
Kobe University Repository : Kernel

PDF issue: 2025-01-31

An Evaluation Method for Panoramic
Understanding of Programming by Comparison of
Programmed Visual Samples

(Degree)
博士（学術）

(Date of Degree)
2018-03-25

(Date of Publication)
2019-03-01

(Resource Type)
doctoral thesis

(Report Number)
甲第7235号

(URL)
https://hdl.handle.net/20.500.14094/D1007235

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

MARTINEZ CALDERON DICK ORLANDO

博士論文

An Evaluation Method for Panoramic

Understanding of Programming by Comparison of

Programmed Visual Samples

（視覚コンテンツ比較によるプログラミング能力評価法）

平成 30年 1月

神戸大学大学院国際文化学研究科

MARTINEZ CALDERON DICK ORLANDO

Table of Contents

1. Introduction .. 1

1.1. Background .. 1

1.1.1. Characteristics of Nowadays Programmers. ... 2

1.1.2. What Kind of Programming Skills Do Nowadays Programmers Learn? 6

1.1.3. Can Current Methods of Evaluation of Programming Abilities Evaluate Nowadays

Programmers’ Skills? ... 9

1.2. Research Objective and Stages ... 13

1.3. Structure of This Thesis .. 15

2. Related Research .. 17

2.1. Fundamental Research on Evaluation of Programming Abilities 17

2.2. Research Related to Alternative Programming Methods. .. 18

3. Proposal of a Programmed Visual Contents Comparison (PVCC) Method to

Evaluate Abilities related with a Panoramic Understanding of Programming 20

3.1. What is Panoramic Understanding of Programming? .. 20

3.2. What Programming Skills do we Want to Evaluate? ... 22

3.3. How to Evaluate Skills Related with a Panoramic Understanding of Programming? 25

3.3.1. Why Including Programmed Visual Contents? .. 26

3.3.2. Why Comparing Programmed Visual Contents? ... 27

3.4. The Programmed Visual Contents Comparison Method (PVCC). 29

3.4.1. Problems’ Degree of Difficulty .. 30

3.4.2. Programmed Visual Contents Comparison Testing System 32

4. Verification of PVCC Method’s Potential to Evaluate the Programming Ability of

Novice Programmers. .. 34

4.1. Objective and Context of This Chapter .. 34

4.2. Procedures to verify the PVCC Method’s Potential to Evaluate Programming Skills of

Novice Programmers .. 35

4.2.1. Participants’ Characteristics and Previous Programming Ability 35

4.2.2. Assumption Based on Reported Programming Ability .. 36

4.2.3. Results and Comparison to Find Significant Problems .. 37

4.3. How Well Can the PVCC Method Evaluate Novices’ Programming Ability? 38

4.3.1. Problems whose Results Match the Assumption .. 39

4.3.2. Problems whose Results Mismatch the Assumption Useful to Evaluate

Programming Ability .. 40

4.3.3. Problems whose Results Mismatch the Assumption Useless to Evaluate

Programming Ability .. 43

4.3.4. Non-representative Problems ... 44

4.4. Conclusion of This Chapter .. 44

5. Extending the Range of Programming Skills Assessable by The PVCC Method 46

5.1. Objective and Context of This Chapter .. 46

5.2. New Problems’ Characteristics .. 47

5.2.1. How Input Data Can Guide the Answer: Problems with Same Input data for

Multiple Outputs ... 48

5.2.2. How Data is Needed to Understand the Program: Problems with Multiple Input

Data for a Single Output ... 51

5.2.3. How the Absence of Data Can Indicate Difficulty: Problems with Multiple Input

Data for Multiple Output .. 53

5.3. A Classification for Programming Processes ... 56

5.4. Test Oriented to Professors to Verify the Suitability of New Problems 57

5.5. Are New Problems Suitable for Evaluating Programming Abilities Related to a

Panoramic Understanding of Programming? ... 58

5.6. Conclusion of This Chapter .. 60

6. How to Create Suitable Problems for the PVCC method? .. 61

6.1. Identification of the Most Difficult Programming Technique .. 61

6.2. Balance of Complexity and Concision of Problems ... 63

6.3. Revision of Programming Topics and Samples ... 65

7. Verifying PVCC Method’s Potential to Evaluate the Programming Ability of IT

Experts in Relation to Programming Experience and Knowledge. 66

7.1. Objective of This Chapter .. 66

7.2. Procedures to verify PVCC Method’s Potential to Evaluate IT Expert’s Programming

Abilities in Relation to Programming Knowledge and Experience.. 67

7.2.1. Consolidation of Modified Problems. .. 67

7.2.2. Questionnaire and Guidance on Experience and Knowledge of Programming and

Software Tools. .. 69

7.2.3. Participants Characteristics Including Previous Experience and Knowledge. 72

7.2.4. Assumption Based on Reported Experience and Knowledge 73

7.3. Is It Possible to Evaluate IT Experts’ Programming Abilities in Relation to Their

Experience and Knowledge by Using the PVCC Method? .. 74

7.4. Why do IT Experts Fail at Answering Problems Based on the PVCC Method?............ 76

7.5. What Kind of Programming Knowledge and Experience Do IT Experts Have? 79

7.5.1. Programming Loop ... 81

7.5.2. Recursion .. 83

7.5.3. Empty Area Detection .. 85

7.5.4. Distribute Objects According to Data .. 87

7.5.5. Visualization According to Data .. 89

7.5.6. Data Format Reading .. 91

7.6. Conclusion of This Chapter .. 93

8. Conclusions ... 95

References ... 97

Acknowledgements .. 100

Appendixes ... 101

Articles Product of this Research ... 132

Refereed Articles .. 132

Non Refereed Articles .. 132

1

1. Introduction

1.1. Background

Over the past 20 years, worldwide institutions who establish the standards for

computing education have been suggesting the inclusion of diverse disciplines from

knowledge areas previously considered as external to computing, into curricula proposals.

For example, The Curriculum Guidelines for Undergraduate Degree Programs in

Information Systems (2010) proposed by the Association for Computing Machinery

(ACM) and the Association for Information Systems (AIS), presents a relation of the

coverage of different fundamental and elective proposed courses across the 17 sub-

disciplines of Information Systems (IS), going from Application Developer, passing by

Business Manager and finishing in disciplines like: User Interface Designer and Web

Content Manager. This document lists up the fundamental skills needed by professionals

in IS according to his emphasis, making clear which courses are or are not essential for

some of those disciplines. [1]

This is only an example of the transformation of disciplines from other fields

(such as Management, Business and Arts) into computing-related subjects. Other

examples can be found in Curriculum Guidelines published by these institutions for other

areas of knowledge such as: Information Technology, Software Engineering and

Computer Science.

In some of the courses included in the guidelines, particularly those related with

Web Content Management, User Interface Design and Human-Computer Interaction, it

is usual to include programming classes together with graphic software tools instruction.

Programming for these fields is commonly taught by using visual programming

languages and graphic tools where fundamental topics are transformed and adjusted

according to the resources available on those tools [2] [3], or in additional libraries,

probably code snippets or extensions.

Recently, researchers have examined the consequences of changes on the

structure of Information Technologies’ education and the impact the new ways to do

programming have in methods to teach and assess the skills a student need to perform

successfully in an Information Systems related professional environment. Andrew Ko et

al. make a relevant question regarding this issue:

2

“Now, an increasing number of (…) programmers control manufacturing robots,

create spreadsheets, and design interactive prototypes. Yet, for such growth to occur,

millions of aspiring (…) programmers must overcome substantial learning barriers in

programming systems. Do we know enough about these barriers to design systems that

help these individuals?” [4]

1.1.1. Characteristics of Nowadays Programmers.

 In the same way many disciplines previously not belonging to the Information

Technology world are now included into computing-related curriculums, nowadays there

has been a significant increase of programming jobs performed by programmers who

lack formal training in computer science and software development, may not be

professional software developers, but instead are professionals in other disciplines like

the mentioned in the previous section, users of software produced by others, that have

become able to design and produce their own programs.

The software that these programmers produce is initially thought for personal or

limited use, mainly made to solve problems or add functionalities to bigger software

platforms, but after a time their software can become popular or available for wider

audiences via internet or as the main product of a small enterprise.

Margaret Burnett and Brad Myers report, as a part of their analysis on the future

of End-User Software Engineering that,

“More than 12 million people in the U.S. say they do programming at work, (…)

compared to only about 3 million professional programmers (…). Clearly then, end-user

programming empowers (…) [or] it has already empowered millions of end users to

create their own software”. [2]

Later in the same report they mention that users of software become programmers

to accomplish tasks their own way in these software platforms. Professionals in

aforementioned disciplines like: Management, Business, and Art are in fact doing

programming to solve their own field-related problems when using software.

Burnett and Myers also report that many subpopulations of programmers lack

training on formal computer science, so it can be said that a professional in other field

can become a programmer without knowing how to do (formal or standard) programming.

This is the main characteristic of nowadays programmers: the lack of formal

training in software development; but even though this could imply that the gap between

3

programmers not formally-educated and professional developers is significantly large,

and that there is no reason to delegate a professional programming task or entire job to

someone who only has a superficial knowledge in software development nor to rely on

his final result, most of those not formally educated programmers ultimately find their

products being published and actually used frequently by people. [2]

An example of this contrast can be found in the world of Web Design and the

recent changes derived from the inclusion of formal programming aspects into previously

considered non-programming tasks or jobs: HTML (Hypertext Markup Language) and

CSS (Cascade Styling Sheets), both structural languages to build web pages were

considered until recently not programming languages but “[technologies to] define and

describe the content of a web page” [5] or “simple mechanisms for adding style (…) to

web documents” [6], and designers using these technologies to make web pages were not

considered programmers; nowadays thanks to the introduction of compilers,

complementary languages for CSS and automatic generation of HTML templates

through engines among other extensions; web design has become a programmers’ job

and those designers doing it need to learn how to program properly with these languages

before tackling the creation of a well-made website.

As a consequence of this and other changes on the context where they performed

their job, web designers became programmers and their field gained differentiation but

added a greater responsibility as well; anyone can do a web page, but now, a well-made

web page can be created only by someone with the specific skills required to manage the

aforementioned new programming extensions to HTML and CSS, together with

programming languages that add functionality to those web pages; nowadays designers

must become proficient in all those programming tools.

The situation is similar in fields like Statistics, Economics, and (Media) Art,

where changes in technologies that involved the introduction of programming have been

tackled with two strategies we already mentioned: one, the addition of (basic)

programming lessons into curriculums [1], and two, the creation of tools to support the

lack of programming and software development basic knowledge [7].

The second main characteristic of nowadays programmers is the kind of

programmers they end up becoming, as Burnett and Myers mention:

“A premise of classical software engineering research is that professional

developers have some training and/or experience in software engineering methods, and

4

also at least a little interest in following good software engineering practices. In contrast,

end user software engineering research cannot assume the presence of any of these” [2]

While professional developers are educated in the standard procedures for

producing good software, those programmers that lack formal training consider other

standards according to the field they are professionals in, and adjust or accommodate

these standards into programming to be able to obtain what they want, as Ko et al argue,

this is a difference on intent rather than on experience,

“An end user is simply any computer user. We then define end-user programming

as programming to achieve the result of a program primarily for personal, rather [than]

public use (…). In these (…) programming situations, the program is a means to an end

and only one of potentially many tools that could be used (…). In contrast (…),

professional programming has the goal of producing code for others to use. The intent

might be to make money”. [8]

An interesting point to highlight here is that, even when the final product of a

development project made by non-educated programmers is supposedly intended for

personal use, this product can become popular (or widely used) after a time, therefore the

aforementioned intent changes.

It is assumed that these kinds of programs will be used only by their creators, but

in many cases these products are considered solid and robust enough by not only a few

people but thousands or millions who can download and use them, or in the other hand,

a programmer who has created programs for personal use only, could start pondering that

his experience doing programming is enough to offer services related to these skills, so

he can be more attractive for job offerings and potential clients.

Since the learning curve for (formal) programming (and software development)

is quite steep, a non-professional programmer would first consider if he can do what is

required for his product to be suitable with the tools he knows as a professional in other

field, and then he would resort to new tools depending on his (field of) knowledge, not

necessarily (and not primarily) programming languages but tools that help him overcome

his lack of programming knowledge; these tools can go from complete software suites

that allow to do programming products by only inserting objects via button click inside

an interface, to programming libraries complementing languages that allow the

programmer to simplify programming complex tasks.

5

As a consequence of this, the non-professional programmer who wants to make

code for others becomes a developer without the necessary knowledge nor experience to

be a professional developer, but carrying on with the full responsibility of this role; and

as mentioned, his intent changes radically. Burnett and Myers point out the consequences

of this situation:

“Evidence abounds of the pervasiveness of errors in the software that end users

create (…). Even when errors in end-user-created software are non-catastrophic,

however, their effects can matter”. [2]

The third characteristic of nowadays programmers is the way how they learn to

solve problems in programming; the way they learn and the knowledge they acquire is

specific not only to the field they belong to but also to the task (or barrier) they try to

accomplish (or overcome).

Ko, et al in their study regarding barriers in end-user programming systems

provide a list of six general barriers that programming learners should surmount every

time they try to perform programming tasks. Namely: “Design, selection, coordination,

use, understanding, and information barriers” [4]

According to the definition provided by Ko et al, these barriers are fundamentally

points during the learning process where the programming learner having to learn a new

programming technique, after considering its learning curve makes simplifying

assumptions regarding the environment, programming language and tools (e.g. libraries)

he is using to try to learn how to achieve this task; sometimes (and as Ko et al report,

most of the times) these assumptions are invalid, when this happens the student has

knowledge breakdowns, or moments where he finds that all the time and effort invested

in acquiring new specific knowledge was wasted because when applied, this knowledge

didn’t work as expected, thus having to start again, adding more steepness to the learning

curve, or interrupting completely the learning process.

It is interesting to note that these programmers coming from other fields most

likely make these simplifying assumptions having in mind the way those problems or

tasks are solved in their respective fields of expertise, so they make assumptions of the

type: I thought I know how to do it but I didn’t know how to make it work or it didn’t

work as expected.

6

1.1.2. What Kind of Programming Skills Do Nowadays Programmers

Learn?

As discussed above, nowadays programmers know how to design programs

according to their own intent, and when they learn programming they choose the tools

and resources that suit their skills considering this intent.

Let us now think again about two of the six general learning barriers that Ko et al

defined previously, because their definition will allow us to understand how nowadays

programmers learn programming and what kind of specific programming abilities they

develop by applying field-specific experience and knowledge into the development

process.

Ko et al explain that Design Barriers are,

“Inherent cognitive difficulties of a programming problem, separate from the

notation used to represent a solution (i.e. words, diagrams, code)” [4]

According to the authors' explanation, in their study programmers were not able

to visualize optimal solutions for several programming problems including among others:

sorting elements, programmatic communication between forms and conditional logic.

If we assume that nowadays programmers having these sorts of problems when

learning, according to the software tool they use, can solve them by using different ways

to mix objects (like forms, or sort boxes) that they can see; It is likely that instead of

having the ability to abstract the programming process and conceive an optimal way to

put it into working code, they have the skill of understanding the nature of the problem

visually first and answer to it by building their own affordance for it.

An affordance according to the definition provided by designer Don Norman is:

“A relationship between the properties of an object and the capabilities of the agent that

determine just how the object could possibly be used” [9] that for this case could become:

a syntactical view of the relationship between the options available in the tools they know

and their own capabilities (knowledge, experience) that can determine just how these

options can be used to build the specific object (program).

An example of this affordance can be found in the workflow of Visual

programmers, or those programmers who create programs (patches) in visual

programming tools like Max MSP [10], VVVV [11] or EyesWeb [12]; these

7

programmers are commonly professionals in media art, sound design, animation and

other related fields.

Patches are essentially diagrams that become programs in real time; those

diagrams are a visual syntactic representation of the program that indicates the flow of

data and connections between objects and black-boxed processes. If they were to create

for example: a registration form that communicates with another external form they

would diagram the form fields first, then connect them, and confirm the data flow inside

the fields and with the outer form visually.

 This ability of thinking programming visually is also commented by Ko et al

when comparing a program to a factory and proposing their factory methaphor oriented

to software designers, which is quite similar to what was mentioned already for visual

programmers.

“A program is a factory and the learner is a factory’s creator. Factories are made

of machines (programming interfaces) which are coordinated to systematically receive,

manipulate, and produce products (program output and behavior). In general, learners

have many tools to help create, run and inspect their factory (the programming

environment)”. [4]

Abstract operations with objects that software developers can understand like:

Pulling and pushing data, are better understood visually by the aforementioned visual

programmers.

Another significant type of learning barriers mentioned by Ko et al are the

information barriers, which are defined as:

“Properties of an environment that make it difficult to acquire information about

a program’s internal behavior (i.e. a variable value, what calls what)”. [4]

These barriers emerge when programmers guess how a program can behave but

they can’t check the hidden behavior.

Going back to Max MSP, VVVV and EyesWeb, these tools were build

considering guessing as an important part of their way to do programming, therefore,

they are able to show the flow of data managed by a program in real time and they

implement easier ways to visualize this flow.

Programmers working with these tools are able to change this data flow in real

time by, for example, interrupting the connection, inserting a box containing another

process that changes the orientation, type or movement of the flow, divide into various

8

other flows going other ways, or recirculating the flow through separate sub-patches that

will transform it. The importance of this method of doing programming is that the

definitive or correct way to re-flow the data is not defined, the programmer guesses

according to his intent in the very moment what he wants this flow to do, there is no

previous pattern for doing it correctly.

Guessing and visualizing are programming abilities acquired commonly by artists

designers and sound engineers who work with different media; several (if not most of

the) software tools targeted to these professionals contain programming platforms similar

to those mentioned as a complement of common interfaces.

Even though by using and learning programming with visual programming tools

or other tools that help with the process of understanding code programmers who are not

professional developers can create (to some extent) his own flow of data and his own

design, and the degrees of freedom these tools allow make easier the application of

opportunistic and emergent development strategies like Guessing and Visualizing; it is

clear that many standard development steps that formal programmers are taught to follow,

memorize and make intrinsic part of every development project are sacrificed in benefit

of creative power, as Loksa and Ko et al. mention:

“There are many technologies designed to teach coding in more engaging ways

(…). However, studies of these learning technologies show that rather than use them to

learn to code, most learners primarily use them to create content, possibly avoiding

coding altogether.” [13]

If we consider that coding could be considered the main task of programming,

the aforementioned argument could seem rather ironic, and this is one of the main

arguments against calling programming to what some of nowadays programmers do with

the aforementioned tools and considering their products programs but, on the other hand,

through applying opportunistic strategies by using software tools to simplify

programming, these programmers can acquire much more faster abilities that only expert

developers demonstrate.

Let us use some words from the study of LaToza et al that describe the

proficiency of expert developers regarding some programming abilities like: debugging

and generation of multiple approaches to problems, in order to explain the similarity

between these abilities and those that an end-user programmer can demonstrate.

According to LaToza et al:

9

“Experts debug faster by generating better hypothesis while studying less code

(…) Experts select from multiple strategies for accomplishing tasks, are capable of

generating multiple alternatives before making a choice”. [14]

First, programmers using emergent and opportunistic strategies like the

aforementioned guessing and visualizing can generate better hypothesis over their own

design while studying less code. Through visualizing, these programmers acquire the

ability of looking over their own programs’ design and data flow, this makes them aware

of their own flaws and capable of solving them faster.

Second: through visualizing and guessing, with the help of the appropriate tools,

programmers can solve programming tasks by using different ways to mix objects that

they can see or interact with, have the capacity of grasping the nature of the problem

visually first, to then build their own affordance of it.

Having established what are the characteristics of nowadays programmers; and

exploring how these programmers learn to program and what kind of abilities do they

develop, it is important to examine if current evaluation methods can assess these abilities.

1.1.3. Can Current Methods of Evaluation of Programming Abilities

Evaluate Nowadays Programmers’ Skills?

Traditionally, one of the most used and considered solid methods of evaluating

programming skills has been to put them to test by solving practical code challenges. It

has been also argued that it is also possible to improve an individual’s own programming

skills through challenging him with proficiency or performance tests; to this respect

Loksa et al. consider that:

“Coding involves skills that go well beyond how to use a language (…) the more

complex a programming task is, the more that both novice and expert programmers

exhibit metacognitive self-regulation behaviors”. [13]

During the last decade and, together with the popularity of online education and

the already mentioned involvement of design disciplines into computing and

programming, many coding challenge websites have appeared that argue to be capable

to evaluate individual (or grupal, even institutional) coding skills while teaching how to

code, by challenging programmers to code proficiency or practical tests by using several

methods.

10

Abundant examples of these programming skills evaluation/teaching platforms

can be found across the web, one of the most representative could be codewars.com [15],

a site that, by following a training schema that resembles those used in martial arts,

including what they call katas (the correct way to apply a technique), claims to be better

than college at teaching programming techniques covering an ample variety of

languages: from the popular JavaScript and Ruby, to the classic C and C++.

Another example is the widely known Project Euler [16], a collection of

programming problems that started in 2007 with more or less a hundred and fifty

problems and ten years later has collected more than six hundred problems.

Since its beginning, problems on this site were limited to computational

mathematics but in the last years Project Euler has extended his range to cover a more

general spectrum of programming challenges, the complexity and times each problem

was solved since its inception is indicated across the list of problems, and the more

problems an individual solve the highest his rank is. Probably one of its most prolific

contributor could be Project Nayuki [17] who boasts having acquired the 8th level by

solving more than five hundred problems from this site, in various programming

languages; all of them are published in its own site.

An additional example could be HackerRank [18], a site that besides evaluating

and teaching programming through code challenges, also serves as a recruiting site; by

using the results of code challenges and other indicators they claim to be able to match

every developer with the right job.

Many other similar sites with more or less the same structure than the

aforementioned ones can be found, among others: The Aizu Online Judge [19] which

contains problems from All Japan High school programming contest; TopCoder.com [20]

that besides programming also evaluates and teach data science and UX design skills,

and, exercism.io [21] that contains a significant collection of programming problems,

particularly for languages only used in numerical analysis and hard computing science

like: Emacs Lisp, Haskell, Julia and Fortran.

Thomas LaToza and Brad Myers report on their study regarding the importance

of understanding the strategies developers use that, not until recently, evaluation studies

for the activities of software developers started identifying goals, needs, questions and

strategies used by developers rather than focusing on testing only performance at building

11

specific programs or knowledge about programming patterns or syntaxes; LaToza and

Myers argue that,

“In coding activities, developers select among various strategies to answer the

questions necessary to complete their tasks (e.g., fix a bug, implement a feature). These

questions and hypotheses about answers form a hierarchy, as developers decompose

questions into lower-level questions that are easier to answer with the available methods

and tools”. [22]

Unfortunately, neither the proficiency tests nor the perspective presented by the

aforementioned authors seem to be applicable when talking about most of nowadays

programmers, particularly those who lack education in formal development since, as it

was already mentioned, their programming activities are identified as emergent, and the

strategies they use as unplanned and opportunistic, as Ko et al argue,

“Because end-user programmers’ designs tend to be emergent, like their

requirements, requirements and design (…) are rarely separate activities. This is

reflected in most design approaches that have been targeted at end-user programmers,

which largely aim to support evolutionary and exploratory prototyping rather than

upfront design”. [8]

If we look subjectively programming from the perspective of Ko et al and the

type of programming challenges that the aforementioned test platforms promote, tools

like: Max MSP, VVVV or EyesWeb probably don’t support upfront program design, nor

allow formal programming; therefore those programs done by using these tools may not

be fitting to good design principles, and neither will they be accepted solutions to any

code challenge proposed by sites like Project Euler or exercism.io, even if by using these

tools and applying emergent or opportunistic development strategies those challenges

can be solved.

