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Chapter 1

Introduction

1.1 Overview of Dark Matter and Dark Energy

A number of observations have revealed that the energy density of our universe is made up
of not only the standard model particles but also unknown dark matter and dark energy.
The ΛCDM model is currently believed to be the most plausible cosmological model, where
dark energy is assumed to be the cosmological constant (denoted as Λ) and dark matter
is modeled by a slowly-moving pressureless perfect fluid (cold dark matter, CDM). The
most accurate probe of the universe is the fluctuations in the cosmic microwave background
(CMB) radiation. The observation by the Planck satellite determined the energy density
of (cold) dark matter and dark energy (the cosmological constant) as ΩCDM = 0.264 and
ΩΛ = 0.685, respectively [1], with assuming the flat ΛCDM model.

Dark matter is originally introduced to explain the so-called “missing mass” in the
galaxies, and is also necessary for explaining the distribution of galaxies. Since dark matter
is assumed to have no (or extremely tiny) interaction with the standard model particles, it
is able to form gravitationally bound objects much earlier than the baryons do. Without
(cold) dark matter, the formation of galaxy would not be efficient enough to explain the
number of galaxies today. Moreover we can see the distribution of dark matter directly by
gravitational lensing observations. For the above reasons, the existence of dark matter is
generally accepted.

In the past, the neutrino was considered to be a candidate for dark matter. However,
it turned out that the neutrino erases the small scale structure due to its large velocity
dispersion, and is not compatible to the observations if all the dark matter density is
explained by the neutrino. Hence it is regarded that the neutrino cannot explain all the
dark matter density today. At present, a number of scientists are considering that dark
matter is made up of unknown particles included in a beyond standard model of the particle
theory. A weakly interacting massive particle (WIMP) is an example. A virtue of WIMPs
is its ability to explain the present abundance of dark matter naturally, which is known as
the “WIMP miracle”. From the point of view of particle theory, supersymmetric extensions
of the standard model usually predict WIMPs, e.g. neutralinos. However, there is no
experimental signature of supersymmetry so far. Another candidate for dark matter is
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6 Introduction

the axion (or the QCD axion). It is originally introduced to resolve the so-called “strong
CP problem” in the quantum chromodynamics (QCD). The axion is a pseudo-Nambu-
Goldstone boson, which arises due to the breaking of a new global chiral U(1) symmetry
(the Peccei-Quinn symmetry). The superstring theory also predicts a number of scalar
particles, which are called the “string axions” or “axion-like particles.”

We also believe dark energy does exist by mostly three facts. The first is the fluctuations
in the CMB as mentioned before. The second is the discovery of the accelerated expansion of
the universe today. The observations of the type Ia supernovae revealed that the expansion
of the universe is accelerating other than decelerating. In order to explain this fact, we need
to assume that a peculiar species with negative pressure dominates the energy density of the
present universe. Thirdly, the observations of the baryon acoustic oscillation (BAO) also
prefer the existence of dark energy. Combining these facts, it seems inevitable to believe
the existence of dark energy.

In the ΛCDM model, dark energy is assumed to be the cosmological constant, which is
not forbidden in Einstein’s theory of gravity. In fact, it is well known that Einstein himself
introduced the cosmological constant into his theory in order for the universe to be stable.
The cosmological constant is the simplest candidate for dark energy. However, there known
to be several problems on the cosmological constant. One is the necessity of the fine-tuning
of the vacuum energy. From the viewpoint of quantum field theory, the vacuum energy
of fields contribute to the cosmological constant. The vacuum energy density ρvac can be
estimated as ρvac ∼ M4

Pl, which is larger than the cosmological constant by a factor of
O(10120). No one can explain this gap naturally. The other problem is known as the coin-
cidence problem. We do not know why the energy density of dark energy today is the same
order as that of dark matter. Of course, if the energy density of dark energy were too large,
galaxies would not be formed since the accelerated expansion starts earlier. However, such
an anthropic principle cannot be applied for the explanation why dark energy is not smaller
than the observed value. That is, there would not arise no problem even if dark energy
is effectively zero at present time. Given this situation, people are trying to understand
these facts by considering alternative possibilities for dark energy. Roughly speaking, there
are two possibilities, depending on which term of Einstein’s equation Gµν = 8πGTµν to be
modified. One way is introducing a new species with an equation of state w ≃ −1 into
the right-hand-side of Einstein’s equation. This new field is called quintessence, which is
usually assumed to be a scalar field that rolls slowly on its potential. The potential energy
of quintessence causes the accelerated expansion of the universe as in the case of infla-
tion. Another way is modifying the left-hand-side of Einstein’s equation, that is, modifying
Einstein’s theory of general relativity on cosmological scale.

1.2 Purpose of Research

As explained in the previous section, dark matter and dark energy are the most serious
problems in cosmology. In most researches on these dark components in the universe,
people study them separately. That is, dark energy tends to be neglected or assumed to be
the cosmological constant when studying dark matter. On the other hand, when studying
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dark energy models, cold dark matter is usually assumed (sometimes implicitly). Thus it
might be worth investigating dark matter and dark energy models simultaneously if it arises
nontrivial phenomena by doing so.

In the previous study by Khmelnitsky and Rubakov [2], they revealed that there is
an interesting gravitational phenomenon caused by ultralight scalar field dark matter. As
explained in Sec. 2.4, the oscillating pressure of ultralight scalar field dark matter induces the
oscillation of the gravitational potentials. This phenomenon is remarkable in the sense that
it could be observed by future gravitational experiments. This study is based on Einstein’s
theory as usual. Thus it is worth reinvestigating this phenomenon in the framework of
other gravity theories. Hence the purpose of this research is to study how the phenomenon
caused by ultralight scalar field dark matter changes when considering alternative theories
of gravity.

1.3 Outline of Thesis

This thesis is organized as follows:

• In Chap. 2, the ultralight scalar field dark matter model is reviewed. In Sec. 2.1
motivations for ultralight scalar field dark matter and its possible origins in particle
theory are explained. We see some properties of ultralight scalar field dark matter
in Sec. 2.2, where we especially focus on differences from the standard cold dark
matter model. The existing constraints on ultralight scalar field dark matter are
summarized in Sec. 2.3. In Sec. 2.4 we discuss a phenomenon that the gravitational
potential is forced to oscillate because of the presence of the oscillating pressure of
ultralight scalar field dark matter. We also introduce direct detection methods for
this oscillating gravitational potential there.

• In Chap. 3, modified gravity theories are reviewed. In Sec. 3.1 motivations for alter-
native theories of gravity are explained. We focus on the f(R) theory as a simple
example of modified gravity theories in Sec. 3.2. The equivalence of the f(R) theory
and the scalar-tensor theory is explained, and the relation to other modified gravity
theories is discussed in this section. In Sec. 3.3 constraints on the f(R) models are
summarized.

• Chap. 4 and Chap. 5 are the main parts of the thesis, where the behavior of ultralight
scalar field dark matter in the f(R) theory is studied. In Sec. 4.1 we derive the formula
for calculating the oscillating part of the gravitational potential in the f(R) theory.
Then we move onto the scalar-tensor formalism of the f(R) theory, in which we can
easily understand the physics, in Sec. 4.2. In Chap. 5, we study specific f(R) models
in order: the quadratic model f(R) ∝ R2, the exponential model f(R) ∼ exp(−R),
and the cosmological dark energy models known as the Hu-Sawicki and Starobinsky
model.

• Chap. 6 is devoted to the conclusion.
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1.4 Notations and Definitions

• The signature of the metric tensor is (−,+,+,+). That is, the metric of the 4-
dimensional flat spacetime is ηµν = diag(−1, 1, 1, 1).

• The natural unit c = ! = 8πG = 1 is used.

• The quantities related to the differential geometry are defined as follows:

– Christoffel symbol

Γλ
µν =

1

2
gλα(gαµ,ν + gαν,µ − gµν,α) . (1.4.1)

– Riemann tensor

Rµ
νρσ = Γµ

νσ,ρ − Γµ
νρ,σ + Γµ

αρΓ
α
νσ − Γµ

ασΓ
α
νρ . (1.4.2)

– Ricci tensor

Rµν = Rα
µαν = Γα

µα,ν − Γα
µν,α + Γα

βνΓ
β
µα − Γα

βαΓ
β
µν . (1.4.3)

– Ricci scalar
R = gµνRµν = Rα

α . (1.4.4)

– Einstein tensor

Gµν = Rµν −
1

2
gµνR . (1.4.5)



Chapter 2

Ultralight Scalar Field Dark Matter

In this chapter, the ultralight scalar field dark matter model is reviewed. In Sec. 2.1
motivations for ultralight scalar field dark matter and its possible origins in particle theory
are explained. We see some properties of ultralight scalar field dark matter in Sec. 2.2,
where we especially focus on differences from the standard cold dark matter model. The
existing constraints on ultralight scalar field dark matter are summarized in Sec. 2.3. In
Sec. 2.4 we discuss a phenomenon that the gravitational potential is forced to oscillate
because of the presence of the oscillating pressure of ultralight scalar field dark matter. We
also introduce direct detection methods for this oscillating gravitational potential there.

For more details of the ultralight scalar field dark matter model not covered in this
chapter, see review papers Ref. 3 and Ref. 4.

2.1 Motivations and Origins

In this section we explain some motivations for ultralight scalar field dark matter, and
show its possible origins in particle theory. In Subsec. 2.1.1 we review the so-called “small
scale crisis” of cold dark matter, which is the original motivation for considering ultralight
scalar field dark matter. In Subsec. 2.1.2 we explain how the ultralight scalar field arises in
particle theory.

2.1.1 “Small Scale Crisis” of Cold Dark Matter

In order to explain cosmological scale observations such as the cosmic microwave background
anisotropy and the large scale structure of the universe, dark matter must be cold. That
is, the motion of dark matter particles must be slow compared to the speed of light so
that its pressure is sufficiently small. However it is known that there are some tensions
between the predictions of the cold dark matter model and galactic scale observations. In
fact, the necessity of the pressureless nature of dark matter is essentially from cosmological
scale or larger-than-galactic scale observations. Hence there is no reason to believe that
the pressureless nature of cold dark matter should hold on small scales. These tensions
between the theoretical prediction and the observations are often referred to as the “small

9



10 Ultralight Scalar Field Dark Matter

scale crisis” of cold dark matter [5]. Some examples of them are the cusp-core problem, the
missing satellites problem, and the too-big-to-fail problem. All the problems are essentially
related to overabundance of structure on small scales in the cold dark matter model, which
is due to the pressureless nature of cold dark matter. Thus in order to resolve these issues,
we need a mechanism to relax the overabundance of dark matter distribution in galaxies.

The solution could lie in baryonic physics that are not modeled adequately: Some
numerical simulations claim that feedback from astrophysical processes such as supernovae
or star formation can flatten the central cusps of halos in massive galaxies. On the other
hand, the crisis might be resolved by nature of dark matter. Some proposals are the self-
interacting dark matter model, the warm dark matter model, or the ultralight scalar field
dark matter model [6]. In the self-interacting dark matter model, people try to erase the
overabundance of dark matter by the pressure due to its self-interaction, with a cross section
of order σ/m ! 1 cm2/g. In the warm dark matter model, a thermally-produced particle
with a keV-scale mass is assumed. Its free-streaming scale, the distance a particle can travel
over in one Hubble time H−1, is roughly corresponding to galactic scale. Warm dark matter
erases structure smaller than its free-streaming scale.

The ultralight scalar field dark matter model is another possible solution to the small
scale tensions. In this model we assume a non-thermally produced scalar particles with
extremely small mass. Scalar particles behave as classical wave due to its bosonic nature
(c.f. electromagnetic wave) if its occupation number is sufficiently large. Thus, according to
the uncertainty principle in the (classical) wave mechanics, there arises an effective pressure.
The scale at which the effective pressure becomes effective is called the Jeans scale, and as
we derive in Sec. 2.2 the (galactic) Jeans scale kJ is evaluated as

kJ ∼ 2π

4 kpc

( m

10−22 eV

)1/2

, (2.1.1)

where m is the mass of the scalar field. Hence the effective pressure becomes important at
galactic scale (∼ 10 kpc) if the mass of the scalar field is around 10−22 eV. The structure
below the Jeans scale is erased, as qualitatively similar to the warm dark matter model.
For this reason, ultralight scalar field dark matter is often called “fuzzy dark matter” [6].
Strictly speaking, fuzzy dark matter is often defined as the limiting case of ultralight scalar
field dark matter with negligible self-interaction. This is the original motivation to expect
the ultralight scalar field as a dark matter candidate.

We should note that both the model predictions and the observations tend to have
considerable ambiguities: The theoretical predictions are based on numerical simulations
of complex nonlinear system including baryonic species, and there should be systematic
numerical errors that is difficult to evaluate correctly. The observations on galactic scale
always have a number of statistical and systematic errors. Hence there are discussions
whether the “small scale crisis” is indeed the problem.

In this thesis we do not care the “small scale crisis” and not require the mass of the
scalar field to be around m ∼ 10−22 eV. We use this value just for reference.
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2.1.2 Ultralight Scalar Fields in Particle Theory

In this subsection we review possible origins of ultralight scalar fields in particle theory.
This subsection is mostly based on Sec. II of Ref. 4.

