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Achieving Healthy and Quality Life of One-person Households
Using IoT and Machine Learning

Niu Long

Abstract

Worldwide, there has been an increase in the number of individuals that live
alone in one-person households (OPHs). Compared to those living with family,
people in OPHs easily lose control of life rhythm. Given that the disturbance of
life rhythm leads to chronic disease, they have a higher risk of illness. As such,
there is an urgent demand for assistive technology that allows people in OPHs to
enjoy healthy, high-quality lives.

For decades, there has been significant research and development of smart sys-
tems to assist people at home. However, there are still limitations on the practical
use of these systems in actual OPHs. More specifically, they are often too intru-
sive to the lifestyle of users or home objects. In addition, they are often expensive
to deploy and maintain. Furthermore, these systems are unable to evaluate the
quality of life rhythm. As a result, it is difficult for individual users to deter-
mine what their healthy life rhythms should be, and how to improve their current
situation.

The goal of my research is to develop a new smart system for OPHs that can
minimize intrusiveness and cost, while also facilitating the assessment of life
rhythms of individual users. The new system collects user position and environ-
mental data inside the house in a non-intrusive way, using affordable IoT devices.
From this data, the system then recognizes the daily activities of the user. Based
on these activities, eventually, the system can quantitatively evaluate the user’s
life rhythms and provide practical advice for maintaining a healthy life.

In this dissertation, we address three technical challenges associated with the
implementation of the proposed system. The first challenge is the collection of

the user’s indoor position and environmental data in OPH while minimizing intru-
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siveness and cost. For the indoor position data, we propose a common data model
for indoor location DM4InL and a Web-based integration framework WIF4InL, in
order to reuse and integrate heterogeneous indoor positioning systems (IPS). For
the implementation of an affordable IPS, we develop BluePIN, a zone-based po-
sitioning system with Bluetooth low energy (BLE) beacons. With respect to the
environmental data, we exploit Autonomous SensorBox, which is a self-managed
IoT for environment sensing that was developed in our laboratory.

The second challenge is the accurate recognition of the user’s daily activities.
For this, we propose a daily activity recognition method based on supervised
machine learning. In the training phase, the proposed method asks the user to
record their activities manually, using a lifelog tool. The activities of interests are
sleeping, eating, bathing, cooking, PC working, cleaning, and going out. While
the system accumulates the environmental and indoor position data, the proposed
method generates fraining data by attaching the recorded activities as labels to
the time-series sensing data. By applying machine learning of multi-class classi-
fication to the training data, the proposed method derives an activity recognition
model. Once the model is obtained, the system moves to the operation phase
where the seven types of activities are automatically recognized. In the experi-
ment, we evaluate various configurations of learning algorithms and features en-
gineering.

The third challenge is the quantitative assessment of an individual’s life rhythm.
For this, we propose an approach that derives a personalized assessment model
based on the recognized daily activities and user self-assessment of quality of life
(QoL). The proposed method characterizes the user’s life rhythms based on statis-
tical features of their daily activities, especially eating and sleeping. In addition,
the method periodically requests that the user evaluates the degree of their QoL
using a designated questionnaire survey. The method then establishes a regres-
sion model that explains the QoL based on the statistics of daily activities. Using
this model, the user can better understand the characteristics of their current life
rhythm. Moreover, the model can be used to produce personal advice on daily

habits to maintain the user’s healthy life rhythm.
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Chapter 1

Introduction

1.1 Increasing rate of OPHs and issues of people in OPHs

Over the past several decades, due to global aging, the increasing number of un-
married people, and marriages late in life, we have witnessed high rates of one-
person households (OPHs) across many countries. Among European countries,
OPHs of 40% or more were reported in Denmark, Finland, Germany, and Norway
in 2015. In the USA, in approximately seven states, the percentage of OPHs ex-
ceeded 30.3% in 2015. In China, there are more than 60 million people currently
living alone and the number of OPHs is predicted to increase to 162 million in
2050. In Japan, 37.4% of all households will become OPHs in 2030.

There are several issues that affect people in OPHs. Given that there is no one
else to provide assistive care on a daily basis, it is more difficult for these indi-
viduals to maintain healthy life rhythm. According to some health studies, it is
more likely that individuals in OPHs will fail to manage life rhythm compared
to those living with family or others. The research [1] shows that students liv-
ing with families wake up and go to bed earlier than those living alone. With
respect to the total number of meals and skipping breakfast, people in OPHs have
a significantly higher rate [2]. It is well-established that a chaotic life rhythm of-
ten leads to a deterioration of health [3]. The results of research on life rhythm
and the circadian rhythm (dian means day) show that a key factor for achieving a
good health-related quality of life (HRQoL) is to maintain a healthy life rhythm.
For instance, individuals with circadian rhythm disturbance have a higher risk
of cardiovascular disease [4]. For example, sleep disturbance increases the risk

of suffering from neutral fat [2]. As a result, individuals living in OPHs have a
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significantly higher risk of suffering from certain disease, which has been well-
established in numerous health studies. Therefore, there is an increasing demand
for the development of assistive technology for people in OPHs that can help to

improve their live health and quality life.

1.2 Overview of assistive technologies using IoT

Recently, due to the proliferation of smartphones and the Internet of Things (IoT)
technologies, there have been numerous studies and the development of applica-
tions that aim to monitor and improve a user’s health by recording daily activities
log (e.g., sleep, eat, cook), or via the recognition of recurring patterns throughout
the day (e.g., hospital visit day). Several studies have been conducted to investi-
gate real life and human-centric applications such as elderly care and healthcare.
However, there are limitations on the practical use of OPHs. Specifically, they are
often too intrusive to the user or the layout of their homes. They are also expen-
sive to develop and maintain. Furthermore, they lack practical approaches for the
evaluation of the quality of life rhythm.

Some approaches (e.g., [5] [6]) attempt to directly capture daily living data
using cameras or microphone. However, such systems are often considered too
intrusive to the user in the sense that all aspects of their daily living are exposed.
Several studies have exploited state-change sensors or indoor positioning systems
(IPS) to monitor daily activities. However, these systems (e.g., [7] [8]) are also
viewed as being too intrusive to home objects due to it is essential to embed sen-
sors in objects, such as doors, windows, a refrigerator, keys, and medicine con-
tainers. There have also been many studies based on wearable sensors to monitor
the user’s health status and motion (e.g., [9]). However, the wearable sensor is in-
trusive to the human body because it must always to be worn at home. In addition,
the deployment and maintenance of those systems are usually expensive. Further-
more, most of these systems simply provide features that facilitate the recording
and visualization of the activity logs, whereas the interpretation and assessment
of specific achievements are left to the user. As a result, it is difficult for individ-

uals to determine what their healthy life rhythm should be and how their current



Chapter 1 Introduction 3

situations can be improved.

1.3 Goal of research and technology challenges

To address the limitations mentioned in Section 1.2, my research goal is to de-
velop a new smart system for OPHs that can minimize intrusiveness and cost,
and provide an assessment of life rhythms for individual users. The new system
should collect the user’s indoor position and environmental data within the home
in non-intrusively, using affordable IoT devices. From the data, the system is able
to recognizes the daily activities of the user. Based on the recognized activities,
the system finally quantitatively evaluates the life rhythms and disseminates prac-
tical advice to maintain a healthy life. Using the proposed system, it is expected
that people in OPHs would be able to achieve improved health and quality life on
their own.

To develop such a system, there are three main technological challenges that

must be addressed:

1. Collection of indoor position data and environmental data in OPHs mini-
mizing intrusiveness and the cost for the user.
2. Accurate recognition of daily activities of the user.

3. Quantitatively assessment of the life rhythm of the user.

1.4 Approaches

In order to address the three technology challenges, this investigation is divided
into three main projects, (1) Collection of living data of individuals in OPHs,
(2) Recognition of daily activity and (3) Derivation of personalized assessment
model for life rhythm. The first project is to address the first challenge, A frame-
work for collecting the user’s living data in OPHs is provided that also with min-
imizes intrusiveness and cost. The second project involves addressing the second
challenge. In this case, a daily activity recognition system based on supervised
machine learning is proposed. The final project involves addressing the third

challenge. This entails a proposed method that derives a personalized assessment
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model based on the recognized daily activities and the user’s self-assessment of

quality of life (QoL).

e Collection of living data of individuals in OPHs

The key idea of the first project is collecting the user’s indoor position and
environmental data in the OPH.

For the indoor position data, in order to minimize the development cost and
effort, a common data model for indoor location called DM4InL is proposed
in addition to a Web-based integration framework called WIF4InL, which
can reuse integrated heterogeneous indoor positioning systems (IPS). In this
investigation, BluePIN, a zone-based positioning system with BLE beacons
have been developed for affordable IPS implementation, which is emploied
in the case where there is no existing IPS could be reused in OPHs.

With respect to indoor environmental data in the OPHs, a self-managed [oT
device called Autonomous SensorBox was exploited, which was developed
in our laboratory and was designed to minimize the effort associated with
deployment and operation. Once a power cable is connected, the Sensor-
Box autonomously measures seven types of environmental attributes (tem-
perature, humidity, light, sound, vibration, gas pressure, and motion) in the
vicinity of the box and then periodically uploads the data to a cloud server.

e Recognition of daily activity

For the second challenge, a daily activity recognition method based on su-
pervised machine learning is proposed. In the training phase, the proposed
method requests that the user should manually record their activities, using
a lifelog tool. The activities of interests include sleeping, eating, bathing,
cooking, PC working, cleaning, and going out. As the system accumu-
lates environmental and indoor position data, the proposed method gener-
ates training data by attaching the recorded activities as labels to time-series
sensing data. By applying machine learning of multi-class classification to
the training data, the proposed approach establishes an activity recognition

model. Once the model is obtained, the system moves to the operation
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phase, where the seven kinds of activities are automatically recognized.
Based on the proposed method, two kinds of daily activity recognition
model were implemented.

The first recognition model is only based on non-intrusive environmental
sensing. In the experiment, careful feature engineering was performed to
determine essential environmental attributes that best explain activities in
OPHs. Furthermore, three different classification algorithms were applied
to the model to compare performance.

The second version activity recognition model was based on non-intrusive
environmental sensing and BLE beacon technology. In the experiment,
three different algorithms and feature engineering were investigated. In ad-
dition, 21 models with different lengths of training period were investigated
to determine the appropriate length of the training phase for the utilization
of the system.

Derivation of personalized assessment model for life rhythm

In the third challenge, a method that derives a personalized assessment
model based on the recognized daily activities and the user’s self-assessment
of quality of life (QoL). The proposed method characterizes the user’s life
rhythms based on statistical features of daily activities, especially eating and
sleeping. In addition, the method periodically requests that the user should
evaluate their degree of QoL, using a designated questionnaire survey. The
method then establishes a regression model that explains the QoL based on
the statistics associated with daily activities. Using the model, the user can
better understand the details of their current life rhythm. In addition, the
model can be used to produce personal advice on daily habits to maintain
or improve the user’s healthy life rhythm.

An experiment was conducted in an actual apartment where activity logs for
224 days and self-assessment QoL logs for 32 weeks were obtained. Based
on the experimental results, of the assessment model personalized to the
resident was interpreted and appropriate habits for maintaining high QoL

were identified.
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Eventually, the integration of the proposed system with a life monitoring
system was considered, to allow the system to automatically intervene in

OPH to encourage the maintenance of healthy life rhythms.

1.5 Scope of The Dissertation

The broader aim of this dissertation is to develop a new smart system for individ-
uals in OPHs that can minimize intrusiveness and cost, and provide an assessment
of life rhythms for individual users. Towards this aim, the long-term research is
divided into three main projects, as indicated in 1.4. (1) Collection of living data
in OPHs, (2) Recognition of daily activity and (3) Deriving personalized assess-
ment model of life rhythm. In this dissertation, a separate chapter is dedicated to
each of the three projects. Thus, this thesis is divided as follows.

In Chapter 2, a detailed description of the first project is provided. The Data
Model for Indoor Location (DM4InL) is first proposed, which specifies a common
data schema for representing indoor location information in an application-neutral
way, and does not depend on any specific IPS or applications of IPS. Then, the
Web-based integration framework (WIF4InL) is proposed, which can reuse inte-
grated heterogeneous IPS and introduce BluePIN, which is a zone-based posi-
tioning system with BLE beacons. Finally, the Autonomous SensorBox is briefly
introduced, which is an IoT device with seven kinds of environmental sensors,
which was developed by our laboratory.

In Chapter 3, the second project is described in detail. Two kinds of daily
activity recognition models are proposed for OPHs. A recognize model only us-
ing Autonomously SensorBox with supervised machine learning is first proposed.
Then, a new daily activity recognition model using Autonomous SensorBox and
indoor position is proposed. Various configurations of learning algorithms and
features engineering are evaluated for both of the models.

In Chapter 4, the personalized assessment model is proposed. This model can
quantitatively assess the user’s life rhythm by analyzing the daily activity log and

self-assessment of QoL logs. Based on experiments involving an actual resident,
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the method of evaluating personal life rhythms and the dissemination of practical
advice to maintain and improve healthy living is introduced.
Finally, Chapter 5 concludes this dissertation and presents proposed future re-

search.



Chapter 2

Collection of Living Data of
Individuals in OPHs

2.1 DMdInL: Common Data Model for Indoor Location
2.1.1 Introduction

With the rapid development of wireless and sensor technologies, research, and
development of an Indoor Positioning System (IPS, for short) are actively being
conducted. An IPS identifies precise positions of individuals and objects in indoor
space where a Global Positioning System (GPS) is unable to function. Various
enabling technologies for IPS have been developed so far, including those based
on Wi-Fi [10], infrared [11], ultrasound [12], IMES [13], pedestrian dead reck-
oning (PDR) [14], etc. Several commercial IPSs have already been introduced
come into the market (e.g. PlaceEngine[15], Guardly[16]). These enabling tech-
nologies have different characteristics in terms of accuracy, resolution, and cost
of infrastructure deployment.

By using IPS, various Indoor Location Applications (called InL-App, for short)
can be implemented. An InL-App performs appropriate actions and behaviors
autonomously, according to the indoor position of users or dynamic/static objects.
Typical InL-App includes the navigation service of a shopping mall, an exhibition
guidance service for a museum, a location-aware appliance control in a smart
home, location-aware targeted advertising, lifelog, and so on.

When an InL-App is implemented with an IPS, it is necessary to determine an
approach to represent and manage the indoor location information obtained by the

IPS within the InL-App. Many existing systems individually represent and man-
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age the indoor position information, considering the purpose of the InL.-App and
the characteristics of the IPS used. Such a proprietary representation and manage-
ment method has the advantage of optimal performance. However, it causes tight
coupling of the InL-App and the IPS, whereby the indoor-location data and pro-
cesses cannot be reused among different services. Thus, the proprietary method
increase the complexity of implementation of InL-App and in addition to the de-
velopment cost and overall effort.

