
Kobe University Repository : Kernel

PDF issue: 2024-07-15

Algorithms for Computing Minimal Associated
Primes of Polynomial Ideals

(Degree)
博士（理学）

(Date of Degree)
2018-03-25

(Date of Publication)
2019-03-01

(Resource Type)
doctoral thesis

(Report Number)
甲第7117号

(URL)
https://hdl.handle.net/20.500.14094/D1007117

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

Aoyama, Toru

博　　士　　論　　文

Algorithms for Computing Minimal
Associated Primes of Polynomial Ideals

（多項式イデアルの極小付属素イデア
ル計算アルゴリズム）

平成 30年 1月

神戸大学大学院理学研究科
Toru Aoyama

青山　暢

Contents

1 Basic Facts 7
1.1 Polynomial Ring . 7
1.2 Monomial Orderings . 9
1.3 Gröbner Basis . 10

2 Minimal Associated Primes 13
2.1 Zero-dimensional Decomposition 13
2.2 Laplagne’s Algorithm . 16

3 Prime Decompositions for Binomial Ideals 19
3.1 Cellular Decomposition . 20
3.2 A New Algorithm for Minimal Associated Primes 22
3.3 Improvements . 26

3.3.1 Simplification of the Ideal 26
3.3.2 Choice of Polynomials for Radical Membership Tests . . . 27
3.3.3 Saturations of Homogeneous Ideals with Respect to a Vari-

able . 27
3.3.4 Computing Several Cellular Ideals at One Iteration 27
3.3.5 Experiments . 29
3.3.6 Discussion . 30

4 A Modular Algorithm for Laplagne’s Algorithm 33
4.1 Fundamental Tools and Definitions 34

4.1.1 Chinese Remainder Theorem 34
4.1.2 Rational function reconstruction 35
4.1.3 Luckiness . 37

4.2 New Algorithm . 38
4.2.1 Existence of minass lucky moduli 42

4.3 Experiments and Timing data . 44
4.4 Concluding Remarks . 46

3

Abstract

This paper proposes two algorithms for computing minimal associated primes
of ideals in polynomial rings over a field.

The first one is an algorithm designed for binomial ideals. It utilizes the cellu-
lar decomposition as an intermediate decomposition. It is defined by Eisenbud-
Sturmfels and improved by Kahle. In addition, following some parts of the
algorithm by Laplagne, a new algorithm for an intermediate decomposition is
constructed. This algorithm decomposes an ideal into cellular ideals whose sets
of minimal associated primes are disjoint. It needs neither extensions of the
coefficient field nor reductions to the zero-dimensional case. Most of the com-
putations are saturations. We observe by this intermediate decomposition, bi-
nomial ideals are decomposed into components whose radicals correspond to the
minimal associated primes in many cases. This algorithm executes nilpotency
checks, radical membership tests and computations of saturations many times.
Therefore, we try to speed up the check of I = I : f (f is a polynomial) which
is necessary for above computations. As a result, we obtain efficient algorithms
including heuristic and optional methods.

The second one applies Chinese Remainder Theorem (CRT) to Laplagne’s
algorithm which computes minimal associated primes without producing redun-
dant components. CRT reconstructs an object in a ring from its modular images
in the quotient rings modulo some ideals. In Laplagne’s algorithm, ideals are
decomposed over rational function fields over Q by regarding some variables as
parameters. In our new algorithm, we compute the minimal associated primes
of ⟨ϕ(G)⟩ for a given ideal I = ⟨G⟩, where ϕ is a substitution map for a pa-
rameter. Then we construct candidates of the minimal associated primes of I
by applying CRT for those of ⟨ϕ(G)⟩’s. In order for this method to work cor-
rectly, the shape of each modular component must coincide with that of the
corresponding component of the ideal. This is realized with a high probability
because a multivariate irreducible polynomial over Q remains irreducible after
a substitution of integers for variables with a high probability.

5

Chapter 1

Basic Facts

In this chapter, we recall several well-known facts which are bases of this paper.
We just list definitions and facts that is concerned with this paper concisely. For
more details and proofs, refer to [AM, Chapter 1], [GP, Chapter 1] and [GG,
Chapter 21].

1.1 Polynomial Ring

Definition 1.1.1. Let R be a commutative ring and x1, . . . , xn variables.

1) A monomial is a power product of variables

xα := xα1
1 · · ·xαn

n , (α = (α1, . . . , αn) ∈ Z≥0
n).

2) A term over R is a product of monomial and an element of R

rxα, (r ∈ R,α ∈ Zn
≥0).

In this case, r is called the coefficient of a term rxα.

3) A polynomial over R is a finite sum of terms

m∑
i=1

rix
αi , (m ∈ Z≥0, ri ∈ R,αi ∈ Z≥0

n).

4) The polynomial ring over R is the set of all polynomials over R

R[X] := R[x1, · · ·xn] :=

{
m∑
i=1

rix
αi

∣∣∣∣∣ m ∈ Z≥0, ri ∈ R,αi ∈ Z≥0
n

}
.

A polynomial ring is a commutative ring with the usual addition and multi-
plication. We list some notions and operations on ideals.

7

8 CHAPTER 1. BASIC FACTS

Definition 1.1.2. Let I, J be ideals in R[X], f, g polynomials in R[X] and a a
member of R[X].

• I is a prime ideal if fg ∈ I implies f ∈ I or g ∈ I.

• The quotient ideal (colon ideal) of I with respect to J

I : J := { f ∈ R[X] | fJ ⊂ I } .

In particular

I : a := I : ⟨a⟩ = { f ∈ R[X] | fa ∈ I } .

• The saturation of I with respect to J

I : J∞ := { f ∈ R[X] | m ∈ N exists s.t fJm ⊂ I } .

In particular

I : a∞ := I : ⟨a⟩∞ = { f ∈ R[X] | m ∈ N exists s.t fam ∈ I } .

• The radical of I

√
I := { f ∈ R[X] | m ∈ N exists s.t. fm ∈ I } .

• I is a radical ideal if
√
I = I.

• I is a primary ideal if fg ∈ I and f /∈ I imply g ∈
√
I.

For ideals I, J in R[X], I : J , I : J∞ and
√
I are also ideals.

Definition 1.1.3. A ring R is called a Noetherian ring if every ideal in R is
generated by a finite set.

We utilize properties of Noetherian rings to ensure the termination of algo-
rithms implemented in polynomial rings.

Proposition 1.1.4. Let R be a commutative ring. The following are equivalent.

1) R is Noetherian.

2) (ascending chain condition) For every ascending chain of ideals in R

I1 ⊂ I2 ⊂ · · · ,

there exists s ∈ N such that if s ≤ i, then Is = Ii.

Theorem 1.1.5. (Hilbert’s basis theorem) If R is a Noetherian ring, then
R[X] is a Noetherian ring.

1.2. MONOMIAL ORDERINGS 9

1.2 Monomial Orderings

It is important to determine the ordering on monomials when we compute over
polynomial rings. Computing processes are determined following a fixed mono-
mial ordering.

Definition 1.2.1. Let < be a total ordering on monomials. < is called mono-
mial ordering when it satisfies the following properties.

1) 1 ≤ m for any monomials m.

2) Let m1,m2,m3 be monomials. If m1 < m2, then m1m3 < m2m3.

Unless otherwise noted, let x1 > · · · > xn for any monomial orderings.

Example 1.2.2. The following two orderings are monomial orderings.

• Lexicographical ordering <lex

xα <lex xβ def⇐⇒ there exists i (1 ≤ i ≤ n) such that j < i =⇒ αj = βj

and αi < βi.

• Graded reverse lexicographical ordering <grev

xα <grev xβ def⇐⇒ deg(xα) < deg(xβ) or (deg(xα) = deg(xβ) and there
exists i (1 ≤ i ≤ n) such that i < j =⇒ αj = βj and αi < βi).

Definition 1.2.3. Let < be a monomial ordering , S a subset of R[X] and
f = r1x

α1 + · · · + rmxαm a polynomial in R[X] where xα1 > · · · > xαm and
r1, . . . , rm ̸= 0.

• The leading monomial of f LM(f) := xα1 .

• The leading monomial set of S LM(S) := { LM(f) | f ∈ S }.

• The leading term of f LT (f) := r1x
α1 .

• The leading coefficient of f LC(f) := r1.

• The leading ideal of S L(S) := ⟨{ LT (f) | f ∈ S }⟩.

Utilizing these definitions, we can construct an algorithm for division on
K[X] where K is a field.

Definition 1.2.4. Let f, f1, . . . , fm be polynomials in K[X] and < a monomial
order. r ∈ K[X] is called a normal form of f with respect to {f1, . . . , fm} if r
satisfies the following.

1) f = q1f1 + · · ·+ qmfm + r , (qi ∈ K[X]).

2) LM(qifi) ≤ LM(f).

3) No term in r is divisible by any LT (fi).

10 CHAPTER 1. BASIC FACTS

Note that the normal form of f is not unique in general. We show an
example.

Example 1.2.5. Let f = 4x+ y + 2z, f1 = 2x+ y, f2 = x+ z in Q[x, y, z] and
< a monomial order with x > y > z.

f = 2f1 + 0 · f2 + (−y + 2z)

= 0 · f1 + 4f2 + (y − 2z)

= f1 + 2f2 + 0

Therefore each of (−y + 2z), (y − 2z) and 0 is a normal form of f with respect
to {f1, f2}.

We can construct an algorithm for computing a normal form of a polynomial
with respect to a set of polynomials and a monomial ordering (Algorithm 1).

Algorithm 1 NF

Input: f ∈ K[X], S = {s1, . . . , sm} ⊂ K[X] and a monomial ordering <
Output: a normal form of f with respect to S and <
r ← 0, g ← f
while g ̸= 0 do

if there exists si ∈ S s.t. LT (si)|LT (g) then
g ← g − LT (g)

LT (si)
fi

else
r ← r + LT (g), g ← g − LT (g)

end if
end while
return r

The output of this algorithm depends on the choice of i in the if block. We
will obtain the uniqueness of normal forms by Gröbner Bases in Section 1.3.

1.3 Gröbner Basis

A Gröbner basis is a finite set of generators of an ideal. It has desirable prop-
erties and helpful to solve various algorithmic problems on polynomial rings.

Definition 1.3.1. Let < be a monomial ordering and I an ideal in R[X]. A
finite set G ⊂ I is a Gröbner basis of I with respect to < if L(G) = L(I).

For an arbitrary ideal I in K[X], a Gröbner basis of I can be computed from
generators of I by Buchberger’s algorithm (Algorithm 2).

Definition 1.3.2. Let f, g be polynomials in K[X], < a monomial ordering
and m the least common multiple with respect to LT (f) and LT (g). The S-
polynomial with respect to f, g is defined as

Spoly(f, g) :=
m

LT (f)
f − m

LT (g)
g.

1.3. GRÖBNER BASIS 11

Algorithm 2 Buchberger’s algorithm

Input: f1, . . . , f2 ∈ K[X] and a monomial order <
Output: a Gröbner basis of I = ⟨f1, . . . , fm⟩ w.r.t. <
G← {f1, . . . , fm}, P ← { (fi, fj) | 1 ≤ i < j ≤ m }
while P ̸= ∅ do

choose (p, q) ∈ P , P ← P \ { (p, q) }
r ← NF(Spoly(p, q), G,<)
if r ̸= 0 then

P ← P ∪ { (g, r) | g ∈ G }, G← G ∪ {r}
end if

end while
return G

We can solve the following problems by utilizing Gröbner Bases. Let f ∈
K[X], I, J ideals in K[X], < a monomial ordering, G a Gröbner basis of I with
respect to < and t /∈ X a new variable.

• NF(f,G,<) is determined uniquely depending on its arguments. We call
f is G-reduced with respect to < if NF(f,G,<) = f .

• (ideal membership problem) f ∈ I ⇐⇒ NF(f,G,<) = 0

• (elimination theorem) Let Y be a set of variables, X ∩ Y = ∅, K an
ideal in K[X,Y], <elim a monomial order such that if f ∈ K[X,Y] and
LT (f) ∈ K[Y], then f ∈ K[Y] and H a Gröbner basis of K with respect
to <elim. Then

{ h ∈ H | LT (h) ∈ K[Y] } is a Gröbner basis of K ∩K[Y].

