
Kobe University Repository : Kernel

PDF issue: 2024-11-12

A study on low-energy memory architecture for
image processors

(Degree)
博士（工学）

(Date of Degree)
2019-03-25

(Date of Publication)
2021-03-25

(Resource Type)
doctoral thesis

(Report Number)
甲第7517号

(URL)
https://hdl.handle.net/20.500.14094/D1007517

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

Mori, Haruki



 

 

Doctoral Dissertation 

 

 

 

A study on low-energy memory architecture  

for image processors  

 
画像処理プロセッサ向け低エネルギメモリアーキテクチャ 

に関する研究 

 

 
平成 31 年 1 月 

 

神戸大学大学院システム情報学研究科 
 

 

Haruki Mori 
森 陽紀 



 

 

 



i 

 

Abstract 

This dissertation reports low-energy and low-cost memory architecture for real-time 

and energy efficient image recognition application. 

Chapter 1 shows research background of this dissertation and fundamental 

characteristics of the multi-port static random access memory (SRAM) as an application 

specific image memory for the real-time motion detection processor. Then, the 

fundamental features of distributed deep learning and its memory system for image 

recognition is also described in this chapter. 

In Chapter 2, intrinsic features and issues in the multi-port SRAMs as image memory 

and in the memory architecture of deep learning processor is described. Where, an 

increased SRAM operating active energy in read/write cycles and the unnecessary 

energy consumption on bitline (BL) in SRAM array, and an exponentially increased 

memory capacity and bandwidth in distributed deep learning processor, are explained. 

This dissertation presents a low-energy and low-cost SRAM circuit designs, and the 

high scalable and energy efficient deep learning algorithm/hardware development 

overlooking whole data-flow and memory architecture optimization. 

Chapter 3 describes 1-write/2-read eight-transistor (8T) three-port SRAM design; a 

novel 1-write/2-read three-port SRAM based on the 8T bitcell, and the combination 

with majority-logic are presented. 

1) This study presents a low-energy and low-voltage 64-kb 8T three-port image 

memory using 28-nm FD-SOI process technology. Our proposed SRAM 

accommodates eight-transistor bit cells comprising one-write/two-read ports 

and a majority logic circuit to save active energy. The test chip operates at a 

supply voltage of 0.46 V and access time of 140 ns. The minimum energy 

point is a supply voltage of 0.54 V and an access time of 55 ns (=18.2 MHz), 

at which 484 fJ/cycle in a write operation and 650 fJ/cycle in a read 

operation are achieved assisted by the majority logic circuit. These factors 

are 69 % and 47 % smaller than those in a conventional 6T SRAM using the 

28-nm FD-SOI process technology. Furthermore, the operating energy 

consumed on the proposed SRAM is saved by 290 μW, which signifies 24 % 

of energy reduction in total over the conventional H.264 motion estimation 
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image processor. 

Chapter 4 presents two-types of BL swing reduction techniques for low-energy 8T 

dual-port SRAM; 1) a selective sourceline drive (SSD) scheme with the consecutive 

memory access and 2) an MSB-based inversion logic for low-energy 8T dual-port 

SRAM in image processing. 

1) This study presents a low-energy 64-kb 8-transistor (8T) one-read/one-write 

dual-port image memory with a 28-nm fully depleted SOI (FD-SOI) process 

technology. Our proposed SRAM adopts a selective sourceline drive (SSD) 

scheme and a consecutive data write technique for improving active energy 

efficiency at low voltage. The novel SSD scheme controls sourceline voltage and 

eliminates leakage energy at unselected columns in read operations. We 

fabricated a 64-kb 8T dual-port SRAM in the 28-nm FD-SOI process technology. 

The 8T SRAM cell size is 0.291 × 1.457 µm2. The test chip exhibits 0.48-V 

operation at access time of 135 ns. The energy minimum point is at a supply 

voltage of 0.56 V and an access time of 35 ns, where 265.0 fJ/cycle in write 

operations and 389.6 fJ/cycle in read operations are achieved. These factors are, 

respectively, 30% and 26% smaller than those of the 8T dual-port SRAM with 

the conventional scheme. 

2) This study presents low-energy 8T dual-port SRAM with a novel MSB-based 

(most-significant-bit-based) inversion logic for an image processor such a 

deep-learning processor. Our proposed SRAM is suitable for real-time and 

low-power image processing, in which data have statistical correlation and data 

bit reordering are exploited. The proposed MSB-based inversion logic eliminates 

an additional flag bit in a majority logic; the MSB digit in an input datum judges 

whether or not to invert the datum. Thus, the area overhead of 16.1 % for the 

8-bit conventional majority logic is dramatically saved. The area overhead of the 

proposed SRAM is merely 1.8 % for the MSB-based inversion logic. We verified 

that, with the proposed technique, 14.7 % of total energy can be saved in a 28-nm 

64-kb FD-SOI SRAM when a set of images is read out. Furthermore, the saving 

factor is extended to 17.3 % when image processing in the VGG-F convolutional 

neural network (CNN) is considered, where 312.4 fJ/cycle in the read operation 

is achieved. 
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In Chapter 5, memory bandwidth and capacity reduction techniques with the model 

parallelism for high scalable distributed deep learning are described. Where, a 

layer-block-wise pipeline stochastic gradient decent (SGD) algorithm and its hardware 

architecture are proposed for distributed deep learning. 

1) This study presents a pipelined stochastic gradient descent (SGD) algorithm and 

its hardware architecture with a memory distributed structure. In the proposed 

architecture, a pipeline stage takes charge of multiple layers: a “layer block”. The 

layer-block-wise pipeline has much less weight parameters for network training 

than conventional multithreading because weight memory is distributed to 

workers assigned to pipeline stages. The memory capacity of 1.95 GB for the 

four-stage proposed pipeline is approximately half of the 3.79 GB for 

multithreading when a batch size is 32 in VGG-F network model. Unlike 

multithreaded data parallelism, no parameter server for weight update or shared 

I/O data bus is necessary. Therefore, the memory bandwidth is drastically 

reduced. The proposed four-stage pipeline only needs memory bandwidths of 

36.3 MB and 17.0 MB per batch, respectively, for forward propagation and 

backpropagation processes, whereas four-thread multithreading requires a 

bandwidth of 1.21 GB overall for send and receive processes to unify its weight 

parameters. At the parallelization degree of four, the proposed pipeline still 

maintaining training convergence by a factor of 1.76, compared with the 

conventional multithreaded architecture although the memory capacity and the 

memory bandwidth are decreased. 

In the final chapter 6, we summarize this dissertation. This thesis proposes the 

low-energy and low-cost memory architecture to realize high-speed and high-scalable 

image processing overlooking whole memory architecture. The work contributes to 

achieve an energy-efficient SRAM design for advanced technology and development of 

high-speed and energy-efficient image processing flame work with higher scalability. 

 

Keywords: 8T SRAM, 28-nm SRAM, Consecutive Access, FD-SOI, Image Memory, 

Low Power, Multi-Port SRAM, Majority Logic, MSB-Based Inversion Logic, Deep 

Neural Network, Model Parallelism, Pipelined Backpropagation, Distributed Memory, 

Memory Capacity Reduction, Memory Bandwidth Reduction. 
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 1.1  Background of Research Area  1 

 

 

 Introduction 

 Background of Research Area 

1.1.1 The role of SRAM architecture in image processing 

The work for this dissertation is twofold. First, I implemented low-power and 

low-voltage embedded static random access memory (SRAM) design aiming high 

energy efficiency on real-time image recognition processor. I also developed a 

high-speed and an energy-efficient distributed deep-learning (DL) algorithm and its 

hardware accelerator overlooking whole data flow and memory architecture 

optimization. 

Low-energy image recognition is demanded for internet of things (IoT) devices in 

various fields such as safety driving systems, machine vision and augmented reality 

(AR) systems with fine resolution. Image resolution enhancement requires large 

memory capacity and large chip area. It also entails higher energy consumption because 

of the increased amounts of image data that must be processed. The memory capacity 

and area cost is relatively increased than the cost of logic part and other peripheral 

circuit according to the technology scaling. In fact, the power consumption in memory 

(global memory, caches, and register files) dissipates more than 40 % of the energy of 

the image processor (e.g. GTX 580, Nvidia Corp.) [1]. For IoT devices handling image 

information, more energy-efficient memory technology is anticipated. 

SRAM is the most common type of the embedded memories for the modern SoCs. 

SRAM has better compatibility to logic circuits and faster random access performance 

than the other memories. Processors leverages SRAM as the first level cache memory, a 

scratch pad memory and a main memory on a video coding system and image 

recognition system. As process technology is scaled down, SRAM occupies over 50% 

of the total area and 65% of the total power in 2022 [2], as shown in Fig. 1.1. Therefore, 

SRAM must play an integral role in the power, performance, and an area of the modern 

SoCs. 

Input data for image processing are stored temporarily in SRAM. In an image 

processor, many processing cores access SRAM for multi-thread processing. Fig. 1.2 
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portrays the memory system in an image processing unit. The SRAM array stores data 

such as image maps, feature maps, and various parameters for its processing on the 

many processing elements (PE). Demand for multi-port SRAMs has increased to 

accommodate high-speed, low-energy image processing. The multi-port SRAM is 

suitable for parallel operation. It improves the total chip performance and/or memory 

bandwidth by enabling multiple simultaneous operations in the same bank [3]. Parallel 

processing is a key technology for real time image applications that require embedded 

memories with multiple access ports [4–6]. However, the energy reduction of SRAM 

part is remaining important challenges for future IoT devices. Actually, as the transistor 

scaling, larger SRAM capacity than ever will be implemented in an SoCs. Fig. 1.3 

shows the energy consumption of SRAM in whole image processor. 43% of energy is 

consumed in SRAM part manufactured by 65 nm process [7], while the energy 

consumption of SRAM part is increased to 60% in 28 nm process technology. To date, 

multiport SRAMs that support simultaneous write and read operations with low-energy 

operation have been proposed for use as image processors [8–10]. 

Low-voltage operation is one of the primary challenges for active-power 

improvement, but the minimum operating voltage (Vmin) of SRAM part is remaining still 

higher than the Vmin of logic part in SoCs. Fully depleted silicon on insulator (FD-SOI) 

process technology is one of the promising ways to provide high-speed and low-voltage 

SRAM [11, 12]. Figure 1.4 depicts the simplified device structure in the FD-SOI 

process technology. A 28-nm FD-SOI process technology is a fine process, that has a 

fully depleted transistor with an ultra-thin silicon body and a thin buried oxide (BOX) 

layer, giving them excellent electrostatic control in near-threshold voltage region. 

Therefore, it brings stable features at low-voltage operation. The BOX layer reduces the 

leakage current by controlling the electrical flow in a transistor from a source node to a 

drain node. Moreover, the BOX layer suppresses the parasitic capacitance between the 

source node and the drain node. These features of the 28-nm FD-SOI process 

technology realize the production of ultra-low-power SRAM design [13–17]. 

Energy efficiency of SoCs is improved in the near-threshold region because dynamic 

energy and leakage energies are well balanced [18]. The combination of a low threshold 

voltage and low supply voltage is beneficial for high-activation logic circuitry, whereas 

a high threshold voltage and a high supply voltage are suitable for memory operations.  
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Fig. 1.1  Trend of power consumption in SoCs; the memory consumes over 50% of 
whole energy in image processor. 
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Fig. 1.2  The memory system in image processor. 

 
For memory, the activation is low because only a selected wordline (WL) and certain 

bitlines are activated. In such cases, the high threshold voltage suppresses the leakage 

current and total energy. Process technologies such as fin field-effect transistor 

(Fin-FET) and FD-SOI have a smaller S-factor. Moderate threshold voltage and 

moderate supply voltage achieve the best scenario, especially for memory [19–22]. 

However, the SRAM also tends to be affected by process variation (local variation and 

global variation) in the low voltage region. The low-power and proper SRAM circuit 

design is more important than ever. Thus, consequently, SRAM has imperative issues of 

energy dissipation, minimum operating voltage, and variation effect in the deep 

submicron technology.  
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Fig. 1.4  The device structure of FD-SOI process technology; the BOX layer and 
ultra-thin silicon body provides better electrostatic behavior. 
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1.1.2 Background of memory architecture in Deep-Learning image 
recognition processor 

The perceptron, a primitive artificial neural network, has a single layer comprising 

input synapses and output neurons as nonlinear activations [23]. The multilayer 

perceptron is an extension of the single-layer perceptron with hidden layers, in which 

training is conducted through backpropagation [24]. A convolutional neural network 

(CNN) imitates part of the human visual cortex in the cerebrum. It is an extension of a 

multilayer perceptron.  

Recently, a deeper network having more than three layers is generally called as a 

“deep neural network (DNN)” or “deep learning”. The DNN has exhibited its potential 

for image recognition ability. Its accuracy is improving year by year. At the ImageNet 

Large Scale Visual Recognition Competition (ILSVRC), AlexNet with five CNN layers 

and three fully connected layers made an overwhelming achievement over conventional 

feature-based image recognition schemes in 2012 [25]. Its top-five error rate was 15.3%, 

which was more than 10 % better than the second-best entry based on the handmade 

features. Since 2012, the error rate in image recognition has been improved by DNNs. 

At ILSVRC 2015, ResNet, comprising with 151 CNN layers and one fully connected 

layer, remarkably won the competition by a top-five error rate of only 3.57 % [26],  
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Fig. 1.5  The relationship between the total memory size and the acceleration factor 
when using highly parallelized deep learning; this work targeted high scalable and 
energy efficient deep learning. 
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which is better than the 5.1% figure representing human ability [27]. Today, DNNs are 

applied mainly to image recognition applications, but DNNs themselves has 

general-purpose characteristics and abilities; DNNs are now attracting attention not only 

in for engineering, but also for use in medicine, pharmacy, and biology applications [28]. 

The development of deep learning technology is expected to contribute to the 

improvement of wide range industrial fields. 

Figure 1.5 shows a trend of memory capacity versus acceleration factor in distributed 

deep learning. In the conventional multi-thread parallelism, the memory capacity 

increases lineally. However, because of the memory bandwidth of communication 

between the parameter server and many workers, the acceleration factor saturates in the 

middle of parallelization degree. In this case, it is not faster even with a lot of graphics 

processors. The conventional parallelism has scalability constraints in its memory 

structure. The communication delay on the data bus and the huge memory capacity with 

duplicated network, which degrades scalability and increase energy consumption. When 

considering the future networks that have numerous layers must be trained by numerous 

users in various industrial fields, the existing computing resource is not sufficient to 

satisfy the deserved accuracy, although we use the highly paralleled GPGPUs. In order 

to improve such issues, more high-scalable algorisms and low-cost hardware 

architecture is anticipated. Therefore, our target is low-cost and high-scalable deep 

learning flame work. 

 Objectives of This Study 

This dissertation focuses on application specific design of memory architecture for 

low-power, real-time and high-scalable image processors. 

The first objective of this study is active energy reduction in read and write operation 

of multi-port SRAMs. The multi-port SRAM is suitable for parallel operation. In 

particular, an image processor requires larger multi-port SRAM capacity. Therefore, its 

energy consumption is drastically increased by higher resolution. Consequently, 

multi-port SRAMs with lower active or standby energies have become more important 

than ever. All the SRAMs in this dissertation employ eight-transistors (8T) multi-port 

SRAM bitcells (the 8T three-port SRAM, and two-types of 8T dual-port SRAM) with 

improved active or leakage energy. 
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The second objective is to decrease leakage energy consumption for further energy 

reduction. In submicron process technologies, the leakage and unnecessary current are 

more critical than those by larger technology nodes. This study presents selective 

sourceline (SL) drive circuit technics to eliminate unnecessary current in unselected 

read bitlines (RBLs) and to effectively improve the energy efficiency in read operation. 

Another dual-port design proposes the most significant bit (MSB) based inversion logic. 

This circuit technique reduces the number of RBL swing for low-energy operation 

especially in the image recognition deep learning tasks. 

The third objective is to decrease the memory bandwidth and the memory capacity in 

the distributed deep learning. The highly parallelized deep learning for image 

recognition is suffering from the scalability deterioration by increased data bus 

communication between a lot of parallel workers. The large amount of memory 

bandwidth increases communication delays in data bus and therefore computational 

time is also increased. Furthermore, it entails higher energy consumption in memory 

with increased number of memory access. The objective of this study is to develop a 

high throughput deep learning system which accelerates the training period. The 

co-design of algorism and hardware architecture enables development of optimized 

memory architecture and parallel data flow. For this purpose, we propose a novel 

layer-block-wise-pipeline algorism and its architecture to reduce memory bandwidth 

and memory capacity with segmented data bus architecture and distributed memory 

architecture. In this dissertation, we discuss multiple versions of parallelization models 

and compare them. 

 Overview of This Dissertation 

Figure 1.6 illustrates an overview of this dissertation. Firstly, I explain the 

background, objectives, and overview of this study in chapter 1. Secondly, the issues of 

memory architecture in image processing technique are presented in chapter 2. In this 

dissertation, the novel techniques are explained to address the issues which are denoted 

in chapters 3, 4, and 5. 

Chapter 3 presents one-write/two-read (1W/2R) 8T three-port SRAM design and 

implementation. Here, a novel 1W/2R three-port SRAM with 8T bitcell is proposed. 

