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Abstract

Due to the advances in technology in recent years, various automated driving systems

have been developed for improving safety. In particular, driving assistance systems need

to be designed to include three factors: “Vehicle, Environment, and Human”. However,

introducing human factors into automated systems is very difficult, and the research field

on understanding human drivers is not sufficient for developing such systems. Automated

systems without human factors could give human drivers a feeling of discomfort and dis-

trust. Thus, there are still problems that hamper the spread of automatic systems, although

automated driving systems have the potential to solve various social problems. This is be-

cause it is difficult to develop a system that includes the aspects of both Engineering and

Psychology based on human understanding, although the autonomous vehicle should be

a Human-in-the-Loop system. In this thesis, we construct automated driving systems and

understand driver behavior based on the approaches of both Engineering and Psychology.

Firstly, we design an automated steering system including human factors. In partic-

ular, we focus on visual cues that drivers perceive and use while driving, and construct

automated systems based on optical flow, which is one of the visual cues. We model

the optical flow information and directly apply it to the nonlinear control method. This

method applies knowledge from the field of psychology, making it possible to design

human-like automated steering systems. Next, we put forward a hypothesis in terms of

the relationship of driver visual-steering based on the simulation/experiment results gen-

erated by the proposed method. We conduct a psychological experiment referring to the

hypothesis in order to figure out new driver behaviors. Consequently, we can design au-

tomated driving systems that can simulate driver steering behavior, and simultaneously

understand driver behavior. In this way, we construct Human-in-the-Loop research sys-

tems, in which Psychology can contribute to Engineering and Engineering can contribute

to Psychology, and the aim of this thesis is to facilitate both research fields based on the

approach of each other.
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摘要

近年の技術の進歩により ， 様々な自動走行システムが開発され， 世の中に普及しつ

つある． この中でも特に運転支援システムでは， “自動車・ 環境・ 人間”の三つを考

慮した設計が必要であるにも関わらず， ヒューマン・ ファクタをシステムに組み込

むことは困難であり ， 人間系の研究が最も困難な領域となっている． ヒューマン・

ファクタを考慮出来ていないシステムは， ド ライバに違和感や不信感を与えてしま

う可能性がある． これにより ， 自動走行システムは社会の様々な問題が解決する見

込みがあるにも関わらず， 普及が遅れるなどの問題点が挙げられる． 自動走行シス

テムは人間を含んだ， いわゆる Human-in-the-loopなシステムであるにも関わらず，

工学と心理学分野が独立して考えられることが多く ， 学際的な研究促進が出来てい

ないためと考えられる． そこで本研究では， 制御工学と心理学の両側面からのアプ

ローチに基づいて， 自動走行システムの構築とド ライバ特性の理解を行っていく ．

本研究ではまず， ヒューマン・ ファクタを考慮した車両制御系の設計を行う ． 特

に， ド ライバの視覚特性に着目し ， オプティカルフローに基づいた自動操舵システム

を構築する． ド ライバが知覚する情報自体を数理モデルとして指標化し ， 直接的に非

線形制御の枠組みに適用する手法を用いる． 心理学分野における知見に基づいた手

法を直接的に導入することで， ヒューマンライクな挙動を示すことの可能な制御手

法を構築することを目的とする． 次に， 視覚特性に基づいた自動走行システムの実験

結果から得られた知見により ， ド ライバの知覚-操舵系の仮説を立て， 心理学実験を

行うことで， ド ライバ特性の解明を行っていく ． その結果として， 人間の理解に基づ

いた自動走行システムが構築可能となると同時に， ド ライバの理解も進むこととな

る． このように， 工学から心理学へ， 心理学から工学へといった， Human-in-the-loop

な学術体系を構築することを目的とし ， 両研究分野への効率的な促進を図る．
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Chapter 1

General Introduction

1.1 Background

Automobiles have played an important role in human society as a mean of transporta-

tion to move from one place to another. However, due to the advances in technology in

recent years, the roles of automobiles have become more diverse compared to the previ-

ous meaning, as represented by the acronym of CASE (Connected, Autonomous, Shared,

Electric) [1]. “Connected” is realized by high-speed communication technologies such as

the 5th generation wireless systems (5G), and it can comprehensively manage information

among human, vehicle, and infrastructure in real time. It is expected that “Autonomous”

can reduce car accidents, provide new transportation methods for vulnerable road users,

and alleviate driving stress. “Shared” helps in mitigating environmental problems such

as air pollution by alleviating congestion by reducing the number of vehicles on the road.

Finally, “Electric” is considered as a solution for the exhaust gas problem, and has good

compatibility with “Autonomous” due to the simplification of the vehicle design. These

technologies are expected to not only solve various social problems caused by a large

number of vehicles but also improve productivity in the world. Simultaneously, the origi-

nal meaning of automobile itself as a personal possession is about to change [2–8].

In these issues, we focus on the relationship between “Autonomous” and car acci-

dents. For instance, the number of traffic accidents in Japan had increased along with

the number of vehicles owned, as shown in Figure 1.1 [9, 10]. However, since around

1990, passive safety technologies for mitigating the damage caused by accidents, such as

airbags, have become widely used, resulting in a constant decrease in the number of casu-

alties compared to the number of accidents. In addition, during this decade, active safety
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Figure 1.1: Transition of the number of traffic accidents and casualties in Japan

technologies for directly preventing accidents itself have been spread among people, and

therefore the number of accidents has also decreased. It is often said that human error, es-

pecially related to recognition and judgement, contributes to 90% of all traffic accidents.

Therefore, autonomous systems will gain in popularity in the near future, and they seem

capable of achieving a society without any traffic accident by reducing the opportunities

for humans to drive [4, 8, 11]. In general, these automation systems are classified into 6

levels by SAE International as shown in Figure 1.2 [12]. The automation under level 3

mainly implies the use of assistance systems since human drivers are always involved in

some operation such as resuming control except under the allowed environments, whereas

they do not need to fallback the driving tasks over level 4 automation. Various compa-

nies and research institutes have been developing these technologies; however, the aims

of development are different for these institutes. Existing car manufacturers follow the

steps of automation in order, and the automation systems in level 2 and 3 are becoming

common under limited conditions such as the highway. Meanwhile, tech/emerging com-

panies are trying to directly develop level 4 automation. As described, in recent years,

autonomous vehicles have been developed by a large number of companies and research

institutes around the world.

In order to develop these autonomous systems, we need to introduce three factors into

systems: “Vehicle, Environment, and Human” [13]. In particular, automated systems un-

der level 3 always involve humans during autonomous driving since human drivers need

2



Level Name Nara ve Defini on

Execu on of
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accelera on/

decelera on

Monitoring
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environment
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performance

of dynamics

driving task

System

capability

(driving

modes)

0
No

Automa on

the full-!me performance by the human driver of all

aspects of the dynamic driving task, even when enhanced

by warming or interven!on systems

1
Driver

Assistance

the driving mode-specific execu!on by a driver assistance

system of either steering or accelera!on/decelera!on

using informa!on about the driving environment and

with the expecta!on that the human driver perform all

remaining aspects of the dynamic driving

Human driver

and system
Human driver Human driver

Some

driving

modes

2
Par al

Automa on

the driving mode-specific execu!on by one or more

driver assistance systems of both steering and

accelera!on/decelera!on using informa!on about the

driving environment and with the expecta!on that the

human driver perform all remaining aspects of the

dynamic driving task

system Human driver Human driver

Some

driving

modes

3
Condi onal

Automa on

the driving mode-specific performance by an automated

driving system of all aspects of the dynamic driving task

with the expecta!on that the human driver will respond

appropriately to a request to intervene

4
High

Automa on

the driving mode-specific performance by an automated

driving system of all aspects of the dynamic driving task,

even if a human driver does not respond appropriately to

a request to intervene

system system system

Some

driving

modes

5
Full

Automa on

the full-!me performance by an automated driving

system of all aspects of the dynamic driving task under all

roadway and environmental condi!ons that can be

managed by a human driver

system system system
All driving

modes

n/a

system system Human driver

Some

driving

modes

Human driver monitors the driving environment

Automated driving system ("system") monitors the driving environment

Human driver Human driver Human driver

Figure 1.2: SAE International: Summary of levels of driving automation for on-road

vehicles

to resume vehicle operations from the automation system or intervene during emergency

situations. These systems that involve humans are often called “Human-in-the-Loop” sys-

tems. Besides, we need to design a system that can be trusted by humans and used widely.

The Engineering aspects such as vehicle control and environment recognition can be dealt

with by using the mathematical theory, and there have been good progress in its develop-

ment due to the improvements in computational power. However, understanding humans

with complex and sophisticated systems is the most difficult research area, and it is hard to

directly introduce human factors into automated systems. In the research field of security,

this situation, where we cannot design systems with human factors although human be-

havior always intervenes in the systems, is called “Weakest Link”, and a design based on

understanding user behavior is recommended [14]. The autonomous vehicle should be a

system with Human-in-the-Loop; however, it is difficult to develop a system that includes

the aspects of both Engineering and Psychology based on human understanding. Hence,

in recent years, each research area for automated vehicles is independent of each other.
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For instance, due to the remarkable development of machine learning techniques in re-

cent years, methods based on big data such as Deep Learning are often used in automated

systems [15]. Deep Learning itself is a model that mimics the brain structure of humans.

It can simulate human behavior with high accuracy. However, it is not easy to under-

stand how they work and ensure the stability of the model compared to the mathematical

model. In methods such as Deep Learning, it is difficult to incorporate both systems and

human factors without understanding the models. As a result, the system strongly de-

pends on the Engineering aspect. On the other hand, some studies have been conducted

based on the Psychology aspect in order to estimate the necessary time for human drivers

to resume control from automation systems [16]. This estimated time is often applied to

alarming systems. It is effective to construct these systems based on the results of the

measurement experiments; however, such a system will not have advanced intelligence

equivalent to that of drivers because this is not considered to directly introduce human

factor indicators.

Therefore, even though it is necessary to construct automated systems with the deep

interaction between Engineering and Psychology, the current autonomous systems cannot

sufficiently include both the elements. The automated systems that do not have high affin-

ity with human drivers could give drivers a feeling of discomfort and distrust. This could

disturb the spread of automated driving vehicles although it has the potential to solve var-

ious social problems. Therefore, a new technology based on a fusion of Engineering and

Psychology is necessary for the future.

1.2 Aims of This Study

As described in Section 1.1, in order to solve various social problems, we need to de-

sign Human-in-the-Loop automated driving systems that involve the aspects of both En-

gineering and Psychology. For this, we use a method to model the visual information

drivers perceive while their driving as a mathematical model, and apply the modeling re-

sults to a nonlinear control approach. Thereby, a system that incorporates human factors

can be constructed. This method implements the general knowledge of human behavior

from the field of Psychology into the automated system, so that there is a possibility that

this system can simulate human-like behavior. In addition, the simulation/experiment re-

sults generated by the proposed human-like driving system give us some insight into the
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Figure 1.3: Overview of Synthetic Modeling

driver’s perception-steering behavior. The psychological experiment based on the knowl-

edge from Engineering aspects is tested in order to figure out new driver behaviors. In

general, hypotheses are made by researcher insight. In contrast, the hypothesis in this

study is made on the basis of the results of the proposed human-like systems. There-

fore, we can design an effective experimental system. This Human-in-the-Loop research

system is called ‘Synthetic Modeling’, in which Psychology can contribute to Engineer-

ing and Engineering can contribute to Psychology. There are mainly two approaches for

human understanding: Analytic Approach (experience science) and Synthetic Approach

(understanding by building). Synthetic Modeling includes two aspects of them (Figure

1.3) [17]. Thus, the aim of this study is to advance both research fields based on the

approach of each other in accordance with Synthetic Modeling. It can contribute to the

development of automated driving systems that have high intelligence and can understand

driver behavior.

1.3 Related Studies

Locomotion is defined as the ability of organisms to move and propel itself from place to

place. This is very important for animals including human beings to live in this world.

Under complex environments, successful locomotion is achieved by estimating a safe

tracking path to the target point, obtaining feedback from physical errors and distur-

bances, and propelling the body. We humans routinely carry out locomotion based on such
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Figure 1.4: Optic flow field generated by observer movement

perception-judgment-motion behavior, regardless of the type of motion such as walking,

running, cycling, or driving. If we can understand the locomotion behavior of humans as

the mathematical model and implement it into automated driving systems, we can con-

struct driving systems with high intelligence that can reflect the driver’s intention. Such

systems would contribute to the aims of this study.

The foundation for the use of perception information and control strategy in locomo-

tion behavior was presented by Gibson [18, 19]. Gibson noted that locomotion behavior

towards the target point mainly involves visual input. In particular, the visual cue that we

need to focus in order to understand locomotion is the “Optic Flow”. Optic flow is defined

as the velocity vector generated by an animal’s motion through a static environment, as

shown in Figure 1.4. This optic flow can reflect the translation and rotation movements

of observers. Various studies have shown that humans use not only indicators such as

distance and angle but also optic flow information for their locomotion strategy towards

the target point. One of the features of optic flow is the Focus of Expansion (FoE), which

is the point group where the optic flow is 0. FoE is assumed to be capable of reflecting the

direction of self-motion of human’s movement. Gibson suggested that humans achieve

successful locomotion by using optic flow information because humans can move towards

the target point if they coincide FoE with the target point.
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Pure optic flow is generated by their body motion; however, the flow pattern on the

retina is changed by additional signals of the eye and neck motion, which are often called

extra-retinal signals. This changed flow pattern is called “Retinal Flow”, and humans

perceive the retinal flow pattern rather than optic flow. In situations where humans move

along a straight path, FoE is located on an infinity point and its direction is the same as

the direction of self-motion. Thus, humans can perceive the heading direction information

from FoE if they can acquire extra-retinal signals [20–23]. However, in the case of curved

paths, the instantaneous heading direction is located in the tangential direction of the path,

as shown in Figure 1.5. Humans cannot move along the target path with high accuracy if

they use a strategy in which the heading direction is matched to the target point. There-

fore, future path control (or anticipatory control) is more effective for human’s movement

during curved path than heading control [24–27]. Various studies have verified this issue

through psychological experiments, and they have shown that humans can perceive their

future path information generated by their current motion from the retinal flow informa-

tion [21, 28–33]. A straight path is considered as a singular point where the curvature

of the curved path is 0; therefore retinal flow information is effective for locomotion in

any path. However, humans can also perform locomotion in situations where there is no

flow information within human’s vision; therefore, in general, optic flow is interpretable

as an additional information for locomotion behavior. Other necessary information for

locomotion is “Visual Direction”, which is the angle between the egocentric direction and

the direction toward to the target point, as shown in Figure 1.6 [34–38].
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The importance of retinal flow for locomotion was shown by some studies; however,

we additionally need to consider a point on the tracking path where humans are looking

at. As mentioned above, the retinal flow pattern that humans perceive is changed by the

eye and neck motion, and therefore the mechanism by which humans gaze at the path and

how they perceive the correct information is unclear. Therefore, it is important to figure

out their fixation point. The fixation model that was first proposed in relation to human

driving is the “Tangent Point”, which is shown in Figure 1.6 [39]. Tangent Point is a point

on the inner side of the lane where the gaze direction of the driver becomes tangential with

respect to the lane edge. The effectiveness of Tangent Point has been verified by some

studies [40,41], whereas recent studies show that “Future Path Point” is more effective in

explaining the gaze point of drivers [25, 42–47]. Future Path Point is an arbitrary point

on the desired path, e.g. center of the lane. In particular, Kountouriotis et al. showed

that drivers cannot perform steering control correctly while they gaze at points other than

Future Path Point [48]. Therefore, drivers can perceive the correct path information when

they fixate on the point on the future path or ‘Where you want to go’. Simultaneously,

they can also perceive Visual Direction information from the future path point. As a result,

Future Path Point is considered to be effective in explaining driver gazing behavior. Note

that, in this study, Look-ahead fixations are not considered. Look-ahead fixations are

8
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defined that the drivers make an eccentric fixation towards the road further up, such as

looking at occlusion point, road signs, and so on [49–51]. This behavior is considered as

high-level tasks, such as trajectory planning, not to engage the visual guidance of online

steering control; therefore, we do not consider this behavior in this study.

In general, retinal flow is an important information for human locomotion. In partic-

ular, optic or retinal flow is effective for modifying the direction perception in situations

where the road curvature changes and the road is featureless [35, 52]. However, although

the fact that flow information is important for locomotion has been established in the field

of Psychology, there are few cases to directly implement it into vehicle control [53–56].

In this thesis, a vehicle control method based on optic flow information is proposed in

order to construct a method that can reproduce the human locomotor behavior.

In this thesis, we use both “Optic Flow” and “Optical Flow”, which are used as metrics

of Psychology and Engineering, respectively. In addition, we do not distinguish between

“Optic Flow” (or Optical Flow) and “Retinal Flow”, and we call them both optic flow (or

optical flow) in this thesis.

1.4 Composition of This Thesis

The composition of this thesis is as follows. The flow of this thesis is shown in Figure

1.7.
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In Chapter 2, we develop a mathematical model of optical flow acquired from a camera

image. We derive the FoE point group, which is the source point of optical flow, then we

verify whether or not FoE can represent the direction of self-motion correctly as an aspect

of Engineering, and confirm the effectiveness of the optical flow model for automated

steering control. Next, we propose a nonlinear control theory of optical flow based on

Lyapunov function referring to the results of FoE. The proposed method is tested through

vehicle simulations and experiments. We confirm the effectiveness of the optical flow

model as the control performance, and confirm that the proposed steering control method

based on optical flow can reproduce human-like driving behavior.

