Algorithms for Computing Minimal Associated Primes of Polynomial Ideals

Aoyama，Toru

```
(Degree)
博士(理学)
(Date of Degree)
2018-03-25
(Date of Publication)
2019-03-01
(Resource Type)
doctoral thesis
(Report Number)
甲第7117号
(URL)
https://hdl.handle.net/20.500.14094/D1007117
```

※ 当コンテンツは神戸大学の学術成果です。無断複製•不正使用等を禁じます。著作権法で認められている範囲内で，適切にご利用ください。

博 士 論 文

Algorithms for Computing Minimal Associated Primes of Polynomial Ideals
 （多項式イデアルの極小付属素イデア
 ル計算アルゴリズム）

平成 30 年 1 月

神戸大学大学院理学研究科
 Toru Aoyama
 青山 暢

Contents

1 Basic Facts 7
1.1 Polynomial Ring 7
1.2 Monomial Orderings 9
1.3 Gröbner Basis 10
2 Minimal Associated Primes 13
2.1 Zero-dimensional Decomposition 13
2.2 Laplagne's Algorithm 16
3 Prime Decompositions for Binomial Ideals 19
3.1 Cellular Decomposition 20
3.2 A New Algorithm for Minimal Associated Primes 22
3.3 Improvements 26
3.3.1 Simplification of the Ideal 26
3.3.2 Choice of Polynomials for Radical Membership Tests 27
3.3.3 Saturations of Homogeneous Ideals with Respect to a Vari- able 27
3.3.4 Computing Several Cellular Ideals at One Iteration 27
3.3.5 Experiments 29
3.3.6 Discussion 30
4 A Modular Algorithm for Laplagne's Algorithm 33
4.1 Fundamental Tools and Definitions 34
4.1.1 Chinese Remainder Theorem 34
4.1.2 Rational function reconstruction 35
4.1.3 Luckiness 37
4.2 New Algorithm 38
4.2.1 Existence of minass lucky moduli 42
4.3 Experiments and Timing data 44
4.4 Concluding Remarks 46

Abstract

This paper proposes two algorithms for computing minimal associated primes of ideals in polynomial rings over a field.

The first one is an algorithm designed for binomial ideals. It utilizes the cellular decomposition as an intermediate decomposition. It is defined by EisenbudSturmfels and improved by Kahle. In addition, following some parts of the algorithm by Laplagne, a new algorithm for an intermediate decomposition is constructed. This algorithm decomposes an ideal into cellular ideals whose sets of minimal associated primes are disjoint. It needs neither extensions of the coefficient field nor reductions to the zero-dimensional case. Most of the computations are saturations. We observe by this intermediate decomposition, binomial ideals are decomposed into components whose radicals correspond to the minimal associated primes in many cases. This algorithm executes nilpotency checks, radical membership tests and computations of saturations many times. Therefore, we try to speed up the check of $I=I: f(f$ is a polynomial $)$ which is necessary for above computations. As a result, we obtain efficient algorithms including heuristic and optional methods.

The second one applies Chinese Remainder Theorem (CRT) to Laplagne's algorithm which computes minimal associated primes without producing redundant components. CRT reconstructs an object in a ring from its modular images in the quotient rings modulo some ideals. In Laplagne's algorithm, ideals are decomposed over rational function fields over \mathbb{Q} by regarding some variables as parameters. In our new algorithm, we compute the minimal associated primes of $\langle\phi(G)\rangle$ for a given ideal $I=\langle G\rangle$, where ϕ is a substitution map for a parameter. Then we construct candidates of the minimal associated primes of I by applying CRT for those of $\langle\phi(G)\rangle$'s. In order for this method to work correctly, the shape of each modular component must coincide with that of the corresponding component of the ideal. This is realized with a high probability because a multivariate irreducible polynomial over \mathbb{Q} remains irreducible after a substitution of integers for variables with a high probability.

Chapter 1

Basic Facts

In this chapter, we recall several well-known facts which are bases of this paper. We just list definitions and facts that is concerned with this paper concisely. For more details and proofs, refer to [AM, Chapter 1], [GP, Chapter 1] and [GG, Chapter 21].

1.1 Polynomial Ring

Definition 1.1.1. Let R be a commutative ring and x_{1}, \ldots, x_{n} variables.

1) A monomial is a power product of variables

$$
x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}},\left(\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}{ }^{n}\right) .
$$

2) A term over R is a product of monomial and an element of R

$$
r x^{\alpha},\left(r \in R, \alpha \in \mathbb{Z}_{\geq 0}^{n}\right) .
$$

In this case, r is called the coefficient of a term $r x^{\alpha}$.
3) A polynomial over R is a finite sum of terms

$$
\sum_{i=1}^{m} r_{i} x^{\alpha_{i}},\left(m \in \mathbb{Z}_{\geq 0}, r_{i} \in R, \alpha_{i} \in \mathbb{Z}_{\geq 0}{ }^{n}\right)
$$

4) The polynomial ring over R is the set of all polynomials over R

$$
R[X]:=R\left[x_{1}, \cdots x_{n}\right]:=\left\{\sum_{i=1}^{m} r_{i} x^{\alpha_{i}} \mid m \in \mathbb{Z}_{\geq 0}, r_{i} \in R, \alpha_{i} \in \mathbb{Z}_{\geq 0}^{n}\right\}
$$

A polynomial ring is a commutative ring with the usual addition and multiplication. We list some notions and operations on ideals.

Definition 1.1.2. Let I, J be ideals in $R[X], f, g$ polynomials in $R[X]$ and a a member of $R[X]$.

- I is a prime ideal if $f g \in I$ implies $f \in I$ or $g \in I$.
- The quotient ideal (colon ideal) of I with respect to J

$$
I: J:=\{f \in R[X] \mid f J \subset I\} .
$$

In particular

$$
I: a:=I:\langle a\rangle=\{f \in R[X] \mid f a \in I\}
$$

- The saturation of I with respect to J

$$
I: J^{\infty}:=\left\{f \in R[X] \mid m \in \mathbb{N} \text { exists s.t } f J^{m} \subset I\right\}
$$

In particular

$$
I: a^{\infty}:=I:\langle a\rangle^{\infty}=\left\{f \in R[X] \mid m \in \mathbb{N} \text { exists s.t } f a^{m} \in I\right\}
$$

- The radical of I

$$
\sqrt{I}:=\left\{f \in R[X] \mid m \in \mathbb{N} \text { exists s.t. } f^{m} \in I\right\} .
$$

- I is a radical ideal if $\sqrt{I}=I$.
- I is a primary ideal if $f g \in I$ and $f \notin I$ imply $g \in \sqrt{I}$.

For ideals I, J in $R[X], I: J, I: J^{\infty}$ and \sqrt{I} are also ideals.
Definition 1.1.3. A ring R is called a Noetherian ring if every ideal in R is generated by a finite set.

We utilize properties of Noetherian rings to ensure the termination of algorithms implemented in polynomial rings.

Proposition 1.1.4. Let R be a commutative ring. The following are equivalent.

1) R is Noetherian.
2) (ascending chain condition) For every ascending chain of ideals in R

$$
I_{1} \subset I_{2} \subset \cdots,
$$

there exists $s \in \mathbb{N}$ such that if $s \leq i$, then $I_{s}=I_{i}$.
Theorem 1.1.5. (Hilbert's basis theorem) If R is a Noetherian ring, then $R[X]$ is a Noetherian ring.

1.2 Monomial Orderings

It is important to determine the ordering on monomials when we compute over polynomial rings. Computing processes are determined following a fixed monomial ordering.

Definition 1.2.1. Let $<$ be a total ordering on monomials. $<$ is called monomial ordering when it satisfies the following properties.

1) $1 \leq m$ for any monomials m.
2) Let m_{1}, m_{2}, m_{3} be monomials. If $m_{1}<m_{2}$, then $m_{1} m_{3}<m_{2} m_{3}$.

Unless otherwise noted, let $x_{1}>\cdots>x_{n}$ for any monomial orderings.
Example 1.2.2. The following two orderings are monomial orderings.

- Lexicographical ordering $<_{\text {lex }}$
$x^{\alpha}<_{\text {lex }} x^{\beta} \stackrel{\text { def }}{\Longleftrightarrow}$ there exists $i(1 \leq i \leq n)$ such that $j<i \Longrightarrow \alpha_{j}=\beta_{j}$ and $\alpha_{i}<\beta_{i}$.
- Graded reverse lexicographical ordering $<_{\text {grev }}$
$x^{\alpha}<_{\text {grev }} x^{\beta} \stackrel{\text { def }}{\Longleftrightarrow} \operatorname{deg}\left(x^{\alpha}\right)<\operatorname{deg}\left(x^{\beta}\right)$ or $\left(\operatorname{deg}\left(x^{\alpha}\right)=\operatorname{deg}\left(x^{\beta}\right)\right.$ and there exists $i(1 \leq i \leq n)$ such that $i<j \Longrightarrow \alpha_{j}=\beta_{j}$ and $\left.\alpha_{i}<\beta_{i}\right)$.

Definition 1.2.3. Let $<$ be a monomial ordering, S a subset of $R[X]$ and $f=r_{1} x^{\alpha_{1}}+\cdots+r_{m} x^{\alpha_{m}}$ a polynomial in $R[X]$ where $x^{\alpha_{1}}>\cdots>x^{\alpha_{m}}$ and $r_{1}, \ldots, r_{m} \neq 0$.

- The leading monomial of $f L M(f):=x^{\alpha_{1}}$.
- The leading monomial set of $S L M(S):=\{L M(f) \mid f \in S\}$.
- The leading term of $f L T(f):=r_{1} x^{\alpha_{1}}$.
- The leading coefficient of $f L C(f):=r_{1}$.
- The leading ideal of $S L(S):=\langle\{L T(f) \mid f \in S\}\rangle$.

Utilizing these definitions, we can construct an algorithm for division on $\mathbb{K}[X]$ where \mathbb{K} is a field.

Definition 1.2.4. Let f, f_{1}, \ldots, f_{m} be polynomials in $\mathbb{K}[X]$ and $<$ a monomial order. $r \in \mathbb{K}[X]$ is called a normal form of f with respect to $\left\{f_{1}, \ldots, f_{m}\right\}$ if r satisfies the following.

1) $f=q_{1} f_{1}+\cdots+q_{m} f_{m}+r,\left(q_{i} \in \mathbb{K}[X]\right)$.
2) $L M\left(q_{i} f_{i}\right) \leq L M(f)$.
3) No term in r is divisible by any $L T\left(f_{i}\right)$.

Note that the normal form of f is not unique in general. We show an example.
Example 1.2.5. Let $f=4 x+y+2 z, f_{1}=2 x+y, f_{2}=x+z$ in $\mathbb{Q}[x, y, z]$ and $<$ a monomial order with $x>y>z$.

$$
\begin{aligned}
f & =2 f_{1}+0 \cdot f_{2}+(-y+2 z) \\
& =0 \cdot f_{1}+4 f_{2}+(y-2 z) \\
& =f_{1}+2 f_{2}+0
\end{aligned}
$$

Therefore each of $(-y+2 z),(y-2 z)$ and 0 is a normal form of f with respect to $\left\{f_{1}, f_{2}\right\}$.

We can construct an algorithm for computing a normal form of a polynomial with respect to a set of polynomials and a monomial ordering (Algorithm 1).

```
Algorithm 1 NF
Input: \(f \in \mathbb{K}[X], S=\left\{s_{1}, \ldots, s_{m}\right\} \subset \mathbb{K}[X]\) and a monomial ordering \(<\)
Output: a normal form of \(f\) with respect to \(S\) and \(<\)
    \(r \leftarrow 0, g \leftarrow f\)
    while \(g \neq 0\) do
        if there exists \(s_{i} \in S\) s.t. \(L T\left(s_{i}\right) \mid L T(g)\) then
            \(g \leftarrow g-\frac{L T(g)}{L T\left(s_{i}\right)} f_{i}\)
        else
            \(r \leftarrow r+L T(g), g \leftarrow g-L T(g)\)
        end if
    end while
    return \(r\)
```

The output of this algorithm depends on the choice of i in the if block. We will obtain the uniqueness of normal forms by Gröbner Bases in Section 1.3.

1.3 Gröbner Basis

A Gröbner basis is a finite set of generators of an ideal. It has desirable properties and helpful to solve various algorithmic problems on polynomial rings.
Definition 1.3.1. Let $<$ be a monomial ordering and I an ideal in $R[X]$. A finite set $G \subset I$ is a Gröbner basis of I with respect to $<$ if $L(G)=L(I)$.

For an arbitrary ideal I in $\mathbb{K}[X]$, a Gröbner basis of I can be computed from generators of I by Buchberger's algorithm (Algorithm 2).
Definition 1.3.2. Let f, g be polynomials in $\mathbb{K}[X],<$ a monomial ordering and m the least common multiple with respect to $L T(f)$ and $L T(g)$. The \mathbf{S} polynomial with respect to f, g is defined as

$$
\operatorname{Spoly}(f, g):=\frac{m}{L T(f)} f-\frac{m}{L T(g)} g .
$$

```
Algorithm 2 Buchberger's algorithm
Input: \(f_{1}, \ldots, f_{2} \in \mathbb{K}[X]\) and a monomial order \(<\)
Output: a Gröbner basis of \(I=\left\langle f_{1}, \ldots, f_{m}\right\rangle\) w.r.t. \(<\)
    \(G \leftarrow\left\{f_{1}, \ldots, f_{m}\right\}, P \leftarrow\left\{\left(f_{i}, f_{j}\right) \mid 1 \leq i<j \leq m\right\}\)
    while \(P \neq \emptyset\) do
        choose \((p, q) \in P, P \leftarrow P \backslash\{(p, q)\}\)
        \(r \leftarrow \operatorname{NF}(\operatorname{Spoly}(p, q), G,<)\)
        if \(r \neq 0\) then
            \(P \leftarrow P \cup\{(g, r) \mid g \in G\}, G \leftarrow G \cup\{r\}\)
        end if
    end while
    return G
```

We can solve the following problems by utilizing Gröbner Bases. Let $f \in$ $\mathbb{K}[X], I, J$ ideals in $\mathbb{K}[X],<$ a monomial ordering, G a Gröbner basis of I with respect to $<$ and $t \notin X$ a new variable.

- $\mathrm{NF}(f, G,<)$ is determined uniquely depending on its arguments. We call f is G-reduced with respect to $<$ if $\operatorname{NF}(f, G,<)=f$.
- (ideal membership problem) $f \in I \Longleftrightarrow \operatorname{NF}(f, G,<)=0$
- (elimination theorem) Let Y be a set of variables, $X \cap Y=\emptyset, K$ an ideal in $\mathbb{K}[X, Y],<_{\text {elim }}$ a monomial order such that if $f \in \mathbb{K}[X, Y]$ and $L T(f) \in \mathbb{K}[Y]$, then $f \in \mathbb{K}[Y]$ and H a Gröbner basis of K with respect to $<_{\text {elim }}$. Then

$$
\{h \in H \mid L T(h) \in \mathbb{K}[Y]\} \text { is a Gröbner basis of } K \cap \mathbb{K}[Y] \text {. }
$$

We call a monomial ordering $<_{\text {elim }}$ with $X>_{\text {elim }} Y$ a elimination ordering.

