
Kobe University Repository : Kernel

PDF issue: 2024-05-24

Algorithms for the maximum weight clique
problems

(Degree)
博士（工学）

(Date of Degree)
2018-09-25

(Date of Publication)
2019-09-01

(Resource Type)
doctoral thesis

(Report Number)
甲第7301号

(URL)
https://hdl.handle.net/20.500.14094/D1007301

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

Shimizu, Satoshi

Doctoral Dissertation

Algorithms for the maximum weight clique problems

(最大重みクリーク問題に対するアルゴリズムに関する研究)

July 2018

Graduate School of Engineering
Kobe University

Satoshi Shimizu

(清水 悟司)

iii

abstract

A set of vertices V ′ in a graph G = (V,E) is called a clique if any pair of vertices in V ′ are adjacent.
Sometimes a subgraph induced by V ′ is also called a clique. The decision problem, k-clique problem, is
to determine if there is a clique of size k in a graph G. It is one of the 21 NP-complete problems shown
by Richard Karp. The theory of NP-completeness is important in computer science, and relates to the
unresolved problem P vs NP Problem that is one of the 7 millennium prize problems by clay mathematics
institute.

The maximum clique problem (MCP), to find a clique of maximum cardinality of a given graph, is an
optimization problem derived from k-clique problem. MCP is known to be NP-hard, and no polynomial
time algorithm have been found for NP-hard problems. Since it has lots of practical applications in
various fields, there are a lot of studies about MCP.

In this paper, we show various kind of algorithms for kinds of maximum weight clique problems. To
represent some properties in practical applications, weights are given to vertices or edges. The maximum
weight clique problem (MWCP) is to find a clique of maximum weight in a vertex-weighted graph. The
maximum edge-weight clique problem (MEWCP) is to find a clique of maximum weight in a edge-weighted
graph. These problems are generalization of MCP and are also NP-hard. There are six chapters in this
paper. In the first chapter, we show the background that includes introduction of these problems.

In the second chapter, we propose exact algorithms for the MWCP. Proposed algorithms are based on
the branch-and-bound. The branching procedure divides a problem into smaller subproblems and solves
them in a recursive manner. During this process, an upper bound of each subproblem is calculated and
pruned if it is proved that the subproblem does not contain the global optimum solution (the bounding
procedure). In this paper, we propose a new upper bound function. It uses optimal weights of multiple
subgraphs. To calculate the value of it in short time, our algorithm prepares tables before the branch-
and-bound. In the branch-and-bound, upper bounds are calculated in short time using the tables. By
some computer experiments, we confirm proposed algorithms are faster than previous algorithms.

In the third chapter, we show exact algorithms for the MEWCP. For MEWCP, there are only exact
methods that formulate MEWCP in mathematical programming. In this paper, we propose a new formu-
lation technique to improve the performance of mathematical programming solvers. For the mixed-integer
programming formulation, it renumbers vertex indices to control the range of variables. In addition, we
propose a branch-and-bound algorithm for MEWCP. The upper bound calculation of MEWCP is more
complicated than MWCP because of edge weights. Proposed algorithm decomposes edge weights in each
subproblem into three groups and calculates an upper bound for each of them. It assigns some edge
weights to vertices as pseudo vertex weights, and applies the upper bound calculation of MWCP for
them. For the rest of edge-weights, it calculates upper bounds using the optimal weight of subproblem
already searched. By some computer experiments, we confirm proposed algorithm is faster than previous
methods.

In the fourth chapter, we propose greedy algorithms for the minimum weight vertex cover problem.
The minimum weight vertex cover problem is equivalent to MWCP in computational complexity. In
this paper, two heuristic algorithms of better average performance are proposed. Proposed algorithms
are based on a greedy algorithm that constructs a minimal solution in linear time. To obtain better
solutions, our algorithms search a lot of solutions and return the best among them. One is based on
rotating technique and the other is based on the branching technique. The time complexity of them is
linear time per solution. By some computer experiments, we confirm they can find better solutions in
shorter time than previous algorithms.

In the fifth chapter, we propose data structures for local search algorithms for MEWCP. Local search is
often used for MCP, MWCP and MEWCP. For each solution, local search algorithms define neighborhood

iv

that is a set of solutions. They start from a solution and continuously move it to a neighbor to find better
solutions. Various techniques are proposed to avoid staying in local optimums. Since neighborhoods are
scanned on each movement, the time to calculate neighborhood is important. In this paper, we propose
two new data structures to manage neighborhoods. One can be used for graphs represented by adjacency
lists. For each vertex, it calculates the number of adjacent vertices in the clique to manage neighborhoods.
The other is for graphs represented by adjacency matrix. For each vertex, it calculates the number of
non-adjacent vertices in the clique to manage neighborhoods. These data structures combined with some
local search algorithms are compared using some benchmarks. We confirm proposed methods are better
than previous one.

In the sixth chapter, we conclude our research. In this paper, we propose variety of algorithms for
the maximum weight clique problems. Each of them can be used in kinds of practical applications.

CONTENTS v

Contents

1 Introduction 1

2 Exact Algorithms for MWCP 5
2.1 Introduction . 5
2.2 Proposed algorithm VCTable . 5

2.2.1 Notation . 5
2.2.2 Upper bounds of vertex coloring . 5
2.2.3 Upper bound tables . 6
2.2.4 Upper bounds of c[·] . 8
2.2.5 Initial ordering . 8
2.2.6 Branch-and-bound . 8

2.3 Proposed algorithm OTClique . 10
2.3.1 Notation . 10
2.3.2 Upper bound function UB(·, ·) . 10
2.3.3 Precomputation phase . 14
2.3.4 Branch-and-bound phase . 16
2.3.5 A case study of OTClique . 18

2.4 Computer experiments . 20
2.4.1 Random graphs . 20
2.4.2 Graphs from error-correcting codes . 23
2.4.3 Combinatorial auction test suite (CATS) . 24
2.4.4 DIMACS benchmark graphs . 26

2.5 Conclusions . 28

3 Exact Algorithms for MEWCP 29
3.1 Introduction . 29
3.2 Mathematical programming formulations for MEWCP . 29

3.2.1 Quadratic programming . 29
3.2.2 Integer programming . 30
3.2.3 Mixed integer programming . 30
3.2.4 Proposed initial renumbering for formulations in MIP 30
3.2.5 Computer experiments . 31

3.3 Previous branch-and-bound algorithms for MWCP . 32
3.3.1 Österg̊ard’s algorithm . 32
3.3.2 Longest path method . 32

3.4 Proposed branch-and-bound algorithm EWCLIQUE . 33
3.4.1 Branch-and-bound for MEWCP . 33
3.4.2 Outline of EWCLIQUE . 35
3.4.3 Main routine . 36
3.4.4 Subroutine EXPAND . 36
3.4.5 Upper bound calculation . 37
3.4.6 Vertex renumbering . 40

3.5 Computer experiments . 41
3.5.1 Random graphs . 41

vi CONTENTS

3.5.2 Graphs from Reuters terror news networks . 42
3.5.3 DIMACS benchmark graphs . 43

3.6 Conclusion . 43

4 Greedy Algorithms for MWVCP 45
4.1 Introduction . 45
4.2 Greedy algorithm . 45
4.3 Proposed greedy algorithms . 47

4.3.1 Vertex permutation . 47
4.3.2 Rotating greedy elimination (RGE) . 48
4.3.3 Branching greedy elimination (BGE) . 49

4.4 Computer experiments . 51
4.4.1 random graphs . 51
4.4.2 graphs from error-correcting codes . 55

4.5 Conclusion . 58

5 Data structures for local search algorithms on MEWCP 59
5.1 Introduction . 59
5.2 Preliminary . 59

5.2.1 Notation . 59
5.2.2 Previous data structure for neighborhood management 60

5.3 Proposed data structures for neighborhood management 60
5.3.1 Proposed method L . 61
5.3.2 Proposed method M . 64

5.4 Computer experiments . 66
5.4.1 DIMACS . 67
5.4.2 BHOSLIB . 68
5.4.3 higgs-twitter data set . 69

5.5 Conclusion . 70

6 Conclusion 71

Acknowledgements 73

Bibliography 75

List of publications 79

1

Chapter 1

Introduction

Graphs are widely used to represent structures or relationships such as networks, molecular structures,
electric circuits, word cooccurrence relations and so on. In some cases, each vertex or each edge has a non-
negative weight that represents importance, frequency, cost, etc. A set of vertices V ′ in an undirected
graph G = (V,E) is called a clique if any pair of vertices in V ′ are adjacent. Sometimes a subgraph
induced by V ′ is also called a clique. A clique corresponds to a group of strong ties such as communities
on social networks.

The decision problem, k-clique problem, is to determine if there is a clique of size k in a graph G.
k-clique problem is one of the 21 NP-complete problems shown by Richard Karp [30]. Problems classified
as NP-complete are widely believed to be intractable. No polynomial time algorithm for them has not
been found. If a polynomial time algorithm for them is given, every problem classified as NP can be
solved in polynomial time. This relates to the unresolved problem called P vs NP Problem, that is one
of the 7 millennium prize problems by Clay Mathematics Institute.

The maximum clique problem (MCP), to find the clique of maximum cardinality of a given graph, is an
optimization problem derived from k-clique problem. MCP is known to be NP-hard [23]. There are some
weighted generalization of MCP. The maximum weight clique problem (MWCP) is to find a clique C such
that sum of vertex weights is the maximum in a given vertex-weighted graph. The maximum edge-weight
clique problem (MEWCP) is to find a clique C such that sum of edge weights is the maximum in a given
edge-weighted graph. In addition, some NP-hard problems are equivalent to MCP. For an undirected
graph G = (V,E), a subset V ′ of V is a vertex cover of G if at least one endpoint of any edge is in V ′. A
vertex set I in an undirected graph G = (V,E) is an independent set if any pare of vertices in I are not
adjacent. For an independent set I, the complement set V \ I is a vertex cover. A clique C in G = (V,E)
is an independent set in the complement graph of G. Therefore the maximum independent set problem
(MISP) and the minimum vertex cover problem (MVCP) for general graphs are equivalent to the MCP.
For example, Figure 1.1 shows examples of MCP, MISP, and MVCP. In Figure 1.1a, the maximum clique
is {v3, v5, v6}. The graphs of Figure 1.1b and 1.1c are the complement graph of the graph of Figure
1.1a. In Figure 1.1b, the maximum independent is {v3, v5, v6}. In Figure 1.1c, the minimum vertex cover
is {v1, v2, v4}. Of course, the maximum weight independent set problem (MWISP) and the minimum
weight vertex cover problem (MWVCP) for general graphs are equivalent to the MWCP. These problems
have many applications in coding theory [11], network design [57], computer vision [26], bioinformatics
[31], auctions [14], protein side-chain packing [3, 13], market basket analysis [16], communication analysis
[20, 19], etc.

2 CHAPTER 1. INTRODUCTION

v1 v2

v3 v4

v5 v6

(a) MCP

v1 v2

v3 v4

v5 v6

(b) MISP

v1 v2

v3 v4

v5 v6

(c) MVCP

Figure 1.1: Problem examples

The purpose of this paper focuses on the algorithms for these maximum weight clique problems. Since
these problems are NP-hard, various kinds of algorithms are studied [65].

Exact algorithms : Algorithms that calculate exact solutions in exponential time.

Approximate algorithms : Algorithms that calculate approximate solutions in polynomial time. Ap-
proximation ratio is guaranteed.

Heuristics : Algorithms that calculates good solutions. No approximation ratio is guaranteed. Some
algorithms such as greedy algorithms give solutions in polynomial time. Other algorithms such as
local search continuously search for better solutions until they are terminated.

In this paper, we propose exact algorithms for MWCP, exact algorithms for MEWCP, greedy algorithms
for MWVCP and data structures for local search algorithms for MEWCP.

The branch-and-bound technique is often used in exact algorithms. The branching procedure divides
a problem into smaller subproblems and solves them in a recursive manner. During this process, the
bounding procedure calculates an upper bound of each subproblem and prunes the subproblem if it is
proved that the subproblem does not contain the global optimum solution. In previous studies, several
techniques have been investigated to obtain upper bounds for subproblems. For the MCP, vertex coloring
is used in numerous algorithms [2, 5, 9, 53, 54, 55, 61, 60, 59, 64]. They calculate vertex coloring
in O(|V |2) or O(|V |3) time for each subproblem. For the MWCP, some algorithms calculate vertex
coloring only once before starting branch-and-bound and use it to obtain upper bound in O(|V |) for each
subproblem [33, 34, 35, 36]. A bounding procedure in [44, 43] runs in O(1) time using optimum values
of subproblems already searched. In these methods, |V | subproblems are solved sequentially. During
the execution, an upper bound of subproblem P is calculated from an exact value of subproblems which
are already solved. Some algorithms uses some upper bounds shown above [33, 34]. In [68], longest
paths in a directed acyclic graph are calculated in a bounding procedure. An upper bound calculation
based on MaxSAT reasoning is proposed in [22]. Other approaches have been proposed by previous
studies [6, 4, 15, 45, 46, 47, 51, 52]. The computation time of algorithms including branch-and-bound
procedures strongly depends on tightness and computation time of upper bound calculation. Controlling
their balance is very important for branch-and-bound algorithms.

In this paper, we propose two branch-and-bound algorithm for MWCP. One is called VCTable that
uses vertex coloring to calculate upper bounds. VCTable calculates vertex coloring only once at the
beginning. It calculates upper bounds for all of subgraphs and store them in upper bound tables. Using
upper bound tables, it can calculate upper bounds of vertex coloring in short time. The other is OTClique.
Before branch-and-bound, it calculates the weights of optimal solutions for a lot of small subgraphs and
stores the values to optimal tables. Optimal tables are used to calculate upper bounds in branch-and-
bound. We compare algorithms using some kinds of benchmarks. VCTable is faster than previous ones
in many cases, and only OTClique can obtain exact solutions for all graphs and it performs much faster
than others for nearly all graphs.

For MEWCP, there are only exact methods [24] that formulate MEWCP in mathematical program-
ming. In this paper, we introduce some formulations by modifying formulations of the maximum diversity
problem (MDP). Given an edge-weighted complete graph and a natural number b, MDP [39], also known
as b-clique problem [56], is to find a clique of size b that has maximum sum of edge weights. For MEWCP,
we propose a new formulation technique to improve performance of mathematical programming solvers.

3

For the mixed-integer programming formulation, it renumbers vertex indices to control the range of vari-
ables. In addition, we propose a branch-and-bound algorithm for MEWCP. The upper bound calculation
for MEWCP is more complicated than MWCP. In the branch-and-bound, each subproblem of MWCP
and MEWCP consists of a candidate vertex set and a clique under construction. In MWCP, an upper
bound can be calculated using only the subgraph induced by the candidate vertex set. On the other
hand, in MEWCP, both of the candidate vertex set and the clique must be considered in upper bound
calculation because of edge weights between them. Proposed algorithm in this paper, called EWCLIQUE,
decomposes subproblems into three components and calculate an upper bounds for each component. It
assigns some edge weights to vertices as pseudo vertex weights, and applies the upper bound calculation
of MWCP for them. For the rest of edge-weights, it calculates upper bounds using the optimal weight of
subproblem already searched. By some benchmarks, we confirm that EWCLIQUE is faster than methods
based on mathematical programming.

Since these problems are known to be NP-hard, non-exact algorithms such as approximation algo-
rithms or heuristics are studied. It is easily shown from [25] that MCP, MWCP, MEWCP and MWISP
are hard to approximate within a constant factor. MWVCP is also NP-hard, but some approximation
algorithms have been proposed [18, 7, 48, 41, 8, 29]. These approximation algorithms guarantee approx-
imation ratio less than or equal to 2, however, any of them do not guarantee minimality of solutions. To
analyse average performance of these approximation algorithms, computational experiments are done in
[58]. In addition, a post-processing called DW was proposed in [58]. DW minimalizes vertex covers by
removing vertices in nonincreasing order of weight. In this paper, we propose two fast greedy algorithms
for MWVCP of better average performance than those approximation algorithms. Proposed algorithms
are based on a greedy algorithm which removes vertices from a vertex cover initialized by V . The base
greedy algorithm guarantees the minimality of solutions, and moreover, computation time is linear to
the size of the given graph. Since the base greedy algorithms is very simple, it is faster than known
algorithms, but it finds worse solutions. To obtain better solutions, the strategy of proposed algorithms
is to construct a large number of feasible solutions by a greedy algorithm without increasing the com-
putational complexity per solution. One is based on rotating technique and the other is based on the
branching technique. We confirm that proposed algorithms find better solutions and the computation
time is shorter than the approximation algorithms for MWVCP.

Another approach for these problems is heuristics that continuously search for better solutions until
they are terminated. Some of them based on metaheuristics [12, 28]. For MCP, MWCP and MEWCP,
local search is often used [49, 66, 63, 21, 50]. For each solution, local search algorithms define neighborhood
that is a set of solutions. They start from a solution and continuously move the solution to a neighbor to
find better solutions. If they always move solutions to the best (maximum weight) neighbors, they can
easily trapped into local optimums. To avoid staying in local optimums, each algorithm adopts various
techniques. Phased local search (PLS) [49, 50] switches three phases that have different policies to chose
neighbors. Multi neighborhood tabu-search (MN/TS) maintains a tabu-list that inhibits MN/TS from
moving to recently visited solutions. For local search algorithms, the time to calculate neighborhoods is
important because they scan neighborhoods on every movement. For adjacency list representation of a
graph G, a data structure is proposed to manage neighborhoods [21]. In this paper, we propose two new
data structures to manage neighborhoods. One can be used for graphs represented by adjacency lists.
For each vertex, it calculates the number of adjacent vertices in the clique to manage neighborhoods. The
other is for graphs represented by adjacency matrix. For each vertex, it calculates the number of non-
adjacent vertices in the clique to manage neighborhoods. The time complexity to update neighborhoods
of proposed methods is smaller than previous one. In addition, for MEWCP, calculating the weight
of a clique takes more time than MWCP because of edge weights. Proposed method reduces the time
complexity for clique weight calculation. By some experiments, we confirm that proposed data structures
perform better than previous one.

The remainder of this paper is organized as follows. Exact algorithms for MWCP are described in
Chapter 2. Exact algorithms for MEWCP are shown in Chapter 3. Greedy algorithms for MWVCP are
described in Chapter 4. Data structures for local search algorithms for MEWCP are shown in Chapter
5. We conclude the paper in Chapter 6.

4 CHAPTER 1. INTRODUCTION

5

Chapter 2

Exact Algorithms for MWCP

2.1 Introduction

In this chapter, we propose two new branch-and-bound based exact algorithms for MWCP. Branch-and-
bound algorithms recursively divide problems into smaller subproblems to find the optimal solution, and
unnecessary subproblems are pruned by calculating upper bounds.

First, we propose VCTable. It calculates upper bounds using vertex coloring. Before branch-and-
bound, it calculates the upper bounds of all subgraphs and stores the values in vertex coloring upper
bound tables. In branch-and-bound, using the tables, it calculates upper bounds in short time. By
computational experiments, we show that it is faster than other algorithms in many cases.

Second, we propose a new branch-and-bound algorithm OTClique. OTClique consists of two phases,
a precomputation phase and a branch-and-bound phase. In the precomputation phase, the weights of
maximum weight cliques in many small subgraphs are calculated and stored in optimal tables. In the
branch-and-bound phase, optimal tables are used to calculate upper bounds. We performed experiments
with OTClique and existing algorithms for several types of graphs. The results indicate that only the
OTClique can obtain exact solutions for all graphs and that it performs much faster than other algorithms
for nearly all graphs.

In the section 2.2, we describe VCTable. Proposed algorithm OTClique is described in the section
2.3. Computer experiments are shown in the section 2.4.

2.2 Proposed algorithm VCTable

Proposed algorithm VCTable is shown in this section.

2.2.1 Notation

For an undirected graph G = (V,E), w(v) denotes the weight of v ∈ V . For a set of vertices V ′ ⊆ V ,
w(V ′) denotes

∑
v∈V ′ w(v). Let G(V ′) and wopt(V

′) denote the subgraph of G induced by V ′ and the
weight of the maximum weight clique in G(V ′), respectively. For any vertex v ∈ V , N(v) denotes the set
of vertices adjacent to v in G.

2.2.2 Upper bounds of vertex coloring

VCTable uses vertex coloring to calculate upper bounds. The vertex coloring is a procedure to divide V
into mutually disjoint independent sets {I1, I2, . . . , Ik}, where k is the number of independent sets. Some
algorithms for MCP [5, 60] and MWCP [36] use vertex coloring to calculate upper bounds. The following
inequality holds because at most one vertex can be included in a clique from each Ii :

wopt(V) ≤
k∑

i=1

max{w(v) | v ∈ Ii}. (2.1)

6 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

For any S ∈ V , the following inequality is obtained :

wopt(S) ≤
k∑

i=1

max{w(v) | v ∈ Ii ∩ S}. (2.2)

VCTable calculates upper bounds using this inequality (called coloring upper bound). Vertex coloring
is done only once in the beginning of VCTable. In the branch-and-bound, VCTable reuses it for every
subproblem. In addition, VCTable limits the maximum size of each Ii to one word length of CPU. This
limitation is required for the upper bound tables described in the next.

2.2.3 Upper bound tables

To calculate coloring upper bounds, finding the vertex of maximum weight in each Ii is needed. We
propose upper bound tables to reduce the computation time to calculate upper bounds. After the vertex
coloring, VCTable represents vertex sets by bit vectors. Since each independent set size is less than or
equal to one word length, each Ii can be represented by one word bit vector. For each bit vectors of Ii,
VCTable calculates coloring upper bounds for all subgraphs and stores them to a table (an array in C).
The index to refer the tables is a bit vector of one word.

For the graph Gex shown in Figure 2.1, let I1 = {v8, v7, v6}, I2 = {v5, v4, v3}, I3 = {v2, v1}. Figure 2.2
shows upper bound tables for Gex and these independent sets I1, I2, I3. Using these tables, calculation of
the maximum weight of each independent set can be replaced with only one operation to refer the tables.
For example shown in Figure 2.2, a vertex subset {v8, v6, v5, v4, v2} is represented by a set of bit vectors
{101, 110, 10}. The coloring upper bound is calculated as follows :

table[1][101] + table[2][110] + table[3][10] = 8 + 8 + 4 = 20

v6(4) v4(6)

v8(8)v5(8)

v2(4)

v3(1)v7(7)

v1(2)

Figure 2.1: a graph example Gex

In addition, when each independent set size is smaller than one word length, more than one indepen-
dent set can be packed in one bit vector. For example, Figure 2.3 shows the table when I1 and I2 are
packed into one bit vector. For a vertex subset {v8, v6, v5, v4, v2}, the upper bound can be calculated as
follows:

table[1, 2][101110] + table[3][10] = 16 + 4 = 20

This packing technique is efficient in dense graphs, because sizes of independent sets are small.

2.2. PROPOSED ALGORITHM VCTABLE 7

I1
S ⊆ I1 Bits max{w(v) | v ∈ S}
∅ 000 0
{v6} 001 4
{v7} 010 7
{v7, v6} 011 7
{v8} 100 8
{v8, v6} 101 8
{v8, v7} 110 8
{v8, v7, v6} 111 8

I2
S ⊆ I2 Bits max{w(v) | v ∈ S}
∅ 000 0
{v3} 001 1
{v4} 010 6
{v4, v3} 011 6
{v5} 100 8
{v5, v3} 101 8
{v5, v4} 110 8
{v5, v4, v3} 111 8

I3
S ⊆ I3 Bits max{w(v) | v ∈ S}
∅ 00 0
{v1} 01 2
{v2} 10 4
{v2, v1} 11 4

Figure 2.2: vertex coloring upper bound tables

I1 ∪ I2

S ⊆ I1 ∪ I2 Bits

+max{w(v) | v ∈ S ∩ I1}
+ max{w(v) | v ∈ S ∩ I2}

∅ 000000 0
{v3} 000001 1
{v4} 000010 6
{v4, v3} 000011 6
{v5} 000100 8
{v5, v3} 000101 8

...
...

...
{v7, v5, v4, v3} 010111 15
{v7, v6} 011000 7
{v7, v6, v3} 011001 8
{v7, v6, v4} 011010 13
{v7, v6, v4, v3} 011011 13
{v7, v6, v5} 011100 15

...
...

...
{v8, v7, v6, v4} 111010 14
{v8, v7, v6, v4, v3} 111011 14
{v8, v7, v6, v5} 111100 16
{v8, v7, v6, v5, v3} 111101 16
{v8, v7, v6, v5, v4} 111110 16
{v8, v7, v6, v5, v4, v3} 111111 16

Figure 2.3: Packed vertex coloring upper bound tables

8 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

2.2.4 Upper bounds of c[·]
Let [vn, vn−1, . . . , v1] be a vertex sequence, where n is the number of vertices in V . VCTable defines Vi

as {v1, v2, . . . , vi} (clearly, Vn = V). For i = 1, 2, . . . , n, VCTable calculates the maximum weight clique
of G(Vi) by branch-and-bound, and stores wopt(Vi) in c[i] to use it as upper bounds later. For any subset
S ⊆ V , the following inequality holds because S ⊆ Vi :

wopt(S) ≤ c[max{i | vi ∈ S}] (2.3)

The time complexity of this upper bound calculation is O(1). This is originally proposed by Österg̊ard[43].
VCTable uses both upper bounds of c[·] and vertex coloring upper bounds to prune unnecessary subprob-
lems.

2.2.5 Initial ordering

The independent set assignment I1, I2, . . . , Ik and vertex sequence [vn, vn−1, . . . , v1] affect overall perfor-
mance of VCTable. The initial ordering of VCTable is based on the following policies :

Policy 1 Assign large index to vertices of large weights.

Policy 2 Put vertices of large weights into one independent set.

Since c[i] ≤ c[i+1] holds for any i, Policy 1 is to keep upper bounds of c[·] small. Since the coloring upper
bounds is total weight of maximum weighted vertices in each independent set, Policy 2 makes coloring
upper bounds small.

VCTable first constructs the independent set I1 by picking vertices in weight nonincreasing order. If
vertices u, v have same weight and w(N(u)) ≤ w(N(v)), VCTable picks u first. In this process, indices
starting from n to 1 are assigned to picked vertices. If I1 becomes maximal, then VCTable constructs
the next independent I2 in the same way. Until all vertices are picked and assigned indices, VCTable
continues this procedure. For Gex shown in Figure 2.1, Figure 2.4 shows the vertex sequence obtained
by VCTable.

independent sets I1 I2 I3
vertex f b h e g c d a

vertex weight 8 7 4 8 6 1 4 2
w(N(·)) 18 17 15 21 23 15 15 15

assigned vertex number v8 v7 v6 v5 v4 v3 v2 v1
c[·] calculated in branch-and-bound 18 17 12 10 10 5 4 2

Figure 2.4: Initial ordering of VCTable for Gex

2.2.6 Branch-and-bound

The overall algorithm of VCTable is shown in Algorithm 1. VCTable first constructs independent sets and
a vertex sequence (line 2). For all subgraphs of each independent set, VCTable calculates coloring upper
bounds and stores them in the vertex coloring upper bound tables (line 3). For i = 1, 2, . . . , n, VCTable
calculates the maximum weight clique of G(Vi) by branch-and-bound (line 6), and stores wopt(Vi) in c[i]
to use it as upper bounds (line 7). The recursive procedure EXPAND(·, ·) creates subproblems to search
the maximum weight clique, and calculates upper bounds to prune unnecessary subproblems. If S is
empty, it is the base case that updates Cmax (lines 12-17). Otherwise, after the bounding step, it calls
itself recursively (lines 25-26). In the bounding step, the value c[·] is used as an upper bound (line 22). In
addition, VCTable calculates coloring upper bounds using vertex coloring upper bound tables (line 22).

2.2. PROPOSED ALGORITHM VCTABLE 9

Algorithm 1 Proposed algorithm VCTable

INPUT: an undirected graph G and vertex weight w[·]
OUTPUT: the maximum weight clique
GLOBAL VARIABLES: Cmax, c[·]
1: procedure main
2: Construct independent sets I1, I2, . . . , Ik and a vertex sequence [vn, vn−1, . . . , v1].
3: Construct vertex coloring upper bound tables.
4: Cmax ← ∅
5: for i from 1 to n do
6: expand(Vi, ∅) ▷ Calculate the maximum weight clique of G(Vi)
7: c[i]← w(Cmax) ▷ After EXPAND(Vi, ∅), Cmax is the maximum weight clique of G(Vi)
8: end for
9: return Cmax

10: end procedure

11: procedure expand(S,C)
12: if |S| = 0 then
13: if w(C) > w(Cmax) then
14: Cmax ← C
15: end if
16: return
17: end if
18: i← max{j | vj ∈ S} ▷ vj is also in Ih.
19: if w(C) + c[i] ≤ w(Cmax) then
20: return
21: end if
22: if w(C) +

∑k
j=1 max{w(v) | v ∈ Ij ∩ S} ≤ w(Cmax) then ▷ Using upper bound tables.

23: return
24: end if
25: expand(S ∩N(vi), C ∪ {vi}) ▷ Solve subproblems where C includes vi
26: expand(S \ {vi}, C) ▷ Solve subproblems where C does not include vi
27: end procedure

10 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

2.3 Proposed algorithm OTClique

The proposed OTClique algorithm is outlined as follows.

• Precomputation Phase: determines branching order and generates the optimal tables

• Branch-and-bound Phase: solves the problem via a branch-and-bound procedure by pruning un-
necessary subproblems by their upper bounds

Before explaining the proposed algorithm, we define some notations and analyze some properties of
the upper bound function UB(·, ·). We then describe the phases of the proposed algorithm in detail.

