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Abstract

In the information society, it is important to make sure the reliability of information
transmitted over the networks, also it is important to keep accurate information stored
in recording media. The transmitted data and recorded data may be corrupted due to
various factors. The error-correcting codes are used for correctness of the data, so coding
theory is one of academical research topics.

There are many classes of error-correcting codes. Depending on the ability of the
code, the code appropriate for the application is selected. The main ability of the code
is equal to the number of correctable errors. Even if the ability of the code is high,
depending on the decoding algorithm, the ability can not be used to the utmost. Thus,
the performance of the algorithm used for encoding and decoding is also important.

In this thesis, I study the new error-correcting codes called symbol-pair codes, which
are proposed by Cassuto and Blaum. They presented a coding framework for channels
whose outputs are overlapping pairs of symbols in storage applications. Such channels
are called symbol-pair read channels. The pair distance and pair error are used in
symbol-pair read channels. The study on the decoding algorithm to correct pair errors
because the symbol-pair read channel a new framework proposed in 2010.

I focus on the decoding method of symbol-pair codes. Cassuto et al. and Yaakobi et
al. discuss the decoding method of the codes. However, their decoding methods can not
be user to the utmost of the capability of the codes.

In this thesis, I propose multiple new decoding methods. By newly defining the
syndromes of the symbol-pair code, I propose the first decoding method that can correct
all pair errors within the capability of the code. Based on the research results, I discuss
the reduction of the calculation complexity and the design of the decoding circuit in
hardware.
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Chapter 1

Introduction

1.1 Motivation

In the information society, it is important to ensure the reliability of information trans-
mitted over the networks such as the Internet, Local Area Network (LAN). They use
optical communications, satellite communications, Wireless Fidelity (Wi-Fi) and so on.
Moreover, it is also important to keep accurate information stored in recording media
such as hard disk drives (HDD), solid state drives (SSD), and compact discs (CD).

In data communications over the networks and the data readout from recording
media, data is corrupted due to the radio interference, the equipment failure and so on.
The error-correcting codes are used to restore the corrupted data to the appropriate
data. By using the error-correcting codes, redundant information is added to transmit
data. Redundant information can detect or correct errors occurred in the received data.
Thus, the reliability of information is improved by using the error-correcting codes.

The error-correcting codes have a lot of classes such as the Hamming codes, the
BCH codes, and the Reed-Solomon codes [1, 2]. Recently, for treating the large data,
the low-density parity-check (LDPC) codes and Spatially Coupled LDCP codes are stud-
ied. These codes are selected according to the communication channel to be used. To
select codes, the length of the code, the number of errors which the code can correct,
and algorithms for encoding and decoding are important. In general, the number of
correctable errors of the code is determined by the minimum distance among sequences,
which are encoded by the codes. The code has the capability to correct errors up to the
half of the minimum distance. Whether errors within the correcting capability actually
can be corrected depends on the algorithm for decoding. Thus, the decoding algorithm
which can correct all errors within the capability is important.

In this thesis, I study the new error-correcting codes called symbol-pair codes. The
symbol-pair codes are used over symbol-pair read channels which are new channels pre-
sented by Yuval Cassuto and Mario Blaum [3, 4].

Recently, the capacity of magnetic recording devices is increasing due to high density
data recording. Thus, the distance between elements for recording data is small More-
over, with the development of reading technology, two adjacent data will be read at the
same time. Cassuto et al. presented a coding framework for channels whose outputs are
overlapping pairs of symbols in storage applications [3, 4]. They defined errors and a
metric over the symbol pair read channel as pair errors and pair distance, respectively.
They also defined the parameter, which is determined by the capability for correcting
pair error, as minimum pair distance. Moreover, Cassuto and Lisyn constructed cyclic
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symbol-pair codes using algebraic methods [5]. They showed that there are some symbol-
pair codes whose rates are higher than the codes for the Hamming metric with the same
relative distance. Yaakobi, Bruck, and Siegel proved a lower bound on the minimum
pair distance of cyclic codes and presented a decoding algorithm for cyclic codes over
symbol-pair read channels [6, 7]. Yaakobi’s decoding algorithm uses decoders for cyclic
codes in the Hamming metric.

In this thesis, I focus on the decoding method of symbol-pair codes. Cassuto et
al. proposed a decoding algorithm by reducing the pair-decoding problem to error-and-
erasure decoding in the Hamming metric[3, 4]. They considered erasure which indicates
the pairs of received pair vectors in conflict. In Ref.[6, 7], Yaakobi et al. proved that,
for cyclic codes with the minimum Hamming distance dH , the minimum pair distance
holds:

dp ≥ dH +


dH
2


.

Furthermore, they presented a decoding algorithm for correcting pair errors using a
decoder for cyclic codes with the error-correcting capability tH . Their algorithm can
correct up to t0-pair errors, where

t0 =


3tH + 1

2


.

Both of decoding algorithms presented by Cassuto et al. and Yaakobi et al. cannot
correct all pair errors within the pair error correcting capability.

1.2 This Study

In this thesis, I propose a new syndrome decoding algorithm which can correct all pair
errors within the pair error-correcting capability. Moreover, I also propose decoding
algorithms based on the research result obtained by studying syndrome decoding algo-
rithm.

1.2.1 Syndrome Decoding of Linear Codes over Symbol-Pair Read
Channels

In Chapter 3, I propose the new decoding algorithm of linear codes over symbol-pair read
channels. I newly define a parity-check matrix and two types of syndromes of symbol-pair
codes, which are called symbol-pair syndrome and neighbor-symbol syndrome. Further,
I prove that the pair of two syndromes is unique for each error vector whose number of
pair errors is not more than the half of the minimum pair distance.

1.2.2 A Decoding Algorithm of Cyclic Codes over Symbol-Pair Read
Channels

The proposed syndrome decoding algorithm can correct all pair error vectors whose pair
errors are within half of the minimum pair distance. However, this algorithm requires
a decoding table for matching the syndromes with the pair error vectors, and it has a
drawback in that the space complexity is high for long codes.

In the Chapter 4, I propose an efficient decoding algorithm for cyclic codes over
symbol-pair read channels using a decoder for cyclic codes. The proposed algorithm
corrects pair errors based on the relationship between the pair errors and the syndromes.

8



Whereas Yaakobi’s algorithm corrects pair errors in the Hamming metric, the proposed
algorithm corrects pair errors in the pair metric. Thus, the proposed algorithm can
correct pair errors that cannot be corrected by Yaakobi’s algorithm.

1.2.3 Algebraic Decoding of BCH Codes over Symbol-Pair Read Chan-
nels

In chapter 5, I focus on the decoding problem for BCH codes over symbol-pair read
channels.

In the decoding problem in the Hamming metric, the error-locator polynomial is
obtained by algebraic methods, such as the Euclidean algorithm [10] or Berlekamp-
Massey algorithm [11]. Moreover, there are some methods that directly derived the
error-locator polynomial or error positions when several errors are corrected [2, 12].

I consider correcting pair errors with algebraic methods in the pair metric. I define
error-locator polynomial and conflict-locator polynomial of the BCH codes over symbol-
pair read channels. Moreover, I derive a relation between the conflict-locator polynomial
and the error-locator polynomial. In addition, I propose new decoding algorithms that
calculate the error-locator polynomial with an algebraic method by using syndrome.
Furthermore, I compare the proposed decoding algorithms with existing decoding algo-
rithms and discuss the validity of calculating the error-locator polynomial of pair errors.

1.2.4 Error-Trapping Decoding over Symbol-Pair Read Channels

Above decoding algorithms assume the decoding by software. Since the symbol-pair read
channels are the model for the storage applications, it is natural to embed the decoder
in hardware. A small decoder is required for embedding in the hardware.

In chapter 6, I discuss error-trapping decoding for cyclic codes over symbol-pair read
channels. I propose a new error-trapping decoding algorithm under some restrictions
on the pair error patterns that we intend to correct. It corrects all pair error patterns
whose pair errors within the pair error-correcting capability under the restrictions. I
firstly discuss problems in the existing error-trapping decoding algorithms when it is
used for cyclic codes over symbol-pair read channels. I solve these problems by using
the neighbor-symbol syndrome and propose a new error-trapping decoding algorithm.
Next, I show a circuitry that implements the proposed algorithm. Finally, I discuss
modifying the restrictions on the correctable error patterns. I show necessity that I need
to find covering polynomials suitable for the symbol-pair read channels, and show how
to modify the restrictions by using the covering polynomials.

1.3 Outline

The remainder of the thesis is organized as follows. Chapter 2 explains describe error-
correcting codes and describe definitions and terms related to symbol-pair read channels.
Chapter 3 discusses a decoding method of linear codes over symbol-pair read channels.
Chapter 4 discusses a decoding method of cyclic codes over symbol-pair read channels.
Chapter 5 discusses a decoding method of BCH codes over symbol-pair read channels.
Chapter 6 discusses a decoding method of cyclic codes by hardware over symbol-pair
read channels. Finally, Section 7 concludes this thesis.

9



Chapter 2

Error-Correcting Codes and
Symbol-Pair Read Channels

2.1 Error-Correcting Codes

The transmission and storage of digital information process transfer data from an in-
formation source to a destination. A simple model of a typical transmission or storage
system may be represented in Fig. 2.1. The digital source is a sequence of binary digits
(bits) called into the information sequence i. The channel encoder transform the infor-
mation sequence i into a discrete encoded sequence w called a codeword. The codeword
enters channel or recoding media and is corrupted by noise. The channel outputs cor-
responding to the encoded sequence w is called the received sequence u. The channel
decoder transforms the received sequence u into a binary sequence î called the estimated
information sequence.

The encoder for a block code divides the information sequence into message block
of k information bits each. A message block is represented by the binary k-tuple i =
(i0, i1, . . . , ik−1), called a message. The encoder transforms each message i independently
into an n-tuple w = (w0, w1, . . . , wn−1) of discrete symbol, called codeword. Therefore,
corresponding to the 2k different possible messages. There are 2k different possible
codewords at the encoder output. This set of 2k codewords of length n is called an (n, k)
block code.

The minimum distance is an important parameter of block codes. The minimum

Digital source Channel encoder

Channel decoderDigital sink

ChannelNoise

𝒊 𝒘

𝒖

Ƹ𝒊

Figure 2.1: Channel coding system
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distance determines the error detecting and error-correcting capabilities. Let x =
(x0, x1, . . . , xn−1) be a binary n-tuple. The Hamming weight of x, denoted by WH(x),
is defined as the number of nonzero components of x. Let x and y be two n-tuple. The
Hamming distance between x and y, denoted by DH(x,y), is defined as the number of
places where they differ, that is,

DH(x,y) =
n−1
i=0

DH(xi, yi), (2.1)

DH(xi, yi) =


0 if xi = yi
1 otherwise

. (2.2)

The Hamming weight is the Hamming distance between x and all-zero tuple 0, that is,

WH(x) = DH(x,0). (2.3)

The Hamming distance is a metric function that satisfies the triangle inequality. Let
x, y, and z be three n-tuples. Then,

DH(x,y) +DH(y, z) ≥ DH(x, z). (2.4)

In follows from the definition of the Hamming distance and the definition of modulo-
2 addition that the Hamming distance between two n-tuple x and y is equal to the
Hamming weight of the sum of x and y, that is,

DH(x,y) = WH(x+ y). (2.5)

Given a block code C, the minimum distance of C, denoted by dH , is can compute
the Hamming distance between any two distinct codewords, that is,

dH ≜ min
x,y∈C,x̸=y

DH(x,y). (2.6)

A block code with minimum Hamming distance dH guarantees correction of all the
error pattern of

tH =


dH − 1

2


(2.7)

or fewer errors, where ⌊(dH − 1)/2⌋ denotes the largest integer no greater than (dH−1)/2.
The parameter tH is called the error-correcting capability.

For a block code with 2k codewords and length n, the code is called a linear (n, k)
block code if and only if its 2k codewords form a k-dimensional subspace of the vector
space of all the n-tuples over the field GF(2)[2]. Thus, for any two codeword w1 and w2

in a code C, and any two element c1 and c2 in GF(2), C is a linear code if the following
equation is satisfied.

c1w1 + c2w2 ∈ C. (2.8)

If C is a linear block code, the sum of two codewords is also a codeword. From (2.5),
the Hamming distance between two codewords in C is equal to the Hamming weight
of the third codeword in C. Then, the minimum Hamming distance is obtained by the
minimum Hamming weight, defined by

wH ≜ min
x∈C,x̸=0

WH(x). (2.9)
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A linear code with 2k codewords, length n, and the minimum distance d is called a
(n, k, d) linear code.

Any set of basis vectors for a linear block code C can be considered as rows of a
matrix G, called a generator matrix of C. The row space of G is the linear code C, and
the vector is a codeword if and only if it is a linear combination of rows of G. For a code
C with generator matrix G, the codeword w of a digital source i is given by

w = iG. (2.10)

There is another useful matrix associated with every linear block code. For any k×n
generator matrix G with linearly independent rows, there exists an (n−k)×n matrix H
with linearly independent rows such that any vector in the row space of G is orthogonal
to the rows of H, and any vector that is orthogonal to the rows of H is in the row space
of G. The matrix H is called a parity-check matrix of the code. Then, the generator
matrix G of a code C and its parity-check matrix H satisfy the following equation.

GHT = 0. (2.11)

Thus, the codeword w of the code C satisfy wHT = 0.
For the any codeword w = (w0, w1, . . . , wn−1) of a linear code, the code is cyclic code

if and only if (wn−1, w0, w1 . . . , wn−2) is also codeword.
Let w be a codeword of (n, k) linear code. If w is transmitted over a noisy channel,

the received vector u may be suffered errors. Let e be an error vector, the received
vector is u = w + e. For the received vector u, a syndrome is defined by

s = (s1, s2, . . . , sn−k) = uHT. (2.12)

Since u = w + e and w satisfies wHT = 0, the syndrome is

s = uHT = (w + e)HT = wHT + eHT = eHT (2.13)

Thus, the syndrome is not dependent on codewords and depends on error vectors.
For the code C with the parity-check matrix H, if the syndromes of the error vector e

in the set of errors E are all different, the errors are corrected by using a correspondence
table of the syndrome and the error vector. In general, for the linear code C with the
error-correcting capability tH , the set of errors E which the Hamming weight is tH or
less satisfies the above condition.

The decoding method using syndrome of linear codes is executed in the following
steps.
[Syndrome decoding algorithm of linear codes]

Step 1. Calculate the syndrome s from received vector u.

Step 2. Refer the correspondence table, and estimate corresponding error e by
the syndrome s.

Step 3. Decode the received vector u into the codeword as ŵ = u− e

The syndrome decoding uses for any linear codes. However, the size of the corre-
spondence table depends on the code length and the correcting capability, thus a large
memory is needed to hold the table for the large codes, so it is not practical. There
are codes which have an algebraic structure for efficient encoding and decoding. The
typical algebraic code is BCH code, and the Euclidean algorithm and Berlekamp-Massey
algorithm are decoding algorithm for the BCH codes.

12



2.2 Symbol-Pair Read Channels and Its Decoding

2.2.1 Symbol-Pair Read Channels

Cassuto and Blaum proposed new error-correcting codes which are called symbol-pair
codes [3][4]. High-density data storage technologies require high-capacity storage at a
relatively low cost. They presented a coding framework for channels whose outputs are
overlapping pairs of symbols in storage applications. Such channels are called symbol-pair
read channels.

In this section, I briefly review definitions and terms related to symbol-pair codes
presented in Ref. [3].

Definition 1. Let x = [x0, x1, . . . , xn−1] be a vector in n-dimensional vector space Σ.
The symbol-pair read vector of x is defined as

π(x) = [(x0, x1), (x1, x2), . . . , (xn−2, xn−1), (xn−1, x0)].

This work focus in this work on binary vectors, so Σ = {0, 1}.
To distinguish received pair vectors ←→u from standard symbol vectors, I will denote

them with the symbol ↔ as follows:

←→u = [(ul,0, ur,1), (ul,1, ur,2), . . . , (ul,n−1, ur,0)]. (2.14)

In each pair, l and r denote the left and right symbols, respectively. Furthermore, the
i-th pair of the pair vector is defined as ←→u i = (ul,i, ur,i+1).

Every vector x has a pair representation in n-dimensional pair vector space (Σ,Σ)n.
However, not all pair vectors in (Σ,Σ)n have a corresponding vector in Σn, because ur,i
and ul,i+1 in two adjacent pairs may have different readings.

For example, the pair vector [(0, 0), (1, 0), (0, 1), (1, 1), (1, 0)] does not have a corre-
sponding vector in Σn since x1 = 0 at the right of the first pair, but x1 = 1 at the left
of the second pair. If pair vectors have corresponding vectors in Σn, they are said to be
consistent.

The main error model that considered for codes over symbol-pair read channels is
defined as follows.

Definition 2. Let x = [x0, . . . , xn−1] be a vector in Σn. A pair vector ←→u = [(ul,0, ur,1),
(ul,1, ur,2), . . . , (ul,n−1, ur,0)] is the result of a t-pair error from x, if t is the number of
elements in {i : (ul,i, ur,i+1) ̸= (xi, xi+1)}.

Next, I explain the necessary and sufficient condition on codes for correcting pair
errors. A central element in the characterization of correctability is the pair distance,
defined as follows.

Definition 3. Let←→u and←→v be two pair vectors in (Σ,Σ)n. The pair distance between
←→u and ←→v is defined as

Dp(
←→u ,←→v ) = |{i : (ul,i, ur,i+1) ̸= (vl,i, vr,i+1)}|.

For notational aesthetics, when a consistent pair vector is used as an argument to
the pair distance, its notation may appear

Dp(x,y) ≜ Dp(π(x), π(y)).