- (intersection) $I \cap J=\langle t I,(1-t) J\rangle \cap \mathbb{K}[X]$.
- (radical membership problem) $f \in \sqrt{I} \Longleftrightarrow \mathbb{K}[t]\langle I,(1-t f)\rangle=$ $\mathbb{K}[X, t]$.
- (quotient) If $I \cap\langle f\rangle=\left\langle f_{1} f, \ldots, f_{m} f\right\rangle$, then $I: f=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. Moreover, if $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$, then $I: J=\bigcap_{i=1}^{s}\left(I: g_{i}\right)$.
- (saturation) $I: g^{\infty}=\langle I, 1-t g\rangle \cap \mathbb{K}[X]$. Moreover, if $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$, then $I: J^{\infty}=\bigcap_{i=1}^{s}\left(I: g_{i}^{\infty}\right)$.

In general, there are infinite Gröbner Bases for an ideal. Therefore we define the reduced Gröbner basis of an ideal to describe ideals uniquely.

Definition 1.3.3. Let G be a Gröbner basis of I with respect to $<$.

- G is minimal if for all $g \in G$

1) g is monic,
2) $L T(g) \notin L(G \backslash\{g\})$.

- A minimal Gröbner basis G is reduced if all $g \in G$ is $G \backslash\{g\}$-reduced with respect to $<$.

Theorem 1.3.4. Every ideal in $\mathbb{K}[X]$ has a unique reduced Gröbner basis with respect to a given monomial ordering. Furthermore it can be computed from any Gröbner basis of the ideal.

In the following of this paper, we omit to specify a monomial ordering unless it is necessary.

Chapter 2

Minimal Associated Primes

Our goal is to construct algorithms for representing a radical of a given ideal as an intersection of prime ideals. First of all, we verify the existence of such decompositions.

Definition 2.0.1. Let I be an ideal in a Noetherian ring. A prime ideal P including I is called a minimal associated prime of I if a prime ideal P^{\prime} satisfies $I \subset P^{\prime} \subset P$, then $P^{\prime}=P . \operatorname{minAss}(I)$ denotes the set of all minimal associated primes of I.

Proposition 2.0.2. Let I be an ideal in a Noetherian ring. $\min \operatorname{Ass}(I)$ is finite and if $\operatorname{minAss}(I)=\left\{P_{1}, \ldots, P_{m}\right\}$, then

$$
\sqrt{I}=P_{1} \cap \cdots \cap P_{m}
$$

We call it the prime decomposition of \sqrt{I}

2.1 Zero-dimensional Decomposition

There is an algorithm for computing minimal associated primes of zero-dimensional ideals in $\mathbb{K}[X]$ with $\operatorname{char}(\mathbb{K})=0$ by using the notion of general position.

Definition 2.1.1. ([GP, Definition 4.2.1])

1) A maximal ideal $M \subset \mathbb{K}[X]$ is called in general position with respect to $x_{i} \in X$, if there exist $g_{1}, \ldots, g_{n} \in \mathbb{K}\left[x_{i}\right]$ such that $\left\{x_{1}+g_{1}\left(x_{i}\right), \ldots, x_{i-1}+\right.$ $\left.g_{i-1}\left(x_{i}\right), x_{i+1}+g_{i+1}\left(x_{i}\right), \ldots, x_{n}+g_{n}\left(x_{i}\right), g_{i}\left(x_{i}\right)\right\}$ is the reduced Gröbner basis of M with respect to lexicographical ordering where x_{i} is smallest in X.
2) A zero-dimensional ideal $I \subset \mathbb{K}[X]$ is called in general position with respect to $x_{i} \in X$, if all associated primes P_{1}, \ldots, P_{m} are in general position with respect to x_{i} and if $P_{j} \cap \mathbb{K}\left[x_{i}\right] \neq P_{k} \cap \mathbb{K}\left[x_{i}\right]$ for $j \neq k$.

For zero-dimensional ideals in general position, we obtain the next proposition.

Proposition 2.1.2. [GP, Proposition 4.2.3] Let I be a zero-dimensional ideal in $\mathbb{K}[X],\langle g\rangle=I \cap \mathbb{K}\left[x_{n}\right]$ and $g=g_{1}^{m_{1}} \ldots g_{s}^{m_{s}}$ the factorization of g. Then

$$
I=\bigcap_{i=1}^{s}\left\langle I, g_{i}^{m_{i}}\right\rangle .
$$

If I is in general position with respect to x_{n}, then $\left\langle I, g_{i}^{m_{i}}\right\rangle$ is a primary ideal for all i.

We can make a given zero-dimensional ideal in general position by coordinate changes.

Proposition 2.1.3. ([GP, Proposition 4.2.2]) Let \mathbb{K} be a field of characteristic 0 and $I \subset \mathbb{K}[X]$ a zero-dimensional ideal. Then there exists a non-empty, Zariski open subset $Z \subset \mathbb{K}^{n-1}$ such that for all $\underline{a}=\left(a_{1}, \ldots, a_{n-1}\right) \in Z$, the coordinate change $\varphi_{\underline{a}}: \mathbb{K}[X] \rightarrow \mathbb{K}[X]$ defined by $\varphi_{\underline{a}}\left(x_{i}\right)=x_{i}$ if $i<n$, and

$$
\varphi_{\underline{a}}\left(x_{n}\right)=x_{n}+\sum_{i=1}^{n-1} a_{i} x_{i}
$$

has the property that $\varphi_{\underline{a}}(I)$ is in general position with respect to x_{n}.
These coordinate changes are chosen randomly in the algorithm. We can decide whether an ideal is in general position or not by the following criterion.

Lemma 2.1.4. ([GP, Proposition 4.2.4]) Let I be an ideal in $\mathbb{K}[X]$. Then the following two conditions are equivalent.

1) - I is zero-dimensional.

- I is in general position with respect to x_{n}.
- I is a primary ideal.

2) Let S be the reduced Gröbner basis of I with respect to $<_{l e x}$. Then there exist $g_{1}, \ldots, g_{n} \in \mathbb{K}\left[x_{n}\right]$ and positive integer m_{1}, \ldots, m_{n} such that

- $g_{n}^{m_{n}} \in S$ and g_{n} is irreducible.
- $\left(x_{j}+g_{j}\right)^{m_{j}}$ is congruent to an element in $S \cap \mathbb{K}\left[x_{j}, \ldots, x_{n}\right]$ modulo $\left\langle g_{n}, x_{n-1}+g_{n-1}, \ldots, x_{j+1}+g_{j+1}\right\rangle \subset \mathbb{K}[X]$ for $i \leq j \leq n-1$.

Combining the above propositions, we can decide whether a zero-dimensional ideal is primary and in general position or not (Algorithm 3 [GP, Algorithm 4.2.5]).

Finally, we can construct an algorithm for computing minimal associated primes of zero-dimensional ideals (Algorithm 4). Algorithm 4 follows from [GP, Algorithm 4.2.7]. However our algorithm outputs only minAss (I).

```
Algorithm 3 PRIMARYTEST
Input: a zero-dimensional ideal \(I=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset \mathbb{K}[X]\)
Output: \(\langle 0\rangle\) if \(I\) is either not primary or not in general position,
    or \(\sqrt{I}\) if \(I\) is primary and in general position.
    compute the reduced Gröbner basis \(G\) of \(I\) w.r.t \(<_{l e x}\)
    factorize \(g \in S\), the element with smallest leading monomial
    if \(g=g_{n}^{m_{n}}\) with \(g_{n}\) is irreducible then
        prim \(\leftarrow\left\langle g_{n}\right\rangle\)
    else
        return \(\langle 0\rangle\)
    end if
    \(i \leftarrow n\)
    while \(i>1\) do
        \(i \leftarrow i-1\)
        choose \(f \in S\) with \(L M(f)=x_{i}^{t}\)
        \(b \leftarrow\) the coefficient of \(x_{i}^{t-1}\) in \(f\) considered as polynomial in \(x_{i}\)
        \(q \leftarrow x_{i}+b / t\)
        if \(q^{t} \equiv f(\bmod\) prim) then
            prim \(\leftarrow\) prim \(+\langle q\rangle\)
        else
            return \(\langle 0\rangle\)
        end if
    end while
    return prim
```

```
Algorithm 4 ZerominAss
Input: a zero-dimensional ideal \(I=\left\langle f_{1}, \ldots, f_{k}\right\rangle \subset \mathbb{K}[X]\)
Output: minAss ( \(I\) )
    result \(\leftarrow \emptyset\)
    choose a random \(\underline{a} \in \mathbb{K}^{n-1}\) and \(I^{\prime} \leftarrow \varphi_{\underline{a}}(I)\) (cf. Proposition 2.1.3)
    compute the reduced Gröbner basis \(G\) of \(I^{\prime}\) w.r.t. \(<_{l e x}\)
    factorize \(g=g_{1}^{m_{1}} \ldots g_{s}^{m_{s}} \in G \cap \mathbb{K}\left[x_{n}\right]\)
    for \(i=1\) to \(s\) do
        \(P_{i}^{\prime} \leftarrow \operatorname{PRIMARYTEST}\left(\left\langle I^{\prime}, g_{i}\right\rangle\right)\)
        if \(P_{i}^{\prime} \neq\langle 0\rangle\) then
            \(P_{i} \leftarrow \varphi_{\underline{a}}^{-1}\left(P_{i}^{\prime}\right)\)
            result \(\stackrel{\underset{\sim}{\sim}}{\leftarrow}\) result \(\cup\left\{P_{i}\right\}\)
        else
            result \(\leftarrow\) result \(\cup \operatorname{zeroMinAss}\left(\left\langle I, \varphi_{\underline{a}}^{-1}\left(g_{i}\right)\right\rangle\right)\)
        end if
    end for
    return result
```


2.2 Laplagne's Algorithm

We give a concise introduction of an algorithm for computing minimal associated primes by Laplagne in [L2]. We call it Laplagne's algorithm and each of our two algorithms is based on it. It makes a given ideal zero-dimensional and decomposes without producing redundant components.

Laplagne's algorithm is based on the following well known property.
Lemma 2.2.1. Let I be an ideal in $\mathbb{K}[X]$ and $\sqrt{I}=\bigcap_{i=1}^{m} P_{i}$ the prime decomposition. Then a polynomial $g \in \mathbb{K}[X]$ gives the prime decomposition $\sqrt{I: g^{\infty}}=\bigcap_{g \notin P_{i}} P_{i}$.

Proof. This is derived from [AM, Exercise 1.12 iv)].
In order to reduce to the zero-dimensional case, we utilize a maximal independent set of given ideals.

Definition 2.2.2. Let I be an ideal in $\mathbb{K}[X] . U \subset X$ is called an independent set of I if $I \cap \mathbb{K}[U]=\{0\}$. We say that an independent set U is maximal when $\# U=\operatorname{dim}(I)$.

For a set of variables $Y, \mathbb{K}(Y)$ denotes the set $\left\{\left.\frac{f}{g} \right\rvert\, f, g \in \mathbb{K}[Y], g \neq 0\right\}$. If U is a maximal independent set of I, then $I \mathbb{K}(U)[X \backslash U]$ is zero-dimensional in $\mathbb{K}(U)[X \backslash U]$.

Lemma 2.2.1 implies the next proposition which is the core of Laplagne's algorithm.

Proposition 2.2.3. ([L1, Proposition 4])
Let I be an ideal in $\mathbb{K}[X]$, MA $\subset \operatorname{minAss}(I)$ and Int $=\bigcap_{P \in M A} P$ (if MA $=\emptyset$, we define Int $=\langle 1\rangle$). Suppose Int $\neq \sqrt{I}, g \in \operatorname{Int} \backslash \sqrt{I}, \sqrt{I: g^{\infty}}=\bigcap_{i=1}^{m} P_{i}$ is the prime decomposition and U is a maximal independent set of $I: g^{\infty}$. Then prime components such that $P_{i} \cap \mathbb{K}[U]=\{0\}$ satisfy $P_{i} \in \operatorname{minAss}(I)$ and $P_{i} \notin$ MA.

We can compute prime components satisfying the above condition by the reduction to the zero-dimensional case.

Proposition 2.2.4. Let I be an ideal in $\mathbb{K}[X], U$ a maximal independent set of $I: g^{\infty}$ and the prime decomposition $\sqrt{I}=\bigcap_{i=1} P_{i}$ in the condition

$$
P_{i} \cap \mathbb{K}[U]=\{0\} \quad(1 \leq i \leq l), \quad P_{i} \cap \mathbb{K}[U] \neq\{0\} \quad(l+1 \leq i \leq m)
$$

Then we have the prime decomposition

$$
\sqrt{I \mathbb{K}(U)[X \backslash U]} \cap \mathbb{K}[X]=\bigcap_{i=1}^{l} P_{i}
$$

Proof. See [GP] Exercise 4.3.3 and Proposition 4.3.1 (2).

Laplagne's algorithm is constructed as follows (Algorithm 5).

```
Algorithm 5 LMinAss
Input: an ideal \(I \subset \mathbb{K}[X]\)
Output: minAss \((I)\)
    Int \(\leftarrow\langle 1\rangle, \mathrm{MA} \leftarrow \emptyset\)
    while Int \(\backslash \sqrt{I} \neq \emptyset\) do
        choose \(g \in \operatorname{Int} \backslash \sqrt{I}\)
        \(J \leftarrow I: g^{\infty}\)
        \(U \leftarrow\) a maximal independent set of \(J\)
        \(J \leftarrow J \mathbb{K}(U)[X \backslash U]\)
        \(\left\{P_{1}, \ldots, P_{m}\right\} \leftarrow\) zeroMinAss \((J)\)
        \(P J \leftarrow\left\{P_{1} \cap \mathbb{K}[X], \ldots, P_{m} \cap \mathbb{K}[X]\right\}\)
        \(\mathrm{MA} \leftarrow \mathrm{MA} \cup P J\), Int \(\leftarrow\) Int \(\cap \bigcap_{P \in P J} P\)
    end while
    return MA
```


Chapter 3

Prime Decompositions for Binomial Ideals

In this chapter, we propose a new algorithm for computing minimal associated primes of binomial ideals over polynomial rings. We have all of arguments over a polynomial ring $\mathbb{K}[x]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ (over an arbitrary field \mathbb{K}). Binomials mean polynomials with at most two terms, namely, $a m_{1}+b m_{2}\left(a, b \in \mathbb{K}, m_{1}, m_{2}\right.$ are monomials in $\mathbb{K}[x]$). And we define a binomial ideal as an ideal generated by binomials.

The motivation of our research is to speed up the algorithm for primary decomposition by Kawazoe-Noro [KN]. It efficiently decomposes binomial ideals which have many embedded components. However it leaves place for improvement at the part computing minimal associated primes where ideals are made zero-dimensional.

Eisenbud-Sturmfels [ES] and Kahle [K] propose algorithms for computing minimal associated primes of binomial ideals and they are implemented in the computer algebra system Macaulay2 [M2]. The feature of these algorithms is that only binomials appear through the computing process. However, we have to extend the coefficient field in certain cases. On the other hand, Laplagne [L2] also proposes an algorithm for computing minimal associated primes of ideals (not limited to binomial ideals). It can decompose ideals without producing redundant components but needs the reduction to the zero-dimensional case. We combine both of their advantages.

Algorithms in [ES] and [K] represent a given ideal as an intersection of cellular ideals. It is called a cellular decomposition. It does not require reductions to zero-dimensional and most of the computations are saturations. We utilize and improve it as an intermediate decomposition.