Scalar fields are often appear in particles theories that beyond the standard model. If
the action for a scalar field φ has the shift symmetry φ→ φ+C, the mass term (1/2)m2φ2

is forbidden. In other words, the shift symmetry is broken by adding the mass term or
general self-interaction V (φ). The shift symmetry is a continuous and global symmetry.
However, all the continuous global symmetries are considered to be broken in quantum
gravity. Thus we believe that the shift symmetry of the scalar field is only approximate
one, and the scalar field should have a small mass. Such a situation naturally arises when
the scalar field is an angular variable. The so-called axionlike particles predicted in some
extensions of the standard model, especially in string theory, are examples of them. We
can model an axionlike particle as

S =

∫
d4x

√
−g

[
1

2
(∂φ)2 − µ4 [1− cos(φ/F )]

]
, (2.1.2)

where µ and F are parameters to be discussed later. The continuous shift symmetry is
broken into the discrete one, φ → φ + 2πF , because of the presence of the potential term,
which usually generated by nonperturbative instanton effect. By expanding the potential,
the mass of the field is identified as

m =
µ2

F
. (2.1.3)

The parameter F , which is often called the decay constant, is assumed to be within the
Planck scale MPl ≡ 1/

√
8πG = 2.4 × 1018 GeV and the so-called grand unification energy

scale MGUT ∼ 1016:
1016 GeV " F " 1018 GeV . (2.1.4)

Another parameter µ is generated by the nonperturbative instanton effect, and roughly
estimated as µ4 ∼ M2

PlΛ
2e−σ, where σ is the instant action and Λ measures a possible

suppression of instanton effects due to supersymmetry. The value of Λ depends on models
and its range is assumed to be 104 GeV " Λ " 1018 GeV. The instanton action σ also
depends on models. In some simple cases we can assume σ ∼ σ0 = 2π/αG, where αG is the
standard model gauge coupling extrapolated to the grand unification energy scale. If we
use a value αG = 1/25, which is based on the assumption that only known particles in the
standard model contribute to αG, the possible mass range of the scalar field is evaluated as

10−21 eV " m " 10−5 eV . (2.1.5)

If we use αG = 1/30 instead, the range is

10−28 eV " m " 10−12 eV . (2.1.6)

Since the mass depends exponentially on the action σ, we cannot make a strict prediction
by this estimation. One point we would like to stress is that the mass in question (m ∼
10−22 eV) could naturally arise in particle theory beyond the standard model.
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In this subsection we have seen how ultralight scalar fields arise in particle theory and
discussed an axionlike particle as a concrete example. It should be noted that it is not
crucial that an ultralight scalar field is an axionlike particle for the purpose of this thesis.
All the assumptions in the thesis are its bosonic nature and negligible (self-)interactions.

2.2 Properties — Difference from Cold Dark Matter
Model

In Subsec. 2.1.1 we mentioned that ultralight scalar filed dark matter behaves differently
from cold dark matter below the Jeans scale, which is determined by its mass. In this
section we see such properties more quantitatively by studying its behavior in cosmological
and astrophysical situations.

Let us consider a theory of a free scalar field φ(t,x) defined by the action

S =

∫
d4x

√
−g

[
1

2
(∂φ)2 − 1

2
m2φ2

]
, (2.2.1)

where m is the mass. We assume that the background universe is homogeneous, isotropic,
and spatially flat. Such an universe is realized by the flat Friedmann-Lemâıtre-Robertson-
Walker metric:

ds2 = −dt2 + a(t)2dx2 . (2.2.2)

where a(t) is the scale factor normalized as a = 1 today, t is the cosmic time, and x is the
comoving coordinate.

We then separate the scalar field φ(t,x) into the homogeneous background part φ̄(t)
and the small fluctuation δφ(t,x), i.e., φ(t,x) = φ̄(t) + δφ(t,x). In Subsec. 2.2.1 we study
the homogeneous background field φ̄ and confirm that it indeed behaves in the same way
as cold dark matter on cosmological scale. Then, we study the behavior of the perturbed
field δφ in Subsec. 2.2.2, where the (cosmological) Jeans scale is derived. In Subsec. 2.2.3
we discuss the galactic scale behavior of ultralight scalar field dark matter.

2.2.1 Homogeneous Background Evolution

In this subsection we omit the bar symbol of φ̄ and write the background field as φ for
simplicity. The scalar field obeys the Klein-Gordon equation, and in the expanding universe
it is written as

φ̈+ 3Hφ̇+m2φ = 0 , (2.2.3)

where H ≡ ȧ/a is the Hubble parameter and the dot denotes the derivative with respect to
the cosmic time t. The solutions to Eq. (2.2.3) behave differently in early time (H ≫ m)
and late time (H ≪ m).

In the early universe (H ≫ m), the dominant solution is just a constant, φ = Const.
Note that another independent solution decays in proportion to a−3 with the expansion of
the universe. The kinetic energy of the field is extremely small since the field is frozen to a
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constant value. Hence the energy density ρ is almost a constant and the pressure is p ≃ −ρ.
Thus the field has a dark energy-like equation of state, w = p/ρ ≃ −1.

The field starts to oscillate at the bottom of the potential when it becomes H ∼ m.
During this period, the solution can be written by using the WKB approximation as

φ(t) = φ0a
−3/2 cos(mt+ α) , (2.2.4)

where φ0 and α are constants. Note that the constant φ0 is the amplitude at the present
time. The energy density of the scalar field is

ρ =
1

2
φ̇2 +

1

2
m2φ2 =

1

2
m2φ2

0a
−3 +O(H/m) , (2.2.5)

where O(H/m) is an oscillating correction term. With ignoring the correction term, the
energy density decays proportional to a−3 as the case of the cold dark matter fluid. Hence
the larger the mass is, the more the scalar field dark matter mimics cold dark matter on
cosmological scale. The pressure of the field is

p =
1

2
φ̇2 − 1

2
m2φ2 = −ρ cos(2mt+ 2α) +O(H/m) . (2.2.6)

Thus the pressure oscillates in time with angular ω = 2m, and its amplitude is fixed by
the energy density ρ. The pressure is a rapidly oscillating function since the period of the
oscillation T ∼ m−1 is much shorter than the cosmological time scale, H−1. Hence the os-
cillating pressure has almost no effect on the cosmological expansion of the universe despite
its amplitude being not small. We can confirm this explicitly by numerical calculation.

The evolution of the energy is plotted in Fig. 2.1 for m = 10−25 eV, which is obtained by
simultaneously solving the Friedmann equation, the Klein-Gordon equation for the scalar
field, and the equations of state for other species. The scale factor at the beginning of
the oscillation aosc is defined by the condition 3H(aosc) = m. After the time a ∼ aosc, the
energy density of the scalar field decays proportional to a−3 as the case of the cold dark
matter fluid. Since the field starts to oscillate in the radiation dominant era, the Hubble
parameter at a = aosc can be estimated as

Hosc ≃ Heq

(
aeq
aosc

)2

=
H0a

1/2
eq

a2osc
, (2.2.7)

where Heq ≃ H0a
−3/2
eq is the Hubble parameter at the equal time (ρr = ρb + ρφ). Hence aosc

is evaluated as

aosc ≃
√

3H0

m
a1/4eq = 8.6× 10−7

( m

10−22 eV

)−1/2

. (2.2.8)

where we used aeq = 1/3400 and H0 = 67.31 km/s/Mpc.
For numerical calculations we need the initial value of the field φi. We use the shooting

method, in which φi is adjusted so that the present value of the energy density ρφ/ρcr
matches an input value Ωφ. The rough estimation for φi is given as follows. Since the
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Figure 2.1: The evolution of the energy density of radiation (ρr), baryon
(ρb), cosmological constant (ρΛ), and ultralight scalar field dark matter
(ρφ), normalized by the critical density ρcr. The scalar field starts to
oscillate at a ∼ aosc, which is determined by the condition 3H(aosc) = m.
The scale factor at radiation-matter equality (ρr = ρb + ρφ) is indicated
as aeq. The mass of the scalar field is chosen to be m = 10−25 eV.

field starts to oscillate at a = aosc and then the field decays proportional to a−3/2, φi is
approximated as

φi ≃ a−3/2
osc φ0 ≃ 0.023

( m

10−22 eV

)−1/4

, (2.2.9)

where we used the fact (1/2)m2φ2
0 = Ωφρcr and the value Ωφh2 = 0.1197. Thus for the

mass m = 10−22 eV the initial value of the field is φi ∼ 10−2MPl ∼ 1016 GeV. If we
assume the scalar field as an axionlike particle, a natural value for φi is φi ∼ F , where F
is the decay constant. Hence we have an interesting fact that a parameter set (m,F ) ∼
(10−22 eV, 1016 GeV) naturally predict the desired value for the energy density.

Clearly we need the condition aosc ≪ aeq in order not to spoil the success of the standard
ΛCDM cosmology. If we have the condition aosc ! aeq and fix the energy density at the
present time, the equal time aeq is changed too much, which leads to the discrepancies
with the observations. The Hubble parameter at the radiation-matter equality (a = aeq ≃
1/3400) is about Heq ∼ 10−27 eV. Hence, the mass of the scalar field must be much larger
than 10−27 eV. As we will see in Subsec. 2.3.1, the condition for the mass becomes more
severe when considering the linear perturbation.
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2.2.2 Linear Perturbations and Cosmological Jeans Scale

In this subsection we study the behavior of the perturbation δφ and derive the cosmological
Jeans scale. Since the background universe has a translation symmetry, it is convenient to
study the Fourier modes δφ̃(t,k) instead of δφ(t,x). Hereafter we denote δφ̃(t,k) simply
as δφ(t,k). The equation of motion for δφ is

δφ̈+ 3Hδφ̇+

(
m2 +

k2

a2

)
δφ = φ̇(κ+ Ȧ) + (2φ̈+ 2Hφ̇)A , (2.2.10)

where φ is the background field, A is the time-time component of the metric perturbation,
and κ is a combination of the metric perturbations [7]. Introducing the fluid variables
as usual manner and averaging the variables over the time longer than the period of the
oscillation with an appropriate gauge fixing, we obtain the equation for the density contrast
δ ≡ δρ/ρ as

δ̈ + 2H δ̇ −
(
4πGρ− k2

a2
c2s

)
δ = 0 , (2.2.11)

where cs is the effective sound speed of the scalar field:

c2s ≡
δp

δρ
=

[
1 +

(
2ma

k

)2
]−1

. (2.2.12)

This procedure is called the effective fluid approximation for ultralight scalar field dark
matter. We have a term (k/a)2c2sδ in Eq. (2.2.11), which is absent from the equation for δ
in the cold dark matter model. This term is often called the “effective pressure” and causes
difference between ultralight scalar field dark matter and cold dark matter. The asymptotic
forms of the sound speed on small and large scales are

cs ≃

⎧
⎪⎪⎨

⎪⎪⎩

k

2ma
(k/2ma ≪ 1)

1− 1

2

(
2ma

k

)2

(k/2ma ≫ 1)
. (2.2.13)

Hence the evolution of the perturbations depends on scales, which would be a distinguish-
able feature compared to cold dark matter. For the nonrelativistic perturbations, k ≪ ma,
the equation for δ becomes

δ̈ + 2H δ̇ −
(
4πGρ− k4

4m2a4

)
δ = 0 . (2.2.14)

For large scales (k/2ma ≪ 1), the effective pressure is negligible and the perturbations
behave in the same way as in the cold dark matter model as expected. For smaller scales
the effective pressure term becomes important. The scale at which the two terms in the
parenthesis in Eq. (2.2.14) are equal to each other is called the (cosmological) Jeans scale
kJ :

kJ = (16πGρm2a4)1/4 =
2π

98 kpc
a1/4

(
Ωφh2

0.12

)1/4 ( m

10−22 eV

)1/2

, (2.2.15)
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where we assumed all the dark matter is ultralight scalar field dark matter, i.e., ρ = Ωφρcr.
Note that as we will see in the next subsection the Jeans scale on galactic scale is an order
of magnitude smaller than the cosmological Jeans scale (2.2.15) since the galactic energy
density is larger than the cosmological one by about five order of magnitude.
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Figure 2.2: The evolution of the density contrast δ as a function of the
scale factor a. The solid lines are for the ultralight scalar field dark
matter model and the dashed lines are for the cold dark matter model.
The mass of the scalar field is arbitrarily chosen to be m = 10−25 eV for
visualization.

In Fig. 2.2 we plot the evolution of the density contrast of dark matter for three different
scales.1 The mass is arbitrarily chosen to be m = 10−25 eV, for which the corresponding
cosmological Jeans scale is about 1Mpc [see Eq. (2.3.1)]. We also plot the density contrast
in the standard ΛCDM model for comparison. The largest scale perturbations (red) are
indistinguishable from each other, while the smaller scale perturbations (green and blue)
in the ultralight scalar field dark matter model are suppressed relative to that in the cold
dark matter model.

2.2.3 Distribution in Galaxies

In this subsection we study the galactic scale behavior of ultralight scalar field dark matter.
On galactic scale we cannot rely on the perturbative approach since the nonlinearity of

1 The numerical calculations are performed by using a public code CLASS [8] with some modifications
for ultralight scalar field dark matter introduced by Ref. 9.
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the dynamics becomes important. Since we assume the mass of the scalar field is m !
10−22 eV ∼ (0.1 pc)−1, we can use the nonrelativistic approximation k ≪ m in analyzing
the galactic scale dynamics. As is well known, the Klein-Gordon equation reduces to the
Schrödinger-Poisson equation in this situation. We further rewrite the Schrödinger-Poisson
equation into the Madelung equations, with which we can see the qualitative difference of
ultralight scalar field dark matter from cold dark matter.

A scalar field φ satisfies the Klein-Gordon equation

(#−m2)φ = 0 . (2.2.16)

We can treat the gravitational potentials as perturbations even on small scales since Φ ∼
ρ/k2 ∼ 10−6 for ρ = 0.3GeV/cm3 and k = (10 kpc)−1. The expansion of the universe can
be neglected on galactic scale, and we use the Newtonian gauge for the metric:

gµν =

(
−1− 2Ψ 0

0 (1− 2Φ)δij

)
. (2.2.17)

Since we can ignore the anisotropic stress at the leading order, we can set Ψ = Φ. Let us
introduce a complex scalar field ψ by

φ =
1√
2m

(ψe−imt + ψ∗eimt) , (2.2.18)

where ψ is normalized so that |ψ|2 has the dimension of energy density. Substituting this
into the Klein-Gordon equation and using the nonrelativistic (slow motion) approximation
m|ψ̇| ≫ |ψ̈|, m|Ψ| ≫ |Ψ̇|, we obtain the Schödinger equation

i
∂ψ

∂t
= −∇2

2m
ψ +mΦψ . (2.2.19)

In the nonrelativistic limit, the gravitational potential Φ is determined by Poisson’s equation

∇2Φ =
1

2
(|ψ|2 − ρ0) , (2.2.20)

where ρ0 is the background energy density that contributes to the homogeneous expansion of
the universe and thus subtracted here. Hence, in the nonrelativistic limit the self-gravitating
system of the scalar field can be described by the Schrödinger-Poisson equation.