To improve efficiency and reusability in the development of InL-App, we are
investigating the application of a cloud service, called Indoor Location Query
Service (InL-Query, for short). InL-Query gathers indoor location information of
various objects (room, equipment, appliance, people, etc.) from arbitrary IPSs.
It then generates application-neutral API, whereby external systems can query
the indoor location of a specified object or building. Thus, InL-Query achieves
loose-coupling of the IPS and the InL-App, which facilitates sharing and reuse of
indoor information and common procedures.

As the first step towards implementation of InL-Query, a Data Model for In-
door Location (DM4InL, for short) is proposed as part of this study. DM4InL
specifies a common data schema for representing indoor location information in
an application-neutral way, which does not depend on any specific IPS or InL-
App.

The proposed DM4InL consists of three models: location model, building
model, and object model. The location model represents any location in a build-
ing according to the relative position (3-dimensional offset) from the base coor-
dinates of the building. The building model defines every building with attributes
and global position. It also defines geographic elements in each building such as
partitions, routes, and spots. The object model defines various objects in a build-
ing, such as people, appliance, furniture, etc. The current position of each object
is represented by a point defined in the location model. By using DM4InL, devel-
opers of InL.-App are able to manage indoor location information independent of
specific IPS, which facilitates the sharing of data among different InL.-App.

Several APIs were also investigated for basic queries to the InL-Query. For
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example, the API getObjectLocation() returns the indoor position of a given ob-
ject. Another API getObjectsInPartition() returns all object that exist in a certain
partition. Using the API, it is possible for the developers to obtain the indoor po-
sition of an object without knowing the implementation details of the IPS. Thus,

the API significantly improves the development efficiency of InL-App.

2.1.2 Preliminary

Overview of Indoor Positioning Systems (IPS)

IPS is a generic name for systems that estimate the position of a subject or object
inside a building. An IPS is a solution based on magnetic, other sensor data or a
network of devices used to wirelessly locate objects or people inside a building

[17]. Enabling technologies for IPS include the followings:

e Wi-Fi [15]

e 2D-Code [18]

e Visible light communication [19]

e IMES (Indoor Messaging System) [13]

e RFID tag [20]

e Hybrid methods of position recognition [21]
e PDR [14]

The aforementioned technologies have different characteristics in terms of ac-
curacy, resolution and cost of infrastructure and deployment, which are generally
chosen based on requirements and cost for the target solution. An increasing
number of different technologies for IPS are being developed to complement the
existing GPS, which cannot provide coverage inside buildings. However, unlike

the GPS, there is presently no de-facto standard for the IPS.

Application of Indoor Position
In this dissertation, we refer to a service that performs appropriate actions or
behaviors according to the indoor location information as Indoor Location Appli-

cation (InL-App). Practical InL-Apps have come to market, including:
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e Shoplat [22]: Using an ultrasonic positioning technology, this service rec-
ommends coupons or the loyalty program of a business established when it
is approached by a user. The user’s location is estimated by broadcasting
ultrasound that can be detected by the microphone of the user’s smartphone.

e PlaceEngine [15]: This service can be used to monitor the motion and
location of staff working in a hospital. The IPS is implemented within the

beacon frame of a wireless LAN.

Generally, the conventional systems of InL-App have been implemented indi-
vidually, considering the purpose of service and the IPS used. There is no stan-
dard for the representation and management of indoor location information. Thus,

individual systems implement their own proprietary approaches.

Geographic Information System (GIS)
GIS is a computer system designed to capture, store, manipulate, analyze, man-
age, and present all types of geographical data [23]. A wide range of data is used
in a GIS. Meta-information is roughly divided into graphical information (maps,
aerial photographs or satellite image, etc.), attribute information associated with
the feature, geodetic system, projection method, reduced scale, accuracy, etc.
The GIS represents spatial data in two different formats: vector and raster. In
this research, we focus on the vector format. The vector format data consists
of individual points, which are represented coordinates. Multiple points may be
joined in a particular order to create a line or joined into a closed ring to create
a polygon. All the vector data fundamentally consist of a list of coordinates that
define vertices, together with rules to determine whether and how those vertices
are joined. Shapefile, a GIS file format, which uses vector data and a variety of
attribute data (such as property, feature and numeric, etc.) have become a standard

format in the GIS industry.

Approach
Figure2.1(a) shows the implementation architecture of a conventional InL-App.

As mentioned in Sections 2.1.2 and 2.1.2, each InL-App is tightly coupled with an
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Fig. 2.1. Two Different Architectures of InL-App

IPS. Moreover, the indoor location data and the necessary program are managed
independently within each system. Therefore, one system cannot share or reuse
the data and program of another system. As a result, each system tends to be
complex and difficult to manage.

To address the problem, our long-term goal is to establish an innovative archi-
tecture as shown in Figure 2.1(b). In the proposed architecture, the Indoor Loca-
tion Query Service (InL-Query) accumulates spatial information from various IPS
in a standardized way, and provides the information for various InL-App via an
application-neutral query API. Using the InL-Query, we can achieve loose cou-
pling between the InL-App and the IPS. This significantly improves the efficiency
and reusability of InL-App development. Moreover, by deploying the InL-Query
in the cloud, it is possible to share and use the indoor information globally across
multiple buildings.

As the first step towards the long-term goal, a common data model called Data
Model for Indoor Location (DM4InL) is proposed, in this section. As shown in
the middle of Figure 2.1(b), DM4InL aims to prescribe a common data schema
which does not depend on any specific IPS or InL.-App. Given that there is no de-
facto standard format, DM4InL is developed by referencing the GIS introduced
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in section 2.1.2.

According to Yuan et al. [24], every spatial object must have theme, space
and time attributes, to represent what, where and when, respectively. Hence, we
divide theme and space attributes into two models, location model and object

model. Moreover, the space attribute can be represented by the following forms:

e Geographic coordination: This form indicates the position information
by latitude-longitude and altitude, which is generally used in GPS research
field.

e Relative coordination: This form refers to two components. One is mov-
able object’s position reference a building. Another one is the global posi-

tion of the building.

To adopt the proposed model to InL.-App, the second form is more suitable. The
second form represents two spatial objects, movable object (such as a person, ve-
hicle and so on) and building (such as a house, parking allocation and so on).
Therefore, we divide the spatial object into building model and object model.
Every object in the object model has an indoor-location point (in the location
model), each of which is explained by spatial elements of a building (in the build-
ing model). For time attributes, we defined a time-series indoor location log for

every object in the object model.

2.1.3 Requirements of DM4InL

The primary requirement of DM4InL is to associate any object inside a build-
ing with location information, without depending on any purpose or application.

More specifically, the objective to satisfy the following requirements R1-R4:

e Requirement R1: The data model should be able to represent any po-
sition inside a building as location information with spatial and subjective
attributes.

e Requirement R2: The data model should be able to associate any object

inside a building (such as a person, device, or furniture) with the location
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information.

e Requirement R3: The data model should be able to represent spots,
routes, and partitions as geographic elements within a building.

e Requirement R4: The data model should be able to provide seamless

positioning, integrating indoor and outdoor location information.

2.1.4 Overview of DM4InL

In order to satisfy these requirements, we construct DM4InL as a composition of

the following three data models:

e Location Model: It defines indoor location information. Every position
in a building is represented as a relative coordinate (3-dimensional offset)
from a reference point of the building. Using the coordinate, four geomet-
ric primitives are constructed: local point, local line, local polygon, and
local space. 1t also defines global positions using the triplets of [longitude,
latitude, altitude].

e Building Model: It represents spots, routes, and partitions as geographic
elements within a building. Each spot (route or partition) is identified by
a local point (a local line or a local space, respectively) in the location
model. It also identifies every building with a reference point represented
by a global position.

e Object Model: It represents various objects (such as people, furniture,
and appliances) within a building. Each object refers to a local point in the

location model to represent its current position.

We will explain the details of each model in the following subsections.

2.1.5 Location Model

The location model defines indoor positions and geometric primitives. Initially,
the indoor position must be defined based on the foundation that every position
is associated with a single building. In addition, as discussed in [25], the used of

3-dimensional Cartesian coordinates is convenient for the use and representation
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Fig. 2.2. Entity Relationship (ER) Diagram of Location Model and Schematic Representations of
Instances

of indoor locations by applications. Based on these two reasons, we represent
every indoor position using a 3-dimensional Cartesian coordinate system. Each
position is defined as a relative coordinate (3-dimensional offset) from a reference
point of the building to which the position belongs. Furthermore, utilizing the
fundamental concept of GIS, we define local point, local line, local polygon and
local space in the location model.

Figure 2.2 shows the ER diagram of the proposed location model. The dia-
gram follows the notation defined in [26]. A square represents an entity whose
schema is defined by multiple data items arranged in the right side. An under-
lined item represents a primary key, and an underlined item with brackets defines
a secondary key. Other items represent attributes. Data instances are listed under

each entity. A relationship may be defined between a pair of entities, where

e (+——=¢€ ) represents a parent-child relationship,

e (+——--) represents a reference relationship,
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o (+ o+) represents a sub-type relationship

The details of each entity are explained as follows.

(1) Local Point (LP)
LP defines every indoor position of a building to which the position belongs and a
3-dimensional offset (x,y, z) from the reference point of the building. The primary
key is a composite key consisting of a building ID (defined later) and a point ID.
It also has a sequential code as a secondary key, so that external entities can
easily refer to the point. The attributes are the coordinate values of LP in the 3D
Cartesian system that allows external applications to locate the point in a building.
Figure2.2 contains five instances of LP, where two points belong to building
B0001 and three points belong to building BOO02. Points p0001 and p0002 are
depicted on the right side of the ER diagram. Point pO001 represents a position,
whose coordinate is 1.10m in the x-direction, 7.50m in the y-direction and 4.30m

in the z-direction from a reference point (GPO1) of the building BOOO1.

(2) Local Line(LLN)
LLN represents a line constructed using two or more local points. Similar to LP,
LLN has a composite key consisting of a building ID and a line ID. It also has a
sequential code as a secondary key. Each line is defined by multiple points called
local line points (LLNP). Each LLNP has a composite key consisting of an ID
and a sequence number of the line, and a point code referring to a local point to
locate the LLNP. Thus, a parent-child relationship exists from LLN to LLNP and
a reference relationship exists from LLNP to LP.

Figure 2.2 contains an instance of LLN (10001) that belongs to building BO0OO1,
constructed by p0002, p0006, p0007, p0008, and p0009. The line is depicted in
the right figure.

(3) Local Polygon (LPG)
LPG represents a polygon constructed using three or more local points. Similar

to LLN, each polygon is defined by multiple points called local polygon points
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(LPGP). Each LPGP has a composite key consisting of an ID and a sequence
number within the polygon, and a point code referring to a local point to locate the
LPGP. Thus, a parent-child relationship exists from LPG to LPGP, and a reference
relationship exists from LPGP to LP.

Figure 2.2 contains an instance of LPG (pg0001) that belongs to building
B0001, constructed using p0010, p0011, p0012, and p0013. The polygon is

drawn as a square in the right figure.

(4) Local Space (LSP)
LSP represents a 3D space in a building. A 3D space is generally constructed
using several polygons. However, taking the convenience and characteristics of
an ordinary indoor space into account, local space is defined as a pillar-shaped
space by extending a local polygon to the z-axis direction. LSP has a composite
key consisting of a building ID and a space ID. It also has a sequential code as a
secondary key. Attributes are a reference to a local polygon as the bottom of the
space, and the height of the pillar from the bottom.

Figure 2.2 contains an instance of LSP (s0001) in building BO0OO1, which is
defined as a pillar of height 3.30m made from a local polygon pg0001. The space

is represented as a cube in the right figure.

(5) Global Position (GPos)

GPos represents a global position that is used for the reference point of a building.
Since Requirement R4 suggests seamless positioning among indoor and outdoor
locations, the reference point of every building is located at a global position.
Each global position is represented by the triplet of longitude, latitude, and alti-

tude. It is referenced from a building in the building model, as is explained later.

2.1.6 Building model

The building model defines spots, routes, and partitions within a building. Such
a structure can be regarded as a container that can contain various objects. From
this viewpoint, the building model should represent the container itself and geo-

graphic elements inside the container. The location of each geographic element
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Fig. 2.3. ER Diagram of Building Model and Schematic Representation of Instances

is associated with a corresponding entity in the location model. Figure 2.3 shows

the ER diagram of the building model. Each entity is explained below.

(1) Building (B)

The building entity represents the existence of a building. A building is identified
by a building ID, which is a primary key. Attributes include a reference to a
global position where the building exist (see (5) of Section 2.1.5), building name,
type, etc. As mentioned in Section 2.1.5, every entity in the location model is
associated with a building ID, which constitutes a parent-child relationship. As
such, when a building is eliminated, all the location information in the building
is also removed. The global position of a building serves as a reference point
of the indoor position. Because every local position is represented by a relative
coordinate from the reference point, the local position can be converted into a
global position. This satisfies Requirement R4.

In the real world, a building can assume various granularity. For example, when
we consider the collective housing of apartments, there are choices: a building
refers to the entire building, or a building can refer to an apartment within the
building. As a result, we consider it to be reasonable to define a building for

every living unit a single IPS can provide coverage.
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(2) Spot (S)

The spot entity represents a geographic element treated as a point, including a
bathroom entrance, emergency exit, and so on. A spot has a composite key con-
sisting of a building ID and a spot ID. Attributes include a reference to a local

point that locates the spot, the name of the spot, etc.

(3) Route (R)

The route entity represents a geographic element treated as a line, such as an
evacuation route, a traverse of a residence, etc. A route has a composite key
consisting of a building ID and a route ID. Attributes include a reference to a

local line that draws the route, the name of the route, etc.

(4) Partition (P)
The partition entity represents a geographic element treated as a space, such as a
living room, a bedroom, a kitchen, etc. A partition has a composite key consisting
of a building ID and a partition ID. Attributes include a reference to a local space
that surrounds the partition, the name of the partition, etc.

The right side of Figure 2.3 shows schematic representations of instances over
a floor plan of a house. A circle represents a spot, an arrow represents a route,

and a dotted rectangle represents a partition.

2.1.7 Object Model

The object model represents various objects in a building. It is assumed that ev-
ery object is movable and is represented by an indoor position when the object is
in a building. In the real world, there are various kinds of objects (e.g., people,
appliance, furniture) with attributes that may vary. Therefore, we first define an
abstract entity that associates any object with location information. We then de-
fine each concrete entity as a sub-type of the abstract entity. Further sub-types can
then be added as needed. Figure 2.4 shows the ER diagram of the object model.

Each entity is explained in the following sections.
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(1) Object (O)

The object entity abstracts an arbitrary object in a building. An object is identified
by an object ID, which is a primary key. Attributes include the type of object and
the reference to a local point where the object currently exists. The type is a
reference to a concrete object entity. The coordinate of the local point establishes
a positional relationship between the point and a space (or a line). Hence, we can
deduce a geographic element of the building (i.e., a spot, a route, or a partition),
where the object currently exists.

The right side of Figure 2.4 illustrates four instances of the object entity. We
can identify the current position of each object from its local point. We can also
deduce a space from the position. For example, it is evident that an object exists
in the bedroom. If the type of object is 'people’, the object is explained in details
by a ’people’ sub-type entity.