In Section 3.1, we review the notion of cellular ideal and algorithms concerning cellular decomposition.

Our main results are in Section 3.2 and 3.3. We propose a new algorithm for an intermediate decomposition following a part of the process of Laplagne's
algorithm. And we show improvements of the new algorithm. It contains a subroutine transforming input, strategies choosing a polynomial for a saturation, techniques for saturations, an algorithm for homogeneous ideals and so on. We show the timing data of computing minimal associated primes of binomial ideals by algorithms in $[\mathrm{K}],[\mathrm{L} 2]$ and ours.

3.1 Cellular Decomposition

First we define cellular ideals.
Definition 3.1.1. An ideal I is called cellular if every $x_{i}(1 \leq i \leq n)$ is nilpotent or a non-zerodivisor modulo I.

Example 3.1.2. $I=\left\langle x^{2}, y-1\right\rangle(\subset \mathbb{K}[x, y])$ is a cellular ideal. Actually x is nilpotent modulo I, y is a non-zerodivisor modulo I.
$I=\left\langle x^{2}, x y\right\rangle(\subset \mathbb{K}[x, y])$ is not a cellular ideal. Because y is a zerodivisor modulo I but not nilpotent modulo I.

We can decide whether an ideal is cellular or not by Algorithm 6 which is explained in [K, Algorithm 1 Step 1].

```
Algorithm 6 CELLCHECK
Input: an ideal }I\subset\mathbb{K}[X
Output: If I is cellular, then 1, otherwise 0.
    X\leftarrow1
    for i=1 to n do
```



```
            X\leftarrowX\cdot\mp@subsup{x}{i}{}
        end if
    end for
    if }I=I:X\mathrm{ then
        return 1
    else
        return 0
    end if
```

Remark 3.1.3. In [K, Algorithm 1 Step 1], we check whether $I=I: X^{\infty}$ or not. However, it is equivalent to checking whether $I=I: X$ or not in Algorithm 6.

In this paper, we call a representation of an ideal as an intersection of cellular ideals a cellular decomposition.

By Algorithm 7, every ideal can be decomposed into cellular ideals. In the algorithm, the splitting tool is applied.

Proposition 3.1.4. (splitting tool)[GP, Lemma 3.3.6]
Let I be a ideal. If a polynomial a satisfies $I: a=I: a^{2}$, then

$$
I=I: a \cap\langle I, a\rangle .
$$

```
Algorithm 7 CELLDECOMP
Input: an ideal \(I \subset \mathbb{K}[X]\)
Output: a set of cellular ideals whose intersection is \(I\)
    if \(\operatorname{CellCheck}(I)=1\) then
        return \(I\)
    end if
    choose \(x_{0}\) : a zerodivisor modulo \(I\) among non-nilpotent variables modulo \(I\)
    \(X \leftarrow x_{0}{ }^{m}\) (an integer \(m\) is chosen s.t. \(\left.I: X=I: X^{2}\right)\)
    \(C_{1} \leftarrow I: X\)
    \(C_{2} \leftarrow\langle I, X\rangle\)
    return \(\operatorname{CELLDECOMP}\left(C_{1}\right) \cup \operatorname{CELLDECOMP}\left(C_{2}\right)\)
```

Kahle proposes an algorithm for computing minimal associated primes in [K, Algorithm 4]. The algorithm decomposes cellular ideals into minimal associated primes after cellular decomposition. Here we give its brief outline. The proofs and details are in $[\mathrm{K}$, Section 1].

For a set of indices of variables $\varepsilon \subset\{1, \ldots, n\}$ and a vector of natural numbers $d=\left(d_{i}\right)_{i \notin \varepsilon}$, we define

$$
M(\varepsilon):=\left\langle x_{i} \mid i \notin \varepsilon\right\rangle, M(\varepsilon)^{d}:=\left\langle x_{i}{ }^{d_{i}} \mid i \notin \varepsilon\right\rangle .
$$

Lemma 3.1.5. A binomial ideal I is cellular if and only if there exist a set $\varepsilon \subset\{1, \ldots, n\}$ and a vector of natural numbers $d=\left(d_{i}\right)_{i \notin \varepsilon}$ such that

$$
I=\left\langle I, M(\varepsilon)^{d}\right\rangle:\left(\prod_{i \notin \varepsilon} x_{i}\right)^{\infty} .
$$

Definition 3.1.6. For a set $\varepsilon \subset\{1, \ldots, n\}$, a pair (L, σ) where $L \subset \mathbb{Z}^{\varepsilon}$ is an integer lattice and $\sigma: L \rightarrow \mathbb{K}^{*}$ is homomorphism, is called a partial character. A partial character induces a lattice ideal in $\mathbb{K}\left[\left(x_{i}\right)_{i \in \varepsilon}\right]$

$$
\operatorname{Lat}(\sigma):=\left\langle x^{m_{+}}-\sigma(m) x^{m_{-}} \mid m \in L\right\rangle
$$

where m is decomposed into the positive part m_{+}and the negative part m_{-}, so that $m=m_{+}-m_{-}$.

Lemma 3.1.7. The radical of a binomial cellular ideal I is represented with $\varepsilon \subset\{1, \ldots, n\}$ and a partial character (L, σ) such that

$$
\sqrt{I}=\langle M(\varepsilon), \operatorname{Lat}(\sigma)\rangle .
$$

Definition 3.1.8. For a set $\varepsilon \subset\{1, \ldots, n\}$ and an integer lattice $L \subset \mathbb{Z}^{\varepsilon}$, we define the saturation of L

$$
\operatorname{Sat}(L):=\left\{m \in \mathbb{Z}^{\varepsilon} \mid d m \in L \text { for some } d \in \mathbb{Z}\right\}
$$

A partial character $\left(L^{\prime}, \sigma^{\prime}\right)$ is called a saturation of (L, σ) if

$$
L^{\prime}=\operatorname{Sat}(L), \sigma^{\prime}(l)=\sigma(l)(l \in L)
$$

Theorem 3.1.9. For a cellular ideal I, if its radical is represented with a set $\varepsilon \subset\{1, \ldots, n\}$ and a partial character (L, σ) such that

$$
\sqrt{I}=\langle M(\varepsilon), \operatorname{Lat}(\sigma)\rangle,
$$

then its minimal associated primes are given by

$$
P_{\sigma^{\prime}}=\left\langle M(\varepsilon), \operatorname{Lat}\left(\sigma^{\prime}\right)\right\rangle
$$

where σ^{\prime} runs through all saturations of σ.
Note that the splitting tool generates redundant components in general. Therefore we will consider an algorithm without producing redundant components.

3.2 A New Algorithm for Minimal Associated Primes

We describe a new algorithm for computing minimal associated primes without producing redundant components. It is based on Laplagne's algorithm and utilizes cellular decomposition as an intermediate decomposition.

First of all, we show an algorithm which outputs a cellular ideal including a given ideal (Algorithm 8).

Theorem 3.2.1. Algorithm 8 works correctly.
Proof. A variable x_{0} which is not nilpotent modulo J is non-zerodivisor modulo $J: x_{0}^{\infty}$ because polynomials f with $f x_{0} \in J: x_{0}^{\infty}$ are in $J: x_{0}^{\infty}$. And it is easy to show if x_{i} is nilpotent(respectively non-zerodivisor) modulo J, then it is nilpotent(respectively non-zerodivisor) modulo $J: x_{0}^{\infty}$. Therefore C is a cellular ideal and $C=J: X^{\infty}$ with a monomial X. It implies $C \supset J$. This algorithm terminates after n loops.

This cellular ideal C from Algorithm 8 has the following property.
Lemma 3.2.2. \sqrt{C} is an intersection of some components of $\operatorname{minAss}(J)$.

```
Algorithm 8 CELLULARIZE
Input: an ideal \(J \subset \mathbb{K}[X]\)
Output: a cellular ideal including \(J\)
    \(V \leftarrow\left\{x_{1}, \ldots, x_{n}\right\}\)
    \(C \leftarrow J\)
    while \(V \neq \emptyset\) do
        choose \(x_{0} \in V\)
        \(V \leftarrow V \backslash\left\{x_{0}\right\}\)
        if \(x_{0}\) is not nilpotent \((\bmod C)\) then
            \(C \leftarrow C: x_{0}^{\infty}\)
        end if
    end while
    return \(C\)
```

Proof. Let X be the product of all variables which are not nilpotent modulo C. X satisfies the condition of the splitting tool, hence

$$
C=J: X^{\infty} .
$$

Then C is an intersection of primary components of J because of Lemma 2.2.1. Computing radicals of both sides and removing redundant components, \sqrt{C} is an intersection of some components of $\operatorname{minAss}(J)$.

Then we propose a new algorithm for the intermediate decomposition without producing redundant components (Algorithm 9).

```
Algorithm 9 INTERMEDIATECELLDECOMP
Input: an ideal \(I \subset \mathbb{K}[X]\)
Output: an intermediate decomposition of \(I\) s.t. \(\sqrt{\cap\{C \mid C \in I D\}}=\sqrt{I}\)
            \(C_{1}, C_{2} \in I D\) and \(C_{1} \neq C_{2}\) then \(\operatorname{minAss}\left(C_{1}\right) \cap \operatorname{minAss}\left(C_{2}\right)=\emptyset\)
    Int \(\leftarrow\langle 1\rangle\)
    \(I D \leftarrow \emptyset\)
    while Int \(\supsetneq \sqrt{I}\) do
        choose \(g \in I n t \backslash \sqrt{I}\)
        \(J \leftarrow I: g^{\infty}\)
        \(C \leftarrow \operatorname{CELLULARIZE}(J)\)
        Int \(\leftarrow\) Int \(\cap C\)
        \(I D \leftarrow I D \cup\{C\}\)
    end while
    return \(I D\)
```

Theorem 3.2.3. Algorithm 9 works correctly without producing redundant components.

Proof. Let $\sqrt{I}=\bigcap_{i} \sqrt{Q_{i}}$ be the minimal prime decomposition. Lemma 2.2.1 implies

$$
\sqrt{I: g^{\infty}}=\bigcap_{g \notin \sqrt{Q_{i}}} \sqrt{Q_{i}} .
$$

From Lemma 3.2.2, C is decomposed minimally into a subset of these components. Let this decomposition be

$$
\sqrt{C}=\bigcap_{j} \sqrt{Q_{j}}
$$

Since $g \in \operatorname{Int}, \sqrt{Q_{j}}$ differs from components of $\operatorname{minAss}\left(C^{\prime}\right)$ where $C^{\prime} \in I D$. On the other hand, since $\operatorname{Int} \supsetneq \operatorname{Int} \cap \sqrt{C} \supset \sqrt{I}$, we obtain an expected output. In addition, this algorithm terminates in finite steps since the number of minAss (I) is finite and C is an intersection of new minimal associated primes.

Finally, a new algorithm for computing minimal associated primes has been completed. It decomposes a given ideal by Algorithm 9 then decomposes each component by Laplagne's algorithm. Through the algorithm, already-known minimal associated primes never appear again (Algorithm 10).

```
Algorithm 10 minAss \(\beta\)
Input: an ideal \(I \subset \mathbb{K}[X]\)
Output: minAss \((I)\)
    \(M A \leftarrow \emptyset\)
    \(I D \leftarrow \operatorname{INTERMEDiATECELLDECOMP}(I)\)
    while \(I D \neq \emptyset\) do
        choose \(C \in I D\)
        \(I D \leftarrow I D \backslash C\)
        \(M A \leftarrow \operatorname{LMinAss}(C)\)
    end while
    return \(M A\)
```

We measure the time for computing minimal associated primes by Algorithm 10 and Laplagne's algorithm(Table 3.1). Laplagne's algorithm is implemented as a function minAssGTZ in Singular [DGPS]. With its option minAssGTZ $(I, 1)$, it is more similar to Algorithm 5 than the default. For comparison, we also measure the default algorithm minAssGTZ (I). It utilizes the factorized Gröbner basis algorithm as an intermediate decomposition.

In this paper, the unit of timings is a second and all results have been rounded to no more than three significant figures. All of our algorithms were implemented in Singular [DGPS] and measured on a 64-bit Linux machine with Intel Xeon E5-2650 v2, 2.60GHz and 256 GB memory. Definitions and examples of decomposed ideals are in Appendix. The library file of algorithms will be available from the URL [A16].

Table 3.1: Timing data of computing minimal associated primes

	$A(2,14)$	$A(3,9)$	$A(4,6)$	$P(2,13)$	$P(3,7)$
Algorithm 10	234	904	5990	185	126
minAssGTZ $(I, 1)$	421	806	5810	190	119
minAssGTZ (I)	429	98	38	5	2

	$P(3,8)$	$P(4,6)$	$P(5,5)$	$I^{(1,4)}$	$I^{(2,2)}$
Algorithm 10	581	545	891	144	132
minAssGTZ $(I, 1)$	537	438	679	107	87
minAssGTZ (I)	7	7	9	112	24

Algorithm 10 is much slower than minAssGTZ(I). However, it is as fast as minAssGTZ $(I, 1)$. To improve it we measure the runtimes of its components.

Table 3.2: Details of Algorithm 10

	$A(2,14)$	$A(3,9)$	$A(4,6)$	$P(2,13)$	$P(3,7)$
Total	234	904	5990	185	126
radical membership	3.3	796	5780	159	116
saturation	0.3	43	188	13	4.2
cellularize	12	6.3	10	1.2	0.7
intersection	195	50	7.7	8.6	2.4
Laplagne algorithm	24	8.0	3.5	3.1	1.9

	$P(3,8)$	$P(4,6)$	$P(5,5)$	$I^{(1,4)}$	$I^{(2,2)}$
Total	581	545	891	144	132
radical membership	554	515	847	89	79
saturation	14	17	27	1.4	1.2
cellularize	1.2	1.2	1.6	3.0	2.6
intersection	8.4	8.3	12	46	44
Laplagne algorithm	3.1	3.3	3.9	4.7	4.9

Table 3.2 shows that radical membership tests are bottle-necks of this algorithm. In this implementation, we use a general-purpose function for radical membership tests. We will improve it in the next section. On the other hand, the data of Laplagne's algorithm (the bottom line) shows that Algorithm 9 is useful as an intermediate decomposition. Actually, all of cellular components are already prime in these examples.

Remark 3.2.4. Our algorithm works correctly not only for binomial ideals but also for general ideals. However, our algorithm dose not always decompose general ideals efficiently. By observation, it seems to relate with the number of variables which are zerodivisors modulo the given ideal. In general, binomials tend to have some variables as their factors. Conversely polynomials with many terms do not because every term must have a common variable. These variables transform the given ideal by saturations in Algorithm 8. Therefore, Algorithm

8 sometimes affects general ideals little or nothing. It means that most parts of the decomposition are performed by Laplagne's algorithm. Hence we restrict our targets to binomial ideals in this paper.

3.3 Improvements

We observe the behavior of Algorithm 10 and improve by various methods including heuristic approaches. Let I be an ideal in $\mathbb{K}[x]$ and for any polynomial f, let \sqrt{f} denote the square free part of f.

