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CHAPTER 1

Introduction

The study of singular surfaces from differential geometric viewpoints is developing
with each passing day. In particular, studies of geometry of wave front are remarkable
([10, 13, 17, 27, 28, 29, 32, 31, 37, 46, 44, 45]). Wave fronts are due to the
following Huygens’ principle: Every point on a wave front may be considered a source
of secondary spherical wavelets which spread out in the forward direction at the
speed of light. The new wave front is the tangential surface to all of these secondary
wavelets. V. I. Arnol’d connected singularities of wave fronts and singularities of C*°
functions and classified generic singularities of wave fronts ([1, 2]).

On the other hand, for regular surfaces in the Euclidean 3-space R?, their parallel
surfaces and focal surfaces might have singularities in general. Since parallel surfaces
of regular surfaces are wave fronts, types of singularities appearing on parallel surfaces
are related to Legendrian singularities. Moreover, types of singularities of focal
surfaces are related to Lagrangian singularities. In differential geometric viewpoints,
these singularities can be characterized by behavior of principal curvatures. In fact, I.
R. Porteous studied distance squared functions on surfaces and showed relationships
between singularities of focal surfaces and geometric properties of initial regular
surfaces. In addition, he found new geometric properties of surfaces called ridge
points which correspond to cuspidal edges on focal surfaces ([41, 42], see also [4,
11, 12, 20]). In addition, R. Morris investigated behavior of Gaussian curvatures of
focal surfaces and showed relationship between parabolic points on focal surfaces and
geometric properties called sub-parabolic points on initial surfaces ([35]). Both ridge
points and sub-parabolic points relate to behavior of principal curvatures. Hence we
might obtain new geometric properties of wave fronts investigating singularities of
parallel surfaces and focal surfaces.

In this thesis, we consider parallel surfaces and focal surfaces of wave fronts.
As in the case of regular surfaces, we might need to consider behavior of principal
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curvatures for showing relations between types of singularities appearing on parallel
surfaces or focal surfaces and geometric properties of initial wave fronts. However,
for wave fronts, the following facts are known ([46]):
e the Gaussian curvatures of wave fronts are generically unbounded near singular
points,
e the mean curvatures of wave fronts are unbounded near singular points.
Thus at least one principal curvature of a wave front might be unbounded near
a singular point. In Chapter 3, we show that one principal curvature of a wave
front with non-degenerate singular points can be extended as a bounded function
on a neighborhood of such a singular point (Theorem 3.6). Moreover, we give a
criterion for which principal curvature becomes a bounded even at a non-degenerate
singular point by using geometric invariants of fronts obtained in [32]. For a bounded
principal curvature, we can define a principal vector with respect to it. By using a
bounded principal curvature and relative principal vector, we introduce a notion of a
ridge point for wave fronts. Moreover, we extend the notion of a line of curvature and
give a condition that singular loci become lines of curvature in terms of geometric
invariants (Proposition 3.8). Further, for cuspidal edges, we can define principal
vector with respect to unbounded principal curvature by some modifications. Using
this principal vector, we define a sub-parabolic point for a cuspidal edge, and we give
relations among ridge points, sub-parabolic points and known geometric invariants
of cuspidal edges (Proposition 3.11).

In Chapter 4, we consider parallel surfaces of wave fronts. It is known that
parallel surfaces are also wave fronts. Thus they have singularities in general. We
characterize types of singularities appearing on parallel surfaces by ridge points and
behavior of a bounded principal curvature (Theorem 4.2). In addition, we consider
constant principal curvature (CPC) lines near cuspidal edges. It is known that CPC
lines correspond to the set of singular points of parallel surfaces ([11, 12]). Using
parallel surfaces, we define special points (landmark in the sense of [42]) on cuspidal
edge as cusps of CPC lines, which seems not to have appeared in the literature
(Section 2).

In Chapter 5, we study focal surfaces of wave fronts. We show relations between
singularities of a focal surface with respect to the bounded principal curvature and
geometric properties of an original front (Theorem 5.6). On the other hand, we
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consider geometric properties of the another focal surface. This contains the image
of the set of singular points of the original front as a curve on it. If the original front
has a cuspidal edge, then the focal surface is regular near a cuspidal edge (Proposition
5.7). Thus we can consider the Gaussian curvature and the mean curvature of the
focal surface corresponding to the cuspidal edge. We give explicit representations
of the Gaussian and the mean curvature of the focal surfaces along the cuspidal
edge by using geometric invariants (Theorem 5.8). As an application, we consider a
focal surface of the Beltrami’s pseudosphere which is a negative constant Gaussian
curvature surface with singularities. It is known that the screw motion of Beltrami’s
pseudosphere makes the Dini’s surface. We also investigate a focal surface of the
screw motion of Beltrami’s pseudosphere, namely, Dini’s surface and give a geometric
interpretation of the screw motion of the focal surface (Theorem 5.18).

In Chapter 6, we investigate extended distance squared functions on wave fronts
as an application of singularity theory of functions. That function measures contact
type between a wave front and a certain sphere. For the case of generic regular
surfaces, singularities of extended distance squared functions correspond to types of
singularities of parallel surfaces (cf. [11, Theorem 3.4]). However, for wave fronts,
the same statement does not hold, in fact, different kinds of singularities (D-type)
will appear (Theorems 6.3 and 6.4).

Acknowledgement. The author would like to express his sincere gratitude to
his supervisor Professor Kentaro Saji for his kindness and constant encouragements.
The author could not finish writing this thesis without his support and invaluable
advices. He also thanks Professor Wayne Rossman for teaching him a lot of knowl-
edge on differential geometry carefully. He is grateful to all people in Department of
Mathematics, Kobe University for their supports.






CHAPTER 2

Wave fronts in the Euclidean 3-space

1. Wave fronts

In this section, we recall the notion of wave fronts in the Euclidean 3-space R3.
For more details, see [2, 20, 27, 46].

Let f : X — R3 be a C* map, where X C R? is a domain with a local coordinate
system (u,v). We call this map f a frontal if there exists a unit vector field v : ¥ — S?
along f such that the orthogonality condition

(df(Xy),v(q)) =0
holds for any point ¢ € ¥ and any tangent vector X, € T,% at g, where S? denotes

the unit sphere and (,) means the canonical inner product of R*. The unit vector
field v is called a unit normal vector or the Gauss map of f. In addition, a frontal
f is called a wave front or a front, for short, if the pair

Li=(fv): S —>TIR~R x5*

gives an immersion, where T} R? is the unit tangent bundle over R? equipped with
the canonical contact structure. This map Ly is called the Legendrian immersion
of f. Thus a front can be considered as the image of a projection of a Legendrian
immersion. Needless to say, the set of immersions from R? to R? is a subset of the
set of fronts or frontals.

We fix a frontal f. A point p € ¥ is said to be a singular point of f if rank df, < 2
holds. Let S(f) denote the set of singular point of f. We now define a function
A:X— Rby

(2'1) /\(u7 U) = det(fwfvay)(uav)u

where f, = 0f/0u and f, = 0f/0v. This function A as in (2.1) is called the signed

area density function of f. By the definitions of singular points and the signed area

density function, the relation S(f) = A7!(0) holds. Let us take a singular point
5
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p € S(f). Then a singular point p is non-degenerate if the exterior derivative of the
signed area density function dA does not vanish at p, that is, (A,(p), \o(p)) # (0,0)
holds.

For a non-degenerate singular point p, there exist a neighborhood V' of p and
a C* regular curve v : (—¢,¢) 3 t — 7(t) € V(C X) through p = ~(0) such that
Img(y) = V N S(f), where ¢ > 0 is a sufficiently small real number and Img(~)
means the image of v. We remark that non-degenerate singular points are (co)rank
one singular points of frontal. Thus there exists a never-vanishing vector field 1 on
V' N S(f) such that for any ¢ € V N S(f), df,(n,) = 0 holds. We call the curve ,
the vector field n and 4 = f oy a singular curve, a null vector field and the singular
locus, respectively. Moreover, the directions of v = d~y/dt and n a singular direction
and a null direction, respectively.

A non-degenerate singular point p is classified into the following cases. p = v(0)
is a non-degenerate singular point of the first kind if det(+’,7)(0) # 0. Otherwise, p
is of the second kind (cf. [32]). In addition, we call a non-degenerate singular point
of the second kind admissible if the singular curve consists of points of the first kind
except at p. Otherwise, we call p non-admissible.

DEFINITION 2.1. Let f and g : (R? 0) — (R3,0) be two C* map-germs. Then
f and g are A-equivalent if there exist diffeomorphism-germs 6 : (R? 0) — (R?,0)
on the source and O : (R?,0) — (R3,0) on the target such that © o f = g o 6 holds.

DEFINITION 2.2. Let f : (R?0) — (R?0) be a C* map-germ at the origin.

Then

e fat0is cuspidal edge if f is A-equivalent to the germ (u,v) — (u, v?,v?) at the
origin,

e fat0is swallowtail if f is A-equivalent to the germ (u,v) — (u, 4v3+2uv, 3v? +
uv?) at the origin,

e fat0is cuspidal beaks if f is A-equivalent to the germ (u, v) — (u, v*

—u?v, 3vt—
2u?v?) at the origin,

e fat0is cuspidal lips if f is A-equivalent to the germ (u,v) — (u, v®+u?v, 3v*+
2u*v?) at the origin,

e [ at0is cuspidal butterfly if f is A-equivalent to the germ (u,v) — (u,5v* +
2uv, 4v° + uv?) at the origin,
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e fat0is D singularity if f is A-equivalent to the germ (u,v) — (2uv, +u® +
3v?, £2u?v + 20?) at the origin.

FI1GURE 2.1. From top left to bottom right: cuspidal edge, swallowtail,

cuspidal butterfly, cuspidal lips, cuspidal beaks, D] singularity and
D singularity.

REMARK 2.3. Cuspidal edges and swallowtails are generic singularities of wave
fronts in R3. Moreover, cuspidal lips, cuspidal beaks, cuspidal butterflies and Df
singularities are singularities of the bifurcations in generic one parameter families
of fronts in R?® (see [2, 20, 52]). On the other hand, cuspidal edges, swallowtails
and cuspidal butterflies are non-degenerate singularities of fronts, and cuspidal beaks
and cuspidal lips are degenerate corank one singularities, and D7 singularities are
degenerate corank two singularities of fronts (see Figure 2.1).

REMARK 2.4. Cuspidal edges are only non-degenerate singular points of the first
kind of fronts, and swallowtails and cuspidal butterflies are non-degenerate singular
points of the second kind of fronts. For a frontal but not a front, a particular
example of non-degenerate singular point of the first kind is a cuspidal cross-cap
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which is A-equivalent to the map-germ (u,v) — (u, v?, uv®) at the origin (see Figure

2.2). Criteria for cuspidal cross-caps are given in [10] and geometric properties of
cuspidal cross-caps are studied in [38].

F1cURE 2.2. Cuspidal cross-cap.

It is know that the following criteria for cuspidal edges and swallowtails.

Fact 2.5 ([27, Proposition 1.3]). Let f be a front and p a singular point, with
signed area density function X\ and null vector field n in a neighborhood of p. Then
(1) f atp is a cuspidal edge if and only if n\(p) # 0,

(2) f atp is a swallowtail if and only if nA(p) = 0, nMmA(p) # 0 and dX\(p) # 0.
Here n\ means the directional derivative of X\ in the direction 0.

We also have the following criteria for cuspidal beaks, cuspidal lips and cuspidal
butterflies.

Fact 2.6 ([22, Theorem A.1],[21, Theorem 8.2]). Under the same settings as in

Lemma 2.5, the following hold.