In Chapter 3, an engineering steering control method, namely the preview/predictive

driver model, is interpreted based on the optical flow theory derived in Chapter 2. The

preview/predictive driver model is a famous driver model that express the gaze-steering

behavior of drivers. We can interpret the model in detail by using the knowledge of op-

tical flow, which is a visual characteristic. In addition, we apply the idea of optical flow

to the preview/predictive driver model in order to construct the new driver model, con-

sidering the driver visual characteristic. The proposed model is verified through vehicle

simulations in order to confirm its effectiveness.

In Chapter 4, we try to figure out the relationship between steering performance and

optic flow information with respect to driver gazing, referring to the results in Chapter 2.

In Chapters 2 and 3, we apply the knowledge acquired from the aspect of Psychology to

Engineering, whereas in this chapter, we apply the results of the aspect of Engineering to

the psychological experiments. From the simulation results of Chapter 2, it is seen that

there is a relationship between the distance of gaze point of the driver and optic flow at

that point. Therefore, the driver’s visual-steering behavior is tested within the scope of the

Two-point steering control model. The two-point model is a driver model that represents

general driver visual-steering behavior in which they perceive some information from the

far and near regions in the entire vision. In this driver model, we construct a special envi-

ronment in the simulator that can selectively mask either the optical flow or the road edge

information. Then, we verify how these two information affects the steering performance

of the driver.

Finally, we summarize all the results of these studies as the conclusion and describe

the future research in Chapter 5.
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Chapter 2

Development of Automatic Steering

System based on Optical Flow

2.1 Introduction

In the recent automobile societies, car ownership around the world has been increasing

each year. Because of this, the social need for safety has also been increasing. As a conse-

quence, advanced technologies such as driving support, preventive safety, and crash safety

have been developed. Practical applications of driving support among these technologies

are already available, such as the lane keeping assist (LKA) and adaptive cruise control

(ACC). However, these automated driving systems which do not include human factors

sometimes give drivers feeling of discomfort and distrust since the operation calculated

by the systems is the difference from the behavior of the human drivers. Therefore, it

is desired to develop comfortable driving support systems experienced by expert drivers.

In this chapter, we introduce a human-oriented system for an automatic steering system

which is a part of the driving support systems. We simulate the human factor between the

driver’s visual information processing and steering technique.

In terms of longitudinal control which includes the acceleration and deceleration, there

are a number of studies which have focused on braking behavior in car-following situa-

tions. Lee proposed the longitudinal control method based on time-to-collision (TTC) as-

sociated with driver’s visual input [57]. Goodrich and Boer characterized human braking

behavior in the phase plane of TTC and time headway (THW) [58]. The risk perception

of the lead vehicle in car-following situations was investigated based on both visual cues

of TTC and THW [59]. Wada et al. proposed KdB as an index related to the driver’s risk
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perception and implemented it into collision avoidance systems [60]. Their findings have

implied that the drivers perceive the timing of the brake initiation and deceleration based

on their perceptual risk. These longitudinal control methods are constructed based on an

index of driver’s perceptual information modeled by the experimental results, and they

have been effective in driving assistance systems. On the other hand, there are also a lot

of studies about lateral steering control based on driver behavior. Although each visual

cue is not consistent, either of lateral deviation in the predictive point of the vehicle [61]

and Visual Direction with/without cognitive model [62, 63] is used for steering control.

All of them are based on driver’s visual cue, and they have shown that these visual cues

are effective for a driver steering model.

As a basis of human factors in this study, we focus on optical flow which is one of the

visual information that drivers perceive as described in detail in Section 1.3 [18,19]. Opti-

cal flow is the velocity vector generated on the retina of the humans. Drivers perceive the

flow pattern that integrates the motions generated by the vehicle motion and extra-retinal

signals such as eye and neck motion, as shown in Figure 2.1. One of characteristics of

optical flow is effective for drivers to perceive the direction of self-motion based on the

focus of expansion (FoE), which is the source point of optical flow [21, 28–33]. Gibson

showed that we can reach the target point by matching to the direction of self-motion.

Although studies are being actively carried out on the optical flow itself, few have ex-

amined introducing optical flow into some system directly. In general, control methods

based on image information are divided into two groups: position-based control, which

uses the position and attitude of the control object obtained from image information; and

image-based control, which does not explicitly deal with the position and attitude but

rather directly defines the state quantity and control purpose on the image plane [64, 65].

Inou et al. considered a position-based method using optical flow [53, 54]. The merit

of making position-based control is that the control method becomes simpler and easy

interpretable models, whereas it is not human-like method since the information in the

image plane is converted others. On the other hand, some studies have examined using

image-based control for posture stabilization [66, 67]. Optical flow is generally used for

human locomotion, however, flow information has not been applied to tracking control

for automated vehicles.

In this chapter, we derive the mathematical model of FoE and confirm it has the ef-

fectiveness for perceiving the direction of self-motion. Then, we present the design of
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Figure 2.2: Single-track model

an automatic steering controller for the purpose of tracking control based on optical flow.

Finally, we confirmed the effectiveness of the proposed method through a vehicle simula-

tion.

2.2 Vehicle Dynamics

In this study, we used a single-track model for the vehicle dynamics, as shown in Figure

2.2 [68]. This is a motion model of the vehicle where the right and left wheels at the

front and rear are concentrated on the intersection of the longitudinal axis and axletree
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equivalently. The vehicle motion at the center of gravity is as follows:
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where x, y are the position of the vehicle coordinates, θcar is the yaw angle, β is the slip

angle, V is the velocity, and γ is the yaw rate of the vehicle.

The dynamics is described as follows:
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.

K f , Kr are the cornering stiffness of the front and rear axles, l f , lr are the distances

from the vehicle’s center of gravity to the front and rear tire axles, m is the mass, and Icar

is the moment of inertia of the vehicle. Here, we assume that K f and Kr are constant, that

is, the road condition is invariant. Also the velocity V is constant and a turning radius is

large to use the single-track model.

2.3 Focus of Expansion

The Focus of Expansion (FoE) is the source point of optical flow and shows the direction

of the vehicle’s motion. In this section, we provide the derivation of the FoE using a

camera in order to confirm whether the FoE successfully gives us the correct direction of

self-motion.

2.3.1 Modeling of Focus of Expansion

We derive a mathematical model of the FoE generated on a camera. If a mathematical

formula of the FoE can be built, the direction of the vehicle’s motion can be perceived. We

assume that the rolling, pitching, and vertical motions are neglectable because we consider
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Figure 2.3: Vehicle coordinates (camera: α [rad], ϕ = 0 [rad])

the ideal situation where the vehicle velocity is constant, the turning radius is large, and

there are no irregularity and gradient on the running road. Therefore, we can only derive

the FoE in the horizontal direction because a vehicle only moves in the direction by the

vehicle steering.

Figure 2.3 shows the vehicle coordinates [x′′c , y
′′
c , z
′′
c ]T and gaze coordinates [x′c, y

′
c, z
′
c]

T .

The camera is located at the center of the vehicle and gazes in the direction of the angle

α that is between the vehicle axis and target direction. Because this camera movement

is equivalent to the human behavior that is eye and neck movements toward the target

point, we can derive the FoE in the same manner as for human behavior. As an additional

condition, the elevation angle ϕ of the camera is set to 0 deg.

We transform the position of the target to the image plane [X,Y]T by perspective

transformation:
[

X

Y

]

= f















x′c
z′c
y′c
z′c















, (2.3)

where f is the focal length of the camera.

Optical flow on the image plane can be expressed as follows:

[

u

v

]

=
d

dt

[

X

Y

]

= f















ẋ′cz′c−x′c ż′c
z′2c

ẏ′cz′c−y′c ż′c
z′2c















, (2.4)

where u, v are the horizontal and vertical optical flows, respectively.

We change the vehicle coordinates [x′′c , y
′′
c , z
′′
c ]T to the gaze coordinates [x′c, y

′
c, z
′
c]

T for

looking around y′′c axis by α:





















x′c
y′c
z′c





















=





















cosα 0 − sinα

0 1 0

sinα 0 cosα









































x′′c
y′′c
z′′c





















. (2.5)
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Figure 2.4: Situation where FoE and target point are matched

The velocity of the target points in the vehicle coordinates [x′′c , y
′′
c , z
′′
c ]T is given as

follows:




















ẋ′′c
ẏ′′c
ż′′c





















=





















Vx

Vy

Vz





















+





















Ωx

Ωy

Ωz





















×





















x′′c
y′′c
z′′c





















, (2.6)

where V, Ω are the translation and angular velocity, respectively.

Since the rolling, pitching, and vertical motions are neglectable, V and Ω of Equation

(2.6) are presented as follows:





















Vx

Vy

Vz





















=





















−V sin β

0

−V cos β





















,





















Ωx

Ωy

Ωz





















=





















0

γ + β̇

0





















. (2.7)

Using Equation (2.7), Equation (2.6) can be rewritten as follows:





















ẋ′′c
ẏ′′c
ż′′c





















=





















−V sin β + (γ + β̇)z′′c
0

−V cos β − (γ + β̇)x′′c





















. (2.8)

By substituting Equations (2.5) and (2.8) into Equation (2.4), we get the following:

u = f

{

(γ + β̇ − α̇)z′c + V sin(α − β)
}

z′c − x′c

{

−(γ + β̇ − α̇)x′c − V cos(α − β)
}

z′2c
. (2.9)

The FoE, whose horizontal optical flow is zero, can be given by u = 0. Then, the

following equation is obtained:

(

x′c +
V cos(α − β)

2(γ + β̇ − α̇)

)2

+

(

z′c +
V sin(α − β)

2(γ + β̇ − α̇)

)2

=

(

V

2(γ + β̇ − α̇)

)2

. (2.10)

Then, we consider a condition that the FoE and target point are matched as shown in

Figure 2.4. In the left figure, the angle between the velocity direction and gaze direction
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Figure 2.5: FoE (camera: α [rad], ϕ = 0 [rad])

is given by α−β because the angle between the vehicle axis and velocity direction is β. In

the right figure, we describe point 2O of the vehicle position from point 1O after the minute

time dt. If the subscripts correspond to each position, the following relations hold:

1

2
ψi = αi − βi (i = 1, 2). (2.11)

Equation (2.11) changes during the minute time dt:

1

2
lim
dt→0

ψ2 − ψ1

dt
= lim

dt→0

α2 − α1

dt
− lim

dt→0

β2 − β1

dt
. (2.12)

We assume limdt→0
ψ2−ψ1

dt
= γ; thus, Equation (2.12) can be rewritten as follows:

1

2
γ = α̇ − β̇. (2.13)

By substituting Equation (2.13) into Equation (2.10), we get the following:

(

x′c +
V cos(α − β)

γ

)2

+

(

z′c +
V sin(α − β)

γ

)2

=

(

V

γ

)2

. (2.14)

As a result, the FoE shows a circular orbit as shown in Figure 2.5. This result cor-

responds to the vehicle motion on a steady turning circle with a radius V/γ. This result

means that the FoE correctly shows the direction of the vehicle’s motion. Furthermore,

the FoE without the use of a camera also corresponds to this result [54].

In the above derivation, Equation (2.13) is only satisfied when the target point matches

the FoE. However, because we control the FoE to match the target point, the former does
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Figure 2.6: Situation where FoE and target point are not matched

not normally correspond to the latter. Therefore, when they are not matched, it is nec-

essary that Equation (2.13) be approximately satisfied. Figure 2.6 shows a geometric

relation where the vehicle has a deviation xe from the target orbit. We use this to approx-

imately derive Equation (2.13).

The right side of Figure 2.6 shows a triangle that connects the center of the vehicle, the

target point, and the center of the FoE candidate. The geometric constraint is determined

by the laws of sines as follows:

R + xe

sin
(

π
2
+ X1 − ψ

2

) =
R

sin
(

π
2
− X1 − ψ

2

) , (2.15)

where X1 = α − β − ψ

2
.

Equation (2.15) is expressed as follows:

X1 = tan−1















xe

2R + xe

1

tan
ψ

2















. (2.16)

As a result,

1

2
ψ = α − β − tan−1















xe

2R + xe

1

tan
ψ

2















. (2.17)

If R ≫ xe is satisfied, Equation (2.17) equals Equation (2.11). When this situation is

satisfied, we can confirm the effectiveness of the FoE ,which represents the direction of

the vehicle’s motion.

2.3.2 Interpretation of Model of Eye Movement

We derived the mathematical model of eye movement in Equation 2.13. In the process of

derivation, we made one constraint that drivers continuously look at the fixed point on the
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Figure 2.7: Differences between Travel Point Fixation and Waypoints Fixation

target path. Then, the derived FoE is the same as the vehicle motion. We need to confirm

whether or not this model is valid as compared with the experimental results.

In some literature about driver fixation behavior in the measurement experiment [44,

45, 47], the driver fixation behavior is divided into two strategies, as shown in Figure 2.7.

First is ‘Travel Point Fixation’ such as when looking at Tangent Point, as shown in Figure

1.6. Next is ‘Waypoints Fixation’ which is the same as the assumption in this study. The

differences between both fixation strategies trigger the generation of the differences of

optokinetic nystagmus (OKN). OKN is a small-amplitude eye movement characterized by

alternating a slow phase (pursuit) and a quick phase (saccade) movements. In particular,

slow phase of OKN during driving is generated by optic flow. The lateral component of

OKN during gazing at Tangent Point is similar to zero because the gazing point in the

curve situation is fixed. On the other hand, it is measured as approximately the same

as the half of vehicle’s yaw rate when fixating at Future Path Point. Referring to some

experiments [44, 47], OKN has half value of the vehicle’s yaw rate when there is no any

constraint for drivers. Therefore, drivers fixation strategy is considered as the both of

Future Path Point and Waypoints Fixation Strategy.

This eye movement measured in the experiments is similar to the assumption in this

study; therefore, we deal with the Equation 2.13 as the actual human eye movement.

2.4 Design of Nonlinear Controller

In this section, we present the derivation of a nonlinear controller to track circular turning.

The aim of a controller is to match the FoE generated by the current vehicle state to the
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Figure 2.9: Vehicle coordinates (camera: α [rad], ϕ , 0 [rad])

target path when the camera is towards the arbitrary point on the target path, as shown in

Figure 2.8. We define the gaze coordinates [xc, yc, zc]
T as when the camera gazes in the

direction of the angles α and ϕ, as shown in Figure 2.9. α is the angle between the vehicle

axis and the target point. ϕ is the elevation angle and is constant.

We transform the position of the target to the image plane [X,Y]T by perspective

transformation:

[

X

Y

]

= f

[ xc

zc
yc

zc

]

. (2.18)
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Figure 2.10: Gaze point coordinates

Optical flow on the image plane can be expressed as follows:

[

u

v

]

=
d

dt

[

X

Y

]

= f















ẋczc−xc żc

z2
c

ẏczc−yc żc

z2
c















. (2.19)

We change the coordinates [x′c, y
′
c, z
′
c]

T to the gaze coordinates [xc, yc, zc]
T for looking

around the x′c axis by ϕ:





















xc

yc

zc





















=





















1 0 0

0 cos ϕ − sin ϕ

0 sin ϕ cos ϕ









































x′c
y′c
z′c





















. (2.20)

Equation (2.20) can be differentiated to obtain:





















ẋc

ẏc

żc





















=





















1 0 0

0 cos ϕ − sin ϕ

0 sin ϕ cos ϕ









































ẋ′c
ẏ′c
ż′c





















. (2.21)

The differential of Equation (2.5) is given as follows:





















ẋ′c
ẏ′c
ż′c





















= −α̇





















sinα 0 cosα

0 0 0

− cosα 0 sinα









































x′′c
y′′c
z′′c





















+





















cosα 0 − sinα

0 1 0

sinα 0 cosα









































ẋ′′c
ẏ′′c
ż′′c





















. (2.22)

First, we derive the horizontal optical flow u by the image plane coordinates. By

substituting Equations (2.5), (2.8), (2.20), and (2.22) into Equation (2.21), we obtain the

following:

ẋc = (Ωy − α̇)(−yc sin ϕ + zc cos ϕ) + V sin(α − β). (2.23)

żc = cos ϕ
{

−(Ωy − α̇)xc − V cos(α − β)
}

. (2.24)
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Based on Equations (2.7), (2.13), (2.23), and (2.24), Equation (2.19) can be rewritten

as follows:

u =
fγ

2

(

x2
c

z2
c

+ 1

)

cos ϕ +
f V cos(α − β) cos ϕ

zc

xc

zc

+
f V sin(α − β)

zc

− fγ

2

yc

zc

sin ϕ. (2.25)

By substituting Equation (2.18) into Equation (2.25), we get the following:

u =
fγ

2

(

X2

f 2
+ 1

)

cos ϕ +
V cos ϕ

zc

X cos(α − β) +
f V sin(α − β)

zc

− γ
2

Y sin ϕ. (2.26)

We define a situation of choosing the target to be as shown in Figure 2.10. Then, zc

can be expressed as follows:

zc = OC = OB cos θ =
h cos θ

sin(ϕ − θ)
, (2.27)

where h is the height of the camera.