The combination of the proposed SRAM and a majority logic circuit exhibits 
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low-energy performance. The proposed 8T three-port SRAM accommodates 

eight-transistor bit cells comprising one-write/two-read ports and a majority logic 

circuit to save active energy. We fabricated a 64-kb 8T three-port SRAM using 28-nm 

FD-SOI process technology and compared it with conventional ten-transistor (10T) 

three-port SRAM in ME264 (with H.264 codec) motion estimation image processor. 

In Chapter 4, two types of BL swing and leakage reduction technique for low-energy 

8T dual-port SRAM. Firstly, a low-energy 8T dual-port image memory with sourceline 

drive technique is presented. The proposed 8T dual-port SRAM with selective 

sourceline drive (SSD) scheme improves active energy efficiency at the low- voltage. 

We implemented a 64-kb 8T dual-port SRAM in the 28-nm FD-SOI process technology. 

Secondly, an 8T dual-port SRAM with a novel most significant bit (MSB) based 

inversion logic is presented to save the active energy on RBLs. Our proposed SRAMs 

are advantageous for real-time and low-power image processing, in which data have 

statistical correlation. Furthermore, the proposed MSB based inversion logic eliminates 

an additional flag bit, therefore, our SRAMs have smaller area overhead than the 

conventional scheme. 

Chapter 5 introduces memory bandwidth and capacity reduction techniques for 

high-scalable parallelism in distributed deep learning. The layer-block-wise pipeline 

algorithm and its hardware architecture are presented to speedup the stochastic gradient 

descent (SGD) algorism with low cost. In the proposed architecture, a pipeline stage 

takes charge of multiple layers: a “layer block”. The layer-block-wise pipeline has much 

less weight parameters for network training than conventional multithreading because 

weight memory is distributed to workers assigned to pipeline stages. Unlike 

multithreaded data parallelism, no parameter server for weight update or shared I/O data 

bus is necessary. Therefore, the memory bandwidth and internal memory capacity are 

drastically reduced in the deep learning processors. 

Finally, the conclusion of this dissertation is summarized in Chapter 6. This thesis 

consistently presents the energy efficient and low-cost memory architecture for 

high-speed, low-energy and high-scalable image processors overlooking whole memory 

architecture in future image applications. 
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Fig. 1.6  Overview of this dissertation. 
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 Issue of Memory Architecture in 
Image Processors 

As described in the previous chapter, the memory architecture plays significant role 

to optimize memory flow in the image processing. It influences energy, area, and the 

whole performance in the image processors. In this chapter, the specific features and 

inherent issues of memory architecture in image processing are summarized. To 

optimize the energy performance, the increased active or leakage energy in multi-port 

SRAM are discussed. Also, exponentially increased memory bandwidth and capacity 

caused by the conventional distributed neural network training and those impact in the 

computational cost must be explained. 

Firstly, we describe the conventional SRAMs as image memory. Here, the features of 

6T, 8T, and 10T SRAM bitcells and its design issues are explained. Secondly, we focus 

to the advanced features of dual-port SRAM and its inherent issues. The unnecessary 

current and leakage current on the read-port are primary issues in the dual-port SRAMs. 

RBL swing in the dual-port SRAM also increases active energy. In the deep learning 

processors, the issues of increased memory bandwidth and capacity must be addressed 

for future deep learning tasks. The enormous bus communication and drastically 

increased internal memory capacity degrade scalability of parallelism in deep learning. 

This chapter notes the primary issues and important challenges to be tackled for future 

energy-efficient image processing. 

 Features and issues in the SRAM architecture 

2.1.1 Fundamental features of multi-port SRAM 

Figure 2.1 (a)-(b) illustrates variation of commonly composed single-ported and 

multi-ported 6T, 8T, and 10T SRAM bitcells. Fig. 2.1(a) shows the 6-transistors (6T) 

SRAM bitcell. The 6T SRAM bitcell consists of two pMOS pull-up (load) transistors 

(M1, M3), two nMOS pull-down (driver) transistors (M2, M4), and two nMOS 

pass-gate (access) transistors (M5, M6). This type of SRAM bitcell is most generally 

used in the high performance SoCs, because of symmetrical structure. It can achieve 



12  Chapter 2  Issue of Memory Architecture in Image Processors 

 

 

high density integration and quick generation by SRAM compilers. Most of 

conventional embedded SRAMs are based on the 6T single-port SRAM. The cross 

coupled inverter circuit holds a bit data as a storage node. The pair of the BLs enables 

either single write or read (1WR) operation during certain access time. This BL pair is 

precharged to VDD every cycle before operation and standby mode. The WL is 

activated for upcoming write or read operation. The BL pair supports quick differential 

sensing which is effective for high-speed and energy-efficient operation (=small signal 

sensing). In the 6T SRAM, wordlines (WLs) and bitline-pairs (BLs and BLBs) are 

vertically and horizontally assigned in the SRAM array. 

While the SRAM architectural idea, such as SRAM matrix duplication, can be used 

to support more than 1WRs in single operation, larger number of transistors are required 

to realize multi-port functionality, results of certain layout area overhead. Generally 

composed examples such multi-ported function, include the 8T 2WR dual-port SRAM 

cell shown in Fig. 2.1(b). It has two pairs of nMOS pass-gate transistors to support 

independent read and write operations. However, since BL pairs are commonly used for 

read and write cycle, well known half select disturb problem is remaining. The 8T 

1W1R dual-port SRAM consists of 6T bitcell and a dedicated read-port to enable 

simultaneous write and read access, as depicted in Fig. 2.1(c). The dedicated read port is 

comprised of two nMOS transistors (M7, M8), this type of SRAM bitcell is commonly 

used for disturb-free read operation. This nMOS decoupled read port is called as 

single-ended read port. In this structure, since the SL of read port is generally connected 

to the GND, the RBL voltage has to fully charged and discharged in the read operation 

(=large signal sensing). Therefore, read energy on RBL charge/discharge in the 

single-ended read port is repeatedly consumed. Those features of 8T 1W1R dual-port 

SRAM with the single-ended read-port significantly increases active energy in the read 

operation. The extended version of 1W1R dual-port SRAM with dedicated read port 

realized with the 10-transistor (10T) bitcell is proposed as 10T 1W2R three-port SRAM. 

It has two single-ended read ports to realize one write and two read (1W2R) operations 

simultaneously. Thus, the multi-port SRAM can provide SRAM operation in parallel in 

the same bank, which is preferable for highly paralleled application such as 

matrix-matrix operations included in image processing. However, its bitcell structure 

leads larger area and higher energy consumption in the SRAM array. 
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Figure 2.2 shows the block diagram of SRAM bitcell matrix and peripheral control 

circuitry. The target cell in the matrix can be accessed by selecting the WL and BL pair, 

which aligned to horizontal and vertical directions. The row/column enable signals are 

generated by the X and Y address decoders, which respectively select a WL and a BL 

pair in the matrix. The sense amplifiers are enabled in the read cycle, which read the 

voltage difference between the BL and the BLB. Finally, the SRAM outputs the read out 

data (Dout) signals. In the write cycle, the BL pairs are precharged to VDD voltage 

before the data inputs. After that, BL and BLB is biased to opposite voltage level, such 

as (BL: VDD, BLB: GND) or (BL: GND, BLB: VDD) by the write drivers according to 

the input data. The selected WL is enabled by the WL drivers. The WL pulse activates 

pass-gate transistors in the bitcell, which is a trigger for the write operation to the target 

SRAM cell. 

The multi-thread architecture is commonly used for the image processing 

applications to realize real-time processing, which can be adopted simply with two or 

more independent processing units. The execution of numerous matrix-matrix 

operations in parallel is effective way to accelerate the high-quality image or video 

processing. Figure 2.3 describes the block diagram of memory system in multi-core and 

multi-thread processor. In this example, the SRAM array is divided into two banks; the 

SRAM Bank-1 for the input image data and Bank-2 for the feature maps. To execute the 

filter operation in processing cores, the input data and feature map data are required 

simultaneously. Thus, the many processing cores access the SRAM simultaneously for 

multi-thread processing. In such case we explained here, demands for multi-port SRAM 

have been increased to realize high-speed and low-power image processor. The 

multi-port SRAM is reportedly suitable for plural core accesses. It significantly 

improves energy and total performance. To date, a multiport SRAM that supports 

simultaneous write and read operations is proposed for use as the image processor [5–6]. 

In those image processor, the number of read operations is drastically increased than 

write operations. To reduce the energy consumption and optimize whole throughputs, 

the energy reduction and read circuit improvement techniques are anticipated for such a 

multi-core image processor. 
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Fig. 2.1  Variation of commonly composed single-ported and multi-ported 6T, 8T, 
and10T SRAM bitcells. 
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Fig. 2.3  Block diagram of memory system in the multi-core processor. 
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2.1.2 The issues in the multi-port SRAM 

As described previously, the multi-port SRAM is commonly used for multi-core 

image processors. In this part, we focus the 1W1R dual-port SRAM, which enables 

simultaneous write and read operation without half select problems. A thing in 

multi-port SRAM to be considered is its increased area cost. The multi-port SRAM 

generally require larger area than the conventional 6T SRAM bitcell. Actually, as I 

shown in Fig. 2.1(d), the 10T three-port SRAM structure is also used as the 10T 

dual-port SRAM, when the RWL1 and the RWL2 is unified as an RWL. Then, the RBLs 

can be used as RBL pair. However, its bitcell size is increased significantly. In the high 

resolution image processing, the larger SRAM capacity is preferable. Thus, the SRAM 

bitcell area has large impact for entire area cost in SoCs. Therefore, in these dual-port 

SRAM, the dedicated read-port is mainly adopted as a single-ended structure. The 

single-ended read port with asymmetric bit-cell can be achieved lower area cost than the 

symmetrical one, thanks of the lower number of composed transistors. 

In the single-ended read port structure with two or more nMOS transistors, the source 

line of read port is conventionally connected to the ground (GND) voltage. Therefore, 

the RBL must be fully amplified to read out the stored data when the storage node QB 

holds “1”. It is noteworthy that the single-ended read port has a strong data dependency 

on its energy consumption. Those feature of conventional single-ended read port, which 

possibly increases power consumption on the RBLs than the differential sensing scheme. 

This fact is remaining as an important issue in the dual-port SRAM. 

The RBL timing problem is another factor. Because the RBL has to be fully 

discharged in the read operation, longer access time is necessary for the single-ended 

structure than the differential one. When considering the operation in sub-threshold 

region, since the Vth variation become worse, and setup/hold margin design should be 

more severe. Therefore, its operation frequency is lowered than the differential sensing 

scheme, because the single ended structure needs longer access time. Nevertheless, 

these differential sensing devices and symmetrical SRAM bitcells entail a greater area 

cost. To address these issues explained here, various important earlier works have 

proposed for the dual-port SRAM architectures. (I will explain the details in the chapter 

4.) 

As described in an earlier report, an 8T 1W1R dual-port SRAM is typically used for 
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leveraging disturb-free access because of the dedicated read port [29]. The 8T dual-port 

SRAMs with lower active/standby powers have become more important than ever. The 

8T 1W/1R dual-port SRAM structure can eliminate the well-known read disturb 

problem by preventing charge sharing with internal storage nodes when a read WL is 

activated. A read port of the 8T dual-port SRAM employs a SL as a footer line, which is 

shared in the same row address to perform low-energy operations. Figure 2.4 shows the 

circuit schematic of the SL structure, and the current flow model of unnecessary read 

current at the unselected column in conventional 8T SRAM cells with single ended read 

ports. In the read operation, the RBLs are precharged to “1” and the RWL selects a 

target row address. At the selected column, the RBL voltage is discharged to “0”, 

therefore, the sense amplifier (SA) can amplify the RBL voltage, in the case of Fig. 

2.4(a). On the other hand, in the half selected column where RWL is shared with 

selected column, the RBL current is consumed unnecessarily although the column is not 

selected for the read out. This structure increases energy consumption on the RBLs, and 

degrades active energy efficiency. While the circuit techniques, the divided WL 

structure, can be adopted to the RWLs to reduce energy consumption, it requires 

additional peripheral circuitry and significantly degrades area performance. As our 

earlier work [30] proposes the selective sourceline control (SSLC) structure with 8T 

1W1R dual-port SRAM, which is developed to reduce leakage current through 

unselected RBLs. However, some read bitlines are, still discharged slightly in 

unselected columns because the floating SLs of the conventional scheme [30] degrades 

energy efficiency. 

In this dissertation, our proposed works address the multi-port functionality, area 

efficiency, variation effects in sub-threshold region, and energy efficiency from the 

point of circuit design to improve these issues in the 8T dual-port SRAM. The details 

are discussed in the Chapter 4. 
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Fig. 2.4  Circuit schematic of sourceline (SL) structure, and current flow model of 
unnecessary read current at the unselected column in conventional 8T SRAM cells with 
single-ended read ports. 
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 Fundamental Features and Issues of Deep Neural 
Network 

2.2.1 Fundamental features of deep neural network 

The neural network imitates cerebral nerve system in the animal or human brain. A 

hierarchical neural network has plural units in each layer and the units are connected 

between adjacent layers. The units of each layer are called “perceptron” and weight 

parameters {w1,1, w1,2, … , w(m,n-1), w(m,n)} are assigned to the connection (synapse) of 

the perceptron. The calculation of neural network is performed by the multiplication of 

input data and synapse. When each data {x1, x2, ... , xm} is transferred to the input layer, 

the uj is calculated by the multiplication with the weight parameters and the addition of 

the bias parameter bj. Then, the uj is transferred to the next layer, by the Equation (1). 

𝑢𝑗 = ෍ 𝑤𝑖,𝑗 𝑥𝑖𝑚
𝑖=1 + 𝑏𝑗  (𝑗 = 1,2, … , 𝑛) (1)

 
The uj must be multiplied by the activation function f(uj) to compute an output of target 

layer. The output of activation function is expressed as Eq. (2). For the activation 

function, a nonlinear function is generally used in neural network such as monotonically 

increase nonlinear functions. 𝑧𝑗 = 𝑓൫𝑢𝑗 ൯ (𝑗 = 1,2, … , 𝑛) (2)
  
While the activation functions include step function, softsign, sigmoid functions, the 

normalized linear function as rectified linear units (ReLU) represented by equation (3), 

is typically used these days. In the ReLU function, when the partial derivative is defined 

as in Eq. (4), both the forward propagation and the back propagation should have much 

less computational cost than the other functions listed above. 

𝑓(𝑢) = ൜𝑢 (𝑢 > 0)0 (𝑢 ≤ 0)  (3)
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𝜕𝑓𝜕𝑢 = ൜1 (𝑢 > 0)0 (𝑢 ≤ 0) (4)
  
The forward propagation is calculated by the above procedure, and the output of each 

unit in the final layer is defined as yj. Once the output of the final layer of the neural 

network is obtained, an error function (loss function) En (w) is calculated. The error 

function En (w) is an indicator to measure the accuracy of the output data generated by 

the present weight parameter. The regression problems commonly use a square error 

function. The number of neurons in the output layer must be matched with the number 

of categories of training data. Here, we assume the number of neurons in the output 

layer: y and the training data (categories): d is k, then, the output of loss function En (w) 

is expressed as Eq. (5).  

In the network training, to optimize the weight parameters which assigned at each 

synapses, an optimization function En (w) is commonly used. This optimization 

procedure is repeatedly executed. It is known that a stochastic gradient descent algorism 

(SGD) is effective method to find the optimum update value of weight coefficients and 

to decrease the error function’s value. In the SGD algorism, the gradient of the error 

function with respective weight coefficient is calculated. 

𝐸𝑛 (𝒘) = 12 ෍(𝑦𝑘 −𝑑𝑘 )2𝐾
𝑘=1 (5)

 ∇𝐸(𝒘) = 𝜕𝐸(𝒘)𝜕𝒘  (6)
 

Hereinafter, we define the parameter meanings; l: total layer number, i: the layer 

number and j = i+1, W: weights, dW: deltas, and ε: learning rate. Then, the weight 

coefficient from the layer i to the layer j is expressed as Eq. 7. 𝑤𝑖,𝑗𝑙 = 𝑤𝑖,𝑗𝑙 − 𝜖∆𝑤𝑖,𝑗𝑙  (7)
 

Here, the learning rate (LR): ε is an important parameter which control the update 

amount of weight coefficient. The LR is one of the hyper parameter, which value is 

determined by the users. In partial derivative calculation Eq. (7), the computational cost 
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increases sharply from the output layer to the input layer. In order to perform this 

calculation efficiently, the weight update amount is calculated by the back propagating 

gradient from the output layer to the input layer. The details of the transformed error 

propagation calculation are expressed below equations. At the first step, the gradient is 

defined as Eq. (8). Then, the deltas in the output layer is shown as Eq. (9). 𝛿𝑗(𝑙) ≡ 𝜕𝐸𝑛𝜕𝑢𝑗(𝑙)  (8)
 𝛿𝑗(𝐿) = ൫𝑦𝑗 −𝑑𝑗 ൯ ∗  𝑓′ ቀ𝑢𝑗(𝐿)ቁ (9)
 

The gradients of the intermediate layer are calculated by below equation, Eq. (10). 