(1) f atpisa cuspidal beaks if and only if d\(p) = 0, nmA(p) # 0 and det Hess A\(p) <
0.

(2) f atp is a cuspidal lips if and only if d\(p) = 0 and det Hess A\(p) > 0.

(3) f at pis a cuspidal butterfly if and only if d\(p) # 0, nA(p) = nmMmA(p) = 0 and
nmmA(p) # 0.

Here Hess \(p) means the Hessian matriz of \ at p.

There is a criteria for D, singularities as well.
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Fact 2.7 ([43, Theorem 1.1]). Let f be a front with a unit normal vector v and
the signed area density function \. A singular point p is a D (respectively, Dy )
singularity if and only if the following conditions hold:

(1) rankdf, =0.
(2) detHess A(p) < 0 (respectively, det Hess A(p) > 0 ).

2. Geometric invariants of wave fronts

We focus on geometric invariants of fronts with non-degenerate singular points.
See [46, 32, 31|, for more detail.

2.1. Geometric invariants of cuspidal edges. First, we consider the case of
cuspidal edges. Let f : ¥ — R3 be a front, v : ¥ — S? a unit normal to f and p
a cuspidal edge. Then there exist a neighborhood V(C X) of p such that the set of
singular points S(f) NV on V is a regular curve. Let n be a null vector field. Take
a vector field £ on V such that £ is tangent to S(f) NV and assume that the pair
(&, ) is positively oriented. This pair of vector fields (£, ) is called an adapted pair
of vector fields introduced by Martins and Saji [31]. Then we define the following
curvatures by using an adapted pair of vector fields:

det(¢f, 661, )
e )

(u, v),

(2.2) Ks(u,v) = sgn(nl)

(&&fv)
S 17

_ &SP det(€f,mm f )

(2.3) Ky (u,v) =

(2.4) Ke(u,v)

(u, v),

|Ef < mm f]P/?
_ det(Ef,mmf € f) det(&f,mmf, EEF)E S mmf)
28) o)== ) ETRIE < ()
o det(efmnfEr), - det(ef b €65 (ELLEER)
(26) i) = Serse ol ) T3 e es o)

where (u,v) € S(f)NV. Ks, Ky, Ke, K¢ and k; are called the singular curvature,
the limiting normal curvature, the cuspidal curvature, the cusp-directional torsion
and the edge inflectional curvature respectively defined in [46, 31, 32]. We note
that these invariants as in (2.2), (2.3), (2.4), (2.5) and (2.6) do not depend on the
choice of an adapted pair of a vector fields (see [31]) and can be defined on frontals
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with non-degenerate singular points of the first kind. It is known that the singular
curvature kg is an intrinsic invariant of a cuspidal edge and the cuspidal curvature &,
does not vanish. k; is closely related to the Gaussian curvature K. For example, x is
non-positive if the Gaussian curvature is non-negative near the set of singular points
(cf. [46, Theorem 3.1]). In addition, the product ki = k,k. of k, and k. is called
the product curvature along cuspidal edges. We note that kp is an intrinsic invariant
of cuspidal edges ([32, Theorem 2.9]). For more detailed geometric properties, see
(17, 24, 31, 32, 37].

On the other hand, one can take a local coordinate system (U;wu,v) cantered at

p which satisfies the following properties:
(1) S(f)NnU = {v =0}, and
(2) n =0, gives a null vector field on {v = 0}.
We call this coordinate system (U;u,v) an adapted coordinate system centered at p.

Under an adapted coordinate system (U;u,v), we can write invariants of a cuspidal

edge as follows:

d us uu uu
() =) L 0,0, ) = P20,
u3/2d us VU VUV

’fc(u): |f| |fei<<J;cU ‘|f5/2f )(U,O),

_ det(fu?f'l}v?fuvv) det(fu? fvv?fuu)<fu7fv'l}>
mil) = = r S ) T T R x A )
] :det(fuafvvafuuu) . det(fu;fvv;fuu)(fmfuu>
f0) = T x ol O T3 T AR x f] )

2.2. Geometric invariants of non-degenerate singular points of the sec-
ond kind. Let f : ¥ — R3 be a front, v : ¥ — S? a unit normal vector to f and
p € X a non-degenerate singular point of the second kind. Then a local coordinate
system (U;u,v) centered at p is called an adapted if the following properties hold:

(1) S(HNU = {v =0},
(2) n =0, +e(u)0, with £(0) = 0 gives a null vector field on {v = 0}.

By using this local coordinate system, we define geometric invariants of fronts
with non-degenerate singular points of the second kind due to [32].
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Let f : ¥ — R3 be a front, v a unit normal vector to f and p € ¥ a non-
degenerate singular point of the second kind. Take an adapted coordinate system
(U;u,v) centered at p. Then we define

<fUU7 V>

(2.7) ku(p) = e (p)

which is called a limiting normal curvature. This is a generalization of the limiting

normal curvature of cuspidal edges. We note that one can define the limiting normal
curvature for fronts with corank one singular points ([32]). If (S(f)NU)\{p} consists
of a cuspidal edge, then we can extend k, to S(f)NU. Next, we define the following

_ _|fv|2<fuv;VU>
(2.8) pe(p) = o X T2 (p)-

We call p.(p) the normalized cuspidal curvature ([32]). We note that u.(p) does not

vanish if and only if f at p is a front ([32, Proposition 3.2]).
We now set un = k. and call it the normalized product curvature at p ([32]).
It is known that pyy is an intrinsic invariants ([32, Proposition 3.3]).






CHAPTER 3

Behavior of principal curvatures of wave fronts

In this chapter, we consider boundedness of principal curvatures of fronts with
non-degenerate singular points. This chapter is based on Section 2 of [49] and Section
3 of [50].

1. Principal curvatures of fronts

We consider principal curvatures of fronts defined on the set of regular points
and give explicit representations in terms of quantities obtained by a frame under

an adapted coordinate system.

1.1. Near cuspidal edges. We consider principal curvatures of cuspidal edges.
Let f : ¥ — R? be a front and p a cuspidal edge. Then we take an adapted
coordinate system (U;u, v) centered at p. By the definition of an adapted coordinate
system, there exists a map h: U — R?\ {0} such that f, = vh holds by Malgrange
preparation theorem ([14]). We note that f, and h are linearly independent. In
addition, the pair {f,, h,v} gives a frame of f. We set the following functions:

(3.1)
B = (furfu)s F = (ush), G = (hh), L= —(fusv), M = —(hovi), N = —(h, ).

We remark that EG — F? does not vanish near p. Since (v,v) =1, and f, and h are
linearly independent, v, and v, can be represented by linear combinations of f, and
h. In particular, we have the following.

LEMMA 3.1. It holds that

_FM-GL, FL-BN, ~ FN-oGi, oFi- BN

Vy = —== ~ u ~~ ~ ha Vy = ~= ~ fu+ ~~ ~—h.
EG — F? EG — F? EG — F? EG — F?

13
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Since the pair {f,, h, v} gives a frame, f,., fu and f,, may be written as linear
compositions of f,, h and v. We now introduce the following functions:

~ . GE,—2FF, +2F(f,, h.) P _ 2EF, — 2E(f., h,) — FE,

Iy, = == = , 11 == =
2(EG — F?) 2EG — F?)
(3.2) I'}y= 26{fu 1) ~ PG, F2 _ EGu—2F(fu, )
= 2(EG — F?) = 2(EG — F?)
71 _ 2GF, —vGG, — FG, ~, EG,—2FF,+vFQ,
22 2EG — F2) 22 2EG — F?)

where the functions E,F and G are defined in (3.1) and E, = 2v(f,, h,) holds. We
call functions I" /, as in (3.2) modified Christoffel symbols.
LEMMA 3.2. Under the above notations, we have the following:
fuu=TYfu+ TR+ Ly,
fuw = vfllzfu + vffzh + UMV,
Foo =0 fu + (1 + vf222> h+uvNv.
Proor. We now set the following:

Juw = X1fu + Xog + Xav,
fun(= vhy) = Y1 fu + Yag + Yav,
foo(=h+vhy) = Z1 fu + Zag + Zsv,
where X;,Y;, Z; : U — R (i = 1,2,3) are C* functions.

First we consider f,,. By the definition of L and (fu,v) = 0, we have X3 = L.
Let us determine the functions X; and X,. By direct calculations, we have

<fuu7fu> :EXI_'_ﬁXZ) <fuu,h> :ﬁXl‘FéXQ

Differentiating E = (fu, fu) by u, we obtain (fuu, fu) = ~u/2. Moreover, since
F = (fu,h), we have (fuu,h) = F, — (fu, hu). Thus the above equations can be

rewritten as _
E,
2

(F8) ()
ﬁu_(fuuhu> FG X2
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Since EG — F? > 0, one can solve this equation and get X; = flil (1=1,2).

Next we consider f,,. For Y3, it follows that (f,.,v) = v(h,,v) = —v(h,v,) =
oM = Y3 since (h,v) = 0. For Y} and Y3, by the similar computations as above, we
get the following equation:

(fu; hu) AN
(2)-690)

Therefore we have Y; = oI/, (i = 1,2).

Finally we show the case of f,,. f,, can be written as f,, = h+wvh, since f, = vh.
Thus the inner product of f,, and v is calculated as (fy, V) = v(hy, v) = —v(h,vy) =
vN = Yj since (h,v) = 0 and (v,v) = 1. For Z; (i = 1,2), we have the following

equation
~ ~ G, o
F+”<Fv_2> (E F\ (z
el \F G \Z

Gt

by the similar calculations as above. Solving this equation, we have Z; = ol L and
Zy =1+ vl53. O

Using Lemma 3.2, we calculate geometric invariants in our setting.

LEMMA 3.3. Under the above settings, k., ke, k¢ and k; can be expressed as

L 2E3/AN EM — FL
33 Ry = =, K}C::t#7 K :iﬁ;
. E (BEG—F2ppv’ " TEVEG - 2
(3.4) L ((EM - FL)2F,E - EE,, — E,F) | EL,— E,L
. R; = = == = =
2E5/2(EG — F?) E5/?

along the u-axis, where + depends on the orientation of the frame {f,, h,v}.

PROOF. One can check that x, can be expressed as above by (2.3) and definitions
of functions. We show k., k; and k; can be written as above formulas. Since v is
perpendicular to both f, and h, v can be written as v = £(f, X h)/|fu X h|.
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First, we show that k. can be written as above. We note that f,,, = 2h, holds

on the u-axis. Since N = —(h,v,) = (hy, V), k. on the u-axis is expressed as
2E3/4 det(f,, h, hy 2E34 (v, h, 2E3/AN
o) = 2 M) gy 2RI )2 2PN 0)
Ju % WP Fu % P72 (EC_ ey
on the u-axis.
Next, we consider ;. Since fy = hy and (hy,v) = —(h,1,,) = M on the u-axis,
we see that
det(f,, h, hy, det(Fu, b, fuu) F EM — FL
() = Sl gy AR S B ) u,

EVEG — F?