While there is an extensive body of research related to the creation of systems to

support programming and learning activities of nowadays programmers with the

aforementioned characteristics, particularly oriented to make these activities comply with

formal development standards and patterns, there is little interest on systems to assess or

evaluate how the alternative strategies that these programmers apply by mixing their

field-specific knowledge with programming affect (positively) the way to create

programs and also the final product.

12

Considering the case of professional designers as an example, while the principles

of design are applied the same way to create products, there is still a strict difference

between software designers and other designers, and those tools created to support the

creation of end-user programs are also enforcing good behavior at creating them, as Ko

et al suggest that,

“An alternative to enforcing good behavior is to let end-users work in the way

they are used to working, but inject good design decisions into their existing practices.

One crucial difference between trained software engineers’ and end users’ approaches

to problem solving is the extent to which they can anticipate design constraints of a

solution” [8]

One major drawback with this approach is that considers the way other designers

(not software designers) design as bad behavior, this approach assumes in a general sense

that a programmer whose main background is design in other field different than software

design cannot anticipate correctly design constraints, which for the case of other

designers may be an incorrect assumption.

Noteworthy attempts to change the point of view on how non-developer

programmers can propose alternative ways to think programming problems by using

(conceptual and practical) resources from different fields can be found in many studies

like the research carried on by Mangnano, LaToza et al who analyzed the role of

designers’ type and style of whiteboard sketches in presenting alternative approaches to

program design, [23] and illustrates thoroughly how alternative design strategies and

management of resources (visual, syntactical, written) can lead to better interaction and

communication between designers and software developers at the design stage and more

effective ways to represent software design problems and their possible solutions.

There are also several studies on opportunistic programming among which stand

out those of Brandt et al.; they have described the advantages of opportunistic

programming, or:

“The activity of building non-trivial software systems with little to no upfront

planning about implementation details, and ease and speed of development are

prioritized over code robustness and maintainability” [24].

when applied in several phases of the development cycle like: design and

debugging.

13

These authors have also highlighted the integral use of web information foraging

when performing opportunistic end-user software development. In their research they

describe how non-developers learn programming techniques by searching examples

across the web, applying them to their own programs and enhancing their own

applications by looking out for more examples and interleaving them with their own

code; even if those examples are complex, those programmers are able to apply basic

principles of development like divide and conquer, sometimes without having acquired

this knowledge in any course; to this respect they argue that:

“Programmers use web tutorials for just-in-time learning, gaining high-level

conceptual knowledge when they need it. (…) [they] deliberately choose not to remember

complicated syntax. Instead, they use the Web as external memory that can be accessed

when needed” [25].

1.2. Research Objective and Stages

Considering the aforementioned issues, the main purpose of this research is to

propose a method to evaluate programming skills related with the alternative

understanding of programming generated particularly by programmers who lack formal

training in computer science and software development, may not be professional software

developers, but instead are professionals in other disciplines as discussed in chapter 1

(for the purposes of this thesis all of them will be called nowadays programmers from

now on). We call this alternative understanding a: Panoramic Understanding of

Programming (PUP) (for details regarding this term see section 3.1).

With the Programed Visual Contents Comparison (PVCC) Method, a

programmer is presented with a comparison of two or more pictures produced by

programming samples, then, he must decide which one of the programs producing each

one of these pictures is more difficult to build with programming than the other, or, if the

difficulty is similar. (for details regarding the PVCC method see section 3.3 and 3.4).

This research consists of three stages with different objectives for each one of

them: The first stage involves the application of the PVCC method on a programming

ability test performed with novice programmers belonging to different fields such as:

Graphic Design, Game Design and Information Technologies (IT). During this stage, the

validity of the PVCC method for evaluating programming ability on novice programmers

14

was verified by comparing the initial programming ability reported by programming

instructors and teachers of these groups with the results of the test.

Analysis on the results of this test showed that the PVCC method worked well to

find programming understanding abilities on the novice programmers groups tested, but

there were suggestions and discussion points proposed by their instructors and professors

that became the base for the following stage of the research.

For the second stage our objective was to extend the range of programming

abilities that the PVCC Method can evaluate. We aimed to accomplish this by adding

input data to output pictures and focus strictly on the programming processes needed to

obtain these pictures from the provided input data. The main focus of this stage is the

preparation of new test problems where two or more samples displaying both: input data

and output pictures are shown.

During this stage, we performed a test with programming professors of different

universities to verify the suitability of the new problems. The analysis of the results of

this test allowed us to determine if the new problems were appropriate or not to evaluate

programming abilities and what was lacking and or missing in each one of them.

Based on the analysis of the results and suggestions on adjustments and changes

on the new problems provided by professors on both tests, we include a chapter on what

points need to be considered when building adequate test problems for evaluating PUP

by applying the PVCC method.

The objective for the third stage is to verify if it is possible to evaluate the

programming ability of expert programmers with the PVCC method. More specifically,

we want to know if we can evaluate the programming ability related with PUP of IT

(Information Technology) experts who give an account of their own experience and

knowledge in programming.

For this stage we consolidate selected problems from previous first and second

test, corrected according to the suggestions provided by professors on how to create

adequate questions for the PVCC method. In addition to the samples comparison each

problem includes an explanation on what kind of programming techniques we are

focusing in, and a questionnaire on three topics related with the programming technique

in question:

15

1) Awareness or perceptiveness of the main programming techniques: for these

questions the person answering the problem clarifies his understanding on the

explanation provided and acknowledges if he or she would have realized about

the use of the process without reading the explanation.

2) Experience on handling similar techniques on software tools: for these questions

the person describes his previous experience with similar techniques on software

tools (not programing languages), for each problem we provide an example of

what kind of software tools could include similar techniques.

3) Experience dealing with the programming technique in question and more

complex code or algorithms that include this technique by using any

programming language.

We apply the aforementioned selection and combination of problems and

questionnaire in a new programming ability test performed with IT professionals (in

development, infrastructure and systems design and operation). The validity of the PVCC

method for evaluating programming ability in relation to these experts’ knowledge and

experience in programming techniques was verified by comparing their reported

experience and knowledge with their results at answering problems with sample

comparisons.

The analysis on the results of this test shows that the PVCC method works well

to find programming understanding abilities in relation with experience and knowledge

for the group of IT experts, with new discussion points that will become the base for

further advances on this research.

1.3. Structure of This Thesis

Having the stages of this research above mentioned in mind this report is

organized in the following way:

Chapter 2 introduces previous research related, Chapter 3 is concerned with the

Programmed Visual Contents Comparison Method, Chapter 4 addresses the verification

of the validity of the PVCC method to assess novice programmers’ programming ability,

including the analysis on the results of a test carried on with 4 groups of novice

16

programmers from different fields, and a discussion on how well this method can

evaluate the programming ability of these novice programmers.

Chapter 5 examines how we extended the range of programming abilities the

PVCC method can evaluate by creating new questions; this chapter includes the results

of a test performed with programming professors to verify the suitability of new problems.

Chapter 6 discusses how to build appropriate problems for the PVCC method

according to feedback and suggestions obtained from professors and instructors in

previous tests.

Chapter 7 presents the work performed in order to verify if the programming

ability of IT experts in relation with their knowledge and experience can be evaluated

with the PVCC method.

Finally, Chapter 8 concludes this thesis by summarizing the objective of this

research, the solid points and issues of each one of the tests performed based on their

results and how these issues were addressed according to expert’s feedback and results’

analysis; also, this chapter highlights positive feedback obtained from programming

learners and participants regarding the enjoyability of the tests, and presents further work

planned for this research.

17

2. Related Research

There has been an increasing amount of literature on assessment of programming

skills during the past two decades, which is mainly research performed with students of

computer science and software development, but thanks to an early interest on bringing

software and programming literacy to schools as a way to develop higher cognitive skills

some of these studies have been focused in assessing programming thinking and

performance in fields not related directly with computer science. Then, as a result of the

rapid changes in the context of the aforementioned external disciplines now involved in

the IT world, several studies derived from this fundamental research are focusing on the

creation of supporting tools and methods to fill the gap between professional and end-

user software development.

2.1. Fundamental Research on Evaluation of Programming Abilities

 One of the initial academic products of the aforementioned interest in bringing

programming to schools could have been the work of Roy D. Pea and D. Midian Kurland.

“A Study of the development of programming ability and thinking skills in high school

students” [26] where the authors report a year-long study with high school programing

learners on three issues: what is the impact of programming on particular mathematical

and reasoning abilities? what cognitive skills or abilities best predict programming

ability? And what do students actually understand about programming after two years of

high school study?

The work of Pea and Kurland has been frequently referenced as innovative

because of its focus on the differentiation between programming language and

programming environment, and the importance of developing skills related to both. As

they mention in their fundamental study “On the Cognitive Effects of learning Computer

Programming”.

“Expert programmers know much more than the facts of programming language

semantics and syntax. However, the rich knowledge schemas, strategies, rules, and

memory organizations that expert programmers reveal are directly taught only rarely”

[27].

18

2.2. Research Related to Alternative Programming Methods.

Using an approach similar to that proposed by Pea and Kurland, researchers on

Human-Computer Interaction have been focusing on studying the effects of the

environment(s) (or the context(s)) during programming tasks. Their results have been

reflected in the development of new programming languages, environments, and

supporting tools.

One of the most prolific projects related to the creation of different ways of doing

programming is the Natural Programming project of the Human-Computer Interaction

Institute at Carnegie Mellon University, According to Brad Myers, the most renowned

researcher on the subject:

“By ‘natural programming’ we are aiming for the language and environment to

work the way that non-programmers expect. (…) Conventional programming languages

require the programmer to make tremendous transformations from the intended tasks to

the code design. (…) We argue that if the computer language were to enable people to

express algorithms and data more like their natural expressions, the transformation

effort would be reduced” [28].

Many researchers coming from the Natural Programming Project have oriented

their research towards studying how learning barriers can develop out of the insecure

assumptions that the user-learner do when performing programming tasks on

programming systems (or the integration of language plus support software or

environment), and how to provide solutions to those barriers.

Two of the most representative works produced by the Natural Programming

project are the studies performed by Andrew J. Ko and Thomas D. LaToza, who adapted

the initial approach proposed by Pea and Kurland together with design perspectives to

propose a new design-oriented approach to the solution of programming learning

problems.

In their research, they have observed and interacted with novice and expert

designers (mostly software and graphic designers, and content creators) in order to

understand how they abstract and represent programming problems, and from there, how

they design program’ behaviors and appearance by using different programming

languages, programming systems and graphic editing software tools.

19

There have been many products from those studies: either academic and in form

of software tools and programming systems; but there are six studies considered essential

for the purposes of this research, namely:

“Designers’ Natural Descriptions of Interactive Behaviors” [3] here, Andrew Ko

et al. conduct a study with designers and programmers where they described several

programming interactive behaviors by using their own language (or way to express,

including sketches).

“How Designers Design and Program Interactive Behaviors” [29] in this study

Ko et al. perform a contextual inquiry where they asked participants (Designers and

Developers) to “walk through” their recent projects involving interactivity in order to

understand how they perform in different environments and what kind of problems they

have.

“How Software Designers Interact with Sketches at the Whiteboard” [23] Where

Thomas LaToza et al. observe the design activity of 16 professional software designers,

coding manually more than 4000 events, in order to analyze the introduction of visual

elements in software design processes, and the reasoning activity behind doing sketches

to design programs.

“Six Learning Barriers in End-User Programming Systems” [4] where Ko et al.

perform a study involving 40 non-programmers learning to use the programming system

Visual Basic.NET (that consists of a programming language and a programming

environment). This study sampled the insurmountable learning barriers or the properties

or characteristics of this programming system that the students could not understand at

all, making them to interrupt their learning process.

“On the importance of Understanding the Strategies that Developers Use” [22]

Where LaToza and Myers evaluate current ways of studying the activities and

performance of developers and analyze the importance of understanding not only what

kind of strategies are developers using to solve programming problems but when are they

using them as well.

“Program Comprehension as Fact Finding” [14] Where LaToza et al. discuss

what is the influence of experience in professional developers work, and how do

developers reason or think about the design of a program while doing coding tasks.

20

3. Proposal of a Programmed Visual Contents Comparison (PVCC)

Method to Evaluate Abilities related with a Panoramic

Understanding of Programming

Having established that the main interest of this research centers around the

identification and assessment of skills related to alternative ways of understanding

programming that nowadays programmers, non-developers but professionals in other

fields apply and that can lead to more effective solutions or allow the exploration of

alternative tools, approaches, techniques to solve programming problems as established

in previous sections. In the following pages we present our approach towards a

Programmed Visual Contents Comparison (PVCC) method to evaluate skills related with

the alternative ways they can apply programming techniques recursively based on their

knowledge and experience in programming and software tools. As explained in chapter

1 these emergent and opportunistic strategies to do programming allow them to

understand programming from a different perspective, this is what we call a Panoramic

Understanding of Programming.

3.1. What is Panoramic Understanding of Programming?

Rapid changes in the contexts where nowadays non-developer programmers

coming from different fields perform their work and in how their final products become

widely (and rapidly) used make necessary to know how each field of knowledge can

create new ways to approach software design and programming thinking when tackling

those changes instead of enforcing standardization (represented in steep learning curves)

as a response.

As it was discussed in previous sections, two major issues in early research

regarding the way nowadays programmers understand programming are, first, to

consider that their way of thinking and doing programming is ill-behaved, and second,

to assume that they cannot make programs for others or targeted to a wide audience

because those products are emergent and lack standardization.

A good number of authors has been thorough in demonstrating incompatibilities

between the way these programmers conceive solutions to programming problems and

how those problems are solved in a right way by professional software developers; but

far too little attention has been paid to the identification and evaluation of the different

21

alternative programming skills that these non-developer programmers coming from

different fields apply when conceiving solutions to programming problems, neither to

methods to evaluate these alternative skills. [2] [4] [8] [24]

As it was explained in section 1.1.2, these programmers learn and do

programming by using not only programming languages, but also software tools that

include their own programming language and can be managed through command lines

or interface buttons or menus. When they deal with the combination of programming

language and interface operation, almost always face learning barriers from both sides.

In this regard Ko et al. consider that,

“Visualization tools assume difficulties in imagining the structure of data. (…)

learners [do] not face barriers in understanding data itself, but in trying to act on data

(such as how to create or modify it)”. [4].

For example: a popular web authoring tool used by Web Content Managers and

User Interface Designers to build websites with HTML, CSS and JavaScript among other

programming and markup languages is Adobe Muse [30]. This tool has several snippets

and pre-made objects that can be selected from an interface, dragged into a visible

template of a web page, and will supposedly work at execution time. There are many

ways to act on data in these software tools: commands and tricks to make appear specific

pieces of code, or to control diverse processes that usually require a long sequence of

mouse clicks, searching around the tool menus or the interface buttons at the same time

that the code can be erased, rewritten and changed.

Students learning programming this way will consequently solve programming

problems recursively, by trial and error, by pulling in and taking out those code snippets

and pre-made objects, by possibly trying out a few lines of code found externally; in the

end by sketching with code [29] [7].

Sketching with code allows individuals not belonging to fields related to software

design or programming to adapt their knowledge to be used in programming; in other

words, they adapt what they can use of their field-specific knowledge and experience into

designing a program, therefore placing themselves in a more objective level where they

can contemplate what kind of sources they have, what can they pull from those sources

and how to combine those sources to achieve what they want; generating then a

panoramic kind of understanding of programming merged with design concepts [3] [29]

[23].

22

In this sense, a nowadays programmer non-formally educated in computer

science or software development who has a Panoramic Understanding of Programming

combines diverse skills for physical appropriation of objects not related to programming

or software design (for instance: drawing, diagramming, getting to know characteristics

like: size, color, form, texture) into a programming environment that behaves as a stage

where he can explore the relation between objects (things), and actions [7]. The product

of this exploration then, is a program or a sketch.

This ability of looking at a (programming, or software development) problem in

a panoramic way is becoming more and more common among software designers and

engineers. Nicolas Mangano et al state regarding the ability of Sketching as this

manifestation of a panoramic or transversal thinking in software design:

“Sketches play an important role in any design process. They serve as an

extension of a designer’s own memory (…), help them reason through complex tasks (…),

and support them in picturing and evolving hypothetical ideas and abstract concepts (…).

Unsurprisingly, sketches play an important role in the software design process as well

(…). The design work of software designers at the whiteboard has been examined from

a range of perspectives, including idea generation (…), design notations (…), decision

making (…), and collaboration.”. [23]

3.2. What Programming Skills do we Want to Evaluate?

There is a thinking shift in programmers who make Sketches when compared with

programmers doing formal, development-oriented programming. For a formal

programmer the context is different when using a programming language in a text editor,

there is little holding up this programmers’ perception of things or objects in the way

explained in previous paragraphs, but instead, other skills become relevant, for example:

code reading, syntax mastering, errors detecting, etc.

Meanwhile, programmers doing sketches having a Panoramic Understanding of

Programming, design programs by thinking first on terms of the resources needed to

build (the blocks), from where can they obtain them, and how to connect them to work,

instead of pondering issues like: debugging, optimization or building and handling

specific algorithms, that would instead become critical aspects for a trained software

developer.

23

Having the aforementioned aspects in mind, it is our main interest to evaluate the

capacity of programmers to do this thinking shift, in other words, we want to evaluate the

skills of programmers, not only coming from other fields but also software development

learners to adapt and combine what they can use of his field-specific knowledge and

experience on other software tools and resources when dealing with particular

programming techniques.

Ozenc et al. refer to the lack of visual handlers in code as the immateriality of

software, they mention that:

“Most designers explore materials in a studio or workshop where they cut, bend,

and play with a material to develop tacit knowledge of what is possible. However,

designers cannot easily play with the material of software making the development of

tacit knowledge much more difficult”. [7].

Programmers who treat programs as sketches bring materiality to code;

professionals and students of Web Programming, User Interface Design and other related

fields constantly deal with those both material and immaterial worlds, and learn the

fundamentals of both; but since the gap between these two worlds is considerably large,

they need to apply their experience and knowledge in their different fields to fill this

breach by: using assets and resources from both the graphic software tools or the code

sides, identifying patterns inside code that could be repeated, treating snippets and pieces

of external code as blocks that allow tweaking or adjusting, getting to know the internal

structure of pre-made objects (e.g. interface components) to look for parts to copy-paste,

or searching programming libraries to integrate; [22] these, among other strategies to

solve programming problems by using and understanding programming techniques in a

panoramic way are in the scope of our interest.

It has been commonly argued that learning how to program brings changes in

thought, Pea and Kurland provide a list with seven fundamental changes in thinking

abilities that learning to program should bring [27]. Within this list we can find three

items closely related with the aforementioned thinking shift that nowadays programmers

have when understanding programming in a panoramic way. First, as noted by Pea and

Kurland, learn to program should bring

“Greater facility with the art of heuristics [or] explicit approaches to problems

useful for solving problems in any domain such as planning, finding a related problem,

solving the problems by decomposing it into parts, etc.”. [27]

24

Since a person who has a Panoramic Understanding of Programming solves

programming problems by putting together a program with (code) parts obtained from

different sources, plans a program by handling interfaces, probably synthesizing its

design in diagrams [23] or drawing, as we explained, it can be argued that this person

applies the aforementioned approaches to problem solving explained by Pea and Kurland

to a certain extent.

The authors also mention that learning programming should make a programming

student familiar with:

“The general idea that one can invent small procedures as building blocks for

gradually constructing solutions to large problems”. [27]

And they also mention that learning programming should provide:

“Generally enhanced ‘self-consciousness and literacy about the process of

solving problems’ (due to the practice of discussing the process of the problem solving

in programming by means of the language of programming concepts)”. [27]

As explained in the previous section, programmers who have a panoramic

understanding of programming solve programming problems Recursively; or by

borrowing the terms used by Pea and Kurland, those individuals are capable of discussing

about programming problems not through programming concepts but by bringing his

particular knowledge on how to solve similar problems in his field (with its own

concepts) into programming.

This alternative way of thinking and doing programming entails a different set of

skills that is closely related to those basic or formal programming skills but are

apprehended and manifested in a distinctive way particular to each individual, this

apprehension of programming concepts, techniques, tools depends on the previous

knowledge and experience that this learner as an end-user programmer belonging to a

different field possess, as Pea and Kurland mention:

“‘Programming’ is not a unitary skill. Like reading, it is comprised of a large

number of abilities that interrelate with the organization of the learner’s knowledge base,

memory and processing capacities, repertoire of comprehension strategies, and general

problem-solving abilities such as comprehension monitoring, inferencing, and

hypothesis generation. (…) Skilled programming, like reading, is complex and context-

dependent.”. [27]

25

3.3. How to Evaluate Skills Related with a Panoramic Understanding of

Programming?

Considering that end-user programmers who treat programs as sketches solve

design problems with programming; when they deal with code in the same way they

approach to design, they would most likely lack affordance. In other words, because of

the aforementioned immateriality of software, they cannot receive from a piece of code

the similar talking-back or feedback than they would expect when, for example, they

draw with a pencil on paper; as a consequence of this they have to rely heavily on what

they can see (Visualizing) and what they can know about how the program is executing

(Guessing) to change it, as mentioned in section 1.2.2.

Ozenc et.al argue that designers engage in a conversation with materials when

they conceive new ideas, particularly:

“As designers conceive of a new idea or refine the details of an existing idea, the

materials they use begin to “talk back” revealing new opportunities and challenges. For

example, when sketching with a pencil on paper, designers can explore a product’s

physical form, reacting as each line is added to the page”. [7]

Having in mind that a key aspect of having a panoramic understanding of a

programming technique is to have affordance of it by visualizing its output or result and

guessing how it can become if it’s data flow is changed while it is being programmed,

we started wondering about the possibility of a nowadays programmer to figure out a

programming technique by only visualizing its effects and guessing how is it supposedly

behaving.

 If this programmer is only shown the output of a previously unknown already

completed programming sample; could he be able to build the affordance, starting from

what he sees on screen, to guess based on his particular knowledge and experience in

programming what kind of programming technique is modifying the elements of the

program?, and besides, is this programmer able to say based in his knowledge and

experience with a particular programming technique if two programming samples have

or not the same technique used in similar or different ways?, and more important, if this

person is capable of building the affordance, does this mean that he understands

panoramically that programming technique?

26

3.3.1. Why Including Programmed Visual Contents?

As mentioned in section 1.1.2, It is probable that those programmers coming from

other fields that manifest having design learning barriers when learning formal

programming, instead of having the ability to abstract the problem and conceive an

optimal way to put it into working code like formal programmers do, they have the skill

of understanding the nature of the problem visually first and answer to it by building their

own affordance for it.

When facing the creation of new programs, these programmers need to have any

sort of previous design: a draft, a script, a (moving) picture to guess what are the

resources they would need to build the program and how to configure it. By following

this logic, if a programmer is shown the final output of a program he will try to do the

same thinking process, therefore guessing what kind of techniques, and tools he would

use to build that specific programming sample.

For example, Fig.1 shows the output of a programming sample that uses the

programming technique called Iteration:

Fig. 1 Output of a programming sample containing the Iteration technique

Even without understanding the theoretical particularities or the standard patterns

through which the technique Iteration can be applied in formal programming; not even

knowing the name of the technique, by seeing this picture a programmer whose

programming experience is based in software tools may be able to build a program

27

producing a similar output in short time by sketching in any of the software tools or

programming platforms he would be able to manage.