2.3.1 Notation

For an undirected graph G = (V,E), w(v) denotes the weight of v ∈ V . For a set of vertices V ′ ⊆ V ,
w(V ′) denotes

∑
v∈V ′ w(v). Let G(V ′) and wopt(V

′) denote the subgraph of G induced by V ′ and the
weight of the maximum weight clique in G(V ′), respectively. For any vertex v ∈ V , N(v) denotes the set
of vertices adjacent to v in G. For any integer k ≥ 2, a k-tuple Π = (P1, P2, . . . , Pk) is a partition of V if

P1, P2, . . . , Pk are mutually disjoint and
⋃k

i=1 Pi = V .

2.3.2 Upper bound function UB(·, ·)
Here, we present an analysis of the following function for a subset of vertices V ′ ⊆ V and a partition
Π = (P1, P2, . . . , Pk) of V :

UB(Π, V ′) =

k∑
i=1

wopt(V
′ ∩ Pi) . (2.4)

The following lemma shows that UB(Π, V ′) is an upper bound of the weight of the maximum weight
clique in G(V ′).

Lemma 1. Let G = (V,E) be a vertex-weighted graph and Π = (P1, P2, . . . , Pk) be a partition of V .
Then, the following inequality holds for any V ′ ⊆ V :

wopt(V
′) ≤ UB(Π, V ′) . (2.5)

Proof. The following inequality is immediately obtained, where C is the maximum weight clique in G(V ′)
:

wopt(V
′) = w(C) (2.6)

=

k∑
i=1

w(C ∩ Pi) (2.7)

≤
k∑

i=1

wopt(V
′ ∩ Pi) (2.8)

= UB(Π, V ′) . (2.9)

2.3. PROPOSED ALGORITHM OTCLIQUE 11

Example

Let G = (V,E) be a graph shown in Figure 2.5 and Π = (P1, P2, P3) be a partition of V , where P1, P2

and P3 are {v1, v2}, {v3, v4, v5} and {v6, v7, v8}, respectively. The weights of the vertices are shown in
Figure 2.5. For example, the value of UB(Π, V ′) for V ′ = {v1, v2, v3, v4, v6, v8} is calculated in the
following manner :

UB(Π, V ′) = wopt(V
′ ∩ P1) + wopt(V

′ ∩ P2) + wopt(V
′ ∩ P3) (2.10)

= wopt({v1, v2}) + wopt({v3, v4}) + wopt({v6, v8}) (2.11)

= 2 + 3 + 5 = 10 . (2.12)

v6

v5

v3 v7

v2

v4

v1

v8

t

t
t t

t
t

t

t

�
�

�
�

�

���������������

B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

@
@

@
@

@

PPPPPPPPPPPPPPP

PPPPPPPPPPPPPPP

@
@
@

@
@A

A
A

A
A
A

A
A
A

A

�
�

�
�
�

vertex v1 v2 v3 v4 v5 v6 v7 v8
weight 1 1 2 3 3 2 4 5

partition P1 P2 P3

Figure 2.5: Weighted graph

Optimal tables

The calculation of UB(Π, V ′) takes long time if wopt(V
′ ∩ Pi) is calculated in each bounding procedure.

To avoid this, all the values of subproblems of each Pi are stored in the optimal tables before starting
branch-and-bound processes. Optimal tables of the graph in Figure 2.5 are shown in Figure 2.6. Vertex
sets are represented by bit vectors. Any S ⊆ Pi is represented by a bit vector whose length is |Pi|. By
this representation, the value wopt(S) for any S ⊆ Pi can be obtained from the corresponding optimal
table in O(1) time. Therefore, for any V ′ ⊆ V , the value of UB(Π, V ′) can be calculated in O(k) time,
where k is the number of sets in Π. For example, the upper bound calculation shown in 2.3.2 can be
done as following :

UB(Π, V ′) = table[1][11] + table[2][011] + table[3][101] (2.13)

= 2 + 3 + 5 = 10 . (2.14)

12 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

P1 P2

S ⊆ P1 Bits wopt(S) S ⊆ P2 Bits wopt(S)

∅ 00 0 ∅ 000 0
{v1} 01 1 {v3} 001 2
{v2} 10 1 {v4} 010 3
{v1, v2} 11 2 {v3, v4} 011 3

{v5} 100 3
{v3, v5} 101 3
{v4, v5} 110 3
{v3, v4, v5} 111 3

P3

S ⊆ P3 Bits wopt(S)

∅ 000 0
{v6} 001 2
{v7} 010 4
{v6, v7} 011 4
{v8} 100 5
{v6, v8} 101 5
{v7, v8} 110 5
{v6, v7, v8} 111 5

Figure 2.6: Optimal tables

Tightness of upper bound

The tightness of the upper bound UB(·, ·) strongly depends on Π. If each Pi in Π is an independent set,
the upper bound by UB(Π, V ′) will be equivalent to the upper bound used in the VCTable in the section
2.2. Here we show an idea to obtain tighter upper bounds in the following.

Lemma 2. Let G = (V,E) be a vertex-weighted graph and Π = (P1, P2, . . . , Pk) be a partition of V . The
following inequality holds for any V ′ ⊂ V :

UB(Π, V ′) ≤ k · wopt(V
′) . (2.15)

Proof. The inequality (2.15) is immediately obtained in the following way :

UB(Π, V ′) =

k∑
i=1

wopt(V
′ ∩ Pi) (2.16)

≤
k∑

i=1

wopt(V
′) (2.17)

= k · wopt(V
′) . (2.18)

Lemma 2 shows that the tightness of UB(·, ·) depends on k, i.e., the number of subsets contained in
Π. Therefore, to obtain tight upper bounds, k should be as small as possible. Algorithm 4 (shown later)
makes k smaller by merging small subsets in Π to obtain tighter upper bounds.

Let us define the following notation :

Π(i) = (P1, . . . , Pi−1, Pi ∪ Pi+1, Pi+2, . . . , Pk) (2.19)

△(V ′,Π, i) = UB(Π, V ′)− UB(Π(i), V ′) . (2.20)

The function △(V ′,Π, i) denotes the difference in the upper bounds between the partitions Π and
Π(i). In the following, we describe an important property of this function.

2.3. PROPOSED ALGORITHM OTCLIQUE 13

Lemma 3. For any vertex-weighted graph G = (V,E), any partition Π = (P1, P2, . . . , Pk) of V and any
subset V ′ of V , △(V ′,Π, i) satisfies the following inequality :

△(V ′,Π, i) ≤ min{wopt(V
′ ∩ Pi), wopt(V

′ ∩ Pi+1)} . (2.21)

Proof. From the definition of △, the following inequality is easily obtained :

△(V ′,Π, i) = UB(Π, V ′)− UB(Π(i), V ′)

= wopt(V
′ ∩ Pi) + wopt(V

′ ∩ Pi+1)− wopt(V
′ ∩ (Pi ∪ Pi+1))

≤ wopt(V
′ ∩ Pi) + wopt(V

′ ∩ Pi+1)

−max{wopt(V
′ ∩ Pi), wopt(V

′ ∩ Pi+1)}
= min{wopt(V

′ ∩ Pi), wopt(V
′ ∩ Pi+1)} . (2.22)

Size of optimal tables

As subsets are merged, the value of UB(·, ·) gets tighter, and simultaneously, optimal tables get larger.
In the following, we analyze the size of the area used by optimal tables. For each Pi, the values wopt(V

′)
for all subsets V ′ ⊆ Pi are stored in the optimal table for Pi. Therefore, the number of stored values is
2|Pi|for Pi and

∑
Pi∈Π 2|Pi| for all the optimal tables. By merging Pi and Pi+1, the difference of the total

number of the stored values is following:

2|Pi|+|Pi+1| − (2|Pi| + 2|Pi+1|)

=2|Pi|+|Pi+1|(1− (2−|Pi+1| + 2−|Pi|))

≥2|Pi|+|Pi+1|(1− (2−1 + 2−1))

=0 . (2.23)

If there is a large subset in Π, the algorithm cannot run due to a lack of memory. To avoid this
problem, the upper bound l for the size of Pi should be given as an input parameter according to the
amount of available memory and the number of vertices in V . Here, we show an example for calculating
upper bound of l. Suppose each element of the optimal tables requires 4 bytes. If the available memory
in the computer is 109 bytes, l must satisfy the following inequality :

4 ·
⌈
|V |
l

⌉
· 2l ≤ 109 . (2.24)

For example, l ≤ 22 in case |V | = 1000.

14 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

2.3.3 Precomputation phase

The precomputation phase consists of several procedures. First, the algorithm divides vertices into
independent sets and assigns numbers to these vertices (Algorithm 3). Vertices numbering determines
which vertex will be chosen as a branch variable in the branch-and-bound phase. Next, a partition of
V is constructed by merging some independent sets (Algorithm 4), where the parameter l is given as an
input that satisfies (2.24). Finally, the algorithm generates the optimal tables (Algorithm 5). The entire
precomputation phase is shown in Algorithm 2.

Algorithm 2 Precomputation phase

INPUT: An undirected graph G = (V,E), vertex weight w(·) and size parameter l
OUTPUT: A sequence of vertices [vn, vn−1, . . . , v1], a partition of V : Π = (P1, P2, . . . , Pk) and optimal

tables for each Pi

1: Generating independent sets(G,w)
2: Generating partition(I1,I2,. . .,Ij)
3: for i from 1 to k do
4: Generating optimal table(Pi)
5: end for

Algorithm 3 attempts to generate independent sets as large as possible; however, note that the cardi-
nality of each independent set is limited to l. When the current independent set becomes maximal or the
cardinality becomes l, a new independent set is created. Vertices are chosen in a weight-descending order,
so that vertices of large weights are chosen at early stage. If some vertices are of maximum weight, one
of the smallest degree is chosen (according to results of preliminary experiments). During this process,
vertices are named vn, vn−1, . . . , v1 in sequence.

Algorithm 3 Generating independent sets

INPUT: An undirected graph G = (V,E), vertex weight w(·) and size parameter l
OUTPUT: A vertex sequence [vn, vn−1, . . . , v1] and Independent sets I1, I2, . . .
1: procedure Generating independent sets
2: X ← V
3: j ← 0
4: while X is not empty do
5: j ← j + 1
6: Ij ← ∅
7: X ′ ← X
8: while X ′ ̸= ∅ and |Ij | < l do
9: i← |X|

10: Let vi be the vertex of maximum weight in X ′ (if there are some vertices of maximum
weight, one of the smallest degree is chosen)

11: Ij ← Ij ∪ {vi}
12: X ′ ← X ′\({vi} ∪N(vi))
13: X ← X\{vi}
14: end while
15: end while
16: return [vn, vn−1, . . . , v1] and I1, I2, . . . , Ij
17: end procedure

Algorithm 4 is to obtain tighter upper bounds by merging some subsets. Some consecutive independent
sets are chosen to be merged unless the size of the new subset exceeds l. This process is performed until
no subsets can be merged. The sets P1, P2, . . . , Pk are returned as the partition Π.

2.3. PROPOSED ALGORITHM OTCLIQUE 15

Algorithm 4 Generating a partition

INPUT: Independent sets I1, I2, . . . , Ij , size parameter l
OUTPUT: A partition of V : Π = (P1, P2, . . . , Pk)
1: procedure Generating partition
2: k ← 1
3: P1 ← ∅
4: for i from j downto 1 do
5: if |Pk|+ |Ii| > l then
6: k ← k + 1
7: Pk ← Ii
8: else
9: Pk ← Pk ∪ Ii

10: end if
11: end for
12: return (P1, P2, . . . , Pk)
13: end procedure

Algorithm 5 generates an optimal table for V ′ ⊆ V . The weights of the optimal solution for all possi-
ble subsets for each Pi are calculated, and saved in the optimal table corresponding to Pi. For example,
the table for P1 = {v1, v2, v3} has values of wopt(∅), wopt({v1}), wopt({v2}), wopt({v1, v2}), wopt({v3}),
wopt({v1, v3}), wopt({v2, v3}), and wopt({v1, v2, v3}). Note that the optimal tables are efficiently con-
structed with dynamic programming.

• It is obvious that wopt(∅) = 0.

• If all the values of wopt(S) for S ⊆ V ′ \ {v} are known for a subset V ′ of V , wopt(Y) for Y such
that v ∈ Y ⊆ V ′ can be calculated from the following equation :

wopt(Y) = max{w(v) + wopt(Y ∩N(v)) , wopt(Y \ {v})} . (2.25)

The first argument of max operator is the value of optimum solution in case Y includes v, and the
other is the one in case v is not included.

Algorithm 5 Generating an optimal table

INPUT: G = (V,E), w(·) and V ′ ⊆ V
OUTPUT: opt[·] for all subsets of V ′

1: procedure Generating optimal table
2: opt[∅]← 0
3: C ← {∅}
4: V ′′ ← ∅
5: while V ′′ is not V ′ do ▷ At the beginning of each loop, any subset of V ′′ is in C.
6: u← an arbitrary vertex in V ′ \ V ′′

7: C′ ← ∅
8: for X ∈ C do ▷ For any X ∈ C, opt[X] is already calculated.
9: Y ← X ∪ {u}

10: opt[Y]← max{w(u) + opt[X ∩N(vu)] , opt[X]}
11: C′ ← C′ ∩ {Y }
12: end for
13: C ← C ∪ C′
14: V ′′ ← V ′′ ∪ {u}
15: end while
16: return opt[·] for all subsets of V ′

17: end procedure

16 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

2.3.4 Branch-and-bound phase

Hereafter, for the vertex sequence [vn, vn−1, . . . , v1] obtained in the precomputation phase(Algorithm 3),
Vi denotes {v1, v2, . . . , vi} for simplicity. For a set of vertices V ′, M(V ′) is the maximum index of vertices
in V ′. For example, M({v1, v3, v4, v7}) = 7.

Algorithm 6 presents an outline of the branch-and-bound phase. The variables Cmax and c[·] are global
and can be accessed in the EXPAND procedure. First, EXPAND(V1, ∅) is called and the value wopt(V1) is
stored in c[1]. Next, EXPAND(V2, ∅) is called and the value wopt(V2) is stored in c[2]. Similarly, the values
are stored in c[3], c[4], . . . at each iteration. When EXPAND(Vi, ∅) is called, the values wopt(V1), wopt(V2),
. . ., wopt(Vi−1) are stored in c[1], c[2], . . ., c[i − 1], respectively. It is obvious that wopt(V

′) ≤ c[M(V ′)]
for a subset V ′ ⊂ V because V ′ ⊆ VM(V ′). Therefore, c[M(V ′)] can be used as upper bounds for the
subproblem G(V ′). A subproblem is pruned by the bounding procedure if the upper bound is sufficiently
small.

Algorithm 6 Branch-and-bound phase

INPUT: G = (V,E), w(·), Π = (P1, P2, . . . , Pk) opt[·] and a sequence of vertices [vn, vn−1, . . . , v1]
OUTPUT: the maximum weight clique Cmax

GLOBAL VARIABLES: Cmax, c[·]
1: determine the parameter α
2: Cmax ← ∅
3: for i from 1 to ⌊αn⌋ do
4: expand(Vi, ∅)
5: c[i]← w(Cmax) ▷ After expand(Vi, ∅), Cmax is the maximum weight clique of G(Vi).
6: end for
7: expand(V, ∅)

Note that the upper bound of c[M(V ′)] has been shown in a previous study [43]. We introduce a
new parameter α due to the following observation. By some preliminary experiments, we confirmed that
the value c[i] is frequently used and causes pruning for small i; however it is rarely (or never) prunes
subproblems for large i. Moreover, calculation of c[i] for large i needs to solve a lot of subproblems.
The results of preliminary experiments are shown in the Tables 2.1, 2.2 and 2.3. In the tables, the
columns used means the number of times that c[·] is used as an upper bound. The columns bounded is
the number of times that subproblems are pruned by c[·]. The columns subproblems is the number of
solved subproblems to calculate c[·]. All values are the average of 10 random graphs. For |V | = 200, edge
density= 0.9, 81.89% of subproblems are solved to calculate c[181] − c[200] and they pruned only 83.4
subproblems. Therefore calculating such c[·] is not efficient strategy. Instead of calculating such c[·], we
propose calculating wopt(V) directly after calculating c[⌊αn⌋]. We have examined several different graphs
and different values of α, and have determined that the proposed algorithm performs well on average
when α = 0.8.

2.3. PROPOSED ALGORITHM OTCLIQUE 17

Table 2.1: effectiveness of upper bounds c[·] for |V | = 200, edge density= 0.9 (α = 1)

used bounded subproblems
c[1]− c[20] 826.9 0.0 104.6 (<0.01%)
c[21]− c[40] 3042.3 24.3 257.0 (<0.01%)
c[41]− c[60] 33572.0 454.2 971.7 (<0.01%)
c[61]− c[80] 362613.7 6463.6 5206.2 (<0.01%)
c[81]− c[100] 4312548.7 128316.1 33524.3 (0.02%)
c[101]− c[120] 42676994.1 1024640.3 166424.1 (0.10%)
c[121]− c[140] 253930088.0 8351456.5 1033750.7 (0.65%)
c[141]− c[160] 73743921.1 1695526.3 4973929.2 (3.11%)
c[161]− c[180] 1311731.8 19625.4 22738721.7 (14.23%)
c[181]− c[200] 2314.4 83.4 130887702.5 (81.89%)

Table 2.2: effectiveness of upper bounds c[·] for |V | = 8000, edge density= 0.1 (α = 1)

used bounded subproblems
c[1]− c[800] 52558.4 15127.9 7419.0 (0.37%)

c[801]− c[1600] 246376.6 37310.2 25023.0 (1.26%)
c[1601]− c[2400] 429166.7 58495.4 35537.4 (1.79%)
c[2401]− c[3200] 769166.1 88722.5 50853.9 (2.56%)
c[3201]− c[4000] 1372352.4 128977.3 79919.4 (4.03%)
c[4001]− c[4800] 2060687.6 118745.2 129617.7 (6.54%)
c[4801]− c[5600] 2511924.6 96418.2 210840.0 (10.63%)
c[5601]− c[6400] 1947118.8 3455.8 330369.8 (16.66%)
c[6401]− c[7200] 855274.5 530.2 455283.4 (22.96%)
c[7201]− c[8000] 128104.9 0.0 657799.3 (33.18%)

Table 2.3: effectiveness of upper bounds c[·] for |V | = 1000, edge density= 0.5 (α = 1)

used bounded subproblems
c[1]− c[100] 5528.2 397.1 427.9 (<0.01%)
c[101]− c[200] 119690.4 10320.7 5817.6 (0.02%)
c[201]− c[300] 928299.7 96030.8 38283.9 (0.10%)
c[301]− c[400] 4329700.3 481179.8 132128.6 (0.36%)
c[401]− c[500] 14513157.3 2000919.5 484471.0 (1.31%)
c[501]− c[600] 40029819.7 3549796.3 1027140.8 (2.78%)
c[601]− c[700] 57663230.7 2105972.5 2529338.4 (6.85%)
c[701]− c[800] 28002863.9 130138.7 5343812.8 (14.48%)
c[801]− c[900] 4155355.9 1406.0 10555860.2 (28.60%)
c[901]− c[1000] 102980.4 27.6 16785686.5 (45.49%)

18 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

The recursive procedure EXPAND(·, ·) is shown in Algorithm 7. The steps from line 2 to line 7
correspond to process for leaf nodes in a search tree of branch-and-bound procedure. If a better solution
is found, Cmax is updated. The bounding procedure is the steps from line 8 to line 10. In line 8, the
upper bounds UB(·, ·) and c[·] are calculated, and the subproblem is pruned if one of the upper bounds
is sufficiently small. In line 11, the vertex of the maximum index is chosen as a branching variable u,
so that M(V ′) gets smaller. In the rest of the algorithm, subproblems of G(V ′) are examined in the
following order.

• search the optimum solution in the subgraph G(V ′ ∩N(u)). (line 12)

• search the optimum solution in the subgraph G(V ′ \ {u}). (line 13)

For example, if G(V) in Figure 2.5 is given, the algorithm searches the optimum solution in G(V ∩N(v8)),
i.e., G({v1, v3, v4, v5}). Next, the algorithm searches the optimum solution in G(V7).

Algorithm 7 Solving a subproblem

INPUT: V ′ ∈ V , C ▷ For any v ∈ V ′, C ⊆ N(v)
OUTPUT: Update Cmax if better cliques are found.
GLOBAL VARIABLES: Cmax, c[·]
1: procedure expand(V ′, C)
2: if V ′ = ∅ then ▷ Recursive calls finished.
3: if w(C) > w(Cmax) then
4: Cmax ← C
5: end if
6: return
7: end if
8: if UB(Π, V ′) + w(C) ≤ w(Cmax) or c[M(V ′)] + w(C) ≤ w(Cmax) then ▷ Bounding procedure

by two upper bounds.
9: return

10: end if
11: u← vM(V ′)

12: expand(V ′ ∩N(u), C ∪ {u}) ▷ Solve subproblems where C includes u.
13: expand(V ′ \ {u}, C) ▷ Solve subproblems where C does not include u.
14: end procedure

2.3.5 A case study of OTClique

In this section, we show an example for OTClique.

Precomputation phase example

Given an undirected graph shown in of Figure 2.7a, OTClique constructs a vertex sequence and indepen-
dent sets shown in Figure 2.7b by Algorithm 3. When the input parameter l is given as 3, Algorithm 4
merges I2 and I3 to P2. Also, I4 and I5 are merged to P1.

Any vertex set is represented by an array of bit vectors. Each bit vector corresponds to a vertex
subset Pi and each bit is corresponds to a vertex in Pi. For the vertex partition shown in Figure 2.7b,
bit vector representations for some vertex sets are shown in Figure 2.7c.

Optimal Tables is implemented with two-dimensional arrays shown in Figure 2.7d. Any subsets of Pi

is represented by a bit vector. For example, 011 for P2 means {v5, v4}. Therefore, wopt({v5, v4}) = 8 can
be obtained from table[2][011] in O(1) time.

2.3. PROPOSED ALGORITHM OTCLIQUE 19

t
t

t t

t t
t
t

v3

v1 v6

v8

v5

v4v2

v7

�
�
��

�
�

��

@
@

@@

@
@

@@

�
���

���H
HHH

HHH

���
����

@
@
@

@
@
@
@

HH
HHH

HH

B
B
B
B
B
B
B
B
B
BB

(a) An undirected graph

vertex v8 v7 v6 v5 v4 v3 v2 v1
weight 7 5 6 4 4 3 1 2

independent sets I1 I2 I3 I4 I5
partition P3 P2 P1

(b) Vertex sequence, independent sets and partition

V : {11, 111, 111}
P3 : {11, 000, 000}
P2 : {00, 111, 000}
P1 : {00, 000, 111}

N(v3) : {01, 101, 001}
V5 : {00, 011, 111}

(c) Bit vector representation
examples

3 2 1
000 0 0 0
001 5 4 2
010 7 4 1
011 7 8 2
100 - 6 3
101 - 6 5
110 - 6 3
111 - 8 5

(d) Optimal tables

Figure 2.7: A precomputation example

Upper bound calculation example

For the graph shown in Figure 2.7a, a vertex subset S = {v2, v3, v5, v6, v7} is represented by an array of
bit vectors {01, 110, 110}. Hence, an upper bound UB(Π, S) can be calculated with optimal tables as
follows :

UB(Π, S) = table[3][01] + table[2][110] + table[1][110]

= 5 + 6 + 3

= 14 . (2.26)

20 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

2.4 Computer experiments

We implement VCTable and OTClique in C. For OTClique, we determined l = 25 for graphs with
n ≤ 1500, otherwise l = 20. We compared OTClique with Österg̊ard’s algorithm [43], Kumlander’s
algorithm [36] (denoted DK), Yamaguchi/Masuda’s algorithm [68] (denoted YM) and IBM’s mixed integer
programming solver CPLEX. For CPLEX, we formulated MWCP with integer programming as follows :

maximize :
∑
vi∈V

w(vi) · xi

s.t. : xi + xj ≤ 1, (vi, vj) /∈ E

xi ∈ {0, 1}, ∀vi ∈ V .

We used the C program Cliquer [42] for Österg̊ard’s algorithm. For YM, we used a C++ implementa-
tion used in [68]. Although Kumlander presents a Visual Basic 6.0 implementation [32], we independently
implemented DK in C to avoid performance variations between VB and C. We used an Intel(R) Core(TM)
i7-2600 3.40 GHz, 8 GB of main memory, and GNU/Linux. The compiler was gcc 4.4.6 (optimization op-
tion -O2). In addition, version 12.5.0.0. of CPLEX was used. Note that CPLEX is a multi-thread solver,
and the others are single-thread solvers. In the computer experiments, the CPU usage was approximately
800% for CPLEX, and the CPU usage for the others was approximately 100%.

In the result tables, n denotes the number of vertices, d denotes the edge density 2|E|
|V |(|V |−1) , pre

denotes the computation time for the precomputation phase, and total denotes the total computation
time, which includes the precomputation phase.

2.4.1 Random graphs

We generated uniform random graphs with various numbers of vertices and edge density. The vertex
weights were integer values ranging from 1 to 10. In each case, we generated 10 instances and calculated
the average computation time and number of branches.

The computation times and their summary are shown in Table 2.4 and 2.5, respectively. In Table 2.5,
the values of minimum, geometric mean and maximum value of the ratio of each algorithm to OTClique
are shown. Some unknown values (over 1000) are assumed 1000 for convenience in that calculation.

As can be seen, the proposed OTClique algorithm and VCTable can solve all instances; however, the
others cannot solve some instances. For most graphs with 0.3 ≤ d ≤ 0.9, OTClique is faster than the
other algorithms. Although the computation time for the precomputation phase is exponential to the
size of Pi, it is actually performed in less than 2 seconds. For graphs with d ≤ 0.2, Cliquer is faster than
OTClique. However, Cliquer is very slow for dense graphs.

For graphs with d ≥ 0.95, CPLEX is faster than OTClique. We also performed some experiments
for CPLEX with a fixed number of vertices and the results are shown in Table 2.6. CPLEX is very slow
even if the graph is sparse. Note that CPLEX is a branch-and-cut based solver; thus, it behaves quite
differently from other branch-and-bound-based algorithms.

The number of search tree nodes and its summary are shown in Table 2.7 and 2.8, respectively. The
number of nodes of Cliquer is not shown because the program does not provide this information. In most
cases, the YM algorithm demonstrates the smallest number of search tree nodes. However, OTClique
is faster than the YM algorithm because OTClique calculates an upper bound in O(|V ′|) time for a
subproblem V ′, whereas the YM algorithm requires O(|V ′|2) time for the upper bound calculation. Since
similar tendency is also seen in the experiments with other data, we do not show the summary of number
of search tree nodes hereafter.

2.4. COMPUTER EXPERIMENTS 21

Table 2.4: Computation time for random graphs [sec]

OTClique
n d l pre total VCTable Cliquer YM DK CPLEX

8000 0.1 20 0.97 5.09 6.54 2.69 13.24 12.01 >1000
6000 0.1 20 0.68 1.98 2.47 1.14 4.55 4.05 >1000
4000 0.2 20 0.43 6.72 9.04 4.15 25.78 20.94 >1000
3000 0.2 20 0.30 2.03 2.70 1.36 6.08 5.99 >1000
2500 0.3 20 0.07 9.38 15.95 10.03 37.84 44.53 >1000
2000 0.3 20 0.05 3.00 8.37 3.47 12.30 14.61 >1000
1500 0.4 25 1.51 9.08 14.45 15.06 42.29 58.04 >1000
1000 0.4 25 0.98 1.69 1.24 1.58 3.62 5.30 >1000
1000 0.5 25 0.88 11.67 17.85 28.67 61.50 94.84 >1000
900 0.5 25 0.74 5.74 10.29 15.29 31.46 50.73 >1000
700 0.6 25 0.49 17.02 29.99 64.38 99.07 212.70 >1000
500 0.6 25 0.38 1.72 2.48 5.62 7.11 17.12 >1000
500 0.7 25 0.44 36.57 66.35 212.79 201.98 674.06 >1000
300 0.7 25 0.31 0.72 0.96 3.13 2.01 6.49 769.63
300 0.8 25 0.33 18.85 52.88 242.38 93.70 511.97 >1000
200 0.8 25 0.23 0.45 0.71 3.29 1.11 5.45 24.97
200 0.9 25 0.30 10.63 60.44 >1000 89.85 409.55 11.24
150 0.9 25 0.21 0.46 0.96 20.32 1.58 7.20 0.89
200 0.95 25 0.30 144.11 909.88 >1000 >1000 >1000 1.96
150 0.95 25 0.21 2.06 6.49 >1000 22.57 48.09 0.27
200 0.98 25 0.34 18.75 40.44 >1000 >1000 967.34 0.02
150 0.98 25 0.26 0.43 0.47 >1000 18.70 5.09 0.01

Table 2.5: Summary: Computation time comparison for random graphs

VCTable Cliquer YM DK CPLEX
min 0.73 0.53 2.14 2.05 0.014

mean 1.87 >4.10 >4.68 >8.79 >49.4
max 6.31 >2325.6 >53.3 >53.3 >2222.2

Table 2.6: Computation time and number of search tree nodes of CPLEX

CPLEX
n d time[sec] iterations nodes

200 0.1 5.57 2753.7 0.0
200 0.2 7.54 5380.3 0.0
200 0.3 10.76 36948.7 350.5
200 0.4 12.44 83930.5 818.8
200 0.5 11.16 108395.2 1303.2
200 0.6 12.31 260316.9 3355.7
200 0.7 14.76 524246.0 7251.2
200 0.8 25.78 1185288.8 21259.0
200 0.9 11.46 886880.4 17404.3
200 0.95 2.00 116176.7 2642.0
200 0.98 0.02 238.1 0.0

22 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

Table 2.7: Number of search tree nodes for random graphs

CPLEX
n d OTClique VCTable YM DK iterations nodes

8000 0.1 1569577.2 1969224.0 2984515.8 1945414.9
6000 0.1 538047.3 662396.4 1476080.5 650523.3
4000 0.2 4209559.4 5242273.7 2914794.5 5959659.5
3000 0.2 1600052.8 1962662.0 1093185.9 2281087.4
2500 0.3 12634956.5 16158044.8 9341501.7 20388682.5
2000 0.3 4499188.0 5931297.5 3174379.3 7096941.7
1500 0.4 15814530.7 22526798.8 9558008.3 29162795.8
1000 0.4 1850807.0 2818775.0 1494500.5 3295741.8
1000 0.5 28515581.8 42783759.7 15942518.3 57438717.0
900 0.5 15621489.3 25828420.6 8696737.4 31984389.3
700 0.6 64268108.0 110461661.2 25579875.4 142408095.5
500 0.6 5855125.4 10794560.6 3112917.3 13138380.5
500 0.7 174437626.4 345544601.4 57386087.3 490450681.3
300 0.7 2166003.0 5486785.2 1398292.1 6078605.7 13761832.0 199887.2
300 0.8 115162693.3 369686388.9 39410102.6 470340625.1
200 0.8 1325098.1 5282665.4 1098077.0 6256181.4 1185288.8 21259.0
200 0.9 92658142.3 593489366.4 24300759.4 513470878.2 886880.4 17404.3
150 0.9 2249004.1 9622659.3 1210309.3 11607417.5 39049.1 999.7
200 0.95 1648509971.5 10439082379.0 116176.7 2642.0
150 0.95 23690554.4 80717090.8 5716143.1 94504883.0 2190.3 34.9
200 0.98 252017914.8 590062099.6 1755388755.3 238.1 0.0
150 0.98 2914216.4 6804953.8 2538974.4 11978621.5 84.9 0.0

Table 2.8: Summary: Comparison of Number of search tree nodes (random graph, 0.1 ≤ d ≤ 0.9)

VCTable YM DK
min 1.226623271 0.262262536 1.209044818

mean 1.914480733 0.642868328 2.254038621
max 6.405150715 2.743402857 5.541562408

2.4. COMPUTER EXPERIMENTS 23

2.4.2 Graphs from error-correcting codes

Error-correcting codes are important in the field of coding theory. The problem of constructing error-
correcting codes of maximum size can be formulated with the MWCP [43].