After that, the update amount of the weight coefficients at each layer can be obtained as 

shown in Eq. (11). 𝛿𝑗(𝑙) = ෍ 𝛿𝑘(𝑙+1)𝑤𝑘𝑗(𝑙+1)𝑘 𝑓′ ቀ𝑢𝑗(𝑙)ቁ (10)
 ∆𝑤𝑖,𝑗𝑙 = 𝜕𝐸𝜕𝑤𝑖,𝑗𝑙 = 𝛿𝑗(𝑙)𝑧𝑖(𝑙−1) (11)
 

This results means that the deltas of the (l+1)-th layer is transferred to the upstream 

layer, then the delta in the layer l is obtained from the weights of the (l + 1)-th layer and 

the input of the layer l at the forward propagation. Therefore, the update amount of each 

layer’s weight coefficients can be calculated. Thanks to the characteristics of the 

propagation rule; the deltas are obtained sequentially from the output layer to the input 

layer to calculate update amount of the weight coefficient; the backpropagation 

procedure can be parallelized easily. 

In the convolutional neural network (CNN), it consists of plural network layers, 

which uses not a fully connected layer as described so far. In the convolutional layer, 

calculation is performed by a filter operation like an image processing instead of the 

simple product-sum operation in the fully connected layer. Here, we consider the H×W 

size image data. The input of the convolutional layer defined as xi, j. The N×N filter as 

weight coefficient is defined as ws,t, and the parameter b is bias. Then, the output of the  
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𝑢𝑝,𝑞 = ෍ ෍ 𝑤𝑠,𝑡 𝑥(𝑝+𝑠),(𝑞+𝑡) + 𝑏𝑁−1
𝑡=0

𝑁−1
𝑠=0  (12)

 
convolutional layer up, q is expressed as Eq. (12). 

The output of the convolutional layer is usually input to the pooling layer. In the 

pooling layer, a compression of the pixel data to decrease the vertical and horizontal 

pixel sizes is executed. The convolutional neural network (CNN) is composed of many 

convolutional layers. Figure 2.5 shows a concept of CNN network. The network 

contains convolutional layers, normalization layers, activation layers, pooling layers, 

fully connected layers, and so on. Actually, CNNs have been scaled up with numerous 

synapses and neurons in deeper layers. 

What?

Input data
Convolution

Pooling Convolution Pooling Fully
Connected

dog(91 %)
cat(5 %)

boat(3 %)
bird(1 %)

 

Fig. 2.5  The concept of convolutional neural network (CNN). 

2.2.1 The issue of memory architecture in the deep neural network 

As CNNs have generality with a deeper and larger-scale network, their error rates of 

cognition continue to improve. Accordingly, computational times become much longer, 

particularly those for training purpose. Furthermore, the recognition accuracy is 

improving steadily according to the network size [31], as shown in Fig. 2.6.  

Recently, to accelerate the CNN computations, the mini-batch processing is popularly 

used. Normally, the network training requires the numerous training samples. In the 

ImageNet dataset that is provided from ILSVRC 2012, it contains 1.28 million images 

for network training purpose. Therefore, when we consider the network training with a 

large dataset, enormous computational cost and training time is required because of the 

increased number of parameter updates for each sample. In this situation, the mini-batch 

training has become popular as an effective way to execute the network training. The 
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mini-batch training updates the weight parameters with multiple samples in the single 

iteration. Because the variation of gradients is compensated by the multiple samples, the 

training convergence will be better. However, in cases of memory capacity, the input 

data memory or activations of each convolutional layers are lineally increase as the 

increased number of sample images which must be hold. In the larger batch size, it no 

longer fits in the internal memory on a single worker. 

For further acceleration, the data parallelism is known as one of the promising way to 

speed up the deep learning. The data parallelism divides the dimensions of the data. The 

divided data is distributed to the parallel workers. The worker trains same network but 

with a different data samples. The mini-batch training is categorized as data parallelism, 

which can be applied to the multi-worker training. In those data parallelism, to increase 

the parallelization degree, many workers duplicate same network model and hold it in 

the internal memory. The unification process of deltas collects and take average the 

deltas that is generated by the back propagation, it must be transferred from each worker 

to the parameter server. The weight unification process updates weight parameter by 

using the unified delta. The many parallel workers need large amount of transfer 

bandwidth, this is why the communication delay will be longer and longer. Figure 2.7 

shows the relationship between the acceleration factor and the number of workers. The 

data parallelism with multiple workers are effective to accelerate the deep learning tasks. 

However, the total memory capacity in the internal memory is drastically increased. 

Furthermore, the communication delay on the data bus is significantly increased at the 

highly distributed parallelization. The acceleration factor saturates even if over 50 GPUs 

are paralleled [32]. In the conventional parallelization model, the memory bandwidth 

and memory capacity limits a scalability of deep learning acceleration. 

In this work, we targeted the development of low-cost and high-scalable deep 

learning processor with lower internal-memory capacity and lower memory bandwidth 

on the data transfer bus. Our algorism and architecture expands a scalability with lower 

memory cost and higher energy-efficiency than the conventional data parallelism. 
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Fig. 2.6  The correlation between the accuracy and the deepnesss of network model 
[31]. 
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Fig. 2.7  The relationship between the acceleration factor and the .number of workers. 
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 Summary 

This section summarizes the issues of multi-port SRAMs as an image memory, and 

the memory system in the distributed image recognition processors. 

For the multi-port SRAM, these issues are explained 

 Increased active energy on the access ports, and its area cost 

 Energy efficiency degradation by the unnecessary current flow and leakage 

current. 

For the deep learning processor, below issues and challenges are explained. 

 How to accelerate the computational time to train network models. 

 Increased amount of internal memory capacity 

 Increased memory bandwidth with parallelized workers 

These issues have to be considered on whole memory architecture level to achieve 

low-power and low-energy image recognition processor. The cooperative design with 

device technology in SRAM, memory efficient algorithm design, and hardware 

development have to be integrated. In this dissertation, the novel techniques are 

presented in Chapters 3 to 5 to address the issues. 
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 Low-energy Multi-Port SRAM 
Cell Design 

All the static random access memory (SRAM) in this chapter were implemented in 

the 28-nm FD-SOI process technology supported by ST-Microelectronics Co. Ltd. This 

chapter describes low-power 2-read/1-write 8T three port SRAM design. We studied 

following contents: 

1) The design of novel 2-read/1-write three-port 8T SRAM bitcell in 28-nm 

FD-SOI with small area overhead. 

2) The combination with the proposed SRAM and majority logic circuit for 

further energy reduction. 

Finally, the energy efficiency and the performance improvement in the actual H.264 

motion estimation image processor is explained when the proposed SRAM techniques 

are adopted. 

3.1.1 The multi-port SRAM design in image processor 

When considering the mechanism of image or video sequence, image processor must 

perform the matrix-matrix computation for filtering operation. Normally, the high-speed 

SRAM as an internal memory is indispensable for effective data loading, because the 

external data access conspicuously lead longer access delay in memory. Actually, 

high-performance SRAM is used as a frame buffer and a reconstructed image memory 

in a real-time video or image processing in the H.264 image processor, shown in Fig. 

3.1. In particular, parallel computation by multi-thread processing of matrix-matrix 

operations as seen in the image processing is beneficial for its real-time operation. 

From this reason, input data for image processing are stored temporarily in SRAM. In 

an image processor, many processing cores access the SRAM for multi-thread 

processing, as presented in Fig. 1. Demands for multi-port SRAM have been increased 

to accommodate high-speed and low-power image processing. The multi-port SRAM is 

suitable for parallel operation. It improves the total chip performance. To date, a 

multiport SRAM that supports simultaneous write and read operations is proposed for 

use as the image processor [5], [6]. The three-port SRAM is reportedly suitable for use 

as an image processor [7], [33]. When comparing features of two images, simultaneous  
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Fig. 3.1  Memory system in image processing. This work targeted the development of 

low-power and low-cost image memory. 

 

read operations are requested to SRAM cells. Furthermore, realizing real-time 

processing requires a write operation for the next comparison at the same time as the 

read operation. Therefore, two read operations and one write operation must be 

performed simultaneously, which require multiport SRAMs that have 

two-read/one-write access ports for the image processor. 

In the multi-port SRAM, the larger area overhead is critical due to the increasing 

number of transistors in the SRAM cell. In the image processor, the larger number of 

SRAM capacity is required to process high-resolution image and video sequence. The 

resolution improvement brings higher energy consumption in SRAM.  

Conventionally, the bit-cell layout in the three-port SRAM needs a larger bit-cell area 

than that of an 8T dual-port SRAM cell due to the larger number of transistors which 

must be accommodated in the SRAM cell [33]. In particular, an image processor 

requires larger multiport memory capacity, which gives a serious impact on its cost. In 

this paper, we exhibit an 8T three-port SRAM smaller than the conventional three-port 

bitcell. Its area is as small as the conventional 8T dual-port SRAM. 

We propose two types of circuit techniques in the multi-port SRAM to improve area 

efficiency and to achieve low-voltage and low-power operation. We designed a 28-nm 

FD-SOI 8T three-port SRAM for a low-power image processor and compared it to a 

28-nm FD-SOI 6T SRAM in the conventional form. 
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3.1.2 1-Write/2-Read 8T three-port SRAM cell design 

Multi-port SRAM with plural read ports improves functionality to handle the 

simultaneous accesses. Since the write and read ports are controlled independently, 

write and multiple read operations can be performed simultaneously on different cells in 

the same bank. In this way, the multi-port SRAM is suitable for parallel operation such 

as image processing. The conventional 1-write/2-read three-port SRAM needs larger 

bitcell area than the 8T dual-port SRAM due to the increasing number of transistors in 

the SRAM cell [33]. In particular, an image processor requires a larger multi-port 

SRAM capacity, which gives a serious impact on its cost. 

A circuit schematic of the proposed 8T three-port SRAM is presented in Fig. 3.2. It 

has a pair of write bitlines and two single-ended read bitlines (one-write/two-read bitcell 

structure). The proposed SRAM has two pull-up pMOSs (load-pMOS), two pull-down 

nMOSs (drive-nMOS), and four transfer nMOSs (access-nMOS). In this circuit, M7 and 

M8 transistors are the two single-ended read ports. Source nodes of M7 and M8 

transistors are connected to node QB. The drain nodes are connected to read bitlines 

(RBL_A, RBL_B). The gate nodes of M7 and M8 are connected to the read wordlines 

(RWL_A, RWL_B). Both read ports (read ports A and B) are consolidated on one side  
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Fig. 3.2  Schematic of proposed 8T three-port SRAM with single ended read ports. 



 2.3  Summary  29 

 

 

Table3.1  Transistor W/L sizes in the proposed SRAM cell. The proposed 8T SRAM 
cell is designed on the logic rule bases. 

Pull-up Tr. Pull-down Tr. Write pass gate Tr. Read pass gate Tr.
(M1, M3) (M2, M4) (M5, M6) (M7, M8)

Width [nm] 80 142 80 80
Length [nm] 30 30 30 30

Tr. size

Logic Rule based design  

and has asymmetric cell structure. This asymmetrical 8T SRAM cell achieves higher 

density than the conventional three-port SRAM cell. 

The β ratio in the SRAM cell indicates a strength of the pull-down transistor against 

to the pass-gate transistor. The β ratio must be remained sufficiently to ensure the proper 

read operation. In our design, the W/L size of the pull-down transistor in the bitcell is 

chosen to remain a sufficient SNM (static noise margin) even when the both read ports 

are activated. All transistor W/L sizes in the bitcell are shown in Table 3.1. In this case, 

the β ratio in the proposed three port SRAM cell is 1.77 (= 142 nm/80 nm). 

Figure 3.3(a) presents front-end-of-line (FEOL) of the proposed 8T three-port SRAM. 

Read ports comprising M7 and M8 transistors are arranged separately from a 6T SRAM 

cell, which share a common contact located at the middle as the QB node. This layout 

achieves a smaller cell area than in symmetrical layout in which the additional read 

ports are arranged at both ends [29]. However, a vertical distance between upper and 

lower gates (gate pitch) is increased because the M-3 metal for additional read 

wordlines (RWLs) are inserted. 

Figure 3.3(b) shows the back-end-of-line (BEOL) of the proposed SRAM. The 

SRAM cell size is determined by the number of horizontal and vertical wires. In our 

proposed SRAM, two read ports consisting of M7 and M8 transistors are configured as 

two single-ended read ports having three bitlines and three wordlines shown as Metal 2 

and Metal 3. The cell area is 0.56 μm2 on a logic rule base, which is as small as the 

dual-port 8T bitcell [34], although the number of read ports is increased. The small-area 

bitcell contributes to reduce parasitic capacitance on the WLs and BLs in SRAM matrix. 

This feature of proposed SRAM is beneficial for low-energy operation by saving the 

leakage and the operating energy. 
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Fig. 3.3  Bitcell layout of proposed three-port SRAM: (a) FEOL and (b) BEOL. 
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The operating waveforms in the read operation are depicted in Fig. 3.4(a)-(c). Initially, 

the wordline pulse is inputted to the selected row, as shown in Fig. 3.4(a). If the QB 

node holds the “0” data, the read current flows through the pass-gate transistor M7 or 

M8 to the QB node, as shown in the case of Fig. 3.4(b). On the other hand, no read 

current flows through the read bitlines (RBL_A and RBL_B) when the internal node, 

node QB, is “1”, as shown in Fig. 3.4(c). Figures 3.5(a) and (b) show the behavior of the 

current flow at the read operation in the proposed SRAM. Fig. 3.5(a) shows a read 

current flow when the QB node stores “0” data and RWLs are activated. In this situation, 

read current is pulled from RBL_A, RBL_B to the QB node. The RBLs are precharged 

right before the read cycle. The charge/discharge energy on the RBLs are consumed 

every read cycle. On the other hand, because “1” data is stored in the QB node, the 

source node of M7 and M8 is equally driven to the VDD. Therefore, the read current 

flow from the RBLs to the QB node does not consumed, as depicted in Fig. 3.5(b). 

From this reason, maximizing the number of “1”s at node QB is important to reduce 

dynamic energy in the read operation. 
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Fig. 3.4  Waveforms of proposed 8T three-port SRAM in read operation; (a) Wordline 
pulse, (b) when the Node QB holds “0” data, (c) when Node QB holds “1” data. 
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Fig. 3.5  Schematic of the proposed 8T three-port SRAM and write/read current flow 
model, (a) when the Node QB holds “0” data, (b) when Node QB holds “1” data. 
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3.1.3 Precharge-less write circuit 

Figures 3.6(a)-(b) presents comparison of write circuit between the conventional 6T 

SRAM and the proposed 8T three-port SRAM. Figure 3.6(a) depicts the conventional 

write circuit with write bitline precharge scheme which as shown with pMOS transistors 

to charge a bitline pair. The conventional write circuit must have a precharge scheme to 

maintain stability of read operations because both read and write operations use the 

common bitline pair. Figure 3.6(b) depicts the precharge-less write circuit. Successive 

writes of the same data consume less energy because the proposed 8T SRAM does not 

need a precharge scheme on the write bitlines because of the dedicated read ports for the 

read operation. However, it incurs the well-known half-select problem along the write 

wordline. In our design, the divided wordline structure is therefore adopted to avoid the 

half-select problem [35]. However, the divided word line structure entails the large area 

overhead in SRAM macro, therefore only write wordlines have a divided architecture. 

Figures 3.7(a)-(c) portrays simplified waveforms during four ‘0’ write cycles and an 

“1” write cycle. Figure 3.7(a) shows the waveform of the write wordline (WWL) pulse 

commonly used in the conventional SRAM and the proposed SRAM. Figure 3.7(b) 

shows waveforms of the write bitlines (WBL and WBLB) in the conventional write 

scheme. The either bitline is dropped to the ground voltage in write cycle. Therefore, 
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Fig. 3.6  Schematics of write circuits between conventional SRAM and proposed 
SRAM architecture: (a) conventional circuit and (b) precharge-less circuit. 
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Fig. 3.7  Waveforms in the write operation: (a) Write wordline (WWL) pulse, (b) Write 
bitline (WBL and WBLB) signals in a conventional write circuit and (c) a 
precharge-less write circuit. 

the charge/discharge power on the WBL is consumed in every cycle by the precharge 

scheme. Figure 3.7(c) portrays waveforms of the write bitlines in the proposed SRAM. 

By virtue of the precharge-less write scheme, which reduces the write energy, the 

charge/discharge power on WBLs is consumed only when a write datum is changed. 

3.1.4 Static noise margin (SNM) in 8T 1W2R three-port SRAM 

A multi-port SRAM supports simultaneous accesses from plural cores through the 

multiple read and write ports. Particularly in a one-write two-read (1W2R) three-port 

SRAM cell, the two read ports are both available for simultaneous read outs, which 

implies that simultaneous read outs occur on the single SRAM cell [36]. Figure 3.8 

shows a variety of read situations in the 1W2R three-port SRAM cell when both read 

ports are enabled simultaneously. Figure 3.8(a) depicts two SRAM cells on different 

row addresses and different column addresses, designated independently. No issues 

emerge relative to the access conflict. However, the simultaneous dual-port read outs to 

a single SRAM cell activates both RWL_A and RBL_B, as presented in Fig. 3.8(b), 

which might worsen the static noise margin (SNM) because of double read currents. 