We further rewrite the Schrödinger-Poisson equation by introducing the fluid variables,
the energy density ρ and the velocity v. With writing ψ = |ψ|eiθ, the fluid variables ρ and
v are defined as

ρ = |ψ|2 , v ≡ ∇θ
m

. (2.2.21)

Then the Schödinger equation (2.2.19) can be rewritten as the following set of equations:

ρ̇+∇ · (ρv) = 0 , (2.2.22)

v̇ + (v ·∇)v = −∇Φ+
1

2m2
∇

(∇2√ρ
√
ρ

)
. (2.2.23)
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Clearly, the first one is the continuity equation and the second one is the Euler equation with
an extra contribution in the right-hand side. These equations are known as the Madelung
equations. The quantity

ΦQP ≡ − 1

2m2

(∇2√ρ
√
ρ

)
, (2.2.24)

is sometimes called “quantum pressure” or “quantum potential” by historical reasons while
it is not quantum effect. The quantum pressure is absent in the cold dark matter model,
and thus it characterizes the difference between ultralight scalar field dark matter and cold
dark matter. Since ΦQP is proportional to ∇2√ρ, it becomes important on small scale. Let
us estimate the scale at which the quantum pressure becomes important. For this purpose,
let us write the energy density as ρ = ρ0(1 + δ) and assume |δ| ≪ 1 for simplicity, while we
consider the nonlinear dynamics. Then the quantum pressure can be approximated as

ΦQP ≃ − 1

4m2
∇2δ . (2.2.25)

With this assumption, the Madelung equations and Poisson’s equation give

δ̈ −
(
1

2
ρ0 −

k4

4m2

)
δ = 0 , (2.2.26)

where |v| ≪ 1 is assumed, and ∇2 is replaced by −k2. This is the same as Eq. (2.2.14)
with setting a = 1 and replacing ρ by ρ0 as desired. Hence we can define the galactic Jeans
scale as

kJ ≡ (2ρ0m
2)1/4 = (16πGρ0m

2)1/4 =
2π

4.28 kpc

( m

10−22 eV

)1/2

, (2.2.27)

where we used ρ0 = 0.3GeV/cm3. The galactic Jeans scale is smaller than the cosmological
one by an order of magnitude since the energy density in the galaxy is larger than the
cosmological dark matter density by a factor of ∼ 105. Note that the Jeans scale becomes
smaller in situations with higher energy density such as around the center of the galaxy.

The fluctuations of ultralight scalar field dark matter evolve in the same way as cold
dark matter on scales larger than the galactic Jeans scale, and thus grow up by gravitational
instability. On the other hand, smaller scale fluctuations cannot grow up due to the presence
of the quantum pressure. Hence we expect ultralight scalar field dark matter forms clumps
with a size of the galactic Jeans scale in the galaxy. In fact, the formation of such density
granules can be seen in numerical simulations [10]. In the simulations, it is also confirmed
that there is a solitonic core rather than cuspy density profile at the center of a galaxy.

2.3 Constraints on Ultralight Scalar Field Dark Mat-
ter

In this section we review the current limits on the mass of ultralight scalar field dark matter.
In summary, the ultralight scalar field dark matter model is consistent with all the observed
data if the mass satisfies m ! 10−22 eV.
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2.3.1 Cosmic Microwave Background

As explained in Sec. 2.2, ultralight scalar field dark matter behave differently from cold
dark matter on scales smaller than the Jeans scale. If the Jeans scale is sufficiently large,
ultralight scalar field dark matter could affect the CMB fluctuations. The Planck satellite
measured the anisotropies of the cosmic microwave background with high sensitivity up to
the multipole ℓ ∼ 2500, which corresponds to an angular scale 180◦/ℓ ∼ 0.07◦ ∼ 4 arcmin.
The comoving scale corresponding to the multipole ℓ = 2500 is about 6Mpc. Hence we can
probe scales larger than this scale by using the CMB data. Since the cosmological Jeans
scale is

kJ =
2π

3.1Mpc
a1/4

(
Ωφh2

0.12

)1/4 ( m

10−25 eV

)1/2

, (2.3.1)

the CMB data can be used to probe the mass lighter than m ∼ 10−25 eV. We note that
the Jeans scale depends weakly on the scale factor a, the change in which is less than one
order of magnitude from the equal time aeq ≃ 1/3400 to the present time a = 1.

In Ref. 11 the authors claim that the mass of ultralight scalar field dark matter must be
m ! 10−24 eV in order to be consistent with the observed CMB spectra. They performed
the Markov chain Monte Carlo (MCMC) analysis of the data released in 2013 by the Planck
Collaboration [12]. They used a Boltzmann code AxionCAMB [13] for calculating theoretical
CMB spectra, in which the effective fluid approximation is used for ultralight scalar field
dark matter. Strictly speaking, they did not constrain the mass directly. They considered
a mixed dark matter model in which ultralight scalar field dark matter and standard cold
dark matter coexist, and constrained the ratio of two dark matter species. They obtained
the result that ultralight scalar field dark matter with a mass lighter than m ∼ 10−24 eV
cannot explain all the dark matter energy density, otherwise there are too much deviation
from the observed CMB spectra. Almost the same analysis was done in Ref. 14 using
updated data released in 2015 [15], while the result was not so much changed.

2.3.2 Ly-α Forest

Currently, the tightest bound on the mass of ultralight scalar field dark matter is given by
the observations of the Lyman-α forest. The Lyman-α forest is the absorption lines in the
spectra of high-redshift quasars by neutral hydrogen atoms. We can probe the matter power
spectrum at redshift z = 2–6 on comoving scales down to about 0.1Mpc. The constraints
were obtained by Ref. 16 and Ref. 17 as m ! 20 × 10−22 eV and m ! 23 × 10−22 eV,
respectively, at 2σ confidence level. We should mention that they used standard collisionless
N-body simulations for calculating the dynamics of ultralight scalar field dark matter. That
is, the nature of ultralight scalar field dark matter is only included in the initial condition.
We also mention that there would be large systematic uncertainties on the constraint above
since it is difficult to model dynamics of baryons, and thus the constraint should not be
taken so seriously. For these reasons, we use a conservative constraint m ! 10−22 eV in this
thesis, and still use the value 10−22 eV for reference.



20 Ultralight Scalar Field Dark Matter

2.4 Effect on Gravitational Potentials and Direct De-
tection Methods

In this section we focus on galactic scale gravitational phenomena caused by ultralight scalar
field dark matter. One distinguishable feature of ultralight scalar field dark matter is its
oscillating pressure, as discussed in the previous sections. The oscillating pressure induces
the oscillation of the gravitational potentials through Einstein’s equation. This oscillation
can in principle be detected by future gravitational observations. This phenomenon was
first pointed out by Khmelnitsky and Rubakov [2]. They also proposed a detection method
for the oscillating gravitational potentials using pulsar timing experiments. We proposed
that gravitational-wave laser interferometers are also available for this purpose [18].

In Subsec. 2.4.1, we calculate the oscillating gravitational potential induced by ultra-
light scalar field dark matter. The detection methods using pulsar timing arrays and
gravitational-wave laser interferometers are explained in Subsec. 2.4.2 and Subsec. 2.4.3,
respectively.

2.4.1 Gravitational Potential Oscillation Sourced by Oscillating
Pressure of Ultralight Scalar Field Dark Matter

In this subsection we derive the oscillating part of the gravitational potential induced by
the oscillating pressure of ultralight scalar field dark matter based on Einstein’s thoery.
This subsection is based on Sec. 2 of Ref. 2 and Sec. II of Ref. 19.

We consider the situation that the energy density in our galactic halo is dominated by
ultralight scalar field dark matter. In order to determine the gravitational potential, we use
Einstein’s equation

Gµν = Tµν . (2.4.1)

The trace of Einstein’s equation gives

R = −T , (2.4.2)

where T ≡ gµνTµν is the trace of the energy-momentum tensor of ultralight scalar field dark
matter. Note that the trace of the Einstein tensor is gµνGµν = −R. In the following we
consider both sides of Eq. (2.4.2) in order.

The expansion of the universe is completely negligible on galactic scale. Thus we use
the Newtonian gauge for the metric:

gµν =

(
−1− 2Ψ 0

0 (1− 2Φ)δij

)
. (2.4.3)

Since the gravitational potentials are small even in the galactic halo, we can treat them
perturbatively. The Ricci scalar can be calculated at the first order of the potentials as

R = −6Φ̈+ 2∇2(2Φ−Ψ) , (2.4.4)
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where a dot denotes the derivative with respect to time. This gives the left-hand side of
Eq. (2.4.2).

Next we consider the right-hand side of Eq. (2.4.2). The configuration of the ultralight
scalar field in the galaxy can be written as a superposition of plane waves with different
wavenumbers. As explained in Subsec. (2.2.3), the wavenumber of the ultralight scalar filed
is assumed to be less than kJ since smaller scale structures cannot grow up. We can evaluate
kJ/m = (16πGρ0/m2)1/4 ∼ 10−4 for m = 10−22 eV, and this ratio becomes smaller for larger
masses. Hence there is a hierarchical relation k " kJ ≪ m, and thus the dispersion relation
reads Ω2 = m2 + k2 ≃ m2. Since we have a monochromatic dispersion relation Ω ≃ m in
the galaxy, the field φ(t, x⃗) can be written as

φ(t, x⃗) = φ0(x⃗) cos(mt+ α(x⃗)) . (2.4.5)

As the field is homogeneous below the Jeans scale, we can assume φ0 and α to be constant
locally. Hereafter we set α = 0 for simplicity. The energy density ρ and the pressure p of
the field are calculated as

ρ =
1

2
φ̇2 +

1

2
m2φ2 =

1

2
m2φ2

0 ≡ ρ0 , (2.4.6)

p =
1

2
φ̇2 − 1

2
m2φ2 = −1

2
m2φ2

0 cos(2mt) = −ρ0 cos(2mt) . (2.4.7)

Here we identified the energy density of the field as the local dark matter density, ρ0 ∼
0.3GeV/cm3. Hence the pressure of the scalar field oscillates in time with an angular
frequency ω = 2m. The amplitude of the pressure is fixed by the local dark matter density.
Thus the energy-momentum tensor of ultralight scalar field dark matter in the galaxy can
be written as

Tµν =

(
ρ0 0
0 −ρ0 cos(2mt)δij

)
, (2.4.8)

and its trace is
T = −ρ0 − 3ρ0 cos(2mt) = −ρ0[1 + 3 cos(2mt)] . (2.4.9)

This gives the right-hand side of Eq. (2.4.2).
Finally, we can write down Eq. (2.4.2) as

− 6Φ̈+ 2∇2(2Φ−Ψ) = ρ0[1 + 3 cos(2mt)] . (2.4.10)

We are now in a position to determine the oscillating part of the gravitational potential. Let
us separate the gravitational potential Φ (Ψ) into the time-independent part Φ0 (Ψ0) and
the time-dependent part δΦ (δΨ). The time-independent part of the time-time component
of Einstein’s equation is Poisson’s equation

2∇2Φ0 = ρ0 . (2.4.11)

We also have the equation Φ0 = Ψ0 from the traceless part of the space-space component
of Einstein’s equation. Using above equations, Eq. (2.4.10) leads

− 6δΦ̈ = 3ρ0 cos(2mt) , (2.4.12)
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where we assumed δΦ̈ ≫ ∇2δΦ. Integrating Eq. (2.4.12) twice, we obtain the oscillating
part of the gravitational potential as

δΦ =
ρ0
8m2

cos(2mt) . (2.4.13)

Note that the oscillating part δΦ is much smaller than the constant part Φ0 since k2 ≪ m2.
The amplitude |δΦ| and the frequency f of the oscillating gravitational potential δΦ are

|δΦ| = ρ0
8m2

= 4.8× 10−18

(
ρ0

0.3GeV/cm3

)(
10−22 eV

m

)2

, (2.4.14)

f =
2m

2π
= 5× 10−8 Hz

( m

10−22 eV

)
. (2.4.15)

In the following subsections we see how to measure this oscillating gravitational potential.

2.4.2 Detection Method I: Pulsar Timing Array Experiments

In this subsection we discuss a detection method for the oscillating gravitational potential
derived above using pulsar timing observations based on Sec. 3 of Ref. 2.