The computation time, its summary and number of search tree nodes are shown in Tables 2.9, 2.10
and 2.11, respectively. OTClique, VCTable, and Cliquer can solve all instances; however, YM, DK and
CPLEX cannot solve some instances within 1000 seconds. There is a difference from the experiments for
random graphs; Cliquer is the fastest for random sparse graphs. However, in these experiments OTClique
is often faster than Cliquer even though all graphs are very sparse.

Table 2.9: Computation time for graphs from error-correcting codes[sec]

OTClique
instance n d l pre total VCTable Cliquer YM DK CPLEX
11-4-4 150 0.089 25 0.17 3.50 13.96 18.45 11.52 151.45 2.49
12-4-6 230 0.038 25 0.20 18.62 92.56 18.22 54.67 >1000 8.14
14-4-7 223 0.040 25 0.17 24.84 71.98 248.41 58.29 455.17 177.13
14-6-6 807 0.0031 25 0.58 11.62 18.18 12.56 33.05 183.83 >1000
16-4-5 156 0.083 25 0.15 0.23 0.22 0.11 0.34 1.72 0.51
16-8-8 2246 0.00040 20 0.21 0.30 0.37 0.13 0.24 0.40 >1000
17-4-4 132 0.12 25 0.09 0.09 0.03 0.03 0.02 0.12 0.21
17-6-6 558 0.0064 25 0.34 8.43 50.52 45.00 11.65 57.66 563.01
19-4-6 263 0.029 25 0.25 1.55 1.75 0.43 >1000 >1000 12.37
19-8-8 2124 0.00044 20 0.20 1.44 2.03 1.11 4.58 5.03 >1000
20-6-5 1302 0.0012 25 2.22 15.55 16.07 8.48 13.76 71.58 >1000
20-6-6 1490 0.00090 25 1.28 35.98 36.15 39.42 27.53 122.47 >1000
20-8-10 2510 0.00032 20 0.26 0.67 0.68 0.47 0.44 0.93 >1000
21-10-9 5098 0.000077 20 0.57 30.80 36.48 22.30 45.58 81.61 >1000

22-10-10 8914 0.000025 20 1.07 2.18 2.45 2.72 4.99 3.98 >1000

Table 2.10: Summary: Computation time comparison for error-correcting codes

VCTable Cliquer YM DK CPLEX
min 0.33 0.28 0.22 1.33 0.44

mean 1.51 1.03 >2.11 >7.54 >32.5
max 5.99 10.0 >645.1 >645 >3333

24 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

Table 2.11: Number of search tree nodes for graphs from error-correcting codes

CPLEX
instance n d OTClique VCTable YM DK iterations nodes
11-4-4 150 0.089 30163536 180331784 25070647 275400718 397710 8549
12-4-6 230 0.038 121920915 668899369 17792987 751526 10948
14-4-7 223 0.04 143755269 458811161 41662592 515680460 19249470 563040
14-6-6 807 0.0031 30487685 46843021 4601492 79528959
16-4-5 156 0.083 398777 1540169 338154 2316548 31621 542
16-8-8 2246 0.0004 124722 149419 179727 169038
17-4-4 132 0.12 24780 178479 56609 189553 32334 1925
17-6-6 558 0.0064 49123059 364028794 5854424 46348199 8681379 75387
19-4-6 263 0.029 14506697 18569063 1213989 22654
19-8-8 2124 0.00044 3197921 4590127 2613216 1824505
20-6-5 1302 0.0012 36969905 41428506 15508514 47977328
20-6-6 1490 0.0009 72883176 78077559 21910613 75449886
20-8-10 2510 0.00032 567832 611175 402282 510480
21-10-9 5098 0.000077 48434957 59905383 19987039 45192855

22-10-10 8914 0.000025 244678 243124 2134959 198318

2.4.3 Combinatorial auction test suite (CATS)

The winner determination problem (WDP) is a problem to find the winner in a combinatorial auction,
which allows a bidder to bid on some combinations of items. In the WDP, a set of items S and a set of
bids B are given. Each bid is given as a subset Ai of items and a price p[i]. Any two bids containing
the same item cannot simultaneously be winners. Winners are determined to maximize the sum of the
profit.

The WDP can be formulated by integer programming as follows :

maximize :
∑
bi∈B

p[i]xi

s.t. :
∑

Ai∋sj

xi ≤ 1, for ∀sj ∈ S

xi ∈ {0, 1}, ∀bi ∈ B .

CATS, the benchmark set of the WDP, is available online [14]. CATS can create instances of the
CPLEX integer programming format. We obtained MWCP with graph G = (V,E) and weights for each
vertex w(·) from the WDP by transforming in the following manner. Vertices corresponds to bids, and
for any two bids bi, bj ∈ B, there exists an edge (vi, vj) iff Ai ∩ Aj = ∅. Each vertex weight is the price
of each corresponding bid.

In the experiments, 10 instances were generated for each condition, and the average computation
time, its summary and number of search tree nodes are shown in Tables 2.12, 2.13 and 2.14, respectively.
In the tables, arbitrary-400-250 denotes the instance of the arbitrary distribution with 400 items and 250
bids. CATS does not produce instances of an exact number of bids; thus, the numbers in column “n”
differ slightly from the expected numbers.

In these experiments CPLEX was the fastest for almost all instances, probably because of small n
and large d. In addition, the outputs of CATS might be in a more desirable formulation for CPLEX.
Among the branch-and-bound algorithms, OTClique is significantly faster than other algorithms.

2.4. COMPUTER EXPERIMENTS 25

Table 2.12: Computation time for CATS [sec]

OTClique
instance n d l pre total VCTable Cliquer YM DK CPLEX

arbitrary-400-250 251.5 0.71 25 0.25 0.38 0.71 16.95 0.44 2.36 5.27
arbitrary-700-200 202.1 0.81 25 0.18 0.21 0.57 224.92 0.08 0.27 1.09
matching-400-300 304.7 0.96 25 0.11 0.13 >1000 >1000 115.52 6.74 0.01
matching-700-250 251.9 0.96 25 0.05 0.05 >1000 >1000 0.13 1.14 0.01

paths-100-200 201.4 0.85 25 0.19 2.41 71.62 >1000 38.30 44.84 0.01
paths-150-200 202.1 0.86 25 0.16 5.10 209.27 >1000 17.98 70.55 0.01

regions-500-300 302.1 0.86 25 0.22 6.48 >1000 >1000 21.62 200.18 0.28
regions-700-250 252.3 0.90 25 0.20 0.72 725.61 >1000 3.21 27.86 0.09

scheduling-30-600 614.0 0.60 25 0.83 1.86 4.35 5.95 19.67 3.91 0.02
scheduling-50-500 516.9 0.71 25 0.65 2.84 3.33 7.72 32.14 2.47 0.08

Table 2.13: Summary: Computation time comparison for CATS

VCTable Cliquer YM DK CPLEX
min 1.17 2.72 0.38 0.87 0.002

mean >57.7 >254 6.32 9.39 0.083
max >20000 >20000 889 51.8 13.87

Table 2.14: Number of search tree nodes for CATS

CPLEX
instance n d OTClique VCTable YM DK iterations nodes

arbitrary-400-250 251.5 0.71 888981.3 5656266.7 188516.6 3516208.6 640828.9 12708.4
arbitrary-700-200 202.1 0.81 163751.7 5009649.8 22621.2 473788.1 52123.4 829.5
matching-400-300 304.7 0.96 266306.1 5085000.7 4456469.6 10.2 0.0
matching-700-250 251.9 0.96 105082.2 5988.5 1644554.7 2.6 0.0

paths-100-200 201.4 0.85 19408098.7 643188530.2 18514793.1 85357910.2 82.2 0.0
paths-150-200 202.1 0.86 45093901.5 2071898703 9021836.7 129116819.3 85.3 0.0

regions-500-300 302.1 0.86 50251614.2 1787653.7 206599782.9 3793.3 47.7
regions-700-250 252.3 0.90 5090924.0 6315728338.5 363420.6 35247529.6 543.4 0.0

scheduling-30-600 614.0 0.60 5114551.6 33353543.8 1939830.5 2924728.7 99.8 0.0
scheduling-50-500 516.9 0.71 16712513.2 40218416.4 2811068.1 2435736.2 907.1 61.3

26 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

2.4.4 DIMACS benchmark graphs

The DIMACS benchmarks for the MCP can be obtained online [62]. We used the DIMACS benchmarks
to compare weighted algorithms. Note that there are some faster algorithms for the MCP (e.g., [60])
than algorithms for the MWCP.

The computation time, its summary and the number of search tree nodes are shown in Tables 2.15, 2.16
and 2.17, respectively. In the tables, “easy instance” means the instance which at least one of algorithms
can solve less than 0.1 second (26 instances) and “hard instance” means all the algorithm takes at least
0.1 second (16 instances). In Table 15, we put ”*” at the end of each row for ”easy instance”. In Table
2.16, the number of times that each algorithm is the fastest is shown.

For “easy instances”, OTClique is not the fastest because the time required to perform the precompu-
tation phase is relatively long for easy instances (still less than a second). However, for “hard instances”,
OTClique is several times faster than other algorithms in most cases. For example, previous algorithms
require at least 13 hours to solve p-hat500-3 ; however, OTClique can solve the problem within 30 minutes.

Table 2.15: Computation time for DIMACS graphs [sec]

OTClique
instance n d l pre total VCTable Cliquer YM DK CPLEX easy

brock200 1 200 0.75 25 0.23 0.75 2.14 3.78 3.03 12.99 155.13
brock200 2 200 0.50 25 0.05 0.06 0.02 0.01 0.02 0.02 29.48 *
brock200 3 200 0.61 25 0.20 0.22 0.09 0.07 0.09 0.28 44.33 *
brock200 4 200 0.66 25 0.13 0.17 0.12 0.27 0.25 0.60 57.00
brock400 1 400 0.75 25 0.27 627.16 2959.93 13192.62 1801.04 35059.79 >24h
brock400 2 400 0.75 25 0.36 99.37 1540.65 3354.88 1927.09 13208.17 out of memory
brock400 3 400 0.75 25 0.40 474.01 337.01 994.56 1718.99 3485.41 out of memory
brock400 4 400 0.75 25 0.32 41.29 672.79 146.68 1855.58 3148.39 out of memory
c-fat200-1 200 0.08 25 0.02 0.02 0.01 <0.01 <0.01 <0.01 4.25 *
c-fat200-2 200 0.16 25 0.02 0.02 0.01 <0.01 <0.01 <0.01 2.97 *
c-fat200-5 200 0.43 25 0.26 0.26 48.54 0.11 <0.01 <0.01 1.44 *
c-fat500-10 500 0.37 25 0.50 0.51 0.22 <0.01 0.01 0.01 30.60 *
c-fat500-1 500 0.04 25 0.97 0.97 0.05 <0.01 <0.01 <0.01 40.41 *
c-fat500-2 500 0.07 25 0.06 0.07 0.06 <0.01 <0.01 <0.01 52.04 *
c-fat500-5 500 0.19 25 0.50 0.50 0.01 <0.01 <0.01 <0.01 50.34 *

hamming6-2 64 0.90 25 0.06 0.07 0.04 <0.01 <0.01 <0.01 0.01 *
hamming6-4 64 0.35 25 0.06 0.07 <0.01 <0.01 <0.01 <0.01 0.09 *
hamming8-4 256 0.64 25 0.26 0.26 <0.01 <0.01 0.06 <0.01 0.31 *

johnson16-2-4 120 0.76 25 0.10 0.11 0.06 0.02 0.02 0.09 0.01 *
johnson8-2-4 28 0.56 25 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 *
johnson8-4-4 70 0.77 25 0.11 0.11 <0.01 <0.01 <0.01 <0.01 0.01 *

keller4 171 0.65 25 0.13 0.13 0.06 0.06 0.04 0.31 1.86 *
MANN a9 45 0.93 25 0.04 0.04 0.01 <0.01 <0.01 <0.01 0.01 *

p hat1000-1 1000 0.24 25 0.19 0.58 0.49 0.68 0.78 2.05 out of memory
p hat1000-2 1000 0.49 25 0.58 5473.09 22235.24 >24h >24h >24h out of memory
p hat1500-1 1500 0.25 25 0.49 3.47 4.47 5.02 7.25 13.37 2316.46
p hat300-1 300 0.24 25 0.07 0.07 0.03 0.01 <0.01 <0.01 197.70 *
p hat300-2 300 0.49 25 0.16 0.17 0.08 0.16 1.55 1.57 201.27 *
p hat300-3 300 0.74 25 0.30 2.30 32.88 290.47 1214.72 3284.28 out of memory
p hat500-1 500 0.25 25 0.06 0.08 0.06 0.04 0.04 0.07 5901.71 *
p hat500-2 500 0.50 25 0.27 0.68 3.51 79.55 407.64 171.05 out of memory
p hat500-3 500 0.75 25 0.46 1688.62 47835.44 >24h >24h >24h out of memory
p hat700-1 700 0.25 25 0.10 0.13 0.08 0.06 0.12 0.17 70610.60 *
p hat700-2 700 0.50 25 0.37 25.02 103.99 9095.34 54845.59 14432.73 out of memory

san200 0.7 1 200 0.70 25 0.13 0.14 0.21 0.48 0.01 10.79 0.07 *
san200 0.7 2 200 0.70 25 0.10 0.10 <0.01 <0.01 0.04 509.60 1.43 *
san200 0.9 1 200 0.90 25 0.28 0.28 2.01 0.06 0.21 296.46 0.02 *
san200 0.9 2 200 0.90 25 0.22 0.24 9.21 6.96 33.05 100.63 0.03 *
san200 0.9 3 200 0.90 25 0.33 39.16 3216.09 288.78 353.92 66606.68 1.16
san400 0.5 1 400 0.50 25 0.43 0.43 86.11 <0.01 0.07 9.51 20.09 *
sanr200 0.7 200 0.70 25 0.15 0.30 0.56 1.14 0.78 3.37 81.45
sanr400 0.5 400 0.50 25 0.31 0.54 0.61 0.61 0.75 1.78 out of memory

2.4. COMPUTER EXPERIMENTS 27

Table 2.16: Number of times the algorithm is fastest

OTClique VCTable Cliquer YM DK CPLEX
easy instance 0 6 18 15 13 4
hard instance 12 3 0 0 0 1

Table 2.17: Number of search tree nodes for DIMACS graphs

CPLEX
instance n d OTClique VCTable YM DK iterations nodes

Brock200 1 200 0.75 2566471 13661530 6059104 15797409 7436306 208755
Brock200 2 200 0.50 9657 31882 15590 30566 661974 9741
Brock200 3 200 0.61 89289 315209 198252 340176 1344242 33307
brock200 4 200 0.66 172145 442065 515922 802497 2017472 51940
brock400 1 400 0.75 3488294654 16039214046 2200796435 35382562365
brock400 2 400 0.75 553204147 8052675173 2576827212 13386023608
brock400 3 400 0.75 2879648537 1962741399 2400677118 3904864834
brock400 4 400 0.75 238804823 3890878794 2721130159 3302953612
c-fat200-1 200 0.08 82 83 19 102 803 0
c-fat200-2 200 0.16 300 300 55 324 708 0
c-fat200-5 200 0.43 1712 308553765 528 1923 846 0
c-fat500-10 500 0.37 8001 8001 186 8127 3029 0
c-fat500-1 500 0.04 108 128 34 119 3838 0
c-fat500-2 500 0.07 351 351 91 377 4129 0
c-fat500-5 500 0.19 2080 2080 97 2144 3251 0

hamming6-2 64 0.90 528 548 32 584 87 0
hamming6-4 64 0.35 49 80 106 88 470 0
hamming8-4 256 0.64 972 1171 38508 1179 1351 0

johnson16-2-4 120 0.76 218423 541587 228719 547373 47 0
johnson8-2-4 28 0.56 10 45 24 51 10 0
johnson8-4-4 70 0.77 232 323 363 499 117 0

keller4 171 0.65 39213 181697 82173 437495 175708 3006
MANN a9 45 0.93 204 704 1893 2845 97 0

p hat1000-1 1000 0.24 1220187 1450847 986204 1589646
p hat1000-2 1000 0.49 20048937586 143300483577
p hat1500-1 1500 0.25 6923351 13656285 7116928 9335304 28604 0
p hat300-1 300 0.24 3986 5276 5229 6282 402470 4936
p hat300-2 300 0.49 53829 213246 1597449 1702352 737357 8884
p hat300-3 300 0.74 11044720 219293999 708443913 4411515345
p hat500-1 500 0.25 48296 67740 56053 62412 4300997 70519
p hat500-2 500 0.50 1830991 19329531 99860159 223499388
p hat500-3 500 0.75 9900409369 308959913207
p hat700-1 700 0.25 71443 158620 134150 141524 24148763 363967
p hat700-2 700 0.50 106049123 621465294 6995805088 17558655841

san200 0.7 1 200 0.70 78107 1204248 2393 75571516 588 0
san200 0.7 2 200 0.70 248 225 31353 1273043561 44602 668
san200 0.9 1 200 0.90 7052 22252694 11224 1601201049 319 0
san200 0.9 2 200 0.90 268649 98942797 14354090 347488437 520 0
san200 0.9 3 200 0.90 332503947 27913769597 235811036 140175563921 101776 1737
san400 0.5 1 400 0.50 1123 119048473 4892 5318885 207102 920
sanr200 0.7 200 0.70 709769 3139173 1626325 4235239 2930622 73971
sanr400 0.5 400 0.50 973190 2476362 1252324 1715154

28 CHAPTER 2. EXACT ALGORITHMS FOR MWCP

2.5 Conclusions

We have proposed two new maximum clique extraction algorithms VCTable and OTClique. VCTable
calculates upper bounds of vertex coloring for all subgraphs and stores the values to tables. The tables
are used to calculate upper bounds in branch-and-bound. OTClique consists of two phases, the precom-
putation phase and the branch-and-bound phase. In the precomputation phase, the proposed OTClique
algorithm generates a vertex partition and optimal tables. In the branch-and-bound phase, OTClique
calculates the upper bound in a very short time using the optimal tables. Because the computation
time for each branch is very short and the bounding procedure can prune significant search space; thus,
OTClique can solve instances quickly.

From the experiments, we have confirmed that OTClique is significantly faster than other algorithms
for almost all instances. For some instances, OTClique is not the fastest; however, the differences are
not significant. OTClique solves such instances nearly as fast as the fastest performing algorithm in such
cases. Previous algorithms cannot find the optimum solution for some instances; however, OTClique can
find the optimum solution for all instances used in the experiments.

29

Chapter 3

Exact Algorithms for MEWCP

3.1 Introduction

In this chapter, we propose exact algorithms for MEWCP. First, we show some mathematical program-
ming formulations for MEWCP, and compare their computational time with a mathematical program-
ming solver. We propose the vertex renumbering technique to reduce computational time. Computational
experiments show the efficiency of proposed algorithm.

Second, we propose an exact algorithm based on branch-and-bound. By some computational experi-
ments, we confirm proposal algorithm is faster than the methods based on mathematical programming.

In the section 3.2, we describe mathematical programming formulations for MEWCP and propose a
new technique to improve the performance of them. Previous branch-and-bound algorithms for MWCP
that are modified to be used in our algorithm is shown in the section 3.3. Some techniques of them are
modified and used in the proposed branch-and-bound algorithm for MEWCP. The proposed branch-and-
bound algorithm EWCLIQUE is described in the section 3.4. Computer experiments are shown in the
section 3.5.

3.2 Mathematical programming formulations for MEWCP

Formulations of MEWCP can be obtained from formulations of the maximum diversity problem. Given
an edge-weighted complete graph and a natural number b, the maximum diversity problem (MDP) [39],
also known as b-clique problem [56], is to find a clique of size b that has maximum sum of edge weights.
Note that MDP is different from MEWCP of the definition in this paper although MDP may sometimes
be called MEWCP [1].

The formulations of MDP is shown in [39]. Formulations of MDP has constraints that represents
the size of clique is b. Formulations of MEWCP is obtained by replacing them to constraints that
represents at most one of two non-adjacent vertices can be included in a clique. This section describes
such formulations. Note that some constraints are simplified because the edge-weights are non-negative
in MEWCP and are any real number in MDP.

Hereafter, Let V = {v1, v2, . . . , vn} and Ē = {(vi, vj) | i ̸= j, (vi, vj) /∈ E}. By the condition i ̸= j, Ē
does not include self loops.

3.2.1 Quadratic programming

MEWCP can be formulated in QP as follows :

maximize :
∑

(vi,vj)∈E

w(vi, vj)xixj (3.1)

s.t. : xi + xj ≤ 1,∀(vi, vj) ∈ Ē (3.2)

xi ∈ {0, 1},∀vi ∈ V. (3.3)

A binary variable xi is set to 1 if and only if vi is in a solution. By constraint (3.2) at most one of any
nonadjacent pair of vertices can be in a clique.

30 CHAPTER 3. EXACT ALGORITHMS FOR MEWCP

3.2.2 Integer programming

MEWCP can be formulated in IP as follows :

maximize :
∑

(vi,vj)∈E

w(vi, vj)yij (3.4)

s.t. : yij ≤ xi,∀(vi, vj) ∈ E (3.5)

yij ≤ xj ,∀(vi, vj) ∈ E (3.6)

xi + xj ≤ 1,∀(vi, vj) ∈ Ē (3.7)

xi ∈ {0, 1},∀vi ∈ V (3.8)

yij ∈ {0, 1},∀(vi, vj) ∈ E. (3.9)

A binary variable xi is set to 1 if and only if vi is in a solution. By constraints (3.5) and (3.6), for any
edge (vi, vj), a binary variable yij is set to 1 only when both vi and vj are in the solution.

3.2.3 Mixed integer programming

N(v) denotes the set of all vertices adjacent to v. Let N+(vi) = N(vi) ∩ {vj | j > i}, and Ui =∑
vj∈N+(vi)

w(vi, vj). MEWCP can be formulated in MIP as follows :

maximize :
∑

vi∈V \{vn}

zi (3.10)

s.t. : xi + xj ≤ 1,∀(vi, vj) ∈ Ē (3.11)

zi ≤ Uixi,∀vi ∈ V \ {vn} (3.12)

zi ≤
∑

vj∈N+(vi)

w(vi, vj)xj ,∀vi ∈ V \ {vn} (3.13)

xi ∈ {0, 1},∀vi ∈ V. (3.14)

A binary variable xi is set to 1 if and only if vi is in a solution. If xi = 0, the equation zi = 0 holds
by the constraint (3.12). If xi = 1, the value of zi is determined by the constraints (3.13) because the
constraint (3.12) is looser than the constraint (3.13) in this case. By the constraint (3.13), zi is bounded
by the total weight of edges in the clique whose endpoints are vi and vj ∈ N+(vi).

3.2.4 Proposed initial renumbering for formulations in MIP

The formulation in MIP has following properties.

• For the optimal solution, the equation zi ≥ 0 holds.

• When Ui is small, the range of zi is small. Especially when Ui = 0, the equation zi = 0 holds and
the variable zi is unnecessary.

• For large i, the number of elements in N+(vi) is small and Ui becomes small.

• The distribution of Ui depends on the numbering of vertex indices.

From these properties, it is conceivable that computation time of mathematical programming solvers
can be shortened by renumbering the vertex indices of the given graph. The proposed method to renumber
vertex indices is based on the following policies P1 and P2.

P1 Vertices of large Ui form independent sets.

P2 Make each Ui small.

The proposal method is follow :

1. Construct a maximal independent set I1. During the construction, the proposal method selects
vertices to add to I1 in nonincreasing order of

∑
u∈N(v) w(v, u) and assigns indices v1,v2,. . . in the

selection order.

3.2. MATHEMATICAL PROGRAMMING FORMULATIONS FOR MEWCP 31

2. Construct a maximal independent set I2 from V \ I1. Same as I1, vertices are selected to add
to I2 in nonincreasing order of

∑
u∈N(v) w(v, u). Assign unused indices to selected vertices in the

selection order.

3. Construct maximal independent sets I3, I4, . . . in the same way until Ik where ∪ki=1Ii = V .

In constructing the maximal independent I1, the proposed method selects vertices in nonincreasing
order of sum of connected edge weights (Policy P1). Therefore the values of Ui become larger for I1.
Since

∑n
i=1 Ui equals to the sum of all edge weights, the values of Ui for large indexed vertices become

small by giving small indices to vertices of large Ui (Policy P2). For vertices in Ik, Ui = 0 holds and the
corresponding variables zi become unnecessary.

3.2.5 Computer experiments

We compare the computation time of formulations by uniform random graphs. The edge weights are
uniform random integer variables from 1 to 10. The mathematical programming solver is IBM CPLEX
12.5. The OS is Linux 4.4.0. The CPU is Intel R⃝CoreTMi7-6700 CPU 3.40 GHz. RAM is 16GB.

The results are shown in the Table 3.1. In the table, d denotes the edge density. In each condition, we
generate 10 instances and calculate the average computation time. Though CPU time for the proposal
vertex renumbering is not included in the values in the table, it is shorter than 1msec for every case.
From the results, MIP is faster than QP and IP. In addition, we confirmed proposal method makes MIP
14% faster on average.

Table 3.1: CPU time for random graphs [sec]

MIP MIP QP IP
|V | d (proposal)
350 0.1 190.96 214.95 706.68 258.84
300 0.1 91.54 97.52 313.46 124.94
280 0.2 119.47 151.94 417.06 664.09
250 0.2 64.26 82.68 250.55 315.26
250 0.3 97.16 122.93 531.50 over 1000
200 0.3 39.16 46.83 154.74 470.07
200 0.4 57.54 67.78 428.47 over 1000
160 0.4 21.98 26.58 97.61 528.41
170 0.5 52.72 63.37 498.58 over 1000
140 0.5 21.28 22.09 111.73 556.29
130 0.6 28.57 31.70 256.59 634.81
120 0.6 18.10 19.12 129.01 405.38
110 0.7 31.23 36.38 356.28 557.70
100 0.7 15.12 16.33 125.42 262.75
90 0.8 21.51 22.64 266.13 386.01
80 0.8 7.28 8.70 71.41 135.77
80 0.9 14.84 18.10 118.65 181.36
70 0.9 3.80 5.09 16.69 50.80

32 CHAPTER 3. EXACT ALGORITHMS FOR MEWCP

3.3 Previous branch-and-bound algorithms for MWCP

Before describing the proposed branch-and-bound algorithm for MEWCP, two previous branch-and-
bound algorithm for MWCP is shown in this section. The proposed algorithm modifies some techniques
of them to use in MEWCP.

For V ′ ⊆ V , let we(V
′) =

∑
v∈V ′ w(v). PMWC(C, S) denotes a subproblem of MWCP, where C is a

set of vertices already chosen and S is a set of candidate vertices to be added to C. Note that C ∩S must
be an empty set, and for any element v ∈ S, C ⊆ N(v) must be satisfied. The problem corresponding to
the given graph G = (V,E) is PMWC(∅, V).