As shown in Figure 2.10, the angle θ between the target point and center of the camera

coordinates is given as follows:

θ = tan−1 BC

OC
= tan−1 yc

zc

. (2.28)

By using Equation (2.18), Equation (2.28) can be rewritten as follows:

θ = tan−1 Y

f
. (2.29)

Although θ is variable, θ̇ is zero except for discontinuous parts because we select the

target point segmentally.

By substituting Equation (2.27) into Equation (2.26), we get the following:

u =
fγ

2

(

X2

f 2
+ 1

)

cos ϕ +
V cos ϕ sin(ϕ − θ)

h cos θ
X cos(α − β)

+
f V sin(ϕ − θ)

h cos θ
sin(α − β) − γ

2
Y sin ϕ. (2.30)

We can derive the horizontal optical flow u by using solely the mesuared information.

Next, we determine the control method by using a Lyapunov function to converge the

vehicle to the target point [69]. A candidate Lyapunov function is given as follows:

V1 =
1

2
u2. (2.31)
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Equation (2.31) converges to zero if the derivative of the function satisfies the follow-

ing:

dV1

dt
= −k1u2 ≤ 0, (2.32)

where k1 is a positive feedback gain.

Because d2V1/dt2 is bounded, dV1/dt becomes uniformly continuous. Thus, we can

accomplish limt→∞
dV1

dt
→ 0 by Barbalat’s lemma, that is, u → 0. The terms to satisfy

Equations (2.31) and (2.32) are given below:

du

dt
= −k1u = −k1

dX

dt
, (2.33)

where we use Equation (2.19) to describe the variable of the image plane.

We can achieve u → 0 by deriving a controller that satisfies Equation (2.33). Based

on Equations (2.2), (2.30), and (2.33), the nonlinear controller can be derived as follows:

δ =
1

g(X,Y)

[

−
{

γX cos ϕ

f
+G cos(α − β) + k1

}

dX

dt

+
γ

2
sin ϕ

dY

dt
+ w(α, β, γ, X,Y)

]

, (2.34)

where

G =
V cos ϕ sin(ϕ − θ)

h cos θ

H =
f V sin(ϕ − θ)

h cos θ

g(X,Y) = F

{

f

2

(

X2

f 2
+ 1

)

cos ϕ − Y

2
sin ϕ

}

w(α, β, γ, X,Y) =
γ

2
GX sin(α − β) − γ

2
H cos(α − β)

−(Cβ + Dγ)

{

f

2

(

X2

f 2
+ 1

)

cos ϕ − Y

2
sin ϕ

}

.

Here, in the simulation condition of Section 2.6, g(X,Y) does not vanish because this

term shows the situation when the camera is nearly directed below. When the vehicle does

not achieve tracking, the FoE represented by Equation 2.14 is not matched to the target

path, and optical flow on a point on the FoE in Equation 2.14 is not zero. If we choose the

point on the FoE (Equation 2.14) in the image plane [X,Y]T for the controller, the vehicle

converges to the point because u→ 0.
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2.5 Evaluation of Convergence Performance

When the horizontal optical flow u of the target point converges to zero by applying the

nonlinear controller, the convergence performance must be analyzed. In this section, we

omit most of the proof because the convergence performance was almost the same as that

in [54]. Figure 2.11 shows the geometric relation when the vehicle is far from the target

orbit. The gaze point (x′′c , z
′′
c ) is located on the target path. We assume the condition of

β = 0 and ϕ = 0 deg for simplicity. In addition, we use Equation (2.5) because optical flow

of the target points is equivalent to a situation where the camera gazes frontward. Because

ϕ = 0 deg, the gaze coordinates [xc, yc, zc]
T are equal to the coordinates [x′c, y

′
c, z
′
c]

T . Thus,
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Equation (2.25) is rewritten as follows:

u = f
x′′2c + z′′2c

(x′′c sinα + z′′c cosα)2

(

γ

2
+

x′′c

x′′2c + z′′2c

V

)

. (2.35)

When we consider the geometric condition and accomplish u→ 0, Equation (2.35) is

given as follows:
γ

2
− sinα

L′

√

V2
r + (R′γ)2

= 0, (2.36)

where L′ is the distance between the vehicle and target point, and Vr is the radius compo-

nent of the vehicle velocity.

The geometric constraint condition is determined from the law of cosines:

R2 = R′2 + L′2 − 2R′L′ cos

(

π

2
− α

)

. (2.37)

Equations (2.36) and (2.37) express the geometric relation of the vehicle and target

orbit under the condition of u→ 0. We investigated the behavior of Equations (2.36) and

(2.37) to evaluate the geometric convergence performance. We considered two conditions

because Equation (2.36) is affected by Vr.

<Condition 1 : Vr ≈ 0>

If the current turning radius is large enough, Vr can be approximated as zero as shown

in Figure 2.12. Using Equations (2.36) and (2.37), we get the following:

R2 − R′2 = 0. (2.38)

If the vehicle accomplish u → 0, the current turning radius R′ converges to the target

radius R.

<Condition 2 : Vr , 0>

If the current radius is small, Vr cannot be ignored as shown in Figure 2.12. Using

Equations (2.36) and (2.37), we get the following:

R2 − R′2 =
L′

R′

(

Vr

γ

)2

sinα =
x′′c

R′

(

Vr

γ

)2

. (2.39)

As a result, if Vr cannot be ignored, the requirement that the current turning radius R′

converges to target radius R is met by performing the following:
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Figure 2.14: Control system

(I) Add Equation (2.39) to the nonlinear controller Equation (2.34).

(II) Choose the target point so that x′′c becomes sufficiently small.

2.6 Simulation

We confirmed the effectiveness of the proposed method through vehicle simulations. We

performed two simulations: (I) comparison of the target fixation points and (II) compari-

son of the fixation distances.
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We used a simulator constructed in OpenGL and Gunnar Farneback’s algorithm [70]

utilizing OpenCV to detect optical flow. Figure 2.13 shows an appearance of the simula-

tor. The dashed red line, which is the circular orbit from the bottom center to the top left

of the image, is the target path. Optical flow was calculated from 11 × 11 pixels located

on the image. We chose one pixel from these pixels as the target point (green point). The

camera is towards this point which means the target point is ideally at the center of the

image. A point on the FoE represented by Equation 2.14 is chosen for control input. The

row of this point is the same as it of the target point. When the target path and calcutated

pixel matched, we chose the pixel. However, when the target path and calculated pixel

did not match, we continued using the previous selected pixel. When multiple calculated

pixels matched the target path, we selected the pixel that was farthest from the vehicle. A

general method is recognizing the feature point and calculating optical flow of the feature

point. However, because the processing time is longer in order to calculate all pixels in

the general method, we use the fixed points in this study. The target path needs to have

some thickness in order to match the fixed points because this method does not recognize

the feature point. When we accomplish u → 0 by using the proposed method, the FoE

orbit matched the target path.

When we determine the target point, the gaze angle α is determined by the geometric

relation. Using Equations (2.18) and (2.20), the gaze angle α is given as follows:

α = tan−1 x′c

z′c
= tan−1

(

X

−Y sin ϕ + f cos ϕ

)

. (2.40)

We applied the low-pass filter of the time constant T to the gaze angle α because α

is discrete when we change the target point. The initial vehicle velocity was located in

the tangential direction on the target path, and the initial deviation was zero. In the sim-

ulation, we compared the root-mean-squared error and standard deviation of the control

performance. Figure 2.14 shows a block diagram of the control system.

There are some methods in order to evaluate driver and control steering performance,

such as Steering Bias as steering accuracy, Root Mean Squared Error (RMSE) as steering

precision, and Steering Wheel Jerk or Steering Correction as driver fatigue and ride qual-

ity. In this section, we use RMSE to evaluate control performance itself and to compare

the driver’s characteristics.
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Table 2.1: Simulation parameters

m 1753.0 [kg] V 30 [km/h]

l f 1.437 [m] h 0.3 [m]

lr 1.413 [m] ϕ 3.0 [deg]

K f 47,500.0 [N/rad] T 1.2 [s]

Kr 80,000.0 [N/rad] k1 1320.0

Icar 3559.43 [kgm2] ∆T 30 [ms]

Table 2.2: Assumed camera specifications

Imaging sensor CCD, 1/1.8

Resolution 1664 × 1224 [pixel]

Pixel size 4.40 × 4.40 [µm]

Frame rate 30

Focal length f 5.0 [mm]

2.6.1 Comparison of Target Fixation Points

Various studies have shown that the novice and experienced drivers differ in various ways.

For instance, novice drivers generally have underdeveloped vehicle control skills [71,

72], adjust visual search less effectively to the environmental situation [73], rely less on

peripheral vision [74, 75], show less variability in fixation patterns [76], tend to direct

their gaze more often to the immediate near region [77–81]. In particular, the last point,

which the fixation point of expert drivers is longer than that of novice drivers, is important

to correct tracking since expert drivers choose the target point well for accuracy steering

control [54]. Therefore, in this simulation, we compared the situations when the camera

gazed at the target path and just forward, that is, α = 0. The latter situation represented

the driver selecting the wrong point for his or her will. In the next section, we confirm

the difference through a simulation between the distance of the target points of expert and

novice drivers.

In the simulation, the vehicle followed a 150R steady circle for approximately 15 s.

The vehicle velocity was 30 km/h. Tables 2.1 and 2.2 list the simulation and assumed

camera parameters. ∆T is a sampling period of the controller. Figures 2.15 and 2.16

show the simulation results. We confirmed the effectiveness of the proposed method and

the difference in performance under the two conditions. The simulation result was better

when the camera gazed at the target path than straight forward.
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Figure 2.15: Results of comparison of target point

Figure 2.16: Results of comparison of target point (time vs. error)

2.6.2 Comparison of Fixation Distances

We demonstrated that tracking could be performed with a high degree of accuracy when

the gaze was maintained on the target. Next, we confirm the difference through a simu-

lation between the distance of the target points of expert and novice drivers. In general,

expert drivers select a point farther than novice drivers [77–81]. Therefore, we changed

the elevation angle ϕ in the simulation to compare the tracking performance by the fixation
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Table 2.3: Distance to fixation point

ϕ [deg] 2.0 2.5 3.0 3.5 4.0 4.5 5.0

L [m] 4.31 3.59 3.30 3.05 3.26 2.96 2.84

Figure 2.17: Results of comparison of fixation distance

distance.

The simulation conditions were the same as in the previous simulation except for the

angle ϕ. We compared the angle ϕ from 2.0 deg to 5.0 deg in increments of 0.5 deg.

Figures 2.17-2.19 show the simulation results. Table 2.3 lists the average distance L of

each angle, where DB = L as shown in Figure 2.10. Based on these results, the tracking

performance improved as the fixation point becomes far away. Thus, the proposed con-

troller correctly simulated the driver behavior. Here, the driver behavior is defined as the

characteristics with respect to the vehicle motion that varies with gaze point. When ϕ was

less than 2.5 deg, the tracking accuracy became worse. This may have been caused by an

increase in pixel errors during the image processing. In addition, L was larger at ϕ = 4.0

deg than at ϕ = 3.5 deg. This may be because the vehicle motion was oscillating based

on the large standard deviation.

2.6.3 Simulation in Higher Velocity

We show that the controller of the optical flow model is effective in higher velocity. Since

optical flow is calculated by the difference of the previous period of image data and the

current one, we must shorten the sampling period of the image data. Here, we show the
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Figure 2.18: Results of comparing of fixation distance 1 (time vs. error)

Figure 2.19: Results of comparing of fixation distance 2 (time vs. error)

result of the faster case where the velocity V is 60 and 70 km/h as shown in Figure 2.20.

The sampling period is 10 ms compared with 30 ms of Simulation 1 and 2. ϕ = 3.0
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Figure 2.20: Results of higher velocity (time vs. error)

deg. When V is 60 km/h, the result has higher accuracy compared with the case of 30

km/h in Section 2.6.2. When V is 70 km/h, we can understand that the result becomes

oscillatory. We also confirmed that the vehicle is more oscillatory in faster case than 70

km/h. Therefore, we can conclude that the proposed controller based on the optical flow

model is effective in the higher velocity when the sampling period is short. The possibility

of Kalman filter to interpolate the sampling periods has not been tried yet. This is a future

subject.

2.7 Design of Nonlinear Controller in Fixed Camera

In this section, we present the derivation of a nonlinear controller to track circular turning

when the camera is fixed. In the simulation, it is easy to move the camera toward to

the target point, whereas there are some restrictions in the real world. If we use a pan-

tilt camera ideal motion like gaze behavior of human drivers is achieved, however, it is

not realistic since we need additional control. Firstly, we show the controller when we

assume that the camera attached to the vehicles is fixed. Next, we present the controller

considering the camera motion simulating human’s eye and neck movements in the fixed

camera.
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Figure 2.21: Vehicle coordinates (camera: α = 0 [rad], ϕ , 0 [rad])

2.7.1 Nonlinear Controller in Fixed Camera

We define the gaze coordinates [xc, yc, zc]
T where the camera gazes in the direction of

angle ϕ, as shown in Figure 2.21. The elevation angle ϕ is constant. We assume that the

azimuth angle α = 0 [rad] because it is difficult to move a camera towards the target path;

that is, the camera attached to the vehicle is fixed. We abbreviate the derivation process

of optical flow. Optical flow on the fixed camera coordinate is follows:

u = fγ

(

X2

f 2
+ 1

)

cos ϕ +
V cos ϕ sin(ϕ − θ)

h cos θ
X cos β

− f
V sin(ϕ − θ)

h cos θ
sin β − γY sin ϕ, (2.41)

where we use the condition of α = α̇ = 0.

Next, we determine the control method by using a Lyapunov function to converge the

vehicle to the target point [69]. A candidate Lyapunov function is the same as the one in

Section 2.4, then the nonlinear controller with the fixed camera can be derived as follows:

δ =
1

g(X,Y)

[

M(β, γ, δ) sin ϕ
dY

dt
+ w(β, γ, δ, X,Y)

−
{

2X cos ϕ

f
M(β, γ, δ) +G cos β + k

}

dX

dt

]

, (2.42)
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where

G =
V cos ϕ sin(ϕ − θ)

h cos θ

H =
f V sin(ϕ − θ)

h cos θ

I = f cos ϕ

(

X2

f 2
+ 1

)

− Y sin ϕ

g(X,Y) =
E

(

f cos ϕ
(

X2

f 2 + 1
)

− Y sin ϕ
)

T

J = g(X,Y) − FI(B + 1) + AEI

K = AI2 −CI(B + 1)

L = −DI(B + 1)

M(β, γ, δ) = Eδ − Aβ + (1 − B)γ

w(β, γ, δ, X,Y) = {J − E(GX sin β + H cos β)} δ

+(Aβ + Bγ)(GX sin β + H cos β) + Kβ + Lγ,

where we assume that the steering angle δ is a first-order lag system of the input, and the

steering angle is given as follows:

δ̇ = − 1

T
δ +

1

T
δ, (2.43)

where T is the time constant.

2.7.2 Nonlinear Controller Considering Camera Motion

In the previous subsection, we derived the nonlinear controller by assuming a fixed cam-

era. However, this assumption is problematic. We discuss this problem in this subsection

and present a solution to the fixed camera.

When we assume a fixed camera, because α = α̇ = 0, Equation (2.10), which implies

the FoE, can be expressed as follows:

(

x′c +
V cos β

2(γ + β̇)

)2

+

(

z′c −
V sin β

2(γ + β̇)

)2

=

(

V

2(γ + β̇)

)2

. (2.44)

We can understand that Equation (2.44) represents an orbit that is about 50% of the

circular orbit of the original FoE expressed by Equation (2.14). Therefore, the controlled
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Figure 2.23: Geometric relationship when vehicle is on target path

vehicle cannot converge to the target path, whereas we could converge optical flow of

the target point to the FoE, as shown Figure 2.22. In this figure, we define the original

FoE expressed by Equation (2.14) and that by Equation (2.44) as FoE (R) and FoE (R/2),

respectively.

In this subsection, to resolve this problem, we propose a solution based on the con-

vergence to the target path. We assume the condition of β = 0 [rad] and ϕ = 0 [rad]
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for simplicity. Because ϕ = 0 [rad], the gaze coordinates [xc, yc, zc]
T are equal to the

vehicle coordinates [x′′c , y
′′
c , z
′′
c ]T . Thus, Equation (2.25) can be rewritten in [x′′c , y

′′
c , z
′′
c ]T

coordinate as follows:

u = − f
x′′2c + z′′2c

z′′2c

(

γ −
x′′c

x′′2c + z′′2c

V

)

, (2.45)

where we assume α = α̇ = 0, and γ represents the yaw rate of the vehicle, but γ in

Equation (2.45) denotes the yaw rate of the target point as seen from the vehicle. Thus,

we reversed a sign of yaw rate γ.

