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Chapter 1

Introduction

Chapter 2 is based on the accepted paper [5]. For N > 2, we give a natural
derivation of the Avron-Herbst type formula for the time evolution generated by
an N-body Hamiltonian with constant electric and magnetic fields. By virtue
of the formula, some scattering problems can be reduced to those in the case
where the constant electric and magnetic fields are parallel to each other. As
an application of the formula, we give the result of the asymptotic completeness
for the systems which have the only charged particle and some neutral ones in
crossed constant electric and magnetic fields. In §2.1 and 2.2, we first prove an
Avron-Herbst type formula (Theorem 2.1.1) for an N-body system in a constant
electric field E = (E, E», F3) € R*\ {0} and a constant magnetic field B =
(0,0, B) € R*\ {0}, B > 0, which says that the time evolution generated by the
total Hamiltonian H (E) is transformed, by a family of unitary operators .7 (t),
into that of the Hamiltonian H (E)) only with the magnetic field B and the electric
field parallel to the magnetic field E = (0,0, ) || B:

g (t) _ e—z‘tMaQ /2 ei]V[a~cccm e—itwktotal'

In this case, Skibsted [33] has already obtained such a formula, but his formula is
written under the assumption that all the particles are charged, and our formula is
represented so naturally that the system may contain some neutral particles, which
is a good feature of our formula. As an application of Theorem 2.1.1, in §2.3,
we consider the problem of the asymptotic completeness for a N-body system
consisting of NV — 1 neutral particles and only one charged particle under the
assumption that the component of the electric field parallel to the magnetic field is
zero; in this case, the wave operators are unitarily equivalent to that of the system
with the magnetic field alone, for which Adachi [1],[2] has already obtained the
asymptotic completeness, so the asymptotic completeness for our wave operators
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follows immediately (Theorem 2.3.1). Also in the case where the space dimension
is not three but two, that is, if the electric field £ = (E,, Ey) € R*\ {0} lies in
the plane R* parpendicular to the constant magnetic field B and the N-body
system is restricted to this plane, we can prove the corresponding Avron-Herbst
type formula (Theorem 2.1.2), which says that the time evolution generated by the
total Hamiltonian H, (E) is transformed, by a family of unitary operators .7, (t),
into that of the Hamiltonian H 1(0) only with the magnetic field B:

e*ith_(E) — jj_ <t>67itl~{1_(0) jj_ (O>*,

jl (t) = o itMad /2 jiMay Tom, 1 p=itor Keotal, 1

Hence, in the same way as the case where the space dimension is three, if the
number of charged particle is one, the asymptotic completeness (Theorem 2.3.4)
follows from the result of Adachi. Here we remark that the result of Adachi
has a strong connection with the fact that charged particles are bounded in the
direction parpendicular to the magnetic field but the neutral particles are not so,
and the presence of the neutral particles are crucial, especially in this case where
the system is restricted to the plane. Lastly, in §2.4, we make some remarks on
the extention to the case where the electric field is time-dependent.

Chapter 3 is based on the submitted paper [6]. In the spectral and scatter-
ing theory for a Schrodinger operator with a time-periodic potential H(t) =
p?/2 + V(t, ), the Floquet Hamiltonian K = —id; + H (t) associated with H (t)
plays an important role frequently, by virtue of the Howland-Yajima method. In
this chapter, we introduce a new conjugate operator for K in the standard Mourre
theory, that is different from the one due to Yokoyama, in order to relax a cer-
tain smoothness condition on V. As a conjugate operator for K, Yokoyama [39]
introduced

~ 1
Av=g{ep(L+p") 7+ (L+p") p- ).
Roughly speaking, the usual conjugate operator

- 1

Ao = Sa-p+p-a)

makes i[K, Ag] = p® and fails to let this commutator be K-bounded. To avoid this

problem he multiplied A, by the resolvent of p> and made i[K, A,] = p(p?/2 +
1)~! bounded. However, in this chapter, we multiply Ay by the resolvent of D, =

—10; and introduce a new conjugate operator

Ays = (N — 80— D)t ® A,

Unlike the conjugate operator due to Yokoyama, in this case, the potential V (¢, x)
needs some assumption on the derivatives with respect to the time variable ¢ (see
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Condition (V)), but referring to the assumptions of Yajima [38] which guarantees
the existence and uniqueness of the unitary propagator, this condition (V) is found
to be more natural than that of Yokoyama. Moreover, while Yokoyama imposed
an infinite differentiability on the regular part of the potential for the sake of a
pseudo-differential calculus, our condition (V) may relax this to the extent that
Vres(t,z) € C*(R x R?). The main result of this chapter is the Mourre estimate
for K with A,,s (Theorem 3.1.1). We give that proof in §3.2. In §3.3, as an
application, we consider the one-body system in the time-periodic electric field
E(t) € R". By an Avron-Herbst type formula, the time evolution generated by
the Hamiltonian of this system

H(t) = Ho(t) + V(x), Ho(t) = 5p2 —E)-x
is transformed, by a family of unitary operators, into that of the Hamiltonian with
the potential made time-periodic by a time-periodic function ¢(t) and the free
Hamiltonian made time-independent:

H(0) = Ho+ V(e +elt), Hy= 307

if V' is short-range, V' (x + ¢(t)) satisfies our condition (V). Then, for the Floquet
Hamiltonians associated with Hy and H (t), the result of the asymptotic complete-
ness can be derived from the Mourre theory in §3.1. By virtue of the Howland-
Yajima method, the asymptotic completeness of the wave operators for H, and
H (t) also follows, and consequently that of the original wave operators for H(t)
and H (t) follows. Lastly, in §3.4, we make some remarks on the many body case.
Unlike the congugate operator due to Yokoyama, A, s is expected to have an
extension to the many body systems, but this is an issue in the future.
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Chapter 2

Remarks on the Avron-Herbst type
formula for N-body quantum
systems in constant electric and
magnetic fields

2.1 Introduction

In this chapter, we study the scattering theory for N-body quantum systems in
constant electric and magnetic fields.

Let N > 2. Consider the system of N particles moving in the Euclidean space
R? on which the constant electric field E = (E,, Ey, F5) € R*\ {0} and the
constant magnetic field B = (0,0, B) € R*\ {0} with B > 0 are impressed.
Denote by m; > 0, ¢; € Rand z; = (z;1,2;2,2;3) € R* (j = 1,...,N) the
mass, the charge, and the position of the j-th particle, respectively. We assume
that for some N. € N such that N. < N, the last V. particles are charged and
the rest are neutral. In other words, we suppose

¢ #0 (if j > N, +1), ¢; =0 (otherwise), (2.1.1)

where N, := N — N. > 0. N = N, + N.. Then the total Hamiltonian fI(E) of
the system is defined by

H(E) = Hy(E) +V,

N
- 1 2
Hy(E) = ; (%(pj —qjA(z;))” — G E- %‘) ) (2.1.2)
V=Y Vile; —a),
1<j<k<N



on L2(R*™), where p; = —iVa, = (pj.1,Pj2, Pj3) is the canonical momentum
of the j-th particle, Vj;(x; — xj)’s are pair potentials, and A(r) is the vector
potential associated with the magnetic field B. In the symmetric gauge, A(7) is
written as

1 B
A(r) = §B Xr= 5(—7’2,7”170); = (r1,72,73) € R

We will use the symmetric gauge in this paper. Put
Dj = pj — q; Alx;)

for the sake of brevity. D); is called the kinetic momentum of the j-th particle.
Here we note that if 7 < N, then p; = D; because of ¢; = 0. For the sake of
simplicity, we impose the following condition (V'0); with d = 3 on V" at first:

(V0)yFor 1 < j < k < N, Vj;, belongs to C(R%; R), and satisfies the decaying
condition
[Vik(r)| < C(r)~"

with some p > 0.

Here (1) = v/1 + 2. Under the condition (V0)s, H(E) is self-adjoint.

Put E, := (I, E>,0) and E|| := (0,0, E3). Then E, 1 B, E| || B, and
E can be decomposed into the direct sum E, @& E). Now we would like to give
the relation between e~ () and e~*"(E1) in terms of the Avron-Herbst type
formula. Let us introduce the total mass M, the total charge (), the position of
the center of mass .y, the total pseudomomentum ki, of the system, and the

E x B drift velocity « by

N N 1 N
M:ij, Q:ZQj> mcm:Mijxﬁ
j=1 j=1 J=1

N

ExB EQ El
b = S (0, + 4, A(r), o= T2 = (E,—E,o) |

j=1

Put
kj = p;j + q;A(x;)

for the sake of brevity. k; is called the pseudomomentum of the j-th particle. Here
we note that if j < N, then p; = k; because of ¢; = 0, and that

N
ktotal = E kj
Jj=1

holds. Then we obtain the following Avron-Herbst type formula for e~ (E)
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Theorem 2.1.1. Assume V satisfies (V0)s. Then the Avron-Herbst type formula

fOV efitI:I(E)

2.1.3
j(t) _ e—itMa2/2eiMo¢~xcme—ito«kmml ( )

holds.

We note .7 (0) = eMaem  e=itokonl in the definition of .7 (t) is called a
magnetic translation generated by kioear. It is well-known that e~#@*total can be

written as

e—itwktotal = e_ita'A(iCC)e_ita'pmtal (214)

(see e.g. [17]), where Z.. and the total canonical momentum py.t, are given by

N N
Tee = § qjTj,  Ptotal = E Dj-
Jj=1 Jj=1

If ) # 0, then the position of the center of charge x.. can be given by

_ 1.
Lee = éxcca
and (2.1.4) can be written as
o~ itkiotal — p—ita-QA(zec) ,—itarprotal (2.1.5)

Hence ettt should be called a magnetic translation of the center of charge.
The Avron-Herbst type formula for e~ (F) Jike (2.1.3) was already obtained
by Skibsted [33]. In fact, he introduced

N
U, (t) _ H G]’ (t), G]’ (t) _ eitmjoz2/2€—ita'pj ei(tqu(a)—&-mja)':cj’ (2.1.6)
j=1

where G (t) is the Galilei transform associated with the j-th particle which reflects
the effect of the constant magnetic field B. One of the basic properties of G;(t)
is that

G;(1)"x;Gy(t) = wj +ta,  Gy(t)"D;G5(t) = Dj + mja

hold. Thus G, (t) transforms the expectation of the position of the j-th particle by
ta, and that of the kinetic momentum by m;« respectively. Then he claimed that
the Avron-Herbst type formula

¢~ HH(E) _ ) (t)e_“H(E”)U1(O)* (2.1.7)
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holds. Since charged particles drift with the EZ x B drift velocity «, it is natural to
consider the Galilei transform G(t) for each charged particle. However, it is not
certain whether the Galilei transforms (G;(¢)’s must be introduced also for neutral
particles. Notice that neutral particles can move freely independent of the drift
velocity o. One of the purposes of this paper is to give a natural definition of
an equivalent of U;(t) even if the system under consideration has some neutral
particles, that is, N, > 1.

Also in the case where the space dimension d is not three but two, the Avron-
Herbst type formula can be obtained quite similarly: We suppose that the constant
magnetic field B is perpendicular to the plane R?, and that the constant electric
field E = (Ey, E,) € R*\ {0} lies in the plane. We use the notation

B
Tj1 = (%’,1713]',2)7 DL = (pj,lapj,2)a A(%‘,L) = 5(—%‘,2,%’,1),
E, By
D =pj1 —qA(zj1), kjiL=pj1+q¢GA(r;L), aL= <§> _E) ,
Tem, L = Mzmjij_7 xccj_ JZIQJ:C]JJ Ptotal, L = lepjj_a

Dtotal L= E D],J_ = Ptotal, L — A(jcc,i)a

7=1
ktotal,J_ = Z kj,l_ = Ptotal, L + A<~fcc,1_)-
j=1
Then the total Hamiltonian H | (E) of the system is defined by

H (E)=Hy,(E)+V,
N

- 1
Hy . (E) = Z (2—mD32‘,¢ —q;E- %‘,L) , (2.1.8)
— ; 1.
= > Vielw — a1,
1<j<k<N

on L?(R**Y). Under the condition (V0), H, (E ) is self-adjoint. Then we obtain
the following Avron-Herbst type formula for e+ (5):

Theorem 2.1.2. Assume V satisfies (V0)s. Then the Avron-Herbst type formula
for e—itHL(E)
e—itfh(E) — (¢ e—z‘t}h(o)j 0)",
) L(1) 1(0) (2.1.9)

fL(t) _ e—z‘tMai/%iMaLxcm,le—it%-kmmu



holds.
Since o = (a1, 0), 7 (t) in Theorem 2.1.1 can be represented as
Tt) =7 (t)®1d (2.1.10)

on L2(R¥MN) = [2(R*N) ® L*(R"). Hence we have only to show Theorem
2.1.2 essentially. We will give the proof in §2.2.