A pulsar is a rotating neutron star that emits a beam of electromagnetic radiation.
We can see the beam only when the beam is pointing towards us. Thus we observe pulse
signals from pulsars, which can be used as accurate clocks. The observable quantity by
pulsar timing experiments is the timing residual, which is defined as

∆t(t) = −
∫ t

0

dt′
Ω(t′)− Ω0

Ω0
, (2.4.16)

where Ω0 is an emitted frequency at a pulsar, Ω(t) is an observed frequency at an antenna.
When the metric is constant in time, the emitted frequency remains to be unchanged and
there is no change in the arrival time of the pulse signal. Assuming that a pulse with a
frequency Ω0 is emitted at (t′,xp) and reaches us at (t,x), the change in the frequency
(redshift) can be written as

Ω(t)− Ω0

Ω0
= Φ(t,x)− Φ(t′,xp)−

∫ t

t′
dt′′ ni∂i[Φ(t

′′,x′′(t′′)) +Ψ(t′′,x′′(t′′))] , (2.4.17)

where ni is the direction of the propagation of the pulse signal. The path x′′(t′′) is the
trajectory on which the pulse signal propagates, i.e., the geodesic of the metric, and can be
approximated as the straight line at the first order of the metric. Thus the time interval
between the emission and detection is equivalent to the distance to the pulsar D (= t− t′).
Since the distances to pulsars used in pulsar timing experiments are D ! 100 pc, which is
much larger than m−1 ∼ 1 pc for m = 10−22 eV, the integrand in Eq. (2.4.17) is a rapidly
oscillating function in the interval of integration. In addition, the size of the change in
the metric (gravitational potential) is about |∇Φ/Φ| ∼ |∇Ψ/Ψ| ∼ k−1, and we have a
hierarchy k/m ∼ v ∼ 10−3. Thus the integral in Eq. (2.4.17) is negligibly smaller than the
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first two terms. Hence only Φ affects the arrival time of pulse signals from pulsars. Since
the time-independent part Φ0 causes the constant shift of the frequency, which cannot be
measured by pulsar timing experiments, the shift of the frequency can be written as

Ω(t)− Ω0

Ω0
= |δΦ| [cos(ωt+ 2α(x))− cos(ω(t−D) + 2α(xp))] , (2.4.18)

where |δΦ| = ρ0/8m2. Here we explicitly write the phase of the oscillation α since it can
be important for pulsar timing observations. This is because a typical distance to pulsars
is as large as or larger than the Jeans length. Substituting this into Eq. (2.4.16), we obtain
the timing residual at time t as

∆t(t) =
2|δΦ|
ω

sin(mD + α(x)− α(xp)) cos(ωt+ α(x) + α(xp)− 2D/ω) , (2.4.19)

where we subtracted the averaged value, which does not affect the pulsar timing signal.
The timing residual oscillates in time with an angular frequency ω = 2m, and its amplitude
is

|∆t| = 2|δΦ|
ω

sin(2D/ω + α(x)− α(xp)) =
ρ0
8m2

sin(mD + α(x)− α(xp)) . (2.4.20)

Currently we have no pulsar that has enough accuracy to detect the signal (2.4.19).
However we can use a statistical method by using multiple pulsars. This is done by pulsar
timing array experiments. Since pulsars are assumed to distribute randomly in the galaxy,
the average value of ⟨∆t⟩ over distances D and phases α(xp) is zero. A nontrivial quantity
is its variance, or equivalently, the root-mean-square value

√
⟨∆t2⟩ =

√
2|δΦ|
ω

. (2.4.21)

Let us compare the stochastic signal of ultralight scalar field dark matter (2.4.21) to
that of the stochastic gravitational waves, which is a target of the pulsar timing array
experiments. The timing residual caused by a gravitational wave with an amplitud h and
an angular frequency ω is

∆tGW =
h

ω
sin

(
ωD(1− cos θ)

2

)
(1 + cos θ) sin(2ψ) , (2.4.22)

where θ is the angle between the source and the pulsar, ψ denotes the direction of the
polarization of the gravitational wave. The root mean square of Eq. (2.4.22) over the
distances D and the angles (θ,ψ) gives

√
⟨∆t2GW⟩ = hc√

3ω
, (2.4.23)

where we replaced h with hc, which is called the characteristic strain of the stochastic
gravitational wave.
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Comparing Eq. (2.4.21) with Eq. (2.4.23), the signal of ultralight scalar field dark matter
on pulsar timing array experiments is equivalent to that of stochastic gravitational wave
with an amplitude (characteristic strain)

hc = 2
√
3|δΦ| = 1.6× 10−15

(
ρ0

0.3GeV/cm3

)(
10−23 eV

m

)2

. (2.4.24)

A frequency of the signal is

f =
ω

2π
=

2m

2π
= 5× 10−9 Hz

( m

10−23 eV

)
. (2.4.25)

Here we normalized the mass of the scalar field by m = 10−23 eV since pulsar timing
array experiments have sensitivity at f ∼ (year)−1 ∼ nHz ∼ 10−23 eV. The factor 2

√
3 in

Eq. (2.4.24) comes from the geometrical difference between scalar and tensor (gravitational)
waves, and two polarizations of gravitational waves.

In Fig. 2.3, the signal (2.4.24) is plotted as a function of the mass m with the sensitivity
curves of current (PPTA) and planned (SKA) pulsar timing array experiments. Impor-
tantly, the future SKA experiment have enough sensitivity to detect the signal of ultralight
scalar field dark matter.

We note that the amplitude of the signal is proportional to the local dark matter density,
as shown in Eq. (2.4.14). Hence the future SKA experiment has a chance to detect the signal
even when ultralight scalar field dark matter is sub-dominant component of dark matter.
From Fig. (2.3), we expect that the SKA experiment have sensitivity down to a few percent
fraction of ultralight scalar field dark matter.

2.4.3 Detection Method II: Laser Interferometers

In this subsection we introduce another method for detecting the oscillating gravitational
potential using gravitational-wave interferometers. This subsection is based on Ref. 18.

The era of gravitational wave astronomy started on 14th September 2015, when the
two interferometer detectors of the LIGO simultaneously observed a gravitational wave
signal [20]. Now, we can measure tiny fluctuations of the spacetime by using these high
precision laser interferometers. Since the solar system moves through the dark matter halo
at the velocity of about v ∼ 300 km/s = 10−3, the oscillating ultralight scalar field looks like
scalar gravitational waves for us. Thus we can utilize the laser interferometers for detecting
ultralight scalar field dark matter.

In the previous subsections we studied the oscillation of the gravitational potential in
the halo reference frame. However, since an interferometer detector is moving through the
dark matter halo, we need to solve Einstein’s equation in the detector reference frame. The
energy-momentum tensor of ultralight scalar field dark matter in the detector frame is given
by the Lorentz-boost transformation

t′ = γ(t+ v · x) , (2.4.26)

x′ = xi +
γ − 1

v2
(x · v)v + γvt , (2.4.27)
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Figure 2.3: The signal (2.4.24) as a function of the frequency f = ω/2π
(lower axis) or the mass m (upper axis) with the sensitivity curves of the
current (PPTA) and planned (SKA) pulsar timing array experiments.
This figure is reproduced from Fig. 1 of Ref. 2.

where x and x′ are the coordinate system attached to the halo and detector, respectively, v
is the relative velocity of the detector to the halo, and γ ≡ 1/

√
1− v2 is the Lorentz factor.

Hence, the energy-momentum tensor in the detector frame is written as

T00 = ρ0γ
2[1− v2 cos(ωt′)] , (2.4.28)

T0i = ρ0γ
2vi[1− cos(ωt′)] , (2.4.29)

Tij = −ρ0 cos(ωt′)δij + ρ0γ
2vivj[1− cos(ωt′)] , (2.4.30)

where t′ = γ(t+ v · x).
As discussed before, we can neglect the expansion of the universe on the halo scale,

and can treat the gravitational potentials can still be treated as perturbations. We use the
Newtonian gauge for the metric:

gµν =

(
−1− 2Ψ 0

0 (1− 2Φ)δij

)
+ δg̃µν , (2.4.31)

where δg̃µν is a constant tensor introduced for the consistency of Einstein’s equation, which
is produced by the constant velocity v. We can calculate the Einstein tensor at the linear
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order as

G00 = 2∇2Φ , (2.4.32)

G0i = 2Φ̇,i + G̃i , (2.4.33)

Gij = [2Φ̈−∇2(Φ−Ψ)]δij + ∂i∂j(Φ−Ψ) + G̃ij , (2.4.34)

where G̃i and G̃ij are constant parts calculated from δg̃µν .
Let us separate the gravitational potential Φ (Ψ) into the time-independent part Φ0 (Ψ0)

and the time-dependent part δΦ (δΨ). As we will see later, δΨ is the only observable quan-
tity by interferometers. The time-independent part of the (0, 0) component of Einstein’s
equation is Poisson’s equation:

2∇2Φ0 = ργ2 , (2.4.35)

where γ2 = 1 + O(v2). The time-dependent part of the (0, 0) component of Einstein’s
equation gives

δΦ(t, x⃗) =
ρ

8m2
cos[ωγ(t+ v⃗ · x⃗)] . (2.4.36)

Finally, we obtain δΨ from the time-dependent part of the (i, j) component of Einstein’s
equation:

δΨ(t, x⃗) = − ρ

8m2
cos[ωγ(t+ v⃗ · x⃗)] . (2.4.37)

We can check that the other components of Einstein’s equation are also satisfied.
Next we calculate the detector signal induced by the oscillating pressure of ultralight

scalar field dark matter. We calculate the metric in the synchronous(-like) gauge by using
a gauge transformation in order to know spatial fluctuations of the metric. The detector
signal is then obtained by contracting the metric with a detector tensor.

The mechanism of an interferometer is simple. A laser light is sent on a beam-splitter
which separates the light, with equal probability amplitudes, into a beam traveling in one
arm and a beam traveling in a second orthogonal arm. At the end of each arm, there are
totally reflecting mirrors. After traveling back and forth, the two beams recombine at the
beam-splitter, and a part of the resulting beam goes to a photo-detector. Therefore, any
variation in the length of the arms results in a corresponding variation of the power at the
photo-detector. Indeed, using this interferometer, we can detect gravitational waves. Here,
the idea is to utilize the interferometer detector for detecting ultralight scalar field dark
matter.

An interferometer detector is characterized by the detector tensor

Dij ≡
1

2
(m̂im̂j − n̂in̂j) , (2.4.38)

where m̂ and n̂ are the directions of the detector arms. The detector signal produced by
spatial fluctuations of the metric hij is given by

s = Dijhij . (2.4.39)
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In order to use this formula, we should transform all of the time-dependent part of the
metric to the space-space component hij. Namely, we want to rewrite the time-dependent
part of the metric as follows:

δgµν =

(
0 0
0 −2δAδij + 2δB,ij

)
. (2.4.40)

Note that we focus only on the time-dependent components, and thus this is not exactly
the synchronous gauge. The signal in this gauge is given by

s = (m̂im̂j − n̂in̂j)δB,ij . (2.4.41)

Since Dijδij = 0 for any detector tensors, δA cannot be detected by interferometers. The
gauge transformation gives δA = δΦ and

δB̈ = −δΨ =
ρ

8m2
cos[ωγ(t+ v⃗ · x⃗)] . (2.4.42)

Hence, we obtain

δB,ij =
ρ

8m2
vivj cos[ωγ(t+ v⃗ · x⃗)] . (2.4.43)

We note that δB has ambiguity of a function f(x⃗)t + g(x⃗). However, a constant function
g(x⃗) does not affect the signal and stationarity of the system requires that f(x⃗) vanishes.
Therefore, the signal from the oscillating pressure of the ultralight scalar field dark matter
is given by

s(t) = α · ρv
2

8m2
cos(ωγt) , (2.4.44)

where α ≡ |(v̂ · m̂)2 − (v̂ · n̂)2| is a geometric factor of O(1). We omitted the unimportant
phase ωγv · xd of the signal, where xd is the position of the detector. The factor α reaches
the maximum when v is parallel to m̂ or n̂. If the angle between two arms is θ, the maximum
value of α is αmax = 1− cos2 θ. A typical amplitude of the signal is 2

ρv2

8m2
= 4.8× 10−24

( v

10−3

)2
(
10−22 eV

m

)2

, (2.4.45)

where we assumed ρ = 0.3GeV/cm3. The corresponding frequency is

f =
ωγ

2π
≃ 5× 10−8 Hz

( m

10−22 eV

)
. (2.4.46)

Apparently, the signal is proportional to m−2 and v2. Hence, the lower the mass is, the
easier we can detect the ultralight scalar field dark matter wind.

A typical detector signal (2.4.44) with α = 1 and sensitivity curves of planned laser
interferometer experiments (DECIGO, LISA, and ASTROD-GW) are plotted in Fig. 2.4.
If we were able to construct a space-based interferometer with strain sensitivity 10−24,

2 In evaluating Eq. (23) in Ref. 18, we missed a factor 0.3 of ρ0 = 0.3GeV/cm3. Thus the value in
Eq. (2.4.45) is smaller than that of Eq. (23) in Ref. 18 by a factor of 0.3.
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Figure 2.4: A typical detector signal (2.4.44) with α = 1 and sensitivity curves of planned
laser interferometer experiments, DECIGO, LISA, and ASTROD-GW [21]. This figure is
reproduced from Fig. 1 of Ref. 18.

which is similar as that of the DECIGO, in the appropriate frequency band, we would be
able to observe the ultralight scalar field dark matter wind up to 1.8 × 10−22 eV. Though
constructing an interferometer with enough sensitivity for detecting the signal is beyond
current technical capabilities, we believe that it will be realized by future technological
innovations.

We should mention that the velocity v, which we have treated as a constant in the
analysis, actually varies in time. Since the earth moves around the sun with a velocity
about 30 km/s = 10−4, v = |v| varies by about 10% in one year. However, we believe that
such an annual modulation in the signal can be extracted as a noise.



Chapter 3

Modified Gravity Theories

In this chapter modified gravity theories are reviewed. In Sec. 3.1, motivations for consider-
ing alternative theories of gravity are explained. In Sec. 3.2, we review the f(R) theory as
an example of modified gravity theories. The constraints on the f(R) models are discussed
in Sec. 3.3.

3.1 Motivations for Alternative Theories of Gravity

The theory of general relativity is widely thought to be a fundamental theory of gravity
that describes the geometric properties of spacetime. In fact, a large number of observations
prove the success of general relativity. However, there are some reasons to assume that the
theory of gravity should be different from Einstein’s theory.

A major reason to consider alternative theory of gravity is the existence of two eras of
accelerated expansion of the universe. The earlier one is cosmic inflation, which is thought
to be necessary to explain why the present universe is so homogeneous and isotropic (the
horizon problem), and flat (the flatness problem). The inflationary expansion is assumed to
have took place just after the birth of the universe, which is accompanied by the standard big
bang cosmology. One small patch of the universe expands exponentially, and the observable
universe today is regarded as a part of the homogeneous and flat patch. In this way, inflation
can resolve the problems in the big bang cosmology naturally. The existence of the epoch of
inflation also predicts the primordial fluctuations of matter density, which is considered to
be a seed of galaxies and the CMB. In fact, the value of a parameter known as the spectral
index, which characterizes the initial matter power spectrum, is consistent with prediction
of inflation. Although the cosmological constant can cause inflationary expansion of the
universe, it is not responsible for inflation since the inflationary epoch must end to connect
to the big bang universe. One way to have an inflationary phase is to introduce a scalar
field (inflaton) that rolls down slowly on its potential. The potential energy of the inflaton
causes quasi-de Sitter expansion of the universe. Another way is to modify Einstein’s theory
of gravity. Currently, the so-called Starobinsky-type f(R) model of inflation [22] is most
favored by the CMB observations.