In this sense, it is possible to evaluate if an end-user programmer would have a

panoramic understanding of the technique based on his experience and knowledge of

software tools, without knowing about iteration itself as a topic of formal programming.

3.3.2. Why Comparing Programmed Visual Contents?

Even though nowadays programmers coming from different fields are capable of

building programs by only visualizing or having a visual draft or picture of what should

be the final result, and most of the times without knowing the particularities of the

programming techniques used as it was mentioned in the previous section, they could

have issues at knowing where is a programming technique implemented in different

programs; in other words, they may have issues at identifying what is the relevance or

importance of a programming technique when used in two different programs, as Myers

et al reported in their study regarding designers’ issues at assigning programmed

behavior to their designs:

“Designers do not have a final conception of the behavior before they start,

However, whereas iterating on the look of the interface can be easily done by sketching,

designers felt it difficult to iterate on the behavior. (…) authoring tools make it difficult

(…) to compare two implementations of behaviors side-by-side”. [29]

 The most likely cause of this difficulty may be that, as it was discussed in section

1.1.2, since the program design that programmers non-developers who use software tools

instead of programming languages perform is in most of the cases emergent and

opportunistic, it is carried on at the very moment of programming by guessing what kind

of function, black-boxed piece of code or tool works to obtain the desired effect; this

guessing is only possible if there is some way to know what are the effects of specific

changes in real time; for example: visual programming platforms like the mentioned in

section 1.1.2: VVVV [11], EyesWeb [12] and Max MSP [10], all of them have internal

tools that allow to see changes in the data flow in real time, without these tools the

programmer could not be able to build the affordance needed.

If a programmer like these is shown two output pictures of already finished

programming samples and he is said that those two pictures contain the same

programming technique only with differences on implementation (i.e. other techniques

28

are involved) or it’s used in distinct parts inside the program, it is almost certain that this

programmer would try to start building an affordance of the programs from the pictures

and then guess the behavior of each one of them; when doing that he will try to compare

his own models of programs to see what is the common technique, where the technique

is applied and what is the importance of the use of this technique for each program. The

result of this thinking process will depend on his knowledge and experience with the

specific programming technique.

For example, Fig. 2 shows a problem where two samples built by using the same

code (an iteration process) changing only its parameters are compared; there is no more

difficult implementation of the programming technique for neither of them, both samples

are similar.

Fig. 2 Sample comparison including the Iteration technique

If we ask programmers of different experience and knowledge levels on different

software tools which one of the programming samples in Fig. 2 is more difficult to build

with programming, we would expect those who have knowledge and experience on how

the iteration process is applied on both samples to say that these samples are similar,

since they would surely know that both samples are built by using the same technique

only changing its parameters.

In the other hand, those programmers choosing one sample over the other as their

answer would likely be unaware of the specific programming technique used to build

both samples (iteration) and may not be capable of guessing correctly what is their

behavior; they would probably give more importance to screen issues (e.g. scale, distance

between objects) than to the programming process producing the difference on the output.

This way it is possible to identify which of these programmers could have a more

complete understanding of a programming technique which, again, may not be based in

29

theoretical knowledge nor in formal programming standards but on their own knowledge

and experience.

3.4. The Programmed Visual Contents Comparison Method (PVCC).

Seeing that it is possible to evaluate the capacity of an end-user programmer to

build the affordance of programs he doesn’t know only by looking at its output or final

product, therefore being able to guess if a programming technique is being used and to

some point know how is it being used, we set out to propose a Programmed Visual

Contents Comparison Method (PVCC) based on the comparison of two or more displayed

images, animations or interactive graphics produced by programming samples; for our

purposes we call this comparison a problem.

The programmer answering to this problem is asked to decide which one of the

samples is more difficult to build with programming than the other, or, if the difficulty is

similar for both of them. The correct answer for a problem is defined by the most difficult

programming technique in both samples; in simple terms, the programmer needs to guess

the programming technique from the visual samples to provide the right answer to each

problem.

The programmer answering these problems can use any experience and

knowledge he could have on programming, regardless of the (software) tools or

programming languages he could know or have experienced. The following is an

example of the type of problems proposed:

Fig. 3 shows a problem where the sample marked with (1) uses a technique called

Hidden Line Removal to draw circles that appear to be superimposed, while the program

of the sample marked with (2) doesn’t use this technique, therefore the correct answer

for this problem was decided to be: the sample marked with (1).

Fig. 3 Problem including the Hidden Line Removal technique

30

Those individuals with programming knowledge enough to know how difficult it

is to draw circles the way they are displayed on the sample marked with (1) without using

any libraries, or by using older programming languages (closer to machine language),

would surely understand the difficulty of the Hidden Line Removal process used on the

sample marked with (1).

By contrast, those individuals who are used to program with simplified

programming languages, or by using libraries, would probably answer that the difficulty

is similar since with those languages both samples can be produced by using the same

code changing only its parameters. These subjects are surely unaware of what kind of

algorithm is the Hidden Line Removal and how it is applied.

3.4.1. Problems’ Degree of Difficulty

Samples for each problem were build considering different programming

techniques of different levels belonging to different topics within programming, chosen

from different sources like programming books and tutorials [31] [32] [33] [34].

We call technique to any programming process or algorithm that can be applied

either by directly writing its source code, or also by using a simplified black-boxed

programming function, or by clicking a button in an interface option or following a series

of clicks and cursor movements inside a software tool; that produces a result affecting

the final behavior of the product of these actions, that is: a program.

These techniques can belong to basic or advanced levels inside the whole set of

techniques or patterns in programming, but we classified those used to build our samples

within four categories, namely: basic programming, data processing (reading-writing),

data display processes (drawing, coloring, movement) and events (triggered by keyboard

or mouse input).

We designed the whole set of problems to have two kinds of difficulty for each

one: first, the difficulty of associating images with working programs; to overcome this

difficulty, we consider that the subject answering the problems most likely needs to:

• Understand what is each sample doing (how is it moving? what’s happening?).

• Identify what elements each program is using to do what it is doing (if there is a

movement on the sample, how is it structured on the program?).

31

• Understand how the objects the program is using are working together to give

that (visual) result (for example: how a circle is connected with the movement it

is doing).

Second, to identify the most difficult programming process within those

composing the program; to overcome this difficulty we think that the student probably

needs to:

• Think about, and/or recall from his own knowledge and/or experience:

o What kind of programming technique can be used to achieve this

movement or effect?

o What is the main effect of each of those techniques? (The subject probably

asks himself: if we apply that technique to the elements of each sample,

what is the result? And, is that result coherent with some of what is

currently happening on the pictures?).

o How many programming techniques he can apply into the objects

appearing on the screen, and how many ways of application does they

have (alternative uses).

• Identify which is the most difficult programming technique for each sample (what

is the more relevant programming technique?).

• Compare both main concepts, for both samples.

Following this line of thought, an initial set of sixteen problems where two

samples were compared was divided into three types: first, problems having a difficult

image-program association, needing more knowledge on images and/or graphic software

tools management (Type A); second, problems having an easily identifiable image-

program association but needing a deeper knowledge on programming to perform the

comparison between programs and the identification of their most difficult process (Type

B); and third, problems with both characteristics, where both kinds of knowledge need

to be applied (Type C).

32

3.4.2. Programmed Visual Contents Comparison Testing System

Based on the proposed method we built a web testing system or PVCC test system

where the first set of problems was displayed. This system was made by using current

web standards and problem’ contents were developed initially by using the java-based

learning-oriented programming language Processing, and ported to web by using

Processing.js.

Processing was selected among other programming languages because, as their

creators themselves advertise it,

“Processing is a flexible software sketchbook and a language for learning how

to code within the context of visual arts. [underline included by the author of this thesis]”.

[35]

We considered an important part of the system to be able to show the code of

each programming sample independently so the person who wants to copy, explore and

change it could do it by using processing directly without having to deal with anything

related to the combination of JavaScript and HTML, besides, even when Processing has

a large amount of simplified functions, it is a learning oriented language so every

technique and process done in this language can be applied in similar ways with other

programming languages and software tools, at least in a fundamental level. On the other

hand, the interface and database were developed using HTML/CSS, JavaScript, MySQL

and PHP.

Each problem was built to be straightforwardly answered, having the same main

question: “If you were to make any of the previously displayed samples by using

programming, which one do you think is the most difficult?” and four answer options:

sample 1, sample 2, Both have similar difficulty and I don’t know. During the test the

person must choose only one answer, then click on a submit button to store it on a

database and pass to the next problem. Fig. 4 shows an example of how a problem is seen

on screen.

The test was thought to be carried on sequentially (one problem after another)

and in one try, even when the initial time needed to answer one problem was considered

to be 30 sec. to 1 min, this time was extended to 3 minutes, because of later additions to

each question like: Data Input to be considered when answering data processing related

problems (to be introduced in chapter 5 of this thesis), and questions regarding experience

33

and knowledge on each one of the techniques asked (to be introduced in Chapter 7 of this

thesis). Table I shows the displaying order of the test problems, and the programming

concept of each numbered problem.

Fig. 4 Example of a problem on the Web Testing System

Table I: Initial set of problems Including Their Type and Most Difficult Programming Technique

Order Type Most Difficult Programming Technique

#1 A Bezier Line

#2 B Nested Iteration

#3 A Coordinates Storage and Recalling

#4 A Erasing and re-drawing

#5 C Boundary detection

#6 C Easing

#7 B Timer

#8 C Area delimitation

#9 B New position according to previous position

#10 C Change through time

#11 C Animation using trigonometry

#12 A Picture Pixel Management

#13 C Recursion

#14 B Lists

#15 B Empty Area Recognition

#16 B Hidden Line Removal

In addition, at the end of the test, a report with user’s answers per problem

compared with their respective correct answers is displayed; and following this, the test

subject has the opportunity to answer a brief questionnaire about the whole test

experience.

34

4. Verification of PVCC Method’s Potential to Evaluate the

Programming Ability of Novice Programmers.

What follows is an account of the initial approach to verify the possibility of

evaluating programming ability with the PVCC method. this approach involved

performing a test by using the PVCC system with novice programmers belonging to

different fields of study.

The analysis of this test’s results and feedback were presented in different

conferences in Japan [36] [37] and United States [38], and the feedback obtained from

these conferences was considered for further enhancements that will be introduced in

subsequent chapters of this report.

4.1. Objective and Context of This Chapter

Our objective for this test is to establish if the programming ability of novice

programmers coming from different fields, namely: Graphic Design, Game Software

Design and IT can be evaluated with the PVCC method.

This test was initially thought to be carried on only with novice programmers

belonging to one field having nothing to do with IT and software development together

with software developers but, ultimately, we considered appropriate to include novice

programmers from careers learning subjects from software development and 3d and

graphic design at the same time because the data obtained from their test results could

shed some light on what is the difference between a professional from other field who

resorts to programming because of a need and a professional from the same field that is

at the same time educated as a programmer.

Having this in mind, the test was taken by novice programmers coming from

Graphic Design where they apply programming in some cases to create interactive

behaviors or animation as a part of a much larger task or work; Game Designers who

apply both programming at a development level as well as graphic design, and naturally,

novice software developers and programmers.

35

4.2. Procedures to verify the PVCC Method’s Potential to Evaluate

Programming Skills of Novice Programmers

As discussed in the previous chapter; it is important to assume that not every

novice programmer will have the same experience on the same programming languages

or tools, neither that they will be all inexperienced or totally experienced on programming,

even though some of these novice programmers have never written or even copy pasted

a line of code, as explained earlier, they could have experienced the same techniques by

other ways already mentioned. The following are the procedures we carry out to verify

the potential of the PVCC method to evaluate programming ability of novice developers

from these fields.

4.2.1. Participants’ Characteristics and Previous Programming Ability

4 groups of novice programmers currently studying programming in the fields of

Graphic Design, Game Development and IT and Software Development were recruited

to perform a test based on the PVCC method by using the previously introduced testing

system including the proposed initial set of problems.

The programming ability of these groups was reported by their programming

professors before performing the test. We gathered them together to share their results at

evaluating their student groups’ programming performance and to make them know in

detail what the experiment consists of and how their report was to be utilized.

The performance reported by these programming teachers (from now on: the

report) was compared with the results of our experiment. These results fall under three

categories, namely: Problems matching our assumption, Problems mismatching our

assumption but having a significant difference, and Problems mismatching our

assumption and having a small or no significant difference.

According to the report, the groups differentiated each other by their field of study

and curriculum related with programming and/or graphic software tools in the following

way:

The first group: Graphic Design (GD) had a curriculum that included lessons

where Graphic Software Tools for Photo Edition, Illustration, Desktop Publishing and

3D Modeling were taught together with Web Coding and Web Design. This group

studied only programming languages oriented to Web (HTML, CSS, JavaScript, etc.).

36

The second group: Game Software Development (GS) studied several

programming languages such as: C (and its derivatives: C++ and C#) and Java besides

of Game Design related subjects such as: Graphic Design Principles, Character Design,

3D Modeling and Animation. Additionally, their curriculum included subjects on

Application Programming Interfaces such as DirectX and OpenGL, Web related

languages, Algorithm Theory and Mathematics. Graphic Software Tools were used

mostly on Game Design classes.

The third group: IT and Software Development (IT) had a curriculum including

subjects on programming languages such as: C, Java and Assembler, that were studied

together with Algorithm Theory, Web back-end programming and networking. This

group did not take lessons about graphic software tools or visual/graphic related

programming languages.

This report indicated also a subdivision in levels of knowledge for IT. The group

was divided into two sub-groups: IT-1 and IT-2. It also pointed out that IT-2 have

received preparation for IT tests such as the JITEE (Japan Information Technology

Engineers Examination) therefore, they may be able to demonstrate more knowledge on

programming than IT-1.

4.2.2. Assumption Based on Reported Programming Ability

Based on the report, and using the problem types we specified previously for the

method on section 3.3.2, our assumption on the results for the performed test is

summarized in Table II.

Table II: Assumption on Answers to the Test Problems per Group per Type According to the

Programming Ability Reported

Type A Type B Type C

GD n r r

GS n n n

IT-1 and IT-2 r n r

n Group with high score

r Group with low score

Conventions

37

According to the report, Type A problems are to be best answered by GD and GS,

this could be attributed to GD’s knowledge on Images Management and/or Graphic

Software tools; IT’s knowledge on this area is little to none.

Type B problems are to be best answered by IT and GS, probably due to their

deeper foundations on programming; they are capable of managing programming

concepts from their base, while GD manages those concepts only through Graphic Tools,

possibly having only a technical base on what kind of programming structures are

included or used, and lacking training on programming reasoning and deeper conceptual

foundations.

Finally, Type C problems are to be best answered by GS, since this is the only

group who learn both Programming and Graphic Tools at the same time.

For IT-1 and IT-2, even when both are supposed to answer better the same type

of problems (Type B), the report mentions that IT-2 has a higher knowledge in

programming than IT-1 so we expected IT-2 to have a better correct answers average

than IT-1.

4.2.3. Results and Comparison to Find Significant Problems

The following is a description of how significant problems were found by

comparing the difference on correct answers’ percentage between groups. The amount

of answers per option per problem was compared with the correct answer for each

problem to obtain the amount of correct answers per group for each problem and for the

whole test per student. Being unequal groups, we had to establish the percentage of

correct answers per problem for each one of the groups, Table III shows the percentage

of the total of correct answers and average for each problem per group, highlighting

problems with high and low scores.

By using the correct answers percentages, we could establish difference per

problems between the four groups by comparing: GD with IT-1 and IT-2; GD with GS,

GS with IT-1 and IT-2 and the two IT subgroups.

Having the differences on the correct answers for each group we could see which

problems had a significant difference; considering these as representative we performed

an F-test of equality of variances and a two tailed T-test to confirm the validity of the

difference for each representative problem.

38

Table III: Percentage of Correct Answers per Problem Highlighting Those with High and Low Scores per

Group

#1 #3 #4 #12 #2 #7 #9 #14 #15 #16 #5 #6 #8 #10 #11 #13

GD 88 72 44 66 31 44 72 63 41 25 88 81 34 19 16 53 52

GS 90 64 31 69 74 54 67 72 44 51 62 85 41 5 26 84 57

IT - 1 63 56 37 39 66 41 66 49 27 41 71 80 37 20 20 63 48

IT - 2 76 56 56 36 80 28 72 68 60 40 64 80 48 20 24 84 56

Conventions High Score Low Score

Type A Type B Type C
Avg

Table IV shows the difference on correct answers’ percentage between the groups

highlighting the problems having a significant difference for, at least one of the

performed comparisons, those are our representative problems.

Table IV: Significant Difference on Percentage of Correct Answers Verified Through T-Test per Group

Comparison per Problem, Highlighting Representative Problems

#1 #3 #4 #12 #2 #7 #9 #14 #15 #16 #5 #6 #8 #10 #11 #13

Difference GD vs IT-1 8 r r 8 8 r r r r 8 8 r r r r r

Difference GS vs IT-1 8 r r 8 r r r 8 r r r r r 8 r 8

Difference GD vs GS r r r r 8 r r r r 8 8 r r 8 r 8

Difference GD vs IT-2 r r r 8 8 r r r r r 8 r r r r 8

Difference GS vs IT-2 r r 8 8 r 8 r r r r r r r r r r

Difference IT-1 vs IT-2 r r r r r r r r 8 r r r r r r r

Conventions

Type A Type B Type C

Questions with

Significant Difference

on many comparisons

Questions with

Significant Difference

on one comparision

88 r
Questions without

Significant

Difference

The result for each representative problem belonging to each one of the types

previously determined, was compared with our assumption; Table V shows which

problems’ result matched our assumption and which ones had other outcomes. Each

problem has its own particularities regarding measurability and optimization that will be

discussed in the following section.

4.3. How Well Can the PVCC Method Evaluate Novices’ Programming

Ability?

The following part will discuss three types of representative problems (see Table

V): those whose results matched our assumption, those not matching our assumption but

considered useful to assess programming ability and those having only one significant

39

difference and whose results mismatched our assumption; additionally, we consider

necessary to do some remarks about non-representative problems.

Table V: Representative Problems Matching and Mismatching our Assumption

#1 #4 #12 #2 #7 #14 #15 #16 #5 #10 #13

GD n n n r n n n r n n r

GS n r n n n n n n r r n

IT-1 r r r n n r r n n n r

IT-2 r n r n r n n n r n n

n Group with high score r Group with low score

n r Result mismatching the assumption

Type A Type B Type C

Conventions

4.3.1. Problems whose Results Match the Assumption

As shown on Table V, results for representative problems #1, #2, #12 and #16

matched our assumption, these problems are considered valid to assess programming

ability. To this respect, we want to quote problems #2 and #16, used as examples in

section 2.1.

Table VI: Nested Iteration (#2) Problem - Answers for Each Group (Percentage)

Sample 1 Similar Sample 2
GD 25 31 44
GS 3 74 23
IT-1 12 66 22
IT-2 12 80 8

Table VI shows the percentage of student answers per group to problem #2, which

concept is: Nested Iteration (see Fig. 2) and belongs to Type B.

As stated in section 2.1, the correct answer for this problem is the difficulty is

similar, which was selected by a 31% of GD, a 74% of GS, a 66% of IT-1 and an 80%

of IT-2. These students found out that, using Nested Iteration both the first and the second

sample can be performed with the same difficulty; in the other hand the possible lack of

programming ability may have influenced the low percentage of GD.

It is worth mentioning that a 44% of GD a 23% of GS and a 22% of IT-1 selected

sample #2 as the right answer, while a 25% on GD and a 12% on both IT-1 and IT-2

selected sample #1. These students probably considered the difficulty of both samples

based more on screen presentation issues (scale, distance between objects, visual

impression) than on how they were programmed. For instance: some GD students could

40

have thought the second sample was the most difficult because it had more squares than

the first one, then involving more steps if performed using a software tool; or, for the first

sample’s case, some students probably thought that the squares’ size or scale needed to

be calculated.

Table VII: Hidden Line Removal (#16) Problem – Answers for Each Group (Percentage)

Sample 1 Similar Sample 2
GD 25 22 53
GS 51 15 34
IT-1 41 25 34
IT-2 40 24 36

Table VII shows the percentage of answers that the four groups gave to problem

#16 which concept is Hidden Line Removal (See Fig. 3) and belongs to Type B.

As stated in section 2.1 the correct answer for this problem is Sample #1 and a

25% of GD, a 51% of GS, a 41% of IT-1 and a 40% of IT-2 selected this answer. These

students found out that the first sample contained the Hidden Line Removal concept. The

programming ability of GD almost certainly wasn’t enough for the majority to figure out

the difference between the two samples, neither to identify the concept.

We may assume that those students who answered the difficulty is similar, namely,

a 22% of GD, a 15% of GS, a 22% of IT-1 and a 24% of IT-2, probably have a

programming ability limited only to simplified programming languages, therefore not

familiar with the Hidden Line Removal algorithm; they were able to associate both

samples only to the simplified functions used to do these samples on those languages.

For example: by using Visual Languages like Processing, through a for loop and the

ellipse and fill functions both samples can be done and modified in their size, color and

filling.

4.3.2. Problems whose Results Mismatch the Assumption Useful to

Evaluate Programming Ability

By looking at Tables IV and V we can see that problems #5, #10 and #13 have

more than one significant differences on the comparisons between groups, but they didn’t

match our assumption.

The results for problems #5 and #13 were discussed and analyzed together with

the group of teachers in charge of the four groups to establish to what extent they could

be useful. Since problem #10 was one of the three problems obtaining the lowest score

41

(see Table III) it is more appropriate to include it in the group of non-representative

problems instead.

Fig. 5 Appearance of: Boundary Detection (#5) problem

Problem #5, Boundary Detection (See Fig. 5) belongs to Type C. For the first

sample, if the mouse pointer hovers over the circle, the background turns black; for the

second sample, if the moving circle (replacing the mouse pointer) touches the border of

the static circle the background turns black.

Table VIII: Boundary Detection (#5) Problem - Answers for Each Group (Percentage)

Sample 1 Similar Sample 2
GD 4 8 88
GS 9 29 62
IT-1 12 17 71
IT-2 12 24 64

We initially considered the correct answer for this problem to be Sample 2 and

an 88% of GD, a 62% of GS, a 71% of IT-1 and a 64% of IT-2 guessed our assumption,

but in fact, the second sample has other ways to be programmed therefor other ways to

be correctly answered. For example: the answer would change to the difficulty is similar

if we consider that the second sample could contain a bigger invisible circle placed

around the centered one, so when the moving circle intersects it, the background turns

black just when the borders of the visible circles apparently touch each other.

This issue makes the problem not valid to assess Panoramic Understanding of

Programming related with the Boundary detection concept but, looking at the results

from students answering the difficulty is similar, namely: 8% of GD, 29% of GS, 17%of

IT-1 and 24% of IT-2 we can see that a significant percentage of GS and IT-2 students

somehow perceived the similarity between the two samples; this aspect led us to think

42

that they probably went deeper to think about the difficulty of the techniques used on

both samples to compare them.

Having this into account, even when this sample resulted inappropriate to

evaluate Panoramic Understanding of Programming related with Boundary Detection,

we considered it useful to identify student’s potential skills to understand relevant

techniques used in a programming sample.

Fig. 6 Appearance of: Recursion and Repetition (#13) problem

Problem #13, Recursion and Repetition (see Fig. 6) belongs to Type C, the first

sample changes according to a recursive algorithm when the user clicks over; the second

sample draws two crossing lines in the position where the click is performed.