3.3.1 Simplification of the Ideal

The goal of Algorithm 10 is to decompose \sqrt{I}, not I. Therefore we can transform I into an ideal whose radical is equal to \sqrt{I}. By Algorithm 11, I is enlarged without changing its radical.

```
Algorithm 11 SQuAREFREE
Input: an ideal \(I=\left\langle f_{1}, \ldots, f_{m}\right\rangle \subset \mathbb{K}[X]\)
Output: generators of an ideal \(J\) s.t. \(\sqrt{J}=\sqrt{I}\)
    return \(\left\{\sqrt{f_{1}}, \ldots, \sqrt{f_{m}}\right\}\)
```

Correctness of Algorithm 11 is clear by $\sqrt{I}=\sqrt{\left\langle\sqrt{f_{1}}, \ldots, \sqrt{f_{m}}\right\rangle}$. (See [AM, Chapter1 Exercise 1.13 v$)]$.) Note that $\operatorname{deg}\left(\sqrt{f_{i}}\right) \leq \operatorname{deg}\left(f_{i}\right)$. With this algorithm, we obtain an algorithm for computing a Gröbner basis $S=\left\{s_{1}, \ldots, s_{l}\right\}$ s.t. $\sqrt{\langle S\rangle}=\sqrt{I}$.

```
Algorithm 12 SIMPLIFICATION
Input: an ideal }I\subset\mathbb{K}[X
Output: a Gröbner basis of }J\mathrm{ s.t. }\sqrt{}{J}=\sqrt{}{I
    S\leftarrow a Gröbner basis of I
    SF}\leftarrow\operatorname{SQUAREFREE (\langleS\rangle)
    while }\langleS\rangle\not=\langleSF\rangle\mathrm{ do
        S\leftarrow the reduced Gröbner basis of SF
        SF}\leftarrow\operatorname{squareFree( }\langleS\rangle
    end while
    return S
```

Proposition 3.3.1. Algorithm 12 works correctly. In particular, $\langle S\rangle$ can be used instead of I in Algorithm 10.

Proof. Correctness is clear. The series of $\langle S\rangle$ is an ascending chain with proper inclusions. The properties of Noetherian ring ensure the termination.

By this simplification, we expect lower degrees in the Gröbner basis of J. They are used for executing radical membership tests and computations of saturations. And they are executed frequently through the algorithm. Therefore we expect that it saves the total computing time.

3.3.2 Choice of Polynomials for Radical Membership Tests

Algorithm 9 searches a polynomial $g \in I n t \backslash \sqrt{I}$. The choice of g affects greatly the subsequent computation. Let $I=\bigcap_{i} Q_{i}$ be the minimal primary decomposition. If the number of $\sqrt{Q_{i}}$ containing g becomes large, then the number of minimal primary components of $I: g^{\infty}$ becomes small (See Lemma 2.2.1.). If $I: g^{\infty}$ is an intersection of small number of components, we expect its number of generators is small and they are low-degree.

To search for a polynomial which belongs to as many $\sqrt{Q_{i}}$ as possible, we propose the following strategy.

Strategy 3.3.2. Choose a polynomial g which has as many variables as possible.

Example 3.3.3. Let I be in $\mathbb{Q}\left[x_{1}, \ldots x_{10}\right], g_{1}=x_{1}-x_{2}$ and $g_{2}=x_{1} x_{3} x_{5} x_{7} x_{9}-$ $x_{2} x_{4} x_{6} x_{8} x_{10}$. Consider which of the two has more chance to belong to minimal associated primes of I.

Let the leading monomial of g_{1} be x_{1} and the one of g_{2} be $x_{1} x_{3} x_{5} x_{7} x_{9}$. Ideals which contain g_{1} must have at least one generator whose leading monomial is x_{1}. In the case of g_{2}, the essential generator can have $2^{5}=32$ kinds of leading monomials. Even just limited to monomial ideals, g_{1} belongs to ideals which contain both of x_{1} and x_{2}. On the other hand, g_{2} can be in ideals which contain at least one pair $\left(x_{s}, x_{t}\right)$ where s is odd and t is even.

3.3.3 Saturations of Homogeneous Ideals with Respect to a Variable

In Algorithm 8, saturations of I with respect to a variable are performed many times. For homogeneous ideals, the following proposition is helpful.

Proposition 3.3.4. ([S96, Lemma 12.1])
Let J be a homogeneous ideal and $G=\left\{g_{1}, \ldots, g_{m}\right\}$ the reduced Gröbner basis of J with respect to graded reverse lexicographic order with $x_{1}>\cdots>x_{n}$. Then a Gröbner basis of $J: x_{n}^{\infty}$ with respect to the same order is

$$
\left\{g_{1} / x_{n}^{l_{1}}, \ldots, g_{m} / x_{n}^{l_{m}}\right\} \text { where } l_{i}=\max \left\{l \in \mathbb{N} \mid x_{i}^{l} \text { divides } g_{i}\right\} .
$$

3.3.4 Computing Several Cellular Ideals at One Iteration

Algorithm 10 computes one cellular ideal at one iteration. The following proposition ensures computing several cellular ideals without loss of irredundancy.

Proposition 3.3.5. Let S be a Gröbner basis of J computed by Algorithm 12 and $g=g_{1} \cdots g_{s}$ be a member of S.
Then, sets of minimal associated primes of $J:\left(g / g_{i}\right)^{\infty}$ are disjoint for $1 \leq i \leq s$.
Proof. For $i \neq j, g_{i}$ and g_{j} do not have common factors because g is square free. Since $g_{i} \in J:\left(g / g_{i}\right)^{\infty}$, all minimal associated primes of $J:\left(g / g_{i}\right)^{\infty}$ have g_{i}. On the other hand, $J:\left(g / g_{j}\right)^{\infty}=\left(J:\left(g / g_{i} g_{j}\right)^{\infty}\right): g_{i}^{\infty}$. From Lemma 2.2.1, all minimal associated primes of $J:\left(g / g_{j}\right)^{\infty}$ do not contain g_{i}.

With this proposition, we can compute several cellular ideals including a given ideal in a particular case (Algorithm 13).

```
Algorithm 13 SEVERALCELLS
Input: an ideal \(J \subset \mathbb{K}[X]\) whose generators are square free,
    \(m=m_{1} \cdots m_{s}\) (the factorization of a monomial generator of \(J\) )
Output: cellular ideals including \(J\)
    \(I D \leftarrow \emptyset\)
    for \(i=1\) to \(s\) do
        \(C \leftarrow J:\left(m / m_{i}\right)^{\infty}\)
        \(C \leftarrow\) CELLULARIze \((C)\)
        \(I D \leftarrow I D \cap\{C\}\)
    end for
    return \(I D\)
```

Remark 3.3.6. From Proposition 3.3.5, Algorithm 13 also works correctly when m_{i} are square free polynomials. In this case, we compute saturations with respect to polynomials (not variables). In general, saturations with respect to polynomials are relatively slower than ones with respect to variables. Moreover, Proposition 3.3.4 is helpful to compute saturations with respect to variables. Therefore, we restrict m_{i} to variables in our algorithm.

If the given ideal has another monomial generator, we can try to compute other cellular ideals. However, the new ones are not always different from ones which we have already computed. Now, we can check whether a monomial generator produces new cellular ideals or not. For that, we record non-nilpotent variables with respect to cellular ideals.

Proposition 3.3.7. Let J be an ideal whose generators are square free, C_{1}, \ldots, C_{t} cellular ideals including J and X_{i} a product of all non-nilpotent variables with respect to C_{i}. If there exist a monomial generator m of J and a variable factor x_{j} of m such that m / x_{j} does not divide any of X_{1}, \ldots, X_{t}, then the output of cellularize $\left(J:\left(m / x_{j}\right)^{\infty}\right)$ differs from C_{1}, \ldots, C_{t}.

Proof. If m / x_{j} does not divide X_{i}, then variables in m / x_{j} is not a subset of non-nilpotent variables with respect to C_{i}. Let x_{0} be a variable which is in m / x_{j}
and not in X_{i}. If x_{0} is not nilpotent with respect to a cellular ideal $C \subset J$, then C differs from C_{1}, \ldots, C_{t} because x_{0} is nilpotent with respect to C_{1}, \ldots, C_{t}. We show that x_{0} can never become nilpotent in Algorithm 13. In the former part of Algorithm 13, x_{0} becomes non-zerodivisor with respect to $J^{\prime}:=J:\left(m / x_{j}\right)^{\infty}$, namely, $J^{\prime}: x_{0}^{\infty}=J^{\prime} \neq\langle 1\rangle$. If x_{0} becomes nilpotent while CELLULARIZE $\left(J^{\prime}\right)$, there is a product of variables V such that $\left(J^{\prime}: V^{\infty}\right): x_{0}^{\infty}=\langle 1\rangle$. Exchanging the two saturations, it means $\left(J^{\prime}: V^{\infty}\right)=\langle 1\rangle$ and such saturations are avoided in cellularize $\left(J^{\prime}\right)$. Therefore x_{0} can never become nilpotent and the output cellular ideal differs from C_{1}, \ldots, C_{t}.

Combining Algorithm 13 and Proposition 3.3.7, we obtain a recursive algorithm for computing cellular ideals including a given ideal I (Algorithm 14).

```
Algorithm 14 DISTINCTCELLS
Input: an ideal \(I \subset \mathbb{K}[X]\) whose generators are square free,
    Non \(Z D\) : an argument for recursion ( \(=1\) for the first time)
    NonNil : an argument for recursion ( \(=\emptyset\) for the first time)
Output: cellular ideals (including \(I\) ) whose minimal associated primes are
            distinct from each other
    \(I D \leftarrow \emptyset\)
    \(S \leftarrow \operatorname{SIMPLIFICATION}(I)\)
    Monom \(\leftarrow\left\{M_{1}, \ldots, M_{m}\right\}:\) monomial generators in \(S, \operatorname{deg}\left(M_{i}\right)>1\)
    if \(M o n o m=\emptyset\) then
        \(C \leftarrow\) CELLULARIZE \((I)\)
        NonNil \(\leftarrow\) NonNil \(\cup\{\) the product of non-nilpotent variables modulo \(C\) \}
        \(I D \leftarrow I D \cup\{C\}\)
    else
        for \(i=1\) to \(m\) do
            factorize \(M_{i}=v_{1} \cdots v_{t}\)
            for \(j=1\) to \(t\) do
                NewNon \(Z D \leftarrow N o n Z D \cdot\left(M_{i} / v_{j}\right)\)
                if NewNonZD does not divide any member of NonNil then
                \(J \leftarrow I:\left(M_{i} / v_{j}\right)^{\infty}\)
                \((\) Cell, NonNil \() \leftarrow \operatorname{DistinctCells}(J, N e w N o n Z D, N o n N i l)\)
                    \(I D \leftarrow I D \cup\) Cell
                    end if
            end for
        end for
    end if
    return (ID, NonNil)
```


3.3.5 Experiments

We show the timing data of the final version of our algorithm utilizing all the above improvements (MinAssC(I) ; Algorithm 15), Laplagne's algorithm(minAssGTZ(I))
and Kahle's algorithm(binomialMinimalPrimes((I)). Since Kahle's is implemented in Macaulay2 [M2], it is just a reference. About ideals in Table 3.1, our algorithm is faster than minAssGTZ (I) or finishes decomposing in a few seconds. Therefore we omit some examples in Table 3.1 and show timing data for more complicated ideals.

```
Algorithm 15 minAssC
Input: an ideal \(I \subset \mathbb{K}[X]\)
Output: minAss(I)
    \(M A \leftarrow \emptyset, I D \leftarrow \emptyset\), Int \(\leftarrow\langle 1\rangle\)
    \(S \leftarrow\) SIMPLIFICATION \((() I)\)
    while Int \(\backslash \sqrt{S} \neq \emptyset\) do
        choose \(g \in I n t \backslash \sqrt{S}\) following Strategy 3.3.2
        \(J \leftarrow S: g^{\infty}\)
        \(J \leftarrow \operatorname{SIMPLIFICATION}(() J)\)
        \((\) Cell, NonNil \() \leftarrow \operatorname{DistinctCells}(J, 1, \emptyset)\)
        \(I D \leftarrow I D \cup C e l l\)
        Int \(\leftarrow I n t \cap \bigcap_{C \in I D} C\)
    end while
    while \(I D \neq \emptyset\) do
        choose \(C \in I D\)
        \(M A \leftarrow M A \cup \operatorname{LminAss}(C)\)
    end while
    return MA
```

Table 3.3: Timing data of computing minimal associated primes

	MINAssC (I)	minAssGTZ (I)	binomialMinimalPrimes
$A(2,14)$	43	429	90
$A(3,10)$	165	642	248
$A(4,7)$	166	485	1430
$P(2,18)$	34	54	94
$P(3,10)$	40	48	61
$P(4,9)$	144	292	194
$I^{(1,5)}$	79	11100	>40000
$I^{(1,6)}$	1120	>50000	
$I^{(2,2)}$	12	24	36
$I^{(2,3)}$	4420	22900	>50000

3.3.6 Discussion

Table 3.3 and Table 3.4 show that the above improvements are helpful and our new algorithm works well.

Table 3.4: Details of minAssC(I)

	$A(2,14)$	$A(3,10)$	$A(4,7)$	$P(2,18)$	$P(3,10)$
Total	43	165	166	34	40
SIMPLIFICATION	0	3.1	86	0.9	0.7
radical membership \&saturation	1.8	33	16	1.7	0.4
CELLULARIZE	15	11	31	7.1	4.0
intersection	2.3	99	21	13	27
LMINASS	24	19	11	12	7.7

	$P(4,9)$	$I^{(1,5)}$	$I^{(1,6)}$	$I^{(2,2)}$	$I^{(2,3)}$
Total	144	79	1220	12	4420
SIMPLIFICATION	2.9	0.07	0.9	0.02	1.0
radical membership \&saturation	0.1	3.9	58	0.37	33
CELLULARIZE	10	22	98	5.3	126
intersection	112	15	377	1.0	2870
LMINASS	18	37	684	5.5	1390

In many cases, the extra time for Algorithm 12 is not long and it shortens the time of radical membership tests and computations of saturations.

Strategy 3.3.2 is suitable for our algorithm. It makes significant contributions to radical membership tests and computations of saturations.

Proposition 3.3.4 works very efficiently. Owing to speeding up computations of saturations with respect to a variable, we can compute cellularizations very fast. Therefore, computing several cellular ideals from one ideal becomes a valid strategy.

With Algorithm 13 and Proposition 3.3.7, we can reduce the number of iterations. It means we can reduce the frequency of radical membership tests, computations of saturations and computations of intersections.

There is room for improvement in computations concerning intersections.

Chapter 4

A Modular Algorithm for Laplagne's Algorithm

In this chapter, we propose a modular algorithm for computing minimal associated primes of ideals in $\mathbb{Q}[X]$. Modular algorithms avoid the swell of coefficients which makes ideal computations slow-down. For computational targets in a ring R, modular algorithms choose projection maps R to R^{\prime}, take projected images of targets and compute in R^{\prime} with the images to avoid the swell of coefficients. Then they reconstruct the real computed results in R from the computed results in R^{\prime}. For reconstructions, the projection images need to maintain information of the original targets. We call a projection is lucky if its images are 'useful' for reconstructions. Luckiness depends on what computations we perform and in general, we can not decide whether a projection is lucky or not before computations. It means that the computation is probabilistic and that in many cases the computed results of modular algorithms are only candidates of the expected results and we should verify the correctness in some way. Therefore, it is important for modular algorithms to detect unlucky projections quickly and to guarantee the correctness of the computed results by efficient methods.