(2) Sub-Types of Object

A concrete object (e.g., people, appliance, furniture, etc.) is defined by a sub-
type entity of the abstract object. A sub-type object defines the attributes that are
necessary for the type of object. The sub-type and the abstract have the same
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object ID as a primary key. Therefore, we consider that a sub-type extends an
object based on the type attribute.

Figure 2.4 illustrates two sub-types: people and appliance. For instance, the
“people’ entity defines the attributes of name and gender. The "appliance’ includes

attributes of the appliance type, model number, and state, etc.

Object Location Log

In addition to record the current position of each object in Object(O), we also
defined Object Location Log that stores the history of time-series indoor locations
for every object. As mentioned in Section 2.1.2, according to Yuan et al. [24],
every spatial object must have theme, space and time attributes, to represent what,
where and when, respectively. Thus, we defined object location log records three
aspects of information: what, when and where. For the theme attribute, each log
refers to an object ID to represent its theme. As for time attribute, we defined
UTC (Coordinated Universal Time). And each log refers to a local point in the
location model to represent its position. Figure 2.4 illustrates two logs for one
person. The data representing that person Niu moved from p®003 to p®005 for 5

seconds.

2.1.8 Data Schema of DM4InL.

DM4InL is composed of the aforementioned three data models (i.e., location

model, building model, and object model). Figure 2.5 shows an ER diagram of
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DM4InL, representing the relationships between the three models. Every indoor
location (i.e., LP, LLN or LSP) is associated with a single building, whereas every
building involves more than one indoor location. A building (B) is identified by
a global position (GPos). A geographic element in a building (i.e., spot, route or
partition) refers to a location entity (LP, LLN or LSP, respectively). An object
location log is referring to a local point and an object entity. These observations
are well-suited to general intuition regarding the indoor locations, objects, and

buildings in the real world.

2.1.9 Discussion

Sufficiency of Requirements

This section discusses the extent to which the proposed DM4InL satisfies require-
ments R1-R4 in Section 2.1.3. Based on the definition of the location model (us-
ing the relative coordinate bound with a building) any position inside any building
can be represented. In addition, an element of the location model can be an at-
tribute of a geographic element in a building. Hence, requirement R1 is satisfied.
Based on the definition of the object model, it is possible to associate every ob-
ject with a local point. Thus, requirement R2 is satisfied. Given that the building
model represents spots, routes, and partitions within a building, Requirement R3
is satisfied. Every indoor location is associated with a single building and ev-
ery building has a reference point identified by a global position. Combining the
global positions and the relative coordinate of an indoor location, it is possible to
convert indoor location into a global position. Therefore, requirement R4 can be
satisfied.

It should be noted that requirements R1-R4 are derived by purely considering
the properties of the common data model for the indoor location; they do not
depend on any specific application or purpose. Thus, I believe that the constructed
DM4InL is a neutral data model, which can be shared and reused by various IPS

and InL-App.
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Towards Query API for DM4InL

Using DM4InL, we can represent indoor location information of objects and ge-
ographic elements in an application-neutral form. To allow a variety of services
and applications to easily and efficiently use the data, it is essential to implement
APIs that implements typical queries for the DM4InL. In this regard, the follow-
ing APIs are currently being developed:

(1) Position API: It queries location information of a given spatial element or
an object. For instance, getObjectPosition(objectID) returns the current position
of a given object, and getBuildingPosition(buildingID) returns a global position
of a given building.

(2) Attribute API: It queries attributes with respect to an object or a spatial
element. For instance, getObjectsInPartition (partitionName) returns all objects
within a given partition.

The design and implementation of the API will be left for the next step of the

research project.

Limitations
Indeed, there are a few limitations in the current version of DM4InL. An example
of such a limitation is that uncertainty [27] of the location data, or to estimate
the future location of an object. Although the uncertainty concept enhances the
expressivity of the model, it also increases the complexity. The determination of
whether time should be included in DM4InL is currently being investigated.
Another limitation is in the representation of local space. As seen in Section
2.1.5, each space is defined as a pillar-shaded space for convenience. It is neces-
sary to evaluate this definition to ensure that it can adequately address practical
InL-App.
Finally, the object model may be refined further to represent the dynamic con-
text of every object. Typical contexts include the current activity of a person, the

status of a device, and the direction and placement of furniture.
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Related Work

Leonhardt et al. [27] proposed an approach that constructs a generic query layer
between the location sensors and the positioning systems. Although their ap-
proach is similar to and achieves some of our long-term goals (see Figure 2.1(b)),
it is meant to be applied to a lower layer between the IPS and physical sensor
devices. Their hierarchical model also addresses uncertainty and data conflicts
in the case of an unreliable indoor positioning environment. These issues are not
yet considered in DM4InL. Together with the time concept discussed in Section
2.1.9, these aspects will be investigated in our future work.

Kim et al. [28] proposed and Indoor Spatial Data Model (ISDM), which uses
CityCML to define location data for 3D indoor location-based services. ISDM
can define topologies among spatial elements using the 3D object topology model,
which is more expressive than the proposed building model. However, it lacks a
way to explicitly associate indoor objects with locations, as defined in the pre-

sented object model.

2.1.10 Summary

In this section, a Data Model for Indoor Location (DM4InL) is proposed, which
prescribes a common data schema to represent indoor location information. By
combining three data models (i.e., the location model, the building model, and
the object model), DM4InL represents location information of various objects in-
side a building in a standard format. The proposed method contributes to loose
coupling of InL-App and IPS, which will significantly improve the efficiency and
reusability in the development of InL-App. My future work includes the evalu-
ation of the data model based on practical use cases of InL-App, as well as the
design and implementation of the query API for DM4InL. Using the DM4InL
and the query API, we will also develop the Indoor Location Query Service (InL-
Query), which is a long-term goal. Finally, the extension of DM4InL (w.r.t. the
time concept, object contexts, local space, etc.) should be considered carefully in

order to address pragmatic issues (such as uncertainty and data conflicts).
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2.2 WIF4InL: Web-based Integration Framework for Indoor
Location

2.2.1 Introduction

Following the achievement of DM4InL (see Section 2.1), the main objective of
this work is the construction of a framework in which various InL-Apps can eas-
ily share and utilize indoor location information gathered using different IPS. In
this regard, a Web-based integration framework is presented for indoor location
called (WIF4InL) in this work. Using DM4InL, the proposed WIF4InL integrates
indoor location data obtained from existing heterogeneous IPS, and provides com-
mon operation as a service for various InL-Apps. In this respect, the two main
challenges must be addressed. The first challenge is data integration, i.e., con-
version of the indoor location data produced by heterogeneous IPS into DM4InL.
The next challenge is operation integration, i.e., the task of implementing com-
prehensive location-based queries to retrieve data from DM41InL, to be shared by
various InL-Apps.

To address these challenges, WIF4InL is designed based on the following three
components: (1) InL-Adapter, (2)InL-Database and (3)InL-Query. InL-Adapter
adapts the proprietary indoor location data to common data model DM4InL. The
InL-Adapter converts the uploaded location data into DM4InL. InL-Database is a
large-scale shared database that manages the translated data. InL.-Query provides
application-neutral API for various InL-Apps to query the indoor location infor-
mation. The operations for these components are published as cloud services, and
thus they are loosely coupled to service-orient architecture.

To evaluate practical feasibility, the proposed framework is applied to integrate
two different IPSs. The first IPS is RedPin [29], which uses Wi-Fi fingerprints to
locate mobile devices. The second IPS is BluePin, which uses Bluetooth beacons
to detect the proximity of devices. The proposed WIF4InL integrates the two
different IPSs so that applications can transparently use indoor location informa-

tion gathered by both systems. It is unnecessary for the applications to manage
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the differences between RedPin and BluePin. Given that WIF4InL facilitates the
loose coupling between IPS and InL-Apps, it improves the reusability and inter-
operability of indoor location information and operation. Thus, it is promising for

the reduction of development cost and effort of InL.-App.

2.2.2 Preliminary

Classification of IPS

In general, IPS can be divided into several categories:

e Vision Based Indoor Localization: Visual information can be collected
and used for indoor navigation as outlined in numerous examples in the lit-
erature (e.g., [30][31]). However, image-based localization consumes more
computing resource (image analysis) and power.

e Wireless Based Indoor Localization: Unlike light waves, significantly
longer waves in the electromagnetic spectrum such as radio waves and mi-
crowaves can penetrate doors and walls, and provide ubiquitous coverage of
a building. Development based on existing wireless technologies (e.g., Wi-
Fi, Bluetooth) is relatively easy and microwaves do not restrict human ac-
tivity in buildings. Moreover, the power and computing resources required
1s also significantly less compared to vision-based indoor localization. Most
current work in indoor localization use this approach.

e Other Methods: There are many other ways to achieve indoor localization.
They include the exploitation of ultrasound [32], acoustic background fin-
gerprints [33], accelerometers [34], and campus by adopting a dead-reckon
method [35].

Among the recent literature, wireless-based indoor localization methods are
prominently highlighted. According to the mathematical techniques used, they

can be categorized into the following three groups:

e Proximity: This method assumes that if a user enters within the range of

a known station, then the location of the user is approximated to the sta-
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tion. An IPS is been developed using Bluetooth Beacon technology which
is called BluePin. On detecting the proximity of a user, BluePin produces
symbolic location data. The following data “L1” indicates that user niu is

close to an entrance of room S101.

L1:{personld:niu, locationId:22, locationName:
S101 Entrance, LastUpdate: 2015/07/27 11:23:45
JST}

Triangulation: This method uses geometric knowledge to obtain the user’s
location. The location is determined by either the distance to the fixed
known measurement points, or the received signal angles.

Fingerprint: Fingerprint refers to the characteristic features of a signal.
The method assumes that each position in the area has a unique finger-
print. Relying on prior knowledge associate a fingerprint with a position,
the current location of a user is obtained. For example, Redpin [29] is an
open-source IPS which uses Wi-Fi fingerprint for zone-based positioning.
The following data “L2” is produced by RedPin, which represents a user’s

location by a point (345, 567) on a map KU-System-1F:

L2:{locationId:45, mapName:KU-System-1F, map
Xcord:346, mapYcord:567, symbolicId:S103,
macAddress:’08:60:6e:32:b6:0b’}

Cases of InL-App

In this section, Indoor Location Application (InL-App) refer to any location-aware

service or application that performs appropriate actions according to indoor lo-

cation information. To assist in the description of the approach, the following

examples are considered:

e SmartShop: This service advances coupons or loyalty program associ-

ated with a commercial entity such as a shop, to a smartphone, when a
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user approaches the shop. The user’s location is estimated by BluePin,
whereby a static beacon station is installed at the entrance of the shop.
When user ’1° gets close to the station, their smartphone uploads the
location data {personld:1, locationId:7, locationName:shopl,
lastUpdate:2015/07/27 11:23:45 JST}to a server. When SmartShop
determines that user ’1’° is in the shop, it advances shop coupons to that
user’s smartphone.

e LocEyes: This service determines the location of all staff working in
an institute. It is assumed that every staff member has a smartphone
with RedPin, and that the smartphone uploads the current indoor location
every 10 seconds. An instance of the location is {locationId:45,
mapName :KU-System-1F, mapXcord:346, mapYcord:567,
symbolicId:S103, macAddress:’08:60:6e:32:b6:0b’}. Based on
the data, the server visualizes the latest location of every staff member on

the map KU-System-1F.

It 1s easily understood that there is no compatibility between SmartShop (with
Bluepin) and LocEyes (with Redpin). Indeed, they are individually developed and
operated, considering the service objectives and the underlying IPS. Figure2.1(a)
shows the implementation architecture of these InL-Apps. It is evident that each
In-App is tightly coupled with an IPS, and that indoor location data and program
are managed independently within each system. Therefore, one system cannot
share or reuse the data and operation of another system. As a result, each InL.-App
must be developed independently of a preexisting framework, which increases

cost and effort.

Research Goal

As mentioned in Section 2.2.2, my research goal is to establish an application
platform as shown in Figure 2.1(b), which achieves loose coupling between InL-
Apps and the underlying IPS. This dissertation focuses on the implementation of

a framework that horizontally integrates the existing IPS and provides common
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operation as a service shared by various InL-Apps.

To implement such a common framework, it is necessary to address two main
challenges: data integration and operation integration. The data integration con-
siders how to convert the indoor location data produced by various IPS into one
that conforms to a common data model. We investigate how to convert the pro-
prietary indoor location data into DM4InL. On the other hand, the operation
integration deals with the implementation of comprehensive queries to retrieve

application-neutral location data from DM4InL.

2.2.3 Overview of WIF4InL

Architecture
To address the challenges mentioned highlighted in Section 2.2.2, WIF4InL (Web-
based Integration Framework for Indoor Location) is proposed. WIF4InL works
as an abstract layer between InL-App and IPS. This layer first integrates indoor lo-
cation data gathered by heterogeneous IPS and then provides application-neutral
APIs for various InL-App. As such, InL-App can transparently access different
IPS transparently.

Figure 2.1(b) shows its architecture. The WIF4InL consists of three compo-
nents: InL-Adapter, InL-Database, InL.-Query. The features of each component

are described as follows:

e InlL.-Adapter (Indoor Location Adapter Service)
This is a Web service that adapts the proprietary indoor location data to the
common data model DM4InL.. When a client uploads proprietary indoor
location data via a Web-API, the InL.-Adapter converts the data into a format
for DM4InL and inserts the converted data in a database (InLL.-Database, see
below). Because different IPSs create location data in a different format, we
need to implement a dedicated adapter must be implemented for every IPS.
¢ InL-Database (Indoor Location Database)
This is a large-scale shared database that manages the indoor location data

provided by InL-Adapter. Every record of indoor location data complies
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with DM4InL, and is stored with a time-stamp to keep the history.

e InL-Query (Indoor Location Query Service)
This is a Web service for querying indoor location data stored in the InL-
Database. It provides application-neutral APIs for various InL-Apps to
query the indoor location of any object. InL-Query provides two types of

APIs: fundamental API and composite API.

The entire WIF4InL is deployed as a web service, where the aforementioned

components are loosely coupled using service-oriented architecture (SOA).

Approach Overview
In order to manage the data integration and the operation integration, WIF4InL is

designed specifically as follows:

e Data Integration: Heterogeneous indoor location data are managed in a
single schema of DM4InL. The conversion from proprietary data format
into DM4InL is conducted by individual InL-Adapters. As such, it is un-
necessary to modify the existing IPS. A client uploads the location data via
the Web-API of a designated InL.-Adapter, where all the tasks for the data
conversion and storing are delegated to WIF4InL. The details of the InL-
Adapter will be described in Section 2.2.4.

e Operation Integration: Heterogeneous operations for the existing IPS are
consolidated by InL.-Query, whereby every InL-App can retrieve indoor lo-
cation data in DM4InL. Each application does not need to know the tech-
nical details of the underlying IPS. As will be shown in Section 2.2.5, InL-
Query provides fundamental API and composite API.