We call a monomial ordering <elim with X >elim Y a elimination or-
dering.

• (intersection) I ∩ J = ⟨tI, (1− t)J⟩ ∩K[X].

• (radical membership problem) f ∈
√
I ⇐⇒ K[t]⟨I, (1 − tf)⟩ =

K[X, t].

• (quotient) If I ∩ ⟨f⟩ = ⟨f1f, . . . , fmf⟩, then I : f = ⟨f1, . . . , fm⟩. More-

over, if J = ⟨g1, . . . , gs⟩, then I : J =
s∩

i=1

(I : gi).

• (saturation) I : g∞ = ⟨I, 1 − tg⟩ ∩ K[X]. Moreover, if J = ⟨g1, . . . , gs⟩,

then I : J∞ =

s∩
i=1

(I : g∞i).

In general, there are infinite Gröbner Bases for an ideal. Therefore we define
the reduced Gröbner basis of an ideal to describe ideals uniquely.

12 CHAPTER 1. BASIC FACTS

Definition 1.3.3. Let G be a Gröbner basis of I with respect to <.

• G is minimal if for all g ∈ G

1) g is monic,

2) LT (g) /∈ L(G \ {g}).

• A minimal Gröbner basis G is reduced if all g ∈ G is G\{g}-reduced with
respect to <.

Theorem 1.3.4. Every ideal in K[X] has a unique reduced Gröbner basis with
respect to a given monomial ordering. Furthermore it can be computed from
any Gröbner basis of the ideal.

In the following of this paper, we omit to specify a monomial ordering unless
it is necessary.

Chapter 2

Minimal Associated Primes

Our goal is to construct algorithms for representing a radical of a given ideal
as an intersection of prime ideals. First of all, we verify the existence of such
decompositions.

Definition 2.0.1. Let I be an ideal in a Noetherian ring. A prime ideal P
including I is called a minimal associated prime of I if a prime ideal P ′ satisfies
I ⊂ P ′ ⊂ P , then P ′ = P . minAss(I) denotes the set of all minimal associated
primes of I.

Proposition 2.0.2. Let I be an ideal in a Noetherian ring. minAss(I) is finite
and if minAss(I) = {P1, . . . , Pm}, then

√
I = P1 ∩ · · · ∩ Pm.

We call it the prime decomposition of
√
I

2.1 Zero-dimensional Decomposition

There is an algorithm for computing minimal associated primes of zero-dimensional
ideals in K[X] with char(K) = 0 by using the notion of general position.

Definition 2.1.1. ([GP, Definition 4.2.1])

1) A maximal ideal M ⊂ K[X] is called in general position with respect to
xi ∈ X, if there exist g1, . . . , gn ∈ K[xi] such that {x1 + g1(xi), . . . , xi−1 +
gi−1(xi), xi+1 + gi+1(xi), . . . , xn + gn(xi), gi(xi)} is the reduced Gröbner
basis of M with respect to lexicographical ordering where xi is smallest in
X.

2) A zero-dimensional ideal I ⊂ K[X] is called in general position with re-
spect to xi ∈ X, if all associated primes P1, . . . , Pm are in general position
with respect to xi and if Pj ∩K[xi] ̸= Pk ∩K[xi] for j ̸= k.

13

14 CHAPTER 2. MINIMAL ASSOCIATED PRIMES

For zero-dimensional ideals in general position, we obtain the next proposi-
tion.

Proposition 2.1.2. [GP, Proposition 4.2.3] Let I be a zero-dimensional ideal
in K[X], ⟨g⟩ = I ∩K[xn] and g = gm1

1 . . . gms
s the factorization of g. Then

I =
s∩

i=1

⟨I, gmi
i ⟩.

If I is in general position with respect to xn, then ⟨I, gmi
i ⟩ is a primary ideal for

all i.

We can make a given zero-dimensional ideal in general position by coordinate
changes.

Proposition 2.1.3. ([GP, Proposition 4.2.2]) Let K be a field of characteristic
0 and I ⊂ K[X] a zero-dimensional ideal. Then there exists a non-empty, Zariski
open subset Z ⊂ Kn−1 such that for all a = (a1, . . . , an−1) ∈ Z, the coordinate
change φa : K[X]→ K[X] defined by φa(xi) = xi if i < n, and

φa(xn) = xn +
n−1∑
i=1

aixi

has the property that φa(I) is in general position with respect to xn.

These coordinate changes are chosen randomly in the algorithm. We can
decide whether an ideal is in general position or not by the following criterion.

Lemma 2.1.4. ([GP, Proposition 4.2.4]) Let I be an ideal in K[X]. Then the
following two conditions are equivalent.

1) • I is zero-dimensional.

• I is in general position with respect to xn.

• I is a primary ideal.

2) Let S be the reduced Gröbner basis of I with respect to <lex. Then there
exist g1, . . . , gn ∈ K[xn] and positive integer m1, . . . ,mn such that

• gmn
n ∈ S and gn is irreducible.

• (xj + gj)
mj is congruent to an element in S ∩ K[xj , . . . , xn] modulo

⟨gn, xn−1 + gn−1, . . . , xj+1 + gj+1⟩ ⊂ K[X] for i ≤ j ≤ n− 1.

Combining the above propositions, we can decide whether a zero-dimensional
ideal is primary and in general position or not (Algorithm 3 [GP, Algorithm
4.2.5]).

Finally, we can construct an algorithm for computing minimal associated
primes of zero-dimensional ideals (Algorithm 4). Algorithm 4 follows from [GP,
Algorithm 4.2.7]. However our algorithm outputs only minAss(I).

2.1. ZERO-DIMENSIONAL DECOMPOSITION 15

Algorithm 3 primaryTest

Input: a zero-dimensional ideal I = ⟨f1, . . . , fk⟩ ⊂ K[X]
Output: ⟨0⟩ if I is either not primary or not in general position,

or
√
I if I is primary and in general position.

compute the reduced Gröbner basis G of I w.r.t <lex

factorize g ∈ S, the element with smallest leading monomial
if g = gmn

n with gn is irreducible then
prim← ⟨gn⟩

else
return ⟨0⟩

end if
i← n
while i > 1 do

i← i− 1
choose f ∈ S with LM(f) = xt

i

b← the coefficient of xt−1
i in f considered as polynomial in xi

q ← xi + b/t
if qt ≡ f (mod prim) then

prim← prim+ ⟨q⟩
else

return ⟨0⟩
end if

end while
return prim

Algorithm 4 zeroMinAss

Input: a zero-dimensional ideal I = ⟨f1, . . . , fk⟩ ⊂ K[X]
Output: minAss(I)
result ← ∅
choose a random a ∈ Kn−1 and I ′ ← φa(I) (cf. Proposition 2.1.3)
compute the reduced Gröbner basis G of I ′ w.r.t. <lex

factorize g = gm1
1 . . . gms

s ∈ G ∩K[xn]
for i = 1 to s do

P ′
i ← primaryTest(⟨I ′, gi⟩)

if P ′
i ̸= ⟨0⟩ then
Pi ← φ−1

a (P ′
i)

result ← result ∪{Pi}
else

result ← result ∪ zeroMinAss(⟨I, φ−1
a (gi)⟩)

end if
end for
return result

16 CHAPTER 2. MINIMAL ASSOCIATED PRIMES

2.2 Laplagne’s Algorithm

We give a concise introduction of an algorithm for computing minimal associated
primes by Laplagne in [L2]. We call it Laplagne’s algorithm and each of our
two algorithms is based on it. It makes a given ideal zero-dimensional and
decomposes without producing redundant components.

Laplagne’s algorithm is based on the following well known property.

Lemma 2.2.1. Let I be an ideal in K[X] and
√
I =

m∩
i=1

Pi the prime de-

composition. Then a polynomial g ∈ K[X] gives the prime decomposition√
I : g∞ =

∩
g/∈Pi

Pi.

Proof. This is derived from [AM, Exercise 1.12 iv)].

In order to reduce to the zero-dimensional case, we utilize a maximal in-
dependent set of given ideals.

Definition 2.2.2. Let I be an ideal in K[X]. U ⊂ X is called an independent
set of I if I ∩K[U] = {0}. We say that an independent set U is maximal when
#U = dim(I).

For a set of variables Y , K(Y) denotes the set
{

f
g

∣∣∣ f, g ∈ K[Y], g ̸= 0
}
. If

U is a maximal independent set of I, then IK(U)[X \U] is zero-dimensional in
K(U)[X \ U].

Lemma 2.2.1 implies the next proposition which is the core of Laplagne’s
algorithm.

Proposition 2.2.3. ([L1, Proposition 4])

Let I be an ideal in K[X], MA ⊂ minAss(I) and Int =
∩

P∈MA

P (if MA = ∅,

we define Int = ⟨1⟩). Suppose Int ̸=
√
I, g ∈ Int \

√
I,
√
I : g∞ =

m∩
i=1

Pi is

the prime decomposition and U is a maximal independent set of I : g∞. Then
prime components such that Pi ∩ K[U] = {0} satisfy Pi ∈ minAss(I) and Pi /∈
MA.

We can compute prime components satisfying the above condition by the
reduction to the zero-dimensional case.

Proposition 2.2.4. Let I be an ideal in K[X], U a maximal independent set

of I : g∞ and the prime decomposition
√
I =

m∩
i=1

Pi in the condition

Pi ∩K[U] = {0} (1 ≤ i ≤ l), Pi ∩K[U] ̸= {0} (l + 1 ≤ i ≤ m).

2.2. LAPLAGNE’S ALGORITHM 17

Then we have the prime decomposition

√
IK(U)[X \ U] ∩K[X] =

l∩
i=1

Pi .

Proof. See [GP] Exercise 4.3.3 and Proposition 4.3.1 (2).

Laplagne’s algorithm is constructed as follows (Algorithm 5).

Algorithm 5 LMinAss

Input: an ideal I ⊂ K[X]
Output: minAss(I)
Int ← ⟨1⟩, MA ← ∅
while Int \

√
I ̸= ∅ do

choose g ∈ Int \
√
I

J ← I : g∞

U ← a maximal independent set of J
J ← JK(U)[X \ U]
{P1, . . . , Pm} ← zeroMinAss(J)
PJ ← {P1 ∩K[X], . . . , Pm ∩K[X]}
MA ← MA ∪PJ , Int ← Int ∩

∩
P∈PJ

P

end while
return MA

Chapter 3

Prime Decompositions for
Binomial Ideals

In this chapter, we propose a new algorithm for computing minimal associated
primes of binomial ideals over polynomial rings. We have all of arguments over
a polynomial ring K[x] = K[x1, . . . , xn] (over an arbitrary field K). Binomials
mean polynomials with at most two terms, namely, am1+ bm2(a, b ∈ K,m1,m2

are monomials in K[x]). And we define a binomial ideal as an ideal generated
by binomials.

The motivation of our research is to speed up the algorithm for primary de-
composition by Kawazoe-Noro [KN]. It efficiently decomposes binomial ideals
which have many embedded components. However it leaves place for improve-
ment at the part computing minimal associated primes where ideals are made
zero-dimensional.

Eisenbud-Sturmfels [ES] and Kahle [K] propose algorithms for computing
minimal associated primes of binomial ideals and they are implemented in the
computer algebra system Macaulay2 [M2]. The feature of these algorithms is
that only binomials appear through the computing process. However, we have
to extend the coefficient field in certain cases. On the other hand, Laplagne [L2]
also proposes an algorithm for computing minimal associated primes of ideals
(not limited to binomial ideals). It can decompose ideals without producing
redundant components but needs the reduction to the zero-dimensional case.
We combine both of their advantages.

Algorithms in [ES] and [K] represent a given ideal as an intersection of cel-
lular ideals. It is called a cellular decomposition. It does not require reductions
to zero-dimensional and most of the computations are saturations. We utilize
and improve it as an intermediate decomposition.

In Section 3.1, we review the notion of cellular ideal and algorithms concern-
ing cellular decomposition.