Figure 2.23 shows the geometric relation when the vehicle corresponds to the target

path. In Figure 2.23, when we focus on the relationship of the triangle formed by the

center of the target path, the vehicle’s center of gravity, and the gaze point, the geometric

term using the cosine formula is expressed as follows:

x′′c

x′′2c + z′′2c

=
sinα

√
R2 + R2 − 2R2 cos 2α

=
1

2R
. (2.46)

By substituting Equation (2.46) and V = Rγ into Equation (2.45), we obtain the fol-

lowing:

ũ = − f
(

1 + tan2 α
) γ

2
. (2.47)

Consequently, when we gaze at the target point on the path, optical flow of the point

has a deviation including the yaw rate. When we can converge u to ũ, we can achieve the

ideal control. Therefore, the control method in the fixed camera is represented as follows:

δ =
1

g(X,Y)

[

M(β, γ, δ) sin ϕ
dY

dt
+ w(β, γ, δ, X,Y)

−
{

2X cos ϕ

f
M(β, γ, δ) +G cos β + k

}

dX′

dt

]

(2.48)

where dX′

dt
= u − ũ. We choose the target point (X,Y) and optical flow u on the image,

and obtain optical flow ũ from the image plane or by the calculation of Equation (2.47).

This means that ũ is optical flow represented by Equation 2.14 and u is assumed to be the

camera motion towards the target point. As a result, the vehicle converges to the target

point because u → ũ, as shown in Figure 2.24. That is, the vehicle can track to the target

path.
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Figure 2.25: Robocar with camera, IMU, and RTK-GNSS

2.8 Experiment

In this section, we apply the proposed nonlinear controller to an automatic steering control

system and confirm the efficiency of the proposed controller.
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Table 2.4: Robocar parameters and experimental conditions

m 440.0 [kg] Icar 185.196 [kgm2]

l f 0.69 [m] T 70 [ms]

lr 0.61 [m] V 10 and 20 [km/h]

K f 5,600.0 [N/rad] h 0.5 [m]

Kr 10,000.0 [N/rad] ϕ 10.0 [deg]

Table 2.5: Camera specifications

Imaging sensor CCD, 2/3

Resolution 1664 × 1224 [pixel]

Pixel size 4.40 × 4.40 [µm]

Frame rate 30

Focal length f 5.0 [mm]

2.8.1 Experimental Setup

Robocar made by ZMP Inc. is used in this experiment. On Robocar, a camera, inertia

measurement unit (IMU), and RTK-GNSS are installed, as shown in Figure 2.25. The

camera is attached to the vehicle tip. IMU is attached to Robocar to estimate the roll, pitch,

and yaw angles and rates for the control input. RTK-GNSS is installed to estimate the

running path for analyzing performance. In this experiment, we assume β = 0 because it

is difficult to measure the slip angle β. This assumption is not a problem since the turning
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Table 2.6: Control Gain k
Proposed method 1100.0

Comparative method 1250.0
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Figure 2.27: Results of lateral error in 20 [km/h]

radius is large. Table 2.4 lists the Robocar parameters and the experimental conditions.

Table 2.5 lists the camera parameters. We created the target path indicating the circular

orbit of radius 450R by using landmarks as shown in Figure 2.26. The controlled Robocar

tracks to the target path of approximately 90 [m]. We use Gunnar Farneback’s algorithm

[70] utilizing OpenCV to detect optical flow of the target.

2.8.2 Experimental Results

We confirmed the effectiveness of the proposed method Equation (2.48) as compared to

the comparative method Equation (2.42). The control gains of each method are shown in

Table 2.6. We show the results of the lateral errors and optical flow, as shown in Figures

2.27, 2.28, and 2.29. In Figures 2.27 and 2.28, a positive value implies that Robocar runs

towards the inside of the circular orbit, and there is cant such as applying force in the

positive value direction as shown in Figures 2.26. At the beginning of the 3 [s] of Figures

2.29, we neglect the value of optical flow because of the acceleration section. A low-pass

filter is used for removing observation noises from these results.

From Figures 2.27 and 2.28, we confirmed that the convergence performance of the

proposed method was better than that of the comparative method. The maximum lateral
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Figure 2.29: Results of optical flow in 20 [km/h]

error of the proposed method, as shown in Figure 2.27, was about 35 [cm]. The following

may be reasons that Robocar cannot converge to the target path accurately: The control

distance was short, and an exact observation of optical flow was difficult. On the other

hand, the latter half of the lateral error of the comparative method was unstable. If optical

flow of the target converged to FoE (R/2), the controlled vehicle moved towards the out-

side of the target path. Therefore, Robocar had a large lateral error towards the negative

values. Moreover, we confirmed that the result of 10 [km/h] had a tendency similar to that

of 20 [km/h], as shown in Figure 2.28. The convergence performance was improved as

compared to the relatively high velocity since the observation of optical flow was more
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accurate. Thus, if we can measure optical flow exactly, we can apply the optical flow

control to a vehicle having a relatively high velocity.

Figure 2.29 shows the control input of optical flow of 20 [km/h] in each control

method. From the result of the proposed method, we inferred that the target point matched

FoE (R) because the value of u − ũ converged to zero. Furthermore, the control input of

the proposed method was more stable than the input of the comparative method. This rea-

son can be considered to improve robustness because the proposed method utilizes two

optical flows. If optical flow u of the target has noises, the control input is modified by

the deviation flow ũ.

Thus, the proposed method showed an improvement in the convergence performance

and the stability of optical flow. Therefore, we conclude that the proposed method is

effective.

2.9 Conclusions

We derived the FoE and proposed an image-based automatic steering system based on op-

tical flow. Using this control method, we confirmed that the proposed controller simulates

the driver steering behavior with respect to the distance toward to the target point through

vehicle simulations. In addition, we proposed a nonlinear controller considering camera

motion for applying an optical flow model to in-vehicle control systems. Then, experi-

mental results were presented. From the results of the vehicle experiments, we found that

the proposed method was more accurate than our existing method. These results show

the optical flow steering model is effective for the automated steering systems. However,

when the target path is changed to a path such as a clothoid path, a serpentine curve,

and a double-lane-change path, it is difficult to apply the optical flow model because the

convergence of the model is limited to a steady circle. Thus, we need to integrate other

information in terms of driver’s visual cue such as Visual Direction into the optical flow

model.
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Appendix 2.A Detail Design of a Controller

Here, we derive the nonlinear controller in detail. We rewrite Equations (2.2), (2.30), and

(2.33).

d

dt

[

β

γ

]

=

[

A B

C D

] [

β

γ

]

+

[

E

F

]

δ, (A.1)

u =
fγ

2

(

X2

f 2
+ 1

)

cos ϕ +
V cos ϕ sin(ϕ − θ)

h cos θ
X cos(α − β)

+
f V sin(ϕ − θ)

h cos θ
sin(α − β) − γ

2
Y sin ϕ, (A.2)

du

dt
= −k1u = −k1

dX

dt
. (A.3)

The derivative of the horizontal optical flow is as follows:

du

dt
=

f γ̇

2

(

X2

f 2
+ 1

)

cos ϕ +
γXẊ

f
cos ϕ +GẊ cos(α − β)

−γ
2

GX sin(α − β) +
γ

2
H cos(α − β) − γ̇

2
Y sin ϕ − γ

2
Ẏ sin ϕ. (A.4)

By substituting Equation (A.1) and (A.4) into Equation (A.3), we get the following:

Ẋ

{

γX cos ϕ

f
+G cos(α − β) + k1

}

− γ
2

Ẏ sin ϕ

+(Cβ + Dγ + Fδ)

{

f

2

(

X2

f 2
+ 1

)

cos ϕ − Y

2
sin ϕ

}

−γ
2

GX sin(α − β) +
γ

2
H cos(α − β) = 0, (A.5)

where

G =
V cos ϕ sin(ϕ − θ)

h cos θ

H =
f V sin(ϕ − θ)

h cos θ
.

By arranging the above equation, we get the nonlinear controller as following:

δ =
1

g(X,Y)

[

−
{

γX cos ϕ

f
+G cos(α − β) + k1

}

dX

dt

+
γ

2
sin ϕ

dY

dt
+ w(α, β, γ, X,Y)

]

, (A.6)
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where

g(X,Y) = F

{

f

2

(

X2

f 2
+ 1

)

cos ϕ − Y

2
sin ϕ

}

w(α, β, γ, X,Y) =
γ

2
GX sin(α − β) − γ

2
H cos(α − β)

−(Cβ + Dγ)

{

f

2

(

X2

f 2
+ 1

)

cos ϕ − Y

2
sin ϕ

}

.
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Chapter 3

Design of Preview Driver Model based

on Optical Flow

3.1 Introduction

Automated driving systems have been released in the last few years to improve vehicle

dynamics performances, enhance the active safety, and reduce driver load. A previous

study [13] revealed that the elements required for the development of these technologies

in order to investigate vehicle stability performance are the driver, the vehicle, and the

environment. Since the driver’s subjective evaluation is affected primarily by the vehicle

dynamics, it is essential to incorporate driver modeling in such systems. In particular, in

the early days of this research field of driver steering many researchers proposed several

typical models.

Many driving models that focus on the preview or predictive behavior of the driver

have been proposed, because the driver gazes at a future desired path while driving.

Kondo [82] first proposed a model of this type. The lateral deviation with regard to the

preview point is used for the control object in this model. In addition, the model was

expanded to the preview driver model by Yoshimoto [61], who used a predictive point

determined by the velocity and the acceleration of the vehicle. The control object of

these models was a single point on the predictive location. On the other hand, an opti-

mal preview control, where the control input is determined by multiple points within the

preview window, was proposed by Macadam for improving the control performance and

reproducing driver behavior [83]. The cost function of this optimal model includes the

lateral deviations from the multiple preview points. This model is well known a rela-
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tively general driver model that can reproduce driver behavior quite well and it has been

implemented in a commercial software product called CarSim [84]. Macadam’s model

uses only the lateral deviations for the P controller in the cost function. However, the

application to this optimal preview driver model of the lateral deviations by adding an

instantaneous yaw error feedback method [85] and the PD controller in the cost func-

tion [86] were proposed. These expanded optimal preview driver models can reproduce

the driver’s steering behavior and are effective in practical use, e.g., for lane keeping, by

using the PID controller [87]. These studies above used the lateral deviation from the pre-

dictive point as the control object. In contrast, a preview driver model based on Tangent

Point [88] as the control object was also proposed, because the driver can perceive the

current curvature of the vehicle’s path by using Tangent Point [89]. The effectiveness is

verified by introducing these preview driver models into various vehicle dynamics [90].

In recent decades, there are some expanded models based on the preview/predictive driver

model: first is with Model Predictive Model for the effective controller [91, 92], second

is including a neuromuscular dynamics to capture the interaction between the vehicle and

the driver [93,94], the aim of other studies is to identify the individual driver based on the

model parameters [95, 96].

In our previous works [53, 54, 97, 98], we focused on optical flow, which is the visual

information that drivers perceive. In general, humans can reach the target point “where

I want to go” by matching it to the FoE [18, 19]. Therefore, by introducing this human

behavior into vehicle control systems, we constructed automated steering systems based

on two types of method: position-based control [53,54] and image-based control [97,98].

We confirmed that in these control methods the optical flow model can reproduce driver

steering behavior [97] and showed its effectiveness for application in real environments

[53, 98].

A comparison of the preview driver model and the optical flow model shows that they

have characteristics in common: both are based on the driver’s preview behavior and re-

produce the driver’s steering behavior such as the steering input and the vehicle trajectory.

Therefore, in this study we analyzed the preview driver model from the viewpoint of op-

tical flow. Although many conventional preview models have been proposed, we selected

the single point model using the predictive point [61], because the purpose of the optimal

preview driver model is to improve the control performance and not to express driver be-

havior. In addition, we propose a new preview driver model that utilizes our knowledge
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Figure 3.1: Definition of second-order preview driver model

of optical flow. Then we confirm the effectiveness of the proposed method as compared

with the conventional preview driver model through a vehicle simulation.

3.2 Conventional Preview Driver Model

The preview driver model is a control method that considers driver-vehicle interaction. In

this model, we set a preview point viewed from the vehicle, and the model controls the

lateral deviation between a predictive point of the vehicle and the target point on a target

path with respect to the preview point.

In this study, we consider a second-order preview driver model in which the predictive

point of the vehicle is expressed as the velocity and the acceleration of the vehicle [61].

We define the states of this model, as shown in Figure 3.1. The target point and the y-

coordinate of the predictive point are expressed as (xr, yr) and y(t+ T ), respectively; then,

the lateral deviation ϵ with regard to the preview point is

ϵ = yr − y(t + T ). (3.1)

The predictive point y(t + T ) changed by Taylor expansion by a second order approx-

imation can be described as

y(t + T ) = y(t) + ẏ(t)T +
1

2
ÿ(t)T 2. (3.2)

Next, we show the predictive point as determined by using vehicle information. We

assume that i, j are each unit vectors on the (x, y) coordinates and the vehicle velocity V
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is constant; then, the velocity vector of the vehicle is given as

Ṙ = (V cos β)i + (V sin β) j. (3.3)

Differentiating Equation (3.3), we obtain the acceleration vector as

R̈ =
{

−V(γ + β̇) sin β
}

i +
{

V(γ + β̇) cos β
}

j, (3.4)

where γ denotes the yaw rate, β represents the slip angle of the vehicle, i̇ = γ j, and

j̇ = −γi.

Using Equations (3.2), (3.3), and (3.4), we can show the y-coordinate of the predictive

point with respect to the preview distance (L = TV cos β) as

y(t + T ) = y(t) + TV sin β +
T 2

2
V(γ + β̇) cos β = y(t) + Lβ +

L2

2V
γ, (3.5)

where we assume a situation where β ≪ 1 and β̇ ≃ 0, because the slip angle is small

when the steering of the vehicle is not steep, the turning radius is sufficiently large, and

no irregularities and gradients exist on the road along which it is traveling. We apply these

assumptions to the following derivation processes, except for definitions.

Substituting Equation (3.5) into Equation (3.1), we can rewrite the lateral deviation

with the second-order model as

ϵ = yr −
(

Lβ +
L2

2V
γ

)

, (3.6)

where we define y(t) = 0, because this deviation is viewed from the vehicle.

In general, driver behavior can be expressed as the PD controller including the dead

time of control, so that the preview driver model is frequently constructed with the same

controller. However, in this study the design of the PD controller was aimed at providing

an easier expression of this model. Therefore, the control method of the preview driver

model is represented as

δ = KPϵ + KDϵ̇. (3.7)

Differentiating Equation (3.6), we obtain

ϵ̇ = ẏr − L̇

(

β +
γL

V

)

− L2

2V
γ̇. (3.8)

Then, we derive ẏr to analyze Equation (3.8). In general, the preview time T and

velocity V are assumed to be constant in this model. Thus, the preview distance L also
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Figure 3.2: Two types of velocity in preview driver model

becomes constant. Therefore, the target velocity ẋr = [ẋr, ẏr]
T is expressed as two types

of velocity, as shown in Figure 3.2. The first velocity, ẋr1 = [ẋr1, ẏr1, żr1]T , is the target

velocity viewed from the vehicle coordinates. The second velocity, ẋr2 = [ẋr2, ẏr2, żr2]T , is

along the target path to maintain a constant preview distance. The velocity ẋr1 is expressed

as

d

dt





















xr1

yr1
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
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















=





















−V cos β

−V sin β

0





















+





















0

0

−(γ + β̇)





















×





















xr

yr

zr





















=





















−V cos β + (γ + β̇)yr

−V sin β − (γ + β̇)xr

0





















. (3.9)

As the preview distance is constant, the velocity ẋr2 is described as

ẋr2 = −ẋr1 = V cos β − (γ + β̇)yr. (3.10)

When the target path viewed from the vehicle coordinates is denoted by f (x, y), the

velocity ẏr2 is given as

ẏr2 = ẋr2

∂ f

∂x

∣

∣

∣

∣

∣

x=xr

=
{

V cos β − (γ + β̇)yr

} ∂ f

∂x

∣

∣

∣

∣

∣

x=xr

. (3.11)

Using Equations (3.9), (3.10), and (3.11), we can obtain the target velocity ẋr

d

dt

[

xr

yr

]

=
d

dt

[

xr1 + xr2

yr1 + yr2

]

≈
[

0

−Vβ − γxr + (V − γyr)
∂ f

∂x

∣

∣

∣

x=xr

]

. (3.12)
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Substituting Equation (3.12) into Equation (3.8), we can rewrite Equation (3.8) as

ϵ̇ = L

(

−γ − V

L
β

)

+ (V − γL tan ϕ)
∂ f

∂x

∣

∣

∣

∣

∣

x=xr

− L2

2V
γ̇, (3.13)

where we assume xr = L, yr = L tan ϕ, and L̇ = 0 according to the definition of the

preview driver model.

Using Equations(3.6) and (3.13), we can obtain the PD controller with the second-

order preview driver model

δ = KP

[

yr −
(

Lβ +
L2

2V
γ

)]

+ KD

[

L

(

−γ − V

L
β

)

+ (V − γL tan ϕ)
∂ f

∂x

∣

∣

∣

∣

∣

x=xr

− L2

2V
γ̇

]

. (3.14)

3.3 Preview Driver Model based on Optical Flow

In this section, we derive optical flow and analyze the conventional preview driver model

using optical flow modeling. Using the results, we propose a preview driver model based

on optical flow.