2.2.4 InL-Adapter for Data Integration

Overview
To achieve data integration of heterogeneous IPS, the proposed WIF4InL imple-
ments InL-Adapter (Indoor Location Adapter Service). InL-Adapter is a Web

service that adapts proprietary indoor location data to DM4InL format.
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As mentioned in Section 2.2.3, the clients for each type of IPS first uploads the
proprietary location data to InL.-Adapter, and then the InL.-Adapter converts the
data into a DM4InL format.

To implement this process, two main issues need to be addressed: topology
adaptation and data conversion. The topology adaptation considers the struc-
ture of uploading the measured data to InL.-Adapter, which will be described in
Section 2.2.4. The data conversion considers how the InL-Adapter converts the

uploaded data into DM4InL format, which will be described in Section 2.2.4.

Topology Adaptation

As a first step, it is necessary to modify the existing IPS slightly, so that the mea-
sured indoor location data are uploaded to an InL.-Adapter. For this modification,
it is necessary to consider the system topology of the IPS. However, the topol-
ogy varies from one IPS to another. Therefore, different adaptation patterns are

proposed for different topology IPSs.
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Fig. 2.6. Four Different IPS Topologies and Adaptation Patterns

According to Liu et al. [36], there are four different system topology for
IPS: remote-positioning, self-positioning, indirect remote-positioning, and indi-
rect self-positioning.

Figure 2.6 shows the four topologies. In this figure, a triangle is used to rep-

resent a static device or station deployed in the infrastructure, a circle represents
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the mobile device to be located, a rectangle represents a server and a hexagon
represents an InL-Adapter that is newly adapted to the existing IPS. The labels
“M”, “R” and “T” identify the roles measuring unit, signal receiver, and signal
transmitter, respectively.

Figure 2.6 (1) shows the remote-positioning topology, in which remote server
locates mobile device. Static stations receive the signal transmitted from the mo-
bile device and forward the signal to the server. The server then computes the
location of the mobile device. An IPS with presence sensors in [37] belongs to
this topology. In the remote-positioning topology, all the location data are man-
aged in the server. Therefore, we modify the server to upload the measured data
to an InL-Adapter.

Figure 2.6 (2) shows the self-positioning topology, where the mobile device
measures the location. This mobile device receives signals from the infrastruc-
ture, and computes the current location from the signals. IMES [13] and GPS
belong to this topology. In the self-positioning topology, all the location data are
managed by the mobile device. Therefore, we modify the mobile device to upload
measured location data to an InL.-Adapter.

Figure 2.6 (3) shows the indirect remote-positioning topology, where the mo-
bile device is indirectly identified by the remote server. To provide wide area
or multiple buildings coverage, several stations with the measuring capability
collaborate to transmit location data to the aggregation server. In the indirect
remote-positioning topology, the location data are managed by either the measur-
ing stations or the aggregation server. Considering that the aggregation server is
often complex and is implemented using un-modifiable patent products, a choice
is made to modify the stations to upload the data to an InL-Adapter.

Figure 2.6 (4) shows the indirect self-positioning topology, where the mobile
device indirectly obtains its location via the remote server. The mobile device first
receives signals from the infrastructure, then forwards the signals to the remote
server. The server computes the current location and returns the location data to
the mobile device. With the development of IoT and cloud technologies, this type
of IPS has gained popularity. RedPin and BluePin introduced in Section 2.2.2
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Fig. 2.7. Configuration of InL-Adapter

belong to this topology. In the indirect self-positioning topology, the location
data are held by either the mobile device or the measuring server. Considering
the complexity and workload of the measuring server, a choice is made to modify

the mobile device to upload the returned location data to an InL-Adapter.

Data Conversion
The second step takes the conversion of the location data that is uploaded by the
InL-Adapter to DM4InL into consideration. In general, every IPS defines its own
location data format by relying on specific infrastructure and/or positioning algo-
rithm. It is, therefore, impossible to enumerate data converters for all possible IPS
in this work. Instead, we present a template that describes the process involved
in the conversion of proprietary data by an InL.-Adapter to DM4InL format. Then
the template is validated using practical examples with RedPin and BluePin.

Figure 2.7 shows the configuration template of InL.-Adapter. As seen in the
figure, the role of the InL-Adapter is to convert the measured location data in a
proprietary format into DM4InL format. To achieve this conversion, two types
of data are essential depending on IPS: measured data and master data. The
measured data is real-time location data (i.e., raw data) measured by the given
IPS. The master data is static data specifying various configuration information
of the IPS, such as users, devices, stations, buildings, and indoor maps. As shown
in Figure 2.7, every InL.-Adapter contains data converter, which defines a specific
mapping from the measured data into DM4InL based on the master data.

To provide a more complete description I demonstrate the process of data con-
version of BluePin and RedPin using instances of location data “L1” and “L2”

(See Section 2.2.2). According to section 2.1.2, data items in “L1” and “L2” can
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be divided into three elements: time, object, position. With respect to the time
information, it is easy to introduce the common representation in UTC.

For example, 2015/07/27 11:23:45 JST in “L1” can be converted into
2015-07-27T02:23:45. For “L2”, since RedPin does not define a time at-
tribute, we need to modify the RedPin client to add the timestamp to “L2” as
2015-07-27T01:11:01.

For object information, a mapping is created from a proprietary ID of the lo-
cated object into an object ID. For instance, the person ID niuin “L1” of BluePin
is bound to the object ID of DM4InL. Using the master data of BluePin, other
data items of the object model can be filled. On the other hand, the macAddress
in “L2” of RedPin can be mapped to the object ID of DM4InL, since it is a unique
string.

The conversion of position information is complex. For “L1”, we need to con-
vert the symbolic information “22” and “S101 Entrance” into a spot in the build-
ing model of DM4InL. In addition, the spot should be represented by a local
point. For this, we use the master data of BluePin to look up the detailed location
information of 22. Considering the detailed information point positions (3.50m,
5.5m, 1.5m) of a building BOO1. A spot “S101 Entrance” is then created in BOO1
with coordinate (3.50, 5.50, 1.50). Finally, a mapping is defined from “L1” to the
spot.

However, as seen in “L2”, RedPin represents the position based on 2-
dimensional coordinates over a given map, i.e., an image of the floor plan.
Therefore, multiplying the coordinates by the map scale derives the actual X
and Y offsets. The Z offset can be derived from the altitude of the floor. Thus,
the coordinates of a local point can be calculated. The spot information can
be derived from the meta-data of the floor map. For instance, suppose that
KU-System-1F represents a map of the first floor of building BOO1 with altitude
1.5m and that the map scale is 1/51.6. Then, “L2” is converted into a spot bound
to a local point (6.70, 10.44, 1.50).

Based on this conversion, the heterogeneous measured data “L.1” and “L2” are

converted into DM4InL format shown in Table 2.1, 2.2, 2.3.
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Table 2.1. LocalPoint

Pcode x-offset y-offset z-offset Building-Seq
P0O01  3.50 5.50 1.50 B001-01
P002 6.70 10.44 1.50 B001-02

Table 2.2. Spot

BuildingID SpotID SpotName PointCode
B0O1 s00001 S101-Entrance PO031
B0O1 s00002 S103 PO01

Table 2.3. ObjectLocationLog

ObjectID P-Code DateTime
niu P0O01 2015-07-27T02:23:45
08:60:6e:32:b6:0b P002 2015-07-27T01:11:01

An InL-Adapter has been developed for RedPin and its client was modified.
The modification of the RedPin Android client required approximately 418 lines
of code, and the InL-Adapter of RedPin required approximately 536 lines of code.
The technologies used for the implementation are as follows: Language: Java
1.7.0, Database: MySQL 5.1, Web server: Apache Tomcat 7.0.57, Web service
engine: Apache Axis 2 1.6.2.

2.2.5 Inl-Query for Operation Integration

Overview
To achieve operation integration, the proposed WIF4InL implements InL-Query
(Indoor Location Query Service). InL-Query is a Web service that provides
application-neutral API for querying indoor location data stored in InL.-Database.
It is meant to be deployed on the web.

According to the data schema of DM4InL, we develop two types of API for
InL-Query: fundamental API and composite API, as mentioned in Section 2.2.3
The fundamental API includes an interface for querying entities within a signal

model individually: location, building or object model. The details will be de-
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scribed in Section 2.2.5. The composite API allows advanced queries accessing

multiple models simultaneously, which will be explained in Section 2.2.5.

Fundamental API

DM4InL represents the location information of every indoor object using the three
models: location, building and object. (See Section 2.1). Depending on the model
to which a given query belongs, we define three groups of API: location query

API, building query API, and object query API.

[ get ]— Query entity >— By —( Ait;{grbnl;te )

Fig. 2.8. Derivation Process of Building and Object Query API

Table 2.4. Detail Entity and Attribute Item Table

QUERY ATTRIBUTE ITEM
ENTITY
Theme Attribute BuildingID, Name, Type
BUILDIN
v G Spatial Attribute GPID
Theme Attribute PartitionID, Name
PARTITION
Spatial Attribute SpaceCode, BuildingID
Theme Attribute RoutelD, Name
ROUTE
Spatial Attribute LineCode, BuildingIlD
Theme Attribute SpotID, Name
SPOT . . : -
Spatial Attribute PointCode, BuildinglD
NULL ObjectID, Type
Theme People ObjectID, name, sex, ...
OBJECT Attribute

Appliance  ObjectID, Appliance Type, status, ...

Spatial Attribute PointCode

Time Attribute Date Time
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e Location Query API This API provides a set of methods (i.e., functions)

for querying any entity within the location model. As shown in Figure
2.5, the location model consists of four entities. Each entity has a set of
methods that returns appropriate instances based on given known attributes.
The naming convention of the methods is get[TargetEntity]By[given
attribute]. For instance, getLPByPointCode(pointCode) returns a
local point designated for the given point codes.
The local query API also facilitates methods querying spatial relation
among geometric primitives in the location model. The spatial relation can
be used to investigate how a spatial object in a space is located in relation
to another object. In Location Query API, two types of spatial relationships
are defined:

— Topological relation: This represents the topological relationship be-
tween two objects. The operators that manipulate the topological re-
lation include: within, covers, coveredBy, intersects, touches,
equals, disjoint, crosses, overlaps. For instance, getLPwitni-
nLSP(LocalSpace) returns all the local points within a given local
space.

— Distance relation: This represents the distance of an object
from another object. The operators that manipulate the distance
relation include: at, nearby, vicinity, far. For instance,
getLPnearbyLP(LocalPoint) returns all local points that are
nearby a given local point.

e Building Query API This API provides different methods for querying en-
tities defined in a building model. In order to address all possible queries,
methods are derived based on the structure shown in Figure 2.8. The figure
shows that every method is constructed by varying query entity and attribute
items. The query entity represents an entity to be returned by the method.
Each entity has a designated set of attribute items that describes the entity
from a theme or spatial perspectives. Table 2.4 summarizes the entities and

the attribute items contained in the building model (as well as in the object
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model). These methods are derived based on all the possible combinations
of the entities and the attribute items.

For instance, getBuildingByGPID(GPID) returns a building identified by
a given global position ID. In addition, getRouteByName (buildingID,
spotname) searches for routes in a given building by its name.

e Object Query API This API provides methods for querying entities in the
object model. Similar to the Building Query API, the methods are con-
structed based on the structure shown in Figure 2.8. The attribute items
are shown at the bottom of Table 2.4. It is evident that time attributes exist
for the object entity because an object usually occupies different locations
with the progression of time. The methods are derived from all the possible
combinations of the entities and the attribute items.

For instance, getObjectsAtPoint(pointcode, dateTime) returns a

set of objects that exist in a given local point for given date and time.

Composite API

The fundamental API allows only basic queries that are limited within a signal
model. Hence, it is often too primitive to meet the sophisticated requirements
of InL-App, which requires developers to integrate multiple API manually. For
example, to implement the query “Who is in Room S1017?”, the developer need
to integrate the building query API and the object query API. This motivated
the development of the composite API, which facilitates high-level queries by
internally combing fundamental APIs.

Several methods for the composite APIs have been derived based on typical
use cases of location query in InL.-App to minimize development cost and ef-
fort. Investigating typical use cases, three types of composite API have been
developed. The first type is building—object API, which returns geographic el-
ements of a building based on known information of an object. For instance,
getPartitionContainObject(objectID) returns a partition that contains a

given object. This method is implemented by re-using multiple methods of the
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fundamental API, specifically:

. |Partition getPartitionContainObject(objectID)
2 Object o=geObjectByID(objectID)
3 LocalSpace ls=getLSPContainsLP(o.pointCode)

4 Partition p=getPartitionByCode(ls.spacecode)

5 return p

The second type is object—building API, which searches for objects based on
known geographic elements of a building. For instance, getPeopleWithinParti
tion(bName, pName) returns people within a partition pName of a building

bName. This method can be implemented as follows:

. |Person [] getPeopleWithinPartition(bName,

> pName)

3 Partition p=getPartitionByName(bName, pName)
4 LocalSpace ls=getLSPBySpaceCode(p.spaceCode)
5 LocalPoint[] lps = getLPcontainedInLSP(1ls)

6 Person [] H = empty

7 foreach 1s in 1lps

8 Person h=getPersonAtPointIntim(

9 lp.pointCode, NOW)

10 push(H, h)

1 return H

The last type is calculation API, which measures a specific metric among
object and geographic elements using the spatial relations. For instance,
getDistanceBetweenSpotAndObject (buildingID, spotId, objectId)
returns the distance between a given spot and a given object. This method can be

implemented as follows:

1 |double getDistanceBetweenSpotAndObject(
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2 buildingId, spotId, objectId)

3 Spot s=getSpotBySpotId(buildingId, spotId)
4 Object o=getObjectByObjectId(objectId)

5 double d = getDistanceBetweenLP(

6 s.pointcode, o.pointcode)

7 return d

The implementation of the API is currently under way. The technologies used

for implementation are as follows:

e Language: Java 1.7.0,

e Database: MySQL 5.1,

e Web server: Apache Tomcat 7.0.57,

e Web service engine: Apache Axis 2 1.6.2.

2.2.6 Evaluation

To evaluate the practical feasibility of WIF4InL, a comparative study was con-
ducted among the three IPS: RedPin, BluePin and WIF4InL (that integrates Red-
Pin and BluePin).

Capabilities for Location-Dependent Queries

The comparison is based on the sufficiency of essential capabilities of location-
dependent queries [38]. Location-dependent means that any change of the loca-
tions of an object significantly affects the result of a query for the object. For
example, suppose that a user A wants to find friends within a range of 100 m
from A while navigating a shopping center. The result of the query depends on
A’s current position, as well as the location of the friends. According to [38], the

following capabilities should be specifically supported in indoor location queries:

e Position Queries return the locations of mobile and static objects and are

processed according to either a geometric or a symbolic model of space.
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Table 2.5. Comparison of Three IPS W.R.T. Capabilities of Location-Dependent Queries

IPS Position | Navigation | Range | kNN | Time
RedPin O X A A X
BluePin O X X X O
WIF4InL O A O O O

e Navigation Queries encompass all queries that directly help the users to
find and reach points of interest by providing them with navigational infor-
mation, while optimizing certain criteria such as total traversed distance or
travel time.

e Range Queries are used to find and retrieve information on objects of in-
terest or places within a user-specified range or area.

e k Nearest Neighbor(kNN) Queries search for the k closest qualifying ob-

jects relative to a moving user with respect to his or her current location.