Our main results are in Section 3.2 and 3.3. We propose a new algorithm
for an intermediate decomposition following a part of the process of Laplagne’s

19

20 CHAPTER 3. PRIME DECOMPOSITIONS FOR BINOMIAL IDEALS

algorithm. And we show improvements of the new algorithm. It contains a
subroutine transforming input, strategies choosing a polynomial for a saturation,
techniques for saturations, an algorithm for homogeneous ideals and so on. We
show the timing data of computing minimal associated primes of binomial ideals
by algorithms in [K], [L2] and ours.

3.1 Cellular Decomposition

First we define cellular ideals.

Definition 3.1.1. An ideal I is called cellular if every xi(1 ≤ i ≤ n) is
nilpotent or a non-zerodivisor modulo I.

Example 3.1.2. I = ⟨x2, y − 1⟩(⊂ K[x, y]) is a cellular ideal. Actually x is
nilpotent modulo I, y is a non-zerodivisor modulo I.
I = ⟨x2, xy⟩(⊂ K[x, y]) is not a cellular ideal. Because y is a zerodivisor modulo
I but not nilpotent modulo I.

We can decide whether an ideal is cellular or not by Algorithm 6 which is
explained in [K, Algorithm 1 Step 1].

Algorithm 6 cellCheck

Input: an ideal I ⊂ K[X]
Output: If I is cellular, then 1, otherwise 0.
X ← 1
for i = 1 to n do

if I : xi
∞ ̸= ⟨1⟩ then

X ← X · xi

end if
end for
if I = I : X then

return 1
else

return 0
end if

Remark 3.1.3. In [K, Algorithm 1 Step 1], we check whether I = I : X∞ or
not. However, it is equivalent to checking whether I = I : X or not in Algorithm
6.

In this paper, we call a representation of an ideal as an intersection of cellular
ideals a cellular decomposition.

By Algorithm 7, every ideal can be decomposed into cellular ideals. In the
algorithm, the splitting tool is applied.

3.1. CELLULAR DECOMPOSITION 21

Proposition 3.1.4. (splitting tool)[GP, Lemma 3.3.6]
Let I be a ideal. If a polynomial a satisfies I : a = I : a2, then

I = I : a ∩ ⟨I, a⟩.

Algorithm 7 cellDecomp

Input: an ideal I ⊂ K[X]
Output: a set of cellular ideals whose intersection is I
if cellCheck(I) = 1 then

return I
end if
choose x0 : a zerodivisor modulo I among non-nilpotent variables modulo I
X ← x0

m(an integer m is chosen s.t. I : X = I : X2)
C1 ← I : X
C2 ← ⟨I,X⟩
return cellDecomp(C1) ∪ cellDecomp(C2)

Kahle proposes an algorithm for computing minimal associated primes in [K,
Algorithm 4] . The algorithm decomposes cellular ideals into minimal associated
primes after cellular decomposition. Here we give its brief outline. The proofs
and details are in [K, Section 1].

For a set of indices of variables ε ⊂ {1, . . . , n} and a vector of natural
numbersd = (di)i/∈ε, we define

M(ε) := ⟨xi|i /∈ ε⟩,M(ε)d := ⟨xi
di |i /∈ ε⟩.

Lemma 3.1.5. A binomial ideal I is cellular if and only if there exist a set
ε ⊂ {1, . . . , n} and a vector of natural numbers d = (di)i/∈ε such that

I = ⟨I,M(ε)d⟩ : (
∏
i/∈ε

xi)
∞.

Definition 3.1.6. For a set ε ⊂ {1, . . . , n}, a pair (L, σ) where L ⊂ Zε is an
integer lattice and σ : L→ K∗ is homomorphism, is called a partial character.
A partial character induces a lattice ideal in K[(xi)i∈ε]

Lat(σ) := ⟨xm+ − σ(m)xm− |m ∈ L⟩

where m is decomposed into the positive part m+ and the negative part m−,
so that m = m+ −m−.

Lemma 3.1.7. The radical of a binomial cellular ideal I is represented with
ε ⊂ {1, . . . , n} and a partial character (L, σ) such that

√
I = ⟨M(ε), Lat(σ)⟩.

22 CHAPTER 3. PRIME DECOMPOSITIONS FOR BINOMIAL IDEALS

Definition 3.1.8. For a set ε ⊂ {1, . . . , n} and an integer lattice L ⊂ Zε, we
define the saturation of L

Sat(L) := {m ∈ Zε|dm ∈ L for some d ∈ Z}.

A partial character (L′, σ′) is called a saturation of (L, σ) if

L′ = Sat(L), σ′(l) = σ(l)(l ∈ L).

Theorem 3.1.9. For a cellular ideal I, if its radical is represented with a set
ε ⊂ {1, . . . , n} and a partial character (L, σ) such that

√
I = ⟨M(ε), Lat(σ)⟩,

then its minimal associated primes are given by

Pσ′ = ⟨M(ε), Lat(σ′)⟩

where σ′ runs through all saturations of σ.

Note that the splitting tool generates redundant components in general.
Therefore we will consider an algorithm without producing redundant compo-
nents.

3.2 A New Algorithm for Minimal Associated
Primes

We describe a new algorithm for computing minimal associated primes without
producing redundant components. It is based on Laplagne’s algorithm and
utilizes cellular decomposition as an intermediate decomposition.

First of all, we show an algorithm which outputs a cellular ideal including a
given ideal (Algorithm 8).

Theorem 3.2.1. Algorithm 8 works correctly.

Proof. A variable x0 which is not nilpotent modulo J is non-zerodivisor modulo
J : x∞

0 because polynomials f with fx0 ∈ J : x∞
0 are in J : x∞

0 . And it is
easy to show if xi is nilpotent(respectively non-zerodivisor) modulo J , then it is
nilpotent(respectively non-zerodivisor) modulo J : x∞

0 . Therefore C is a cellular
ideal and C = J : X∞ with a monomial X. It implies C ⊃ J . This algorithm
terminates after n loops.

This cellular ideal C from Algorithm 8 has the following property.

Lemma 3.2.2.
√
C is an intersection of some components of minAss(J).

3.2. A NEW ALGORITHM FOR MINIMAL ASSOCIATED PRIMES 23

Algorithm 8 cellularize

Input: an ideal J ⊂ K[X]
Output: a cellular ideal including J
V ← {x1, . . . , xn}
C ← J
while V ̸= ∅ do

choose x0 ∈ V
V ← V \ {x0}
if x0 is not nilpotent (mod C) then

C ← C : x∞
0

end if
end while
return C

Proof. Let X be the product of all variables which are not nilpotent modulo C.
X satisfies the condition of the splitting tool, hence

C = J : X∞.

Then C is an intersection of primary components of J because of Lemma 2.2.1.
Computing radicals of both sides and removing redundant components,

√
C is

an intersection of some components of minAss(J).

Then we propose a new algorithm for the intermediate decomposition with-
out producing redundant components (Algorithm 9).

Algorithm 9 intermediateCellDecomp

Input: an ideal I ⊂ K[X]
Output: an intermediate decomposition of I s.t.

√
∩{C|C ∈ ID} =

√
I

C1, C2 ∈ ID and C1 ̸= C2 then minAss(C1) ∩minAss(C2) = ∅
Int← ⟨1⟩
ID ← ∅
while Int ⊋

√
I do

choose g ∈ Int \
√
I

J ← I : g∞

C ← cellularize(J)
Int← Int ∩ C
ID ← ID ∪ {C}

end while
return ID

Theorem 3.2.3. Algorithm 9 works correctly without producing redundant
components.

24 CHAPTER 3. PRIME DECOMPOSITIONS FOR BINOMIAL IDEALS

Proof. Let
√
I =

∩
i

√
Qi be the minimal prime decomposition. Lemma 2.2.1

implies √
I : g∞ =

∩
g/∈

√
Qi

√
Qi.

From Lemma 3.2.2, C is decomposed minimally into a subset of these compo-
nents. Let this decomposition be

√
C =

∩
j

√
Qj .

Since g ∈ Int,
√

Qj differs from components ofminAss(C ′) where C ′ ∈ ID. On

the other hand, since Int ⊋ Int ∩
√
C ⊃

√
I, we obtain an expected output. In

addition, this algorithm terminates in finite steps since the number of minAss(I)
is finite and C is an intersection of new minimal associated primes.

Finally, a new algorithm for computing minimal associated primes has been
completed. It decomposes a given ideal by Algorithm 9 then decomposes each
component by Laplagne’s algorithm. Through the algorithm, already-known
minimal associated primes never appear again (Algorithm 10).

Algorithm 10 minAssβ

Input: an ideal I ⊂ K[X]
Output: minAss(I)
MA← ∅
ID ← intermediateCellDecomp(I)
while ID ̸= ∅ do

choose C ∈ ID
ID ← ID \ C
MA← LMinAss(C)

end while
return MA

We measure the time for computing minimal associated primes by Algorithm
10 and Laplagne’s algorithm(Table 3.1). Laplagne’s algorithm is implemented as
a function minAssGTZ in Singular [DGPS]. With its option minAssGTZ(I, 1),
it is more similar to Algorithm 5 than the default. For comparison, we also
measure the default algorithm minAssGTZ(I). It utilizes the factorized Gröbner
basis algorithm as an intermediate decomposition.

In this paper, the unit of timings is a second and all results have been
rounded to no more than three significant figures. All of our algorithms were
implemented in Singular [DGPS] and measured on a 64-bit Linux machine
with Intel Xeon E5-2650 v2, 2.60GHz and 256GB memory. Definitions and
examples of decomposed ideals are in Appendix. The library file of algorithms
will be available from the URL [A16].

3.2. A NEW ALGORITHM FOR MINIMAL ASSOCIATED PRIMES 25

Table 3.1: Timing data of computing minimal associated primes

A(2, 14) A(3, 9) A(4, 6) P (2, 13) P (3, 7)
Algorithm 10 234 904 5990 185 126
minAssGTZ(I, 1) 421 806 5810 190 119
minAssGTZ(I) 429 98 38 5 2

P (3, 8) P (4, 6) P (5, 5) I(1,4) I(2,2)

Algorithm 10 581 545 891 144 132
minAssGTZ(I, 1) 537 438 679 107 87
minAssGTZ(I) 7 7 9 112 24

Algorithm 10 is much slower than minAssGTZ(I). However, it is as fast as
minAssGTZ(I, 1). To improve it we measure the runtimes of its components.

Table 3.2: Details of Algorithm 10

A(2, 14) A(3, 9) A(4, 6) P (2, 13) P (3, 7)
Total 234 904 5990 185 126

radical membership 3.3 796 5780 159 116
saturation 0.3 43 188 13 4.2
cellularize 12 6.3 10 1.2 0.7
intersection 195 50 7.7 8.6 2.4

Laplagne algorithm 24 8.0 3.5 3.1 1.9

P (3, 8) P (4, 6) P (5, 5) I(1,4) I(2,2)

Total 581 545 891 144 132
radical membership 554 515 847 89 79

saturation 14 17 27 1.4 1.2
cellularize 1.2 1.2 1.6 3.0 2.6
intersection 8.4 8.3 12 46 44

Laplagne algorithm 3.1 3.3 3.9 4.7 4.9

Table 3.2 shows that radical membership tests are bottle-necks of this al-
gorithm. In this implementation, we use a general-purpose function for radical
membership tests. We will improve it in the next section. On the other hand,
the data of Laplagne’s algorithm (the bottom line) shows that Algorithm 9 is
useful as an intermediate decomposition. Actually, all of cellular components
are already prime in these examples.

Remark 3.2.4. Our algorithm works correctly not only for binomial ideals
but also for general ideals. However, our algorithm dose not always decompose
general ideals efficiently. By observation, it seems to relate with the number of
variables which are zerodivisors modulo the given ideal. In general, binomials
tend to have some variables as their factors. Conversely polynomials with many
terms do not because every term must have a common variable. These variables
transform the given ideal by saturations in Algorithm 8. Therefore, Algorithm

26 CHAPTER 3. PRIME DECOMPOSITIONS FOR BINOMIAL IDEALS

8 sometimes affects general ideals little or nothing. It means that most parts
of the decomposition are performed by Laplagne’s algorithm. Hence we restrict
our targets to binomial ideals in this paper.