3.3.1 Modeling of Optical Flow

In this subsection, we construct optical flow based on the study reported in Inou’s paper

[53, 54]. We consider the definition of optical flow as a variable value of a change in

the target angle because optical flow in this section is assumed to be generated in the
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retina coordinate and it is easier to interpret models than that in Section 2. Figure 3.3

also shows the vehicle coordinates used to construct optical flow. We assume that rolling,

pitching, and vertical motions are negligible, because we consider the same situation as

in the slip angle assumption in Section 3.2. Therefore, we can derive only the azimuth

angle direction of optical flow, because the vehicle moves only in the direction in which

it is steered. The angle between the vehicle and the target point is represented as

ϕ = tan−1 yr

xr

. (3.15)

As the azimuth angle direction of optical flow is expressed as a change in the angle,

we differentiate Equation (3.15) and obtain

u =
dϕ

dt
=

xrẏr − ẋryr

x2
r + y2

r

. (3.16)

Before arguing the details of optical flow, Equation 3.16 is compared with optical

flow defined in the image plane in order to confirm optical flow in this chapter has the

relationship with optical flow in Chapter 2. Equation 3.16 can be rewritten as

u =
1

1 +
y2

x2

1

x2
(xrẏr − ẋryr) =

cos2 θ

x2
(xrẏr − ẋryr) . (3.17)

When the angle θ between the vehicle direction and the target point direction is small,

Equation 3.17 is equivalent to Equation 2.4 generated in the image plane.

We show the target velocity viewed from the vehicle coordinates. In Equation (3.12),

we considered the relative velocity, which is the combination of the target velocity and the

velocity along the target path, as mentioned in Section 3.2, because the preview distance

is determined to be constant. However, in this derivation process we consider only the

target velocity, because we consider the assumption that the driver continues to gaze at

the fixed target point:

d

dt
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






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
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




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



−V cos β + ϕ̇vpyr
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0





















, (3.18)

where ϕ̇vp represents the yaw rate combined with the vehicle motion and the driver’s

eye movement. In this paper, we consider that the driver’s eye and neck movements are

integrated and call them the eye movement. It is considered that optical flow that driver

perceives is a combination value of the vehicle motion and his/her eye movement; that is,

we must construct optical flow using a combination of parameters.
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For this reason, ϕ̇vp is expressed as

ϕ̇vp = γ + β̇ + ϕ̇p, (3.19)

where ϕ̇p indicates the pursuit eye movement, where the eye movement is assumed to be

smooth. We derive ϕ̇p in detail in Subsection 3.3.4.

By using Equation (3.19), Equation (3.18) is rewritten as

d

dt

[

xr

yr

]

=

[

−V cos β + (γ + β̇ + ϕ̇p)yr

−V sin β − (γ + β̇ + ϕ̇p)xr

]

. (3.20)

Substituting Equation (3.20) into Equation (3.16), we can obtain optical flow consid-

ering the vehicle and the driver models as

u(xr, yr, ϕ̇p) = −(γ + β̇ + ϕ̇p) +
V

x2
r + y2

r

(−xr sin β + yr cos β), (3.21)

where optical flow is described by u(xr, yr, ϕ̇p) in the following derivation.

If we choose the target point (xr, yr) for calculating, we can obtain the azimuth angle

direction of optical flow of the target point by using Equation (3.21).

3.3.2 Analyzing Preview Driver Model based on Optical flow

We now analyze the preview driver model based on optical flow. First, we assume the

eye movement ϕ̇p = 0, which means the driver’s eye and neck are always turned toward

the vehicle heading direction and the target point (xr, yr) = (L, 0). Thus, optical flow

represented by Equation (3.21) is described as

u(L, 0, 0) = −γ − V

L
β. (3.22)

By using Equation (3.22), the conventional preview driver model of Equation (3.14)

is rewritten as

δ = KP

[

yr −
(

Lβ +
L2

2V
γ

)]

+ KD

[

Lu(L, 0, 0) + (V − γL tan ϕ)
∂ f

∂x

∣

∣

∣

∣

∣

x=xr

− L2

2V
γ̇

]

. (3.23)

From this result, we can understand that the conventional preview driver model con-

trols optical flow on the preview point (L, 0) in the differential term.
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3.3.3 Modeling of Preview Driver Model based on Optical Flow

In our previous works on optical flow control [53, 54, 97, 98], we chose the target point,

and the azimuth angle direction of optical flow at the point converged to zero. Then, the

vehicle could achieve tracking to the target path. The zero flow point of the optical flow

is called the FoE (Focus of Expansion), and the fact that the FoE shows the direction of

the vehicle or human motion is well known. When the target point matches the FoE it

means that the point corresponds to the direction of self-motion, and therefore, tracking

control is achieved. In addition, we showed that this control method can express driver

behavior by changing the gaze distance [97]. In our previous works, it was shown that

for expressing driver behavior with respect to the distance toward to the target point, the

following knowledge terms are important

(I) The convergence of optical flow of the target point to zero.

(II) The eye movement tracks the target point.

In term (II), when the vehicle runs in a steady circle, the FoE, which the driver perceives,

shows the same orbit as the tracking path as he/she continues to gaze at the point on the

path. However, the FoE shows a half radius orbit of the target steady circle if we ignore

the eye movement, e.g., ϕ̇p = 0. Therefore, the effectiveness of the control method is

lacking, since the FoE does not reflect the correct direction of self-motion.

In Equation (3.23), the eye movement ϕ̇p is assumed to be zero and the conventional

preview driver model includes optical flow not on the point of the target path but on

the preview point. Therefore, this control method does not satisfy terms (I) and (II) for

expressing driver behavior. For this reason, when the turning radius is small and the

vehicle runs at a higher velocity, this system is not constructed based on the driver’s

subjective evaluation. Thus, we construct a new preview driver model that includes terms

(I) and (II).

In the proposed preview driver model based on optical flow, we apply a geometric

condition concerning the relationship between the vehicle and the target point for the

differential term in the conventional controller. The geometric condition is given as

yr = xr tan ϕ. (3.24)
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By using Equation (3.9), the differentiation of Equation (3.24) is represented as

ẏr = ẋr tan ϕ + xrϕ̇p

1

cos2 ϕ
= (−V cos β + γyr) tan ϕ + xrϕ̇p

1

cos2 ϕ
, (3.25)

where
dϕ

dt
becomes ϕ̇p, because we assume continued tracking of the target point.

As xr = L and yr = L tan ϕ, Equation (3.25) is rewritten as

ẏr = −V cos β tan ϕ + Lγ tan2 ϕ +
L

cos2 ϕ
ϕ̇p + (V sin β − V sin β) + (Lγ − Lγ)

= − L

cos2 ϕ

{

−(γ + ϕ̇p) +
V

L
sin(ϕ − β) cos ϕ

}

+ L

(

−γ − V

L
β

)

. (3.26)

By substituting Equation (3.26) into Equation (3.8), the differentiation of the lateral

deviation with the second-order model is

ϵ̇ = − L

cos2 ϕ

{

−(γ + ϕ̇p) +
V

L
sin(ϕ − β) cos ϕ

}

+L

(

1 +
L̇

V

)

(

−γ − V

L
β

)

− L2

2V
γ̇. (3.27)

By using Equation (3.27), the proposed control method of Equation (3.7) is expressed

as

δ = KP

[

yr −
(

Lβ +
L2

2V
γ

)]

+ KD

[

− L

cos2 ϕ

{

−(γ + ϕ̇p)

+
V

L
sin(ϕ − β) cos ϕ

}

+L

(

1 +
L̇

V

)

(

−γ − V

L
β

)

− L2

2V
γ̇

]

. (3.28)

Next, we evaluate the new control method of Equation (3.28) using optical flow of

Equation (3.21). If we assume xr = L and yr = L tan ϕ in Equation (3.21), we obtain

optical flow on the target point considering the eye movement as

u(L, L tan ϕ, ϕ̇p) = −(γ + ϕ̇p) +
V

L
sin(ϕ − β) cos ϕ. (3.29)

By using Equations (3.22) and (3.29), Equation (3.28) is rewritten as

δ = KP

[

yr −
(

Lβ +
L2

2V
γ

)]

+ KD

[

− L

cos2 ϕ
u(L, L tan ϕ, ϕ̇p)

+L

(

1 +
L̇

V

)

u(L, 0, 0) − L2

2V
γ̇

]

. (3.30)

Thus, a new preview driver model that includes optical flow considering the eye move-

ment on the target point is constructed. This model can satisfy terms (I) and (II).
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3.3.4 Deriving Eye Movement in Steady Circle

In this subsection, we derive the eye movement for a steady circle in detail. We assume

a condition where the vehicle has a lateral deviation xe from the target steady circle with

radius R, as shown in Figure 3.4. The right hand side of Figure 3.4 shows a triangle that

connects the center of the vehicle, the target point, and the center of the steady circle. The

geometric constraint is determined by the laws of sines as

R + xe

sin
(

π
2
+ X1 − ψ

2

) =
R

sin
(

π
2
− X1 − ψ

2

) , (3.31)

where X1 = ϕ − β − ψ

2
.

From Equation (3.31), X1 is described as

X1 = tan−1















xe

2R + xe

1

tan
ψ

2















. (3.32)

As a result,

1

2
ψ = ϕ − β − tan−1















xe

2R + xe

1

tan
ψ

2















. (3.33)

By differentiating Equation (3.33), the eye movement ϕ̇p is presented as

1

2
ψ̇ = −ϕ̇p − β̇ −

1

1 +

(

xe

2R+xe

1

tan
ψ
2

)2

[

2Rẋe

(2R + xe)2

1

tan
ψ

2

− xe

2R + xe

ψ̇

2 sin2 ψ

2

]

, (3.34)
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where the differentiation of ϕ becomes ϕ̇p, because we do not consider the vehicle motion

in this derivation. We need to pay attention to the sign of ϕ̇p.

When the vehicle is sufficiently close to the target path, we can assume R ≫ xe; thus,

each element in Equation (3.34) is approximated as

xe

2R + xe

≃ 0 (3.35)

2Rẋe

(2R + xe)2
≃ ẋe

2R
(3.36)

ψ̇ ≃ γ. (3.37)

By using Equations (3.35)-(3.37), Equation (3.34) is rewritten as

ϕ̇p = −
1

2
γ − β̇ − ẋe

2R tan
ψ

2

. (3.38)

In addition, we can assume β̇ ≃ 0, ẋe ≃ 0 during tracking of the steady circle; then,

Equation (3.38) is given as

ϕ̇p = −
1

2
γ. (3.39)

We can derive the eye movement in Equation (3.39). This eye movement constraint

is considered the correct result, because it corresponds to the experimental results for the

driver measurement [45].

3.3.5 Modified Preview Driver Model based on Optical Flow

By substituting Equation (3.38) into Equation (3.28) and using Equations (3.22) and

(3.29), the proposed preview driver model that includes optical flow considering the eye

movement on the target point is

δ = KP

[

yr −
(

Lβ +
L2

2V
γ

)]

+ KD

[

− L

cos2 ϕ

ẋe

2R tan
ψ

2

− L

cos2 ϕ
u

(

L, L tan ϕ,−γ
2

)

+ L

(

1 +
L̇

V

)

u(L, 0, 0) − L2

2V
γ̇

]

. (3.40)

We mention control law of Equation (3.40) in comparison with Equation (3.23). We

compare only the differential term. The first term represents the information of the tar-

get path. The second term represents optical flow of the target point which considers
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Figure 3.5: Overview of clothoid path

the eye movements. The second term and L̇ in the third term are derived by assuming

continuously tracking the target point.

If we choose the target point (xr, yr) and use the controller of Equation (3.40), the

vehicle can track the target path and in particular the FoE of the vehicle matches that

point.

3.4 Simulation I

In this section, we confirm the effectiveness of the proposed preview driver model (Prop1,

Equation (3.40)) through a vehicle simulation. We used the single-track model described

in Section 2.2 and following first-order lag system.

δ̇ = − 1

∆T
δ +

1

∆T
δ, (3.41)

where ∆T denotes the time constant.

3.4.1 Overview of Simulation

In this simulation, we show the results when the vehicle aims to track the clothoid path

at velocity 60 km/h. The overviews of the target path are as shown in Figures 3.5 and

3.6. Furthermore, we used image processing to detect the target point, since we will

conduct in-vehicle experiments using a camera in the future. The target point [xr, yr, zr]
T
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Figure 3.6: Curvature of clothoid path

Table 3.1: Control gain (prop1)

Method KP KD

Prop1 2.9 0.06

is transformed to the image plane [X, Y]T as

[

X

Y

]

= f

[ yr

xr
zr

xr

]

. (3.42)

We assumed that the lateral velocity ẋe for the target path is sufficiently small; thus,

the value of the first item in the differential term in Equation (3.40) was determined to be

zero. The vehicle’s initial posture was set in the tangential direction of the target path. The

control gain is as shown in Table 3.1. Table3.2 and Table 3.3 list the vehicle parameters

and the assumed camera parameters, respectively. h is the set height of the camera. As

the preview time T is appropriate for 0.5-1.5 s (L = 8.3-25 m) [86], we set the preview

time within this range. L̇ is calculated from the difference of the preview distance caused

by tracking the target point.

3.4.2 Results of Simulation I

We show the results of the lateral error of the vehicle for the target path, optical flow,

preview distance, and control input δ in Figures 3.7-3.10, respectively. Optical flow, as

shown in Figure 3.8, is calculated by u(L, L tan ϕ,−γ
2
) to evaluate the value that the driver

perceives during driving.
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Table 3.2: Vehicle parameters

m 1753.0 kg

l f 1.437 m

lr 1.413 m

K f 47,500.0 N/rad

Kr 80,000.0 N/rad

Icar 3559.43kgm2

∆T 50.0 ms

h 1.5 m

Table 3.3: Assumed camera specifications

Imaging sensor CCD, 1/1.8

Resolution 1664 × 1224 pixel

Pixel size 4.40 × 4.40 µm

Frame rate 30

Focal length f 5.0 mm

Figure 3.8 shows optical flow has more oscillatory values. When the target point

is updated from a near point to a far one, the preview distance becomes discontinuous.

This is the reason why the value of optical flow is not stable. This result means the

target clothoid path does not correspond to the FoE, which is a steady circle, regardless of

whether the vehicle converges to the path or not. If the target path is a steady circle and

the vehicle completely converges to the target path, the target point on the path does not

become discontinuous although the point is updated from the near point to the far one.

Therefore, the control input also becomes oscillatory values, and the vehicle trajectory

shows the large deviation.

For this reason, we can confirm that the preview driver model that includes tracking

of the target point suffers a discontinuous problem when the target point is changed from

the near point to the far one. In particular, when the target is a path having a changing

curvature, the control input does not become stable.

3.5 Preview Driver Model based on Optical Flow with

Virtual Following

In the previous simulation described in Section 3.4, we set the target point on the path

and used the control law of Equation (3.40) while continuing to track the point. However,

the control input becomes oscillatory because of discontinuous. This is the reason why
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Figure 3.7: Results for lateral error (Prop1)
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Figure 3.8: Results for optical flow (Prop1)

the control input becomes discontinuous when the target point is changed. Such situations

frequently occur in real environments. Therefore, we propose a new preview driver model

based on optical flow that does not need to continue tracking the target path when the

preview distance is the same as in the conventional preview driver model; that is, constant.

Information of L̇ is lacking because L̇ cannot be calculated in Equation (3.40) when the
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Figure 3.10: Results for input (Prop1)

preview distance is constant. Thus, we introduce Equation (3.20) into Equation (3.40):

δ = KPϵ + KD

[

− L

cos2 ϕ

ẋe

2R tan
ψ

2

− L

cos2 ϕ
u

(

L, L tan ϕ,−γ
2

)

+
γ

2V
L2 tan ϕ u(L, 0, 0) − L2

2V
γ̇

]

. (3.43)

As a result, the preview driver model based on optical flow with virtual following,

which means that we continue to set the constant preview distance, is derived. The con-
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ventional preview driver model is shown again as

δ = KPϵ + KD

[

(V − γL tan ϕ)
∂ f

∂x

∣

∣

∣

∣

∣

x=xr

+ Lu(L, 0, 0) − L2

2V
γ̇

]

. (3.44)

We show the difference in comparison with control laws of Equations (3.43) and

(3.44). We compare only the differential term. The first terms
(

− L

cos2 ϕ

ẋe

2R tan
ψ
2

, (V − γL tan ϕ)
∂ f

∂x

∣

∣

∣

x=xr

)

of both equations represent the information of the

target path. The fourth term in Equation (3.43) and the third term in Equation (3.44)

represent the same information
(

− L2

2V
γ̇
)

and are derived by the prediction of the second-

order model. The third term
(

γ

2V
L2 tan ϕ u(L, 0, 0)

)

in Equation (3.43) and the second

term (Lu(L, 0, 0)) in Equation (3.44) represent optical flow on the preview point, but

the former term includes the continuous tracking of the target point. The second term
(

− L

cos2 ϕ
u
(

L, L tan ϕ,−γ
2

))

in Equation (3.43) is optical flow of the target point. In partic-

ular, we can confirm that this optical flow is considered with eye movement ϕ̇p = −γ2 ,

and therefore, it is necessary to show the correct FoE. If the vehicle perfectly converges

to the target path, the information of the target path, which is the differential first term

in Equation (3.43), becomes zero. However, the path information is considered in the

second term, because this includes the assumption of a steady circle with radius R.

3.6 Simulation II

In this section, we confirm the effectiveness of the proposed preview driver model with

virtual following (Prop2, Equation (3.43)) by comparing it with the conventional preview

driver model (Conv, Equation (3.44)) through a vehicle simulation.

3.6.1 Overview of Simulation II

We used the same simulation conditions as in Simulation I, except for the control gains.