There are several researches about modular algorithms for ideal computations. Arnold $[\mathrm{Ar}]$ and Pauer $[\mathrm{P}]$ propose modular algorithms for computing Gröbner basis. Idrees-Pfister-Steidel [IPS] apply a modular algorithm for radical computations and computing minimal associated primes of zero-dimensional ideals. Noro-Yokoyama [NY] summarize them, describe the relation among several notions of luckiness and illustrate applications of modular algorithms for saturation, intersection, radical computation and primary decomposition.

In this chapter, we apply a modular algorithm for Laplagne's algorithm (Algorithm 5). It deals with a rational function field $\mathbb{K}(U)$ as a coefficient field, for the sake of reductions to zero-dimensional case. This tends to produce huge coefficients at intermediate computations. Therefore we apply modular algorithms which suppress the swell of coefficients. On the other hand, A modular algorithm for computing minimal associated primes of polynomial ideals has
been proposed in [IPS]. The most significant difference between our algorithm and the algorithm in [IPS] is the setting of projection maps. The algorithm in [IPS] utilizes projections \mathbb{Q} to \mathbb{F}_{p} where p is a prime number, while our algorithm utilizes projections $\mathbb{Q}(u)$ to \mathbb{Q} (u is a parameter). Our projections reduce the number of parameters and keep the characteristic of coefficient fields 0 .

In Section 4.1, we introduce some well-known tools on which our algorithm is based. Chinese Remainder Theorem guarantees the existence of an inverse image for given projected images. And the Lagrange's interpolation is an arithmetic method to compute a result whose existence is guaranteed by Chinese Remainder Theorem. Then we give definitions of luckiness for computing minimal associated primes. Our definitions are based on the luckiness for computing Gröbner basis defined in [NY].

Our main results are in Section 4.2. We construct a modular algorithm for computing a subset of minimal associated primes of zero-dimensional ideals in $\mathbb{Q}(U)[X]$. Then we apply it for Laplagne's algorithm. We show the correctness of our algorithm. We also show that the number of lucky moduli is sufficiently large so that we can obtain the correct result with a high probability. Then we show the results of our implementation of the new algorithm. We measure the time for computing minimal associated primes of some ideals. We see that our algorithm is efficient for ideals which take long time to compute minimal associated primes by the Laplagne's original algorithm.

4.1 Fundamental Tools and Definitions

In this section, we review well-known tools and define luckiness of ideals for constructing our new algorithms.

4.1.1 Chinese Remainder Theorem

Let R be a commutative ring. When we perform a computation of an object from an input $F \subset R$ utilizing Chinese Remainder Theorem, we choose some ideals $I_{i} \subset R$ and compute a modular image of the object from $F \bmod I_{i}$ on R / I_{i}. Interpolating these computed results we try to reconstruct the true object. Chinese Remainder Theorem is formulated as follows.

Theorem 4.1.1. (Chinese Remainder Theorem; CRT) Let R be a commutative ring and I_{1}, \ldots, I_{s} pairwise comaximal ideals in R. For $r_{1}, \ldots, r_{s} \in R$, there exists $y \in R$ satisfying

$$
\begin{aligned}
y & \equiv r_{1} \bmod I_{1} \\
& \vdots \\
y & \equiv r_{s} \bmod I_{s}
\end{aligned}
$$

y is unique modulo $\cap_{i=1}^{s} I_{i}$.

CRT can be applied in two typical situations: $R=\mathbb{Z}$ or $R=\mathbb{K}[u]$ where \mathbb{K} is a field. In each case we illustrate Lagrange's interpolation which is one of concrete methods to construct y.
Lemma 4.1.2. (Lagrange's Interpolation in \mathbb{Z}) Let p_{1}, \ldots, p_{s} be distinct prime numbers from each other, $p=p_{1} \cdots p_{s}$ and $I_{1}=\left\langle p_{1}\right\rangle, \ldots, I_{s}=\left\langle p_{s}\right\rangle$. Then for $1 \leq i \leq s, a_{i}, b_{i} \in \mathbb{Z}$ such that

$$
a_{i}\left(p / p_{i}\right)+b_{i} p_{i}=1
$$

can be computed by the extended Euclidean algorithm. For any $r_{1}, \ldots, r_{s} \in \mathbb{Z}$, the unique y satisfying conditions in Theorem 4.1.1 is given by

$$
y=r_{1} L_{1}+\cdots+r_{s} L_{s}\left(\text { where } L_{i}=a_{i}\left(p / p_{i}\right)\right)
$$

Lemma 4.1.3. (Lagrange's Interpolation in $\mathbb{K}[u]$) Let $k_{1}, \ldots, k_{s} \in \mathbb{K}$ be distinct elements from each other, $I_{1}=\left\langle u-k_{1}\right\rangle, \ldots, I_{s}=\left\langle u-k_{s}\right\rangle$ and

$$
L_{i}=\frac{\left(u-k_{1}\right) \cdots\left(u-k_{i-1}\right)\left(u-k_{i+1}\right) \cdots\left(u-k_{s}\right)}{\left(k_{i}-k_{1}\right) \cdots\left(k_{i}-k_{i-1}\right)\left(k_{i}-k_{i+1}\right) \cdots\left(k_{i}-k_{s}\right)} .
$$

Then the unique y satisfying conditions in Theorem 4.1.1 is given by

$$
y=r_{1} L_{1}+\cdots+r_{s} L_{s} .
$$

Definition 4.1.4. Let $r_{1}, r_{2} \in \mathbb{K}[u]$ and I_{1}, I_{2} comaximal ideals $\subset \mathbb{K}[u]$. We name the interpolation r_{1} modulo I_{1} and r_{2} modulo $I_{2} \operatorname{CRT}\left(r_{1}, r_{2}, I_{1}, I_{2}\right)$. For $f=\sum_{\alpha} c_{\alpha} x^{\alpha}, g=\sum_{\alpha} d_{\alpha} x^{\alpha} \in \mathbb{K}[u][X]$, we define $\operatorname{CRT}\left(f, g, I_{1}, I_{2}\right)=$ $\sum_{\alpha} C R T\left(c_{\alpha}, d_{\alpha}, I_{1}, I_{2}\right) x^{\alpha}$. For $F=\left\{f_{1}, \ldots, f_{s}\right\}, G=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathbb{K}[u][X]$ where $L M\left(f_{i}\right)$'s and $L M\left(g_{i}\right)$'s are distinct respectively and $L M\left(f_{i}\right)=L M\left(g_{i}\right)$, we define $\operatorname{CRT}\left(F, G, I_{1}, I_{2}\right)=\left\{\operatorname{CRT}\left(f_{i}, g_{i}, I_{1}, I_{2}\right) \mid 1 \leq i \leq s\right\}$. Let I, J be ideals in $\mathbb{K}[u], G_{I}, G_{J}$ the reduced Gröbner bases of I, J, respectively and $\operatorname{CRT}\left(G_{I}, G_{J}, I_{1}, I_{2}\right)$ is defined. We difine $\operatorname{CRT}\left(I, J, I_{1}, I_{2}\right)=\left\langle\operatorname{CRT}\left(G_{I}, G_{J}, I_{1}, I_{2}\right)\right\rangle$. Moreover, for $\mathcal{F}=\left\{F_{1}, \ldots, F_{t}\right\}$ and $\mathcal{G}=\left\{G_{1}, \ldots, G_{t}\right\}$ where $\operatorname{CRT}\left(F_{i}, G_{i}, I_{1}, I_{2}\right)$'s are defined, we define $\operatorname{CRT}\left(\mathcal{F}, \mathcal{G}, I_{1}, I_{2}\right)=\left\{\operatorname{CRT}\left(F_{i}, G_{i}, I_{1}, I_{2}\right) \mid 1 \leq i \leq t\right\}$. When we compute CRT of indexed sets, we reset indices of members implicitly in order to complete the computation unless there are two or more candidates of indices which are suitable for the computation.

4.1.2 Rational function reconstruction

Our main target in this section is the reduced Gröbner basis G of a minimal associated prime of an ideal I over a rational function field $\mathbb{K}(u)$. If we apply CRT for the modular images computed over \mathbb{K}, what we obtain is an object G^{\prime} over $\mathbb{K}[u]$. If a coefficient $c(u)$ appearing in G is not a polynomial we have to recover $c(u)$ from the corresponding polynomial coefficient in G^{\prime}. This procedure is as follows. Suppose that we try reconstructing a rational function $\frac{g(u)}{h(u)} \in \mathbb{K}(u)$. Let $k_{i} \in \mathbb{K}$ such that $h(u) \notin\left\langle u-k_{i}\right\rangle$ and $\langle M\rangle=\cap_{i}\left\langle u-k_{i}\right\rangle$. Utilizing CRT, we obtain a polynomial $f(u) \in \mathbb{K}[u]$ such that $f(u) \equiv \frac{g(u)}{h(u)}(\bmod M)$. Then g, h can be recovered by the following theorem and algorithm (Algorithm 16).

Theorem 4.1.5. ([GG, Theorem5.16]) Let $f, M \in \mathbb{K}[x], \operatorname{deg}(f)<\operatorname{deg}(M)=$ $n>0$ and $r_{i}, s_{i}, t_{i} \in \mathbb{K}[x]$ be the j-th row in extended Euclidean Algorithm for M, f, where j is minimal such that $\operatorname{deg}\left(r_{j}\right)<k$. There exist polynomials $r, t \in \mathbb{K}[x]$ satisfying

$$
r \equiv t f \quad(\bmod M), \operatorname{deg}(r)<k, \operatorname{deg}(t) \leq n-k
$$

namely $r=r_{j}, t=t_{j}$. If in addition $\operatorname{gcd}\left(r_{j}, t_{j}\right)=1$, then r, t also satisfy

$$
\operatorname{gcd}(t, M)=1, r t^{-1} \equiv f \quad(\bmod M), \operatorname{deg}(r)<k, \operatorname{deg}(t) \leq n-k
$$

```
Algorithm 16 RFR
Input: polynomials \(f, M \in \mathbb{K}[x]\)
Output: \(g, h \in \mathbb{K}[x]\) s.t. \(f \equiv g / h(\bmod M), h\) is monic and \(\operatorname{gcd}(g, h)=1\)
    \(r_{0} \leftarrow M, r_{1} \leftarrow f\)
    \(t_{0} \leftarrow 0, t_{1} \leftarrow 1\)
    \(i \leftarrow 1\)
    while \(2 \operatorname{deg}\left(r_{i}\right)>\operatorname{deg}(M)\) do
        \(R_{i} \leftarrow \mathrm{NF}\left(r_{i-1},\left\{r_{i}\right\}\right)\)
        \(Q \leftarrow\left(r_{i-1}-R_{i}\right) / r_{i}\)
        \(r_{i+1} \leftarrow R_{i}, t_{i+1} \leftarrow t_{i-1}-Q t_{i}\)
        \(i \leftarrow i+1\)
    end while
    return \(\left(r_{i}, t_{i}\right)\)
```

We also utilize the algorithm RFR for reconstructing coefficients of polynomials, ideals and a set of ideals.

Definition 4.1.6. Let $\langle M\rangle=\cap_{i}\left\langle u-k_{i}\right\rangle\left(k_{i} \in \mathbb{K}\right) \subset \mathbb{K}[u]$. For a polynomial $f=$ $\sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{K}[u][X]$, we denote $\operatorname{RFR}(f, M)=\sum_{\alpha} \operatorname{RFR}\left(c_{\alpha}, M\right) x^{\alpha}$. For a subset $F \subset \mathbb{K}[u][X]$, we define $\operatorname{RFR}(F, M)=\{\operatorname{RFR}(f, M) \mid f \in F\}$. For an ideal $I \subset \mathbb{K}[u][X]$, we define $\operatorname{RFR}(I, M)=\langle\operatorname{RFR}(G, M)\rangle$ where G is the reduced Gröbner basis of I. Moreover, for $\mathcal{F}=\left\{F_{1}, \ldots, F_{s}\right\}$ where $\operatorname{RFR}\left(F_{i}, M\right)$'s are defined, we define $\operatorname{RFR}(\mathcal{F}, M)=\{\operatorname{RFR}(F, M) \mid F \in \mathcal{F}\}$.

Remark 4.1.7. According to Theorem 4.1.5, when we reconstruct $\frac{g(u)}{h(u)} \in \mathbb{K}(u)$ $(\operatorname{gcd}(g, h)=1)$ from $f(u) \in \mathbb{K}[u]$ by RFR, we need more than $\operatorname{deg}(g)+\operatorname{deg}(h)$ ideals $\left\langle u-k_{i}\right\rangle\left(k_{i} \in \mathbb{K}\right.$ and $\left.h\left(k_{i}\right) \neq 0\right)$. With a shortage of ideals, RFR can return a rational function which is different from $\frac{g(u)}{h(u)}$. We say that the output of RFR is stable if we have more than $\operatorname{deg}(g)+\operatorname{deg}(h)$ ideals. However, we can not decide $\operatorname{deg}(g)+\operatorname{deg}(h)$ before computation in general. Therefore we say that the output is pseudo stable if $\operatorname{RFR}(f(u), M)=R F R\left(f(u), M^{\prime}\right)$,where $\langle M\rangle=\cap_{i=1}^{r}\left\langle u-k_{i}\right\rangle,\left\langle M^{\prime}\right\rangle=\cap_{i=1}^{s}\left\langle u-k_{i}\right\rangle(r<s)$. When the output becomes pseudo stable, we regard the output as a candidate of the unique rational function.

4.1.3 Luckiness

For constructing modular algorithms, we have to define several notions of luckiness of moduli. The following definitions are extensions of [NY, Definition 2.1].
Definition 4.1.8. Let $u \notin X$ be a variable, F a subset of $\mathbb{K}(u)[X], G$ the reduced Gröbner basis of $\langle F\rangle$ and $k \in \mathbb{K}$, then $\langle u-k\rangle$ is a prime ideal in $\mathbb{K}[u]$.