When N = 1, the Avron-Herbst type formula for the free propagator was
already obtained by Adachi-Kawamoto [4], even if the homogeneous electric field
is strictly time-dependent. Here we note that before the work [4], a different
but meaningful factorization of the free propagator was given by Chee [8]. In
the case where the homogeneous electric field is constant, as for some spectral
problems for perturbed Hamiltonians, see Wang [36], Dimassi-Petkov [11], [12],
[13], Ferrari-Kovatik [14], [15], and Kawamoto [19]; while in the homogeneous
electric field is time-dependent, Lawson and Avossevou [25] have recently studied
a certain spectral problem for the free Hamiltonian with time-dependent mass (see
also the references therein).

On the other hand, when N > 2, in general, it seems hard to obtain a certain
effective Avron-Herbst type formula if the homogeneous electric field is time-
dependent, except in the case where all the specific charges of particles are the
same; that is, Tey = Zeet if ¢j/m; = ¢, (j =1,...,N), then

N N
Q= qu = ijc:cM
j=1 j=1

holds; this gives

- 1 & 1 &
Lee = 6 qu‘l'j = é Zcmjxj = M ij.l’j = Tem-
j=1 7j=1 j=1

We will mention it in §2.4.

The plan of this chapter is as follows: In §2.2, we will give the proof of Theo-
rem 2.1.2. In §2.3, as an application of our results, we will deal with the problem
of the asymptotic completeness for the systems which have the only charged parti-
cle and some neutral ones in crossed constant electric and magnetic fields, mainly
in the short-range case. In §2.4, we will make some remarks on the extension to
the case where the homogeneous electric field is strictly time-dependent.

2.2 Proof of Theorem 2.1.2

In this section, we will show Theorems 2.1.1 and 2.1.2. As mentioned in §2.1, we
have only to give the proof of Theorem 2.1.2.
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First of all, we note that

N
ktotal,J_ - Dtotal,J_ =2 Z QjA(xj,J_) = QA(fcc,L)a
j=1
B\ 2
A == (5) 1 FueAl) = ~AG)

hold for 7|, 7, € R?. Then f[o’ 1 (E) can be represented as

’ = ij
AR 2
= Z 7 ]L + BQE A(ktotalL - DtotalL)
N
1 2 E
Z 7 j2J_ _A (E) : (ktotal,J_ - Dtotal,J_)'
Noticing
2 E
—_Z2A(=
=5t (3)
we have

N
1 M
= Z %(D],J_ m]OéL) + oy - kiotal, L — ?0&-
J

Putting

we see that T’ 'L does commute with o - kotar, 1, and that

TJ_ — eiMaJ_'ICm,J_ H~'L<0)efiMaJ_'xcm,J_

holds.

. . . . 2 .
eflMaJ_'xcm,J_ efltaj_ 'ktotal,J_ e'LMaJ_‘xcm,J_ — efthaL efztaJ_'ktotal,J_
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can be also verified. Hence we have

efitﬁJ_(E) _ ei]V[tai/QefimJ_-ktotal,J_efz'tj]_

1;1\41toz2l/2€fitou-ktotal,Lez‘MaL-xcm,LefmflL (0) ,~iMa | Tem, 1

=e e

— efitMai/2eiMaJ_'xcm,J_ efitou_'ktotal,J_ efitf{i_ (0)6*2']”0”_'56““,1_ ,

which yields (2.1.9). Thus the proof is completed.

2.3 Application

In this section, we will apply the Avron-Herbst type formula to some scattering
problems for N-body quantum systems in constant electric and magnetic fields,
which have neutral particles. Here we suppose that E|; = 0. The case where E| #
0 can be treated by the results due to Skibsted [33]. We impose the following
condition (V'1)4sr on V, which is stronger than (V0)4, with d = 3:

(V1)gsr For 1 < j < k < N, Vj; belongs to C’Q(Rd; R), and satisfies the
decaying condition

07 Vir(r)| < Cslr)y =717 |8] < 2
with some p > 1.

We consider the problem of the asymptotic completeness for the N-body
quantum system consisting of N — 1 neutral particles and one charged particle
in the constant electric field E;, = (E,0) = (B}, E»,0) € R*\ {0} and the con-
stant magnetic field B = (0,0, B) € R*\ {0} with B > 0; suppose N, = 1 and
N, = N—1 > 1. Then the total Hamiltonian H(E ) on L*>(R**") is represented
as

H(E,)=Hy(E,)+V,

with gy # 0. Since there is no external force in the direction parallel to the mag-
netic field, the motion of the center of mass in that direction is uniform linear
motion and can be reduced first; more precisely, both of the electromagnetic po-
tentials A(xy) and E | - xy are independent of z 3, and the scalar potential V' is
invariant under the translation in that direction:

B

A(JZN) = 5(—1']\[7271']\[71,0) = (A(JZN’L),O),
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Dy = (pn,. — qvA(zn,1),pN3) = (Dni,png), Ei-ayv=FE- -y,
Vi(z) = Z ij((ﬂﬁj,biﬁj,:«; — Tem3) = (Th, 15 Th3 — Tem3))

1<j<k<N
= Z Vie((,1, WXCII‘IH) ) — (xk,La(WXﬁ"‘I||)k>)
1<j<k<N
= Y Villwr, mxemm); — (w0, mxema))i)-
1<j<k<N
Here x, = (21,1,...,2n,1) and 2y = (213,...,2y,3) are the first and second

components and the third components of x € R**", respectively, R**" is iden-
tified with R x R", that s,

(xJ-"r”)J = (IjvJ—7‘rj73) :I'j, (j = 17"'7N)7

for z € R*", R" is equipped with the metric

N
¢) = Z m;T; |||
j=1

for ¢ = (z1),...,2n), ¢ = (T1],---,Zny)) € RY XH and X, | are its two

subspaces
iz = 0}

which denotes the configuration space of the relative positions with respect to
the center of mass in the direction parallel to the magnetic field and that of the
center of mass in that direction, respectively, the orthogonal projections onto these
subspaces are given by

N
ﬂ- Cm H < Z mkxk“ |> ? ﬂ'XﬁmC = C - WXCII],HC
=1

for ¢ = (21,,...,2n,) € R". Hence V operates only on L?(R**" x Xi™), that
is, for any o, € S (R*N), oy € L(X[™), @3 € S (Xem,)))s

cm
X” — {(l’l’”,.. .TNH

Xcm7|| — RN o X|(|:m>

V(@)1 @ e @ps)(a) = Y Viel(wr, mxemay); — (1, mxpmay i)

1<j<k<N
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x p1(xL)p2(mxema) )3 (Tx,,, 7))

= (V ’RQXNxXﬁm P11 902) (xbWXﬁm:CII)SOS(WXCm,HxH)>

SO

V=V | poxn, yom @1d

XXﬁm

on L*(R¥™) = [2(R*Y x X{™) ® L*(Xcm,|)- The third component of H(E))
can be decomposed into the relative motion with respect to the center of mass in
the direction parallel to the magnetic field and the motion of the center of mass in
that direction:

N-1 N

L, 1, 1, 1
Z %jpj,is + MDN,?) = Z Q_mjpj’?’ =ld® <_§ARN)

j=1 j=1

1 1
=ld® (_éAXCIm — §AXcm,|)

— (Id@ (—%Axlcm)> ®Ild+(Id®1d) ® (—%AXC,M) ;

on LQ(R3><N> o~ L2<R2><N) ® L2(RN) o~ LQ(R2><N) ® L2(X|(|:m> ® LQ(Xcm,H) o~
L*(R*N x X i) ® L*(Xm,| ), where for any finite-dimensional real inner prod-
uct space W, Ay is the Laplace-Beltrami operator on W. Therefore the total

Hamiltonian H (E ) can be decomposed as

N-1
~ 1 1
HE,)=)_ %jpﬁ + (%Dﬁu —qnE - :cM) +V \szNXxﬁm ®1d
j=1

1 1
. 1

on L*(R¥¥) = L2(R”™ x X{™) © L*(Xew,)), where the reduced Hamiltonian

H(E) on L*(R¥" x Xjm) = L*(R*M)® L2(X{™) is represented as

H(E) = Ho(E)+V | poun

x X fm

N-1
~ 1 1
HO(E) = ( E _Qm»p?’J‘ + (—QmND?V’J‘ — qNEmTN’L)) ® Id

j=1 J

1

13



see e.g. [3] and [17] for details. Hereafter we simply write as

H(E) = H, (E) +V,

N—
1 1 (2.3.1)
Z pJJ_ <TNDNJ__QNE Q?NL) — QAXﬁm
H(E) has a pure absolutely continuous spectrum, that is,
L2(H(E)) = LX(R¥N x X{™) (2.3.2)

where LgC(I:I (E)) is the absolutely continuous spectral subspace associated with
H(E). In fact, putting A = gn E - Egotar, 1 as in Adachi-Kawamoto [4],

i[H(E), Al = ¢4 E* >0 (2.3.3)

holds even if V' # 0, which implies the above property.
When E = 0, the results of the asymptotic completeness for

N-1

. 1 1 1

H(O) = E Q_Wp?’l + %DJQV,L — §Axﬁm + Vv (234)
j=1

were already obtained by Adachi [1] and [2]. We will show the asymptotic
completeness for H, (E) by using those. For the sake of explanation, we in-
troduce some notation in the many body scattering theory: A non-empty sub-
set of the set {1 , N} is called a cluster. Let Cj, 1 < j < m, be clusters.
If Ui<j<mC} {1 N}and C; N Cy, = D forl < j < k < m, then
a={Cy,... m} is called a cluster decomposition. #/(a) denotes the number of
clusters in a. Let </ be the set of all cluster decompositions. Suppose a, b € <.
If b is obtained as a refinement of «a, that is, if each cluster in b is a subset of a
cluster in a, we say b C a, and its negation is denoted by b Z a. Any a is regarded
as a refinement of itself. The one- and /V-cluster decompositions are denoted by
Amax and ap,, respectively. The pair (7, k) is identified with the (N — 1)-cluster
decomposition {(j, k), (1),...,(7),...,(k),...,(N)}. For a € <, the cluster
Hamiltonian H,(F) and the intercluster potential I, are defined by

H,(E) = Hy(E) + V*, Z Vik(z

(4,k)Ca

(2.3.5)
L=V-V'= Y Vi
(k) Za

Here we note
(E) = H(E)7 Haqnin (E) = HO(E)'



Of course, H,(0) can be defined similarly. Let a = {Ci,...,Cy)} € &. For
the sake of simplicity, we suppose N € Cyu(q). For each cluster Cj in a, the
innercluster Hamiltonian H(0) is defined by

i 1
HON0) =) i~ QAXCZ + Ve,

jear = ” (2.3.6)
VO = 3" Viklay — ),

{j,k}CCl

on L2(R¥#() x X ”C "), where #(C}) denotes the number of elements in C; and

the configuration space X ”C ' is defined by

k=1

#(C1)
C C
Xt = {(%m,n, s Taenn) € RFOVY T mewan,) = 0}’

which is equipped with the metric defined by

E : mcz xcl \'Z'Cl(k) Il

for ¢ = (2> Tatrep ) ¢ = Faw.s-- - Tagrcn) € BV, In
particular, when [ = #(a), H#@ (0) is represented as

. 1 1 1
Cura _ 2 2 Cota
H0O) = 3, govi+ g Dhu = 58 v + V0.