We also know that the present universe is in another accelerating phase. An unknown

29
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component that should be introduced to explain this late time acceleration is called dark
energy. Unlike inflation, dark energy can be explained by the cosmological constant. How-
ever, we have some unnaturalness problems on the cosmological constant as mentioned in
Sec. 1.1. One way to realize the late time acceleration is introducing a scalar field called
quintessence. The mechanism is qualitatively the same as in the case of inflation, while the
energy scale is much lower than that of inflation. Of cause, we can assume the theory of
gravity is different from Einstein’s general relativity on cosmological scale. In the moment,
there is no evidence which one of a scalar field (inflaton or quintessence) and modified
gravity theories is favored. Hence it is important to investigate both possibilities in detail.

3.2 f (R) Theory

In this thesis we focus on the f(R) theory among a number of modified gravity theories.
This is because the f(R) theory is one of the simplest modified gravity theories, and at the
same time it contains rich phenomena as seen in Chap. 4 and Chap. 5.

In Subsec. 3.2.1 we review the f(R) theory. We summarize the equations to be used
in this thesis there, We also explain how (quasi-)de Sitter expansion is realized in this
theory. In Subsec. 3.2.2 we move onto the so-called scalar-tensor formalism of the f(R)
theory, which is useful for understanding the physics and also for numerical calculations.
We discuss the relation between the f(R) theory and other modified gravity theories in
Subsec. 3.2.3.

Many topics on the f(R) theory are covered in Ref. 23 by De Felice and Tsujikawa. For
details see this review paper and the references therein.

3.2.1 Overview of f(R) Theory

The f(R) theory is defined by the action

SG =
1

2

∫
d4x

√
−g [R + f(R)] , (3.2.1)

where f(R) is an arbitrary function of the Ricci scalar R. Equivalently, the action (3.2.1)
is sometimes written as

SG =
1

2

∫
d4x

√
−g F (R) , (3.2.2)

where F (R) ≡ R + f(R). In this theory, matter fields are assumed to minimally couple to
the metric. With writing the action of matter fields as SM , the total action of the system
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is S = SG + SM . The variation of the total action S with respect to the metric gives1

Gµν −
1

2
gµνf(R) + [Rµν + gµν#−∇µ∇ν ]fR = Tµν , (3.2.3)

where Tµν is the energy-momentum tensor of matter fields. Note that Eq. (3.2.3) reduces
to Einstein’s equation in the general relativity (with the cosmological constant), where
f(R) = −2Λ and fR = 0. The trace of Eq. (3.2.3) gives

−R− 2f(R) + (R + 3#)fR = T , (3.2.4)

where T ≡ gµνTµν is the trace of the energy-momentum tensor. This is understood as the
equation of motion for fR. Thus this shows that there is a new degree of freedom fR that
propagates in the 4-dimensional spacetime in addition to two degrees of freedom of the
standard gravitational waves. In the next subsection, we see this new degree of freedom
explicitly by moving onto the scalar-tensor formalism of the f(R) theory.

Next we discuss how (quasi-)de Sitter expansion is realized. Let us find the de Sitter
point in the vacuum (T = 0), at which the Ricci scalar is a positive constant. The equation
to determine the de Sitter point is given by setting #fR = 0 and T = 0 in Eq. (3.2.4) as

−R− 2f(R) +RfR = 0 , (3.2.5)

Equivalently, we can write Eq. (3.2.5) as

RFR − 2F (R) = 0 , (3.2.6)

where FR ≡ dF (R)/dR. If we see Eq. (3.2.6) as a differential equation for F (R) with respect
to R, the solution is F (R) = αR2. Hence the model F (R) = αR2 has an exact de Sitter
solution. For general models, however, the de Sitter condition, Eq. (3.2.5) or Eq. (3.2.6),
is only satisfied for some particular value of R. This de Sitter point can be used for both
inflation and dark energy.

3.2.2 Scalar-Tensor Formalism of f(R) Theory

In the previous subsection, we have written down the field equation in the f(R) theory and
seen that there is a new propagating degree of freedom fR in the theory. In order to see
this more clearly, we move onto the so-called scalar-tensor formalism of the f(R) theory by
using change of variables.

1 There are two different formalisms in deriving field equations in the f(R) theory, which are known
as the metric formalism and the Palatini formalism. In the metric formalism, we assume that the affine
connection is derived from the metric, that is, the affine connection is nothing but the Christoffel symbol.
In the so-called Palatini formalism, we regard the affine connection as an independent variable, which does
not depend on the metric. These two formalisms generally give rise to the different field equations. We
note that the two formalisms give the same field equation, Einstein’s equation, in general relativity. In this
thesis, we use the metric formalism in deriving the field equation in the f(R) theory.
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It is useful to use Eq. (3.2.2) for the action. Introducing an auxiliary field A, the action
can be rewritten as

SG =
1

2

∫
d4x

√
−g [F ′(A)(R− A) + F (A)] . (3.2.7)

The variation with respect to A gives the constraint condition F ′′(A)(R − A) = 0. Thus
as far as F ′′(A) = f ′′(A) ̸= 0, we have A = R. Substituting this relation into the action
(3.2.7), we obtain the original action (3.2.2). Hence, the two theories (3.2.2) and (3.2.7) are
equivalent as far as F ′′(A) = f ′′(A) ̸= 0. Hereafter we assume the function f(R) is chosen
to satisfy f ′′(R) ̸= 0.

Let us define a scalar field ϕ = f ′(A), which is often called the scalaron. In order for
this transformation to be regular (invertible), we need the condition f ′′(A) ̸= 0, which is
already satisfied by the assumption. The action can be written in terms of the scalar field
ϕ as

SG =
1

2

∫
d4x

√
−g [(1 + ϕ)R− 2U(ϕ)] , (3.2.8)

where the function U(ϕ) is defined as

U(ϕ) ≡ 1

2
[ϕA(ϕ)− f(A(ϕ))] . (3.2.9)

The theory (3.2.8) is in a category of the scalar-tensor theory, where a scalar field ϕ couples
to the Ricci scalar as ϕR. Hence, we have shown that f(R) theory is equivalent to a special
case of the scalar-tensor theory.

The variation of the action (3.2.8) with respect to the scalaron field ϕ gives

R = 2U,ϕ , (3.2.10)

where U,ϕ ≡ dU(ϕ)/dϕ. Hence the Ricci scalar R is determined by the scalar field ϕ. This
is in contrast to the case of the general relativity, where the Ricci scalar is fixed by the
matter fields, R = −T .

On the other hand, the variation of the action (3.2.8) with respect to the metric gives
the field equation

(1 + ϕ)Gµν + gµνU(ϕ) + (gµν#−∇µ∇ν) = Tµν . (3.2.11)

This is of course equivalent to Eq. (3.2.3). Trace of Eq. (3.2.11) gives the equation of motion
for the scalaron field

3#ϕ− (1 + ϕ)R + 4U(ϕ) = T . (3.2.12)

Using Eq. (3.2.10), the equation of motion can be rewritten as

#ϕ− V,ϕ =
T

3
, (3.2.13)

where we defined the potential V (ϕ) by

V,ϕ ≡ 1

3
[2U,ϕ(1 + ϕ)− 4U(ϕ)] . (3.2.14)
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The equation of motion (3.2.13) shows the scalaron field does propagate in the vacuum
T = 0 in the same way as the gravitational waves.

Assuming f(A) ≪ A and ϕ = f ′(A) ≪ 1 as usual, the gradient of the potential can be
approximated as

V,ϕ ≃ A(ϕ)

3
. (3.2.15)

We also have the following relation in this limit

R ≃ A(ϕ) . (3.2.16)

We will use these approximated forms in analyzing specific models in Chap. 5.

3.2.3 Relation to Other Modified Gravity Theories

In this subsection we see some modified gravity theories other than the f(R) theory. The
purpose here is to see that the analysis that will be done for the f(R) theory in the next
two chapters can be easily generalized for other modified gravity theories.

The most famous alternative to Einstein’s theory of general relativity would be the
Brans-Dicke theory [24], which is in a category of the scalar-tensor theory. Here we introduce
an extended form of the Brans-Dicke theory defined by

SG =
1

2

∫
d4x

√
−g

[
φR− ωBD

φ
(∂φ)2 − 2U(φ)

]
, (3.2.17)

where ωBD is called the Brans-Dicke parameter and U(φ) is a function of φ. Note that
the original Brans-Dicke theory has no potential term, U(φ) = 0. In this theory the
scalaron field φ plays a roll of (8πG)−1, that is, the gravitational constant is changed as
Geff = (8πφ)−1. Clearly, by identifying φ = 1 + ϕ, the f(R) theory is a special case of
the extended Brans-Dicke theory with ωBD = 0. Note that the f(R) theory in the Palatini
formalism is equivalent to the case ωBD = −3/2. We can derive the equation of motion for
the scalaron field φ as

(3 + 2ωBD)#φ+ 4U(φ)− 2φU,φ = T . (3.2.18)

This reduces to Eq. (3.2.13) when ωBD = 0. The relation between the Ricci scalar and the
scalaron field is

R = 2U,φ −
ωBD

φ2

[
(∂φ)2 + 2φ#φ

]
, (3.2.19)

which again reduces to the case of f(R) theory, Eq. (3.2.10), when ωBD = 0. Hence, in
the Brans-Dicke theory, the scalaron field is sourced by the trace of the energy-momentum
tensor, and then the Ricci scalar is determined by the scalaron field. This is qualitatively
the same situation as in the f(R) theory.

Further extensions can be done by, for example, generalizing ωBD to be a function of
φ or adding the higher derivative interactions like (#φ)2. An example is the Horndeski
theory [25], which is the most general theory of gravity that leads to the second order
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equations of motion. Even for such generalized theories, the situation that the scalaron
field is sourced by matter fields and the Ricci scalar is determined by the scalaron field
is qualitatively the same as in the f(R) theory. Moreover, it is known that a wide class
of modified gravity theories can be reduced to the scalar-tensor theory at least in some
limiting case. Hence the analysis that will be done for the f(R) theory is expected to be
generalized to more general theories of modified gravity.

3.3 Constraints on f (R) Theory

In this section we discuss constraints on f(R) models. In Subsec. 3.3.1 we derive the so-
called local gravity constraints of f(R) models. These constraints are mainly from observa-
tions in the solar system, and all the models should pass these constraints. In Subsec. 3.3.2
we discuss the condition for f(R) models to explain dark energy. If we would like f(R)
models to behave as dark energy, we have to impose this condition on the models. We make
some comments on the constraints from the speed of gravitational wave in Subsec. 3.3.3.

3.3.1 Local Gravity Constraints

For a constant energy density ρ and negligible pressure, we can define the effective potential
of the scalaron field Veff(ϕ) as

Veff,ϕ ≡ V,ϕ − ρ

3
. (3.3.1)

Using the approximation V,ϕ ≃ A(ϕ)/3, the gradient of the effective potential can be
approximated as

Veff,ϕ ≃ 1

3
[A(ϕ)− ρ] . (3.3.2)

Hence the minimum of the effective potential is determined by the condition A(ϕ) ≃ ρ.
The mass of the scalaron field M is given by

M2 ≡ Veff,ϕϕ(ϕ0) = V,ϕϕ(ϕ0) , (3.3.3)

where ϕ0 is the value at the minimum of Veff(ϕ). Since ϕ0 is determined by ρ, the mass of
the scalaron depends on the surrounding energy density ρ in the f(R) theory. As we will
see explicitly in Chap. 5, the mass becomes larger as the energy density ρ increases. This
phenomenon is called the chameleon mechanism [26, 27].

Let us consider a spherically symmetric body with radius Rα and mass Mα. We suppose
the energy density inside the body is a constant ρα (= 3Mα/4πR3

α) for simplicity. We denote
the density outside the body as ρ0 (≪ ρα). The values of the scalaron field at the minimum
of the effective potential for ρα and ρ0 are denoted as ϕα and ϕ0, respectively. Usually the
condition ρα ≫ ρ0 leads |ϕα| ≪ |ϕ0|. By analyzing the configuration inside and outside the



Constraints on f(R) Theory 35

body, we obtain the gravitational potentials outside the body as

Ψ(r) = −GMα

r

[
1 + ϵth,α

(
1− r

Rα

)]
, (3.3.4)

Φ(r) = −GMα

r
(1− ϵth,α) , (3.3.5)

where we defined the so-called thin-shell parameter ϵth,α as

ϵth,α ≡ − ϕ0 − ϕα

2GMα/Rα
. (3.3.6)

Assuming the hierarchy |ϕα| ≪ |ϕ0| and denoting the gravitational potential at the surface
of the body as Φα ≡ −GMα/Rα, we obtain

ϵth,α ≃ ϕ0

2Φα
. (3.3.7)

Since ϵth,α = 0 in general relativity, the thin-shell parameter characterizes the deviation
from Einstein’s theory.

Constraint on post-Newtonian parameter Let us focus on a parameter γ defined as

γ ≡ Φ

Ψ
, (3.3.8)

which is one of the so-called post-Newtonian parameters. In general relativity we have
γ = 1. The tightest experimental bound on γ is

|γ − 1| < 2.3× 10−5 , (3.3.9)

which comes from the time-delay effect of the Cassini tracking for the sun [28]. From
Eq. (3.3.4) and Eq. (3.3.5), we can calculate the parameter γ at the surface of the object
r = Rα as

γ = 1− ϵth,α . (3.3.10)

Thus the constraint (3.3.9) gives

|ϵth,⊙| =
∣∣∣∣
ϕ0

2Φ⊙

∣∣∣∣< 2.3× 10−5 , (3.3.11)

where ⊙ denotes the sun. Using the value |Φ⊙| ≃ 2.1 × 10−6, we obtain the constraint on
the scalaron field as

|ϕ0| < 9.7× 10−11 . (3.3.12)
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Constraint from violation of equivalence principle Let us discuss the constraint
on the thin-shell parameters from the possible violation of the equivalence principle. The
experimental bound on the difference between the free-fall acceleration of the earth (a⊕)
and the moon (amoon) toward the sun is [29]

|a⊕ − amoon|
|a⊕ + amoon|/2

< 10−13 . (3.3.13)

We can evaluate the accelerations a⊕ and amoon as

a⊕ ≃ GM⊙

r2

[
1 + 3ϵ2th,⊕ · Φ⊕

Φ⊙

]
, (3.3.14)

amoon ≃ GM⊙

r2

[
1 + 3ϵ2th,moon ·

Φmoon

Φ⊙

]
. (3.3.15)

Since we can rewrite ϵth,moon as

ϵth,moon ≃ ϕ0

2Φmoon
=

ϕ0

2Φ⊕
· Φ⊕

Φmoon
≃ ϵth,⊕ · Φ⊕

Φmoon
, (3.3.16)

the acceleration of the moon amoon can be rewritten as

amoon ≃ GM⊙

r2

[
1 + 3ϵ2th,⊕ ·

Φ2
⊕

Φ⊙Φmoon

]
. (3.3.17)

Using the values |Φ⊙| ≃ 2.1 × 10−6, |Φ⊕| ≃ 7.0 × 10−10, and |Φmoon| ≃ 3.1 × 10−11, the
constraint (3.3.13) gives

|ϵth,⊕| < 2.2× 10−6 . (3.3.18)

Since ϵth,⊕ ≃ |ϕ0/2Φ⊕|, this leads

|ϕ0| < 3.0× 10−15 . (3.3.19)

This is tighter than Eq. (3.3.12), and then we use Eq. (3.3.19) for the local gravity con-
straints.