The correct answer for this problem was Sample #1, GS and IT-2 obtained a

comparatively high score of 84% both, while IT-1 obtained a 63% and GD had a 53%.

IT-1 and GD had almost the same percentage of people selecting sample #2, and

little difference between the percentage of those selecting the difficulty is similar; while

for GD this kind of results can be supposed, for IT-1 this could be a sign of their ability

level difference with IT-2, some students on IT-1 are probably lacking the ability to

identify the common pattern of a recursive algorithm or haven’t studied it yet.

Table IX: Recursion and Repetition (#13) Problem - Answers for Each Group (Percentage)

Sample 1 Similar Sample 2
GD 53 16 31
GS 84 5 11
IT-1 63 10 27
IT-2 84 6 10

Furthermore, each time the student clicks on any of the samples, the picture

changes; in other words, the number and position of clicks affects the visual impression

of each sample, this could have affected the answer too.

43

4.3.3. Problems whose Results Mismatch the Assumption Useless to

Evaluate Programming Ability

Problems #4, #7, #14 and #15 had only one significant difference and their results

didn’t match our assumption; these problems are not useful to evaluate programming

ability.

Within this set, problems #7, #14 and #15 can be affected by clicks or mouse

movement; this behavior was programmed together with the code containing the

techniques to be evaluated, and in some cases, it was more difficult that those techniques;

additionally, these problems were lacking enough instructions or guidance about how to

operate them. The following example will provide details regarding this issue.

Fig. 7 Appearance of: Timer (#7) problem

Problem #7, Timer (See Fig. 7) belongs to Type B, the first sample draws a point

on mouse coordinates every frame; the second sample draws a point each 400

milliseconds only when the mouse almost stops or is really slow.

Table X: Timer (#7) Problem - Answers for Each Group (Percentage)

Sample 1 Similar Sample 2
GD 20 36 44
GS 15 31 54
IT-1 39 20 41
IT-2 18 54 28

The correct answer for this problem was Sample #2, and even when the 44% of

GD, the 54% of GS and the 41% of IT-1 guessed this answer, but the difference in the

percentage of answers between the groups is minimal. Probably the lack of appropriate

instructions and the fact that the response of this sample depends on the slow movement

of the mouse, made some students think the answer was different.

44

An additional issue to have into account with this problem is that, even when we

implemented the second sample to have a timer (and to be the most difficult), the first

one also has a timer: the frame rate, and the mouse makes evident from the moment that

it enters the sample’s area that this frame rate works as a timer, so that could have been

confusing as well.

4.3.4. Non-representative Problems

Table IV indicates that problems #3, #6, #8, #9 and #11 didn’t have any

significant difference on the comparison of correct answers between the four groups,

these problems are not valid to evaluate programming ability. Additionally, as it was

mentioned previously, problem #10 belongs to this group too.

For problems #3, #6, #9 the four groups had high percentages of correct answers

(see Table III); we think these problems compared samples based on difficult

programming processes with samples evidently easier or too basic; in other words, the

difficulty level difference of the compared samples for these problems was too obvious.

On the other hand, problems #8, #10 and #11 had low percentages of correct

answers (see Table III); these problems were ill-made, most likely because they

contained additional concepts on the same level or more difficult than those evaluated,

or the programming samples were too similar.

4.4. Conclusion of This Chapter

By performing a test using an initial set of problems based on the PVCC method

targeted to novice programming learners and analyzing its results we were able to

confirm that the programming skills evaluated with the PVCC method are related to a

Panoramic Understanding of Programming.

We were also able to understand that the level and difference on knowledge and

experience in programming of the students, the difficulty degree of each problem, and

how the programming samples are paired may define how well this method can evaluate

programming skills related to a Panoramic Understanding of Programming.

In the same way, we were able to find other kinds of abilities used by the

individuals answering the proposed problems; those skills are also related with a

Panoramic Understanding of Programming even though they were different to those

initially considered.

45

One source of weakness in this test which could have affected the analysis

performed was that most of the programming samples used for many of the problems

were ill-made, or misleading, mainly because they involved too many programming

techniques with the same relevance or importance, this issue affected the identification

of the difficulty for the problems containing them. However, these programming samples

may be corrected and paired again to make problems useful to evaluate programming

skills related to a Panoramic Understanding of Programming.

46

5. Extending the Range of Programming Skills Assessable by The

PVCC Method

In this chapter we move on to describe our approach to extend the range of

programming abilities that can be evaluated with the PVCC method; the proposed

approach includes the preparation of new problems with additional criteria for making

samples and pairing and modifications to previous samples, problems and testing system.

New problems and conditions for making and pairing new samples were

introduced in different conferences in Japan [39] and United States [40], and the feedback

received mainly by professors and experts on software development and programming,

was used to bring together a new analysis on how to establish what kind of experience

and knowledge do developers who answer the test possess (summarized in chapter 7).

5.1. Objective and Context of This Chapter

The main objective for this stage of the research was to expand the range of

programming abilities related with a Panoramic Understanding of Programming that the

PVCC Method can assess.

The most interesting finding that emerged from the analysis of the results of the

prototype test described in section 4.3 was that, even though the addition of visual

programming and/or visual effects techniques in the majority of the problems was evident,

some of the problems included in the prototype test were categorized according to

feedback (from professors of the novice programmers) as much more related with

programming and data management, placing less emphasis in graphic techniques and

more in programming processes.

For example: the problem shown in Fig. 2: Nested Iteration used very simple

graphic elements (squares), did not require any mouse or keyboard input and did not

contain any animated elements. For this problem, novice programmers from IT and Game

Development understood that its focus was on identifying what kind of technique was

used to manage the data inserted (number of squares) in order to arrange the squares in

the way displayed on the samples instead of identifying how the squares were drawn, or

display-related techniques like how to determine its size or what happened if the squares

were changed to circles etc.

47

By analyzing the problems targeted towards other programming processes

different than visual techniques in the first version of the test we found that it is possible

to extend the range of programming skills that the PVCC method can identify by

changing and enhancing the samples compared to evaluate more and different aspects of

programming.

5.2. New Problems’ Characteristics

Having into account the aforementioned possibility of extending the range of

assessable programming skills we proposed a new type of problems where 2 or more

samples are compared, but, instead of asking to compare only graphical output pictures,

both input data (raw text, comma-separated data, associative arrays, XML-like data) and

output (either picture or graph) are displayed.

For these New Problems, a Sample consists of input data and output picture(s),

and a Problem consists of a set of samples to be compared.

Tested subjects answered to two different types of problems: from which input

data sample is more difficult to obtain the displayed output picture? and which output

sample is more difficult to obtain from the given input data? depending on how many

input and output samples are displayed. A new problem may be composed of: multiple

input data samples for a single output picture, a single input data set for multiple output

pictures or multiple input data samples for multiple output data pictures.

Results from the prototype test indicated that some students didn’t have a clear

start point from where to think the problem, therefore having too many ways to go

without knowing about what programming techniques were making the difference (for

example: which ones required longer time, or more computing resources, or were not

optimized).

By including input data, we are attempting to guide the person through what is

the intention of the comparison of samples, and we are making sure that the person who

knows how to process data in programming, namely, how to read a data file knowing the

format, how to store this data and how to apply it in algorithms, or other techniques, will

know how the input sample behaves and what kind of processes are added that are

different in order to get the output samples from an input data set.

48

Through the following examples, we explain more in detail how new problems

are set up, what kind of programming techniques are involved on each sample and how

through the inclusion of input data the intention of the comparison can be identified.

5.2.1. How Input Data Can Guide the Answer: Problems with Same Input

data for Multiple Outputs

Figures 8, 9, 10 and 11, all of them belong to one problem and depict the input

and output samples of a program to draw Pie Charts. For output samples in Fig. 8 and

Fig. 9, population values (percentage) of a number of countries and their regions are

displayed in Pie Charts.

In Fig. 8 population percentages are ordered from maximum to minimum and this

order is displayed in a clockwise manner, while for Fig. 9 countries are grouped

alphabetically by continent and their population percentages are sorted from maximum

to minimum, this arrangement is displayed also in a clockwise manner.

If someone would perform both output samples comparison without having the

source data used by the program, the output sample in Fig. 9 could be considered as the

most difficult to obtain, but this person would surely hesitate about the kind of

programming techniques applied to obtain both output samples.

Fig. 8 Pie Chart Program - Output Sample 1

49

Fig. 9 Pie Chart Program - Output Sample 2

In Fig. 10 the original source input data for both samples is written line by line

including country, region and population values; this data is randomly arranged.

Fig. 10 Original Input Data for the Pie Chart Program

50

With the input data in Fig.10 the person performing the comparison can confirm

that the output sample in Fig. 9 is the most difficult to obtain, because the program would

need to group the countries by continent and then sort the percentage value inside this

groups from maximum to minimum to produce this output, while for Fig. 8 the program

would only need to sort percentages from maximum to minimum.

But, by changing the source data to the data sample in Fig. 11, where countries

are already grouped by continent and percentage values are already sorted from

maximum to minimum, the program will process data differently, therefore the correct

answer for this problem changes. By applying the data sample in Fig. 11, for the output

Sample in Fig. 9 the program would only need to read the data sequentially from the

beginning, while for the output sample in Fig. 8 still needs to sort the percentage values

from maximum to minimum anyway.

Fig. 11 Change in Input Data for the Pie Chart Program

This way, by changing the way input data is sorted and formatted, the difficulty

of obtaining one or another output sample can change drastically; is in this sense that

input data is used on each problem to guide the sample comparison evaluation and final

judgment.

51

5.2.2. How Data is Needed to Understand the Program: Problems with

Multiple Input Data for a Single Output

The problem displayed in figures 12, 13, and 14 was prepared to ask about data

management through the following question: From which one of the samples in Fig. 12

and Fig. 13 is more difficult to obtain the output picture in Fig. 14?

Output sample in Fig. 12 shows circles representing Japanese prefectures grouped

by region (Kanto and Kansai), and at the same time those regions are grouped in one

large group called Japan; the size of each circle represents the area value included in both

data samples in Fig. 13 and Fig. 14. Each line of Input data in Fig. 13 contains: Country

name, Region name, Prefecture name and Area value. All lines are randomly distributed

and data is not sorted.

Fig. 12 Circles Arrangement Program - Output Sample

52

Fig. 13 Circles Arrangement Program - Input Data Sample 1

As opposed to data sample in Fig. 13, data sample in Fig. 14 is visually organized

in a hierarchy; this way of organize textual data is easy to read for a person, but difficult

to read for the program drawing the circles.

Fig. 14 Circles Arrangement Program - Input Data Sample 2

53

In other words, it is more difficult to do a program to get the output picture with

the data sample in Fig. 14 because the program will need to perform additional processes

to identify which characters indicate the hierarchy (in this case, blank spaces behind each

text line); besides, in order to store the area value, the program will need to confirm for

each line if it has a parent and children and what is the data of those parent and children,

and finally, it will also need to identify the regions and sort the data from the largest area

number to the smallest for each region.

It doesn’t matter what kind of program is to be included in problems, data

indicates which kind of programming processes are more likely to occur in the program

receiving it; in the case of the circles arrangement previously discussed, if the input data

is not displayed together with the samples, the difference on data reading processes

cannot be identified.

5.2.3. How the Absence of Data Can Indicate Difficulty: Problems with

Multiple Input Data for Multiple Output

The problem displayed in Figures 15, 16, 17 and 18 was prepared to evaluate

knowledge for mapping coordinates in maps, and it asks: From which program using any

of the data samples in Fig. 15 and Fig.16 is more difficult to obtain the output pictures

in Fig. 17 and Fig. 18?

Each line of the input data sample in Fig. 15 includes: name of Japanese

prefectures for the Kanto region, area value, prefecture capital city name, and its location

coordinate. Input data in Fig. 16 contains border line coordinates for each prefecture map.

The program producing the output sample in Fig. 17 is using only the input data

in Fig. 15. It needs to assign each area value as a circles size, then apply a nearest

neighbor algorithm to group the circles avoiding circle intersection, additionally it has to

calculate the position of the text (centroid of each circle).

The program producing output sample in Fig. 18 is using both input data sets

from Fig. 15 and Fig. 16. This program uses the coordinates from Fig. 16 to draw lines

that constitutes the border of each prefecture, and the city location coordinates from data

sample in Fig. 15 to allocate area and prefecture name texts.

54

Fig. 15 Mapping Map and Circles Arrangement Programs - Input Data Sample 1

Fig. 16 Mapping Map and Circles Arrangement Programs - Input Data Sample 2

55

Fig. 17 Mapping Map and Circles Arrangement Programs – Output Sample 1

Fig. 18 Mapping Map and Circles Arrangement Programs – Output Sample 2

56

By including both input data samples the person answering will understand that

even when both data samples are used as parameters to draw the map in Fig. 18, the

program drawing this map involves simpler processes than the program drawing the

circles in Fig. 17; the circles arrangement program applies additional algorithms like:

circles packing [41] and nearest neighbor to group the circles, besides of applying data

processing algorithms to sort the map areas an apply them as circle sizes. In this sense

the selected output sample should be the output sample in Fig. 17.

Several new problems were prepared following the previous criteria; to see

figures and a brief explanation of the most difficult programming process evaluated for

each one of them please refer to the Appendix A of this report.

5.3. A Classification for Programming Processes

Following the previously exemplified pattern to set up problems we divide the

processes a program needs for any sample in any problem into two categories: Data

Processing and Data Display as shown in Table XI.

Data Processing related programming processes can be of three types: Data

reading, Data storing and Data Analysis; in Table XI each subcategory for Data

processing as well as Data display contains examples of processes that belong to each

one, but there could be many more programming processes for each category.

Table XI: Processes Included in Problems Divided by Categories

Read specific data formats (tables (e.g. raw text, comma-separated data,

associative arrays etc.)

Execute data Input/Output processes (e.g. I/O functions depending on the

programming language)

String operations or functions for dividing data into manageable strings, identify

the most common characters etc.

Setting up and storing in data structures (e.g. arrays, nested arrays, lists etc.)

Making references to elements in lists (e.g. pointers)

Keeping count of the times a process is executed etc.

Sort processes (algorithms or functions)

Different ways to analyze and prepare data (Pattern Recognition, Data mining,

complex data structures like Binary trees) etc.

Plotting graphic objects (e.g. Bezier lines, Circles, 3D objects etc)

Scaling and transforming graphic objects (e.g. translate, rotate)

Allocate an object in a coordinate.

Assign graphic object properties like color, size etc. from data.

Data

Reading
for example:

Data

Storing
for example:

Data

Analysis
for example:

Data

Processing:

every programming

technique that

involves reading a

data file and storing

and handling its data

falls in this category,

having three

subtypes:

Data Display:
Every programming technique that

involves visual or graphic display or

arrangement of data falls into this

category, for example:

57

If we want to identify a programming ability through setting up a problem like

the ones previously explained, we can classify this programming ability inside the

categorization presented on Table XI and from here it can be decided what kind of

processes can be emphasized in each program to be compared.

For example, the problem described in the set of Fig. 12~14 is designed to identify

programming abilities related with data management, specifically data reading and data

storing. To be precise, the person being able to identify the difference between the two

programming samples will surely have the skills to understand how the data format is

built (the first data format can be read in an easier way than the second hierarchical data

format) how the data is divided into strings (the first data sample will be divided by

identifying the comma, while the second data sample needs to analyze each line to

identify the strings), and that the program processing the second data sample will need

more reading steps to build the hierarchy in lists or structs.

In summary, the classification presented in Table XI is not only for programming

processes but it can define programming abilities identifiable with new problems.

5.4. Test Oriented to Professors to Verify the Suitability of New Problems

We wanted to know if any of the new problems were suitable to identify

programming abilities related with PUP in the categories mentioned before (namely:

Data Processing and Data Display). For this purpose, we built a second version of the

test specifically oriented to obtain feedback from programming professors regarding the

inclusion of input data, the division in categories and the comparison of the most difficult

programming processes.

Programming professors from universities and technical colleges in Japan

answered this test in the sequence described as follows:

1) Without knowing our assumed answer beforehand, they answered the question:

which output sample is more difficult to obtain from the given input data and/or

from which input data sample is more difficult to obtain the displayed output

picture, this depending on how many input or output samples did the problem

have.

58

2) After answering the previous question, they read an explanation about the

processes to identify per sample and which process is assumed as the one marking

the difference for the whole problem; knowing this information they told us if

they agree or disagree with our assumption.

3) They confirmed if the “new problem” is or is not appropriate to be included in a

test to identify PUP related programming abilities.

4) Finally, we offered them the opportunity of comment freely about the samples

used or the whole problem.

5.5. Are New Problems Suitable for Evaluating Programming Abilities Related

to a Panoramic Understanding of Programming?

Table XII and XIII show a summary of how many problems received the

respective percentage of matching answers from professors and how many problems

professors agreed with the most difficult process to be included; for example, if 6

problems correspond to an 88% in Table XII that means that 6 problems were answered

right by the 88% of professors. And if 4 problems correspond to 100% in Table XIII that

means that 6 problems did receive an agreement by professors regarding the most

difficult process to be evaluated. (Note that percentages don’t correspond to 100%

because they are rounded up).

Without knowing the assumed answer beforehand, more than 75% of the total of

professors’ answers matched the assumption regarding the programming processes

through which the difference on the comparison for each problem can be determined.

Within the 25% of not matching answers, more than 70% of those incorrect

answers were: the difficulty is similar this could indicate that, even when the data is

present, it is incomplete or is not working as expected to establish the difference between

the samples.

Also, within the 25% of incorrect answers, more than 60% of professors after

reading the explanation considered the problem appropriate to identify programming

abilities, these aspect is likely to be related with a lack of concision in data or graphic

59

samples; probably these elements for themselves aren’t enough to guide a person towards

identifying the required difference between programs.

Table XII: Amount of Problems Receiving Correct Answers (High Percentage Range)

percentage of correct

answers received
amount of problems

100% 1

88% 6

75% 1

63% 2

50% 0

Table XIII: Amount of Problems where Professors Agreed with the Most Difficult Process (High

Percentage Range)

percentage of "agree"

answers received
amount of problems

100% 4

88% 2

75% 1

63% 1

50% 0

Table XIV shows how many problems were considered “appropriate” by a high

percentage of professors and Table XV shows how many problems were considered as

“needing fix” by professors; for example, if for Table XIV 2 problems correspond to an

88% that means that 88% of the professors considered 2 problems as appropriate, and if

in Table XV 4 problems correspond to a 13% that means that 4 problems were considered

as needing fix by the 13% of the professors. (Note that percentages don’t correspond to

100% because they are rounded up).

Table XIV: Amount of Problems Considered Appropriate by A High Percentage of Professors

percentage of

"appropriate" answers
amount of problems

100% 2

88% 2

75% 3

63% 0

50% 1

60

Table XV: Amount of Problems Professors Considered as Needing Fix

percentage of questions

considered as "Needing fix"
amount of problems

0% 3

13% 4

25% 1

38% 2

50% 3

63% 1

5.6. Conclusion of This Chapter

Even though the emphasis on visual programming and/or visual effects

techniques in the majority of the problems of the prototype test was evident, through the

addition of input data to comparisons understanding how to use it to guide the answer to

a problem, how it is needed to understand the behavior of programs producing the output

pictures, and how the lack of this item can indicate difficulty, and also by simplifying the

programs and sample pictures we were able to build a new type of problems based on the

PVCC method.

By performing a new test with professors of programming and experts having a

set of new problems we were also able to verify that some of the new problems were

suitable to evaluate skills related with a Panoramic Understanding of Programming.

For problems that were considered as not suitable to evaluate programming

abilities related to a Panoramic Understanding of Programming not only of the second

test with new problems but also for misleading or ill-made problems from the first test,

professors and experts identified mistakes and points of confusion and suggested optimal

ways to correct them, the following section summarizes the main comments and

recommendations and presents proposed fixes.

.

61

6. How to Create Suitable Problems for the PVCC method?

This chapter discusses how to build appropriate problems to be included in any

test that applies the PVCC method according to the Feedback provided by professors and

instructors of the four groups of novice programmers that participated in the first test and

professors who took the second test to verify the suitability of new questions (from now

on the professors).

 Professors recommended to adjust and change certain aspects of many of the

problems after experiencing both tests and analyzing their results. Their

recommendations are summarized in 3 topics: that we consider fundamental when

building new problems based on the PVCC method: Identification of the most difficult

programming technique in a problem, balance of complexity and concision of problems,

and revision of the Programming techniques used for each problem.

6.1. Identification of the Most Difficult Programming Technique

The main aspect that affected the results for all groups in the previous experiment

is the identification of the most difficult programming technique used in each sample.

Some novice programmers weren’t able to identify the most difficult technique for most

of the problems or erroneously considered the wrong kind of technique; this lead us to

think that it is not clear enough what is the most relevant technique in each problem.

As mentioned in section 3.3.1, samples were selected and paired considering two

difficulties: the difficulty of associating images with the compared programs and the

difficulty of identifying the main, most difficult process for both samples on each

problem but, seemingly, in some problems there were additional processes that were

equally difficult and/or were more difficult that the ones we considered initially.

However, for representative problems in the experiment for this stage, some of the novice

programmers in the first test were able to perceive the desired process and answered

correctly.

In this sense, professors thought that it is necessary to establish the difference of

difficulty between having to deal with the specific code or algorithms for the most

difficult techniques and deal with the other aspects of the programs for each problem.

There may be difficult techniques in each problem that could be relevant, but the

62

programming techniques used to make the output pictures could be as difficult (long,

tedious, hard) as writing the algorithms we think are the most difficult.

The aforementioned misleading when identifying which is the relevant difficulty

on each problem’s sample and in the sample comparison as a whole can be perceived in

some of the problems included on the first test carried on with novice programmers,

particularly one of the problems whose results mismatch the assumption useless to

evaluate programming ability explained in section 4.3.3 which serves as an example of

problems that can be corrected by identifying more clearly what is the difference on

difficulty of each sample:

Fig. 19 Appearance of the problem used on the initial test to evaluate the technique: Boundary

Detection

Fig. 19 shows a problem used on the initial test to evaluate the technique:

Boundary Detection; for the first sample of this problem, if the mouse pointer hovers

over the circle the background turns black, while for the second sample if the moving

circle (replacing the mouse pointer) apparently touches the border of the static circle the

background turns black.

By following this logic, we initially considered the correct answer for this

problem to be Sample 2, but in fact the second sample has other ways to be interpreted.

For example: the correct answer would change to the difficulty is similar if we consider

that the second sample could contain a bigger invisible circle placed around the centered

one, so when the moving circle intersects it, the background turns black just when the

borders of the visible circles apparently touch each other.

63

But again, the correct answer would be sample 2 if we consider that the second

sample uses a specific programming technique to replace the mouse pointer with a circle,

that is not used in the first sample.

There are, then, several programming techniques with different difficulties

included in this problem, and to correct this sample and make it useful to evaluate PUP,

it is necessary to add complementary resources to guide the test participant towards

focusing on the most difficult technique.

6.2. Balance of Complexity and Concision of Problems

Another issue highlighted by the professors is that some of the problems in this

test included data and graphs very difficult to read or interpret. There are comparisons

where the difference cannot be identified, not even by reading the explanation provided

for the most relevant programming technique of each problem at the end of the first test

(individual results report) neither when interpreting the input data of each problem of the

second test. In the other hand, some comparisons are too obvious, or the difficulty

difference can be easily identified by anyone, doesn’t matter if the person taking the test

has experience on programming or not.