Moreover, Liu et al. [36] suggested that time is also an essential attribute for

location-dependent query.

e Time queries search a target object and a location by time, or retrieves the
time from an object and a location. Each query depends on a record that the

object remained in the location at the time.

Result of Comparison
Table 2.5 compares the three IPS with respect to the aforementioned five capabil-
ities. In the table, labels O, A and X represent that the capability is “satisfied”,
“partially satisfied”, and “not satisfied”, respectively. Initially, it is evident that
all three IPS supports the position queries. Although their representations of the
position are different, they all have methods for querying the indoor location of a
target object.

The navigation queries cannot be supported by RedPin or BluePin. In both

cases, topology information among multiple locations is not maintained. In addi-



Chapter 2 Collection of Living Data of Individuals in OPHs 42

tion, it cannot be derived from individual location data, because each location is
represented as a pre-defined venue (not a position). However, once WIF4InL con-
verts their location data into DM4InL, the topology can be defined using the co-
ordinates of the locations. Using the topology, WIF4InL can support applications
to implement navigation queries. However, it should be noted that the queries are
limited to the spots or positions that are already registered in InL-Database.

WIF4InL. binds indoor location with a three-dimensional coordinate in
DM4InL. Using the topological and distance relations and the calculation API,
range queries can be easily implemented. However, the range queries cannot
be supported by BluePin because it specifies each location as a symbolic label,
from which we cannot calculate the range. The location data of RedPin contains
a two-dimensional coordinate on the map, from which we can calculate the
distance between two locations. However, when two locations are represented in
separate maps (e.g., different floors), the distance cannot be calculated. In that
sense, RedPin cannot fully satisfy the requirement of range queries. The same
discussion applies to the kNN queries because the essentials these queries are
almost the same as those of the range queries.

RedPin cannot support time query because the data does not contain any time
attributes. BluePin contains a time-stamp in the location data, while WIF4InL
manages time-series data of ObjectLocationLog in DM4InL. Therefore, these two
IPS can support time queries.

Based on the preceeding discussion, it is evident that WIF4InL supports more
capabilities for the location-dependent queries. Through data and operation inte-
gration, WIF4InL even enhances the existing proprietary IPS. Thus, it is expected
that application developers will be able to develop InL-App more efficiently and
intuitively using WIF4InL.

2.2.7 Related Work

Our work is closely related to the intersecting fields of indoor location framework,
indoor positioning platforms, and data modeling techniques for indoor spaces. A

number of indoor positioning framework or platforms have been proposed so far.
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Brachmann et al. [39] proposed a multi-platform software framework. It aims
to manage sensor data from different smartphone platforms to better understand
RSSI(Wi-Fi)-based and other sensor-based IPS. The key idea of this framework
lies in the normalization techniques for individual sensor data including data from
magnetometers, accelerometers and gyroscopes. Thus, the framework is limited
for wireless IPS, which are part of indirect self-positioning systems (see Figure
2.6-(4)). It does not consider other IPS topology. In this sense, the application
scope is narrower than WIF4InL.

Gubi et al. [40] presented a platform that can dynamically facilitate efficient
location technologies. As a user moves around a building, the platform suggests a
best-available indoor positioning method based on the current position of the user.
The platform manages building data in the form of a symbolic map, and markup
of associated RF infrastructure, Wi-Fi and Bluetooth. However, this platform
assumes that applications manage their own maps individually. Therefore, it does
not provide application-neutral API that can re-use the indoor location data over
different applications.

INSTEO Inc. [41] presented an IPS technology that relies on optimal hy-
bridization algorithms of multiple information sources. The data source includes
power measurement of Wi-Fi, Bluetooth Low Energy signals, smartphone sen-
sors (accelerometer, compass, barometer, and so on). However, this approach is
similar to Gubi’s, which focuses on the combination of location technologies at
the IPS level. Neither of them aims to achieve the loose coupling between IPS

and InL-App.

2.2.8 Summary

In this section, a web-based integration framework called WIF4InL has been pro-
posed to achieve data and operation integration for heterogeneous IPS. To re-
alize this objective, WIF4InL implements InL-Adapter which provides different
adaptation patterns for different system topology of IPS. InL-Query, which pro-
vides fundamental API and composite API based on the data schema of DM4InL.

has also been implemented. WIF4InL contributes to loose coupling of IPS and
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InL-App, which will significantly improve the efficiency and re-usability in the
InL-App development. The proposed framework has been applied to integrate
two existing IPS, RedPin and BluePin. In addition, the WIF4InL has been evalu-
ated by investigating the sufficiency of the five capabilities required for location-

dependent queries.
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2.3 Autonomous SensorBox

Autonomous sensorBox (referred to as SensorBox) is an 0T device with multiple
environmental sensors which was developed by our research group [42]. It can
measure seven environmental attributes around the box including temperature,
humidity, lighting intensity, atmosphere pressure, sound volume, human motion
and vibration, every 10 seconds. Figure 2.9 shows its physical form. It was
designed to minimize cost and configuration labor. Once connected to power
and a network, SensorBox autonomously measures environmental attributes in
the vicinity of the box and uploads the information to a cloud server. Thus, all
the operations for deployment and maintenance are performed without human

intervention or expensive infrastructure.

Fig. 2.9. Prototype of SensorBox

Figure 2.10 shows a screenshot of the raw sensor data that be modified to JSON
formal text. Figure 2.11 shows a screenshot of an application that represents
collected raw sensor data on cloud service. It can be readily determined that

changes in environmental attributes are man-made.
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Fig. 2.11. Screenshot of SensorBoxLogService
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Chapter 3

Recognition of Daily Activity

3.1 Recognizing Activity based on Non-intrusive
Environmental Sensing

3.1.1 Introduction

In the world, the number of people living alone is continuously increasing. Be-
cause people in OPHs are susceptible to the loss of control of the healthy life
rhythm, and because a chaotic life rhythm often leads to a deterioration in health,
it is essential to maintain a good life thythm, especially in the context of OPHs.
In general, a life rhythm is characterized by the activities of daily living. Typical
activities in OPH include eating, taking baths, and sleeping. If the cycle of activ-
ities becomes very different from those associated with a healthy life rhythm, the
resident is losing their life thythm. To maintain a life rhythm, it is necessary to
maintain a regular record of activities. However, keeping manual records requires
discipline and patience.

To automate activity recording in OPH, pervasive sensing technologies com-
bined with machine learning are promising technologies, because they can recog-
nize activities from automatically measured data. There have been many studies
based on activity recognition. Some approaches (e.g., [S] [6]) attempt to directly
capture the living metrics using cameras, or microphones. However, these sys-
tems are too intrusive to the user in the sense that their daily living situation is
under constant surveillance. There are also many studies that involve wearable
sensors, and/or indoor positioning systems to recognize activities (e.g., [7] [9]).

However, a wearable sensor is intrusive to the human body in that the user must
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always wear the sensor device at home. Because the home is a place where the
user is free from tedious things. Indoor positioning is intrusive at home, in the
sense that sensors and beacons must be installed into the house and objects. It is
expensive to deploy and maintain these systems.

To address these limitations, a new system is proposed that recognizes activi-
ties of OPH based on non-intrusive environmental sensing with machine learning.
In the proposed system, SensorBox (see section 2.3) is exploited, which was de-
veloped in our laboratory [42], and is designed to minimize the effort required for
deployment and operation.

Given the proposed method based on supervised machine learning, the pro-
posed system also requires initial training, where the resident manually records
activities using a designated lifelog tool. The initial training is supposed to be
performed over several days, to associate labels of activities with sensor data. In
the proposed system, I define seven basic activities (cooking, PC working, clean-
ing, bathing, sleeping, eating and going out), which are the most typical activities
for maintaining a life rhythm. For the labeled dataset, supervised learning algo-
rithms are applied to construct a model of activity recognition for the house. For
this purpose, careful feature engineering is performed to determine essential pre-
dictors that best explain the activities in OPH. Furthermore, we attempted to try
several different classification algorithms to compare performance.

To evaluate the proposed system, one SensorBox has been deployed in the
apartment of a single person, and an experiment was conducted for ten days.
Experimental results show that the average accuracy of all the seven activities
was approximately 87% for “Decision Forest” supervised learning. The accuracy
of some specific activities was over 90%. From this result, it is confirmed that
the proposed system achieves non-intrusive and practical activity recognition in

OPH, using SensorBox.



Chapter 3 Recognition of Daily Activity 49

3.1.2 Preliminary

Activities of Daily Living

In the field of health, activities of daily living (ADL) is a professional terminology
that was originally used at a hospital. It is the minimum action required to main-
tain daily life such as sleeping, eating, taking baths, etc. It is used as an indicator
of aging and the degree of disability. The discovery and recognition of activity is
an essential function of the system that provides necessary assistance to the resi-
dents of an OPH. Based on the results of this process, the intelligent system can
determine which action to take in order to support the resident’s well-being and

to understand their life rhythm based on the regular records of activities.

Related Work

Given that the need for activity recognition is great, researchers have investigated
the development of several methodologies to tackle this problem. The approaches
to activity recognition can generally be divided into two categories, depending on
the type of contextual information that is analyzed. The first category uses multi-
media data acquired using a video camera or microphone recordings, to directly
capture key aspects of daily living. The second category uses time-series data
measured using various sensors including accelerometers, gyroscopes, RFIDs,
and power-meters sensors.

Multimedia data: Brdiczka et al. [43] proposed a smart home that captured
videos of residents and processes the video to recognize activities. Although indi-
viduals have been generally resistant to at-home video monitoring [44], the accep-
tance of this technology in the home is increasing. On the other hand, processing
the video is computationally expensive. The process relies on the initial tracking
of the resident period to being captured and analysis of the appropriate video data.

Sensor data: Since video acquisition and audio exposes too much information
related to our daily living, it is considered to be intrusive. Therefore, it is better
to use passive information. Hence, most of the current research activities involve

recognition using sensor data. Researchers have determined that combining dif-
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ferent types of sensors is effective for classifying different types of activities.

Kusano et al. [7] proposed a system that derives life thythm by tracking the
movement of the elderly by using RFID positioning technology. They installed
many RFID readers on the floor of a house, and ask participants to wear slippers
with RFID tags. The readers captured the indoor location of the resident. The sys-
tem then determined the life rhythm of the user from the time-series location data.
However, it is difficult to determine the exact activity using movement history. As
a result, the accuracy of activity recognition is low.

Munguia-Tapia et al. [8] focused on the interactions of a resident with an ob-
ject of interest such as a door, a window, a refrigerator, a key, and a medicine
container. Munguia-Tapia et al. installed state-change sensors on regular items to
collect interaction data.

Philipose et al. [45] attached an RFID tag to some items (such as television,
fridge, bed), and asked a participant to wear gloves with an RFID tag reader.
When the participant was close to the item, the interaction was recorded.

Pei et al. [9] combined a positioning system and motion sensors of a smart-
phone to recognize human movements in natural environments. However, when
switching on the motion-sensors, Wi-Fi and GPS simultaneously, the battery drain
is very high. Another problem is that a user may not want to carry a smartphone

at times at home, which is a limitation of collecting data.

Challenges and Research Goal

Activity recognition has been widely studied over the past few years. By keeping
track of activities, a smart pervasive system can provide reminders to residents,
and react to hazardous situations [46]. Most of these studies apply to elderly
people, cancer patients, and ordinary families. However, there are few studies
on One-Person-Households (OPHs). The unique characteristics of OPH are as
follows: the resident is living alone and is often required to do everything by
themselves. Typically, they do not want to change their way of living or pay for
expensive systems simply to monitor activities.

As mentioned in Section 3.1.2, there are many existing systems that use wear-
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able sensors, object-embedded sensors, or indoor positioning systems. However,
it is considered that it is difficult for people in OPHs to accept these technolo-
gies, because they are often exaggerated and intrusive to their life. One can easily
imagine that most residents will forget or give up on wearing sensors, since the
home is the place where the resident attempt to make themselves comfortable.
Although labs or companies can manage large-scale equipment, it is still too ex-
pensive to deploy in an OPH.

The goal of this research is to minimize the limitations of conventional ap-

proaches, and to achieve high-quality activity recognition of an OPH.

3.1.3 Outline of Proposed System

In order to achieve this research goal, a new activity recognition system for OPH
was proposed. To minimize intrusion and cost, the proposed system relies on the
environmental sensing by the SensorBox [42]. Figure 3.1 shows the architecture
of the proposed system. Using the figure, we explain the proposed system from
left to right.

The system was initially set up within a target OPH. A single (or multiple if
necessary) SensorBox was deployed in a position where activities are well ob-
served as environment measures. A software called LifeLogger was then installed
on the user’ s PC. To apply supervised machine-learning algorithms, the proposed
system requires training data at the initial phase of operation. For this, LifeLLog-
ger is used to attach correct labels of activities (as lifelog) to the environmental
sensing data.

Then, the system begins to collect time-series data. SensorBox uploads the
measured data to MongoDB in a cloud server, whereas LifeLLogger inserts the
lifelog into MySQL in the cloud data.

Finally, the system joins the two time-series data with the timestamp to form
the training data. Machine learning is applied to the training data to construct a

prediction model of activity recognition.
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Fig. 3.1. Proposed System Architecture

3.1.4 Data Collection

Environmental Sensing
In the proposed system, SensorBox was exploited, which was described in de-
tailed, in section 2.3.

To be able to detect activity by analyzing non-intrusive environment attributes,
the target attributes must be sensitive to the changing of resident’s ADL. Consid-
ering that the range of sensible is only around the SensorBox, the box should be
put on where resident’s activity is frequently conducted. However, the layout of
each house and living circumstance of every single resident is different among

OPHs. Hence, the most suitable position of SensorBoxdiffers for different OPHs.

Activity Labeling

During the initial several days, the resident needs to input correct labels for activ-
ities, so that the system can learn these activities from the environmental sensing
data. For this purpose, the residents were asked to use LifeLogger. Figure 3.2
shows the user interface of LifeL.ogger. As shown in this figure, LifeLogger has
8 Buttons, each of which corresponds to an activity. When the resident initiates
an activity, he/she simply depresses the corresponding Button to record the cur-

rent activity. Based on relevant studies [47] [5], 8 types of typical activities were
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Fig. 3.3. Raw Data of Life Log

chosen (sleeping, eating, bathing, cooking, PC working, cleaning, going out and
other), and registered them in LifeLogger. When the resident depresses a Button,
the system recorded the label and stored it in MySQL in a cloud server. Figure
3.3 shows the raw data of lifelog in the local PC. The tool’s record of the start

time and end time of the activities is evident.