3.3 Improvements

We observe the behavior of Algorithm 10 and improve by various methods in-
cluding heuristic approaches. Let I be an ideal in K[x] and for any polynomial
f , let

√
f denote the square free part of f .

3.3.1 Simplification of the Ideal

The goal of Algorithm 10 is to decompose
√
I, not I. Therefore we can transform

I into an ideal whose radical is equal to
√
I. By Algorithm 11, I is enlarged

without changing its radical.

Algorithm 11 squareFree

Input: an ideal I = ⟨f1, . . . , fm⟩ ⊂ K[X]
Output: generators of an ideal J s.t.

√
J =
√
I

return {
√
f1, . . . ,

√
fm}

Correctness of Algorithm 11 is clear by
√
I =

√
⟨
√
f1, . . . ,

√
fm⟩. (See [AM,

Chapter1 Exercise 1.13 v)].) Note that deg(
√
fi) ≤ deg(fi). With this algo-

rithm, we obtain an algorithm for computing a Gröbner basis S = {s1, . . . , sl}
s.t.

√
⟨S⟩ =

√
I.

Algorithm 12 simplification

Input: an ideal I ⊂ K[X]
Output: a Gröbner basis of J s.t.

√
J =
√
I

S ← a Gröbner basis of I
SF ← squareFree(⟨S⟩)
while ⟨S⟩ ̸= ⟨SF ⟩ do

S ← the reduced Gröbner basis of SF
SF ← squareFree(⟨S⟩)

end while
return S

Proposition 3.3.1. Algorithm 12 works correctly. In particular, ⟨S⟩ can be
used instead of I in Algorithm 10.

Proof. Correctness is clear. The series of ⟨S⟩ is an ascending chain with proper
inclusions. The properties of Noetherian ring ensure the termination.

3.3. IMPROVEMENTS 27

By this simplification, we expect lower degrees in the Gröbner basis of J .
They are used for executing radical membership tests and computations of sat-
urations. And they are executed frequently through the algorithm. Therefore
we expect that it saves the total computing time.

3.3.2 Choice of Polynomials for Radical Membership Tests

Algorithm 9 searches a polynomial g ∈ Int \
√
I. The choice of g affects greatly

the subsequent computation. Let I =
∩
i

Qi be the minimal primary decompo-

sition. If the number of
√
Qi containing g becomes large, then the number of

minimal primary components of I : g∞ becomes small (See Lemma 2.2.1.). If
I : g∞ is an intersection of small number of components, we expect its number
of generators is small and they are low-degree.

To search for a polynomial which belongs to as many
√
Qi as possible, we

propose the following strategy.

Strategy 3.3.2. Choose a polynomial g which has as many variables as possi-
ble.

Example 3.3.3. Let I be in Q[x1, . . . x10], g1 = x1−x2 and g2 = x1x3x5x7x9−
x2x4x6x8x10. Consider which of the two has more chance to belong to minimal
associated primes of I.

Let the leading monomial of g1 be x1 and the one of g2 be x1x3x5x7x9. Ideals
which contain g1 must have at least one generator whose leading monomial is
x1. In the case of g2, the essential generator can have 25 = 32 kinds of leading
monomials. Even just limited to monomial ideals, g1 belongs to ideals which
contain both of x1 and x2. On the other hand, g2 can be in ideals which contain
at least one pair (xs, xt) where s is odd and t is even.

3.3.3 Saturations of Homogeneous Ideals with Respect to
a Variable

In Algorithm 8, saturations of I with respect to a variable are performed many
times. For homogeneous ideals, the following proposition is helpful.

Proposition 3.3.4. ([S96, Lemma 12.1])
Let J be a homogeneous ideal and G = {g1, . . . , gm} the reduced Gröbner basis
of J with respect to graded reverse lexicographic order with x1 > · · · > xn.
Then a Gröbner basis of J : x∞

n with respect to the same order is

{g1/xl1
n , . . . , gm/xlm

n } where li = max{l ∈ N|xl
i divides gi}.

3.3.4 Computing Several Cellular Ideals at One Iteration

Algorithm 10 computes one cellular ideal at one iteration. The following propo-
sition ensures computing several cellular ideals without loss of irredundancy.

28 CHAPTER 3. PRIME DECOMPOSITIONS FOR BINOMIAL IDEALS

Proposition 3.3.5. Let S be a Gröbner basis of J computed by Algorithm 12
and g = g1 · · · gs be a member of S.
Then, sets of minimal associated primes of J : (g/gi)

∞ are disjoint for 1 ≤ i ≤ s.

Proof. For i ̸= j, gi and gj do not have common factors because g is square
free. Since gi ∈ J : (g/gi)

∞, all minimal associated primes of J : (g/gi)
∞ have

gi. On the other hand, J : (g/gj)
∞ = (J : (g/gigj)

∞) : g∞i . From Lemma 2.2.1,
all minimal associated primes of J : (g/gj)

∞ do not contain gi.

With this proposition, we can compute several cellular ideals including a
given ideal in a particular case (Algorithm 13).

Algorithm 13 severalCells

Input: an ideal J ⊂ K[X] whose generators are square free,
m = m1 · · ·ms(the factorization of a monomial generator of J)

Output: cellular ideals including J
ID ← ∅
for i = 1 to s do

C ← J : (m/mi)
∞

C ← cellularize(C)
ID ← ID ∩ {C}

end for
return ID

Remark 3.3.6. From Proposition 3.3.5, Algorithm 13 also works correctly
when mi are square free polynomials. In this case, we compute saturations with
respect to polynomials (not variables). In general, saturations with respect to
polynomials are relatively slower than ones with respect to variables. Moreover,
Proposition 3.3.4 is helpful to compute saturations with respect to variables.
Therefore, we restrict mi to variables in our algorithm.

If the given ideal has another monomial generator, we can try to compute
other cellular ideals. However, the new ones are not always different from ones
which we have already computed. Now, we can check whether a monomial
generator produces new cellular ideals or not. For that, we record non-nilpotent
variables with respect to cellular ideals.

Proposition 3.3.7. Let J be an ideal whose generators are square free, C1, . . . , Ct

cellular ideals including J and Xi a product of all non-nilpotent variables with
respect to Ci. If there exist a monomial generator m of J and a variable factor
xj of m such that m/xj does not divide any of X1, . . . , Xt, then the output of
cellularize(J : (m/xj)

∞) differs from C1, . . . , Ct.

Proof. If m/xj does not divide Xi, then variables in m/xj is not a subset of
non-nilpotent variables with respect to Ci. Let x0 be a variable which is in m/xj

3.3. IMPROVEMENTS 29

and not in Xi. If x0 is not nilpotent with respect to a cellular ideal C ⊂ J , then
C differs from C1, . . . , Ct because x0 is nilpotent with respect to C1, . . . , Ct. We
show that x0 can never become nilpotent in Algorithm 13. In the former part of
Algorithm 13, x0 becomes non-zerodivisor with respect to J ′ := J : (m/xj)

∞,
namely, J ′ : x∞

0 = J ′ ̸= ⟨1⟩. If x0 becomes nilpotent while cellularize(J ′),
there is a product of variables V such that (J ′ : V ∞) : x∞

0 = ⟨1⟩. Exchanging
the two saturations, it means (J ′ : V ∞) = ⟨1⟩ and such saturations are avoided
in cellularize(J ′). Therefore x0 can never become nilpotent and the output
cellular ideal differs from C1, . . . , Ct.

Combining Algorithm 13 and Proposition 3.3.7, we obtain a recursive algo-
rithm for computing cellular ideals including a given ideal I (Algorithm 14).

Algorithm 14 distinctCells

Input: an ideal I ⊂ K[X] whose generators are square free,
NonZD : an argument for recursion (= 1 for the first time)
NonNil : an argument for recursion (= ∅ for the first time)

Output: cellular ideals (including I) whose minimal associated primes are
distinct from each other

ID ← ∅
S ← simplification(I)
Monom← {M1, . . . ,Mm} : monomial generators in S, deg(Mi) > 1
if Monom = ∅ then

C ← cellularize(I)
NonNil← NonNil∪{the product of non-nilpotent variables modulo C}
ID ← ID ∪ {C}

else
for i = 1 to m do

factorize Mi = v1 · · · vt
for j = 1 to t do

NewNonZD ← NonZD · (Mi/vj)
if NewNonZD does not divide any member of NonNil then

J ← I : (Mi/vj)
∞

(Cell,NonNil)← distinctCells(J,NewNonZD,NonNil)
ID ← ID ∪ Cell

end if
end for

end for
end if
return (ID,NonNil)

3.3.5 Experiments

We show the timing data of the final version of our algorithm utilizing all the
above improvements (minAssC(I) ; Algorithm 15), Laplagne’s algorithm(minAssGTZ(I))

30 CHAPTER3. PRIMEDECOMPOSITIONSFORBINOMIALIDEALS

and Kahle’salgorithm(binomialMinimalPrimes(I)). Since Kahle’sisimple-
mentedin Macaulay2[M2],itisjustareference. AboutidealsinTable3.1,our
algorithmisfasterthanminAssGTZ(I)orfinishesdecomposinginafewseconds.
ThereforeweomitsomeexamplesinTable3.1andshowtimingdatafor more
complicatedideals.

Algorithm15 minAssC

Input:anidealI⊂K[X]
Output: minAss(I)

MA ←∅,ID←∅,Int←⟨1⟩
S← simplification(()I)
while Int\

√
S≠∅do

chooseg∈Int\
√

SfollowingStrategy3.3.2
J← S:g∞

J← simplification(()J)
(Cell,NonNil)← distinctCells(J,1,∅)
ID← ID∪Cell
Int← Int∩

∩

C∈ID

C

end while
while ID̸=∅do

chooseC∈ID
MA ← MA∪LminAss(C)

end while
returnMA

Table3.3: Timingdataofcomputing minimalassociatedprimes

minAssC(I) minAssGTZ(I) binomialMinimalPrimes
A(2,14) 43 429 90
A(3,10) 165 642 248
A(4,7) 166 485 1430
P(2,18) 34 54 94
P(3,10) 40 48 61
P(4,9) 144 292 194

I(1,5) 79 11100 >40000

I(1,6) 1120 >50000

I(2,2) 12 24 36

I(2,3) 4420 22900 >50000

3.3.6 Discussion

Table3.3andTable3.4showthattheaboveimprovementsarehelpfulandour
newalgorithmworkswell.

3.3. IMPROVEMENTS 31

Table 3.4: Details of minAssC(I)

A(2, 14) A(3, 10) A(4, 7) P (2, 18) P (3, 10)
Total 43 165 166 34 40

simplification 0 3.1 86 0.9 0.7

radical membership

&saturation
1.8 33 16 1.7 0.4

cellularize 15 11 31 7.1 4.0
intersection 2.3 99 21 13 27
LMinAss 24 19 11 12 7.7

P (4, 9) I(1,5) I(1,6) I(2,2) I(2,3)

Total 144 79 1220 12 4420
simplification 2.9 0.07 0.9 0.02 1.0

radical membership

&saturation
0.1 3.9 58 0.37 33

cellularize 10 22 98 5.3 126
intersection 112 15 377 1.0 2870
LMinAss 18 37 684 5.5 1390

In many cases, the extra time for Algorithm 12 is not long and it shortens
the time of radical membership tests and computations of saturations.

Strategy 3.3.2 is suitable for our algorithm. It makes significant contributions
to radical membership tests and computations of saturations.

Proposition 3.3.4 works very efficiently. Owing to speeding up computations
of saturations with respect to a variable, we can compute cellularizations very
fast. Therefore, computing several cellular ideals from one ideal becomes a valid
strategy.

With Algorithm 13 and Proposition 3.3.7, we can reduce the number of
iterations. It means we can reduce the frequency of radical membership tests,
computations of saturations and computations of intersections.

There is room for improvement in computations concerning intersections.