This can be solved by making the problems more readable, succinct, and easy to

follow. In other words, we need to make simpler samples and include other resources to

help the test participant understand how to operate them, explaining what the samples

are showing and suggesting as well important points to have into account while operating

them.

The aforementioned difficulty at reading or interpreting PVCC method based

problems can be exemplified with some of the non-representative cases of the test carried

out with novice programmers. As explained in section 4.3.4, three problems which

obtained the lowest percentage of right answers were ill-made, most likely because

contained additional concepts on the same level or more difficult than those evaluated,

and/or the programming samples were too similar, so their main purpose was too difficult

to identify; we will take one of the aforementioned problems as an example of an ill-

made or misleading problem, that can be enhanced by explaining how does it work or

what is the main point to start thinking about its relevant difficulty.

Fig. 20 shows a problem used on the initial test to evaluate the technique: Change

according to time; for the first sample of this problem, each second a line with random

64

starting and ending points appear, while for the second sample a horizontal line

apparently moves upwards during the same second.

Fig. 20 Appearance of the problem used on the initial test to evaluate the technique: Change

according to time

The correct answer initially considered for this problem was Sample 1 since we

considered the random change of the initial and final points of the lines appearing each

second more difficult than the change of the line in the second sample, but, if we would

consider the programming techniques applied in the second sample additional to the time

management technique, namely: a line erasing and rewriting technique, together with a

programming process to reset the position of the next line to be written when the previous

written line reaches a point beyond the upper extreme of this sample, the amount of

programming processes with almost the same level of difficulty incorporated in both

samples becomes greater and, in addition, the change through time initially intended to

be the technique to evaluate results being similar for both samples, thus making the

difference of difficulty of the other techniques involved much more relevant,

consequently making the identification of the initial technique too difficult.

This problem can become useful to evaluate PUP related programming ability

regarding the programming technique: random if the amount of techniques involved into

each one of the samples is reduced; for example, the erasing and rewriting technique

from the second sample can be changed to only a writing process similar to that of the

first sample without the randomness of the lines’ initial and final points.

This problem can also be enhanced by adding guidance resources that help to

make clear where to start thinking the relevant programming technique (without exposing

the answer).

65

6.3. Revision of Programming Topics and Samples

A third aspect that needs to be thoroughly revised according to the suggestions

provided by the professors is the set of programming topics or subjects underpinning the

samples used on the problems mentioned in sections 3.3.2 and 3.3.3; the initial thought

was to have as a reference a somewhat wide range of programming techniques taught in

basic programming curriculums. However, the professors noted that our references and

sources from where we compiled these techniques were too focused on visual

programming subjects, obviating several other important topics that are contained into

curriculums for IT and Software Programming courses. As a consequence of this the

majority of the test problems are predominantly related to visual programming

techniques.

Correct answers for all problems were selected having into account the difficulty

of the aforementioned programming subjects, in that sense we considered only one

correct answer, thus omitting the possibility of each one of these problems to be variously

answered by people with different knowledge levels and fields, having different ideas of

programming techniques that can be harder or easier for each one of the samples.

In this sense, our criteria for choosing the set of subjects on which programming

samples are based needs to be revised, having into account actual and more general

curriculum guidelines for computer-related fields, and defining what kind of answers per

level and per knowledge type can emerge.

On the other hand, those problems whose results matched our aforementioned

assumption are a reference of the necessary level to answer a specific problem on a

specific programming subject for a specific type of people; having this in mind, we can

consider to follow the same pattern these problems have to build and test samples not

related with visual programing.

66

7. Verifying PVCC Method’s Potential to Evaluate the Programming

Ability of IT Experts in Relation to Programming Experience and

Knowledge.

This section describes our approach to verify if the PVCC method, including

previously proposed new problems and changes suggested by professors, can evaluate

the programming Abilities related with a Panoramic Understanding of Programming of

expert developers and programmers in relation to their own programming experience and

knowledge.

In this opportunity, we introduce complements to the PVCC method oriented to

ask tested subjects about their experience and knowledge of programming and software

tools, not only tools that support programming activities but all kinds of software tools.

7.1. Objective of This Chapter

For the third stage of this research we wanted to know if by applying the PVCC

method, we can evaluate the programming ability of IT (Information Technology)

experts in relation to their own experience and knowledge at dealing with specific

programming techniques while using software tools and programming languages.

As discussed in chapter 2, due to recent changes in the context of many non-

computing related fields, most of the software tools used in these fields include or

comprise programming options to achieve effects, calculations, processes etc.

As a consequence of this, end-user programmers who constantly use and learn

these tools together with complementary programming languages deal with a material

and an immaterial world, since they have to manage objects that they can see and

manipulate, in addition to code that in most of the cases is hidden and difficult to

understand and manipulate.

End-user programmers learn the fundamentals of both worlds; but since the gap

between these two worlds is considerably large, they need to apply their experience and

knowledge in their different fields to fill this breach, using assets and resources from the

visual and the code sides: possibly identifying patterns inside code that could be repeated

or getting to know the internal structure of pre-made objects (e.g. interface components)

to look for parts to copy-paste, or searching programming libraries to integrate inside

these tools, among other actions. [22]

67

The aforementioned usage and learning of programming techniques that mix both

visual objects and code in different ways makes the programming knowledge and

experience of each end-user programmer different; and it is in the scope of our interest

to know how different is this knowledge and experience, and how this difference affects

the way an end-user programmer understands panoramically each programming

technique he learns or uses.

7.2. Procedures to verify PVCC Method’s Potential to Evaluate IT Expert’s

Programming Abilities in Relation to Programming Knowledge and Experience.

As explained earlier, our intention with the new test based on the PVCC method

is to know what is the experience and knowledge of each participant IT expert on each

programming technique asked, and to compare this information with the results of the

test to determine, first, if the problems are sufficiently good to evaluate experts’

programming ability, and second, what kind of programming knowledge and experience

do programmers need to possess to answer a PVCC method-based problem correctly.

For carrying on this new test, we received the cooperation of the staff members

of a Japanese IT company with different backgrounds and accumulated experience.

We must assume that not every participant IT expert will have the same

experience on the same programming languages or tools, neither that they will be totally

experienced on programming, even though some of these experts couldn’t have any

experience on data display programming techniques, as explained earlier, they could

have experienced them by other ways already mentioned (i.e. by modifying code

containing those techniques).

The following are the procedures we carry out to verify the potential of the PVCC

method to evaluate programming ability of expert programmers.

7.2.1. Consolidation of Modified Problems.

As we mentioned in chapter 6, our tests included mostly visual programming

problems and we only considered one kind of correct answer for each problem; as a

consequence, probably those programmers who had not managed visual programming

techniques had issues at detecting what was the difference between the relevant or most

difficult programming techniques we asked for and the rest of the program processes

(according to the categories presented in table XI), but on the other hand, those

68

programmers who didn’t have issues and could differentiate the relevant programming

techniques from the other elements of each sample, at least in one problem, could have

developed a Panoramic Understanding at least of that technique.

With the test performed during the initial stage of this research we evidenced that,

those programming abilities related to PUP demonstrated by novice programmers

diverge according to each person’s knowledge and experience of separate programming

techniques; we understood that each problem evaluates a single technique that can be or

not mastered by programmers and end-user programmers as well since as discussed in

chapter 1, even when they learn about them in different ways, both professional

developers and end-user programmers manage patterns or schemas to perform different

programming processes, those schemas change according to the knowledge they possess

and the experience they have accumulated and, in the case of end-user programmers, the

experience and knowledge in their respective field should be considered together with

the experience in programming [14].

Considering the aforementioned aspect, and in order to consolidate a new test

with problems based on the PVCC method that complies with the participant company

requirements, first we meet with representatives of the cooperating company to discuss

about the content of the test, specifically what problems of the finished set of twenty

problems did they consider could be included into the test oriented to their employees.

Company representatives suggested to include the twenty problems but besides,

they proposed a classification for the whole set of problems since the time their staff had

to dedicate to this test was short; they suggested to divide the test into a set of ten main

mandatory problems, and ten secondary optional problems.

Following this requirement, we proceed to select both sets of problems; the main

set was selected based on the best performing problems from the previous test with

novice programmers and the test with professors and experts, the optional set was

selected among those who performed well but didn’t have the best results. For this

version of the test we also provided the individual with the option to skip questions.

We thoroughly considered also the classification for problems provided in section

5.3; in this section we mentioned that, to identify a programming ability with a problem

based on the PVCC method, this programming ability can be classified as shown in the

aforementioned section and from here it can be decided what kind of processes can be

emphasized in each program to be compared. Table XVI shows the final organization for

69

the main and secondary sets of problems to be displayed inside the test including its

evaluated technique and category.

Table XVI: Sets of Main and Secondary Problems Composing the New Test for Expert Programmers,

including Most Difficult Technique and Category

Number
Most Difficult Programming

Technique
Category

1 Programming Loop Data processing

2 Previous Position Storing Data processing

3 Picture pixel array management Data display

4 Recursion Data processing

5 Empty Area Detection Data display

6 Hidden Line Removal Data display

7 Distribute Objects According To Data Data display

8 Multiple Data Sources Data processing

9 Visualization According to Data Analysis Data display

10 Data Format Reading Data processing

11 Erase and Rewrite Data processing

12 Invisible Events Data display

13 Time, Speed and Distance Data display

14 Clickable Area Data display

15 Random Data processing

16 Trigonometric Animation Data display

17 Lists Elements Inserting Data processing

18 Mapping Data into Shapes Data display

19 Data Hierarchy Data processing

20 Mapping Data: Scaling and Measuring Data display

Main Problems

Secondary (Optional) Problems

The characteristics of every problem selected for the new test is described in

greater detail in Appendix A; this appendix also presents the new structure of the test,

the way the problems and the questionnaire were shown and what were the categories for

each question of the questionnaire that, will be introduced in the following section.

7.2.2. Questionnaire and Guidance on Experience and Knowledge of

Programming and Software Tools.

Section 6 addressed a number of important suggestions provided by professors

and experts participating in previous tests; this section showed how by adding

complementary guiding resources and correcting according to professors’ suggestions,

poorly constructed and/or misleading problems can become useful to evaluate

programming abilities related with PUP.

In addition to what has been already stated in the aforementioned section,

professors and experts suggested also that if we wanted to establish a difficulty difference

between problems, it would become necessary to know what is the experience and

knowledge in programming and use of programming techniques of each person

answering each individual problem; for example: if they have written code from scratch:

70

what techniques are they familiar with?, of if they are also capable of identifying those

basic techniques inside more complex algorithms or complete programs; and, if they have

used software authoring tools it could be interesting to know if they have copy-pasted

code to do a program, or if they have used pre built objects, or libraries, among other

methods already mentioned. They could have also used similar techniques not in

programming but as options in software tools; as it was already indicated, most of the

software tools currently have options or include commands to make use of programming

techniques automatically, without having to deal with code.

To obtain this information regarding each participant we built a questionnaire

about experience and knowledge in programming and software tools to be included to

each problem of the test based on the PVCC method, this questionnaire consisted of two

main parts:

The first main part is the guidance: there were three types of explanation texts for

each problem: the first type was a brief hint text presented at the first time the problem

was displayed, this hint lead towards the most appropriate point of view from where the

person answering can start analyzing the problem, and it was not related with the

problem’s answer.

The second type was a text that indicated how to handle each sample; this text

was presented at the same time the sample comparison was displayed and it was

necessary to help solving one of the main difficulties reported by people on the feedback

for both of the performed tests, namely, the difficulty or lack of knowledge on how to

operate and interpret some samples that resulted in mislead answers.

For problems involving programming samples with animations and keyboard or

mouse input, this text explained concisely how to operate each sample to obtain the

desired effect or result, for example: the text explained how to move and position the

mouse inside each sample if there is a need to do it, or how to restart an animation that

became full of drawing objects therefore confusing, etc.

For problems displaying data input and graphic output at the same time, this text

explained what each data sample consists of and what is the graphic output related with

that data input.

The third type was a proper explanation that clarified what kind of programming

technique we were evaluating and why was that technique the most difficult one for each

problem; this text was presented after the person answered the sample comparison, and

71

served as a reference point for the person answering the test to consider his own

knowledge on the technique in question in order to be able to answer the next part of the

questionnaire.

The second main part was the survey: it consisted of a series of questions about

the evaluated programming technique in regard to two topics: first: the understanding of

the explanation text provided previously, and second: the possible knowledge and

experience the person taking the test could have had with this particular technique in

software tools (maybe using it by inserting commands or pushing buttons on an interface,

or probably by handling other functions of software tools related to this technique) or

programming (not only languages but also libraries that could apply this technique, or

code snippets that contain it; it also can be found inside more complex code).

These questions were classified into three main types:

1) Awareness or perceptiveness of the main programming techniques: for these

questions the person answering the problem clarifies his understanding on the

explanation provided and acknowledges if he or she would have realized about

the use of the process without reading the explanation text.

2) Experience on handling similar techniques on software tools: for these questions

the person describes his previous experience with similar techniques on software

tools (not programing languages), for each problem we provided an example of

what kind of software tools could include similar techniques.

3) Experience dealing with the programming technique: in question not only in

programming languages but by using programming libraries or code pieces etc.

Type 1 questions were yes/no questions; questions type 2 and 3 were asked by

using the formula: have you ever… (e.g. have you ever used loops in programming?); to

answer these questions a Likert scale was used, the answers for these scales were as

follows:

• Never: as in: I have never used loops in programming.

• Once or Twice: as in: I have used loops in programming once or twice.

72

• Many times: as in: I have used loops in programming many times.

• I’m used to do it: as in: I’m used to do loops in programming.

As mentioned, Appendix A contains the complete list of problems with its

respective list of questions. From the list presented in this appendix no more than two

questions of type 2 and two of type 3 were selected for each problem.

7.2.3. Participants Characteristics Including Previous Experience and

Knowledge.

A group of 9 IT experts, members of the participating company’s staff were

recruited to perform a test with the proposed new problems and answer the questionnaire

per problem in the way described in previous sections.

Industry experience and self-reported expertise data were collected with a short

demographic survey completed before starting answering the test. They were asked to

list the programming languages they have learned during their life as students or as

professionals. Table XVII shows the collected data.

Table XVII: Participants Self-Reported General Working Experience, Specific Programming Experience,

and Knowledge on Programming Languages

Participant Type of Experience

General

experience

(years)

Programming

Experience

(years)

Languages Knowledge

A Administration Less than 1 1 to 3 HTML, PHP, JavaScript

B System Operation Less than 1 No experience No experience

C Development More than 10 More than 10 Visual Basic,VB.net, Java, C#

D System Operation 5 to 10 1 to 3 No reported

E System Operation more than 10 1 to 3 Cobol, Visual Basic, C

F Contents Development Less than 1 1 to 3 C, Java, JavaScript, Basic

G Infrastructure 1 to 3 1 to 3 C, Java

H Development More than 10 5 to 10 Java, PL/SQL,VB.net, AccessVBA

I System Operation More than 10 No experience No experience

We chose a small sample because of the expected difficulty and time spent on

answering the questionnaire and furthermore because we expect to continue doing similar

tests with such reduced groups of experts at different companies as a part of the future

work of this research; this in order to keep verifying if the problems based on the PVCC

method can evaluate the programming ability of programmers with a different profile

and different background (different universities and schools, different workplaces).

73

Excluding three participants who, despite of their experience in system operation

and maintenance did not report having learned any programming language, all

participants reported having experience with a wide range of languages such as: COBOL,

Visual Basic, C, C#, Java, JavaScript, PHP etc.

Two of the three participants experienced in System Operation and Maintenance

reported not having any programming experience, and one of them had less than a year

of professional experience. Within the remaining 7 participants, 5 of them had more than

a year of programming experience, and two of them more than 5 years of experience.

It was fundamental for us to have people experienced in an IT field not closely

related with software development like systems design and administration because the

data collected from these subjects could give us closer insights to one of the main

objectives of this test that is to find if the experience of people expert in fields not directly

related to programming or not doing programming as a common job is capable of

answering correctly some or all problems based on the PVCC method.

7.2.4. Assumption Based on Reported Experience and Knowledge

As mentioned in section 7.2.1, two sets of problems were set up for this version

of the test; our assumption is based on the main set of ten problems since we were not

able to assure that all participants answered all problems from the optional set.

Based on the information provided by the participants, and using the problem

order and types already specified, our assumption on the results for this test is

summarized in Table XVIII. According to the experience and knowledge initially

reported, we expected most of the participants with enough experience in formal

programming languages (not specific for visual programming) to answer correctly those

problems related with data processing but having also a good probability of answering

correctly those problems related with data display.

On the other hand, we considered that those not experienced in programming or

only experienced in software tools have a high probability of answering correctly the

problems evaluating the easiest techniques that may be used in software tools commonly,

while the most difficult techniques requiring a deeper programming knowledge may be

unknown by them.

74

Table XVIII: Assumption on Answers to the Test Problems per Type According to the Programming

Ability Reported

Evaluated technique Category

Experienced

in

Programming

Experienced

in Software

Tools

Not

experienced

1 Programming Loop Data processing n n r

2 Previous Position Storing Data processing n n r

3
Picture pixel array

management
Data display r r r

4 Recursion Data processing n r r

5 Empty Area Detection Data display r r r

6 Hidden Line Removal Data display r r r

7
Distribute Objects According

To Data
Data display r r r

8 Multiple Data Sources Data processing n r r

9
Visualization According to

Data Analysis
Data display r r r

10 Data Format Reading Data processing n r r

n Right r Wrong

r Probably Right
Conventions:

7.3. Is It Possible to Evaluate IT Experts’ Programming Abilities in Relation to

Their Experience and Knowledge by Using the PVCC Method?

What follows is an account of how the test results relate with our initial

assumption and how the correlation between the reported experience and knowledge and

the test score was found and validated. Table XIX shows the correct answers per

participant and correct answers per problem including the average of both.

As already explained, the objective of this test was to establish the relation

between the personal experience and knowledge regarding the application of the

programming technique evaluated either in programming and software tools with the

answer provided to the sample comparison.

Of the nine participants, two developers who reported having more programming

experience (participants C and H) had the highest score on the test: 9 and 7 correct

answers respectively; in addition, two participants whose background is in Infrastructure

and System Operation and Maintenance, who reported having 1 to 3 years of experience

75

in programming and knowing languages like Java, C and Cobol answered correctly to 6

and 7 problems respectively.

Table XIX: Correct Answers Per Problem and Per Participant with Average

A B C D E F G H I

1 Programming Loop Data processing n r n n n r n r r 5

2
Previous Position

Storing
Data processing n n n n n r n n r 7

3
Picture pixel array

management
Data display r r n r r r n r r 2

4 Recursion Data processing r n n r n r n r r 4

5 Empty Area Detection Data display r n n r r r n n n 5

6 Hidden Line Removal Data display r n n n n r r n r 5

7
Distribute Objects

According To Data
Data display r n n n r n n n r 6

8 Multiple Data Sources Data processing r r n n r r r n r 3

9
Visualization

According to Data
Data display n n r r n n r n r 5

10 Data Format Reading Data processing r n n r n n n n r 6

3 7 9 5 6 3 7 7 1 AVG : 5

Category

Correct Answers per Participant

Correct

Answers

per

Problem

Evaluated technique

Participants

On the other hand, 2 of the 3 participants who reported having the less

professional and programming experience obtained the lowest score: Participants A and

F each one with less than 1 year of general experience and 1-3 years of programming

experience answered correctly to 3 problems.

These results confirm our assumption since the more experienced developers only

failed two or three problems including those that received the least correct answers

(picture pixel array management with 2 correct answers and multiple data sources with

3).

In contrast the less experienced programmers only answered correctly one to

three problems, however, the participant F was able to answer two difficult data display

problems and one difficult data processing problem; this rather contradictory result may

be due to his background, this participant reported being a content developer, and having

managed JavaScript.

The results of one particular participant stand out for being an exception to our

hypothesis: participant B who, with less than one year of general experience, no

experience in programming and having not reported any knowledge on programming

76

languages, answered correctly to seven problems. We will explore in more detail this

case in section 7.5.

By assigning scores to the answers of the questionnaire on experience and

knowledge composed by two questions on knowledge of the evaluated programming

technique (yes/no questions) and three questions on experience with the mentioned

technique (Likert scale) and use them together with the correct answers per participant

per problem we were able to calculate the Pearson correlation coefficient for each of the

variables per problem.

We performed also a regression analysis by using the same data to find the

Coefficient of Determination (R square) in order to establish if the test score can be

predicted by the answers of the questionnaire so we could validate the correlation. For

the purposes of this research, problems with an R square coefficient equal or greater than

0.7 were considered significant.

In the following sections we will discuss about the possible reasons why IT

experts having a high score on the test failed to answer correctly some of the problems

proposed in the PVCC based test, and in addition, what kind of programming knowledge

and experience do those IT experts answering to the test possess, and how does these

aspects relate with their answers to the sample comparisons in general terms and per

significant problems.

7.4. Why do IT Experts Fail at Answering Problems Based on the PVCC

Method?

From Table XIX, it can be seen that, within the set of 10 problems, 3 of them

were answered correctly by less than 5 people, namely those problems evaluating the

techniques: Picture pixel array management, Multiple data sources and Recursion,

which were answered correctly by 2, 3 and 4 people respectively.

It is important to mention that, all three problems were answered correctly only

by the participant with the highest score, or participant C with 9 total correct answers,

but of the three people that followed him in the score table, namely, participants B, G

and H each one with 7 total correct answers, two of them failed two of the aforementioned

problems.

As it can be seen in Table XVII, excluding participant B who is the less

experienced of all, participants G and H are both experienced in infrastructure and

77

development but one of them with more than 10 years of experience, and both have

knowledge in programming, so it is valid to ask why did they answered incorrectly these

particular problems?

A possible explanation for these results might be that, even when guidance

resources like a hint, instructions on how to operate and what kind of content was shown

in each sample comparison were added, there were issues at interpreting, reading or

understanding these problems, therefore being still misleading.

Let us now analyze more closely the worst performing of these three problems to

try to understand why is it still misleading. We are going to focus specially on how the

hint and the operation instructions guide the participant towards a supposedly correct

interpretation of the problem because there could be the main weakness of these problems.

Fig. 21 Appearance of the problem evaluating the technique: Picture pixel array management

Fig. 21 shows the appearance of problem evaluating the technique: Picture pixel

array management; for the first sample of this problem, when the mouse is moved

horizontally the color of each pixel is rewritten according to a filter that changes in a

uniform way the color of each pixel without considering dark or light values; on the other

hand, for the second sample the values of darkness and lightness of the picture are

identified and mapped to circles size, so certain small circles represent light areas and

bigger circles represent dark areas; if the mouse is moved horizontally, the dark and light

values changes proportionally, so does the size of each circle.

The hint for this sample comparison was: “pay attention to how the pixels change

on each picture!”, and the operation instructions were as follows:

1) Place the mouse over the left border of any of the samples

2) Move the mouse SLOWLY from the left border to the right border of the sample.

78

3) Finally, move the mouse pointer from the right border to the left border and see

what happens!