Integration of Environmental Sensing and Activity Labeling Data

For supervised learning, the system required to training data that have a cor-
respondence between the activities and data in advance. In order to establish
training data, we integrate the two time-series data collected by SensorBox and
LifeLLogger by joining based on the timestamp. Since data labeled as ’other’ was
beyond the scope of the activity recognition, these noise data must be filtered.

Table 3.1 shows the training data.
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Table 3.1. Training Data

DateTime vibration light motion gaspressure temperature humidity sound activityID

2017/2/19 3:33:02 495 1 0 98.8 13.33 35.84 50.15 5
2017/2/19 3:33:12 494 1 0 98.8 13.33 36.04 0 5
2017/2/19 3:33:22 494 1 0 98.8 13.33 36.04 51.62 5
2017/2/19 3:33:32 494 1 0 98.8 13.33 36.04 0 5

3.1.5 Establishing Machine Learning Recognition Model

Analysis Activity-sensitive Environment Sensing Sensors

For accurate activity recognition, it is essential to identify the environmental val-
ues in the sensing data that best predict activity. From the seven environmental
attributes of SensorBox, Only temperature, humidity, light, sound volume, and
motion were chosen because the remaining attributes (vibration and atmosphere
pressure) seem irrelevant to the target activities. According to compared about 20
recognition models based on different combinations of environmental attributes,
the determination was made that sensing data of gasPressure and vibration is al-

most not affected by the resident’s activity.

Feature Engineering

Feature value is the data that is effective in the identification of the activities.
In this study, the feature values are obtained from training data according to the
following process.

The size of time-window is first determined. To enhance the features of the
time-series data, the raw data within the same time-window is aggregated into
one data. In this case, the window size affects the accuracy. If the size is too
large, the window is likely to contain different activities. If it is too small, the
window will not contain sufficient data to reason and predict an activity. Hence, 3
variations of 1, 2 and 3 minutes were tested. In order to facilitate the discussion in
Section 3.1.6, the symbols ("A’, ’B’, ’C’) were used to present different datasets
with different time-window sizes. The detail is such that A: 1minute, B: 2 minutes
and C: 3 minutes.

Finally, for each of the five environmental attributes chosen, an aggregation
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function was determined. An aggregation function aggregates all the data within
the same time-window. Typical, aggregation functions include Maximum value
(MAX), Minimum value (MIN), Average value (AVG), Standard deviation
(STDEV), and so on. Based on the nature of each environment attribute, an
appropriate function was carefully chosen. A different aggregation function must
be applied to each environmental attribute. By analyzing all the tests, the optimal
combination of aggregation functions is determined. However, if all situations
need to be tested, then hundreds rounds of tests need to be performed, which is
time-consuming. To effectively tests all cases of function combination, a tool
called PICT [48] was used. PICT generates a compact set of parameter value
choices that represent the test cases required to achieve comprehensive combina-
torial coverage of the parameters. Table 3.2 shows the 9 cases of combinations

generated by PICT.

Table 3.2. Nine Groups of Aggregation Funcations

Groups light motion temperature humidity Sound

Gl MIN MAX AVE AVE MAX
G2 MAX MAX STD STD STD
G3 AVE AVE STD STD MAX
G4 MAX AVE AVE AVE MAX
G5 MIN AVE AVE STD AVE
G6 AVE AVE AVE AVE STD
G7 MAX MAX STD AVE AVE
G8 AVE MAX AVE AVE AVE
G9 MIN AVE STD STD STD

Establishing Recognition Model

For the developed features of the training data, machine-learning algorithms are
applied, to construct a prediction model for activity recognition. Popular classifi-
cation algorithms are then used, including Logistic Regression, Decision Forest,

and Neural Network. Using these algorithms, it is possible to construct predic-
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Fig. 3.4. Apartment of Testbed, Position of SensorBox

tion models that classify given environmental sensor data into one of the seven

activities.

3.1.6 Evaluation of Experimental

Experimental Setup

The proposed system was deployed in an actual apartment of a single resident. As
shown in Figure 3.4, the apartment is an ordinary apartment in Japan, consisting
of a bed/living room, a bathroom and a kitchen. A single SensorBox was placed
in the kitchen room so that this device could also observe the activities of the
resident. The position of SensorBox is represented as a red pin in Figure 3.4. A
total of 45,693 rows of labeled sensor data which did not include the data labeled

with ’other’, was collected during 10 days within the apartment.

Result

A total of 81 recognition models were established based on the 3 sizes of time-
windows, 9 combinations of Aggregation Functions and 3 machine-learning al-
gorithms. These models were tested by training and learning the collected data.
In this subsection, we show the test result of all the models, the Average Accuracy
of each trained activity recognition model. Accuracy measures the goodness of a
classification model as the proportion of true results to the total numbers of cases.

Average accuracy is the average of each accuracy per class (sum of accuracy for
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each class predicted/number of class).

In order to facilitate the observation of each model’s performance, all the mod-
els were divided into three tables according to the size of time-window, Table 3.3,
3.4 and 3.5, and draw a bar graph for each table, Figure 3.5, 3.6 and 3.7.

For the tables, each column represents the method of data processing in feature
engineering and is identified by a name that contains two characters, a capital let-
ter and a number. The capital letter means the size of time-windows, as mentioned
in the subsection Feature Engineering. The number represents the combination
of the group number of the aggregation functions in Table 3.2. In an example in
Table 3.3, A4 indicates that the size of time-window is 1 minute and the utilized
combination of Aggregation Functions is G4 for the data process of feature engi-
neering. The row of the table is identified by the name of the machine-learning
algorithm. Each cell indicates the average accuracy of each model. In one exam-
ple, the average accuracy of the recognition model exceeded 88.10% for the case
where the size of time-window was 3 min, the utilized combination of aggregation
functions was G4 and the algorithm is the multiclass decision forest.

For the three bar graphs, the vertical axis represents the average accuracy and
the lateral axis represents the column of the relevant table. The color of the bar
represents the algorithms, the row of the relevant table.

By comparing the average accuracy of models for different time-window sizes
such as the blue bars of A1, B1, and Cl1, it is evident that the size of time-window
slightly influence the average accuracy of the model. By comparing the results of
models on different methods of feature engineering in one graph, it can be seen
that the models have significantly different performance for different combination
of aggregation functions. By observing the three graphs of table, Figure 3.5, 3.6
and 3.7 it can be seen the models utilized multiclass decision forest, represented

by the orange bars, have better performance than the other models.

3.1.7 Evaluation

In this subsection, the relationship between the three factors and the accuracy of

recognition activities based on the part of the representative data selected from
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Table 3.3. All Results for Time-Windows of One Minute

Multiclass Algorithm Al A2 A3 A4 A5 A6 A7 A8 A9
Neural Network 84.36% 83.98% 84.27% 83.95% 83.96% 84.61% 84.28% 8527% 84.23%
Decision Forest 85.83% 86.56% 86.24% 8391% 84.43% 86.78% 87.54% 87.83% 86.41%

Logistic Regression ~ 83.51% 85.23% 8521% 83.16% 85.73% 83.18% 85.92% 82.05% 85.22%
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Fig. 3.5. Visualization of Table 3.3

Table 3.4. All Results for Time-Windows of Two Minute

Multiclass Algorithm B1 B2 B3 B4 B5 B6 B7 B8 B9
Neural Network 84.10% 84.92% 84.87% 85.14% 83.08% 85.66% 84.45% 85.14% 85.09%
Decision Forest 84.52% 87.68% 86.18% 87.56% 84.62% 84.59% 87.30% 83.72% 86.49%

Logistic Regression ~ 83.57% 85.79% 85.14% 83.05% 85.57% 83.92% 8594% 82.53% 85.71%

Table 3.5. All Results for Time-Windows of Three Minute

Multiclass Algorithm Cl1 C2 C3 C4 C5 C6 C7 C8 c9
Neural Network 84.62% 85.14% 85.07% 84.99% 82.11% 8544% 84.25% 84.29% 84.70%
Decision Forest 85.92% 86.44% 85.10% 88.10% 85.25% 84.62% 87.10% 84.66% 86.21%

Logistic Regression ~ 83.00% 86.77% 84.99% 82.59% 85.44% 8429% 8599% 82.59% 86.44%

huge volumes of experimental data is evaluated.

The effect of the time-window on the accuracy is initially evaluated. Table 3.6
shows the accuracy of three recognition models for several activities (cooking,
sleeping, and eating). The three recognition models utilized the same aggregation
function and the algorithm expects the size of time-window. From the results,

it can be seen that the accuracy of the three activities is slightly affected by the
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Fig. 3.6. Visualization of Table 3.4
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Fig. 3.7. Visualization of Table 3.5

size of time-window, and the 2 min is likely an appropriate value because the
accuracy of recognition activities is the highest in this case, expect eating that was
recognized in the highest accuracy when time-window was 3 min. The change in
accuracy can be caused by a very small change in the size of the time-window,
which confirms the aforementioned view that the size of time-window should not

be too large or too small.
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Table 3.6. Comparison of The Accuracy of The Three Models for Three Time-Windows

Time windows Cooking Sleeping Eating
I minute (A) 86.00% 89.90% 54.10%
2 minutes (B) 89.70% 89.90%  55.70%
3 minutes (C) 87.80% 89.70f% 55.90%

The effect of the aggregation function on accuracy was then examined. Table
3.7 shows the accuracy of three recognition models for the recognition of several
activities (cleaning, sleeping, and going out). The three recognition models uti-
lized the same sized time-windows and algorithms, except that the combination
of aggregation functions for the five environmental attributes. From the result, it
is evident that the aggregation functions have a great influence on the accuracy
of each activity recognition. For the G4, the accuracy of going out recognition
is only 17.6%, which is 45% less than G8. However, the accuracy of predict-
ing sleeping is almost equal to G8. For the three models, the accuracy of sleep
recognition achieves the highest value using the combination of G7. However,
the model of G7 performs poorly for the recognition of cleaning and going out.
For G8, the accuracy of predicting sleeping is less than G7, but the performance
for predicting cleaning and going out is much better than G7. Hence, from these
comparisons it can be seen that the system need to apply different combinations of

functions to each activity, i.e., the feature value for various activities is different.

Table 3.7. Comparison of The Accuracy of Three Models on Three Aggregate Functions

Aggregate Function Cleaning Sleeping Absence

G4 47.10%  73.00%  17.60%
G7 39.40%  95.50%  21.10%
G8 62.60% 72.710%  62.40%

Finally, the effect of the algorithms on accuracy was investigated. Table 3.8
shows the accuracy for three recognition models for recognition of several activi-

ties (cooking, sleeping, and eating). Those models utilized the same time-window
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size and combination of aggregation functions, except for the algorithms. From
these results, it is evident that Decision Forest performs better than Logistic Re-
gression for the recognition of the three activities. In the case of the Neural Net-
work, it has the best performance for predicting sleeping and eating, but it has the
worst performance for predicting cooking. Based on the abnormal result, it ap-
pears that the amount of data used is not suitable for a neural network. In practice,
the amount of cooking and eating data used was only 3.8% and 5.2% of the total
data, or less than 400 elements. For these three models, Decision Forest exhibited
a more robust performance compared to than others models with a limited amount

of training data.

Table 3.8. Comparison of The Accuracy of The Three Models With Three Algorithms

Multiclass Algorithm Cooking Sleeping Eating
Logistic Regression (LR) 59.60% 44.30% 41.30%

Decision Forest (DF) 67.50% 72.710%  62.60%

Neural Network (NN)  20.20% 85.30%  93.50%

3.1.8 Summary

In this section, a new system is proposed that automatically recognizes activity
in OPH. Considering the characteristics of OPH, the proposed system exploits
only environmental sensing by the SensorBox. This minimizes the cost of de-
ployment, as well as the level of intrusion of the residents and their homes. To
evaluate the proposed system, the system was deployed in an actual apartment
of a single resident and collected sensor and lifelog data for 10 days. Using su-
pervised learning with careful feature engineering, it was possible to construct
practically feasible models for seven types of activities. The average accuracy
of all activities was achieved by more than 88%. For sleeping recognition, the
accuracy of recognition was more than 90%. Moreover, the influence of the time-
windows, aggregation function and machine-learning algorithms on the accuracy

of recognition activities was investigated.
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3.2 Recognition of Activity Using Environmental and Indoor
Location Sensing

3.2.1 Introduction

In Section 3.1, a system was proposed that recognizes 7 daily activities of res-
idents in OPHs based on non-intrusive environmental sensing using machine
learning. The non-intrusive environmental sensing data covers environmental at-
tributes (sound volume, light, temperature, humidity, presence) that are collected
by an IoT-based device called SensorBox. The system has been investigated in
a real OPH[49]. More than a hundred Activity Recognition (AR) models for the
system were established. Although the average accuracy achieved was approxi-
mately 90 and some special activities were recognized with accuracy in excess of
90%, the Macro-averaged recall [50] of most models was low at approximately
60% [51] and the Micro-averaged recall [50] of some models was approximately
75%. The accuracy of the recognition of some activities was very low. For exam-
ple, the predicted accuracy of PC work was 18.2% and bathing was only 4%.

By analyzing the experimental results, it was determined that there are two
main reasons for the unsatisfactory results of previous work. The first reason is
that the system could not classify some activities using sensing environmental
information of the entire house or apartment. On the contrary, the information
for irrelevant rooms whereby some activities have a limited influence on the room
environment, disturbed the process of activity recognition. For instance, when a
user was bathing in a bathroom that was near the kitchen, the system incorrectly
predicted that the user was doing PC work with a probability of 48% and sleeping
with a value of 16%. However, the user performed PC work and Slept in the living
room, which was far from the bathroom. The second reason is that environmental
sensing data does not contain enough feature values for every recognized activity,
which impacts of some activities for which the indoor environmental attributes are
similar. For instance, when the user was sleeping in the morning, by analyzing

environment sensing information (such as light, sound volume, presence etc.),
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the system couldn’t distinguish between Absence and Sleeping. As a result, the
system faulty predicted Absence in 11.6% when the user was sleeping.

In order to improve on the precision accuracy, it is necessary to remove un-
desired environmental information of irrelevant rooms for every activity and to
collect more information created by residents to improve the feature value of each
activity.

In order to achieve this objective, a single house or apartment was divided into
at least two zones such that the resident always perform some special daily ac-
tivities. The division is based on the arrangement of the houses or the rooms in
a house or apartment, and the user’s habits of daily activity. For example, the
living zone is area where the user typically eats and sleeps and the kitchen zone is
an area where the user typically cooks. A sensorbox was deployed in each zone.
The system was then set to recognize activity by only analyzing the environmen-
tal sensing information of the zone where the activity occurred, instead of mining
the information of all rooms. Moreover, the indoor location of the residents was
sensed and the non-intrusive environmental sensing was integrated with the in-
door location information for activity recognition.

For the proposed system, three research questions (RQ) were set for evaluation.

e RQ1: What is the percent improvement in accuracy when the proposed
method is utilized?

e RQ2: Which multi-classification algorithm is more suitable for the recogni-
tion model?

e RQ3: How long can the recognition model achieve stable, high-quality of

activity recognition for training?