Chapter 4

A Modular Algorithm for
Laplagne’s Algorithm

In this chapter, we propose a modular algorithm for computing minimal associ-
ated primes of ideals in Q[X]. Modular algorithms avoid the swell of coefficients
which makes ideal computations slow-down. For computational targets in a ring
R, modular algorithms choose projection maps R to R′, take projected images
of targets and compute in R′ with the images to avoid the swell of coefficients.
Then they reconstruct the real computed results in R from the computed results
in R′. For reconstructions, the projection images need to maintain information
of the original targets. We call a projection is lucky if its images are ‘useful’
for reconstructions. Luckiness depends on what computations we perform and
in general, we can not decide whether a projection is lucky or not before com-
putations. It means that the computation is probabilistic and that in many
cases the computed results of modular algorithms are only candidates of the
expected results and we should verify the correctness in some way. Therefore, it
is important for modular algorithms to detect unlucky projections quickly and
to guarantee the correctness of the computed results by efficient methods.

There are several researches about modular algorithms for ideal computa-
tions. Arnold [Ar] and Pauer [P] propose modular algorithms for computing
Gröbner basis. Idrees-Pfister-Steidel [IPS] apply a modular algorithm for radi-
cal computations and computing minimal associated primes of zero-dimensional
ideals. Noro-Yokoyama [NY] summarize them, describe the relation among sev-
eral notions of luckiness and illustrate applications of modular algorithms for
saturation, intersection, radical computation and primary decomposition.

In this chapter, we apply a modular algorithm for Laplagne’s algorithm (Al-
gorithm 5). It deals with a rational function field K(U) as a coefficient field,
for the sake of reductions to zero-dimensional case. This tends to produce huge
coefficients at intermediate computations. Therefore we apply modular algo-
rithms which suppress the swell of coefficients. On the other hand, A modular
algorithm for computing minimal associated primes of polynomial ideals has

33

34CHAPTER 4. AMODULAR ALGORITHM FOR LAPLAGNE’S ALGORITHM

been proposed in [IPS]. The most significant difference between our algorithm
and the algorithm in [IPS] is the setting of projection maps. The algorithm in
[IPS] utilizes projections Q to Fp where p is a prime number, while our algo-
rithm utilizes projections Q(u) to Q (u is a parameter). Our projections reduce
the number of parameters and keep the characteristic of coefficient fields 0.

In Section 4.1, we introduce some well-known tools on which our algorithm
is based. Chinese Remainder Theorem guarantees the existence of an inverse
image for given projected images. And the Lagrange’s interpolation is an arith-
metic method to compute a result whose existence is guaranteed by Chinese
Remainder Theorem. Then we give definitions of luckiness for computing mini-
mal associated primes. Our definitions are based on the luckiness for computing
Gröbner basis defined in [NY].

Our main results are in Section 4.2. We construct a modular algorithm for
computing a subset of minimal associated primes of zero-dimensional ideals in
Q(U)[X]. Then we apply it for Laplagne’s algorithm. We show the correctness
of our algorithm. We also show that the number of lucky moduli is sufficiently
large so that we can obtain the correct result with a high probability. Then
we show the results of our implementation of the new algorithm. We measure
the time for computing minimal associated primes of some ideals. We see that
our algorithm is efficient for ideals which take long time to compute minimal
associated primes by the Laplagne’s original algorithm.

4.1 Fundamental Tools and Definitions

In this section, we review well-known tools and define luckiness of ideals for
constructing our new algorithms.

4.1.1 Chinese Remainder Theorem

Let R be a commutative ring. When we perform a computation of an object
from an input F ⊂ R utilizing Chinese Remainder Theorem, we choose some
ideals Ii ⊂ R and compute a modular image of the object from F mod Ii on
R/Ii. Interpolating these computed results we try to reconstruct the true object.
Chinese Remainder Theorem is formulated as follows.

Theorem 4.1.1. (Chinese Remainder Theorem; CRT) Let R be a commutative
ring and I1, . . . , Is pairwise comaximal ideals in R. For r1, . . . , rs ∈ R, there
exists y ∈ R satisfying

y ≡ r1 mod I1
...

y ≡ rs mod Is.

y is unique modulo ∩si=1Ii.

4.1. FUNDAMENTAL TOOLS AND DEFINITIONS 35

CRT can be applied in two typical situations: R = Z or R = K[u] where
K is a field. In each case we illustrate Lagrange’s interpolation which is one of
concrete methods to construct y.

Lemma 4.1.2. (Lagrange’s Interpolation in Z) Let p1, . . . , ps be distinct prime
numbers from each other, p = p1 · · · ps and I1 = ⟨p1⟩, . . . , Is = ⟨ps⟩. Then for
1 ≤ i ≤ s, ai, bi ∈ Z such that

ai(p/pi) + bipi = 1

can be computed by the extended Euclidean algorithm. For any r1, . . . , rs ∈ Z,
the unique y satisfying conditions in Theorem 4.1.1 is given by

y = r1L1 + · · ·+ rsLs(where Li = ai(p/pi)).

Lemma 4.1.3. (Lagrange’s Interpolation inK[u]) Let k1, . . . , ks ∈ K be distinct
elements from each other, I1 = ⟨u− k1⟩, . . . , Is = ⟨u− ks⟩ and

Li =
(u− k1) · · · (u− ki−1)(u− ki+1) · · · (u− ks)

(ki − k1) · · · (ki − ki−1)(ki − ki+1) · · · (ki − ks)
.

Then the unique y satisfying conditions in Theorem 4.1.1 is given by

y = r1L1 + · · ·+ rsLs.

Definition 4.1.4. Let r1, r2 ∈ K[u] and I1, I2 comaximal ideals ⊂ K[u]. We
name the interpolation r1 modulo I1 and r2 modulo I2 CRT(r1, r2, I1, I2).
For f =

∑
α cαx

α, g =
∑

α dαx
α ∈ K[u][X], we define CRT(f, g, I1, I2) =∑

α CRT (cα, dα, I1, I2)x
α. For F = { f1, . . . , fs }, G = { g1, . . . , gs } ⊂ K[u][X]

where LM(fi)’s and LM(gi)’s are distinct respectively and LM(fi) = LM(gi),
we define CRT(F,G, I1, I2) = {CRT(fi, gi, I1, I2) | 1 ≤ i ≤ s }. Let I, J be
ideals in K[u], GI , GJ the reduced Gröbner bases of I, J , respectively and
CRT(GI , GJ , I1, I2) is defined. We difineCRT(I, J, I1, I2) = ⟨CRT(GI , GJ , I1, I2)⟩.
Moreover, for F = { F1, . . . , Ft } and G = {G1, . . . , Gt } whereCRT(Fi, Gi, I1, I2)’s
are defined, we define CRT(F ,G, I1, I2) = {CRT(Fi, Gi, I1, I2) | 1 ≤ i ≤ t }.
When we compute CRT of indexed sets, we reset indices of members implicitly
in order to complete the computation unless there are two or more candidates
of indices which are suitable for the computation.

4.1.2 Rational function reconstruction

Our main target in this section is the reduced Gröbner basis G of a minimal
associated prime of an ideal I over a rational function field K(u). If we apply
CRT for the modular images computed over K, what we obtain is an object G′

over K[u]. If a coefficient c(u) appearing in G is not a polynomial we have to
recover c(u) from the corresponding polynomial coefficient inG′. This procedure

is as follows. Suppose that we try reconstructing a rational function g(u)
h(u) ∈ K(u).

Let ki ∈ K such that h(u) /∈ ⟨u− ki⟩ and ⟨M⟩ = ∩i⟨u− ki⟩. Utilizing CRT, we

obtain a polynomial f(u) ∈ K[u] such that f(u) ≡ g(u)
h(u) (mod M) . Then g, h

can be recovered by the following theorem and algorithm (Algorithm 16).

36CHAPTER 4. AMODULAR ALGORITHM FOR LAPLAGNE’S ALGORITHM

Theorem 4.1.5. ([GG, Theorem5.16]) Let f,M ∈ K[x], deg(f) < deg(M) =
n > 0 and ri, si, ti ∈ K[x] be the j-th row in extended Euclidean Algorithm
for M,f ,where j is minimal such that deg(rj) < k. There exist polynomials
r, t ∈ K[x] satisfying

r ≡ tf (mod M), deg(r) < k, deg(t) ≤ n− k,

namely r = rj , t = tj . If in addition gcd(rj , tj) = 1, then r, t also satisfy

gcd(t,M) = 1, rt−1 ≡ f (mod M), deg(r) < k, deg(t) ≤ n− k

Algorithm 16 RFR

Input: polynomials f,M ∈ K[x]
Output: g, h ∈ K[x] s.t. f ≡ g/h (mod M), h is monic and gcd(g, h) = 1
r0 ←M , r1 ← f
t0 ← 0, t1 ← 1
i← 1
while 2 deg(ri) > deg(M) do

Ri ← NF(ri−1, {ri})
Q← (ri−1 −Ri)/ri
ri+1 ← Ri, ti+1 ← ti−1 −Qti
i← i+ 1

end while
return (ri, ti)

We also utilize the algorithm RFR for reconstructing coefficients of polyno-
mials, ideals and a set of ideals.

Definition 4.1.6. Let ⟨M⟩ = ∩i⟨u−ki⟩(ki ∈ K) ⊂ K[u]. For a polynomial f =∑
α cαx

α ∈ K[u][X], we denote RFR(f,M) =
∑

αRFR(cα,M)xα. For a subset
F ⊂ K[u][X], we define RFR(F,M) = {RFR(f,M) | f ∈ F }. For an ideal
I ⊂ K[u][X], we define RFR(I,M) = ⟨RFR(G,M)⟩ where G is the reduced
Gröbner basis of I. Moreover, for F = { F1, . . . , Fs } where RFR(Fi,M)’s are
defined, we define RFR(F ,M) = {RFR(F,M) | F ∈ F }.

Remark 4.1.7. According to Theorem 4.1.5, when we reconstruct g(u)
h(u) ∈ K(u)

(gcd(g, h) = 1) from f(u) ∈ K[u] by RFR, we need more than deg(g) + deg(h)
ideals ⟨u − ki⟩ (ki ∈ K and h(ki) ̸= 0). With a shortage of ideals, RFR can

return a rational function which is different from g(u)
h(u) . We say that the output

of RFR is stable if we have more than deg(g) + deg(h) ideals. However, we
can not decide deg(g) + deg(h) before computation in general. Therefore we
say that the output is pseudo stable if RFR(f(u),M) = RFR(f(u),M ′)
,where ⟨M⟩ = ∩ri=1⟨u − ki⟩, ⟨M ′⟩ = ∩si=1⟨u − ki⟩ (r < s). When the output
becomes pseudo stable, we regard the output as a candidate of the unique
rational function.

4.1. FUNDAMENTAL TOOLS AND DEFINITIONS 37

4.1.3 Luckiness

For constructing modular algorithms, we have to define several notions of lucki-
ness of moduli. The following definitions are extensions of [NY, Definition 2.1].

Definition 4.1.8. Let u /∈ X be a variable, F a subset of K(u)[X], G the
reduced Gröbner basis of ⟨F ⟩ and k ∈ K, then ⟨u− k⟩ is a prime ideal in K[u].

1) K[u](u−k) := { fg |f, g ∈ K[u], g(k) ̸= 0}.

2) ϕ(u−k) : K(u)→ K; f 7→ f(k). We denote projection maps K[u](u−k) → K
and K[u](u−k)[X]→ K[X] by the same symbol ϕ(u−k) such that f

g 7→
f(k)
g(k)

and
∑

α cαx
α 7→

∑
α ϕ(u−k)(cα)x

α (cα is the coefficient of cαx
α).

3) I(u−k)(F) := ⟨ϕ(u−k)(f)|f ∈ F ⟩, I0(u−k)(F) := ϕ(u−k)(⟨F ⟩∩K[u,X]), Gu−k

denotes a Gröbner basis of I(u−k)(F).

4) ⟨u − k⟩ is said to be weak permissible for F if F ⊂ K[u](u−k). ⟨u − k⟩
is said to be permissible for F if ⟨u − k⟩ is weak permissible for F and
ϕ(u−k)(LC(f)) ̸= 0 for all f ∈ F .