Table XX: Answers to Sample Comparison and Knowledge and Experience Questions for the Technique:

Picture Pixel Array Management

A B C D E F G H I

Answers to problem sample 1 sample 1 sample 2 sample 1 similar skipped sample 2 similar sample 1

After reading the previous explanation

did you understand how “picture pixel

array management” is used in this

problem?

no yes yes no no skipped yes no no

Did you realize about the use of

“picture pixel array management” on

this problem before the explanation?

no yes yes no no skipped yes yes no

Have you ever applied “filters” (or

options to manuipulate the pixels of an

image) to pictures by using software

tools? (Microsoft Paint, Adobe

Photoshop, etc.)

never
I'm used

to do it

once or

twice

many

times
never skipped never never

once or

twice

Have you ever called or referenced

external pictures to show them on

screen with programming?

never never
once or

twice
never never skipped

once or

twice

once or

twice

once or

twice

Have you ever programmed filters for

pictures directly with programming?

(to change picture properties like

saturation, contrast, brightness etc.)

never never
once or

twice
never never skipped never never never

ParticipantsTechnique: Picture pixel array

management

Programming knowledge questions

Programming experience questions

Table XXI: Correlation Coefficients for Answers to the Sample Comparison and Knowledge and

Experience Questions for the Problem Evaluating: Picture Pixel Array Management

Picture pixel array

management
Problem Knowledge 1 Knowledge 2 Experience 1 Experience 2 Experience 3

Problem 1.00

Knowledge 1 0.76 1.00

Knowledge 2 0.60 0.79 1.00

Experience 1 -0.14 0.38 0.19 1.00

Experience 2 0.60 0.32 0.55 -0.24 1.00

Experience 3 0.66 0.50 0.40 0.08 0.40 1.00

Table XX shows the answers to the problem and the questionnaire about

experience and knowledge in programming for the evaluated technique provided by each

one of the participants, and table XXI shows the correlation coefficients for these answers,

The R square coefficient for the results of this problem confirmed through a

regression analysis was 0.91. The correlation coefficients shown on table XXI indicate

that the understanding of the explanation and the awareness of the use of the technique

before reading it, together with the answers to the two questions about experience with

79

the technique evaluated in programming (not software tools) are closely correlated to the

provided problem answer, therefore those experienced with the technique in

programming, who understood the explanation and were aware of the technique without

reading the explanation most likely answered the sample comparison correctly and vice

versa.

Closer inspection to table XXI shows that participant B, even when understanding

the explanation and being aware of the technique, answered by selecting the opposite

sample; in addition, participant H, who is the most experienced person in programming

among this group, answered incorrectly to the sample comparison and reported not

having understood the explanation provided after answering the problem.

The aforementioned facts suggest that being aware of the use of the technique in

the problem is not enough to answer correctly and the participant needs to understand

almost in detail how the technique is managed in this particular problem (probably by

having dealt with it before), or in the other hand, considering that, according to the

correlation analysis, those who have experience and were aware of the use of the

technique even before reading the explanation almost certainly answered correctly, it

may be that those participants who surely knew the answer (i.e. participants B and H)

were in fact misguided by the additional guidance elements.

In this sense, it is necessary to correct strictly the guidance elements, namely the

hint and the operation guide, so they don’t suggest a different interpretation than the one

required for the problem, and verify that the relation between these elements and the

correct answer is coherent for the participant to be really guided to the answer.

7.5. What Kind of Programming Knowledge and Experience Do IT Experts

Have?

This thesis finishes with a thorough discussion about what is the programming

knowledge and experience of those participants answering right and wrong to the

problems about programming techniques, and how their knowledge of and experience

with each programming technique correlates with the provided answers, highlighting

those problems that we consider representative, and also their representative answers,

focusing particularly on what kind of individuals (with what experience and knowledge)

provided those answers.

80

Table XXII provides an overview on the total amount of correct and incorrect

answers to the sample comparison problems and the respective total answers to the

questions on knowledge of each technique and on experience with each technique.

Table XXII: Overview on The Total of Correct and Incorrect Answers to Problems and Answers to

Questions on Knowledge and Experience with Evaluated Techniques

yes 42 yes 17

no 6 no 19

yes 39 skipped 6

no 9 yes 15

I'm used to do it 13 no 21

many times 13 skipped 6

once or twice 11 I'm used to do it 5

never 11 many times 3

I'm used to do it 20 once or twice 10

many times 2 never 18

once or twice 13 skipped 6

never 13 I'm used to do it 5

I'm used to do it 12 many times 1

many times 5 once or twice 12

once or twice 7 never 18

never 24 skipped 6

I'm used to do it 4

many times 0

once or twice 6

never 26

skipped 6

Questions on

Experience

with each

Programming

Technique

Experience with

Software tools

Experience with

Programming

Experience with

Programming

Questions on

Knowledge of each

Programming

Technique

Understands

explanation

Was aware of

technique

Questions on

Experience

with each

Programming

Technique

Experience with

Software tools

Experience with

Programming

Experience with

Programming

42
Total of Incorrect

Answers to Sample

Comparisons

48
Total of Correct

Answers to Sample

Comparisons

Questions on

Knowledge of each

Programming

Technique

Understands

explanation

Was aware of

technique

As shown in table XXII the number of correct answers to the problems was bigger

than the number of incorrect answers only by a little margin, but by looking to the number

of answers to questions on knowledge of the technique for the problems having incorrect

answers to sample comparisons, it can be seen that the number of participants that

understood the explanation and was aware of the technique evaluated before answering

was scarcely smaller than those not understanding it and not being aware of the technique.

If these results are compared with the number of answers to the questions about

experience, that show that the majority of participants have applied the technique once

or twice or have never used the technique Oneither in software tools or with programming,

the whole of these results may suggest that many of the participants who reportedly have

knowledge of these techniques may in fact have very limited or not any experience with

them at all.

It may be the case therefore, that not only knowledge, but at least some experience

with the technique is needed to answer correctly; this could be perceived to some extent

81

by examining the number of answers to questions on knowledge and experience for the

problems having correct answers to sample comparisons also shown in Table XXII.

A significant majority of participants answering correctly to problems with

sample comparisons reported understanding the explanation provided for the techniques

evaluated and besides being aware of the technique before answering; In addition, more

than half of the participants reported having applied these techniques many times or being

used to do them in software tools, and almost half of them also reported having

experienced these techniques many times or mastered them in programming.

Until now this section has provided an overview and a primary analysis on the

results of the test carried on with IT experts, that allowed us to understand that, at least

for this group of participants, not only knowledge on a programming technique but solid

experience on it is necessary to answer correctly a question based on the PVCC method.

It is now necessary to verify the correlation between experience and knowledge

and the answers to sample comparisons by technique evaluated and highlight what we

consider are representative cases that contribute directly to accomplish the objective

described in section 7.1. we will exclude those problems that could have presented issues,

explained in section 7.4. as well as those obtaining an insignificant R square correlation

coefficient.

7.5.1. Programming Loop

Fig. 22 Sample comparison evaluating the technique: Programming Loop

The R square coefficient for the results of this problem confirmed through a

regression analysis was 0.88 and, as shown in Table XIX this problem was answered

correctly by 5 participants therefore being within the average of correct answers per

problem. Table XXIII shows the answers to the problem and the questionnaire about

82

experience and knowledge in programming for the evaluated technique provided by each

one of the participants, and table XXIV shows the correlation coefficients for these

answers.

Table XXIII: Answers to Sample Comparison and Knowledge and Experience Questions for the

Technique: Programming Loop

A B C D E F G H I

Answers to problem similar skipped similar similar similar skipped similar sample 2 sample 1

After reading the previous explanation

did you understand how

“programming loop” is used in this

problem?

yes skipped yes yes yes skipped yes yes no

Did you realize about the use of

“Programming Loop” on this problem

before reading the explanation?

no skipped yes yes yes skipped yes yes yes

Have you ever used automatic actions

on software tools (ex: the “redo”

button on word, or “recorded actions”

on photoshop)?

once or

twice
skipped

many

times

I'm used

to do it

I'm used

to do it
skipped

many

times

once or

twice

once or

twice

Have you ever used loops in

programming? (keywords: for, while)

once or

twice
skipped

I'm used

to do it

I'm used

to do it

I'm used

to do it
skipped

I'm used

to do it

I'm used

to do it

once or

twice

Have you ever written code where

you had to use loops inside loops (or

nested loops) in programming?

once or

twice
skipped

many

times

I'm used

to do it

many

times
skipped

I'm used

to do it

I'm used

to do it
never

Programming experience questions

Participants

Programming knowledge questions

Technique: Programming Loop

Table XXIV: Correlation Coefficients for Answers to the Sample Comparison and Knowledge and

Experience Questions for the Problem Evaluating: Programming Loop

Programming loop Problem Knowledge 1 Knowledge 2 Experience 1 Experience 2 Experience 3

Problem 1.00

Knowledge 1 0.79 1.00

Knowledge 2 0.32 0.50 1.00

Experience 1 0.79 0.74 0.74 1.00

Experience 2 0.62 0.86 0.86 0.85 1.00

Experience 3 0.57 0.88 0.69 0.73 0.93 1.00

The correlation coefficients shown on table XXIV indicate that the understanding

of the explanation, and all the answers to the questions about programming experience

with the technique evaluated, but particularly the question about experience with the

technique on software tools, are closely correlated to the provided problem answer, so

those experienced in at least the three aspects of the questionnaire, particularly in

software tools, who understood the explanation most likely answered the sample

comparison correctly and vice versa. The correlation analysis confirms that participants’

experience and knowledge of the evaluated technique: Programming Loop are strongly

83

correlated with the answer to the sample comparison for the participant group of IT

experts.

Closer inspection to table XXIII shows that participant H, instead of identifying

the similar difficulty of both sample opted for selecting one of them, even when he

understood the explanation, he reported enough experience on programming with this

technique, he is one of the most experienced developers and considering that the hint for

this problem clearly indicated that the number of squares wasn’t important. This may

suggest that there is an aspect of the technique evaluated with this sample comparison,

beyond the number of squares, perceived by experienced programmers that could be

making them choose the second sample; this is an unexpected result that could be the

base for a revision of this particular problem.

Table XXIII also indicates that two participants skipped the question, they may

have been confused enough to not find an answer to this sample comparison; this is a

possibility we have to consider for the rest of the problems.

7.5.2. Recursion

Fig. 23 Sample comparison evaluating the technique: Recursion

The R square coefficient for the results of this problem confirmed through a

regression analysis was 0.77 and, as shown in Table XIX this problem was answered

correctly by 4 participants out of 9 therefore being below the average of correct answers

per problem. Table XXV shows the answers to the problem and the questionnaire about

experience and knowledge in programming for the evaluated technique provided by each

one of the participants, and table XXVI shows the correlation coefficients for these

answers.

84

Table XXV: Answers to Sample Comparison and Knowledge and Experience Questions for the

Technique: Recursion

A B C D E F G H I

Answers to problem sample 2 sample 1 sample 1 sample 2 sample 1 skipped sample 1 skipped sample 2

After reading the previous explanation

did you understand how “Recursion”

is used in this problem?

no yes yes yes yes skipped yes skipped yes

Did you realize about the use of

“Recursion” on this problem before

the explanation?

no yes yes yes no skipped yes skipped no

Have you ever used elements in

software tools that can contain

themselves (for example: in word and

powerpoint: tables can contain tables,

or textboxes can contain textboxes)?

never
I'm used

to do it
never never never skipped never skipped never

Have you ever done mathematic

exercises or practices about

mathematical recursive sequences

(for example: the Fibonacci

sequence)?

never never
many

times
never never skipped

I'm used

to do it
skipped never

Have you ever used or created

recursive functions in programming?
never never

once or

twice
never never skipped

once or

twice
skipped never

Participants
Technique: Recursion

Programming knowledge questions

Programming experience questions

Table XXVI: Correlation Coefficients for Answers to the Sample Comparison and Knowledge and

Experience Questions for the Problem Evaluating: Recursion

Recursion Problem Knowledge 1 Knowledge 2 Experience 1 Experience 2 Experience 3

Problem 1.00

Knowledge 1 0.63 1.00

Knowledge 2 0.55 0.63 1.00

Experience 1 0.40 0.25 0.40 1.00

Experience 2 0.58 0.37 0.58 -0.18 1.00

Experience 3 0.60 0.38 0.60 -0.19 0.98 1.00

The correlation coefficients shown on table XXVI indicate that the understanding

of the explanation, together with the two questions about programming experience with

the technique evaluated are correlated to the provided problem answer, therefore those

experienced in the technique at least in the two aspects related with programming, who

understood the explanation most likely answered the sample comparison correctly and

vice versa.

The correlation analysis confirms that the experience and knowledge on the

evaluated technique: Recursion are strongly correlated with the answer to the sample

comparison, regarding the participant group of IT experts.

85

The most interesting data shown by table XXV is the result of participant E; this

participant has never used recursion in programming, and was not familiarized with the

subject from mathematics; he hasn’t even used the options more related with the

technique when referring to software tools but his knowledge of the recursion technique

matched with the one provided in the explanation so when he read it he understood how

the technique was applied.

This participant is the most experienced individual in systems operation and

management of the group but has only 1 to 3 years of programming experience; according

to the aforementioned facts we can infer that his knowledge about Recursion could be

field-specific knowledge, not related with programming nor with software tools.

The aforementioned case could be a good example of a subject who acquired a

Panoramic Understanding of a Programming technique by means of possessing and/or

applying knowledge from other fields.

7.5.3. Empty Area Detection

Fig. 24 Sample comparison evaluating the technique: Empty Area Detection

The R square coefficient for the results of this problem confirmed through a

regression analysis was 0.80 and, as shown in Table XIX this problem was answered

correctly by 5 participants out of 9, therefore being within the average of correct answers

per problem.

Table XXVII shows the answers to the problem and the questionnaire about

experience and knowledge in programming for the evaluated technique provided by each

one of the participants, and table XXVIII shows the correlation coefficients for these

answers.

86

Table XXVII: Answers to Sample Comparison and Knowledge and Experience Questions for the

Technique: Empty Area Detection

A B C D E F G H I

Answers to problem similar sample 1 sample 1 sample 2 similar skipped sample 1 sample 1 sample 1

After reading the previous explanation

did you understand how “empty area

detection” is used in this problem?

no yes yes yes yes skipped yes no no

Did you realize about the use of

“empty area detection” on this

problem before the explanation?

no yes yes no no skipped yes no no

Have you ever used “layers” in

software tools? (layers are areas that

can contain many objects and can be

changed independently of other

similar “layers”, you can find them in

software like word, powerpoint,

photoshop and others)

never
I'm used

to do it

once or

twice

many

times
never skipped

once or

twice

once or

twice
never

Have you ever used conditionals in

programming (keywords: if, while)

once or

twice
never

I'm used

to do it
never

many

times
skipped

I'm used

to do it

I'm used

to do it

once or

twice

Have you ever drawn elements on

screen with programming depending

on the result of other processes (for

example, drawing many rectangles

with a loop)?

once or

twice
never

once or

twice
never never skipped

many

times
never never

Participants
Technique: Empty Area Detection

Programming knowledge questions

Programming experience questions

Table XXVIII: Correlation Coefficients for Answers to the Sample Comparison and Knowledge and

Experience Questions for the Problem Evaluating: Empty Area Detection

Empty Area

Detection
Problem Knowledge 1 Knowledge 2 Experience 1 Experience 2 Experience 3

Problem 1.00

Knowledge 1 0.10 1.00

Knowledge 2 0.63 0.63 1.00

Experience 1 0.35 0.58 0.55 1.00

Experience 2 0.49 0.14 0.31 -0.23 1.00

Experience 3 0.25 0.25 0.57 -0.09 0.54 1.00

The correlation coefficients shown on table XXVIII indicate that the awareness

of the use of the technique before reading the explanation, together with the question

about programming experience with conditionals, that is the base for the technique

evaluated in this problem, are correlated to the provided problem answer, therefore, those

experienced in the technique at least in the aspect asked who were aware of the technique

since the beginning surely answered the problem correctly and vice versa.

The correlation analysis confirms that the experience and knowledge on the

evaluated technique: Empty Area Detection are in some aspects correlated with the

answer to the sample comparison.

87

The most interesting aspect of table XXVII is that participant B, mentioned before

as an exceptional case, without any experience on the concept base of the technique

evaluated: conditionals necessary to perform the empty area detection, nor on making

objects appear on screen depending on other programming processes, and with only

experience on the concept of layers in software tools was aware of the empty area

detection before answering the sample comparison and was able to understand our

explanation. This participant is another example of an individual who acquired a

panoramic understanding of complex programming techniques by applying knowledge

from other fields and by using only software tools.

7.5.4. Distribute Objects According to Data

Fig. 25 Sample comparison evaluating the technique: Distribute Objects According to Data

The R square coefficient for the results of this problem confirmed through a

regression analysis was 1.0 and, as shown in Table XIX this problem was answered

correctly by 6 participants out of 9, therefore being above the average of correct answers

per problem. Table XXIX shows the answers to the problem and the questionnaire about

experience and knowledge in programming for the evaluated technique provided by each

one of the participants, and table XXX shows the correlation coefficients for these

answers.

The correlation coefficients shown on Table XXX indicate that, particularly, the

understanding of the explanation provided but also the awareness of the use of the

88

technique before reading the explanation, together with the question about changing

shapes properties with code are strongly correlated to the problem answer, therefore,

those participants experienced at least in the aspect related with programming already

mentioned, who were aware of the technique before reading the explanation but specially

whose knowledge on the technique was almost the same to that provided in the

explanation, most likely answered the problem correctly and vice versa.

The correlation analysis confirms that, remarkably, the knowledge on the

evaluated technique: Distribute Objects According to Data but also some aspects of the

experience are strongly correlated with the answer to the sample comparison.

What stands out in table XXIX is that participant F, who skipped four of the

problems previous to this one and answered incorrectly other two, demonstrated in this

problem having knowledge and experience in this particular technique and answered the

problem correctly.

Table XXIX: Answers to Sample Comparison and Knowledge and Experience Questions for the

Technique: Distribute Objects According to Data

A B C D E F G H I

Answers to problem sample 2 sample 1 sample 1 sample 1 similar sample 1 sample 1 sample 1 sample 2

After reading the previous explanation

did you understand how “distribute

objects according to data” is used in

this problem?

no yes yes yes no yes yes yes no

Did you realize about the use of

“distribute objects according to data”

on this problem before the

explanation?

no yes yes yes no yes yes yes yes

Have you ever used the “align and

distribute” option that makes objects

align to center, left or right and

distribute the space between them in

software tools? (Example: Microsoft

powerpoint, photoshop etc.)

I'm used

to do it

I'm used

to do it

once or

twice
never

once or

twice

I'm used

to do it

I'm used

to do it

many

times
never

Have you ever changed the properties

of shapes (size, color, position etc)

depending on data located in external

files with programming?

never never
once or

twice

I'm used

to do it
never

I'm used

to do it

once or

twice

once or

twice
never

Have you ever wrote code to align

and distribute shapes or objects in a

pattern (ex: distribute shapes in a

circle pattern or in a line)

never never
once or

twice
never never

I'm used

to do it

once or

twice
never never

ParticipantsTechnique: Distribute Objects

According to Data

Programming knowledge questions

Programming experience questions

89

Table XXX: Correlation Coefficients for Answers to the Sample Comparison and Knowledge and

Experience Questions for the Problem Evaluating: Distribute Objects According to Data

Distribute Objects

According to Data
Problem Knowledge 1 Knowledge 2 Experience 1 Experience 2 Experience 3

Problem 1.00

Knowledge 1 1.00 1.00

Knowledge 2 0.76 0.76 1.00

Experience 1 0.26 0.26 -0.10 1.00

Experience 2 0.61 0.61 0.46 -0.08 1.00

Experience 3 0.41 0.41 0.31 0.39 0.60 1.00

This is an unexpected outcome for the general results of this problem, and most

likely suggests that this was one of the only problems where he, as a content developer,

found his background and experience useful to answer correctly.

Another aspect to highlight in table XXIX is, once more, the results and answers

of participant B who having only experienced shape distribution in software tools, was

aware of the technique before answering the sample comparison and his knowledge on

the technique was similar to the explanation we provided.

7.5.5. Visualization According to Data

Fig. 26 Sample comparison evaluating the technique: Visualization According to Data

The R square coefficient for the results of this problem confirmed through a

regression analysis was 0.75 and, as shown in Table XIX this problem was answered

90

correctly by 5 participants out of 9, therefore being within the average of correct answers

per problem.

Table XXXI shows the answers to the problem and the questionnaire about

experience and knowledge in programming for the evaluated technique provided by each

one of the participants, and table XXXII shows the correlation coefficients for these

answers.

The correlation coefficients shown on Table XXXII indicate that, only the

question about experience with the technique in software tools is strongly correlated to

the problem answer, therefore, those participants who have made polygons with lines by

using software tools most likely answered correctly to the sample comparison and vice

versa.

The correlation analysis confirms that at least one experience aspect is strongly

correlated with the answer to the sample comparison for the technique evaluated.

Table XXXI: Answers to Sample Comparison and Knowledge and Experience Questions for the

Technique: Visualization According to Data

A B C D E F G H I

Answers to problem sample 1 sample 1 similar sample 2 sample 1 sample 1 similar sample 1 similar

After reading the previous explanation

did you understand how “data

visualization according to data

analysis” is used in this problem?

yes yes yes yes yes yes yes no no

Did you realize about the use of “data

visualization according to data

analysis” on this problem before the

explanation?

yes yes yes no no yes no no yes

Have you ever made polygons with

lines by using software tools (for

example in powerpoint you can join

together lines to build a polygon then

you can change its shape from its

vertices or apply color inside)

once or

twice

many

times

once or

twice
never

many

times

I'm used

to do it

once or

twice

many

times
never

Have you ever calculated the area

between two curves in mathematics?
never never never never

once or

twice

I'm used

to do it

once or

twice
never never

Have you ever calculated the area

between two curves with

programming?

never never never never never
I'm used

to do it

once or

twice
never

once or

twice

ParticipantsTechnique: Visualization

According to Data

Programming knowledge questions

Programming experience questions

91

Table XXXII: Correlation Coefficients for Answers to the Sample Comparison and Knowledge and

Experience Questions for the Problem Evaluating: Visualization According to Data

Visualization

According to Data
Problem Knowledge 1 Knowledge 2 Experience 1 Experience 2 Experience 3

Problem 1.00

Knowledge 1 0.06 1.00

Knowledge 2 0.10 0.06 1.00

Experience 1 0.79 0.19 0.08 1.00

Experience 2 0.29 0.31 0.05 0.66 1.00

Experience 3 0.05 0.03 0.29 0.41 0.88 1.00

It is apparent from the correlation coefficients shown on table XXXII and the data

on table XXXI that the questions about experience and knowledge for this problem need

to be changed, this problem is not related with calculation of the area below the curve

nor in mathematics neither in programming. The explanation also needs to be improved

because some participants (specifically participants C, D and G) even when

understanding this text and one of them having reported that was aware of the technique

evaluated from the beginning, answered incorrectly to the sample comparison, these

findings suggest that probably the explanation is to general and doesn’t give much real

detail on how the technique evaluated is applied in the correct sample.

7.5.6. Data Format Reading

Fig. 27 Sample comparison evaluating the technique: Visualization According to Data

92

The R square coefficient for the results of this problem confirmed through a

regression analysis was 1.0 and, as shown in Table XIX this problem was answered

correctly by 6 participants out of 9, therefore being above the average of correct answers

per problem.

Table XXXIII shows the answers to the problem and the questionnaire about

experience and knowledge in programming for the evaluated technique provided by each

one of the participants, and table XXXIV shows the correlation coefficients for these

answers.