If N = #(Cya)), that is, a = apax, then X ) = Xi™, 50 HC@(0) is just
equal to H(0). On the other hand, when [ < #(a),

~ 1
HY0) =) T, —p7 - A + VG
jec, H

is just a #(C))-body Schrodinger operator without external electromagnetic fields.
We also define two subspaces X and X, | of X " by

#(C)
Xfll = {(fL‘17||, ce ,:EN7||) Cm Z mye, k)xcl(k) | = 0 (l = 1 #(a))},

k=1

Xa7|| = Xﬁm ) XﬁL
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As is well-known, one can identify X I with X ”C - X ”C#(“). Since V¢ =

SO v Cand X = (X”CIGB- ~ ~EBXHC#(“’)®XG,H, the cluster Hamiltonian 7,(0)

can be decomposed into the sum of all the inner cluster Hamiltonian F*(0) and
the free motion along X, |:

N 1 #(a) 1 1 #(a)
] _ 2 C
0= 5+ 3 (5A ) ~ 3, < 2V

j=1 =1
#(a)
1 1 1
= —D? — A o +VO| -ZA
#(a)

=) e @deH(0)@ld®- - ®1d
=1
1

on L2<R2><N « X|Tm) ~ L2<R2><#(Cl) % X||Cl) Q- ®L2(R2X#(C#(a)) % X”C#(a)> ®
L*(X,). Here we would like to consider the sum of all the innercluster Hamil-

tonians except H“#( (0), which is the part of H,(0) corresponding to the neutral
clusters and denoted by H and defined by

#(a)-1
H'=> e - edeH%(0)@lde- - @1d

=1

on L2(R*#(O) XHC1) ® - ® L2 (R¥#(Cx-1) XHO#(“)’I), in the center-

of-mass frame: Firstly, we will equip R>#*() | = 1,... #(a) — 1, with the
metric

#(C1)
(n,n) = Z My (k) Tey(k), L~ Tey(k), L
k=1

for 7 = (Te)1s- s Taen.L)s 1= @aq)L,- - Tawey.) € BZFHD,
and define two subspaces Xfl and X¢, | of R¥#(C) by

#(C)
C
Xi'= {(fc‘clu),m ey ) € BEFD LY Dme a1 = 0}’

Xe,, 1 = RP#9 o X,
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Secondly, we put X = X x X”C’ and X" = X x ... x X% @1 and define

two subspaces X (™ and X, ,, , of R*>*W=#(Cxw)) py
le_,l’l — Xfl X oo X XJC_’#(Q)_17 Xa’n’L — RZX(Nf#(C#(a))) @ )(jl_,l’l7

which are equipped with the metric (, ). They represents the configuration space
of the inner structures of the neutral clusters in @ and that of the positions of the
centers of mass of the neutral clusters in a, respectively. Then HS(0), | < #(a),
is represented as

1
A o + v

~ 1 1
HCZ(O) - §Axfz - EAXCpL 27X,

1 1
= — §AXCZ + Vcl — §AXCZYL

and H" can be decomposed as

#(a)-1
, 1 1
H= )Y ldg---lde <—§AXCZ + VY - §AXCH) @Ild®---®1d

=1

1 1
= <—§AXH.,D + (Va - VC#<G))) ® Id+ Id ® (_ﬁAXa,n,L)

~ 1
=H"QId+Id® (—§Axa’n’l)
2.3.7)
on L2(R2><#(C1) > Xﬁh) Q- ® L2(R2X#(C#(a)—l) > le#(a)fl) o L2(Xa,n) Q
L*(X4n,1), where

. 1
Her — _§AXQ,“ + (V- VC#(a>)

is an (N —#(Cx(q)))-body Schrédinger operator without external electromagnetic
fields in the center-of-mass frame. Thus we have

H,(0) = A" ® Id®Id®Id+1d ® H%%® (0) ® [d® Id

1 1
+delde (—ﬁAxmL) @ld+ldeldelde (—§AXG7|>
(2.3.8)

on L2<R2xN x X|Tm> o L2<Xa,n> Q L2(R2X#(C#(a))) ® L2(Xa,11,L) ® LQ(XG,”).
We put 3 }
11%(0) := Pop(H™™) ® P,p(H %@ (0)) @ Id® 1d (2.3.9)
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on X (R x Xm) = [A(X*") @ LA(R¥H ) @ [ (Xon1) © L*(Xay),

where P,,(H**) and P,,( H #@ (0)) are the eigenprojections for H%" and H“# (0),
respectively. I1%(0) is called the channel identification operator associated to a. If

4 = Gmax, then I1%(0) = P,,(H (0)) holds; while, if a = i, then X G =
{(0,0,0)}, (I =1,...,N — 1), and H°V(0) = D12\7,J_/(2mN) so [1*min(0) = Id
holds. Here we introduce the wave operators

Wai(E) — slim eitﬁ(E)e—itﬁa(E)Ha(E)’
ke . , , (2.3.10)
Ha(E) — y(O)Ha(O)y(O)* _ ezMoz-:cClnHa(O)esza-sz’

fora € /. W (E) is identified with II">(E). Then one can obtain the
following result of the asymptotic completeness for H (F):

Theorem 2.3.1. Assume V satisfies (V'1)3sr. Then the wave operators WE(E),
a € o/, all exist, and are asymptotically complete:

L*(R”N x X™) = Y @ Ran W (E). (2.3.11)
acd

This theorem with N = 2 was already obtained by Kiyose [20] (where d = 2
was supposed for the sake of simplicity). The asymptotic completeness (2.3.11)
is equivalent to that the time evolution e~ "*#(F)y)) of any scattering state ¢ €
L2 (H(E)) = LX(R*N x X ™) is asymptotically represented as

e M)y = N " et O (E)yE + o(1) as t — £oo (2.3.12)

acdf
with some ¢F € L*(R*" x X{™). In particular, ¢t Hama (B)[[omax ( B)pE
implies that all the particles in the system move with the velocity « in forming
a certain bound state. In fact, the guiding center of the /N-th particle, which is
the only charged one, drifts with the velocity «. This result can be obtained im-
mediately by using Theorem 2.1.1 and the following result due to Adachi [1] and

[2]:

Theorem 2.3.2 ( Adachi [1] [2], 2001, 2002 ). Assume V satisfies (V'1)3 sr. Then
the wave operators

WE(0) = s-lim 7@ e=tHaO119(0), g € o, (2.3.13)

t—+o0

all exist, and are asymptotically complete:

L*(RPN x X{™) = > @RanW;(0). (2.3.14)

acd
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In fact, Theorem 2.1.1 yields
WH(E) = Z(0)WE(0).7(0)" = eMazemyt(()e—tMazen (2.3.15)

for a € 7. Hence, Theorem 2.3.1 can be obtained by virtue of Theorem 2.3.2.

In the case where N = 2, the way of reducing the motion of the center of
mass in the direction parallel to the magnetic field is different and explicit: we
introduce the bijective transformation of the positions ( = (x|, z2,|) € R? into
the relative position and the position of the center of mass

J¢ = ($17| — T

M1Ty || + Maly|
M ‘

Then, for any ¢ € .7 (R%% 7))» using the chain rule we write that

aﬂh,u(@ © ‘]) - (8295) oJ+ %(aZSE) oJ,
8362,”(95 © J) - _(8245) oJ+ %(aZSE) oJ,

and its solution with respect to 0, and dzp

- Ory Oy,
(0.8)0.J = 1 (—’——’) (0J),

my ma

(8Z¢> © J = (aﬂ’»‘l,u + aﬂ?zu)(@ © J)v

where 1 is the reduced mass myms/(my + ms). Here we introduce the composi-
tion operator J* defined by the pullback by J:

Ju=1uolJ, e L*(Rf,y),

which is well-defined and unitary because detJ = 1. From the above equations
we have

my mgy
D1, p- + Wk D2, Dz + Ik
* p17 p2) * *k *
Jp, = (—“ - —) J", J'pz = (p1,|| +p2,||)J )
mq meo
where p; || = —i@rl’u, pa| = —i@xZ’”, p. = —10, (relative momentum) and
pz = —i0z (center-of-mass momentum). Calculating the transformation of the

free Hamiltonian in the direction parallel to the magnetic field, we have

2 2
Dy Dy 1 mq 2 1 Mo 2
<2m1 + 2meo 2my Pzt M pz) + 2mey Pzt MpZ
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1 1 p:Pz PPz | M1+ M2
NS O T e _
(<2m1+2m2>p2+ M M o V7

2 2
* pz pZ
—J | &= 4 22
(2u "o ) ’
and therefore the total free Hamiltonian fIO(E 1) is transformed as

- 1
A7) = (it + (g Dhs -~ @B oas ) ) @10 ()
2

2 2
Py Py .
Id Id®J
* 1 2 1 2
et (Id ®J ) 2_?/nlp17J_ + 2_77]/2D2’J' - C]zE . $27J_ ® Id
2 2
* pz pZ
IdeoJ*) (Id = 4+ =
+(de )( ®<2u+2M>)

2
X 3 p
= (Id XRJ ) (HO(E) ® IdLQ(R) +IdL2(R2X2><R) ®ﬁ)

on L2(R¥?) =~ L*(R2®) @ L*(R{, 4)) = L*(RY? x R.) ® L*(Ry), where the

reduced free Hamiltonian Hy(E) is represented by

~ ~ 1 1 1

on L*(R}**x R.). On the other hand, as for the potential, for any ¢, € .%(R2*?),
952 € y(Rz) and 953 - y(Rz),

V({Id@J") (o1 @ (P2 @ $3))(7)
= Via(z1 — 22)p1(2 1) (P2 ® @3)(J))

> L [ M3+ meT
= Via(z1,1 — o1, 013 — T23)p1(2 1) Pa(T13 — T2,3)P3 ( : 173M 2 2’3)

~ B . [ Mix13 + Mox
= V(o1 @ @2))(z1, 213 — T23)P3 ( . LSM = 2’3)

= (V{1 © 2)) @ @) (w1, Jay)
= (@) (V @ Idrr) (91 ® $2) @ @3)(2),

where V is the operator of multiplication by
Vig(w1,1 — 72,1, 2)
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on L*(R}** x R.) and in the last member we used the fact that
(d®@J")i(z) = G(zy, Joy), foralld e . (RY?) ® S (RE, z),

which extends to the equality for all @ € L*(R}®) ® L*(R}, ;) because the
operator in the right member @(x) + @(x, Jx)) is also bounded (unitary); hence
we have

VIdeJY) = ([doJ*)(V @ Id (k)
on L?(R**?) = Lz(Rif) ® L*(R{, z)) = L*(R2? x R.) ® L*(Ry). Therefore
the total Hamiltonian H (E ) is transformed as

5 - 2
H(EL)(Id ®J*) — (Id ®J*> (H(E) X IdL2(R) +IdL2(R2><2><R) ®2p_]ZW)

on L2(R¥?) = L*(R2®) © L*(R{, 4)) = L*(RY? x R.) ® L*(Ry), where the
reduced Hamiltonian H (E) on L*(R2** x R.) is represented by

H(E) = Hy(E)+ V.

Then, one can also obtain the result of the asymptotic completeness for H(E)
with some long-range potential V' = V5 by virtue of the result of [1]:

Theorem 2.3.3. Suppose N = 2. Assume V = Vi5 = [%min belongs to C®°(R?; R),
and satisfies the decaying condition

07V (r)] < Ca(r) =" (23.16)
with some 1/2 < p < 1. Then the modified wave operators

W p(B) = slim ) =it ensy D= g Viops fmamsen e fids = (2.3.17)
min; — o0

exist, and are asymptotically complete:
L*(R*? x R) =Ran W, ,(E) ® RanIl“">(E). (2.3.18)
By virtue of the result of [1], the modified wave operators

Wit p(0) = s-lim O Henin Ot g V0mfmsp/ids = (2.3.19)
mins — 00

exist, and are asymptotically complete:

L*(R¥? x R) = RanW," ,(0) & RanII"<(0). (2.3.20)
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Since Theorem 2.1.1 yields

W, p(E) = ZOWE, p(0)F(0) = eMosenivs (o) Moo,
(2.3.21)

Theorem 2.3.3 can be shown in the same way as above (see also Kiyose [20]).
Also in the case where the space dimension d is not three but two, the asymp-
totic completeness is true, because the results due to Adachi is still valid (see [1,
REMARK 1.3], and [2, pp. 205-207] ). This fact is in strong connection with the
classical picture that the charged particles are bounded in the direction perpen-
dicular to the magnetic field, but the neutral particles are not so. In this case, we
consider the problem of the asymptotic completeness for an N-body quantum sys-
tem in the plane R? to which constant electric and magnetic fields are impressed.