Similar to the pair distance, the pair weight can be defined as below.
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Definition 4. Let ←→u be a pair vector in (Σ,Σ)n. The pair weight of ←→u is defined as

Wp(
←→u ) = |{i : (ul,i, ur,i+1) ̸= (0, 0)}|.

For x,y in Σn, let 0 < DH(x,y) < n be the Hamming distance between x and y.
Then

DH(x,y) + 1 ≤ Dp(x,y) ≤ 2DH(x,y). (2.15)

In the extreme case in which DH(x,y) = 0 or DH(x,y) = n, clearly Dp(x,y) =
DH(x,y). If the codes have all vectors in Σn, the minimum pair distance between
distinct codewords is 2, hence it can detect a single pair error. Further, for a set
SH = {j : xj ̸= yj}, If SH =

L
l=1Bl is a minimal partition of the set SH to sub-

sets of consecutive indices, then

Dp(x,y) = DH(x,y) + L. (2.16)

In addition, the minimum pair distance of a code C ⊂ Σn is defined as

dp = min
x,y∈C,x̸=y

Dp(π(x), π(y)). (2.17)

A code over a symbol-pair read channel is linear if the code recorded in storage applica-
tions is linear; thus, the minimum pair distance equals the minimum pair weight.

The pair distance has triangle inequality just like the Hamming distance; hence, the
set (Σ,Σ)n with the pair distance is a metric space. Based on the properties of the pair
distance, the necessary and sufficient condition for correctability of t-pair errors is given
by the following theorem.

Theorem 1. [3] A code C can correct t-pair errors if and only if dp ≥ 2t+ 1.

From Theorem 1, the pair error-correcting capability tp of the code with the minimum
pair distance dp is given by

tp =


dp − 1

2


. (2.18)

2.2.2 Decoding of Symbol-Pair Codes

Cassuto-Blaum Decoding Algorithm [3]

In Ref. [3], Cassuto and Blaum proposed a decoding algorithm by reducing the pair-
decoding problem to error and erasure decoding in the Hamming metric.

[Cassuto-Blaum Decoding Algorithm]
Let←→u = [(ul,0, ur,1), (ul,1, ur,2), . . . , (ul,n−1, ur,0)] be the received pair-vector. Define the
n symbols of the vector z as

zi =


ui if ul,i = ur,i−1

∗ otherwise
.

The symbol ∗ represents symbol erasure and is used when symbol hypotheses from the
two pairs are in conflict. The vector z is now input to an error/erasure decoder in the
Hamming metric. ■

While any code can be decoded using this algorithm, a critical question is whether
this algorithm provides a guarantee to find the unique codeword within a pair-ball of
radius ⌊(dp−1)/2⌋ around the received pair vector. Cassuto and Blaum mentioned that
the answer turns out to be no in general, and yes for interleaved codes. The following
example proves that this algorithm is inferior to a bounded-distance pair decoder.

14



Example 1. Suppose a single pair error-correcting code with the two codewords {[00000],
[01100]} of minimum pair distance 3 is used, and the pair vector←→u = [(0, 0), (1, 1), (0, 0),
(0, 0), (0, 0)] is received. Cassuto-Blaum decoding algorithm transforms ←→u into z =
[0, ∗, ∗, 0, 0]. Then a Hamming-metric decoder fails to decode, because both codewords
are equally likely given the decoder input z. On the other hand, a pair-decoder can
discern that ←→u is at pair distance 1 to [00000] and at pair distance 2 to [01100], hence
successfully choosing the vector [00000] from within the radius-1 pair-ball.

From the above description, the Cassuto-Blaum decoding algorithm cannot correct
all pair errors within the pair error-correcting capability.

Yaakobi-Bruck-Siegel Decoding Algorithm

In Ref [6], Yaakobi, Bruck and Siegel proved that, for linear cyclic codes with the mini-
mum Hamming distance dH , the minimum pair distance holds

dp ≥ dH +


dH
2


,

and they showed how to use decoders of cyclic codes in order to construct a decoder for
symbol-pair codes which corrects up to

t0 = ⌊(3tH + 1)/2⌋ (2.19)

pair errors.
Given a linear cyclic code C with the minimum Hamming distance dH = 2tH + 1, I

assume it has a decoder DC that can correct up to tH errors. The decoder DC is defined
as a map DC : Σn → C ∪ {F} and the notation DC(u) = ĉ indicates that the decoder’s
input is a received word u and its output is a decoded codeword ĉ or the decoder failure
symbol F . The double-repetition code of C is the code

C2 = {(c, c) : c ∈ C}.

This code is of length 2n and the minimum Hamming distance satisfies 2dH . The code C2

can correct up to 2tH errors and I assume that it has a decoderDC2 : Σn×Σn → Σn∪{F}
having the same properties as the decoder DC . Every codeword in C2 consists of two
identical codewords from C. Thus, I assume that the decoder DC2 returns only one copy
of the decoded codeword from C.

Let c ∈ C and let π(c) ∈ π(C) be its pair vector. Let ←→u = π(c) +←→e be a received
word, where e ∈ (Σ,Σ)n is the error vector and wH(e) ≤ ⌊(3tH + 1)/2⌋. The decoder of
symbol-pair codes is defined as a map Dπ : (Σ,Σ)n → {0, 1}n which receives the word
←→u and returns ĉ ∈ C. Let

←→u = [(ul,0, ur,1), (ul,1, ur,2), . . . , (ul,n−1, ur,0)]

be a received vector, and three vectors are defined as follows:

uL = [ul,0, ul,1 . . . , ul,n−1], (2.20)

uR = [ur,1, ur,2, . . . , ur,0], (2.21)

uS = [ul,0 ⊕ ur,1, ul,1 ⊕ ur,2, . . . , ul,n−1 ⊕ ur,0]. (2.22)

Since the vector u suffers from at most t0 pair errors, the vectors uL and uR have at
most t0 errors as well, respectively. The vector uS has at most t0 errors with respect to
the codeword c′ = [c0 + c1, c1 + c2, . . . , cn−1 + c0]. Then, the following lemma holds.
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Lemma 1. [6] If the codeword c′ ∈ C is successfully decoded then I can recover the
codeword c.

The codeword c satisfies ci = c0 +
i−1

j=0 c
′
j . Hence, if c̃ = [c̃0, c̃1, . . . , c̃n−1] is defined

by c̃i =
i−1

j=0 c
′
j then the codeword c is either c̃ or c̃ + 1, depending on the value of

c0. The distance between uL and c is at most t0 and dH(c̃, c̃ + 1) = n. Hence, if
dH(uL, c̃) < dH(uL, c̃+ 1) then c = c̃ and otherwise c = c̃+ 1. Therefore, it is possible
to recover the codeword c from the codeword c′. By abuse of notation, I denote by c′∗

an operator that calculates, as explained in Lemma 1, the codeword c from c′, and so
c′∗ = c.

The number of pair errors in the vector u is at most t0. Each pair error corresponds
to one or two bit error in the pair. Let E1 be the number of single-bit pair errors and
E2 be the number of double-bit pair errors, where E1 + E2 ≤ t0. Then, the following
lemma holds.

Lemma 2. [6] If c ∈ C, ←→u = π(c) +←→e and wH(←→e ) ≤ t0, then either DC(uS) = c′ or
DC2((uL,uR)) = c.

Lemma 2 implies that at least one of the two decoders succeeds. Yaakobi et al.
showed that the decoder’s output Dπ(

←→u ) = ĉ is calculated as follows.
Yaakobi-Bruck-Siegel Decoding Algorithm [6]

Step1. c1 = DC(uS), e1 = dH(c1,uS).

Step2. c2 = DC2((uL,uR)), e2 = dH((c2, c2), (uL,uR)).

Step3. If c1 = F or wH(c1) is odd then ĉ = c2.

Step4. If e1 ≤ ⌊(tH + 2)/2⌋, then ĉ = c∗1.

Step5. If e1 > ⌊(tH + 2)/2⌋, let e1 = ⌊(tH + 2)/2⌋+ a, (1 ≤ a ≤ ⌈tH/2⌉ − 1)

a) If e2 ≤ t0 + a then ĉ = c2.

b) Otherwise, ĉ = c∗1. ■

Note that this algorithm can correct t0 = ⌊(3tH +1)/2⌋ pair errors for a given cyclic
code with the minimum Hamming distance dH = 2tH + 1. On the other hand, from
(2.15), the minimum pair distance of the cyclic code satisfies

dH + 1 = 2tH + 2 ≤ dp ≤ 4tH + 2 = 2dH .

Hence, it is possible to be symbol-pair code which corrects up to ⌊(dp − 1)/2⌋ = 2tH
pair errors. For such a code, Yaakobi-Bruck-Siegel decoding algorithm cannot correct
all error within the pair error-correcting capability.
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Chapter 3

Syndrome Decoding of Linear
Codes over Symbol-Pair Read
Channels

3.1 Abstract

Cassuto et al. and Yaakobi et al. presented decoding algorithms for symbol-pair codes.
However, their decoding algorithms cannot always correct errors whose number is not
more than half the minimum pair distance. In this chapter, I newly define a parity-check
matrix and two types of syndromes of symbol-pair codes. Further, I prove that the pair
of two syndromes is unique for each error vector whose number of pair errors is not more
than the half of the minimum pair distance.

3.2 Parity-Check Matrix and Syndrome of Symbol-Pair
Codes

I firstly define the parity-check matrix of symbol-pair codes. Let

H =


h0

h1
...

hn−k−1

 =


h0,0 h0,1 · · · h0,n−1

h1,0 h1,1 · · · h1,n−1
...

...
...

hn−k−1,0 hn−k−1,1 · · · hn−k−1,n−1


be a parity-check matrix of linear block codes. By representing each row of the parity-
check matrix by symbol-pair vector,

π(H) =


π(h0)
π(h1)

...
π(hn−k−1)



=


(h0,0, h0,1) (h0,1, h0,2) · · · (h0,n−1, h0,0)
(h1,0, h1,1) (h1,1, h1,2) · · · (h1,n−1, h1,0)

...
...

...
(hn−k−1,0, hn−k−1,1) (hn−k−1,1, hn−k−1,2) · · · (hn−k−1,n−1, hn−k−1,0)

 . (3.1)
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I call it a symbol-pair parity-check matrix.
Let ←→u be a received pair vector. Then, I calculate the syndrome by multiplying ←→u

by the transpose of the symbol-pair parity-check matrix.

←→s ≜ [(sl,0, sr,1), (sl,1, sr,2), . . . , (sl,n−k−1, sr,0)]

=←→u · π(H)T. (3.2)

I call it a symbol-pair syndrome. This calculation requires the inner product of the pair
vector and each row of the symbol-pair parity-check matrix.

The inner product of two pair vectors ←→u = [(ul,0, ur,1), (ul,1, ur,2), . . . , (ul,n−1, ur,0)]
and ←→v = [(vl,0, vr,1), (vl,1, vr,2), . . . , (vl,n−1, vr,0)] is calculated as follows:

←→u · ←→v = [((ul,0 · vl,0 + ul,1 · vl,1 + · · ·+ ul,n−1 · vl,n−1,

ur,1 · vr,1 + ur,2 · vr,2 + · · ·+ ur,0 · vr,0)]. (3.3)

For example, the inner product of [(0, 1), (1, 0), (1, 0)] and [(0, 0), (0, 1), (1, 0)] is cal-
culated by

[(0, 1), (1, 0), (1, 0)] · [(0, 0), (0, 1), (1, 0)]
= [(0 · 0+1 · 0+1 · 1, 1 · 0+0 · 1+0 · 0)]
= [(1, 0)].

When a symbol-pair code is constructed from a linear block code with the minimum
Hamming distance dH , the minimum pair distance is more than dH because of (2.15).
Thus, the symbol-pair code constructed from the tH -error-correcting code can correct
more than tH -pair errors.

In the symbol-pair syndrome calculation of (3.2), the right and left symbols in pairs of
the symbol-pair syndrome are independently calculated by the same way as the syndrome
of tH -error-correcting code. Therefore, for distinct pair error patterns whose number is
beyond tH in the right or left symbol, the pair error patterns may have the same symbol-
pair syndromes.

Example 2. Consider the (3, 2) single-parity-check code C1. Although this code is a
single error detecting code, its symbol-pair code has the minimum pair distance 3 and
is the 1-pair error-correcting code. The symbol-pair parity-check matrix of this code is
given by

π(H) =

(1, 1) (1, 1) (1, 1)


.

Then, the symbol-pair syndrome of three error vectors

←→e 1 = [(0, 1), (0, 0), (0, 0)],
←→e 2 = [(0, 0), (0, 1), (0, 0)],
←→e 3 = [(0, 0), (0, 0), (0, 1)].

is [(0, 1)]. Since the symbol-pair syndrome is not unique for each error vector, I cannot
find error vectors by the symbol-pair syndromes. Therefore, I cannot correct pair errors
by using only symbol-pair syndrome while the pair errors are within pair error capability.
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3.3 Proposed Syndrome Decoding Algorithm

I introduce a new syndrome which indicates the pairs of received pair vector in conflict.
The syndrome is defined as follows:

S ≜ [S0, S1, . . . , Sn−1], (3.4)

Si =


0 if ul,i = ur,i
1 otherwise

. (3.5)

It is called a neighbor-symbol syndrome. If the left symbol of i-th pair and the right
symbol of (i − 1)-th pair are consistent then the i-th symbol of the neighbor-symbol
syndrome is 0, otherwise, the i-th symbol of the neighbor-symbol syndrome is 1.

The i-th symbol of neighbor-symbol syndrome is easily obtained by XORing

Si = ul,i ⊕ ur,i,

i.e., the neighbor-symbol syndrome is calculated as follows:

S = [ul,0 ⊕ ur,0, ul,1 ⊕ ur,1, . . . , ul,n−1 ⊕ ur,n−1].

When a pair vector [(0, 0), (1, 1), (1, 0), (0, 0), (0, 0)] is received, the neighbor-symbol syn-
drome is S = [01000]. It implies that the left symbol of the second pair and the right
symbol of the first pair of received pair vector are in conflict.

Using the neighbor-symbol syndrome and the symbol-pair syndrome, I derive the
following theorem.

Theorem 2. If a code C can correct tp-pair errors, the pair of the symbol-pair syndrome
and the neighbor-symbol syndrome (←→s ,S) is unique for each error vector ←→e where
Wp(
←→e ) ≤ tp.

Proof: Consider the case that a code C can correct tp-pair errors. Let
←→e and ←→e ′

be
distinct error vectors whose pair weight is not more than tp. The symbol-pair syndrome
and neighbor-symbol syndrome of ←→e and ←→e ′

are written as

←→s =←→e · π(H)T,

S = [el,0 ⊕ er,0, el,1 ⊕ er,1, . . . , el,n−1 ⊕ er,n−1],
←→s ′

=←→e ′ · π(H)T,

S′ = [e′l,0 ⊕ e′r,0, e
′
l,1 ⊕ e′r,1, . . . , e

′
l,n−1 ⊕ e′r,n−1].

Suppose that the symbol-pair syndrome and the neighbor-symbol syndrome of ←→e are
same as those of ←→e ′

.

←→s =←→s ′
,

S = S′.

If the symbol-pair syndrome of ←→e is equal to that of ←→e ′
, error vectors satisfy

←→e ′
=←→e ⊕ [(c1,0, c2,1), (c1,1, c2,2), . . . , (c1,n−1, c2,0)],

where c1 = (c1,0, . . . , c1,n−1) and c2 = (c2,0, . . . , c2,n−1) are codewords of C. Furthermore,
if the neighbor-symbol syndrome of ←→e is equal to that of ←→e ′

, the conflict pairs of ←→e
are corresponding to that of ←→e ′

. Then, [(c1,0, c2,1), (c1,1, c2,2), . . . , (c1,n−1, c2,0)] is a

19



consistent pair vector. Hence c1 and c2 are the same nonzero codewords. Therefore, the
error vectors satisfy

←→e ′
=←→e ⊕ π(c1).

Since the minimum pair distance of C is dp = 2tp + 1, the pair weight of the codeword
Wp(c1) is more than dp. Therefore, I obtain the following relation:

Wp(
←→e ′

) ≥Wp(c1)−Wp(
←→e )

≥ 2tp + 1− tp

= tp + 1.

It is conflicted that the pair weight of error vectors ←→e and ←→e ′
is not more than tp.

Consequently, the pair of the symbol-pair syndrome and the neighbor-symbol syndrome
(←→s ,S) is unique for each error vector ←→e where Wp(

←→e ) ≤ tp. □
I propose a decoding algorithm of symbol-pair codes using the symbol-pair syndrome

and the neighbor-symbol syndrome.

Syndrome Decoding Algorithm of Symbol-Pair Codes

Step1. Calculate the symbol-pair syndrome and the neighbor-symbol syndrome of the
received pair vector ←→u .

←→s =←→u · π(H)T.

S = [ul,0 ⊕ ur,0, ul,1 ⊕ ur,1, . . . , ul,n−1 ⊕ ur,n−1].

Step2. Locate the coset leader ←→e whose symbol-pair syndrome and neighbor-symbol
syndrome are equal to ←→s and S.

Step3. Assume that ←→e is the error vector caused by the channel, decode the received
pair vector ←→w into the pair vector.

←→w =←→u ⊕←→e

Step4. Transform the pair vector ←→w into the codeword w = (w0, w1, . . . , wn−1) by

wi = ◁wi,

and output the codeword w. ■

For symbol-pair codes with the minimum pair distance dp = 2tp + 1, the proposed
algorithm can correct all pair error patterns whose number of pair errors is not more
than tp. I show an example of pair error correction by the proposed algorithm using the
(3, 2) single-parity-check code.