BG - FEC - 1)
Finally, we consider k;. By Lemma 3.2, f,.. is given by
fuws = #1fu+ sah+ (FAD+ PRI +1,) v
where %; (i = 1,2) are some functions. Thus it follows that
Aet(fur fovs Funa) = (TAHL + DAM + L, ) det(fus b, v)
along the u-axis. Moreover, we have

det(fur fuo, Fund) (Fur fun) _  LEw
[fu X funl 2

Therefore we obtain

_ det(fmfvv;fuuu) det(fuafvv»fuu)<fu7fuu>

Kki(u) = u,0) —3 u, 0
= TPl x fol 7 LBl x ful 0
(PAL+PANI+E. SR
== < E3/2  9L5/2 (u,0)

EM — FL)(2F,E — EE,, — E,F) EL,—E,L
=+ ( 2( ——— )—i- = (u,0),
2E52(EG — F?) E5/2
where we used the relation Em, = 2(fu, hy) along the u-axis and the expressions of
Iy, (i=1,2) asin (3.2). O
We note that the expression
_ 2F,E - EE,, — E,F

) R PNy
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holds if A, > 0 along the w-axis ([46, 37, 17]).
It is known that k.(p) does not vanish if p is a cuspidal edge (cf. [32, Lemma
2.11]). In particular, N never vanishes on the u-axis by Lemma 3.3. Take an adapted

coordinate system (U;wu,v) with nA(w,0) > 0. Then sgn(k.) = sgn(/N) holds on the

u-axis (see Lemma 3.3). If nA(u,0) < 0, sgn(k.) = —sgn(NV) holds.
We define the following functions on U \ {v = 0} as

2(LN — vM? 2(LN — vM?
(36) Ky = #, K_ = (~—Qi)
A+ B A—-B

Y

where A = EN — 20FM + vGL, B = \/22 — (EG — F?)(LN — vM?). These
functions are well-defined on U \ {v = 0}. We remark that x, (resp. x_) becomes
—k_ (resp. —r) if we change v to —v. Let K and H be the Gaussian and the mean
curvature of f defined on U \ {v = 0}. Then K = k,k_ and 2H = k; + k_ hold.
Thus we may treat .y and k_ as principal curvatures of f defined on U \ {v = 0}.
Here K and H can be expressed as

W LN — vM? g EN — 20FM + vGL
v(EG — F?)’ 20(EG — F?)

on the set of regular points. We note that k. = H F v H? — K hold on the set of
regular points.

1.2. Near singular points of the second kind. Let f : ¥ — R3 be a frontal,
p a non-degenerate singular point of the second kind and v a unit normal vector to
f. We fix an adapted coordinate system (U;u,v) in the following. Taking a null
vector field 7, there exists a function € = ¢(u) on the u-axis with €(0) = 0 so that
n = Oy + £(u)0,. Thus it follows that df(n) = f, + e(u)f, = 0 holds along the
u-axis. On the other hand, since the u-axis gives the singular curve, there exists a
C* function h: U — R?\ {0} such that df(n) = vh. Hence we have f, = vh — cf,.
We remark that h, f, and v are linearly independent since d\ = det(h, f,,v)dv # 0
holds on the u-axis.
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LEMMA 3.4. Under the adapted coordinate system (U;u,v), v, and v, on U can
be written as
P(uiT - <N) - OF, FL Buil - <
vy = WM ZeN) ZGLy | FL= BwM —eN)
EG — F? EG — F?

wher E (h W, F = (hf), G={f0f.), L = —(hv), M = —(h,vr,) and

(3.7) Ky =

where

B= \/22 — w(EG — F?) ((E +e(u)M)N — v]\//72>.

Since the Gaussian curvature K and the mean curvature H of f satisty K = ki k_
and 2H = Kk, + k_, we may regard x4 as principal curvatures of f on U \ {v = 0},
where K and H are written as

~ o~

(L + e(w)M)N — vDI? b G +e(u VM) — 20F M + vEN

K = === , ==
v(EG — F?) 20(EG — F?)

on U\ {v = 0}. We remark that k. = H F v H? — K hold on the set of regular
points.
We put H = vH. This is a C'*° function on U. It follows that

G(L + =(u)M)

(3.8) oOH = 2
EG — P2

holds along the u-axis (cf. [32]). We note that L + 6(U)Z/\4\ = —(h,nv) holds. It
is known that 2H does not vanish on the u-axis if and only if f is a front ([32,
Proposition 3.2]). In this situation, the normalized cuspidal curvature p.(p) at p can
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e(p) = 2H (p) <: 7 (G;p)?(](?;), )
(1

«(p)) = sgu(L(p)) and L(p) # 0

be written as

By (3.8) and the definition of p.(p), we see that sgn(u
hold if f is a front.

LEMMA 3.5. Under the above conditions, the limiting normal curvature k, can

be written as k, = ]V/@ at p if p is of the admissible second kind.

PROOF. By (2.7) (cf. [32, Proposition 1.9]), f. = vh — &(u)fy, fuu = vhy —
g'(u)fy, — e(u) fuo and fu, = h + vh, — e(u) f4y, we get the conclusion. O

2. Boundedness of principal curvatures

In this section, we consider boundedness of principal curvatures of fronts by using
the above arguments.

THEOREM 3.6. Let f : ¥ — R3 be a front and p a non-degenerate singular point.
(1) Let p be a cuspidal edge. If n\(p)kc(p) > 0, then the principal curvature k4 is a
bounded C* function at p. Moreover, ky(p) = k,(p).
(2) Let p be of the second kind. If p.(p) > 0, then the principal curvature k. is a
bounded C* function at p. Moreover, ky(p) = k,(p) if p is an admissible.
Converses are also true. Moreover, if one of k4 is bounded at p, then the another is

unbounded.

Proor. We prove the first assertion. Let f : ¥ — R? be a front and p a cuspidal
edge. Take an adapted coordinate system (U;u,v) centered at p. We show the case
of nA(u,0) > 0. In this case, sgn(x.) = sgn(N) holds along the u-axis. For the case
of nA(u,0) < 0, one can show similarly.

We now assume that r.(p) > 0. Then N(p) > 0 by (3.3). Since A+ B = E(N +
IN|) and (3.6), we see that . is a bounded C™ function on U and sy = L/E = K,
holds at p. Conversely, we assume that the principal curvature s, is a bounded
C® function near p. In this case, it follows that N = —(h,nv) is positive along the
u-axis. This implies that n\- k. is positive along the u-axis by (3.3). Unboundedness
of k_ near p follows from the fact that the mean curvature is unbounded near p.
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Next, we prove the second assertion. Take an adapted coordinate system (U; u, v)
centered at a non-degenerate singular point of the second kind p. Suppose that
te(p) = Qﬁ(p) > 0. It follows that —(h,nv) > 0 holds near p from (3.8). Since
A = G(—=(h,qv)), B = |A| and —(h,qv) > 0 along the u-axis, it follows that
A+ B =2G(=(h,nv)) # 0 and A — B = 0 hold on the u-axis. Hence by (3.7), we
have Kk, = N / G along the w-axis, and x, is a bounded C* function. By Lemma
3.5, we see that k, = k, at p if p is admissible. The converse and unboundedness
can be shown by using similar arguments to the first assertion. 0

REMARK 3.7. We assume that s, is bounded near non-degenerate singular point
p. Although k_ is unbounded near p, Ax_ is bounded near p. In fact, x_ can be

rewritten as

A+B

o — J 20(EG-F?) (p: cuspidal edge)
% (p: second kind)

on U\ {v =0}. Thus Ax_ is written as

R 2\/% (p: cuspidal edge)
K_ = S
A+B

—ts : d kind).
6 (p: second kind)
In particular, A\(p)x_(p) is proportional to k.(p) when p is a cuspidal edge, and

A(p)k_(p) is proportional to p.(p) when p is of the second kind. Thus A\(p)k_(p)
does not vanish.

3. Principal vectors and related properties

3.1. Principal vector for a bounded principal curvature. We consider
explicit representations for principal vectors of fronts with respect to a bounded
principal curvature.

3.1.1. Near cuspidal edges. Let f : ¥ — R? be a front and p a cuspidal edge.
Take an adapted coordinate system (U; u, v) satisfying nA(p) > 0 centered at p. Then
we assume that £ as in (3.6) is bounded C'*° function on U.
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If a vector V' = (11, V4) is the principal vector with respect to £, then it follows
that IIV = k. IV, where

_ <fmfu> <fu7fv> . _<meu> _<fU7Vv>
= <<fu7fv> <fvafv>)7 = <_<fv7Vu _<fv7Vv>>‘

By using functions as in (3.1), we can write this equation as

L oM 1% E oF Vi
(3.9 (M N) <v> =t (ﬁ é) (v)

We can factor out v from (3.9) and obtain

L—kx.E U(M_’“rﬁ) Vil _ [V
(3.10) (U(M— Ko ) U(N—wu@) (Vz> - <0> :

Setting
(3.11) V =(V,Va) = (N — v G, —M + 5, F),

this satisfies equation (3.10). Since N is a non-zero function on the u-axis, V is
non-zero on U. This implies that V' can be regarded as the principal vector with
respect to k4.

3.1.2. Near non-degenerate singular points of the second kind. We consider prin-
cipal vectors of fronts with non-degenerate singular points of the second kind with
respect to bounded principal curvatures. Let f : ¥ — R? be a front and p a non-
degenerate singular point of the second kind. Then we take an adapted coordinate
system (U;u,v) centered at p with \,(p) > 0. Suppose that «, is bounded on U.

If a vector V' = (Vj, V) is the principal vector with respect to k., then as similar
in the above discussion, IV = k, IV holds. By using functions defined in Lemma
3.4, we have

(312) L -k (WE —eF)} oM -rF)\ (Vi\ (0
' v(M — k. F)—e(N —kyG) N —k,G o) \o)’
We note that L does not vanish at p. Thus we can take the principal vector V' as

(3.13) V =(-M+rF,L—r,(0E —¢cF)),

by factoring out v from (3.12).
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3.2. Conditions that singular curves become lines of curvature. By
the previous two subsections, we can define one principal vector with respect to
a bounded principal curvature of a front locally. Using these results, we can extend
the notion of a line of curvature as follows. The singular locus ¥ = f o~y is a line of

curvature if the principal vector V' is tangent to 7.

PROPOSITION 3.8. Let f : X — R3 be a front, p a non-degenerate singular point
and vy the singular curve passing through p. Then the following assertions hold:

(1) Suppose that p is a cuspidal edge. Then 7 is a line of curvature of f if and
only if k; vanishes identically along .

(2) Suppose that p is of the second kind. Then 7 can not be a line of curvature.

PROOF. First, we consider assertion (1). Take an adapted coordinate system
(U;u,v) centered at a cuspidal edge p satisfying nA(u,0) > 0. Assume that s is
bounded on U. Then the principal vector V' = (V;,V3) relative to k4 is given by
(3.11). Since k4 = Z/E on the u-axis, V5 can be written as

— - EM-FL -
Vo= M4k, F=—" "~ = g\ EG— F?

E

along the w-axis by Lemma 3.3. Thus vy vanishes on the w-axis if and only if &,
vanishes along the u-axis, and we get the conclusion.

Next, we show (2). Take an adapted coordinate system (U;u,v) around p and
assume that p.(p) > 0 holds. In this case, k4 is bounded on U and the principal
vector V' = (V1, V3) of ky is given as (3.13). The second component v, is written as

‘/QZE_’_eﬁq_ﬁ

along the u-axis. Thus we have V5 = L # 0 at p. This implies that the u-axis can
not be the line of curvature. O

We note that a similar result for cuspidal edges is obtained by [zumiya, Takeuchi
and Saji [24].

3.3. Ridge points and sub-parabolic points.
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3.3.1. Ridge points. Using the principal curvature x, and the principal vector
V relative to k., we define ridge points for f. Ridge points play important role to
study parallel surfaces, focal surfaces and Gauss maps.

DEFINITION 3.9. Under the above settings, a point p is called a ridge point if
Vi, (p) = 0 holds, where V k. denotes the directional derivative of k; with respect
to V. Moreover, a point p is called a k-th order ridge point if V™ x,(p) =0 (1 <
m < k) and V* g, (p) # 0 hold, where V™ k. means the m-th directional
derivative of k. with respect to V.