3.3.2 Cosmological Constraints

In this subsection we focus on the possibility that the f(R) theory explain dark energy. The
constraint on f(R) models obtained here is only applied to specific models (the Hu-Sawicki
model and the Starobinsly model) discussed in Sec. 5.3. In order to obtain constraints from
cosmological observations such as the CMB, we should perform cosmological perturbations.
However we just focus on the background evolution of the universe here, and obtain one
necessary condition for the model to have the stage of (quasi-)de Sitter expansion.

As we saw in Subsec. 3.2.1, the f(R) theory has the de Sitter point satisfying Eq. (3.2.6).
For convenience, let us define the following quantities:

r ≡ −d lnF

d lnR
= −RF,R

F
, (3.3.20)

m ≡ d lnF,R

d lnR
=

RF,RR

F,R
, (3.3.21)



Constraints on f(R) Theory 37

where F (R) = R+ f(R). The de Sitter point corresponds to r = −2. For general relativity
with the cosmological constant, F (R) = R − 2Λ, we have m = 0 since F,RR = 0. Hence
the quantity m characterizes the deviation from general relativity. Since both r and m are
functions of R, we can write m as a function of r, i.e., m(r). The background evolution of
all the f(R) models are characterized by the function m(r). By analyzing stability of the
de Sitter point, we obtain the following condition [30]:

0 < m(r = −2) ≤ 1 . (3.3.22)

In this thesis we only impose this condition for cosmologically viable f(R) models, and we
just call this condition “cosmological constraint.”

3.3.3 Constraints from Speed of Gravitational Wave

Before closing the section, we would like to mention the detections of gravitational waves.
The observation of a gravitational wave (GW170817) accompanied by electromagnetic radi-
ation has allowed to set very stringent constraints on the propagation speed of gravitational
waves. The relative difference of the speed of gravitational waves and that of light is con-
strained to be less than one part in 1015 [31]. Thus modified gravity theories that predict
the change in the speed of gravitational waves are essentially excluded, otherwise we need
unacceptable fine tunings. In the f(R) theory the propagation speed of gravitational waves
remains unchanged relative to that in the general relativity. Hence there is essentially no
constraint on the f(R) theory from the observations of gravitational waves.



Chapter 4

Ultralight Scalar Field Dark Matter
in f (R) Theory I: Formalism

In Sec. 2.4, we studied the phenomenon caused by the oscillating pressure of ultralight scalar
field dark matter based on Einstein’s theory of gravity. The purpose of this research is to
investigate how the phenomenon changes in the framework of modified gravity theories.

In this chapter we derive the formula for calculating the oscillating gravitational poten-
tial in the framework of the f(R) theory. We first discuss the f(R) formulation in Sec. 4.1.
Then we move onto the equivalent scalar-tensor formalism in Sec. 4.2. The scalar-tensor
formalism is more useful to understand the phenomenon qualitatively and also for numerical
calculations. This chapter is based on Ref. 19 and Ref. 32.

4.1 Formulation in f (R) Theory

We start with the field equation for the metric in the f(R) theory (see Subsec. 3.2.1 for the
derivation):

Gµν −
1

2
gµνf + (Rµν + gµν#−∇µ∇ν)fR = Tµν , (4.1.1)

where fR ≡ df(R)/dR. Note that this is the same as Eq. (3.2.3). The trace of the field
equation gives

3#fR −R +RfR − 2f = T , (4.1.2)

where T ≡ gµνTµν . This equation is understood as the equation of motion for fR.
In the f(R) theory, we usually assume f(R) ≪ R and fR ≪ 1 on galactic or smaller

scales in order not to spoil the success of Einstein’s theory. Without these assumptions,
we will have a wrong relation between the gravitational potentials and the matter energy
density. Then we obtain the following equation

3#fR −R = T . (4.1.3)

Hereafter we assume the energy-momentum tensor of matter field is dominated by ultra-
light scalar field dark matter. Since we assume the ultralight scalar field minimally couples

38
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to gravity even in f(R) theory, we can use the same form for the energy-momentum tensor
as that in Einstein’s theory:

Tµν =

(
ρ0 0
0 −ρ0 cos(2mt)δij

)
. (4.1.4)

The new degree of freedom fR is sourced by the trace of this energy-momentum tensor

T = gµνTµν ≃ ηµνTµν = −ρ0[1 + 3 cos(2mt))] , (4.1.5)

where we ignored small quantities proportional to the metric perturbations.
Let us evaluate the term #fR. The time dependence of fR is determined by the os-

cillating part of the source term. Thus we can evaluate the time-dependence of fR as
|f̈R| ∼ (2m)2|fR| with m−1 ∼ 0.1 pc for m = 10−22 eV. On the other hand, the spacial
derivative of fR is evaluated as |∇2fR| ∼ k2|fR| with k ! (10 kpc)−1, which corresponds to
a typical length scale of the dark matter halo. Since m2 ≫ k2, we can assume #fR ≃ −f̈R.
We use this kind of approximation throughout this chapter. Under the assumption, the
field equation can be approximated as

3f̈R +R = −T . (4.1.6)

We should note that the contribution of the first term in Eq. (4.1.6) is not so small compared
to the second one though we assume fR ≪ 1. This is because the fR term appears as
f̈R ∼ (2m)2fR, and is enhanced by a factor of m2/R0 = m2/ρ0 ∼ 1017(m/10−22 eV)2. Thus
the first term in Eq. (4.1.6) can be comparable to the second term, the Ricci scalar R.

As in Subsec. 2.4.1, we use the Newtonian gauge for the metric:

gµν =

(
−1− 2Ψ 0

0 (1− 2Φ)δij

)
. (4.1.7)

At the first order of the potentials, the Ricci scalar is calculated as

R = −6Φ̈+ 2∇2(2Φ−Ψ) . (4.1.8)

Let us write the Ricci scalar R as the sum of the time-independent part R0 and the
time-dependent part δR:

R = R0 + δR . (4.1.9)

The time-independent part R0 is defined as the average value of R over time much longer
than the period of the oscillation. Hereafter we write this kind of time average using the
bracket symbol ⟨. . .⟩. Hence R0 ≡ ⟨R⟩. We also separate the gravitational potential Φ (Ψ)
into the time-independent part Φ0 ≡ ⟨Φ⟩ (Ψ0 ≡ ⟨Ψ⟩) and the time-dependent part δΦ (δΨ).
With this separation, the Ricci scalar can be approximated as

R ≃ −6δΦ̈+ 2∇2(2Φ0 −Ψ0) , (4.1.10)
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where we assumed |δΦ̈| ≫ |∇2δΦ| and |δΦ̈| ≫ |∇2δΨ| as before. Since ⟨δΦ̈⟩ = 0 as far as
δΦ̇ is finite, we obtain R0 and δR as

R0 = 2∇2(2Φ0 −Ψ0) , (4.1.11)

δR = −6δΦ̈ . (4.1.12)

The space-space component of Einstein’s equation gives the relation Φ0 = Ψ0. Thus
R0 can be written as R0 = 2∇2Φ0. By time-averaging the field equation (4.1.6), we have
R0 = ⟨−T ⟩ = ρ0. Hence we have the equation

2∇2Φ0 = ρ0 , (4.1.13)

which is nothing but Poisson’s equation. Integrating Eq. (4.1.12) with respect to time twice
and using the field equation (4.1.6), we obtain

δΦ =
ρ0
8m2

cos(2mt) +
1

2
(fR − ⟨fR⟩) , (4.1.14)

where ⟨fR⟩ is the average value of fR. The first term in Eq. (4.1.14) is the same as in the
Einstein’s theory, Eq. (2.4.13). This is consistent with the fact that fR = 0 in Einstein’s
theory.

In summary, all we have to do for calculating the amplitude of the oscillating gravita-
tional potential is solving the field equation (4.1.6) and then substituting the solution into
Eq. (4.1.14). A peculiar feature of the f(R) theory can be seen when the second term in
Eq. (4.1.14) becomes comparable to or larger than the first term.

4.2 Formulation in Scalar-Tensor Theory

In the previous section, we have derived the formula for calculating the oscillating part of
the gravitational potential sourced by the oscillating pressure of ultralight scalar field dark
matter. Though the form of Eq. (4.1.14) is simple, it is not so easy to understand the
physics governed by the equation. In this section we move onto the scalar-tensor formalism
of the f(R) theory, which is useful for qualitative understanding of the phenomenon. The
purpose of this section is deriving Eq. (4.2.12), which is equivalent to Eq. (4.1.14) in the
f(R) formulation.

As discussed in Subsec. 3.2.2, the action of the f(R) theory can be rewritten into that
of the scalar-tensor theory as

S =
1

2

∫
d4x

√
−g

[
(1 + ϕ)R− 2U(ϕ)

]
+ SM , (4.2.1)

where U(ϕ) is defined as

U(ϕ) ≡ 1

2

[
ϕA(ϕ)− f

(
A(ϕ)

)]
, (4.2.2)

and A(ϕ) is the solution of the equation

f ′(A) = ϕ . (4.2.3)
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Here we assume f ′′(A) ̸= 0 in order for A(ϕ) to be uniquely determined. The equation of
motion for the scalar field ϕ is

3#ϕ− A(ϕ) + ϕA(ϕ)− 2f
(
A(ϕ)

)
= T , (4.2.4)

By introducing the potential of the scalar field V (ϕ) by

V,ϕ ≡ 1

3

[
A(ϕ)− ϕA(ϕ) + 2f

(
A(ϕ)

)]
, (4.2.5)

we can rewrite the equation of motion for ϕ as

#ϕ− V,ϕ =
T

3
. (4.2.6)

Assuming f(A) ≪ A and ϕ = f ′(A) ≪ 1 as before, the derivative of the potential V,ϕ is
approximated as

V,ϕ ≃ A(ϕ)

3
. (4.2.7)

Hereafter we will use this approximate form for V,ϕ. Though we only need to know V,ϕ for
the following purpose, we can evaluate V (ϕ) as follows:

V (ϕ) =

∫
dϕV,ϕ ≃ 1

3

∫
dA

A

A,ϕ
=

1

3

∫
dA f ′′(A)A =

1

3
[f ′(A)A− f(A)] , (4.2.8)

where we used the relation 1/A,ϕ = f ′′(A) obtained by differentiating Eq. (4.2.3) with
respect to ϕ.

Then we consider ultralight scalar field dark matter as the source term in Eq. (4.2.6).
Substituting the trace of the energy-momentum tensor of ultralight scalar field dark matter
(4.1.5) into Eq. (4.2.6) and assuming #ϕ ≃ −ϕ̈, the equation of motion for ϕ can be written
as

ϕ̈+ V,ϕ =
ρ0
3

[
1 + 3 cos(2mt)

]
. (4.2.9)

Let us introduce the effective potential Veff(ϕ) by

Veff,ϕ ≡ V,ϕ − ρ0
3

=
1

3
[A(ϕ)− ρ0] . (4.2.10)

Note that the effective potential has a minimum at R = A(ϕ) = ρ0 as desired. Using the
effective potential, the equation of motion is written in a simple form:

ϕ̈+ Veff,ϕ = ρ0 cos(2mt) . (4.2.11)

This is the equation of motion for the forced oscillator, which can be analysed with knowl-
edge of classical mechanics. Using the fact that ϕ = fR, the formula for calculating the
oscillating part of the gravitational potential (4.1.14) can be rewritten in terms of the scalar
field ϕ as

δΦ = δΦGR cos(2mt) +
1

2
(ϕ− ⟨ϕ⟩) , (4.2.12)
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where we defined δΦGR ≡ ρ0/8m2.
Therefore, we have obtained the procedure for calculating the time-dependent part of

the gravitational potential in the scalar-tensor formulation as follows: We first calculate the
effective potential from a function f(R) by using Eq. (4.2.10). Then we solve the equation
of motion (4.2.11). Finally we substitute the solution into the formula (4.2.12).



Chapter 5

Ultralight Scalar Field Dark Matter
in f (R) Theory II: Models

In the previous chapter, we have derived the formula, Eq. (4.1.14) or Eq. (4.2.12), for the
oscillating part of the gravitational potential induced by the oscillating pressure of ultralight
scale field dark matter. We are now in a position to discuss this phenomenon in specific
f(R) models. In this chapter we use the scalar-tensor formalism discussed in Sec. 4.2.

As discussed in Chap. 3, one of the motivations for considering the f(R) theory of gravity
is its ability to resolve the dark energy problem. However we start Sec. 5.1 with the simplest
quadratic model f(R) ∝ R2, which cannot explain dark energy. This is because this model
can be solved analytically, and is useful for qualitative understanding of the physics. In
studying this model, we do not consider any constraints on the f(R) theory. We then study
the exponential model, in which a function f(R) depends exponentially on R, in Sec. 5.2.
This is a bit realistic modified gravity model in the sense that the model can pass the local
gravity constraint, but we still need a modification for explaining dark energy. By studying
this model, we learn a new phenomenon, which is absent in the quadratic model. In Sec. 5.3
we study well-known cosmological dark energy models, which can explain dark energy and
at the same time pass the local gravity constraints. This chapter is based on Ref. 19 and
Ref. 32.