The correlation coefficients shown on Table XXXIV indicate that, notably, the

understanding of the explanation provided but also the awareness of the use of the

technique before reading the explanation, together with the question on programming

experience regarding different formats’ data reading with code are strongly correlated to

the problem answer, therefore, those participants experienced at least in the aspect related

with programming already mentioned, who were aware of the technique before reading

the explanation but particularly whose knowledge on the technique was almost the same

to that provided in the explanation, surely answered the problem correctly and vice versa.

Table XXXIII: Answers to Sample Comparison and Knowledge and Experience Questions for the

Technique: Data Format Reading

A B C D E F G H I

Answers to problem sample 2 sample 1 sample 1 sample 2 sample 1 sample 1 sample 1 sample 1 sample 2

After reading the previous explanation

did you understand how “data text

format reading and displaying” is used

in this problem?

no yes yes no yes yes yes yes no

Did you realize about the use of “data

text format reading and displaying” on

this problem before the explanation?

no yes yes no yes yes yes yes yes

Have you ever transformed

spreadsheets into csv (comma

separated value) files? (for example:

in excel you can transform a table to

a comma separated value file)?

I'm used

to do it
never

I'm used

to do it
never

many

times

I'm used

to do it

I'm used

to do it

many

times
never

Have you ever opened text files or a

comma separated value (csv) files in

text processors or spreadsheet

software (ex: word or excel)?

once or

twice

once or

twice

I'm used

to do it
never

many

times

I'm used

to do it

I'm used

to do it

I'm used

to do it

I'm used

to do it

Have you ever done a program to

read data from different text formats?
never never

I'm used

to do it
never

many

times

I'm used

to do it

I'm used

to do it

many

times

once or

twice

Participants
Technique: Data Format Reading

Programming knowledge questions

Programming experience questions

93

Table XXXIV: Correlation Coefficients for Answers to the Sample Comparison and Knowledge and

Experience Questions for the Problem Evaluating: Data Format Reading

Data Format

Reading
Problem Knowledge 1 Knowledge 2 Experience 1 Experience 2 Experience 3

Problem 1.00

Knowledge 1 1.00 1.00

Knowledge 2 0.76 0.76 1.00

Experience 1 0.42 0.42 0.11 1.00

Experience 2 0.50 0.50 0.78 0.48 1.00

Experience 3 0.69 0.69 0.66 0.68 0.84 1.00

The correlation analysis confirms that knowledge related to the evaluated

technique: Data Format Reading and also some aspects of the experience are strongly

correlated with the answer to the problem.

Answers to this problem provided by participant B stand out once again as

representative of an individual who possess a Panoramic Understanding of the

programming processes needed to read data formats and the difficulty that it implies; this

participant was aware of the difference on text formats of the data samples provided and

how this difference can affect program’s behavior; additionally he was able to identify

which one of the formats would be more difficult to read for a program therefore

answering correctly to the sample comparison.

7.6. Conclusion of This Chapter

Through the consolidation of corrected problems from the two previous tests and

the addition of a questionnaire on experience and knowledge in programing and software

tools to each problem, we were able to build a new test based on the PVCC method and

apply it to experts in information and technology obtaining results which analysis

provided detiled insights on the relation between knowledge and experience in

programming and the panoramic understanding of a programming technique.

Taken together the results and the analysis of the test presented in this section

suggest that, at least for the group of IT experts evaluated, there is an association between

the experience and knowledge (understanding and awareness of what is being evaluated)

for the programming techniques evaluated and the answers to the programming sample

comparison problems.

In other words: if an individual of the participant group, knowing the evaluated

technique in beforehand by having managed it in software tools or by applying it while

doing programming, answers to one of the questions of the PVCC method based test, he

94

most likely will be aware of the technique before answering and then answer correctly,

and vice versa, if the participant don’t know the technique enough to be able to be aware

of it when looking at the programming samples, he may not be able to answer correctly.

These results confirm our assumption and, in general, contribute to our

understanding of how a person could generate a Panoramic Understanding of a

programming technique by having knowledge and experience on it not only as an expert

but as a beginner or by only having managed software tools.

At the same time from the analysis of the results of this test we were also able to

understand that some problems have misleading guidance elements that coud have

confused IT experts on what is the main purpose of each one of those problems, it is

necessary to revise guidance elements, namely the hint and the operation guide, of these

problems so they don’t suggest a different interpretation than the one desired.

95

8. Conclusions

This research set out to propose and describe a Programmed Visual Contents

Comparison (PVCC) Method and determine its potential to evaluate programming

abilities related with a Panoramic Understanding of Programming (PUP).

Various experiments involving novice students of programming, IT company

staff members, expert programmers from different fields and professors of programming

were performed; the results of these experiments confirmed that the programming

abilities assessed with the PVCC method are related to a Panoramic Understanding of

Programming, and the level and difference on knowledge and experience in

programming of the person who answers, the difficulty degree of each problem, and how

the programming samples are built and paired into a problem define how well this method

can evaluate these programming skills.

In the same way, we were able to find other kinds of abilities used by the

individuals taking the tests to answer the problems proposed; those abilities, even

different to the ones we wanted to assess, are also related with a Panoramic

Understanding of Programming.

Issues with problems’ difficulty identification, criteria for selecting and applying

adequate programming subjects at making and paring programming samples and balance

between complexity and concision for each problem were addressed.

Through the addition of input data to comparisons of output sample pictures we

were able to build new problems to identify programming abilities. Even when some of

the proposed new problems presented different kind of misleading elements, expert

programmers and professors participating in the test with these problems identified

mistakes and points of confusion and suggested optimal ways to correct them.

By consolidating new sample comparisons and adding questions about

experience and knowledge in evaluated programming techniques we could also establish

the correlation that the experience and knowledge of the evaluated programming

techniques have with the answers provided to the problems based in the PVCC method.

Additionally, through results from feedback questionnaires performed at the end

of each test we learned that the test was enjoyable and has a strong potential to evaluate

programming abilities; also, that it could become a good starting point for novice

96

programming learners, or to evaluate programming abilities of new employees at IT

companies.

Participants manifested positive feedback regarding the problems and the PVCC

method in general. They thought that this method can definitely be used to evaluate

programming abilities, and, through the arrangement and correction of problems and the

inclusion of questions about experience and knowledge as proposed in this thesis, there

is a high probability of evaluating more and more precisely programming abilities related

to PUP.

Further studies need to be carried out in order to establish if the Programmed

Visual Contents Comparison Method can effectively measure programming ability. A

greater focus on establishing how to measure individuals’ specific programming abilities

could produce interesting findings that account more for the validation of the proposed

method.

Future improvement should also focus on building evaluation standards or scales

for each measured ability related with Panoramic Understanding of Programming, and

enhance problem’s classification, probably proposing different types of tests reaching

different level of abilities for different fields or curriculums at programming courses.

A natural progression of this work is to perform more tests using each time more

complete and precise problems and keep verifying their effectiveness. Future trials of the

test based on the Programmed Visual Contents Comparison Method will be carried on

with groups of novice and expert programmers from different companies focusing

specially in their difference of background and profile and analyzing if these aspects

affect or change the way Panoramic Understanding of Programming is applied to solve

programming problems.

97

References

[1] Association for Computing Machinery (ACM); Association for Information Systems (AIS);,

“Curriculum Guidelines for Undergraduate Degree Programs in Information Systems (IS 2010),”

Association for Computing Machinery and Association for Information Systems, 2010.

[2] M. Burnett and B. Myers, “Future of End-user Software Engineering: Beyond the Silos,”

Proceedings of the Future of Software Engineering Conference (FOSE 2014), ACM, New York,

NY, 2014, pp.201-211.

[3] S. Y. Park, B. Myers and A. Ko, "Designers' Natural Descriptions of Interactive Behaviors,"

Proceedings of the 2008 IEEE Symposium on Visual Languages and Human-Centric Computing

(VLHCC '08). IEEE Computer Society, Washington, DC, 2008, pp. 185-188.

[4] A. Ko, B. Myers and H. H. Aung, "Six Learning Barriers in End-User Programming Systems,"

Proceedings of the 2004 IEEE Symposium on Visual Languages - Human Centric Computing

(VLHCC '04). IEEE Computer Society, Washington, DC, 2004, pp. 199-206.

[5] Mozilla, “MDN Web Docs: HTML,” Mozilla, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTML. [Accessed 25 October 2017].

[6] World Wide Web Consortium, “Cascading Style Sheets Home Page,” w3.org, [Online]. Available:

https://www.w3.org/Style/CSS/Overview.en.html. [Accessed 20 October 2017].

[7] F. Kursat Ozenc, K. Miso, J. Zimmerman, S. Oney and B. Myers, "How to Support Designers in

Getting Hold of the Immaterial Material of Software," Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI '10), ACM, New York, NY, 2010, pp. 2513-2522.

[8] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi, J. Lawrance,

H. Lieberman, B. Myers, M. B. Rosson, G. Rothermel, M. Shaw and S. Wiedenbeck, “The State of

the Art in End-User Software Engineering,” ACM Computing Surveys, vol. 43, no. 3, 2011, pp. 1-

44.

[9] D. Norman, The design of everyday things, New York, New York: Basic Books, 2013.

[10] Cycling'74, “About Max,” [Online]. Available: https://cycling74.com/products/max. [Accessed 22

october 2017].

[11] VVVV.org, “VVVV - a multipurpose toolkit,” [Online]. Available: https://vvvv.org/. [Accessed 10

october 2017].

[12] Casa paganini/Infomus - Genova University, “The EyesWeb Project,” [Online]. Available:

http://www.infomus.org/eyesweb_eng.php. [Accessed 15 November 2017].

[13] D. Loksa, A. J. Ko, W. Jerningan, A. Oleson, C. J. Mendez and M. M. Burnett, “Programming,

Problem Solving, and Self-Awareness: Effects of Explicit Guidance,” Proceedings of the 2016

CHI Conference on Human Factors in Computing Systems (CHI'16), San Jose, California, 2016,

pp. 1449-1461.

[14] T. D. LaToza, D. Garlan, J. D. Herbsleb and B. Myers, “Program Comprehension as Fact Finding,”

Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2007),

Dubrovnik, Croatia, 2007, pp. 361-370.

98

[15] Qualified Inc., “Codewars.com,” [Online]. Available: https://www.codewars.com. [Accessed 12

November 2017].

[16] Project Euler, “Project Euler.net,” [Online]. Available: https://projecteuler.net. [Accessed 15

March 2017].

[17] Project Nayuki, “Project Nayuki,” [Online]. Available: https://www.nayuki.io/page/project-euler-

solutions. [Accessed 20 March 2017].

[18] HackerRank Inc., “HackerRank / Technical Recruiting / Hiring the best Engineers,” [Online].

Available: https://www.hackerrank.com/. [Accessed 2 November 2017].

[19] The University of Aizu, “Aizu Online Judge,” [Online]. Available: http://judge.u-aizu.ac.jp.

[Accessed 20 November 2017].

[20] TopCoder Inc., “TopCoder.com: Deliver faster for your business through Crowdsourcing,”

[Online]. Available: https://www.topcoder.com/challenges. [Accessed 20 November 2017].

[21] K. Owen, “exercism.io: Level up your programming skills,” [Online]. Available:

http://exercism.io/. [Accessed 21 November 2017].

[22] T. LaToza and B. Myers, “On the Importance of Understanding the Strategies that Developers

Use,” Proceedings of the 2010 ICSE Workshop on Cooperative and Human Aspects of Software

Engineering (CHASE '10), ACM, Cape Town, South Africa, 2010, pp. 72-75.

[23] N. Mangano, T. D. LaToza, M. Petre and A. van der Hoek, “How Software Designers Interact with

Sketches at the Whiteboard,” IEEE Transactions on Software Engineering, vol. 41, no. 2, 2015, pp.

135 - 156.

[24] J. Brandt, P. J. Guo, J. Lewenstein and S. R. Klemmer, “Opportunistic Programming: How Rapid

Ideation and Prototyping Occur in Practice,” Proceedings of the 4th international workshop on

End-user software engineering (WEUSE '08), Leipzig, Germany, 2008, pp. 1-5.

[25] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva and S. R. Klemmer, “Two Studies of

Opportunistic Programming: Interleaving Web Foraging, Learning, and Writing Code,”

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'09),

Boston, MA, 2009, pp. 1589-1598.

[26] D. M. Kurland, R. D. Pea, C. Clement and R. Mawby, “A Study of the Development of

Programming Ability and Thinking Skills in High School Students,” Journal of Educational

Computing Research, vol. 2, no. 4, 1986, pp. 429-458.

[27] R. D. Pea and D. M. Kurland, “On the Cognitive Effects of Learning Computer Programming,”

New Ideas in Psychology, vol. 2, no. 2, 1984, pp. 137-168.

[28] B. Myers, J. Pane and A. Ko, “Natural Programming Languages and Environments,”

Communications of the ACM, vol. 47, no. 9, September 2004, p. 47-52.

[29] B. Myers, S. Y. Park, Y. Nakano, G. Mueller and A. Ko, "How Designers Design and Program

Interactive Behaviors," Proceedings of the 2008 IEEE Symposium on Visual Languages and

Human-Centric Computing (VLHCC '08), IEEE Computer Society, Washington, DC, 2008, pp.

177-184.

[30] Adobe Systems Incorporated, “Adobe Muse CC Websites Builder,” Adobe Systems Incorporated,

[Online]. Available: http://muse.adobe.com/. [Accessed 22 October 2017].

99

[31] D. Shiffman, Learning Processing: A Beginner's Guide to Programming Images, Animation, and

Interaction, Burlington, MA: Morgan Kaufmann, 2008.

[32] D. Shiffman, The Nature Of Code, New York, NY: Self-published, 2012.

[33] K. Terzidis, Algorithms for Visual Design Using the Processing Language, Indianapolis, IN: Wiley

Publishing Inc., 2009.

[34] H. Bohnacker, B. Gross and J. Laub, Generative Design: Visualize, Program and Create with

Processing, New York, NY: Princeton Architectural Press, 2012.

[35] Processing Foundation, “Processing.org,” [Online]. Available: https://processing.org/. [Accessed

20 October 2017].

[36] D. Martinez Calderon, Y. Miyamoto, H. Kiyomitsu and K. Ohtsuki, “Characteristics and

Advantages of a Visual Contents Comparison Method for Evaluating Programming Abilities

(Article in Japanese)” Proceedings of 2016 Annual Conference of the Institute of Electrical

Engineers of Japan C, 2016, pp. 1317-1319. (D. Martinez Calderon, 宮本 行庸, 清光 英成, 大月

一弘, “視覚コンテンツ比較によるプログラミング能力評価法の特徴と利点,” 【C】平成

28年電気学会電子・情報・システム部門大会講演論文集, 2016, pp. 1317-1319.)

[37] D. Martinez Calderon, Y. Miyamoto, H. Kiyomitsu and K. Ohtsuki, “Evaluating Programming

Ability by Using a Visual Contents Comparison Method,” Proceedings of the 9th Data

Engineering and Information Management Forum (DEIM2017) (第 9回データ工学と情報マネ

ジメントに関するフォーラム(DEIM2017)論文集), 2017, pp. 1-4.

[38] D. Martinez Calderon, Y. Miyamoto, M. Hirabayashi, H. Kiyomitsu and K. Ohtsuki, “An

Evaluation Method for Panoramic Understanding of Programming by Comparison of Programmed

Visual Samples,” Information Processing Society of Japan, Computers and Education Research

Report (研究報告コンピューターと教育(CE)), Vols. 2016-CE-134, no. 6, 2016, pp. 1-7.

[39] D. Martinez Calderon, K. Man, H. Kiyomitsu, K. Ohtsuki, Y. Miyamoto and Y. Sun, “An

Evaluation Method for Panoramic Understanding of Programming by Comparison with Visual

Examples,” Proceedings of the 2015 IEEE Frontiers in Education Conference (FIE), El Paso,

Texas, 2015, pp. 1-8.

[40] D. Martinez Calderon, K. Man, Y. Miyamoto, Y. Sun, M. Hirabayashi, H. Kiyomitsu and K.

Ohtsuki, “Measurement Range Increment in a Method for Evaluating Panoramic Understanding of

Programming,” Proceedings of the 2016 IEEE Frontiers in Education Conference (FIE), Erie,

Pennsylvania, 2016, pp. 1-8.

[41] W. Wang, H. Wang, G. Dai and H. Wang, “Visualization of Large Hierarchical Data by Circle

Packing,” Proceedings of the SIGCHI conference on Human Factors in computing systems

(CHI'06), ACM, Montréal, Québec, 2006, pp. 517-520.

[42] Robert McNeel & Associates, “Rhinoceros: design, model, present, analyze, realize,” [Online].

Available: https://www.rhino3d.com/. [Accessed 24 october 2017].

100

Acknowledgements

I would like to express my deepest appreciation and thanks to my advisor, Dr.

Kazuhiro Ohtsuki, Professor of the Graduate School of Intercultural Studies of Kobe

University, for encouraging and allowing me to grow as a researcher. Your advice not

only on research but on many other aspects of my career and life has been invaluable.

A very special gratitude goes to Dr. Hidenari Kiyomitsu, Associate Professor of

the Graduate School of Intercultural Studies, Computers and Communication Course of

Kobe University for all your help during this time; your ideas and support were key to

deliver a solid research.

I would especially like to thank all the staff from the College of Computing of

Kobe Institute of Computing but particularly to its Vice-president Dr. Kenji Fukuoka, for

allowing us to perform this research’s initial experiment with the institute students and

also for all your ideas and contribution to this research; as well as to Dr. Yukinobu

Miyamoto, Associate Professor of the Graduate School of Information Technology of

Kobe Institute of Computing for all your continued support and effort during this time,

some of the experiments performed in this research in all of its aspects wouldn’t have

been possible without your help.

I would like to thank as well Dr. Hirokazu Yamamoto, Chairman of the Board

and President of ICRAFT Corp. for letting us perform this research’s final experiment

with ICRAFT’s staff members and for allowing them to answer our test during their

working time, also for your positive comments and feedback regarding its results.

I am also grateful to Dr. Masami Hirabayashi, Professor of the Institute of

Advanced Media Arts and Sciences; Dr. Toshiharu Samura, Professor of the National

Institute of Technology, Akashi College; Dr. Ken Bun and Dr. Yi Sun for sharing all

their ideas and suggestions during seminars and meetings, and for their technical and

personal support during all the process.

This research was possible by a grant from the Japanese Ministry of Education,

Culture, Sports, Science and Technology of Japan (Monbukagakusho).

101

Appendixes

Appendix A: Structure of the Test Based on the PVCC method

This appendix includes sample comparisons explained in section 3, a selection of

new problems built as explained in chapter 5 corrected and enhanced according to

feedback received as presented in chapter 6 and, in addition, the questionnaire on

knowledge and experience in programming presented in section 7.2.2. All problem’s

questions about knowledge and experience on programming considered were included.

Problem #1

Most Difficult Programming Technique: Programming Loop

Category: Data Processing

Hint: It doesn’t matter how many squares there are on each sample or how big they are!

How to handle: There is no need to use the mouse here, just look at the picture in each

program sample and answer the question.

Correct Answer: Both samples have similar difficulty.

Why? The first sample seems to be easily achieved by placing lines manually to form

squares compared to the second one that can become troublesome because there are many

squares to draw, but, both samples have the same code and both squares arrangements

102

can be quickly performed in programming by drawing the same object (changing its size)

with loops.

Questions:

1) After reading the previous explanation did you understand how “programming

loop” is used in this problem?

2) Did you realize about the use of “Programming Loop” on this problem before

reading the explanation?

3) Have you ever used automatic actions on software tools (Ex: the “redo” button

on word, or “recorded actions” on photoshop)?

4) Have you ever used loops in programming? (keywords: for, while)

5) Have you ever written code where you had to use loops inside loops (or nested

loops)?

Problem #2

Most Difficult Programming Technique: Previous Position Storing

Category: Data Processing

103

Hint: pay attention to each line end points!

How to handle:

1) Place the mouse over any of the samples

2) Press the right Click

3) Change the position of the mouse inside the sample, press the right click again

and see what happened!

Correct Answer: Sample 1.

Why? The first sample stores the previous mouse position in a variable, and when mouse

clicks draws a line between the previous and the current position, while the second

sample only draws a line between a fixed point and the mouse position when it’s clicked.

Questions:

1) After reading the previous explanation did you understand how “previous

position storing” is used in this problem?

2) Did you realize about the use of “previous position storing” on this problem

before reading the explanation?

3) Have you ever changed the position of shapes by writing numbers or commands

instead of using the mouse in software tools? (Ex: change the size of shapes in

PowerPoint or Word by using menu options)

4) Have you ever used variables in programming? (keywords: for, while)

5) Have you ever stored different kinds of data in variables in programming?

6) Have you ever used variables to store different types of data automatically in

programming? (not by hand but as a result of other programming process or

algorithm)

Problem #3

Most Difficult Programming Technique: Picture pixel array management

Category: Data display

Hint: pay attention to how the pixels of each sample’s picture change!

104

How to handle:

1) Place the mouse over the left border of any of the samples

2) Move the mouse SLOWLY from the left border to the right border of the sample.

3) Finally, move the mouse pointer from the right border to the left border and see

what happens!

Correct Answer: Sample 2.

Why? In the first sample, the picture is changing completely according to the mouse

movement, while in the second one each pixel on the picture's pixel matrix is being

replaced by a circle that changes its size according to mouse movement.

Questions:

1) After reading the previous explanation did you understand how “Picture pixel

array management” is used in this problem?

2) Did you realize about the use of “Picture pixel array management” on this

problem before reading the explanation?

3) Have you ever applied “filters” (or options to manipulate the pixels of an image)

to pictures by using software tools? (Microsoft Paint, Adobe Photoshop, etc.)

4) Have you ever made filters for pictures directly with programming? (to change

picture properties like saturation, contrast, brightness etc.)

105

Problem #4

Most Difficult Programming Technique: Recursion

Category: Data Processing

Hint: Look at the length and position of each horizontal and vertical lines

How to handle:

1) Place the mouse over any of the samples

2) Press the right click button.

3) Change the mouse position anywhere inside each sample, press right click again

and see what happens!

Correct Answer: Sample 2.

Why? In the first sample, the picture is changing completely according to the mouse

movement, while in the second one each pixel on the picture's pixel matrix is being

replaced by a circle that changes its size according to mouse movement.

Questions:

1) After reading the previous explanation did you understand how “Picture pixel

array management” is used in this problem?

2) Did you realize about the use of “Picture pixel array management” on this

problem before reading the explanation?

106

3) Have you ever applied “filters” (or options to manipulate the pixels of an image)

to pictures by using software tools? (Microsoft Paint, Adobe Photoshop, etc.)

4) Have you ever made filters for pictures directly with programming? (to change

picture properties like saturation, contrast, brightness etc.)

Problem #5

Most Difficult Programming Technique: Empty area detection

Category: Data Display

Hint: Pay attention to the position of the squares on each sample!

How to handle: There is no need to use the mouse here, just look at the animation on

each sample and answer the question below. If you need to see the animation again,

please press the “see samples again” button beside the submit button.

Correct Answer: Sample 1.

Why? While the second sample places squares following a random function without

criteria related to where to place them, the first sample is applying an empty space

recognizing algorithm that loops throughout all the already placed squares to see if there

is an empty space and if this is big enough to contain a new square, therefore the second

one is the most difficult sample.

Questions:

107

1) After reading the previous explanation did you understand how “Empty Area

Detection” is used in this problem?

2) Did you realize about the use of “Empty Area Detection” on this problem before

reading the explanation?