Example 3. Consider again about the (3, 2) single-parity-check code C1 in Example 2.
Its symbol-pair code is 1-pair error-correcting code. Table 3.1 shows the standard array
for the symbol-pair code of the (3, 2) single-parity-check code. It can be constructed by
the similar way of Hamming-metric codes [1][2]. When the standard array is formed,
each coset leader is chosen to be a pair vector of least pair weight from the remaining
pair vectors. Table 3.1 lists 10 cosets including 1+


3
1


(22−1) coset leaders corresponding

to correctable error patterns within 1-pair error. The decoder has the correctable pair
error patterns corresponding to the symbol-pair syndromes and the neighbor-symbol
syndromes. When a codeword c = [011] is sent and 1-pair error is occur in the channel,
←→u = [(0, 1), (1, 0), (1, 0)] is a received pair vector. The proposed algorithm decodes ←→u
into the codeword as follows:
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Table 3.1: Standard array for the symbol-pair code of the (3, 2) single-parity-check code

Symbol-pair Neighbor-symbol Coset
syndrome←→s syndrome S Coset leader

[(0,0)] [000] [(0,0),(0,0),(0,0)] [(0,1),(1,1),(1,0)] [(1,0),(0,1),(1,1)] [(1,1),(1,0),(0,1)]

[(1,0)] [100] [(1,0),(0,0),(0,0)] [(1,1),(1,1),(1,0)] [(0,0),(0,1),(1,1)] [(0,1),(1,0),(0,1)]

[(0,1)] [010] [(0,1),(0,0),(0,0)] [(0,0),(1,1),(1,0)] [(1,1),(0,1),(1,1)] [(1,0),(1,0),(0,1)]

[(1,1)] [110] [(1,1),(0,0),(0,0)] [(1,0),(1,1),(1,0)] [(0,1),(0,1),(1,1)] [(0,0),(1,0),(0,1)]

[(1,0)] [010] [(0,0),(1,0),(0,0)] [(0,1),(0,1),(1,0)] [(1,0),(1,1),(1,1)] [(1,1),(0,0),(0,1)]

[(0,1)] [001] [(0,0),(0,1),(0,0)] [(0,1),(1,0),(1,0)] [(1,0),(0,0),(1,1)] [(1,1),(1,1),(0,1)]

[(1,1)] [011] [(0,0),(1,1),(0,0)] [(0,1),(0,0),(1,0)] [(1,0),(1,0),(1,1)] [(1,1),(0,1),(0,1)]

[(1,0)] [001] [(0,0),(0,0),(1,0)] [(0,1),(1,1),(0,0)] [(1,0),(0,1),(0,1)] [(1,1),(1,0),(1,1)]

[(0,1)] [100] [(0,0),(0,0),(0,1)] [(0,1),(1,1),(1,1)] [(1,0),(0,1),(1,0)] [(1,1),(1,0),(0,0)]

[(1,1)] [101] [(0,0),(0,0),(1,1)] [(0,1),(1,1),(0,1)] [(1,0),(0,1),(0,0)] [(1,1),(1,0),(1,0)]

Step1. Calculate the symbol-pair syndrome and the neighbor-symbol syndrome of
←→u = [(0, 1), (1, 0), (1, 0)].

←→s = [(0, 1), (1, 0), (1, 0)] ·

(1, 1) (1, 1) (1, 1)

T
= [(0, 1)],

S = [001].

Step2. Locate the coset leader←→e whose symbol-pair syndrome and neighbor-symbol
syndrome are equal to [(0, 1)] and [001]. Then

←→e = [(0, 0), (0, 1), (0, 0)]

is assumed to be the error pattern.

Step3. Decode the received vector ←→u into the pair vector as follows:

←→w =←→u ⊕←→e
= [(0, 1), (1, 0), (1, 0)]⊕ [(0, 0), (0, 1), (0, 0)]

= [(0, 1), (1, 1), (1, 0)].

Step4. Transform the pair vector ←→w into the codeword as follows:

←→w = [(0, 1), (1, 1), (1, 0)]→ w = [011].

The proposed algorithm corrects 1-pair error and outputs the codeword [011].

3.4 Conclusion

In this chapter, I have proposed a new syndrome decoding algorithm of symbol-pair
codes. This algorithm uses two types of syndromes which are the symbol-pair syndrome
and the neighbor-symbol syndrome.

I have shown the significant property that the pair of the symbol-pair syndrome and
the neighbor-symbol syndrome is unique for each error vector whose number of pair
errors is not more than the half of the minimum pair distance. It leads simple and
elegant decoding algorithm that can correct pair errors up to the decoding radius.
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Chapter 4

A Decoding Algorithm of Cyclic
Codes over Symbol-Pair Read
Channels

4.1 Abstract

Yaakobi et al. proved a lower bound on the minimum pair distance of cyclic codes. Fur-
thermore, they provided a decoding algorithm for correcting pair errors using a decoder
for cyclic codes, and showed the number of pair errors that can be corrected by their
algorithm. However, their algorithm cannot correct all pair error vectors within half of
the minimum pair distance.

In this chapter, I propose an efficient decoding algorithm for cyclic codes over symbol-
pair read channels. It is based on the relationship between pair errors and syndromes. In
addition, I show that the proposed algorithm can correct more pair errors than Yaakobi’s
algorithm.

4.2 Relationship Between Syndromes and Error Vectors

Let π(c) = [(c0, c1), (c1, c2), . . . , (cn−1, c0)] be a pair vector of a codeword c = [c0, c1, . . . , cn−1]
of a cyclic code C. Let cL = [c0, c1, . . . , cn−1] be the left vector of π(c), and let
cR = [c1, c2, . . . , c0] be the right vector of π(c). Here, cL equals c and cR equals the
vector cyclic-shifting c to the left by one bit, so cL and cR are the codewords of the
cyclic code C. Furthermore, let cS = [c0⊕ c1, c1⊕ c2, . . . , cn−1⊕ c0] be a vector XORing
cL and cR. Note that cS also is a codeword of the cyclic code C since cS is the vector
XORing the codewords of the cyclic code C. Therefore, when cL, cR, and cS suffer from
errors, they can be corrected by the decoder DC for the cyclic code C. In addition, the
codeword c can be transformed from cS as follows. First, c̃ is calculated by as

c̃i =


0 if i = 0i−1

j=0 cS,j otherwise
. (4.1)

Next, c is calculated as

c =


c̃ if DH(uL, c̃) < DH(uL, c̃+ 1)
c̃+ 1 otherwise

, (4.2)

where DH(x,y) denotes the Hamming distance between the two vectors x and y.
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When cL, cR, and cS suffer from errors, I consider that they are corrected indepen-
dently. Let ←→u = [(ul,0, ur,1), (ul,1, ur,2), . . . , (ul,n−1, ur,0)] be a received pair vector. As
in the case of (2.20)–(2.22), let uL, uR, and uS be the left vector of ←→u , the right vector
of←→u , and the vector XORing the left and right vectors of←→u , respectively. Additionally,
the neighbor-symbol syndrome is calculated as follows:

S = [ul,0 ⊕ ur,0, ul,1 ⊕ ur,1, . . . , ul,n−1 ⊕ ur,n−1]. (4.3)

I consider the tH -error correcting cyclic code C over a symbol-pair read channel. I
define the notation DC(u) = ĉ indicates that the decoder’s input is a received word u
and its output is a decoded codeword ĉ or the decoder failure symbol F . If c ∈ C is
the transmitted word and DH(c,u) ≤ tH , then it is guaranteed that ĉ = c. However, if
DH(c,u) > tH , then either ĉ = F , indicating that more than tH errors have occurred,
or ĉ = c′, where c′ is a codeword different from c, whose Hamming distance from the
received word u is at most tH , i.e., DH(c′,u) ≤ tH . Then, uL can be corrected by
the decoder DC if uL has at most tH errors. However, uL cannot be corrected by the
decoder DC if uL has more than tH errors. Similarly, uR and uS can be corrected by
the decoder DC if they have at most tH errors, but they cannot be corrected by the
decoder DC if they have more than tH errors. I consider that these uncorrectable errors
are corrected by using the neighbor-symbol syndrome. The pair error vector is written
as follows:

eL = [el,0, el,1 . . . , el,n−1],

eR = [er,1, er,2, . . . , er,0],

eS = [el,0 ⊕ er,1, el,1 ⊕ er,2, . . . , el,n−1 ⊕ er,0].

Then, the neighbor-symbol syndrome S has the following relation:

S = [ul,0 ⊕ ur,0, ul,1 ⊕ ur,1, . . . , ul,n−1 ⊕ ur,n−1]

= [(c0 ⊕ el,0)⊕ (c0 ⊕ er,0), . . . , (cn−1 ⊕ el,n−1)⊕ (cn−1 ⊕ er,n−1)]

= [el,0 ⊕ er,0, . . . , el,n−1 ⊕ er,n−1]

= eL ⊕ (eR ≫ 1), (4.4)

where (eR ≫ 1) is the vector cyclic-shifting eR to the right by one bit.
Therefore, when eL is found, eR is obtained by

eR = (S ⊕ eL)≪ 1. (4.5)

When eR is found, eL is also obtained by

eL = S ⊕ (eR ≫ 1). (4.6)

4.3 Classification of Pair Error Vectors

I classify the pair error vectors into four cases according to the number of errors in the
left and right vectors of ←→e . When the Hamming weight of a vector x is denoted by
WH(x), the classification is as follows.

Case 1: WH(eL) ≤ tH and WH(eR) ≤ tH .

Case 2: WH(eL) ≤ tH and tH < WH(eR) ≤ tp.
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Case 3: tH < WH(eL) ≤ tp and WH(eR) ≤ tH .

Case 4: tH < WH(eL) ≤ tp and tH < WH(eR) ≤ tp.

For each case, I discuss how to correct errors in the left and right vectors by using the
tH -error correcting decoder DC and the neighbor-symbol syndrome.
Case 1: When both left and right vectors have at most tH errors, eL and eR can be
calculated from uL and uR by the decoder DC , respectively.
Case 2: When the left vector has at most tH errors, the decoding operation cL = Dc(uL)
succeeds and the left error vector is obtained by eL = cL ⊕ uL. Then, eR can be calcu-
lated by (4.5). Therefore, ←→e = (eL, eR) is the correctable pair error vector within the
pair error correcting capability tp. On the other hand, when the right vector has more
than tH errors, the decoding operation DC(uR) fails and outputs the failure symbol F or
a miscorrected codeword c′R. Then, a different error vector is obtained by e′R = c′R⊕uR,
and a different error vector e′L is calculated by (4.6). Therefore, the pair error vector
←→e ′ = (e′L, e

′
R) is different from

←→e . Moreover, the symbol-pair syndrome of←→e ′ is equal
to that of ←→e . From Theorem 2, ←→e ′ is not the pair error vector within the pair error
correcting capability, and the pair weight of e′ is more than tp. Consequently, even if
←→e ′ is obtained by the decoding failure of operation DC(uR), it can be distinguished
from ←→e by examining the pair weight of ←→e ′.

Case 3: In this case, the number of errors occurring the left and right vectors in Case 2
is swapped. Therefore, ←→e = (eL, eR) can be calculated by replacing uL and uR.
Case 4: When both left and right vectors have more than tH errors, eL and eR cannot
be obtained by the decoding operations DC(uL) and DC(uR). As in Case 2, even if a
different pair vector←→e ′ is obtained by the decoding failure, it can be distinguished from
←→e by examining the pair weight of ←→e ′. In this case, I consider that the vector uS is
corrected by the decoder DC . I calculate the codeword c from cS by (4.1) and (4.2) if
cS is obtained from uS by using the decoder DC .

As a result, I propose a new decoding algorithm for cyclic codes over symbol-pair
read channels as follows.
Proposed Decoding Algorithm for Cyclic Codes

Input: Received pair vector ←→u = (uL,uR), pair error correcting capability tp = ⌊(dp−
1)/2⌋.

Output: Corrected codeword ĉ.

Step 1. Calculate the neighbor-symbol syndrome by (3.4).

Step 2. Decode uL to cL by the decoder DC .

cL := DC(uL).

If cL = F , go to Step 3; otherwise, calculate eL and eR as follows:

eL := cL ⊕ uL,

eR := (eL ⊕ S)≪ 1.

Examine the pair weight of ←→e = (eL, eR). If Wp(
←→e ) ≤ tp, let ĉ := cL. Then,

output ĉ and terminate this algorithm; otherwise, go to Step 3.
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Step 3. Decode uR to cR by the decoder DC .

cR := DC(uR).

If cR = F , go to Step 4; otherwise, calculate eR and eL as follows:

eR := cR ⊕ uR,

eL := (eR ≫ 1)⊕ S.

Examine the pair weight of ←→e = (eL, eR). If Wp(
←→e ) ≤ tp, let ĉ := (cR ≫ 1).

Then, output ĉ and terminate this algorithm; otherwise, go to Step 4.

Step 4. Decode uS to c′ by the decoder DC .

c′ := DC(uS).

If c′ = F , then output the decoding failure; otherwise, calculate ĉ from c′ by (4.1)
and (4.2), and output ĉ.

In Step 2 of the proposed algorithm, the decoder DC attempts to correct the error from
uL. If the error vector is in Case 1 or Case 2, cL can be obtained by the result of the
decoding operation DC(uL); then, the error vector can be obtained by eL = cL ⊕ uL,
and eR can be calculated by (4.5). Then, the pair weight of ←→e = (eL, eR) is tp or
less. Therefore, these error vectors in Case 1 and Case 2 can be corrected in Step 2.
If the error vector is in Case 3 or Case 4, the decoding operation DC(uL) fails and
the decoder DC outputs the failure symbol F or a miscorrected codeword c′L. Then, a
different error vector is obtained by e′L = c′L ⊕ uL, and a different error vector e′R is
calculated by (4.5). However, the pair weight of ←→e ′ = (e′L, e

′
R) is more than tp; hence,←→e ′ can be distinguished from←→e and the process goes to Step 3. In Step 3, the decoder

DC attempts to correct the error from uR. If the error vector is in Case 3, cR can be
obtained by the result of the decoding operation DC(uR); then, the error vector can be
obtained by eR = cR ⊕ uR, and eL can be calculated by (4.6). Then, the pair weight
of ←→e = (eL, eR) is tp or less. Therefore, these error vectors in Case 3 can be corrected
in Step 3. If the error vector is in Case 4, the decoding operation DC(uR) fails and
the decoder DC outputs the failure symbol F or a miscorrected codeword c′R. Then, a
different error vector is obtained by e′R = c′R ⊕ uR, and a different error vector e′L is
calculated by (4.6). However, the pair weight of ←→e ′ = (e′L, e

′
R) is more than tp; hence,←→e ′ can be distinguished from←→e and the process goes to Step 4. In Step 4, the decoder

DC attempt to correct the error from uS . The error is uncorrectable in Step 2 and
Step 3. If c′ is obtained by the decoding operation DC(uS), c can be calculated from
c′ using (4.1) and (4.2). If the decoding operation DC(uS) fails and the decoder DC

outputs the failure symbol F , the proposed decoding algorithm fails.

4.4 Pair Error Correcting Capability of this algorithm

I consider the pair error correcting capability of the proposed decoding algorithm. I
assume to correct a pair error vector ←→e = (eL, eR). If WH(eL) ≤ tH or WH(eR) ≤ tH ,
i.e., the vector is included in Case 1, Case 2, or Case 3, then this algorithm can correct
up to tp-pair errors in the vector in Step 2 or Step 3. If WH(eL) > tH and WH(eR) > tH ,
i.e., the vector is included in Case 4, then this algorithm corrects pair errors in the vector
in Step 4. Therefore, to analyze the error vectors corrected in Step 4, I have to consider
only the error vectors included in Case 4.
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Theorem 3. If both left and right vectors of the received word of a cyclic code over
a symbol-pair read channel have more than tH errors, the number of correctable pair
errors by the tH -error correcting decoder is t′0 = ⌊(3tH + 2)/2⌋.

Proof : Suppose that a received pair vector←→u has t-pair errors. Let ES be the number
of pair errors (1, 1) in ←→u , EL be the number of pair errors (1, 0) in ←→u , and ER be the
number of pair errors (0, 1) in ←→u . Thus,

t = ES + EL + ER. (4.7)

First, I consider the number of errors in uS which is the vector XORing the left and
right vectors of ←→u since uS is corrected in Step 4. The XOR result of the left and right
symbols of the pair error (1, 1) in ←→u is equal to 0 in uS , and the XOR result of the left
and right symbols of the pair error (1, 0) and (0, 1) in ←→u is equal to 1 in uS . Then, the
total number of errors in uS is EL + ER.