The control gains are as shown in Table 3.4. The control gains were determined for

minimizing the maximum lateral error. The preview time T was set to be 0.6 s (L = 10

m).
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Table 3.4: Control gain

Method KP KD

Conv 4.6 0.08

Prop2 5.2 0.2

3.6.2 Results of Simulation II

We show the comparison results of the lateral error, optical flow, lateral acceleration,

lateral jerk, and control input δ in Figures 3.11-3.15, respectively. The lateral acceleration

and the lateral jerk are used for analyzing the ride quality of the driver [99,100]. We show

the maximum lateral error, the Root Mean Squared (RMS) lateral error and maximum

optical flow, and RMS optical flow in Table 3.5.

Figure 3.11 shows that the convergence performance of the proposed method is better

than that of the conventional method. The ride quality of the proposed method is also

more comfortable, since the vibration of the vehicle is smoother, and the maximum value

of the lateral acceleration and jerk are small, as shown in Figures 3.13 and 3.14.

In the results for optical flow, the value of the proposed method is slightly larger

than that of the conventional method; however, both values are converged to zero. The

reason why the values are the same is that the tracking path and the preview point of both

methods are almost the same. Now, we calculate the elevation angle direction of optical

flow to evaluate its azimuth angle direction, since optical flow perceived by the driver

is synthesized using the elevation and the azimuth values. Thus, we can evaluate the

convergence of optical flow from the viewpoints of the driver’s perception. The elevation

angle direction of optical flow v and synthesized optical flow uv are given as

v =
d

dt

(

tan−1 z

x

)

=
żx − zẋ

x2 + z2
(3.45)

uv =
√

u2 + v2. (3.46)

The parameters are determined as x = L, z = h, ż = 0, and ẋ = −V + Lγ tan ϕ as the

definition of the preview driver model, and the elevation angle direction of optical flow

|v| becomes 0.2396 rad/s by using the maximum yaw rate from a calculated simulation

condition. Thus, synthesized optical flow uv is 0.2396 rad/s in the results of both Conv

and Prop2. Therefore, the driver cannot perceive the azimuth angle direction of optical

flow u, since synthesized optical flow uv is not changed as compared with the elevation
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Table 3.5: Simulation results: Conv and Prop2

Conv Prop2

Abs Maximum Error [m] 0.0373 0.0300

RMS Error [m] 0.0213 0.0164

Abs Maximum Flow [rad/s] 0.0029 0.0040

RMS Flow [rad/s] 0.0012 0.0017

angle direction of optical flow v, that is, the target point converging to the FoE for the

driver.

The reason for the improved control performance and ride quality of the proposed

method is that the proposed model can control FoE, which reflects the current vehicle

motion, in the differential term, as described in subsection 3.3.3. For this, the proposed

model can use two types of information: lateral deviation in the proportional term and FoE

in the differential term, whereas the conventional method use only lateral deviation. The

additional reason for the improved controller is considered to be the low gain property.

In both the proposed model of Equation (3.43) and the conventional method of Equation

(3.44), both differential terms have information of the target path. However, there is a

difference in Equation (3.44) has static information, which is the assumption of a steady

circle of radius R, and Equation (3.44) has dynamic information, which is ∂ f /∂x on the

target point. If the curvature of the target path is changed such that it follows the clothoid

path, the control input of of Equation (3.44) is more oscillatory than that of of Equation

(3.43). For this reason, the proposed method becomes a low gain controller, so that this

model improves the control performance and ride quality. These results show that we can

confirm that the preview driver model that includes knowledge of optical flow improves

the control performance and ride quality.

3.7 Conclusions

In this study, we discussed the preview driver model and optical flow. Using our knowl-

edge of optical flow, we analyzed the preview driver model and understood that optical

flow used in the conventional preview driver model is not on the target point but on the

preview point. Therefore, we proposed a new preview driver model that includes optical

flow on the target point and the term of the following the target point. We confirmed

through the vehicle simulations that the proposed control method shows a better control
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Figure 3.11: Results of comparison of lateral error (Conv and Prop2)
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Figure 3.12: Results of comparison of optical flow (Conv and Prop2)

performance and ride quality than that of the conventional preview driver model. In addi-

tion, the previous optical flow model is limited in a situation where the vehicle is aimed to

track a steady circle only, because the target point converges to the FoE, which is a steady

circle [53, 54, 97, 98]. However, the proposed model can be applied to various situations,

because the control object is the lateral error related to the preview point, although the

FoE assumption is included.
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Figure 3.13: Results of comparison of lateral acceleration (Conv and Prop2)
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Figure 3.14: Results of comparison of lateral jerk (Conv and Prop2)

66



-0.05

 0

 0.05

 0.1

 0.15

 0  2  4  6  8  10  12  14

In
p

u
t 

[r
ad

]

Time [s]

Conv
Prop2

Figure 3.15: Results of comparison of input (Conv and Prop2)

67





Chapter 4

Analysis of Impact of Optic Flow and

Road Edges on Two Point Steering

Control

4.1 Introduction

Humans use multiple sources of visual information to steer when driving down winding

roads [36,37]. However, models of steering control can recreate some aspects of steering

behaviours using solely two control points: typically, a far point (which provides a pre-

view of future changes in direction), and a near point (which indicates current position-

in-lane [89,101,102]. The key principles of two-point control models have been tested by

examining driver behaviour when far (preview) or near (position-in-lane) information has

been selectively removed. When far road information is removed, steering actions become

less smooth because drivers rely upon near road information to correct errors after they

have occurred and thereby prevent large position-in-lane errors from accruing [103–107].

Conversely, when near road information is removed drivers find it difficult to correct for

positional errors, leading to larger deviations from the desired path, whilst still managing

to maintain smooth steering to match the future road curvature (for in-depth discussions

of this evidence the reader is referred to [107]). The behavioural relationship is assumed

to be a basic control model which is divided into guidance control using far vision (Figure

4.1, Guidance) and compensatory control using near vision (Figure 4.1, Compensatory).

Whilst the weightings of the components displayed in Figure 4.1 will vary depending on

the nature of the steering task, the general principles appear to be well supported and acts

as the basis of many current steering models [102, 108–112].
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Figure 4.1: A two point control model. When steering using the far point the driver is

able to match the future road curvature but unable to eliminate positional error, leading to

steering which is smooth but inaccurate. Conversely, when relying on just the near point

the driver is able to eliminate positional error but unable to respond in advance to changes

in curvature, leading to steering which is jerky but accurate.

Given the widespread prevalence of such two-point steering models it is worth not-

ing that the precise sources of near and far information are often only weakly specified.

Road environments are rich sources of information, containing a large set of features

from near and far regions that could contribute to estimates of position in lane and the fu-

ture steering requirements. The characteristic two-point control behaviours (Figure 4.1)

have been elicited using displays that only contained ‘windows’ of perspective correct

road-edges [103–105,113] and components are sometimes refined even further to include

elements solely containing splay angle information [114, 115]. In theoretical accounts

it is often assumed that angular inputs would be obtained from these road-edges. How-

ever, the precise mechanisms for extracting this information are unclear. Computational

driver models during curve following tend to use angular inputs determined by the vehicle

direction and points on the road centre rather than signals obtained directly from road-

edges [89,102,108–110]; although in some cases the near point has been implemented as

dependent on road-edge information [48]. These accounts do not disentangle use of road-

edge information from the other perceptual inputs that are available when looking where

you are going (such as gaze direction, or retinal flow [37]). One issue when determining

the role of the visible road-edges is that they not only supply useful information about the

steering that has been taking place, but they also place hard constraints upon the future

steering requirements. Consequently, when removing road edges it can be difficult to de-

termine whether individuals rely more on remaining perceptual inputs, because removing
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road edges can fundamentally change the nature of the steering task (e.g. when steering is

unconstrained human behaviour can be modelled using single point control [116]). One

way of preserving the steering task (maintaining a position on the road) but weakening

the inputs supplied by road-edges is to selectively remove road-edges in either near or far

regions. The driver’s reliance on alternative sources of information (such as optic flow)

can then be compared across the same lane following task [107].

The two-point control models of steering referred to so far rely solely on a near point

and far point to produce trajectories similar in quality (i.e. similar smoothness and vari-

ability) to those produced by humans. However, just because the trajectories produced are

broadly similar to human data, it cannot be concluded that human drivers are not using

other sources of visual information to ensure that steering control remains robust. Other

sources may provide redundancy if visual conditions become degraded and/or unreliable.

Indeed, skilful control of steering has been demonstrated in a wide range of visual envi-

ronments, including many where roads (and critically road edge information) is weak or

absent [48]. There are many potential informational inputs available to human drivers nav-

igating visually rich environments [37,117], and evidence across multiple studies suggest

that humans exploit the redundancy in perceptual information, using a combination of the

available signals to provide reliable and robust steering control [24,26,36,118]. In partic-

ular, humans are highly sensitive to optic flow [28], and there is evidence that optic flow

information provides information distinct from that supplied by the road-edges [107,119].

Using Land & Horwood’s method [103] of adjusting 1 deg viewing windows, Chatzias-

tros et al. [104] found that adding road texture (i.e. optic flow information) reduced lateral

deviation uniformly across all viewing segment conditions. Indeed, humans appear to use

optic flow as a control source even when current and future steering requirements are

solely determined by salient road-edges [107, 119, 120]. Furthermore, specific compo-

nents of flow appear to interact with near and far information in different ways [107],

prompting Mole and colleagues to call for two-point models to be developed that incor-

porate flow information.

In contrast with models identifying the importance of read edge information, there are

also steering control solutions that predominantly rely upon optic flow [19] or retinal flow

(the flow pattern available to an animal that looks where it wants to go [30,121]). Recently

a driver model has been reported that is able to generate human-like steering trajectories

along roads using a form of retinal flow signal rather than road edge information [97].
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Importantly, Okafuji et al.’s control model seemed most accurate when the inputs were

obtained from far regions rather than near regions. Whilst the model steered successfully,

it only used flow signals from around the fixation point (rather than the global flow field

as used by humans when steering [107, 119]. It seems, then, that accurate models of hu-

man steering control will somehow need to combine the signals derived from optic flow

and road edges perhaps in a two-point control model that allows for additional perceptual

inputs. An issue when trying develop such a two-point control model is that the contri-

bution of flow and road edge information to near and far points remains unclear. Whilst

Chatziastros et al. [104] found that the presence of a flow signal made the same contribu-

tion across varying road-edge conditions (i.e. there was no interaction), they only added

texture to the road surface (not the entire scene) which may have limited the availability

of flow information from the visual periphery. There is evidence that optic flow and road-

edge information can interact [107], but only under specific conditions where the flow

signals are biased with respect to the road edges. The extent to which the presence of

optic flow within near and far zones is used to support accurate steering control remains

to be tested.

The current experiment examines whether flow and road edge information can be sim-

ply modelled with a two-level steering control model. In particular, the aim is to examine

whether the use of optic flow varies depending whether the signal comes from near or

far regions and whether the impact of optic flow interacts with the presence of road edge

information. Using a driving simulator, near or far portions of optic flow and/or road-

edge information were selectively masked. In line with studies that selectively removed

road-edge information [103–107], it was expected that removing far road edges would

produce steering that is lagged with respect to upcoming changes in the road (reduced

anticipation), whereas removing near road edges would reduce steering accuracy. Cru-

cially, selective removal of optic flow information from near and far regions, alongside

road edge information, tested whether there were interactions between these sources of

information. In order to control for the potential differential patterns of eye-movements

elicited by the various visual conditions gaze was directed to a fixation point placed at the

centre of the road ahead (see method for more details).

Whilst removing near or far road edge information provides a pure test of whether

each source is being used, this form of manipulation does effectively force the driver to

rely on alternative sources to control steering. Another way of examining reliance on
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Figure 4.2: Clothoid - Steady Circle - Clothoid (CSC) course

perceptual information is keeping the availability constant but changing the utility across

conditions. Therefore, we also wished to examine whether there were more subtle inter-

actions between optic flow and road edges depending on whether near and far information

was more or less useful for the steering task. Even when driving along simple sections of

road (such as a straight leading into a bend) the extent to which far road information will

be a useful input to steering control can vary (e.g. far road information is less important

when maintaining steering on a straight road section, than on a bend of varying curvature).

To examine this issue we used two steering situations that frequently occur during rou-

tine driving (described further in the method section: Course Design), and which varied

the task requirements: i) a clothoid bend with changing and constant curvature sections

(Figure 4.2, 4.3) and ii) a double lane-change manoeuvre (Figure 4.4, 4.5). Trajectories

during both tasks were subdevided to examine phases based on the particular steering

requirements. The road sections that could lead the driver to stabilise the wheel angle

at a set value (straight road for the lane change task; or constant curvature bend for the

clothoid task), might be predicted to cause drivers to predominantly rely on information

from near regions (to stabilise steering). These sections were contrasted with phases that

require the driver to respond to future changes in road (the point when the lane change

occurs or the change in bend curvature for the clothoid) where the driver may rely more

on information from far regions (anticipating future steering requirements). Our aim was

to determine whether both optic flow and road edges contributed to steering during these

particular phases of control, and whether there were interactions between the sources.

We considered two main hypotheses: whether the region of the scene (near or far)

supplying optic flow information altered steering (H1), and whether there were interac-
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Figure 4.5: The five phases of DLC course
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tions between the regions supplying optic flow and the road-edge information (H2).

H1. Optic Flow affects Steering Control:

Optic flow from the near region contains larger flow vectors than far regions [122] and

peripheral viewing of these vectors may best support the driver in detecting travel direc-

tion [123], in which case masking flow from the near region (Figure 4.6; C7-9 Near Flow

Mask) will have the biggest effect upon steering (H1A). In contrast, it might instead be

predicted that flow from around the point of fixation would be most useful for control-

ling steering [97, 121] in which case masking far regions (Figure 4.6; C4-6) will have the

greatest influence over steering (H1B). Finally, masking either region of the ground will

reduce the overall quality of optic flow, and it may be that the global pattern of optic flow

is the main predictor of steering (H1C) [119]. If this is the case we would expect steering

accuracy to deteriorate whenever there was a flow mask irrespective of where the mask

fell (Figure 4.6; C4-9).

The first set of hypotheses are mutually exclusive, and are concerned with which re-

gions of flow influence steering (independent of road edges). However, an interaction

between flow and road-edges could take many different forms depending on which hy-

pothesis within H1 is most supported. The second set of hypotheses considers the two

most extreme cases provided under the two point control framework.

H2. The effect of Optic Flow on steering control depends on road-edges:

If optic flow is incorporated into the estimate of near and far points we might expect that

the utility of flow depends on the proximity to these points, in which case optic flow from

a region should be most useful when the corresponding road-edge in the same region is

also visible. If this is the case we would expect steering to be more accurate when the

congruent flow and road regions are visible (Figure 4.6, C5 & C9) compared to when the

incongruent flow and road regions are visible (Figure 4.6, C8 & C6), even though there

should be a similar quantity of road and flow information across the whole visual scene

(H2A).

Alternatively, optic flow may provide useful information for two-point control inde-

pendent of road edge information (i.e. provide redundancy). If this is the case we might

expect similar steering patterns in conditions with incongruent flow and road masks (Fig-
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Figure 4.6: A schematic representation of the nine experimental conditions showing the

various combinations of Optic Flow Mask (None, Far or Near) and Road Edge Mask

(None, Far or Near). The X symbol indicates the presence of a fixation cross positioned

over the road centre that drivers were required to look at throughout trials (note that the

cross has been artificially enlarged in this figure, the actual fixation cross was optically

much smaller relative to the display).

ure 4.6, C8 & C6) to congruent masks (Figure 4.6, C5 & C9) because of similar quantity

of road and flow information (H2B).

4.2 Methods

4.2.1 Participants

A sample of 20 University students and staff (2 males and 18 females, 21-33 yrs, mean

= 27.4 yrs) took part in this study. All participants had normal vision (participants did

not need glasses) or corrected-to-normal vision (participants wore glasses). All held a

full driving license (mean time since test = 7.85 yrs). Participants received £10 for taking

part in the study. All participants gave written informed consent and the study was ap-

proved by the University of Leeds, School Psychology Research Ethics Committee (Ref-

erence number: 17-0216), and complied with all guidelines as set out in the declaration

of Helsinki.
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4.2.2 Apparatus

Virtual environments were generated using using WorldViz Vizard 3.0 (WorldViz, Santa

Barbara, CA) on a PC with Intel i7 3770 (3.40 GHz), and projected (EPSON EH-TW5210)

with matte-black surroundings. The projections subtended 1.96 m × 1.12 m and was per-

spective correct from a viewing distance of 1 m and an eye-height of 1.2 m (field of view

88.84◦ × 55.5◦). The display refresh rate was synchronised with data recording at 60 Hz.

Steering was controlled using a force-feedback wheel (Logitech G27, Logitech, Fremont,

CA), which was linearly mapped onto rate of change of heading through a minimum step

size of 0.36 deg/s. The wheel applied a centre-return spring force to ensure that the wheel

was re-centred at the end of trials (when participants released the wheel). This meant

the wheel was centred and ready for the next trial. The force was constant and was not

tied to vehicle dynamics therefore participants did not require extensive training to learn

how forces changed according to the vehicle state. The steering dynamics used a point

mass model that was not matched to a particular vehicle. All participants were given

practice before the actual experiments and rapidly became familiar with the simple simu-

lator model and the mapping of movements of the wheel onto the directional changes that

occurred.