In a branching procedure, a subproblem PMWC(C, S) is divided into |S| subproblems and examined
in depth-first recursive manner. For each subproblem, a bounding procedure calculates an upper bound
for the weight of feasible solutions in PMWC(C, S). By using the upper bounds, a bounding procedure
prunes unnecessary subproblems to reduce the search tree size. The tightness and calculation time for
each upper bound are important for the entire computation time of branch-and-bound.

3.3.1 Österg̊ard’s algorithm

A branch-and-bound algorithm for MWCP is proposed by Österg̊ard[43]. Let Vi = {vi, vi−1, . . . , v1}.
Österg̊ard’s algorithm calculates exact solutions of PMWC(∅, V1), PMWC(∅, V2), . . . , PMWC(∅, Vn) in this
order. An exact solution of given instance is finally obtained because PMWC(∅, Vn) is equivalent to the
given problem. Each time exact solution of PMWC(∅, Vi) is obtained, its weight is stored in c[i]. The
array c[·] is used to calculate upper bounds in the following way. Hereafter M(V ′) denotes the maximum
index of vertices in V ′. Let F be a feasible solution of PMWC(C, S). Since S ⊆ VM(S), the following
inequality holds :

w(F) = w(C) + w(S ∩ F) (3.15)

≤ w(C) + w(VM(S) ∩ F) (3.16)

≤ w(C) + c[M(S)]. (3.17)

3.3.2 Longest path method

An upper bound calculation for MWCP is proposed in [68]. Let G(V ′) be the subgraph of G induced

by V ′ ⊆ V . For a vertex induced subgraph G(S), let D⃗ be a directed acyclic graph such that the graph

obtained by replacing each directed edge in D⃗ with an undirected edge is isomorphic to G(S). The length

of a path is defined as the sum of vertex weights in the path. Let L(D⃗) be the length of a longest path

in D⃗. Let F be a feasible solution of PMWC(C, S). Since F ∩ S is a clique in G(S), at least one path in

D⃗ includes all vertices of F ∩ S and the following inequality holds :

w(F) = w(C) + w(S ∩ F) (3.18)

≤ w(C) + L(D⃗). (3.19)

Hence an upper bound for w(F) can be obtained from a longest path in a directed acyclic graph D⃗. It
is called longest path method.

3.4. PROPOSED BRANCH-AND-BOUND ALGORITHM EWCLIQUE 33

3.4 Proposed branch-and-bound algorithm EWCLIQUE

In this section, we propose a new branch-and-bound algorithm EWCLIQUE.

3.4.1 Branch-and-bound for MEWCP

Proposed algorithm EWCLIQUE is the first algorithm for MEWCP based on branch-and-bound. Before
introducing EWCLIQUE, we show the representation of subproblems of MEWCP. Hereafter, for a clique
C ⊆ V , let we(C) =

∑
u,v∈C w(u, v).

Subproblems of MEWCP

PMEWC(C, S) denotes a subproblem of the MEWCP, where C is a set of vertices already chosen and
S is a set of candidate vertices to be added to C. Note that C ∩ S must be an empty set, and for any
element v ∈ S, C ⊆ N(v) must be satisfied. The problem corresponding to the given graph G = (V,E)
is PMEWC(∅, V).

Figure 3.1a shows an example of edge-weighted graph Gex, and Figure 3.1b shows the edge-weight
matrix of Gex. In the edge-weight matrix, the blank spaces denote that vertices are not adjacent. Figure
3.2 shows a subproblem PMEWC(Cex, Sex) of the graph Gex.

v12

v11

v10

v9

v8

v7 v6

v5

v4

v3

v2

v1

(a) Gex

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
v1 - 3 2 1 4
v2 - 2 1 1 2 2 2
v3 3 2 - 4 5 3
v4 1 - 4 6 3 7
v5 4 - 4 6 1
v6 2 1 - 4 3 5 6
v7 4 6 - 3 4 6
v8 2 4 4 - 5
v9 6 3 - 10 5
v10 1 2 5 3 5 3 - 6
v11 1 6 4 5 10 -
v12 4 2 3 7 6 5 6 -

(b) Edge-weight matrix of Gex

Figure 3.1: a graph example Gex

34 CHAPTER 3. EXACT ALGORITHMS FOR MEWCP

Cex

v12

v10

Sex

v7

v4

v3

v2

v1

Figure 3.2: A subproblem PMEWC(Cex, Sex) of Gex

Three components of a feasible solution

Let F be a feasible solution of PMEWC(C, S). Figure 3.3 shows the relationship between PMEWC(C, S)
and F . Since F = C ∪ (S ∩ F), edges in G(F) can be decomposed into the following three groups :

• Edges between two vertices in C.

• Edges between a vertex in C and a vertex in S ∩ F .

• Edges between two vertices in S ∩ F .

C

F S

S ∩ F

Figure 3.3: F in PMEWC(C, S)

According to the decomposition, the following equation is obtained :

we(F) = we(C) +
∑
u∈C

∑
v∈S∩F

w(u, v) + we(S ∩ F). (3.20)

Figure 3.4 shows the three components of we(F). For the second term
∑

u∈C

∑
v∈S∩F w(u, v) of the

equation (3.20), no corresponding terms are in the equations for MWCP (3.15)-(3.19). To adapt branch-
and-bound to MEWCP, efficient upper bound calculation methods for these terms are required.

3.4. PROPOSED BRANCH-AND-BOUND ALGORITHM EWCLIQUE 35

C

edges

S ∩ F

we(C) +

∑
u∈C

∑
v∈S∩F

w(u, v) + we(S ∩ F)

Figure 3.4: Components of we(F) calculation

3.4.2 Outline of EWCLIQUE

The outline of proposed algorithm EWCLIQUE is as follows :

Branching Procedure
Similar to Österg̊ard’s algorithm for MWCP, proposed algorithm EWCLIQUE finds optimum solu-
tions of PMEWC(∅, V1), PMEWC(∅, V2), . . ., PMEWC(∅, Vn) in this order, where Vi denotes a vertex
set {vi, vi−1, . . . , v1}. It solves each PMEWC(∅, Vi) by branch-and-bound and stores each optimum
value of PMEWC(∅, Vi) in c[i] to use in the bounding procedure.

Bounding Procedure
EWCLIQUE decomposes a subproblem into three components described in 3.4.1, and calculates an
upper bound of each component. For the third term we(S ∩F) of the equation (3.20), the array c[·]
calculated in the branching procedure is used. To handle the second term

∑
u∈C

∑
v∈S∩F w(u, v)

of the equation (3.20), EWCLIQUE introduces a pseudo vertex weights described in the next.

Pseudo vertex weights

For each vertex v ∈ S of a subproblem PMEWC(C, S), EWCLIQUE introduces a pseudo vertex weight
wρ(C, v) =

∑
u∈C w(u, v). For example, Figure 3.5 shows the pseudo vertex weight of each v ∈ Sex.

Hereafter, wρ(v) denotes wρ(C, v) when PMEWC(C, S) can be obviously identified.
The pseudo vertex weights satisfy the following equation :∑

u∈C

∑
v∈S∩F

w(u, v) =
∑

v∈S∩F

wρ(v). (3.21)

Hence, after assigning wρ(v) to each v ∈ S, EWCLIQUE can calculate an upper bound of the second
term

∑
u∈C

∑
v∈S∩F w(u, v) of the equation (3.20) only with G(S∩F), without C. Further details of the

upper bound calculation is shown in 3.4.5.

vi ∈ Sex wρ(vi)
v1 w(v1, v10) + w(v1, v12) = 5
v2 w(v2, v10) + w(v2, v12) = 4
v3 w(v3, v10) + w(v3, v12) = 8
v4 w(v4, v10) + w(v4, v12) = 10
v7 w(v7, v10) + w(v7, v12) = 9

Figure 3.5: Pseudo vertex weights for PMEWC(Cex, Sex)

36 CHAPTER 3. EXACT ALGORITHMS FOR MEWCP

3.4.3 Main routine

We show in Algorithm 8 the main routine of proposed algorithm EWCLIQUE. Before branch-and-bound,
EWCLIQUE renumbers vertex indexes for efficiency (described in 3.4.6). The global variable Cmax is the
current-best solution, initialized by an empty set. In the for loop, EWCLIQUE finds optimum solutions
of PMEWC(∅, V1), PMEWC(∅, V2), . . ., PMEWC(∅, Vn) by the subroutine EXPAND described in 3.4.4. In
each loop, the subroutine EXPAND updates Cmax if better solution is found, and the value of we(Cmax)
is stored in c[i] for calculation of upper bounds of subproblems.

Algorithm 8 EWCLIQUE

INPUT: G = (V,E), w(·, ·)
OUTPUT: a maximum edge-weight clique Cmax

GLOBAL VARIABLES: Cmax, c[·]
1: Renumber vertex indexes. (described in 3.4.6)
2: Cmax ← ∅
3: for i from 1 to |V | do
4: expand(∅, Vi) ▷ Cmax is updated if better solution is found(described in 3.4.4)
5: c[i]← we(Cmax)
6: end for
7: return Cmax

Algorithm 9 Solving a subproblem

INPUT: a subproblem PMEWC(C, S)
OUTPUT: Update Cmax to a better clique if it exists.
GLOBAL VARIABLES: Cmax, c[·]
1: procedure expand(C, S)
2: if S = ∅ then
3: if we(C) > we(Cmax) then
4: Cmax ← C
5: end if
6: return
7: end if
8: lp[·]← longestpath(C, S) ▷ described in 3.4.5
9: while S ̸= ∅ do

10: if we(C) + c[M(S)] + lp[M(S)] > we(Cmax) then
11: C ′ ← C ∪ {vM(S)}
12: S′ ← S ∩N(vM(S))
13: expand(C ′, S′) ▷ PMEWC(C

′, S′)
14: end if
15: S ← S \ {vM(S)}
16: end while
17: end procedure

3.4.4 Subroutine EXPAND

Here we describe the detail of the subroutine EXPAND (in Algorithm 9), which calls itself recursively
to find better solution than current Cmax. In the case of S = ∅, EXPAND updates Cmax if we(C) >
we(Cmax) (lines 3-5), and it is the base case of recursive calls (line 6). If S ̸= ∅, in the while loop from
line 9, EXPAND divides PMEWC(C, S) into |S| subproblems and examines them recursively.

For each loop from line 9, a subproblem PMEWC(C
′, S′) is created. C ′ is a clique obtained by adding

vM(S) to C (line 11). S′ is a candidate vertex set obtained by removing non-adjacent vertices of vM(S)

from S (line 12). At the end of the while loop, vM(S) is removed from S and continue the loop unless
S = ∅.

3.4. PROPOSED BRANCH-AND-BOUND ALGORITHM EWCLIQUE 37

During this process, EWCLIQUE calculates upper bounds of feasible solutions and prunes unnecessary
subproblems in line 10. The subroutine “LONGESTPATH” in line 8 constructs a directed acyclic graph
from PMEWC(C, S), calculates longest paths of the DAG using pseudo vertex weights, and store their
length in the array lp[·] of size M(S). The array lp[·] is used for upper bound calculation.

3.4.5 Upper bound calculation

Let F ′ be a feasible solution of PMEWC(C
′, S′) in line 13 of Algorithm 9. Here we show that the value

of we(C) + c[M(S)] + lp[M(S)] in line 10 is an upper bound of we(F
′). From the lines 11 and 12 of

Algorithm 9, C ′ = C ∪ {vM(S)} and S′ = S ∩ N(vM(S)). Figure 3.6 schematically illustrates inclusion
relation of PMEWC(C, S), PMEWC(C

′, S′) and F ′ by intervals.

C S

S′ = S ∩N(vM(S)){vM(S)}

S ∩ F ′

C ′ S′ ∩ F ′

F ′

Figure 3.6: Inclusion relation of PMEWC(C, S), PMEWC(C
′, S′) and F ′

Since F ′ = C ∪ (S ∩ F ′), the following equation holds similarly to (3.20) :

we(F
′) = we(C) +

∑
u∈C

∑
v∈S∩F ′

w(u, v) + we(S ∩ F ′). (3.22)

EWCLIQUE calculates an upper bound of the equation (3.22). The accurate value of we(C) is already
calculated during the branching procedure. Therefore proposed algorithm calculates the following upper
bounds :

UB1: an upper bound for we(S ∩ F ′)

UB2: an upper bound for
∑

u∈C

∑
v∈S∩F ′ w(u, v)

we(C) + UB1 + UB2 is an upper bound for we(F
′) and used to prune unnecessary subproblems. The

calculation of UB1 and UB2 is described in the next.

UB1: upper bound of we(S ∩ F ′)

Since S ⊆ VM(S), following inequality holds :

we(S ∩ F ′) ≤ we(VM(S) ∩ F ′) ≤ c[M(S)]. (3.23)

Therefore c[M(S)] can be used as UB1. For the tightness of upper bounds, in the subroutine EXPAND,
the largest indexed vertex in C is chosen as a branching variable, so that vertices of large indexes disappear
from S in early stages (line 13, Algorithm 7).

UB2: upper bound of
∑

u∈C

∑
v∈S∩F ′ w(u, v)

For a subproblem PMEWC(C, S), EWCLIQUE constructs a vertex-weighted directed acyclic graph, and
calculates the length of longest paths that can be used as UB2. (−→v, u) denotes a directed edge from v to
u when it is necessary to distinguish from an undirected edge, and the vertex-weighted directed acyclic
graph consists of follows :

• A vertex set S.

• A directed edge set {(−−−→vi, vj) | (vi, vj) ∈ E(S), i < j}, where E(S) is the edge set of G(S).

38 CHAPTER 3. EXACT ALGORITHMS FOR MEWCP

• A pseudo vertex weight wρ(·) calculated from PMEWC(C, S) is assigned as a vertex weight to each
vertex in S.

D⃗(C, S) denotes this vertex-weighted directed acyclic graph for PMEWC(C, S). Hereafter D⃗ denotes

D⃗(C, S), when PMEWC(C, S) can be obviously identified. Figure 3.7 shows D⃗ex of PMEWC(Cex, Sex).
Numbers in parentheses represent vertex weights.

Let [v1, . . . , vk] a path from v1 to vk. We define path length in D⃗ as the sum of vertex weights in

the path. Let Π(D⃗, v) be a set of paths in D⃗ whose endpoint is v. Let L(D⃗, v) be length of longest

paths in Π(D⃗, v). For example, Π(D⃗ex, v3) = {[v1, v3], [v2, v3]}. The longest path in Π(D⃗ex, v3) is [v1, v3]

and its length is L(D⃗ex, v3) = 13, respectively. Note that any path in Π(D⃗, vi) does not include vertices

in V \ Vi because of the edge direction of D⃗. Since F ′ is a feasible solution of PMEWC(C
′, S′) where

C ′ = C ∪{vM(S)} and S′ = S ∩N(vM(S)), F
′ is a clique including vM(S). Hence there exists at least one

path in Π(D⃗, vM(S)) that includes all vertices of S ∩ F ′. Therefore following inequality holds :∑
u∈C

∑
v∈S∩F ′

w(u, v) =
∑

v∈S∩F ′

wρ(v) ≤ L(D⃗, vM(S)). (3.24)

v7
(9)

v4
(10)

v3
(8)

v2
(4)

v1
(5)

Figure 3.7: D⃗ex

Algorithm 10 Calculate length of longest paths

INPUT: a subproblem PMEWC(C, S)
OUTPUT: an array lp[·] that contains length of longest paths
1: procedure longestpath(C, S)
2: S′ ← S
3: while S′ ̸= ∅ do
4: i← min{j | vj ∈ S′}
5: if S ∩ Vi ∩N(vi) = ∅ then
6: lp[i]← wρ(vi)
7: else
8: lp[i]← wρ(vi) + max{lp[u] | u ∈ S ∩ Vi ∩N(vi)}
9: end if

10: S′ ← S′ \ {vi}
11: end while
12: return lp[·]
13: end procedure

Proposed algorithm uses L(D⃗, vM(S)) as UB2. At line 8 of Algorithm 7, the subroutine LONGEST-

PATH shown in Algorithm 10 is called to calculate UB2. For each vi ∈ S, it calculates L(D⃗, vi) and
stores the value with lp[i]. The calculation of lp[i] is done in nonincreasing order of i. There are two

cases of calculating lp[i]. One is the case that no neighbor of vi is in S ∩Vi (line 6). In this case, Π(D⃗, vi)

is {[vi]} because of the edge direction of D⃗. Hence lp[i] equals to wρ(vi). In the other case that some
neighbors of vi are in S ∩ Vi (line 8), lp[i] equals to the sum of wρ(vi) and the length of longest paths
connected to vi.

3.4. PROPOSED BRANCH-AND-BOUND ALGORITHM EWCLIQUE 39

A case study

Here is an example of upper bound calculation for PMEWC(Cex, Sex) of Figure 3.2. Figure 3.8 shows c[·]
that are already calculated. First proposed algorithm calculates lp[i] for each vi ∈ Sex using wρ(vi) and

D⃗ex in Figure 3.5 and 3.7 respectively. For v1, lp[v1] = wρ(v1) because Sex ∩ V1 ∩ N(v1) = ∅. Same as
lp[v1], lp[v2] = wρ(v2). For v3, Sex∩V3∩N(v3) = {v1, v2} ≠ ∅. Proposed algorithm selects v1 from {v1, v2}
that constructs the longest path. Therefore lp[v3] = wρ(v3) +max(lp[v1], lp[v2]) = wρ(v3) + lp[v1] = 13.
Similarly, for v4 and v7, length of paths are calculated. The result is shown in Figure 3.9.

Let F ′
ex be a feasible solution of the subproblem PMEWC(C

′
ex, S

′
ex) such that S′

ex = Sex ∩ N(v7) =
{v3, v4} and C ′

ex = Cex ∪ {v7} = {v12, v10, v7}. Since Sex ⊆ VM(Sex) = V7, UB1 can be calculated as
following :

we(Sex ∩ F ′
ex) ≤ we(V7 ∩ F ′

ex) (3.25)

≤ c[7] (3.26)

= 6. (3.27)

Since M(Sex) = 7, UB2 is calculated as follows :∑
u∈Cex

∑
v∈Sex∩F ′

ex

w(u, v) ≤ Lρ(D⃗ex, v7) (3.28)

= lp[v7] (3.29)

= 23. (3.30)

In summary, an upper bound for we(F
′
ex) is calculated as follows :

we(F
′
ex) = we(Cex) +

∑
u∈Cex

∑
v∈Sex∩F ′

ex

w(u, v) + we(Sex ∩ F ′
ex) (3.31)

≤ we(Cex) + lp[7] + c[7] (3.32)

= 6 + 23 + 6 (3.33)

= 35. (3.34)

The maximum edge-weight clique of PMEWC(C
′
ex, S

′
ex) is {v12, v10, v7, v4}, and its weight is 31, smaller

than 35 of the inequality (3.34).

subproblem optimal weight
PMEWC(∅, V1) c[1] = 0
PMEWC(∅, V2) c[2] = 0
PMEWC(∅, V3) c[3] = we({v1, v3}) = 3
PMEWC(∅, V4) c[4] = we({v1, v3}) = 3
PMEWC(∅, V5) c[5] = we({v4, v5}) = 4
PMEWC(∅, V6) c[6] = we({v4, v5}) = 4
PMEWC(∅, V7) c[7] = we({v4, v7}) = 6
PMEWC(∅, V8) c[8] = we({v2, v6, v8}) = 7
PMEWC(∅, V9) c[9] = we({v2, v6, v8}) = 7
PMEWC(∅, V10) c[10] = we({v4, v7, v10}) = 12
PMEWC(∅, V11) c[11] = we({v6, v9, v11}) = 19

...
...

Figure 3.8: Optimal weights stored in c[·]

40 CHAPTER 3. EXACT ALGORITHMS FOR MEWCP

vi Sex ∩ Vi ∩N(vi) lp[i]
v1 ∅ wρ(v1) = 5
v2 ∅ wρ(v2) = 4
v3 {v1, v2} wρ(v3) + max(lp[v1], lp[v2]) = 13
v4 {v2} wρ(v4) + max(lp[v2]) = 14
v7 {v3, v4} wρ(v7) + max(lp[v3], lp[v4]) = 23

Figure 3.9: Longest path calculation

3.4.6 Vertex renumbering

For the tightness of upper bounds, proposed algorithm renumbers vertex indexes before branch-and-
bound. Let σ(v) =

∑
u∈N(v) w(v, u). Proposed algorithm adopts following two policies :

Policy 1
Vertices of large σ(·) are given large indexes.

Policy 2
Vertices in an independent set are given consecutive indexes.

Similar policies are adopted by algorithms for MWCP shown in the Chapter 2. Since c[i] ≤ c[i + 1]
for any i, policy 1 is adopted to make c[·] small. Policy 2 also makes c[·] small. After renumbering, if
{vi, vi−1, . . . , v1} is an independent set, c[i] = c[i− 1] = . . . = c[1] = 0.

According to these policies, proposed algorithm renumbers vertices by greedy vertex coloring as fol-
lowing.

(1) Maximalize an independent set I1 by adding vertices in V in nonincreasing order of σ(·). Give
indexes vn, vn−1 . . . to vertices in order of addition.

(2) Maximalize an independent set I2 by adding vertices in V \ I1 in nonincreasing order of σ(·). Give
unused largest indexes to vertices in order of addition.

(3) Repeatedly maximalize independent sets I3, I4, . . . , Ik and give unused indexes to vertices until
∪ki=1Ii = V .

3.5. COMPUTER EXPERIMENTS 41

3.5 Computer experiments

We implemented proposed algorithm EWCLIQUE by C++ and compare with previous methods in for-
mulations of QP, IP and MIP solved by IBM mathematical programming solver CPLEX 12.5. For the
MIP formulation, the vertex renumbering technique described in 3.2.4 is applied. The compiler is g++
5.4.0 with optimization option -O2. The OS is Linux 4.4.0. The CPU is Intel R⃝CoreTMi7-6700 CPU 3.40
GHz. RAM is 16GB. Note that CPLEX is a multi-thread solver based on branch-and-cut, and proposed
algorithm is a single-thread solver based on branch-and-bound. In the tables, d denotes the edge density

that is 2|E|
|V |(|V |−1) .

3.5.1 Random graphs

We generated uniform random graphs as benchmarks. Edge-weights are integer values from 1 to 10.
In each condition, we generated 10 instances and calculated the average computation time and average
search tree size. The results for random graphs are shown in Table 3.2.

In all cases, proposed algorithm can solve them faster than CPLEX. For the instances that CPLEX
needs several hundred seconds, proposed algorithm can solve them in less than a second. CPLEX cannot
solve instances whose |V | is greater than several hundred. Proposed algorithm solved |V | = 15000 for
sparse graphs. From the results, we confirmed that proposed algorithm is better than formulations solved
by CPLEX.

Table 3.2: Experimental results for random graphs

optimal Computation time [sec] Number of Search tree nodes
|V | d weight EWCLIQUE MIP IP QP EWCLIQUE MIP IP QP
300 0.1 60.7 less than 0.01 91.54 124.94 313.46 1835.1 164460.4 77165.7 193796.7
350 0.1 64.8 less than 0.01 190.96 258.84 706.68 2721.0 264576.7 102579.4 308754.9

15000 0.1 174.7 460.90 over 1000 over 1000 over 1000 702255007.1 - - -
250 0.2 97.3 less than 0.01 64.26 315.26 250.55 6412.8 365899.4 704421.5 438526.7
280 0.2 102.4 less than 0.01 119.47 664.09 417.06 9862.9 502859.6 1243089.2 636879.1
5500 0.2 254.8 440.29 over 1000 over 1000 out of memory 1537843711.0 - - -
200 0.3 150.0 less than 0.01 39.16 470.07 154.74 14169.8 438264.9 1375256.2 923563.2
250 0.3 155.5 0.01 97.16 over 1000 531.50 34844.2 823443.6 - 2301720.2
2500 0.3 332.8 459.05 over 1000 over 1000 out of memory 1824084938.8 - - -
160 0.4 185.5 0.01 21.98 528.41 97.61 31813.3 379811.3 2058272.9 1563023.3
200 0.4 224.0 0.02 57.54 over 1000 428.47 70701.9 869013.2 - 4983953.9
1400 0.4 444.3 758.22 over 1000 over 1000 over 1000 2993314273.1 - - -
140 0.5 272.7 0.02 21.28 556.29 111.73 88105.7 507343.1 2933500.6 3028762.4
170 0.5 300.6 0.06 52.72 over 1000 498.58 224608.1 1356597.9 - 9767768.2
750 0.5 560.3 603.91 over 1000 over 1000 over 1000 2342210511.1 - - -
120 0.6 399.0 0.05 18.10 405.38 129.01 208388.4 771892.2 3274026.2 4976548.2
130 0.6 424.6 0.07 28.57 634.81 256.59 288494.1 1183461.1 4496672.8 8570931.1
450 0.6 754.2 716.48 over 1000 over 1000 over 1000 2725875895.6 - - -
100 0.7 583.5 0.11 15.12 262.75 125.42 437892.1 831713.2 3213925.0 6703943.1
110 0.7 607.1 0.24 31.23 557.70 356.28 950029.7 1657212 5078319.2 15772011.0
270 0.7 1049.7 589.15 over 1000 over 1000 over 1000 2141882035.0 - - -
80 0.8 879.0 0.16 7.28 135.77 71.41 617626.3 517672.5 2107836.8 5237500.2
90 0.8 978.0 0.44 21.51 386.01 266.13 1578193.4 1294209.2 5293378.0 16189357.9

170 0.8 1580.2 485.50 over 1000 over 1000 over 1000 1510657832.0 - - -
70 0.9 1708.4 0.62 3.80 50.80 16.69 2355972.7 258544.6 993629.0 1335799.1
80 0.9 2059.2 2.93 14.84 181.36 118.65 9974393.5 902841.7 2941909.6 7694204.9

110 0.9 2666.4 590.83 over 1000 over 1000 over 1000 1951189872.0 - - -

42 CHAPTER 3. EXACT ALGORITHMS FOR MEWCP

3.5.2 Graphs from Reuters terror news networks

We compare algorithms with graphs from real-world applications. The Reuters terror news networks
(RTN) is produced by Steve Corman and Kevin Dooley at Arizona State University. They are published
in [19] and described as follows :

The Reuters terror news network is based on all stories released during 66 consecutive days by
the news agency Reuters concerning the September 11 attack on the U.S., beginning at 9:00
AM EST 9/11/01. The vertices of a network are words (terms); there is an edge between two
words iff they appear in the same text unit (sentence). The weight of an edge is its frequency.
The network has n = 13332 vertices (different words in the news) and m = 243447 edges,
50859 with value larger than 1. There are no self loops in the network.

Subgraphs of the RTN graph are used as benchmarks for MEWCP in [24], so we generate the same
subgraphs as in [40, 24].

The results for RTN are shown in Table 3.3, where each value is obtained by a single measurement.
Excepting d1-RTN, CPLEX cannot solve in 1000 seconds. Proposed algorithm solves all RTN graphs in
less than 1 second. This means proposed algorithm can handle large instances that previous methods
cannot handle.

Table 3.3: Experimental results for RTN graphs

optimal Computation time [sec] Number of Search tree nodes
graph |V | d weight EWCLIQUE MIP IP QP EWCLIQUE MIP IP QP

d1-RTN 2420 0.0032 4524 0.01 over 1000 681.83 over 1000 2574 - 12634 -
d3-RTN 4755 0.0024 5859 0.04 over 1000 over 1000 out of memory 5571 - - -
d6-RTN 6210 0.0021 7085 0.07 over 1000 over 1000 out of memory 7562 - - -
d9-RTN 6741 0.0021 7424 0.09 over 1000 over 1000 out of memory 8051 - - -
d12-RTN 7448 0.0020 7424 0.11 over 1000 over 1000 out of memory 10022 - - -
d15-RTN 7967 0.0020 7424 0.12 over 1000 over 1000 out of memory 11076 - - -
d18-RTN 8623 0.0019 7424 0.15 over 1000 over 1000 out of memory 14196 - - -
d21-RTN 8945 0.0019 7424 0.16 over 1000 over 1000 out of memory 15880 - - -
d24-RTN 9305 0.0018 7424 0.18 over 1000 over 1000 out of memory 19369 - - -
d27-RTN 9737 0.0018 7665 0.20 over 1000 over 1000 out of memory 22707 - - -
d30-RTN 10101 0.0018 8147 0.22 over 1000 over 1000 over 1000 22742 - - -
d33-RTN 10535 0.0018 8485 0.25 over 1000 over 1000 over 1000 27160 - - -
d36-RTN 10887 0.0018 8485 0.27 over 1000 over 1000 over 1000 31256 - - -
d39-RTN 11232 0.0017 8937 0.31 over 1000 over 1000 over 1000 46294 - - -
d42-RTN 11434 0.0017 8937 0.34 over 1000 over 1000 over 1000 58742 - - -
d45-RTN 11714 0.0017 9068 0.36 over 1000 over 1000 over 1000 63828 - - -
d48-RTN 11961 0.0017 9068 0.40 over 1000 over 1000 over 1000 73645 - - -
d51-RTN 12244 0.0017 9068 0.44 over 1000 over 1000 over 1000 104122 - - -
d54-RTN 12561 0.0017 10147 0.41 over 1000 over 1000 over 1000 67218 - - -
d57-RTN 12799 0.0017 10147 0.43 over 1000 over 1000 over 1000 73036 - - -
d60-RTN 13032 0.0017 10147 0.45 over 1000 over 1000 over 1000 76155 - - -
d63-RTN 13197 0.0017 10913 0.45 over 1000 over 1000 over 1000 76703 - - -
d66-RTN 13308 0.0017 10913 0.51 over 1000 over 1000 over 1000 161644 - - -

3.6. CONCLUSION 43

3.5.3 DIMACS benchmark graphs

DIMACS is a benchmark set often used for MCP [62]. Since DIMACS graphs are not edge-weighted, we
give edge-weights w(vi, vj) = (i+ j) mod 200 + 1, like the experiments in [50, 24].