1) $\mathbb{K}[u]_{(u-k)}:=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in \mathbb{K}[u], g(k) \neq 0\right\}$.
2) $\phi_{(u-k)}: \mathbb{K}(u) \rightarrow \mathbb{K} ; f \mapsto f(k)$. We denote projection maps $\mathbb{K}[u]_{(u-k)} \rightarrow \mathbb{K}$ and $\mathbb{K}[u]_{(u-k)}[X] \rightarrow \mathbb{K}[X]$ by the same symbol $\phi_{(u-k)}$ such that $\frac{f}{g} \mapsto \frac{f(k)}{g(k)}$ and $\sum_{\alpha} c_{\alpha} x^{\alpha} \mapsto \sum_{\alpha} \phi_{(u-k)}\left(c_{\alpha}\right) x^{\alpha}\left(c_{\alpha}\right.$ is the coefficient of $\left.c_{\alpha} x^{\alpha}\right)$.
3) $\quad I_{(u-k)}(F):=\left\langle\phi_{(u-k)}(f) \mid f \in F\right\rangle, I_{(u-k)}^{0}(F):=\phi_{(u-k)}(\langle F\rangle \cap \mathbb{K}[u, X]), G_{u-k}$ denotes a Gröbner basis of $I_{(u-k)}(F)$.
4) $\langle u-k\rangle$ is said to be weak permissible for F if $F \subset \mathbb{K}[u]_{(u-k)}$. $\langle u-k\rangle$ is said to be permissible for F if $\langle u-k\rangle$ is weak permissible for F and $\phi_{(u-k)}(L C(f)) \neq 0$ for all $f \in F$.
5) $\langle u-k\rangle$ is said to be compatible for F if $\langle u-k\rangle$ is weak permissible for F and $I_{(u-k)}^{0}(F)=I_{(u-k)}(F) .\langle u-k\rangle$ is said to be strong compatible for F if $\langle u-k\rangle$ is weak compatible for F and $\phi_{(u-k)}\left(L(\langle F\rangle) \cap \mathbb{K}[u]_{(u-k)}[X]\right)=$ $L\left(I_{(u-k)}(F)\right)$.
6) $\langle u-k\rangle$ is said to be lucky for F if $\langle u-k\rangle$ is weak permissible for F and $L M(G)=L M\left(G_{u-k}\right)$.
7) $\langle u-k\rangle$ is said to be effectively lucky for F if $\langle u-k\rangle$ is weak permissible for $F,\langle u-k\rangle$ is permissible for G and $\phi_{(u-k)}(G)$ is a Gröbner basis of $I_{(u-k)}(F)$.
8) Let $\sqrt{\langle G\rangle}=\cap_{i=1}^{m} P_{i}$ be the prime decomposition and G_{i} the reduced Gröbner basis of $P_{i} .\langle u-k\rangle$ is said to be effectively minass lucky for G if $\langle u-k\rangle$ is permissible for G and $G_{i}(i=1, \ldots, m), \sqrt{I_{(u-k)}(G)}=\cap_{i=1}^{m} Q_{i}$ is the prime decomposition and $\phi_{(u-k)}\left(G_{i}\right)$ is the reduced Gröbner basis of Q_{i}.

Note that Definition 4.1.81) to 7) are defined for computing Gröbner basis by Noro-Yokoyama [NY]. Now, our goal is computing minimal associated primes. The computation of minimal associated primes includes not only computations of Gröbner basis but also computations of decomposition. Therefore we define Definition 4.1.8 8) as luckiness for computing minimal associated primes. The following lemma is fundamental.

Lemma 4.1.9. Let G be a Gröbner basis (respectively the reduced Gröbner basis) of $I \subset \mathbb{K}(u)[X](u \notin X)$. If an ideal $\langle u-k\rangle$ is permissible for G, then $\phi_{(u-k)}(G)$ is a Gröbner basis (respectively the reduced Gröbner basis) of $I_{(u-k)}(G)$.

Proof. For $\bar{h} \in I_{(u-k)}(G), \bar{h}$ is written as $\bar{h}=\sum_{g \in G} c_{g} \phi_{(u-k)}(g)$ where $c_{g} \in$ $\mathbb{K}[X]$. Then $h=\sum_{g \in G} c_{g} g \in I \cap \mathbb{K}[u]_{(u-k)}[X]$ and $\phi_{(u-k)}(h)=\bar{h}$. Let $h_{0} \in$ $I \cap \mathbb{K}[u]_{(u-k)}[X]$ such that $\phi_{(u-k)}\left(h_{0}\right)=\bar{h}$ and $L M\left(h_{0}\right)$ is minimal. Since $h_{0} \in I$, there exists $g \in G$ such that $L M(g) \mid L M\left(h_{0}\right)$. Since $\langle u-k\rangle$ is permissible for $G, \phi_{(u-k)}(L C(g)) \neq 0$. Set $h^{\prime}=h_{0}-\frac{L T\left(h_{0}\right)}{L T(g)} g$. Then $L M\left(h^{\prime}\right)<L M\left(h_{0}\right)$. If $\phi_{(u-k)}\left(L C\left(h_{0}\right)\right)=0$ then $\phi_{(u-k)}\left(h^{\prime}\right)=\phi_{(u-k)}\left(h_{0}\right)$ and it contradicts the construction of h_{0}. Thus $\phi_{(u-k)}\left(L C\left(h_{0}\right)\right) \neq 0$ and $L M\left(h_{0}\right)=L M(\bar{h})$. Therefore $L M\left(\phi_{(u-k)}(g)\right) \mid L M(\bar{h})$ and $\phi_{(u-k)}(G)$ is a Gröbner basis of $I_{(u-k)}(G)$. If G is the reduced Gröbner basis of I, then $\phi_{(u-k)}(G)$ is a Gröbner basis of $I_{(u-k)}(G)$ consisting of monic polynomials. The permissibility implies $L M(G)=$ $L M\left(\phi_{(u-k)}(G)\right)$ and it is clear that $\phi_{(u-k)}(G)$ is the reduced Gröbner basis.

4.2 New Algorithm

Algorithm 4 contains factorizations of polynomials and it may cause a problem which does not occur in the case of Gröbner basis computation : a problem caused by extraneous factors. For example, if we try to apply the modular algorithm over \mathbb{Q}, in many cases, a factorization over \mathbb{F}_{p} produces more factors than over \mathbb{Q} and it is hard to reconstruct the correct result from the results of modular computations. [IPS, Algorithm 3] is a modular algorithm for computing minimal associated primes which contains factorizations of polynomials however it performs reconstructions before factorizations and avoids factorizations over \mathbb{F}_{p}.

Now, Algorithm 5 regards some variables $U \subset X$ as parameters. Therefore we propose to apply Chinese Remainder Theorem over $\mathbb{Q}(U)$ for Algorithm 5. We fix some $u \in U$ and we reconstruct the result over $\mathbb{Q}(U)$ from the results of modular computation over $\mathbb{Q}(U \backslash\{u\})$ by using CRT and RFR. Namely, for an ideal $I=\langle G\rangle \subset \mathbb{Q}(U)[X \backslash U]$ where G is the reduced Gröbner basis of I, we find $\langle u-z\rangle$ which is permissible for G and compute the minimal associated primes of $\left\langle\phi_{(u-k)}(G)\right\rangle$. We gather these results for sufficiently many moduli for reconstructing the results over $\mathbb{Q}(U)$. Applying $\phi_{(u-k)}$ is equivalent to substituting k for u. Thus we can reduce one parameter. we repeat this procedure recursively and finally we compute minimal associated primes in $\mathbb{Q}[X \backslash U]$. Then we reconstruct parameters one by one recursively and obtain some members of the minimal associated primes (Algorithm 17).

We describe how to apply modular algorithms for Algorithm 4 concretely. Algorithm 17 is to compute a subset of $\min \operatorname{Ass}(\langle G\rangle)$. For showing the termination and correctness of Algorithm 17 we give several propositions. In the following let $U=\left\{u_{1}, \ldots, u_{l}\right\}$ be a set of parameters and $\mathbb{K}=\mathbb{Q}(U)$ a rational function field over \mathbb{Q}.

Proposition 4.2.1. Let $u \notin X$ be a parameter, $I \subset \mathbb{K}(u)[X]$ an ideal and $G=\left\{g_{1}, \ldots, g_{m}\right\}$ the reduced Gröbner basis of I. If $k \in \mathbb{K},\langle u-k\rangle$ is permissible

```
Algorithm 17 MODZEROMINAss
Input: \(G\) is a Gröbner basis of a zero-dimensional ideal in \(\mathbb{Q}(U)[X]\),
    \(U\) a set of parameters
Output: a subset \(P\) of \(\operatorname{minAss}(\langle G\rangle)=\left\{P_{1}, \ldots, P_{m}\right\}\) such that
        \(P=\left\{P_{i} \mid j \neq i \Rightarrow \operatorname{LM}\left(P_{j}\right) \neq L M\left(P_{i}\right)\right\}\)
    if \(U=\emptyset\) then
        \(M A \leftarrow \operatorname{zeroMinAss}(\langle G\rangle)\)
        \(M A \leftarrow\{\) the reduced Gröbner basis of \(I \mid I \in M A\}\)
        \(M A \leftarrow M A \backslash\left\{G_{j} \in M A \mid G_{k}(k \neq j)\right.\) exists s.t. \(\left.\operatorname{LM}\left(G_{j}\right)=L M\left(G_{k}\right)\right\}\)
        return \(P=\left\{\left\langle G_{i}\right\rangle \mid G_{i} \in M A\right\}\)
    end if
    \(M \leftarrow 1\)
    \(Z \leftarrow \emptyset\)
    \(P \leftarrow \emptyset, Q \leftarrow \emptyset\)
    \(u \leftarrow\) an element of \(U\)
    while do
        \(z \leftarrow\) an integer not in \(Z\) s.t. \(\langle u-z\rangle\) is effectively minass lucky for \(G\)
        \(Z \leftarrow Z \cup\{z\}\)
        \(m \leftarrow u-z\)
        \(P^{\prime} \leftarrow \operatorname{modZERoMinAss}\left(\phi_{(u-z)}(G), U \backslash\{u\}\right)\)
        if \(P^{\prime}=\emptyset\) then
            return \(\emptyset\)
        end if
        if \(P \neq \emptyset\) then
            \(P^{\prime} \leftarrow \operatorname{CRT}\left(P, P^{\prime},\langle M\rangle,\langle m\rangle\right)\)
        end if
        \(Q^{\prime} \leftarrow \operatorname{RFR}\left(P^{\prime}, m M\right)\)
        if \(Q=Q^{\prime}\) then
            if for all \(G_{i} \in Q,\left\langle G_{i}\right\rangle \supset\langle G\rangle\) then
                return \(P=\left\{\left\langle G_{i}\right\rangle \mid G_{i} \in Q\right\}\)
            end if
        end if
        \(M \leftarrow m M\)
        \(P \leftarrow P^{\prime}, Q \leftarrow Q^{\prime}\)
    end while
```

for G and $\bar{I}=I_{(u-k)}(G)$ is a prime ideal in $\mathbb{K}[X]$, then I is a prime ideal in $\mathbb{K}(u)[X]$.

Proof. From Lemma 4.1.9, $\phi_{(u-k)}(G)$ is the reduced Gröbner basis of \bar{I}. For $f, g \in \mathbb{K}(u)[X] \backslash I$, assume that $f g \in I$. We can regard f, g as G-reduced and $(u-k) \nmid f, g$ without loss of generality. Then $\phi_{(u-k)}(f) \neq 0$ and $\phi_{(u-k)}(g) \neq 0$. On the other hand, $\phi_{(u-k)}(f g)=\phi_{(u-k)}(f) \phi_{(u-k)}(g) \in \bar{I}$. Since \bar{I} is a prime ideal, $\phi_{(u-k)}(f) \in \bar{I}$ or $\phi_{(u-k)}(g) \in \bar{I}$. Since $\phi_{(u-k)}(f), \phi_{(u-k)}(g)$ are $\phi_{(u-k)}(G)-$ reduced, $\phi_{(u-k)}(f)=0$ or $\phi_{(u-k)}(g)=0$.

Proposition 4.2.2. Let P, Q be ideals in $\mathbb{K}(u)[X], G=\left\{g_{1}, \ldots, g_{s}\right\}$ the reduced Gröbner basis of $P, H=\left\{h_{1}, \ldots, h_{r}\right\}$ the reduced Gröbner basis of Q. If $k \in \mathbb{K}$ and $\langle u-k\rangle$ is permissible for G, H and $\left\langle\phi_{(u-k)}(G)\right\rangle \not \subset\left\langle\phi_{(u-k)}(H)\right\rangle$, then $P \not \subset Q$.
Proof. Take a polynomial $\bar{f} \in\left\langle\phi_{(u-k)}(G)\right\rangle \backslash\left\langle\phi_{(u-k)}(H)\right\rangle . \bar{f}$ can be written as $\bar{f}=\sum_{i=1}^{s} c_{i} \phi_{(u-k)}\left(g_{i}\right)\left(c_{i} \in \mathbb{K}\right)$. Set $f=\sum_{i=1}^{s} c_{i} g_{i} \in P$. If $P \subset Q$, then f can be written as $f=\sum_{i=1}^{r} d_{i} h_{i}\left(d_{i} \in \mathbb{K}[u]_{(u-k)}\right)$ because H is the reduced Gröbner basis of Q and $\langle u-k\rangle$ is permissible for H. Then $\bar{f}=\phi_{(u-k)}(f)=$ $\sum_{i=1}^{r} \phi_{(u-k)}\left(d_{i}\right) \phi_{(u-k)}\left(h_{i}\right) \in\left\langle\phi_{(u-k)}(H)\right\rangle$. It is a contradiction.
Theorem 4.2.3. Algorithm 17 terminates and outputs a subset of minAss $(\langle G\rangle)$.
Proof. If $U=\emptyset$ then the algorithm simply calls ZEROMinAss and the output is correct. We assume that the algorithm terminates and outputs a correct result in the case $\# U=s$. Suppose $\# U=s+1$. Let G_{1}, \ldots, G_{m} be the reduced Gröbner bases of the minimal associated primes of $\langle G\rangle$. Set

$$
\left\{G_{i_{1}}, \ldots, G_{i_{k}}\right\}=\left\{G_{i} \mid j \neq i \Rightarrow L M\left(G_{j}\right) \neq L M\left(G_{i}\right)\right\} .
$$

Since $\langle u-z\rangle$ is effectively minass lucky,

$$
\min \operatorname{Ass}\left(\left\langle\phi_{(u-z)}(G)\right\rangle\right)=\left\{\left\langle\phi_{(u-z)}\left(G_{1}\right)\right\rangle, \ldots,\left\langle\phi_{(u-z)}\left(G_{m}\right)\right\rangle\right\}
$$

and $\operatorname{LM}\left(G_{i}\right)=\operatorname{LM}\left(\phi_{(u-z)}\left(G_{i}\right)\right)(i=1, \ldots, m)$. From the assumption on $\# U=$ s,

$$
P^{\prime}=\left\{\phi_{(u-z)}\left(G_{i_{1}}\right), \ldots, \phi_{(u-z)}\left(G_{i_{k}}\right)\right\}
$$

and for each $H \in P^{\prime}$ there exists the unique element G_{i} such that $L M(H)=$ $L M\left(G_{i}\right)$. Thus we can combine the correct modular images by CRT and Q will be eventually the set $\left\{G_{i_{1}}, \ldots, G_{i_{k}}\right\}$ after sufficient interpolations. In this case Q satisfies the termination condition and the termination of the algorithm is guaranteed.
When the algorithm terminates, from Proposition 4.2.1, every $P_{i} \in P$ is a prime ideal in $\mathbb{Q}(U)[X]$ and $P_{i} \supset\langle G\rangle$. Then we have $\sqrt{P_{i}}=P_{i} \supset \sqrt{\langle G\rangle}=\cap_{i=1}^{m}\left\langle G_{i}\right\rangle$, which implies that $P_{i} \supset\left\langle G_{j}\right\rangle$ for some j. Since $\langle G\rangle$ is zero-dimensional $\left\langle G_{j}\right\rangle$ is maximal and we have $P_{i}=\left\langle G_{j}\right\rangle$. Thus every $P_{i} \in P$ is a member of minAss $(\langle G\rangle)$ and the result is correct in the case $\# U=s+1$.

Remark 4.2.4. In Algorithm 17, the recursive application of Proposition 4.2.2 implies that the output P has no redundant components.

Remark 4.2.5. In Algorithm 17, depending on the input, some prime components of P^{\prime} can have the same leading monomial set. In such a case, we can not determine which pair of ideals we should interpolate. Therefore we do not perform interpolations for such components. If all of the components do not have unique leading monomial set unfortunately, we utilize Algorithm 4 for computing the minimal associated primes of the zero-dimensional ideal.