Next, I consider the upper bound on EL+ER under the condition that←→u is included
in Case 4. Since ←→u is included in Case 4, the total number of errors in the left vector
satisfies

ES + EL ≥ tH + 1. (4.8)

Similarly, the total number of errors in the right vector satisfies

ES + ER ≥ tH + 1. (4.9)

From (4.8) and (4.9),
2ES + EL + ER ≥ 2tH + 2. (4.10)

From (4.7), the left-hand side of (4.10) is written as

2ES + EL + ER = 2(t− EL − ER) + EL + ER

= 2t− EL − ER. (4.11)

Thus, (4.10) is written as
2t− EL − ER ≥ 2tH + 2. (4.12)

Therefore, the upper bound on EL + ER is given by

EL + ER ≤ 2t− 2tH − 2. (4.13)

Finally, I consider the number of correctable pair errors. The maximum value of
EL +ER is 2t−EL−ER from (4.13); hence, uS , which has 2t−EL−ER errors, can be
corrected by the tH -errors-correcting decoder under the following condition:

2t− 2tH − 2 ≤ tH . (4.14)

From (4.14), t ≤ ⌊(3tH + 2)/2⌋ is obtained. Therefore, the number of correctable pair
errors is t′0 = ⌊(3tH + 2)/2⌋. □

From Theorem 1 and Theorem 3, the pair error correcting capability of the proposed
decoding algorithm is

t′p = min

dp − 1

2


,
3tH + 2

2


. (4.15)
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Table 4.1: Comparison of the pair error correcting capability of binary (n, k) BCH
codes over symbol-pair read channels

Code Proposed algorithm Yaakobi’s algorithm

(n, k) dH dp tH tp
Pair error

correcting capability t′p
Pair error

correcting capability t0

(31,21) 5 9 2 4 4 3

(127,64) 21 34 10 16 16 15

(127,85) 13 22 6 10 10 9

(127,99) 9 15 4 7 7 6

(255,223) 9 15 4 7 7 6

4.5 Discussion

First, I compare the error correcting capability of the proposed algorithm with that
of existing algorithms. Yaakobi et al. presented a decoding algorithm that can correct
up to t0-pair errors, where t0 is given by (2.19). Their algorithm cannot correct all
pair errors in a code that has the error correcting capability tp, if tp is greater than t0.
Table 4.1 lists examples of such codes as binary primitive BCH codes. The minimum
pair distance dp is calculated by the algorithm presented in Ref. [9]. For these codes,
the proposed algorithm can correct the pair error vectors that cannot be corrected by
Yaakobi’s algorithm. I present an example of such a pair error vector.

Example 4. Suppose the binary (31, 21) BCH code whose generator polynomial is
g(x) = x10 + x9 + x8 + x6 + x5 + x3 + 1. Yaakobi’s decoding algorithm can correct up
to t0 = 3 pair errors, and the proposed decoding algorithm can correct up to t′p = 4 pair
errors. Let

←→u = [(1, 1), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (1, 0), (1, 0),

(0, 0), (0, 0), . . . , (0, 0)]

be a received pair vector that has 4 pair errors, when the all-zero codeword [00000000 00000000
00000000 0000000] is read. Then, the left vector, right vector, XORing vector, and
neighbor-symbol syndrome are as follows:

uL = [10001011 00000000 00000000 0000000],

uR = [10000000 00000000 00000000 0000000],

uS = [00001011 00000000 00000000 0000000],

S = [11001011 00000000 00000000 0000000].

I consider correcting ←→u by Yaakobi’s algorithm and the proposed algorithm using the
tH -error correcting decoder for cyclic codes DC , and the error/erasure decoder DC2 ,
which indicates the pairs of received pair vector in conflict.
Yaakobi’s Decoding Algorithm: In Step 1, uS is input to the decoder DC . However,
the decoder DC outputs the failure symbol F or a different vector from c′, since the
number of errors in uS is 3. In Step 2, ←→u is input the error/erasure decoder DC2 .
However, the decoder DC2 outputs the failure symbol F or a different vector from c,
since the number of erasures in←→u is 5. In Step 3 and later, the error vector is calculated
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from the obtained vectors in Step 1 and Step 2. However, the all-zero codeword cannot
be obtained since the corrections are not successful in Step 1 and Step 2.
Proposed Decoding Algorithm for Cyclic Codes: In Step 2, uL is input to the
decoder DC . The decoder DC outputs cL = [10001011 00000000 00000001 0000000].
Then, eL and eR are calculated as follows:

eL = uL ⊕ cL

= [00000000 00000000 00000001 0000000],

eR = (S ⊕ eL)≪ 1

= [10010110 00000000 00000010 0000001].

Examining the pair weight of←→e = (eL, eR), this algorithm confirms that Wp(
←→e ) = 7 >

tp. Thus, the proposed decoding algorithm performs Step 3. In Step 3, uR is input to
the decoder DC . The decoder DC outputs cR = [00000000 00000000 00000000 0000000].
Then, eR and eL are calculated as follows:

eR = uR ⊕ cR

= [10000000 00000000 00000000 0000000],

eL = S ⊕ (eR ≫ 1)

= [10001011 00000000 00000000 0000000].

Examining the pair weight of ←→e = (eL, eR), this algorithm confirm that Wp(
←→e ) = 4 ≤

tp. Thus, the proposed algorithm outputs ĉ = eR ≫ 1 = [000 · · · 0]. Therefore, this error
correction is successful. ■

Next, I compare the number of correctable pair error vectors of the proposed al-
gorithm with that of Yaakobi’s algorithm. I consider binary (n, k) cyclic codes over
symbol-pair read channels. Then, the total number of error vectors that have at most t
pair errors is given by

N =
t

i=1


n

i


3i. (4.16)

In the case of the binary (31, 21) BCH code,
125,643 pair error vectors can be corrected by Yaakobi’s algorithm since it can correct

3-pair errors, and 2,684,308 pair error vectors can be corrected by the proposed algorithm
since it can correct 4-pair errors. Furthermore, I consider how many correctable pair
error vectors are included in each case when these vectors are decoded by the proposed
algorithm. For an (n, k) code, the number of pair error vectors included in each case is
given as follows.
Case 1: In this case, both left and right vectors have at most tH errors. Then, all pair
error vectors that have at most tH -pair errors are included in Case 1. In addition, I
consider (tH + i) pair error vectors. If the number of both pair errors (1, 0) and (0, 1) is
at least i, the pair error vectors are included in Case 1. Thus, the number of correctable
pair error vectors included in Case 1 is given by

N1 =

tH
i=1


n

i


3i

+

t′p−tH
i=1


n

tH + i

 tH−i
j=0

tH−i−j
k=0

(tH + i)!

(i+ j)!(i+ k)!(tH − i− j − k)!
. (4.17)
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Table 4.2: Number of correctable pair error vectors

(31, 21) BCH code (127, 99) BCH code

Case 1 247,008 (188,790) 20,155,493,860,890 (18,764,847,312,750)

Case 2 881,020 (849,555) 66,249,786,102,525 (65,140,827,099,975)

Case 3 881,020 (849,555) 66,249,786,102,525 (65,140,827,099,975)

Case 4 665,260 (660,765) 46,598,517,334,275 (46,375,979,787,225)

Total 2,674,308 (2,548,665) 199,253,583,400,215 (195,422,481,299,925)

The first term is the number of pair error vectors that have at most tH -pair errors. In
the second term,


n

tH+i


is the number of patterns of pair error positions, and the fraction

represents the permutations of pair errors (1, 0), (0, 1), and (1, 1) in pair error positions
with repetitions permitted. For the numerator of the fraction, i + j is the number of
(0, 1), i+ k is the number of (0, 1), and tH − i− j − k is the number of (1, 1).
Case 4： In this case, both left and right vectors have more than tH errors. I consider
tH + i pair error vectors. If the number of pair errors (1, 1) is j ≥ tH − i + 2 and the
number of both pair errors (1, 0) and (0, 1) is at least l, where

l =


tH + 1− j if j < tH + 1
0 otherwise

, (4.18)

then pair error vectors are included in Case 4. Thus, the number of pair error vectors
included in Case 4 is given by

N4 =

t′p−tH
i=1


n

tH + i

 tH+i
j=tH−i+2

tH+i−j−2l
k=0

(tH + i)!

(l+k)!(tH+i−j−l−k)!j!
. (4.19)

As in (4.17),


n
tH+i


is the number of patterns of pair error positions, and the fraction

represents the permutations of pair errors (1, 0), (0, 1), and (1, 1) in pair error positions
with repetitions permitted. For the numerator of the fraction, l + k is the number of
(0, 1), tH + i− j − l − k is the number of (0, 1), and j is the number of (1, 1).
Case 2 and Case 3: In these cases, either the left or the right vector has at most tH
errors and the other vector has more than tH errors. The numbers of pair error vectors
included in Case 2 and Case 3 are equal since the two cases are symmetrical about the
number of errors in the left and right vectors. Thus, the number of pair error vectors
included in Case 2 and Case 3 is given by

N2 = N3 =
N −N1 −N4

2
. (4.20)

Table 4.2 lists the number of pair error vectors that can be corrected by the proposed
algorithm with the (31, 21) BCH code and the (127, 99) BCH code. In Table 4.2, the
numbers in parentheses are the numbers of pair error vectors that cannot be corrected
by Yaakobi’s algorithm. Such pair error vectors have t′p pair errors; hence, the number
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of pair error vectors are given by

N ′ =


n

t′p


3t

′
p , (4.21)

N ′
1 =


n

t′p

 t′p
j=0

t′p−j
k=0

t′p!

(t′p − tH + j)!(t′p − tH + k)!(t′p − j − k)!
, (4.22)

N ′
4 =


n

t′p

 t′p
j=2tH−t′p+2

t′p−j−2l
k=0

t′p!

(l + k)!(t′p − j − l − k)!j!
, (4.23)

N ′
2 = N ′

3 =
N ′ −N ′

1 −N ′
4

2
. (4.24)

The pair error vectors included in Case 1 and Case 2 are corrected in Step 2 of the
proposed algorithm. Next, the pair error vectors included in Case 3 are corrected in
Step 3, and then, the pair error vectors included in Case 4 are corrected in Step 4.

Finally, I compare the complexity of the proposed algorithm with that of existing
algorithms. The proposed decoding algorithm uses decoders for cyclic codes, and it
does not need a decoding table such as that in the case of syndrome decoding proposed
in Chapter 3. Therefore, the pair errors can be corrected efficiently by decoding algo-
rithms such as the Euclidean algorithm and Berlekamp-Massey algorithm. In Yaakobi’s
algorithm, the decoding algorithm for cyclic codes is executed two times. On the other
hand, in the proposed algorithm, the decoding algorithm for cyclic codes is executed
three times at most. However, if the proposed algorithm is terminated in Step 2, it is
faster than Yaakobi’s algorithm since the decoding algorithm for cyclic codes is executed
only one time.

4.6 Conclusion

In this chapter, I have proposed a new decoding algorithm for cyclic codes over symbol-
pair read channels using a decoder for cyclic codes. The proposed algorithm corrects
pair errors on the basis of the relationship between the pair errors and the syndromes.
In addition, the proposed algorithm can correct pair errors that cannot be corrected by
Yaakobi’s algorithm since the proposed algorithm corrects pair errors in the pair metric.
Furthermore, I compared the error correcting capability and complexity of the proposed
algorithm with those of existing algorithms. The results showed that the proposed
algorithm can correct more pair errors than Yaakobi’s algorithm.
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Chapter 5

Algebraic Decoding of BCH
Codes over Symbol-Pair Read
Channels

5.1 Abstract

In this chapter, I discuss an algebraic decoding of BCH codes over symbol-pair read
channels. I define a polynomial that represents the positions of the pair errors as an error-
locator polynomial and also define a polynomial that represents the positions of the pairs
of a received pair vector in conflict as a conflict-locator polynomial. I propose algebraic
methods for correcting two-pair and three-pair errors for BCH codes. First, I show
the relation between the error-locator polynomial and the conflict-locator polynomial.
Second, I show the relation among these polynomials and the syndromes. Finally, I
provide how to correct the pair errors by solving equations including the relational
expression by algebraic methods.

5.2 Polynomial Representation of Syndromes for Codes
over Symbol-Pair Read Channels

In this work, I consider binary BCH codes. Let α be a primitive element of GF(2m). The
tH -error-correcting BCH codes whose length n = 2m − 1 have α, α2, . . . , α2tH as their
roots. Let H be a parity-check matrix of the BCH codes. A symbol-pair parity-check
matrix π(H) is given by representing each row of H as the symbol-pair vector, so π(H)
of a BCH code is given by

π(H)

=


(1, α) (α, α2) · · · (αn−2, αn−1) (αn−1, 1)

(1, α2) (α2, α4) · · · (α2(n−2), α2(n−1)) (α2(n−1), 1)
...

...
...

...

(1, α2tH ) (α2tH , α4tH ) · · · (α2tH(n−2), α2tH(n−1)) (α2tH(n−1), 1)

 .

Then, the symbol-pair syndrome is calculated by the received pair vector as follows:

←→s = [(sl,1, sr,1), (sl,2, sr,2), . . . , (sl,2tH , sr,2tH )]

≜←→u · π(H)T.
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The symbol-pair syndrome also can be calculated by the received polynomials. When
the received pair vector is given by ←→u = [(ul,0, ur,1), (ul,1, ur,2), . . . , (ul,n−1, ur,0)], the
symbol-pair syndrome is calculated as follows:

sl,1 = 1 · ul,0 + α · ul,1 + · · ·+ αn−2 · ul,n−2 + αn−1 · ul,n−1,

sr,1 = α · ur,1 + α2 · ur,2 + · · ·+ αn−1 · ur,n−1 + 1 · ur,0,
sl,2 = 1 · ul,0 + α2 · ul,1 + · · ·+ α2(n−2) · ul,n−2 + α2(n−1) · ul,n−1,

sr,2 = α2 · ur,1 + α4 · ur,2 + · · ·+ α2(n−1) · ur,n−1 + 1 · ur,0,
...

sl,2tH = 1 · ul,0 + α2tH · ul,1 + · · ·+ α2tH(n−2) · ul,n−2 + α2tH(n−1) · ul,n−1,

sr,2tH = α2tH · ur,1 + α4tH · ur,2 + · · ·+ α2tH(n−1) · ur,n−1 + 1 · ur,0.

Here, I define the left and right received polynomials as follows:

uL(x) = ul,0 + ul,1x+ · · ·+ ul,n−1x
n−1, (5.1)

uR(x) = ur,1 + ur,2x+ · · ·+ ur,0x
n−1. (5.2)

Then, the symbol-pair syndrome is calculated as follows:

sl,i = uL(α
i), i = 1, 2, . . . , 2tH , (5.3)

sr,i = αiuR(α
i), i = 1, 2, . . . , 2tH . (5.4)

The neighbor-symbol syndrome, which indicates the pairs of the received pair vectors
in conflict, is also represented by using the received polynomial. In Chapter 3, this
syndrome is defined as follows:

S ≜ [S0, S1, . . . , Sn−1],

Si =


0 if ul,i = ur,i
1 otherwise

.

The neighbor-symbol syndrome is calculated by using the left and right received poly-
nomials as

S(x) = uL(x)⊕ (xuR(x) mod xn − 1). (5.5)

In Chapter 3, I have shown the relation between these two types of syndromes and
the correctable pair errors.

Theorem 2 (Reproduce). If a code C can correct tp-pair errors, the pair consisting of
the symbol-pair and neighbor-symbol syndromes (←→s ,S) is unique for each error vector
←→e , where Wp(

←→e ) ≤ tp.

5.3 Error-Locator and Conflict-Locator Polynomials

First, I define the error-locator polynomial that represent the positions of the pair error.
Suppose that the pair error polynomial ←→e (x) has t errors at the positions 0 ≤ p1 <
p2 < · · · < pt ≤ n. The error value←→e pi = (el,pi , er,pi+1) of the position pi is either (1, 1),
(1, 0), or (0, 1), where i = 1, 2, . . . , t. Then, the pair error polynomial is defined as

←→e (x) =←→e p1x
p1 +←→e p2x

p2 + · · ·+←→e ptx
pt . (5.6)
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Moreover, the left and right error polynomials are defined as follows:

eL(x) = el,p1x
p1 + el,p2x

p2 + · · ·+ el,ptx
pt , (5.7)

eR(x) = er,p1+1x
p1 + er,p2+1x

p2 + · · ·+ er,pt+1x
pt . (5.8)

Note that the factors of eR(x) are one bit ahead of the factors of eL(x). Then, the
relations between the error polynomials and the two types of syndromes are as follows:

sl,i = eL(α
i), i = 1, 2, . . . , 2tH ,

sr,i = αieR(α
i), i = 1, 2, . . . , 2tH ,

S(x) = eL(x)⊕ (xeR(x) mod xn − 1).

Because it is difficult to determine the error positions and error values directly from the
syndromes, I consider finding a polynomial that represents the positions of a pair error.
Suppose that pair errors occur at the positions 0 ≤ p1 < p2 < · · · < pt ≤ n; I define the
left and right error-locator polynomials as follows:

σL(x) =

EL
i=0

σl,ix
i ≜

n−1
i=0

el,i ̸=0

(1− αix), (5.9)

σR(x) =

ER
i=0

σr,ix
i ≜

n−1
i=0

er,i+1 ̸=0

(1− αi+1x), (5.10)

where EL and ER denote the number of errors in the left and right symbols of the pair
error vector, respectively. Since the factors of eR(x) are one bit ahead of the factors of
eL(x), the exponent of α in (5.10) is one-bit ahead of the exponent of α in (5.9).

In the decoding algorithm, if the left and right error-locator polynomials are obtained,
the pair error polynomial is found as follows. From (5.9), el,i ̸= 0 if a root of σL(x) is
αn−i; therefore, el,i = 1 in (5.7). Moreover, from (5.10), er,i+1 ̸= 0 if a root of σR(x)
is αn−(i+1); therefore, er,i+1 = 1 in (5.8). Thus, the left and right error polynomials
eL(x) and eR(x) are obtained by finding the roots of σL(x) and σR(x), and the pair
error polynomial ←→e (x) is found from (5.6).

Next, I define conflict-locator polynomial that represents the conflict positions. The
neighbor-symbol syndrome shows the conflict positions in that either ur,i or ul,i in two
adjacent pairs suffers from errors. Thus, I define the conflict-locator polynomial by using
the neighbor-symbol syndrome S as

τ(x) =

WH(S)
i=0

τix
i ≜

n−1
i=0
Si ̸=0

(1− αix), (5.11)

where WH(S) is the Hamming weight of S.
Consider that both ur,i and ul,i suffer from errors. The positions of such errors do

not appear in the neighbor-symbol syndrome. To correct pair errors, it is necessary to
consider that such errors occur. If the received pair vector suffers from t-pair errors, I
consider the number of positions at which both ur,i and ul,i suffer from errors.