Then the total Hamiltonian H, (E) on L?(R**") is represented as

N-1
. 1 1 (2.3.22)
Hy,(E) = —p‘?,L + (TD?V,i —qnE- xN,J_)

with gx # 0, and the wave operators are defined by

WE(E) = s-lim ef1(B)g—itHa (B[],
(ke . , , (2.3.23)
%(E) = ZL(0)I1%(0).7.(0)" = eMarTemi[[2(Q) e s Temt

for a € .o/, where the formulations of the Hamiltonians can be done similarly:

ﬁa,J_(E) = FIO,J_(E) +Ve, Ve= Z Vik(zjL — wn,1),

(J,k)Ca

- 1

C, C C,

H'(0) = E :—2mij2‘,L + Ve, V= E Vik(®jL — 2n,1),
jGCl {j,k}CCl

2 P2x#(Cr)
on L 1(R ); (2.3.24)
HY" = =5 Axen + (V — VOr@),
on L*(R¥WN-#Csw))) = L2(X ") @ L* (X, 1),
a rra,n 7C#(a
11 (0) = PPP(HJ_ ) ® Ppp(H¢#< )(O)) ®Id,
on L*(R¥N) = [X(X™) @ L*(R¥#“#@)) @ L*(X,n.1).

Then one can obtain the following result of the asymptotic completeness for
H L(E )Z
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Theorem 2.3.4. Assume V satisfies (V'1)y5r. Then the wave operators WE(E),
a € o/, all exist, and are asymptotically complete:

L*(R”Y) =) " ®Ran W (E). (2.3.25)
acd

This result can be obtained immediately by using Theorem 2.1.2 and the fol-
lowing result due to Adachi [1] and [2]:

Theorem 2.3.5 ( Adachi [1] [2], 2001, 2002 ). Assume V satisfies (V'1)2sr. Then
the wave operators

WE(0) = s-lim 1O e=tHa L O[12(0) g € o7 (2.3.26)

t—*+o0

all exist, and are asymptotically complete:

L*(R¥Y) =) "@Ran W (0). (2.3.27)
a€d

In fact, Theorem 2.1.2 yields
WHE) = Z(0)WF(0)7.(0)* = eMarTemt J7E () ML Tem . (2.328)

for a € o/. Hence, Theorem 2.3.4 can be obtained by virtue of Theorem 2.3.5.

In the case where N = 2, one can also obtain the result of the asymptotic
completeness for A 1 (E) with some long-range potential V' = V5 by virtue of the
result of [1]:

Theorem 2.3.6. Suppose N = 2. Assume V = Vi5 = [%min belongs to C*®(R?; R),
and satisfies the decaying condition

08V ()| < Cy(r) 1Al (2.3.29)

with some 1/2 < p < 1. Then the modified wave operators

fmn,D(E) _ tsl}i?o pitHL(E) g=itHa, . 1 (E) =i 3 Vspi/mi=sal)ds (3330
exist, and are asymptotically complete:
L*(R”?) =Ran W, (E) ® Ran 1" (E). (2.3.31)
By virtue of the result of [1], the modified wave operators
= 5(0) = silim @O gmitHay, L O)e=i [y Vispa/mds - (3339

t—+oo
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exist, and are asymptotically complete:
L*(R¥?) =Ran W, (0) ® RanII*">(0). (2.3.33)
Since Theorem 2.1.2 yields

Wi (B) = ZLOW | 5(0)F1L(0)" = etowsems il (0)e Mo em,
(2.3.34)
Theorem 2.3.6 can be shown in the same way as above. The Dollard type modifier
e~ Jo V(s a/mi—sal)ds jn the definition of W, (E) seems quite natural, by
taking account of that the guiding center of the second particle, which is the only
charged one, drifts with the velocity ;. Here we note that when N = 1, the
corresponding long-range scattering problem has not been solved yet, as far as we
know (see Adachi-Kawamoto [4]). Unlike in the case where N > 2, in general,
V' does not commute with the conjugate operator A= @1 - p1,1 (ct. (2.3.3)). For
reference, the problem of the asymptotic completeness for H, (0) with N > 3 and
long-range interactions has not been solved yet, as far as we know. But, maybe
one can show the asymptotic completeness under the additional assumption on
smooth V};.’s
0%V (r)| < C(r)y =~ 1A (2.3.35)

with some v/3—1 < p < 1, by using the arguments of Dereziriski [10] and Gérard-
Laba [16]. v/3 — 1 is called the so-called Enss number. Hence we may expect that
a natural extension of Theorem 2.3.3 to the case where N > 3 is obtained.

On the other hand, Gérard and Laba [17] showed that if the system is strongly
charged, that is, all the proper subsystems are charged (in particular no neutral
particles are present) and the motions of the particles are restricted to the plane R?
perpendicular to the magnetic field B and E = 0, there shall exist no scattering
state. In considering the scattering problem on the plane R? perpendicular to the
magnetic field B, it is crucial whether the neutral clusters or particles are present
or not.

2.4 Concluding remarks

We have considered the case where the homogeneous electric field is independent
of ¢t only. Here we will make some remarks on the case where the electric field is
strictly dependent on t.

In order to make the point at issue clear, we suppose that the space dimension d
is two, that the time-dependent electric field E(t) = (E(t), E»(t)) € C(R; R?)
lies in the plane R?, and that the system under consideration has at least one
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charged particle. Then the free Hamiltonian H,  (E(t)) of the system is defined
by

ij

~ N 1
.mA@w»=§j(——iL—%mamﬂ) .
j=1

on L2(R*™). We denote by Uy | (t, s) the propagator generated by Hy | (E(t)).
By using the results of Adachi-Kawamoto [4], one can obtain the following Avron-
Herbst type formula for Uy (¢, 0) immediately:

Uo.o(t,0) = F1 (t)e 0O F; | (0)* (2.42)

N
F.) =1]ZL(), FoL(t) = e matWemabinOm gmici ki

%bj#(s)z + %bj,J_(S) : A<Cj,l(3))} ds,

B - cos —singp
P _'] g
i . B(p) (sin p cosp |

(2.4.3)

|w;| is called the Larmor frequency of the j-th particle. w;/B is equal to the
specific charge ¢;/m;. The Avron-Herbst type formula (2.4.2) with N = 1 was
already obtained in [4]. The differential equations for a; | (¢), b; 1 () and ¢; | (t)
are given as

. 200 _

bys () + L AD,L (D) = E(), bu(0) =0,

¢(t) =bj1(t), ¢;1(0) =0, (2.4.4)
1 .

5.1 () = Sba (07 + b1 () - Alesa (), a;(0) =0

(see [4]). Now we introduce the total Hamiltonian H | (F(t)) of the system is
defined by

H (E(t) =Ho (E@)+V, V= > Vilwj—aw)  (245)

1<j<k<N

on L2(R*Y), and denote by U, (t,s) the propagator generated by H (E()).
Then the following Avron-Herbst type formula for U, (¢,0) can be obtained by
virtue of (2.4.2):
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Theorem 2.4.1. Denote by U (t, s) the propagator generated by the time-dependent
Hamiltonian

Hy(t) = Hy 1 (0) +V (1),
V(t) = Vie((zj1 + ¢5,0(1) = (@1 + ¢k, (1)) (2.4.6)

1<j<k<N

on L*(R*™). Suppose that both U, (t, s) and U, (t, s) exist uniquely. Then the
Avron-Herbst type formula

UL(t,0) = F (1)UL (t,0)7 1 (0)" (2.4.7)
holds.

We note .7, | (0) = Id, because .7, (0) = Id for any j. By definition, if the
specific charges ¢;/m; and q;/my, are different from each other, then b; | (t) #
b1 (t) and ¢; | (t) # ¢, (t) in general, because w; # wy. Hence V(¢) is time-
dependent generally. Because of this, it seems hard to get useful propagation prop-
erties of U 1(t,0). To overcome this difficulty is an issue in the future. However,
if all the specific charges are the same, then since (/M is equal to that specific
charge as is remarked above, QB/M = w; = -+ = wy, by 1 (t) = -+ = by 1 (¢)
and ¢; | (t) = -+ - = ¢y 1 (t) hold. Therefore V() is time-independent. Hence we
have the following corollary:

Corollary 2.4.2. Suppose that all the specific charges of the system are the same.
Then the Avron-Herbst type formula

UL(t,0) = Fh1 (e O Z  (0)*,

% J_(t) — efiMatotal,J_(t)eiMbtotal,J_(t)'ﬁcm,J_ eiict‘)talvj—(t)'ktotalyj_ (24.8)
holds with
Q2 [t
btotal,J_<t)T = E/ R(—0(t — 5))E(5)T ds,
0
t
ctotal,J_(t) :/ btotal,J_(S) dS,
0 (2.4.9)
"1 , 02
Qtotal, L (t) - / §btotal,L(s) + Ebtotal,L(3> : A(Ctotal,L<S)) dS,
0
B
QI%:MII...:WN.
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In this case, the unique existence of U, (t,s) can be guaranteed by the self-
adjointness of H (0), in virtue of (2.4.8). (2.4.8) can be also obtained directly as
in [4]. We will give an outline of the proof. Put

UJ_ (t) := e~ M atotal, 1 (t) piMbotal, 1 (£) Tem, 1 o =iCtotal, 1 (1) Ftotal, 1 efitIL_ ) (2.4.10)
By differentiating (2.4.10) in ¢ formally, one can obtain

iU, (1)
— efiMatotal,J_ (t) eiMbtotal,J_ (t)'xcm,i_ efictotal,i_ (t)'ktotal,J_ }NIJ_ (0) efitI:IJ_ (0)
+ efiMatotal,J_ (t) eiMbtotal,J_ (t) ‘Tem, L efictotal,i_ (t) 'QA(mcc,J_)
> (étotal,L<t) . ptotau_)e*ictotal,L(t)'Ptotal,Le*itﬁJ_ (0)
+ (Matotal,l(t) - Ml')total,J_(t) : xcm,J_ + étotal,L(t) . QA<:CCC,J_))UJ_ (t)

Here we used

e_ictotal,L(t)'ktotal,L — e_ictotal,L(t)'QA(:Ecc,L)e_ictotal,L(t)'ptotal,L

Since H (0) commutes with e~*total L () Kiotal, 1

—1 t)-QA ] t)-QA
€ ictotal, L (1)@ (xcc’l)ptotal,J_ewmtal’L( )-QA(@ee, 1) = ptotal,J_ - QA(Ctotal,J_ (t)),

writing that

e Mbiotal, 1 () Tem, 1 f:fo,J_ (O)
1

m
Jj=1

=

(pjr — Mjbiotar s (1) — qiA(w;1 )2 M brotat s () Tem.

and

letOtal J_(t) Fom, L (Ctotal J_(t) : (ptotal,J_ - QA(Ctotal,J_(t)>>>
- étotal,L (t) : (ptotal,L - Mbtotal,L(t) - QA(Ctotal,L(t)))eiMbmtal’L(t)mcm’L7

we have

with

1
S, (pj.L — Mybiotar, 1 (1) — @ A(z;1))° +V

Mz

Jj=1

+ CtotaLJ_(t) : (ptotal,J_ - Mbtotal,J_ (t) - QA(Ctotal,J_(t)))
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+ Mdtotal,i.@) - Métotal,l (t) *Tem, L + étotal,i.@) ' QA(xcc,J_)-
Using
Dtotal,L = Ptotal, L — QA(xCC,L>J
we can expand the first term as

N

1
Q_M(Dj,L - mjbtotal,L(t))Q
j=1 "7

M

= [:IO,J_(O) - btotal,l(t) : (ptotal,l_ - QA(':CCC,J_>> + 7bt0tal,J_ (t)27

and so we have

fh(t) = H,(0) + (—brotal, 1 (1) + Crotal, L (1)) + (Drotal, L — QA(Tee, 1))
+ 2étotal,l(t) : QA(xcc,J_) - Mbtotal,l(t) : xcm,J_

+ Mdtotal,J_(t) - étotal,L<t) : (Mbtotal,J_ (t> + QA(Ctotal,J_(t)))

M

—biotar L (1)
+ 5 total, L (1)

If we take ciotar, 1 () as

C'total,J_ (t) - btotal,J_(t)> Ctotal,J_(O) = 07

then we have

[:[J_(t> = [:[J_(O) - 2C2f4<btotal,J_ (t)) *Tee, L — Mbtotal,l(t) * Tem, L

. M
+ Matotal,L@) - 7btotal,i(t)2 - thotal,L (t) : A(Ctotal,L (t))
Here we used biotar, 1 () - A(Zee, 1) = —A(btotar, L (1)) - Tee, L. Moreover, if we take
atotal,l_(t) as
. 1 s @ B
atotal,J_(t) — ébtotal,J_(t) + Mbtotal,J_(t) . A(CtotaLJ_(t))v aftotal,J_(O) - 07

then we have

ﬁJ_(t) = [:[J_(O) - <2QA(btotal,J_<t>> * Lee, L + Mbtotal,J_@) : xcm,J_>~

If N =1, then ¢1/Q = mi/M = 1, S0 Tee, | = Tem, 1 holds automatically (cf.
[4]). On the other hand, if N > 2, then z.. | # Zcm, 1 in general, except in the case
where all the specific charges are the same. Since Tc. | = Tem, 1 by assumption,
if we take byota, 1 (2) as

QQA(btotal,J_ (t)) + MbtotaLJ_(t) = QE(t)a btotal,J_(O) = 07
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then
N

N
N 1 ~
Hi(t)=) %D?L +V = E(t) Y gy = Hi(B(1))
j=1 Jj=1

holds. This yields U 1(t) = U 1(t,0). brotal, 1 (t), Ctotar, 1 (t) and aotar, 1 (£) are given
by (2.4.9) as in [4]; that is, putting

Btotal,L (t)T - R(Qt)btotal,L(t)Ta
we find byotar, 1 () from

©

BR(Qt)E(t)T.