The results for DIMACS are shown in Table 3.4, where each value is obtained by a single measurement.
Instances that all algorithms cannot solve in 1000 seconds are not shown in the table. Excepting three
instances : c-fat200-5, c-fat-500-10 and san200 0.7 1, proposed algorithm is fastest.

Table 3.4: Experimental results for edge-weighted DIMACS

optimal Computation time [sec] Number of Search tree nodes
graph |V | d weight EWCLIQUE MIP IP QP EWCLIQUE MIP IP QP

brock200 1 200 0.7454 21230 338.31 over 1000 over 1000 over 1000 1328614116 - - -
brock200 2 200 0.4963 6542 0.10 109.66 over 1000 over 1000 345371 3241394 - -
brock200 3 200 0.6054 10303 1.27 743.58 over 1000 over 1000 4282305 23009456 - -
brock200 4 200 0.6577 13967 4.84 over 1000 over 1000 over 1000 13814425 - - -
c-fat200-1 200 0.0771 7734 less than 0.01 4.80 4.92 62.62 632 1565 11981 2951
c-fat200-2 200 0.1626 26389 less than 0.01 4.72 10.62 68.58 6780 3819 24452 4263
c-fat200-5 200 0.4258 168200 74.31 7.06 15.34 85.97 138193445 5010 22597 2421
c-fat500-1 500 0.0357 10738 less than 0.01 171.91 51.33 749.86 1605 25847 82386 9931
c-fat500-2 500 0.0733 38350 less than 0.01 399.90 144.32 992.06 4679 95599 158428 17113
c-fat500-5 500 0.1859 205864 0.43 264.44 581.82 over 1000 1227023 17959 - 24738

c-fat500-10 500 0.3738 804000 over 1000 745.93 over 1000 over 1000 - 486168 - -
DSJC500 5 500 0.5019 9626 44.43 over 1000 over 1000 over 1000 200152687 - - -
hamming6-2 64 0.9048 32736 less than 0.01 0.07 3.70 0.23 896 4545 19827 7158
hamming6-4 64 0.3492 396 less than 0.01 0.22 2.68 0.66 340 11550 18194 7331
hamming8-2 256 0.9686 800624 0.23 7.80 over 1000 over 1000 65731 104290 - -
hamming8-4 256 0.6392 12360 1.46 276.15 over 1000 over 1000 2475100 9707184 - -
johnson8-2-4 28 0.5556 192 less than 0.01 0.03 0.12 0.03 150 185 1922 827
johnson8-4-4 70 0.7681 6552 less than 0.01 0.40 8.74 2.93 3953 39487 318244 123422

johnson16-2-4 120 0.7647 3808 0.25 57.4 over 1000 over 1000 1905154 4543549 - -
keller4 171 0.6491 6745 0.70 167.84 over 1000 over 1000 2158496 8809323 - -

MANN a9 45 0.9273 5460 0.02 1.22 21.77 22.91 116041 78011 1750447 673740
p hat300-1 300 0.2438 3321 0.01 146.10 over 1000 over 1000 50151 1255846 - -
p hat300-2 300 0.4889 31564 42.90 over 1000 over 1000 over 1000 134486327 - - -
p hat500-1 500 0.2531 4764 0.13 over 1000 over 1000 over 1000 468371 - - -
p hat700-1 700 0.2493 5185 0.52 over 1000 over 1000 over 1000 1678557 - - -
p hat1000-1 1000 0.2448 5436 2.92 over 1000 over 1000 over 1000 9890185 - - -
p hat1500-1 1500 0.2534 7135 32.73 over 1000 over 1000 over 1000 106284583 - - -
san200 0.7 1 200 0.7000 45295 54.88 28.72 over 1000 over 1000 387149894 662303 - -
san200 0.7 2 200 0.7000 15073 17.86 over 1000 over 1000 over 1000 48732878 - - -
san200 0.9 1 200 0.9000 242710 12.56 206.01 over 1000 over 1000 12731307 5158955 - -
san200 0.9 2 200 0.9000 178468 833.49 over 1000 over 1000 over 1000 303169816 - - -
san400 0.5 1 400 0.5000 7442 60.36 over 1000 over 1000 over 1000 43132933 - - -
sanr200 0.7 200 0.6969 16398 18.67 over 1000 over 1000 over 1000 55871909 - - -
sanr400 0.5 400 0.5011 8298 9.04 over 1000 over 1000 over 1000 36003126 - - -

3.6 Conclusion

In this chapter, we propose the vertex renumbering technique for MIP formulation of MEWCP, and a
new exact algorithm EWCLIQUE for MEWCP. By computer experiments, we confirmed that proposed
vertex renumbering technique improves the performance of mathematical programming solver by 14%
on average. EWCLIQUE is based on branch-and-bound. For each subproblem, EWCLIQUE considers
three components to calculate the upper bound for the weights of feasible solutions. In the upper bound
calculation, EWCLIQUE regards some edge-weights as pseudo vertex weights for vertices. EWCLIQUE
uses two upper bound calculations for rest edge-weights and pseudo vertex weights. Upper bounds
are obtained by merging them. With some benchmarks, we compared proposed algorithm and some
formulations solved by CPLEX. We confirmed proposed algorithm EWCLIQUE is faster than previous
methods.

44 CHAPTER 3. EXACT ALGORITHMS FOR MEWCP

45

Chapter 4

Greedy Algorithms for MWVCP

4.1 Introduction

In this chapter, we propose two fast greedy algorithms for MWVCP of better average performance than
previous approximation algorithms for MWVCP. Proposed algorithms are based on a greedy algorithm
which removes vertices from a vertex cover initialized by V . The base greedy algorithm guarantees
the minimality of solutions, and moreover, computation time is linear to the size of the given graph.
Since the base greedy algorithms is very simple, it is faster than known algorithms, but it finds worse
solutions. To obtain better solutions, the strategy of proposed algorithms is to construct a large number
of feasible solutions by a greedy algorithm without increasing the computational complexity per solution.
We confirm that proposed algorithms find better solutions and the computation time is shorter than
previous algorithms.

In the section 4.2, we describe a simple greedy algorithm for MWVCP. Based on the base algorithm,
two proposed algorithms are proposed in the section 4.3. Computer experiments are shown in the section
4.4.

4.2 Greedy algorithm

In this section, we introduce a simple greedy algorithm to find a minimal vertex cover. Given a graph G
and an arbitrary permutation Π of V , Algorithm 11 constructs a minimal vertex cover C, where N(v)
denotes the neighbors of vertex v. It initializes C by V and eliminates unnecessary vertices from C in
order of Π.

Algorithm 11 Greedy Elimination

INPUT: a graph G = (V,E), a permutation Π of V
OUTPUT: a minimal vertex cover C of G
1: C ← V
2: for all vi in order of Π do
3: if N(vi) ⊆ C then
4: C ← C \ {vi}
5: end if
6: end for
7: return C

Lemma 4. Algorithm 11 obtains a minimal vertex cover C

Proof. In line 1, C = V is obviously a vertex cover. In line 4, any neighbor of vi is in C, and C \ {vi}
is a vertex cover. Namely, C is always a vertex cover of G. Let vj be a vertex that does not satisfy
the condition in line 3. From the condition, there exists a vertex u that satisfies u ∈ N(vj) and u /∈ C.
Therefore C \ {vj} is not a vertex cover because it does not cover the edge (vj , u). From the above, after
the for loop, C is a minimal vertex cover.

46 CHAPTER 4. GREEDY ALGORITHMS FOR MWVCP

Algorithm 12 shows a liner time implementation of Greedy Elimination. S is a subset of C which
always satisfies S = {vi | N(vi) ⊆ C}. In other words, line 4 of Algorithm 12 is equivalent to line
3 of Algorithm 11. S is updated when vertices are removed from C(line 6). Figure 4.2 shows the
process how Algorithm 12 constructs a minimal vertex cover for the graph G1 in Figure 4.1 where
Π = [v1, v5, v6, v8, v7, v3, v4, v2].

Algorithm 12 A linear Time Implementation of Greedy Elimination

INPUT: a graph G = (V,E), a permutation Π of V
OUTPUT: a minimal vertex cover C of G
1: C ← V
2: S ← V
3: for all vi in order of Π do
4: if vi ∈ S then ▷ S always satisfies S = {vi | N(vi) ⊆ C}.
5: C ← C \ {vi}
6: S ← S \ (N(vi) ∪ {vi})
7: end if
8: end for
9: return C

v1 v2

v3 v4

v5 v6

v7 v8

adjacency list
N(v1) = [v6, v7]
N(v2) = [v3, v4]
N(v3) = [v2, v4]
N(v4) = [v2, v3, v6, v7]
N(v5) = [v8]
N(v6) = [v1, v4]
N(v7) = [v1, v4]
N(v8) = [v5]

vertex v1 v2 v3 v4 v5 v6 v7 v8
weight 9 1 1 4 7 8 8 4

Figure 4.1: Weighted graph G1

process C S bit vector of S
initial {v1, v2, v3, v4, v5, v6, v7, v8} {v1, v2, v3, v4, v5, v6, v7, v8} 11111111

eliminate v1 ∈ S {v2, v3, v4, v5, v6, v7, v8} {v2, v3, v4, v5, v8} 01111001
eliminate v5 ∈ S {v2, v3, v4, v6, v7, v8} {v2, v3, v4} 01110000

skip v6 /∈ S {v2, v3, v4, v6, v7, v8} {v2, v3, v4} 01110000
skip v8 /∈ S {v2, v3, v4, v6, v7, v8} {v2, v3, v4} 01110000
skip v7 /∈ S {v2, v3, v4, v6, v7, v8} {v2, v3, v4} 01110000

eliminate v3 ∈ S {v2, v4, v6, v7, v8} ∅ 00000000
return C {v2, v4, v6, v7, v8} - -

Π = [v1, v5, v6, v8, v7, v3, v4, v2]

Figure 4.2: An example of constructing a minimal vertex cover by Algorithm 12

Here we describe the time complexity of Algorithm 12. Hereafter we suppose that G is represented by
an adjacency-list and S is implemented by a bit vector. In the for loop, line 6 is processed in O(|N(vi)|)
time because S is implemented by a bit vector and N(vi) is a vertex list. Other lines in the loop can be
processed in O(1) time. Therefore, the time complexity of Algorithm 12 is O(n +m), where m denotes
the number of edges in the graph. In addition, for every iteration, the size of C decreases by 1 if and
only if the condition in line 4 is satisfied. The minimum cardinality of vertex covers is n − α, where α

4.3. PROPOSED GREEDY ALGORITHMS 47

is cardinality of a maximum independent set of G. Therefore the condition in line 4 is satisfied at most
α times. Moreover, line 6 takes O(∆) time because |N(vi)| ≤ ∆ for each i, where ∆ is the maximum
degree of the graph. Hence the time complexity of Algorithm 12 is evaluated as O(n+min{m,α∆}).

4.3 Proposed greedy algorithms

We propose two algorithms, rotating greedy elimination (RGE) and branching greedy elimination (BGE).
Both of them call Algorithm 12 many times to construct a large number of feasible solutions, and finally
choose the best solution Cbest. The time complexity of proposed algorithms is O(n +min{m,α∆}) per
solution. First, both of them construct a vertex permutation Π. After that, RGE constructs a number of
feasible solutions by rotating Π, and BGE searches feasible solutions by depth-limited depth first search
in order of Π. Therefore, the quality of solutions is strongly depend on the initial vertex permutation.
We propose an effective method to obtain desirable Π in 4.3.1 and explain RGE and BGE in 4.3.2 and
4.3.3, respectively.

4.3.1 Vertex permutation

A desirable permutation for the greedy elimination is a permutation where worthless vertices appear
earlier than worthier vertices. Worthless vertices means vertices with lower probability to be included
in minimum weight vertex covers. For MWVCP, proposed vertex ordering assumes vertices of smaller
weight as worthier vertices and vertices of larger weight as worthless vertices. For vertices of same weight,
vertices of large degree are assumed as worthier than vertices of small degree. Since computation time of
the greedy elimination is very short, proposed vertex ordering algorithm does not use sorting of O(n log n)
time but 2-heap construction of O(n) time.

For the graph G1, Figure 4.3a shows the initial binary tree according to the permutation Π =
[v1, v2, v3, v4, v5, v6, v7, v8]. The vertex weights are shown in the circles. First proposed permutation con-
struction algorithm arranges the permutation as ith vertex is worthless than (2i)th vertex and (2i+1)th
vertex. This can be done as same as constructing 2-heap on an array (Figure 4.3b). Then proposed
permutation construction algorithm rebuilds the binary tree from the tail to the head of the permutation
(shown in Figure 4.3c). By the 2-heap construction to the tree in Figure 4.3c, the permutation is arranged
as ith vertex from last is worthless than (2i)th vertex from last and (2i+ 1)th vertex from the last. The
constructed permutation is a 2-heap (Figure 4.3d). 2-heap construction is done by comparing 2 elements
and swapping O(n) times. Therefore the time complexity of this permutation construction is O(n).

9v1

1v2

4v4

4v8

7v5

1v3

8v6 8v7

Π = [v1, v2, v3, v4, v5, v6, v7, v8]

(a) Initial binary tree

9v1

7v5

4v8

4v4

1v2

8v6

1v3 8v7

Π = [v1, v5, v6, v8, v2, v3, v7, v4]

(b) Heapify once

4v4

8v7

1v2

9v1

4v8

1v3

8v6 7v5

Π = [v1, v5, v6, v8, v2, v3, v7, v4]

(c) Rebuild binary tree

1v2

4v4

8v7

9v1

4v8

1v3

8v6 7v5

Π = [v1, v5, v6, v8, v7, v3, v4, v2]

(d) Heapify again

Figure 4.3: Permutation construction

48 CHAPTER 4. GREEDY ALGORITHMS FOR MWVCP

4.3.2 Rotating greedy elimination (RGE)

For a permutation Π = [v1, v2, . . . , vn], let a rotating operation rot(Π) = [v2, v3, . . . , vn, v1]. RGE, shown
in Algorithm 13 requires an input parameter lr such that lr ≤ n. RGE makes lr permutations with
rot(·) and constructs lr feasible solutions by greedy elimination for them. Finally, it chooses the best one
among them.

The procedure MINIMALIZE is almost same as Algorithm 12. The difference is line 16 in Algorithm
13. It prunes greedy elimination if there is no possibility to get better solution than Cbest. The value of
w(C)− w(S) is used as an lower bound for feasible solutions at line 16.

Figure 4.4 shows an example of RGE for the graph G1. In this case, C of 1st iteration is same as C
constructed in Figure 4.2 because they use same Π. After 1st iteration, RGE uses another permutation
to construct C and update Cbest.

The time complexity of the procedure MINIMALIZE is O(n+min{m,α∆}), same as Algorithm 12.
Hence the time complexity of Algorithm 13 is O(lr(n+min{m,α∆})).

Algorithm 13 RGE

INPUT: G = (V,E), w(·), Π = [v1, v2, . . . , vn], lr
OUTPUT: a vertex cover Cbest

GLOBAL VARIABLES: Cbest

1: Cbest ← V
2: P ← Π
3: for i = 1 to lr do
4: minimalize(P)
5: P ← rot(P)
6: end for
7: return Cbest

8: procedure minimalize(P)
9: C ← V

10: S ← V
11: for all vi in order of P do
12: if vi ∈ S then
13: C ← C \ {vi}
14: S ← S \ (N(vi) ∪ {vi})
15: end if
16: if w(C)− w(S) ≥ w(Cbest) then
17: return
18: end if
19: end for
20: Cbest ← C ▷ w(C) < w(Cbest) holds because of line 16.
21: return
22: end procedure

process P C after MINIMALIZE Cbest w(Cbest)
initial [v1, v5, v6, v8, v7, v3, v4, v2] {v1, v2, v3, v4, v5, v6, v7, v8} {v1, v2, v3, v4, v5, v6, v7, v8} 42

1st iteration [v1, v5, v6, v8, v7, v3, v4, v2] {v2, v4, v6, v7, v8} {v2, v4, v6, v7, v8} 25
2nd iteration [v5, v6, v8, v7, v3, v4, v2, v1] {v1, v2, v4, v8} {v1, v2, v4, v8} 18
3rd iteration [v6, v8, v7, v3, v4, v2, v1, v5] pruned {v1, v2, v4, v8} 18
4th iteration [v8, v7, v3, v4, v2, v1, v5, v6] pruned {v1, v2, v4, v8} 18
return Cbest - - {v1, v2, v4, v8} 18

Figure 4.4: An example of RGE (lr = 4)

4.3. PROPOSED GREEDY ALGORITHMS 49

4.3.3 Branching greedy elimination (BGE)

BGE is shown in Algorithm 14. Given an input parameter lb, BGE constructs at most 2lb feasible
solutions by greedy elimination and selects the best solution among them. It searches solutions by depth
first search whose depth is limited to lb. After the depth becomes to lb, it calls the greedy elimination to
obtain minimalized vertex cover C.

In procedures EXPAND and MINIMALIZE, S is a subset of C such that any vertex in S of which
might be eliminated from C later. The procedure MINIMALIZE is the greedy elimination with pruning.
The procedure EXPAND calls MINIMALIZE 2lb times at most. When depth < lb, it finds the first vi ∈ S
in order of P (loop at line 16), and then explores the following two cases. In the first case, BGE eliminates
vi from C (line 20). In the other case, BGE rotates P by rot() operation (line 21). This is because vi may
be eliminated to minimalize C later. When depth = lb, the procedure EXPAND calls MINIMALIZE to
obtain minimalized C. BGE prunes subproblems of no possibility to get better solution than Cbest(line
11 and 33). The value of w(C)− w(S) is used as a lower bound for feasible solutions.

Figure 4.5 shows an example of search tree by BGE for the graph G1. In this case, C of search tree
node 3 is same as C constructed in Figure 4.2. After that, BGE updates Cbest by branching procedure.

EXPAND and MINIMALIZE are called at most 2lb times. Each line of the procedure EXPAND can
be done in O(n) excluding recursive calls. Same as Algorithm 13, the time complexity of the procedure
MINIMALIZE is O(n + min{m,α∆}). In summary, the time complexity of Algorithm 14 is O(2lb(n +
min{m,α∆})).

root

1

2

3

MINIMALIZE

eliminate v5

4

5

MINIMALIZE

rotate v5

eliminate v1

6

7

8

MINIMALIZE

eliminate v5

9

10

MINIMALIZE

rotate v5

rotate v1

process P S C Cbest w(Cbest)
root [v1, v5, v6, v8, v7, v3, v4, v2] {v1, v2, v3, v4, v5, v6, v7, v8} {v1, v2, v3, v4, v5, v6, v7, v8} {v1, v2, v3, v4, v5, v6, v7, v8} 42
1 [v1, v5, v6, v8, v7, v3, v4, v2] {v2, v3, v4, v5, v8} {v2, v3, v4, v5, v6, v7, v8} {v1, v2, v3, v4, v5, v6, v7, v8} 42
2 [v5, v6, v8, v7, v3, v4, v2] {v2, v3, v4} {v2, v3, v4, v6, v7, v8} {v1, v2, v3, v4, v5, v6, v7, v8} 42
3 - - {v2, v4, v6, v7, v8} {v2, v4, v6, v7, v8} 25
4 [v6, v8, v7, v3, v4, v2, v5] {v2, v3, v4, v5, v8} {v2, v3, v4, v5, v6, v7, v8} {v2, v4, v6, v7, v8} 25
5 - - {v2, v4, v5, v6, v7} {v2, v4, v6, v7, v8} 25
6 [v5, v6, v8, v7, v3, v4, v2, v1] {v1, v2, v3, v4, v5, v6, v7, v8} {v1, v2, v3, v4, v5, v6, v7, v8} {v2, v4, v6, v7, v8} 25
7 [v5, v6, v8, v7, v3, v4, v2, v1] {v1, v2, v3, v4, v6, v7} {v1, v2, v3, v4, v6, v7, v8} {v2, v4, v6, v7, v8} 25
8 - - {v1, v2, v4, v8} {v1, v2, v4, v8} 18
9 [v6, v8, v7, v3, v4, v2, v1, v5] {v1, v2, v3, v4, v5, v6, v7, v8} {v1, v2, v3, v4, v5, v6, v7, v8} {v1, v2, v4, v8} 18
10 - - pruned {v1, v2, v4, v8} 18

return Cbest - - - {v1, v2, v4, v8} 18

Figure 4.5: An example of search tree by BGE (lb = 2)

50 CHAPTER 4. GREEDY ALGORITHMS FOR MWVCP

Algorithm 14 BGE

INPUT: G = (V,E), w(·), Π = [v1, v2, . . . , vn], lb
OUTPUT: a vertex cover Cbest

GLOBAL VARIABLES: Cbest

1: Cbest ← V
2: expand(V,Π, V, 0)
3: return Cbest

4: procedure expand(C,P, S, depth)
5: if S = ∅ then
6: if w(Cbest) > w(C) then
7: Cbest ← C
8: end if
9: return

10: end if
11: if w(C)− w(S) ≥ w(Cbest) then
12: return
13: end if
14: if depth < lb then
15: vi ← the first vertex of P
16: while vi /∈ S do
17: remove vi from P
18: vi ← the first vertex of P
19: end while
20: expand(C \ {vi}, P , S \ (N(vi) ∪ {vi}), depth+ 1)
21: expand(C, rot(P),S, depth+ 1)
22: else
23: minimalize(C, P , S)
24: end if
25: return
26: end procedure

27: procedure minimalize(C, P , S)
28: for all vi in order of P do
29: if vi ∈ S then
30: C ← C \ {vi}
31: S ← S \ (N(vi) ∪ {vi})
32: end if
33: if w(C)− w(S) ≥ w(Cbest) then
34: return
35: end if
36: end for
37: Cbest ← C
38: return
39: end procedure

4.4. COMPUTER EXPERIMENTS 51

4.4 Computer experiments

By some numerical experiments, we compare RGE and BGE with previous algorithms for MWVCP :
CLA [18], BAR [7] and PIT [48], but do not compare with NT [41] or BE [8, 29] because the experiments
in [58] shows they are obviously worse than others. In addition, a post-processing DW [58] is applied
to each previous algorithm. Namely, CLA with DW, BAR with DW and PIT with DW (denoted by
CLA+DW, BAR+DW, PIT+DW) are also compared.

All algorithms are implemented in C++. The CPU used in experiments is Intel R⃝CoreTMi7-6700 CPU
3.40 GHz. The memory is 16GB and the OS is Linux 4.2.0. The compiler is g++ 5.2.1 with optimize
option O2.

For some small instances, we measured time of repeating same calculation 100 times and calculate
average time by dividing it by 100 because calculation time is shorter than 1 msec.

In each row of the tables shown in this section, the best value (minimum weight) is indicated by “⋆”.
If weights obtained by proposed algorithms are better than all previous algorithms, they are indicated
by bold. Calculation time of less than 0.1 msec is denoted by ϵ.

4.4.1 random graphs

We generated uniform random graphs where n is up to 50000 and edge-density (denoted by d) is from 0.1
to 0.9. The vertex weight pattern is unweighted (all vertex weight is 1), integers from 1 to 10, and integers
from 1 to 1000. However, for all patterns of vertex weight, the performance is relatively similar for each
algorithms. Therefore only the results of integers from 1 to 10 are shown below. For each condition, we
generate 10 random graphs and calculate averages for them. The weights of vertex covers obtained from
random graphs are shown in Table 4.2. Table 4.3 shows the calculation time for random graphs. The
best(minimum) weight for each row is indicated by “⋆”. The summary of the results is in Table 4.1.

Table 4.1: Summary: number of ⋆ in 30 conditions of random graphs

RGE BGE CLA+DW BAR+DW PIT+DW
6 22 2 0 0

For almost all graphs, proposed algorithms can obtain better solutions than previous ones (indicated
by bold). In addition, for 28 of 30 graphs, the best weight for each row is obtained by proposed algo-
rithm(indicated by “⋆”). The simple greedy elimination cannot obtain better solutions than previous
algorithms. This means proposal methods rotating and branching works effectively. As larger lr and lb,
weights obtained by them are better.

For graphs of small n, BGE is better than RGE. For graphs of large n, RGE is better. Branching
greedy elimination searches at most 2lb solutions in total. Half of them do not include the most worthless
vertex v1 that appears first in the permutation Π. Rotating greedy elimination searches lr solutions in
total. Each of them does not includes each of v1, v2, . . . , vlr . That is, BGE has investigates the case
excluding v1 intensively, whereas RGE widely searches the solution space. This difference is shown in the
results. For larger graphs, more diversity is required to obtain better solutions.

For many graphs, the computation time of proposal algorithms are shorter than previous ones. For
some small graphs, proposed algorithm are not faster than previous ones, but still the computation time is
very short. As larger graphs, the computation time of previous algorithms increases more than proposed.
The computation of proposed algorithms can be controlled with the parameters.

In Table 4.4, the values of algorithms for some instances are compared with optimal solutions obtained
by an exact MWCP solver OTClique shown in the chapter 2. For sparse graphs, there are large differences
between the optimal weight and the weight obtained by proposed algorithms. They become smaller as
larger d. On the other hand, as n becomes larger, the differences do not become larger. The tendency
can be also confirmed on previous algorithms.