Ridge points for regular surfaces were first studied deeply by Porteous [41]. He
showed that ridge points correspond to As singular points, that is, cuspidal edges of
caustics. For more details on ridge points, see [4, 11, 12, 20, 41, 42].

3.3.2. Sub-parabolic points on cuspidal edges. In this subsection we consider sub-
parabolic points with respect to a bounded principal curvature at cuspidal edges.
Let f: Y — R? be a front, v its unit normal vector and p € ¥ a cuspidal edge. Take
an adapted coordinate system (U;u,v) centered at p satisfying nA(u,0) > 0. Then
we assume that £, as in (3.6) is bounded on U.

Let us denote V = (‘71, ‘72) If Vis a principal vector with respect to k_ on
U\ {v = 0}, then V satisfies the relation (I — x_I)V = 0. By using functions as
in (3.1), we can write

(3.14) L—+x E  v(M—k_F) Vi (0
' v(M —k_F) o(N—-vs_G)) \Va) \0)"
This relation (3.14) is equivalent to the following equations:
(L — k_E)V, +v(M — k_F)V3 =0
v(M = k_F)Vy 4+ (N — vi_G)V4 = 0.
Multiplying A\, we can rewrite the above system as
(AL — 2_E)W, + v(AM — &_F)V3 =0
(AM — #_F)Vi + (AN — vi_G)V5 = 0,
where #_ = Ak_. Thus we may take V = (V4,V4) as
(3.15) V = (w(AM —4_F),-AL+#_E) or V = (AN —vi_G,—AM + «_F).
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We note that one of above vectors in (3.15) is well-defined on U since we can write 1%
asV = (0,4_E)or V = (0,i_F) on the u-axis. In particular, V = (0, x_F) # (0,0)
on the u-axis. Thus we can take the (extended) principal vector V with respect to

K_ as
(3.16) V =@W(AM — &_F),-AL+ #_E)

on U. We now identify the vector V= (\71, \72) with the vector field V' = V;8, + Va0,
on U. By (3.16), we note that V is parallel to the null vector field n = 9, along the

u-axis.

DEFINITION 3.10. Under the above settings, a point p is called the sub-parabolic
point of f if Vky(p) = 0 holds, where V', means the directional derivative of
in the direction V.

For geometric meanings of sub-parabolic points on a regular surface, see [5, 6,
20, 35].

3.3.3. Characterizations of ridge points and sub-parabolic points by geometric in-
variants. We consider relationship among ridge points, sub-parabolic points and geo-
metric invariants of cuspidal edges.

PROPOSITION 3.11. Let f : ¥ — R? be a front and p € X a cuspidal edge.
Assume that k4 (resp. k_) is a bounded principal curvature near p. Then
e pis a ridge point if and only if 4k} + k2 =0 at p,
e p is a sub-parabolic point if and only if 4k? + kek? =0 at p.

PROOF. First, we show the condition for sub-parabolic points. Let (U;u,v) be
an adapted coordinate system centered at p satisfying nA(u,0) > 0. In this case, we
may take v as v = (f, X h)/ \ fu X h|. We assume that x; is a bounded principal
curvature of f on U, that is, N > 0 on the u-axis. The directional derivative er
of ri, with respect to V as in (3.16) is V& = Va(ky )y = Vadky /Ov at p. By (3.6),
(k4)» can be written as

(), = 2 L,N+LN,—M?> LN(A,+B,)
a A+ B (A+ B)?

on the u-axis. We note that A+ B = QEN, ﬁv = E]VU — 2?]\7[/4— GL and ;L, + év =
2(A, — L|f. x h|?/E) hold on the u-axis since 2E,(u,0) = (fuv, fu)(u,0) = 0. Thus
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it follows that o
L,N — k2| f, x h|?
(1 )y = Lo = itlfu X 1
EN

holds along the u-axis by (3.3).
We consider L, along the w-axis. Since L = det(fy,h, fuu)/|fu X h| and f,, =
fuuww = 0 on the u-axis, we see that

7 det(fus o, fuu) | fu X Lo dCt(fus s fuu)
T el [fu X hJ2

holds at p. Since h, and |f, X h|, can be written as

|fu|2<hv hv> - <fu7 h><fua hv>

hy = *fo, + T h+ Nv,
_ ’fU|2<h> hv) — <fuah><fu7hv>
[fux hly = Foxh ,

we have Ly, = —roN|ful?/|fu x h| (see (2.2)). Thus 4L,N = —k4k2|f. x h|? holds on
the u-axis by (3.3). Hence we get

1 £ x B\
4 2 s 2
mf“+““% mr)

at p. Since 2&_E = ko(|ful?|fu X h)¥/? at p, we have the second assertion.

(3.17) (hi)y = —

Next, we show the condition for ridge points under the above setting. In this
setting, directional derivative Vk, is given by Vi, = Vi(ky), + Va(ky),, where V2
is a principal vector with respect to x4 as in (3.11). By a direct computation, we
have

L,E — LE,
B2
at p. By Proposition 3.3 and (3.11), it follows that

(3.18) (Kg)u =

1= 75

2

ke [ EG — F?
E

3/
_ ) . Vo= —r(EG— F))Y? = —ky|f. x A

at p. Thus we have

SO ~ N\ 3/4 o~ 1/4
vl E—LE) (EG-F2\"" 1 . [ (EG — F?)3
Viky = — — + — (4K} + Ryksks) | ——=—— :
2F? E 25 E
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On the other hand, by Proposition 3.3 and (3.5), it follows that

EL, — E,L
E5/2
holds when A,(u,0) > 0. Therefore, we see that

Ki = Kshi +

-~ o~ ~~ o~ 3/4
wLE — LE,) (EG— 2\
VFJ+ = = e~
2F? E
— ~ ~ ~~ o~ 1/4
1 3 EL,-E, LY\ , (EG — F?)3 /
+ 4K’t + Ri = ———=—" | R, —_—
2k E5/2 E
~n o~ 1/4
1 (EG — F?)3
= o (4K3 + KiK2) (T
holds at p. Hence we obtain the conclusions. 0

We will give geometric interpretations of sub-parabolic points.
For cuspidal edges, the following normal form is obtained by [31].

Fact 3.12 ([31, Theorem 3.1)). Let f : (R?,0) — (R?,0) be a map-germ and 0
a cuspidal edge. Then there exist a diffeomorphism-germ 6 : (R?,0) — (R?,0) and
an isometry-germ © : (R3,0) — (R3,0) satisfying
(3.19)

) b b b
Qo fol(u,v) = (u, %ﬁ + %ug + %, §u2 + %u3 - guzﬂ - %03) + h(u,v),

where bayg > 0, bps # 0 and
h(u,v) = (0,u*hy (u), u*ho(u) + v*v?hz(u) + uvhy(u) + v*hs(u, v)),
with h;(u) (1 <1 <4), hs(u,v) smooth functions.
We note that coefficients in the normal form (3.19) correspond to r4(0) = asg,
Ky (0) = bog, ke(0) = b12 and k.(0) = bog (see [31]).

Using normal form of cuspidal edge (3.19), we have the condition for first order
ridge points on cuspidal edges in terms of coefficients of normal form.

PROPOSITION 3.13. Let f : U — R? be the normal form (3.19) of a cuspidal
edge. Assume that k. is the principal curvature which extends as a C* function
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near 0 and V' is the principal direction corresponding to k. Then 0 is a first order
ridge point if and only if
(3.20) 463, + baobgy = 0, and

(3.21)  — 203,55 — 3boo(4b%, + asobis)?
+ 24 (bg3ha(0) + 463,655 h3(0) — 8b3,bo3ha(0) + 16b7,h5(0)) # 0.

Proor. Without loss of generality, we assume N is positive near 0. Direct com-
putations show (k4 ). (0) = bgg — abiz, (k4)(0) = —(4b2y + agb3s) /2003, V1(0) =
bo3/2 and V5(0) = —byy. Hence we get Vi, (0) = (4b3, + b3ob3z)/2bos, which shows
(3.20). Again direct computations shows (V1),(0) = 3h4(0), (V1),(0) = —by +
8h5(0), (V2)4(0) = aggbag — 4h3(0), (V2),(0) = —3hy(0). Moreover, we have

(Ii+)uu = —2 (agobgo + bg(] —I— a30612 — 12h2(0) + 2(120h3(0)) s

—1
(/€+)uu = W (a30633 + 8512(4503h3(0) - 3b12h4(0)) - 261201'?03(4520512 - 3503h4(0))) )
03
4
(KJ_,_)M) = bT (—nggb% — 6blgbogh4(0) + 16b%2h5(0) + bgg(hg(()) — 2&20h5(0)))
03

at 0. Since V(2)’€+ = (Vl(‘/1)u+%(Vl)v)('%-i-)u‘l'(‘/i(‘/?)u“’v?(‘/?)v)(“-i-)v‘{'vf(’{+>uu+
2ViVa (K ) uw + VE (K)o and bsg = —4b3,/b35 hold, we have completed the proof. [

This proposition is useful to make examples of cuspidal edges with ridge points.






CHAPTER 4

Parallel surfaces of wave fronts

In this chapter, we consider parallel surfaces of wave fronts. This chapter is based
on [49, 50].

Throughout this chapter, we assume that . is bounded near a non-degenerate
singular point p of a front f: ¥ — R3.

For the case of regular surfaces, principal curvatures relate singularities of parallel
surfaces. In this section, we consider singularities of parallel surfaces of fronts and
give criteria in terms of principal curvatures and other geometric properties. Here

we give criteria for other singularities on parallel surfaces of fronts.

1. Singularities of parallel surfaces of wave fronts

In this subsection, we shall deal with fronts which have singular points of the
second kind (swallowtails, for example). Needless to say, the following arguments
can be applied to the case of cuspidal edges.

Let f : X — R3 be a front, v a unit normal to f and p € ¥ a non-degenerate
singular point. Then the parallel surface f* of f is defined by f' = f + tv, where
t € R\ {0} is constant. We note that f* is also a front since v is a unit normal to

.

LEMMA 4.1. Let f : ¥ — R? be a front, v its unit normal vector and p a non-
degenerate singular point of f. Suppose that k. is a bounded C*° function near p and
ky(p) #0. Then p is a singular point of f* if and only if t = 1/k,(p). Moreover, p
is mon-degenerate singular point of ft if and only if p is not a critical point of k..

PROOF. We show the case that p is of the second kind. Let (U;u,v) be an

adapted coordinate system centered at p with the null vector field n = 9, + &(u)0,.

t t
u? v

Then the signed area density function \' = det( v) of f! can be written as

No=det(ff, flov) =1 -tk )\ —tAs_)
29
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by Lemma 3.4, where A = det(f,, f,,~). Since Ax_ does not vanish at p, p is a
singular point of f* if and only if ¢ = 1/k,(p) holds. Thus we may treat =
Ky (u,v) — Kky(p) as the signed area density function of f*. Non-degeneracy follows
AN = (k3 )udu + (K )pdv. O

THEOREM 4.2. Let f : ¥ — R? be a front and p be a non-degenerate singular
point. Suppose that the principal curvature k4 is a bounded C*° function near p and
k4 (p) # 0. Then for the parallel surface f* witht = 1/k,(p), the following conditions
hold.

(1) Assume dr(p) # 0. Then the following hold:

(a)  The map-germ f' at p is A-equivalent to a cuspidal edge if and only if
p s not a ridge point of f.

(b)  The map-germ f* at p is A-equivalent to a swallowtail if and only if p
s a first order ridge point of f.

(¢) The map-germ f* at p is A-equivalent to a cuspidal butterfly if and only
if p is a second order ridge point of f.

