,n).

Proof. Let F' and {a;;|1 < i <m—1,1 < j < n — 1} be the Seifert surface for
TH(m,n) and the basis of H;(F;Z) as shown in Figure 12, respectively. Then we
see that V,,, is a Seifert matrix of T'H (m,n) associated with the basis. O

FIGURE 12

7. THE ALEXANDER POLYNOMIAL OF TH(m,n)
For any integer n > 2, let B,, be the square matrix of size n — 1 defined by

-1 0

B; =(1) and B, = ' (n>3),

0 .f11
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We remark that |B,| = 1. Let X,, = X,,(¢t) and Y;, = Y,,(¢) be the matrices defined
by

Xo(t) =t7E,_y —t 7B, and Y, (t) = X, (t™1),

respectively. Here, F,,_; is the unit matrix of size n — 1.
We define the square matrix Py, = P (t) of size n — 1 inductively as follows.
For m = 2,3, we have

P2n :X'ru PSn :tiéxnyn'*'ti%Bn
for m > 4, we have

P t’%Xan_Ln +t B, P2, (m:even),
" t72Y P 4+t ByPr_o,  (m:odd).

Then the Alexander polynomial of T H(m,n) is obtained as follows.

Theorem 7.1. For any integers m,n > 2, we have

ArH(mn) () = |Prn(t)] .
Proof. Let X] = X/ (t) and Y, =Y, (¢) be the matrices defined by
X\ (t)=t:M, —t 3 M and Y!(t)=X.(t7").
First, we concider the case when m is odd.

. 1 _1
ATH(7n,'rL) = tQan -t 2Vrz:n

X, MT 0

—t5M, X!
) t=sMT
—t2M, X, t-:MT
0 —t3M, Y,

For each 0 < i < m — 2, we perform the fundamental deformations on this
determinant as follows.

e Add the sum of i(n — 1) 4+ jth rows for 2 < j <n —1 to the i(n — 1) + 1st
row.

e Add the sum of i(n — 1) + jth rows for 3 < j <n —1 to the i(n — 1) + 2nd
row.

[ ]

e Add the i(n — 1) 4+ (n — 1)st row to the i(n — 1) + (n — 2)nd row.

Then we have
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ATH(m.n)
X, t"2B,
—t:E,, Y, t:B,
. 2B, X,
B t~2B,
—t3E, 1 X,
0 —t2E, 4

This matrix is divided into (m — 1)? blocks of size n — 1.
fundamental deformation on this determinant as follows.

We perform the

e Multiply the 2nd row of blocks by t_%Xn = t_%Pgn from the left, and add

them to the 1st row of blocks.

e Multiply the 3rd row of blocks by t2 Py, from the left, and add them to

the 1st row of blocks.

e Multiply the m — 1st row of blocks by t_%Pm,Ln from the left, and add

them to the 1st row of blocks.

By the definiton of P,,,, we have

ATH(mn)
0 0
—t2B,_, Y, t 2B,
. 3B, X,
. t3B,
—t2B,_, Xn
0 —t3E,
= (0 ) Bl = 1P

There is an explicit formula for P,,, as follows.
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Lemma 7.2. For any m,n > 2, it holds that

moz 27D o g
t="7 X,Bn? Z <m22 B k) XkYEBF (m: even),
k=0 2
Pmn =
L(m—

—1 _|_ k
Z ( _ k> Xkykp k (m: odd).
k=0

Proof. The lemma can be proved by the induction on m. (I

8. FIRST DIVISIBILITY ON A7 g (m,n)(t)

In this section, we prove the following.
Theorem 8.1. For any positive integers ¢, m, n, Apg(em,n)(t) is divisible by Aq g (m n) (t).

For any integer m > 0, let f,,, = fin(x) be the polynomial defined as follows. For
m =0,1,2, we have

For m > 3, we have

e
3

—
8
S~—
Il

3 >
[l
~O

&)
RS
F F
‘l\’)
?T‘?T‘
v

w
3
o
(oW
(oW

N~—

k=0

The sequence of polynomials {f,,(z)|m > 0} satisfies the Fibonacci property as
follows. The proof is straightforward, and we omit it.

Lemma 8.2. For any integers m,n > 0 and ¢ > 2, {f,(x)} satisfies the following.