Figures 3.9(a)-(b) presents simulation results of the SNM in the proposed 1W2R 8T 

three-port SRAM cell at several supply voltages of Vdd = 0.4–1.0 V. Figure 3.9(a) 
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depicts the standard butterfly curves in the single port read situation: the SNM of 171 

mV are achieved at 1.0 V, leaving 85% of the SNM in the conventional 6T SRAM [11]. 

Figure 8(b) depicts the worst-case butterfly curves in the simultaneous dual-port reads. 

The SNM is reduced to 101 mV at 1.0 V. An interesting point is that the maximum SNM 

of 102 mV is observed at 0.8 V. 
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Fig. 3.8  Variety of access situations in the proposed 1-W/2-R three-port SRAM. 
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Fig. 3.9  Simulated butterfly curves at several Vdd from 1.0 V down to 0.4 V: (a) 
single-port read out and (b) dual-port read out. 
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3.1.5 Combination with majority logic 

Our earlier study demonstrated that the majority logic circuit can conserve 

charge/discharge power on the read bitlines [37]. Fig. 3.10(a) shows a process flow of 

the proposed SRAM with the majority logic circuit. Image data reflect luminance 

information: bright pixels have many “1” data and dark pixels have many “0” data. For 

read energy reduction, having many “0”s should be inverted by the majority logic. To 

maximize the number of “1”s, the majority-logic circuit counts “1”s and decides if input 

data should be inverted in a write cycle, so that “1”s are in the majority. The information 

of inversion (“1” denotes inversion) is stored in an additional flag bit, as depicted in Fig. 

3.10(b). In a read cycle, this procedure is reversed in order. Output data are inverted if a 

flag bit is true, so that the original data can be read. Note that the majority logic does 

not reduce write energy because the “1” write energy and the “0” write energy are the 

same in the SRAM. 

The mechanism on the RBL power reduction is depicted in Fig. 3.11. We assume the 

bit width of the input data is eight. If the number of “1”s in the input data is five and 

over, the data is not inverted, and one “0” is stored as additional flag bit. This means one 

read current is made by RBL, in witch is a power overhead. If the number of  
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Fig. 3.10  Concept of SRAM with majority logic.(a) Block diagram, and (b) flag bit. 
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Fig. 3.11  Power reduction ratio at each digit in majority logic. 
 

“1”s in the input data is four or less, the data are inverted by the majority logic to 

maximize the number of “1”s, and reduces the read power. When input data have a 

random pattern, the number of charges/discharges is four out of eight RBLs. However, 

the majority logic reduces this value to 3.27 although the number of the RBLs is 

increased to nine. This indicates that the majority logic statistically saves 18% of an 

RBL power even if the data are random. In our proposed SRAM, majority logic 

conserves charge/discharge power effectively on the read bitlines because the number of 

“1”s in the input data is maximized. 

3.1.6 Chip implementation and measurement results 

We fabricated a 64-kb 8T three-port SRAM macro using 28-nm FD-SOI process 

technology. Figure 3.12 shows a test chip micrograph. The proposed 64-kb macro 

consists of 2 × 32 kb sub-blocks. The macro area is 0.058 mm2. Figure 3.13 presents a 

measured read Shmoo plot of the proposed SRAM macro. We verified that it can 

operate with supply voltage of 0.46 V and access time of 140 ns. At room temperature 

(=25 celsius degree), the operating point that achieves the minimum energy per cycle is 

a supply voltage of 0.54 V and a cycle time of 55 ns (= 18.2 MHz).  



38  Chapter 3  Low-energy Multi-Port SRAM Cell Design 

 

 

Figure 3.14 shows the Shmoo plot in write operations. The test chip can operate at 

write pulse width of 4 ns. Figure 3.15 portrays a schematic of the proposed 8T 

three-port SRAM array and its peripheral circuits. Figure 3.16 shows the measured 

leakage and active energies. In the write operation, the test pattern of the “ALL0” write 

pattern means successive “0” writes to all bitcells in the memory macro. “ALL1” means 

successive “1” writes. In those cases, bitcell data do not change, and the bitline 

charge/discharge energies are saved. The “01-pat.” write pattern signifies the alternately 

writing “0”s and “1”s to the bitcells. Then the charge/discharge power occurs on the 

WBLs. This is the worst case in the write operation. The worst-case write energy is 484 

fJ/cycle, which is 69% smaller than that in the 6T SRAM (see Fig. 3.16). 
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Fig. 3.12  Test chip micro photograph of proposed 8T three-port SRAM. 
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Fig. 3.14  Measured write Shmoo plot. 
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Fig. 3.15  Schematic of proposed 8T three-port SRAM array and its peripheral circuits. 

 
The BL lengths of the proposed three-port SRAM are 1.3 times longer than the 

conventional 6T SRAM because of the three WLs (1 WWL / 2 RWLs) drawn through 

the 8T bitcell. However, the proposed 8T three-port SRAM does not require the WBL 

precharge scheme in the 6T SRAM. Furthermore, its WLs are divided by every 16 rows. 

Therefore, the proposed SRAM can reduce needless energy in the half-selected bitcells; 

As a result, the write energy of the proposed SRAM turns out lower than that of the 

conventional 6T SRAM. 

It is noteworthy that the read circuit must have the RBL precharge scheme because of 

the single-ended read ports. In the read operation, the test patterns of the “ALL0” and 

“ALL 1” mean successive “0” and “1” read operations, respectively. The “01-pat.” read 

pattern results in the average dynamic energy of “ALL0” and “ALL1”. The respective 

“0” and “1” read energies are 1663.2 fJ/cycle (a read dynamic energy of 1449 fJ/cycle + 

a read leakage energy of 213.2 fJ/cycle) and 361.7 fJ/cycle (a read dynamic energy of  
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Fig. 3.16  Measured write energies, read energies, and comparisons with conventional 

6TSRAM. 

Table 3.2  Overview of the configurations of the implemented test chip. 
Technology 28-nm FD-SOI

0.46-0.7V (Memory macro)
1.8V (I/O)

Chip area 1.0x1.0mm2

Macro size 242x242μm2

Macro configulation 64Kb (32Kb X 2), 16bits/word
Cell size 0.384x1.457μm2

Frequency 7.14MHz@0.46V, 50MHz@0.7V
Write active energy 298fJ@0.54V, 18.2MHz, RT
Read active energy
with majority logic 650fJ@0.54V, 18.2MHz, RT

Supply voltage

 
 

168.5 fJ/cycle + a read leakage energy of 193.2 fJ/cycle). Consequently, the energy 

saving in the “1” read operation is 77%. The read energy improvement is, however, 

merely 35%, on average with no majority logic. 

Figure 3.17 portrays the impact of the majority logic on the read energy saving. In 

bright Image 1, the read energy was reduced by 23%, whereas, in the dark Image 6, it 

reaches a 47% saving. As one might expect, the dark image is more appropriate and 

effective for the majority logic. In this case, the read energy is 650 fJ/cycle. Table 3.3 

presents test SRAM characteristics. 
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Figure 3.18 shows the estimated power consumption when the proposed 8T three-port 

SRAM with the majority logic is applied to our prior work, ME264 motion estimation 

processor [22]; the values are scaled by the process node, supply voltage and operating 

frequency (28-nm process node, 0.54 V supply voltage and 50-MHz operation 

frequency). The ME264 processor has SIMD systolic-array architecture, and a 10T 

three-port SRAM is used as a search window and a template block. The energy 

consumed on the proposed SRAM is saved by 290 μW, which signifies 24% of energy. 
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Fig. 3.18  Estimated power consumption of motion estimation image processor. 
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 Summary 

In this chapter, we presented 1-write/2-read 8T SRAM design in 28-nm FD-SOI: the 

asymmetric eight transistor (8T) SRAM cell for small cell area and combination with 

majority logic for low energy operation. 

1) As described in this chapter, we presented an 8T three-port SRAM for an image 

processor. The proposed SRAM comprises one-write/two-read ports and a 

majority logic circuit to save active energy. We fabricated a 64-kb 8T three-port 

SRAM using 28-nm FD-SOI process technology. The test chip exhibits 0.46 V 

operation and access time of 140 ns. The energy minimum point is a supply 

voltage of 0.54 V at a frequency of 18.2 MHz, at which 484 fJ/cycle in a write 

operation and 650 fJ/cycle in a read operation are achieved, assisted by the 

majority logic. These factors are 69% and 47% smaller than those in a 28-nm 

FD-SOI 6T SRAM. 
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 BL Swing and Leakage Reduction 
for 8T Dual-Port SRAM 

In this chapter, we are focus on the 1W/1R dual-port SRAM. This type of SRAM 

bitcell is generally used to enhance multi-thread operation. Furthermore, the single 

ended read port structure achieves better area efficiency. Therefore, this type of 

dual-port SRAM is suitable for the image processor which has plural cores and large 

memory capacity. As described in chapter 2, the second issue of multi-port SRAM is 

energy efficiency degradation effected by the unnecessary current flow and leakage. 

Especially, the SRAM bitcell with single-ended read port is significantly effected. In 

this chapter, we designed the 8T dual-port SRAM with improved energy efficiency by 

the novel circuitry. In addition, we implemented the proposed SRAM in the 28-nm 

FD-SOI process. For this purpose, we studied and proposed following contents: 

1) To cutoff the unnecessary RBL charge/discharge, the selective sourceline drive 

(SSD) scheme as a novel footer circuitry is proposed. 

2) To reduce the RBL swing, a novel MSB-based inversion logic for image 

processing is proposed. 

 Proposed Dual-Port SRAM Design 

4.1.1 Overview of dual-port SRAM structure 

Figure 4.1 portrays the memory system in an image processing unit. The SRAM array 

stores sequential data such as images, feature maps, and specific parameters for its  
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Fig. 4.1  Read energies saved by majority logic in actual image data. 
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processing on the many processing cores. Demand for multi-port SRAMs has increased 

to accommodate high-speed, low-energy image processing. The total chip performance 

and/or memory bandwidth can be improved with dual port bitcell by enabling multiple 

simultaneous operations [3]. Parallel processing is a key technology for real-time 

applications that require embedded memories with plural access ports [4]–[6]. To date, 

multiport SRAMs that support simultaneous write and read operations have been 

studied for use in the image processors [8]–[10]. 

Several important earlier works have examined dual-port SRAM architectures. In an 

earlier report of the literature [38], the authors proposed 40-nm 512-kb pipelined 8T 

SRAM for a high-speed image processor. The pipeline design enables high-frequency 

yet low-power operation. In another report [39], researchers explained dual-port 8T 

SRAM with a differential reference-based sense amplifier (SA). The motivation of their 

work is to obtain the benefits of small signal sensing in the context of a single-ended 

read path; then the work addressed the half-select problem. This SRAM design achieved 

lower operating voltage of 360 mV using the differential reference-based SA, but it 

required dummy circuits for the WL timing optimization. An SRAM design in a 28-nm 

fin field-effect transistor (Fin-FET) technology, which adopted a differential sense 

amplifier for one-write/one-read (1W1R) dual-port SRAM bitcells, was presented in 

another report [40]. The differential SA scheme divides a memory array into two (upper 

and lower) memory matrices (MATs). The differential voltage between a read bitline 

(RBL) of the selected MAT and that of an unselected MAT is amplified in read out 

operation at higher frequency. Reportedly [41], a 1W1R dual-port SRAM in a 16-nm 

Fin-FET technology was achieved by 6T single-ported SRAM bitcell with the 

double-pumping internal clock for high-speed and high-density. The double-pumping 

clock scheme virtually expands the bitcell function from single-port to dual-port by 

generating the double-clock in a single cycle. The double-pumping clock scheme for an 

internal clock generator achieves robust timing design without strict severe setup and 

hold margins, and achieves lower operating voltage of 680 mV using a negative-level 

write driver. Nevertheless, these devices and methods all require dedicated signal timing 

and entail greater area cost in SRAM [38, 40, 41].  

As described previous chapter, an 8T 1R1W dual-port SRAM is typically used for 

leveraging disturb-free access because of the dedicated read port. A conventional 8T 
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dual-port SRAM cell consists of six transistors as a 6T SRAM cell and a decoupled 

two-transistor read port. This structure can eliminate the well-known read disturb 

problem by preventing charge sharing with internal storage nodes when a read wordline 

is activated. A single-ended read port of an 8T dual-port SRAM employs a sourceline as 

a footer line, which is shared in the same row address to perform low-energy operations. 

This 8T 1R1W dual-port SRAM reduces leakage current through unselected read 

bitlines. Some read bitlines are, however, discharged slightly in unselected columns 

because the floating sourceline of the conventional scheme [30] degrades energy 

efficiency in the read out operation. 

4.1.2 Selective Sourceline drive (SSD) scheme 

The conventional 8T 1R1W dual-port SRAM with the selective sourceline control 

(SSLC) scheme in Figure 4.2 presents an illustration of a memory matrix and a 

conventional SL control scheme [30]. The memory matrix commonly employs an 

interleaving structure. The SL in this scheme acts as a “virtual ground line” for a single 

column. The SL has two states: a grounded state and a floating state. A selected read 

bitline (RBL) is connected to the ground through a transfer gate in the conventional 

structure, whereas SLs at unselected read ports become floating. The floating node of 

the unselected SL is charged up when a read out datum is “0” on an RBL. The RBL 

voltage is not a full swing because of the cutoff SL, but it is unnecessary and consumes 

certain energy in the conventional scheme. 

Fig. 4.3 presents an illustration of the concept of the proposed 1R1W dual-port 

SRAM with the selective sourceline drive (SSD) scheme. It has a pair of nMOS 

switches (M1 and M2), an inverter, as a footer circuit in every column. Those switches 

keep the SL on the ground for the selected column, or drive the SL to VDD−Vth (Vth is 

a threshold voltage of M1) when the column is not selected. In the standby mode, all the 

SLs are grounded to prepare for upcoming random read access. The right panel also 

depicts the proposed SSD scheme behavior. In the read operation, the SL discharge is 

enabled (SDE). The signal for all columns is “0”. The column select signal (COL_E) 

from column-decoder activates a target column switch. In the selected column, the 

output of the OR gate becomes “1.” The M2 transistor is activated to read out the stored 

data. At this time, the charge and discharge power is consumed only at the selected RBL 

because the SL at the selected column is grounded. 
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Fig. 4.2  Conventional 8T SRAM memory matrix with the SSLC scheme. Unselected 
SLs are floating because of an nMOS switch. They consume unnecessary energy. 
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Fig. 4.4  Column control in the proposed SSD scheme in read operation. 

 

In the unselected column, the OR gate output is low. The M1 transistor drives the SL 

voltage to VDD−Vth. Under these circumstances, no read current is flowing through the 

RBL. The nMOS transistors and an inverter circuit in the SSD scheme consume 

switching power to maintain the SL voltage (= VDD − Vth). However, the switching 

power is sufficiently smaller than the RBL discharge that is connected to the 256 

cells/column. 

Fig. 4.4 shows the concept of column control under the proposed SSD scheme. An 

OR gate is inserted as a column controller in every 16 columns to enable the SSD 

scheme. An inverter and two nMOS transistors are needed for every column. By 

contrast, in the conventional SSLC scheme, an nMOS transistor as a sourceline (SL) 

switch and an OR gate as a column selector are deployed in every column to control the 

SL connectivity. The proposed SSD scheme has less area overhead than the SSLC 

scheme. It is noteworthy that the column address inputs and a column decoder are used 

as well as the conventional column addressing circuitry. Therefore, no additional 

circuitry is necessary for column addressing in the SSD scheme. Each OR gate is 

activated by the SDE signal and a column address decoder output as the column enable 

(COL_E) signal. The SL voltage is discharged to the ground by activation of the M2 

transistor if the output of the OR gate is set to “1”. 

Figs. 4.5(a)–(c) portray a signal timing flow comparison between the conventional 
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SSLC scheme and the proposed SSD scheme in read operation. Fig. 4.5(a) shows SL 

control circuits that have an OR gate to control a target column commonly used in both 

the conventional SSLC and the proposed SSD. The SDE signal as an input signal for 

OR gate is initially set to “1” to disable the switch control, but it is turned to “0” as the 

first step of the read operation. Then, the column select (COL_E) signal chooses a target 

column. The switches are activated. In the selected column, the switches pull down the 

SL voltage to the ground in both SSLC and SSD. At this cycle, the RBL voltage falls 

down to the ground after the read wordline (RWL) is enabled in the “1” read operation. 

However, in an unselected column, the single nMOS switch separates the SL from the 

ground in the SSLC. The SL becomes a floating node. However, the RBL voltage is 

discharged slightly at every cycle because of leakage current, as presented in Fig. 4.5(b). 

By contrast, the proposed SSD scheme drives the SL voltage to VDD−Vth. The 

charge/discharge energy on the RBLs is eliminated even in unselected columns, 

presented in Fig. 4.5(c). 
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Fig. 4.5  Signal timing control flow in the conventional SSLC and the proposed SSD 
scheme in read operation: (a) SSD control signals, (b) read port control signals with the 
SSLC scheme, and (c) read port control signals with the SSD scheme. 
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Fig. 4.6  Simulated “0”-read operating waveforms: (a) RWL waveform commonly 
used in the conventional SSLC scheme and the proposed SSD proposed scheme, (b) 
RBL and SL waveforms in the conventional SSLC scheme, and (c) RBL and SL 
waveforms in the proposed SSD scheme. 

