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Abstract

The problem of determining whether a Hamiltonian system is completely integrable has been
long discussed since the early days of development of celestial mechanics. A Hamiltonian
system with N degrees of freedom is said to be completely integrable in the Liouville sense if
there exist N smooth first integrals in involution which are functionally independent. In spite
of the fact that we have a well-defined notion of complete integrability, the above problem still
remains an open question.

Our purpose in this thesis is to construct a systematic method to enumerate first integrals of
a given Hamiltonian system. The main idea is that many Hamiltonian systems can be captured
through geodesic problems in curved space(-time)s: Euler’s equations for a rigid body emerge
from geodesic flow on the special orthogonal group with to a left-invariant metric; In general
relativity, the motion of a free particle in a gravitational field can be formulated as geodesic flow
on a curved spacetime; In general setting, the trajectories of a natural Hamiltonian systems,
that are given as the sum of a curved kinetic and a potential energy with the kinetic term being
quadratic in momenta, can always be described as geodesics in enlarged spaces, i.e. interactions
are geometrised by introducing one or more extra dimensions.

In this thesis, we assume that first integrals of a geodesic flow are polynomial in momenta. In
this setting, the Hamiltonian function is constructed out of the metric on a (pseudo-)Riemannian
manifold, and thus the first integrals must be associated with Killing tensor fields obeying the
Killing equation. It is a simple fact, usually known as Noether’s first theorem, that if there is
a first integral linear in momenta, then the metric admits a one-parameter group of isometries
generated by a Killing vector field. In an analogous way, polynomial first integrals lead to
Killing tensor fields whose orders are equal to the degree of the polynomials. A Killing tensor
field generates a canonical transformation which maps the original Hamiltonian system into
itself. In general relativity, Carter’s constant in the Kerr black hole spacetime directly stems
from a second order Killing tensor field.

Our assumptions reduce the integrability problem in Hamiltonian systems to the problem
how to solve the Killing equation. Then it is natural to ask the following questions:

• Are there any solutions of the Killing equation for given metrics?

• If the answer is yes, then how many solutions are there?

• What quantities are sufficient to determine the number of solutions?

In this thesis, we study the above issues and give partial answers. In particular, we introduce a
systematic method to analyse the Killing equation and to study its properties. A key ingredient
here is projection operators called Young symmetrisers. Main results are as follows:

(i) We construct an effective way to analyse the Killing equation and to study its properties
based on Young symmetrisers. We particularly establish a prolongation procedure which
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transforms the Killing equation of a specified order into a closed system dubbed the pro-
longed system by introducing new variables. Then the explicit form of the prolonged
system was written out up to the third order.

(ii) We give a formula for the integrability conditions of the prolonged system that put tough
restrictions on the Riemann curvature tensor and its derivatives. We also derive the con-
crete form of the integrability conditions up to the third order. Moreover, we make a
conjecture on the Young symmetries of the integrability conditions of a general order.
Furthermore, we provide a method for computing the dimension of the solution space of
the Killing equation with a specific example.

(iii) We characterise metrics which admit Killing vector fields by local curvature obstruc-
tions. The obstructions have been obtained by analysing the integrability condition and
the original Killing equation. In particular, we provide the algorithm that tells us exactly
how many Killing vector fields exist for a given metric.

(iv) Killing tensor fields arise out of an assumption that first integrals of a geodesic flow are
polynomial in momenta. We relax this assumption and conceive of first integrals that
are meromorphic in momenta. We then define gauged Killing tensor fields in order to
describe first integrals that are meromorphic in momenta. We also study their properties
in detail and construct several metrics admitting a nontrivial rational first integral.
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Chapter 1

Introduction

The problem of determining whether a Hamiltonian system is completely integrable has its roots
in the classical literature. In the late 18th century, d’Alambert, Euler, Lagrange, Clairaut had
already discussed exact integration of Hamilton’s equations. Afterwards, Hamilton and Jacobi
had developed an elegant method for solving Hamilton’s equations. Against such an interesting
background, we shall begin with a historical perspective of the fundamental problem identified
by Henri Poincaré to grasp main problem in this thesis. After some twists and turns, we will
arrive at the Killing equation that is a main subject in this thesis.

Poincaré’s fundamental problem
At the end of the 19th century, Poincaré considered a system given by the Hamiltonian with N
degrees of freedom

H(I,θ) = H0(I)+ εH1(I,θ)+ ε2H2(I,θ)+ · · · , ε ≪ 1 , (1.1)

and promoted the study of this Hamiltonian as the fundamental problem of Hamiltonian dynam-
ics. HereH0 is an integrableHamiltonian depending only on the action variables I = (I1, . . . , IN)
and εH1 is a perturbation term periodic in the angle variables θ = (θ1, . . . ,θN). A classic exam-
ple of eq. (1.1) is the planetary motion around the sun. The integrable Hamiltonian represents a
sum of two-body Keplerian Hamiltonians (the sun and each planet) and the perturbation results
from the mutual interactions between the planets. The small parameter is typically estimated by
the ratio of the mass of the heaviest planet (that is, Jupiter) to that of the sun as ε ∼ 0.5×10−3.

Here and in what follows, a Hamiltonian system with N degrees of freedom is said to be
completely integrable in the Liouville sense if there existsN smooth first integrals (Q(1), . . . ,Q(N))
such that

{Q(a),Q(b)} = 0 , for any a,b = 1, · · · ,N . (1.2)

We have denoted the Poisson bracket by {,}. A function Q is said to be a first integral of
motion if {H,Q} = 0 holds true. Any autonomous Hamiltonian system has at least one first
integral as the Hamiltonian itself. The important feature of completely integrable Hamiltonian
systems is that exact solutions of Hamilton’s equations can be obtained by quadratures. There
are physically significant examples such as the Kepler problem, the Kowalevskaya top, the Toda
lattice and geodesic flows in the Kerr black hole spacetime.

Poincaré himself contributed to the problem in his celebrated theorem [2] on the non-
existence of first integrals that are analytic with respect to the small parameter. To be more

6



CHAPTER 1. INTRODUCTION

precise, Poincaré’s theorem states that there is in general no first integral which can be ex-
pressed in the form

Φ(I,θ) = Φ0(I)+ εΦ1(I,θ)+ ε2Φ2(I,θ)+ · · · . (1.3)

This result had been applied at once to the restricted three-body problem. Afterwards his the-
orem is widely quoted as saying: Henri Poincaré proved that the three-body problem cannot
be solved analytically; or an integrable Hamiltonian system inevitably fails to be completely
integrable if the perturbation exists. However, it should be noted that his theorem is less strong
than we imagine. This is because

• Poincaré assumed in his proof that the perturbation term can be expanded in the infinite
Fourier series, that is

H1(I,θ) =
∞

∑
k
Ĥ1(I) eikθ , (1.4)

• We certainly expect that any first integral is analytic with respect to I and θ . However, it
does not necessarily need to be analytic with respect to ε .

So if the perturbation term can be written by the finite Fourier series, Poincaré’s theorem does
not work. More importantly, nowdays we already know completely integrable Hamiltonian
systems are very rare. Therefore, nobody is desirous of getting first integrals that are analytic
with respect to ε . The important thing will be the discussion for a given value of ε = ε0. It
should be also stressed that Poincaré did not weed out the possible existence of locally valid
first integrals for a certain value of ε .

On the other hand, Poincaré’s fundamental problem is intrinsically based on known inte-
grable Hamiltonian systems. In the 19th century, as there were a few known integrable Hamil-
tonian, this does not matter. Over the years since the 19th century, despite the fact that in-
tegrable Hamiltonian systems are very rare, many new and important integrable Hamiltonian
systems have been discovered. Apart from Poincaré’s fundamental problem, single out inte-
grable Hamiltonian systems remains an open question. In fact, this question had been posed
by astronomers in the later of the 20th century, which are known as the problem of the third
integral of motion.

The third integral of motion
Let us consider the motion of the Milky Way. Our observations allow us to assume that the
gravitational potential of our galaxy is time-independent and has an axial symmetry. We are
interested in the motion of a star in such a potential. According to S. Chandrasekar [3], the
mean collision time can be conservatively estimated as 1014yr whilst the estimated age of the
Milky Way is about 1010yr. Hence, the one-body distribution function obeys the collisionless
Boltzmann equation

∂ f
∂ t

+{ f ,H} = 0 . (1.5)

Here the Hamiltonian with three degrees of freedom is taken to be

H =
1
2

(
p2r +

p2θ
r2

+ p2z

)
+V (r,z) , (1.6)
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CHAPTER 1. INTRODUCTION

where (r,θ ,z) is cylindrical coordinates. For simplicity we further assume it is stationary and
consequently ∂ f/∂ t = 0. In this case, the one-body distribution function must be a first integral
of the Hamiltonian system (1.6).

Clearly, the Hamiltonian Q(1) =H and the angular momentum Q(2) = pθ are first integrals.
It seems that other first integrals do not exist for a general potential V (r,z). Therefore, we
deduce that f = f (H, pθ ) which depends on pr and pz via the pr and pz dependences of H,
thereby allowing us to conclude that ⟨p2r ⟩ = ⟨p2z ⟩. However, this conclusion is in conflict with
the observed distribution of stellar velocities near the sun. Particularly, the observed dispersions
of velocities have approximately a ⟨p2r ⟩ : ⟨p2z ⟩= 2 : 1 ratio.

Over the years, it had been believed that on the Hamiltonian (1.6) no third integral of motion
exists (see e.g. Refs [4, 5, 6]). However, quite unexpectedly, numerical results for a number of
galactic orbits implied the existence of the third integral [8, 7]. As a result, many efforts were
made to prove analytically the existence of the last integral, Q(3) [7, 9]

In order to sketch the nature of the third integral, we follow Henon–Heiles’s simplification.
By expanding the Hamiltonian near a circular orbit r = r0,z = 0 and pθ =const., we obtain a
2-dimensional nonlinear oscillator

H =
1
2
(p2r + p2z )+

1
2
[
ω2
r (r− r0)2+ω2

z z
2]+O(r− r0,z)3 , (1.7)

where ωr and ωz are the constants determined by the derivatives of V (r,z). G. Contopoulos
showed the perturbative expression for the third integral of the Hamiltonian (1.7). However,
the third integral can be understood in a much simpler way: We take the Hamiltonian as a toy
model of eq. (1.7)

H̄ =
1
2
(p21+ p22)+

1
2
(q21+q22)+V (q1,q2) , (1.8)

where V (q1,q2) is a homogeneous potential of degree three

V (q1,q2) = µq31+νq21q2+ρq32 , (1.9)

where µ,ν ,ρ are constant parameters. For the Hamiltonian system (1.8), it is not widely known
that the following theorem holds true [10, 11, 12, 51].

Theorem 1 (Hietarinta). The Hamiltonian system (1.8) is completely integrable if and only if
the potential V belongs to the following list:

V (q1,q2) = q31 , V (q1,q2) =
1
3
q31+

µ
3
q32 , V (q1,q2) =

2µ
3
q31+q21q2+

1
3
q32 ,

V (q1,q2) = q21q2+2q32 , V (q1,q2) = q21q2+
16
3
q32 .

For instance, in the case V = q21q2+(16/3)q32, the third integral can be written explicitly as

Q(3) = 9(p22+q22)
2+12p2q22(3q1p2−q2p1)−2q42(6q

2
1+q22)−12q1q42 . (1.10)

The above discussion indicates that the behaviour of the Hamiltonian system (1.6) is very
complicated, and thus there is no simple answer to the question of the existence of the third
integral of motion. However, the final answer must be based not on a numerical analysis but on
a mathematically rigorous proof. Consequently, the problem of the third integral of motion has
not been completely resolved yet, and is still being discussed.

8



CHAPTER 1. INTRODUCTION

Painlevé analysis
Integrable Hamiltonian systems often exist discretely among a family of Hamiltonian systems,
against our expectations. A natural question arises out of the above discussion is how to recog-
nise if a given Hamiltonian has a first integral. We will mention a method called the the Painlevé
analysis, or alternatively singularity analysis [14, 15, 16].

An ordinary differential equation is said to have the Painlevé property if all its solutions
have no movable singular points other than poles. For Hamiltonian systems, a rigorous relation
between the Liouville integrability and the Painlevé property was established by an elegant and
powerful way [17]. A number of integrable Hamiltonian systems has been detected by impos-
ing the Painlevé property on their solutions (the Painlevé analysis). However, it should be stated
that for the application of the Painlevé analysis or its extension called the Morales-Ramis theory
[18], we definitely need a particular solution of the Hamiltonian system under consideration. As
there is no direct method for finding particular solutions to Hamilton’s equations, this require-
ment limits the range of applicability of the Painlevé analysis. Nevertheless, historically, the
Painlevé analysis has helped lead us to new integrable Hamiltonian systems. The first example
was made by S. Kowalevskaya.

In 1889, S. Kowalevskaya studied the motion of a rotating rigid body under a constant
gravitational force. More precisely, She explored the possible connection between the Liouville
integrability and the presence of movable poles in the solutions to the Euler–Poisson equations

A
dω1

dt
= (B−C)ω2ω3+ z0γ2− y0γ3 ,

dγ1
dt

= ω3γ2−ω2γ3 , (1.11)

B
dω2

dt
= (C−A)ω3ω1+ x0γ3− z0γ1 ,

dγ2
dt

= ω1γ3−ω3γ1 , (1.12)

C
dω3

dt
= (A−B)ω1ω2+ y0γ1− x0γ2 ,

dγ3
dt

= ω2γ1−ω1γ2 , (1.13)

where (A,B,C) denote the principal momenta of inertia and (x0,y0,z0) is the center of mass.
The angular velocity vector and direction cosines are denoted by (ω1,ω2,ω3) and (γ1,γ2,γ3),
respectively. Generally, the Euler–Poisson equations have the two first integrals

1
2
(
Aω2

1 +Bω2
2 +Cω2

3
)
+ x0γ1+ y0γ1+ z0γ3 = const. , (1.14)

Aω1γ1+Bω2γ2+Cω3γ3 = const. . (1.15)

Therefore, the existence of an additional integral guarantees that the Euler–Poisson equations
is completely integrable. Kowalevskaya examined a particular solution to the Euler–Poisson
equations and found that there are only 3 cases

x0 = y0 = z0 = 0 , (Euler)
x0 = y0 = 0 , A = B , (Lagrange)
z0 = 0 , A = B = 2C , (Kowalevskaya)

which are free from the movable singular points. It was already known from the work of Euler
and Lagrange (see [19] for review) that the first two cases are completely integrable with the
additional integral

A2ω2
1 +B2ω2

2 +C2ω2
3 = const. , (Euler)

Cω3 = const. . (Lagrange)
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CHAPTER 1. INTRODUCTION

Fortunately, Kowalevskaya also found the additional integral(
ω2
1 −ω2

2 − x0γ1
)2

+(2ω1ω2− x0γ2)2 = const. ,

and then it became known as Kowalevskaya’s top.
After her success, some integrable Hamiltonian systems were discovered by the Painlevé

analysis. On the other hand, a mathematical rigorous relation between the integrability and the
analytic properties of the solutions had been extensively studied. For Hamiltonian systems, S. L.
Ziglin established a well-organised description of the Painlevé analysis by using the monodromy
group [17]. We avoid in-depth discussion of it.

Main problem and strategy
In spite of the fact that we have a well-defined notion of complete integrability in the Liouville
sense, deciding whether a given Hamiltonian system is completely integrable is still an open
question. Looking at only Poincaré’s fundamental problem, a few mathematical statements
were made. This has motivated many authors to develop various methods to investigate the
Liouville integrability of Hamiltonian systems. One candidate is the Painlevé analysis or its ex-
tension. However, it requires particular solutions to Hamilton’s equations. Finding a particular
solution is equivalent to solving Hamilton’s equations itself, and thus the Painlevé analysis is
sometimes not constructive. As a result, the range of its applicability is highly limited.

Our purpose in this thesis is to construct a systematic method to enumerate first integrals of
a given Hamiltonian system. The main idea is laid out in the following.

Throughout this thesis, we only deal with systems described by a natural Hamiltonian

H =
1
2

N

∑
a,b=1

gab(q)papb+V (q) , (1.16)

where (q, p) are canonical variables. The first and second terms respectively denote a curved
kinetic and a potential energy. A symmetric matrix gab = gba amounts to a Riemannian metric
on configuration space. The equations of motion take the form

dqa

dt
=

∂H
∂ pa

=
N

∑
b=1

gabpb ,
dpa
dt

= − ∂H
∂qa

= − 1
2

N

∑
b,c=1

∂agbcpbpc−∂aV . (1.17)

The main idea is to use the so-called Eisenhart lift to a natural Hamiltonian (1.16) (for recent
review [20]): Introducing a new momentum pN+1, we make a natural Hamiltonian H a homo-
geneous quadratic in momenta

H̃ =
1
2

N

∑
a,b=1

gab(q)papb+V (q)p2N+1 =
1
2

N+1

∑
A,B=1

g̃AB(q)pApB , (1.18)

where pA = (pa, pN+1), g̃ab = gab, g̃N+1a = 0 and g̃N+1N+1 = 2V . This Hamiltonian can reduce
to its original counterpart (1.16) when pN+1 is set unity. We think of H̃ as new Hamiltonian
with additional canonical variables pN+1 and qN+1. The new equations of motion are written

10



CHAPTER 1. INTRODUCTION

out as

dqa

dt
=

N

∑
b=1

gabpb ,
dpa
dt

= − 1
2

N

∑
b,c=1

∂agbcpbpc− p2N+1∂aV , (1.19)

dqN+1

dt
= 2pN+1V ,

dpN+1

dt
= 0 , (1.20)

confirming that we can set pN+1 = 1. The important point is that new Hamiltonian (1.18)
describes a geodesic flow. This implies that it is enough to consider a geodesic Hamiltonian as
long as we are concerned only with a natural Hamiltonian.