Remark 4.2.6. In Algorithm 17, we cannot decide whether a modulus $\langle u-z\rangle$ is effectively minass lucky during the computation. If we choose a modulus which is permissible for G, we can obtain a subset of $\operatorname{minAss}\left(\left\langle\phi_{(u-z)}(G)\right\rangle\right)$ by calling Algorithm 17 but the result may not be $\left\{\phi_{(u-z)}\left(G_{i_{1}}\right), \ldots, \phi_{(u-z)}\left(G_{i_{k}}\right)\right\}$. In this case the result is a noise for our modular algorithm and we have to add some additional criteria or preprocessing to avoid bad moduli as much as possible. However, even if we do not assume the effective minass luckiness of moduli, if the algorithm terminates then the result is a subset of $\min A s s(\langle G\rangle)$. This is ensured by the last part of the proof of Theorem 4.2.3.

Utilizing Algorithm 17 instead of Algorithm 4 in Algorithm 5, we can compute $\min \operatorname{Ass}(I)$ for $I \subset \mathbb{Q}[X]$ (Algorithm 18).

```
Algorithm 18 modLMinAss
Input: an ideal \(I \subset \mathbb{Q}[X]\)
Output: minAss \((I)\)
    Int \(\leftarrow\langle 1\rangle, \mathrm{MA} \leftarrow \emptyset\)
    while Int \(\backslash \sqrt{I} \neq \emptyset\) do
        choose \(g \in \operatorname{Int} \backslash \sqrt{I}\)
        \(U \leftarrow\) a maximal independent set of \(I: g^{\infty}\)
        \(G \leftarrow\) a Gröbner basis of \(I: g^{\infty}\) in \(\mathbb{Q}(U)[X \backslash U]\)
        \(P \leftarrow \operatorname{modZeroMinAss}(G, U)\)
        if \(P=\emptyset\) then
            \(P \leftarrow \operatorname{zeroMinAss}(\langle G\rangle)\)
        end if
        \(P G \leftarrow\left\{P_{i} \cap \mathbb{Q}[X] \mid P_{i} \in P\right\}\)
        \(\mathrm{MA} \leftarrow \mathrm{MA} \cup P G\), Int \(\leftarrow \operatorname{Int} \cap \bigcap_{P \in P G} P\)
    end while
    return MA
```

Theorem 4.2.7. Algorithm 18 works correctly.
Proof. (correctness) Since Algorithm 17 outputs a subset of $\min \operatorname{Ass}\left(I: g^{\infty}\right)$ in $\mathbb{Q}(U)[X \backslash U], P G$ is a subset of $\min \operatorname{Ass}\left(I: g^{\infty}\right)$ in $\mathbb{Q}[X]$ by Proposition 2.2.4. Therefore MA is always a subset of minAss (I) by Lemma 2.2.1 and Int $\supset \sqrt{I}$.

When the termination condition is satisfied, Int $=\sqrt{I}$ and $M A=\operatorname{minAss}(I)$. (termination) Let MA $\subset \operatorname{minAss}(I)$ and Int $=\bigcap_{P \in M A} P$ (if MA $=\emptyset$, we define Int $=\langle 1\rangle)$. Suppose Int $\neq \sqrt{I}, g \in \operatorname{Int} \backslash \sqrt{I}, \sqrt{I: g^{\infty}}=\bigcap_{i=1}^{m} P_{i}$ is the prime decomposition and $P G$ is a subset of $\operatorname{minAss}\left(I: g^{\infty}\right)$. For all $P_{i} \in P G, g \notin P_{i}$ and $P_{i} \in \operatorname{minAss}(I)$ by Lemma 2.2.1. On the other hand, since $g \in$ Int, for all $Q_{i} \in$ MA, $g \in Q_{i}$. Therefore for all $P_{i} \in P G, P_{i} \notin$ MA. In other words, Algorithm 18 obtains at least one new components in every loop. Since the number of components of minAss (I) is finite, Algorithm 18 terminates in finite steps.

4.2.1 Existence of minass lucky moduli

In Algorithm 17 and Algorithm 18, we suppose all $\langle u-z\rangle$ are effectively minass lucky. However, effective minass luckiness is defined depending on the minimal associated primes of the given ideal. In general, we can not decide whether an ideal is effectively minass lucky or not while the computation. Therefore we show that there are sufficiently many effectively minass lucky ideals and we can obtain them with a high probability by random choice. Let G be the reduced Gröbner basis of a zero-dimensional ideal $I \subset \mathbb{K}(u)[X], \sqrt{\langle G\rangle}=\cap_{i=1}^{m} P_{i}$ the prime decomposition, G_{i} the reduced Gröbner basis of P_{i}. If $\langle u-k\rangle$ is permissible for G and G_{i} 's then $\phi_{(u-k)}(G)$ and $\phi_{(u-k)}\left(G_{i}\right)$'s are Gröbner basis of $\left\langle\phi_{(u-k)}(G)\right\rangle$ and $\left\langle\phi_{(u-k)}\left(G_{i}\right)\right\rangle$'s respectively, and $L M(G)=L M\left(\phi_{(u-k)}(G)\right)$ and $L M\left(G_{i}\right)=L M\left(\phi_{(u-k)}\left(G_{i}\right)\right)$ imply $\left\langle\phi_{(u-k)}(G)\right\rangle$ and $\left\langle\phi_{(u-k)}\left(G_{i}\right)\right\rangle$'s are zerodimensional. For simplicity, we assume that I is in general position with respect to x_{n}. This implies that each $\left\langle G_{i}\right\rangle$ is in general position with respect to x_{n}. If the monomial order is the lexicographical order, then G_{i} is a shape base, i.e. $G_{i}=$ $\left\langle x_{1}-c_{1}(u), \ldots, x_{n-1}-c_{n-1}(u), g_{i}\left(x_{n}\right)\right\rangle, c_{1}(u), \ldots, c_{n-1}(u), g_{i}\left(x_{n}\right) \in \mathbb{K}(u)\left[x_{n}\right]$ and $g_{i}\left(x_{n}\right)$ is irreducible over $\mathbb{K}(u)$ because $\left\langle G_{i}\right\rangle$ is zero-dimensional and prime. Set

$$
N P=\left\{k \in \mathbb{K} \mid\langle u-k\rangle \text { is not permissible for } G \text { or some } G_{i}\right\} .
$$

Then $N P$ is a finite set. A modulus $\langle u-k\rangle$ is effectively minass lucky for G if the following four conditions hold.

1) $k \notin N P$.
2) $\sqrt{I_{(u-k)}(G)}=I_{(u-k)}\left(G_{1}\right) \cap \cdots \cap I_{(u-k)}\left(G_{m}\right)$.
3) If $i \neq j$, then $I_{(u-k)}\left(G_{i}\right) \neq I_{(u-k)}\left(G_{j}\right)$.
4) Each $I_{(u-k)}\left(G_{i}\right)$ is prime.

First of all we consider the condition 2).
Lemma 4.2.8. Let $G \subset \mathbb{K}(u)[X]$ be the reduced Gröbner basis of a zerodimensional ideal $\langle G\rangle$ and $H \subset \mathbb{K}(u)[X]$ the reduced Gröbner basis of $\sqrt{\langle G\rangle}$. Except for a finite number of $k \in \mathbb{K} \backslash N P, \sqrt{I_{(u-k)}(G)}=I_{(u-k)}(H)$.

Proof. If $\langle u-k\rangle$ is permissible for G, H, then $G \subset\langle H\rangle$ implies $\phi_{(u-k)}(G) \subset$ $I_{(u-k)}(H)$ and $H \subset \sqrt{G}$ implies $\phi_{(u-k)}(H) \subset \sqrt{I_{(u-k)}(G)}$. Thus we have $\sqrt{I_{(u-k)}(H)}=\sqrt{I_{(u-k)}(G)}$. Since $\langle H\rangle$ is zero-dimensional and radical, for each $x_{i} \in X$ there exists a univariate square-free polynomial $f_{i}\left(x_{i}\right) \in\langle H\rangle$. Then $r_{i}(u)=\operatorname{resultant}_{x_{i}}\left(f_{i}, f_{i}^{\prime}\right) \neq 0$. If $\langle u-k\rangle$ is permissible for $f_{i}\left(x_{i}\right)$ and $r_{i}(k) \neq 0$ for all i, then $\phi_{(u-k)}\left(f_{i}\right) \in I_{(u-k)}(H)$ is square-free. Then $I_{(u-k)}(H)$ is radical and in this case $\sqrt{I_{(u-k)}(H)}=I_{(u-k)}(H)=\sqrt{I_{(u-k)}(G)}$. Since the number of $k \notin N P$ such that k is not permissible for $f_{i}\left(x_{i}\right)$'s, or $r_{i}(k)=0$ for some i is finite, the assertion is proved.

Proposition 4.2.9. Except for a finite number of $k \in \mathbb{K} \backslash N P, \sqrt{I_{(u-k)}(G)}=$ $I_{(u-k)}\left(G_{1}\right) \cap \cdots \cap I_{(u-k)}\left(G_{m}\right)$.

Proof. Set

$$
\tilde{I}=\left\langle 1-\left(t_{1}+\cdots+t_{m}\right), t_{1} G_{1}, \ldots, t_{m} G_{m}\right\rangle \subset \mathbb{K}(u)\left[t_{1}, \ldots, t_{m}, X\right] .
$$

If \tilde{H} is the reduced Gröbner basis of \tilde{I} with respect to an elimination ordering such that $\left\{t_{1}, \ldots, t_{m}\right\} \gg X$, then $H=\tilde{H} \cap \mathbb{K}(u)[X]$ is the reduced Gröbner basis of $\sqrt{\langle G\rangle}=\left\langle G_{1}\right\rangle \cap \cdots \cap\left\langle G_{m}\right\rangle$. If $\langle u-k\rangle$ is permissible for all intermediate polynomials appearing during the execution of Buchberger's algorithm for computing \tilde{H}, then the remainder computations in the execution can be mapped by $\phi_{(u-k)}$. This implies that the reduced Gröbner basis of

$$
\left\langle 1-\left(t_{1}+\cdots+t_{m}\right), t_{1} \phi_{(u-k)}\left(G_{1}\right), \ldots, t_{m} \phi_{(u-k)}\left(G_{m}\right)\right\rangle
$$

with respect to the same elimination ordering is $\phi_{(u-k)}(\tilde{H})$. Since $\langle u-k\rangle$ is permissible for $\tilde{H}, \phi_{(u-k)}(\tilde{H}) \cap \mathbb{K}[X]=\phi_{(u-k)}(H)$ and $\phi_{(u-k)}(H)$ is the reduced Gröbner basis of $I_{(u-k)}\left(G_{1}\right) \cap \cdots \cap I_{(u-k)}\left(G_{m}\right)$. By Lemma 4.2.8 $\sqrt{I_{(u-k)}(G)}=I_{(u-k)}(H)$ except for a finite number of $k \in \mathbb{K}$. Therefore $\sqrt{I_{(u-k)}(G)}=I_{(u-k)}(H)=I_{(u-k)}\left(G_{1}\right) \cap \cdots \cap I_{(u-k)}\left(G_{m}\right)$ except for a finite number of $k \in \mathbb{K} \backslash N P$.

Next we consider the condition 3).
Proposition 4.2.10. Except for a finite number of $k \in \mathbb{K} \backslash N P, I_{(u-k)}\left(G_{i}\right)$'s are distinct.

Proof. If $i \neq j$ then $\left\langle G_{i}\right\rangle$ and $\left\langle G_{j}\right\rangle$ are comaximal and $1 \in\left\langle G_{i}\right\rangle+\left\langle G_{j}\right\rangle$. Thus if $\langle u-k\rangle$ is permissible for G_{i}, G_{j} and all the coefficients in the generating relation of 1 by G_{i} and G_{j}, then $1 \in I_{(u-k)}\left(G_{i}\right)+I_{(u-k)}\left(G_{j}\right)$, which implies $I_{(u-k)}\left(G_{i}\right) \neq I_{(u-k)}\left(G_{j}\right)$. Thus $I_{(u-k)}\left(G_{i}\right)$'s are distinct except for a finite number of $k \in \mathbb{K} \backslash N P$.

Finally we consider the condition 4).

Proposition 4.2.11. ([Z, Proposition 132, Proposition 133]) Let $F\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$ be an irreducible polynomial over \mathbb{Q} and let $R(N)$ denote the number of integer x_{i} with $\left|x_{i}\right|<N$ such that $F\left(x_{1}, \ldots, x_{n}, Y_{1}, \ldots, Y_{m}\right)$ is reducible. Then

$$
R(N)<c N^{n-1 / 2} \log N
$$

where c depends only on the degree of F.
Proposition 4.2.12. Set

$$
N_{i}=\left\{k \in \mathbb{Z}| | k \mid<N, k \notin N P, I_{(u-k)}\left(G_{i}\right) \text { is not prime }\right\} .
$$

Then $\# N_{i} \leq c N^{1 / 2} \log N$ for a constant c.
Proof. If $\langle u-k\rangle$ is permissible for G_{i}, then $\phi_{(u-k)}\left(G_{i}\right)$ is the reduced Gröbner basis of $I_{(u-k)}\left(G_{i}\right)$. $I_{(u-k)}\left(G_{i}\right)$ is prime if and only if $\phi_{(u-k)}\left(g_{i}\left(x_{n}\right)\right)$ is irreducible. $g_{i}\left(x_{n}\right)$ can be written as $g_{i}\left(x_{n}\right)=\tilde{g}\left(u, u_{1}, \ldots, u_{l}, x_{n}\right) / d\left(u, u_{1}, \ldots, u_{l}\right)$ with $\tilde{g} \in \mathbb{Q}\left[u, u_{1}, \ldots, u_{l}, x_{n}\right]$, with $d \in \mathbb{Q}\left[u, u_{1}, \ldots, u_{l}\right]$ and \tilde{g} is irreducible over \mathbb{Q}. Then the irreducibility of $\phi_{(u-k)}\left(g_{i}\left(x_{n}\right)\right)$ is equivalent to that of $\tilde{g}\left(k, u_{1}, \ldots, u_{l}, x_{n}\right)$ and Proposition 4.2 .11 with the case $n=1$ implies $\# N_{i} \leq c N^{1 / 2} \log N$ for a constant c.

Theorem 4.2.13. Set
$N E M L=\{k \in \mathbb{Z}| | k \mid<N, k \notin N P,\langle u-k\rangle$ is not effectively minass lucky for G$\}$.
Then there exist constants c_{1}, c_{2} such that $\#(N P \cup N E M L) \leq c_{1}+c_{2} N^{1 / 2} \log N$.
Proof. Set

$$
\begin{aligned}
B A D_{2} & =\left\{k \in \mathbb{K} \backslash N P \mid \sqrt{I_{(u-k)}(G)} \neq I_{(u-k)}\left(G_{1}\right) \cap \cdots \cap I_{(u-k)}\left(G_{m}\right)\right\}, \\
B A D_{3} & =\left\{k \in \mathbb{K} \backslash N P \mid I_{(u-k)}\left(G_{i}\right)=I_{(u-k)}\left(G_{j}\right) \text { for some } i, j(i \neq j)\right\} .
\end{aligned}
$$

Then $B A D_{2}$ and $B A D_{3}$ are finite sets by Proposition 4.2.9 and Proposition 4.2 .10 respectively. Then Proposition 4.2 .12 implies $\#(N P \cup N E M L) \leq(\# N P+$ $\left.\# B A D_{2}+\# B A D_{3}\right)+(m c) N^{1 / 2} \log N$.