52 CHAPTER 4. GREEDY ALGORITHMS FOR MWVCP

T
ab

le
4.
2:

T
h
e
w
ei
g
h
t
o
f
ve
rt
ex

co
ve
rs

o
b
ta
in
ed

fr
o
m

ra
n
d
o
m

g
ra
p
h
s

gr
ee
d
y

R
G
E

B
G
E

C
L
A

C
L
A

B
A
R

B
A
R

P
IT

P
IT

n
d

el
im

in
at
io
n

l r
=

6
4

l r
=

25
6

l r
=

10
24

l b
=

6
l b
=

8
l b
=

10
+

D
W

+
D
W

+
D
W

5
00

0.
1

2
39
5.
9

23
89
.4

23
8
9.
1

23
88
.6

23
81
.6

2
3
7
2
.1

⋆
2
3
6
7
.9

24
78
.4

23
7
7.
7

26
27
.1

2
43
8
.2

2
62
2
.9

2
4
50
.4

5
00

0.
3

2
57
3.
6

2
5
6
6
.9

2
5
6
5
.7

2
5
6
5
.7

2
5
6
0
.2

2
5
5
5
.2

⋆
2
5
5
1
.3

26
27
.4

25
7
2.
6

26
85
.4

2
58
8
.5

2
67
9
.2

2
5
94
.2

5
00

0.
5

2
62
8.
8

2
6
1
7
.3

2
6
1
7
.3

2
6
1
7
.3

2
6
1
3
.7

2
6
1
1
.5

⋆
2
6
1
0
.8

26
62
.2

26
2
4.
5

26
90
.3

2
63
3
.5

2
68
9
.8

2
6
40
.7

5
00

0.
7

2
6
5
4
.5

2
6
4
5
.9

2
6
4
5
.6

2
6
4
5
.6

2
6
4
5
.9

2
6
4
3
.6

⋆
2
6
4
2
.4

26
79
.7

26
5
4.
8

26
93
.1

2
66
2
.0

2
69
4
.6

2
6
65
.1

5
00

0.
9

2
67
6.
3

2
6
6
7
.9

2
6
6
7
.1

2
6
6
7
.1

2
6
6
6
.9

2
6
6
6
.7

⋆
2
6
6
6
.5

26
86
.7

26
7
4.
5

26
99
.0

2
68
1
.7

2
70
0
.6

2
6
81
.0

10
00

0.
1

5
13
0.
5

51
03
.7

51
0
3.
7

51
03
.7

51
03
.8

5
0
9
5
.3

⋆
5
0
8
4
.8

52
58
.0

50
9
9.
3

54
28
.5

5
16
6
.9

5
40
9
.0

5
1
86
.9

10
00

0.
3

5
35
6.
8

5
3
3
9
.2

5
3
3
8
.8

5
3
3
8
.8

5
3
3
3
.4

5
3
3
1
.2

⋆
5
3
2
7
.5

54
25
.1

53
4
7.
3

54
78
.0

5
37
3
.7

5
46
3
.8

5
3
81
.8

10
00

0.
5

5
41
7.
7

5
4
0
1
.1

5
4
0
1
.0

5
4
0
1
.0

5
4
0
0
.3

5
3
9
8
.2

⋆
5
3
9
4
.0

54
61
.6

54
1
4.
2

54
89
.3

5
42
1
.6

5
48
6
.1

5
4
26
.3

10
00

0.
7

5
44
4.
5

5
4
3
5
.3

5
4
3
4
.9

5
4
3
4
.9

5
4
3
5
.8

5
4
3
3
.6

⋆
5
4
3
1
.7

54
76
.6

54
4
7.
9

54
94
.0

5
44
9
.8

5
49
3
.5

5
4
55
.4

10
00

0.
9

5
46
9.
2

5
4
5
9
.4

5
4
5
9
.0

5
4
5
9
.0

5
4
5
8
.9

5
4
5
7
.8

⋆
5
4
5
7
.0

54
85
.6

54
6
7.
9

54
96
.8

5
47
2
.6

5
49
6
.3

5
4
74
.4

25
00

0.
1

1
33
03
.9

1
3
2
8
0
.6

1
3
2
7
9
.9

1
3
2
7
9
.9

1
3
2
7
2
.9

1
3
2
6
2
.7

⋆1
3
2
5
6
.0

13
51
4.
6

1
32
85
.5

13
69
1.
5

1
33
5
4
.0

1
36
6
5.
6

1
33
5
2
.3

25
0
0

0
.3

1
36
00
.1

1
3
5
7
9
.7

1
3
5
7
8
.7

1
3
5
7
8
.0

1
3
5
7
7
.1

1
3
5
7
2
.1

⋆1
3
5
6
5
.7

13
68
8.
5

1
35
91
.2

13
74
5.
4

1
36
1
2
.5

1
37
4
0.
9

1
36
1
4
.6

25
0
0

0
.5

1
36
74
.8

1
3
6
5
6
.2

1
3
6
5
4
.5

1
3
6
5
4
.4

1
3
6
5
5
.9

1
3
6
5
0
.2

⋆1
3
6
4
7
.3

13
71
8.
5

1
36
69
.5

13
75
6.
8

1
36
7
4
.6

1
37
5
2.
9

1
36
8
1
.8

25
0
0

0
.7

1
37
05
.9

1
3
6
9
3
.7

1
3
6
9
3
.1

1
3
6
9
3
.1

1
3
6
9
4
.8

1
3
6
9
3
.6

⋆1
3
6
9
0
.2

13
74
1.
5

1
37
04
.8

13
76
1.
8

1
37
0
9
.8

1
37
5
9.
9

1
37
1
2
.1

25
0
0

0
.9

1
37
33
.7

1
3
7
2
3
.0

1
3
7
2
1
.8

1
3
7
2
1
.8

1
3
7
2
3
.7

1
3
7
2
2
.0

⋆1
3
7
2
1
.7

13
75
3.
5

1
37
33
.2

13
76
0.
4

1
37
3
7
.1

1
37
6
0.
5

1
37
3
6
.1

50
0
0

0
.1

2
68
71
.9

2
6
8
4
8
.5

2
6
8
4
5
.0

2
6
8
4
5
.0

2
6
8
4
7
.6

2
6
8
3
8
.9

⋆2
6
8
3
0
.5

27
15
1.
0

2
68
57
.1

27
32
8.
9

2
69
1
8
.4

2
73
1
7.
2

2
69
3
9
.1

50
0
0

0
.3

2
72
19
.2

2
7
1
9
9
.1

2
7
1
9
7
.8

2
7
1
9
7
.8

2
7
1
9
4
.8

2
7
1
9
1
.0

⋆2
7
1
8
6
.2

27
33
4.
1

2
72
16
.3

27
38
6.
3

2
72
3
2
.1

2
73
8
5.
3

2
72
3
0
.7

50
0
0

0
.5

2
73
00
.1

2
7
2
8
4
.4

2
7
2
8
2
.2

2
7
2
8
1
.6

2
7
2
8
3
.2

2
7
2
7
9
.7

⋆2
7
2
7
7
.2

27
37
1.
1

2
72
98
.5

27
39
4.
8

2
73
0
5
.6

2
73
9
3.
6

2
73
1
5
.2

50
0
0

0
.7

2
73
40
.2

2
7
3
2
8
.4

2
7
3
2
6
.7

2
7
3
2
6
.6

2
7
3
2
8
.2

2
7
3
2
5
.9

⋆2
7
3
2
3
.3

27
38
5.
1

2
73
37
.0

27
39
8.
2

2
73
4
8
.0

2
73
9
7.
2

2
73
4
6
.9

50
0
0

0
.9

2
73
68
.9

2
7
3
6
0
.7

2
7
3
5
9
.1

⋆
2
7
3
5
8
.0

2
7
3
6
0
.3

2
7
3
6
0
.2

2
7
3
5
9
.5

27
39
4.
1

2
73
68
.5

27
40
3.
7

2
73
7
5
.3

2
74
0
4.
5

2
73
7
7
.0

25
00
0

0
.1

1
36
9
09
.9

1
3
6
8
6
5
.9

1
3
6
8
6
1
.2

1
3
6
8
6
0
.5

1
3
6
8
6
6
.6

1
3
6
8
5
5
.0

⋆1
3
6
8
4
7
.6

13
73
3
6.
2

1
36
8
93
.7

13
75
06
.0

13
69
5
3.
0

1
37
4
9
6.
1

1
36
9
6
2.
5

2
50
0
0

0.
3

1
37
3
54
.6

1
3
7
3
3
2
.1

1
3
7
3
2
7
.2

1
3
7
3
2
5
.6

1
3
7
3
3
0
.3

1
3
7
3
2
8
.2

⋆1
3
7
3
2
1
.5

13
75
2
6.
2

1
37
3
54
.2

13
75
64
.4

13
73
6
4.
3

1
37
5
5
3.
6

1
37
3
7
2.
7

2
50
0
0

0.
5

1
37
4
63
.3

1
3
7
4
4
4
.5

1
3
7
4
4
0
.9

1
3
7
4
3
7
.3

1
3
7
4
4
1
.1

1
3
7
4
3
8
.4

⋆1
3
7
4
3
5
.4

13
75
5
3.
2

1
37
4
59
.0

13
75
78
.4

13
74
6
7.
9

1
37
5
7
0.
4

1
37
4
6
3.
7

2
50
0
0

0.
7

1
37
5
09
.7

1
3
7
4
9
9
.1

1
3
7
4
9
6
.8

⋆1
3
7
4
9
3
.6

1
3
7
4
9
9
.1

1
3
7
4
9
6
.4

1
3
7
4
9
3
.7

13
75
7
2.
2

1
37
5
08
.0

13
75
82
.4

13
75
1
2.
6

1
37
5
8
2.
0

1
37
5
1
6.
0

2
50
0
0

0.
9

1
37
5
46
.2

1
3
7
5
3
4
.8

1
3
7
5
3
3
.5

⋆1
3
7
5
3
2
.7

1
3
7
5
3
6
.2

1
3
7
5
3
5
.4

1
3
7
5
3
5
.0

13
75
7
9.
2

1
37
5
44
.2

13
75
85
.9

13
75
5
0.
4

1
37
5
8
5.
5

1
37
5
5
0.
1

5
00
0
0

0.
1

2
73
3
80
.6

27
3
33
3.
1

2
73
30
9
.3

27
3
26
2.
7

27
33
37
.5

27
3
31
1.
8

27
32
9
9.
6

27
39
5
1.
3

⋆2
7
29
81
.9

27
45
29
.9

27
32
2
2.
5

2
74
4
4
5.
8

2
73
2
0
9.
2

5
00
0
0

0.
3

2
74
2
73
.2

27
4
23
6.
6

2
74
20
1
.3

27
4
15
0.
2

27
42
24
.5

27
4
20
9.
0

27
42
0
3.
1

27
45
6
0.
5

⋆2
7
41
05
.5

27
48
56
.5

27
42
0
6.
0

2
74
8
3
1.
4

2
74
2
0
2.
8

5
00
0
0

0.
5

2
74
5
17
.5

27
4
47
0.
4

2
74
45
0
.8

⋆2
7
4
4
2
5
.7

27
44
65
.4

27
4
45
9.
7

27
44
4
8.
3

27
47
6
4.
5

2
74
4
29
.2

27
49
27
.8

27
44
8
6.
8

2
74
9
1
3.
4

2
74
4
8
2.
8

5
00
0
0

0.
7

2
74
6
31
.1

27
4
60
4.
0

2
74
58
7
.9

⋆2
7
4
5
7
5
.2

27
45
98
.2

27
4
58
9.
4

2
7
4
5
7
9
.2

27
48
3
4.
5

2
74
5
83
.3

27
49
67
.2

27
46
2
1.
5

2
74
9
4
4.
9

2
74
6
2
8.
0

5
00
0
0

0.
9

2
74
7
12
.5

27
4
69
5.
8

2
7
4
6
8
0
.0

⋆2
7
4
6
6
9
.5

2
7
4
6
8
6
.5

2
7
4
6
8
2
.4

2
7
4
6
7
4
.5

27
48
9
2.
5

2
74
6
92
.0

27
49
81
.9

27
47
1
0.
8

2
74
9
7
0.
9

2
74
7
1
6.
0

4.4. COMPUTER EXPERIMENTS 53

T
ab

le
4
.3
:
C
P
U

ti
m
e
fo
r
ra
n
d
o
m

g
ra
p
h
s
[m

se
c]

gr
ee
d
y

R
G
E

B
G
E

C
L
A

C
L
A

B
A
R

B
A
R

P
IT

P
IT

n
d

el
im

in
at
io
n

l r
=

64
l r

=
25
6

l r
=

1
0
2
4

l b
=

6
l b
=

8
l b
=

1
0

+
D
W

+
D
W

+
D
W

50
0

0.
1

ϵ
0.
2

0.
6

1
.1

0
.2

0
.7

2
.5

0
.2

0
.2

ϵ
ϵ

ϵ
ϵ

50
0

0.
3

ϵ
0.
2

0.
5

1
.0

0
.1

0
.5

1
.7

0
.4

0
.5

0
.1

0
.1

0
.1

0
.1

50
0

0.
5

ϵ
0.
1

0.
5

0
.9

0
.1

0
.4

1
.2

0
.7

0
.7

0
.2

0
.2

0
.2

0
.2

50
0

0.
7

ϵ
0.
1

0.
4

0
.8

0
.1

0
.3

0
.5

1
.0

1
.0

0
.2

0
.3

0
.3

0
.3

50
0

0.
9

ϵ
0.
1

0.
4

0
.7

0
.1

0
.1

0
.2

1
.1

1
.2

0
.3

0
.4

0
.3

0
.4

10
00

0.
1

ϵ
0.
4

1.
3

4
.1

0
.4

1
.4

5
.1

0
.6

0
.7

0
.2

0
.2

0
.2

0
.2

10
00

0.
3

ϵ
0.
3

1.
2

3
.8

0
.3

1
.0

3
.7

1
.7

1
.7

0
.4

0
.5

0
.4

0
.5

10
00

0.
5

ϵ
0.
3

1.
1

3
.6

0
.3

0
.8

2
.6

2
.7

2
.8

0
.7

0
.8

0
.7

0
.8

10
00

0.
7

ϵ
0.
3

0.
9

3
.2

0
.2

0
.6

1
.4

3
.7

3
.9

0
.9

1
.1

0
.9

1
.1

10
00

0.
9

ϵ
0.
2

0.
8

2
.8

0
.1

0
.2

0
.4

4
.4

4
.7

1
.2

1
.5

1
.2

1
.5

25
00

0.
1

ϵ
1.
1

3.
6

1
2
.0

1
.0

3
.5

1
2
.9

3
.3

3
.5

0
.9

1
.1

0
.9

1
.2

25
00

0.
3

ϵ
1.
0

3.
3

1
1
.4

0
.9

2
.9

1
0
.2

9
.0

9
.4

2
.5

3
.1

2
.6

3
.1

25
00

0.
5

ϵ
0.
9

3.
0

1
0
.6

0
.8

2
.4

7
.7

1
4
.8

1
5
.4

4
.2

5
.1

4
.3

5
.1

25
00

0.
7

ϵ
0.
8

2.
6

9
.4

0
.6

1
.7

4
.3

2
0
.4

2
1
.4

5
.8

7
.0

5
.9

7
.1

25
00

0.
9

ϵ
0.
6

2.
0

7
.2

0
.4

0
.7

1
.2

2
5
.6

2
6
.6

7
.4

9
.3

7
.5

9
.5

50
00

0.
1

ϵ
2.
4

8.
3

2
9
.5

2
.3

8
.4

3
1
.0

1
3
.3

1
3
.8

3
.6

4
.5

3
.8

4
.6

50
00

0.
3

ϵ
2.
3

7.
8

2
8
.5

2
.0

6
.5

2
4
.0

3
6
.5

3
7
.9

1
0
.3

1
2
.5

1
0
.5

1
2
.6

50
00

0.
5

ϵ
1.
9

6.
6

2
4
.4

1
.6

5
.3

1
7
.5

5
9
.1

6
1
.8

1
6
.7

1
9
.8

1
7
.0

2
0
.3

50
00

0.
7

ϵ
1.
7

5.
8

2
1
.4

1
.4

3
.9

1
0
.4

8
1
.8

8
5
.4

2
3
.2

2
7
.8

2
3
.4

2
7
.5

50
00

0.
9

ϵ
1.
4

4.
8

1
7
.1

0
.9

1
.8

3
.2

1
0
3
.6

1
0
7
.4

2
9
.6

3
6
.0

2
9
.9

3
5
.7

25
00
0

0.
1

0.
6

16
.1

60
.2

2
2
8
.0

1
5
.9

5
7
.3

2
2
1
.0

3
7
3
.3

3
9
1
.2

9
2
.3

1
0
8
.8

9
3
.5

1
1
0
.0

25
00
0

0.
3

0.
5

13
.0

47
.3

1
7
8
.6

1
2
.0

4
3
.0

1
5
9
.8

9
9
1
.2

1
0
3
9
.5

2
5
4
.9

2
9
6
.1

2
5
7
.6

2
9
9
.2

25
00
0

0.
5

0.
5

11
.3

40
.6

1
5
1
.2

1
0
.0

3
3
.3

1
1
9
.1

1
5
9
7
.7

1
6
7
2
.1

4
1
3
.4

4
9
0
.1

4
1
7
.9

4
8
1
.7

25
00
0

0.
7

0.
5

9.
9

35
.0

1
2
9
.1

7
.6

2
4
.0

7
6
.0

2
2
0
4
.2

2
3
0
7
.2

5
7
2
.7

6
6
2
.0

5
7
8
.5

6
8
4
.5

25
00
0

0.
9

0.
5

7.
3

24
.9

9
3
.1

5
.3

1
1
.7

2
4
.1

2
8
1
9
.2

2
9
6
8
.0

7
3
2
.4

8
5
9
.7

7
3
9
.8

8
6
3
.2

50
00
0

0.
1

1.
3

56
.4

21
8.
9

8
2
1
.6

5
7
.2

2
1
3
.1

8
5
0
.0

1
0
8
8
.9

1
1
7
5
.8

2
8
2
.2

3
6
5
.3

2
8
7
.7

3
6
7
.7

50
00
0

0.
3

1.
3

43
.0

16
2.
9

5
9
9
.7

4
4
.7

1
6
2
.1

6
3
0
.9

2
7
6
4
.3

2
9
9
6
.3

7
3
5
.0

9
3
6
.2

7
4
5
.9

9
4
4
.5

50
00
0

0.
5

1.
3

40
.5

15
1.
6

5
5
9
.8

4
2
.5

1
5
2
.2

5
8
2
.9

4
2
8
1
.4

4
6
6
8
.2

1
1
8
9
.6

1
4
9
6
.4

1
2
0
5
.8

1
5
0
7
.6

50
00
0

0.
7

1.
3

38
.3

14
4.
2

5
4
5
.9

3
8
.9

1
3
9
.3

5
3
1
.6

5
7
4
5
.4

6
2
6
2
.8

1
5
8
9
.3

1
9
9
8
.0

1
6
1
1
.7

2
0
1
3
.3

50
00
0

0.
9

1.
3

36
.2

13
7.
4

5
1
6
.3

3
6
.0

1
3
0
.1

4
9
0
.9

7
1
0
5
.6

7
7
2
6
.4

1
9
5
5
.8

2
4
5
5
.6

1
9
8
4
.2

2
4
9
2
.7

54 CHAPTER 4. GREEDY ALGORITHMS FOR MWVCP

T
a
b
le

4
.4
:
C
o
m
p
a
ri
so
n
w
it
h
o
p
ti
m
a
l
so
lu
ti
o
n
s

op
ti
m
a
l

gr
ee
d
y

R
G
E

B
G
E

C
L
A

C
L
A

B
A
R

B
A
R

P
IT

P
IT

n
d

w
ei
gh

t
el
im

in
at
io
n

l r
=

64
l r

=
25
6

l r
=

10
24

l b
=

6
l b
=

8
l b
=

10
+
D
W

+
D
W

+
D
W

2
00

0.
1

81
9.
3

85
2.
7

84
5.
6

84
5.
6

84
5.
6

8
3
9
.4

8
3
8
.2

⋆
8
3
3
.5

89
9.
6

84
2.
5

1
0
0
6
.3

8
85
.9

1
00
1.
2

8
98
.2

2
00

0.
2

91
3.
8

94
2.
2

93
6.
2

93
6.
2

93
6.
2

9
2
6
.0

9
2
3
.2

⋆
9
2
1
.1

97
4.
4

93
4.
9

1
0
5
0
.1

9
60
.8

1
04
6.
6

9
66
.0

2
00

0.
3

95
7.
7

98
1.
6

9
7
2
.6

9
7
2
.6

9
7
2
.6

9
6
5
.3

9
6
1
.8

⋆
9
6
0
.0

10
12
.1

97
3.
4

1
0
6
1
.7

9
93
.6

1
05
9.
0

9
89
.5

2
00

0.
4

98
4.
9

9
9
9
.9

9
9
3
.6

9
9
3
.6

9
9
3
.6

9
9
1
.6

9
8
8
.3

⋆
9
8
6
.7

10
30
.7

10
02
.8

1
0
6
5
.5

1
0
16
.0

1
06
2.
3

10
13
.8

2
00

0.
5

10
03
.9

10
21
.4

1
0
1
0
.3

1
0
1
0
.3

1
0
1
0
.3

1
0
0
8
.5

1
0
0
5
.9

⋆1
0
0
5
.4

10
36
.3

10
15
.0

1
0
7
2
.0

1
0
30
.4

1
06
6.
6

10
31
.0

2
00

0.
6

10
19
.2

10
35
.9

1
0
2
5
.6

1
0
2
5
.6

1
0
2
5
.6

1
0
2
2
.7

1
0
2
2
.4

⋆1
0
2
0
.5

10
48
.6

10
29
.9

1
0
7
2
.0

1
0
42
.7

1
07
1.
8

10
42
.7

2
00

0.
7

10
31
.8

1
0
4
1
.8

1
0
3
5
.5

1
0
3
5
.5

1
0
3
5
.5

1
0
3
4
.6

1
0
3
4
.1

⋆1
0
3
3
.4

10
61
.1

10
43
.6

1
0
7
6
.5

1
0
49
.6

1
07
2.
6

10
46
.3

2
00

0.
8

10
42
.4

10
50
.6

1
0
4
4
.3

1
0
4
4
.3

1
0
4
4
.3

1
0
4
3
.2

1
0
4
3
.0

⋆1
0
4
2
.8

10
63
.9

10
49
.6

1
0
7
7
.2

1
0
59
.5

1
07
5.
1

10
59
.3

2
00

0.
9

10
51
.0

1
0
5
4
.9

1
0
5
2
.9

1
0
5
2
.8

1
0
5
2
.8

1
0
5
2
.3

1
0
5
2
.0

⋆1
0
5
1
.9

10
68
.9

10
55
.1

1
0
7
7
.7

1
0
62
.9

1
07
6.
0

10
62
.1

5
00

0.
9

26
65
.4

26
76
.3

2
6
6
7
.9

2
6
6
7
.1

2
6
6
7
.1

2
6
6
6
.9

2
6
6
6
.7

⋆2
6
6
6
.5

26
86
.7

26
74
.5

2
6
9
9
.0

2
6
81
.7

2
70
0.
6

26
81
.0

10
00

0
.9

54
56
.2

54
69
.2

5
4
5
9
.4

5
4
5
9
.0

5
4
5
9
.0

5
4
5
8
.9

5
4
5
7
.8

⋆5
4
5
7
.0

54
85
.6

54
67
.9

5
4
9
6
.8

5
4
72
.6

5
49
6.
3

54
74
.4

20
00

0
.9

10
99
3.
1

1
1
0
0
4
.7

1
0
9
9
5
.1

⋆
1
0
9
9
4
.7

⋆
1
0
9
9
4
.7

1
0
9
9
7
.4

1
0
9
9
5
.5

1
0
9
9
5
.1

11
02
7.
6

11
00
5.
7

1
1
0
3
4
.7

11
01
1.
6

1
10
3
5.
3

11
01
1
.3

30
00

0
.9

16
37
4.
5

16
39
1.
7

1
6
3
8
0
.3

⋆
1
6
3
7
9
.2

⋆
1
6
3
7
9
.2

1
6
3
8
1
.2

1
6
3
8
0
.3

1
6
3
7
9
.9

16
41
1.
1

16
38
9.
6

1
6
4
2
2
.4

16
39
4.
7

1
64
1
8.
1

16
39
1
.1

40
00

0
.9

22
01
6.
6

22
03
2.
9

2
2
0
2
3
.2

⋆
2
2
0
2
2
.3

⋆
2
2
0
2
2
.3

2
2
0
2
4
.2

2
2
0
2
3
.2

2
2
0
2
2
.4

22
05
6.
5

22
02
9.
4

2
2
0
6
4
.5

22
03
6.
7

2
20
6
1.
7

22
03
5
.3

50
00

0
.9

27
35
3.
1

27
36
8.
9

2
7
3
6
0
.7

2
7
3
5
9
.1

⋆
2
7
3
5
8
.0

2
7
3
6
0
.3

2
7
3
6
0
.2

2
7
3
5
9
.5

27
39
4.
1

27
36
8.
5

2
7
4
0
3
.7

27
37
5.
3

2
74
0
4.
5

27
37
7
.0

60
00

0
.9

32
87
7.
5

32
89
4.
4

3
2
8
8
6
.3

3
2
8
8
3
.7

⋆
3
2
8
8
2
.7

3
2
8
8
5
.9

3
2
8
8
4
.6

3
2
8
8
3
.2

32
92
2.
1

32
89
3.
4

3
2
9
2
8
.2

32
90
0.
6

3
29
2
8.
4

32
90
2
.8

70
00

0
.9

38
51
7.
5

3
8
5
3
3
.1

3
8
5
2
4
.9

3
8
5
2
3
.1

⋆
3
8
5
2
1
.9

3
8
5
2
5
.0

3
8
5
2
4
.3

3
8
5
2
3
.0

38
56
0.
2

38
53
5.
3

3
8
5
6
8
.6

38
53
7.
1

3
85
6
8.
3

38
53
9
.2

80
00

0
.9

43
98
1.
2

4
4
0
0
0
.1

4
3
9
8
9
.4

4
3
9
8
6
.4

⋆
4
3
9
8
5
.5

4
3
9
8
9
.1

4
3
9
8
8
.8

4
3
9
8
7
.9

44
02
9.
2

44
00
0.
1

4
4
0
3
1
.6

44
00
2.
0

4
40
3
3.
3

44
00
5
.3

90
00

0
.9

49
46
1.
5

4
9
4
7
8
.8

4
9
4
7
0
.2

4
9
4
6
8
.4

⋆
4
9
4
6
6
.9

4
9
4
7
1
.4

4
9
4
7
0
.6

4
9
4
6
9
.4

49
50
7.
2

49
47
9.
6

4
9
5
1
5
.2

49
48
2.
1

4
95
1
4.
8

49
48
2
.8

10
00
0

0.
9

54
85
0.
7

5
4
8
6
9
.2

5
4
8
6
1
.2

5
4
8
5
8
.9

5
4
8
5
7
.4

5
4
8
5
9
.6

5
4
8
5
8
.5

⋆
5
4
8
5
6
.4

54
89
7.
9

54
86
9.
2

5
4
9
0
7
.2

54
87
5.
4

5
49
0
5.
2

54
87
2
.7

4.4. COMPUTER EXPERIMENTS 55

4.4.2 graphs from error-correcting codes

It is important to compare algorithms with graphs of real applications. To construct error-correcting
codes of maximum size can be formulated as MWCP[43]. We convert them to MWVCP and solve them
by MWVCP algorithms. The summary is shown in Table 4.5. The weight of vertex covers obtained are
in Table 4.6. Table 4.7 shows the calculation time for random graphs. For all graphs, proposed algorithm

Table 4.5: Summary: number of ⋆ in 18 instances of error-correcting code graphs

RGE BGE CLA+DW BAR+DW PIT+DW
6 12 0 0 0

can be obtain better weight than previous ones (indicated by bold). In addition, all of the best weight for
each row is obtained by proposed algorithm (indicated by “⋆”). The computation time behaves similarly
to case of random graphs. For some small graphs, proposed algorithm are not faster than previous ones,
but the computation time for them are very short. As larger graphs, the computation time of previous
algorithms increases more than proposal algorithms.

In the Table 4.7, the computation time of the BGE of lb = 10 is shorter than the RGE of lr = 1024.
This is caused by pruning searches at line 16 in Algorithm 13 and at line 11,33 in Algorithm 14. This
fact shows the pruning is more effective in real applications than random graphs.

56 CHAPTER 4. GREEDY ALGORITHMS FOR MWVCP

T
ab

le
4.
6:

T
h
e
w
ei
gh

t
o
f
ve
rt
ex

co
ve
rs

o
b
ta
in
ed

fr
o
m

er
ro
r-
co
rr
ec
ti
n
g
co
d
e
g
ra
p
h
s

op
ti
m
al

gr
ee
d
y

R
G
E

B
G
E

C
L
A

C
L
A

B
A
R

B
A
R

P
IT

P
IT

gr
ap

h
w
ei
gh

t
el
im

in
at
io
n

l r
=

64
l r

=
25
6

l r
=

1
0
2
4

l b
=

6
l b
=

8
l b
=

1
0

+
D
W

+
D
W

+
D
W

11
-4
-4

25
6

26
2

2
5
8

2
5
8

2
5
8

2
5
8

2
5
8

⋆2
5
6

2
8
4

2
58

2
8
3

2
6
5

2
8
3

2
6
5

12
-4
-6

79
0

8
2
4

8
1
8

8
1
6

8
1
6

8
2
0

8
1
8

⋆8
1
2

8
5
2

8
28

8
8
4

8
4
0

8
6
8

8
3
2

14
-4
-7

28
28

2
9
0
0

2
8
7
2

2
8
7
2

2
8
7
2

2
8
8
6

⋆
2
8
5
8

⋆
2
8
5
8

3
0
1
2

2
9
00

3
0
4
0

2
9
1
4

3
0
1
2

2
9
1
4

14
-6
-6

23
67

23
88

2
3
8
2

2
3
8
1

2
3
7
9

2
3
8
1

⋆
2
3
7
6

⋆
2
3
7
6

2
4
0
0

2
3
88

2
4
0
3

2
3
8
5

2
4
0
3

2
3
8
5

16
-4
-5

26
18

2
6
6
0

2
6
6
0

2
6
6
0

2
6
6
0

2
6
6
0

2
6
6
0

⋆
2
6
4
6

2
8
5
6

2
7
23

2
8
4
2

2
6
9
5

2
8
4
9

2
7
0
2

16
-8
-8

88
72

88
90

⋆8
8
7
2

⋆8
8
7
2

⋆
8
8
7
2

⋆8
8
7
2

⋆
8
8
7
2

⋆
8
8
7
2

8
8
9
0

8
8
80

8
8
9
8

8
8
8
7

8
8
9
8

8
8
8
9

17
-4
-4

19
20

19
40

1
9
3
2

1
9
2
8

1
9
2
8

⋆1
9
2
0

⋆
1
9
2
0

⋆
1
9
2
0

2
0
1
2

1
9
48

2
0
2
8

1
9
3
2

2
0
4
4

1
9
4
8

17
-6
-6

30
72

3
0
9
1

3
0
7
9

3
0
7
9

3
0
7
9

3
0
7
9

3
0
7
9

⋆
3
0
7
8

3
1
3
6

3
0
91

3
1
2
1

3
0
9
2

3
1
1
5

3
0
9
2

19
-4
-6

16
72
4

16
94
0

1
6
8
4
4

1
6
8
4
4

1
6
8
4
4

1
6
8
4
4

1
6
8
4
4

⋆1
6
8
0
4

1
7
7
3
2

1
6
9
7
2

1
7
7
5
2

1
7
0
7
2

1
7
8
3
2

1
6
9
1
2

19
-8
-8

16
74
4

16
77
0

1
6
7
5
8

1
6
7
5
8

⋆1
6
7
5
6

1
6
7
5
8

1
6
7
5
8

⋆1
6
7
5
6

1
6
7
8
8

1
6
7
6
4

1
6
7
8
6

1
6
7
7
6

1
6
7
8
6

1
6
7
7
6

20
-6
-5

12
92
0

1
2
9
4
4

1
2
9
3
4

1
2
9
3
0

1
2
9
3
0

1
2
9
3
4

1
2
9
3
4

⋆1
2
9
2
4

1
2
9
8
4

1
2
9
5
4

1
2
9
9
4

1
2
9
4
4

1
2
9
9
4

1
2
9
5
4

20
-6
-6

29
57
0

29
64
0

⋆
2
9
6
0
0

⋆
2
9
6
0
0

⋆2
9
6
0
0

2
9
6
2
0

2
9
6
2
0

⋆2
9
6
0
0

2
9
7
2
0

2
9
6
4
0

2
9
7
4
0

2
9
6
2
0

2
9
7
2
0

2
9
6
4
0

20
-8
-1
0

44
90
3

44
95
0

4
4
9
1
2

⋆
4
4
9
0
3

⋆4
4
9
0
3

4
4
9
1
4

4
4
9
1
4

4
4
9
1
4

4
4
9
5
0

4
4
9
5
0

4
4
9
6
8

4
4
9
1
4

4
4
9
6
8

4
4
9
1
4

21
-1
0-
9

19
86
4

19
87
1

1
9
8
6
7

1
9
8
6
6

⋆1
9
8
6
4

1
9
8
6
7

1
9
8
6
6

1
9
8
6
6

1
9
8
8
5

1
9
8
7
2

1
9
8
8
6

1
9
8
7
1

1
9
8
8
2

1
9
8
7
0

22
-1
0-
10

88
91
0

88
93
4

8
8
9
1
6

8
8
9
1
6

⋆8
8
9
1
4

8
8
9
1
6

8
8
9
1
6

8
8
9
1
6

8
8
9
5
4

8
8
9
3
4

8
8
9
4
6

8
8
9
2
6

8
8
9
4
6

8
8
9
3
5

4.4. COMPUTER EXPERIMENTS 57

T
ab

le
4.
7:

C
P
U

ti
m
e
fo
r
er
ro
r-
co
rr
ec
ti
n
g
co
d
e
g
ra
p
h
s
[m

se
c]

gr
ee
d
y

R
G
E

B
G
E

C
L
A

C
L
A

B
A
R

B
A
R

P
IT

P
IT

gr
ap

h
el
im

in
at
io
n

l r
=

64
l r

=
25
6

l r
=

1
0
2
4

l b
=

6
l b
=

8
l b
=

1
0

+
D
W

+
D
W

+
D
W

11
-4
-4

ϵ
0.
1

0.
2

0
.2

ϵ
0
.3

0
.8

ϵ
ϵ

ϵ
ϵ

ϵ
ϵ

12
-4
-6

ϵ
0.
2

0.
3

0
.3

0
.1

0
.4

1
.3

ϵ
ϵ

ϵ
ϵ

ϵ
ϵ

14
-4
-7

ϵ
ϵ

0.
3

0
.3

ϵ
0
.3

1
.2

ϵ
ϵ

ϵ
ϵ

ϵ
ϵ

14
-6
-6

ϵ
0.
3

0.
9

3
.1

0
.3

0
.7

2
.1

1
.7

1
.8

0
.4

0
.5

0
.4

0
.6

16
-4
-5

ϵ
ϵ

0.
2

0
.3

ϵ
0
.3

1
.0

ϵ
ϵ

ϵ
ϵ

ϵ
ϵ

16
-8
-8

ϵ
0.
7

1.
9

6
.5

0
.4

0
.8

1
.3

2
4
.4

2
5
.5

5
.8

7
.8

6
.0

8
.7

17
-4
-4

ϵ
ϵ

0.
2

0
.1

ϵ
0
.2

0
.5

ϵ
ϵ

ϵ
ϵ

ϵ
ϵ

17
-6
-6

ϵ
0.
3

1.
1

1
.8

0
.3

1
.1

3
.3

0
.7

0
.8

0
.2

0
.2

0
.2

0
.3

19
-4
-6

ϵ
0.
1

0.
5

0
.5

0
.2

0
.5

1
.8

ϵ
0
.1

ϵ
ϵ

ϵ
ϵ

19
-8
-8

ϵ
1.
0

3.
2

1
1
.1

0
.7

1
.5

2
.6

1
8
.9

1
9
.4

4
.5

6
.0

4
.8

6
.5

20
-6
-5

ϵ
0.
5

1.
6

5
.5

0
.4

1
.1

2
.2

5
.5

5
.7

1
.3

1
.8

1
.4

1
.9

20
-6
-6

ϵ
0.
5

1.
6

6
.2

0
.6

1
.7

3
.3

7
.2

7
.6

1
.8

2
.3

1
.9

2
.5

20
-8
-1
0

ϵ
1.
3

4.
1

1
1
.7

0
.7

1
.2

2
.2

2
5
.8

2
7
.0

6
.9

9
.3

7
.1

1
0
.0

21
-1
0-
9

ϵ
3.
2

12
.5

4
8
.2

2
.6

5
.5

1
1
.2

1
1
3
.5

1
1
6
.1

27
.9

3
5
.1

2
8
.4

3
8
.9

22
-1
0-
10

0.
2

1.
7

6.
2

2
3
.5

0
.8

1
.1

1
.5

3
9
0
.9

4
2
4
.6

1
0
1
.4

1
3
3
.3

1
0
2
.5

1
4
4
.3

58 CHAPTER 4. GREEDY ALGORITHMS FOR MWVCP

4.5 Conclusion

In this chapter, we propose two efficient greedy algorithms for MWVCP. Proposed algorithms construct a
vertex permutation that is ordered by worthless of vertices. Then they construct a large number of mini-
mal vertex covers in greedy manner. By some numerical experiments, we confirmed proposed algorithms
can obtain better solutions than previous 2-approximate algorithms for MWVCP. The computation time
of proposed algorithms is shorter than others because each greedy procedure is done in short time.