3) Have you ever used “layers” in software tools? (layers are areas that can contain

many objects and can be changed independently of other similar “layers”, you

can find them in software like word, PowerPoint, Photoshop and others)

4) Have you ever used conditionals in programming? (keywords: if, while)

5) Have you ever drawn elements on screen with programming depending on the

result of other processes (for example, drawing many rectangles with a loop)?

Problem #6

Most Difficult Programming Technique: Hidden line removal

Category: Data Display

Hint: How do you get the circles to be transparent? and to be overlapped?

How to handle: There is no need to use the mouse here, just look at the picture on each

program sample and answer the question below.

Correct Answer: Sample 1.

108

Why? The first example even though it looks simple (a repetition of filled circles) it

involves the programming concept of "hidden line removal" where lines covered by

"surfaces" (color or texture) with borders intersecting are not drawn according to the

position of the line or circle immediately above (or at the right in this case).

Questions:

1) After reading the previous explanation did you understand how “Hidden line

removal” is used in this problem?

2) Did you realize about the use of “Hidden line removal” on this problem before

reading the explanation?

3) Have you ever drawn overlapped figures by using software tools? (like: Word,

PowerPoint, Adobe Photoshop, or Adobe Illustrator etc.)

4) Have you ever tried to draw a cube with rectangles on software tools? (example:

in Microsoft paint, draw two overlapped rectangles and joint them together with

lines)

5) Have you ever drawn overlapped shapes with programming? (one shape over

another, intersecting)

6) Have you ever drawn a cube by using 2d figures with programming?

Problem #7

Most Difficult Programming Technique: Distribute Objects According to Data

Category: Data Display

Hint: Think about how the circles are arranged and how you can get these arrangements

with programming!

109

How to handle:

Input data: Is the color and the radius of different circles ordered from the biggest to the

smallest.

Output graphs: Circles drawn using the input data color and radius.

Correct Answer: Sample 1.

Why? The most difficult programming technique to identify in the output sample 1 is:

to calculate the necessary space between the circles having into account each circle size

written in the input data and fit them into the square diagonal; While on sample 2 is to

do a grid of points equally separated and position the circles from the biggest to the

smallest one, matching the center of each circle with each point, the position or the space

between circles don’t depend on the size.

Questions:

1) After reading the previous explanation did you understand how “Distribute

Objects According to Data” is used in this problem?

110

2) Did you realize about the use of “Distribute Objects According to Data” on this

problem before reading the explanation?

3) Have you ever tried to draw shapes of different sizes distributed with the same

space between them by using drawing software tools? (Example: Microsoft Paint,

Photoshop etc.)

4) Have you ever used the “align and distribute” option that makes objects align to

center, left or right and distribute the space between them in software tools?

(Example: Microsoft PowerPoint, Photoshop etc.)

5) Have you ever changed the properties of shapes (size, color, position etc.)

depending on data located in external files with programming?

6) Have you ever written code to align and distribute shapes or objects in a pattern

(ex: distribute shapes in a circle pattern or in a line)?

Problem #8

Most Difficult Programming Technique: Multiple Data Sources

Category: Data Processing

Hint: Pay attention to how the input data is used on each output, and think if there are

places where the input data is not used!

How to handle:

Input data: sample 1 contains the name and total area of some Japanese prefectures,

besides of the name and coordinate of their main cities. Sample 2 contains the coordinates

for initial and end points to draw the limit line of each one of the prefectures on sample

1.

Output graphs: sample 1 is a circle diagram that uses each prefecture area as its size and

is ordered by using a “nearest neighbor” algorithm. Sample 2 is a map of the prefectures

drawn by using the input data.

111

Correct Answer: Sample 1.

Why? The most difficult programming technique to identify in the output sample 1 is:

to find the circle nearest to each other according to the size of each circle (that is the area

value of each prefecture according to the first data sample); While on sample 2 to trace

lines from one point to another according to the coordinates of each prefecture map

provided in the second input data sample, additionally, to use the coordinate of each

prefecture’s capital city to position its name and area.

Questions:

1) After reading the previous explanation did you understand how “Multiple Data

Sources” are used in this problem?

2) Did you realize about the use of “Multiple Data Sources” on this problem before

reading the explanation?

3) Have you ever drawn by using vectors in software tools? (ex: if you draw lines in

Word or PowerPoint, you are drawing vectors)?

112

4) Have you ever drawn maps by using software tools? (ex: vector based software

tools like: Adobe Illustrator, Corel Draw, or even Microsoft PowerPoint can be

used)

5) Have you ever used a GPS by inputting a destination coordinate or point? (ex:

insert a place coordinate in the GPS of a car)

6) Have you ever changed the properties of shapes, or data depending on multiple

external data sources in software tools? (ex: in excel you can change or show data

on one sheet according to changes on multiple other data sheets or files)?

7) Have you ever used coordinates in programming? (ex: X and Y coordinates)

8) Have you ever used map coordinates in programming? (ex: similar to the GPS

coordinates or similar to the ones on the input data samples)

Problem #9

113

Most Difficult Programming Technique: Visualization According to Data Analysis

Category: Data Display

Hint: Pay attention to the colored parts of each sample, and where the color difference

starts and ends!

How to handle:

Input data: Temperature in two American cities between January and September of 2012,

first line are the labels of data, from the second line and each line reports the data per day

Output graphs: Sample 1 and sample 2 are the same line graphs but sample 1 has colored

the area between the lines according to which city has the highest temperature on each

day.

Correct Answer: Sample 1.

Why? Both samples are drawing the same graph from the data but the program of sample

1 has to compare data in both cities each day to know which city is higher, besides having

into account those points, calculate the area between both lines and color this area

accordingly. To calculate the area between both lines according to the data and then apply

color is a difficult process therefore sample 1 is more difficult.

Questions:

1) After reading the previous explanation did you understand how “Visualization

According to Data Analysis” is used in this problem?

2) Did you realize about the use of “Visualization According to Data Analysis” on

this problem before reading the explanation?

3) Have you ever made polygons with lines by using software tools? (for example,

in PowerPoint you can join together lines to build a polygon then you can change

its shape from its vertices or apply color inside)

4) Have you ever made polygons with lines with programming (doing line by line

and make the program consider a group of lines joined together a polygon)?

5) Have you ever calculated the area between two curves in mathematics? (calculus)

6) Have you ever calculated the area between two curves with programming?

114

Problem #10

Most Difficult Programming Technique: Reading Data Formats

Category: Data Processing

Hint: Pay attention to how the data samples are written!

How to handle:

Input data: sample 1 and sample 2 contain the name and total area of some Japanese

prefectures ordered according the region (kanto or kansai), in sample 1 the lines shifted

to the left are parents of (or containers of) the lines shifted to the right, for example: if 日

本 is shifted to the left and 関東 is shifted to the right that means that 日本 contains関

東 or 日本 is a parent of 関東. In sample 2 each line contains the name of the country,

the region, the prefecture and the area.

Output graphs: is a circle packing diagram of the hierarchy taken from the data input.

Correct Answer: Sample 1.

115

Why? It is more difficult to do a program to get the output picture with data sample 1

because the program will need to perform additional processes to identify which

characters indicate the levels of hierarchy (in this case, spaces), besides, the program will

need to confirm for each line who is his parent and children, and finally, it will also need

to sort the data.

Questions:

1) After reading the previous explanation did you understand how “Reading Data

Formats” is used in this problem?

2) Did you realize about the use of “Reading Data Formats” on this problem before

reading the explanation?

3) Have you ever transformed spreadsheets into csv (comma separated value) files?

(for example: in excel you can transform a table to a comma separated value file)?

4) Have you ever opened text files or a comma separated value (csv) files in text

processors or spreadsheet software (ex: Word or Excel)?

5) Have you ever done a program to read data from different text formats?

Problem #11

Most Difficult Programming Technique: Erase and Rewrite

Category: Data Processing

Hint: Think about how you can get the circles to move that way!

How to handle: There is no need to use the mouse here, just look at the animation on

each sample and answer the question below. If you need to see the animation again,

please press the “see samples again” button on the title bar.

Correct Answer: Sample 1.

116

Why? The first sample involves the previous frame calculation. The program is detecting

the position of the circle on the previous frame and displaying it, the second sample is

not considering the previous frame and is only displaying the current position of the circle.

Questions:

1) After reading the previous explanation did you understand how “erase and rewrite”

is used in this problem?

2) Did you realize about the use of “erase and rewrite” on this problem before

reading the explanation?

3) Have you ever done small animations by hand or using software tools (Ex: paper

flipbooks, animating slides in PowerPoint)?

4) Have you ever used commands to erase and rewrite data on software tools?

(Example: in operating systems like Windows or Linux there are commands to

erase and rewrite data executables from a command line)

5) Have you ever erased and rewritten data files with programming? (by using any

programming language)?

117

6) Have you ever programmed by yourself code to erase and rewrite data depending

on other processes? (Ex: erase and rewrite data on an external file if text appears

on screen)

Problem #12

Most Difficult Programming Technique: Invisible events

Category: Data Display

Hint: Pay attention to the mouse position when the color changes.

How to handle:

1) Place the mouse over any of the circles located at the center of any of the samples

2) Move the mouse outside the circle

3) On sample #2 try to make the border of both circles touch and see what happens!

Correct Answer: Sample 1.

Why? This program is the same for both samples, but in the second sample the mouse

pointer is changed to a circle with the same size of the one fixed in the middle of the

sample, and the area detected by the mouse is invisible and a little bigger than the circle

in the middle.

Questions:

1) After reading the previous explanation did you understand how “invisible events”

is used in this problem?

118

2) Did you realize about the use of “invisible events” on this problem before reading

the explanation?

3) Have you ever created clickable pictures? (or pictures that react to mouse input)

with any software tool (Ex: in PowerPoint you can make clickable pictures)?

4) Have you ever created buttons with programming?

5) Have you ever created invisible buttons with programming? (invisible buttons are

areas without any picture or drawing, not visible, that react to the mouse when

clicked or touched)

Problem #13

Most Difficult Programming Technique: Handling time, speed and distance

Category: Data Display

Hint: Pay attention to the speed of each ball!

How to handle:

1) Place the mouse over any of the samples.

2) Move the mouse slowly in any direction and see what happens!

Correct Answer: Sample 1.

119

Why? In this problem time, speed and distance are important to move the balls. In the

second sample, the speed of the ball and the mouse is the same so there is no variation

on distance and time, while the speed of the ball is different in the first sample, so the

time to reach the mouse pointer is different depending on the distance between the pointer

and the mouse.

Questions:

1) After reading the previous explanation did you understand how “Handling of time,

speed and distance” is used in this problem?

2) Did you realize about the use of “Handling of time, speed and distance” on this

problem before reading the explanation?

3) Have you ever moved (or animated) shapes or objects with software tools? (ex:

animating shapes or elements in PowerPoint)

4) Have you ever changed speed or acceleration of objects in software tools? (ex:

fade text or slides, or change speed of presentation slides or shapes in PowerPoint,

or change the speed of video with any video editor like: adobe premiere or Sony

Vegas)

5) Have you ever moved (or animated) shapes or objects with programming?

6) Have you ever programmed movement of objects based on a dependence on time,

speed and distance? (for example, to move a ball with the same speed)

Problem #14

Most Difficult Programming Technique: Timed action

Category: Data Display

Hint: Think of what could be activating the lines drawing on each sample!

How to handle:

For Sample1

1) Place the mouse over sample 1

120

2) Press the right Click

3) Change the position of the mouse inside the sample and press the right click again.

For sample 2

1) Place the mouse over sample 2

2) Change the mouse position inside the sample when a line appears automatically

(1 second approx.)

Correct Answer: Sample 2.

Why? The programming process to draw the lines is the same for both samples but while

the lines of the first sample are triggered by the mouse the second sample includes

additionally a timer algorithm that triggers the drawing after one second has passed.

Questions:

1) After reading the previous explanation did you understand how “Timed action”

is used in this problem?

2) Did you realize about the use of “Timed action” on this problem before reading

the explanation?

3) Have you ever used a “timeline” to control video or animations in software tools?

(example: The animation pane in PowerPoint is a timeline, similar to the timeline

of other video editing software like adobe premiere or flash)

121

4) Have you ever used a time counter with programming? (ex: to count how many

seconds have passed)

5) Have you ever moved (or animated) shapes or objects with programming?

6) Have you ever programmed code to activate actions or events depending on time?

(ex: print in screen text after some seconds have passed)

Problem #15

Most Difficult Programming Technique: Clickable area

Category: Data Display

Hint: Pay attention of where you are clicking and what happens!

How to handle:

For Sample1

1) Place the mouse over any point of sample 1

2) Press the right Click more than 2 times (as many as you want)

For sample 2

1) Place the mouse over the circle in the center of sample 2

2) Press the right click on that circle.

3) Press the right click again on the circle.

4) Press right click in the area outside the circle inside the sample and see what

happens!

122

Correct Answer: Sample 2.

Why? In the first sample, wherever the click is made, there is an action executed (color

change), but in the second sample there is only one sensible area, the action can be

executed only by clicking on the circle in the middle.

Questions:

1) After reading the previous explanation did you understand how “Clickable area”

is used in this problem?

2) Did you realize about the use of “Clickable area” on this problem before reading

the explanation?

3) Have you ever created clickable elements (not buttons but shapes or drawings

that activate actions) with software tools (like PowerPoint, word etc.)?

4) Have you ever done an object different to a button (ex: a shape, or text etc.) to

trigger an action with programming?

Problem #16

Most Difficult Programming Technique: Random

Category: Data Processing/Data display

Hint: Think on how the lines are moving and what is the pattern they are following!

123

How to handle:

There is no need to use the mouse here, just look at the programmed animation on each

sample and answer the question below.

Correct Answer: Sample 1.

Why? The first sample moves the line using a random function simulating a random

walk considering the previous position of the line, the second one is moving always

upwards in a linear fashion．

Questions:

1) After reading the previous explanation did you understand how “Random” is used

in this problem?

2) Did you realize about the use of “Random” on this problem before reading the

explanation?

3) Have you ever animated elements applying random movement options in

software tools (example: using “random bars” in PowerPoint)?

4) Have you ever used random functions in programming? (any programming

language)

5) Have you ever programmed code by yourself to generate random numbers?

Problem #17

Most Difficult Programming Technique: Trigonometric animation

Category: Data display

Hint: The way the characters move is showing a mathematical function!

How to handle:

There is no need to use the mouse here, just look at the programmed animation on each

sample and answer the question below.

Correct Answer: Both samples have similar difficulty.

Why? Sample 1 moves the character according to a "Sine" trigonometric function, while

Sample 2 moves it according to a "Tan" function．

124

Questions:

1) After reading the previous explanation did you understand how “Trigonometric

animation” is used in this problem?

2) Did you realize about the use of “Trigonometric animation” on this problem

before reading the explanation?

3) Have you ever done graphs of trigonometric functions on paper (Ex: the basic

“sine” function graph)?

4) Have you ever animated elements using paths in any software tool (PowerPoint,

flash, after-effects etc.)?

5) Have you ever animated objects by using trigonometric functions in

programming?

Problem #18

Most Difficult Programming Technique: Lists elements inserting

Category: Data Processing

Hint: Pay attention to where the newest ball is inserted with each click!

125

How to handle:

4) Place the mouse over any of the 4 colored circles in any sample.

5) Press the right click button.

6) Place the mouse on a different colored circle, press right click again and see what

happens!

Correct Answer: Sample 2.

Why? Both samples include an array of black balls and 4 clickable colored balls, when

any of the colored balls is clicked on the first sample, the clicked colored ball is

"appended" to the end of the black ball array; on the other hand, when any colored ball

is clicked in the second sample the colored ball is "inserted" or placed between the black

balls or between a colored and a black ball.

Questions:

1) After reading the previous explanation did you understand how “Lists elements

inserting” is used in this problem?

2) Did you realize about the use of “Lists elements inserting” on this problem before

reading the explanation?

3) Have you ever inserted or appended elements in a spreadsheet (for example: in

excel by inserting cells, columns or rows)?

126

4) Have you ever used arrays in programming?

5) Have you ever used multidimensional arrays in programming? (example: matrix

done with arrays, or an array inside an array)

6) Have you ever used ordered lists in programming?

Problem #19

Most Difficult Programming Technique: Mapping data into shapes

Category: Data Display

Hint: Pay attention to the order of the bars!

How to handle:

Input data: Is the population between 15 to 64 years of some countries on different

continents ordered from the largest to the smallest, the first line of data is the title, the

second data line are the labels, and from there each country data is on one text line.

127

Output graphs: Bar graphs representing the input data

Correct Answer: Sample 2.

Why? The most difficult programming technique to identify in the graphic output sample

1 is: to map the data into rectangles according to the order given and calculate the

proportion according to the data values for each bar (rectangles)．

While on sample 2 is to sort the data according to the continent, then inside each continent

group, order the data from bigger to smaller, then map each item data population value

into bars (rectangles) keeping the proportion and group them together.

Questions:

1) After reading the previous explanation did you understand how “Mapping Data

into Shapes” is used in this problem?

2) Did you realize about the use of “Mapping Data into Shapes” on this problem

before reading the explanation?

3) Have you ever done a pie graph or a bar graph in software tools? (ex: Word or

Excel)

4) Have you ever subdivided shapes (a circle into circle arcs or a rectangle into

smaller rectangles) with software tools? (ex: PowerPoint, photoshop etc.)

5) Have you ever read external data from external sources? (i.e. other file, other

computer) by using software tools (ex: A Word or Excel file)?

6) Have you ever subdivided shapes with programming? (ex: make arcs of a circle

or smaller rectangles inside a rectangle)

7) Have you ever made the scale of shapes (size) change according to other

programming processes?

8) Have you ever read or write data files with programming?

128

9) Have you ever used the data located on external files to change or create shapes

or objects with programming?

Problem #20

Most Difficult Programming Technique: Data Hierarchy

Category: Data Processing

Hint: Pay attention at how each sample makes visible the data, and what part of the data

is made visible on each sample.!

How to handle:

Input data: Each line is a person and its age, if a line is shifted to the right of the previous

line means that this person is a son of the previous one, if they are not shifted or are

aligned vertically means that these persons are brothers.

Output graphs: The first sample is a tree map of the hierarchy on the data sample

according to the structure of the file. Sample 2 is a circle packing diagram of the hierarchy

of the data input, using the age of each person as the size of circles.

Correct Answer: Sample 2.

129

Why? In the first sample the program does a tree diagram based only on the hierarchy

shown on data (namely the lines shifted and the alignment) While in the second sample

the program does a circle packing diagram having into account not only the hierarchy but

the age (shown as the size of the circles), age determines how much space each circle

will take and this depends on the hierarchy too so, the program needs to calculate that.

Questions:

1) After reading the previous explanation did you understand how “Data Hierarchy”

is used in this problem?

2) Did you realize about the use of “Data Hierarchy” on this problem before reading

the explanation?

3) Have you ever worked with a folders-files like structure in operating systems like

Windows?

4) Have you ever created organizational charts or concept maps? (example: in

programs like Word or PowerPoint there are options to make these organizational

charts)

5) Have you ever worked with languages to do web pages? (like HTML or XML)?

6) Have you worked with probability tree diagrams (in mathematics)?

7) Have you ever programmed an object-oriented application (in languages like Java

or C++, or web languages like JavaScript or Python)?

Problem #21

Most Difficult Programming Technique: Mapping Data: Scaling and Measuring

Category: Data Display

Hint: Pay attention to how the data is represented on each sample, and ask yourself what

would the program do to make the graphs for the data!

How to handle:

Input data: Percentage of use of a web service per week.

130

Output graphs: sample 1 is a pie graph and sample 2 is a radial chart, both represent the

input data.

Correct Answer: Sample 1.

Why? In order to do both charts the program will need to divide a circle into parts, the

difference is on the proportionality of the parts and the additional processes the program

will need to do to map the data on the pie chart of sample 1.

For sample 1, the program will need to assign a proportion to each data value on the data

sample, that includes divide the circle in as many parts as the data indicates, and then

make the arcs (circles divisions) bigger or smaller according to the percentages, in sample

2 the circle has to be divided into the same number of parts but the program then has to

divide each part into percentage levels and then trace lines from one percentage point to

another according to what data says.

131

Questions:

1) After reading the previous explanation did you understand how “Mapping Data:

Scaling and Measuring” is used in this problem?

2) Did you realize about the use of “Mapping Data: Scaling and Measuring” on this

problem before reading the explanation?

3) Have you ever subdivided shapes (a circle into circle arcs or a rectangle into

smaller rectangles) with software tools? (ex: PowerPoint, photoshop etc.)

4) Have you ever subdivided shapes with programming? (ex: make arcs of a circle

or smaller rectangles inside a rectangle)

5) Have you ever transformed data from one range to another in mathematics?

(example, make a range from 1 to 70 into a percentage range from 1 to 100%)

6) Have you ever mapped data (or transformed data from one scale to another) in

programming? (any programming language).

132

Articles Product of this Research

Refereed Articles

1. D. Martinez Calderon, K. Man, H. Kiyomitsu, K. Ohtsuki, Y. Miyamoto and Y. Sun, “An

Evaluation Method for Panoramic Understanding of Programming by Comparison with Visual

Examples,” Proceedings of the 2015 IEEE Frontiers in Education Conference (FIE), El Paso,

Texas, 2015. (The content of this article was presented in chapter 4 of the thesis).

2. D. Martinez Calderon, K. Man, Y. Miyamoto, Y. Sun, M. Hirabayashi, H. Kiyomitsu and K.

Ohtsuki, “Measurement Range Increment in a Method for Evaluating Panoramic Understanding

of Programming,” Proceedings of the 2016 IEEE Frontiers in Education Conference, Erie,

Pennsylvania, 2016. (The content of this article was presented in chapter 5 of the thesis).

Non Refereed Articles

1. D. Martinez Calderon, Y. Miyamoto, H. Kiyomitsu and K. Ohtsuki, “Characteristics and

Advantages of a Visual Contents Comparison Method for Evaluating Programming Abilities

(Article in Japanese)” Proceedings of 2016 Annual Conference of the Institute of Electrical

Engineers of Japan C, 2016, pp. 1317-1319. (D. Martinez Calderon, 宮本 行庸, 清光 英成, 大

月 一弘, “視覚コンテンツ比較によるプログラミング能力評価法の特徴と利点,”

【C】平成 28年電気学会電子・情報・システム部門大会講演論文集, 2016, pp. 1317-

1319.) (The content of this article was presented in chapter 3 of the thesis)

2. D. Martinez Calderon, Y. Miyamoto, H. Kiyomitsu and K. Ohtsuki, “Evaluating Programming

Ability by Using a Visual Contents Comparison Method,” Proceedings of the 9th Data

Engineering and Information Management Forum (DEIM2017) (第 9回データ工学と情報マ

ネジメントに関するフォーラム(DEIM2017)論文集), 2017, pp. 1-4. (The content of this

article was presented in chapter 3 of the thesis)

3. D. Martinez Calderon, Y. Miyamoto, M. Hirabayashi, H. Kiyomitsu and K. Ohtsuki, “An

Evaluation Method for Panoramic Understanding of Programming by Comparison of

Programmed Visual Samples,” Information Processing Society of Japan, Computers and

Education Research Report (研究報告コンピューターと教育(CE)), Vols. 2016-CE-134, no.

6, 2016, pp. 1-7. (The content of this article was presented in chapter 5 of the thesis)

	Dick-portadas THESIS.pdf (p.1)
	Dick-THESIS　博士論文v7.0.pdf (p.2-136)