Corollary 4.2.14. If k is randomly chosen from $\{k \in \mathbb{Z}||k|<N\}$, then the probability that $\langle u-k\rangle$ is effectively minass lucky tends to 1 as $N \rightarrow \infty$.

4.3 Experiments and Timing data

We measure the timings for computing minimal associated primes by our algorithm and Laplagne's algorithm. Laplagne's algorithm is implemented as a function minAssGTZ in Singular [DGPS]. In this paper, the unit of timing is a second and all results have been rounded to no more than three significant digits. All of our algorithms were implemented in Singular [DGPS] and measured
on a 64 -bit Linux machine with Intel Xeon E5-2650 v2, 2.60GHz and 256GB memory.

In Subsection 4.2.1, we have shown that there are sufficiently many effectively minass lucky moduli. However, when we choose an unlucky modulus there is a possibility that our algorithm does not terminate. Therefore we should discard unlucky modular images during computations. We adopt following three strategies to terminate Algorithm 17 with a high probability.

Strategy 4.3.1. 1) Choose $z \in \mathbb{Z} \backslash Z$ such that $\langle u-z\rangle$ is permissible for G.
2) For z_{i} 's satisfying 1), compute modZeroMinAss $\left(I_{\left(u-z_{i}\right)}(G)\right)$, classify them by leading monomial sets of their components and perform CRT for the class of largest cardinality.
3) If Q is pseudo stable and there are some components which do not include $\langle G\rangle$, then we discard them and return components which include $\langle G\rangle$.
As explained in Remark 4.2.6, when Algorithm 17 with Strategy 4.3.1 terminates, the output is a set of minimal associated primes of the input ideal $\langle G\rangle$ even if we choose some moduli which are not effectively minass lucky for G in the computational process. If Algorithm 17 with Strategy 4.3.1 terminates, then Algorithm 18 terminates and outputs the minimal associated primes of the input ideal.

Furthermore, there are three improvements for Algorithm 18 which are not written in the pseudo code for the sake of simplicity. The first one is recording the number of moduli for reconstructing. For a parameter u and an integer $z_{1} \in \mathbb{Z}$, the number of moduli which makes modMinAss $\left(\phi_{\left(u-z_{1}\right)}(G)\right)$ pseudo stable becomes a hint to decide how many moduli we should gather for $\operatorname{modMin} \operatorname{Ass}\left(\phi_{\left(u-z_{i}\right)}(G)\right)$'s where z_{i} 's are distinct from z_{1}. The second one is utilizing modular computations for RFR. We do not need the exact value of RFR before the output become pseudo stable. Therefore we perform RFR over \mathbb{F}_{p} where p is a prime number. We perform RFR over the original coefficient field only when we confirm pseudo stability of RFR over \mathbb{F}_{p}. The last one is the preprocessing Algorithm 12. We name Algorithm 18 with these improvements and Strategy 4.3.1 Algorithm 18'.

We construct examples of ideals from ideals given in [DGP, 3 Examples]. We classify ideals in [DGP, 3 Examples] by their number of variables. For $I_{i} \in \mathbb{Q}\left[v_{1}, \ldots, v_{n}\right]$ and $I_{j} \in \mathbb{Q}\left[u_{1}, \ldots u_{n}\right]$, we set a map

$$
\varphi_{u, v}: \mathbb{Q}\left[u_{1}, \ldots u_{n}\right] \rightarrow \mathbb{Q}\left[v_{1}, \ldots, v_{n}\right] ; u_{m} \mapsto v_{m}(1 \leq m \leq n)
$$

and denote that

$$
I_{i \cap j}=I_{i} \cap \varphi_{u, v}\left(I_{j}\right)
$$

In addition, we utilize the factorizing Gröbner basis algorithm for some examples in order to construct more examples. Note that the factorizing Gröbner basis algorithm is an intermediate decomposition of minAssGTZ and returns a list of ideals and the radical of the intersection of them coincides with the radical of the
given ideal. For examples which can not be decomposed in four hours by both of algorithms, we decompose them by the factorizing Gröbner basis algorithm and treat each component as a new example.

For these examples, we measure the timings for computing minimal associated primes by Algorithm 18' and Laplagne's algorithm (Table 4.1). In addition, we show runtimes of its components (Table 4.2). We omit examples which are decomposed in a few seconds by Laplagne's algorithm or do not terminate in four hours by both of algorithms and zero-dimensional. For zero-dimensional ideals, Algorithm 18' and Laplagne's algorithm simply call Algorithm 4.

Remark 4.3.2. As a characteristic of modular algorithms, if there are no swells of coefficients in the original computations, then computations of modular algorithms have little advantages over original one. Moreover, modular algorithms iterate modular computations for some moduli and reconstruct their results. They become extra times of computations.

Table 4.1: Timing data of computing minimal associated primes of examples

	$I_{3 \cap 8}$	$I_{18 \cap 31}$	$I_{18 \cap 33}$	$I_{31 \cap 33}$	$I_{7 \cap 9}$	$I_{7 \cap 12}$	$I_{5 \cap 23}$	$F_{5 \cap 23}[24]$	
Variables	3	4				6		8	
Algorithm 18'	1.2	34.4	28.4	34.9	54.9	240	5880	15.3	
Laplagne's	$>4 h$	$>4 h$	$>4 h$	$>4 h$	284	87.1	12100	11300	

	$I_{1 \cap 4}$	$F_{1 \cap 4}[1]$	$F_{1 \cap 4}[5]$	$F_{1 \cap 4}[7]$	$F_{1 \cap 4}[8]$
Variables	9				
Algorithm 18'	812	10.0	5140	11.3	7.4
Laplagne's	$>4 h$	737	$>4 h$	$>4 h$	14

$F_{i \cap j}[k]$ denotes the k-th component of $\operatorname{facstd}\left(I_{i \cap j}\right)$.

4.4 Concluding Remarks

Our algorithm is fast for some class of ideals and will be a choice when generalpurpose algorithms can not decompose ideals in practical time. In addition, our algorithm is suitable for parallelizations. In this paper, we have not yet implemented the parallel version of our algorithm and we expect further speedup with parallelizations. It is a future project.

In Subsection 4.2.1, we have shown that there are sufficiently many effectively minass lucky moduli. However there are infinite moduli which are not effectively minass lucky in general. On the other hand, in the case of computing Gröbner basis by modular algorithms over \mathbb{Z}_{p}, it is shown that the number of unlucky primes is finite [NY, Section 3] and we can construct algorithms which terminate in finite steps even if we choose some unlucky primes in the computational process [NY, Section 5]. In order to improve our algorithm, we need more researches of luckiness and moduli whose modular images of irreducible

Table 4.2: Details of Algorithm 18'

| | $I_{3 \cap 8}$ | $I_{18 \cap 31}$ | $I_{18 \cap 33}$ | $I_{31 \cap 33}$ | $I_{7 \cap 9}$ | $I_{7 \cap 12}$ | $I_{5 \cap 23}$ | $F_{5 \cap 23}[24]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Variables | 3 | 4 | | | 6 | | 8 | |
| Total | 1.2 | 34.4 | 28.4 | 34.9 | 54.9 | 240 | 5880 | 15.3 |
| SIMPLIFICATION | 0.02 | 0.02 | 0.03 | 0.04 | 0.07 | 2.64 | 0.07 | 0.02 |
| radical membership
 \&saturation | 0.82 | 33.6 | 27.4 | 33.7 | 40.4 | 179 | 5860 | 9.05 |
| modular | 0.16 | 0.39 | 0.77 | 0.79 | 10.6 | 42 | 7.85 | 4.05 |
| ZEROMiNASS | 0.08 | 0.08 | 0.09 | 0 | 0.09 | 0.18 | 4.41 | 0.06 |
| intersection | 0.09 | 0.17 | 0.01 | 0.21 | 3.8 | 16.3 | 13.2 | 1.7 |

	$I_{1 \cap 4}$	$F_{1 \cap 4}[1]$	$F_{1 \cap 4}[5]$	$F_{1 \cap 4}[7]$	$F_{1 \cap 4}[8]$
Variables	9				
Total	812	10.0	5141	11.3	7.41
SIMPLIFICATION	0.3	0.02	0.03	0.04	0.02
radical membership \&saturation	640	0.2	11.5	30.1	1.87
modular	135	8.03	5.89	6.45	3.56
ZEROMINASS	0	0.02	0	0.01	0.01
intersection	35,8	1.34	1.16	0.97	0.12

polynomials keeps their irreducibility. It will be closely related with Hilbert's irreducibility theorem and its applications.

Appendix

We set

$$
V(s, t):=\left(x_{i j}\right)_{\substack{1 \leq i \leq s \\ 1 \leq j \leq t}} .
$$

Definition 1. (adjacent minor ideal)([S02, CHAPTER 5.3])
$s \times t$ two-degree adjacent minor ideal is defined by
$A_{2, s, t}:=A(s, t):=\langle\{\operatorname{det} B \mid B$ is an adjacent 2×2-submatrix of $V(s, t)\}\rangle$.
Example 1. $A_{2,3,4}=A(3,4)=\left\langle-x_{12} x_{21}+x_{11} x_{22},-x_{13} x_{22}+x_{12} x_{23},-x_{14} x_{23}+\right.$ $\left.x_{13} x_{24},-x_{22} x_{31}+x_{21} x_{32},-x_{23} x_{32}+x_{22} x_{33},-x_{24} x_{33}+x_{23} x_{34}\right\rangle$.
Definition 2. (permanental ideal)([S02, CHAPTER 5.4])
The permanent of 2×2-matrix is the sum over its diagonal product i.e.

$$
\operatorname{per}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right):=a d+b c
$$

Then $s \times t$ two-degree permanental ideal is defined by

$$
\operatorname{Per}_{2, s, t}:=P(s, t):=\langle\{\operatorname{per}(Q) \mid Q \text { is a } 2 \times 2 \text {-submatrix of } V(s, t)\}\rangle
$$

Example 2. $\operatorname{Per}_{2,2,3}=P(2,3)=\left\langle x_{11} x_{21}+x_{12} x_{21}, x_{11} x_{23}+x_{13} x_{21}, x_{12} x_{23}+\right.$ $\left.x_{13} x_{22}\right\rangle$.

Definition 3. (birth-and-death ideal)([ESE, Section 5])

For a pair of integers (s, t), consider a two-dimensional integer lattice E such that

$$
E:=\{0, \ldots, s-1\} \times\{0, \ldots, t-1\} .
$$

Variables are

$$
\begin{aligned}
& \left\{R_{i, j} \mid 0 \leq i<s, 0 \leq j \leq t\right\} \cup\left\{L_{i, j} \mid 0<i \leq s, 0 \leq j \leq t\right\} \cup \\
& \left\{D_{i, j} \mid 0 \leq i \leq s, 0<j \leq t\right\} \cup\left\{U_{i, j} \mid 0 \leq i \leq s, 0 \leq j<t\right\}
\end{aligned}
$$

For an unit square G whose vertices are $\{(u, v),(u+1, v),(u, v+1),(u+1, v+1)\}$ induces an ideal

$$
I^{G}:=\left\langle U_{u, v} R_{u, v+1}-R_{u, v} U_{u+1, v}, D_{u, v+1} R_{u, v}-R_{u, v+1} D_{u+1, v+1}\right.
$$

$$
\left.L_{u+1, v+1} D_{u, v+1}-D_{u+1, v+1} L_{u+1, v}, L_{u+1, v} U_{u, v}-U_{u+1, v} L_{u+1, v+1}\right\rangle
$$

generated by 4 binomials which mean the equivalence between two paths from each vertex to the opposite one. We define

$$
I^{E}:=I^{(s, t)}:=\sum_{G: \text { unit square in } E} I^{G} .
$$

Example 3.

$I^{(1,1)}:=\left\langle U_{0,0} R_{0,1}-R_{0,0} U_{1,0}, D_{0,1} R_{0,0}-R_{0,1} D_{1,1}, L_{1,1} D_{1,0}-D_{1,1} L_{1,0}, L_{1,0} U_{1,1}-U_{1,0} L_{1,1}\right\rangle$.
$I^{(2,3)}$ is induced from a lattice which has 6 unit squares. Therefore $I^{(2,3)}$ is generated by 24 binomials.

Bibliography

[A16] Aoyama, T.; A Singular package for computing minimal associated primes of binomial ideals. (2016). http://www.math.kobeu.ac.jp/HOME/taoyama/singular
[A17] Aoyama, T.; An Algorithm for Computing Minimal Associated Primes of Binomial Ideals without Producing Redundant Components. Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation. (2017). 21-27.
[AM] Atiyah, M, F., MacDonald, I, G.: Introduction to commutative algebra. Vol. 2. Reading. Addison-Wesley, (1969).
[Ar] Arnold, E, A; Modular algorithms for computing Gröbner bases. Journal of Symbolic Computation 35. (2000) 403-419.
[DGP] Decker, W., Greuel, G,-M., Pfister.; Primary decomposition: Algorithms and comparisons. Algorithmic algebra and number theory, Springer Berlin, Heidelberg, 187-220, (1999).
[DGPS] Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: SinguLAR 4-1-0 - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2016).
[ES] Eisenbud, D., Sturmfels, B.; Binomial ideals. Duke Mathematical Journal 84, 1 (1994) 1-45.
[ESE] Evans, S, N. Sturmfels, B. Euler, C.; Commuting birth-and-death process. the annals of Applied Probability 20,1 (2010), 238-266.
[GG] Gathen, J, V, Z,. Gerhard, J..: Modern Computer Algebra. Cambridge University Press New York, NY, USA. (2003).
[GP] Greuel, G,-M., Pfister, G.: A singular introduction to commutative algebra. (2008).
[IPS] Idrees, N., Pfister, G., Steidel, S.; Parallelization of modular algorithms. Journal of Symbolic Computation 46 (2011) 672-684
[K] Kahle, T.; Decompositions of binomial ideals. Annals of the institute of statistical mathematics 62, 4 (2010), 727-745.
[KN] Kawazoe, T., Noro, M.: Algorithms for computing a primary ideal decomposition without producing intermediate redundant components. Journal of Symbolic Computation 46.10 (2011) 1158-1172
[L1] Laplagne, S.: An algorithm for the computation of the radical of an ideal. Proceedings of the 2006 international symposium on Symbolic and algebraic computation. ACM, (2006)
[L2] Laplagne, S.: Computation of the minimal associated primes. Challenges in Symbolic Computation Software 06271 (2006)
[M2] Grayson,D,R,.Stillman,M,E.; Macaulay2 1.8.2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/ (2014).
[NY] Noro, M., Yokoyama, K.; Usage of Modular Techniques for Efficient Computation of Ideal Operations. To appear in Mathematics in Computer Science, DOI 10.1007/s11786-017-0325-1.
[P] Pauer, F.; On lucky ideals for Gröbner basis computations. Journal of Symbolic Computation 14 (1992) 471-482
[S96] Sturmfels, B.; Gröbner bases and convex polytopes. American Mathematical Soc. (1996).
[S02] Sturmfels, B.; Solving systems of polynomial equations. American Mathematical Soc. (2002).
[Z] R, Zippel.: Effective Polynomial Computation. Springer US. (1993).