(i) fm+2:{ fm+1+fm (

0 (mod 2)) and
1

Tfmy1 + frmn (M =1 (mod 2)).
[t + fms1fosr (m#En (mod 2)),
(i) frmsns1 =9 fnfo+@fmiifarr (m=n=1 (mod 2)) and
Tfmfn + frme1fnr1 (M =n=0 (mod 2)).
(ill) fem is divisible by fr,. O

Proof of Theorem 8.1. By Theorem 7.1 and Lemma 7.2, we have

| Xn| ’fm(XnYnBﬁl)‘ (m : even),

ATH(m,n) (t) = { ’fm(XnYﬂ:B;1)| (m : odd).
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Hence we have
[ X | | ferm (XnYn By b))

(m :odd and c: even),

X, Y, B!
ATH(cm,n)(t) N |fm( nin )‘
ATH(m,n)(t) ’f (X Y. B—l)‘
et (otherwise).

By Lemma 8.2, we have fen,(z) = g(z) fm(x) for some polynomial g(z) and
fcm(XnYnBy:l) = Q(XnYntl)fm (XnYVntl)
Then we have

| Xn| |9(XnYaB,Y)|  (m:odd and c: even),

ATH(cm,n)(t) .
Arimm(t)
(mm) l9( X, Y, B Y| (otherwise).
Therefore, Ar g (cm,n)(t) is divisible by Ap g (. (t). |

9. SECOND DIVISIBILITY ON A (.0 (t).

In this section, we prove the following.
Theorem 9.1. For any positive integers ¢, m,n, Apg(m en)(t) is divisible by A g (yn)(t).

For the proof of this theorem, we use the following lemma.

n—1
Lemma 9.2. |B,+aFE,_1|= Z ok,
k=0

Proof. We have

« O 1
-1 « 1
|B,, + aE,_1| =
-1 « 1
O -1 14«
« O 1 o O 1
-1 « 1 -1 « 1
= +
-1 a 1 -1 «
0 11 0 a
n—2 n—1
= Zak+a"_1 = Zak
k=0 k=0
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Proof of Theorem 9.1. By Theorem 7.1, Lemmas 7.2 and 9.2, we have
ATH(m,n) (t)

n—1

PRIl

k=0
%(m—Q)

Ly . me2
x Z <m22 o k’) (B721 - (t ! + t)Bn + En—l)an 2 (m : even),
- k=0

Hom=1)

m=1 4 [ o1
Z (m21 " k) (B2~ (t ' +)By + Ey1)*Bn® " (m : odd).
k=0 2

Then we represent Aq () (t) as follows.

n—1 m—2
Z(—t)k Z amiBY| (m : even),
k=0 k=0
A7 H(mn)(t) =
m—1
Z Ui BY (m : odd)
k=0
for some amo,@mis- -, @mm—1 € Z[t,t71]. Here apmm—2 = 1 for even m and
Gym.m—1 = 1 for odd m. Hence we have
m—2
c—1 Z akaéCn
n k=0
> ()= (m : even),
D P
ATH(m,cn) (t) . k=0
AT H(mn) (1) S
S s,
’:7;01 (m : odd).
> amkB;
k=0
Hence we have the conclusion by Lemma 9.3 below. O

Lemma 9.3. For any ¢ Laurent polynomials ho, hy, ..., he_1 € Z[t,t7] and hy = 1,
S o heBE | is divisible by | St _, hi BE

Proof. We consider a factorization of the polynomial Zi:o hix® such that

L

£
Z hkxk = H(l‘ + ayg),
k=0

k=1
where a1, ao,...,ap are elements in some finite extension field of a quotient field
of Z[t,t71]. We remark that any symmetric polynomial in ay,as,...,q, can be

expressed as a polynomial in hg, h1,...,he_1.
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By substituting the matrix B,, for x, we have

4 L L n—1
S hBE =[] 1Ba+ arBaal = [[ S ai
k=0 k=1 k=1 =0

by Lemma 9.2. Similarly by substituting B, for x, we have

n
k=0 =0
. ¢ “1 _in . o .
Since [],_, Zf:o aj is a symmetric polynomial in oy, g, . . ., ay, it is expressed
o . _ ¢
as a polynomial in hg, hi, ..., h¢—1 and hence in Z[t,t~!]. Therefore |Y",_, hxB~,

is divisible by ‘Zi:o hyBE|. O
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