5total,J_(t)T =
Now, as F(t) under consideration, we take the rotating electric field
E,o(t) = Ep(cos(vt + 0),sin(vt + 0))

with By > 0, v € Rand § € [0,27). Fix j € {N, +1,..., N}, thatis, j €
{1,..., N} such that ¢; # 0. If v = 0, that is, E(t) = Ey(cos#,sin#), then we
have

Ey -
bj,L(S)T =af + EOR <sz — g) (cos@,sinf)T,

and so

e 1 (8) — tas = /0 (b; 1 (s) — a1 )ds

_ ( ;:Sj (R(w;t — 1) — R(—m))(cos b, sin 0)T>T

1s bounded in ¢, where

a) = Eo(sinﬁ, —cosf)
is the drift velocity. If v = —wj, then we have
E
bj1(s) = WJB Os(cos(—sz +0),sin(—w;s + 0)),

and so the integration by parts

e () = /O b (s)ds

((cos(—wj;t + 0),sin(—w;t +6)) — (cos,sinf))

Ey
= _taj’L(t)_‘_B '

Wi
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shows that ¢; | (t) — (—ta; 1 (¢)) is bounded in ¢, where

E
aj,L(t) = EO(Sin(—wﬂf +0), — cos(—wjt + 0))

is the instantaneous drift velocity. Here we note that

E
las| = |y (1) = EO

Hence, in both two cases, the growth order of |c; | (t)| is O(]t|) as |t| — oco. The
case where v = —wj is closely related to the so-called cyclotron resonance. On
the other hand, if v # 0 and v # —wj, then we have

ij

_ W0 g —sin(—w; _ gy
bji(s) = (y+wj)B(Sln(Vs+9) sin(—w;s+0), — cos(vs+0)+cos(—w;s+0)),

SO

(UjEO 1 . B
¢ (t) = to)B (—;((COS(Vt +0),sin(vt + 0)) — (cos b, sin b))

Wi

— i((cos(—cujt + 0), sin(—w;t + 0)) — (cos 0, sin 9)))

is bounded in ¢. These results are due to [4]. Here we suppose that N = 2, that
the first particle is charged, and that the specific charge of the second particle is
different from that of the first one. Let v = —w;. Then, by virtue of the above
results, we see that the growth order of |¢; | (1) — co.1 (¢)] is O([t]) as |t| — oo,
which implies the possibility of the existence of scattering states for the system.
Roughly speaking, by virtue of the effect of the cyclotron resonance, the sepa-
ration of these two particles may occur. In fact, Sato [32] showed the existence
of (modified) wave operators under some appropriate assumption on V3o, because
some useful propagation properties of the free propagator UO, 1(t,0) can be ob-
tained by using (2.4.2) and the argument of [4]. On the other hand, the problem
of the asymptotic completeness for such a system has not been solved yet. To get
some useful propagation properties of U 1 (¢,0) is an issue in the future.
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Chapter 3

On the Mourre estimates for Floquet
Hamiltonians

3.1 Introduction

In this chapter, we consider the following time-dependent Schrodinger equation

i0wu(t) = H(t)u(t), te€ R, (3.1.1)
1
H(t)=Hy+V(t), Ho= 5p? on 7 := L*(R%), (3.1.2)
where p = —iV,, and V() is the multiplication operator by the real-valued func-

tion V(¢,2) on R x R® which is periodic in ¢ with a period T' > 0:
V(t+T,z)=V(tz), (t,r)€ Rx R (3.1.3)

Under some suitable conditions on V/, the existence and uniqueness of the unitary
propagator U(t, s) generated by H(t) can be guaranteed (see e.g. Yajima [38]).
In the study of the asymptotic behavior of U(t, s)p, ¢ € F, ast — +oo, we
will frequently utilize the so-called Floquet Hamiltonian K associated with H (t):
Let T = R/(TZ) be the torus. Set # := L*(T; #) = L*(T) ® L*(R%), and
introduce a strongly continuous one-parameter unitary group {U (0)}oer on A
given by

(U(a)®)(t) = U(t,t — 0)®(t — 0) (3.1.4)

for & € ¢ . By virtue of Stone’s theorem, U (o) is written as

A

U(o) =e K (3.1.5)

with a unique self-adjoint operator K on .%". K is called the Floquet Hamiltonian
associated with H (t), and is equal to the natural self-adjoint realization of —id; +
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H(t). Here we denote by D, the operator —iJ, with domain AC(T"), which is
the space of absolutely continuous functions on 7' with their derivatives being
square integrable (following the notation in Reed-Simon [30]). As is well-known,
D is self-adjoint on L?(T), and its spectrum o(D;) is equal to .7 := wZ with
w := 27 /T. Hence the real part of the resolvent set of Dy, p(D;) N R, is equal to
R\ .7, which can be decomposed as

R\ 7 = U I, I,:=(nw,(n+1)w).

nez

In [39], Yokoyama introduced the self-adjoint operator
~ 1
A= o p( )+ (1497 o) (3.1.6)

on % as a conjugate operator for K. Roughly speaking, A, is defined by multi-
plying the generator of dilations

- 1

A0:§(x-p+p-x) (3.1.7)
and the resolvent (1 + p?)~! = (p)~2 of p. He established the following Mourre
estimate under some suitable conditions on V: Let \g € R\ Z and 0 < § <
dist(Ag, 7). Put di(A\) = dist(\, 7 N (—oo, A]). Then, for any real-valued
fs € C3°(R) supported in [—0, d], the Mourre estimate

F5(K = No)i[ K, Ay] fs(K — Xo) > 2(d1(Xo) —0)

K — 2
= T4 a(d () — )2 AN Croo,

(3.1.8)
holds with some compact operator C , s, on % ". (3.1.8) which we have given
above is slightly better than the estimate obtained in [39]

f5(K = Xo)i[K, Ayl fs (I — Xg) > 1 i(;izsdiii\g\f;; f)(;)

Js(K = Xo)? + Clro s

with some compact operator C1 , , on £, since dist(Ao, 7) is less than or
equal to d; (\g). Then the standard Mourre theory (see e.g. Cycon-Froese-Kirsch-
Simon [9], Amrein-Boutet de Monvel-Georgescu [3] and so on) yields the fol-
lowing spectral properties of K which are important in the scattering theory: The
eigenvalues of K in R\ 7 are of finite multiplicity, and can accumulate only at
T . T Uopp(K) is a countable closed set. Moreover, the limiting absorption prin-
ciple for K holds: Let s > 1/2, and I be a compact interval in R\ (.7 Uo,,(K)).
Then, for instance, one has

RSUPI ”<A1>_S(K - 2)_1<A1>_SHB(%) < 00. (3.1.9)
e ze
Im z#0
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Here (z) = /1 + |z|%.

In this chapter, we will propose an alternative conjugate operator for K at a
non-threshold energy \g: Let A\ € R\ 7. Then there exists a unique n,, € Z
such that Ay € I, . Take das 0 < ¢ < dist(Ag, 7). Since \g — § € I, itis
obvious that \y — 0 € R\ .7 = p(D;) N R. Then, for the sake of obtaining the
Mourre estimate for K at )y, we introduce the self-adjoint operator

Ars =0 —0-D) '@ 4 (3.1.10)

on.# = [*(T)® L*(R?), by multiplying A, and the resolvent (Ao — & — D;)~! of
D; instead of (p) 2. Here we note that (A\g—&— D;) ! is bounded and self-adjoint.
One of the basic properties of A, 5 is that

i[Ko, Axy5] = i[Dy @1d, (\g — 6 — D)~ @ Ag]
+i[ld®@Hy, (Mg — 6 — D)7t @ Ag]
=i[Dy, (Ao — 86— D)1 @ Ay
+ (N — 0 — D)t ®@i[Hy, Ay
—§—D,) ' ®2H,

= ()\0
= (Ao — 0 — D) {2(Ko — Dy)},
i[i[ Ko, Any ], Axos] = 2i[(Ao — 6 — D)L @ Hy, (Mg — 6 — D)t @ A
= (Mo — 0 — D)2 ® 2i[Hy, Ay)
=N\ —6— D) ?®4H,
= (Ao — 0 — D) {4(Ko — Dy)}

hold, where Ky = D, + Hy is the free Floquet Hamiltonian and i[ H, AO] = 2H,.
This yields the fact that

i[Ko, Axy 5] (Ko) ™ = 2{(No — 0 — Dy) ' Ko(Kp) ™"
— (Ao — 6 — Dy) ' Dy(Ko) '}

i[i[ Ko, Axgs), Angs)(Eo) ™" = 4{(Xo — 6 — Dy) 2 Ko (o)~
— (Ao — 6 — D) 2Dy(Ko) ™'}

are bounded.
Next we impose the following condition (V') on V' under consideration:

(V) V(t,z) is a real-valued function on R x R, is T-periodic in ¢, and is de-
composed into the sum of V*"8(¢, ) and V*8(¢, '), which are also T-periodic in
t. If d < 3, then VS8 = 0. If d > 3, then V*"8(¢, -) belongs to C'(R, L% (R%))
with some oo > ¢y > d, and supp V*"8(¢, -)’s are included in a common compact
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subset of R®. (9,V*"8)(¢,-) and |(VV*"¢)(t,-)| belong to C'(R, L% (R?)) with
some oo > ¢, > d/2, where if d = 3, then we define ¢; by 1/q1 = 1/(2¢0) + 1/2
(< 2/d). On the other hand, V*8(¢, ) belongs to C*(R x R?), and satisfies the
decaying conditions

sup [(OFo2V™e)(t, )| < C(x)y™P~kHel k4 |a] <2 (3.1.11)
teR

with some p > 0.