Moreover, we restrict our attention to first integrals that are polynomial in momenta. For
geodesic Hamiltonian systems, such integrals can be written as

Q(q, p) = Ka1···ap(q)pa1 · · · pap , (1.21)

where Ka1···ap = K(a1···ap) is a (p,0)-type symmetric tensor field. The round brackets (· · ·)
denote symmetrisation over the enclosed indices. Square brackets over indices [· · · ]will be used
for antisymmetrisation. Here and in what follows, we will use Einstein’s summation convention
which means any repeated Latin index is to be summed from 0 to N. Requiring Q to be a first
integral, {H,Q}= 0, we are led to the Killing equation

∇(bKa1···ap) = 0 , (1.22)

where ∇ is the Levi–Civita connection. The symmetric tensor filed Ka1···ap is referred to as
Killing tensor fields (KTs). A Riemannian metric is a trivial KT and is always a solution of
the Killing equation (1.22). This corresponds to the fact that the Hamiltonian (1/2)gabpapb
is surely a first integral of the geodesic flow. The first order KTs are known as Killing vector
fields (KVs) that have been actively studied as the isometry group. The second order KTs have
also been considerably studied in connection with separation of variables in Hamilton–Jacobi
equations [21, 22, 23]. In general relativity, a nontrivial KT of second-order was discovered
in the Kerr spacetime [24, 25] which describes an isolated stationary rotating black hole in a
vacuum. In the Kerr spacetime, the geodesic equations can be solved by separation of variables
due to the presence of a KT.

It should be noted that: The presence of first integrals represents an intrinsic character
of Hamiltonian systems. On the one hand, the presence of first integrals that are a certain
degree in momenta is an extrinsic character since it depends on a certain choice of canonical
variables. Therefore, we in principle need to find out whether there is any KT of a general
order. In this thesis, we will focus on KTs up to the third order; After solving the Killing
equation (1.22), Poisson commutativity (1.2) must be examined separately. In terms of KTs,
Poisson commutativity can be written as

[K, K̄]
a1···ap+q−1
SN = 0 , (1.23)

where Ka1···ap, K̄a1···aq are KTs and [, ]SN is Schouten-Nijenhuis bracket defined by

[K, K̄]
a1···ap+q−1
SN ≡ pKb(a1···ap−1∇bK̄ap···ap+q−1)−q K̄b(a1···aq−1)∇bKaq···ap+q−1) . (1.24)

It can be confirmed that if the Schouten-Nijenhuis bracket [K, K̄]a1···ap+q−1
SN vanishes, first inte-

grals Ka1···ap pa1 · · · pap and K̄a1···aq pa1 · · · paq are Poisson commutating.
As described above, the problem of determining whether a Hamiltonian system is com-

pletely integrable is reduced to the problem how to solve the Killing equation. Then it is natural
to ask the following questions:

11



CHAPTER 1. INTRODUCTION

• Are there any solutions of the Killing equation (1.22) for given metrics?

• If the answer is yes, then how many solutions are there?

• What quantities are sufficient to determine the number of solutions?

In this thesis, we study the above issues and give partial answers. In particular, we introduce a
systematic method to analyse the Killing equation and to study its properties. A key ingredient
here is projection operators called Young symmetrisers.

Organisation of the thesis
The remainder of this thesis is organised as follows.

Chapter 2 In order to introduce Young symmetrisers which give a diagrammatic method to de-
compose the irreducible repserentations of the general linear group, we begin with some
basic concepts in representation theory. After then, we introduce Young symmetrisers
and study their properties to keep this thesis readable independently of any reference.
Young symmetrisers are the basic building block of the covariant tensor calculus in the
subsequent chapters.

Chapter 3 We give a procedure which transforms the Killing equation into a closed system
called the prolonged system by introducing new variables. Young symmetriser plays
essential roles in the procedure. It will be a first step towards better understanding of
the integrability of the Killing equation. In particular, the closed system serves to put a
maximum upper bound on the number of linearly independent solutions to the Killing
equation.

Chapter 4 We formulate the integrability conditions of of the prolonged system. It provides
a concrete way to enumerate the number of the solutions to the Killing equation. Our
analysis here is also based on Young symmetrisers. We also demonstrate a method for
computing the dimension of the space of KTs with a specific example.

Chapter 5 We characterise metrics which admit Killing vector fields by local curvature ob-
structions. The obstructions will be obtained by analysing the integrability condition and
the original Killing equation. As a consequence, the algorithm that tells us exactly how
many Killing vector fields exist for 3-dimensional Riemannian metrics will be formulated.

Chapter 6 Killing tensor fields arise out of an assumption that first integrals of a geodesic flow
are polynomial in momenta. It is then natural to relax this assumption and conceive of
first integrals that are meromorphic in momenta. We call them the rational first integrals.
As a consequence, we are naturally led to introduce gauged Killing tensor fields.

Chapter 7 We summarise this thesis and conclude our study with a summary and outlook.

12



Chapter 2

Young symmetriser

The aim of this chapter is to introduce projection operators called Young symmetrisers. Young
symmetrisers are the basic building block of the covariant tensor calculus in the subsequent
chapters since they make it a snap to take multi-term symmetries (such as the first Bianchi
identity R[abc]

d = 0) into account. In our notation the Latin letters (a,b,c, . . .) are identified as
a naturally ordered set (1,2,3, . . .). Therefore, for instance, the standard Young tableau Y 1 2

3 4
is

equated with Y a b
c d

which is more suitable for the calculus. We also order the subscripted Latin

letters (a1,a2, . . . ,b1,b2, . . .) as a1 < a2 < · · ·< b1 < b2 < · · · .
This chapter consists of four sections: In Section 2.1 we commence by some basic concepts

in representation theory. In Section 2.2 we then introduce the definition and properties of Young
symmetrisers. Section 2.3 is devoted to resolving a technical issue of Young symmetriser. In
Section 2.4 we collect some useful theorems without any proof. See Ref. [26] for more on
Young tableaux and the representation theory of symmetric groups.

2.1 Preliminaries
In order to introduce Young symmetrisers which give a diagrammatic method to decompose the
irreducible repserentations of the general linear group, we begin with some basic concepts in
representation theory.

Definition 2 (partition). A partition of a positive integer k is a set of integers (λ1,λ2, . . .λk) such
that

λ1 ≥ λ2 ≥ ·· · ≥ λk ≥ 0 , λ1+λ2+ · · ·+λk = k . (2.1)

For instance, the natural number 3 can be partitioned in three distinct ways

3 = 3 = 2+1 = 1+1+1 .

Any partition can be graphically represented by using Young diagrams.

Definition 3 (Young diagram). A Young diagram is a finite collection of boxes arranged in k
rows corresponding to a partition of k.

For instance, the following three diagrams corresponding to partitions of the natural number 3.

︸︷︷︸
3

, ︸︷︷︸
2+1

, ︸︷︷︸
1+1+1

.

13



CHAPTER 2. YOUNG SYMMETRISER

Subsequently we introduce a standard Young tableau which denotes the irreducible representa-
tion of the general linear groups.

Definition 4 (standard Young tableau). A standard Young tableau is a filling of a Young diagram
with the natural numbers 1,2, . . . ,k so that entries are increasing along rows and columns.

For instance, the possible standard Young tableaux with three boxes are written as follows.

1 2 3 , 1 2
3

, 1 3
2

, 1
2
3

.

At the end, we define the hook length of a box in a Young diagram. It will be used to determine
the normalisation of Young symmetrisers.

Definition 5 (hook length). The hook length h(i, j) of a box (i, j) in a Young diagram is the
number of boxes that are in the same row i to the right of it, plus the number of boxes in the
same column j below it, plus one.

3 2 1 , 3 1
1

, 3
2
1

.

2.2 Definition and properties
A Young symmetriser YΘ is defined as the projection operator corresponding to a standard
Young tableau Θ which makes sequential row-by-row symmetrisation and column-by-column
antisymmetrisation. To be precise, for a Young diagram θ (this is a partition of the integer k)
and one of its standard Young tableaux Θ, the Young symmetriser reads

YΘ ≡ αθ ∏
Ci∈col(Θ)

ÂCi ∏
Ri∈row(Θ)

ŜRi , (2.2)

where ŜRi (ÂCi) denotes the (anti-)symmetrisation of the slots corresponding to the entries in
the ith row (column) of the tableau Θ; αθ is the normalisation factor determined so as to satisfy
Y 2

Θ = YΘ and depends only on the shape of the Young diagram not the particular tableau.
For instance, let θ = and Θ = a b

c d
, then the corresponding Young symmetriser reads

Y a b
c d

= α ÂacÂbd Ŝcd Ŝab , (2.3)

with

α = (2!)4

|θ | = 4
3 , (2.4)

where |θ | the product of hook lengths of the boxes of θ , i.e.

|θ | = 3 ·2 ·2 ·1 = 12 , (2.5)

since the tableau listing the hook length of each box in θ is given by 3 2
2 1

. The numerator of

eq. (2.4) comes from the normalisation of ÂacÂbd Ŝcd Ŝab. Notice that both ŜRi and ÂCi are also
idempotent, e.g. Ŝab if defined by 1/(2!)(id2+(a,b)) and not (id2+(a,b)) where id2 is the
identity operator and (a,b) denotes the permutation that swaps indices a and b.

Young symmetrisers are endowed with the following three properties.

14



CHAPTER 2. YOUNG SYMMETRISER

Idempotence

Y 2
Θ = YΘ , ∀Θ ∈ Yk , (2.6)

Orthogonality

YΘ YΦ = δΘΦ YΦ , ∀Θ ,Φ ∈ Yk , (k = 1,2,3,4) (2.7)

Completeness

∑
Θ∈Yk

YΘ = idk , (k = 1,2,3,4) (2.8)

where Yk denotes the set of all standard Young tableaux with k boxes, e.g.

Y2 =
{

a b , a
b

}
, Y3 =

{
a b c , a b

c
, a c

b
, a

b
c

}
.

It is worth mentioning that the orthogonality (2.7) holds for general k if the shapes of the
tableaux Θ and Φ are different.

Throughout the remaining part of this thesis, it is stipulated that the Young symmetriser with
k boxes acts only on covariant not contravariant indices of a type (n,m) tensor field T for m≥ k,
e.g. Y a b Tab is well-defined and yields 1/2(Tab+Tba) but Y a b T ab is an ill-defined operation.
Note that any Young symmetriser does not commute with the trace operation, e.g. gabY a b Tab is
well-defined but Y a b gabTab is an ill-defined.

In the stipulation, Young symmetrisers provide a decomposition of the space of all tensor
fields into its irreducible representations for the action of the general linear group. For instance,
the decomposition of a type (0,2) tensor field T into the irreducible representations can be done
as

Tab = id2 Tab = (Y a b +Y a
b
)Tab = T(ab)+T[ab] ,

where in the second equality we have used the compleness relation (2.8). For a type (0,3) tensor
field T , a similar calculation reads

Tabc = (Y a b c +Y a b
c

+Y a c
b

+Y a
b
c

)Tabc

= T(abc)+
4
3 ÂacT(ab)c+

4
3 ÂabT(a|b|c)+T[abc] .

But at k= 5 the subsequent calculation reaches a deadlock since the completeness relation (2.8)
no longer holds for k ≥ 5. The standard example of this is

Y a b
c d
e

= 0 but Y a d
b e
c

̸= 0 ,

implying that the orthogonality (2.7) is broken down.
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2.3 Littlewood’s correction
The failure of the orthogonality and completeness of Young symmetrisers with k ≥ 5 boxes
is fatally shot in practical use. Fortunately, it is known that this can be complemented by
Littlewood’s correction [27]. We shall present it here. For other prescriptions, see Refs. [28,
29].

Before going into the details, we introduce the following two definitions:

Definition 6 (row-word of a Young tableau). Let Θ ∈ Yk be a Young tableau. The row-word of
Θ, say row(Θ), is defined as the row vector whose entries are those of Θ read row-wise from
top to bottom.

For instance, suppose Θ = a b
c d
e

. Then the row-word of Θ reads row(Θ) = (a,b,c,d,e).

Definition 7 (row-order relation). Let Θ and Φ be two Young tableaux of the same shape.
Denoting row(Θ)i be the ith component of row(Θ), it is said that Θ precedes Φ and write
Θ ≺ Φ if row(Θ)i < row(Φ)i for the leftmost i where row(Θ)i and row(Φ)i differ.

Using the row-order relation, we can order the Young tableaux of the same shape, e.g.

a b
c d
e

≺ a b
c e
d

≺ a c
b d
e

≺ a c
b e
d

≺ a d
b e
c

.

The following result is an easy consequence of the row-order relation. Let {Θ1, Θ2,Θ3, . . .}
be the set of all Young tableaux in Yk with a particular shape. Suppose this set be ordered as
Θi ≺ Θ j whenever i< j, one can see by inspection that the one-sided orthogonality

YΘi YΘ j = 0 , (2.9)

holds true.
We are now able to state Littlewood’s correction. The Young symmetriser with Littlewood’s

correction, say LΘi , corresponding the tableau Θi ∈ {Θ1,Θ2,Θ3, . . .} is iteratively defined by

LΘi ≡ YΘi

(
1−

i−1

∑
j=1

LΘ j

)
, (2.10)

or the factorised form

LΘi = YΘi

i−1

∏
j=1

(
1−YΘi− j

)
. (2.11)

It is possible to prove [27] that the Young symmetrisers with correction (2.10) recover the
orthogonality,

LΘ LΦ = δΘΦ LΦ , ∀Θ ,Φ ∈ Yk , (2.12)

and the completeness,

∑
Θ∈Yk

LΘ = idk , (2.13)
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for general k. Here, we only prove the orthogonality (2.12). If LΘi and LΘ j correspond to
tableaux of the same shape with Θi ≺ Θ j whenever i< j, then

LΘi LΘ j = 0 ,

holds by the one-sided orthogonality (2.9). Moreover, we have

LΘ j LΘi = YΘ j (1−YΘ j−1) · · · (1−YΘi) · · · (1−YΘ1)YΘi (1−YΘi−1) · · · (1−YΘ1)

= YΘ j (1−YΘ j−1) · · · (YΘi −Y 2
Θi
) (1−YΘi−1) · · · (1−YΘ1) = 0 ,

confirming eq. (2.12).
It is advisable to note that all the corrections in (2.10) vanish for the tableaux with k ≤ 4

boxes, then LΘi reduces to YΘi . Even for k ≥ 5, many corrections would vanish, e.g. At k = 5
the only two symmetrisers

L a c e
b d

= Y a c e
b d

(
1−Y a b c

d e

)
, L a d

b e
c

= Y a d
b e
c

(
1−Y a b

c d
e

)
,

differ from their original counterparts. Thus it is useful for practical use to make it clear what
kinds of the Young symmetrisers with Littlewood’s correction are equivalent to the original
counterparts. Since the tableau a1 ... ... ...ap

b1 ...bq
c

is row-ordered, it follows from the definition

La1 ... ... ...ap
b1 ...bq
c

= Ya1 ... ... ...ap
b1 ...bq
c

. (2.14)

It is also shown that

La1 ... ... ... ... ...apb2
b1b3 ...bq c

= Ya1 ... ... ... ... ...apb2
b1b3 ...bq c

(
1−Ya1 ... ... ... ... ...apb1

b2b3 ...bq c

)
= Ya1 ... ... ... ... ...apb2

b1b3 ...bq c
, (2.15)

La1 ... ... ... ... ... ...apb3
b1b2b4 ...bq c

= Ya1 ... ... ... ... ... ...apb3
b1b2b4 ...bq c

(
1−Ya1 ... ... ... ... ...apb1

b2b3 ...bq c

) (
1−Ya1 ... ... ... ... ...apb2

b1b3 ...bq c

)
= Ya1 ... ... ... ... ... ...apb3

b1b2b4 ...bq c
, (2.16)

and so on, where we have only used the relations Ŝa1b2 Âa1b2 = 0 and Ŝa2b3 Âa2b3 = 0. In general,
the corrected symmetriser

La1 ... ... ... ... ... ...ap bi
b1 ... /bi ...bq c

, with p≥ q≥ 1 , q≥ i≥ 2 , (2.17)

is coincident with its original counterpart by a trivial relation Ŝai−1bi Âai−1bi = 0.

2.4 Theorems
In this section, we collect some theorems that are of fundamental importance in the next chap-
ter. We also carry out sample calculations which will be helpful to readers to acquire a better
understanding of the theorems.

First we show the result referred to as Schur’s lemma in the context of the representation
theory of symmetric groups.

Theorem 8 (Schur). Let Θ and Φ be Young tableaux with k boxes. If YΘ and YΦ are orthogonal,
that is YΘ YΦ = 0, then

YΘ σ YΦ = 0 , (2.18)

holds true for an arbitrary permutation σ .
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Take as an example the product Y a b
c d

Y a b
c

and expand it to

Y a b
c d

Y a b
c

id4 = Y a b
c d

Y a b
c

∑
Θ∈Y4

YΘ = Y a b
c d

Y a b
c

Y a b
c d

,

where in the last equality we have used Schur’s lemma.
Second, we state Raicu’s theorem.

Theorem 9 (Raicu). Let Θ ∈ Yk and Φ ∈ Yk+1. Suppose that the unique entry in Φ outside Θ
is located in the right edge of the tableau Φ, then

YΘ YΦ = YΦ , (2.19)

holds true.

Using Raicu’s theorem, the product Y a b
c d

Y a b
c

Y a b
c d

can be simplified to

Y a b
c d

Y a b
c

Y a b
c d

= Y a b
c d

Y a b
c d

= Y a b
c d

.

To be precise, the above theorem is merely an example of Raicu’s theorem. A complete wording
of Raicu’s theorem can be found in Ref. [30].

At last, we state an important result, called Pieri’s formula, from the representation theory
of symmetric groups.

Theorem 10 (Pieri). Let θ and ϕ be two Young diagrams with k and k+ℓ (ℓ≥ 1) boxes respec-
tively. It is said that ϕ includes θ if θ is a subdiagram of ϕ . Let Θ and Φ be Young tableaux of
shapes θ and ϕ respectively, then

YΘ YΦ = YΦ YΘ = 0 , (2.20)

holds if ϕ does not include θ .

It should be noted that the first Bianchi identity, R[abc]
d = 0, can be recaptured by Pieri’s for-

mula. We know that Rabcd belongs to a c
b d

, and hence the first Bianchi identity can be written in
terms of Young symmetrisers as

Y a
b
c

Y a c
b d

= 0 ,

which is clearly a type of Pieri’s formula. Therefore we can say that Pieri’s formula is a gener-
alisation of the Bianchi identity.