 
Figs. 4.6(a)–4.6(c) present a comparison of the simulated waveforms for “0”-read 

operation in the conventional SSLC scheme and the proposed SSD scheme. The RWL 

waveform is commonly used in the conventional SSLC scheme and the proposed SSD 

scheme depicted in Fig. 4.6(a). 

Fig. 4.6 (b) shows the RBL and the SL waveforms in the “0”- read operation 

simulated with the conventional SSLC scheme. In the selected column, the SL is 

connected to the ground. The RBL voltage is discharged to the ground voltage after 

input of the RWL pulse. In the unselected column, the SL is separated by the nMOS 

switch from ground. The dedicated read port is activated by the RWL pulse. Then, the 

RBL voltage is pulled down slightly because of leakage current. It consumes 

unnecessary power at every cycle. Fig. 4.6(c) depicts the RBL and the SL waveforms 

with the proposed SSD scheme in the “0”-read operation. In the selected column, the 

SSD scheme connects the SL to the ground. Then the RBL voltage is discharged to the 

ground voltage after the RWL pulse input. However, the SSD scheme drives the SL 

voltage to VDD−Vth when the columns are not selected. The RBL voltage maintains the 
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VDD voltage and saves energy. In terms of power consumption, the SSD scheme is 

better than the conventional SSLC scheme. The proposed SSD scheme has no voltage 

swing on the local RBL. The output voltage amplitude of the SL is restricted to 

VDD−Vth because it minimizes the dynamic power consumption of the driver switches 

(M1 and M2) and its leakage current flowing through M2. The proposed SSD scheme 

therefore eliminates the unnecessary read current in the unselected columns. The 

dynamic power consumption on the two driver nMOSs in SSD scheme is made only 

when the selected column is changed. Therefore, the read operation in vertical memory 

addressing is effective to a considerable degree for the proposed SRAM. 

4.1.3 The 1R1W 8T SRAM bitcell design 

Figs. 4.7(a)–4.7(c) show the proposed 8T 1R1W dual-port SRAM cell schematic and 

custom layout designs with a separated SL architecture in the 28-nm FD-SOI process 

technology. Fig. 4.7(a) portrays a schematic of the proposed SRAM cell design. It has 

additional pass gate transistors PG3 and PG4 with additional RWL and RBL metals to 

draw the read current flowing through the dedicated read port. 

The dedicated read port enables simultaneous but separate read and write operations. 

The gate node of PG4 transistor is connected to the cell internal node V2. 

Conventionally, the source node of PG4 transistor is connected to ground. In our design, 

the source node of PG4 transistor is comprises the SL, which is vertically connected to 

the SSD scheme to control the SL voltage on a column basis. 

Fig. 4.7 (b) shows the FEOL layout of proposed SRAM cell. The bit area is 0.423 

μm2 designed on the logic rule base. Read ports comprising PG3 and PG4 transistors are 

arranged at the right side from a 6T SRAM cell. The PG4 transistor shares the same 

poly-gate metal with PU2 and PD2 transistors as the V2 node. Fig. 4.7(c) depicts the 

BEOL layout design of proposed SRAM cell. Conventionally, the source node of the 

dedicated read port can be shared with an adjacent cell because all source nodes are 

grounded. In the proposed SRAM cell, the source nodes are connected vertically to the 

SSD scheme. Thereby adjacent source nodes must be separated. In our design, the 

additional SL metal is located at the right end of figure with the Metal3 layer instead of 

the conventional ground line. The SL metal can be accommodated on the cell area. 

There is no area overhead for the additional SL metal on the cell design. 
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(c)  BEOL of proposed 8TDP SRAM 

Fig. 4.7  Proposed 8T 1R1W dual-port SRAM cell in a 28-nm FD-SOI: (a) circuit 
design, (b) FEOL layout design, and (c) BEOL layout design. 
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4.1.4 RBL delay and area optimization in SSD scheme 

The single-ended 1R1W dual-port SRAM generally uses an inverter circuit as a sense 

amplifier (SA). This type of SA is beneficial for high-density single-ended SRAM 

design by virtue of its simple structure. In a “0”-read operation, the RBLs are 

discharged by the activated read ports. In the single-ended read port, RBL voltage must 

be fully discharged to the ground to sense the stored datum. The RBL delay 

performance with local/global variations affects the read out timing setup. The RBL 

delay depends mainly on the SRAM cell transistor sizing and the pull down nMOS 

switch size in the SSD scheme. 

Fig. 4.8 illustrates the RBL delay versus the width of the SL pulldown nMOS switch 

simulated with 1M Monte Carlo at SS-corner/−40°C. A smaller pulldown nMOS switch 

in the SSD scheme slows the RBL delay, whereas a larger size increases the capacitance 

on the RBL. The 5σ point of the RBL shows delays at each nMOS size in Fig. 4.8. The 

slowest RBL delay is shorter by 24.9% at 640 nm width, compared with the case of 80 

nm width. The RBL delay improvement is saturated even if the switch size is increased 

further. 

The area overhead is another factor; it increases linearly according to the nMOS 

width. In our design, we choose the pulldown nMOS switch width of 640 nm for the 

SSD scheme implementation with only 0.9% area overhead. 

Fig. 4.9 presents the RBL delays simulated at FF-corner/125°C. The −5σ of RBL 

delays at FF-corner/125°C in Fig. 4.9. It is improved by 20.7% at the switch width of 

640 nm with the area overhead of only 0.9% in the whole memory macro, compared 

with the case of 80-nm width. Herein, the nMOS switch width is optimized by 

considering the tradeoff between the RBL delay and the area overhead. 

Figs. 4.10(a)–4.10(b) present read out waveforms of the slowest cells in the 

conventional grounded SL scheme, the SSLC scheme, and the SSD scheme when 

Monte Carlo analyses are executed at TT, 25°C. Fig. 4.10(a) shows simulated 

waveforms of the SA output signal V(SAout). Fig. 4.10(b) shows the simulated RBL 

waveforms in the read operation in the SSD scheme with 1 million iterations of Monte 

Carlo analyses. As described in this paper, tdelay is defined by the time to which 

V(SAout) rises to 0.45 V at supply voltage of 0.5 V. Although the fastest RBL is fully 

discharged, the slowest RBL is still in a half VDD voltage. The read out time in the  
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Fig. 4.8  Read bitline (RBL) delay tdelay and area overhead versus the gate width option 
of the SL pull-down nMOS transistor M2 (SS corner, -40°C). The slowest RBL delays 
at each gate width size are shown. 
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Table 4.9  Read bitline (RBL) delay tdelay and area overhead versus the gate width 
option of the SL pull-down nMOS transistor M2 (FF corner, 125°C): The fastest RBL 
delays at each gate width size are shown. 
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proposed SSD scheme is affected by the transistor size of the nMOS switches in the 

SSD scheme because the SL in the SSD turns out to be grounded immediately after a 

column is selected, which is regarded as a setup time. In any case, the SL discharge 

delay in the proposed SSD scheme is expected to be much shorter than the RBL 

discharge delay time. The tdelay in the grounded SL scheme, which value is 43.45 ns, is 

most strongly affected by the Vth variations in the SRAM cell transistors. In the SSLC 

scheme, tdelay is 36.46 ns; in the SSD scheme, tdelay is 38.95 ns, which are 16.1% and 

10.3% shorter, respectively, than that on the grounded SL at TT, 25°C. 

Additionally, one must consider the hold time until V(SAout) becomes 50 % of 

operating voltage. The tdelay variations should be evaluated for a hold time margin in 

read out operation. Table 4.1 presents a summary and statistical evaluation of tdelay on 

RBL between the SL control schemes of three types when executing 1M Monte Carlo 

analyses at SS, −40°C, and varied operating voltage change from 0.4 V to 0.7 V. The SL 

circuit which adopted a voltage control scheme as transistor stacking should increase the 

average or median value of tdelay time because of the capacity increase, as presented in  

 

1200 20 40 60 80 100

0.6

0.4

0.2

0.0

Vo
lta

ge
 [V

]

Time [ns]

tdelay @0.45V
trbl (GND) = 43.45 ns
trbl (SSLC) = 36.46 ns (-16.08%)
trbl (SSD) = 38.95 ns (-10.35%)

SAout W/ GND
SAout W/ Conv.SSLC
SAout W/ Prop.SSD

Slowest cell in MC = 1M@TT, 25˚C

(a)

1200 20 40 60 80 100

Vo
lta

ge
 [V

] RBL W/ GND
RBL W/ Conv.SSLC
RBL W/ Prop.SSD

Time [ns]

0.6

0.4

0.2

0.0

Slowest cell in MC = 1M@TT, 25˚C

(b)
 

Table 4.10  Simulated read out delay comparison between conventional grounded SL, 
conventional SL with SSLC scheme, and proposed SL with SSD scheme. 
presented in TABLE 4.1. It is apparent that the average tdelay increases by 4.2%. The 
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Table 4.1. It is apparent that the average tdelay increases by 4.2 %. The median value 

increases by 7.5 % at 0.5 V operation in the proposed scheme. However, statistics such 

as skewness and standard deviation of the tdelay distribution are slightly lower because of 

the nMOS transistor stack forcing condition [42].  

The standard deviation is shown to decrease by 3.2%; the skewness decreases by 

9.2 % at 0.5 V operation in the proposed scheme. The −5σ and 5σ values are shown as 

the tdelay Min and the tdelay Max in Table 4.1. Actually, tdelay Min increases 0.25 ns. Also, 

tdelay Max decreases 53.70 ns with SSLC compared with grounded SL. In addition, in the 

SSD, tdelay Min increases 0.31 ns and tdelay Max decreases 29.90 ns compared with 

conventional grounded SL. 

Fig. 4.11 shows normalized delay on RBL at varied supply voltages of 0.4 V – 0.7 V 

for hold margin evaluation. Each plot extracted from the slowest cell which is supported 

5σ coverage at SS, −40 °C. The tdelay on RBL is much lower than that of grounded SL: 

30.2 % at a voltage of 0.4 V. Actually, tdelay does not have a normal distribution, and thus 

skewed. Fig. 4.12 shows tdelay distributions at 0.4 V, SS, and −40 °C, in the conventional 

grounded SL, the conventional SL with the SSLC scheme, and the proposed SL with the 

SSD scheme on the quantile–quantile plot. To statistically analyze the tdelay distribution, 

the horizontal tdelay is converted by the logarithmic function, log10(tdelay), to best fit its 

skewness to a straight line, which implies that tdelay is determined by near-subthreshold 

current under this condition. The respective mean values of the conventional grounded 

SL and the proposed SSD scheme are −6.533 and −6.513, respectively. Results show 

that the proposed SSD is slower than the grounded SL, on average. However, the 

standard deviations for the conventional grounded SL and the proposed SSD are, 

respectively, 0.328 and 0.313. 

 

Table4.1  Statistical data comparison between different SL-structure in read operation. 
Voltage Corner, Tmp. SL structure Mean [ns] Median [ns] Std. [ns] Skewness Kurtosis tdelay Min [ns] tdelay Max [ns]

SL w/ GND 394.40 258.30 385.80 5.68 117.90 15.84 28,760.00
SL w/ SSLC 404.20 276.40 380.60 5.03 75.01 20.02 20,660.00
SL w/ SSD 405.20 285.40 382.40 4.92 70.00 21.24 20,070.00
SL w/ GND 17.26 13.26 12.58 5.04 81.02 2.59 681.20
SL w/ SSLC 17.96 14.03 12.51 4.63 62.88 2.84 627.50
SL w/ SSD 17.99 14.26 12.54 4.57 59.38 2.90 651.30
SL w/ GND 2.62 2.45 0.79 1.94 14.18 0.96 24.33
SL w/ SSLC 2.75 2.58 0.81 1.85 12.40 1.01 23.49
SL w/ SSD 2.76 2.59 0.81 1.86 12.14 1.06 24.17
SL w/ GND 0.99 0.97 0.17 0.86 4.60 0.52 3.20
SL w/ SSLC 1.04 1.02 0.17 0.85 4.53 0.53 3.03
SL w/ SSD 1.04 1.02 0.17 0.85 4.53 0.55 2.92

0.7 V SS, –40°C

0.4 V SS, –40°C

0.5 V SS, –40°C

0.6 V SS, –40°C
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Fig. 4.11  Simulated read out delay comparison on slowest cells at varied supply 
voltage between conventional grounded SL, conventional SL with SSLC scheme, and 
proposed SL with SSD scheme. 
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Fig. 4.12  tdelay distributions in the conventional grounded SL, the conventional SL 
with the SSLC scheme, and the proposed SL with the SSD scheme on a 
quantile-quantile plot. 

 
The standard deviation of the proposed SSD is smaller. As depicted in Fig. 4.8, the  

standard deviation is significantly impacted by a size of the pull-down transistor M2 

connected to the SL. If it is sufficiently large, then the mean value of tdelay is close to the 

conventional grounded SL. Its variation is suppressed in the proposed SSD. According 

to the probability theory, the standard deviation is suppressed by an increase in the 
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number of transistors [42, 43, 44]. The proposed SSD has one more transistor on the SL. 

For these reasons, tdelay of the proposed SSD is slightly smaller than the conventional 

grounded SL at 5σ of the percentile value. 

4.1.5 Operating speed evaluation in the write cycle 

The proposed SRAM employs the precharge-less write circuit to reduce the energy 

consumption on the WBL. Fig. 4.13 shows the precharge-less write waveforms of 

“0”-write operation in 1M Monte Carlo analyses. In this figure, the “1” data are initially 

stored in the SRAM cell. In the write operation, input data transfer to the WBL/WBLB 

without the precharge sequence. The WBLs have no equalization because of the 

precharge-less write scheme. Therefore, the same input data consume less energy on the 

WBLs. The write delay to flip the internal node voltage shown with the internal node 

V1 and V2 waveforms on the fastest and slowest cell is focused in internal nodes V1 

and V2. Inversion of the internal node is started when the WWL pulse is inputted. In 

this figure, inversion time twrite is defined by the time to node V1 rises to 0.45 V. In 
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Fig. 4.13  Consecutive memory access in video processing: (a) block diagram and (b) 
waveforms in write operation. 
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addition, twrite for the fastest cell at −5σ is only 160 ps, whereas the twrite for the slowest 

cell at 5σ is 9.68 ns. In the whole write sequence, write access time with 11.56 ns is 

achieved at TT, 25°C, which is much shorter than that of the read operation. 

4.1.6 Consecutive memory access in video processing 

Image data such as people or landscapes reflect luminance information. They have 

similar brightness in adjacent pixels. Figure 4.14 presents the switching possibility of a 

read out bit between a present pixel and a next pixel. The averaged switching possibility 

obtained from the three sample images is 49.8% on the least-significant bit (LSB = 1st 

digit), meaning that the value of the LSB is random, which is reasonable. The 

most-significant bit (MSB = 8th digit) has a switching possibility of 7.8% on average 

because it has much stronger correlation between adjacent pixels. 

Memory mapping for image data in the proposed video processing is performed on a 

channel-by-channel basis. Correlation between adjacent pixels is retained on RGB 

channels. Our consecutive memory access is beneficial for optimizing power 

consumption even if image data have multiple dimensions of channels. Therefore, in the 

consecutive accesses, it is better to map their addresses along the row direction, as 

presented in Fig. 4.15(a), where a column address is not changed often. Fig. 4.15(b) 

depicts the waveform of the proposed SRAM in write operation. By virtue of the 

precharge-less and incremental write operation, the proposed SRAM reduces the write 

energy; the charge/discharge on a pair of write bitlines (WBL and WBLB) is consumed 

only when a write datum is changed. The consecutive writing of the same datum 

consumes less energy because the proposed dual-port SRAM has a dedicated write port 

and needs no precharge scheme on the WBLs.  

However, it is adversely affected by the well-known half-select problem along the write 

wordline (WWL). The divided wordline structure is therefore adopted only for the write 

port to avoid the half-select problem [35]. The read port has the common interleaving 

structure with no divided RWLs because an image processor often requires a greater 

number of read ports and therefore exerts strong effects on its area. 
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Fig. 4.14  Switching possibility in image data. 
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4.1.7 Chip implementation and measurement results 

Fig. 4.16 shows a chip layout of the proposed 64-kb SRAM macro configured with 

32 kb × 2 banks with X/Y decoders, read/write and I/O circuit. The macro size is 242 × 

189 µm2 (= 0.045 mm2). Each 32-kb bank consists of 4 kb × 8 subarrays, which are 

configured with 256 rows and 16 columns. The area size of the 4-kb subarray is 2,157 

µm2 (= 1962.38 µm2 memory array + 194.77 µm2 peripheral circuit). The circuit for the 

SSD scheme is located under the Y decoder. Its area is 27.75 µm2.  

In our design, the area overhead of the proposed SSD circuit is only 0.9% of the 

entire macro. Fig. 4.17 presents a test chip micrograph. We fabricated a 64-kb 8T 

dual-port SRAM macro in the 28-nm FD-SOI process technology. 

Fig. 4.18 presents a measured Shmoo plot in read operation. We verified that the test 

chip can operate at a supply voltage of 0.48 V and with access time of 135 ns (= 7.4 

MHz) at a room temperature: 25°C. The operating point that achieves the minimum 

energy per cycle is at a supply voltage of 0.56 V and a cycle time of 35 ns (= 28.6 MHz). 