Under the condition (1), the existence and uniqueness of the unitary propaga-
tor U(t,s) generated by H(t) can be guaranteed by the results of Yajima [38].
Actually, for any compact interval I, V = V¢ 4 Ve ¢ O(I, L% (R%)) +
C(I,L=(R%) c L*(I,L%®(R%) + L°(I, L=*(R%)) holds, with 1/2 < 1 —
d/(2qp) and § > 1 being any number, so Yajima’s Assumption (A.1) is satis-
fied; moreover, for any 1 < ¢ < ¢y and a; > 1, 3,V*™¢ € C(I, L% (R%)) C
Le1(I, L% (R")) holds; to see this, since supp V*"8(t,-)’s are included in some
common compact set C, taking some 1o € C3°(R?) such that 1)¢(x) = 1 on C,
we see that

/ OV (t, x)p(t, x)dudt = — / / VR, w)e (1) Opp(t, w)dudt
RJR! RJR?
— —// VEms(t )0, (Ve (x)e(t, x))dxdt
R JR?
= [ | avesepvele)ott, oo
RJR?

forall ¢ € C{°(R x Rd) and
atvSillg(t7 x) = atVSing(t, x)Q/JC(x)

for a.e. (¢,z), but this holds for all ¢ and for a.e. x because both members are
continuous in ¢, so by Holder’s inequality,

10,V () — OV (Lo, )lgo < OV5(E, ) — BV (to, ) gy 1Yo las

forallt,ty € Rwith1/go = 1/g1+1/qs; therefore we can take ¢, such that 1/gy =
1/(2q0)+2/d > 1/qifd > 5(1/(299)+1/2 > 1/¢ holds automatically if d = 4)
and Yajima’s Assumption (A.2) is also satisfied. It can be also guaranteed that

<K0>_1/2i[v’ AAOﬁ] <K0>_17 <K0>_1i[i[v7 AAOﬁ]? A>\0,5] <K0>_1
are bounded. To see this, we first note that

iV, Ax 5] = (Mo — 8 — D) 7YV, Ag) + [V, (Ao — 6 — Dy) Y Ag
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= — N —=0—D)H(z-V)V) = (Mo — 6 — D)L V) (N — 0 — D) Ay,
where i[V, Ag] = —((z - V)V) and
i[V,(Ao—6—Dy) ] =MNo—6—Dy) Yo —6— D, V](Mg— 6 — D)
—_ — ()\0 - (5 - Dt)_l(atV)(Ao - 5 - Dt>_1‘
Then, as for the regular part 1/"¢ of V, it follows from
i[i[V, A sl Ang.s] = —i[(Mo — 6 = Dy) 7 (- V)V), Ay, 5]
—i[(Ao — 0 — Dy)"HB, V™) (Ao — 6 — D) HAg, Ay, ]
= - (>‘0 —0— Dt>_1i[<('x ’ V)Vreg)7 A)\o,5]
— (Mo — & — Dy)7Li[(8,V™°8), Ay, 6] (Ao — 6 — D) LA,
=(N—0— Dt)*Q((x . V)2vreg)
+ 2N\ — 8 — D) 2d,(x - VI)V™) (Ao — 6 — D)L 4,
+ (Ao — 6 — D) "2(0?V™8)(\g — 6 — D)2 A2
that
iV, Ay sl (Ko) ™t = —(Xo = 6 = D) (- V)V™8) (K) ™
— (Ao — 6 — Do)~ Ha) (OV™E) () Ag(p) (Mo — 6 — Dy) " {(p) (Ko) !
and

Z[Z [Vreg’ A>\075]7 A>\075] <K0>_1

d d
— (Mo — 0 — Dy)2 ((m AL EDSY xjxk(ajakvreg)) (Ko) ™!

+2(Ao — & — Dy) (@) (@s(x - V)V'#)(z) " Ao{p) (Ao — 6 — Di) ™ (o) (o) !
+(ho =6 — Di) ") (V™) () P AJ(p) > (N — & — Da) 2 (p)*(Ko) ™

are bounded. Here we used the fact that
(D)2 () (Ko) ", (De) Hp)* (Ko) ™!

are bounded, which can be shown in the same way as in the case of Stark Hamil-
tonians (see e.g. Simon [31]). Moreover, we see that (Ko)~'i[V™8 Ay s](Ko) ™
1s compact, by virtue of the local compactness property of /. On the other hand,
as for the singular part V5" of V, by using the fact that

() (@ - V)VED) )~ (p) (@ VR (p)
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are bounded in L?(R"), one can show firstly that (/o) ~"/2i[V5"8 A, s](Ko) ™!
is bounded. Moreover, we see that (Kg) " 1i[Vm8 A, 5](Ky)~! is compact. And,
by identifying i[i[V5"8, Ay 5], Ax,.s] With

i{i[VE, Ay 5] Ane.s — Anesi[VE"E, Ay sl

one can show that (Ko) ti[i[Vse Ay ], Ay, s](Ko) ™" is also bounded. Here
we note that in [39], it was assumed that V"¢ € C*°(R X Rd), because the
pseudodifferential calculus was needed. Our conjugate operator A, s can relax
the smoothness condition on V& considerably.

Then some of the main results of this paper are as follows:

Theorem 3.1.1. Assume V satisfies (V). Let \¢ € R\ 7. Take 6 as 0 < § <
dist(Xo, 7). Define Ay, s by (3.1.10). Then:
(1) For any real-valued fs5 € C§°(R) supported in [—0, 9],

Fs(K — Xo)i[K, Ay 5] f5(K — Xo) > 2fs5(K — Xo)? + Chy 1, (3.1.12)

holds with some compact operator Cy, ¢, on K . It follows from this that o,,(K)N
[Ao —6/2, Ao + 0/2] is finite, and the eigenvalues of K in [Ng — /2, \g + /2] are
of finite multiplicity.

(2) In addition, assume \g & op,p(K). Let 0 < € < 2. Take 6 > 0 so small that
Ao —20, A0 +26] C R\ (T Uoy,(K)) and

fas (K — No)i[K, Axg 28] f25 (K — Xo) > (2 — &) fas (K — \o)? (3.1.13)
holds. Suppose s > 1/2. Then

sup [{Axg26) 5 (K — 2) " (Axg25) *llB(r) < 00 (3.1.14)
Re zEI[)\()—ib)\()-Hﬂ

holds. Moreover, (Ay,25) *(K — 2) YAy, 26) % is a B(X')-valued 0(s)-Hélder
continuous function on z € Sy, 5+, where

0(8) — 'HlIIl{S— 1/2ap} ’
min{s — 1/2,p} + 1
Srsx={CeC ‘ Re¢ € [Ag— 8,0 +6], 0 < £Im¢ < 1}.

And, there exist the norm limits

(Ang26) (K —(A£i0)) " (Axg20) " = 6£T0<AA0,26>_5(K—()\iie))_l(AAO,%)_S

in B(J) forany \ € [A\g — 8§, \o + 0. (Ax,05) (K — (A £140)) "1 (Ay,25)* are
also 0(s)-Holder continuous in \.
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Corollary 3.1.2. Assume V satisfies (V'). Then:
(1) The eigenvalues of K in R\ 7 can accumulate only at 7. Moreover, T U
opp(K) is a countable closed set.
(2) Let I be a compact interval in R\ (F U o,,(K)). Suppose 1/2 < s < 1.
Then

sup [[(z)*(K — 2) " z) "®||pr) < (3.1.15)

Rezel
Im 2540

holds. Moreover, (x)~*(K — 2)"z)~% is a B(#)-valued 0(s)-Holder continu-
ous function on z € St 1, where
Si=={CeC|ReCe, 0<+Im( <1}

And, there exist the norm limits

(2) (K = (A £10)) 7 (&) ™ = lim (1) (K — (A ie)) ()~
e—
in B(X) for A € I. {x)~*(K —(A£10)) " (x)~* are also 0(s)-Holder continuous
in\.
In order to obtain Corollary 3.1.2, we use the argument due to Perry-Sigal-
Simon [29], and the boundedness of

A)\O,Qd(K — )\0 — i)_1<$>_1,

which follows from that (D;) ™1 (K — X\ — i)' (p)? is bounded. By virtue of this,
one can show that

Anozs (K =X =) Hp)a) ™, Axas(K = o — i) H(Dy)/{a) ™!
are also bounded. Then one may expect that the limiting absorption principle

sup.[[(2) "D (K — 2) "D a) ) < o0

Rezel

Im z#£0
will also hold, where the unbounded ‘weight’ D = (p) + (D;)/? is equivalent
to the ‘weight’ 22 = ({p)* + (D,)*)*/*, which was introduced in Kuwabara-
Yajima [22] for the sake of obtaining a refined limiting absorption principle for K.
But we have not proved this yet, unfortunately. It is caused by the unboundedness
of

(K =X =) Hp)a) ™, (K = Ao — )" H(D) ()"

Instead of the above limiting absorption principle, one can obtain

RSU}e)I H(Dt>—5/2<g;>—8<p>s<K _ Z)_l<p>s<$>_s<Dt>_s/2HB(;{/) < (3.1.16)
Im 2#0
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from (3.1.14) immediately. As for the N-body Floquet Hamiltonians, a refined
limiting absorption principle for K

sup |[{z)"*(p)" (K — z)"(p)" (x) *|lBx) < o0

Rezel ||
Im z#£0

with 0 < r < 1/2 < s < 1 was obtained in Mgller-Skibsted [27]. They used
an extended Mourre theory due to Skibsted [33], and took a ‘conjugate operator’
for K in the theory as flo. However, we would like to stick to find a candidate of
a conjugate operator for /' not in an extended but in the standard Mourre theory,
because it seems much easier to obtain some useful propagation estimates for /'
by applying the standard one.

The plan of this chapter is as follows: In §3.2, we will give the proof of Theo-
rem 3.1.1, in particular, (3.1.12). In §3.3, as an application of our results, we will
deal with the problem of the asymptotic completeness for the so-called AC Stark
Hamiltonians in the short-range case, although the result was already obtained in
[37] and [39]. In §3.4, we will make some remarks on the extension to the many
body case.

3.2 Proof of Theorem 3.1.1

In this section, we prove Theorem 3.1.1. Here we will give the proof of the Mourre
estimate (3.1.12) only, because the other results can be shown directly by the
standard Mourre theory.

As is well-known, AC(T) ® C$°(R?) is a core for Ky, and D, ® Id 4+ 1d ® H,
defined on AC(T) ® C3°(R") is essentially self-adjoint and its closure is equal
to Ky. If V satisfies the condition (V'), then K is self-adjoint with the domain
P(Ky), and D, ® Id 4 Id ® H(t) defined on AC(T) ® C°(R?) is essentially
self-adjoint and its closure is equal to /.

Now we will show

sup || Koe o8 (Ko + i) |z < 00 (3.2.1)
lo]<1
with \g € R\ 7 and 0 < 0 < dist(Ag, 7). First of all, we note that the direct
integral decomposition of (K +4)~! can be given by

(Ko +1)"" = @ (kw + Ho + )", (3.2.2)

keZ

and that e?“0.5 (K + 1) ~le~“0:s with |o| < 1 can be represented as

Mo (Ko + i) e M08 = QB (kw + e 72/ Co RO Hy i)l (3.2.3)
keZ
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For the sake of estimating || (kw + Ho) (kw + e~27/Qo=0=k) [1; 4 §) 71| ), we
will introduce the function

(T + K)?
T+ 6—20/(>\0—5—T)I€)2 +1

no(’ia T) = (

on [0, 00) x R. Here we note

(D) (5.7) 2(7 + k) {(T + e 2/ 0= ) (1 — e720/Co=0=7))7 4 1}
kMo )\K, T) = )
L (7 1 e 2 /Ca—6-) )2 1 1)2

and, since for any k € Z, 0 < dist(A\, ) — 6 < |A\g — kw| — 0 holds,

1 < 1 < 1 ’
)\O—k‘w—5_ |)\0—]€W|—(5—dlst(/\[),;7)—5

keZ.

Firstly we consider the case where 7 = kw with k& € Z N (0,00). Suppose
1 — e~20/(0=9=k) > () Since (0x75) (K, kw) > 0 on [0, c0),
ﬁa(ﬁ,kw) < ~hm na(f{ykw) _ 640/()\0—5—kw) < 64/(dist()\o,9)—5)
KR—00
holds. Suppose 1 — e=20/(o=0=k) < (0 (9,1n)(k, kw) has two zero points —kw <

0 and
e20/Co=0-kw) {1 _ (=20/Co—6=kw) _ 1)(fw)?}

(6720'/()\07571%0) _ 1)]{7(,0 !

Koo (kw) =
if ko »(kw) belongs to [0, o), then 7, (k, kw) takes the maximum at ¢, (kw), S0

770("{'7 kw) < 770(50,0(]{5‘*’)» kw)
{620/()\0—6—kw) + (620/(/\0—5—kw) 4 e20/(Ao—d—kw) _ 2)(kw)2}2
T+ (e 270005 — 17(kw)?
= 17/Qom0mke) {1 4 (e720/Qom07ke) 1) ()2}
= 17/ Qo=0-kw) 4 4020/ Qo=0-ke) Ginh2(5 /(Ag — § — kw))(kw)?
1/(Xo — 8 — kw)) (kw)?

(
< e4/(dist(/\0,t7)f5) + 462/(dist()\o,=7)*5) Sinh2(

< 4/(dlst(/\0 T)— + 4M1 Ao 2/(dist(Xo,.7)—9)

with
M 5 = sup{sinh2(1/(/\0 — - k:w))(k:w)2} < Q.

keZ

Here we used
lim sinh?(1/(\g — 6 — kw))(kw)? =
k—+oco
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On the other hand, if k¢, (kw) does not belong to [0, c0), then 7, (k, kw) is mono-
tone decreasing, so

2
(kw) <1 = 0 < H/(dist(r0,7)0)

Mo (K, kw) < 15(0, kw) = ) +1°

holds. Secondly in the case where k = 0 and 7 = kw = 0,

2
_ K 406/(Mo—06) _ Ao /(No—d—kw) 4/(dist(ho,T) )
770(’%7 kw) - 6_40/()‘0_5)1'12 +1 <e =e€ S € .