Before closing this chapter, we look at an example of the actual application of Pieri’s for-
mula. Take the product Y a b

c
∑Θ∈Y4YΘ and expand it to

Y a b
c

∑
Θ∈Y4

YΘ = Y a b
c

∑
(
Y +Y +Y

)
= Y a b

c

(
Y a b

c d
+Y a b

c
d

+Y a b c
d

+Y a b d
c

)
,

where in the first equality we have used Pieri’s formula (2.20).
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Chapter 3

Prolongation of the Killing equation

In this chapter, we give a procedure which transforms the Killing equation into a closed system
by introducing new variables. Young symmetriser plays essential roles in the procedure. It
will be a first step towards better understanding of the integrability of the Killing equation. In
particular, the closed system serves to put a maximum upper bound on the number of linearly
independent solutions to the Killing equation.

This chapter consists of four sections: In Section 3.1 we take a brief look at a procedure
of prolongation of the Killing equation in classical literature. In Section 3.2 we improve the
procedure of prolongation of the Killing equation by using Young symmetrisers introduced in
Chapter 2. In Section 3.3 we give the explicit forms of the prolonged system for the Killing
equation up to the third order. In Section 3.4 we comment on a geometric interpretation of the
prolonged system. We also show the Barbance–Delong–Takeuchi–Thompson formula which
gives the upper bound on the number of linearly independent solutions to the Killing equation
of the pth order.

3.1 Preliminaries
Before proceeding, it is instructive to take the simplest case in order to grasp the intuitive sig-
nificance of the Killing equation. In particular, we aim to illustrate a procedure of prolongation
in classical literature. Thus we here consider a Killing vector field satisfying the equation

∇(aKb) = 0 . (3.1)

One immediate observation is that eq. (3.1) is an overdetermined linear system since there
are N(N+1)/2 equations for N variables, and consequently might not have any solutions. We
then follow the well-known procedure of prolongation to find a maximum upper bound on the
dimension of the solution space.

Prolongation of an overdetermined system of partial differential equations proceeds by in-
troducing new dependent variables for unknown higher derivatives to establish a first order
closed system, in which all the first derivatives of all the dependent variables are completely
expressed in terms of the variables themselves.

For the Killing equation of the first order, the prolongation procedure had been established
in classical literature (e.g. Ref. [31]). In fact we can derive a closed system by the following
way: Let Ka be a Killing (co-)vector field and consider definition of the Riemann curvature
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tensor

∇a∇bKc−∇b∇aKc = Rabc
dKd . (3.2)

By using the Killing equation (3.1), we can rewrite eq. (3.2) as

∇a∇bKc+∇b∇cKa = Rabc
dKd , (3.3)

and call the same equations with cyclic permutations of the indices abc as

∇b∇cKa+∇c∇aKb = Rbca
dKd , (3.4)

∇c∇aKb+∇a∇bKc = Rcab
dKd . (3.5)

Adding eq. (3.3) to eq. (3.4) and then subtracting eq. (3.5), we obtain

2∇b∇cKa = (Rabc
d +Rbca

d −Rcab
d)Kd = 2Racb

dKd . (3.6)

By combining the above equation (3.6) and the Killing equation (3.1), we are led to a closed
system of the form

∇aKb = K(1)
ab , (3.7a)

∇aK
(1)
bc = Rcba

dKd , (3.7b)

where K(1)
ab ≡ K(1)

[ab]. An overdetermined system that can be transformed into a closed system is
called of finite type. Hereafter, the closed system obtained by prolongation is referred to as the
prolonged system.

We remark that the Killing equation (3.1) is first order PDE but the prolonged system (3.7)
necessarily involves second derivatives of a Killing vector field Ka. As we will see in the next
section, the Killing equation of the pth-order is also an overdetermined system of finite type and
needs (p+ 1)th-order derivatives of a Killing tensor field Ka1···ap to complete the prolongation
procedure.

We also remark that if we have the values of (Ka,K
(1)
ab ) at any point, then (Ka,K

(1)
ab ) at any

other point is in principle determined by integration of the prolonged system (3.7). Conse-
quently, the upper bound on the dimension of the solution space on a N-dimensional space M
is given by

dimK1(M) ≤ N+
N(N−1)

2
=

N(N+1)
2

, (3.8)

where K1(M) denotes the solution space of the Killing equation of the first order. This bound is
saturated if and only if M is of constant curvature.

3.2 Prolongation procedure
As indicated in the preceding section, even in the first order case, the procedure of prolongation
of the Killing equation is rather complicated. Such a procedure is quickly becoming more
and more complicated as the order of the Killing tensor field grows. We therefore refine the
prolongation procedure of the Killing equation. A key ingredient here is Young symmetrisers
introduced in Chapter 2.
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CHAPTER 3. PROLONGATION OF THE KILLING EQUATION

Our procedure of prolongation is based on a decomposition of the space of all tensor fields
into its irreducible representations for the action of the general linear group: Let Ka be a Killing
(co-)vector field and consider its derivatives. Since ∇bKa is a type (0,2) tensor field, its irre-
ducible representations reads

∇bKa = id2 ∇bKa =
(
Y a b +Y a

b

)
∇bKa = Y a

b
∇bKa ≡ K(1)

ba , (3.9a)

where we have inserted the completeness relation (2.8) in the second equality and have used
the Killing equation (3.1) in the third equality. We next consider ∇cK

(1)
ba as the above equation

(3.9a) is not yet closed. The irreducible representations reads

∇cK
(1)
ba = Y a

b
∇cbKa = Y a

b

(
Y a b c +Y a b

c
+Y a c

b
+Y a

b
c

)
∇cbKa = Y a

b
Y a c

b
∇cbKa

= Y a
b
Y a c

b

(
2∇[cb]Ka+∇bcKa

)
= Y a

b
Y a c

b
Rcba

dKd , (3.9b)

where ∇ab···c ≡ ∇a∇b · · ·∇c. In the third equality, all the Young symmetrisers except for the
third one vanish because of Pieri’s formula (2.20), the Killing equation (3.1) and the first Bianchi
identity R[abc]

d = 0. A system of linear differential equations (3.9) is now closed. This implies
that we are at the completion of the procedure of prolongation.

Our prolongation procedure can be extended to the higher-order cases. We take as another
example Killing tensor fields of the second order obeying

∇(aKbc) = 0 , with Kab = K(ab) , (3.10)

and skip more higher-order cases due to space considerations. Let us consider ∇cKba. Its
irreducible representations reads

∇cKba = Y a b ∇cKba = Y a b

(
Y a b c +Y a b

c
+Y a c

b
+Y a

b
c

)
∇cKba = Y a b Y a b

c
∇cKba

≡ Y a b K(1)
cba , (3.11a)

where the third equality follows from the Killing equation (3.10) and a trivial relationY a b Y a
b

=

0. We subsequently consider ∇dK
(1)
cba because eq. (3.11a) is not closed. The irreducible repre-

sentations of ∇dK
(1)
cba reads

∇dK
(1)
cba = Y a b

c
∇dcKba = Y a b

c

(
Y a b

c
d

+Y a b d
c

+Y a b
c d

)
∇dcKba

= Y a b
c

([
Y a b

c
d

+2Y a b d
c

]
∇[dc]Kba+K(2)

dcba

)
= Y a b

c

([
Y a b

c
d

+2Y a b d
c

]
Rdcb

mKma+K(2)
dcba

)
, (3.11b)

where K(2)
dcba ≡ Y a b

c d
∇dcKba. We have used Pieri’s formula (2.20) and the Killing equation

(3.10) in the second equality. We further consider ∇eK
(2)
dcba as eq. (3.11b) is not yet closed.
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Notice in advance that the number of boxes of Young tableaux exceeds 4, so we need to take
the Littlewood’s correction (2.10) into account.

∇eK
(2)
dcba = Y a b

c d
∇edcKba = Y a b

c d

(
L a b

c d
e

+L a b d
c e

+L a b e
c d

)
∇edcKba

= Y a b
c d

(
Y a b

c d
e

+Y a b d
c e

[1−Y a b c
d e

]+Y a b e
c d

[1−Y a b d
c e

][1−Y a b c
d e

]
)
∇edcKba

= Y a b
c d

(
Y a b

c d
e

+Y a b d
c e

+Y a b e
c d

)
∇edcKba , (3.11c)

where all the Littlewood’s corrections did not affect the result (3.11c) because of trivial relations
Y a d Y a

d
= 0 and Y b e Y b

e
= 0. Prolongation is still pursued by

∇eK
(2)
dcba = Y a b

c d

(
Y a b

c d
e

∇edcKba+2Y a b d
c e

∇e[dc]Kba+Y a b e
c d

[
2∇[ed]cKba+2∇d[ec]Kba

])
= Y a b

c d

(
Y a b

c d
e

∇edcKba+Y a b d
c e

[
2(∇eRdcb

m)Kma+Rdcb
mK(1)

mea−2Rdcb
mK(1)

mae

]
+Y a b e

c d

[
Redc

mK(1)
mba+2Redb

mK(1)
mca−4Redb

mK(1)
mac+2(∇dRecb

m)Kma

])
. (3.11d)

A straightforward calculation makes the first term explicit as

Y a b
c d
e

∇edcKba =
1
6

(
4Recd

mK(1)
mab−9Racd

mK(1)
meb−9Reac

mK(1)
mdb+5Racd

mK(1)
mbe

+5Reca
mK(1)

mdb+2(∇cReda
m)Kmb+2(∇cRdab

m)Kme−2(∇cReab
m)Kmd

)
. (3.11e)

The results (3.11a)–(3.11e) imply that we are at the completion of the procedure of prolonga-
tion.

3.3 Prolonged systems
In this section, we first provide the prolonged system for the Killing equation of the pth order

∇(aKb1···bp) = 0 , (3.12)

without any proof. A sketch of proof is shown later in this section. To provide the prolonged
system, we introduce the prolongation variables,

K(q)
bq···b1ap···a1 ≡ Ya1 ... ... ...ap

b1 ...bq
∇bq···b1Kap···a1 , (1≤ q≤ p) (3.13)

where ∇ab···c = ∇a∇b · · ·∇c, Kap···a1 is a KT of the pth order. We remark that one needs (p+1)
prolongation variables to carry out the prolongation for KTs, while that for Killing-Yano tensor
fields involves only two prolongation variables for any order (see [32, 33] or Section 4.4). This
fact complicates the prolongation for the Killing equation (3.12).
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CHAPTER 3. PROLONGATION OF THE KILLING EQUATION

We are now ready to provide the prolonged system. The prolongation for the Killing equa-
tion of the pthorder can be achieved as follows:

∇cKap···a1 = Ya1 ...ap K
(1)
cap···a1 , (3.14)

∇cK
(q)
bq···b1ap···a1 = Ya1 ... ... ...ap

b1 ...bq

([
Ya1 ... ... ...ap

b1 ...bq
c

+Ya1 ... ... ...ap c
b1 ...bq

+
q

∑
i=2

Ya1 ... ... ... ... ... ...ap bi
b1 ... /bi ...bq c

]
∇cbq···b1Kap···a1

+K(q+1)
cbq···b1ap···a1

)
, (1≤ q≤ p−1) (3.15)

∇cK
(p)
bp···b1ap···a1 = Ya1 ...ap

b1 ...bp

[
Ya1 ...ap

b1 ...bp
c

+Ya1 ...ap c
b1 ...bp

+
p

∑
i=2

Ya1 ... ... ... ...ap bi
b1 ... /bi ...bp c

]
∇cbp···b1Kap···a1 , (3.16)

where the slashed index /bi is deleted from the Young tableau.
It is noteworthy to comment that the derivative terms look like being left on the right-hand

side. However, by virtue of the properties of Young symmetrisers, those terms can be replaced
with non-derivative terms whose coefficients consist of the Riemann curvature tensor and its
derivatives. The proof is given by induction with respect to q as follows: For a fixed q (1≤ q≤
p), the first term in the parenthesis of eqs. (3.15) and (3.16) reads

Ya1 ... ... ...ap
b1 ...bq
c

∇cbq···b1Kap···a1 ∝ Âaqbq · · · Âa2b2
(
Âa1b1c∇c(bq···b1)Kap···a1

)
. (3.17)

Performing the symmetrisation over the indices b1, · · · ,bq in the above expression, we obtain the
q! terms. For each term, we then exchange b1 with the index immediately to the left repeatedly
as

∇cbq···b2b1 = ∇cbq···b1b2 +∇cbq···[b2b1] = ∇cbq···b1b3b2 +∇cbq···[b3b1]b2 +∇cbq···[b2b1] = · · · ,

until b1 comes next to c. After that, we act Âa1b1c on the resulting terms so as to replace the
outer two derivatives ∇cb1 with the Riemann curvature tensor, confirming that eq. (3.17) can be
cast in the prolongation variables of lower orders than q with the coefficients of the Riemann
curvature tensor and its derivatives. Similarly, the summands in eqs. (3.15) and (3.16) can read

Ya1 ... ... ... ...apb2
b1 ...bq c

∇cbq···b1Kap···a1 = Ya1 ... ... ... ...apb2
b1 ...bq c

2∇cbq···[b2b1]Kap···a1 ,

Ya1 ... ... ... ...apb3
b1 ...bq c

∇cbq···b1Kap···a1 = Ya1 ... ... ... ...apb3
b1 ...bq c

(
2∇cbq···[b3b2]b1Kap···a1 +2∇cbq···b2[b3b1]Kap···a1

)
,

and so on. We deduce that all the summands can also be cast in the prolongation variables of
lower orders than q with the coefficients of the Riemann curvature tensor and its derivatives.
We therefore conclude that eqs. (3.14)–(3.16) are sufficient to state that the prolongation has
been completed.

We show the explicit forms of the prolonged system for p = 1, 2 and 3. The prolonged
system for KVs is given by

∇bKa = K(1)
ba , (3.18)

∇cK
(1)
ba = Y a

b
Y a c

b
Rcba

dKd , (3.19)
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which completely agree with eqs. (3.7); for the second-order, the prolonged system is given by

∇cKba = Y a b K(1)
cba , (3.20)

∇dK
(1)
cba = Y a b

c

[
K(2)
dcba−

5
2Rdac

mKmb−2Rdab
mKmc+

1
2Racb

mKmd

]
, (3.21)

∇eK
(2)
dcba = Y a b

c d

[
−4

3(∇aRbcd
m)Kme− 2

3(∇eRcab
m)Kmd − 8

3(∇aRbde
m)Kmc−12Reac

mK(1)
mdb

−4Reab
mK(1)

mcd −
2
3Rcab

mK(1)
mde+

7
3Rcab

mK(1)
med

]
. (3.22)

Compared with the results of [34, 35, 36, 37], our results have simpler forms; taking one more
step, we can write out the prolonged system for the third-order explicitly.

∇dKcba = Y a b c K(1)
dcba , (3.23)

∇eK
(1)
dcba = Y a b c

d

[
K(2)
edcba−3Read

mKmbc−5Reab
mKmdc−Rdab

mKmce

]
, (3.24)

∇ fK
(2)
edcba = Y a b c

d e

[
K(3)

f edcba+2(∇bRead
m)Kmc f +2(∇bReac

m)Kmd f +2(∇bR f ac
m)Kmde

+6(∇bR f ad
m)Kmce−2(∇bR f da

m)Kmce− 32
3 R f bc

mK(1)
meda−

16
3 R f ba

mK(1)
mced

−20R f be
mK(1)

mcda+
2
3Rcea

mK(1)
mbd f −

10
3 Rbea

mK(1)
mf cd +

2
3Rbea

mK(1)
mfdc

]
, (3.25)

∇gK
(3)
f edcba = Y a b c

d e f

[
−24Rg f c

mK(2)
mdbea−6Rg f d

mK(2)
mecba+4R f cd

mK(2)
mgbae−12R f cd

mK(2)
mgeba

−20(∇dRaeg
m)K(1)

mbc f +12(∇dRage
m)K(1)

mbc f −2(∇ fRgde
m)K(1)

mcba

− 3
2(∇dRae f

m)K(1)
mbcg−16(∇dRaeb

m)K(1)
mgc f −3(∇dRae f

m)K(1)
mgbc

+ 9
2(∇ f eRbda

m)Kmgc− 9
2(∇edR f cg

m)Kmba+3(∇geRa f c
m)Kmdb

+6Rg f c
mRebd

nKmna+5Rg f e
mRdac

nKmnb+6Rg f e
mRmac

nKndb

−4R f be
mRmgd

nKnac+
1
2R f be

mRmdg
nKnac−9Rdb f

mRmcg
nKnea

−2R f ce
mRmbd

nKnag+
11
2 R f ce

mRmdb
nKnag

]
. (3.26)

Let us provide a sketch of the proof for the results (3.14)–(3.16). Since Kap···a1 is totally
symmetric, we have

∇cKap···a1 = Ya1 ...ap idp+1 ∇cKap···a1 ,

where idp+1 is the identity operator. Using the completeness of the Young symmetrisers with
Littlewood’s correction (2.13) yields

Ya1 ...ap idp+1 ∇cKap···a1 = Ya1 ...ap

(
La1 ...ap

c
+ · · ·

)
∇cKap···a1 .

The round brackets contain a lot of the Young symmetrisers. However, most of these sym-
metrisers vanish due to Pieri’s formula (2.20) and the Killing equation (3.12), leaving only
La1 ...ap

c
. Thus we obtain

∇cKap···a1 = Ya1 ...ap La1 ...ap
c

∇cKap···a1 . (3.27)
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The tableau a1 ...ap
c

is row-ordered and then La1 ...ap
c

is equal to Ya1 ...ap
c

, confirming eq. (3.14). Simi-

larly, differentiating the qth prolongation variable (3.13) for 1≤ q≤ p gives

∇cK
(q)
bq···b1ap···a1 = Ya1 ... ... ...ap

b1 ...bq
∇cbq···b1Kap···a1

= Ya1 ... ... ...ap
b1 ...bq

[
La1 ... ... ... ...ap

b1 ...bq c
+La1 ... ... ...ap

b1 ...bq
c

+La1 ... ... ...ap c
b1 ...bq

+
q

∑
i=2

La1 ... ... ... ... ... ...ap bi
b1 ... /bi ...bq c

]
∇cbq···b1Kap···a1 . (3.28)

As we see from eq. (2.15)–(2.16), all Littlewood’s corrections in the above expression vanish
and thus LΘ equals YΘ. We therefore obtain eq. (3.15), concluding the proof. Note that the
expression (3.28) is also valid for q= p if La1 ... ... ... ...ap

b1 ...bq c
is omitted.