In addition, Fig. 4.19 presents a measured Shmoo plot in write operations. The test chip  
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Fig. 4.16  A 64-kb SRAM (32 kb × 2 bank) macro layout design comprises 16 × 4-kb 
subarray block (= 256 × 16 cells). 



62  Chapter 4  BL Swing and Leakage Reduction for 8T Dual-Port SRAM 

 

 

18
9μ

m

242μm
I/O

 C
irc

ui
ts

I/O Circuits

32 KB 8T SRAM

32 KB 8T SRAM

Chip information:
28-nm FD-SOI, 64 KB 8T SRAM,

Chip size 1 x 1 mm2
 

Fig. 4.17  Chip micrograph of the test chip. 
 

can operate at a supply voltage of 0.46 V and a write pulse width of 56 ns. The shortest 

write pulse width is 4 ns at a supply voltage of 0.62 V. 

Fig. 4.20 portrays a schematic of the proposed 8T dual-port SRAM array with the 

SSD scheme. The proposed 8T SRAM has a precharge-less write circuit. Consequently, 

successive writes of same data consume less energy. However, bit interleaving incurs 

the well-known half-select problem along the write wordline. The divided wordline 

structure is therefore adopted to avoid the half-select problem [35] in our design. The 

OR gate of the SSD scheme is connected to 16 read out circuits; it selects a target 

column for SL discharge or charge SLs to VDD − Vth in unselected columns. 
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Fig. 4.18  Measured Shmoo plot in read operation. 
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Fig. 4.19  Measured Shmoo plot in Write operation. 
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Fig. 4.20  Schematic of the proposed 8T dual-port SRAM with the SSD scheme. 
 

Fig. 4.21 shows the simulated and measured active/leakage energy comparisons 

between the conventional SSLC scheme and the proposed SSD scheme for read 

operation. It is noteworthy that both read circuits must have the RBL precharge scheme 

because of their associated single-ended read ports. In the read operation, the test 

patterns of the “ALL 0” and “ALL 1” respectively denote the mean consecutive “0” and 

“1” read operations of the incremental row address accesses. The checkerboard patterns 

using the incremental row address (CKB X+) have 50.0 % “0” and 50.0 % “1” data with 

energies that are intermediate of “ALL0” and “ALL1”. In the CKB using the 

incremental column address (CKB Y+), the column address is changed at every cycle. 

The energy comparison demonstrates that the proposed SSD scheme improves the read 

energy by 26.0 % on average, which is 389.6 fJ/cycle. 
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Fig. 4.21  Simulated and measured energy comparisons between the conventional 
SSLC scheme and the proposed SSD scheme in read operation. 

 
Figure 4.22 again shows the simulated energy breakdown and a comparison between 

the conventional SSLC scheme and the proposed SSD scheme in “ALL 1” and “ALL 0” 

read operations. Although an RWL must be enabled at every cycle, its RBL 

charge/discharge does not occur in the “ALL 1” read operation because the read port is 

cut off with PG4 in the 8T cell. Unnecessary current is reduced in unselected columns. 

However, Fig. 4.22(a) shows that its energy saving is small because no RBL is 

discharged in this case. However, Fig. 4.22(b) shows the “ALL 0” read operation. The 

RBL charge/discharge takes place at every cycle. The RBL and the selected SL energy 

are increased drastically. Floating SLs in the unselected columns are discharged in the 

SSLC scheme, which consumes unnecessary read out energy. The SSD scheme can 

eliminate the energy wasted in the unselected column by 96.5% compared with the 

SSLC scheme. 

In the write operation, the proposed 8T dual-port SRAM requires no precharge on the 

WBLs. Additionally, its WWL has a divided structure. Therefore, the proposed SRAM 

can reduce the unneeded write energy because of the charge/discharge in the 

half-selected columns. The measured “0” and “1” write energies are, respectively, 196.2 

fJ/cycle and 215.2 fJ/cycle.  
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Fig. 4.22  Simulated energy breakdown comparison between the conventional SSLC 
scheme and the proposed SSD scheme in (a) “ALL 1” and (b) “ALL 0” read operations. 
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 Fig. 4.23  Write energy saving in incremental accesses. 

 

 

 

 

 

 



 4.1  Proposed Dual-Port SRAM Design  67 

 

 

Table4.2  Tast chip features.  

Technology 28-nm FD-SOI
0.48-0.7V (Memory macro)

1.8V (I/O)
Chip area 1.0x1.0mm2

Macro size 189x242μm2

Macro configulation 64Kb (32Kb X 2), 16bits/word
Cell size 0.291x1.457μm2

Frequency 7.4MHz@0.48V, 66.7MHz@0.7V
Read active energy 389.6fJ@0.56V, 28.6MHz, RT
Write active energy 265.0fJ@0.56V, 28.6MHz, RT

Supply voltage

 

 

Fig. 4.23 portrays the impact of the incremental write operation for write energy 

saving. As a counterpart, the write energy becomes 382.0 fJ/cycle in the consecutive 

column access in the CKB test pattern. Write energies are reduced according to the 

spatial frequency on its images. In the “color” Image 1 and monochrome Image 2, the 

write energy is reduced by 29%, whereas in the monochrome Image 9 and the color 

image 10, they respectively reach 34% and 35% of energy saving. Those features are 

beneficial in that the image has high similarity among all pixels. In Image 10, the write 

energy of the 250.4 fJ/cycle achieves 264.0 fJ/cycle, on average, which is 30% lower 

than that in the consecutive column access. Therefore, our proposed 8T dual-port 

SRAM with the SSD scheme can reduce both read and write energies. Moreover, it is 

suitable for low-power image processing devices. Table 4.2 presents a summary of the 

characteristics of the proposed SRAM test chip implemented in the 28-nm FD-SOI 

technology. 

Table 4.3 presents a summary of a performance comparison among the 

state-of-the-art 1R1W dual-port SRAMs taken from recent conference and journal 

papers, as introduced in Section 1. For our test chip, we designed the SRAM bitcell on a 

logic rule basis. Therefore, the bit cell density is lower than [30] using a similar 

technology node. As described previously, we take an inverter as a large-signal sensing 

scheme. It is generally used for a lower area cost by virtue of its simple structure. 

However, the inverter incurs a full-swing signal when “1” is read out. A small-signal 

sensing scheme using a differential sense amplifier is often adopted [38, 40, 41], which 

consequently achieves much higher operating frequency. However, such circuitry  
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Table4.3  Dual-Port 8T SRAM Comparison. 

Source [30] [38] [39] [40] [41] This Work

Technology 40nm bulk
CMOS

40nm LP
CMOS

65nm bulk
CMOS

28nm bulk
CMOS

16nm
FinFET

28nm
FD-SOI

Memory Size 16 kb 512 kb 96 kb 512 kb 256 kb 64 kb

Cell Size [um2] 1.01* 0.8496 - - - 0.423*
Bit density
(Mb/mm2)

0.457 1.17 - 3.16 6.05 2.35

Cell Type 8T-1R1W 8T-CP-1R1W 8T-1R1W 8T-1R1W 6T-1R1W 8T-1R1W
IO Size 16 64 8 32 64 16

# Bits/BL 128 32 128 256 128 256

Power
[uW/Access]

17.8
(0.5V/25°C)

902.0
(0.65V/25°C)

5.1
(0.36V/25°C)

16375.7
(1.0V/125°C)

14503.2
(0.88V/125°C)

9.16
(0.56V/25°C)

1.2 GHz
(0.88V/ - )

28.0 MHz
(0.56V/25°C)

*Logic rule based SRAM cell design

FoM [fJ/bit] 2.43 11.44 0.15 0.26 0.08

Small
Signal

Large
Signal

Performance 10.0 MHz
(0.5V/25°C)

1.8 MHz
(0.55V/25°C)

1.69 GHz
(1.0V/125°C)

1.2 GHz
(0.88V/ - )

66.7 MHz
(0.7V/25°C)

Sensing
Scheme

Large
Signal

Large
Signal

Small
Signal

Functional
Frequency

10.0 MHz
(0.5V/25°C)

125.0 KHz
(0.36/25°C )

1.69 GHz
(1.0V/125°C)

Small
Signal

800.0 MHz
(1.1V/25°C)
200.0 MHz

(0.65V/25°C )

0.19

 

 
requires dedicated signal timing and a greater area cost. The figure of merit (FoM) 

represents the energy per bit that includes standby and active energy, which is scaled by 

technology node scale factor k, operating frequency freq, the number of cells on a 

bitline lbl, I/O bit width wio, and the entire memory capacity Cap. In this case, FoM is as 

expressed as shown below equation: Eq. (13). 

 

𝐹𝑜𝑀 =  𝑃𝑜𝑤𝑒𝑟𝐶𝑎𝑝 ∗  𝑙𝑏𝑙  ∗ 𝑤𝑖𝑜 ∗ 𝑓𝑟𝑒𝑞 ∗ 𝑘 (13)
 

 

Because of the unnecessary read energy reduction by the proposed SL voltage control 

scheme and because of the WBL charge and discharge energy saving with consecutive 

memory access, the FoM number is much more beneficial than other cutting-edge 

schemes. These results demonstrate the utility of the SL voltage control with the SSD 

scheme for low-power and low-voltage performance on 1R1W dual-port SRAMs. 
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 Summary 

In this section, I demonstrated two bitline limitation technology; the proposed 

selective sourceline drive scheme and a consecutive memory access technique.  

1) As described in this section, we presented an 8T dual-port SRAM with the 

selective sourceline drive (SSD) scheme for an image processor. Our proposed 

SRAM drives the sourceline (SL) to VDD−Vth at unselected columns in read 

operation and exploits the consecutive row accesses in write operation for 

improving energy efficiency at low voltage. We fabricated a 64-Kb 8T dual-port 

SRAM using 28-nm FD-SOI process technology. The test chip exhibits 0.48 V 

operation with 135 ns access time. The energy minimum point is a supply voltage 

of 0.56 V at a 28.6 MHz frequency, at which 265.0 fJ/cycle in the write operation 

and 389.6 fJ/cycle in the read operation were achieved. 
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 MSB Based Inversion Logic with Dual-Port 8T 
SRAM 

In the previous section, we focused on the 1R1W dual-port SRAM. To reduce 

unnecessary current and leakage energy on the unselected RBL, we proposed footer 

circuitry. In this section, we address the another issue in 1R1W dual-port SRAM. To 

reduce active energy in read operation, we explain the MSB based inversion logic and 

circuit design for further active energy reduction on the selected RBLs. 

4.3.1 Overview of dual-port SRAM and data-bit reordering  

Fig. 4.24 (a)-(b) shows the schematic of 8T 1R1W dual-port SRAM and its simplified 

waveforms in the read operation. The charge/discharge energy is consumed in every 

cycle when the “0” data read due to the precharge scheme is adopted. In contrast, the 

deactivated transistor PG4 cut off the current flow from the read bitline (RBL) to the 

sourceline (SL) when the “1” data read. From this reason, increasing the possibility of 

the “1” read is lead to better energy efficiency because of the RBL charge/discharge 

current is reduced. Our earlier study demonstrated the majority logic with the data-bit 

reordering that is adopted on the I/O module in the conventional dual-port SRAM [45]. 

Normally, image data has luminance information. Adjacent pixels have correlation 

one another, which implies more significant bits of the adjacent pixel data are lopsided 

to either “0” or “1” with higher probability. To maximize the number of “1”s, the 

majority logic circuit considers the number of “1”s and judges if input data should be 

inverted in a write cycle. However, the conventional majority logic entail a huge area 

overhead, because the additional flag bits require the additional columns in the SRAM 

array. Furthermore, the sensing scheme to count the number of “1”s has considerable 

area overhead. In particular, an image processor requires a larger multiport SRAM 

capacity, which gives a serious impact on its cost [17–41]. 

In this section, the MSB-based inversion logic for an real-time and low-energy image 

processor is described. To minimize the area overhead, the proposed MSB-based  
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Fig. 4.24  8T 1R1W Dual-port SRAM (a) schematic and (b) Operating waveforms 
when “0” or “1” read operation. 

 

 

inversion logic eliminates the additional flag bit. Within this chapter, detail of the 

proposed MSB-based bit inversion and the circuit design consideration in the 28-nm 

FD-SOI process technology is explained. Also, we discussed the total read energy 

reduction when we considered the computations of the convolutional neural network 

(CNN) for deep learning application with VGG-F CNN network model. 

4.3.2 Proposed MSB based inversion logic 

In the image datum, the strong correlation appears between the adjacent pixels. This 

tendency is predominant at the most significant bits (MSBs) in successive data, which 

lopsided to either “0” or “1” with high probability. The distributions of the number of 

“1”s in different digit groups are shown in Fig. 4.25. The LSB group takes a normal 

distribution and the similar distribution tendencies are observed even in the 2nd- and 

3rd-digit groups. On the other hand, the strong correlation is observed in the MSB 

group. Probabilities taking on the 7th digit reach 58 % and 89 % in the Image 1 and 

Image 2, respectively. The data bit reordering exploits the correlation in image data [45]. 

In this study, we rearrange the data bit reordering for further power reduction on the 

RBLs. 

Fig. 4.26 illustrates the concept of the conventional majority logic and the proposed 

MSB-based inversion logic, both with data bit reordering. Fig. 4.26 (a) shows the 

optimization flow in conventional majority logic. In the write cycle, input data 
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comprised of m pixels (8m bits) are reordered in each digit group. To maximize the 

number of “1”s, the majority logic counts number of “1”s and judges whether input data 

have to be inverted in each write cycle. The inversion information is stored in an 

additional flag bit. Although the majority logic optimizes the number of “0”s, it requires 

huge area overhead for additional circuitry to count the number of ‘1’s and the 

additional flag bits to store the inversion information. Actually, the flag bits have to be 

accommodated in additional columns. Those overheads give serious impacts on its area 

and overall performance. 

Fig. 4.26 (b) shows the proposed MSB based inversion logic. Input data comprised of 

m pixels (8m bits) are reordered in each digit group. In the proposed scheme, the MSB 

in the same digit group judges whether to invert the input data or not. Because the 

proposed scheme does not need to count the number of “1”s in the bit string, thus, it can 

decide the bit inversion immediately after the input of the write datum. The degree of 

the correlation in the input datum is important to optimize the RBL charge/discharge 

energy. As mentioned in Fig. 4.25, the image data with a strong correlation between 

adjacent pixels should be a good feature to improve the effectiveness of our proposed 

inversion logic. 
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Fig. 4.25  Distributions of the number of “1”s in different digit groups, analyzed with 
HD size image (Image 1: castle, and Image 2: street). 
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Fig. 4.26  (a) Conventional majority logic, and (b) proposed MSB-based inversion 
logic: both logic use the data bit reordering. 

 

4.3.3 Parameter optimization 

The bit-width parameter m in data bit reordering affects the correlation degree in each 

digit group. In order to obtain the optimum value of m, the read energy reduction was 

analyzed statistically with a set of images. Fig. 4.27 illustrates the read energy reduction 

ratio when the bit-width parameter m is varied. When we set m = 4, the correlation 

among the same digit groups is maximized. However, the proposed MSB-based 

inversion logic must hold the MSB value and does not change it, even if a “0”-bit is 

stored as the MSB. Thus, the bit inversion ratio is slightly decreased in comparison with 

the case of m = 8. On the other hand, in the case of m = 16, although the impact of the 
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MSB bits is minimized, it has weaker correlation among digit groups. Herein, the m 

should be optimized by considering the tradeoff between correlation degree and impact 

of the flag bit; we take m = 8. 

As illustrated in Fig. 4.28, the read energy reduction is maximized at the MSB digit 

group that has the strongest correlation; its saving ratio reaches 41.7 % at the 7-th digit. 

On the other hand, the read energy is slightly improved at the LSB group. The proposed 

scheme reduces a 14.76 % of the read energy on average although additional flag bits 

are eliminated. Fig. 4.29 presents the area overhead comparison when m = 4, 8, and 16. 

In the conventional majority logic, the additional columns are inserted every m column 

in an SRAM array; thus, it conducts a huge amount of area overhead, which is 16.1 % 

in the case of m = 8. The proposed MSB-based inversion logic eliminates this area 

overhead in the SRAM array. Its area overhead is constantly 1.8 % in peripheral 

circuitry, regardless of m’s value. 
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Fig. 4.27  Normalized read energy reduction ratio in the proposed MSB-based bit 
inversion with data bit reordering: comparison in each image. 
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Fig. 4.28  Normalized read energy reduction ratio in the proposed MSB-based bit 
inversion with data bit reordering: comparison at each digit. 
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Fig. 4.29  Area overhead comparison between the conventional majority logic and the 
proposed MSB-based inversion logic in peripheral circuitry. 
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4.3.4 Circuit design for MSB-based inversion logic 

We designed and evaluated dual-port SRAMs with the conventional majority logic 

and the proposed MSB-based inversion logic. Fig. 4.30 depicts the conventional 

majority logic circuit schematic and simulated waveforms in write operation at 0.7 V, 

TT, 25°C. The majority logic is comprised of a precharge circuit, pull-down networks in 

flip-flops, and a sense amplifier (SA). This SA senses a voltage difference between 

majority signals, JL and JL_N. When the number of “0”s is majority, pull-down signals 

and one-dummy signal rapidly sink the voltage of JL_N node to “L” as shown in Fig. 