Lastly we consider the case where 7 = kw with k& € Z N (—00,0). Suppose
1 — e20/Qo=0=kw) () Since (e~27/(Po=0-kw) _ 1)(kw)? < 0 < 1, koo (kw) > 0
holds, so 7, (k, kw) takes the maximum at 0 or —kw or kg ,(kw), and

Mo (K, kw) < max{n, (0, kw), n,(—kw, kw), Ny, (ko (kw), kw)}
< max{e/ @St 00T)=0)  A/SO0T)=0) L yp o2/ [ist00,T)=0)
= MAN00.T)0) Yy e/ 00T 2
holds. Suppose 1 — e~27/(o=0=kw) — () The sign of (0,n)(k, kw) depends on the
linear function k + kw, so 1, (k, kw) takes the maximum at 0 or co, and

Mo (15, kw) < max{n, (0, kw), lim 7, (%, kw)} < &/ (dist00.7)=0)
K— 00

holds. Suppose 1 — e=20/Qo=0=kw) < (. If kg, (kw) belongs to [0,00), then
1o (K, kw) takes the maximum at 0 or —kw or Ko (kw), and 1, (K, kw) < M3,
holds. On the other hand, if ¢, (kw) does not belong to [0, o), then 7, (x, kw)
takes the maximum at 0 or oo, and 7, (x, kw) < e*/(dst(20.7)=9) holds. Finally we
have

770</€7 kw) < M22,>\0,67 k€ [Ov 00)7

for any k € Z, which yields
| (kw 4+ Ho)(kw + e 20/Go=0=k) o 1) =12,

= / |(kw + k) (kw + 720/ P0=07R) g )L 12d|| By, (6) 0|3
0

= | ot k| Bl
< MQZ,AO,(S”QOH;”? p € H,
where Epy, denotes the spectral measure of Hj, and

sup || (kw + Ho) (kw + e =27/ Qo0 =k) F0 4 )| gy < Moy s (3.2.4)
keZ
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This implies (3.2.1) because of
o | Koe 00 (Ko + 1) | 1)
o<1
= sup ”KoeicrAAo,é(KO 4 i)ileiio‘A}\O’éHFZ(%) < MZ’)\()’&.
lo|<1

Thus we also have

s | K e 08 (K +4) 7| gy < 0. (3.2.5)
o|<1

By including the relations between K and A,, ;s mentioned in §3.1, eventually we
have completed checking the required conditions on A, s as a conjugate operator
for K in the standard Mourre theory.

Now we will show Theorem 3.1.1, in particular, the Mourre estimate (3.1.12).
Take a unique n), € Z such that \y € ]mo- Let f5 € C5°(R) be real-valued,
and be supported in [—d, §]. Under the condition (V'), fs(K — Xg) — f5(Ko — Ao)
is compact. Since i[Ky, Ay, 5](Ko) " is bounded, and (K,) 'i[V, Ay, 5](Ko) ' is
compact as mentioned in §3.1, we have

Js(K — Xo)i[ K, Ay 5] f5 (K — o)
= f5(K — Xo)i[Ko, Ax6] fs(I — Xo)
+ fs(K — Xo)i[V, Axg.ol fs (5 — Ao)
= [5(Ko — Xo)i[Ko, Axys]fs(Ko — Ao) + C&M&

with some compact operator C} . on . f5(Ko — Ao)i[Ko, Ax, 5] f5(EKo — Ao)
can be decomposed into the direct integral

(3.2.6)

D M%mﬂofa(flo — (Ao — kw))?.

keZ

Suppose \g — kw < 0, that is, k > ny, + 1. Then fs(Hy — (Ao — kw)) = 0 holds
because of Hy = p®/2 and

K— (Ao —kw) > kw — X > dist(Ng, T) > 9, k€ [0,00).

Suppose Ao — kw > 0, that is, k& < n,,. Then considering x € [0, c0) such that
Kk — (Ao — kw) > —4, one can obtain

Hgf(;(HQ — ()\0 — kW))Q 2 ()\0 — kw — 5)f6(H0 — ()\0 — kCL)))Q
easily. Thus we have

J5(Ko — Xo)i[ Ko, Axg 5] f5(Ko — o)
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2
= —— Hyfs(Hy — (Mg — kw))?
k@ JV— — ofs(Ho — (Mo — kw))

> P 2fs(Ho — (Mo — kw))® = 2f5(Ko — Xo)°.

kgn)\o

By combining this and (3.2.6), and using that fs5(/K — Ag) — f5(Ko— o) is compact
again, we obtain the Mourre estimate (3.1.12)

fs(K = Xo)i[K, Ay 6] f5 (K — Ao) > 2f5(K — Xo)* 4+ Chy. s,

with some compact operator Cy, ¢, on % .

3.3 Application

As an application of our results, we consider a scattering problem for the so-called
AC Stark Hamiltonians.

We consider a system of one particle moving in a given time-periodic electric
field £(t) € R®. Suppose that £(t) belongs to C°(R; R"), and T-periodic, that
is, E(t +T) = E(t) for any t € R. Moreover, the mean E,, of E(t) in time is
zero, that is,

1 T
By = f/0 E(t)dt = 0.

A typical example of such E(t)’s is Ey cos(wt) with non-zero £y € R and w =
27 /T, which was considered in Kitada-Yajima [23]. As for the case where E,,, #
0, see Mgller [26] and Adachi-Kimura-Shimizu [7]. Then the Hamiltonian H (t)
for the system is given by

A1) = Folt) + V(x), Holt) = 50— B() -«

on L?(R%). Hy(t) is called the free AC Stark Hamiltonian, and H (t) is called an
AC Stark Hamiltonian. We denote by Uy (t, s) and U (¢, s) the unitary propagators
generated by Ho(t) and H (t), respectively. Now, as in [26], we define R%-valued
T-periodic functions by(t), b(t) and ¢(t) on R by
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bo(t) is an auxiliary one for the sake of making ¢(t) T-periodic. Here we introduce
the time-dependent Hamiltonian
1
H(t)=Hy+V(z+ct), Hy= §p2
on 2 = L*(R"). We denote by U(t, s) the unitary propagator generated by
H(t). As is well-known, the following Avron-Herbst formula holds:

Up(t,s) = T ()e o g (s)* Ut,s)=TU(s)T(s)* (3.3.1)
with .
F(0) = OO0t = [ o) ds.
0

This formula with E(t) = Ejcos(wt) was first proved in [23]. Now we will
consider the problem of the asymptotic completeness of the wave operators

W* = s-lim U(t, 0)*Uy(t, 0) (3.3.2)

t—o0
for short-range V. The asymptotic completeness of W# is formulated as
Ran (W*) = LX(U(T,0)), (3.3.3)

where L2(U(T,0)) is the continuous spectral subspace of the Floquet operator
U(T,0). We impose the following short-range condition (V')sg on V:

(V)sr V() is a real-valued function on R?, and is decomposed into the sum of
Vg () and VSR(z). If d < 3, then V¢ = (. If d > 3, then V5" belongs
to L®(R?) with some 0o > ¢y > d, and is compactly supported. |(VV18)|
belongs to L% (Rd) with some oo > ¢; > d/2, where if d = 3, then we define ¢;
by 1/q1 = 1/(2q0) + 1/2 (< 2/d). VS8(x) belongs to C%(R?), and satisfies the
decaying conditions

82V (2)] < Cz)~Psnlel ol <2 (3.3.4)

with some psg > 1.

Here we note that the singular part Vsing of V satisfies the same condition posed in
[7], but the short-range part VSR of V has to satisfy the condition which is stronger
than the one posed in [26] and [7]. It is caused by that the mean of E(t) in time
is not non-zero but zero. Basically we have in mind the very typical singularity
of the type |x|~7 as the singular part Vsing: if /52 has such a singularity, v must
satisfy —vyqo + d > 0, so vy < d/qo < 1 and thus, unfortunately, we cannot allow
Coulomb type singularity; conversely, if v < 1, for any d < qo < d/7, ||
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belongs to L% (B(0, 1)), and forany d/2 < ¢; < d/(y+1), (—y—1)q1+d > 0, s0
V||~ = | = v|z|7" 'z /|z|| = v|]z|~7~! belongs to L*(B(0,1)) (in addition,
ifd =3, forany d < qo < d/v,2(y+1)/d—1 < v/d < 1/qo, s0 1/q1 =
(1/go+1)/2 > (v + 1)/d is satisfied automatically). Under the condition (V')gg,
V(z+e(t)) = Vg (z+c(t)) + VSR(:U—i—c(t)) satisfies the condition (V) with p =
psr — 1 > 0, which means that VSR cannot be replaced by long-range potentials.
Here we note 0;(V (z + ¢(t))) = b(t) - (VV)(z + ¢(t)) and (‘92(VSR(x +c(t))) =
E(t) - (VVS) (2 + b)) + 20y Yohey b (Dbe(t) (9;0,V5™) (w + (1)) Actually,
since c(t) is T-periodic in t, V"8 (z + ¢(t)) and VSR (x +¢(t)) are T-periodic in ¢;
if d > 3, since there is some C' > 0 such that suppV*"8 C B0, C], suppVSi“g(- +
c(t))’s are included in the common compact set B[0, C' + maxo<s<r |c(s)|]; since
Ving ¢ [o0(R?), there is some ¢ € . (R?) such that ||[V5" — ||, < & for any
€ >0 and

VS8 (- e(t)) = V8 ( + e(to)) lag
< NVEE( (1)) = (- + e(O))llan + ol + e(t) = o (- + e(to))llag
Nl (- + clto)) = VoS ( + c(to)) o

/ b(s) - (V) + e(s))ds

to

= 2||VSing - ‘Pqu +

q0

<2+ max [b(s)|[1Vel ot o]

for all t,ty € R, so we can choose |t — | so small that the second term of the
last member is less than «; therefore V5"8(- + ¢(t)) belongs to C'(R, L(RY));
(0;V5"8) (- 4 ¢(t)) € C(Ry, L%(RY)), (j = 1,...,d), can be proved in the same
way, 50 9, (V8 (- ¢(1))) = b(t) - (VV€)(-4-¢(t)) and | (VV=8) (- 4 ¢(¢))] also
belong to C'(R, L% (R%)); on the other hand, since ¢(t) € C*(Ry), VSR(- + ¢(t))
belongs to C?(R x R") and

05V (@ + e(D)] S (o +et)) 771 S max (e(s))smHl () psn

0<5<T
(< <x>,(pSR,1),|a‘)’ |a\ <2,

|8t5§‘f/SR(x +c(t))| = |b(t) - (V(@O‘VSR))(Q; +e()]
|b(t)[{x + c(t)>*pSRf(1+|a|)

psr+(1+]al) —psr—(1+]al)
s ()51 )

(< (x) (pSR_l)_(l""IO"))’ la] <1,
< |E(t) - (VV3) (2 + ¢(t))]

ANRIA

07 (V™ (2 + e(t)))]

) > b (0)be() @0V ( + (1)

7j=1 k=1
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by Peetre’s inequality. Now we also introduce the wave operators

W= = s-limU(t,0)* e o, (3.3.5)

t—o0
Then it is obvious that the relation between W= and W*
Wt = Z0)W*7(0)*

holds. We note 7 (0) = e~om® Thus the problem of the asymptotic complete-
ness of W+ can be reduced to that of W+

Ran (W¥) = J(U(T,0)), (3.3.6)

where .7.(U(T,0)) is the continuous spectral subspace of the Floquet operator
U(T,0). Here we used

L(U(T,0)) = L7 (0)7 (T)"U(T,0))
= LT (0)U(T,0)7(0)") = 7 (0)#(U(T,0)),

because by(T) = 0, b(T) = —by.m, c(T) = 0,0 T (0).7(T)* = eT) is a scalar.