4.2.3 Stimuli

Course Design

Driving in the real-world typically consists of negotiating straight sections of road con-

nected by a series of bends. The nature of the bends will change the balance between

stabilisation of lane position and anticipation of upcoming changes in steering. Two dif-

ferent courses were created to examine steering when the balance between stabilisation

and anticipation components were altered. Both courses had an initial 10 m straight sec-

tion, with the driver starting in the road centre. Path direction (left or right bend) was

randomised from trial to trial to ensure that trials were not so repetitive that participants

learnt the motor action required to steer each bend.

The first course was a ‘U’-shaped bend (Figure 4.2) consisting of alternating Clothoid

- Steady Circle - Clothoid (CSC). Okafuji et al. [124] used a similar course to show that

optic flow control with path information (i.e. an array of points specifying the desired
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trajectory) was able to keep closer to a marked trajectory than a traditional lateral devia-

tion control model. During data analysis steering trajectories along CSC were separated

into the ‘first clothoid’ (increasing curvature), ‘steady circle’ (constant curvature), and the

‘last clothoid’ (decreasing curvature), to isolate the segments where greater anticipation

should have been required (compared to the steady circle phase). In this task, we expect

that far preview information would be most useful during the first clothoid and the last

clothoid (where far preview information indicates that there is an upcoming change in

steering wheel angle required), rather than the middle constant curvature period (Steady

Circle; drivers need to maintain a constant wheel angle) (Figure 4.3).

The second course consisted of a Double Lane Change (DLC) which is consistent

with ISO 3881-1 (Figure 4.4) [125]. This type of course has been successfully used to

discriminate between different driver steering behaviours [87]. Since DLC has discrete

changes in heading angle there are sections where anticipation should be more useful (i.e.

immediately before the lane change) than when holding course on the straight sections

where compensatory control may be predominant (Figure 4.5). This course differs from

CSC in a number of ways. Not only does it place greater emphasis on anticipation prior to

the lane change, but because of steering dynamics there is no way for drivers to generate

trajectories that exactly match the centre of the road at all points in time (effectively trying

to fit a sinusoidal path to square-wave-like signal). As such the driver will be attempting

to gauge when they should initiate steering to generate a trajectory that leads to a road

position that is closest to the centre of the lane.

Gaze Fixation Requirements

During an experiment that used similar displays with constant curvature bends, Mole et

al. [107] found that removing far road edges (see next section: Optic Flow and Road Edges

Mask) affected driver’s gaze patterns, with participants re-orienting their gaze lower in

the scene toward the remaining visible portion of the near road. Eye-movements will alter

retinal flow information, so it is possible that participants are less able to use flow informa-

tion if they are not looking proximal to where they wish to travel [121]. To avoid system-

atic differences between conditions due to changes in eye-movements (whilst also min-

imising between-participant differences that would be caused by varied eye-movement

strategies), we controlled for eye-movements by asking participants to look, throughout

each trial, at a red cross displayed in the road centre approximately 16.1 m (1.2 s) ahead
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of the participant. In previous research we have found that participants usually look on

the region 1-2 s ahead, and we have used this method to control gaze patterns when in-

vestigating the other visual factors influencing steering behaviours [37, 43, 48].

It could be argued that constraining gaze in this way prevents the visual system from

optimally sampling the information available in the optic array, whilst also imposing cog-

nitive load costs on the driver. The problem of course with free gaze is that the loss of

control potentially confounds exploration of the data depending on the behaviours adopted

by the participants. The decision to require gaze fixation of a point on the road ahead was

driven by the nature of the two-point model that we were investigating since it explicitly

uses such a point as an input. Whilst freely fixating a point on the road ahead is likely to

be somewhat different from being forced to fixate a fixation cross drawn in the world, the

loss of ecological validity was felt to be more than outweighed by the improved experi-

mental control provided.

Optic Flow and Road Edges Mask

The simulated virtual environment consisted of a green tinted texture, with a 3 m wide

road demarcated with white road-edges (see Figure 4.6). Our virtual environments were

designed so that two primary sources of information were made available to control steer-

ing: optic flow and road-edges. In order to assess the importance of each source to two-

point control, we selectively applied a flow or road-edge mask to near or far portions of

the scene (see Figure 4.6). Two masked areas were determined based on the half dis-

tance (8.0 m) of the fixation point distance. This distance was chosen so that the far mask

would remove crucial preview information (such as direction of the upcoming bend).

Previous studies have applied masks which simultaneously cover road and flow informa-

tion [106], but no study has applied road or flow masks independently or applied masks

whilst controlling for changes in gaze. A 3 (FlowMaskNo; FlowMaskFr; FlowMaskNr)

× 3 (REMaskNo; REMaskFr; REMaskNr) design leads to 8 conditions that include one or

two mask combinations, and one mask-free condition (i.e. FlowMaskNo and REMaskNo,

the control condition). Whilst it would have been possible to also introduce complete

masks to both information sources, masking both near and far road edge regions then

made it impossible to perform the steering task. For ease of analysis (to keep factors bal-

anced) we did not include a condition where both far and near flow regions were masked.
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Task Instructions

Participants were instructed to fixate the red cross displayed on the screen and “attempt

to steer a central trajectory, keeping to the middle of the road”; to steer “as smoothly

and as accurately as you can”. We were aware that instructing the participants to keep

to the road centre may have reduced natural ‘cutting the corner’ behaviour, however we

wanted to use this instruction since it then allows precise measurement of steering bias

relative to this centre point, and is especially useful for examining systematic steering

biases with reference to the same ideal trajectory (zero bias) for all participants. As per

previous studies [107,119,120] simulated locomotor speed was kept constant at 13.41 m/s

(30 mph) throughout all trials to avoid any differences between trials, conditions and/or

participants. This meant that participants were not required to use the foot pedals for

longitudinal control.

4.2.4 Procedure

Participants were given 10 practice trials on each of the two courses (20 trials in total) in

order to become familiar with the driving simulator dynamics, steering tasks, and mask

conditions, and to minimise major learning effects throughout the experiment. During

practice trials participants were exposed to each condition for a single trial (only the

control condition was repeated) in the order C1, C5, C9, C7, C4, C3, C2, C8, C6, C1

(see Figure 4.6 for condition labels). In the experiment proper, trials were randomly

interleaved, and participants experienced 6 trials per condition [48, 107, 119], resulting in

54 trials per course. The trial durations were 10s for DLC and 19s for CSC, resulting in a

block running time of 9 mins and 17.1mins respectively. Participants first performed the

CSC task and then the DLC task. Participants took a 5 minute break between tasks.

4.2.5 Analysis

The hypotheses outlined in the introduction require steering metrics which predominantly

capture anticipatory and compensatory steering behaviours. Steering wheel angle, and po-

sition and orientation in the world were recorded per frame, allowing driver performance

to be examined with respect to the ideal trajectory (road centre, as per instructions), or

with respect to key environmental events (such as approaching a large change in road di-
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rection). The first 0.84 s (50 frames) of each trial were stationary to allow the participant

to prepare for the next trial and re-centre the wheel.

Three main measures of steering performance were calculated:

1. Steering Bias (SB) provides a signed measure of accuracy and was calculated using

the average deviation of position away from the road centre for each frame of each

trial (in metres). It is a signed measure of error and for the clothoid bends positive

values indicate steering biased toward the inside road edge (a behaviour referred to

as ‘oversteering’) whereas negative values indicate steering biased toward the out-

side of the bend (‘understeering’). Note that the labels understeering and oversteer-

ing should not be confused with the terms ‘oversteer’ and ‘understeer’ commonly

used to describe the steering properties of real vehicles on roads (and the associ-

ated requirements for the driver to compensate for these properties). The DLC task

did not have a single direction of bend so rather than indicating over/understeering

the sign indicates systematic bias toward the left (negative) or right (positive) road

edges during these trials.

S B =
1

N

N
∑

i=1

(Vehicle Position −Centre Line) (4.1)

2. Root-Mean-Squared Error (RMSE) provides a measure of precision of each tra-

jectory relative to the road centre in order to capture the extent of lateral deviation

across each trial (in metres). Larger values of this unsigned measure indicate trials

where the driver spent longer periods deviating further from the road centre.

RMS B =

√

√

1

N

N
∑

i=1

(Vehicle Position −Centre Line)2 (4.2)

3. Initiation Point provides a measure of lag/anticipation (in seconds) on the DLC

roads. Steering performance leading up to the first lane change was isolated (the

later bends are potentially contaminated by prior steering making it is difficult to

obtain a “pure” measure of the timing responses) and the time at which drivers made

their first large steering turn was calculated. The time at which a 1 degree change

in steering occurred since this approximates to a 10% change in heading angle.

For CSC there was not a single point that the Initiation Point could be measured

from (because the change in heading was incremental) so it was not considered as

a useful metric to calculate.
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SB and RMSE are calculated per each phase to analyse the steering performance de-

pending on the tracking path. For both CSC and DLC tasks a 3 (REMaskNo, REMaskFr,

REMaskNr) × 3 (FlowMaskNo, FlowMaskFr, FlowMaskNr) repeated measures ANOVA

were conducted on each of the steering metrics. Bonferroni corrections were made for

any post-hoc comparisons. For ease of understanding, main effects and interactions are

reported in Tables 4.1, 4.2, and key contrasts that explain interactions are depicted in fig-

ures. When sphericity assumptions were violated Huynh-Feldt corrections (when ϵ > .75)

or Greenhouse-Geisser corrections (when ϵ < .75) were used [126].

4.3 Results

The two steering tasks (CSC and DLC) were designed to put different demands on the

drivers, whilst also varying the potential utility of prospective information sources for

steering control. Each task was analysed separately to see whether similar patterns of

steering were apparent independent of particular task characteristics.

4.3.1 CSC Steering Task

To determine the influence of road edges and optic flow when steering curved roads we

divided each trial into three phases: 1) First Clothoid (0.84 − 9.50 s), 2) Steady Circle

(9.50 − 14.17 s), 3) Last Clothoid (14.17 − 19.00 s). The first clothoid was a tightening

bend, the middle phase was a bend of constant curvature, and the last clothoid was a

straightening bend (Figure 4.2). A 3 (REMask) × 3 (FlowMask) ANOVA was run on

steering bias measures from across the whole trial, and also for each phase (main effects

and interactions are reported in Table 4.1).

Steering Bias

Average trajectory plots across REMask and FlowMask conditions for three phases of

CSC path are shown in Figure 4.7 and 4.8. These results are related to main effects that

are reported in Table 4.1. When no masks were in place (all optic flow and road-edge

information was present) steering was relatively unbiased during the first two phases of

the trial, but then oversteering (corner cutting) occurred during the final phase as the

road straightened (Figures 4.9-4.13). This is consistent with a number of other studies
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showing a propensity for human drivers to cut corners [42, 127]. From Figures 4.9, 4.10

it can be observed that removing either flow or road-edge information altered trajectories,

leading to an increased propensity for understeering. Across the whole course (Figure

4.10) this resulted in significant main effects for manipulations of optic flow and road

edges, but not a significant interaction (see Table 4.1). Removing either region led to

increased understeering compared to when there were no masks (FlowMaskNo vs Fr : p <

.001; FlowMaskNo vs Nr : p < .001; REMaskNo vs Fr : p = .003; REMaskNo vs Nr : p =

.001).

On closer inspection of the individual phases of steering, it seems that masking road or

flow information had differential effects on steering depending on the task requirements.

During the First Clothoid phase, REMaskFr caused the greatest bias (REMaskNo vs Fr :

p = .003; REMaskNo vs Nr : p = .132) (Figure 4.11), presumably because without this

information it is not possible to predict whether the future path curved to the left or

right (path direction was randomised from trial to trial). During the Steady Circle phase

(Figure 4.12) both flow masks and only REMaskNr caused significantly greater under-

steering (compared to the no mask condition) (see Table 4.1; FlowMaskNo vs Nr : p <

.001; FlowMaskNo vs Fr : p < .001; REMaskNo vs Nr : p = .001; REMaskNo vs Fr : p =

.091). During the Last Clothoid phase (Figure 4.13) masking either flow or road edges re-

duced oversteering compared to when there was no mask (Table 4.1). Interestingly, during

the Last Clothoid phase there is also an interaction (Table 4.1), caused by FlowMaskFr and

FlowMaskNr reducing oversteering relative to FlowMaskNo during REMaskNo (FlowMaskNo vs Nr :

p < .001; FlowMaskNo vs Fr : p = .001) and REMaskFr (FlowMaskNo vs Nr : p =

.002; FlowMaskNo vs Fr : p < .001), but not REMaskNr (FlowMaskNo vs Nr : p = 1; FlowMaskNo vs Fr :

p = .097).

Root-Mean-Squared Error

The steering bias metric usefully distinguished between performance accuracy across the

display conditions, identifying systematic shifts in position relative to the road centre. It

is possible, however, that non-systematic directional changes in position would not be

captured by steering bias (since positive and negative errors could effectively cancel one

another out). An alternative metric of lateral deviation (relative to the road centre) is Root-

Mean-Squared Error (RMSE; Figure 4.14). RMSE was calculated for the whole course to

act as a metric of variability, whereby larger values reflect a trajectory that was further
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Figure 4.7: Average trajectory plots for the three phases of CSC trials (first clothoid, circle

and last clothoid, see Figure 2B) across REMask.

Figure 4.8: Average trajectory plots for the three phases of CSC trials (first clothoid, circle

and last clothoid, see Figure 2B) across FlowMask.

from the road centre. As can be seen in Table 4.1, the ANOVA revealed a main effect

of FlowMask, but no main effect of RoadMask, and no interaction. The main effect of
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Figure 4.9: Results of Steering Bias plot. Average steering bias relative to the road centre

for the three phases of CSC trials (first clothoid, circle and last clothoid, see Figure 4.3).

Negative values indicate understeering (outside position relative to the centreline in Figure

4.2) and positive values indicate oversteering (inside positions relative to the centreline).

C1 C2C4 C7 C9C6C3C8C5

Figure 4.10: Results of Steering Bias (All Phases). Error bars represent standard error of

the mean.

FlowMask was caused by FlowMaskFr increasing RMSE relative to the other two flow

conditions (FlowMaskNo vs Fr : p = .019; FlowMaskFr vs Nr : p = .026).
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C1 C9C6C3C8C5C2C7C4

Figure 4.11: Results of Steering Bias (First Clothoid)

C1 C9C6C3C8C5C2C7C4

Figure 4.12: Results of Steering Bias (Steady Circle)
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C1

C9C6C3

C8C5C2

C7C4

Figure 4.13: Results of Steering Bias (Last Clothoid). Stars represent key comparisons

where interactions are present.

Table 4.1: ANOVA main effects and interactions for SB and RMSE for CSC.

SB RMSE

Variable All Phases First Clothoid Steady Circle Last Clothoid

F 14.00 1.73 25.16 21.25 6.98

d f 1.45, 27.55 1.35, 25.61 2, 38 1.36, 25.80 2, 38

Flow (ϵ = .73†) (ϵ = .67†) (ϵ = .68†)

p < .001∗ .20 < .001∗ < .001∗ .003∗

η2
p .42 .083 .57 .53 .27

F 10.43 9.54 4.56 16.60 2.18

d f 1.21, 22.89 1.30, 24.68 1.37, 26.00 1.30, 24.73 1.30, 24.72

RE (ϵ =†) (ϵ = .65†) (ϵ = .68†) (ϵ = .65†) (ϵ = .65†)

p .002∗ .003∗ .032∗ .001∗ .15

η2
p .35 .33 .19 .47 .10

F 1.86 2.29 .98 4.99 2.31

d f 2.95, 56.10 2.89, 54.88 2.95, 56.04 3, 56.94 2.73, 51.95

Flow × RE (ϵ = .74†) (ϵ = .72†) (ϵ = .74†) (ϵ = .74†) (ϵ = .68†)

p .15 .091 .41 .004∗ .10

η2
p .089 .11 .049 .21 .11

∗ : p < .05; † : ϵ < .75 (Greenhouse-Geisser corrections are applied)
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C1

C9C6C3

C8C5C2C7C4

Figure 4.14: Results of average Root-Mean-Squared-Error relative to the road centre for

CSC. Error bars represent standard error of the mean.
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Figure 4.15: Average steering trajectories for the DLC task across REMask conditions.

Note: vertical and horizontal axes (in metres) are not to scale to make trajectory differ-

ences easier to view.

4.3.2 DLC Steering Task

The DLC task consisted of a series of straight sections of road connected by large, sudden

changes in road direction (Figure 4.15 and 4.16). During analysis the whole trajectory

was divided into 5 phases aligned with each change in direction (see Figure 4.5): 1) First

Straight (0.84 − 2.69 s), 2) First Lane Change (2.69 − 4.96 s), 3) Middle Straight

(4.96 − 6.83 s), 4) Final Lane Change (6.83 − 8.72 s), 5) Final Straight (8.72 − 10.00

s). Whilst the straight sections themselves required little/no steering (if the trajectory

was aligned with the road), the sudden changes in direction introduce a need to make

large corrections. These characteristics should create conditions where greater emphasis

is placed upon far road information in the moments preceding the direction change than

during the CSC steering task.