3.4 Geometric interpretation
Once the prolonged system (3.14)–(3.16) has been formulated, one may forget the definitions
of the prolongation variables (3.13) because one can reconstruct eqs. (3.12) and (3.13) from the
prolonged system (3.14)–(3.16) under the assumption

K(q)
bq···b1ap···a1 = Ya1 ... ... ...ap

b1 ...bq
K(q)
bq···b1ap···a1 , (3.29)

which means that the prolonged system (3.14)–(3.16) with the assumption (3.29) are equivalent
to the Killing equation (3.12). A proof of this assertion is given as follows: Suppose the pro-
longed system (3.14)–(3.16) with the assumption (3.29) hold. First, multiplying both sides of
eq. (3.14) by Ya1 ...ap c from the left gives

∇(cKap···a1) = Ya1 ...ap c Ya1 ...ap
c

K(1)
cap···a1 = 0 , (3.30)

confirming the Killing equation (3.12). We have used the orthogonality of Young symmetrisers
(2.7) here. Next, multiplying both sides of eq. (3.15) by Ya1 ... ... ... ...ap

b1 ...bq c
from the left yields

Ya1 ... ... ... ...ap
b1 ...bq c

∇cK
(q)
bq···b1ap···a1 = Ya1 ... ... ... ...ap

b1 ...bq c
Ya1 ... ... ... ...ap

b1 ...bq
K(q+1)
cbq···b1ap···a1 = K(q+1)

cbq···b1ap···a1 , (3.31)

which leads to

K(q+1)
cbq···b1ap···a1 = Ya1 ... ... ... ...ap

b1 ...bq c
· · ·Ya1 ...ap

b1
∇cbq···b1Kap···a1 = Ya1 ... ... ... ...ap

b1 ...bq c
∇cbq···b1Kap···a1 , (3.32)

where we have used the identity

Ya1 ... ... ... ...ap
b1 ... bi c

Ya1 ... ... ... ...ap
b1 ... bi

= Ya1 ... ... ... ...ap
b1 ... bi c

, (3.33)

which follows from Schur’s lemma (2.18) and Raicu’s formula (2.19).
Geometrically, the set of the variables (3.29) can be viewed as a section of the vector bundle

E(p) overM

E(p) = ...︸ ︷︷ ︸
p boxes

⊕ ...︸ ︷︷ ︸
(p+1) boxes

⊕ ·· · ⊕ ...
...︸ ︷︷ ︸

2p boxes

, (3.34)
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where the fibers are irreducible representations of GL(N) corresponding to the Young diagrams.
Moreover, the prolonged system (3.14)–(3.16) can be viewed as the parallel equation for a
section of E(p),

DaKKK = 0 , (3.35)

where Da ≡ ∇a−Ωa is the connection on E(p) and KKK is a section of E(p). Ωa ∈ End(E(p))
depends on the Riemann curvature tensor and its derivatives up to (p−1)th order which can be
read off from the right-hand side of the prolonged system (3.14)–(3.16). Hence it turns out that
there is a one-to-one correspondence between KTs of the pth order and the parallel sections.
This leads to the Barbance-Delong-Takeuchi-Thompson (BDTT) formula [38, 39, 40, 41]

dimKp(M) ≤ 1
n

(
N+ p
p+1

)(
N+ p−1

p

)
= rankE(p) , (3.36)

where Kp(M) denotes the space of KTs of the pth order in an N-dimensional space(-time) M.
The equality is attained if and only if M is of constant curvature.
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Chapter 4

Integrability conditions of the Killing
equation

In the previous chapter, we have formulated the prolonged system of the Killing equation (3.12)
in a manner that uses Young symmetrisers. We have also seen the BDDT formula (3.36) that
gives a maximum upper bound on the number of linearly independent solutions to the Killing
equation. In this chapter, we formulate the integrability conditions of the prolonged system. It
provides a concrete way to enumerate the number of the solutions to the Killing equation. Our
analysis here is also based on Young symmetrisers introduced in Chapter 2.

This chapter consists of four sections: In Section 4.1 we provide the explicit forms of the
integrability condition up to the third order. We also make a conjecture on the integrability con-
dition for a general order. In Section 4.2 we demonstrate a method for computing the dimension
of the space of KTs with a specific example. A derivation of the formula for the integrability
condition (4.8) have been posted in Section 4.3. In Section 4.3, we make a slight digression to
discuss the Killing-Yano equation by using our analysis.

4.1 Main results
This section is devoted to investigating the integrability conditions of the prolonged system for
KTs of the pth order, which arises as a consistency condition:

0 = 2 I(p,q)a1···apb1···bqcd ≡ ∇dcK
(q)
bq···b1ap···a1 −∇cdK

(q)
bq···b1ap···a1 −2∇[dc]K

(q)
bq···b1ap···a1 , (4.1)

where it is understood that; the first and second terms in eq. (4.1) are evaluated by the equation
for the qth prolonged variable (3.15); on the one hand, the last term in eq. (4.1) is described by
the defining equation of the Riemann curvature tensor.

Calculating the integrability condition (4.1) up to p= 3, we obtain the following results:
p= 1

I(1,0)abc = 0 , (4.2)

I(1,1)abcd = Y a c
b d

[
(∇dRcba

m)Km−2Rcba
mK(1)

md

]
, (4.3)

27
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p= 2

I(2,0)abcd = I(2,1)abcde = 0 , (4.4)

I(2,2)abcde f = Y a b e
c d f

[
3(∇ f dRecb

m)Kma+2Redc
mRmb f

nKna−5Redc
mRmfb

nKna

+3(∇ fReda
m)K(1)

mbc−9(∇ fReda
m)K(1)

mcb−8R f ed
mK(2)

mcba

]
, (4.5)

p= 3

I(3,0)abcde = I(3,1)abcde f = I(3,2)abcde f g = 0 , (4.6)

I(3,3)abcde f gh = Y a b c g
d e f h

[
6(∇h f eRgdc

m)Kmba−27(∇hRg f e
m)Rmdc

nKnba−34Rgh f
m(∇eRmdc

n)Knba

−15(∇hRg f e
m)Rmcb

nKnda+15(∇hRg f e
m)Rdcb

nKmna−20Rgh f
m(∇eRmcb

n)Knda

+20Rgh f
m(∇eRdcb

n)Kmna−24(∇h fRceg
m)K(1)

mbad +12(∇h fRceg
m)K(1)

mdba

+50Rgh f
mRmec

nK(1)
nbad +40Rgh f

mRmce
nK(1)

ndba−
74
3 Rgh f

mRmed
nK(1)

ncba

− 40
3 Rgh f

mRced
nK(1)

mnba−35(∇hR f gc
m)K(2)

mbaed −5(∇hR f gc
m)K(2)

medba

−20Rhg f
mK(3)

medcba

]
. (4.7)

From eqs. (4.2)–(4.7), it is observed that in the cases q< p the integrability condition of qth

prolongation variable is automatically satisfied. More precisely, we can confirm that all of these
conditions vanish identically, up to the first and second Bianchi identities, R[abc]

d = ∇[aRbc]de =
0. In contrast, the integrability condition at q = p provides nontrivial relations among all the
prolongation variables. This is consistent with the result in [42].

It is intriguing to note that the integrability condition of the pth prolongation variable be-
longs to the Young diagram of shape (p+ 1, p+ 1). If we act the curvature operator on the
pth prolongation variable, we obtain a (2p+ 2)th order tensor belonging to the representation
(1,1)⊗(p, p). It can be decomposed into the irreducible representations (p, p,1,1), (p+1, p,1)
and (p+1, p+1) that are respectively described by the Young diagrams

...

...
, ...

...
, ...

...
.

However, we observe from eqs. (4.3), (4.5) and (4.7) that the integrability condition of the pth

prolongation variable makes non-trivial contribution only for the representation (p+1, p+1).
For instance the integrability condition I(1,1)abcd could have the representations

, , .

However, the result (4.3) claims that the first two representations do not appear for some reason.
Thus we are led to make the following conjecture:

Conjecture 1. The integrability condition of the pth prolongation variable belongs to the rep-
resentation described by the rectanguler Young diagram (p+1, p+1).
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In general, it is not easy to write out the integrability condition of the pth prolongation
variable. This difficulty becomes more prominent as the order of KTs increases. However, if
this conjecture holds true for p ≥ 4, then there is no need to calculate the terms that belong to
the representations ...

...
and ...

...
, thereby allowing us to obtain the formula

I(p,p)a1···apb1···bpcd = Ya1 ...ap c
b1 ...bp d

[
2∇d[cbp]···b1Kap···a1 +3∇dbp[cbp−1]···b1Kap···a1

+4∇dbpbp−1[cbp−2]···b1Kap···a1 · · ·+(p+1)∇dbpbp−1bp−2···[cb1]Kap···a1 −∇[dc]K
(p)
bp···b1ap···a1

]
+(the terms that belong to the representations ...

...
and ...

...
) . (4.8)

We have confirmed that for the cases p ≤ 3, the last term exactly vanish up to the first and
second Bianchi identities, R[abc]

d = ∇[aRbc]de = 0. The proof of the formula (4.8) is given by
4.3.

As is the case with the prolonged system (3.14)–(3.16), there are still a lot of derivative
terms left in the right-hand side of eq. (4.8). Then again, we can rewrite all these terms in eq.
(4.8) to non-derivative terms by using the prolonged system. For p ≥ 4, this is a challenging
and daunting task which is beyond our scope here and will be considered in the future.

4.2 Application
As an application of the integrability conditions, we show a method for computing the number
of linearly independent solutions to the Killing equation.

Let us recall the parallel equation (3.35). We introduce the curvature of the connection Da
as RD

abKKK ≡ [Da,Db]KKK. We call this the Killing curvature. All the integrability conditions of a
KT of order p can be collectively expressed as

RD
abKKK = 0 . (4.9)

By repeatedly differentiating the condition (4.9), we obtain the set of linear algebraic equations

RD
abKKK = 0 , (DaRD

bc)KKK = 0 , (DaDbRD
cd)KKK = 0 , · · · (4.10)

After working out r differentiations, we are led to the system

RRRD
r KKK = 0 , (4.11)

where the coefficient matrix RRRD
r depends on the Killing curvature and its derivatives. For exam-

ple,

RRRD
0 =

(
RD
ab
)
, RRRD

1 =

(
RD
ab

DaRD
bc

)
, RRRD

2 =

 RD
ab

DaRD
bc

DaDbRD
cd

 . (4.12)

It is known that by applying the Frobenius theorem to the condition (4.11), the following
theorem holds true (see, e.g. Ref. [43]).
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Theorem 11 (Bryant–Dunajski–Eastwood). If we find the smallest natural number r0 such that

rankRRRD
r0 = rankRRRD

r0+1 , (4.13)

then it follows that rankRRRD
r0 = rankRRRD

r0+r for any natural number r and consequently the dimen-
sion of the space of the KT reads

dimKp = rankE(p)− rankRRRD
r0 , (4.14)

where rankE(p) is given by the BDTT formula (3.36).

The condition (4.13) means that the components of the (r0+ 1)th order derivatives of the
Killing curvature, Da1 · · ·Dar0+1R

D
bc, can be expressed as the linear combinations of the compo-

nents of the lower order derivatives than r0+1. Hence, the components of the one-higher order
derivatives, Da1 · · ·Dar0+2R

D
bc, can also be expressed as the linear combinations of the lower

order derivatives than r0+1. By induction, we can conclude that the theorem holds true.
It should be remarked that computing the rank of the matrix RRRD

r boils down to solve a system
of the linear algebraic equations

I(p,p)a1···apb1···bpcd = 0 , · · · , ∇e1···erI
(p,p)
a1···apb1···bpcd

∣∣∣
DKKK=0

= 0 , (4.15)

where I(p,p)a1···apb1···bpcd is the integrability condition of the pth prolongation variable of a KT of

pth-order defined by eq. (4.1). If r0 exists, eq. (4.14) allows us to have the value of dimKp. Oth-
erwise differentiating the integrability condition (4.9) reveals a large number of additional con-
ditions. We can stop the differentiation and conclude that no KT of pth-order exists if rankRRRD

r0
is equal to rankE(p). Based on this fact, we can determine the dimension of the space of KTs.

To demonstrate the efficacy of our method, let us take the Kerr metric in Boyer-Lindquist
coordinates:

ds2 = −
(
1− 2Mr

Σ

)
dt2− 4aMr sin2θ

Σ
dtdϕ +

Σ
∆
dr2+Σdθ 2

+

(
r2+a2+

2a2Mr sin2θ
Σ

)
sin2θdϕ2 , (4.16)

with

Σ = r2+a2 cos2θ , ∆ = r2−2Mr+a2 , (4.17)

and determine the number of the solutions to the Killing equation up to p= 2. As a higher order
KT includes reducible ones, e.g. ξ(aζb) is a trivial KT if ξ a and ζ a are KVs, at first we must
solve the integrability condition for p= 1.

For p= 1 case, a section of the bundle E(1) can be written as

KKK =

(
Ka

K(1)
ba

)
, with K(1)

ba ∈ a
b
. (4.18)

By solving the linear systems RRRD
1 KKK = 0 and RRRD

2 KKK = 0, that is

I(1,1)abcd = 0 , ∇eI
(1,1)
abcd

∣∣∣
DKKK=0

= 0 , (4.19)
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4-dimensional metrics / order of KTs 1 2
Maximally symmetric 10 50

Schwarzschild 4 11
Kerr 2 5

Reissner-Nordstrom 4 11

Table 4.1: The number of the first and second order KTs in several regular black hole metrics.

and

I(1,1)abcd = 0 , ∇eI
(1,1)
abcd

∣∣∣
DKKK=0

= 0 , ∇e f I
(1,1)
abcd

∣∣∣
DKKK=0

= 0 , (4.20)

we find that rank RRRD
1 = rank RRRD

2 = 8. In other words, the adjoined equation in eq. (4.20),
∇e f I

(1,1)
abcd = 0, does not change the rank. Since the maximal number of the KVs is rankE(1)= 10,

we can conclude that dimK1 = 2. This is consistent with our knowledge: the two vector fields
ξ a = (∂t)a and ζ a = (∂ϕ )

a are the only KVs in the Kerr metric (4.16). Similarly, a section of
the bundle E(2) is given by

KKK =

 Kba

K(1)
cba

K(2)
dcba

 , with K(1)
cba ∈ a b

c
, K(2)

dcba ∈ a b
c d

. (4.21)

After solving the linear systems RRRD
1 KKK = 0 and RRRD

2 KKK = 0, we find that rankRRRD
1 = rankRRRD

2 = 45.
It also follows from eq. (3.36) that rankE(2) = 50. This amounts to dimK2 = 5. We know that
four of them

gab , ξ(aξb) , ξ(aζb) , ζ(aζb) , (4.22)

are reducible KTs while the only one

Kab =
a2

Σ

[
∆ cos2θ + r2 sin2θ

]
(dt)2ab−

a2 Σ cos2θ
∆

(dr)2ab+ r2 Σ (dθ)2ab

+
sin2θ

Σ

[
r2(a2+ r2)2+a4 ∆ cos2θ sin2θ

]
(dϕ)2ab

− 2asin2θ
Σ

[
r2(a2+ r2)+a2∆ cos2θ

]
(dt)(a(dϕ)b) . (4.23)

Using the same method, we investigate the first and second order KTs in several regular
black hole metrics, as shown in Table 4.1. It would be of great interest to make a systematic
investigation of higher-order KTs in various spacetimes. We leave it as a future work.
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4.3 Supplement: derivation of the integrability condition
In this section we shall verify the integrability conditions (4.8). We begin with the condition of
the pth prolonged variable. Evaluating the expression (4.1) at q= p, one finds that

I(p,p)a1···apb1···bpcd = Y c
d
Ya1 ...ap

b1 ...bp

[
Ya1 ...ap

b1 ...bp
c

∇dcbp···b1Kap···a1 +Ya1 ...ap c
b1 ...bp

∇dcbp···b1Kap···a1

+
p

∑
i=2

Ya1 ... ... ... ...ap bi
b1 ... /bi ...bp c

∇dcbp···b1Kap···a1 −∇[dc]K
(p)
bp···b1ap···a1

]
. (4.24)

The last term in eq. (4.24) can be treated as

Y c
d
Ya1 ...ap

b1 ...bp
∇[dc]K

(p)
bp···b1ap···a1 = Y c

d
Ya1 ...ap

b1 ...bp
∑

Θ∈Y2p+1

LΘ ∇[dc]K
(p)
bp···b1ap···a1

= Y c
d
Ya1 ...ap

b1 ...bp

(
Ya1 ...ap

b1 ...bp
c

+Ya1 ...ap c
b1 ...bp
c

)
∇[dc]K

(p)
bp···b1ap···a1 ,

where Pieri’s formula (2.20) is used and Littlewood’s correction (2.10) is dropped by a relation
Ŝapc Âapc = 0. Hence, eq. (4.24) can be rewritten as

I(p,p)a1···apb1···bpcd = Y c
d
Ya1 ...ap

b1 ...bp

[(
Ya1 ...ap

b1 ...bp
c

+Ya1 ...ap c
b1 ...bp

)(
∇dcbp···b1Kap···a1 −∇[dc]K

(p)
bp···b1ap···a1

)
+

p

∑
i=2

Ya1 ... ... ... ...ap bi
b1 ... /bi ...bp c

∇dcbp···b1Kap···a1

]
. (4.25)

Suppose now that the conjecture in Section 4 holds true. We then ignore the first sym-
metriser Ya1 ...ap

b1 ...bp
c

since it does not induce the representations belonging to (p+ 1, p+ 1). The

products of Young symmetrisers in eq. (4.25) can be simplified to

Ya1 ...ap
b1 ...bp

Ya1 ...ap c
b1 ...bp

= Ya1 ...ap c
b1 ...bp

, (4.26)

Ya1 ...ap
b1 ...bp

Ya1 ... ... ... ...ap bi
b1 ... /bi ...bp c

= 1
2Ya1 ...ap c

b1 ...bp
(c,bp)

p−i

∏
j=1

(bp+1− j,bp− j) . (4.27)

The first result (4.26) follows immediately from Raicu’s formula (2.19). The second result
(4.27) can be confirmed by a direct calculation. By using the relations (4.26) and (4.27), the
equation (4.25) can be rewritten as

I(p,p)a1···apb1···bpcd = Y c
d
Ya1 ...ap c

b1 ...bp
id2p+2

[
∇dcbp···b1Kap···a1 +

1
2

∇dbpcbp−1···b1Kap···a1

+
1
2

∇dbpbp−1cbp−2···b1Kap···a1 + · · ·+ 1
2

∇dbpbp−1bp−2···cb1Kap···a1 −∇[dc]K
(p)
bp···b1ap···a1

]
. (4.28)

Expanding id2p+2 and the antisymmetrisations of the operands yields the result (4.8).
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4.4 Supplement: the Killing-Yano equation
Our analysis based on Young symmetrisers has effective applications to other types of overde-
termined PDE systems. In this section we make a slight digression to discuss the Killing-Yano
equation

∇(bFa1)···ap = 0 , (4.29)

where Fa1···ap =F[a1···ap] is a Killing-Yano tensor field (KY). If we have a KY, then we can obtain
a KT of order 2 as

Kab ≡ Fac1···cp−1 Fb
c1···cp−1 , (4.30)

but the converse is not generally true. While the prolonged system of the Killing-Yano equation
and their integrability conditions have been known in [33, 44, 45], we revisit the results by using
Young symmetrisers.