Theorem 4. Let t′ be the number of positions at which both ur,i and ul,i suffer from
errors. Then, the relation among t′, EL, ER, and WH(S) is

WH(S) = EL + ER − 2t′. (5.12)
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Proof: If all error positions in the pair error vector are represented by the neighbor-
symbol syndrome, then WH(S) = EL +ER. If both ur,i and ul,i suffer from errors, such
positions are not represented by the neighbor-symbol syndrome. Then, WH(S) decreases
by 2. Thus, if the number of such positions is t′, WH(S) = EL + ER − 2t′. □

From Theorem 4, t′ is obtained by

t′ =
EL + ER −WH(S)

2
, (5.13)

where WH(S) is obtained by the received pair vector. Then, t′ satisfies the following
inequalities:

t′ ≤ EL, t′ ≤ ER, t′ ≤

EL + ER

2


, t′ < t. (5.14)

I show the relation between the left and right error-locator polynomials and the
conflict-locator polynomial.

Theorem 5. Let k1, k2, . . . , kt′ be the positions at which both ur,i and ul,i suffer from
errors. Then, the left and right error-locator polynomials σL(x) and σR(x) and the
conflict-locator polynomial τ(x) satisfy

σL(x)σR(x) = τ(x)

t′
i=0

(1− αkix)2. (5.15)

Proof: All error positions in the pair error vector are represented by the multipli-
cation of σL(X) and σR(x) as

σL(x)σR(x) =

n−1
i=0

el,i ̸=0

(1− αix)

n−1
i=0

er,i+1 ̸=0

(1− αi+1x).

If both ur,i and ul,i suffer from errors, σL(x) and σR(x) have common factors. These
factors are represented by gcd(σL(x), σR(x)), which denotes the greatest common divisor
of polynomials of σL(x) and σR(x). Then, ur,i and ul,i do not appear as the conflict
positions. Let ki be such positions; then, gcd(σL(x), σR(x)) is written as follows:

gcd(σL(x), σR(x)) =

n−1
i=0

er,i ̸=0 ∧ el,i ̸=0

(1−αix) ≜
t′
i=0

(1− αkix). (5.16)

If either ur,i or ul,i suffers from errors, such positions are represented as τ(x). Thus,
all error positions in the pair error vectors are represented by using (5.16) and τ(x);
therefore,

n−1
i=0

el,i ̸=0

(1− αix)
n−1
i=0

er,i+1 ̸=0

(1− αi+1x) = τ(x)
t′
i=0

(1− αkix)2.

Thus, σL(x)σR(x) = τ(x)
t′

i=0(1− αkix)2. □

34



Table 5.1: Classification of the pair error vectors
EL + ER (EL, ER)

Two-pair error
Case I 4 (2,2)
Case II 3 (2,1), (1,2)
Case III 2 (2,0), (0,2), (1,1)

Single-pair error
Case IV 2 (1,1)
Case V 1 (1,0), (0,1)

5.4 Decoding Problem for Two-Pair Error Correction

In this section, I consider a decoding problem for two-pair error correction using single-
error-correcting cyclic Hamming codes.

5.4.1 Classification of the Pair Error Vector

I classify pair error vectors according to EL + ER, as indicated in Table 5.1. In each
case, I consider (5.15) when WH(S) is obtained.
Case I: In the case of (EL, ER) = (2, 2), (5.14) holds, t′ = 0, and t′ = 1. From (5.12),
WH(S) = 4 if t′ = 0, and WH(S) = 2 if t′ = 1. Then, (5.15) is written as follows:

σL(x)σR(x)=


τ(x) if WH(S) = 4
τ(x)(1−αk1x)2 if WH(S) = 2

. (5.17)

Case II: In the case of (EL, ER) = (2, 1), (5.14) holds, t′ = 0, and t′ = 1. From (5.12),
WH(S) = 3 if t′ = 0, and WH(S) = 1 if t′ = 1. Then, (5.15) is written as follows:

σL(x)σR(x)=


τ(x) if WH(S) = 3
τ(x)(1−αk1x)2 if WH(S) = 1

. (5.18)

Similarly, in the case of (EL, ER) = (1, 2), (5.15) is written as (5.18).
Case III: In the case of (EL, ER) = (2, 0), (5.14) holds, and t′ = 0. If t′ = 0, WH(S) = 2
from (5.12); then, (5.15) is written as follows:

σL(x)σR(x) = τ(x). (5.19)

Similarly, in the case of (EL, ER) = (0, 2), (5.15) is written as (5.19).
In the case of (EL, ER) = (1, 1), (5.14) holds, t′ = 0, and t′ = 1. From (5.12),

WH(S) = 2 if t′ = 0, and WH(S) = 0 if t′ = 1. Then, (5.15) is written as follows:

σL(x)σR(x)=


τ(x) if WH(S) = 2
(1−αk1x)2 if WH(S) = 0

. (5.20)

Case IV: In the case of (EL, ER) = (1, 1), (5.14) holds, and t′ = 0. If t′ = 0, WH(S) = 2
from (5.12); then, (5.15) is written as follows:

σL(x)σR(x) = τ(x). (5.21)

Case V: In the case of (EL, ER) = (1, 0), (5.14) holds, and t′ = 0. If t′ = 0, WH(S) = 1
from (5.12); then, (5.15) is written as follows:

σL(x)σR(x) = τ(x). (5.22)

Similarly, in the case of (EL, ER) = (0, 1), (5.15) is written as (5.22).
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5.4.2 Relation between the Error-Locator Polynomials and the Symbol-
Pair Syndrome

For any t-pair error, I derive the following theorem.

Theorem 6. The coefficients of the first-order terms of the left and right error-locator
polynomials σl,1 and σr,1 and the symbol-pair syndromes sl,1 and sr,1 satisfy the following
relations:

σl,1 = sl,1, (5.23)

σr,1 = sr,1. (5.24)

Proof: When the left and right error polynomials are given by (5.7) and (5.8), the
left and right error-locator polynomials are given by (5.9) and (5.10). Then, σl,1 and
σr,1 are

σl,1 = el,p1α
p1 + el,p2α

p2 + · · ·+ el,ptα
pt ,

σr,1 = er,p1+1α
p1+1 + er,p2+1α

p2+1 + · · ·+ er,pt+1α
pt+1.

In addition, sl,1 and sr,1 are

sl,1 = el,p1α
p1 + el,p2α

p2 + · · ·+ el,ptα
pt ,

sr,1 = er,p1+1α
p1+1 + er,p2+1α

p2+1 + · · ·+ er,pt+1α
pt+1.

Thus, σl,1 = sl,1 and σr,1 = sr,1. □
If EL = ER, for any t-pair error, I derive the following theorem.

Theorem 7. The coefficients of the i-th order terms of σL(x) and σR(x) are represented
as σl,i and σr,i. If EL = ER, σr,i = αiσl,i.

Proof: Since EL = ER, the left and right error polynomials are eL(x) = xp1 +
xp2 + · · · + xpt and eR(x) = xp1 + xp2 + · · · + xpt . From (5.9) and (5.10), the left and
right error-locator polynomials are written as follows:

σL(x) =(1− αp1x)(1− αp2x) . . . (1− αptx),

σR(x) =(1− αp1+1x)(1− αp2+1x) . . . (1− αpt+1x).

Then, the coefficients of σL(x) are written as follows:

σl,1 = αp1 + αp2 + · · ·+ αpt ,

σl,2 = αp1+p2 + αp1+p3 + αp2+p3 + · · ·+ αpt−2+pt + αpt−1+pt ,

...

σl,i = αp1+···+pi + αp1+···+pi−1+pi+1 + αp1+···+pi−2+pi+pi+1 + · · ·
+ αpt−i+pt−i+1+pt−i+3+···+pt + αpt−i+pt−i+2+···+pt + αpt−i+1+···+pt ,

...

σl,t = αp1+p2+···+pt .
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In addition, the coefficients of σR(x) are written as follows:

σr,1 = αp1+1 + αp2+1 + · · ·+ αpt+1,

σr,2 = α(p1+1)+(p2+1) + α(p1+1)+(p3+1) + α(p2+1)+(p3+1)

+ · · ·+ α(pt−2+1)+(pt+1) + α(pt−1+1)+(pt+1),

...

σr,i = α(p1+1)+···+(pi+1) + α(p1+1)+···+(pi−1+1)+(pi+1+1)

+ α(p1+1)+···+(pi−2+1)+(pi+1)+(pi+1+1) + · · ·
+ α(pt−i+1)+(pt−i+1+1)+(pt−i+3+1)+···+(pt+1)

+ α(pt−i+1)+(pt−i+2+1)+···+(pt+1) + α(pt−i+1+1)+···+(pt+1),

...

σr,t = α(p1+1)+(p2+1)+···+(pt+1).

Thus, σr,i is expressed in terms of σl,i as

σr,i = αiαp1+···+pi + αiαp1+···+pi−1+pi+1 + αiαp1+···+pi−2+pi+pi+1

+ · · ·+ αiαpt−i+pt−i+1+pt−i+3+···+pt + αiαpt−i+pt−i+2+···+pt

+ αiαpt−i+1+···+pt

= αiσl,i.

□
From Theorem 7, if (EL, ER) = (2, 2), I obtain

σr,1 = ασl,1, (5.25)

σr,2 = α2σl,2. (5.26)

5.4.3 Method for Finding the Error-Locator Polynomial

In this section, I show how to find the left and right error-locator polynomials by using
the equations derived in Sec. 5.4.1 and Sec. 5.4.2. In each case, the conflict-locator
polynomial τ(x) and the symbol-pair syndromes sl,1 and sr,1 are known; therefore, σl,1 =
sl,1 and σr,1 = sr,1 from (5.23) and (5.24). Case I: In the case of (EL, ER) = (2, 2)
and WH(S) = 4, the coefficients of the error-locator polynomial and conflict-locator
polynomial in (5.17) are related by the following equations:

σl,1 + σr,1 = τ1
σl,2 + σl,1σr,1 + σr,2 = τ2

σr,1σl,2 + σl,1σr,2 = τ3
σl,2σr,2 = τ4

.

Then, σl,2 and σr,2 are obtained by

σl,2 =
τ2 + α(sl,1)

2

1 + α2
, σr,2 = α2σl,2. (5.27)
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Table 5.2: Methods for calculating σl,2 and σr,2 in Step 3-1 of proposed decoding algo-
rithm I
WH(S) Condition σl,2 σr,2

4 Calculate a candidate set of σL(x) and σR(x). (5.27)

3 Calculate two candidate sets of σL(x) and σR(x).
(5.29) 0

0 (5.30)

2

If the coefficient matrix of (5.28) is nonsingular, calculate a
candidate set of σL(x) and σR(x).

(5.28) (5.26)

If the coefficient matrix of (5.28) is singular, calculate three
candidate sets of σL(x) and σR(x).

τ2 0

0 τ2
0 0

1
If the coefficient matrix of (5.31) is nonsingular, calculate a
candidate set of σL(x) and σR(x).

(5.31) 0

If the coefficient matrix of (5.32) is nonsingular, calculate a
candidate set of σL(x) and σR(x).

0 (5.32)

If the coefficient matrices of both (5.31) and (5.32) are sin-
gular, go to Step 4.

— —

0 Calculate a candidate set of σL(x) and σR(x). 0 0

In the case of (EL, ER) = (2, 2) and WH(S) = 2, the coefficients of the error-
locator polynomial and conflict-locator polynomial in (5.17) are related by the following
equations: 

σl,1 + σr,1= τ1
σl,2 + σl,1σr,1 + σr,2= τ2 + α2k1

σr,1σl,2 + σl,1σr,2= τ1α
2k1

σl,2σr,2= τ2α
2k1

.

They are transformed as follows:
(1 + α2)σl,2 + α2k1 = τ2 + α(sl,1)

2

(α+ α2)sl,1σl,2 + τ2α
2k1 =0

, (5.28)

where σl,2 and α2k1 are unknown. σl,2 is obtained by solving (5.28); then, σr,2 is obtained
by (5.26).
Case II: In the case of (EL, ER)= (2, 1) and WH(S) = 3, the coefficients of the error-
locator polynomial and conflict-locator polynomial in (5.18) are related by the following
equations: 

σl,1 + σr,1 = τ1
σl,2 + σl,1σr,1 = τ2

σr,1σl,2 = τ3

.

Then, σl,2 is obtained by

σl,2 = τ2 + sl,1sr,1. (5.29)

Similarly, in the case of (EL, ER) = (1, 2) and WH(S) = 3, σr,2 is obtained by

σr,2 = τ2 + sl,1sr,1. (5.30)
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In the case of (EL, ER) = (2, 1) and WH(S) = 1, the coefficients of the error-
locator polynomial and conflict-locator polynomial in (5.18) are related by the following
equations: 

σl,1 + σr,1= τ1
σl,2 + σl,1σr,1= α2k1

σr,1σl,2= τ1α
2k1

.

They are transformed as follows:
σl,2 + α2k1 = sl,1sr,1

sr,1σl,2 + τ1α
2k1 = 0

, (5.31)

where σl,2 and α2k1 are unknown. σl,2 is obtained by solving (5.31). Similarly, in the
case of (EL, ER) = (1, 2) and WH(S) = 1, I derive the following equations:

σr,2 + α2k1 = sl,1sr,1
sl,1σr,2 + τ1α

2k1 = 0
, (5.32)

where σr,2 and α2k1 are unknown. σr,2 is obtained by solving (5.32).
Case III: In the case of (EL, ER)=(2, 0) and WH(S)= 2, σL(x) = τ(x) is obtained by
(5.19). Similarly, in the case of (EL, ER) = (0, 2) and WH(S) = 2, σR(x) = τ(x) is
obtained.

In the case of (EL, ER) = (1, 1) and WH(S) = 2 or WH(S) = 0, the only unknown
quantities are σl,1 and σr,1; then, σl,1 = sl,1 and σr,1 = sr,1 are obtained by (5.23)
and (5.24).
Case IV: In the case of (EL, ER) = (1, 1) and WH(S) = 2, the only unknown quantities
are σl,1 and σr,1; then, σl,1 = sl,1 and σr,1 = sr,1 are obtained by (5.23) and (5.24).
Case V: In the case of (EL, ER) = (1, 0) and WH(S) = 1, the only unknown quantities
are σl,1; σl,1 = sl,1 is obtained by (5.23). Similarly, in the case of (EL, ER) = (0, 1) and
WH(S) = 1, σr,1 = sr,1 is obtained by (5.24).

5.4.4 Decoding Algorithm for Two-Pair Error Correction

I propose the following decoding algorithm for two-pair error correction.
Proposed Decoding Algorithm I (Two-Pair Error Correction)

Input: Received pair vector ←→u (left and right received polynomials uL(x) and
uR(x)).

Output: Corrected codeword ĉ or failure symbol F .

Step 1. Calculate the symbol-pair syndromes ←→s and neighbor-symbol syndrome
S(x):

sl,1 := uL(α),

sr,1 := αiuR(α),

S(x) := uL(x)⊕ (xuR(x) mod xn − 1).

Step 2. Calculate WH(S) and the conflict-locator polynomial τ(x):

τ(x) :=
n−1
i=0
Si ̸=0

(1− αix).
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Table 5.3: Classification of the pair error vector
EL + ER (EL, ER)

Three-pair error

Case 1 6 (3,3)
Case 2 5 (3,2), (2,3)
Case 3 4 (3,1), (1,3), (2,2)
Case 4 3 (3,0), (0,3), (2,1), (1,2)

Two-pair error
Case 5 4 (2,2)
Case 6 3 (2,1), (1,2)
Case 7 2 (2,0), (0,2), (1,1)

Single-pair error
Case 8 2 (1,1)
Case 9 1 (1,0), (0,1)

Step 3. Correct two-pair errors.

Step 3-1. Calculate σL(x) = 1 + σl,1x + σl,2x
2 and σR(x) = 1 + σr,1x + σr,2x

2 by
classification. Set σl,1 := sl,1 and σr,1 := sr,1 and also calculate σl,2 and σr,2 as
summarized in Table 5.2.

Step 3-2. Estimate the pair error vector←→e by using the left and right error-locator
polynomials derived in Step 3-1 and examine the pair weight Wp(

←→e ). If the pair
error vector satisfies Wp(

←→e ) = 2, π(ĉ) :=←→u +←→e , and output ĉ. Then, terminate
this algorithm; otherwise, go to Step 4.

Step 4. Correct a single-pair error.

Step 4-1. Calculate σL(x) = 1 + σl,1x and σR(x) = 1 + σr,1x by using (5.23)
and (5.24); σl,1 := sl,1 and σr,1 := sr,1.

Step 4-2. Estimate←→e by using the left and right error-locator polynomials derived
in Step 4-1 and examine Wp(

←→e ). If the pair error vector satisfies Wp(
←→e ) = 1,

π(ĉ) :=←→u +←→e , and output ĉ. Then, terminate this algorithm; otherwise, output
the failure symbol F and terminate this algorithm. ■

This algorithm corrects two-pair errors in Step 3 and corrects a single-pair error in
Step 4. The reason for this process is to avoid that miscorrection of the received pair
vectors that suffer from two-pair errors when a single-pair error is corrected. Moreover,
the pair error vector is uniquely-determined by examining the pair weight of ←→e in
Step 3-2 and Step 4-2 from Theorem 2.

5.5 Decoding Problem for Three-Pair Error Correction

In this section, I consider a decoding problem for three-pair error correction using the
two-error correcting BCH codes.