(2) Assume dri(p) = 0. Then the following hold:

(a)  The map-germ f* at p is A-equivalent to a cuspidal lips if and only if
rank (df'),, = 1 and det Hess(x(p)) > 0 hold.

(b)  The map-germ f* at p is A-equivalent to a cuspidal beaks if and only if p
is a first order ridge point of f, rank (df*), = 1 and det Hess(r(p)) <0
hold.

Here Hess(k4(p)) is the Hessian matriz of ky at p.

PROOF. Let f: ¥ — R? be a front, p € ¥ a non-degenerate singular point of the
second kind and v a unit normal vector. Then we take an adapted coordinate system
(U;u,v) around p. By Lemma 4.1, we can take the signed area density function of
parallel surface f* with ¢ = 1/k (p) as A(u, v) = k4 (u,v) — £y (p).

First, we prove the assertion (1). In this case, (A)™1(0) is a smooth curve near p
and there exists a null vector field n* of f*. We set n' = 10, +n40,, where n} (i = 1,2)
are functions on U. By Lemma 3.4, df*(n') = 0 on S(f*) is equivalent to

L — k. (vE —¢cF) M-k, F\ (ot (0
o(M =k, F)—e(N—k,G) N—r,G)\nt) \0O
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holds on S(f*). Thus the null vector field 7" can be taken as the principal vector
V as in (3.13) with respect to . restricted to S(f*). Under these conditions, the
equation (nt)(k)xt = V® g, holds for some natural number k. Thus we have the
assertion (1) by Fact 2.5 and Fact 2.6 (3).

Next, we prove (2). In this case, dr vanishes at p. We consider the rank of df*
at p. The Jacobian matrix Jy: of f*is Jp = (h, f,)M at p, where

AN AN 71 ~ —
0 0 E F L M
(4.1) M <() 1) (F G) (0 N>

B 1 ~G°’L G(FN -GM)

~NEC_) \FGT —R(EN—GD))
Since rank M = 1, it follows that rank (Jy:) =1, when ¢ = 1/, (p), and it implies
that rank (df*), = 1. Thus there exists a non-zero vector field 7’ near p such that if
q € S(f*) then df*(n') = 0 holds at . We can take the principal vector V' with respect
to k4 as ', then n'n'Al = V@ Moreover, we see that A, = (K )uu, Aoy = (Kt Juos
M = (k,)s. Thus we have det Hess(\(p)) = det Hess(k, (p)). By using Fact 2.6
(1) and (2) and the definition of ridge points, we have the conclusion. O

This theorem implies that the behavior of a bounded principal curvature of fronts
determines the types of singularities appearing on parallel surfaces. For regular
surfaces and Whitney umbrellas, similar results are obtained in [11, 12]. By (4.1)
in the proof of Theorem 4.2 and Fact 2.7, we see that a parallel surface f* does not
have D, singularity at p.

2. Constant principal curvature lines of cuspidal edges

Let f : ¥ — R3 be a front, v a unit normal vector and p a cuspidal edge. Suppose
that x, is bounded at p and k4 (p) # 0. We set Xt(u, v) = Ky(u,v) — K (p). The
zero-set of this function gives the singular curve of the parallel surface f! of f, where
t = 1/k4(p) (Lemma 4.1). We call the curve given by A (u,v) = ki (u, v) — £y (p) = 0
a constant principal curvature (CPC') line with the value of k4 (p) (cf. [11, 12]). In
this case, the CPC line is a regular curve since dxt(p) # 0. In [11, 12], CPC
lines for regular surfaces and Whitney umbrellas, and relations between singularities
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of parallel surfaces and the behavior of CPC lines are investigated. For intrinsic
properties of Whitney umbrellas, see [17, 18|.
First, we consider contact of the CPC line with the singular curve.

DEFINITION 4.3. Let av: I 3t — (z(¢),y(t)) € R? be a regular plane curve and
let B be another plane curve given as the zero set of a C* function F' : R?> — R,
where I C R is an open interval. Then « has (n + 1)-point contact at ty € I with g
if the function g(t) = F o a(t) = F(x(t),y(t)) satisfies

glto) = ¢'(te) = §"(to) = --- = g™ (to) =0 and g™V (ty) #0,
where ' = d/dt and g™ denotes the m-th order derivative of g.

PROPOSITION 4.4. Let f : X — R3 be a front, p a cuspidal edge and y a singular
curve passing through p. Suppose that ky is bounded near p and dr,(p) # 0. Then
v has (n + 1)-point contact at p with the CPC line if and only if

Ry(p) ==k ) =0 and wIV(p) #0.

v

PRrROOF. Let (U;u,v) be an adapted coordinate system. Then .y (u,0) = £, (u)
holds by Theorem 3.6. Thus the composite function of ' and ~ is given as

X (u, 0) = £y (u) — £, (p)

since k4 (p) = Ky (p). Hence we get the conclusion by the definition of contact of two
plane curves. O

Next, we consider special points (landmarks in the sense of Porteous [42]) on
CPC lines of cuspidal edges. Let f : ¥ — R? be a front, p € ¥ a cuspidal edge and
assume that s is bounded near p. The condition nk, = 0 at p implies that the CPC
line is tangent to the null vector field n of f at p. Moreover, the image f(S(f*)) of
the set of singular points of the parallel surface f* by f is cusped at p. We call such

a point an ezactly cusped point for the constant principal curvature (CPC') line.

PROPOSITION 4.5. Let f : ¥ — R? be a front and p a cuspidal edge. Suppose
that ky (resp. k_) is bounded at p. Then nry(p) = 0 (resp. nr_(p) = 0) implies
ks(p) < 0.
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ProOF. We assume that . is bounded near p. Let us take an adapted coordinate
system (U;u,v) centered at p. Then the null vector field 7 is given by n = 9,. Thus

1 |fu x B\
42 5 2 u
2, "””t”’%)( 7 )

at p by (3.17). This implies that nx, = 0 at p if and only if

42
Ks = —

we have

Nkt = (Fi)y = —

<0

K
holds at p. Hence we have the assertion.
For the case of k_ to be bounded, we can show in a similar way. 0

Relations between the Gaussian curvature and the singular curvature are stated
in [46, Theorem 3.1].

PROPOSITION 4.6. Let f : ¥ — R3 be a front, p a cuspidal edge, v a singular
curve and n a null vector field. Assume that ky is bounded near p, k4 (p) # 0 and p is
not a ridge point of f. Then the cusp-directional torsion k! of f* vanishes at p if and
only if nky vanishes at p, namely, p is an exactly cusped point, where t = 1/k,(p).

PROOF. Let f be a normal form as in (3.19) and o be a singular curve of f*
satisfying Xt(a) = 0. Note that coefficients in (3.19) satisfy bag # 0 and 4b3,+bsob2; #
0 since k4 (0) = k,(0) = by and 0 is not a ridge point (see Proposition 3.13). We
assume that (k4 ),(0) # 0. Then we can take o(v) = (u(v),v). Let W =0, + 0,
denote a vector field tangent to o, where v’ = —(k),/(ky),. The pair (W, V) gives
an adapted pair of vector fields in the sense of [31]. Moreover, (W f1, VV ft) =0
holds at 0. By [31, (5.1)], we have
43 o)~ QWS VYWYV 80+ anthy

(Wt x VV i 4bty + baobgs
Comparing (k4 ),(0) = —(4b%, + agb?;)/2bo3 and (4.2), we obtain the result. O

We now consider the case that (x4 ), = 0 at p. Since this is equivalent to &/, = 0
at p, we call such a point an extrema of the limiting normal curvature k,. Therefore
we have three special points on cuspidal edges which have special relations between
the singular curve and the CPC line (see Figure 4.1). It seems that exactly cusped
points have not appeared in the literature.
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null vector

/ﬁ;pal

i éingular ' direction
direction
exactly cusped point extrema of k, ridge point

F1GURE 4.1. Figures of the singular curve and the CPC line near a
cuspidal edge. The solid curve is the singular curve and the dotted one
is the CPC line through p.



CHAPTER 5

Focal surfaces of wave fronts

We consider focal surfaces of fronts. Since focal surfaces can be regarded as
singular value set of a certain map R®> — R?, we consider focal surfaces by using
results about Morin singularities of R® — R3. This chapter is based on [51].

1. Morin singularities

We recall relations between the Aix-Morin singularities and the Ag-front singular-
ities. The Ag-Morin singularities are map germs f : (R",p) — (R", f(p)) which are
A-equivalent to

f(xh .. axn) = ('rla vy Tp—1,T1Tp + 4 xk—lxi_l + l’ﬁ+1) (k S ’I’L)

at the origin 0 (see [34, 14, 45]). We note that the Ap-Morin singularity is a regular
point.

Facr 5.1 ([45, Theorem A.1]). Assume that k < n. Let §2 be a domain of R",
and f: Q — R" a C* map and p a singular point of f. Assume that p is a corank
one singularity. Then f at p is A-equivalent to an Ax-Morin singularity if and only

if

(1) A=AN=---=AF1Y=0and A® £0 at p,
(2) (AN, ..., A®DYQ — RF is non-singular at p.
Here, A = det(fuy,--- fo,), (T1,...,2,) is the canonical coordinate system on €2,

N =7A, AD =AY and 77 is the extended null vector field of f.

FACT 5.2 ([45, Corollary 2.11]). Let Q2 be a domain of R™™" and f: Q2 — R" q
C* map. Suppose that p € Q2 is a singular point of f such that the exterior derivative
of the Jacobian of f does not vanish at p. Then the following are equivalent:

(1) p is an Ag-Morin singular point of f,
(2)  flscp) is a front, and p is an Ay-front singularity of f|ss).-

35
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Here, the Agy1-front singularity is a C'*° map germ defined as

k k
XF+(%+&ﬁ“2+220—1ﬁ%ﬁ—®+2ﬁ“4—E:ﬁf%ﬁXJ

j=2 j=2

at 0, where X = (¢,29,...,2,) and X = (x2,...,2,) (see [2, 45]).

REMARK 5.3. The image of an A;-front singularity is a regular point, the image
of an A,-front singularity is a cuspidal edge, and the image of an As-front singularity
is a swallowtail if the dimension of the source space is two and of the target space is
three (see [2, 4, 45]).

2. Focal surfaces of wave fronts

Let f : ¥ — R3 be a front, v a unit normal vector to f and p € ¥ a non-
degenerate singular point. We assume that p is of the second kind, and (U;u,v) is
an adapted coordinate system centered at p satisfying A,(u,0) > 0. Suppose that
k. is bounded on U. If p is a cuspidal edge, the following arguments can be applied

similarly.
We now consider a map F : U x R — R? as
(5.1) Flu,v,w) = f(u,v) + wv(u,v) ((u,v) €U, we R).

By direct computations, it follows that

Fu = (w+wa)h+ (—e(u) + was) fo, Fy=whih+ (1+wphs)fy, Fuw=1,

where
F(vM — e(u)N) = GL FL — E(wM — e(u)N)
N A
FN - GM FM — EN
SRRTEVIE SR
(cf. Lemmas 3.1 and 3.4). From these calculations, the Jacobian of F can be written
by

det(Fuy, Fo, Fu) = (1 —wri ) (A —whk_),

where ki = Ak_ and A = det(f,, f,, ). By Remark 3.7, 4 is a C*° function and does
not vanish on the w-axis, in particular at p. Thus we see that det(F,, F,, F,) = 0 if
and only if 1 — wk (u,v) = 0 or AM(u,v) — wk_(u,v) = 0. Hence the set of singular
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points of F is S(F) = S1(F) U Sa(F), where S1(F) = {(u,v,w) |w = 1/k4(u,v)}
and So(F) = {(u,v,w) |w = A(u,v)/k_(u,v)}. The image of F(S(F)) is

1
52 FSE) = { o)+ () [ () € Uow = s}
Au, v) Au, v)
U{f(u,v)+%_<u,v)u(u,v)‘(u,v)EU,w— ( )}
We set
(5.3)
FC¢(u,v) = f(u,v) + ! v(u,v), ]?E'f(u,v) = f(u,v) + Mu(u, v).