Let Fab be a KY and consider its derivatives. Since ∇cFba is a type (0,3) tensor field, its
decomposition to the irreducible representations reads

∇cFba = Y a
b
id3 ∇cFba = Y a

b

(
Y a

b
c

+Y a b
c

+Y a c
b

)
∇cFba = Y a

b
c

∇cFba ≡ F(1)
cba , (4.31)

where we have used Pieri’s formula (2.20) and the Killing-Yano equation (4.29). We next
consider ∇dF

(1)
cba as the above result is not yet closed. Its decomposition to the irreducible

representations reads

∇dF
(1)
cba = Y a

b
c

id4 ∇dcFba = Y a
b
c

(
Y a

b
c
d

+Y a b
c
d

+Y a c
b
d

+Y a d
b
c

)
∇dcFba = Y a d

b
c

∇dcFba

= Y a d
b
c

(
2∇[dc]Fba+∇cdFba

)
= 2Y a d

b
c

Y a
b
Rdcb

mFma , (4.32)

which is now closed. This implies that we are at the completion of the procedure of prolonga-
tion. A similar calculation, taking into account Littlewood’s corrections, yields the conclusion
that the Killing-Yano equation (4.29) is equivalent to the prolonged system

∇bFap···a1 = F(1)
bap···a1 , (4.33)

∇cF
(1)
bap···a1 = pYa1 c

...

ap
b

Ya1

...

ap

Rcbap
mFmap−1···a1 , (4.34)

where

F(1)
bap···a1 ≡ Ya1

...

ap
b

∇bFap···a1 . (4.35)

After a calculation analogous to that in Section 4.3, we obtain the integrability condition for eq.
(4.33)

Ya1 b

... c

...

ap

[
Rm

ca1···F···apbm
]
= 0 , for p> 1 . (4.36)
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It can be confirmed that the integrability condition for eq. (4.34) is involved in the derivative
of eq. (4.36). Therefore, eq. (4.36) and its derivatives are enough to discuss the integrability
condition of the Killing–Yano equation. Once again, we face a situation similar to the one just
discussed in Section 4.1. Namely, there is only a representation in eq. (4.36), even though the
possible representations of eq. (4.36) are three

...
...

,

...
...

,

...
...

.
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Chapter 5

Cartan’s test for the Killing equation

So far we have discussed the integrability conditions that are necessary, but not sufficient to
ensure the existence of Killing tensor fields. In this chapter we will restrict our attention to
Killing vector fields, and derive necessary and sufficient conditions for admitting a solution to
the Killing equation of the first order. In particular, we characterise metrics which admit Killing
vector fields by local curvature obstructions. The obstructions will be obtained by analysing
the integrability condition and the original Killing equation. As a consequence, the algorithm
that tells us how many Killing vector fields exist for 3-dimensional Riemannian metrics will be
formulated.

This chapter consists of three sections: In Section 5.1 we begin with a brief history to
understand our place in the literature. In Section 5.2 we show our result for 3-dimensional
Riemannian metrics. In Section 5.6 we demonstrate this result for a Hamiltonian system.

5.1 Some history
As we have seen in Chapter 4, the existence of first integrals of a geodesic flow puts tough
restrictions on the Riemann curvature tensor. It is then natural to ask what is a major obstruction
for their existence. A more restricted question is whether, conversely, the existence of the first
integrals can be guaranteed by only several components of the Riemann curvature tensor and its
derivatives. This classical problem reaches back at least to a partial answer provided by J. G.
Darboux [46]. As mentioned above, we only deal with Killing vector fields (KVs) obeying the
Killing equation

∇(aKb) = 0 . (5.1)

In 1887, J. G. Darboux had implicitly solved our problem in two dimensions. He charac-
terised 2-dimensional metrics by curvature invariants that are a set of scalars constructed out of
the Riemann curvature tensor Rabcd and possibly operations on it. His result is shown in Figure
5.1 and interpreted as follows:

(i) Noticing that in two dimensions Rabcd = (1/2)Rga[cgd]b, we firstly evaluate the 1-form
dR. If dR vanishes, we can conclude that 3 KVs exist and the space(-time) is maximally
symmetric; Otherwise we go to the next step.

(ii) If the 2-form dR∧d[(∇aR)(∇aR)] vanishes, we can go to the next step; Otherwise no KV
exists.
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(iii) If the 2-form dR∧d□R vanishes, there are only one KV; Otherwise no KV exists.

▶ dR= 0 3 KVs

dR∧d[(∇aR)(∇aR)] = 0 no KV

dR∧d□R= 0 1 KV

yes

no

no

yes

yes

no

Figure 5.1: The algorithm for a 2-dimensinal space(-time). A triangle symbol ▶ stands for a
root of this algorithm. A box denotes d’Alambertian, □= ∇a∇a.

For 4-dimensional Einstein space(-time)s, R. Kerr also shown that there exists an algorithm
which tells us that how many KVs exist. However, a specific form of the algorithm is still
unknown. Meanwhile, an analogous algorithm for three or more higher-dimensional metrics
remains largely unexplored. The reason for this may lie in the fact that in three or more di-
mensions, curvature invariants have a poor predictive for the existence of KVs. Namely, for
vanishing scalar invariant spacetimes in which all curvature invariants vanish identically, they
have no role in understanding of the existence of KVs.

In this Chapter, we do not stick to curvature invariants and characterise metrics admit-
ting KVs by curvature and curvilinear invariants. As we will see, the curvilinear invariants
result from an analysis of the integrability condition of the Killing equation. Although we
will only consider 3-dimensional Riemannian metrics, our result would be extended to more
higher-dimensional Riemannian or Lorentzian metrics. Concrete steps are based on the Car-
tan’s prolongation: Solving the integrability condition, we obtain an ansatz for the solutions
to the Killing equation. Using this, we subsequently rewrite the prolonged system and write
out the integrability condition for it. If this is trivially satisfied, we can stop the procedure.
Otherwise we once again solve the integrability condition and then repeat the above procedure.

5.2 Result for 3-dimensional Riemannian cases
We consider 3-dimensional Riemannian metrics. Our algorithm is outlined in Figure 5.2. In the
following, we give the proof for this algorithm.

In 3-dimensional spaces, the integrability condition for KVs (4.3) can be written by

Iab = 1
2(∇mRab)Km+R(a

mK(1)
b)m , (5.2)

where Iab = gcdI(1,1)acbd . Multiplying Iab by gab, Rab and RacRb
c, we obtain the necessary condi-

tions

M(b)
aKa =

∇aI(1)

∇aI(2)

∇aI(3)

Ka = 0 , (5.3)
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where I(1) = R, I(2) = RabRab and I(3) = RacRb
cRab. Note that the determinant of M

detM = dI(1)∧dI(2)∧dI(3) , (5.4)

must be zero. Otherwise the kernel of M will only consist of {0} and consequently there is
not a KV. In what follows, rankM = 0,1,2 cases are respectively called case 0,1,2 and in turn
considered separately.

▶ Rab ∝ gab 6 KVs

∇aRbc = 0 4 KVs

dI(1)∧dI(2)∧dI(3) = 0 no KV

dI(a)∧dI(b) = 0 case 2 1 KV

dI(a) = 0 case 1 2 KVs

case 0 3 KVs

4 KVs

yes

no

yes

no

no

yes

no

yes

no

yes

Figure 5.2: The algorithm for a 3-dimensinal space. A triangle symbol▶ stands for a root of the
algorithm. I(a) (a= 1,2,3) denotes I(1) = R, I(2) = RabRab and I(3) = RabRbcRa

c, respectively.
Several dotted lines involve some procedures shown in Figures 5.3–5.5.

5.3 Details of case 2
In this case, it follows from the rank-nullity theorem that dimkerM = 1. So if we have an
annihilator of M, KVs can be written by

Ka = ωUa , (5.5)

where ω and Ua are respectively an unknown function and the annihilator. We here take the
annihilator as

Ua ≡ U εabc(∇bI(1))(∇cI(2)) , (5.6)

where the normalisation factorU is determined by

U−2 = 2(∇[aI
(1))(∇b]I

(2))(∇[aI(1))(∇b]I(2)) , (5.7)

so as to satisfy UaUa = 1. If Ua vanishes identically, two scalars (I1, I2) in the definition (5.6)
must be replaced by (I1, I3) or (I2, I3). The condition rankM = 2 guaratees that at least one of
the 2-forms constructed from (dI1,dI2,dI3) is non-zero.
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▶ κab = ∇[aAb] = 0 1 KV

no KV

yes

no

Figure 5.3: The sub algorithm for case 2. The curvature obstructions κab and Aa are defined in
eq. (5.13).

▶ dR is a geodesic

Frame fixing case 2 2 KVs no KV

LN(κg+ κ̂g) = LB(κg+ κ̂g) = 0

τr = 0 rankΞ(3)

κg = κ̂g rankΞ(2) rankΞ(1) κn = 0

κg = 0

LNλ = LBλ = 0 case 2

3 KVs

yes

no

no

yes
yes

no

1

0

2

yes

no

yes

no

yes

no

no

yes

Figure 5.4: The sub algorithm for case 1. Several undefined quantities are defined in Subsection
5.4.

▶ What is the Segre type of Rab ? rankΘ(1) rankΘ(2) 3 KVs case1

rankΛ(1) case2

κ̂N(τR− τ̂R) = 0 case 1 rankΛ(3) 3 KVs rankΛ(2) no KV

κ̂G = 0 λ2 = 0 case1 τR = 0

τ̂R− τ̌R = 0

4 KVs

{21}

{111} 0 0

0
yes

no

yes

no

yes

no

ye
s

yes

no

yes

0

no

3
2
1

Figure 5.5: The sub algorithm for case 0. Several undefined quantities are defined in Subsection
5.5.
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Using the concrete form (5.5), we perform prolongation of the Killing equation (5.1). To
write out the components of the Killing equation, we introduce the projection tensor onto the
hyperplanes orthogonal toUa as

qab(U) ≡ gab−UaUb , (5.8)

that is endowed with a metric property and an orthogonality

qacqcb = qab , qabUb = 0 . (5.9)

The (UU), (Uq) and (qq)-parts of the Killing equation have respectively 1, 2 and 3 components
as follows.

2UaUb∇(aKb) = 2LUω = 0 , (5.10)

2Uaqbc∇(aKb) = ω (∇c lnω +Ac) , (5.11)

2qacqbd∇(aKb) = 2ωκcd , (5.12)

where we have defined the acceleration vector Aa and the extrinsic curvature κab as

Aa(U) ≡ Ub∇bUa , κab(U) ≡ 1
2LUqab = qcaqdb∇(cUd) . (5.13)

It can be concluded that the Killing equation (5.1) can be rewritten as

κab = 0 , ∇a ln1/ω = Aa , (5.14)

with its compatibility condition

∇[aAb] = 0 . (5.15)

If the annihilatorUa passes the first-order and second-order tests,

κab = 0 , ∇[aAb] = 0 , (5.16)

then there are no extra conditions that must be satisfied by any solution to the Killing equation,
thereby allowing us to confirm that one KV exists.

5.4 Details of case 1
Again by the rank-nullity theorem, dimkerM = 2. Then KVs take the form

Ka = ω1Na+ω2Ba , (5.17)

where ω1 and ω2 are two unknown functions. Na and Ba must be two annihilators of M,
Na∇aR= Ba∇aR= 0. For now {Na,Ba} remain undetermined and will be fixed in the branches
we will see below. We assume, however, that {Na,Ba} are unit vector fields satisfying an or-
thogonality NaBa = 0. We further introduce a unit vector field T a as

T a ≡ ∇aR√
(∇mR)(∇mR)

, (5.18)
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so that a triad {T a,Na,Ba} forms an orthogonal frame, i.e.

δ a
b = T aTb+NaNb+BaBb . (5.19)

By using eqs. (5.17) and (5.19), the (TT )-part of the Killing equation can formally be writ-
ten by

0 = (ω1Na+ω2Ba)T b∇bTa , (5.20)

which gives a first-order test for the Ricci scalar. If the two functions ω1 and ω2 are independent,
then T b∇bTa = 0. Depending on whether the gradient of the Ricci scalar satisfies the geodesic
equation

(∇bR)∇b∇aR ∝ ∇aR , (5.21)

our algorithm branches off.

Branch where ∇aR is not a geodesic

In this branch T a and its acceleration T b∇bT a are linearly independent. It is therefore possible
to define the Frenet–Serret frame as

T a ≡ ∇aR√
(∇mR)(∇mR)

, Na ≡ T b∇bT a√
(Tm∇mT k)(T n∇nTk)

, Ba ≡ εabcTbNc . (5.22)

This triad obeys the Frenet–Serret formulas

T b∇b

T a

Na

Ba

 =

 0 κ 0
−κ 0 τ
0 −τ 0

T a

Na

Ba

 , (5.23)

where

κ ≡ NaT b∇bTa , τ ≡ BaT b∇bNa , (5.24)

are respectively the geodesic curvature and torsion of an integral curve of T a.
Now, the (TT )-part of the Killing equation reads

κ ω1 = 0 . (5.25)

Since κ = 0 contradicts T b∇bT a ̸= 0, ω1 must be zero. As KVs take the form Ka = ω2Ba, our
algorithm reduces to the case 2 with the identification ofUa = Ba. Thus the acceleration Aa(B)
and the extrinsic curvature κab(B) defined in eq. (5.13) give the first-order and second-order
tests. In this branch, there is at most one KV.

Branch where ∇aR is a geodesic

We firstly have to fix the orthogonal frame {T a,Na,Ba}. There are two natural frame depending
on the property of T a: If T a is an eigenvector of the Ricci tensor, we take the orthogonal frame
as the eigensystem of the Ricci tensor. Otherwise Na and Ba are taken to be

Na ≡ N εabcTb(RcdT d) , Ba ≡ εabcTbNc , (5.26)
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where N is the normalisation factor. Our following analysis does not depend on the choice of
the frame explicitly.

In this branch, the (TT )-part of the Killing equation is identically satisfied. To write out the
remaining parts, we introduce the curvilinear invariants as

T b∇b

T a

Na

Ba

 =

0 0 0
0 0 τ
0 −τ 0

T a

Na

Ba

 , (5.27)

Nb∇b

T a

Na

Ba

 =

 0 −κg τr
κg 0 κn
−τr −κn 0

T a

Na

Ba

 , (5.28)

Bb∇b

T a

Na

Ba

 =

 0 τr −κ̂g
−τr 0 −κ̂n
κ̂g κ̂n 0

T a

Na

Ba

 , (5.29)

where

κg ≡ T aNb∇bNa , κn ≡ BaNb∇bNa , τr ≡ BaNb∇bTa ,

κ̂g ≡ T aBb∇bBa , κ̂n ≡ NaBb∇bBa . (5.30)

κg(κ̂g), κn(κ̂n) and τr are respectively the geodesic curvature, normal curvature and relative
torsion of an integral curve of Na(Ba). Note that since T b∇bT a = 0, the derivative of T a is sym-
metric; the derivatives of the curvilinear invariants are not independent due to the analyticity.
These relations are listed in Appendix 5.7.

Using the curvilinear invariants, the remaining parts of the Killing equation read

LT ω1 = −κgω1+(τ + τr)ω2 , (5.31a)
LN ω1 = κnω2 , (5.31b)
LB ω1 = −κnω1− κ̂nω2− ω̂ , (5.31c)
LT ω2 = − (τ − τr)ω1− κ̂gω2 , (5.31d)
LN ω2 = ω̂ , (5.31e)
LB ω2 = κ̂gω1 , (5.31f)

where eq. (5.31e) defines new variable ω̂ . Clearly, the above equations are not closed. We
thus need the derivatives of the Killing equation. It can be seen several parts of the equation
∇[a∇b]ω1 = ∇[a∇b]ω2 = 0 tell us that

0 = −2τrω̂ +(LNκg)ω1+(LBκg−2τrκ̂n)ω2 , (5.32)
0 = 2τrω̂ +(LN κ̂g)ω1+(LBκ̂g+2τrκ̂n)ω2 , (5.33)
0 = (κg− κ̂g)ω̂ +(LNτr)ω1+(LBτr+ κ̂n(κg− κ̂g))ω2 , (5.34)

Adding eq. (5.32) and (5.33) gives

0 = [LN(κg+ κ̂g)]ω1+[LB(κg+ κ̂g)]ω2 . (5.35)

So LN(κg+ κ̂g) and LB(κg+ κ̂g)must be zero. Otherwise we can write KVs as Ka = ω1 (Na−
µBa) or Ka = ω2 (Ba − µ−1Na) with µ = LN(κg + κ̂g)/LB(κg + κ̂g). Thus, our algorithm
reduces to the case 2 with the identification of

Ua ∝ (Na−µBa) , or Ua ∝ (Ba−µ−1Na) , (5.36)
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where the proportionality factor is determined by the normalisation.
In the sub-branch where

LN(κg+ κ̂g) = LB(κg+ κ̂g) = τr = κg− κ̂g = 0 , (5.37)

the set of functions {ω1,ω2, ω̂} can possibly be independent. It also follows from eqs. (5.37)
and (5.106) that LNκg = LN κ̂g = LBκg = LBκ̂g = 0 and

0 = RabT aNb = RabT aBb , λN = λB ≡ λ . (5.38)

The above equations implies that T a has to be an eigenvector of Ra
b whose Segre type is {21}.