5.5.1 Classification of Pair Error Vector

I classify the pair error vectors according to EL+ER, as indicated as Table 5.3. In each
case, I consider (5.15) when WH(S) is obtained.
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Case 1: In the case of (EL, ER) = (3, 3), (5.14) holds, t′ = 0, t′ = 1, and t′ = 2. From
(5.12), WH(S) = 6 if t′ = 0, WH(S) = 4 if t′ = 1, and WH(S) = 2 if t′ = 2. Then,
(5.15) is written as follows:

σL(x)σR(x)=


τ(x) if WH(S) = 6
τ(x)(1− αk1x)2 if WH(S) = 4

τ(x)
2

i=1

(1−αkix)2 if WH(S) = 2

. (5.33)

Case 2: In the case of (EL, ER) = (3, 2), (5.14) holds, t′ = 0, t′ = 1, and t′ = 2. From
(5.12), WH(S) = 5 if t′ = 0, WH(S) = 3 if t′ = 1, and WH(S) = 1 if t′ = 2. Then,
(5.15) is written as follows:

σL(x)σR(x)=


τ(x) if WH(S) = 5
τ(x)(1− αk1x)2 if WH(S) = 3

τ(x)
2

i=1

(1− αkix)2 if WH(S) = 1

. (5.34)

Similarly, in the case of (EL, ER) = (2, 3), (5.15) is written as (5.34).
Case 3: In the case of (EL, ER) = (3, 1), (5.14) holds, t′ = 0, and t′ = 1. From (5.12),
WH(S) = 4 if t′ = 0, and WH(S) = 2 if t′ = 1. Then, (5.15) is written as follows:

σL(x)σR(x)=


τ(x) if WH(S) = 4
τ(x)(1− αk1x)2 if WH(S) = 2

. (5.35)

Similarly, in the case of (EL, ER) = (1, 3), (5.15) is written as (5.35).
In the case of (EL, ER) = (2, 2), (5.14) holds, t′ = 0, t′ = 1, and t′ = 2. From (5.12),

WH(S) = 4 if t′ = 0, WH(S) = 2 if t′ = 1, and WH(S) = 0 if t′ = 2. Then, (5.15) is
written as follows:

σL(x)σR(x)=


τ(x) if WH(S) = 4
τ(x)(1− αk1x)2 if WH(S) = 2
2

i=1

(1− αkix)2 if WH(S) = 0

. (5.36)

Case 4: In the case of (EL, ER) = (3, 0), (5.14) holds, and t′ = 0. If t′ = 0, WH(S) = 3
from (5.12); then, (5.15) is written as follows:

σL(x)σR(x) = τ(x). (5.37)

Similarly, in the case of (EL, ER) = (0, 3), (5.15) is written as (5.37).
In the case of (EL, ER) = (2, 1), (5.14) holds, t′ = 0, and t′ = 1. From (5.12),

WH(S) = 3 if t′ = 0, and WH(S) = 1 if t′ = 1. Then, (5.15) is written as follows:

σL(x)σR(x)=


τ(x) if WH(S) = 3
τ(x)(1− αk1x)2 if WH(S) = 1

. (5.38)

Similarly, in the case of (EL, ER) = (1, 2), (5.15) is written as (5.38).
Cases 5–9: These cases are the same as Cases I–V in Sec. 5.4, respectively.
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5.5.2 Relation between the Error-Locator Polynomial and the Symbol-
Pair Syndrome

From Theorem 7, if (EL, ER) = (3, 3), I obtain (5.25) and (5.26), and

σr,3 = α3σl,3. (5.39)

If EL = 3 or ER = 3, I have the following theorem.

Theorem 8. If EL = 3, the left error-locator polynomial is σL(x) = 1+σl,1x+σl,2x
2+

σl,3x
3; then, σl,3 is given by

σl,3 = (sl,1)
3 + sl,3 + sl,1σl,2. (5.40)

Similarly, if ER = 3, the right error-locator polynomial is σR(x) = 1 + σr,1x + σr,2x
2 +

σr,3x
3; then, σr,3 is given by

σr,3 = (sr,1)
3 + sr,3 + sr,1σr,2. (5.41)

Proof: If EL = 3, the left error polynomial is eL(x) = xp1 + xp2 + xp3 , and the
coefficients of each term of the left error-locator polynomial are

σl,1 = αp1 + αp2 + αp3 ,

σl,2 = αp1+p2 + αp2+p3 + αp3+p1 ,

σl,3 = αp1+p2+p3 .

(5.40) is derived by the following transformation:

σl,3 = αp1+p2+p3

= (αp1 + αp2 + αp3)3 + α3p1 + α3p2 + α3p3

+ (αp1 + αp2 + αp3)(αp1+p2 + αp2+p3 + αp3+p1)

= (sl,1)
3 + sl,3 + sl,1σl,2.

(5.41) is derived by a similar transformation. □
If EL = 2 or ER = 2, the following theorem holds.

Theorem 9. If EL = 2, the left error-locator polynomial is σL(x) = 1 + σl,1x+ σl,2x
2;

then, σl,2 is given by

σl,2 =
(sl,1)

3 + sl,3
sl,1

. (5.42)

Similarly, if ER = 2, the right error-locator polynomial is σR(x) = 1 + σr,1x + σr,2x
2;

then, σr,2 is given by

σr,2 =
(sr,1)

3 + sr,3
sr,1

. (5.43)

Proof: If EL = 2, (5.42) is derived by assigning σl,3 = 0 in (5.40). Similarly, if
ER = 2, (5.43) is derived by assigning σr,3 = 0 in (5.41). □
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5.5.3 Method for Finding the Error-Locator Polynomial

In this section, I show how to find the left and right error-locator polynomials by using
the equations derived in Sec. 5.5.1 and Sec. 5.5.2. In each case, the conflict-locator
polynomial τ(x) and the symbol-pair syndromes sl,1 and sr,1 are known; therefore, σl,1 =
sl,1 and σr,1 = sr,1 from (5.23) and (5.24).
Case 1: In the case of (EL, ER)= (3, 3) and WH(S) = 6, the coefficients of the error-
locator polynomial and conflict-locator polynomial in (5.33) are related by the following
equations: 

σl,1 + σr,1= τ1
σl,2 + σl,1σr,1 + σr,2= τ2

σl,3 + σr,1σl,2 + σl,1σr,2 + σr,3= τ3
σr,1σl,3 + σl,2σr,2 + σl,1σr,3= τ4

σr,2σl,3 + σl,2σr,3= τ5
σl,3σr,3= τ6

.

Then, σl,2 and σr,2 are obtained by

σl,2 =
τ2 + sl,1sr,1

1 + α2
, σr,2 = α2σl,2 (5.44)

Then, σl,3 and σr,3 are obtained by (5.40) and (5.41).
In the case of (EL, ER) = (3, 3) and WH(S) = 4, the coefficients of error-locator

polynomial and conflict-locator polynomial in (5.33) are related by the following equa-
tions: 

σl,1 + σr,1= τ1
σl,2 + σl,1σr,1 + σr,2= τ2 + α2k1

σl,3 + σr,1σl,2 + σl,1σr,2 + σr,3= τ3 + τ1α
2k1

σr,1σl,3 + σl,2σr,2 + σl,1σr,3= τ4 + τ2α
2k1

σr,2σl,3 + σl,2σr,3= τ3α
2k1

σl,3σr,3= τ4α
2k1

.

They are transformed as follows:
(1 + α2)σl,2 + α2k1 = τ2 + α(sl,1)

2

(1+α+α2+α3)sl,1σl,2+α2k1 =τ3+(1+α3)((sl,1)
3+sl,3)

, (5.45)

where σl,2 and α2k1 are unknown. σl,2 is obtained by solving (5.45), and σr,2 is obtained
by (5.26). Then, σl,3 and σr,3 are obtained by (5.40) and (5.41).

In the case of (EL, ER) = (3, 3) and WH(S) = 2, the coefficients of the error-
locator polynomial and conflict-locator polynomial in (5.33) are related by the following
equations: 

σl,1 + σr,1= τ1
σl,2 + σl,1σr,1 + σr,2= τ2+α2k1+α2k2

σl,3 + σr,1σl,2 + σl,1σr,2 + σr,3= τ1(α
2k1 + α2k2)

σr,1σl,3 + σl,2σr,2 + σl,1σr,3= τ2(α
2k1+α2k2)

σr,2σl,3 + σl,2σr,3= τ1α
2k1+2k2

σl,3σr,3= τ2α
2k1+2k2

.
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They are transformed as follows:
(1 + α2)σl,2 + (α2k1 + α2k2) = τ2 + α(sl,1)

2

(1 + α+ α2 + α3)sl,1σl,2 + τ1(α
2k1 + α2k2)

= (1 + α3)((sl,1)
3 + sl,3)

, (5.46)

where σl,2 and α2k1 + α2k2 are unknown. σl,2 is obtained by solving (5.46), and σr,2 is
obtained by (5.26). Then, σl,3 and σr,3 are obtained by (5.40) and (5.41).
Case 2: In the case of (EL, ER)= (3, 2) and WH(S) = 5, the coefficients of the error-
locator polynomial and conflict-locator polynomial in (5.34) are related by the following
equations: 

σl,1 + σr,1= τ1
σl,2 + σl,1σr,1 + σr,2= τ2

σl,3 + σr,1σl,2 + σl,1σr,2= τ3
σr,1σl,3 + σl,2σr,2= τ4

σr,2σl,3= τ5

.

Then, σr,2 and σl,2 are obtained by

σr,2 =
(sr,1)

3 + sr,3
sr,1

, σl,2 = τ2 + sl,1sr,1 + σr,2. (5.47)

Then, σl,3 is obtained by (5.40). Similarly, in the case of (EL, ER) = (2, 3) and WH(S) =
5, σl,2 and σr,2 are obtained by

σl,2 =
(sl,1)

3 + sl,3
sl,1

, σr,2 = τ2 + sl,1sr,1 + σl,2. (5.48)

Then, σr,3 is obtained by (5.41).
In the case of (EL, ER) = (3, 2) and WH(S) = 3, the coefficients of the error-

locator polynomial and conflict-locator polynomial in (5.34) are related by the following
equations: 

σl,1 + σr,1= τ1
σl,2 + σl,1σr,1 + σr,2= τ2 + α2k1

σl,3 + σr,1σl,2 + σl,1σr,2= τ3 + τ1α
2k1

σr,1σl,3 + σl,2σr,2= τ2α
2k1

σr,2σl,3= τ3α
2k1

.

They are transformed as follows:
σl,2 + α2k1 = τ2 + sl,1sr,1 + σr,2
σl,3 + sr,1σl,2 + τ1α

2k1 = τ3 + sl,1σr,2
sr,1σl,3 + σr,2σl,2 + τ2α

2k1 = 0
, (5.49)

where σl,3, σl,2, and α2k1 are unknown, and σr,2 is known because it is obtained by (5.43).
σl,3 and σl,2 are obtained by solving (5.49). Similarly, in the case of (EL, ER) = (2, 3)
and WH(S) = 3, I derive the following equations:

σr,2 + α2k1 = τ2 + sl,1sr,1 + σl,2
σr,3 + sl,1σr,2 + τ1α

2k1 = τ3 + sr,1σl,2
sl,1σr,3 + σl,2σr,2 + τ2α

2k1 = 0
, (5.50)
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where σr,3, σr,2, and α2k1 are unknown, and σl,2 is obtained by (5.42). σr,3 and σr,2 are
obtained by solving (5.50).

In the case of (EL, ER) = (3, 2) and WH(S) = 1, the coefficients of the error-
locator polynomial and conflict-locator polynomial in (5.34) are related by the following
equations: 

σl,1 + σr,1= τ1
σl,2 + σl,1σr,1 + σr,2=α2k1 + α2k2

σl,3 + σr,1σl,2 + σl,1σr,2= τ1(α
2k1 + α2k2)

σr,1σl,3 + σl,2σr,2=α2k1+2k2

σr,2σl,3= τ1α
2k1+2k2

.

They are transformed as follows:
(sl,1sr,1+σr,2)σl,2+α2k1+2k2 = sr,1((sl,1)

3+sl,3)
sl,1σr,2σl,2 + τ1α

2k1+2k2 = ((sl,1)
3 + sl,3)σr,2

, (5.51)

where σl,2 and α2k1+2k2 are unknown, and σr,2 is obtained by (5.43). σl,2 is obtained by
solving (5.51); then, σl,3 is obtained by (5.40). Similarly, in the case of (EL, ER) = (2, 3)
and WH(S) = 1, I derive the following equations:

(sl,1sr,1+σl,2)σr,2+α2k1+2k2 = sl,1((sr,1)
3+sr,3)

sr,1σl,2σr,2 + τ1α
2k1+2k2 = ((sr,1)

3 + sr,3)σl,2
, (5.52)

where σr,2 and α2k1+2k2 are unknown, and σl,2 is obtained by (5.42). σr,2 is obtained by
solving (5.52); then, σr,3 is obtained by (5.41).
Case 3: In the case of (EL, ER)= (3, 1) and WH(S) = 4, the coefficients of the error-
locator polynomial and conflict-locator polynomial in (5.35) are related by the following
equations: 

σl,1 + σr,1= τ1
σl,2 + σl,1σr,1= τ2
σl,3 + σr,1σl,2= τ3

σr,1σl,3= τ4

.

Then, σl,2 and σl,3 are obtained by

σl,2 = τ2 + sl,1sr,1, σl,3 =
τ4
sr,1

. (5.53)

Similarly, in the case of (EL, ER) = (1, 3) and WH(S) = 4, σr,2 and σr,3 are obtained by

σr,2 = τ2 + sl,1sr,1, σr,3 =
τ4
sl,1

. (5.54)

In the case of (EL, ER) = (3, 1) and WH(S) = 2, the coefficients of the error-
locator polynomial and conflict-locator polynomial in (5.35) are related by the following
equations: 

σl,1 + σr,1= τ1
σl,2 + σl,1σr,1= τ2 + α2k1

σl,3 + σr,1σl,2= τ1α
2k1

σr,1σl,3= τ2α
2k1

.
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They are transformed as follows:
σl,2 + α2k1 = τ2 + sl,1sr,1
σl,3 + sr,1σl,2 + τ1α

2k1 = 0
sr,1σl,3 + τ2α

2k1 = 0
, (5.55)

where σl,3, σl,2, and α2k1 are unknown. σl,3 and σl,2 are obtained by solving (5.55).
Similarly, in the case of (EL, ER) = (1, 3) and WH(S) = 2, I derive the following
equations: 

σr,2 + α2k1 = τ2 + sl,1sr,1
σr,3 + sl,1σr,2 + τ1α

2k1 = 0
sl,1σr,3 + τ2α

2k1 = 0
, (5.56)

where σr,3, σr,2, and α2k1 are unknown. σr,3 and σr,2 are obtained by solving (5.56).
In the case of (EL, ER) = (2, 2) and WH(S) = 4, WH(S) = 2 or WH(S) = 0, and

σl,2 and σr,2 are obtained by (5.42) and (5.43).
Case 4: In the case of (EL, ER) = (3, 0) and WH(S) = 3, σL(x) = τ(x) is obtained
by (5.37). Similarly, in the case of (EL, ER) = (0, 3) and WH(S) = 3, σR(x) = τ(x) is
obtained.

In the case of (EL, ER) = (2, 1) and WH(S) = 3 or WH(S) = 1, σl,2 is obtained by
(5.42). Similarly, in the case of (EL, ER) = (1, 2) and WH(S) = 3 or WH(S) = 1, σr,2 is
obtained by (5.43).
Cases 5–9: For any (EL, ER) and WH(S), either σl,1, σr,1, σl,2, or σr,2 is unknown.
Then, σl,1, σr,1, σl,2, and σr,2 are obtained by (5.23), (5.24), (5.42), and (5.43), respec-
tively.

5.5.4 Decoding Algorithm for Three-Pair Error Correction

I propose the following decoding algorithm for three-pair error correction.
Proposed Decoding Algorithm II (Three-Pair Error Correction)

Input: Received pair vector ←→u (left and right received polynomials uL(x) and
uR(x)).

Output: Corrected codeword ĉ or failure symbol F .

Step 1. Calculate the symbol-pair syndromes ←→s and neighbor-symbol syndrome
S(x):

sl,i := uL(α
i), i = 1, 3,

sr,i := αiuR(α
i), i = 1, 3,

S(x) := uL(x)⊕ (xuR(x) mod xn − 1).

Step 2. Calculate WH(S) and the conflict-locator polynomial τ(x):

τ(x) :=

n−1
i=0
Si ̸=0

(1− αix).

Step 3. Correct three-pair errors.
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Step 3-1. Calculate σL(x) = 1 + σl,1x + σl,2x
2 + σl,3x

3 and σR(x) = 1 + σr,1x +
σr,2x

2 + σr,3x
3 by classification. Set σl,1 := sl,1 and σr,1 := sr,1 and also calculate

σl,2, σr,2, σl,3, and σr,3 as summarized in Table 5.4.

Step 3-2. Estimate the pair error vector←→e by using the left and right error-locator
polynomials derived in Step 3-1 and examine the pair weight Wp(

←→e ). If the pair
error vector satisfies Wp(

←→e ) = 3, π(ĉ) :=←→u +←→e , and output ĉ. Then, terminate
this algorithm; otherwise, go to Step 4.

Step 4. Correct two-pair errors.

Step 4-1. Calculate σL(x) = 1 + σl,1x + σl,2x
2 and σR(x) = 1 + σr,1x + σr,2x

2 by
using (5.23), (5.24), (5.42), and (5.43).

Step 4-2. Estimate ←→e from the left and right error-locator polynomials derived
in Step 4-1 and examine Wp(

←→e ). If the pair error vector satisfies Wp(
←→e ) = 2,

π(ĉ) := ←→u +←→e , and output ĉ. Then, terminate this algorithm; otherwise, go to
step 5.

Step 5. Correct a single-pair error.