Ky (u,v) R_(u,v)

These are focal surfaces of f (cf. [9, pages 231 and 232], see also [7, 23]). If f at
p is a cuspidal edge, by the similar calculations, we have the same formulae as in
(5.3) for focal surfaces of f. We assume that f at p is a cuspidal edge or of the
second kind. We note that F'C; can not be defined at p if x4 (p) = 0 (such a point
is called a parabolic point, see next subsection). On the other hand, fc\,*f can be
defined near p even if k,(p) vanishes. Since the set of singular points S(f*) of a
parallel surface f* = f + tv, where t € R\ {0} is constant, of a front f is given
by S(f*) = {q € Ult = 1/k,(q)}, the union of all the set of singular points of f*

corresponds to the focal surface F'Cy if k4 never vanishes.

3. Singularities of a focal surface F'C'; on a wave front

We consider relations between singularities of F'C'y at p and geometric properties

of f. We assume that p is not a parabolic point with respect to x.

LEMMA 5.4. Under the above settings, a singular point P = (p,wy = 1/k4(p)) €
S1(F) of F is corank one. Moreover, Si(F) is a smooth submanifold of U x R with
codimension one near P.

PrROOF. We show the case that p is a non-degenerate singular point of the second
kind. For cuspidal edges, one can show in a similar way.

By the above calculations, F,, = v is linearly independent to F, and F,. We
note that F, and F, do not vanish at P simultaneously since a;(p) # 0 holds. The
cross product of F, and JF, satisfies

FuxFy=10—wky)(A—wk_)v =0
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at P = (p,wg) € S1(F). Thus F, and F, are linearly dependent at P. This implies
that a point P = (p,wy) € S1(F) is corank one.

We show Si(F) is a smooth submanifold of U x R near P. By straightforward
computations, the Jacobian matrix of F is rank two at P = (p,wg) € Si1(F). We
put A: U X R — R as A(u,v,w) =1 — wky(u,v). The gradient vector grad(A) of
Ais

orad(A) = (_(’i-i-)u, _(H+)U,_H+) £ (0.0.0)

R4 KR
at (p,wo) € S1(F) since ky(p) # 0, where (ky), = Oky/Ou and (k. ), = Ok /Ov.
By the implicit function theorem, we have the conclusion. U

Let V' be a principal vector with respect to £,. Then dF (V') = 0 holds on S (F)
since the definitions of principal curvatures and principal vectors. Therefore V' can
be considered as the extended null vector field 7 of F.

LEMMA 5.5. Under the above conditions, the following assertions hold.
(1)  F has an Ay-Morin singularity at P = (p,wo) € S1(F) if and only if p is not a
ridge point of f.
(2) F has an Ay-Morin singularity at P = (p,wy) € S1(F) if and only if p is a first
order ridge point of f.
(3) F has an Az-Morin singularity at P = (p,wy) € S1(F) if and only if p is a
second order ridge point of f and the ridge line passing through p is a reqular

curve.

Here wy = 1/k4(p).

PROOF. Let F : U x R — R? be a C™ map given by (5.1). By Lemma 5.4, it
follows that a singular point P = (p,wg) € S1(F) of F is corank one. Moreover, the
extended null vector field 77 can be taken as a principal vector V' of k. for F, and the
function A which gives S;(F) can be taken as A = 1 — wk, in the both cases that f
at p is a cuspidal edge and a non-degenerate singular point of the second kind.

First, we show (1). Since ki (p) # 0, dA(P) # 0. By assumptions, we have
nA = —Vk,/ky # 0 at p if and only if a point p is not a ridge point. Thus assertion
(1) holds by Fact 5.1.

Next, we prove the assertion (2). We assume that A = —Vk /ky =0 at P =
(p,wp). The second order directional derivative of A in the direction 7 and becomes
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1IN = —-V@k, /k, at P = (p,w). Moreover, a map (A, 7A) : U x R — R? is
non-singular at P = (p, wy) if and only if the matrix

(—("@r)u/’@r — (K4 )o/ K+ —"€+)
—(Vi)u/by —(VEs)o/ky 0

has rank two at P = (p,wg) by Fact 5.1 in that case of k = 2. Since V@« (p) # 0,
d(Vky)(p) does not vanish, and hence assertion (2) holds.

Finally, we show (3). We assume that A = 7A = @A = 0 at P = (p,wp) €
S1(F), that is, wy = 1/k,(p) and Vk,(p) = VP k, (p) = 0 hold. Then 7®A # 0 at
P if and only if V®r, (p) # 0. In addition, a map (A, 7A, 7PA) : U x R — R? is
non-singular at P if and only if the matrix

— (g )u/ bt — (K4 )u/ K+ —hy
—(VEi)u/k+ —(VEi)o/k 0
~(VPr)u/ky —(VPky)/ky 0
has rank three at P. Since V®k, (p) # 0, d(V Pk, ) does not vanish at p. Therefore
the above 3 x 3 matrix has rank three at P if and only if d(V k) does not vanish at
p. This condition is equivalent to the condition that the ridge line passing through
p is a regular curve. Thus we have the assertion by Fact 5.1. U

For the focal surface F'C, we shall prove the following assertion.

THEOREM 5.6. Let f : ¥ — R® be a front, p € ¥ a non-degenerate singular
point. Suppose that k4 (resp. k_) is C* principal curvature of f near p and FCj is
a focal surface of f with respect to k. Then the following assertions hold.

(1) FCy is non-singular at p if and only if p is not a ridge point of f.

(2) FCy is a cuspidal edge at p if and only if p is a first order ridge point of f.

(3) FCy is a swallowtail at p if and only if p is a second order ridge point of f and
the ridge line passing through p is a reqular curve.

PrRoOOF. We prove the case that front has non-degenerate singular point of the
second kind. For the case of cuspidal edges, we can show in a similar way.

Let f : Y — R3? be a front, v a unit normal vector to f and p € ¥ a non-
degenerate singular point. Suppose that (U;u,v) is an adapted coordinate system
centered at p and a principal curvature x, of f is of class C° on U. We construct
amap F : U x R — R? as in (5.1). Then the image of the set of singular points
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of F gives a focal surface of f with respect to k. (see (5.2)). Moreover, a point
P = (p,wp) € S1(F) is corank one singular point of F by Lemma 5.4. Thus we get
the conclusions by Lemma 5.5 and Fact 5.2. ([l

4. Geometric properties of fE’f of cuspidal edges

We consider geometric properties of f(\,*f as in (5.3) of a front f: ¥ — R? with
a cuspidal edge p € .

PROPOSITION 5.7. Let f : ¥ — R3 be a front, v a unit normal vector to f and
p € X a cuspidal edge. Then the focal surface F'Cy is reqular at p. Moreover, the
limiting tangent plane LT of f at f(p) and the tangent plane TP of FC'y at FC¢(p)

intersect orthogonally.

Here, the limiting tangent plane of f at f(p) is a plane which is perpendicular to
v(p).

PROOF. Let us take an adapted coordinate system (U;wu,v) around p satisfying
nA(u,0) > 0. Then the limiting tangent plane LT of f at f(p) is generated by f.(p)
and h(p). Moreover, v is given by v = (f, X h)/|f. X h|.

On the other hand, we consider the tangent plane of the focal surface fZ*f at
I?Ef(p). We note that ﬁz’f(p) = f(p) holds. By direct computations, we have

— A A — A A
(FC'f)u:fu—i—(,% ) 1/—1—%—%, (FC'f)v:vh—l—(A ) v+ —u,.

K_ KR_

Thus (FC)u(p) = fulp) and (FC)u(p) = A(p)v(p) /- (p) hold, where A, = |, xh].
This implies that F'C; is regular at p, and f,(p) and v(p) are orthogonal basis of
the tangent plane T'P of fbf at faf(p). A normal vector to féf is given as
n = f, X v along the u-axis. Since (v,n) = 0 holds on the w-axis, LT and TP
intersect orthogonally at f(p) = FC 7(p). O

By Proposition 5.7, we can consider the Gaussian and the mean curvature of FC ¥

along the singular curve v of f.

THEOREM 5.8. The Gaussian curvature Kféf and the mean curvature Hf(?f of

the focal surface f(\,*f are given as

1 1
Kﬁﬁf = —1(4/@? + Kgk?), Hﬁf = ié(ﬁg — 4Ky)
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along vy, where the sign £ of Hﬁbf depends on the orientation of the unit normal

vector to fE i

PROOF. Let us take an adapted coordinate system (U;u,v) centered at p with
nA(u,0) = Ay (u,0) > 0. Then we may take v as v = (f, x h)/|f. X h|, and we have

_—

Ao = det(fu,h,v) = |f. X h|. Since (FCy), = f, and (FC;), = Aw/i_ on the
u-axis, coefficients of the first fundamental form of F'C' are
2

I 2 S S
EJ/?Z“f_E_|fu‘> FFC’f_()? Gpcf_ /%Zi

>

along v. The second order differentials of FC s can be written as

*

— — Ay —
(Fcf)uu = fuua (Fcf)uv = I%_Vu + *U, (Fcf)vv = _h+ /%2 fu + %3V

on 7, where h : U — R3\ {0} is a C* map satisfying f, = vh and *; (i = 1,2,3) are
some functions. We can take a unit normal vector n to F'Cy as n = £(f, x v)/|f.|
along . Thus coefficients of the second fundamental form of F'C'y are

_det(fu,v, fuu) | Avdet(fu, v, 1) _det(fu,h,v)
bro, =% Mee T YR T

at p. By (2.2), Lge, = Frs|ful? holds. By Lemma 3.1 and (3.3), v, is expressed as

FM —GL K| ful?
5.4 Vy=———fu— ———
(54) Fox B T T T XA

along 7. On the other hand, the following equation holds on « by (3.3):

M_Jﬁxmﬁ_zcﬁxm>m

(5.5) P ’fu|2N ke | ful

Hence M+~ is calculated as
FC;

2 h\"? 2kiq| fu /2
Me— =4+ (|fux |) |’£t|fu| det(fu,h,u)—j: ’{t|fu| det(fu,h,l/)

PO ke U Il fu x h| T kel fu X B2
on v by (5.4) and (5.5). Since det(fy, h,v) = |f, X h|, we have
2K fuxh
Mo, = £ |l < B2, N, = £ S |
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and

A fullfu x Rl (4k7 + Ksh2)
EFCfGFCf_FF/'.éj - 2 L}/‘—'afNFCf M;Cf = t,ﬁ—‘fUHfUX]”

2
Ke c

(k2 — 4k,)
Ee, New, — 2Fss, Ms, + G = i—|fu||fu x h|

FCf C
along . Thus the assertions hold by the following formulae:

_ g 2
K LFCfNFCf MFCf 7 _EFCfNFCf 2I'5e MFcf"'GFcf Fcf

FC; =~ B F2 o U Freo Pz
GFcf 7, GFCf

O

Comparing Theorem 5.8 and Proposition 3.11, we have the following assertion.

COROLLARY 5.9. Let f be a front in R3, p a cuspidal edge and f(\,“f the focal
surface. Then the Gaussian curvature bef of FC¢ vanishes at p if and only if p is

a sub-parabolic point with respect to a bounded principal curvature of f.