Now we look at the Killing equation

∇aωωω = ΩΩΩaωωω , ωωω ≡

ω1
ω2
ω̂

 , (5.39)

where

ΩΩΩa ≡ Ta

 −κg τ 0
−τ −κg 0

τκ̂n−LNτ −τκn 0

+Na

 0 κn 0
0 0 1

−LNκn κ̂2
n −LN κ̂n−LBκn 0


+Ba

 −κn −κ̂n −1
κ̂n 0 0

LN κ̂n− κ̂2
n κ̂nκn κn

 . (5.40)

Notice that the equation for ω̂ arises from the some parts of ∇[a∇b]ω1 = ∇[a∇b]ω2 = 0. The
integrability condition for eq. (5.39) reads(

∇[aΩΩΩb]−ΩΩΩ[aΩΩΩb]
)
ωωω = 0 . (5.41)

or equivalently,

κg(LNκn)ω1 = 0 , κgκ̂nω1 = 0 , κgκnω2 = 0 , (5.42)
κgκ̂nω2+κgω̂ = 0 , (LNλ )ω1+(LBλ )ω2 = 0 . (5.43)

So if κg =LNλ =LBλ = 0, then there are no extra conditions, thereby allowing us to conclude
that three KVs exist. It should be noted that the third KV can be obtained by the Lie bracket of
the two KVs,

Lω1N(ω2Ba) = (ω̂ + κ̂nω2)(ω1Ba+ω2Na) , (5.44)

which satisfies the Killing equation (5.1); if κg = 0 but LNλ ̸= 0 or LBλ ̸= 0, our algorithm
again reduces to the case 2 with the identification of

Ua ∝ (Na−νBa) , or Ua ∝ (Ba−ν−1Na) , (5.45)

where ν = (LNλ )/(LBλ ) and the proportionality factor takes care of the normalisation ofUa;
if κg ̸= 0 but κn = 0, we can write ω̂ =−κ̂nω2 and the rank of the 1st obstruction matrix

Ξ(1) ≡
(

κ̂n 0
LNλ LBλ

)
, (5.46)
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controls the number of KVs. If Ξ(1) is identically zero, two KVs exist. If detΞ(1) ̸= 0, no KV
exists. If detΞ(1) = 0 but Ξ(1) ̸= 0, then, once again, our algorithm reduces to the case 2 with an
appropriate identification of Ua; we can see that, after re-prolongation of the Killing equation,
the conditions κg ̸= 0 and κn ̸= 0 are in conflict with the integrability condition and thus there
is no KV. We are at the end of this sub-branch.

In the sub-branch where

LN(κg+ κ̂g) = LB(κg+ κ̂g) = τr = 0 , but κg− κ̂g ̸= 0 , (5.47)

the function ω̂ takes the form

ω̂ =−κ̂nω2 . (5.48)

Substituting this form into eqs. (5.31), we obtain

∇aω̂ωω = Ω̂ΩΩaω̂ωω , ω̂ωω ≡
(

ω1
ω2

)
, (5.49)

where

Ω̂ΩΩa ≡ Ta

(
−κg τ
−τ −κ̂g

)
+Na

(
0 κn
0 −κ̂n

)
+Ba

(
−κn 0
κ̂n 0

)
. (5.50)

Its integrability condition (
∇[aΩ̂ΩΩb]− Ω̂ΩΩ[aΩ̂ΩΩb]

)
ω̂ωω = 0 . (5.51)

leads to

0 = (LNτ)ω1+(LBτ)ω2 , 0 = (LNκg)ω1+(LBκg)ω2 , (5.52a)
0 = (LNκn)ω1+(LBκn)ω2 , 0 = (LN κ̂n)ω1+(LBκ̂)ω2 . (5.52b)

Therefore, the rank of the 2nd obstruction matrix

Ξ(2) ≡


LNτ LBτ
LNκg LBκg
LNκn LBκn
LN κ̂n LBκ̂n

 , (5.53)

reveals the number of KVs. If rankΞ(2) = 0, two KVs exist; If rankΞ(2) = 1, our algorithm
reduces to the case 2 with an appropriate identification ofUa; If rankΞ(2) = 2, there is no KV.

Similarly, in the sub-branch where

LN(κg+ κ̂g) = LB(κg+ κ̂g) = 0 , but τr ̸= 0 , (5.54)

eq. (5.32) tells us that

ω̂ = 1
2τr (LNκg)ω1+

(
1
2τrLBκg− κ̂n

)
ω2 . (5.55)

Thus the Killing equation (5.31) can be rewritten by

∇aω̂ωω = Ω̌ΩΩaω̂ωω , (5.56)
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where

Ω̌ΩΩa ≡ Ta

(
−κg τ + τr

−τ + τr −κ̂g

)
+Na

(
0 κn

1
2τrLNκg

1
2τrLBκg− κ̂n

)
+Ba

(
−κn− 1

2τrLNκg − 1
2τrLBκg

κ̂n 0

)
. (5.57)

Its integrability condition gives the relations between ω1 and ω2

0 = [LTLNκg+2τrLN(τ − τr)− (2κg+LT lnτr)LNκg+ κ̂gLNκg− (τ − τr)LBκg] ω1

+[LTLBκg+2τrLB(τ − τr)− (2κg+LT lnτr)LBκg−κgLBκ̂g+(τ + τr)LBκg] ω2 ,
(5.58)

0 =
[
LNLNκg+2τrLNκn−

(
κ̂n−

LBκg
2τr

)
LNκg− (LN lnτr)(LNκg)

]
ω1

+
[
LNLBκg+2τrLBκn−

(
2κ̂n−

LBκg
2τr

)
LBκg− (LN lnτr)(LBκg)+κnLNκg

]
ω2 ,

(5.59)

0 =
[
−LBLNκg+2τrLN κ̂n+

(
2κn+

LNκg
2τr

)
LNκg+(LB lnτr)(LNκg)− κ̂nLBκg

]
ω1

+
[
−LBLBκg+2τrLBκ̂n+

(
κn+

LNκg
2τr

)
LBκg+(LB lnτr)(LBκg)

]
ω2 , (5.60)

Writing eqs. (5.58)–(5.60) as

Ξ(3)ω̂ωω = 0 , (5.61)

the rank of the 3rd obstruction matrix Ξ(3) governs the number of KVs in a way analogous to
that of Ξ(1) and Ξ(2). It is remarkable that if κg− κ̂g = 0, then we obtain the relation

LNκg = LBκg = 0 , (5.62)

from eq. (5.54), which makes the 3rd obstruction matrix much simpler form

Ξ(3) = 2τr

LN(τ − τr) LB(τ − τr)
LNκn LBκn
LN κ̂n LBκ̂n

 . (5.63)

5.5 Details of case 0
In this case, any eigenvalue of the Ricci tensor is a constant. Therefore, our algorithm may de-
pend on Segre types of the Ricci tensor. As the Segre type {3} implies a manifold is maximally
symmetric, there are possibly two Segre types {21} and {111}. In both cases, any KV can be
written as

Ka = γ1V a
1 + γ2V a

2 + γ3V a
3 , (5.64)

where γ1,γ2 and γ3 are unknown functions. Here the orthogonal frame {V a
1 ,V

a
2 ,V

a
3 } is taken as

the eigensystem of the Ricci tensor.
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Introducing the curvilinear invariants

V b
1 ∇b

V a
1

V a
2

V a
3

 =

 0 κG κN
−κG 0 τR
−κN −τR 0

V a
1

V a
2

V a
3

 , (5.65)

V b
2 ∇b

V a
1

V a
2

V a
3

 =

 0 −κ̂G τ̂R
κ̂G 0 κ̂N
−τ̂R −κ̂N 0

V a
1

V a
2

V a
3

 , (5.66)

V b
3 ∇b

V a
1

V a
2

V a
3

 =

 0 −τ̌R −κ̌G
τ̌R 0 −κ̌N
κ̌G κ̌N 0

V a
1

V a
2

V a
3

 , (5.67)

we can write out the Killing equation as

LV1γ1 = κGγ2+κNγ3 , (5.68a)
LV2γ1 = γ̂1 , (5.68b)
LV3γ1 = −κNγ1− (τR+ τ̌R)γ2− κ̌Gγ3− γ̂3 , (5.68c)
LV1γ2 = −κGγ1− κ̂Gγ2+(τR+ τ̂R)γ3− γ̂1 , (5.68d)
LV2γ2 = κ̂Gγ1+ κ̂Nγ3 , (5.68e)
LV3γ2 = γ̂2 , (5.68f)
LV1γ3 = γ̂3 , (5.68g)
LV2γ3 = − (τ̂R− τ̌R)γ1− κ̂Nγ2− κ̌Nγ3− γ̂2 , (5.68h)
LV3γ3 = κ̌Gγ1+ κ̌Nγ2 , (5.68i)

where eqs. (5.68b), (5.68f) and (5.68g) define new variables {γ̂1, γ̂2, γ̂3}. Moreover, the integra-
bility conditions of eqs. (5.68) reveal that

0 = [(λ1−λ2)κ̂G+(λ1−λ3)κ̌G]γ1 , (5.69a)
0 = [(λ1−λ2)κG+(λ3−λ2)κ̌N ]γ2 , (5.69b)
0 = [(λ3−λ2)κ̂N +(λ3−λ1)κN ]γ3 , (5.69c)
0 = (λ1−λ2) [κGγ1− (τ̂R+ τ̌R)γ3+ γ̂1] , (5.69d)
0 = (λ1−λ3) [(τR− τ̂R)γ2+ κ̌Gγ3+ γ̂3] , (5.69e)
0 = (λ3−λ2) [(τR− τ̌R)γ1+ γ̂2]+ (λ1−λ3)κNγ2 , (5.69f)
0 = (λ3−λ2) [(τR− τ̌R)γ1+ κ̂Nγ2+ κ̌Nγ3+ γ̂2]

+ (λ1−λ2)κGγ3 , (5.69g)
0 = [(λ3−λ2)κ̂N +(λ3−λ1)κN ]γ1 , (5.69h)

where λ1,λ2 and λ3 are the eigenvalues of the Ricci tensor defined by

Ra
bV b

1 = λ1V a
1 , Ra

bV b
2 = λ1V a

2 , Ra
bV b

3 = λ1V a
3 . (5.70)

Notice that the above conditions are evidently satisfied if the Segre type is {3}, λ1 = λ2 = λ3.
In the remaining parts of this subsection, we discuss the Segre types {21} and {111} separately.
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Branch where the Segre type is {21}

In this branch, we can assume λ2 = λ3 without loss of generality. The integrability conditions
eqs. (5.69a)–(5.69c) are simplified to

0 = (κ̂G+ κ̌G)γ1 , 0 = κGγ2 , 0 = κNγ3 . (5.71)

So if the rank of the 1st obstruction matrix

Λ(1) ≡

κ̂G+ κ̌G 0 0
0 κG 0
0 0 κN

 (5.72)

is 1 or more, our algorithm reduces to the case 1 or 2 with the appropriate identifications: For
instance, if κ̂G+ κ̌G ̸= 0 then γ1 must be zero and consequently any KV can be written as

Ka = γ2V a
2 + γ3V a

3 , (5.73)

thereby allowing us to go back to the case 1.
In the following, we asssume rankΛ(1) = 0. Under this assumption, the remaining parts of

the integrabiliy conditions (5.69) lead to

γ̂1 = (τ̂R+ τ̌R)γ3 , γ̂3 = − (τR− τ̂R)γ2− κ̌Gγ3 . (5.74)

Using this, the Killing equation (5.68) can be rewritten as

∇aγγγ = ΓΓΓaγγγ , γγγ ≡


γ1
γ2
γ3
γ̂2

 , (5.75)

where

ΓΓΓa ≡ V a
1


0 0 0 0
0 −κ̂G τR− τ̌R 0
0 −(τR− τ̂R) −κ̌G 0

LV1 τ̌R κ̌N(τR− τ̂R) LV3τR− κ̂N(τR− τ̌R) 0



+V a
2


0 0 τ̂R+ τ̌R 0

κ̂G 0 κ̂N 0
−(τ̂R− τ̌R) −κ̂N −κ̌N −1

LV2 τ̌R+ κ̌N(τ̂R− τ̌R) κ̂N κ̌N LV3 κ̂N − κ̂2
N − (τR− τ̌R)(τ̂R+ τ̌R) κ̌N



+V a
3


0 −(τ̂R+ τ̌R) 0 0
0 0 0 1

κ̌G κ̌N 0 0
LV3 τ̌R− κ̌Gκ̌N κ̂2

N − (LV3 κ̂N +LV2 κ̌N)+(τR− τ̌R)(τ̂R+ τ̌R) −LV3 κ̌N 0

 .

(5.76)

After some gymnastics, we are led to the integrability conditions of (5.75)

0 = κ̂Gτ̌Rγ1+ 1
2 [κ̌N(τ̂R− τ̌R)−LV3 κ̂G]γ2− 1

2 [κ̂N(τR− τ̂R)+LV3 τ̌R]γ3− κ̂Gγ̂2 , (5.77a)
0 = − τ̌R(τ̂R− τ̌R)γ1+(2κ̂Gκ̌N +LV3 τ̂R)γ2+(LV3 κ̂G)γ3+(τ̂R− τ̌R)γ̂2 , (5.77b)
0 = κ̂N(τR− τ̂R)γ3 . (5.77c)
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Thus if κ̂N(τR− τ̂R) ̸= 0 then γ3 = 0 and we go back to the case 1 with the identification

ω1 = γ1 , Na = V a
1 , ω2 = γ2 , Ba = V a

2 . (5.78)

In the sub-branch where

κ̂N(τR− τ̂R) = κ̂G = τ̂R− τ̌R = 0 , (5.79)

the integrability conditions (5.77) are identically satisfied. It follows from eqs. (5.108) that
LV3 τ̂R = 0. As there are no extra conditions, four KVs exist. Notice that the fourth KV can be
obtained by the Lie bracket of the two KVs,

Lγ3V3(γ2V
a
2 ) = 2γ2γ3τ̂RV a

1 +(γ̂2+ γ2κ̂N)(γ3V a
2 + γ2V a

3 ) . (5.80)

In the sub-branch where

κ̂N(τR− τ̂R) = κ̂G = 0 , but τ̂R− τ̌R ̸= 0 , (5.81)

the integrability condition (5.77a) gives us that

γ̂2 = τ̌Rγ1− κ̂Nγ2 . (5.82)

So we can rewrite the Killing equation (5.75) as

∇aγ̂γγ = Γ̂ΓΓaγ̂γγ , γ̂γγ ≡

γ1
γ2
γ3

 , (5.83)

where

Γ̂ΓΓa ≡ V a
1

0 0 0
0 0 τR− τ̌R
0 −(τR− τ̂R) 0

+V a
2

 0 0 τ̂R+ τ̌R
0 0 κ̂N

−τ̂R 0 −κ̌N

+V a
3

 0 −(τ̂R+ τ̌R) 0
τ̌R −κ̂N 0
0 κ̌N 0

 .

(5.84)

The integrability conditions of eq. (5.83) reads

0 = τRγ1 , (5.85a)
0 = (LV2 τ̂R)γ2+(LV3τ̂R)γ3 , (5.85b)
0 = (LV2 τ̌R)γ2+(LV3τ̌R)γ3 , (5.85c)
0 = (LV1 κ̂N)γ1+(LV2 κ̂N)γ2+(LV3κ̂N)γ3 , (5.85d)
0 = (LV1 κ̌N)γ1+(LV2 κ̌N)γ2+(LV3κ̌N)γ3 , (5.85e)

If τR ̸= 0, then γ1 must be zero and thus our algorithm goes back to the case 1. Otherwise τR = 0
and the rank of the 2nd obstruction matrix

Λ(2) ≡


0 LV2 τ̂R LV3τ̂R
0 LV2 τ̌R LV3τ̌R

LV1 κ̂N LV2 κ̂N LV3κ̂N
LV1 κ̌N LV2 κ̌N LV3κ̌N

 , (5.86)
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controls the number of KVs. If Λ(2) is a zero matrix, three KVs exist. If rankΛ(2) = 3, no KV
exists. If rankΛ(2) = 1 or 2, our algorithm reduces to the case 1 or case 2 with appropriate
identifications.