5.1 Quadratic Model

In this section we study the simplest model

f(R) =
R2

6M2
, (5.1.1)

where M is a constant with mass dimension one. We study this as a toy model, that is,
we do not try to resolve the dark energy problem by this model. The scalaron field ϕ is
defined as

ϕ = f ′(A) =
A

3M2
, (5.1.2)
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where A is an auxiliary field. Hence A is solved as

A = 3M2ϕ . (5.1.3)

Using Eq. (4.2.10), the effective potential of the scalaron field ϕ is calculated as

Veff(ϕ) =
1

2
M2(ϕ− ϕ0)

2 , (5.1.4)

where ϕ0 ≡ f ′(ρ0) = ρ0/3M2. Hence the mass scale M is nothing but the mass of the
scalaron field ϕ in this model. The equation of motion for the scalaron field ϕ is

ϕ̈+M2(ϕ− ϕ0) = ρ0 cos(2mt) . (5.1.5)

An important feature of this model is the linearity of the equation of motion for ϕ. In more
general models there is a nonlinear term due to nonlinearity of a function A(ϕ), as we will
see in the subsequent sections. An induced solution to Eq. (5.1.5) is

ϕ = ϕ0 +
ρ0

M2 − (2m)2
cos(2mt) . (5.1.6)

Note that we omitted the homogeneous solutions. This is in part because the homogeneous
solutions decay in the expanding universe by the Hubble friction, and we expect that only
the induced solution remains in the present universe. Since the time-average value of ϕ is
⟨ϕ⟩ = ϕ0, the formula (4.2.12) for the oscillating part of the gravitational potential gives

δΦ =
δΦGR

1− (2m/M)2
cos(2mt) . (5.1.7)

Hence the amplitude of the gravitational potential in the quadratic model δΦQuad is modified
relative to that in general relativity δΦGR as

δΦQuad =
1

|1− µ2|δΦGR , (5.1.8)

where we introduced a dimensionless parameter µ as

µ ≡ 2m

M
. (5.1.9)

The amplitude of the oscillating gravitational potential (5.1.8) is plotted in Fig. 5.1.
When µ ≪ 1, the amplitude becomes δΦQuad ≃ δΦGR, and the result in Einstein’s theory is
recovered. This is understood by the fact that when the frequency of the external force 2m
is much lower than the intrinsic frequency M , the system behaves freely under the external
force as in Einstein’s theory. In the opposite case µ ≫ 1, the amplitude is suppressed as
δΦQuad ≃ (1/µ2)δΦGR. This is because when the frequency 2m is much higher than the
intrinsic frequency M , the oscillation cannot be excited. The most interesting situation is
µ ≃ 1. If two mass scales M and 2m are sufficiently close to each other, resonance would
occur and the gravitational potential could be amplified. In this case, the detectability
of the oscillating gravitational potential would increase. Of cause, the behavior near the
resonance point should depend strongly on the details of models. To see this, we study
another model in the next section.
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0 1 µ = 2m/M

1
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��GR

Figure 5.1: The amplitude of the oscillating part of the gravitational
potential δΦQuad in the quadratic model (5.1.8), normalized by the value
δΦGR in general relativity. This figure is reproduced from Fig. 1 of Ref. 19.
(Note that the horizontal axis is inverted.)

5.2 Exponential Model

In the previous section we studied the quadratic model, which can be solved analytically.
The quadratic model is special in the sense that the equation of motion for the scalaron
field ϕ is linear. However, for general f(R) models, the equation of motion for ϕ becomes
nonlinear. In this section we investigate an exponential-type model for an example of models
with a nonlinear equation of motion for ϕ.

Let us consider the following model:

f(R) =
R2

0

3λ2M2
exp

[
−λ

(
R

R0
− 1

)]
, (5.2.1)

whereM is a constant with mass dimension one, and λ is a positive dimensionless parameter.
Although this model looks complicated, we have only one criterion to write down the model:
The mass scale of the model should be M at R = R0, i.e., M2 = 1/3f ′′(R0). The effective
potential for the scalaron ϕ is calculated as

Veff(ϕ) =
R0

3λ
ϕ

[
1− ln

(
−3λM2ϕ

R0

)]
= −M2ϕ2

0 ·
ϕ

ϕ0

[
1− ln

(
ϕ

ϕ0

)]
, (5.2.2)

where ϕ0 is the field value at the minimum of the effective potential:

ϕ0 ≡ f ′(R0) = − R0

3λM2
. (5.2.3)
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The effective potential (5.2.2) is plotted in Fig. 5.2. The effective potential has a singularity
at ϕ = 0. The gradient of the effective potential,

Veff,ϕ = M2ϕ0 ln

(
ϕ

ϕ0

)
, (5.2.4)

diverges at this point. Since ϕ→ +0 corresponds to R = A(ϕ) = 3V,ϕ → +∞, this point is
called the curvature singularity, which often appears in f(R) models. We can always remove
the curvature singularity without affecting the dynamics on the scale we are interested in
by adding a regularization term, e.g., R2/6M2 with a large M. However we will not discuss
the regularization and just focus on what the exponential model (5.2.1) predicts.

'/'0

Ve↵(')

0
1 e

�M 2'2
0

Figure 5.2: The effective potential Veff(ϕ) for the scalaron field ϕ in the
exponential model, Eq. (5.2.2). The effective potential has a minimum
value −M2ϕ2

0 at ϕ = ϕ0. The point ϕ = 0 is a singularity, where the
gradient of the effective potential diverges. This figure is reproduced from
Fig. 1 of Ref. 32.

Let us investigate the equation of motion for the scalaron field

ϕ̈+ Veff,ϕ = ρ0 cos(2mt) , (5.2.5)

where the gradient of the effective potential Veff,ϕ is given by Eq. (5.2.4). In this model the
range in which the scalaron field can move over is practically restricted as

0 < ϕ/ϕ0 " e . (5.2.6)

This is because if we start with Veff(ϕ) > 0, i.e., ϕ/ϕ0 > e, the scalaron field easily hits the
curvature singularity at ϕ = 0. Hence the possible amplitude of the scalaron field is roughly
limited to (e/2)|ϕ0| ∼ |ϕ0|, and the maximum amplitude of the gravitational potential is
evaluated as

δΦmax ∼
1

2
|ϕ0| =

R0

6λM2
∼ 1

λ
× 10−17

(
10−22 eV

M

)2

, (5.2.7)
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where we assumed the second term in Eq. (4.2.12) is dominant. If the parameter λ is
sufficiently small, the oscillating gravitational potential could be large enough to be detected
by future experiments.

In the following, we will show that a solution with the maximum amplitude (5.2.7) does
exist. For this purpose, let us introduce the dimensionless quantities τ = Mt, µ = 2m/M ,
and ϕ̄ = ϕ/ϕ0. With these quantities we can rewrite the equation of motion for the scalaron
field (5.2.5) as

ϕ̄′′ + ln ϕ̄ = −3λ cos(µτ) , (5.2.8)

where the prime denotes derivative with respect to τ . For a linear forced oscillator, the
general solution is given by the superposition of an induced solution and the homogeneous
solutions. However, for a nonlinear forced oscillator, the superposition of two solutions no
longer gives a solution to the equation. Therefore, it is hard to solve a nonlinear system
analytically, and we have to rely on a perturbative method or numerical calculations.

5.2.1 Perturbative Approach

In order to get an intuition, we first use a perturbative method. We define χ as the deviation
of ϕ̄ from its minimum value ϕ̄ = 1:

χ ≡ ϕ̄− 1 . (5.2.9)

When χ≪ 1, we can approximate Eq. (5.2.8) by

χ′′ + χ− 1

2
χ2 +

1

3
χ3 = −3λ cos(µτ) . (5.2.10)

This equation can be analyzed perturbatively. Let us seek a resonant solution around µ ∼ 1.
To this aim, we rewrite Eq. (5.2.10) as

χ′′ + µ2χ = (µ2 − 1)χ+
1

2
χ2 − 1

3
χ3 − 3λ cos(µτ) . (5.2.11)

We regard the terms on the right-hand side as small perturbations. Let us write χ as the
following series expansion

χ = χ0 + χ1 + · · · . (5.2.12)

Substituting the series into Eq. (5.2.11), we obtain the lowest order solution

χ0 = A cos(µτ) , (5.2.13)

where A is an arbitrary constant. At the next order, we have secular sources

χ′′
1 + µ2χ1 = (µ2 − 1)χ0 +

1

2
χ2
0 −

1

3
χ3
0 − 3λ cos(µτ)

=

[
(µ2 − 1)A− 1

4
A3 − 3λ

]
cos(µτ) + · · · . (5.2.14)
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If this secular term remains, we have a secular solution with a growing amplitude. In
other words, we have to renormalize this secular evolution into the frequency. This can be
achieved by setting the coefficient of cos(µτ) in Eq. (5.2.14) to zero, that is,

(A2 − 4µ2 + 4)A = −12λ . (5.2.15)

Apparently, this allows an order one solution A ≃ 2
√

µ2 − 1 for µ ≥ 1 and λ ≪ 1. Thus,
we have shown that there exists a resonant oscillation with the amplitude close to the
maximum one. As we will see later, we have other resonant solutions at µ = p/q with
arbitrary positive integers p and q. In principle, we can repeat the same analysis to such
resonant solutions.

5.2.2 Numerical Approach

Next, we investigate the same system numerically. We seek periodic solutions satisfying the
periodic condition

(ϕ̄(T ), ϕ̄′(T )) = (ϕ̄(0), ϕ̄′(0)) , (5.2.16)

where T ≡ 2π/µ is the period of the oscillating external force. In other words, we look for
solutions with closed orbit in the phase space (ϕ̄, ϕ̄′). Note that in the quadratic model,
this condition removes homogeneous solutions. In order to find such solutions, in general,
we should study the map (ϕ̄(0), ϕ̄′(0)) 3→ (ϕ̄(T ), ϕ̄′(T )) and find its fixed points. However,
in this case we can perform simpler analysis as follows. The equation of motion (5.2.8) has
the time translation symmetry t → t + T . Moreover the system also has time reflection
symmetry t → −t thanks to the absence of a friction term. Thus the orbit is closed if
ϕ̄′(T/2) = 0 when starting with the initial condition (ϕ̄(0), ϕ̄′(0)) = (ϕ̄i, 0). We should note
that the reverse statement is not always true; there exist periodic solutions not satisfying
ϕ̄′(T/2) = 0 as we will see later. Hence all we have to do to find periodic solutions is
calculating the value ϕ̄′(T/2) for various initial position ϕ̄i and finding its zeros.

We calculate the value ϕ̄′(T/2) as a function of (µ, ϕ̄i) for different values of λ, and the
result is shown in Fig. 5.3. The parameter λ is chosen to be λ = 10−2, 10−3, and 10−4. The
red (blue) regions in Fig. 5.3 correspond to positive (negative) values of ϕ̄′(T/2). Since
ϕ̄′(T/2) is a smooth function of (µ, ϕ̄i), there are boundaries with ϕ̄′(T/2) = 0 between
two regions (seen as white lines), which correspond to closed-orbit solutions. Hence these
plots shows that solutions with amplitude |ϕ̄| = |ϕ/ϕ0| ∼ O(1) do exist around µ ∼ 1.
Fig. 5.3 also shows that there are three solutions around µ ! 1. This result has been
already suggested in the previous subsection. That is, these solutions are understood as
three roots of Eq. (5.2.15). Hence we have confirmed this result again in nonlinear regime,
where |ϕ̄| ∼ O(1). This is a well-known feature of a nonlinear forced oscillator. For details
see standard textbooks of classical mechanics, e.g., Ref. 33.

From Fig. 5.3, we can extract the resonance curves in the following way. For each zero
of ϕ̄′(T/2), which is on the while lines in Fig. 5.3, we calculate the value δϕ ≡ [ϕ(T/2) −
ϕ(0)]/2. Then we can calculate the the amplitude of the gravitational potential in the
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Figure 5.3: The value of ϕ̄′(T/2) is calculated as a function of (µ, ϕ̄i) for λ =
10−2, 10−3, 10−4. The red (blue) regions correspond to positive (negative) value of
ϕ̄′(T/2). Since ϕ̄′(T/2) is a smooth function of (µ, ϕ̄i), there exist the boundaries
with ϕ̄′(T/2) = 0 (white lines), which correspond to closed-orbit solutions. Note
that the vertical axes are common in all plots. This figure is reproduced from
Fig. 2 of Ref. 32.

exponential model δΦExp as

δΦExp ≡ 1

2
|δΦ(T/2)− δΦ(0)| =

∣∣∣∣δΦGR − 1

2
δϕ

∣∣∣∣ , (5.2.17)

where we used Eq. (4.2.12). Using the dimensionless quantity ϕ̄, we obtain

δΦExp

δΦGR
=

∣∣∣∣1 +
1

2
δϕ̄ · |ϕ0|

δΦGR

∣∣∣∣=
∣∣∣∣1 +

µ2

3λ
δϕ̄

∣∣∣∣ , (5.2.18)

where we used the following relation

|ϕ0|
δΦGR

=
R0

3λM2
· 8m

2

ρ0
=

2

3λ

(
2m

M

)2

=
2µ2

3λ
. (5.2.19)

The resonance curves are plotted in Fig. 5.4. We also plot the resonance curve in the
quadratic model for reference. The resonance curves in the exponential model are bent due
to nonlinearity of the equation of motion compared to the quadratic case. However, the
curves cannot be distinguished from that in the quadratic model except for µ ∼ 1. Hence
we can understand most of the features of this phenomenon from the quadratic model as
desired, while the behavior near the resonance point is strongly dependent on the details
of models. The maximum amplitude is inversely proportional to λ as seen in Eq. (5.2.7).
Note that the discontinuity of the curve seen in the case λ = 10−2 comes from the absence
of a friction term, as in the case of the quadratic model.