4.31 (a); the MJ node is switched to “L”. When the “1”s are in a majority, the voltage of 

JL node becomes “L”, and the MJ node becomes “H” (Fig. 4.31 (b)).  

Fig. 4.32 illustrates schematic and simulated waveforms of the proposed MSB-based 

inversion logic in write operation at 0.7V, TT, 25°C. The proposed logic is comprised of 

transmission-gate multiplexers (MUX). The input Din0 at the MSB undertakes a role as 

a flag bit; thus, it signifies whether or not to invert Din1 to Din7. The transistor size of 

each MUX is denoted at under the schematic, which gate width/Length size are Wp/Lp 

= 0.64μm/0.03μm for pMOS transistors, and Wn/Ln = 0.32μm/0.03μm for nMOS 

transistors, respectively. Figs. 4.33(a)-(b) presents the operating waveforms of the 

inversion logic in the write cycles. Once a datum is input, the bit inversion is 

immediately determined by Din0. The input Din0 is always hold and not inverted, but 

stored as a flag bit. Because the proposed scheme does not calculate the majority logic 

in the bit string, the proposed inversion logic achieves smaller access time than the 

conventional scheme.  

Fig. 4.34 shows a chip layout of the proposed 64-kb SRAM macro configured with 

32-kb × 2 banks. The macro size is 243 × 202 µm2 (= 0.049 mm2). Each bank consists 

of 4-kb × 8 subarrays, which are configured with 256 rows and 16 columns. The area 

size of the 4-kb subarray is 2,214 μm2 (= 1962.3 μm2 memory array + 251.5 μm2 

peripheral circuits). 
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Fig. 4.31  The conventional majority logic: (a) simulated waveforms when “0” is the 
majority, and (b) waveforms when “1” is the majority in write operation. 
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Fig. 4.32  The proposed MSB-based inversion logic: (a) write circuitry schematics. 
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Fig. 4.33  The proposed MSB-based inversion logic: (b) when the flag bit = “0”, and 
(c) when the flag bit = “1”. 
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Fig. 4.34  Chip layout design of the proposed SRAM. 

4.3.5 Performance evaluation in DL tasks 

As presented previous section, the MSB based inversion logic advantageous for 

image or video sequences. In this section, we carried out further energy reduction tests 

with the deep learning task; we use convolutional neural networks (CNN) and the 

ImageNet benchmark [46] for evaluation. In this analysis, the proposed SRAM stores 

image data such as input sample images, and output activations of convolutional layers. 

Fig. 4.35 (a) shows the architectural model of VGG-F network taken from the 

MatConvNet [47], which consists of five CNN layers and three fully connected (FC) 

layers. Fig. 4.35(b) exhibits a samples of input images and output activations of the 

CNN layers which is generated by the VGG-F network. 

Table 4.4 summarizes the number of dimensions of input image and activations, and 

bit precision information. We took various bit precision types for energy evaluation. 

Here, I note the meaning of each notation; single: means FP32, half: FP16, and mini: 

FP8, those are used for the entire computation consistently. Fig. 4.36 shows the 

simulated active and leakage energy comparisons between the conventional and the 

proposed SRAM in read operation in a 28-nm FD-SOI; both cases carried out the data 

bit reordering before storing data into the SRAM. In the original image, the proposed 

scheme effectively reduces the RBL charge/discharge energy at the FP32 precision, 

which value is 38.5 %; this fact insists that the energy reduction is much more effective 

in the FP32 precision, rather than the INT8 one. The activations of the CNN layer 
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contain lots of minus value; in the FP32 precision, the correlations among a digit group 

are deteriorated. However, the proposed scheme constantly reduces the energy from the 

CNN layer 1 and the layer 5. Fig. 4.37 depicts the read energy reduction ratios in the 

precision options. The reduction ratio is improved more in the original image with the 

bit length increased. Although the randomness is diffusing to the CNN layers, the 

proposed SRAM constantly reduces the read energy. The FP8 has a certain rounding 

error in decimal; bit correlation is slightly improved than the other precisions in the 

layers 1-5. This energy comparison demonstrates that the proposed scheme improves 

the read energy by 13.7%, 14.2%, and 17.3% in the FP8, FP16, and FP32 precisions on 

average, which respective values are 311.5 fJ/cycle, 314.1 fJ/cycle, and 312.4 fJ/cycle. 
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Fig. 4.35  (a) VGG-F with CNNs, and (b) samples of input images and activations of 
the convolutional layers generated by the VGG-F. 

 
Table4.4  Specifications: input images and activation of convolutions. 

Input
data

Original
Image

Conv. 1
output

Conv. 2
output

Conv. 3
output

Conv. 4
output

Conv. 5
output

Dimension
of activations 224 × 224 × 3 54 × 54 × 64 27 × 27 × 256 13 × 13 × 256 13 × 13 × 256 13 × 13 × 256

Bit-precision
Option

Floating point
(FP32, 16, 8)

Floating point
(FP32, 16, 8)

Floating point
(FP32, 16, 8)

Floating point
(FP32, 16, 8)

Floating point
(FP32, 16, 8)

Floating point
(FP32, 16, 8)
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Fig. 4.36  Measured read energy comparison with FP32 in 28nm FD-SOI. 
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Fig. 4.37  Read energy reduction ratios in FP8, FP16, and FP32 precisions. 
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 Summary 

As described in this chapter, the techniques in leakage reduction and limiting BL 

swing for low-energy 8T SRAM are presented; 1) a selective source drive (SSD) 

scheme with dual-port 8T SRAM, and the consecutive memory access 2) an MSB-based 

inversion logic with dual port SRAM: 

1) This study presents a low-energy and low-voltage 64-kb 8T dual-port image 

memory in the 28-nm FD-SOI process technology. A novel 8T Dual-Port SRAM adopts 

the selective sourceline drive (SSD) scheme and the consecutive data write technique 

for improving active energy efficiency at the low voltage. We fabricated a 64-kb 8T 

dual-port SRAM in the 28-nm FD-SOI process technology; the test chip exhibits 0.48 V 

operation and an access time of 135 ns. The energy minimum point is at a supply 

voltage of 0.56 V and an access time of 35 ns, where 265.0 fJ/cycle in write operation 

and 389.6 fJ/cycle in read operation are achieved; these factors are 30 % and 26 % 

smaller than those in the 8T dual-port SRAM with the conventional selective sourceline 

control (SSLC) scheme, respectively. 

2) A low-energy 8T dual-port SRAM with a novel MSB-based (most-significant- 

bit-based) inversion logic for an image processor such a deep-learning processor. Our 

proposed SRAM is suitable for real-time and low-power image processing, in which 

data have statistical correlation and data bit reordering are exploited. The proposed 

MSB-based inversion logic eliminates an additional flag bit in a majority logic; the 

MSB digit in an input datum judges whether or not to invert the datum. Thus, the area 

overhead of 16.1 % for the 8-bit conventional majority logic is dramatically saved. The 

area overhead of the proposed SRAM is merely 1.8 % for the MSB-based inversion 

logic. We verified that, with the proposed technique, 14.7 % of total energy can be 

saved in a 28-nm 64-kb FD-SOI SRAM when a set of images is read out. Furthermore, 

the saving factor is extended to 17.3 % when image processing in the VGG-F 

convolutional neural network (CNN) is considered, where 312.4 fJ/cycle in the read 

operation is achieved. 
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 Co-design of the Distributed  
Deep Learning Accelerator 

This chapter presents a high-scalable, energy-efficient, and low-cost deep learning 

accelerating system. In this work, the co-designed deep learning system as a novel 

layer-block-wise-pipeline with pipelined stochastic gradient decent (SGD) algorithm 

and its hardware architecture is proposed. The study of proposed layer-block-wise 

pipeline with distributed memory and segmented data bus structure aim memory 

capacity and bandwidth reduction in highly distributed deep learning. 

 Layer Block Wise Pipeline 

5.1.1 Overview of distributed deep learning 

As described in chapter 2, DNNs have generality with a deeper and larger-scale 

network, therefore, their error rates of cognition continue to improve. However, 

computational time become much longer, particularly those for training purpose. For 

example, AlexNet took 5–6 days to training 90 epochs of 1.2-M ImageNet picture data 

sets on two NVIDIA GTX580 GPUs [26]. Also, ResNet-200 (ResNet with 200 layers) 

designed for the ImageNet classification, took 3 weeks for the network training, even 

with 8 GPGPUs used in parallel computing [48]. The deep learning (DL) with a large 

training-data set has an issue in its computational time. Therefore, the distributed deep 

learning with data-parallelization is often adapted to accelerate the large network 

training. Figure 5.1 depicts the variety of the parallelization models. There are two- 

concepts of parallelism for a deep learning task to shorten the training time for an 

enormous network model [49]: 

 Data-parallelization has divided dimensions of sample data. Each worker trains 

with a different data example, but on the same network. 

 Model parallelization has divided dimensions of a network (model). Each 

worker trains a different part of the network (model). 

A mini-batch stochastic gradient descent (SGD) algorithm can be faster in error rate 

convergence than pure-SGD algorithm because a matrix-matrix operation should be  
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Fig. 5.1  The conceptual models of data parallelism and model parallelism. 

better optimized than the matrix-vector one. Multithreaded mini-batch-SGD algorithm 

is frequently exploited as a data parallelism for additional speeding up of the training. 

Deploying homogeneous parallel workers and implementing the same software for them 

are simple. 

Each worker has the same network model, but processes a different mini-batch. In 

other words, a single-network is trained with different mini-batch samples. Each worker 

updates different part of weight parameters. All workers must unify their own weights. 

The unified weight parameters usually obtained by averaging their own weights that 

received from all workers. Then, the unified weights are sent-back to each worker for 

the upcoming mini-batch step. The weight unification procedure and replication process 

are applied repeatedly. They invariably consume the memory bandwidth in 

communication data bus. As the number of parallel workers is increased, memory- 

bandwidth turns out to be linearly wider [50], [51]. In terms of internal memory capacity, 

each worker must hold all weight parameters and the activations of a whole network in 

the multi-threaded mini-batch SGD. The multi-threaded mini-batch SGD tends to be 

less effective in the convergence than a single threaded one, because its effective mini 

batch size is scaled by the data parallelism. Therefore, parameter updates per epoch 

result in a lower number [52, 53, 54]. To reduce the memory capacity and bandwidth, 

and to maintain scalability of parallelism, the model parallelism is effective. Of course, 

the model parallelism can be mixed with the data parallelism. 
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Pipelined back propagation with a distributed memory structure has been studied for 

decades as a kind of the data parallelism. In 1990s, node parallelism [55] and the 

layer-based pipeline backpropagation model [56, 57] were proposed for the epoch 

training. Since 2010, a pipelined DNN algorithm combined with a hidden 

Marcov-model has been proposed for the speech recognition to shorten the GPGPU 

training period [58−61]. As described in this paper, we revisit the use of pipelined deep 

neural network (DNN) for image recognition tasks with the ImageNet dataset, and we 

propose another model parallelism with layer blocks. The proposed layer-block-wise 

pipeline with segmented data bus hardware architecture suppresses whole memory 

capacity and transferred memory bandwidth to maintain the scalability of parallelism. In 

this study, the layer-block-wise pipeline algorithm with software implementation and its 

hardware architecture is presented to improve the entire memory capacity and the data 

communication amount on the communication data bus. 

5.1.2 Software design of layer-block-wise-pipeline  

Figure 5.2 depicts the proposed layer-block-wise pipeline as a conceptual diagram. In 

the figure, each pipeline stage with multiple layers has a worker for both forward 

propagation and backpropagation. A worker takes charge of one or more layers called 

“layer blocks”, shown in square model. The layer-block-wise pipeline is categorized as 

a kind of model parallelism. Its layer dimensions are divided by m or a smaller integer 

(where m is the number of layers including a layer for error calculation scheme). The 

number of pipeline divisions depends on the DNN models. Each worker executes a 

different task in parallel. A worker keeps a single weight matrix corresponding to its 

own layer network. 

Hereinafter, parameters P, T, and S respectively denote the number of pipeline stages 

(number of layer blocks), a current mini-batch step, and a current pipeline stage (current 

layer block). In each pipeline stage, forward propagation is conducted on a 

stage-by-stage basis. After certain latency, backpropagation is executed with 

corresponding activations; then weights are updated. Therefore, each pipeline stage 

processes a different but consecutive mini batch, and respectively propagates its 

activations and deltas down and up simultaneously to adjacent pipeline stages. 

In forward propagation, the (T−S+1)-th mini batch is processed at pipeline stage S. Its  
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Fig. 5.2  Concept of layer block wise pipeline; (a) Pipeline stage and layer-block, (b) 
Conceptual data-flow diagram of the proposed layer-block-wise pipeline with weight 
update latency. 

 

activations are transferred down to the next pipeline S+1. Finally, a mini batch is 

processed at the last pipeline stage P, where errors are calculated. The errors are going 

to be backpropagated at the next time step T+1. 

  In backpropagation, the (T−2P+S)-th mini batch is processed at a pipeline stage S. It 

is noteworthy that a worker at the pipeline stage S must save 2P−2S+2 datasets of 

forward activations for the current and upcoming backpropagations. Deltas are 

calculated with the oldest dataset of activations. Weights are updated with the deltas. 

The deltas in the shallowest layer in the pipeline stage S are transferred up to the 

upstream pipeline stage S−1 for a next time step T+1. In this manner, plural mini 

batches are propagated back and forth simultaneously without waiting for a naive 

parameter update. The weights are updated with a latency of 2P−2S+1. It can be said 

that the proposed pipeline has a concept of approximate computing instead of the naive 

SGD. 

To evaluate the accuracy and to verify training convergence in the proposed 

layer-block-wise pipeline model, we implemented Algorithm 1 with MatConvNet [47]. 

N signifies the total number of input mini-batch steps (the total number of time steps for 

input mini batches). The input is mini-batch data. In forward propagation, a vector of 

activations YS, x for a pipeline stage S is calculated first, where x is a dataset of 

activations to be saved (0 ≤ x ≤ 2P−2S+2). After forward propagation is completed, an 
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error vector is prepared as dYP+1 for backpropagation. Then, a vector of delta dYS and a 

matrix of delta weights dWS for a pipeline stage S are calculated. A matrix of weights WS 

is updated with dWS. 

To demonstrate the layer-block-wise pipeline, we adopted VGG-F as a network 

model [46]. VGG-F has five CNN layers and three fully-connected layers, as presented 

in Fig. 5.3(a), which classifies 1,000 categories. Figs. 5.3(b)-(d) present two-stage, 

four-stage, and eight-stage pipeline cases. 

 

 

Algorithm 1  Software implementation of the proposed layer-block-wise pipeline 

 
 

Input: MiniBatchInput0 … MiniBatchInputN−1 

Output: W1 … WP 
1: for T = 0 ... N+2P−2 do 
2:     Y0, mod(T/2P) = MiniBatchInputT 

3:     for S = 1 … P do 

4:         YS, mod((T−S+1)/(2P−2S+2)) = Forward(YS−1, mod((T−S+1)/(2P−2S+4)), WS) 

5:     end for 

6:     dYP+1 = Error(YP, mod((T−P+1)/2)) 

7:     for S = P … 1 do 

8:         [dYS, dWS] = Backward(dYS+1, YS, mod((T−2P+S)/(2P−2S+2)), WS) 

9:         WS = Update(WS, dWS) 

10:     end for 

11: end for 
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Fig. 5.3  Partitioning variations for VGG-F in the layer-block-wise pipeline; (a) 
VGG-F network architecture, (b) Partitioning for 2-stage pipeline architecture, (c) 
Partitioning for 8-stage pipeline architecture. 

 

5.1.3 Hardware model and evaluation 

The main purpose of this paper is to reduce memory bandwidth and capacity for 

scalability of parallelism. Memory performance gives large impacts to speedup. We 

evaluate the hardware performance using the bus models. The layer-block-wise pipeline 

potentially reduces weight parameters and memory bandwidth on an I/O data bus. Fig. 

5.4 presents a typical multithreaded SGD architecture. In this model, each processing 

unit has the same network model duplicated for multithreading. The dedicated 

parameter server for weight update is on a shared I/O data bus to communicate with the 

processing units. Each processing unit holds weights W and delta weights dW in internal 
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memory. Actually, delta weights dW become 243.4 MB per processing unit in VGG-F. 

This amount of memory is pushed to and pulled from the parameter server by a DMA 

controller. An important issue related to a multithreaded architecture is data traffic 

concentration on the shared I/O data bus. The memory bandwidth comes to 243.4×n 

MB at every mini-batch step (where n is the number of workers). The sheared bus brims 

over with communication among multiple workers, which has restricted system 

throughput in data parallelism [50]–[54]. 

Fig. 5.5 depicts a model for the layer-block-wise pipeline with distributed memory 

and segmented I/O data buses. The proposed architecture divides a network across a 

layer dimension. Layers are put together to an arbitrary number of blocks. Each worker 

performs different tasks in parallel. The segmented I/O data bus is used for 

communication only between two adjacent workers. The bus direction is always fixed to 

a single side (a sender side or a receiver side). Each worker receives and sends partial 

activations Y in forward propagation; again, each worker receives and sends partial 

deltas dY in the backpropagation. No communication exists on weights W and delta 

weights dW. The layer-block-wise pipeline prevents traffic concentration and improves 

memory bandwidth.  