In the sub-branch where

κ̂N(τR− τ̂R) = 0 , but κ̂G ̸= 0 , (5.87)

the integrability condition (5.77a) reads

γ̂2 = τ̌Rγ1+ 1
2κ̂G

[κ̌N(τ̂R− τ̌R)−LV3 κ̂G]γ2− 1
2κ̂G

(LV3 τ̌R)γ3 . (5.88)

Using this, we can rewrite the Killing equation as

∇aγ̂γγ = Γ̌ΓΓaγ̂γγ , (5.89)

where

Γ̌ΓΓa ≡ V a
1

0 0 0
0 −κ̂G τR− τ̌R
0 −(τR− τ̂R) κ̂G


+V a

2

 0 0 τ̂R+ τ̌R
κ̂G 0 κ̂N
−τ̂R −κ̂N − 1

2κ̂G
[κ̌N(τ̂R− τ̌R)−LV3 κ̂G] −κ̌N + 1

2κ̂G
LV3 τ̌R


+V a

3

 0 −(τ̂R+ τ̌R) 0
τ̌R 1

2κ̂G
[κ̌N(τ̂R− τ̌R)−LV3 κ̂G] − 1

2κ̂G
LV3 τ̌R

κ̌G κ̌N 0

 . (5.90)

Its integrability condition leads to

0 = (LV2 τ̂R+LV2 τ̌R)γ2+(LV3 τ̂R+LV3 τ̌R)γ3 , (5.91)

0 =
[
LV2 κ̂

2
G+(τ̂R− τ̌R)LV2 τ̂R

]
γ2

+
[
(τ̂R− τ̌R)LV2 κ̂G−2κ̂GLV2 τ̂R+ κ̂N

(
4κ̂2

G− (τ̂R− τ̌R)(τR−2τ̂R+ τ̌R)
)]

γ3 . (5.92)

Rewriting eqs. (5.91) and (5.92) as

Λ(3)γ̂γγ = 0 , (5.93)

the rank of the 3rd obstruction matrix Λ(3) controls the number of KVs in a way analogous to
that of Λ(1) and Λ(2). If Λ(3) is a zero matrix, we come to grips with

λ2γ2 = 0 . (5.94)

Therefore, in this sub-branch there are 3 KVs if rankΛ(3) = λ2 = 0.

Branch where the Segre type is {111}

In this branch, the eigenvalues of the Ricci tensor differ from each other. The integrability
conditions eqs. (5.69a)–(5.69c) read

0 = [ακ̂G+ κ̌G]γ1 , 0 = [βκG+ κ̌N ]γ2 , 0 =
[
αβ−1κ̂N −κN

]
γ3 , (5.95)
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where α =(λ1−λ2)/(λ1−λ3) and β =(λ1−λ2)/(λ3−λ2). So if the rank of the 1st obstruction
matrix

Θ(1) ≡

ακ̂G+ κ̌G 0 0
0 βκG+ κ̌N 0
0 0 αβ−1κ̂N +κN

 (5.96)

is 1 or more, we can go back to the case 1 or 2 with the appropriate identifications: For instance,
if the conditions ακ̂G+ κ̌G ̸= 0 and βκG+ κ̌N ̸= 0 lead us to the conclusion that γ1 = γ2 = 0
and thus any KV can be written as

Ka = γ3V a
3 . (5.97)

We thus go back to the case 2 with the identificationUa =V a
3 .

In the following, we asssume rankΘ(1) = 0. Under this assumption, the remaining parts of
the integrabiliy conditions (5.69) read

γ̂1 = −κGγ1+(τ̂R+ τ̌R)γ3 , γ̂2 = − (τR− τ̌R)γ1− κ̂Nγ2 ,
γ̂3 = − (τR− τ̂R)γ2− κ̌Gγ3 . (5.98)

Thus, in this branch, there are at most 3 KVs. Using eqs. (5.98), the Killing equation (5.68) can
be rewritten by

∇aγ̂γγ = Γ̄ΓΓaγ̂γγ , (5.99)

where

Γ̄ΓΓa ≡ V a
1

0 κG κN
0 −κ̂G (τR− τ̌R)
0 −(τR− τ̂R) ακ̂G

+V a
2

 −κG 0 τ̂R+ τ̌R
κ̂G 0 α−1βκN

τR− τ̂R 0 βκG


+V a

3

 −κN −(τ̂R+ τ̌R) 0
−(τR− τ̌R) −α−1βκN 0
−ακ̂G −βκG 0

 . (5.100)

After some algebra, we can see that the integrability conditions of eqs. (5.99) take the form

Θ(2)γ̂γγ = 0 , (5.101)

where

Θ(2) =


LV1κG LV2κG LV3κG
LV1 κ̂G LV2 κ̂G LV3 κ̂G
LV1κN LV2κN LV3κN

LV1(τR− τ̂R) LV2(τR− τ̂R) LV3(τR− τ̂R)
LV1(τ̌R− τR) LV2(τ̌R− τR) LV3(τ̌R− τR)
LV1(τ̂R+ τ̌R) LV2(τ̂R+ τ̌R) LV3(τ̂R+ τ̌R)

 . (5.102)

We therefore are at the conclusion that the rank of the 2nd obstruction matrix Θ(2) controls the
number of KVs.
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5.6 Example
This section is devoted to the application of our algorithm. As we have demonstrated in Chapter
1, a natural Hamiltonian with two degrees of freedom

H̄(p,x) = 1
2(p

2
1+ p22)+V (x1,x2) , (5.103)

can be lifted to the geodesic Hamiltonian with three degrees of freedom

H(p,x) = 1
2g

abpapb , where gab =

1 0 0
0 1 0
0 0 2V

 . (5.104)

The metric gab is the Eisenhart metric. Using this metric, we can calculate the Ricci tensor and
its derivatives. We examine the Eisenhart metric with

V (x1,x2) = 1
4(x

4
1+ x42)+

ε
2x

2
1x

2
2 , (5.105)

by our algorithm.
After simple algebra, we can see that the first two tests Rab ∝ gab and ∇aRbc = 0 do not hold

for any ε . However, the metric have no trouble passing the third test dI(1)∧ dI(2)∧ dI(3) = 0.
Interestingly, the result of the fourth test dI(a)∧dI(b) = 0 depends on the value of ε : If ε = 1,
the metric arrive at the case 1. Otherwise the metric drifts to the case 2 and then passes the last
two test κab = ∇[aAb] = 0. So there is only one KV, (∂3)a.

In the case ε = 1, ∇aR is to be a geodesic as well as an eigenvector of Ra
b with the eigenvalue

−6/(x21+x22). The metric passes the testsLN(κg+ κ̂g)=LB(κg+ κ̂g)= 0 and τr = 0. However,
it fails to be κg = κ̂g. As its 2nd obstruction matrix Ξ(2) has rank 2, we can conclude that 2 KVs
exist.

5.7 Supplement: Relations between the curvilinear invari-
ants

Due to their analyticity, the derivatives of the curvilinear invariants are not independent. In this
section, we record the relations between the curvilinear invariants.

For case 1

When ∇aR is a geodesic, the following relations hold true:

RabT aT b = − (κ2
g + κ̂2

g +2τ2r )+LT (κg+ κ̂g) ≡ λT , (5.106a)

RabNaNb = 2ττr−κ2
g −κ2

n − κ̂2
n −κgκ̂g+LTκg+LBκn+LN κ̂n ≡ λN , (5.106b)

RabBaBb = −2ττr− κ̂2
g −κ2

n − κ̂2
n −κgκ̂g+LT κ̂g+LBκn+LN κ̂n ≡ λB , (5.106c)

RabT aNb = κ̂n(κg− κ̂g)−2κnτr+LBτr+LN κ̂g , (5.106d)
= LBτ −κn(τ + τr)− κ̂nκ̂g+LT κ̂n , (5.106e)

RabT aBb = −2τrκ̂n−κn(κg− κ̂g)+LNτr+LBκg , (5.106f)
= κ̂n(τ − τr)−LNτ −κgκn+LTκn , (5.106g)

RabNaBb = τ(κg− κ̂g)+ τr(κg+ κ̂g)−LT τr . (5.106h)
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The commutators of the Lie derivatives can be written as follows.

LTLN f −LNLT f = τLB f +κgLN f − τrLB f , (5.107a)
LBLT f −LTLB f = τrLN f − κ̂gLB f + τLN f , (5.107b)
LNLB f −LBLN f = τrLT f + κ̂nLB f − τrLT f −κnLN f , (5.107c)

where f is an arbitrary scalar function.

For case 0

In the case 0, the following relations hold true

RabV a
1V

a
1 = −κ2

G− κ̂2
G− κ̌2

G−κGκ̌N −κ2
N − κ̂NκN (5.108a)

+2τ̂Rτ̌R+LV1 κ̂G+LV1 κ̌G+LV2κG+LV3κN ,

RabV a
2V

a
2 = −κ2

G− κ̂2
G− κ̂Gκ̌G− κ̂2

N − κ̌2
N − κ̂NκN

−2τRτ̌R+LV1 κ̂G+LV2κG+LV2 κ̌N +LV3 κ̂N , (5.108b)

RabV a
3V

a
3 = − κ̌2

G− κ̌Gκ̂G− κ̂2
N −κGκ̌N − κ̌2

N −κ2
N (5.108c)

−2τRτ̂R+LV1 κ̌G+LV2 κ̌N +LV3κN +LV3 κ̂N ,

RabV a
1V

a
2 = κ̌N(κ̂G− κ̌G)− κ̂N(τ̂R− τ̌R)−κN(τ̂R+ τ̌R)+LV2 κ̌G+LV3 τ̂R , (5.108d)

= κ̌G(κG− κ̌N)− κ̂N(τR− τ̌R)−κN(τR+ τ̌R)+LV1 κ̌N +LV3τR , (5.108e)
RabV a

1V
a
3 = − κ̂N(κ̂G− κ̌G)+ τ̂R(κG− κ̌N)+ τ̌R(κG+ κ̌N)−LV2 τ̌R+LV3 κ̂G , (5.108f)

= − κ̂Gκ̂N + τR(κG+ κ̌N)+ τ̂R(κG− κ̌N)+κN κ̂G+LV1 κ̂N −LV2τR , (5.108g)
RabV a

2V
a
3 = τR(κ̂G− κ̌G)− τ̌R(κ̂G+ κ̌G)−κN(κG− κ̌N)+LV1 τ̌R+LV3κG , (5.108h)

= κGκ̂N −κGκN + τR(κ̂G− κ̌G)+ τ̂R(κ̂G+ κ̌G)+LV2κN −LV1 τ̂R . (5.108i)

The commutators of the Lie derivatives can be written as follows.

LV1LV2 f −LV2LV1 f = −κGLV1 f + κ̂GLV2 f +(τR− τ̂R)LV3 f , (5.109a)
LV1LV3 f −LV3LV1 f = −κNLV1 f − (τR− τ̌R)LV2 f + κ̌GLV3 f , (5.109b)
LV2LV3 f −LV3LV2 f = − (τ̂R+ τ̌R)LV1 f − κ̂NLV2 f + κ̌NLV3 f , (5.109c)

where f is an arbitrary scalar function.
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Chapter 6

Rational first integrals and gauged Killing
tensor fields

As we have seen in Chapter 1, Killing tensor fields (KTs) arise out of an assumption that first
integrals of a geodesic flow are polynomial in momenta. It is then natural to relax this assump-
tion and conceive of first integrals that are meromorphic in momenta. We call them the rational
first integrals. As a consequence, we are naturally led to introduce gauged Killing tensor fields
(GKTs).

The study of rational first integrals was already initiated by Darboux [47]. After then, several
works have been concerned with concrete examples of models admitting rational first integrals
of the geodesic equations. An example is the Collinson–O’Donnell solution [48] which is a
solution to the vacuum Einstein equations. However, as we will see below that the Collinson-
O’Donnell solution is a trivial example in the sense that a rational first integral results from a
pair of polynomial first integrals. Therefore, another aim in this chapter is to obtain a nontrivial
model admitting rational first integrals.

This chapter consists of two sections: In Section 6.1 we formulate rational first integrals.
Consequently, GKTs are naturally introduced. After introducing the notion of pure GKTs, we
provide a method for checking whether a GKT is pure. We also show that the defining equation
of GKTs can be written in the same form as the ordinary Killing equation with replacing the
Levi–Civita connection by a certain connection. Moreover, we provide the integrability condi-
tion for GKVs. In Section 6.2, we show the rational first integral of the Collinson-O’Donnell
solution is trivial. We then construct several metrics admitting a nontrivial rational first integral
in two and four dimensions.

6.1 Formulation
As it is for Chapter 1, we only deal with a geodesic Hamiltonian

H(q, p) =
1
2
gab(q)papb , (6.1)

where (q, p) are canonical variables. A first integral F that is meromorphic in canonical mo-
menta pa takes the form

F(q, p) =
U(q, p)
V (q, p)

, (6.2)
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where U and V are nonzero polynomials of degree u and v in pa. Without loss of generality,
we can assume u ≥ v since if F is a first integral, the same is true of F−1. We also assume
that U and V have no common root. A rational first integral F is said to be irreducible if the
degrees of U and V cannot be reduced by using other first integrals. For instance if py/px is a
first integral, the linear combinations such as (py+Hpx)/px and (p2x + p2y)/pxpy are also first
integrals. However, they are not irreducible.

It is obvious that ifU andV are first integrals, then F is also a first integral. This suggests that
a rational first integral is not so meaningful if it can be constructed out of a pair of polynomial
first integrals. We must distinguish it from the others. Therefore, we introduce the notion of
inconstructible rational first integrals: A rational first integral is said to be inconstructible if it
does not result from a pair of polynomial first integrals. Otherwise it is constructible.

Requiring F to be a first integral, {H,Q}= 0, we obtain

{U,H}V −{V,H}U = 0 , (6.3)

where { , } denotes the Poisson bracket. Introducing an auxiliary functionW , the above condi-
tion is equivalent to

{U,H} = WU , {V,H} = WV . (6.4)

WhenU and V are homogeneous polynomials in momenta, we can write

U = Ka1···au pa1 · · · pau , V = K̄a1···av pa1 · · · pav , (6.5)

where Ka1···au and K̄a1···av are totally symmetric tensor fields. Substituting eqs. (6.5) into eqs.
(6.4) with the Hamiltonian (6.1), we find thatW must be a linear function of pa,W = Aapa. We
are then able to rewrite eqs. (6.5) as

∇(aKb1···bu) = A(aKb1···bu) , ∇(aK̄b1···bv) = A(aK̄b1···bv) , (6.6)

where ∇ denotes the Levi–Civita connection and the round brackets (· · ·) denote symmetrisa-
tion over the enclosed indices. As the Hamiltonian (6.1) is homogeneous with respect to the
momenta. The above results are valid order by order in momenta, even supporsing that U and
V are inhomogeneous polynomials. The equations (6.6) motivate us to introduce the following
definition for gauged Killing tensor fields.

Definition 12. A symmetric tensor Ka1···ap is called a gauged Killing tensor field (GKT) if there
exists a 1-form Aa satisfying the differential equation

∇(aKb1···bp) = A(aKb1···bp) , (6.7)

where Aa is called the associated 1-form of Ka1···ap . A GKT is equivalent to a KT if Aa = 0.

It should be noted that C. D. Collinson had already introduced gauged Killing vector fields
[50]. To obtain a rational first integral of the geodesic equations, we need to find a pair of GKTs
with a common associated 1-form Aa. This pair is referred to as a Killing pair in Refs [49, 48].

It is worth commenting here that the associated 1-form Aa can be determined uniquely: If
there exist two different associated 1-forms A(1)

a and A(2)
a , we deduce that

δA(aKb1···bp) = 0 , (6.8)
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where δAa ≡ A(1)
a −A(2)

a . However, it is possible to show δAa = 0 in the following way. Let δA1
be a nonzero component of δAa. Then it follows from eq. (6.8) that δA1K11···1= 0, thenK11···1=
0. It also follows from eq. (6.8) that p δA1K1···12+ δA2K1···1 = 0, then K1···12 = 0. The same
is true for K1···13,K1···14, · · ·K1···1N . Moreover, (p−1)δA1K1···123+δA3K1···12+δA2K1···13 = 0,
then K1···123 = 0. The same is true for K1···124,K1···125, · · ·K1···12N . After a lot of repetition, it is
concluded that all the components of Ka1···ap vanish. This completes the proof by contradiction.

We can confirm that the following properties hold true:

• Given two GKTs Ka1···ap ,Ca1···aq , a symmetric tensor product K(a1···apCa1···aq) is also a
GKT.

• Given two GKTs Ka1···ap, K̄a1···aq which have a common associated 1-form, their linear
combinations such as Ka1···ap − K̄a1···aq and Ka1···ap + K̄a1···aq are also GKTs.

We particularly find the following property.

Proposition 13. Suppose Ka1···ap is a GKT. Then, K̄a1···ap ≡ ωKa1···ap is also a GKT for an
arbitrary function ω .

Proof. Since Ka1···ap satisfies eq. (6.7), we have

∇(aK̄b1···bp) = K(b1···bp∇a)ω +ωA(aKb1···bp) = Ā(aK̄b1···bp) .

where Āa = Aa+∇a lnω . □

It follows from this proposition that K̄a1···ap = ωKa1···ap is a GKT if Ka1···ap a KT. Obviously,
not all GKTs take this form. In what follows, a GKT Ka1···ap is said to be pure if it there exists
a function ω such that K̄a1···ap ≡ ωKa1···ap is a KT. Otherwise, it is said to be impure. If we
construct a rational first integral from two pure GKTs with a common associated 1-form, the
resulting first integral becomes constructible.

We offer a criterion to decide whether a GKT is pure.

Proposition 14. A GKT is pure if and only if the associated 1-form is closed.

Proof. Let Ka1···ap be a GKT. (⇐) If the associated 1-form Aa is closed, ∇[aAb] = 0, there
exists a function ψ such that Aa = ∇a lnψ . Using this, we define K̄a1···ap ≡ ψ−1Ka1···ap and
consequently find that K̄a1···ap is a KT. (⇒) As Ka1···ap is pure, there exists a function ψ such
that K̄a1···ap ≡ ψ−1Ka1···ap is a KT. Using this, we obtain

∇(aKb1···bp) = ∇(a

(
ψK̄b1···bp)

)
=
(

∇(a lnψ
)
Kb1···bp) , (6.9)

so it follows from the uniqueness of the associated 1-form that Aa = ∇a lnψ . Thus if Ka1···ap is
pure, then Aa is closed. □

Proposition 14 states that by investigating whether the associated 1-form is closed, we can
check whether a rational frist integral is inconstructible. Using this fact, we investigate several
concrete examples of rational first integrals in the next section.
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Geometric interpretation

Let us introduce the connection ∇̂a on
⊗pT ∗M which acts on a tensor Ta1...ap as

∇̂aTb1···bp = ∇aTb1···bp −
n

∑
i=1

B(aT|b1···bi−1|bi)bi+1···bp , (6.10)

where Ba is a 1-form. This connection is torsion-free but not metric-compatible, ∇̂agbc ≠ 0.
The curvature tensor of ∇̂a defined by R̂abc

dVd ≡ (∇̂a∇̂b − ∇̂b∇̂a)Vc has antisymmetry with
respect to the initial two indices, R̂abc

d =−R̂bac
d , and the Bianchi identities R̂[abc]

d = 0. Whilst
antisymmetry of the latter two indices does not hold. Now the gauged Killing equation (6.7) is
written as

∇̂(aKb1···bp) = 0 , (6.11)

where Ba = pAa. This equation takes the same form as the ordinary Killing equation with
replacing ∇ by ∇̂. It turns out by using the torsion-free connection (6.10) and Proposition 14
that a GKT is pure if the gauge potential Ba is locally pure gauge.