In order to provide a rigorous answer to each research question, the proposed
system was deployed in an actual setting and the apartment with a single resident
(OPH). Experiment was conducted during the period May 29th 2017 to July 31st
2018. Valid data was retrieved for 31 days from the period. Approximately one
hundred AR models were investigated in addressing the three research questions.

For RQ1, the result of comparison between the proposed system and the pre-
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vious system shows that the former improved the macro-averaged recall by ap-
proximately 10and significantly improved the accuracy of several activity recog-
nition such as sleeping, going out, and bathing. For RQ2, three popular multi-
classification algorithms were then compared for AR models: Neural Network,
Logistic Regression and Decision Forest. From the result of this comparison,
it was determined that the Decision Forest is best suited for activity recognition
compared to the other models. Finally, for RQ3, in order to determine the nec-
essary time for the training phase for the utilization of the system, a detailed
comparison of the 21 AR models were conducted with different length of training
periods for the proposed and previous system. From the results, it was determined
that the proposed system required less time for training phase than the previous
system. The required training pahse of the proposed system was approximately
7 days while that of the previous system was approximately 15 days, until the

system achieved acceptable stable and high quality.

Problems of Previous System
To achieve the research goal (see Section 3.1.2), an AR system based on non-
intrusive environment sensing technology was proposed (see Section 3.1). Over
one hundred AR models were established based on careful feature engineering to
determine essential predictors that best explain daily activities in OPH. Further-
more, three classification algorithms were tested to compare their performances.
The system was deployed in the actual apartment of a single person and experi-
ments were conducted. Experimental results show that the average accuracy of for
all seven daily activities was approximately 90% and the accuracy of some daily
activity recognition excessed 92%, as was the case for cooking, sleeping and go-
ing out. However, the other four daily activities could not be correctly measured,
so the precision these activities was lower than 50%, which resulted in a Macro-
average recall of around 60%. Macro-averaging represents the unweighted mean
of precision, recall, and accuracy metrics [52]. Macro-averaged recall is more
important than micro-averaged recall in this instance because the latter tends to

weigh the most frequent daily activities heavily while macro-averaging considers
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all daily activities to be equally significant [53].

By analyzing the results of multiple trained models, it was determined that there
are two main reasons for unsatisfactory performance. Firstly, the environmental
information of irrelevant room in where human activity almost cannot influence
disturbed recognition of some daily activities. Secondly, the environmental at-
tributes are insufficient to distinguish between several basic daily activities. To
illustrate these two reasons, the analysis of the results for a trained AR model is
presented. Figure 3.8 displays the confusion matrix of the result.

The 4th row of the matrix shows that the system incorrectly predicted that user
was doing PC work in 48% and sleeping in 16%, when the user was actually
bathing in the bathroom near the kitchen. However, the user performed PC work
and slept in the living room which was far from the bathroom. It was considered
that this result was obtained because the system could not classify some special
activities based on the environmental information acquired for the entire house or
apartment. On the contrary, the information of irrelevant room where some activ-

ities almost cannot influence the room environment, which influenced the process
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Fig. 3.8. Confusion Matrix of Predicted Result
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of activity recognition. Hence, we should make system analyze environment of
zone in where activity was occurred include irrelevant zone or room.

Then, the 2nd row of the matrix shows that the AR model cannot differentiate
between “PC-working” and “Absence”. When the resident is working in front of
his desktop PC, the system predicted that no one was in the room with 59.3%
probability and predicted that the user was sleeping with 17.9% probability. The
3rd and 6th rows of the matrix indicate that the system also fails to recognize
cleaning and eating. Moreover, by observing the Sth row of the data, it is evident
that the system also incorrectly concluded that there was no one in the room when
the user was sleeping. Obviously, one reason for these results is that the environ-
mental states that result from caused by the daily activities are similar. However,
those daily activities can be easily identified by the user’s position and motion in-
formation. For example, for PC working and going out, the current locations are
of these two daily activities are obviously different. Therefore, it is necessary to
incorporate new information to the previous system to improve the feature values

of every activity.

3.2.2 Proposed Method

Key Ideas
In order to address these problems, it is essential that location information is
collected for the residents as they perform daily activities. Hence, three key ideas

were considered.

1. A house or apartment was divided into at least two zones where resident
always performs special daily actives. The division of the house is based on
the arrangement of houses or rooms in a house or apartment and the user’s
pattern of daily activity. For example, the zone of living is the area where
the user always eats or sleeps and the zone of kitchen is the area where the
user typically cooks. A sensorbox was deployed in each zone. We then
classified activity according to the zone where the activity occurred, such as

the activity of the living zone or the activity of the kitchen zone.
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Fig. 3.9. Architecture of Proposed System

2. The system was set to recognize activity by only analyzing the environmen-

tal sensing information of the zone where the activity occurred, instead of
mining the information of all rooms.

. Regarding the measurement and collection of the indoor position of individ-
uals, the precision of the measurement position information is much higher
than that of the motion sensor data, which was only able to detect the pres-
ence of human activity. Therefore, it is necessary to install an indoor posi-
tioning system. In order to adhere to the original research goal mentioned
in Section 3.1.2, a complex and expensive Indoor Positioning System (IPS)
was excluded from the design and as such, we considered using BLE Bea-
con which allows smartphones and other devices to determine location by
measuring the Received Signal Strength Indicator (RSSI) [54] transmitted
from another beacon. Finally, the environment sensing data was integrated
with the Beacon RSSI data with a timestamp, an ADLs recognition model

was built based on the integrated information.
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Architecture of System

Figure 3.9 shows the architecture of the proposed system. Based on the figure, a
brief explanation of the function of each component and the data processing will
be provided in this subsection.

The system was initially set up in a target OPH. A SensorBox was deployed
in each zone and Beacon stations were introduced to measure the indoor position
of the user. A LifeLogger software on resident’s PC and a beacon measuring app
"BluePIN’ on their smartphone. To implement the supervised machine-learning
algorithms, the system requires training data at the initial phase of operation. This
system consists of two phases: training and operation.

In the training phase, the user was asked to manually record lifelog data using
the LifeLogger. The lifelog data was used to attach correct labels of activities
to the environmental sensing data and the beacon RSSI data. Then, the system
converts the raw lifelog data into time-series data using an application that is
represented as a black square identified by a ’C’. The system converts beacon and
sensor data using applications that are represented as a black square identified
with AF’ and ’AF’, and then integrates the converted sensor and beacon data
based on the timestamp and location. Next, the system creates training data by
joining the time-series activity log and integrated data based on the timestamp.
Finally, a multi-classification is applied algorithm to the training data to construct
an AR model.

In the operation phase, the system automatically classifies the stream data into

daily activities based on the AR model established in the training phase.

Data Collection

During the initial several days, the resident needs to input correct labels for dif-
ferent activities so that the system can learn their daily activities from the sensing
data, which is similar to the previous system. To accomplish this, the residents
were asked to use LifeLogger (see the Section 3.1.4), which logs the beginning

and end time of an activity.
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Fig. 3.10. Visualization of Raw data

Table 3.9. Raw Environmental Sensing Data

Light Sound Motion Temperature Humidity Vibration gasPressure Presence Datetime
0 68.61  false 23.7 34.7 495.0 98.2 0 2017-05-28T00:31:46+09:00
0 69.60  false 23.7 34.7 495.0 98.2 0 2017-05-28T00:31:56+09:00
0 68.09  false 237 34.8 496.0 98.2 0 2017-05-28T00:32:05+09:00
0 68.61  false 23.7 34.7 495.0 98.3 0 2017-05-28T00:32:15+09:00
0 69.60  false 23.7 34.7 495.0 98.3 0 2017-05-28T00:32:24+09:00
0 69.60  false 23.7 34.7 495.0 98.3 0 2017-05-28T00:32:34+09:00
0 69.60  false 23.7 34.8 496.0 98.3 0 2017-05-28T00:32:43+09:00
0 68.61  false 23.7 347 496.0 98.3 0 2017-05-28T00:32:53+09:00

For the collection of sensor data, considering that the sensitive range of these
sensors is generally in the vicinity of the SensorBox, the box should be placed
near the area where the resident frequently performs different activities. However,
the layout of each house and the living styles of individuals vary significantly for
different OPHs. Hence the most suitable position for the SensorBoxes also dif-
fers depending on the characteristics of the OPH. Considering that apartments
normally consist of multi-zones for human activity, such as a living room for eat-
ing, studying and relaxing, and a kitchen for cooking, the SensorBoxes should be
distributed in each main zone, as far apart as possible. Therefore, based on the
location of the zone where the activities occurred, the system selects an appro-
priate SensorBox to measure the activity of a resident. The SensorBox measures
seven environmental attributes, such as sound volume, lighting intensity, tempera-

ture, humidity, vibration, gas pressure and presence, every ten seconds. Table 3.9
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Table 3.10. Raw Beacon Data

Lastupdate Minor RSSI
2017/05/29 01:18:51 03 -70
2017/05/29 01:18:51 03 -70
2017/05/29 01:18:51 03 -70
2017/05/29 01:18:51 03 =72
2017/05/29 01:18:51 03 =72
2017/05/29 01:18:51 03 -73
2017/05/29 01:18:51 03 -68
2017/05/29 01:18:52 03 -68

shows the raw sensor data obtained from a SensorBox using a MongoDB server
by exporting the information as a CSV file. Figure 3.10 is a representation of two
sets of sensors data.

To collect beacon RSSI data, a simple Beacon Measuring System is deployed
in the user’s home. In the system, multiple beacon stations are deployed in the
apartment, and a mobile device with a beacon measuring app installed should be
utilized. The RSSI of each beacon station is then measured and uploaded to the
cloud server ten times every second. The position of the user can be calculated
based on the RSSI value. Figure 3.10 shows the representation of the Beacon
data and Table 3.2.2 shows the raw data of one beacon. The data is obtained from
a MongoDB server by after being exported as CSV files. The ID of one of the

beacon stations in the station group of one of the buildings is ’"Minor’.

Feature Engineering

Feature engineering is the process of using domain knowledge about the data
to create feature values that allow the machine learning algorithms to function.
This is fundamental to the application of machine learning. The feature value is
data that effectively identifies daily activities. In this report, a methodology is
proposed for the Beacon data and the integration of the Beacon and sensor data.

In this subsection, the data processing of feature engineering will be described in
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detail.

For lifelog data, a lightweight application was developed to convert semantic
daily activity log data into time-series log data for each the second, thereby it is
convenient to label sensor and beacon data with a timestamp.

For environmental sensing data, the feature value was obtained by the following
process. The activity-sensitive environment attributes were initially analyzed. For
accurate activity recognition, it is necessary to identify the environmental values
in the sensing data that best predict the activities. Then, the size of the time-
window is determined and the raw data is aggregated within the time-window into
one dataset to enhance the features of the time-series data. Typical aggregation
functions include MAX, MIN, AVG, STDEYV, and so on. A detailed methodology
of this process has been presented in section 3.1.5.

For the beacon data, the processing is similar to that of the environmental sens-
ing data. The system extracts the feature value from aggregate data within the
time-windows. Since the beacon signal is susceptible to changes in the environ-
ment such as humidity and the number of users present and is also easily reflected
by surfaces (walls, ceiling, floors, etc.), many of the signals received by the mo-
bile device are noise data. Hence, the first step is noise reduction, in particular,
the filtering of signals reflected from surfaces. Signals that are farther away from
the transmission are weaker signals. The max RSSI is extracted and saved in one
second.

The aggregated sensor data and beacon data are then integrated based on this
consistent time-window. To achieve the first key idea; the mining of the envi-
ronmental attribute only in the room or zone where activity occurs, the sensor
data and beacon data are integrated based on the location information, which is
calculated by the RSSI. When the RSSI of one Beacon is larger than a defined
value, then it is determined that the activity of interest is currently occurring in
that room. The room’s environmental sensing data is then integrated with the
Beacon data.

Finally, training data is created by joining the time-series activity log data and

integrated data based on the timestamp. Table 3.2.2 shows the real training data.
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Table 3.11. Training Data

datetime light sound temperature humidity presence b2.ave b2.min b3.ave b3.min ADLid
2017/5/29 1:20:00 5.00 86.94 0.10 0.08 88.00 -5835 -55 -66.94  -63 5
2017/5/29 1:20:30 6.00 88.22 0.00 0.00 67.00 -57.62 -57 -6475  -62 5
2017/5/29 9:55:30 3.00 88.16 0.00 0.08 9233 -5635 55 -67.60 -64 5
2017/5/29 9:57:00  163.00 17.65 0.00 0.08 7833  -79.65 -686 -61.44  -52 4
2017/5/29 10:33:30  193.00 68.54 0.00 0.41 3.33 <7837 73 -63.00 -56 4
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Fig. 3.11. Testbed

In the table, the *b2.ave’ represents the average RSSI value of the beacon whose

Minor is ’02’.

Establishing an AR Model

Machine-learning algorithms were applied to the developed features of the train-
ing data, in order to construct an AR model. A popular classification algorithm
was used, such as Multiclass Decision Forest Multiclass Logistic Regression and
Multiclass Neural Network [55]. By using the algorithm, a prediction model was
constructed that classifies the given environmental sensor data and beacon RSSI

data into one of the seven daily activities.

3.2.3 Evaluation of Experiment

Experimental Setup

The proposed system was deployed in an actual apartment of a single resident.
As shown in Figure 3.4, the apartment is an ordinary apartment in Japan, con-
sisting of a bed/living room, a bathroom and a kitchen. Two SensorBoxes were

positioned as indicated shown by the red pins in Figure 3.11, one in the kitchen
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and one in the living room. For beacon stations represented by blue triangles, two
stations were placed in the apartment, one at the head of the bed and one near the
SensorBox in the kitchen.

A total of 645,705 rows of raw sensor data was collected from the kitchen
SensorBox. The living room SensorBox collected 483,862 rows of raw data.
The living room beacon collected 368,047 rows of raw data and the kitchen bea-
con collected 370,372 rows of raw data. For the feature engineering, the time
window size was set at 30 seconds, and the aggregation function of environ-
ment sensing data at {Min(light), Ave(sound), Std(temperature), Std(humidity),
Ave(presence)}. We applied Multiclass Decision Forest, Multiclass Logistic Re-
gression and Multiclass Neural Network algorithms to build the AR model and

learn the experimental data.

Evaluation

In order to evaluate the performance of the proposed system, three research ques-
tions (RQ) were mentioned as identified in Section 3.1.1. In this section, the three
RQs will be examined based on three groups of experiments for the system.

For RQ1: “what will be the percent improvement in accuracy when the pro-
posed method is utilized?” A comparison was performed between one propose
AR model with a previous AR model. For RQ2: “which multi-classification al-
gorithm is more suitable for the recognition model?” Three popular multiclass
algorithms were evaluated: Decision Forest, Logistic Regression and Neural Net-
work. Finally, for RQ3: “how long can the recognition model achieve stable,
high-quality of activity recognition for training?” Detail comparisons were con-
ducted for 21 patterns of length of the training period for the proposed system and
the previous system.