As is well-known, in the proof of the asymptotic completeness of WW*, the
so-called Howland-Yajima method plays an important role: Introduce the Flo-
quet Hamiltonians Ky and K on ¢ = L*(T'; %), associated with Hy and H (1),
respectively, and the wave operators

WE (K, Ky) = s-lim e ko, (3.3.7)
oc—+oo
where T = R/(TZ) is the torus. After the existence of W has been guar-
anteed, the asymptotic completeness of % = (K, Kj) yields that of W=*. This is
the essence of the Howland-Yajima method. We refer to Yajima [37, §4] for that
proof.
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If Vsins = (), then we have only to use the limiting absorption principle
(3.1.15) in order to show the asymptotic completeness of Wi(K , Ko). In fact,
(3.1.15) yields the local K-smoothness of (z)~* with s > 1/2: if I is any com-
pactinterval in R\ (7 U o,,,(K)),

|l B el do < 2x (@) Ex(DIE NI, @ e ¥

> (3.3.8)

by Kato’s smoothness theory [18], where Ex denotes the spectral measure of /K
and ||(x) *FEk(I)||k is the smallest number M for which

/ (I{a) " Ex (DK = X = i)~ ®|1% + [[{2) " Ex (I)(K — A + ig)) " @[5, )dA
<Am*M?||®|%, ®€H,e>0

is true (see also Reed and Simon [30, Theorem XII1.30] ). We denote by 77, 15
respectively the bounded operators of multiplication by

VS (@ + e(@)['2, (signV (@ + c() [V (@ + e(t) [
defined in .#". Then K — K, = T,;1; holds in the sense that

(@1, K®g) o — (Ko®1, P2) . = (1191, T2®2) v, ®1 € D(Ko), P2 € D(K).
(3.3.9)
To see this, we take a;, ay € AC(T) and ¢y, py € CP(R?), and let

él(t) = al(t)apl, (Pg(t) = ag(t)g&g, t e T.
Since &, € Z(K,), P, € 2(K),
d

— _(e—iaKoq)h e—iUK(I)Z)%

- = (1, KP2) 5 — (Ko®1, ®2).0

o=0

On the other hand, from the definitions of K and K and the translation invariance
of dt,

(e 7Ry, e 7N Dy) = / (e7t=U=NHG, (t — ) U(t,t — 0)Dy(t — 7)) pdt
T
= [ (0,0, U6+ 0,0)8:(0) et
T

N /:ral(t)m(e_w%%, U(t + 0,1)p2) dt.

The integrand of the last member is continuously differentiable in o, because
01,02 € H*(RY) and so satisfy the hypothesis of Yajima [38, Theorem 1.3].
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Since a; and a5 are continuous on the compact space 1" and dt is the finite mea-
sure,

sup |ax ()as () (e 7701, U(t + 0, t)pa) | < maxc|ar (7)][aa(7)[lson ]|l @2l

cER
e L,(T).

Moreover, since i0,U (t, s)ps = H(t)U(t, s)p2 is continuous in (t, s) jointly, for
any compact set C'in R,

(e Mo, U(t + 0, t)p2)

§le

sup |aq (t)as(t)
oeC

max |ay (7)[|az(7)| sup (™01, —iH(t + 0)U(t + 0,t)p2).r
T s

IA

+ <—Z'67iUHOH0g01, U(t + g, t)@g);f

: HU, s ,
Elea;f‘al(T)HM(T)’(HSﬁ“Jf (t’,s’)e([g%r?i(C)x[o,T]H (UL, s") 2l

IN

+ [ Hopr ||l @2l #)
€ L;(T).

Therefore that integral is continuously differentiable in o and

— i — [ ar(t)ay(t)(e" 01, U(t + 0, 1)pa) st
da T

- /T (B (01, HE)g2) o — (Hogr, o))t

o=0

_ /T (V (& + ¢(6) @1 (1), Da(t)) et = (Ty b1, Todby)

Since these pure tensor products ®;, ®, generate AC(T) ® C°(R?) and it is a
core for K and K, (3.3.9) holds for all ®;,®, € AC(T) ® C;°(R%), and for
general &, € 2(K,),®, € 2(K), there exist &, ;, Py ; € AC(T) ® CF(RY),
j c N, such that q)l,j — Py, Koq)l,j — KOCI)I’ @27]' — &, K@Q’j — Ko,
(j — 00); these @y ;, Dy ; satisfy (3.3.9) and 77 and 75 are bounded, so ®;, @,
satisfy (3.3.9). Taking s = psr/2 > 1/2, we see that

VSR (@ + c(t))] /2 (2)" S (2 + ct)) s/ () o2
<x>_PSR/2<C(t)>PSR/2 <x>PSR/2

max (c(s))sV? < 0o, z€ R,tE R
0<s<T

S
<

by Peetre’s inequality, so 75 is K-smooth on /. Since the Ky-smoothness on [ of
(x)~* with s > 1/2 can be also obtained by replacing V' by 0, T} is K-smooth on
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1. Then the existence of local wave operators on /°

s-lim eKem Ko gy (1°),  s-lim e K B (1°)

o—Fo0 o—+oo
follows by Lavine’s local smoothness theorem [24, Theorem 2.3] , where Ek,
denotes the spectral measure of K. Since .7 U o,,,(K) is a countable closed set,
there is a sequence of compact intervals I; in R\ (.7 Uoy,,(K)), j € IN, such that
UiZ, I = R\ (7 Uoy,(K)). Gluing those local wave operators on I together
yields the existence of #* (K, K;) and the adjoint wave operators

WE (Ko, K) = s-lim ¢loRoemioR p () (3.3.10)
o—IZ00

immediately, where P.(K) is the spectral projection onto the continuous spectral
subspace #.(K) of K. To see this, we first write the unitary operator of multipli-
cation by e~ as %/ and note that

Hae(Ko) = U (LX(T, He(e™10), db)) = A,

and so the spectrum of K is absolutely continuous (see Yajima [37, §4] ). Then
since (U2, I7)¢ = 7 U 0y, (K) has Lebesgue measure 0,

Ex, (U 1;) > Ek, (G I;) =1- Ek, ((G J;) ) =1, (N — o).

On the other hand, since .7 U o,,,(K) is a countable set, for all u € #(K),

N

Ex (U I;) u—u—Eg(T Uop(K))u=u, (N — o00).
j=1

Letu € . (K)and e > 0. If N is sufficiently large, HEK(UjV:l ID)u—ully <e

holds. Since Ujvzl I? is a finite union of the open intervals, it can be decomposed

into disjoint open intervals: that is, there are some compact intervals J; in R\ (.7 U

opp(K)), (j = 1,...,N'), such that J5’s are disjoint and Ujvzl I = Ujvzll J5.
Hence the strong limit

o—+o0 o—too J
Jj=1

N N’
lim e“foe K By U[]O u = lim e“foe K B (J9)u

j=1
exists, so for sufficiently large o, 7 (or —o, —7) € R,

N
eiaKoe—ioKEK (U ]Jo) uw— 6iTKoe—iTKEK (U ]Jo) u

J=1 Jj=1

<é€

H
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holds. Therefore by the uniform boundedness of ei7foe=ioK

HewKoe—wKu o ezTKoe—ZTKqu/
N
S ezaKoe—zaKu . ezoKoe—zaKEK U I]o U
j=1 H
N N
+ ezaKoefwKEK U Ijo u— QZTKoeszKEK U I]o u
= = x
N
+ ez‘rKoeszKEK U []o u— ez*rKoeszKu
Jj=1 v
N
<2llu-Ex | |JIp |ul| +e<3e,
Jj=1 w

SO
WE (Ko, K) = s-lim 750K p (K)

o—Foo

exists. Inverting Ky and K, the existence of

WE(K, Ky) = s-lim 7% emioko

o—+o0

can be proved in the same way. Thus one can obtain the asymptotic completeness
of #*, as is well-known. If V/sing = 0, then we have to avoid the matter caused by
its singularity in the proof of the existence of both # % (K, Ky) and # *(K,, K).
To this end, we will use the so-called minimal velocity estimate like

2

o T ~ do
[ (B < vE=saa@ta=m ) et - aan| 2 <l
1 o ¥ O
(3.3.11)
with sufficiently small € > 0, which follows from
o0 A , > d
/ HF (2 —de < B <o 25) K fos(K — Mo)®| < @l
1 o v O
(3.3.12)

These propagation estimates can be proved in the same way as in Sigal-Soffer [35],
by virtue of the Mourre estimate (3.1.13). Here F'(z € 2) denotes the character-
istic function of the set of {2, and

da(X) = dist(A\, T U opp(K)).
If dy(No) in (3.3.11) could be replaced by
dist(Ao, (T U opp(K)) N (—00, Ag)),
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then (3.3.11) would become more natural and refined.

In the long-range case, it seems necessary to obtain some refined propagation
estimates for U(t, s) or U(t, s). Unfortunately, we have not done it yet. The result
on the asymptotic completeness was already obtained in Kitada-Yajima [23] via
the Enss method. As for the case where F,,, # 0, see Adachi [2] and Adachi-
Kimura-Shimizu [7].

3.4 Concluding remarks

Although we consider the one body case only in this paper, here we will make
some remarks on the many body case.

We consider a system of IV particles moving in a given T'-periodic electric
field in R?. In the center-of-mass frame, the total Hamiltonian H (¢ (t) is given as

H(t) = —2Ax — (B(@),2)+V, V= > Viklay — )

2
1<j<k<N

on L?(X), where X is the configuration space for the system under consideration
in the center-of-mass frame with a certain suitable metric (-,-), z € X, Ax is
the Laplace-Beltrami operator on X, E(t) € C°(R; X) is T-periodic, and Vj;’s
are pair interactions. If N = 2, then H (t) is essentially the same as that in §3.3.
Hence we suppose N > 3. We denote by U (t,s) the propagator generated by
H (t), and put

1 /7

Ey = —/ E(s)ds € X.
T Jo

As in Mgller [26] and Adachi [1], we define X -valued T-periodic functions by(t),
b(t) and ¢(t) on R by

bo(t) ::/O (E(s) — En)ds, bom:= %/0 bo(s) ds,
b(t) = bo(t) — by, Clt) = /O b(s) ds.

and introduce the time-dependent Hamiltonian
1
H<t) = HO + V(QZ + C(t))7 HO = _QAX - <En17 J,’>

on L?(X). If E,, # 0, then Hy is called the free N-body Stark Hamiltonian. We
denote by U(t, s) the unitary propagator generated by H (). As is well-known,
the following Avron-Herbst formula holds:

Uo(t,s) = T(t)e o g (s Ut,s) = W)U, s)T(s)*  (3.4.1)
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where |b(s)|? = (b(s), b(s)).

When E,,, # 0,in [1] and [2], Adachi already obtained the result of the asymp-
totic completeness for the system under consideration, both in the short-range and
the long-range cases, by introducing the Floquet Hamiltonian K associated with

H(t). As for this K,
E
A= <—m, —iVX>
| En

is a conjugate operator for K in the standard Mourre theory, where —iV x is the
velocity operator on X . Here we emphasize that in the case where N = 2, in [26],
Mgller proposed this operator as a conjugate operator for K before [1]. Roughly
speaking, the conjugate operator due to Mgller possesses its natural extension to
N-body systems. On the other hand, when £, = 0, any candidates of a conjugate
operator for K in the standard Mourre theory have not been found yet, except in
the case where N = 2. As mentioned above, in the case where N = 2, Yokoyama
proposed a conjugate operator A; for K in [39]. Unfortunately, A; seems not
have any natural extension to N-body systems. It is caused by the ‘factor’ (1 +
p®)~1 of A, (see [27] for the detail). Hence, in [27], Mgller and Skibsted took
Ag as a conjugate operator for /K in an extended Mourre theory, as mentioned in
§3.1. As for the study of the asymptotic completeness for three-body AC Stark
Hamiltonians via the Faddeev method, see Korotyaev [21] and Nakamura [28].

Our aim of this chapter is to replace the factor (1 + p*)~! by some other
appropriate one in order to let a conjugate operator possess its extension to N-
body systems. However, we have not accomplished this aim yet, unfortunately.
We have to deal with the term like

—(Ao =6 — D)7 (), (VXV)(@ +c(t)) (Ao — 6 — D) Ay (3.42)

ini[V(x+c(t)), Ay,.s] skillfully, in the proof of the Mourre estimate for &', where
Ay is the generator of dilations on X. It is caused by that |(VxV)(z + c(t))|
does not vanish as |z| — oo, if N > 3. These are the issues in the future.
Finally we note that if V' (x+¢(t)) is time-independent, one can obtain the Mourre
estimate for K by taking (\g—0 — Dt)*lflo as a conjugate operator in the standard
Mourre theory, even if N > 3. Hence we have a faint expectation that the factor
(Ao — & — D;)~! will overcome the matter mentioned above.
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