Integrability condition

By using the torsion-free connection (6.10), the integrability conditions for GKTs can be written
in a simple form. For instance, let us consider GKVs obeying

∇̂(aKb) = 0 . (6.12)

The integrability condition for GKVs were already provided by C. D. Collinson [50]. However,
the expression provided by him is rather complicated as he used the Riemann curvature tensor
and the associated 1-form. On the other hand, it follows from eq. (6.12) that

∇̂bKa = K(1)
ba , (6.13)

∇̂cK
(1)
ba = Y a

b
Y a c

b
R̂cba

dKd , (6.14)

where K(1)
ba ≡ Y a

b
∇̂bKa. Its integrability condition reads

0 = Y a c
b d

[
(∇̂dR̂cba

m)Km−2R̂cba
mK(1)

md

]
. (6.15)

Once again, we confirmed that this takes the same form as that of the ordinary Killing equation
with replacing the Levi–Civita connection ∇ and the Riemann curvature tensor Rabcd by ∇̂ and
R̂abcd , respectively. It should be noted that the procedure of prolongation developed in Chapter
3 can be applied for GKTs of a general order; however, the explicit forms of the prolonged
system (3.20)–(3.26) and its integrability conditions for the second and third order (4.4)–(4.7)
cannot available for the GKTs because we had implicitly used the Bianchi identity Ra[bcd] = 0
in the derivation
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6.2 Examples

6.2.1 Collinson-O’Donnell solution
Vaz and Collinson [49] have found the canonical form of the 4-dimensional metrics admitting
a pair of GKVs. They assumed that one of the GKVs is hypersurface orthogonal. Following
this result, Collinson and O’Donnell [48] have obtained the solutions of the vacuum Einstein
equations and have classified them into two cases. The solution of Case 2 was given in the form

ds2 = − y
x
dtdx+

yt
x2
dx2+

α2

2
√
y
(dy2+dz2)−

2
√
yα2

x
dx
(

f
√
y
dy−g

√
ydz
)
, (6.16)

where α is a constant, f and g are arbitrary functions of y and z obeying the Einstein equations

∂y f − y∂zg = − C2

y2
√
y
, ∂z f + y∂yg =

C
y
√
y
, (6.17)

where C is a constant. The geodesic equations in the metric admit an irreducible rational first
integral

F =
px
pt

. (6.18)

and a pair of GKVs (∂t)a and (∂x)a with the common associated 1-form (2/x)dxa. We note
that F is a rational first integral even if f and g do not satisfy eqs. (6.17). Since the associated
1-from is closed, we find from Proposition 14 that the rational first integral is constructible.
Indeed, we find that x(∂t)a,x(∂x)a are independent KVs, and the rational first integral is given
by F = Q2/Q1 with two independent polynomial first integrals Q1 = xpt and Q2 = xpx.

The solution of Case 1 is obtained as the limiting case: If we take y→ 1+ εy, z→ εz with
f → ε f , g→ εg, α2 → α2/ε2. Subsequently taking ε → 0 gives the metric

ds2 = − 1
x
dtdx+

t
x2
dx2+

α2

2
(dy2+dz2)− 2α2

x
dx( f dy−gdz) , (6.19)

where f and g are functions of y and z obeying the Einstein equations

∂y f −∂zg = −C2 , ∂z f +∂yg = C . (6.20)

As this metric still has two independent KVs x(∂x)a, x(∂t)a, two GKVs (∂t)a, (∂x)a are con-
structible. Thus it follows that the rational first integral is constructible.

6.2.2 Metrics admitting an inconstructible rational first integral
Two dimensions

To construct metrics admitting an inconstructible rational first integral, we consider theMaciejewski-
Przybylska system [51]. The Hamiltonian is given by

H =
1
2
(p2x + p2y)+ f (px, py)(xpx−αypy) , (6.21)
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where α is a constant and f (px, py) is an arbitrary function. This Hamiltonian admits a first
integral of the form

F = pα
x py , (6.22)

for arbitrary α and f . To obtain a rational first integral, we assume that α is a negative rational
number. Then by setting α =−s/r with positive integers r and s, we have a rational first integral
Fr = pry/p

s
x. Moreover, we take f = px+ py to make the Hamiltonian quadratic. As a result,

the Hamiltonian describes geodesic flows on a 2-dimensional surface with the metric

ds2 =
(1−2αy)dx2−2(x−αy)dxdy+(1+2x)dy2

Q(x,y)
, (6.23)

where α is a constant and

Q(x,y) = 1+2x−2αy− (x+αy)2 . (6.24)

We firstly focus on the case α = −1. In this case, the metric (6.23) is flat. As the first
integral is given by F = py/px, (∂x)a and (∂y)a are GKVs. The common associated 1-form is
−gab((∂x)b+(∂y)b). We can confirm that the the associated 1-form is closed. Thus it turns
out from Proposition 14 that (∂x)a and (∂y)a are constructible. More explicitly, we perform the
coordinate transformation

x = u+ v+
1
2
(u2+ v2) , y = u− v+

1
2
(u2+ v2) . (6.25)

In the (u,v) coordinates, the metric is given by ds2 = du2+dv2 and the GKVs are given by

(∂x)a =
1− v
1+u

(∂u)a+(∂v)a =
1

1+u

[
(∂u)a+(∂v)a− v(∂u)a+u(∂v)a

]
, (6.26)

(∂y)a =
1+ v
1+u

(∂u)a− (∂v)a =
1

1+u

[
(∂u)a− (∂v)a+ v(∂u)a−u(∂v)a

]
, (6.27)

confirming they are constructible.
For general α = −s/r, since Fr = pry/p

s
x is a rational first integral, (∂x)a1 · · ·(∂x)as and

(∂y)a1 · · ·(∂y)ar are respectively GKTs with the common associated 1-form−sgab((∂x)b+(∂y)b).
After some algebra, it follows that the associated 1-form is not closed except for α =−1. Thus
the rational first integral is inconstructible for α ̸= −1. This implies that we have constructed
the metric (6.23) admitting an inconstructible rational first integral of the geodesic equations in
two dimensions.

Four dimensions

We are able to generalise the Maciejewski-Przybylska system (6.21) to the N-dimensional sys-
tem. The Hamiltonian is given by

H =
1
2

N

∑
i=1

p2i + f (p1, . . . , pN)
N

∑
i=1

αixipi , (6.28)

where α1, . . . ,αN are constants and f (p1, . . . , pN) is a function. This Hamiltonian admits a first
integral

F = pβ1
1 pβ2

2 · · · pβN
N , (6.29)
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where β1, . . . ,βN are constants satisfying the condition

α1β1+α2β2+ · · ·+αNβN = 0 . (6.30)

It should be noted that this system is completely integrable because first integral (6.29) indicates
there are (N−1) constants of motion.

Taking f as f = a1p1 + a2p2 + · · ·+ aN pN with constants (a1, . . . ,aN), the Hamiltonian
(6.28) describes geodesic flows on the N-dimensional curved space with the inverse metric

gii = 1+2aiαixi , gi j = a jαixi+aiα jx j . (6.31)

In what follows, we consider the Maciejewski-Przybylska system in four dimensions. For
brevity, we adopt the following setup: a1 = a2 = a3 = 1, a4 = −

√
−1, α1 = 1, α2 = −α

and α3 = α4 = 0. Under this setup, the Hamiltonian is independent of the coordinates x3 and
x4, so that p3 and p4 are first integrals. As another first integral is given by F = pβ1

1 pβ2
2 with

β1−β2α = 0, we normalise β2 as β2 = 1 and then obtain β1 = α . Moreover, identifying the
coordinates x1,x2,x3 as x,y,z and x4 as

√
−1w, we obtain the Hamiltonian

H =
1
2
(p2x + p2y + p2z − p2w)+(px+ py+ pz+ pw)(xpx−αypy) , (6.32)

with the first integrals pz, pw and F = px/pα
y . As a result, we obtain one-parameter family of 4-

dimensional metrics admitting integrable geodesic flows. In particular, when we take α =−1,
the metric becomes scalar-flat, i.e. R = gabRab = 0 whilst Rab ̸= 0. The components of the
scalar-flat metric are given by

gxx =
1+2y
K(x,y)

, gyy =
1+2x
K(x,y)

, gxy =
−x− y
K(x,y)

,

gzz =
1+2x+2y+2xy

K(x,y)
, gzw =

−x2− y2

K(x,y)
, gxz =

y2− xy− x
K(x,y)

,

gyz =
x2− xy− y
K(x,y)

, gww =
2(x− y)2−1−2x−2y+2xy

K(x,y)
, gxw =

−y2+ xy+ x
K(x,y)

,

gyw =
−x2+ xy+ y

K(x,y)
, (6.33)

whereK(x,y)= 1+2x+2y+2xy−x2−y2. This metric admits a rational first integral F = py/px
which is inconstructible. Thus, we have constructed the scalar-flat metric (6.33) admitting an
inconstructible rational first integral of the geodesic equations in four dimensions.
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Chapter 7

Summary and outlook

In this thesis, we have explored the classical problem of determining whether a Hamiltonian
system is completely integrable. More precisely, as is explained in Chapter 1, we assumed that:
The Hamiltonian under consideration is given by a natural Hamiltonian

H̄ =
1
2
ḡAB(q)pApB+V (q) , (A,B = 1, . . . ,N−1)

so as to reduce a geodesic Hamiltonian

H =
1
2
gab(q)papb ; (a,b = 1, . . . ,N)

First integrals are polynomial in momenta. For a geodesic Hamiltonian, such integrals can be
written as

Q(q, p) = Ka1···ap(q)pa1 · · · pap ,

where Ka1···ap = K(a1···ap) is a Killing tensor field obeying the Killing equation

∇(bKa1···ap) = 0 . (7.1)

Under the assumptions, we studied the Killing equation (7.1) and undertook the following ques-
tions:

• Are there any solutions of the Killing equation (7.1) for given metrics?

• If the answer is yes, then how many solutions are there?

• What quantities are sufficient to determine the number of solutions?

In this thesis, we study the above issues and give partial answers. In particular, we introduce a
systematic method to analyse the Killing equation and to study its properties. A key ingredient
here is projection operators called Young symmetrisers. Main results are as follows:

(i) We have constructed an effective way to analyse the Killing equation and to study its
properties based on Young symmetrisers Whilst several studies [52] had focused on the
role of Young symmetry in the tensor calculus, Young symmetrisers have not generally
been recognised so far. We have established a prolongation procedure which transforms
the Killing equation of a specified order into a closed system called the prolonged system
by introducing new variables. Then the explicit form of the prolonged system was written
out up to the third order.
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(ii) We gave a formula for the integrability conditions of the prolonged system that put tough
restrictions on the Riemann curvature tensor and its derivatives. We also derived the
concrete form of the integrability conditions up to the third order. Moreover, we made
a conjecture on the Young symmetries of the integrability conditions of a general order
and provided a method for computing the dimension of the solution space of the Killing
equation with a specific example.

(iii) We characterised metrics which admit Killing vector fields by local curvature obstruc-
tions. The obstructions had been obtained by analysing the integrability condition and
the original Killing equation. In particular, we provided the algorithm that tells us exactly
how many Killing vector fields exist for a given metric. This results would be extended
to 4 or more higher-dimensional metrics.

(iv) Killing tensor fields arise out of an assumption that first integrals of a geodesic flow are
polynomial in momenta. We relaxed this assumption and conceive of first integrals that
are meromorphic in momenta. We then defined gauged Killing tensor fields in order to
describe rational first integrals. We also studied their properties in detail and constructed
several metrics admitting a nontrivial rational first integral.

We close our study with some questions and outlook.
For the integration of the geodesic equations with a constraint H = 0, it is sufficient to

find a first integral in the zero energy level set. Such integrals F must satisfy the condition
{H,F}= LH for a certain function L. If F are polynomial in momenta, this condition leads to
the conformal Killing equation

∇(aCb1···bp) = g(ab1ϕb2···bp) , (7.2)

where ϕa1···ap−1 is a symmetric tensor. As shown in Section 4.4, our analysis based on Young
symmetrisers has effective applications to other types of overdetermined PDE systems. So
a natural question to ask is whether our analysis is valid for the conformal Killing equation.
The immediate answer to this question is No since in order to analyse the conformal Killing
equation, we need not irreducible representations of GL(N) but those of SO(N). So it will be
necessary to incorporate the trace operation into our analysis. Such modifications have not been
pursued in this thesis but will be considered in the future.

Despite the fact that integrability conditions are simply a consequence of the requirement
that mixed partial derivatives must commute, the explicit forms of them have brought us essen-
tial insights into physics and mathematics. Classic examples are the Gauss-Codazzi equations in
the Hamiltonian formulation of general relativity and the Raychaudhuri equations in the deriva-
tion of the singularity theorems. Similarly, the integrability conditions of the Killing equation
for p= 1 lead to an immediate corollary (see, e.g. [53]): After some algebra, we can show that

∇a1···arI
(1,1)
bcde

∣∣∣
DKKK=0

= 0 ⇔ LK∇a1···arRbcde|DKKK=0 = 0 . (7.3)

where LK is the Lie derivative along a KV Ka. This implies that if Q is the scalar constructed
out of the Riemann curvature tensor and its derivatives, then LKQmust be zero. So if the set of
the 1-form {dQ(1), . . . ,dQ(n)} are linearly independent, the N-form

dQ(1)∧·· ·∧dQ(N) , (7.4)
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must also be zero forN-dimensional metrics. If any of the possible obstructions is not vanishing,
such a metric admits no KV. We explicitly used this fact in Chapter 5. We therefore expect that
further analysis of the explicit forms of the integrability condition for p> 1 will lead to similar
corollaries for KTs.

If we establish analogous algorithms for KVs in 4 or more higher dimensions, it is not an
overstatement that we do not need to solve the Killing equation of the first order anymore.
However, it would need an intricate and elaborate calculation. On the other hand, it is not clear
how the algorithm extends to the second or more higher order KTs. Perhaps this results from
not understanding of the integrability condition completely. We expect that the conjecture we
made in Chapter 4 provides a clue to establish the algorithms for KTs.

Another question to ask is whether we can formulate the existence condition or hopefully
the value of r0 in eq. (4.13). Answering this question may be linked to the conjecture we made
in Chapter 4. In fact, if the conjecture holds true, we obtain a criteria

C =
rank I(p,p)

rank E(p)
=

N(N−1)
(p+2)(p+1)

, (7.5)

where N and p are the dimension of space(-time) M and the order of KTs, respectively. Here,
rank E(p) agrees with the upper limit of the BDTT formula (3.36); rank I(p,p) denotes the
number of linearly independent components of the integrability condition (4.8). If C ≤ 1, we
definitely need the derivatives of I(p,p) to determine the dimension of the space of KTs and thus
r0 > 0. The equality is attained when N = p+ 2. Namely, our conjecture serves to formulate
the lower bound on the value of r0.

It would be worthwhile to comment the significance of our results in application to computer
program. In recent years various softwares implemented with a computer algebraic system, such
asMathematica andMaple, have been developed. Each software prepares many packages avail-
able for solving individual problems in mathematics and physics, and we then find packages for
solving the Killing equation for Killing vector fields as well as Killing and Killing–Yano tensor
fields. However most of these packages do not solve the Killing equations efficiently, as they
merely use a built-in PDE solver without the integrability conditions. For fairness it should be
mentioned that we found one package (e.g. KillingVectors in Maple) which does use the inte-
grability conditions, albeit only for Killing vector fields and not for Killing and Killing-Yano
tensor fields. Hence, in order to make such packages more efficient especially for Killing ten-
sor fields, our results in Chapter 4 are significant to provide the formulas of the integrability
conditions to be implemented.
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[2] H. Poincaré, H., Les methodes nouvelles de la mecanique celeste, 1 (1892).

[3] S. Chandrasekhar, Principles of Steller Dynamics, Univ of chicago press, 1942

[4] J. H. Jeans, Monthly Notices Roy. Astron. Soc. 76, 81 (1915).

[5] J. H. Jeans, Problems of Cosmogony and Stellar Dynamics, Cambridge University Press,
New York, p. 233 (1919).

[6] B. Lindbland, Handbuch der Astrophysik, Springer-Verlag, Berlin, Vol. V/2, p. 1038
(1933).

[7] G. Contopoulos, On the existence of a third integral of motion, Astron. J., 68 (1963), 1-14.

[8] A. Ollongren, Three-dimensional galactic stellar orbits, Bull. Astron. Inst. Neth. 16, 241
(1962).

[9] M. Henon and C. Heiles, The applicability of the third integral of motion, Astron. J., 69
(1964), 73-79.

[10] J. Hietarinta, A search for integrable two-dimensional Hamiltonian systems with polyno-
mial potential, Phys. Lett. A 96 (6) (1983) 273.

[11] J. Hietarinta, Direct methods for the search of the second invariant, Phys. Rep. 147 ( 1987)
87154.

[12] K. Nakagawa and H. Yoshida, A list of all integrable two-dimensional homogeneous poly-
nomial potentials with a polynomial integral of order at most four in the momenta, J. Phys.
A, Vol34, 41 (2001).

[13] A. J.Maciejewski and M. Przybylska, All meromorphically integrable 2D Hamiltonian
systems with homogeneous potential of degree 3, Phys. Lett. A, Vol 327, 5-6, p461–473
(2004).
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