Remarkably, in the nonlinear case such as the exponential model, there appear new
resonances at µ = q/p for positive integers p and q [33]. For an example, we show the same
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Figure 5.4: The resonance curves around µ = 1 in the exponential model
for λ = 10−2, 10−3, 10−4. The dashed line is the resonance curve in the
quadratic model, Eq. (5.1.8). This figure is reproduced from Fig. 3 of
Ref. 32.

plot as Fig. 5.3 for the series with p = 5 in Fig. 5.5, where we chose λ = 10−3. Note that the
plotted function ϕ̄′(T/2) is replaced by ϕ̄′(5T/2) in Fig. 5.5. In these cases, the resonance
of the oscillation of the scalaron field occurs when the relation M ∼ 2m(p/q) holds. Hence,
the observed frequency becomes both higher or lower than 2m. In the former cases, the
frequencies could be accessible by ground-based gravitational-wave detectors such as the
LIGO.

5.2.3 Constraint on Exponential Model

Before closing the section, let us discuss observational constraints on the exponential model.
Following the discussion in Subsec. 3.3.1, the solar system constraint for this model is

|ϕ0| =
3× 10−18

λ

(
2× 10−22 eV

M

)2

< 3× 10−15 . (5.2.20)

Hence, the model can pass the solar system test even when M = 2× 10−22 eV if λ > 10−3.
Of course, the larger the mass scale M is, the easier the model passes the solar system
test. Thus the amplitude of the gravitational potential can become as large as δΦmax ≃
1.5× 10−15.
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Figure 5.5: The same plot as Fig. 5.3 for the series with p = 5 for
λ = 10−3. The plotted function ϕ̄′(T/2) is replaced by ϕ̄′(5T/2). The
resonance points correspond to µ = 5/q (q = 1, 2, 3 . . . ). This figure is
reproduced from Fig. 4 of Ref. 32.

5.3 Cosmological Dark Energy Models

As explained in Sec. 3.1, one of the motivations for modified gravity theories is its ability to
resolve the dark energy problem. In the previous two sections, however, we have considered
the models that do not explain dark energy. In this section we investigate the behavior
of the scalaron field in cosmologically viable f(R) models, which can explain late time
acceleration of the universe. Among a number of proposed models, we here focus on two
models known as Hu-Sawicki model [34] and the Starobinsky model [35]. The Hu-Sawicki
model fHS(R) and the Starobinsky model fS(R) are defined as

fHS(R) = −λRc
(R/Rc)2n

(R/Rc)2n + 1
, (5.3.1)

fS(R) = −λRc

[
1−

(
1 +

R2

R2
c

)−n
]

, (5.3.2)

where n and λ are positive dimensionless parameters, and Rc is a parameter with the
dimension of curvature. In these models, f(R) vanishes at R = 0 and goes to a constant
value λRc for R → +∞. Hence in order for these models to mimic the ΛCDM model, we
have to choose λRc ≃ 2Λ , where Λ is the cosmological constant. Hereafter we assume the
relation λRc = 2Λ, and regard n and λ as model parameters. The functions fHS(R) and
fS(R) are plotted in Fig. 5.6. When the curvature is large (R/Rc ≫ 1) both functions have
the same asymptotic form:

f(R) ≃ −λRc

[
1−

(
R

Rc

)−2n
]

. (5.3.3)
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Since the curvature in the dark matter halo (∼ ρ0) is much larger than the cosmological
one (∼ Rc), we can use the asymptotic form (5.3.3) for both models when discussing halo
scale phenomena.
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Figure 5.6: The function f(R) in the Hu-Sawicki model (left) and the Starobinsky
model (right). The cases n = 1 and n = 4 are plotted for examples. Note that the
relation λRc = 2Λ is assumed.

5.3.1 Effective Potential of Scalaron Field

As mentioned above, we can assume R/Rc ≫ 1 in the dark matter halo, and can use the
approximated form Eq. (5.3.3) for f(R). The auxiliary function A(ϕ) is defined by

ϕ = f ′(A) = −2nλ

(
A

Rc

)−2n−1

. (5.3.4)

Hence we obtain

A(ϕ) = Rc

(
−ϕ
2nλ

)−1/(2n+1)

. (5.3.5)

Note that the scalaron field ϕ is negative since the function f ′(R) is always negative in this
model. We also note that the limit ϕ→ −0 corresponds to A → ∞. Hence this model also
has the curvature singularity at ϕ = 0. Let us introduce ϕ0 (< 0) by

ϕ0 = f ′(ρ0) = −2nλ

(
ρ0
Rc

)−2n−1

. (5.3.6)

Then the function A(ϕ) can be rewritten as

A(ϕ) = ρ0

(
ϕ

ϕ0

)−1/(2n+1)

. (5.3.7)
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The gradient of the effective potential is

Veff,ϕ =
1

3
[A(ϕ)− ρ0] =

ρ0
3

[(
ϕ

ϕ0

)−1/(2n+1)

− 1

]
. (5.3.8)

The second derivative of Veff(ϕ) is thus

Veff,ϕϕ = − ρ0
3(2n+ 1)ϕ0

(
ϕ

ϕ0

)−2(n+1)/(2n+1)

. (5.3.9)

Hence the mass scale of the model is

M2 = Veff,ϕϕ(ϕ0) = − ρ0
3(2n+ 1)ϕ0

=
ρ0

6n(2n+ 1)λ

(
ρ0
Rc

)2n+1

. (5.3.10)

Integrating Eq. (5.3.8), we obtain the effective potential

Veff(ϕ) = −(2n+ 1)ϕ2
0M

2

[
2n+ 1

2n

(
ϕ

ϕ0

)2n/(2n+1)

− ϕ

ϕ0

]
, (5.3.11)

where we used the definition of the mass (5.3.10). The effective potential is plotted in
Fig. 5.7. Note that the points at which Veff(ϕ) = 0 are ϕ = 0 and

ϕ =

(
2n

2n+ 1

)−2n−1

ϕ0 . (5.3.12)

The form of the effective potential seems qualitatively the same as that in the exponential
model plotted in Fig. 5.2.

5.3.2 Constraints on Hu-Sawicki/Starobinsky model

Before investigating the oscillatory behavior, let us discuss the existing constraints on the
Hu-Sawicki and Starobinsky model.

Local Gravity Constraints As we have seen in Subsec. 3.3.1, the most stringent con-
straint among several local gravity tests is from the test of the weak equivalence principle
in the solar system. The solar system test gives the constraint |ϕ0| < 3.0× 10−15, where ϕ0

is defined by Eq. (5.3.6). The condition can be rewritten as

n

λ2n

(
2Λ

ρ0

)2n+1

< 1.5× 10−15 . (5.3.13)

Using the plausible cosmological parameters h = 0.6731 and ΩΛ = 0.685 [1], we can evaluate
the ratio

2Λ

ρ0
=

6ΩΛH2
0

ρ0
= 2.18× 10−5 , (5.3.14)

where we assumed ρ0 = 0.3GeV/cm3. Hence the solar system constraint leads n > O(1)
for λ = 1. In Ref. 19 we used n ! 0.9 for the local gravity constraints, which is given in
Sec. 5 of Ref. 23. However in this thesis we use Eq. (5.3.13) for plotting the local gravity
constraints.
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Figure 5.7: The effective potential of the scalaron field in the high-
curvature limit of the Hu-Sawicki/Starobinsky model (5.3.11). The point
ϕ = 0 is the curvature singularity. Note that Veff(ϕ) = 0 at ϕ = 0 and
ϕ/ϕ0 = [2n/(2n+ 1)]−2n−1.

Cosmological Constraint As can be seen in Fig. 5.6, the correction to the ΛCDM
model (f(R) = −2Λ) becomes important around R ∼ Rc. Since the Ricci curvature
R decreases as the universe expands, the larger the value Rc is, the earlier the time at
which the correction becomes important. Thus if Rc is too large, the model cannot explain
cosmological observations such as the CMB. Hence we have an upper bound on Rc, and
equivalently a lower bound on λ, as we fix λRc = 2Λ. Let us check this explicitly.

With writing the Ricci curvature at the de Sitter point as RdS, the condition for the de
Sitter point (3.2.5) gives

λ =
xdS

2[1− (n+ 1)x−2n
dS ]

, (5.3.15)

where xdS ≡ RdS/Rc. We can calculate the quantity m(r) defined by Eq. (3.3.21) as

m(r = −2) = − n(2n+ 1)λx−2n
dS

xdS − λ(1− x−2n
dS )

=
n(2n+ 1)x−2n

dS

1− (2n+ 1)x−2n
dS

, (5.3.16)

where we evaluated the value at the de Sitter point (r = −2). Hence the stability condition
for the de Sitter point, 0 < m(r = −2) ≤ 1, reduces to

x2n
dS − (n+ 1)(2n+ 1) ≥ 0 , (5.3.17)

where we used the condition xdS > 0. This inequality can be solved as

xdS ≥ [(n+ 1)(2n+ 1)]1/2n . (5.3.18)

By substituting this into Eq. (5.3.15), we obtain the constraint on the parameter λ for each
n. We use this inequality for the cosmological constraint on the Hu-Sawicki and Starobinsly
model.
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5.3.3 Numerical Approach

The equation of motion for the scalaron field ϕ is given in Eq. (4.2.11), in which the gradient
of the effective potential is given by Eq. (5.3.8). Introducing the dimensionless quantities
as before, i.e., τ = Mt, µ = 2m/M , and ϕ̄ = ϕ/ϕ0, the equation of motion can be rewritten
as

ϕ̄′′ − (2n+ 1)
[
ϕ̄−1/(2n+1) − 1

]
= −3(2n+ 1) cos(µτ) , (5.3.19)

where the prime denotes derivative with respect to τ . We can repeat the same analysis as
in the exponential model, and then obtain a similar plot as Fig. 5.3. In Fig. 5.8, we plot the
value of ϕ̄′(T/2) as a function of (µ, ϕ̄i) for n = 1. Note that zeros of Veff(ϕ) are at ϕ = 0
and ϕ/ϕ0 = 27/8 = 3.375 for n = 1. As in Fig. 5.3, the red (blue) region corresponds to
positive (negative) value of ϕ̄′(T/2). In this model, we have a large unstable region that is
shown in black. That is, when we start with a set of parameters (µ, ϕ̄i) in the black region,
the scalaron hits the curvature singularity at ϕ = 0.

Figure 5.8: The value of ϕ̄′(T/2) is calculated as a function of (µ, ϕ̄i) for
n = 1. The red (blue) region corresponds to positive (negative) value
of ϕ̄′(T/2). When starting with a set of parameters (µ, ϕ̄i) in the black
region, the scalaron hits the curvature singularity at ϕ = 0.

Fig. 5.8 shows that there exist solutions with amplitude ϕ̄ = O(1), i.e., |ϕ| = O(|ϕ0|).
Since |ϕ0| can be as large as |ϕ0| ∼ 3 × 10−15 as in the exponential model, we also have
resonance solutions in this model. However, there is a large unstable region in this model
compared to the exponential model. This is due to the difference of the effective potentials.
Hence we need a condition µ = 2m/M ! O(1) for the stability of the system without
a modification of the curvature singularity. This condition is plotted together with the
cosmological and local gravity constraints in Fig. 5.8.1 In Fig. 5.8 the lines µ = 1 with three

1 We used the values ρ0 = 0.3GeV/cm3, ΩΛ = 0.685, and h = 0.6731 for numerical calculations. In
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different masses are plotted as references of the stability condition. Note that the condition
µ > 1 is slightly weaker than that seen in Fig. 5.8.
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Figure 5.9: The stability conditions are plotted together with the cos-
mological constraint (black solid line) and local gravity constraint (black
dashed line). This figure is reproduced from Fig. 2 of Ref. 19.

In closing the section, let us summarize the behavior of the gravitational potential in
the Hu-Sawicki or Starobinsky dark energy model. As in the case of the quadratic model
and the exponential model, we have resonance solutions for scalaron field with amplitude
of order |ϕ0|, which is constrained as |ϕ0| < 3× 10−15 by the solar system tests. Hence the
amplitude of the gravitational potential can become as large as δΦmax ∼ 1.5× 10−15 under
the resonant condition, which could be detected by future experiments. When µ ≫ 1, the
oscillation of the scalaron field is suppressed as in the previous models. However, in the case
µ " O(1), the instability of the model becomes a problem. In this case the scalaron field
easily hits the curvature singularity at ϕ = 0. Hence in order for the model to be stable
and consistent with the existing constraints, the parameters (n,λ) should be constrained in
the colored region in Fig. 5.9. Of course, it might be natural to consider a modification for
curing the singularity, while this is beyond the scope of this thesis.

plotting Fig. 2 in Ref. 19, we missed a factor 0.3 of ρ0 = 0.3GeV/cm3. Thus three lines for stability are
slightly shifted to right relative to those in Fig. 2 in Ref. 19.



Chapter 6

Conclusion

In this thesis we have studied a gravitational phenomenon caused by the oscillating pressure
of ultralight scalar field dark matter in the framework of the f(R) theory. The ultralight
scalar field dark matter model recently attracts much attention partly because it could
resolve the so-called “small scale crisis” of the standard cold dark matter model. The fact
that the collider experiments have shown no sign of supersymmetric particles can also be a
motivation for considering alternatives to WMIPs.

A phenomenon caused by ultralight scalar field dark matter had been already investi-
gated based on general relativity, and shown that the induced oscillation of the gravitational
potential could be detected by future experiments. However, there are some reasons to con-
sider theories of gravity other than general relativity. Hence it is worth investigating the
phenomenon in the framework of modified gravity theories.

We have focused on the f(R) theory in this thesis since it is one of the simplest theories
of modified gravity. We have discovered the resonant amplification of the gravitational
potential, which is absent in Einstein’s theory. This comes from the fact that the f(R)
theory includes a new dynamical degree of freedom dubbed the scalaron. A wide class
of modified gravity theories also include the scalaron field. The dynamics of the scalaron
field is excited by the oscillating pressure of ultralight scalar field dark matter. If the
angular frequency of the pressure, which is twice as the mass of ultralight scalar field, is
sufficiently close to the mass of the scalaron field, the scalaron field is amplified dramatically.
Since the gravitational potential is determined by the scalaron field in the f(R) theory, the
gravitational potential is also amplified in that situation. We have also found that the
resonance behavior also appears when the fraction of the angular frequency of the pressure
and the scalaron mass is close to an arbitrary rational number. If the resonant oscillation
is excited, the oscillation of the gravitational potential is expected to be detected by future
gravitational experiments.
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