Step 5-1. Calculate σL(x) = 1 + σl,1x and σR(x) = 1 + σr,1x by using (5.23)
and (5.24).

Step 5-2. Estimate ←→e from the left and right error-locator polynomials derived
in Step 5-1 and examine Wp(

←→e ). If the pair error vector satisfies Wp(
←→e ) = 1,

π(ĉ) :=←→u +←→e , and output ĉ. Then terminate this algorithm; otherwise, output
the failure symbol F and terminate this algorithm. ■

This algorithm corrects three-pair errors in Step 3, two-pair errors in Step 4, and a
single-pair error in Step 5. The reason for this process is to avoid the miscorrection of
received pair vectors that suffer from three-pair errors when single-pair or two-pair errors
are corrected. Moreover, the pair error vector is uniquely determined by examining the
pair weight of ←→e from Theorem 2. I present an example of three-pair error correction
by using the proposed decoding algorithm II.

Example 5. Suppose the binary (15,7) BCH code whose primitive polynomial is p(x) =
1+x+x4 and generator polynomial is g(x) = 1+x+x2+x4+x8. The code can correct
up to two errors in the Hamming metric and up to three-pair errors in the pair metric.
Let

←→u = [(0, 0), (1, 1), (0, 0), (0, 1), (0, 0), (0, 0), (1, 1), (0, 0),

(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0,0)]

be a received pair vector that has three-pair errors when the all-zero codeword [00000 00000 00000]
is read. Then, the left and right received polynomials are uL(x) = x+ x6 and uR(x) =
x + x3 + x6. In Step 1, the symbol-pair syndromes and the neighbor-symbol syndrome
are calculated as follows:

sl,1 = uL(α) = α+ α6 = α11,

sl,3 = uL(α
3) = α3 + (α3)6 = 0,

sr,1 = αuR(α) = α(α+ α3 + α6) = α6,

sr,3 = α3uR(α) = α3(α3 + (α3)3 + (α3)6) = α12,

S(x) = x+ x2 + x4 + x6 + x7.
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In Step 2, the Hamming weight of S(x) is examined, and the conflict-locator polynomial
is derived as follows:

WH(S) = 5,

τ(x) = (1− αx)(1− α2x)(1− α4x)(1− α6x)(1− α7x)

= 1 + αx+ α10x2 + α14x3 + α13x4 + α5x5.

In Step 3-1, the left and right error-locator polynomials are calculated. First, σl,1 = α11

and σr,1 = α6 from (5.23) and (5.24). Next, two candidate sets of σL(x) and σR(x) are
calculated. The first is obtained by (5.47) as follows:

σr,2 =
(α6)3 + α12

α6
= α4,

σl,2 = α10 + α11α6 + α4 = 0.

Then, σl,3 is obtained by (5.40) as

σl,3 = (α11)3 = α3.

The other is obtained by (5.48) as follows:

σl,2 =
(α11)3

α11
= α7,

σr,2 = α10 + α11α6 + α7 = α3.

Then, σr,3 is obtained by (5.41) as

σr,3 = (α6)3 + α12 + α6α3 = α13.

In Step 3-2, two-pair error vectors are estimated by the two candidates sets of σL(x)
and σR(x) derived in Step 3-1. The first is σL(x) = 1 + α11x + α3x3 and σR(x) =
1 + α6x+ α4x2. Then, all values of x do not satisfy σL(x) = 0 or σR(x) = 0; therefore,
the error positions are not estimated. The other is σL(x) = 1 + α11x + α7x2 and
σR(x) = 1+α6x+α3x2+α13x3. Then, the left error positions are 1 and 6 since x = α14

and x = α9 satisfy σL(x) = 0, and the right error positions are 1, 3, and 6 since
x = α13, x = α11, and x = α8 satisfy σR(x) = 0. The left and right error polynomials
are eL(x) = x+x6 and eR(x) = x+x3+x6. Examining the pair weight of←→e = (eL, eR),
this algorithm confirms that Wp(

←→e ) = 3; then, π(ĉ) = ←→u +←→e = π(0), and ĉ = 0 is
output. Thus, this error correction is successful.

■

5.6 Discussion

In this section, I compare the complexities of the proposed algorithms with those of
existing algorithms and discuss the limitation of the proposed algorithms. The proposed
algorithms and the existing algorithms in Refs. [6, 20] find a plurality of candidates of
pair error pattern until the algorithms terminate. The complexity of these algorithms is
dominated by the complexity of finding the candidate sets. In addition, the complexity
of finding one candidate set is almost equal. Thus, as an indicator of the comparison, I
consider the number N of determined candidates sets of the error-locator polynomials
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until the algorithm terminates. Note that N implies the number of times that the
decoder for cyclic codes is executed in the existing algorithms.

In the Yaakobi’s decoding algorithm [6], N = 2 because their algorithm uses the
decoder for cyclic codes twice in Step 1 and Step 2 regardless of the pair error vectors. In
the decoding algorithm proposed in Chapter 4, the condition under which the algorithm
terminates depends on the numbers of the left and right error symbols. Then, N = 1
if the algorithm terminates in Step 2, N = 2 if the algorithm terminates in Step 3, and
N = 3 if the algorithm terminates in Step 4. In the proposed algorithms, the condition
under which the algorithm terminates depends on the numbers of left and right error
symbols (EL, ER) and the Hamming weight of the neighbor-symbol syndromeWH(S). In
Example 1, N = 2 since two candidates sets of error-locator polynomials are determined
until the algorithm terminates. Table 5.5 and Table 5.6 summarize the values of N for
all patterns of (EL, ER) and WH(S) if the proposed decoding algorithms I and II are
used.

A limitation of the proposed algorithms is that the number of correctable pair errors
is limited to two-pair and three-pair errors. Thus, the disadvantage is that the proposed
algorithms correct fewer pair errors than the existing algorithm. On the other hand, the
advantage is that they define the error-locator polynomial and conflict-locator polyno-
mial for pair error correction, and new decoding algorithms are proposed by using those
polynomials. In future works, I will be to clarify the method for finding the error-locator
polynomial regardless of the number of pair errors that are intended to be corrected.

The proposed decoding algorithms are different from the existing algorithm since
the proposed decoding algorithms do not reduce the pair-decoding problem to the error-
decoding problem in the Hamming metric. Then, I showed that there are some pair
error vectors that are corrected more efficiently than the existing decoding algorithms
from the results of a comparison and demonstrated the validity of the approach when
pair errors are corrected with algebraic methods in the pair metric.

5.7 Conclusion

In this chapter, I have discussed the algebraic decoding of BCH codes over symbol-
pair read channels. I have defined the error-locator polynomial and conflict-locator
polynomial for symbol-pair read channels and have derived the relation between the two
types of polynomials. In addition, I have discussed the decoding problem for two-pair
and three-pair error correction and proposed two new algorithms that correct two-pair
and three-pair errors with algebraic methods. The proposed algorithms are able to
correct pair errors in the pair metric and independent of existing cyclic decoders. In
future work, I will generalize the proposed decoding algorithm to correct pair errors
within half of the minimum pair distance.
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Table 5.4: Methods for calculating σl,2, σr,2, σl,3, and σr,3 in Step 3-1 of proposed
decoding algorithm II

WH(S) Condition σl,2 σr,2 σl,3 σr,3
6 Calculate a candidate set of σL(x) and σR(x). (5.44) (5.40) (5.41)

5
Calculate two candidate sets of σL(x) and
σR(x).

(5.47) (5.40) 0

(5.48) 0 (5.41)

4

If the coefficient matrix of (5.45) is nonsingular,
calculate a candidate set of σL(x) and σR(x).

(5.45) (5.26) (5.40) (5.41)

If the coefficient matrix of (5.45) is singular, cal-
culate three candidate sets of σL(x) and σR(x).

(5.53) 0 (5.53) 0

0 (5.54) 0 (5.54)
(5.42) (5.43) 0 0

3

If the coefficient matrix of (5.49) is nonsingular,
calculate a candidate set of σL(x) and σR(x).

(5.49) (5.43) (5.49) 0

If the coefficient matrix of (5.50) is nonsingular,
calculate a candidate set of σL(x) and σR(x).

(5.42) (5.50) 0 (5.50)

If the coefficient matrices of both (5.49) and
(5.50) are singular, calculate four candidate sets
of σL(x) and σR(x).

τ2 0 τ3 0

0 τ2 0 τ3
(5.42) 0 0 0

0 (5.43) 0 0

2

If the coefficient matrix of (5.46) is nonsingular,
calculate a candidate set of σL(x) and σR(x).

(5.46) (5.26) (5.40) (5.41)

If coefficient matrix of (5.46) is singular and the
coefficient matrix of (5.55) is nonsingular, cal-
culate a candidate set of σL(x) and σR(x).

(5.55) 0 (5.55) 0

If the coefficient matrix of (5.46) is singular and
the coefficient matrix of (5.56) is nonsingular,
calculate a candidate set of σL(x) and σR(x).

0 (5.56) 0 (5.56)

If the coefficient matrix of (5.46) is singular, cal-
culate a candidate set of σL(x) and σR(x).

(5.42) (5.43) 0 0

1

If the coefficient matrix of (5.51) is nonsingular,
calculate a candidate set of σL(x) and σR(x).

(5.51) (5.43) (5.40) 0

If the coefficient matrix of (5.52) is nonsingular,
calculate a candidate set of σL(x) and σR(x).

(5.42) (5.52) 0 (5.41)

If the coefficient matrices of both (5.51) and
(5.52) are singular, calculate two candidate sets
of σL(x) and σR(x).

(5.42) 0 0 0

0 (5.43) 0 0

0 Calculate a candidate set of σL(x) and σR(x). (5.42) (5.43) 0 0
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Table 5.5: N in proposed decoding algorithm I
(EL, ER)

Two-pair error Single-pair error
(2, 2) (2, 1) (2, 0) (1, 1) (1, 1) (1, 0)

4 1 — — — — —
3 — 2 — — — —

WH(S) 2 1 — 4 4 5 —
1 — 2 — — — 4
0 — — — 1 — —

Table 5.6: N in proposed decoding algorithm II

(EL, ER)
Three-pair error Two-pair error Single-pair error

(3, 3) (3, 2) (3, 1) (2, 2) (3, 0) (2, 1) (2, 2) (2, 1) (2, 0) (1, 1) (1, 1) (1, 0)

6 1 — — — — — — — — — — —
5 — 2 — — — — — — — — — —
4 1 — 4 4 — — 5 — — — — —

WH(S) 3 — 2 — — 6 6 — 8 — — — —
2 1 — 4 4 — — 5 — 8 8 9 —
1 — 2 — — — 4 — 6 — — — 8
0 — — — 1 — — — — — 2 — —
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Chapter 6

Error-Trapping Decoding over
Symbol-Pair Read Channels

6.1 Abstract

The Kasami’s error-trapping decoder [13] is known as the efficient decoder for cyclic
codes by hardwares. In this chapter, I discuss error-trapping decoding for cyclic codes
over symbol-pair read channels. I propose a new error-trapping decoding algorithm
under some restrictions on the pair error patterns that I intend to correct. It corrects all
pair error patterns whose pair errors within the pair error correcting capability under the
restrictions. I firstly discuss problems in the existing error-trapping decoding algorithms
when it is used for cyclic codes over symbol-pair read channels. I solve this problems
by using the neighbor-symbol syndrome defined in Chapter 3, and propose a new error-
trapping decoding algorithm. Next, I show a circuitry that implements the proposed
algorithm. Finally, I discuss modifying the restrictions on the correctable error patterns.
I show necessity that I need to find covering polynomials suitable for the symbol-pair read
channels, and show how to modify the restrictions by using the covering polynomials.

6.2 Error-Trapping Decoding for Cyclic Codes over Symbol-
Pair Read Channels

In this section, I propose an error-trapping decoding algorithm and a decoder for cyclic
codes over symbol-pair read channels.

Consider an (n, k) cyclic code with a generator polynomial g(x). Let c(x) = c0 +
c1x + · · · + cn−1x

n−1 be a code polynomial, left and right polynomials of π(c(x)) are
defined as

cL(x) = c0 + c1x+ · · ·+ cn−2x
n−2 + cn−1x

n−1, (6.1)

cR(x) = c1 + c2x+ · · ·+ cn−1x
n−2 + c0x

n−1. (6.2)

I define a pair error pattern, left and right error patterns as

←→e (x) =←→e 0 +
←→e 1x+←→e 2x

2 + · · ·+←→e n−1x
n−1, (6.3)

eL(x) = el,0 + el,1x+ · · ·+ el,n−2x
n−1 + el,n−1x

n−1, (6.4)

eR(x) = er,1 + er,2x+ · · ·+ er,n−1x
n−1 + er,0x

n−1. (6.5)
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Moreover, I define the received pair polynomial and the left and right received polyno-
mials as follows:

←→u (x) =←→u 0 +
←→u 1x+←→u 2x

2 + · · ·+←→u n−1x
n−1, (6.6)

uL(x) = ul,0 + ul,1x+ · · ·+ ul,n−2x
n−1 + ul,n−1x

n−1, (6.7)

uR(x) = ur,1 + ur,2x+ · · ·+ ur,n−1x
n−1 + ur,0x

n−1, (6.8)

where uL(x) = cL(x) + eL(x) and uR(x) = cR(x) + eR(x). If
←→u (x) is obtained, I define

symbol-pair syndrome polynomial ←→s (x) = (sL(x), sR(x)) as follows:

sL(x) ≜ uL(x) mod g(x), (6.9)

sR(x) ≜ uR(x) mod g(x). (6.10)

Suppose that pair errors are confined to the n − k low-order positions, namely the
pair error pattern and the left and right error patterns are represented as

←→e (x) =←→e 0 +
←→e 1x+ · · ·+←→e n−k−1x

n−k−1, (6.11)

eL(x) = el,0 + el,1x+ · · ·+ el,n−k−1x
n−k−1, (6.12)

eR(x) = er,1 + er,2x+ · · ·+ er,n−kx
n−k−1. (6.13)

From the result of dividing uL(x) and uR(x) by g(x),

sL(x) = uL(x) mod g(x) = eL(x), (6.14)

sR(x) = uR(x) mod g(x) = eR(x). (6.15)

Thus, ←→e (x) equals ←→s (x).
Suppose that pair errors are confined to n−k consecutive pairs, the pair error pattern

is represented as

←→e (x) =←→e ix
i +←→e i+1x

i+1 + · · ·+←→e (n−k)+i−1x
(n−k)+i−1. (6.16)

If ←→e (x) is cyclically shifted n− i times to the right, pair errors will be confined to the
n− k low-order positions.

←→e (n−i)(x) =←→e i +
←→e i+1x+ · · ·+←→e (n−k)+i−1x

n−k−1, (6.17)

e
(n−i)
L (x) = el,i + el,i+1x+ · · ·+ el,(n−k)+i−1x

n−k−1, (6.18)

e
(n−i)
R (x) = er,i+1 + er,i+2x+ · · ·+ er,(n−k)+ix

n−k−1, (6.19)

where ←→e (n−i)(x) is the (n − i)-th cyclic shift of ←→e (x). From the result of dividing

u
(n−i)
L (x) and u

(n−i)
R (x) by g(x),

sL
(n−i)(x) = u

(n−i)
L (x) mod g(x) = e

(n−i)
L (x), (6.20)

sR
(n−i)(x) = u

(n−i)
R (x) mod g(x) = e

(n−i)
R (x), (6.21)

where sL
(n−i)(x) and sR

(n−i)(x) are the symbol-pair syndrome of ←→u (n−i)(x). Thus,
←→e (n−i)(x) = (e

(n−i)
L (x), e

(n−i)
R (x)) equals (sL

(n−i)(x), sR
(n−i)(x)), so←→e (x) equals xi←→s (n−i)

(x).
In the symbol-pair read channels, if assuming that a pair error pattern equals the

symbol-pair syndrome, I have the following problem. The pair error patterns cannot be
distinguished by using the symbol-pair syndromes when tp-pair error-correcting code is
used. The reason is that there is a plurality of error patterns that they have tp or fewer
pair errors and their symbol-pair syndromes are the same.
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Example 6. Suppose that the (7, 4) cyclic Hamming code which can correct up to two-
pair errors is used and a symbol-pair syndrome is ←→s (x) = (1, 1) + (1, 1)x. There are
some error patterns that they have two or fewer pair errors confined to n−k consecutive
pairs with the symbol pair syndromes ←→s (x) = (1, 1) + (1, 1)x. These error patterns are
←→e (x) = (1, 1)x3, ←→e ′(x) = (1, 1) + (1, 1)x and ←→e ′′(x) = (1, 1)x4 + (1, 1)x6. ■

Thus, these pair error patterns cannot be distinguished by using the symbol-pair
syndromes.

To distinguish those pair error patterns, I use neighbor-symbol syndrome which rep-
resents the conflict positions defined by (3.4) and (3.5). If the received pair vector is
given by (6.6), the neighbor-symbol syndrome is defined as follows:

S(x) = uL(x) + (xuR(x) mod xn − 1). (6.22)

By using the symbol-pair syndrome and the neighbor-symbol syndrome to determined
the pair error pattern, I have the following theorem.

Theorem 10. Suppose that the number of pair errors in ←→u (x) is tp or less and they
are confined to n − k consecutive pairs. The pair error pattern is uniquely determined
by the symbol-pair syndrome ←→s (x) if ←→s (x) satisfies the following conditions.

Condition 1. The pair weight of ←→s (x) is tp or less.

Condition 2. The conflict positions of ←→s (x) equal the n − k low-order positions
of S(x) calculated from ←→u (x).

Proof: An pair error pattern ←→e (x) = (eL(x), eR(x)) with tp or fewer pair errors

that are confined to n − k consecutive pairs is represented as ←→e (x) = xj
←→
b (x) =

(xjbL(x), x
jbR(x)), where

←→
b (x) has tp or fewer terms and has degree n− k − 1 or less.