Initiation Point

The Initiation Point indicates the time at which the first major steering response was pro-

duced on the DLC road. The results of the ANOVA (Table 4.2) shows that there were

reliable differences in Initiation Point across Flow and Road Edge conditions. The av-
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Figure 4.16: Average steering trajectories for the DLC task across FlowMask conditions.

erage trajectories across REMask and FlowMask condition are displayed in Figure 4.15

and 4.16, and the most obvious pattern is the lagged trajectories that occur when far

road-edge information is removed (REMaskFr, blue), compared to conditions where far

road-edge information was available (e.g. Control, REMaskNr). Figure 4.17 shows the

heading angle of the vehicle across the trajectory which is used to identify the region that

marks out the initiation point. Figure 4.18 shows the average timing of steering initiation

for each condition. REMaskFr was lagged compared to the other REMask conditions

(REMaskNo vs Fr, p < .001; REMaskFr vs Nr, p < .001). In contrast REMaskNr did not

cause reliable differences in initiation point lag compared to REMaskNo (REMaskNo vs Nr, p =

1.0). The flow mask also caused changes in the Initiation Point, though these effects were

more subtle. Removal of far flow (FlowMaskFr) actually caused earlier steering (less lag)

compared to when flow was unmasked (FlowMaskNo vs Fr, p = .031). There seemed to

be no systematic differences between initiation point when the near region was masked

(FlowMaskNo vs Nr, p = .33).

Steering Bias

The lag in steering initiation due to REMaskFr (Figure 4.17, 4.18) manifests in biased

steering during the initial straight (Figure 4.20). Drivers without road-edge preview stay
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Figure 4.17: Results of average heading change plots, with the initiation point marked.

C1

C8C5C2

C9C6C3C7C4

Figure 4.18: Results of average Initiation Point. Error Bars represent standard error of the

mean.

close to the midline, whereas drivers with preview anticipate and begin to steer early in

the direction of the bend (see Table 4.3). These differences cause relative understeering

around the initial bend during the REMaskFr conditions (Figure 4.21), and lagged steering

through the remainder of the course (Figures 4.22-4.24).
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Figure 4.19: Results of Steering Bias averaged across all participants. Note that in this

task negative values indicate a leftward position relative to the centreline (see Figure 4.15

and 4.16) and positive values indicate rightward positions relative to the centreline (not

oversteering and understeering as in the CSC task).

The change in steering associated with the absence of preview information is entirely

predictable. Perhaps more interesting is the gradual emergence (after the First Straight)

of differences in steering depending on whether flow information was masked or not. The

steering bias differences are clearest for Middle Straight and Final Straight phases (Fig-

ures 4.22, 4.24), where a road position is adopted consistent with greater corner cutting

when either Near or Far flow masks are applied (see significant main effects for Middle

Straight and Final Straight in Table 4.3).

For the most part, these effects (lagged steering due to lack of road preview; corner

cutting when either flow section is masked) appear to be largely independent of each other.

For the final lane change, however, an interaction emerges (Table 4.3; Figure 4.23), due

to a large isolated shift in understeering for FlowMaskFr, but only when the REMaskFr

is applied (Figure 4.23). It is worth noting that the interaction is only present for the final

lane change (not the first lane change) and also disappears during the final straight, so it

is difficult to conclusively determine whether this specific combination of FlowMaskFr

and REMaskFr conditions as being processed in a qualitatively different way to the other

REMaskFr conditions.
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C2 C9C6C3C8C5C7C4C1

Figure 4.20: Results of average Steering Bias relative to the road centre for the five phases

of the double lane change trials (First Straight). Where there is an interaction present the

stars denote significant contrasts. Error bars represent standard error of the mean.

C2 C8C5

C9C6C3C7C4C1

Figure 4.21: Results of average Steering Bias relative to the road centre for the five phases

of the double lane change trials (First Lane Change)
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C5 C8C2 C9C6C3C7C4C1

Figure 4.22: Results of average Steering Bias relative to the road centre for the five phases

of the double lane change trials (Middle Straight)

C8C5C2

C9C6C3C7C4C1

Figure 4.23: Results of average steering bias relative to the road centre for the five phases

of the double lane change trials (Final Lane Change)
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C5 C8C2

C9C6C3C7C4C1

Figure 4.24: Results of average Steering Bias relative to the road centre for the five phases

of the double lane change trials (Final Straight)
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Table 4.2: ANOVA main effects and interaction for Initiation Point and RMSE for DLC.

Variable Initiation Point RMSE

F 3.73 1.48

d f 2, 38 2, 38

Flow

p .033∗ .24

η2
p .16 .072

F 50.80 2.30

d f 1.34, 25.49 1.06, 20.12

RE (ϵ = .67†) (ϵ = .53†)

p < .001∗ .14

η2
p .73 .11

F .69 4.13

d f 4, 76 2.74, 52.02

Flow × RE (ϵ = .69†)

p .57 .013∗

η2
p .035 .18

∗ : p < .05; † : ϵ < .75 (Greenhouse-Geisser corrections are applied)

Root-Mean-Squared Error

Since the DLC contains sections where bias was observed in opposite directions (i.e. there

are an equal number of left and right turns), it might be expected that directional errors

from one phase to the next effectively cancel out - especially the phases where the driver

is coming up to a bend in the opposite direction to the one they have just exited. To

examine deviation of lateral position the unsigned RMSE scores were calculated (Figure

4.25). While there were no main effects of REMask or FlowMask, there was an interaction

between these factors (see Table 4.2). The interaction is driven by there being no reliable

differences across levels of FlowMask during REMaskFr, but during both REMaskNo and

REMaskNr there was an effect of FlowMaskNr (p = .041) and FlowMaskFr (p = .007),

causing greater steering errors than FlowMaskNo.
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Table 4.3: ANOVA main effects and interaction for SB for DLC.

SB

Variable First St First LC Mid St Final LC Final St

F 1.11 4.38 14.45 2.04 11.42

d f 2, 38 2, 38 2, 38 2, 38 2, 38

Flow

p .34 .019∗ < .001∗ .14 < .001∗

η2
p .055 .19 .43 .097 .38

F 22.97 44.54 25.78 31.91 48.90

d f 1.48, 28.20 1.12, 21.22 1.11, 21.05 1.26, 23.85 1.09, 20.6

RE (ϵ = .74†) (ϵ = .56†) (ϵ = .55†) (ϵ = .63†) (ϵ = .54†)

p < .001∗ < .001∗ < .001∗ < .001∗ < .001∗

η2
p .55 .70 .57 .63 .72

F .75 1.96 .736 5.27 1.91

d f 2.71, 51.48 4, 76 4, 76 2.44, 46.30 4, 76

Flow × RE (ϵ = .68†) (ϵ = .61†)

p .52 .11 .57 .006∗ .12

η2
p .038 .093 .037 .22 .091

∗ : p < .05; † : ϵ < .75 (Greenhouse-Geisser corrections are applied)

C9C6C3C8C5C2C7C4C1

Figure 4.25: Results of average Root-Mean-Squared-Error relative to the road centre for

DLC. Error bars represent standard error of the mean.
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4.4 Discussion

The main purpose of the present study was to test whether optic flow influenced steering

control when the availability of road edge information changed. If optic flow informa-

tion did influence steering, then the secondary aim was to determine whether it interacted

specifically with the signals provided by the road-edges for two-point steering control. To

examine these issues, steering tasks were used that altered the utility of far-road informa-

tion, whilst also specifically manipulating visual conditions in order to vary the presence

of optic flow and road-edge information from near and far regions. Two main steering

tasks were used (a clothoid bend (CSC) and a road with a double-lane change (DLC)),

since these courses could be separated into subcomponents that allowed the examination

of distinct steering phases where prospective signals would be more or less useful. Main-

taining constant paths (straight line or constant curvature bends) should have been less

affected by the absence of far road-edge information than phases where there was an up-

coming curvature change or lane change. Indeed, for the CSC steering task this pattern

was broadly observed: steering bias was affected most when a mask was applied to far

road information during the the First and Last Clothoid phase, but there was little differ-

ence between near and far road masks for the constant curvature section. The DLC task

was designed to place a greater emphasis on prospective control from the far road, and

the results demonstrated that this was indeed the case: masking the far road caused large

changes to steering across all phases of the DLC steering task, this was also reflected in

poorer overall precision (RMSE scores) for the far road mask.

Having established road-edge mask conditions that caused systematic changes to steer-

ing, the next step was to determine whether the presence or absence of optic flow in near

or far regions altered steering responses. Masking regions of optic flow did alter steering

responses across conditions but this was true for both near and far flow masks and also

for most phases of both CSC and DLC steering tasks. For the most-part the nature of the

changes induced by the near or far flow mask appeared to be similar: masking either flow

region caused understeering during CSC and increased corner cutting during DLC. At

first glance this pattern may seem contradictory, however, the types of steering response

required are qualitatively different for the two tasks. The CSC trials require gradual ad-

justment to steering to ensure that a mid-road position is maintained, and these sorts of

corrections seem to be supported by global optic flow quality. In contrast, the DLC re-
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quires a sudden large realignment of the locomotor axis from one straight road section

to another straight road section. In many ways this is similar to conditions that require

the observer to become aligned with an eccentric target [36, 37]. In this previous work

degrading global optic flow was observed to cause more direct trajectories to be taken due

to participants executing rapid re-alignment of trajectories rather than controlling steering

to make gradual trajectory changes in steering [37] (Figure 4.25). It seems, therefore,

that it is the quality of the global flow pattern that is the primary contributor to steering

responses across the range of situations examined here (consistent with H1C [119]) rather

than there being a specific region of flow supporting use of near or far road edges for two-

point control. There has been some circumstantial evidence that flow from far regions

may be more important for steering control than flow from near regions [97, 128]. In the

present study this wasn’t a pattern that was universally observed, but there were instances

consistent with far flow sometimes having a greater role: we observed that masking far

flow led to increased steering errors accrued across the whole time-course of CSC bends

(though there were no reliable differences in steering bias), and also observed earlier turn-

ing during the first phase of the DLC task when far flow was absent.

As outlined in Hypothesis 2, differential effects of near and far optic flow depending

on near and far road edges could be considered as evidence for optic flow having an

input into two-point steering control. However, we would urge caution in interpreting our

findings in this way. Firstly, the majority of the effects of optic flow on steering appear to

be largely independent of the presence or absence of near/far road-edge components. The

DLC steering task was designed to emphasise the need for preview information, so if the

use of flow information was dependent on far road edge signals (as seems to be the case

for flow speed [107]), then we would expect to see clear interactions with the presence

or absence of far road information. Instead, for the majority of the course there was no

interaction between road-edges and optic flow suggesting that there is limited use of optic

flow for anticipatory control in these conditions. Secondly, whilst interactions were found

for some steering phases/metrics (e.g. steering bias during the final lane change of DLC

and total course RMSE for DLC), the pattern was not a consistent one. The far flow /

far road interaction supports H2A, however the near flow / far road interaction is more

consistent with H2B. It seems, therefore, that the relationship between the use of optic

flow and road edges is not straightforward. The CSC task was designed to place greater

emphasis on steering stabilisation, and in that task interactions between optic flow and
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road-edges emerged across the time-course of the bend (during the final phase of steering).

It seems then that when performing a complex visual-motor steering response there will

be complex interactions between the use of optic flow and road edge information, but not

in a fashion that can be captured simply using a two-point control model.

One aspect of steering control that was not examined in the present study was the

impact of differential gaze strategies on the use of optic flow and road edge informa-

tion. Previous work [48, 107] highlighted that gaze patterns change depending on the

road edge components visible in the scene. The present study controlled this factor by

enforcing gaze fixation on a far point, in a region where gaze usually falls when steer-

ing along a road with no masked information [37]. Placing gaze at this point may have

unintentionally led to additional emphasis on the information available from around the

point of fixation (the far region), and gaze fixation at this point may also have provided

a further source of information to aid steering [129]. One issue worth mentioning is that

gaze behaviours were not directly measured, rather we relied on participants complying

with the fixation instructions. Our previous work demonstrates that participants are quite

reliable at following these instructions [37] especially when they are looking where they

want to steer, however, it is possible that intrusive saccades took the eye away from the

point of fixation for brief periods during some trials. It seems unlikely that the reliable

patterns of behaviour observed in this study can be explained by the odd failure to fixate

since the only likely outcome would be more variable steering responses for those condi-

tions depending on the extent to which intrusive saccades were employed. Future studies

could examine similar combinations of near/far flow and road masks with no fixation re-

quirements to determine the way in which gaze patterns adapt to removal of information

sources, and the degree to which they can effectively compensate for the loss of infor-

mation. Conditions C6 (REMaskFr + FlowMaskNr) and C8 (REMaskNr + FlowMaskFr)

would be particularly interesting test cases for the gaze fixation system since in these con-

ditions useful information needs to be retrieved from two separate parts of the scene at

the same time, leading so potentially conflicting gaze demands.

The present work controlled locomotor speed, keeping this variable constant. It might

be expected that flow information would have more influence over steering as the signal

quality increases, and this may naturally occur when travelling at higher speeds. Whilst

changes to flow speed have been studied independent of the road edges [107] further

experiments are needed to systematically vary locomotor speed in the presence of near
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and/or far components to test whether drivers rely more on flow at higher speeds.

Overall our findings suggests that global optic flow does reliably contribute to the

nature of steering responses, but the signal does not seem to be a primary input to the

estimation of the near or far components as described by the two-point control model.
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Chapter 5

Conclusion

In this thesis, we constructed a human-like and high-performance automated driving sys-

tem based on knowledge from the field of Psychology, and we applied the experimental

results in the field of Engineering to understand driver steering behavior. The aim of

these studies was to construct Human-in-the-Loop research systems and to facilitate both

research fields based on the approach of each other.

In Chapter 2, we provided an overview of optical flow modeling and the control

method based on optical flow. The result of optical flow modeling shows that optical flow

is effective in perceiving the direction of self-motion since FoE (Focus of Expansion) is

consistent with the future path generated by the vehicle motion. Then, we proposed an op-

tical flow controller. The result of the proposed optical flow controller with respect to the

target point distance shows the same behavior in terms of driving precision as the driver

fixation-steering behavior between expert and novice drivers. Therefore, the proposed

method is concluded to be a human-like controller. The contribution of this chapter was

to implement the knowledge of previous psychological experiments into control theory.

In Chapter 3, we presented the preview/predictive driver model based on optical flow.

The preview/predictive driver model was analyzed from the perspective of optical flow,

and it reveals that the previous model includes optical flow information without the ele-

ment of eye-movements. Then, we proposed a new preview/predictive model based on

the human visual behavior. This model can include the aspect of optical flow. The results

of the proposed model show that the proposed model can improve both the control perfor-

mance and ride quality compared to the previous model. The contribution of this chapter

was to develop the results of Chapter 2 into the famous driver model.
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Figure 5.1: The difference between optic flow in the far and near region

Chapter 4 provided the psychological contribution for understanding driver steering

behavior within the scope of the Two-point steering model. The results from Chapter 2, in

which optic flow from the far region was found to be effective for achieving precise driver

steering, was applied to the experimental design, which uses optic flow/road edges mask.

The aim of the experiment was to figure out the relationship between the steering perfor-

mance and the optic flow information with respect to driver gazing. The results show that

the global optic flow influences Steering Bias (SB), which is a directional accuracy metric,

regardless of the specific area of vision, and that optic flow from the far region is effective

for Root-mean-squared error (RMSE), which is a precision metric. This result for RMSE

is consistent with the results in Chapter 2 (Figure 2.17 and Figure 4.14). It seems to be

because FoE is derived by the lateral component of optic flow. Optic flow in the far region

is obviously larger than that in the near region, as shown in Figure 5.1. Therefore, it is

easy for humans to perceive the direction of self-motion from the far region. The design

of this chapter was influenced by the results of Engineering, whereas Chapters 2 and 3

were based on the application of the knowledge acquired from the Psychology aspect to

Engineering.

Control theory, e.g. nonlinear control such as Adaptive control and Sliding mode con-

trol, and Machine Learning techniques, e.g. Deep Learning and Reinforcement Learning,

have improved considerably to become sufficient under limited conditions. Thus, the

ability of human beings has enlarged along with the growth of the above technologies.

However, there is always an uncanny valley for any field of robotics. For instance, human
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beings sympathize with humanoid robots as they are approaching human appearance.

However, beyond a certain threshold, humans will feel the humanoid robot gruesome.

This is said to be the same in the field of automatic driving vehicles. This is the most

difficult part in the field of Engineering at present, and this has not been introduced to

the current control theory and machine learning techniques. Therefore, we started to do

research with Human-in-the-Loop research systems in the field of the autonomous vehicle

systems. We believe that the series of studies in this thesis will contribute to expanding

the research in not only the autonomous vehicle systems but also the whole of Science and

Engineering. In the specific future research related to this thesis, it is necessary to clarify

what is a system having an affinity with the driver. The proposed systems in this thesis

were constructed by only driver’s visual perception, but humans are definitely influenced

by sensorimotor systems. The affinity with humans must be evaluated by both visual and

sensorimotor perception systems. As a result, we can introduce the degree of affinity into

system evaluation in terms of human feelings. Such systems which have high affinity with

humans will contribute to our future society.

The author believes that in the 21st century, the transdisciplinary research fields with

humans such as “Cybernetics”, which is the scientific study of control and communication

in animals and mechanics [130], and “Embodiment”, which is a relationship between the

human body and the environment [17], should be considered more, in order to enlarge the

capability of robotics. In order to do that, we need to focus on not only robotics but also

the understanding of human beings. The author wishes to contribute to these academic

fields based on his own experience and knowledge throughout his life.
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