There are some future works. Evaluation of approximation ratio is the most important future work.
Besides it, improving performance in sparse graphs compared to optimal solutions is also important.
Recently, algorithms based on metaheuristics were proposed for MWVCP [38, 69, 12], MWCP [65, 10]
and MWIS [27]. Proposed algorithms can be used as a subroutine to construct initial solutions or
improvement processes in metaheuristics.

59

Chapter 5

Data structures for local search
algorithms on MEWCP

5.1 Introduction

In this chapter, we propose two data structures to manage neighborhoods for local search algorithms. One
can be used for graphs represented by adjacency lists. The other is for graphs represented by adjacency
matrix. For MEWCP, calculating the weight of a clique takes more time than MWCP because of edge
weights. Proposed method also reduces the time complexity for clique weight calculation.

By some computer experiments, with local search algorithms for MEWCP, we compare all combina-
tions of proposed data structures and a previous data structure. From the results, we confirmed proposed
data structures are better than previous one. We confirmed that local search algorithms works efficiently
using one of proposed data structures properly by memory capacity or graph property such as number
of vertices or edge density.

In the section 5.2, some notations, definitions for local search and previous methods are described. The
section 5.3 shows two proposed data structures for neighborhood management. Computer experiments
are shown in the section 5.4.

5.2 Preliminary

5.2.1 Notation

For a simple undirected graph G = (V,E), w(u, v) denotes the weight of (u, v) ∈ E. For a clique C ⊆ V ,

let we(C) =
∑

u,v∈C w(u, v). Let d = 2|E|
|V |(|V |−1) . For any vertex v ∈ V , N(v) denotes the set of vertices

adjacent to v in G. For a clique C, let C0 be a set of vertices that are adjacent to all vertices in C.
Namely, C0 satisfies the follow :

C0 = {v | C ⊆ N(v)}.

Note that any v ∈ C is not included in C0 because it is not adjacent to itself. For a clique C, let C1

be a set of vertices that have just one non-adjacent vertex in C and are not included in C. Namely, C1

satisfies the follow:
C1 = {v /∈ C | |C \N(v)| = 1}.

Same as [66, 50, 21], we define following three neighborhoods for a clique C :

Add-neighborhoods: A family of sets Nadd(C) = {C ∪ {v} | v ∈ C0}. Namely, a set of cliques
constructed by adding a vertex v ∈ C0 to C.

Drop-neighborhoods: A family of sets Ndrop(C) = {C \ {v} | v ∈ C}. Namely, a set of cliques
constructed by removing a vertex from C.

Swap-neighborhoods: A family of sets Nswap(C) = {(C ∩ N(v)) ∪ {v} | v ∈ C1}. Namely, a set of
cliques constructed by removing vertices not adjacent to v ∈ C1 from C and then adding v to C.

60 CHAPTER 5. DATA STRUCTURES FOR LOCAL SEARCH ALGORITHMS ON MEWCP

From the definition of C1, |C \N(v)| = 1 holds and the size of cliques in the swap-neighborhoods
equals to |C|.

Local search algorithms iteratively move the clique C to one of these neighborhoods to search cliques
that have larger weight.

5.2.2 Previous data structure for neighborhood management

Local search algorithms scan neighborhoods frequently. In this section, we show a previous data structure
to manage and update neighborhoods for a graph represented in adjacency lists [21]. For each vertex
v ∈ V and a clique C, κ(v, C) denotes the number of vertices that are included in C and adjacent to v.
Namely, κ(v, C) satisfies the following equation :

κ(v, C) = |C ∩N(v)|.

For a clique C, let N(C) be a set of vertices that are not included in C and have at least one adjacent
vertex in C. Namely, N(C) satisfies the follow :

N(C) = {v /∈ C | ∃u ∈ C, v ∈ N(u)}.

Using κ(v, C) and N(C), previous method defines vertex sets Sadd and Sswap :

Sadd = {u ∈ N(C) | κ(u,C) = |C|},

Sswap = {u ∈ N(C) | κ(u,C) = |C| − 1}.

From these definitions, C0 = Sadd holds when C > 0, and C1 = Sswap holds when |C| > 1. Therefore the
previous method in [21] manages C0 and C1 using κ(v, C), N(C), Sadd, Sswap. Although previous method
does not consider the cases of |C| ≤ 1, the cases are only in very small or very sparse graphs.

Hereafter we assume that the time complexity of adding an element to a set and deleting an element
from a set is O(1). It can be implemented by hash tables, whose expected time complexity of add
operation and delete operation is O(1), or it can be done by representing sets by doubly linked lists with
an array of addresses that are used to find vertex position in the lists in constant time.

κ(v, C), N(C), Sadd and Sswap are updated in moving a clique C to a neighborhood. Let v be the
vertex added to or deleted from C. For each u ∈ N(v), κ(u,C) must be updated and it takes O(|N(v)|)
time. After updating κ(u,C), for each u ∈ N(v), previous method adds u to N(C) if κ(u,C) > 0
and u /∈ C. Same as κ(u,C), updating N(C) takes O(|N(v)|) time. Finally, it scans N(C) to update
Sadd and Sswap in O(|N(C)|) time. In summary, previous method in [21] updates neighborhoods in
O(|N(v)|+ |N(C)|) time when it moves a clique C.

5.3 Proposed data structures for neighborhood management

In this section, we propose two data structures for neighborhood management. Usually, adjacency lists
are adopted for large sparse graphs because of space complexity. Proposed method L is an efficient
method to manage neighborhoods in such cases. In contrast, for small graphs represented by adjacency
matrices, proposed method M constructs non-adjacency lists and uses the list to reduce time complexity.
Table 5.1 summarizes these neighborhood management methods.

For MEWCP, especially for graphs represented by adjacency lists, calculating weights of neighbor-
hoods takes time because of the time to refer to edge weights. Hence we propose a data structure to
calculate weights of neighborhoods with proposed method L.

5.3. PROPOSED DATA STRUCTURES FOR NEIGHBORHOOD MANAGEMENT 61

Table 5.1: Summary of methods for neighborhood management

time complexity space complexity
method graph representation to update of data structures

Previous [21] adjacency list O(|N(v)|+ |N(C)|) O(|V |)
Proposal L adjacency list O(|N(v)|) O(|V |)
Proposal M adjacency matrix + non-adjacency list O(|V \N(v)|) O(|V |)

5.3.1 Proposed method L

Same as [21], for a clique C and each vertex v ∈ V , let κ(v, C) = |C ∩ N(v)|. Using κ(v, C), proposed
method L defines a vertex set S(i, C) as :

S(i, C) = {v ∈ V \ C | κ(v, C) = i}.

Hereafter, κ(v) denotes κ(v, C) and S(i) denotes S(i, C) when C can be obviously identified. By the
definition, C0 = S(|C|) and C1 = S(|C| − 1). Proposed method L manages neighborhoods by updating
sets S(·) implemented in doubly linked list. It manages ∆ + 1 doubly linked lists S(0), S(1), . . . , S(∆)
because κ(v) ≤ |N(v)| holds for any vertex v, where ∆ is a maximum degree of all vertices. Since the
total size of the all doubly linked lists is |V | at most, the space complexity is O(|V |). In the initial state
where C = ∅, κ(v) = 0 for all v ∈ V and all vertices are included in S(0). S(1), S(2), . . . , S(∆) are
initialized by empty doubly linked lists that have only a head element. The relationship between the sets
Sadd, Sswap used in previous method, the sets S(i) used in proposed method L, C0 and C1 is summarized
as follows.

Sadd : Sadd = C0 holds when |C| ≠ 0. Sadd ⊆ N(C) holds. When C is moved to a neighborhood,
previous method scans N(C) and selects vertices of κ(v) = |C| to update Sadd.

Sswap : Sswap = C1 holds when |C| > 1. Sswap ⊂ N(C) holds. When C is moved to a neighborhood,
previous method scans N(C) and selects vertices of κ(v) = |C| − 1 to update Sswap.

S(i) : A family of ∆ + 1 sets (i = 0, . . . ,∆). S(|C|) = C0 and S(|C| − 1) = C1 hold. When C is moved
to a neighborhood, necessity minimum vertices are moved to appropriate S(i) as described bellow.

To remove a vertex from the doubly linked list in constant time, proposed method L uses an array
pos(v) that have address of each vertex v. In removing a vertex v ∈ S(κ(v)) from the doubly linked list,
it can refer to the address of v in constant time. Hence it can remove v in constant time. In the initial
state, C = ∅, for each v ∈ V , pos(v) is initialized by the address of v in S(0).

In addition, to calculate the weights of neighborhoods efficiently, proposed method L defines σ(v, C)
for a clique C and each vertex v ∈ V as follows :

σ(v, C) =
∑

u∈C∩N(v)

w(u, v).

Hereafter σ(v) denotes σ(v, C). In the initial state, C = ∅, they are initialized by σ(v) = 0 for all v ∈ V .
Given the values of σ(v), the weight of a neighborhood can be calculated in O(1) time as follows. For a
clique C, the weight of a clique C ∪ {v} in add-neighborhoods is we(C) + σ(v). The weight of a clique
C \ {u} in drop-neighborhood is we(C) − σ(u). For a clique (C \ {u}) ∪ {v} in swap-neighborhood,
u and v are not adjacent to each other. Therefore moving to swap-neighborhood is equivalent to the
sequential movement to drop-neighborhood and then to add-neighborhood. Hence the weight of a clique
(C \{u})∪{v} in swap-neighborhood is we(C)−σ(u)+σ(v). For the graph Gex shown in Figure 5.1 and
a clique C = {v4, v6, v7}, Figure 5.2 shows the data structure of proposed method L. In the case, ∆ = 5
and proposed method L manages 6 lists S(0), S(1), . . . , S(5). C0 = S(3) = {v5} and C1 = S(2) = {v3, v8}
because |C| = 3.

62 CHAPTER 5. DATA STRUCTURES FOR LOCAL SEARCH ALGORITHMS ON MEWCP

v1v2

v4

v3

v5

v6
v7

v8

3

5

7

9

4

2 5

6
1

8

4 7

Figure 5.1: A graph Gex (black vertices are in the clique C)

v2S(0):

Head address A

v1S(1):

Head address B

v3 v8S(2):

Head address D address E

v5S(3):

Head address F

S(4):

Head

S(5):

Head

1 2 3 4 5 6 7 8

B A D N F N N Epos(vi): (N: null)

1 2 3 4 5 6 7 8

1 0 2 2 3 2 2 2κ(vi):

1 2 3 4 5 6 7 8

5 0 16 7 11 10 13 11σ(vi):

Figure 5.2: Data structures of proposed method L

5.3. PROPOSED DATA STRUCTURES FOR NEIGHBORHOOD MANAGEMENT 63

Proposed method L updates κ(·), S(·), pos(·) and σ(·) in moving the clique C. Algorithm 15 shows
the procedure to add a vertex v to the clique and the procedure to remove a vertex v from the clique.
The procedures first update C, and then remove v from S(|C|) in case of adding v to C or add v to S(|C|)
in case of removing v from C. Then for each u ∈ N(v), procedures update κ(u), σ(u) and move vertices
u /∈ C to S(κ(u)). The time complexity of both procedures in Algorithm 15 is O(|N(v)|). The reference
to edge weights at lines 7 and 21 is done in constant time since they are in the for loops for each elements
in adjacency lists. Since each vertex not included in the clique is in appropriate S(i), proposed method L
scans less vertices than previous method, and the time complexity of proposed method L is smaller than
previous method [21].

Algorithm 15 Proposed method L: updating data structure

1: procedure AddToClique(v)
2: remove v from S(|C|) ▷ Using pos(v)
3: pos(v)← null ▷ not in any S(·)
4: add v to C
5: for all u ∈ N(v) do
6: κ(u)← κ(u) + 1
7: σ(u)← σ(u) + w(v, u)
8: if u /∈ C then
9: remove u from S(κ(u)− 1) ▷ Using pos(u)

10: insert u to S(κ(u))
11: pos(u)← (address of u in S(κ(u)))
12: end if
13: end for
14: end procedure

15: procedure DropFromClique(v)
16: remove v from C
17: add v to S(|C|) ▷ κ(v) = |C|
18: pos(u)← (address of u in S(|C|))
19: for all u ∈ N(v) do
20: κ(u)← κ(u)− 1
21: σ(u)← σ(u)− w(v, u)
22: if u /∈ C then
23: remove u from S(κ(u) + 1) ▷ Using pos(u)
24: insert u to S(κ(u))
25: pos(u)← (address of u in S(κ(u)))
26: end if
27: end for
28: end procedure

64 CHAPTER 5. DATA STRUCTURES FOR LOCAL SEARCH ALGORITHMS ON MEWCP

5.3.2 Proposed method M

First, to reduce the time complexity to update data structures, proposed method M constructs non-
adjacency lists from adjacency matrix. For each v, non-adjacency list contains the elements of V \N(v).
Adding non-adjacency lists does not increase the space complexity of O(|V |2). For a clique C and each
vertex v ∈ V , proposed method M defines s(v, C) as follows :

s(v, C) = |C \N(v)|.

Hereafter s(v) denotes s(v, C). For v /∈ C, v is included in C0 if and only if s(v) = 0. For v /∈ C,
v is included in C1 if and only if s(v) = 1. Same as S(i) of proposed method L, proposed method M
implements C0 and C1 by doubly linked lists and stores the address of each vertex v to an array pos(v).
By this implementation, a vertex can be added or removed in constant time. For the graph Gex shown in
Figure 5.1 and a clique C = {v4, v6, v7}, Figure 5.3 shows the data structures of proposed method M. In
the initial state, C = ∅, s(v) = 0 holds for all vertices v ∈ V , and all vertices are in C0. For each v ∈ V ,
pos(v) contains the address of v in C0. C1 is initialized by an empty doubly linked list that has only a
head element.

v3 v8C1:

Head address A address B

v5C0:

Head address D

1 2 3 4 5 6 7 8

N N A N D N N Bpos(vi): (N: null)

1 2 3 4 5 6 7 8

2 3 1 1 0 1 1 1s(vi):

Figure 5.3: Data structures of proposed method M

Proposed method M updates s(·), C0, C1 and pos(·) in moving the clique C to a neighborhood.
Algorithm 16 shows the procedure to add a vertex v to the clique and the procedure to remove a vertex
v from the clique. Using non-adjacency lists, the time complexity of both procedures in Algorithm 16 is
O(|V \N(v)|).

Proposed method M calculates clique weights as follows when they are required. For a clique C,
the weight of a clique C ∪ {v} in add-neighborhoods is we(C) +

∑
s∈C w(s, v). The weight of a clique

(C \ {u}) ∪ {v} in swap-neighborhood is we(C)−
∑

t∈C\{u} w(u, t) +
∑

s∈C\{u} w(s, v). The weight of a

clique C \ {u} in drop-neighborhood is we(C) −
∑

t∈C\{u} w(u, t). From the above, the weight of each

clique in neighborhoods is calculated in O(|C|).

5.3. PROPOSED DATA STRUCTURES FOR NEIGHBORHOOD MANAGEMENT 65

Algorithm 16 Proposed method M: updating data structure

1: procedure AddToClique(v)
2: remove v from C0 ▷ Using pos(v)
3: pos(u)← null ▷ not in C0 or C1

4: s(v)← 1
5: add v to C
6: for all u ∈ V \ (N(v) ∪ {v}) do
7: s(u)← s(u) + 1
8: if s(u) = 1 then
9: remove u from C0 ▷ Using pos(u)

10: insert u to C1

11: pos(u)← (address of u in C1)
12: end if
13: if s(u) = 2 then
14: remove u from C1 ▷ Using pos(u)
15: pos(u)← null ▷ not in C0 or C1

16: end if
17: end for
18: end procedure

19: procedure DropFromClique(v)
20: remove v from C
21: s(v)← 0
22: add v to C0

23: pos(u)← (address of u in C0)
24: for all u ∈ V \ (N(v) ∪ {v}) do
25: s(u)← s(u)− 1
26: if s(u) = 0 then
27: remove u from C1 ▷ Using pos(u)
28: insert u to C0

29: pos(u)← (address of u in C0)
30: end if
31: if s(u) = 1 then
32: insert u to C1

33: pos(u)← null ▷ not in C0 or C1

34: end if
35: end for
36: end procedure

66 CHAPTER 5. DATA STRUCTURES FOR LOCAL SEARCH ALGORITHMS ON MEWCP

5.4 Computer experiments

We implement two proposed data structures and previous data structure [21] by C++. We use PLS [50]
for MEWCP to compare these data structures. In addition, we modify the multi neighborhood tabu
search (MN/TS) for MWCP [66] to solve MEWCP and use it to compare data structures. MN/TS can
be used for MEWCP only by changing the calculation of clique weights, from the sum of vertex weights
to the sum of edge weights.

Although the previous data structure [21] is proposed for MWCP, we modify it to calculate edge
weights as follows. For each (u, v) ∈ E, previous one [21] proposes to store the element in a hash table
with a key calculated by some one-to-one function f(u, v). It can check whether u, v are adjacent by
checking whether the key f(u, v) is in the hash table. Although it is not as fast as adjacency matrix
because of overheads, the time complexity to check adjacency is O(1) in average. In the experiments in
this section, edge weight w(u, v) is stored in the hash table with the key f(u, v).

The CPU is Intel R⃝CoreTMi7-6700 3.40 GHz. Memory is 16GB. The OS is Linux 4.4.0. The compiler
is g++ 5.4.0 with optimization option O2.

In all experiments, for each instance, we apply each algorithm 10 times changing random seeds. We
measure the best solution in 60 sec and the time to reach them. Since the neighborhood management
is differ for each data structure, different vertices are picked from C0 or C1 by random selection in each
compared method. Hence the reached solution maybe different even if the local search algorithm is same.

5.4. COMPUTER EXPERIMENTS 67

5.4.1 DIMACS

DIMACS[62] is a set of benchmarks for MCP. Although graphs in original DIMACS are not vertex-
weighted or edge-weighted, they are used in experiments for MWCP and MEWCP by giving weights to
vertices or edges [66, 50]. In this experiments, we give (i+ j) mod 200 + 1 for each edge (vi, vj) as same
as [50]. Table 5.2 shows the results for DIMACS. Wbest is the best clique weight of all random seeds.
The value suc is the number of reaches to Wbest in all random seeds. The value time is the average time
(second) of reaches to Wbest. The symbol < ϵ means the algorithm reaches to Wbest in shorter time than
0.01 sec that is possible minimum measurement time on the environment. Table 5.2 does not show the
instances that all algorithms can reach to Wbest in very short time for all random seeds. However the
total suc shown in the bottom of the table includes them.

Comparing proposed method L and previous method [21] by total suc, we confirm that proposed
method L obtains more suc than previous method for many instances. For many instances of same suc,
proposed method L reaches Wbest faster than previous method. This is because of the smaller time
complexity of neighborhood update.

Comparing two proposed methods, proposed method M obtains more suc. Since many of DIMACS
instances are dense graphs, the time complexity O(|V \N(v)|) of proposed method M is better.

Table 5.2: Experimental results for DIMACS

MN/TS MN/TS + Proposed method PLS PLS + Proposed method
[21] L M [21] L M

Instance |V | d Wbest suc time suc time suc time suc time suc time suc time
brock200 1 200 0.745 21230 9 15.27 10 1.99 10 0.42 10 0.05 10 0.03 10 < ϵ
brock200 2 200 0.496 6542 8 13.00 10 5.11 10 1.37 10 0.04 10 0.02 10 < ϵ
brock200 3 200 0.605 10303 9 20.42 10 3.34 10 2.13 10 < ϵ 10 < ϵ 10 < ϵ
brock400 1 400 0.748 35257 0 - 1 21.18 5 25.75 10 3.12 10 2.01 10 0.13
brock400 2 400 0.749 40738 1 50.06 7 21.13 10 9.31 10 0.53 10 0.26 10 0.04
brock400 3 400 0.748 46785 7 23.82 10 2.81 10 0.67 10 0.15 10 0.12 10 0.02
brock400 4 400 0.749 54304 10 15.00 10 1.69 10 0.34 10 0.09 10 0.04 10 < ϵ
brock800 1 800 0.649 25050 10 3.80 10 0.83 10 0.14 10 3.30 10 1.29 10 0.35
brock800 2 800 0.651 27932 0 - 0 - 0 - 9 16.18 9 25.02 10 2.67
brock800 3 800 0.649 30972 0 - 0 - 2 21.44 10 19.24 9 19.27 10 3.07
brock800 4 800 0.650 30950 0 - 1 59.37 0 - 10 7.65 10 6.86 10 0.67
C1000.9 1000 0.900 234013 1 41.79 8 13.96 10 10.79 2 21.62 3 30.94 10 10.38
C2000.5 2000 0.500 14927 6 18.76 9 22.01 10 5.87 4 31.33 4 27.71 8 17.89
C2000.9 2000 0.900 320715 0 - 0 - 1 41.44 0 - 0 - 0 -
C4000.5 4000 0.500 19304 0 - 2 37.09 3 44.13 0 - 0 - 1 43.79
C500.9 500 0.900 164953 10 4.89 10 0.14 10 0.07 10 4.36 10 0.98 10 0.17

c-fat500-10 500 0.374 804000 10 14.80 10 0.01 10 0.21 10 0.05 10 < ϵ 10 < ϵ
c-fat500-2 500 0.073 38350 10 1.14 10 < ϵ 10 0.05 10 < ϵ 10 < ϵ 10 < ϵ
c-fat500-5 500 0.186 205864 10 5.42 10 < ϵ 10 0.10 10 < ϵ 10 < ϵ 10 < ϵ

DSJC1000 5 1000 0.500 12054 10 2.01 10 0.55 10 0.13 10 4.96 10 1.94 10 0.43
gen400 p0.9 55 400 0.900 150981 10 2.80 10 0.09 10 0.07 10 1.26 10 0.41 10 0.10
hamming10-2 1024 0.990 13140816 3 9.48 10 0.07 10 1.11 10 3.74 10 0.03 10 0.04
hamming10-4 1024 0.829 83280 0 - 3 20.12 8 36.64 0 - 7 34.32 8 26.02
johnson32-2-4 496 0.879 16330 10 6.25 10 0.51 10 0.13 0 - 0 - 0 -

keller5 776 0.752 38901 8 22.42 10 3.83 10 0.62 6 22.28 7 22.09 10 5.78
keller6 3361 0.818 178189 0 - 1 29.26 0 - 0 - 0 - 0 -

MANN a27 378 0.990 802575 0 - 0 - 0 - 0 - 0 - 2 20.92
MANN a45 1035 0.996 5874190 0 - 0 - 0 - 0 - 0 - 1 20.44
MANN a81 3321 0.999 59893215 0 - 0 - 0 - 0 - 1 28.63 0 -
p hat1500-2 1500 0.506 211069 10 8.57 10 0.31 10 0.25 10 1.02 10 0.49 10 0.09
p hat1500-3 1500 0.754 441998 5 33.06 10 1.69 10 1.80 10 3.04 10 0.67 10 0.05
san1000 1000 0.502 10661 2 43.96 2 12.94 9 19.00 4 39.28 7 24.45 10 13.06

san200 0.7 2 200 0.700 15073 10 6.53 10 0.37 10 0.15 10 0.35 10 0.04 10 0.01
san400 0.5 1 400 0.500 7442 9 23.24 10 5.50 10 1.78 10 1.11 10 0.18 10 0.08
san400 0.7 1 400 0.700 77719 10 19.65 10 2.16 10 0.52 10 4.37 10 0.76 10 0.11
san400 0.7 2 400 0.700 44155 10 2.09 10 0.15 10 0.08 10 1.66 10 0.32 10 0.04
san400 0.7 3 400 0.700 24727 10 1.28 10 0.22 10 0.03 10 0.53 10 0.17 10 0.04
san400 0.9 1 400 0.900 496874 10 3.72 10 0.08 10 0.04 10 1.03 10 0.07 10 0.02

total suc 638 684 708 695 707 730

68 CHAPTER 5. DATA STRUCTURES FOR LOCAL SEARCH ALGORITHMS ON MEWCP

5.4.2 BHOSLIB

Same as DIMACS, BHOSLIB[67] is a set of benchmarks for MCP. Although graphs in original BHOSLIB
are not vertex-weighted or edge-weighted too, we give (i+ j) mod 200 + 1 for each edge (vi, vj) as same
as [50]. Table 5.3 shows the results for BHOSLIB.

By comparing suc, we confirm proposed methods are better than previous one. Proposed method M
obtains more suc than proposed method L. Although PLS obtains more suc on DIMACS and MN/TS
obtains more suc on BHOSLIB, these tendencies of data structures are same as DIMACS.