From the result of dividing the left and right error patterns by the generator polynomial
g(x),

xjbL(x) = aL(x)g(x) + sL(x), (6.23)

xjbR(x) = aR(x)g(x) + sR(x). (6.24)

Because xjbL(x) + sL(x) and xjbR(x) + sR(x) are multiples of g(x), they are code poly-
nomials in the Hamming metric. In addition, if the symbol-pair syndrome ←→s (x) =
(sL(x), sR(x)) satisfies Condition 2, namely, the conflict positions of ←→s (x) equal the
n − k low-order positions of S(x) calculated from ←→u (x), the neighbor-symbol syn-

drome of xj
←→
b (x) +←→s (x) is zero. Thus, xj

←→
b (x) +←→s (x) is a code polynomial over

symbol-pair read channels. The symbol-pair syndrome←→s (x) cannot satisfy Condition 1

unless xj
←→
b (x) = ←→s (x). Suppose that the pair weight of ←→s (x) is tp or less, and

xj
←→
b (x) ̸= ←→s (x). Thus, xj

←→
b (x) +←→s (x) is a nonzero code polynomial with the pair

weight less than 2tp + 1 since the pair weight of
←→
b (x) is tp or less. This is impossi-

ble, since a tp-pair error-correcting code must have the minimum pair weight of at least
2tp + 1. Thus, I conclude that the pair error pattern is determined uniquely if ←→s (x)
satisfies Conditions 1 and 2. □

From theorem 10, I propose an error-trapping decoding algorithm for cyclic codes
over symbol-pair read channels.
Proposed error-trapping decoding algorithm
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Input: Received polynomial ←→u (x) = (uL(x), uR(x)).

Output: Corrected code polynomial ĉ(x) or failure symbol F .

Step 1: Calculate ←→s (x) = (sL(x), sR(x)) and S(x).

sL(x) := uL(x) mod g(x),

sR(x) := uR(x) mod g(x),

S(x) := uL(x) + (xuR(x) mod xn − 1).

Step 2: Examine ←→s (x) whether it satisfies Conditions 1 and 2. If ←→s (x) satisfies
both of Conditions 1 and 2, go to Step 5. Otherwise, set j = 0 and go to Step 3.

Step 3: If j < n, cyclically shift ←→u (x) to the right, and calculate ←→s (j+1)
(x) =

(sL
(j+1)(x), sR

(j+1)(x)) and S(j+1)(x).

←→u (j+1)(x) := x←→u (j)(x),

sL
(j+1)(x) := u

(j+1)
L (x) mod g(x),

sR
(j+1)(x) := u

(j+1)
R (x) mod g(x),

S(j+1)(x) := u
(j+1)
L (x) + (xu

(j+1)
R (x) mod xn − 1).

Note that ←→u (0)(x) = ←→u (x) when j = 0. If j = n, output failure symbol F and
terminate this algorithm.

Step 4: Examine ←→s (j+1)
(x) whether it satisfies Conditions 1 and 2. If ←→s (j+1)

(x)
satisfies both of Conditions 1 and 2, go to Step 5. Otherwise, set j = j + 1 and
return to Step 3.

Step 5: Calculate π(ĉ(x)) := ←→u (x) + xn−j←→s (j)
(x). Output ĉ(x) and terminate

this algorithm. ■

Based on the proposed decoding algorithm, I construct an error-trapping decoder over
symbol-pair read channels. The schematic circuitry is shown in Fig. 6.1. In the each
circuitry, ⊕ represents XOR operation. I show elements for constructing the decoder.

The neighbor-symbol syndrome calculation circuit is implemented as shown in Fig. 6.2.
The neighbor-symbol syndrome is calculated as follows.

Step 1. Input each n − 1 bits from the first bit of the left and right received
polynomials uL(x) and uR(x) with gate 1 turned on and gate 2 turned off.

Step 2. Input each n-th bit of uL(x) and uR(x) with gate 1 turned off and gate 2
turned on.

The symbol-pair syndrome calculation circuit and the threshold gate 1 are implemented
as shown in Fig. 6.3. The symbol-pair syndrome calculation circuit is constructed by
two syndrome registers in Hamming metric. The threshold gate 1 examines Condition 1.
The pair weight of the symbol-pair syndrome is tested by the threshold gate 1 whose
output is 1 when tp or fewer of its inputs are 1; otherwise, it is zero. Note that inputs
of threshold gate 1 are calculated OR operation of corresponding bits of two syndrome
registers.

The threshold gate 2 is implemented as shown in Fig. 6.4. Condition 2 is tested by
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Neighbor-symbol syndrome 
calculation circuit

Neighbor-symbol syndrome

Symbol-pair  syndrome 
calculation circuit

Threshold gate 1

・・・

Threshold gate 2

𝑢𝐿 𝑥

𝑢𝑅 𝑥

OutputInput

Figure 6.1: Schema of error-trapping decoder for symbol-pair read channels

⋯

Gate 1

Gate 2

⋯ ⋯

𝑛-bit buffer register

𝑛-bit buffer register𝑛-bit buffer register

𝑢𝐿 𝑥

𝑢𝑅 𝑥

Neighbor-symbol syndrome

Figure 6.2: Neighbor-symbol syndrome calculation circuit

the threshold gate 2 whose output is 1 when all of its inputs are 0; otherwise, it is zero.
Note that inputs of threshold gate 2 are calculated XOR operation of corresponding bits
of two syndrome registers and the neighbor-symbol syndrome.

An error-trapping decoder for the (7,4) cyclic code over the symbol-pair syndrome is
implemented as shown in Fig. 6.5. The decoding algorithm is described in the following
steps:

Step 1. Input n−1 bits from the first bit of the left and right received polynomials
uL(x) and uR(x) with gates 1, 2 and 3 turned on and all the other gates turned
off. Next, input n-th bits of uL(x) and uR(x) with gates 1, 2 and 4 turned on and
all the other gates turned off.

Step 2. Examine Conditions 1 and 2 by the threshold gates 1 and 2, respectively.
If both of outputs of threshold gates 1 and 2 are 1, go to Step 5. Otherwise, go to
Step 3.

Step 3. Cyclically shift each circuit with gates 5, 6 and 7 turned on and all the
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⋯

Syndrome register

Syndrome register

Threshold gate 1: Examining Condition 1

𝑢𝐿 𝑥

𝑢𝑅 𝑥

⋯

Figure 6.3: Symbol-pair syndrome calculation circuit and Threshold gate 1

Neighbor-symbol syndrome

⋯

Syndrome register

𝑢𝐿 𝑥

𝑢𝑅 𝑥

⋯ ⋯

Threshold gate2: Examining Condition 2 

⋯⋯

Syndrome register

Figure 6.4: Threshold gate 2

other gates turned off.

Step 4. Examine Conditions 1 and 2 by the threshold gates 1 and 2, respectively.
If both of outputs of threshold gates 1 and 2 are 1, go to Step 5. Otherwise, return
to Step 3. If Step 3 is repeated n−1 times, the decoding is a failure and terminate
this algorithm.

Step 5. For the number of times that repeated Step 3, output the left received
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Neighbor-symbol syndrome 

input

Gate 6

Figure 6.5: Error-trapping decoder for (7,4) cyclic Hamming code over symbol-pair read
channels

polynomial with gate 9 turned on and all the other gates turned off. Next, gate 8
turned on, output the result of XOR of the left received polynomial and the left
of the symbol-pair syndrome. After output n times, terminate this algorithm. ■

I compare the error correction performance of the proposed error-trapping decoder
with Yaakobi’s decoder [6, 7]. Yaakobi’s decoder can correct all pair errors within t0 =
⌊(3tH + 1)/2⌋, where tH = ⌊(dH − 1)/2⌋ and dH is the minimum Hamming distance
of codes. The proposed decoder can correct all tp pair errors under the condition that
the errors are confined to n − k consecutive pairs. Since the number of error patterns
with tp pair errors under such a condition is less than that with t0 pair errors, the
proposed decoder correct fewer pair errors than Yaakobi’s decoder. However, it has
shown that there are codes whose pair error correcting capability tp is greater than t0
[9], so Yaakobi’s decoder cannot correct all pair errors within tp. On the other hand,
I can reduce the restriction of the proposed decoder by a few additional circuits. As
the result, the decoder can correct pair errors outside an (n− k)-pair span. I show the
method in the next section.

6.3 Improved Error-Trapping Decoding over Symbol-Pair
Read Channels

The proposed error-trapping decoding over symbol-pair read channels discussed in Sec-
tion 6.2 corrects the error patterns with tp or fewer pair errors and all of them are
confined to n − k consecutive pairs. In this section, I reduce the restriction that all of
the pair errors are confined to n − k consecutive pairs. I propose an improved error-
trapping decoding algorithm that corrects the error patterns whose most pair errors are
confined to n−k consecutive pairs and fewer pair errors are outside an (n−k)-pair span.
By calculating the symbol-pair syndrome of pair errors outside the (n− k)-pair span in
advance, I can only consider the symbol-pair syndrome of pair errors confined to n− k
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Table 6.1: The result of Step 2 in the example

←→
ϕ j(x) Wp(

←→s (x)+←→ρ j(x)) tp−Wp(
←→
ϕ j(x)) Condition 1’ S(x) of (←→s (x)+←→ρ j(x)+x

3←→ϕ j(x)) Condition 2’
←→
ϕ 1(x) 2 2 ✓ 1 + x+ x3 ×
←→
ϕ 2(x) 2 1 × - -
←→
ϕ 3(x) 1 1 ✓ 0 ×
←→
ϕ 4(x) 1 1 ✓ 1 + x2 + x6 ✓

consecutive pairs. The pair error pattern ←→e (x) = ←→e 0 +
←→e 1x + · · · +←→e n−1x

n−1 can
be divided into two parts:

←→e P (x) =
←→e 0 +

←→e 1x+ · · ·+←→e n−k−1x
n−k−1, (6.25)

←→e I(x) =
←→e n−kx

n−k + · · ·+←→e n−1x
n−1, (6.26)

I consider that ←→e P (x) is the pair error pattern whose pair errors are confined to n− k
consecutive pairs and ←→e I(x) is the pair error pattern whose pair errors outside the
(n− k)-pair span. From the result of dividing ←→e I(x) by the generator polynomial g(x),

←→e I(x) =
←→q (x)g(x) +←→ρ (x), (6.27)

where ←→ρ (x) is the remainder with degree n− k − 1 or less. By adding ←→e P (x),

←→e =←→e P (x) +
←→e I(x) =

←→q (x)g(x) +←→ρ (x) +←→e P (x) (6.28)

Because ←→e P (x) has degree n− k− 1 or less, ←→ρ (x)+←→e P (x) must be the remainder re-
sulting from dividing the pair error pattern←→e (x) by g(x). Thus, symbol-pair syndrome
is

←→s (x) =←→ρ (x) +←→e P (x). (6.29)

By transforming (6.29)

←→e P (x) =
←→ρ (x) +←→s (x). (6.30)

Thus, if the error pattern ←→e I(x) is known, the error pattern ←→e P (x) can be found.
However, I cannot know the error pattern←→e I(x) and I also cannot calculate the symbol-
pair syndrome of ←→e I(x). I find a set of polynomials have degree k − 1 or less such

that, for any correctable error pattern ←→e (x), there is one polynomial
←→
ϕ j(x) such that

xn−k←→ϕ j(x) matches ←→e I(x) or a cyclic shift of ←→e I(x). The polynomials are called
covering polynomials. Over the symbol-pair read channels, since the coefficient of each
term of ←→e (x) is (1,0), (0,1) or (1,1), I have to find the covering polynomial for any
combination coefficient of each term of ←→e (x). Let ←→ρ j(x) be the remainder resulting

from dividing xn−k←→ϕ j(x) by g(x). For this improvement, I modify Conditions 1 and 2
as follows.

Condition 1’. For either of j = 0, 1, 2, . . . , the pair weight of ←→s (x) +←→ρ j(x) is

tp −Wp(
←→
ϕ (x)) or less.
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Condition 2’. For j satisfying Conditions 1’, The conflict positions of ←→s (x) +
←→ρ j(x) + xn−k←→ϕ j(x) equals the n− k low-order positions of S(x) of ←→u (x)

If←→s (x) satisfies Conditions 1’ and 2’, ←→e (x) equals←→s (x)+←→ρ j(x)+xn−k←→ϕ j(x). This
improvement needs additional circuitry in the threshold gates 1 and 2. The complexity
of the additional circuitry depends on how many pair errors outside an (n−k) pair span
are to be corrected.

I show the difference from the decoding algorithm discussed in Section 6.2 by the
next example.

Example 7. Suppose the binary (7,4) cyclic Hamming code whose the primitive poly-
nomial and the generator polynomial p(x) = g(x) = 1 + x + x3. The code corrects up
to two pair errors. The decoding algorithm discussed in Section 6.2 corrects only pair
error patterns whose pair errors are confined to n− k consecutive pairs. The code cor-
rects any error patterns that have two or fewer pair errors if I consider correcting single
pair error outside an (n − k)-pair span by the improvement discussed in this section.

In this example, the set of covering polynomials is chosen as follows: {
←→
ϕ 1(x) = (0, 0),

←→
ϕ 2(x) = (1, 0)x3,

←→
ϕ 3(x) = (0, 1)x3,

←→
ϕ 4(x) = (1, 1)x3}. Thus, I have ←→ρ 1(x) = (0, 0),

←→ρ 2(x) = (1, 0) + (1, 0)x2, ←→ρ 3(x) = (0, 1) + (0, 1)x2 and ←→ρ 4(x) = (1, 1) + (1, 1)x2. Let
←→u (x) = (1, 0)x2 + (1, 1)x6 be a received pair polynomial that has two pair errors, when
the all-zero code polynomial c(x) = 0 is read. In Step 1, ←→s (x) and S(x) are calculated.

sL(x) = x2 + x6 mod g(x) = 1,

sR(x) = x6 mod g(x) = 1 + x2,

S(x) = 1 + x2 + x6.

Thus, ←→s (x) = (1, 1) + (0, 1)x2. In Step 2, ←→s (x) is examined whether it satisfies Con-
ditions 1’ and 2’. The results are presented in Table. 6.1. From the results, ←→s (x) is

satisfies Conditions 1’ and 2’ in the case of
←→
ϕ 4(x), so the algorithm go to Step 5. In

Step 5, π(ĉ(x)) = ←→u (x) +←→s (x) +←→ρ 4(x) + x3
←→
ϕ 4(x) = (0, 0), so ĉ(x) = 0 is output.

Thus, this error correction is successful. ■

In this study, I tentatively choose the set of covering polynomials by a brute force
method. To find the set of covering polynomials for a specific code is not an easy
problem. In the Hamming metric, several methods for finding the set can be found [2]. I
need to give the method to find the set of covering polynomial for the symbol-pair read
channels. That will probably be a future problem.

6.4 Conclusion

I have discussed the error-trapping decoding for cyclic codes over symbol-pair read chan-
nels. By using the two kinds of syndromes for symbol-pair read channels, I have proposed
a new error-trapping decoding algorithm that puts restrictions on the correctable pair
error patterns. I have shown a circuitry that implements proposed error-trapping de-
coding for the (7, 4) cyclic Hamming code. In addition, I have shown how to modify
the restrictions on the (7, 4) cyclic Hamming code. By the improvement, the code can
correct all pair error patterns whose pair errors are within the correction capability.
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Chapter 7

Conclusion of This Study

In this thesis, I have studied error-correcting codes over symbol-pair read channels,
which are channels for reading data accurately from a magnetic recoding media. I have
discussed how to correct pair errors by using the conventional error-correcting codes.
The existing decoding algorithms [3, 6] cannot correct all error patterns within the pair
error correcting capability.

In Chapter 3, I newly defined the syndrome of symbol-pair codes and proved a one-
to-one relationship between the syndrome and the error pattern within the correcting
capability. This research result is useful for the study of symbol-pair codes by other
researchers. In particular, based on the results obtained by the syndrome decoding
method, Horii et al. discuss the linear programming decoding of binary linear codes
[15, 16]. Moreover, Kasai et al. propose a symbol-tuple error channels extending the
symbol-pair read channels and discuss the LDPC codes over the channels. They propose
the iterative decoding method for the LDPC coded over the channels.

In Chapter 4, I proposed decoding method to solve the problem of space computa-
tional complexity of the syndrome decoding method. I discussed the relation between the
syndromes and the pair error pattern. As a result, I proposed a new decoding method
by using the output of the decoder of cyclic codes. However, although this decoding
method improves the error correcting ability compared to the Yaakobi’s algorithm, it
does not always correct all pair errors within the pair error correctability. This is due
to the fact that the pair error decoding problem is dropped into the conventional error
decoding algorithm in order to utilize the conventional decoder.

In Chapter 5, I discussed the decoding pair errors only by algebraic calculation from
syndromes. I newly defined error-locator polynomial and conflict-locator polynomial and
derived the relation between the these polynomials. By solving the relational equations
algebraically, the pair errors can be corrected. However, due to the complexity of the
relational equations, the proposed decoding method is limited to three pair errors cor-
rection. It is considered that the complexity of the relation is caused by assuming that
the conventional BCH codes are read over symbol-pair read channels. I consider that
it is important to analyze algebraic structure for decoding and design algebraic codes
suitable for symbol-pair read channels.

In Chapter 6, I assumed to incorporate a decoding circuit to hardware, and also
discuss how to correct pair errors with registers and a few logic circuits. Based on
the idea of the error-trapping decoding method known as a decoding method of cyclic
codes by using shift registers, I proposed a decoding method by trapping pair errors and
designed a circuit to realize it.
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