5) ⟨u−k⟩ is said to be compatible for F if ⟨u−k⟩ is weak permissible for F
and I0(u−k)(F) = I(u−k)(F). ⟨u− k⟩ is said to be strong compatible for

F if ⟨u−k⟩ is weak compatible for F and ϕ(u−k)(L(⟨F ⟩)∩K[u](u−k)[X]) =
L(I(u−k)(F)).

6) ⟨u− k⟩ is said to be lucky for F if ⟨u− k⟩ is weak permissible for F and
LM(G) = LM(Gu−k).

7) ⟨u−k⟩ is said to be effectively lucky for F if ⟨u−k⟩ is weak permissible
for F , ⟨u − k⟩ is permissible for G and ϕ(u−k)(G) is a Gröbner basis of
I(u−k)(F).

8) Let
√
⟨G⟩ = ∩mi=1Pi be the prime decomposition and Gi the reduced

Gröbner basis of Pi. ⟨u−k⟩ is said to be effectively minass lucky for G
if ⟨u−k⟩ is permissible for G and Gi (i = 1, . . . ,m),

√
I(u−k)(G) = ∩mi=1Qi

is the prime decomposition and ϕ(u−k)(Gi) is the reduced Gröbner basis
of Qi.

Note that Definition 4.1.8 1) to 7) are defined for computing Gröbner basis by
Noro-Yokoyama [NY]. Now, our goal is computing minimal associated primes.
The computation of minimal associated primes includes not only computations
of Gröbner basis but also computations of decomposition. Therefore we define
Definition 4.1.8 8) as luckiness for computing minimal associated primes. The
following lemma is fundamental.

Lemma 4.1.9. Let G be a Gröbner basis (respectively the reduced Gröbner
basis) of I ⊂ K(u)[X] (u /∈ X). If an ideal ⟨u − k⟩ is permissible for G,
then ϕ(u−k)(G) is a Gröbner basis (respectively the reduced Gröbner basis) of
I(u−k)(G).

38CHAPTER 4. AMODULAR ALGORITHM FOR LAPLAGNE’S ALGORITHM

Proof. For h ∈ I(u−k)(G), h is written as h =
∑

g∈G cgϕ(u−k)(g) where cg ∈
K[X]. Then h =

∑
g∈G cgg ∈ I ∩ K[u](u−k)[X] and ϕ(u−k)(h) = h. Let h0 ∈

I∩K[u](u−k)[X] such that ϕ(u−k)(h0) = h and LM(h0) is minimal. Since h0 ∈ I,
there exists g ∈ G such that LM(g) | LM(h0). Since ⟨u− k⟩ is permissible for

G, ϕ(u−k)(LC(g)) ̸= 0. Set h′ = h0 − LT (h0)
LT (g) g. Then LM(h′) < LM(h0).

If ϕ(u−k)(LC(h0)) = 0 then ϕ(u−k)(h
′) = ϕ(u−k)(h0) and it contradicts the

construction of h0. Thus ϕ(u−k)(LC(h0)) ̸= 0 and LM(h0) = LM(h). Therefore

LM(ϕ(u−k)(g)) | LM(h) and ϕ(u−k)(G) is a Gröbner basis of I(u−k)(G). If
G is the reduced Gröbner basis of I, then ϕ(u−k)(G) is a Gröbner basis of
I(u−k)(G) consisting of monic polynomials. The permissibility implies LM(G) =
LM(ϕ(u−k)(G)) and it is clear that ϕ(u−k)(G) is the reduced Gröbner basis.

4.2 New Algorithm

Algorithm 4 contains factorizations of polynomials and it may cause a problem
which does not occur in the case of Gröbner basis computation : a problem
caused by extraneous factors. For example, if we try to apply the modular
algorithm over Q, in many cases, a factorization over Fp produces more factors
than over Q and it is hard to reconstruct the correct result from the results of
modular computations. [IPS, Algorithm 3] is a modular algorithm for computing
minimal associated primes which contains factorizations of polynomials however
it performs reconstructions before factorizations and avoids factorizations over
Fp.

Now, Algorithm 5 regards some variables U ⊂ X as parameters. Therefore
we propose to apply Chinese Remainder Theorem over Q(U) for Algorithm 5.
We fix some u ∈ U and we reconstruct the result over Q(U) from the results
of modular computation over Q(U \ {u}) by using CRT and RFR. Namely, for
an ideal I = ⟨G⟩ ⊂ Q(U)[X \ U] where G is the reduced Gröbner basis of I,
we find ⟨u− z⟩ which is permissible for G and compute the minimal associated
primes of ⟨ϕ(u−k)(G)⟩. We gather these results for sufficiently many moduli for
reconstructing the results over Q(U). Applying ϕ(u−k) is equivalent to substi-
tuting k for u. Thus we can reduce one parameter. we repeat this procedure
recursively and finally we compute minimal associated primes in Q[X \U]. Then
we reconstruct parameters one by one recursively and obtain some members of
the minimal associated primes (Algorithm 17).

We describe how to apply modular algorithms for Algorithm 4 concretely.
Algorithm 17 is to compute a subset of minAss(⟨G⟩). For showing the termi-
nation and correctness of Algorithm 17 we give several propositions. In the
following let U = {u1, . . . , ul} be a set of parameters and K = Q(U) a rational
function field over Q.

Proposition 4.2.1. Let u /∈ X be a parameter, I ⊂ K(u)[X] an ideal and
G = {g1, . . . , gm} the reduced Gröbner basis of I. If k ∈ K, ⟨u−k⟩ is permissible

4.2. NEW ALGORITHM 39

Algorithm 17 modZeroMinAss

Input: G is a Gröbner basis of a zero-dimensional ideal in Q(U)[X],
U a set of parameters

Output: a subset P of minAss(⟨G⟩) = {P1, . . . , Pm} such that
P = { Pi | j ̸= i⇒ LM(Pj) ̸= LM(Pi) }

if U = ∅ then
MA← zeroMinAss(⟨G⟩)
MA← { the reduced Gröbner basis of I | I ∈MA }
MA←MA \ {Gj ∈MA | Gk(k ̸= j) exists s.t. LM(Gj) = LM(Gk) }
return P = {⟨Gi⟩|Gi ∈MA}

end if
M ← 1
Z ← ∅
P ← ∅, Q← ∅
u← an element of U
while do

z ← an integer not in Z s.t. ⟨u− z⟩ is effectively minass lucky for G
Z ← Z ∪ {z}
m← u− z
P ′ ← modZeroMinAss(ϕ(u−z)(G), U \ {u})
if P ′ = ∅ then

return ∅
end if
if P ̸= ∅ then

P ′ ← CRT(P, P ′, ⟨M⟩, ⟨m⟩)
end if
Q′ ← RFR(P ′,mM)
if Q = Q′ then

if for all Gi ∈ Q, ⟨Gi⟩ ⊃ ⟨G⟩ then
return P = {⟨Gi⟩|Gi ∈ Q}

end if
end if
M ← mM
P ← P ′, Q← Q′

end while

40CHAPTER 4. AMODULAR ALGORITHM FOR LAPLAGNE’S ALGORITHM

for G and I = I(u−k)(G) is a prime ideal in K[X], then I is a prime ideal in
K(u)[X].

Proof. From Lemma 4.1.9, ϕ(u−k)(G) is the reduced Gröbner basis of I. For
f, g ∈ K(u)[X] \ I, assume that fg ∈ I. We can regard f, g as G-reduced and
(u− k) ∤ f, g without loss of generality. Then ϕ(u−k)(f) ̸= 0 and ϕ(u−k)(g) ̸= 0.

On the other hand, ϕ(u−k)(fg) = ϕ(u−k)(f)ϕ(u−k)(g) ∈ I. Since I is a prime

ideal, ϕ(u−k)(f) ∈ I or ϕ(u−k)(g) ∈ I. Since ϕ(u−k)(f), ϕ(u−k)(g) are ϕ(u−k)(G)-
reduced, ϕ(u−k)(f) = 0 or ϕ(u−k)(g) = 0.

Proposition 4.2.2. Let P,Q be ideals inK(u)[X], G = {g1, . . . , gs} the reduced
Gröbner basis of P , H = {h1, . . . , hr} the reduced Gröbner basis of Q. If k ∈ K
and ⟨u−k⟩ is permissible for G,H and ⟨ϕ(u−k)(G)⟩ ̸⊂ ⟨ϕ(u−k)(H)⟩, then P ̸⊂ Q.

Proof. Take a polynomial f ∈ ⟨ϕ(u−k)(G)⟩ \ ⟨ϕ(u−k)(H)⟩. f can be written as

f =
∑s

i=1 ciϕ(u−k)(gi) (ci ∈ K). Set f =
∑s

i=1 cigi ∈ P . If P ⊂ Q, then f
can be written as f =

∑r
i=1 dihi (di ∈ K[u](u−k)) because H is the reduced

Gröbner basis of Q and ⟨u− k⟩ is permissible for H. Then f = ϕ(u−k)(f) =∑r
i=1 ϕ(u−k)(di)ϕ(u−k)(hi) ∈ ⟨ϕ(u−k)(H)⟩. It is a contradiction.

Theorem 4.2.3. Algorithm 17 terminates and outputs a subset of minAss(⟨G⟩).

Proof. If U = ∅ then the algorithm simply calls zeroMinAss and the output is
correct. We assume that the algorithm terminates and outputs a correct result
in the case #U = s. Suppose #U = s + 1. Let G1, . . . , Gm be the reduced
Gröbner bases of the minimal associated primes of ⟨G⟩. Set

{Gi1 , . . . , Gik } = {Gi | j ̸= i⇒ LM(Gj) ̸= LM(Gi) } .

Since ⟨u− z⟩ is effectively minass lucky,

minAss(⟨ϕ(u−z)(G)⟩) = {⟨ϕ(u−z)(G1)⟩, . . . , ⟨ϕ(u−z)(Gm)⟩}

and LM(Gi) = LM(ϕ(u−z)(Gi)) (i = 1, . . . ,m). From the assumption on #U =
s,

P ′ = {ϕ(u−z)(Gi1), . . . , ϕ(u−z)(Gik)}

and for each H ∈ P ′ there exists the unique element Gi such that LM(H) =
LM(Gi). Thus we can combine the correct modular images by CRT and Q will
be eventually the set {Gi1 , . . . , Gik } after sufficient interpolations. In this case
Q satisfies the termination condition and the termination of the algorithm is
guaranteed.
When the algorithm terminates, from Proposition 4.2.1, every Pi ∈ P is a prime
ideal in Q(U)[X] and Pi ⊃ ⟨G⟩. Then we have

√
Pi = Pi ⊃

√
⟨G⟩ = ∩mi=1⟨Gi⟩,

which implies that Pi ⊃ ⟨Gj⟩ for some j. Since ⟨G⟩ is zero-dimensional ⟨Gj⟩ is
maximal and we have Pi = ⟨Gj⟩. Thus every Pi ∈ P is a member of minAss(⟨G⟩)
and the result is correct in the case #U = s+ 1.

4.2. NEW ALGORITHM 41

Remark 4.2.4. In Algorithm 17, the recursive application of Proposition 4.2.2
implies that the output P has no redundant components.

Remark 4.2.5. In Algorithm 17, depending on the input, some prime com-
ponents of P ′ can have the same leading monomial set. In such a case, we
can not determine which pair of ideals we should interpolate. Therefore we do
not perform interpolations for such components. If all of the components do
not have unique leading monomial set unfortunately, we utilize Algorithm 4 for
computing the minimal associated primes of the zero-dimensional ideal.

Remark 4.2.6. In Algorithm 17, we cannot decide whether a modulus ⟨u− z⟩
is effectively minass lucky during the computation. If we choose a modulus
which is permissible for G, we can obtain a subset of minAss(⟨ϕ(u−z)(G)⟩) by
calling Algorithm 17 but the result may not be {ϕ(u−z)(Gi1), . . . , ϕ(u−z)(Gik)}.
In this case the result is a noise for our modular algorithm and we have to
add some additional criteria or preprocessing to avoid bad moduli as much as
possible. However, even if we do not assume the effective minass luckiness of
moduli, if the algorithm terminates then the result is a subset of minAss(⟨G⟩).
This is ensured by the last part of the proof of Theorem 4.2.3.