This property is similar as the case of regular surfaces obtained by Morris [35]

(see also [20]). Moreover, we have the following properties immediately.

COROLLARY 5.10. Let f be a front in R3, p a cuspidal edge and FE*,« a focal
surface of f.
(1) A point p of f’E’f is classified as follows:

e p s an elliptic point of FC} if and only if 4k? + ksk? < 0 at p,
e pis a parabolic point of FCy if and only if 4k} + ksk2 =0 at p,
e pis a hyperbolic point of FC if and only if 4k} + ksk? > 0 at p.
Moreover, the Gaussian curvature Kfaf 1s non-negative at p if and only if
Ks 1S non-positive at p. In particular, if K}/@f 18 strictly positive along v,
then k4 s strictly negative.

(2) If the mean curvature Hf(\}f vanishes, kg is strictly positive along .

Here, a point p is an elliptic, a parabolic or a hyperbolic point of ]?E’f if Kféf >0,
=0 or <0 at p, respectively.

k? is appeared as the coefficient of v in the Gaussian

curvature K of a cuspidal edge (see [32]).

The invariant 4x? + K,
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Under this setting, since the singular locus 4 is a regular curve on FC £, We can
consider the geodesic curvature i, and the normal curvature &, of F'C; along the

singular curve 7.

PROPOSITION 5.11. Let f : ¥ — R3 be a front, p € ¥ a cuspidal edge, v a
singular curve passing through p and n a null vector field. Assume that n\ > 0 (resp.
nA < 0) along v. Then kg = K, and K, = —k; (resp. kg = K, and Ky, = Ks) hold

along 7.

PROOF. Let us take an adapted coordinate system (U;u,v) centered at p with
nA(u,0) > 0. Then we take the unit normal vector n to FCy along v as n =
(fux v)/|ful. The geodesic curvature &, and the normal curvature &, of F'C; along

v are written as

. xy)  (funxfu) . GNm) (fuum)
Kg = - ) Rp = -

5'? | ful? 517 | ful®
By direct calculations, we see that nx f, = | f,|v and (fu., n) = — det(fu, fuu, V) /| ful
hold. By [46, (1.7)] and [46, (3.11)], we have the assertions. O

COROLLARY 5.12. The Gaussian curvature of a cuspidal edge is bounded on a
sufficiently small neighborhood of the singular curve ~y if and only if v is a (pre-)
geodesic on FC'y.

Here, a curve on a regular surface is called a pre-geodesic if the geodesic curvature
vanishes along the curve (cf. [26]). In addition, we call a curve on a regular surface
a geodesic if the curve is pre-geodesic and has unit speed.

ProOF. The Gaussian curvature of a cuspidal edge is bounded if and only if the
limiting normal curvature x, vanishes along the singular curve 7 ([46, Theorem 3.1]).

Thus we have the assertion by Proposition 5.11. U

It is known that the singular locus % of cuspidal edges is a line of curvature if
and only if the cusp-directional torsion x; vanishes identically on v ([50, Proposition
3.2], see also [24]). In this case, we have the following.

PROPOSITION 5.13. Let f be a front, p a cuspidal edge and v a singular curve
passing through p. Suppose that 7 is a line of curvature on f. Then 7 is also a line
of curvature on FC'y.
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PROOF. It is known that a curve o(t) on a regular surface is a line of curvature

if and only if
det(a,n,n) =0

holds, where n = n(t) is a unit normal to the surface restricted to ¢ and we denote
"= d/dt. We apply this fact to the case of F@.

We take an adapted coordinate system (U; u, v) centered at p satisfying n\(u,0) >
0. Then the unit normal vector to fbf can be taken as n = (f, x v)/|f,| along
v(u) = (u,0). Differentiating n, we have

n'=n _ S X0t fu X v
—n, =
| ful

Thus det(d’,n,n') can be written as

- |fu‘u(fu X V)

1 1
det(y',m,n’) = = det(fu, fu X v, fuu XV + fu X 1y) = = det(fu, fu X v, fu X V)

since (fy,v) = 0, where we used the relation det(a x b, a x ¢, d) = det(a, b, ¢){a, d)
(a,b,c,d € R?). By (5.4), v, is written as

FM —GL K| fu?
Uy = —Jfu— h.

| fu X Rl |fu % Al
Hence we have _
E

det(4', m, /) = ——e det(fy, h, v).
VEG— F?
Since A, = det(fy, h, ) does not vanish on 7, we have the assertion. 0

In general, a line of curvature on a regular surface does not become a line of
curvature on its focal surfaces (cf. [20, Proposition 6.19]). Thus Proposition 3.8
gives a characteristic of cuspidal edges.

5. Focal surfaces of Beltrami’s pseudosphere

We consider a focal surface of the Beltrami’s pseudosphere and its screw motion
as an example. This surface has constant negative Gaussian curvature. Moreover,
one can construct this surface as a surface of revolution of the tractriz (c.f. [8]).

On the other hand, the Beltrami’s pseudosphere is one of solutions of the sine-

Gordon equation

Puu — Pov = sin 2
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(see [33], for example). Although the sine-Gordon equation is a non-linear hyperbolic
partial differential equation, it is known that this equation is integrable. Thus the
Beltrami’s pseudosphere is interested in both differential geometry and theory of
integrable system. To calculate concretely, we use a parametrization (5.8) of the
Beltrami’s pseudosphere below in stead of a solution of the sine-Gordon equation
above.

5.1. Screw motion of the Beltrami’s pseudosphere. Let v = (y1,7%) : [ —
R? be a C*™ map, where I C (R;u) is an interval. We assume that v (u) > 0 for
any u € I. Then we consider a surface of revolution f : I x R/2rZ — R?® whose
profile curve is v given as

(56) f(ua U) = (71 (U) COS U, 71 (U) sin v, VQ(U))a
where (u,v) € I x R/2nZ. We define a screw motion for a surface of revolution as

follows.

DEFINITION 5.14. Let f : [ x R/21Z — R? be a surface of revolution as in (5.6)
whose profile curve is v = (71,72) : [ — R?. Then a screw motion f° of f with screw

parameter 0 is a one parameter deformation given by the following form:
(5.7) F2(u,v) = (cos Oy, (u) cos v, cos Oy, (1) sin v, cos 0y, (u) + sin Hv),
where 6 € [0, 7/2].

By the definition, we see that f© = f, and f™/? degenerates into a line.
We consider the Beltrami’s pseudosphere. This surface is a surface of revolution
whose profile curve is a tractrix. Let v : I — R? be a tractrix given by

v(u) = (sinu, cosu + log(tan(u/2))),

where I = (0, 7). Then we have the Beltrami’s pseudosphere f by rotating v about
the y-axis (see Figure 5.1):

(5.8) f(u,v) = (sinu cos v, sinusin v, cos u + log(tan(u/2))).

It is known that f has constant Gaussian curvature —1, and its singular set is
S(f) = {(x/2,v)}. We denote by f’ a screw motion of f with screw parameter
0 € [0,7/2]. This surface f? is known as the Dini’s surface (see Figure 5.2). Thus
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FIGURE 5.1. Beltrami’s pseudosphere (left) and its half cut (right).

f? also has constant Gaussian curvature —1 for 6 € [0, 7/2). We note that the set of
singular points S(f?) is same as S(f) = {(7/2,v)}. Moreover, f has only cuspidal
edge singularities when 6 € [0,7/2).

We consider geometric properties of f¢. Let f? be the screw motion of the
Beltrami’s pseudosphere. Then the differentials of f¢ are

f? = (¢(0) cosu cos v, ¢(f) cos usin v, ¢(f) cos u cot u),

f? = (—c(0) sinusinv, ¢() sinu cos v, s(6)),

where ¢(0) = cosf and s(f) = sinf. Thus the coefficients of the first fundamental

form are
(5.9) E? = c(0)* cot?u, F? = c(0)s(0) cosucotu, G* = s(0)? + c(h)?sin? u.
We can take unit normal vector ¥ to f? as

(5.10) v = (—c(0) cosucosv + s(0) sin v, —s(6) cosv — ¢(#) cos usin v, ¢(f) sin u).
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FIGURE 5.2. f™/'2 (left) and f™/° (right).

Since the second order differentials of f¢ are

0

uu

4
uv

0
vV

= (—c(#) sinucosv, —c() sinusin v, —c(#)(cos u + cot ucscu)),
= (—c(0) cosusinv, ¢(#) cosu cos v, 0),

= (—c(f) sinucosv, —c(f) cosusinv, 0),

coefficients of the second fundamental form can be given as

(5.11) L% = —c(0)*cotu, M’ = —c(0)s(0) cosu, N? = c(6)? cosusinu.

Using (5.9) and (5.11), the Weingarten matrix W? defined on the set of regular points
is given by

(5.12) o (— tanu t(0) S€C(U)> ’

0 cotu

where t(f) = tanf. Thus principal curvatures x; and sy of f? are x; = cotu,
ko = —tanu. We note that principal curvatures do not depend on the parameter
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6 € [0,7/2). In addition, k; can be extended to the set of singular point on the
source and ko becomes unbounded near singular points. On the other hand, if we
set principal radius functions p; = ;' (i = 1,2) on the set of regular points, then
p1 becomes unbounded near singular points and py can be defined as bounded C*
function on the source.

5.2. Focal surface of screw motion of the Beltrami’s pseudosphere. Let
1% be a screw motion of the Beltrami’s pseudosphere. By the previous section, one
principal radius function p = — cot u can be defined on the source even at singular
points. By using this function, we define the focal surface  : I x R/27Z — R? as

(5.13) P(u,0) = £2(u,0) + plus, o) 1, 0)
= (c(0) cscucosv — s(0) cotusinw, s(0) cot ucos v + ¢(#) cscusin v,

c(0) log(tan(u/2)) + s(0)v).

It is classically known that O is a catenoid, i.e. a minimal surface of revolution (see
Figure 5.3).

FIGURE 5.3. The Beltrami’s pseudosphere and its focal surface (catenoid).

LEMMA 5.15. The focal surface { as in (5.13) is a regular surface for any 6 €
[0,7/2].
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PrOOF. By direct computations, we have
9 = (cscu(—c(0) cot ucos v + s(0) cscusinv),
— cscu(s(0) cscucosv + ¢(f) cot usinw), ¢(f) cscu),

9 = (—s(6) cot ucosv — ¢(0) cscusin v, c(f) cscu cosv — s(6) cot usinwv, s(0)).

The cross product 2 x 2 is
9 % % = — csc? u(cos v, sin v, cot u) # 0

for any (u,v) € I x R/2rZ = (0,7) X R/2nZ. Thus we have the assertion. O

PROPOSITION 5.16. Screw motion gives an isometric deformation of f° as in
(5.13) . Moreover, for any 0 € [0,7/2], § is a minimal surface.

PROOF. By the proof of the above lemma, we may take a unit normal vector n’
to f? as

(5.14) n’(u,v) = (sinwu cos v, sin u sin v, cos u).

The differentials of n? are

[%

n? = (cosucosv,cosusinv, —sinu), n? = (—sinusinv,sinucosv,0).

Thus the coefficients of the first and the second fundamental form are
(5.15)
E" =csctu, F' =0, G" = csc?u, L7 = () csc?u, M? = s(6) cscu, N = —c(0).

This implies that the first fundamental form does not depend on 6. Hence screw
motion gives an isometric deformation of .
Moreover, by (5.15), we see that

EN? —2F MP +G°L" =0,
and hence the mean curvature of f vanishes identically. U
PROPOSITION 5.17. The focal surface f° is a helicoid when 6 = 7 /2.
PROOF. By (5.13), we have
§7/2(u,v) = (— cot u cos v, cot u cos v, v).