Table 5.3: Experimental results for BHOSLIB

MN/TS MN/TS + Proposed method PLS PLS + Proposed method
[21] L M [21] L M

Instance |V | d Wbest suc time suc time suc time suc time suc time suc time
frb30-15-1 450 0.824 44069 10 0.59 10 0.10 10 0.03 10 0.44 10 0.55 10 0.05
frb30-15-2 450 0.823 44078 10 0.53 10 0.08 10 0.02 10 0.19 10 0.15 10 0.03
frb30-15-3 450 0.824 43414 6 30.14 10 5.21 10 1.54 10 9.67 10 7.92 10 1.73
frb30-15-4 450 0.823 43884 10 2.89 10 0.36 10 0.13 10 0.20 10 0.13 10 0.01
frb30-15-5 450 0.824 43675 9 35.72 10 4.44 10 1.01 10 9.58 10 5.53 10 0.79
frb35-17-1 595 0.842 59629 1 11.07 10 20.98 10 6.83 4 22.67 5 34.47 10 5.90
frb35-17-2 595 0.842 59973 8 30.54 10 3.00 10 1.53 10 15.86 10 14.31 10 0.92
frb35-17-3 595 0.842 60357 10 8.17 10 1.43 10 0.23 10 3.61 10 4.35 10 0.45
frb35-17-4 595 0.842 59653 2 24.67 7 28.16 10 7.64 6 39.71 4 10.31 10 11.55
frb35-17-5 595 0.841 60749 10 5.00 10 0.51 10 0.13 10 6.35 10 2.89 10 0.37
frb40-19-1 760 0.857 79800 4 31.94 10 9.43 10 1.90 2 17.94 3 26.58 10 9.61
frb40-19-2 760 0.857 79004 1 52.71 6 37.81 10 13.30 2 30.09 2 22.10 9 13.28
frb40-19-3 760 0.858 79457 6 15.04 10 2.35 10 1.20 2 9.54 9 9.71 10 4.03
frb40-19-4 760 0.856 79247 5 19.22 10 9.44 10 5.30 2 32.39 4 26.24 10 15.68
frb40-19-5 760 0.856 79223 2 34.64 3 29.76 8 30.48 0 - 0 - 4 34.85
frb45-21-1 945 0.867 99802 0 - 2 11.43 6 25.86 0 - 1 55.92 7 33.30
frb45-21-2 945 0.869 99838 0 - 0 - 2 40.94 0 - 3 19.20 1 47.50
frb45-21-3 945 0.869 100282 1 14.48 5 38.82 6 34.29 0 - 0 - 3 37.87
frb45-21-4 945 0.869 101182 0 - 7 23.96 10 19.61 0 - 2 28.82 7 33.00
frb45-21-5 945 0.869 99614 0 - 2 18.46 2 12.74 0 - 1 56.26 3 20.26
frb50-23-1 1150 0.879 122931 0 - 0 - 2 11.02 0 - 0 - 0 -
frb50-23-2 1150 0.878 123674 0 - 0 - 1 39.73 0 - 0 - 0 -
frb50-23-3 1150 0.877 123494 0 - 0 - 1 51.31 0 - 0 - 0 -
frb50-23-4 1150 0.879 123298 1 41.14 4 27.33 5 15.37 0 - 1 21.98 7 21.06
frb50-23-5 1150 0.879 122846 1 2.84 0 - 6 28.27 0 - 0 - 1 45.33
frb53-24-1 1272 0.883 135675 0 - 0 - 1 32.05 0 - 0 - 0 -
frb53-24-2 1272 0.883 140162 0 - 0 - 2 18.76 0 - 0 - 0 -
frb53-24-3 1272 0.884 140122 0 - 0 - 3 48.52 0 - 0 - 2 30.81
frb53-24-4 1272 0.883 138758 0 - 2 32.76 0 - 0 - 0 - 0 -
frb53-24-5 1272 0.883 139614 0 - 1 11.67 0 - 0 - 0 - 0 -
frb56-25-1 1400 0.888 151823 0 - 1 9.41 1 30.04 0 - 0 - 1 17.36
frb56-25-2 1400 0.888 151377 0 - 0 - 1 34.34 0 - 0 - 0 -
frb56-25-3 1400 0.888 150509 0 - 0 - 1 57.62 0 - 0 - 0 -
frb56-25-4 1400 0.888 156615 0 - 0 - 3 16.69 0 - 0 - 0 -
frb56-25-5 1400 0.888 155630 0 - 0 - 0 - 0 - 0 - 1 32.29
frb59-26-1 1534 0.892 170472 0 - 0 - 1 52.20 0 - 0 - 0 -
frb59-26-2 1534 0.893 170232 0 - 1 38.01 1 54.10 0 - 0 - 0 -
frb59-26-3 1534 0.893 168343 0 - 0 - 0 - 1 59.36 0 - 0 -
frb59-26-4 1534 0.892 168397 0 - 0 - 1 21.40 0 - 0 - 0 -
frb59-26-5 1534 0.893 172795 0 - 0 - 2 14.70 0 - 1 20.07 0 -

total suc 97 161 206 99 116 176

5.4. COMPUTER EXPERIMENTS 69

5.4.3 higgs-twitter data set

We compare data structures on higgs-twitter data set of large sparse graphs. Graphs of this data set are
constructed from twitter user activity about higgs boson published at [37].

In this data set, each vertex corresponds to an user. Activities from user v to user u is represented by
a directed edge (v, u), and its weight is the count of activities. In the experiments, we use the following
three graphs :

retweet-network A graph constructed from retweets.

reply-network A graph constructed from replies.

mention-network A graph constructed from mentions.

These are huge graphs whose number of vertices is several tens or hundreds of thousand. To use them as
benchmarks of MEWCP, we obtain undirected simple edge-weighted graphs as follows :

• Remove loops.

• For two vertices u, v that have directed edges between them, replace all of those edges by one
undirected edge (u, v).

• The weight w(u, v) of an undirected edge (u, v) is the total weight of directed edges between u and
v of the original directed graph.

Since all of activities indicate communications between users, we can find a group of strong ties by
extracting a maximum edge-weight clique from processed graphs. We regard that processing described
above is acceptable for extracting such groups.

Memory usage of data structures

For the processed higgs-twitter graphs, we estimate memory usage of adjacency matrix and adjacency
lists as follows. We assume that one word length is 4byte based on the CPU used in experiments. For
adjacency lists, the number of elements in the lists is 2|E|, and each element is a tuple of 8 byte that
contains a connected vertex and edge weight. Therefore we estimate the memory usage of adjacency lists
at 16|E| byte. For an adjacency matrix, the number of elements in the matrix is |V |2, and each element
is edge weight of 4 byte. Hence we estimate the memory usage of an adjacency matrix at 4|V |2 byte.
Table 5.4 shows the memory usage estimation.

Table 5.4: Memory usage estimation for higgs-twitter graphs

graph |V | |E| adjacency matrix adjacency lists
higgs-reply 38683 29552 5.57GB 0.45MB

higgs-mention 115684 140421 49.85GB 2.14MB
higgs-retweet 256491 327374 245.07GB 5.00MB

Table 5.4 shows that the adjacency matrix requires huge memory. On the other hand, adjacency lists
can represent these graphs with much less memory usage. Hence we compare only methods for adjacency
lists for higgs-twitter graphs.

Results for higgs-twitter graphs

Table 5.5 shows the results for higgs-twitter graphs. From the results, we confirm that proposed method
L reaches Wbest in shorter time than previous method [21].

70 CHAPTER 5. DATA STRUCTURES FOR LOCAL SEARCH ALGORITHMS ON MEWCP

Table 5.5: Experimental results for higgs-twitter graphs

MN/TS PLS
Previous [21] Proposed L Previous [21] Proposed L

|V | |E| Wbest suc time suc time suc time suc time
higgs-reply 38683 29552 28 9 25.09 10 0.76 10 1.46 10 0.13

higgs-mention 115684 140421 430 10 0.08 10 0.01 10 0.13 10 < ϵ
higgs-retweet 256491 327374 101 10 0.20 10 0.03 10 0.44 10 0.02

5.5 Conclusion

We proposed two data structures for neighborhood management on local search algorithms for MEWCP.
A technique to calculate clique weights of MEWCP efficiently is also proposed. With two local search
algorithms, we compared all combinations of data structures and local search algorithms in computer
experiments.

We use DIMACS, BHOSLIB and higgs-twitter data set as benchmarks. From the experimental result,
we confirmed that proposed methods are better than previous one. For dense graphs of DIMACS and
BHOSLIB, proposed method M with adjacency matrix and non-adjacency lists is better. On the other
hand, for large sparse graphs of higgs-twitter data set, proposed method L with adjacency lists is better.
From the results, we confirmed that local search algorithms works efficiently using one of proposed data
structures properly by memory capacity or graph property such as number of vertices or edge density.

For MEWCP, MCP and MWCP, proposed methods can be used to manage a set of candidate vertices
to add to clique in heuristics such as [17]. The performance analysis of proposed data structures on such
algorithms is a future work.

71

Chapter 6

Conclusion

In this paper, we proposed two branch-and-bound based exact algorithms for MWCP, a mathematical
programming technique for MEWCP, a branch-and-bound based exact algorithm for MEWCP, two greedy
algorithms for MWVCP and two data structures used in local search algorithms for MEWCP.

In the chapter 2, we proposed two branch-and-bound algorithms for MWCP. Proposed algorithm
VCTable uses vertex coloring to calculate upper bounds. VCTable calculates upper bounds of vertex
coloring before branch-and-bound and store them to upper bound tables. In branch-and-bound, VCTable
calculates upper bounds in short time by using upper bound tables. The other algorithm OTClique is
also proposed. Before branch-and-bound, OTClique calculates the weights of optimal solutions for a lot
of small subgraphs and stores the values to optimal tables. Upper bounds are calculated using optimal
tables. By some computer experiments for some benchmarks, we confirmed that they are better than
previous algorithms.

In the chapter 3, we proposed a mathematical programming formulation technique and a branch-and-
bound based exact algorithm for MEWCP. For the MIP formulation of MEWCP, we proposed vertex
renumbering technique. By the vertex renumbering, the range of each variables becomes smaller, and the
value of some variables are fixed. This improves the performance of mathematical programming solvers.
In addition, we proposed a branch-and-bound algorithm called EWCLIQUE. EWCLIQUE decomposes
edge weights of each subproblem into three components. It calculates an upper bound for each component,
and uses the sum of them as an upper bound for the subproblem. By some experiments, we compared
algorithms and confirmed that EWCLIQUE is faster than others in all of benchmarks.

In the chapter 4, two heuristic algorithms are proposed. They are based on a simple linear time greedy
algorithm which removes vertices from the set of all vertices. Since the base algorithm is very simple, it
is faster than previous approximate algorithms. However it finds worse solutions. Proposed algorithms
create a vertex list and then construct multiple solutions from the list. To construct multiple solutions,
one adopts the rotating technique and the other adopts the branching technique. They output the best
solution among them. Comparing to approximation algorithms for MWVCP, proposed algorithms can
find better solutions in shorter time.

In the chapter 5, two data structures used in local search algorithms for MEWCP are proposed.
Local search algorithms start from a solution and continuously move it to one of neighborhoods. The
neighborhoods are scanned in each movement. Hence the computation time to calculate neighborhood
for each solution is important. One of proposed algorithms can be used with graphs represented by
adjacency lists. The other is for graphs represented by adjacency matrix. With local search algorithms
for MEWCP, we compare proposed methods and previous one by computer experiments. Proposed
methods show better performance than previous one.

72 CHAPTER 6. CONCLUSION

73

Acknowledgements

The completion of this thesis was made by the contributions, knowledge, kindness, and support of many
individuals. First of all, I would like to express my sincere gratitude to my supervisor Associate Professor
Kazuaki Yamaguchi, and Professor Sumio Masuda at Kobe University, for their patient guidance, support,
encouragement, and excellent advice throughout my study period.

I would like to appreciate Professor Masahiro Numa and Professor Tsutomu Terada at Kobe Univer-
sity. They took time to review my doctoral thesis and gave me valuable comments and advices.

I am thankful to Associate Professor Toshiki Saitoh at Kyushu Institute of Technology. When he
taught at Kobe University, he gave me lots of advices and motivated me to study more.

I am grateful to Mr. Ryota Ishihara. He helps me on some of computer experiments, and provides
some of benchmark instances used in experiments.

I would like to thank for the help and support for the teachers and staffs at Departments of Electrical
and Electronic Engineering of Kobe University.

Finally, I would like to thank my family for their sincere supports and warm encouragement.

74 Acknowledgements

BIBLIOGRAPHY 75

Bibliography

[1] Bahram Alidaee, Fred Glover, Gary Kochenberger, and Haibo Wang. Solving the maximum edge
weight clique problem via unconstrained quadratic programming. European Journal of Operational
Research, 181(2):592–597, 2007.

[2] Luitpold Babel. A fast algorithm for the maximum weight clique problem. Computing, 52(1):31–38,
1994.

[3] KC Bahadur, Tatsuya Akutsu, Etsuji Tomita, and Tomokazu Seki. Protein side-chain packing prob-
lem: a maximum edge-weight clique algorithmic approach. In Proceedings of the second conference
on Asia-Pacific bioinformatics-Volume 29, pages 191–200. Australian Computer Society, Inc., 2004.

[4] Egon Balas and Jue Xue. Minimum weighted coloring of triangulated graphs, with application to
maximum weight vertex packing and clique finding in arbitrary graphs. SIAM Journal on Computing,
20(2):209–221, 1991.

[5] Egon Balas and Jue Xue. Weighted and unweighted maximum clique algorithms with upper bounds
from fractional coloring. Algorithmica, 15(5):397–412, 1996.

[6] Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary graph. SIAM Journal
on Computing, 15(4):1054–1068, 1986.

[7] Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981.

[8] Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating the weighted vertex
cover problem. North-Holland Mathematics Studies, 109:27–45, 1985.

[9] Mikhail Batsyn, Boris Goldengorin, Evgeny Maslov, and Panos M Pardalos. Improvements to mcs
algorithm for the maximum clique problem. Journal of Combinatorial Optimization, 27(2):397–416,
2014.

[10] Una Benlic and Jin-Kao Hao. Breakout local search for maximum clique problems. Computers &
Operations Research, 40(1):192–206, 2013.

[11] Galina T Bogdanova, Andries E Brouwer, Stoian N Kapralov, and Patric RJ Österg̊ard. Error-
correcting codes over an alphabet of four elements. Designs, Codes and Cryptography, 23(3):333–342,
2001.

[12] Salim Bouamama, Christian Blum, and Abdellah Boukerram. A population-based iterated greedy
algorithm for the minimum weight vertex cover problem. Applied Soft Computing, 12(6):1632–1639,
2012.

[13] JB Brown, KC Dukka Bahadur, Etsuji Tomita, and Tatsuya Akutsu. Multiple methods for protein
side chain packing using maximum weight cliques. Genome Informatics, 17(1):3–12, 2006.

[14] Kevin Leyton Brown. Combinatorial auction test suite (CATS), 2000. http://www.cs.ubc.ca/

~kevinlb/CATS/.

[15] Randy Carraghan and Panos M Pardalos. An exact algorithm for the maximum clique problem.
Operations Research Letters, 9(6):375–382, 1990.

http://www.cs.ubc.ca/~kevinlb/CATS/
http://www.cs.ubc.ca/~kevinlb/CATS/

76 BIBLIOGRAPHY

[16] Lúıs Cavique. A scalable algorithm for the market basket analysis. Journal of Retailing and Con-
sumer Services, 14(6):400–407, 2007.

[17] Carmine Cerrone, Raffaele Cerulli, and Bruce Golden. Carousel greedy: a generalized greedy algo-
rithm with applications in optimization. Computers & Operations Research, 85:97–112, 2017.

[18] Kenneth L Clarkson. A modification of the greedy algorithm for vertex cover. Information Processing
Letters, 16(1):23–25, 1983.

[19] Steve R Corman et al. Pajek datasets: Reuters terror news network. http://vlado.fmf.uni-lj.
si/pub/networks/data/CRA/terror.htm.

[20] Steven R Corman, Timothy Kuhn, Robert D McPhee, and Kevin J Dooley. Studying complex
discursive systems. Human communication research, 28(2):157–206, 2002.

[21] Yi Fan, Chengqian Li, Zongjie Ma, Lian Wen, Abdul Sattar, and Kaile Su. Local search for maximum
vertex weight clique on large sparse graphs with efficient data structures. In Advances in Artificial
Intelligence: 29th Australasian Joint Conference, pages 255–267. Springer, 2016.

[22] Zhiwen Fang, Chu-Min Li, and Ke Xu. An exact algorithm based on maxsat reasoning for the
maximum weight clique problem. Journal of Artificial Intelligence Research, 55:799–833, 2016.

[23] Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. WH Freeman and Company, New York, 1979.

[24] Luis Gouveia and Pedro Martins. Solving the maximum edge-weight clique problem in sparse graphs
with compact formulations. EURO Journal on Computational Optimization, 3(1):1–30, 2015.

[25] Johan H̊astad. Clique is hard to approximate withinn1- ε. Acta Mathematica, 182(1):105–142, 1999.

[26] Radu Horaud and Thomas Skordas. Stereo correspondence through feature grouping and maximal
cliques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(11):1168–1180, 1989.

[27] Yan Jin and Jin-Kao Hao. General swap-based multiple neighborhood tabu search for the maximum
independent set problem. Engineering Applications of Artificial Intelligence, 37:20–33, 2015.

[28] Raka Jovanovic and Milan Tuba. An ant colony optimization algorithm with improved pheromone
correction strategy for the minimum weight vertex cover problem. Applied Soft Computing,
11(8):5360–5366, 2011.

[29] George Karakostas. A better approximation ratio for the vertex cover problem. ACM Transactions
on Algorithms (TALG), 5(4):41, 2009.

[30] Richard Manning Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

[31] D Bahadur KC, Tatsuya Akutsu, Etsuji Tomita, Tomokazu Seki, and Asao Fujiyama. Point matching
under non-uniform distortions and protein side chain packing based on efficient maximum clique
algorithms. Genome Informatics, 13:143–152, 2002.

[32] Deniss Kumlander. Network resources for the maximum clique finding problem. http://www.

kumlander.eu/graph/.

[33] Deniss Kumlander. A new exact algorithm for the maximum-weight clique problem based on a
heuristic vertex-coloring and a backtrack search. In Proceedings of the 5th International Conference
on Modelling, Computation and Optimization in Information Systems and Management Sciences,
pages 202–208. Citeseer, 2004.

[34] Deniss Kumlander. Improving the maximum-weight clique algorithm for the dense graphs. In
Proceedings of the 10th WSEAS International Conference on COMPUTERS, pages 938–943, 2006.

http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm
http://www.kumlander.eu/graph/
http://www.kumlander.eu/graph/

BIBLIOGRAPHY 77

[35] Deniss Kumlander. A simple and efficient algorithm for the maximum clique finding reusing a
heuristic vertex colouring. IADIS international journal on computer science and information sys-
tems, 1(2):32–49, 2006.

[36] Deniss Kumlander. On importance of a special sorting in the maximum weight clique algorithm based
on colour classes. In Proceedings of the second international conference on Modelling, Computation
and Optimization in Information Systems and Management Sciences Communications in Computer
and Information Science, pages 165–174, 2008.

[37] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

[38] Ruizhi Li, Shuli Hu, Haochen Zhang, and Minghao Yin. An efficient local search framework for the
minimum weighted vertex cover problem. Information Sciences, 2016.

[39] Rafael Mart́ı, Micael Gallego, and Abraham Duarte. A branch and bound algorithm for the maximum
diversity problem. European Journal of Operational Research, 200(1):36–44, 2010.

[40] Pedro Martins. Cliques with maximum/minimum edge neighborhood and neighborhood density.
Computers & Operations Research, 39(3):594–608, 2012.

[41] George L Nemhauser and Leslie E Trotter Jr. Vertex packings: structural properties and algorithms.
Mathematical Programming, 8(1):232–248, 1975.

[42] Patric RJ Österg̊ard. Cliquer homepage. http://users.tkk.fi/pat/cliquer.html.

[43] Patric RJ Österg̊ard. A new algorithm for the maximum-weight clique problem. Nordic Journal of
Computing, 8(4):424–436, 2001.

[44] Patric RJ Österg̊ard. A fast algorithm for the maximum clique problem. Discrete Applied Mathe-
matics, 120(1):197–207, 2002.

[45] Panos M Pardalos and Nisha Desai. An algorithm for finding a maximum weighted independent set
in an arbitrary graph. International Journal of Computer Mathematics, 38(3-4):163–175, 1991.

[46] Panos M Pardalos and Gregory P Rodgers. A branch and bound algorithm for the maximum clique
problem. Computers & operations research, 19(5):363–375, 1992.

[47] Panos M Pardalos and Jue Xue. The maximum clique problem. Journal of global Optimization,
4(3):301–328, 1994.

[48] Leonard Pitt. A simple probabilistic approximation algorithm for vertex cover. Technical report,
Yale University, June 1985.

[49] Wayne Pullan. Phased local search for the maximum clique problem. Journal of Combinatorial
Optimization, 12(3):303–323, 2006.

[50] Wayne Pullan. Approximating the maximum vertex/edge weighted clique using local search. Journal
of Heuristics, 14(2):117–134, 2008.

[51] Steffen Rebennack, Gerhard Reinelt, and Panos M Pardalos. A tutorial on branch and cut algorithms
for the maximum stable set problem. International Transactions in Operational Research, 19(1-
2):161–199, 2012.

[52] Fabrizio Rossi and Stefano Smriglio. A branch-and-cut algorithm for the maximum cardinality stable
set problem. Operations Research Letters, 28(2):63–74, 2001.

[53] Pablo San Segundo, Diego Rodŕıguez-Losada, and Agust́ın Jiménez. An exact bit-parallel algorithm
for the maximum clique problem. Computers & Operations Research, 38(2):571–581, 2011.

[54] Edward C Sewell. A branch and bound algorithm for the stability number of a sparse graph.
INFORMS Journal on Computing, 10(4):438–447, 1998.

http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://users.tkk.fi/pat/cliquer.html

78 BIBLIOGRAPHY

[55] Miklo Shindo and Etsuji Tomita. A simple algorithm for finding a maximum clique and its worst-case
time complexity. Systems and Computers in Japan, 21(3):1–13, 1990.

[56] Michael M Sørensen. New facets and a branch-and-cut algorithm for the weighted clique problem.
European Journal of Operational Research, 154(1):57–70, 2004.

[57] S. Sorour and S. Valaee. Minimum broadcast decoding delay for generalized instantly decodable
network coding. In 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, pages
1–5, Dec 2010.

[58] Satoshi Taoka, Daisuke Takafuji, and Toshimasa Watanabe. Computing-based performance analysis
of approximation algorithms for the minimum weight vertex cover problem of graphs. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer Sciences, 96(6):1331–1339,
2013.

[59] Etosuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and Mitsuo Wakatsuki. A simple
and faster branch-and-bound algorithm for finding a maximum clique. In WALCOM: Algorithms
and computation, pages 191–203. Springer, 2010.

[60] Etsuji Tomita and Toshikatsu Kameda. An efficient branch-and-bound algorithm for finding a max-
imum clique with computational experiments. Journal of Global optimization, 37(1):95–111, 2007.

[61] Etsuji Tomita and Tomokazu Seki. An efficient branch-and-bound algorithm for finding a maximum
clique. In Discrete Mathematics and Theoretical Computer Science, pages 278–289. Springer, 2003.

[62] Michael Trick, Vavsek Chvatal, Bill Cook, David Johnson, Cathy McGeoch, Bob Tarjan, et al.
DIMACS implementation challenges. http://dimacs.rutgers.edu/Challenges/.

[63] Yiyuan Wang, Shaowei Cai, and Minghao Yin. Two efficient local search algorithms for maximum
weight clique problem. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
pages 805–811, 2016.

[64] David R Wood. An algorithm for finding a maximum clique in a graph. Operations Research Letters,
21(5):211–217, 1997.

[65] Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique problems. European
Journal of Operational Research, 242(3):693–709, 2015.

[66] Qinghua Wu, Jin-Kao Hao, and Fred Glover. Multi-neighborhood tabu search for the maximum
weight clique problem. Annals of Operations Research, 196(1):611–634, 2012.

[67] Ke Xu. BHOSLIB: Benchmarks with hidden optimum solutions for graph problems (maximum
clique, maximum independent set, minimum vertex cover and vertex coloring). http://www.nlsde.
buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.

[68] Kazuaki Yamaguchi and Sumio Masuda. A new exact algorithm for the maximum weight clique
problem. In 23rd International Conference on Circuits/Systems, Computers and Communictions
(ITC-CSCC’08), pages 317–320, 2008.

[69] Taoqing Zhou, Zhipeng Lü, Yang Wang, Junwen Ding, and Bo Peng. Multi-start iterated tabu
search for the minimum weight vertex cover problem. Journal of Combinatorial Optimization, pages
1–17, 2015.

http://dimacs.rutgers.edu/Challenges/
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

79

List of publications

Journals (Refereed)

1. Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh and Sumio Masuda,
“Fast maximum weight clique extraction algorithm: optimal tables for branch-and-bound,”
Discrete Applied Mathematics, Vol.223, pp.120-134, 2017.

2. 清水 悟司，山口 一章，増田 澄男，
“数理計画問題による最大辺重みクリーク問題の定式化，”
電子情報通信学会論文誌，Vol.100-A No.8, pp.313-315, 2017．

3. 清水 悟司，石原 諒大，山口 一章，増田 澄男，
“最大辺重みクリーク問題に対する局所探索法のためのデータ構造，”
情報処理学会論文誌，Vol.59 No.7, pp.1415-1424, 2018．

Conferences (Refereed)

1. Satoshi Shimizu, Kazuaki Yamaguchi and Sumio Masuda,
“A branch-and-bound based exact algorithm for the maximum edge-weight clique problem,”
Computational Science/Intelligence & Applied Informatics, Accepted.

2. Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh and Sumio Masuda,
“A fast heuristic for the minimum weight vertex cover problem,”
Proceedings of the IEEE/ACIS 15th International Conference on Computer and Information Science
(ICIS), pp.341-345, 2016.

3. Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh and Sumio Masuda,
“Optimal Table Method for Finding the Maximum Weight Clique,”
Proceedings of the 13th International Conference on Applied Computer Science (ACS), pp.84-90,
2013.

4. Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh and Sumio Masuda,
“Some improvements on Kumlander’s maximum weight clique extraction algorithm,”
Proceedings of the International Conference on Electrical, Computer, Electronics and Communica-
tion Engineering (ICECECE), pp.307-311, 2012.

Workshops (No peer review)

1. 清水 悟司，山口 一章，増田 澄男，
“分枝限定法による最大辺重みクリーク抽出法，”
情報処理学会 第160回アルゴリズム研究会，2016．

2. 清水 悟司，石原 諒大，山口 一章，増田 澄男，
“最大辺重みクリーク問題に対する局所探索法の実験的評価，”
平成28年度情報処理学会関西支部 支部大会，2016．

80 List of publications

3. 清水 悟司，山口 一章，斎藤 寿樹，増田 澄男，
“最小重み頂点被覆問題に対する高速な発見的手法の提案，”
電子情報通信学会コンピュテーション研究会，2016．

4. 清水 悟司，
“最大重みクリークに対する最適解テーブル法，”
ERATO湊離散構造処理系プロジェクト「2013年度 初夏のワークショップ」．

5. 清水 悟司，山口 一章，斎藤 寿樹，増田 澄男，
“動的計画法を用いた上界計算法による最大重みクリーク抽出アルゴリズムの提案，”
電子情報通信学会コンピュテーション研究会，2013．

6. 清水悟司，森中 諒太，山口 一章，増田 澄男，
“ある最大重みクリーク抽出法における頂点集合の効率的な実装方法の提案，”
平成24年度情報処理学会関西支部 支部大会，2012．

7. 森中 諒太，清水悟司，山口 一章，増田 澄男，
“最大重みクリーク抽出法における分枝順序の検討，”
平成24年度情報処理学会関西支部 支部大会，2012．

Doctor Thesis, Kobe University ”Research on Advanced Human Navigation Systems”, 80 pages.
Submitted on July, 13th, 2018
The date of publication is printed in cover of repository version published in Kobe University Repository
Kernel.

c⃝Satoshi SHIMIZU
All Right Reserved, 2018

	Introduction
	Exact Algorithms for MWCP
	Introduction
	Proposed algorithm VCTable
	Notation
	Upper bounds of vertex coloring
	Upper bound tables
	Upper bounds of c[]
	Initial ordering
	Branch-and-bound

	Proposed algorithm OTClique
	Notation
	Upper bound function UB()
	Precomputation phase
	Branch-and-bound phase
	A case study of OTClique

	Computer experiments
	Random graphs
	Graphs from error-correcting codes
	Combinatorial auction test suite (CATS)
	DIMACS benchmark graphs

	Conclusions

	Exact Algorithms for MEWCP
	Introduction
	Mathematical programming formulations for MEWCP
	Quadratic programming
	Integer programming
	Mixed integer programming
	Proposed initial renumbering for formulations in MIP
	Computer experiments

	Previous branch-and-bound algorithms for MWCP
	Ostergard's algorithm
	Longest path method

	Proposed branch-and-bound algorithm EWCLIQUE
	Branch-and-bound for MEWCP
	Outline of EWCLIQUE
	Main routine
	Subroutine EXPAND
	Upper bound calculation
	Vertex renumbering

	Computer experiments
	Random graphs
	Graphs from Reuters terror news networks
	DIMACS benchmark graphs

	Conclusion

	Greedy Algorithms for MWVCP
	Introduction
	Greedy algorithm
	Proposed greedy algorithms
	Vertex permutation
	Rotating greedy elimination (RGE)
	Branching greedy elimination (BGE)

	Computer experiments
	random graphs
	graphs from error-correcting codes

	Conclusion

	Data structures for local search algorithms on MEWCP
	Introduction
	Preliminary
	Notation
	Previous data structure for neighborhood management

	Proposed data structures for neighborhood management
	Proposed method L
	Proposed method M

	Computer experiments
	DIMACS
	BHOSLIB
	higgs-twitter data set

	Conclusion

	Conclusion
	Acknowledgements
	Bibliography
	List of publications