Delay to external data communication depends on a transfer data size. Table 5.1 and 

Table 5.2 show the respective memory performance comparison between the 

multithreaded SGD architecture and the proposed layer-block-wise pipeline. In the 

conventional multithread, the weights W and the delta weights dW increase linearly 

according to the number of network model duplication (parallelization degree). It is 

noteworthy that, in the layer block wise pipeline, memory capacity and memory 

bandwidth for activations and deltas are scaled up linearly with a batch size, although 

they are reasonable values at a typical batch size of 32 (BS = 32). As explained 

previously, the multithreaded SGD requires a memory bandwidth of 1.21 GB (four 

unicasts and a broadcast) to unify the weights when a parallelization degree is four. The 

memory bandwidth per batch against the BS in the proposed pipeline increases linearly 

with increasing mini-batch size. The proposed pipeline has different values of 

bandwidth on forward and backward processes. When the input batch size is 32, the 

memory bandwidth for both forward and back propagation are, respectively, 36.3 MB 

and 17.0 MB. 
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Fig. 5.4  (a) Architectural model of shared-bus multithreading and (b) its data flow. 
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Fig. 5.5  (a) Architectural model of the layer-block-wise pipeline and (b) its data flow. 
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Table5.1  Memory capacity and memory bandwidth in conventional multithreads. 

W dW Y dY Y dY W dW W dW
Thread 1 243.45 243.45 7.19 7.19 230.23 230.23 Receive / Send 243.45 243.45
Thread 2 243.45 243.45 7.19 7.19 230.23 230.23 Receive / Send 243.45 243.45
Thread 3 243.45 243.45 7.19 7.19 230.23 230.23 Receive / Send 243.45 243.45
Thread 4 243.45 243.45 7.19 7.19 230.23 230.23 Receive / Send 243.45 243.45
Sub total 973.80 973.80 28.76 28.76 920.92 920.92

Total

243.45
(broadcast)

243.45
(broadcast)

243.45 973.80 243.45

Weight parameter
memory [MB]

Internal memory capacity

Total 973.80

BS = 32

4-degree of
multithreads

Memory bandwidth

BS = 32 BS = 1
Status

Transfer
data amount [MB]

2005.12 3789.44

BS = 1

I/O data
memory [MB]

 

Table5.2  Memory capacity and memory bandwidth in proposed pipeline. 

W dW Y dY Y dY BS = 1 BS = 32 BS = 1 BS = 32
Stage 1 Receive 0.60 19.26 Receive 0.19 5.98

Send 0.19 5.98 Send - -
Stage 2 Receive 0.19 5.98 Receive 0.17 5.53

Send 0.17 5.53 Send 0.19 5.98
Stage 3 Receive 0.17 5.53 Receive 0.17 5.53

Send 0.17 5.53 Send 0.17 5.53
Stage 4 Receive 0.17 5.53 Receive - -

Send - - Send 0.17 5.53
Sub total 243.45 243.45 39.28 6.54 1,256.96 209.28 Receive total 1.13 36.30 Receive total 0.53 17.04

Total Send total 0.53 17.04 Send total 0.36 17.04

0.07

Weight parameter
memory [MB]

83.5683.56

0.09

4.01

155.79

4.01

155.79

Backward process
Transfer

data amount [MB/batch]Status Status
Transfer

data amount [MB/batch]

I/O data
memory [MB]

BS = 1 BS = 32

678.08

468.80

107.84

2.24

Internal memory capacity Memory bandwidth
Forward process4-stage

pipeline

0.07 2.24

1.12 35.84

0.09 2.42 77.44

2.93 93.76

532.72 1,953.14

21.19

14.65

3.37

 
 

Figure 5.6 portrays memory bandwidth trends in the multithreaded SGD. A memory 

bandwidth of 974.0 MB is required overall for send and receive processes to unify the 

weight parameters when a parallelization degree is four. Fig. 5.7 presents memory 

bandwidth trends against the batch size in the layer-block-wise pipeline. The memory 

bandwidth per batch increases linearly with increasing mini-batch size. It is noteworthy 

that layer-block-wise pipeline has different values of memory bandwidth on forward 

and backward processes. As described above, our target batch size is 32, in which case 

the memory bandwidth both forward propagation and backward propagation are, 

respectively, 36.3 MB and 17.0 MB. The total memory bandwidth for the both 

directions does not exceed 100.0 MB. 

. 
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Fig. 5.6  Memory bandwidth trends against the parallelization degree in 
multithreading. 
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Fig. 5.7  Memory bandwidth trends against the batch size in the layer-block-wise 
pipeline. 

5.1.4 Performance evaluation 

Figs. 5.8(a)-(b) describe training convergence comparisons between the naive SGD 

and the proposed layer-block-wise pipeline. The convergence is the time when the 20 

epoch training. A 1.28 M ImageNet dataset is used for training VGGF. We observed the 

top-1 accuracy is slightly lowered with momentum SGD at four-eight stage pipeline due 

to the weight update delays in each layer, as shown in Fig. 5.8(a). Thus, the update 

value which is scaled by learning rate (LR) must have variations with different number 

of delays in each layer. To align the differences of update value, Adagrad [62] is adopted 

for LR adaptation, which simply shown as below equations (Eq. 14, and Eq. 15). 
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𝜏(𝑡) = 𝜏(𝑡−1) + ൫𝑑𝑊(𝑡)൯2. (14)
 

 𝑊(𝑡+1) = 𝑊(𝑡) − 𝛼ඥ𝜏(𝑡) + 𝜖 𝑑𝑊(𝑡). (15)
 

 

The Adagrad changes the LRs by τ(t) which accumulates square value of deltas: 

dW(t). Here, we took valuables; initial τ(t) 0.0, stabilization coefficient Ep= 0.1, and 

LR coefficient a= 0.01. Fig. 5.8(b) again shows training convergence comparisons 

between multithread and the pipeline with Adagrad. 

Accuracy convergence is compensated by LR adaptation. The proposed pipeline is 

2.0 and 4.2 times faster in the 2-stage and 4-stage pipeline, respectively. With eight 

pipeline stages, the acceleration factor is improved to 8.1. 

Figure 5.9 illustrates the total execution time Ttotal comparisons and breakdowns, 

which are evaluated with Caffe [63], and multiple GPGPUs linked by PCIe Gen3. For 

the breakdown mapping, Ttotal is calculated by summation of the parameters of a 

communication time Tcom, and a computational time Texe , as Eq. (16): 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑐𝑜𝑚 + 𝑇𝑒𝑥𝑒 . (16)
 

 

In the conventional multithread, Texe in an epoch is divided by the number of workers: 

n. On the other hand, Texe in the proposed pipeline is determined by the longest 

computational time among the divided stages; it occurs certain overhead on the 

computation time. We divided each network model to minimize the overhead of the 

worst-case computations in each stage. 

In the conventional scheme, Tcom(conv) in an epoch can be modeled by a weight 

memory capacity CapY, bus speed Sbus, the number of iterations liter, and the number of 

workers n, as expressed equation (17). In the equations, n and 1 are correspond to 

uploading unicasts (= n) and downloading broadcast (= 1) for weight unification and 

weight update (all reduction), respectively. In our PCIe linking, this model is better fit 

with our multithread system than a tournament weight unification model. In our 
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environment, the Sbus value settled as much as 32 GB/sec. Because of the 

non-parallelized part in a training function such as parameter unification, it seems that  
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Fig. 5.8  Training convergence comparison for parallelization degrees of 1, 2, 4, and 8 
with (a) Momentum SGD, (b) SGD using the Adagrad LR adaptation. 

 

 

the Texe(conv) has certain penalty time at higher parallelization degree. Thus, the 

acceleration factor in the Texe(conv) according to the parallelization degree is gradually 

decreased. In the proposed layer-block-wise pipeline, the Tcom(prop) can be modeled 

simply with the worst-case partial activations CapY, and bus speed Sbus as shown in 

equations (18).  
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𝑇𝑐𝑜𝑚 (𝑐𝑜𝑛𝑣 ) = 𝐶𝑎𝑝𝑊 ∗ 𝑙𝑖𝑡𝑒𝑟 ∗ (𝑛 + 1)𝑆𝑏𝑢𝑠 . (17)
 

 𝑇𝑐𝑜𝑚 (𝑝𝑟𝑜𝑝 ) = 𝐶𝑎𝑝𝑌𝑆𝑏𝑢𝑠 . (18)
 

 

The value of CapY depends on the partition scheme in each network model. The 

comparison results show that the proposed pipeline exhibited an improvement in Ttotal at 

the four-parallelization degree, which acceleration factors are VGGF: 1.76, VGG16: 

1.23, Resnet18: 1.01, and Resnet50: 1.07, respectively. 

Fig. 5.10 presents Tcom reduction ratio in each network model when the parallelization 

degrees are 2, 4, and 8. The proposed pipeline is more beneficial than the conventional 

multithread for the Tcom reduction; the higher Tcom reduction ratio is achieved in VGG-F 

and VGG-16 since weight memory is dominant than the activations. The Tcom reduction 

ratio is VGG-F: 93.1 % and VGG-16: 83.5 % at the eight-stage pipeline. On the other 

hand, in the Resnet18 or 50, the partial activation memory to communicate for pipeline 

is increased. In this case, the Tcom reduction ratio is degraded, which value is Resnet18: 

51.4 % and Resnet50: 55.4 %. The proposed pipeline, however, maintains over 50 % of 

Tcom reduction ratio at the eight-stage pipeline. Fig. 5.11 presents the relationship 

between acceleration factors and the memory capacity. In multithreading, the memory 

capacity increases linearly with the parallelization degree. In the proposed pipeline, only 

activations and corresponding deltas are increased; thus, it has less memory than the 

multithread for the same degree of parallelization. The layer-block-wise pipeline has 

25.4 % less memory in Resnet18 at eight-stage pipeline. In the VGGF, its value is 

extended to 52.1 % at eight-stage pipeline, with better acceleration performance per unit 

of memory capacity: 3.61 GB for pipeline and 7.56 GB for multithread. 
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Fig. 5.9  Total execution time Ttotal comparisons and breakdown mapping for each 
networks between the conventional multithread and the proposed pipeline. 
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Fig. 5.10  Normalized Tcom reduction ratio comparisons between the conventional 
multithread and the proposed layer-block-wise pipeline in various network models with 
number of parallel workers 2, 4, and 8. 
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Fig. 5.11  Relationship between the internal memory capacity and the acceleration 
factor for the conventional multithread and the proposed pipeline. 
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 Summary and Discussion 

As described in this chapter, we proposed a layer-block-wise pipeline algorism and 

hardware architecture as memory bandwidth and capacity reduction techniques for 

scalability of parallelism with distributed deep learning: 

1) We described a pipelined stochastic gradient descent (SGD) algorithm and its 

hardware architecture with a memory distributed structure. In the proposed 

architecture, a pipeline stage takes charge of multiple layers: a “layer block.” The 

layer-block-wise pipeline has much less weight parameters for network training 

than conventional multithreading because weight memory is distributed to 

workers assigned to pipeline stages. The memory capacity of 1.95 GB for the 

four-stage proposed pipeline is about half of the 3.79 GB for multithreading 

when a batch size is 32 in VGG-F network model. Unlike multithreaded data 

parallelism, no parameter server for weight update or shared I/O data bus is 

necessary. Therefore, the memory bandwidth is drastically reduced. The 

proposed four-stage pipeline only needs memory bandwidths of 36.3 MB and 

17.0 MB per batch, respectively, for forward propagation and backpropagation 

processes, whereas four-thread multithreading requires a bandwidth of 1.21 GB 

overall for send and receive processes to unify its weight parameters. At the 

parallelization degree of four, the proposed pipeline still maintaining training 

convergence by a factor of 1.76, compared with the conventional multithreaded 

architecture although the memory capacity and the memory bandwidth are 

decreased.  
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 Conclusion 

This dissertation presents low-power and low-energy memory techniques for 

real-time and low-energy image recognition processors. 

In Chapter 2, the intrinsic issues of the image memory and the image recognition 

processor are introduced as follows: 

 Increased active energy 

 Energy efficiency degradation by Leakage  

 Increased memory bandwidth and capacity in distributed architecture 

In this study, the solutions to these issues are presented in Chapter 3 to Chapter 5: 

1) Low-energy multiple read-port 8T three-port SRAM design (Chapter 3) 

2) Bitline swing and leakage reduction for 8T dual-port SRAM(Chapter 4) 

3) Memory and bandwidth reduction in deep learning (Chapter 5) 

In Chapter 3, low-power one-write and two-read (1W/2R) 8T three-port SRAM 

design is proposed. The proposed 8T three-port SRAM accommodates eight-transistor 

bit cells comprising one-write/two-read ports and a majority logic circuit to save active 

energy. We fabricated a 64-kb 8T three-port SRAM using 28-nm FD-SOI process 

technology. The test chip operates at a supply voltage of 0.46 V and access time of 140 

ns. The minimum energy point is a supply voltage of 0.54 V and an access time of 55 ns 

(= 18.2 MHz), at which 484 fJ/cycle in a write operation and 650 fJ/cycle in a read 

operation are achieved assisted by majority logic. These factors are 69% and 47% 

smaller than those in a conventional 6T SRAM using the 28-nm FD-SOI process 

technology. Furthermore, the energy consumed on the proposed SRAM is saved by 290 

μW, which signifies 24% energy reduction in total over the conventional H.264 motion 

estimation image processor. 

Chapter 4 introduced the techniques in leakage reduction and limiting BL swing for 

low-energy 8T SRAM; 1) a selective source drive (SSD) scheme with dual-port 8T 

SRAM, and the consecutive memory access 2) a MSB-based inversion logic with dual 

port SRAM. 

1) This work presented a low-energy and low-voltage 64-kb 8T dual-port image 

memory in a 28-nm FD-SOI process technology. A novel 8T Dual-Port SRAM adopts 

the selective sourceline drive (SSD) scheme and the consecutive data write technique 
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for improving active energy efficiency at the low voltage. We fabricated a 64-Kb 8T 

dual-port SRAM in the 28-nm FD-SOI process technology. The 8T SRAM cell size is 

0.291 × 1.457 µm2. The test chip exhibits 0.48 V operation at access time of 135 ns. The 

energy minimum point is at a supply voltage of 0.56 V and an access time of 35 ns, 

where 265.0 fJ/cycle in write operations and 389.6 fJ/cycle in read operations are 

achieved. These factors are, respectively, 30% and 26% smaller than those of the 8T 

dual-port SRAM with the conventional scheme. 

2) This work presented low-energy 8T dual-port SRAM with a novel MSB-based 

(most-significant-bit-based) inversion logic for an image processor such a deep-learning 

processor. Our proposed SRAM is suitable for real-time and low-power image 

processing, in which data have statistical correlation and data bit reordering are 

exploited. The proposed MSB-based inversion logic eliminates an additional flag bit in 

a majority logic; the MSB digit in an input datum judges whether or not to invert the 

datum. Thus, the area overhead of 16.1 % for the 8-bit conventional majority logic is 

dramatically saved. The area overhead of the proposed SRAM is merely 1.8 % for the 

MSB-based inversion logic. We verified that, with the proposed technique, 14.7 % of 

total energy can be saved in a 28-nm 64-kb FD-SOI SRAM when a set of images are 

read out. Furthermore, the saving factor is extended to 17.3 % when image processing 

in the VGG-F convolutional neural network (CNN) is considered, where 312.4 fJ/cycle 

in the read operation is achieved. 

In Chapter 5, we presented memory bandwidth and capacity reduction techniques for 

scalability of parallelism with distributed deep learning; 1) a layer-block-wise pipeline 

stochastic gradient decent (SGD) algorithm and its hardware architecture for deep 

learning processors. 

1) This work presented a pipelined stochastic gradient descent (SGD) algorithm and 

its hardware architecture with a memory distributed structure. In the proposed 

architecture, a pipeline stage takes charge of multiple layers: a “layer block.” The 

layer-block-wise pipeline has much less weight parameters for network training than 

conventional multithreading because weight memory is distributed to workers assigned 

to pipeline stages. The memory capacity of 1.95 GB for the four-stage proposed pipeline 

is about half of the 3.79 GB for multithreading when a batch size is 32 in VGG-F 

network model. Unlike multithreaded data parallelism, no parameter server for weight 
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update or shared I/O data bus is necessary. Therefore, the memory bandwidth is 

drastically reduced. The proposed four-stage pipeline only needs memory bandwidths of 

36.3 MB and 17.0 MB per batch, respectively, for forward propagation and 

backpropagation processes, whereas four-thread multithreading requires a bandwidth of 

1.21 GB overall for send and receive processes to unify its weight parameters. At the 

parallelization degree of four, the proposed pipeline still maintaining training 

convergence by a factor of 1.76, compared with the conventional multithreaded 

architecture although the memory capacity and the memory bandwidth are decreased. 

Finally, the conclusion of this study is presented in this chapter. This thesis presents 

the low-energy and low-cost memory architecture for high-speed and low-energy image 

recognition application overlooking whole memory architecture. The work contributes 

to achieve an energy-efficient SRAM design for advanced technology and development 

of energy-efficient and high speed image processing flame work with higher scalability. 
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