This is a standard parametrization of a catenoid when we set w = cot u. OJ
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Combining Propositions 5.16 and 5.17, we have the following.

THEOREM 5.18. Let f? be a screw motion of the Beltrami’s pseudosphere f as
in (5.8). Let % be the focal surface of f° given by (5.13). Then a screw motion gives
an isometric deformation of f from catenoid to helicoid (see Figure 5.4).

FIGURE 5.4. From top left to bottom right: §°, §7/6, §7/4 and §7/2.



CHAPTER 6

Extended distance squared functions on fronts

In this chapter, we consider extended distance squared functions on fronts. These
functions measure contactness of fronts with certain spheres. This chapter is based
on [49, 50].

Let f : ¥ — R3 be a front, v its unit normal and p a non-degenerate singular
point. Then we define function ¥ : ¥ — R by

1
(61) w<uuv) = —§(|:co—f(u,v)|2—t3),
where ¢y € R® and ty € R\ {0}. We call ¢ as in (6.1) the extended distance squared

function with respect to x.

LEMMA 6.1. For the function ¢ as in (6.1), ¥(p) = ¥u(p) = ¥u(p) = 0 if &y =
f(p) + tov (p).

PROOF. Let usset &g = f(p)+tor(p). Then v)(p) = 0 holds by the definition of .
We now assume that p is of the second kind and take an adapted coordinate system
(U; u,v) centered at p. By direct computations, we have ¢, = (xy — f,vh — e(u) f,)
and 1, = (xo — f, f,). Since (f,,v) =0 and (0) = 0, we have ¢, (p) = ¢,(p) = 0. If
p is a cuspidal edge, we can show in a similar way. 0

We fix ¢y = f(p) + tov(p). We are interested in the case of tg = 1/k4(p),
because x, corresponds to the image of a singular point of a parallel surface f* with
t = 1/k4(p), that is, ¢ coincides with a focal point of f at p. In such a case, ¥
measures contact of f with the principal curvature sphere at p (cf. [20, 30]).

PROPOSITION 6.2. If &y = f(p) + v(p)/k+(p) and to = 1/k,(p), then j%¢ =0
holds, where 71 is the 2-jet of 1 at p.

ProOF. We consider the case that p is of the second kind. Let us take an adapted
coordinate system (U;u,v) around p. By Lemma 6.1, we see that ¢ =, =1, =0
51
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at p. By direct calculations, we have

¢uu - —|Uh - 6fv|2 + <w0 - f,Uhu - 5/fv - 5fuv>7
77Z1uv - —<fU,Uh - 5fv> + <$0 - f7h+vhv - 5f1w>a
wvv = _|fv‘2 + <$0 - fa fvv>'

Thus ¥y, = ¥, = 0 hold at p since (f,,v) = (h,v) = 0. Moreover, it follows that
Voo = =G + (v, fuo) [k+(p) = =G + N/r4(p) = 0 at p since 1/k..(p) = G(p)/N(p).
Thus we have the assertion in the case of second kind. For a cuspidal edge, we can
show similarly. 0

We note that Martins and Nuno-Ballesteros [30] investigate singularities of dis-
tance squared functions in more general situation. They showed a similar result as
Proposition 6.2 by using an umbilic curvature k, [30, Theorem 2.15]. It is known
that |k, (p)| = Ku(p) holds when p is a cuspidal edge ([31]). Thus Proposition 6.2
might be a special case of [30, Theorem 2.15].

Proposition 6.2 implies that ¢ may have a D, singularity at p if xy coincides
with the focal point of f at p, where a function-germ h : (R? 0) — (R,0) has a D,
singularity at 0 if h is R-equivalent to the germ (u,v) — u® £ uv? at 0 (cf. [3, pages
264 and 265]). Therefore we consider the condition that 1) has a D, singularity at
p in terms of geometric properties of f. (Level sets of these singularities, see Figure
6.1.)

/ 7N\

FIGURE 6.1. Level sets of functions u® + uv? (left) and u® — uv? (right).
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Let f : ¥ — R? be a front and p a non-degenerate singular point. For a function
Y — R, set

(6'2) A¢ = ((¢uuu)2(wvvv)2 - 6¢uuuwuukuvv¢vvv
- 3(wuuv)2(¢uvv)2 + 4(¢uuv)3,¢)vvv + 4¢uuu (wuvv)?))(p)'

It is known that the function 1 is R-equivalent to u® + uv? (resp. u® — uv?) if and
only if j%¢) = 0 and A, > 0 (vesp. Ay < 0) hold (see [43, Lemma 3.1], see also [11,
Theorem 4.2]).

First we consider the case that p is a cuspidal edge. In this case, we have the

following assertion.

THEOREM 6.3. Let f : ¥ — R? be a front and p a cuspidal edge. Assume that
Ky is a bounded C* function near p and 4 (p) # 0. Then the function ¢ as in (6.1)
with xy = f(p) + v(p)/k+(p) and to = 1/k4(p) has a Dy singularity at p if and only
if ki(p) # 0 and p is not a ridge point.

ProoOF. Take an adapted coordinate system (U;u,v) centered at p and suppose
that nA(u,0) > 0. This is equivalent to det(f,, h,v)(u,0) > 0. By direct computa-
tions, the third order differentials of v are given by

__moy . E@Mp)  E(p)M(p) - F(p)L(p) _ 2N (p)
Yuvn(p) = —F(p) + O o) , Yuw(p) o)

since k4 (p) = L(p)/E(p). By Lemma 3.3, 1yp(p) and ¥y, (p) are written as

E(p)y Ep)G(p) ~ Fp)’  (BWEe) -
t(p) z<p) ) ¢vvv (p) - c(p) E'(p)?’/‘lz(p) .
By Lemma 3.2, f,.. is given by

wuvv (p) =

where *; (i = 1,2) are some functions. Thus 9y, is

3. B~ o~
Y = —5 Bt = (FlllL C TN+ Lu>
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at p. Hence we have

(EM — FL)(2F,E — EE,, — E,F) EL, - E,L
uuu = ~ ~~ = p)+—(p).
o e o)+ 2Bl
Comparing with (3.4), it follows that
E5/2
Vuna(p) = £ (P)——(P)-

Since Yyup(p) = 0, the number A, as in (6.2) is written as
At/) = wuuu(p) (4¢uvv (p)g + wuuu(p)wvvv(p)z)

Summing up the above calculations, we see that
E(p)'(E(p)G(p) — F(p)*)*?
L(p)*

and hence Ay # 0 if and only if ;(p) # 0 and 4k, (p) + Ki(p)k(p)* # 0.
On the other hand, the directional derivative V k. is

Ay = ki(p)(4ki(p)® + Ki(p)ke(p)?)

Vi (P) =

el p) (4k¢(p)° + Ki(p)ke(p)?) < =

by Proposition 3.11. Thus we have the assertion.

Next, we consider the case of the second kind.

THEOREM 6.4. Let f : ¥ — R3 be a front and p a singular point of the second

kind. Suppose that k. is bounded near p and k. (p) # 0. Then ¢ as in (6.1) with
xo = f(p) +v(p)/ks(p) and to = 1/k(p) has a Dy singularity at p if and only if p

s not a ridge point of f.

To prove this theorem, we take a special adapted coordinate system (U;u,v)

centered at p called a strongly adapted coordinate system which satisfies (fy,, f,) =0

~

at p (see [32, Definition 3.6]). Under this coordinate system, we see that F' = Gy, = 0

at p since h(p) = fu(p). We prepare a lemma.
LEMMA 6.5. Under the above conditions, Ay, # 0 if and only if

(63) 41/}uuv1/}vvv - 3(¢uvv)2 = T(L<éﬁfu - 67_)]/\7) - GM(Nu + M)) 7& 0

at p.
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PRrROOF. We take a strongly adapted coordinate system (U; u, v) around p. Direct
calculations show that

wuuu = t0<V7 fuuu)a ¢uuv = t0<y7 fuuv) - <fva fuu)
hold at p, where tg = 1/k(p) = @(p)/]/\?(p) Since fuu = —€'fo, fuuu = —€"fo —2¢'h
and fuu = hy — €' foo at p, it follows that 1),,, = 0 and

(6.4)  Yuuo = to(w, ha) + &' (—to(w, fuo) + | fo]?) = tolv, he) = GL/N #0

hold at p. Thus Ay as in (6.2) can be written as

A@Z’ = (¢uuv(p))2(4¢uuv<p)¢vvv(p) - 3(¢uvv(p))2)

This implies that Ay # 0 if and only if 490 (D) Vews (D) — 3(Yuw(p))? # 0.
We consider the form of 49, (P)Vewe (P) — 3(Vuwe(p))? # 0. By direct computa-

tions, we have

wuvv - t0<7/7 fuvv>7 wvvv = t0<V7 fvvv> - 3<fv7 fvv>
at p. Since fu, = 2h, at p, it follows that

©5) u(p) = 21077 (p) = D)
()

We now deal with ¢y, (p). 1t follows that (v, f,) = 0 and (v, fou) = = (0 fu) = N
on U. So (v, fuww) = Ny — (Vy, fuu) holds. By Lemma 3.4, (v,, f,,) is written as
N
G
at p. On the other hand, N, = (Vs fou) + Uy fumw) = —E(h, fmj)/ﬁ +2M at p by

~

Lemma 3.4. Hence we have (h, f,,) = —E(Nu - 2]/\4\)/2 and
GN,-G,N GM(N, —2M

(66) wvvv = = - ( == )

N LN

at p, where we used 2(f,, fun) = év. By (6.4), (6.5) and (6.6), 4%uuo®vrs — 3(WVuws)?

can be written as

=)<

=] <)

<Vv7fvv> = _7<h?fvv> - <fv>fvv>

41/)uuv1/}vvv - 3(1/}uvv)2 - T(E<a v G\UN) - GM(NU + M))

at p. Thus we have the assertion. 0
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PROOF OF THEOREM 6.4. Let us take a strongly adapted coordinate system
(U;u,v) centered at p. Then we note that I = G, = 0 holds at p. The differentials
(k4)y and (k4 ), are given by

~

Ny

—GM? + L(GN, — G,N)
Ry)y = —, Ry )y = = =<
(v = 2 () o

at p. Since the principal vector V' as in (3.13) is written as V' = (=M, E) at p, we

have
(6.7)

Vi (p) = =M (p)(r+)u(p) + L(p) (%), (p)

1 ~ —~

=z LOCOR) - Colr) R ) ~ Co)M@)(Rulp) + M)

Comparing (6.7) and (6.3) in Lemma 6.5, V'k,(p) # 0, namely, p is not a ridge point
of f if and only if 4¢yuy (P)Wews (P) — 3(Vuwe(p))? # 0. This implies that the number
Ay defined as (6.2) does not vanish by Lemma 6.5. O

We remark that the condition that f is a front in Theorem 6.4 is needed for v to
have a D, singularity at p. In fact, for a frontal f : ¥ — R3 with a singular point of
the admissible second kind p, we have the following.

PROPOSITION 6.6. Let f : ¥ — R? be a frontal but not a front and p a singular
point of the admissible second kind. Then ¢ with xy = f(p) + v(p)/k.(p) and ty =
1/k,(p) does not have a Dy singularity at p.

PROOF. Let us take an adapted coordinate system (U;u,v) centered at p with
the null vector field n = 0, + e(u)d,. Since f at p is a frontal but not a front,
L(p) = 0. Thus tuu(p) = 0 by (6.4). By the proof of Lemma 6.5, Ay, vanishes
automatically if f is not a front at p. O
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