Utilizing Algorithm 17 instead of Algorithm 4 in Algorithm 5, we can com-
pute minAss(I) for I ⊂ Q[X] (Algorithm 18).

Algorithm 18 modLMinAss

Input: an ideal I ⊂ Q[X]
Output: minAss(I)
Int ← ⟨1⟩, MA ← ∅
while Int \

√
I ̸= ∅ do

choose g ∈ Int \
√
I

U ← a maximal independent set of I : g∞

G← a Gröbner basis of I : g∞ in Q(U)[X \ U]
P ← modZeroMinAss(G,U)
if P = ∅ then

P ← zeroMinAss(⟨G⟩)
end if
PG← {Pi ∩Q[X] | Pi ∈ P}
MA ← MA∪PG, Int ← Int ∩

∩
P∈PG

P

end while
return MA

Theorem 4.2.7. Algorithm 18 works correctly.

Proof. (correctness) Since Algorithm 17 outputs a subset of minAss(I : g∞) in
Q(U)[X \ U], PG is a subset of minAss(I : g∞) in Q[X] by Proposition 2.2.4.
Therefore MA is always a subset of minAss(I) by Lemma 2.2.1 and Int ⊃

√
I.

42CHAPTER 4. AMODULAR ALGORITHM FOR LAPLAGNE’S ALGORITHM

When the termination condition is satisfied, Int =
√
I and MA = minAss(I).

(termination) Let MA ⊂ minAss(I) and Int =
∩

P∈MA

P (if MA = ∅, we define

Int = ⟨1⟩). Suppose Int ̸=
√
I, g ∈ Int \

√
I,
√
I : g∞ =

m∩
i=1

Pi is the prime

decomposition and PG is a subset of minAss(I : g∞). For all Pi ∈ PG, g /∈ Pi

and Pi ∈ minAss(I) by Lemma 2.2.1. On the other hand, since g ∈ Int, for
all Qi ∈ MA, g ∈ Qi. Therefore for all Pi ∈ PG, Pi /∈ MA. In other words,
Algorithm 18 obtains at least one new components in every loop. Since the
number of components of minAss(I) is finite, Algorithm 18 terminates in finite
steps.

4.2.1 Existence of minass lucky moduli

In Algorithm 17 and Algorithm 18, we suppose all ⟨u− z⟩ are effectively minass
lucky. However, effective minass luckiness is defined depending on the minimal
associated primes of the given ideal. In general, we can not decide whether
an ideal is effectively minass lucky or not while the computation. Therefore
we show that there are sufficiently many effectively minass lucky ideals and
we can obtain them with a high probability by random choice. Let G be the
reduced Gröbner basis of a zero-dimensional ideal I ⊂ K(u)[X],

√
⟨G⟩ = ∩mi=1Pi

the prime decomposition, Gi the reduced Gröbner basis of Pi. If ⟨u − k⟩ is
permissible for G and Gi’s then ϕ(u−k)(G) and ϕ(u−k)(Gi)’s are Gröbner basis
of ⟨ϕ(u−k)(G)⟩ and ⟨ϕ(u−k)(Gi)⟩’s respectively, and LM(G) = LM(ϕ(u−k)(G))
and LM(Gi) = LM(ϕ(u−k)(Gi)) imply ⟨ϕ(u−k)(G)⟩ and ⟨ϕ(u−k)(Gi)⟩’s are zero-
dimensional. For simplicity, we assume that I is in general position with respect
to xn. This implies that each ⟨Gi⟩ is in general position with respect to xn. If the
monomial order is the lexicographical order, then Gi is a shape base, i.e. Gi =
⟨x1 − c1(u), . . . , xn−1 − cn−1(u), gi(xn)⟩, c1(u), . . . , cn−1(u), gi(xn) ∈ K(u)[xn]
and gi(xn) is irreducible over K(u) because ⟨Gi⟩ is zero-dimensional and prime.
Set

NP = {k ∈ K | ⟨u− k⟩ is not permissible for G or some Gi}.
Then NP is a finite set. A modulus ⟨u− k⟩ is effectively minass lucky for G if
the following four conditions hold.

1) k /∈ NP .

2)
√

I(u−k)(G) = I(u−k)(G1) ∩ · · · ∩ I(u−k)(Gm).

3) If i ̸= j, then I(u−k)(Gi) ̸= I(u−k)(Gj).

4) Each I(u−k)(Gi) is prime.

First of all we consider the condition 2).

Lemma 4.2.8. Let G ⊂ K(u)[X] be the reduced Gröbner basis of a zero-
dimensional ideal ⟨G⟩ and H ⊂ K(u)[X] the reduced Gröbner basis of

√
⟨G⟩.

Except for a finite number of k ∈ K \NP ,
√

I(u−k)(G) = I(u−k)(H).

4.2. NEW ALGORITHM 43

Proof. If ⟨u− k⟩ is permissible for G, H, then G ⊂ ⟨H⟩ implies ϕ(u−k)(G) ⊂
I(u−k)(H) and H ⊂

√
G implies ϕ(u−k)(H) ⊂

√
I(u−k)(G). Thus we have√

I(u−k)(H) =
√
I(u−k)(G). Since ⟨H⟩ is zero-dimensional and radical, for each

xi ∈ X there exists a univariate square-free polynomial fi(xi) ∈ ⟨H⟩. Then
ri(u) = resultantxi(fi, f

′
i) ̸= 0. If ⟨u− k⟩ is permissible for fi(xi) and ri(k) ̸= 0

for all i, then ϕ(u−k)(fi) ∈ I(u−k)(H) is square-free. Then I(u−k)(H) is radical

and in this case
√
I(u−k)(H) = I(u−k)(H) =

√
I(u−k)(G). Since the number of

k /∈ NP such that k is not permissible for fi(xi)’s, or ri(k) = 0 for some i is
finite, the assertion is proved.

Proposition 4.2.9. Except for a finite number of k ∈ K \NP ,
√

I(u−k)(G) =
I(u−k)(G1) ∩ · · · ∩ I(u−k)(Gm).

Proof. Set

Ĩ = ⟨1− (t1 + · · ·+ tm), t1G1, . . . , tmGm⟩ ⊂ K(u)[t1, . . . , tm, X].

If H̃ is the reduced Gröbner basis of Ĩ with respect to an elimination ordering
such that {t1, . . . , tm} >> X, then H = H̃ ∩ K(u)[X] is the reduced Gröbner
basis of

√
⟨G⟩ = ⟨G1⟩ ∩ · · · ∩ ⟨Gm⟩. If ⟨u− k⟩ is permissible for all intermediate

polynomials appearing during the execution of Buchberger’s algorithm for com-
puting H̃, then the remainder computations in the execution can be mapped by
ϕ(u−k). This implies that the reduced Gröbner basis of

⟨1− (t1 + · · ·+ tm), t1ϕ(u−k)(G1), . . . , tmϕ(u−k)(Gm)⟩

with respect to the same elimination ordering is ϕ(u−k)(H̃). Since ⟨u− k⟩
is permissible for H̃, ϕ(u−k)(H̃) ∩ K[X] = ϕ(u−k)(H) and ϕ(u−k)(H) is the
reduced Gröbner basis of I(u−k)(G1) ∩ · · · ∩ I(u−k)(Gm). By Lemma 4.2.8√
I(u−k)(G) = I(u−k)(H) except for a finite number of k ∈ K. Therefore√
I(u−k)(G) = I(u−k)(H) = I(u−k)(G1) ∩ · · · ∩ I(u−k)(Gm) except for a finite

number of k ∈ K \NP.

Next we consider the condition 3).

Proposition 4.2.10. Except for a finite number of k ∈ K \ NP , I(u−k)(Gi)’s
are distinct.

Proof. If i ̸= j then ⟨Gi⟩ and ⟨Gj⟩ are comaximal and 1 ∈ ⟨Gi⟩ + ⟨Gj⟩. Thus
if ⟨u− k⟩ is permissible for Gi, Gj and all the coefficients in the generating
relation of 1 by Gi and Gj , then 1 ∈ I(u−k)(Gi) + I(u−k)(Gj), which implies
I(u−k)(Gi) ̸= I(u−k)(Gj). Thus I(u−k)(Gi)’s are distinct except for a finite
number of k ∈ K \NP .

Finally we consider the condition 4).

44CHAPTER 4. AMODULAR ALGORITHM FOR LAPLAGNE’S ALGORITHM

Proposition 4.2.11. ([Z, Proposition 132, Proposition 133]) Let F (X1, . . . , Xn, Y1, . . . , Ym)
be an irreducible polynomial over Q and let R(N) denote the number of integer
xi with |xi| < N such that F (x1, . . . , xn, Y1, . . . , Ym) is reducible. Then

R(N) < cNn−1/2 logN

where c depends only on the degree of F .

Proposition 4.2.12. Set

Ni = {k ∈ Z | |k| < N, k /∈ NP, I(u−k)(Gi) is not prime}.

Then #Ni ≤ cN1/2 logN for a constant c.

Proof. If ⟨u− k⟩ is permissible for Gi, then ϕ(u−k)(Gi) is the reduced Gröbner
basis of I(u−k)(Gi). I(u−k)(Gi) is prime if and only if ϕ(u−k)(gi(xn)) is irre-
ducible. gi(xn) can be written as gi(xn) = g̃(u, u1, . . . , ul, xn)/d(u, u1, . . . , ul)
with g̃ ∈ Q[u, u1, . . . , ul, xn], with d ∈ Q[u, u1, . . . , ul] and g̃ is irreducible overQ.
Then the irreducibility of ϕ(u−k)(gi(xn)) is equivalent to that of g̃(k, u1, . . . , ul, xn)

and Proposition 4.2.11 with the case n = 1 implies #Ni ≤ cN1/2 logN for a
constant c.

Theorem 4.2.13. Set

NEML = {k ∈ Z | |k| < N, k /∈ NP, ⟨u− k⟩ is not effectively minass lucky for G}.

Then there exist constants c1, c2 such that #(NP∪NEML) ≤ c1+c2N
1/2 logN.

Proof. Set

BAD2 = {k ∈ K \NP |
√
I(u−k)(G) ̸= I(u−k)(G1) ∩ · · · ∩ I(u−k)(Gm)},

BAD3 = {k ∈ K \NP | I(u−k)(Gi) = I(u−k)(Gj) for some i, j(i ̸= j)}.

Then BAD2 and BAD3 are finite sets by Proposition 4.2.9 and Proposition
4.2.10 respectively. Then Proposition 4.2.12 implies #(NP∪NEML) ≤ (#NP+
#BAD2 +#BAD3) + (mc)N1/2 logN.

Corollary 4.2.14. If k is randomly chosen from {k ∈ Z | |k| < N}, then the
probability that ⟨u− k⟩ is effectively minass lucky tends to 1 as N →∞.

4.3 Experiments and Timing data

We measure the timings for computing minimal associated primes by our al-
gorithm and Laplagne’s algorithm. Laplagne’s algorithm is implemented as a
function minAssGTZ in Singular [DGPS]. In this paper, the unit of timing is a
second and all results have been rounded to no more than three significant dig-
its. All of our algorithms were implemented in Singular [DGPS] and measured

4.3. EXPERIMENTS AND TIMING DATA 45

on a 64-bit Linux machine with Intel Xeon E5-2650 v2, 2.60GHz and 256GB
memory.

In Subsection 4.2.1, we have shown that there are sufficiently many effectively
minass lucky moduli. However, when we choose an unlucky modulus there
is a possibility that our algorithm does not terminate. Therefore we should
discard unlucky modular images during computations. We adopt following three
strategies to terminate Algorithm 17 with a high probability.

Strategy 4.3.1. 1) Choose z ∈ Z \Z such that ⟨u− z⟩ is permissible for G.

2) For zi’s satisfying 1), compute modZeroMinAss(I(u−zi)(G)), classify
them by leading monomial sets of their components and perform CRT
for the class of largest cardinality.

3) If Q is pseudo stable and there are some components which do not include
⟨G⟩, then we discard them and return components which include ⟨G⟩.

As explained in Remark 4.2.6, when Algorithm 17 with Strategy 4.3.1 termi-
nates, the output is a set of minimal associated primes of the input ideal ⟨G⟩
even if we choose some moduli which are not effectively minass lucky for G
in the computational process. If Algorithm 17 with Strategy 4.3.1 terminates,
then Algorithm 18 terminates and outputs the minimal associated primes of the
input ideal.

Furthermore, there are three improvements for Algorithm 18 which are not
written in the pseudo code for the sake of simplicity. The first one is record-
ing the number of moduli for reconstructing. For a parameter u and an in-
teger z1 ∈ Z, the number of moduli which makes modMinAss(ϕ(u−z1)(G))
pseudo stable becomes a hint to decide how many moduli we should gather for
modMinAss(ϕ(u−zi)(G))’s where zi’s are distinct from z1. The second one is
utilizing modular computations for RFR. We do not need the exact value of
RFR before the output become pseudo stable. Therefore we perform RFR over
Fp where p is a prime number. We perform RFR over the original coefficient
field only when we confirm pseudo stability of RFR over Fp. The last one is the
preprocessing Algorithm 12. We name Algorithm 18 with these improvements
and Strategy 4.3.1 Algorithm 18’.

We construct examples of ideals from ideals given in [DGP, 3 Examples].
We classify ideals in [DGP, 3 Examples] by their number of variables. For
Ii ∈ Q[v1, . . . , vn] and Ij ∈ Q[u1, . . . un], we set a map

φu,v : Q[u1, . . . un]→ Q[v1, . . . , vn];um 7→ vm(1 ≤ m ≤ n)

and denote that
Ii∩j = Ii ∩ φu,v(Ij)

In addition, we utilize the factorizing Gröbner basis algorithm for some examples
in order to construct more examples. Note that the factorizing Gröbner basis
algorithm is an intermediate decomposition of minAssGTZ and returns a list of
ideals and the radical of the intersection of them coincides with the radical of the

46CHAPTER 4. AMODULAR ALGORITHM FOR LAPLAGNE’S ALGORITHM

given ideal. For examples which can not be decomposed in four hours by both
of algorithms, we decompose them by the factorizing Gröbner basis algorithm
and treat each component as a new example.

For these examples, we measure the timings for computing minimal associ-
ated primes by Algorithm 18’ and Laplagne’s algorithm (Table 4.1). In addition,
we show runtimes of its components (Table 4.2). We omit examples which are
decomposed in a few seconds by Laplagne’s algorithm or do not terminate in
four hours by both of algorithms and zero-dimensional. For zero-dimensional
ideals, Algorithm 18’ and Laplagne’s algorithm simply call Algorithm 4.

Remark 4.3.2. As a characteristic of modular algorithms, if there are no swells
of coefficients in the original computations, then computations of modular algo-
rithms have little advantages over original one. Moreover, modular algorithms
iterate modular computations for some moduli and reconstruct their results.
They become extra times of computations.

Table 4.1: Timing data of computing minimal associated primes of examples

I3∩8 I18∩31 I18∩33 I31∩33 I7∩9 I7∩12 I5∩23 F5∩23[24]
Variables 3 4 6 8

Algorithm 18’ 1.2 34.4 28.4 34.9 54.9 240 5880 15.3
Laplagne’s > 4h > 4h > 4h > 4h 284 87.1 12100 11300

I1∩4 F1∩4[1] F1∩4[5] F1∩4[7] F1∩4[8]
Variables 9

Algorithm 18’ 812 10.0 5140 11.3 7.4
Laplagne’s > 4h 737 > 4h > 4h 14

Fi∩j [k] denotes the k-th component of facstd(Ii∩j).

4.4 Concluding Remarks

Our algorithm is fast for some class of ideals and will be a choice when general-
purpose algorithms can not decompose ideals in practical time. In addition,
our algorithm is suitable for parallelizations. In this paper, we have not yet
implemented the parallel version of our algorithm and we expect further speed-
up with parallelizations. It is a future project.

In Subsection 4.2.1, we have shown that there are sufficiently many effec-
tively minass lucky moduli. However there are infinite moduli which are not
effectively minass lucky in general. On the other hand, in the case of computing
Gröbner basis by modular algorithms over Zp, it is shown that the number of
unlucky primes is finite [NY, Section 3] and we can construct algorithms which
terminate in finite steps even if we choose some unlucky primes in the compu-
tational process [NY, Section 5]. In order to improve our algorithm, we need
more researches of luckiness and moduli whose modular images of irreducible

4.4. CONCLUDING REMARKS 47

Table 4.2: Details of Algorithm 18’

I3∩8 I18∩31 I18∩33 I31∩33 I7∩9 I7∩12 I5∩23 F5∩23[24]
Variables 3 4 6 8
Total 1.2 34.4 28.4 34.9 54.9 240 5880 15.3

simplification 0.02 0.02 0.03 0.04 0.07 2.64 0.07 0.02

radical membership

&saturation
0.82 33.6 27.4 33.7 40.4 179 5860 9.05

modular 0.16 0.39 0.77 0.79 10.6 42 7.85 4.05
zeroMinAss 0.08 0.08 0.09 0 0.09 0.18 4.41 0.06
intersection 0.09 0.17 0.01 0.21 3.8 16.3 13.2 1.7

I1∩4 F1∩4[1] F1∩4[5] F1∩4[7] F1∩4[8]
Variables 9
Total 812 10.0 5141 11.3 7.41

simplification 0.3 0.02 0.03 0.04 0.02

radical membership

&saturation
640 0.2 11.5 30.1 1.87

modular 135 8.03 5.89 6.45 3.56
zeroMinAss 0 0.02 0 0.01 0.01
intersection 35, 8 1.34 1.16 0.97 0.12

polynomials keeps their irreducibility. It will be closely related with Hilbert’s
irreducibility theorem and its applications.

Appendix

We set
V (s, t) := (xij)1≤i≤s

1≤j≤t
.

Definition 1. (adjacent minor ideal)([S02, CHAPTER 5.3])
s× t two-degree adjacent minor ideal is defined by

A2,s,t := A(s, t) := ⟨{detB|B is an adjacent 2× 2-submatrix of V (s, t)}⟩.

Example 1. A2,3,4 = A(3, 4) = ⟨−x12x21+x11x22,−x13x22+x12x23,−x14x23+
x13x24,−x22x31 + x21x32,−x23x32 + x22x33,−x24x33 + x23x34⟩.

Definition 2. (permanental ideal)([S02, CHAPTER 5.4])
The permanent of 2× 2-matrix is the sum over its diagonal product i.e.

per

(
a b
c d

)
:= ad+ bc.

Then s× t two-degree permanental ideal is defined by

Per2,s,t := P (s, t) := ⟨{per(Q)|Q is a 2× 2-submatrix of V (s, t)}⟩

Example 2. Per2,2,3 = P (2, 3) = ⟨x11x21 + x12x21, x11x23 + x13x21, x12x23 +
x13x22⟩.

Definition 3. (birth-and-death ideal)([ESE, Section 5])
For a pair of integers (s, t), consider a two-dimensional integer lattice E such
that

E := {0, . . . , s− 1} × {0, . . . , t− 1}.

Variables are

{Ri,j |0 ≤ i < s, 0 ≤ j ≤ t} ∪ {Li,j |0 < i ≤ s, 0 ≤ j ≤ t}∪

{Di,j |0 ≤ i ≤ s, 0 < j ≤ t} ∪ {Ui,j |0 ≤ i ≤ s, 0 ≤ j < t}.

For an unit square G whose vertices are {(u, v), (u+1, v), (u, v+1), (u+1, v+1)}
induces an ideal

IG := ⟨Uu,vRu,v+1 −Ru,vUu+1,v, Du,v+1Ru,v −Ru,v+1Du+1,v+1,

49

50CHAPTER 4. AMODULAR ALGORITHM FOR LAPLAGNE’S ALGORITHM

Lu+1,v+1Du,v+1 −Du+1,v+1Lu+1,v, Lu+1,vUu,v − Uu+1,vLu+1,v+1⟩

generated by 4 binomials which mean the equivalence between two paths from
each vertex to the opposite one. We define

IE := I(s,t) :=
∑

G: unit square in E

IG.

Example 3.

I(1,1) := ⟨U0,0R0,1−R0,0U1,0, D0,1R0,0−R0,1D1,1, L1,1D1,0−D1,1L1,0, L1,0U1,1−U1,0L1,1⟩.

I(2,3) is induced from a lattice which has 6 unit squares. Therefore I(2,3) is
generated by 24 binomials.

Bibliography

[A16] Aoyama, T.; A Singular package for computing minimal as-
sociated primes of binomial ideals. (2016). http://www.math.kobe-
u.ac.jp/HOME/taoyama/singular

[A17] Aoyama, T.; An Algorithm for Computing Minimal Associated Primes of
Binomial Ideals without Producing Redundant Components. Proceedings
of the 2017 ACM on International Symposium on Symbolic and Algebraic
Computation. (2017). 21–27.

[AM] Atiyah, M, F., MacDonald, I, G.: Introduction to commutative algebra.
Vol. 2. Reading. Addison-Wesley, (1969).

[Ar] Arnold, E, A; Modular algorithms for computing Gröbner bases. Journal
of Symbolic Computation 35. (2000) 403–419.

[DGP] Decker, W., Greuel, G,-M., Pfister.; Primary decomposition: Algorithms
and comparisons. Algorithmic algebra and number theory, Springer Berlin,
Heidelberg, 187-220, (1999).

[DGPS] Decker, W., Greuel, G,-M., Pfister, G., Schönemann, H.: Singu-
lar 4-1-0 — A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de (2016).

[ES] Eisenbud, D., Sturmfels, B.; Binomial ideals. Duke Mathematical Journal
84, 1 (1994) 1-45.

[ESE] Evans, S, N. Sturmfels, B. Euler, C.; Commuting birth-and-death pro-
cess. the annals of Applied Probability 20,1 (2010), 238-266.

[GG] Gathen, J, V, Z,. Gerhard, J..: Modern Computer Algebra. Cambridge
University Press New York, NY, USA. (2003).

[GP] Greuel, G,-M., Pfister, G.: A singular introduction to commutative alge-
bra. (2008).

[IPS] Idrees, N., Pfister, G., Steidel, S.; Parallelization of modular algorithms.
Journal of Symbolic Computation 46 (2011) 672-684

51

52 BIBLIOGRAPHY

[K] Kahle, T.; Decompositions of binomial ideals. Annals of the institute of
statistical mathematics 62, 4 (2010), 727-745.

[KN] Kawazoe, T., Noro, M.: Algorithms for computing a primary ideal decom-
position without producing intermediate redundant components. Journal of
Symbolic Computation 46.10 (2011) 1158–1172

[L1] Laplagne, S.: An algorithm for the computation of the radical of an ideal.
Proceedings of the 2006 international symposium on Symbolic and algebraic
computation. ACM, (2006)

[L2] Laplagne, S.: Computation of the minimal associated primes. Challenges
in Symbolic Computation Software 06271 (2006)

[M2] Grayson,D,R,.Stillman,M,E.; Macaulay2 1.8.2, a soft-
ware system for research in algebraic geometry.
http://www.math.uiuc.edu/Macaulay2/ (2014).

[NY] Noro, M., Yokoyama, K.; Usage of Modular Techniques for Efficient Com-
putation of Ideal Operations. To appear in Mathematics in Computer Sci-
ence, DOI 10.1007/s11786-017-0325-1.

[P] Pauer, F.; On lucky ideals for Gröbner basis computations. Journal of
Symbolic Computation 14 (1992) 471–482

[S96] Sturmfels, B.; Gröbner bases and convex polytopes. American Mathemat-
ical Soc. (1996).

[S02] Sturmfels, B.; Solving systems of polynomial equations. American Math-
ematical Soc. (2002).

[Z] R, Zippel.: Effective Polynomial Computation. Springer US. (1993).