Evaluation of Improvement of the Proposed Method

The same raw data and aggregation functions were used for the sensor and
beacon data in the feature engineering, then the same algorithm was used to rec-
ognize the 7 types of daily activities. Figure 3.12 shows the confusion matrix of

obtained for the previous work. Figure 3.13 shows the recognition results for the
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Actual
Cook | 38 9e 3.6% | 10.9% 5.5% | 1.B%
PCwork  1.3% | 64.6% 8.9% | 25.3%
Clean  25.0% | 26.9% | 7.7% [ 26.9% 13.5%
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Fig. 3.12. Confusion Matrix for Previous Method

proposed method along with the labeled integrated data for training and testing.
Figure 3.14 shows the precision of each of the daily activity recognition and the
micro-averaged recall and macro-averaged recall for each experimental system.

By comparing the micor&macro-averaged recall of the system, it is evident that
the new version, which uses integration data, performs significantly better on the
7 typical activity recognition.

From Figure 3.14 it was determined that the accuracy of cooking, sleeping
and absence significantly increased when BLE-based location information was
integrated. This may be because these three activities typically occur in the same
zone.

However, when activities overlap in the same zone, such as PC working and
eating, the accuracy of the proposed system is no better than the previous system.
When only labeled sensor data are used, the precision of overlapping activity
recognition is lower than that of the previous system. Here the location informa-
tion is unable to classify these activities. The results are counterproductive.

When activities occur space across multi-zones, neither the previous nor the

proposed systems can accurately classify them. For instance, the precision of
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Sleep
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Fig. 3.13. Confusion Matrix for Proposed System Using Integrated Data
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Fig. 3.14. Comparison Results for The Three AR Systems

cleaning recognition is likely slightly better than a random return.

Evaluation of 3 Algorithms

In this evaluation, a comparison of three popular multiclass supervised machine
learning algorithms was performed: Decision Forest (DF), Logistic Regression
(LR) and Neural Network (NN). To identified the most suitable algorithm for AR

model, two groups of comparison were performed: the test group of the previous



Chapter 3 Recognition of Daily Activity 76

09 = -

08 _

07 - : | - -

06 . ‘ | . .

05 . ‘ [ ‘ . .

04 - f | | - :‘ | -

03

02 - | | . : | -

01 . : | | - I H | -
O | ; ; ; Im ; I ; ;

Bath

Overal Micro-averaged M acro-averaged Cook PC work Clean Sleep Eat Absence
accurecy recall recall

mDF OLR ®NN

Fig. 3.15. Comparison of Algorithms: Previous Work

1
09
0.7
0.6 = | -
05
0.4 . - . .
0.3
0.2
| |

, A F_

h

-

-

-

-

.

-

-

-

-

-

=
Sleep

e

1 |
Eat

Figure 3.15 shows the result of the previous system using the three algorithms.

Overdl Micro-averaged M acro-averaged Cook PC work Clean
accuracy recal recall

mDF BLR ®NN

Fig. 3.16. Comparison of Algorithms: Proposed Work

work and the proposed work test group.

Figure 3.16 shows the result of the proposed system for the three algorithms. By
comparing the value of micro&macro-averaged recall, it was determined that the
DF is significantly better than LR and NN.

Considering the performance of special activity recognition in the proposed
system, DF recognized Sleeping, Eating, Cleaning, PC working and Cooking
with higher accuracy than the others, however, PC working and Cleaning were

recognized with a low accuracy of less than 40%. In the case of Bathing and Go-
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Fig. 3.17. Comparison of Macro-Averaged Recall with Different Length of Training Period
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Fig. 3.18. Comparison of Micro-Averaged Recall with Different Length of Training Period

ing out, the prediction accuracy performance of the three algorithms were similar.
For the performance of special activity recognition in previous systems, it was
determined that DF had a clearly higher accuracy on Cooking and PC working
recognition. On the contrary, using the proposed system, NN had a better perfor-
mance than the others in Eating, Cleaning and Going out recognition.

Therefore, based on the general performance, it was determined that the DF is
the best for the AR system.

Identifying Suitable Length of Training Period

In this evaluation, 21 lengths of training period were performed from 1 day to



Chapter 3 Recognition of Daily Activity 78

(a) Sleep (b) Absence (c) Bath
1 1 p— e 1
0.8 \/—/\d\h 0.8 . A — 0.8
0.6 N 0.6 o 0.6
04 0.4 0.4
02 ¢ e 0.2 0.2
0 0 0

F I FPFTFT P HPFsLT P L8 8e8 SREGEGRGEGEORCSTCSRGRGRES)

LSS LILLS

(g) Cook
08
06 WV — Proposed
04 ==== Previous

0.2
0

\\\\\\\\\\\

Fig. 3.19. Predicted Accuracy of Each Activity with Different Length of Training Period

21 days for the previous system and the proposed system. It should be noted that
the duration of the training period in the experiment is actually one day and the
recorded activity log is personalized. Given that the overall accuracy of both sys-
tems significantly decreases after 19 days of the training period, the comparison
was until 21 days.

Figure 3.17 and 3.18 show the change of the Macro&Micro-Averaged recall of
two AR systems with the change of length of the training period. For the two fig-
ures, the vertical axis represents the accuracy of the predicted and the horizontal
axis represents the length of the training period. From the evaluation of the gen-
eral performance, it was determined that the previous system achieved stable and
high-quality of activity recognition after 15 days. However, the proposed system
achieved stable and high-quality after only 7 days, which is approximately half of
the previous system.

Figure 3.19 shows the change in the accuracy of each activity recognition with
the change in the length of the training period.

From 3.19 (a) & (b), it was determined that the proposed system achieved a
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stable and high quality of activity recognition and required only 1 day for train-
ing. It is suggested that this is because the location information of sleeping and
absence (Going out) is clearly different, so the proposed system can classify the
two activities at almost 100% accuracy by training for only one day.

From 3.19 (c) it was determined that the proposed system achieved stable and
good prediction after three days. However, after 15 days the accuracy of predic-
tion decreased and an unstable status was achieved. This may have been caused
by the change of the season. After Jun 20th 2017, the user habit for bathing
changed, for example, the user changed the wash times each day from 1 to 2.

From 3.19 (d) & (e) & (f) it was determined that the proposed system did not
achieved stable status after 21 days of training and performed with low accuracy
of prediction. The reason for this may have been mentioned in the Section ’Evalu-
ation of Improvement of the proposed method’, the feature value of the activities
were still not enough when only environmental features and the location of the
resident were sensed.

From 3.19 (g) it was determined that the proposed system achieved a stable
status later than the previous system, but the actual length of the training period
for the proposed system was 3 days shorter than that of the previous system.
The reason is that an error in the cooking log during the experiment using the
proposed system, the resident forget to open the location application. Moreover,

the application stopped for some program problems.

3.2.4 Summary

To address the limitations of the previous work, a new activity recognition system
was proposed in the section. The proposed system recognizes a resident’s ac-
tivities by integrating non-intrusive environment sensing and zone-based indoor
positioning. The environment sensing is implemented by a stationary 10T device,
called Autonomous SensorBox. The indoor positioning uses RSSI of Bluetooth
beacon signals. A resident first attaches activity labels to the sensor data. The
system then constructs a recognition model based on supervised machine learn-

ing.
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The proposed system has been applied to an actual one-person household. The
combined use of environment sensing and zone-based indoor positioning well
recognizes seven kinds of daily activities. Especially, the accuracy of Cooking,
Bathing, Sleeping, Absence was over 80%. The proposed method outperformed
the previous method (with environment sensing only) in the quality of activ-
ity recognition and the training period length. The experiment showed that the

macro-average recall reached around 70% with just one-week training.
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Chapter 4

Derivation of personalized
assessment model for life rhythm

4.1 Introduction

Recently, due to the proliferation of smartphones and IoT technologies, there has
been an increase in the number of studies and applications (e.g., [S] [6] [56]),
which aim to support user health by capturing daily activity logs (e.g., sleeping,
eating, cooking), or recognizing the pattern of a day (e.g., workday, hospital visit
day etc,). This is very promising in the terms of the health management of indi-
viduals in OPHs. However, although most monitoring systems provide features
for recording and visualizing activity logs, they do not facilitate the interpretation
and assessment of the achievement of the acquired data. As a result, it is not easy
for individuals to determine what their healthy life rhythm should be, and how to
improve their current situation.

To address these limitations, a system is being developed that quantitatively
assesses life rhythm based on the daily activity logs and the self-assessment of
quality of life (QoL). The proposed system attempts to identify correlations be-
tween activities and the user’s QoL, and then establishes a personalized model
that explains the QoL based on the daily activities. Using the model, the user can
more easily understand the state of their current life rhythm. Therefore, they are in
a better position to modify habits to achieve a healthy life rhythm. It was eventu-
ally determined that the proposed system would be integrated with life monitoring
system, so that the system automatically intervenes in OPHs to encourage the user

to maintain or improve life thythm.
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In this chapter, the details of a study that proposes a method that establishes a
personalized assessment model is presented. The method consists of the follow-

ing three steps:

Step 1: Characterization of life rhythm using activities

Step 2: Measurement and recording of QoL

Step 3: Establishing an assessment model that maps the life thythm onto the
QoL

To implement the aforementioned steps, the corresponding technological chal-
lenges must also be addressed.

The first challenge is to collect activity data and to extract appropriate features
to represent individual life rhythms. For this purpose, the sleeping and eating log
data collected by a daily activity recognition system are used. This was developed
in the second projects of my research (see chapter 3). From the log data, several
statistical features can be calculated.

The second challenge is to measure the QoL. By its nature, the scale of QoL
varies among individuals. Hence, a healthy life rhythm for one person is not
necessarily healthy for another person. For example, for a patient, the scale is
the health of his body. For a researcher, his scale may be quantity and quality
of achievements. For this purpose, a system that requests that each user should
perform a weekly survey was developed. In the survey, the user evaluates the
fulfillment of daily living in last week. The degree of fulfillment is represented
by a numerical value.

The third challenge is to derive a model for personal life rhythms. For this
purpose, effective features were extracted from the statistics of daily activity logs
and a regression model was derived that explains the QoL values based on the
resulting statistics.

A preliminary experiment was conducted in an actual apartment, where activ-
ity logs for 224 days and self-assessment QoL logs for 32 weeks are collected.
Based on the experimental results, the assessment model personalized for the res-

ident was interpreted, and appropriate habits for maintaining a high QoL were
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identified.

4.2 Preliminary

4.2.1 Life Rhythm

The life rhythm is a cycle of life activities and biological functions, with a period
of approximately one day [57]. Most of our biological functions (e.g., sleeping,
waking) have daily periodic variations. We often perceive that our activities are
controlled by a clock inside of our body. In the field of biology, this phenomenon
is called the circadian rhythm (dian means day). The Nobel Prize for physiol-
ogy and medicine in 2017 was awarded for proving that the circadian rhythm is
controlled by molecular mechanisms.

According to [58], life rhythm is characterized by the following three proper-

ties:

1. Two basic states: Activities in the daytime and sleep in the nighttime.
2. Daily cycle: The two states are repeated periodically every day.
3. Diversity: The cycle is different among individuals. It adapts to biology,

environment, living society, individuality, and variability.

4.2.2 Maintaining a Healthy Life Rhythm in OPH

A chaotic of life rhythm often leads to a deterioration in health. For instance,
people with circadian rhythm disturbance have a higher risk of cardiovascular
disease [4]. Sleep disturbances increase the risk of suffering from neutral fat [2].
Hence, maintaining a good life rhythm is very important for individuals.

However, people living in OPHs readily fail to manage their life rhythm, be-
cause there is often no one else to lend daily assistive care. For example, students
living with families get up and go to beds earlier than those living alone [1]. With
respect to the total number of meals skipping and breakfast skipping, people in
OPHs have a significantly higher rate [2]. Thus, it is more difficult for individuals
in OPHs to maintain a healthy life rhythm.

The life rhythm is a long-term variable consisting of many activities. Even
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manually recording the daily activities requires strong motivation. Thus, it is chal-
lenging to identify an optimal life rhythm for a person without any technological
assistance. Hence, providing personalized assessment models of life rhythm is
quite promising, since the model can explain the status of the current life rhythm.
Moreover, based on the results of assessment, the user is able to easily find ap-

propriate life rhythm and to understand how to improve his/her daily habit.

4.2.3 Related Work

There are many existing studies that address the issue of healthy life rhythm.
Based on the type of approach used, they can be categorized into three groups as

follows:

1. Manual survey: A study in the field of medical science measured life
rhythms of patients based on a manual medical survey [59]. Life rhythm
was determined based on physiological metrics including body tempera-
ture, the power of gripping etc. However, this approach cannot be applied
in general households.

2. Activity detection: Many technologies are being studied to aid in the recog-
nition of human daily activities at home. They are expected to be used in
real-life and human-centric applications such as elderly care and health care.
Some approaches (e.g., [5] [6]) attempt to capture daily living using cam-
eras, or microphones directly. Other approaches use state-change sensors,
and/or positioning systems to detect activities (e.g., [8] [9]). However, most
of these systems only provide features for recording and visualizing activi-
ties. The interpretation and assessment are left to the individual users. Thus,
it is not easy for the user to understand which patterns of activities leads to
a healthy life rhythm.

3. Life pattern recognition: Several studies reported in [60] [56] attempt to
detect the daily life pattern of residents by analyzing data from pyroelectric
motion sensors. However, the result cannot facilitate the determination of

the optimal life rthythm, since the patterns are characterized only by mo-
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tions. Therefore, it does not contain more detailed but essential information

related to life rhythm including sleeping and eating.

4.3 Research Goal and Approach
4.3.1 Research Goal

My research goal is to implement a life rhythm assessment system that quantita-
tively evaluates the quality of life. In this chapter, I focus on the most essential
components of the system, considering the construction of a personalized assess-

ment model. To construct this model, three steps were followed:

e Step 1: Characterization of individual life rhythms based on activities

e Step 2: Measuring and recording of the user’s QoL data

e Step 3: Establishing of an assessment model that maps life rhythm onto
the QoL.

Table 4.1. Daily Activities Log Data

username | date startTime endTime DAY
niulong | 2018/6/1 0:00:00  0:08:59 Others
niulong | 2018/6/1 0:08:59  0:19:10 Bath
niulong | 2018/6/1 0:19:10  0:33:52 Others
niulong | 2018/6/1 0:33:52  8:05:34 Sleep
niulong | 2018/6/1 8:05:34  8:12:18 Rise
niulong | 2018/6/1 8:12:18  8:26:17 Others
niulong | 2018/6/1 8:26:17  8:50:09 Eat
niulong | 2018/6/1 8:50:09  9:41:00 Others
niulong | 2018/6/1 9:41:00 23:59:59 GoOut
niulong | 2018/6/2  0:00:00 18:09:16 GoOut

¢ ’DA’ is an acronym for ’Daily Activity’.
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4.3.2 Challenges and Approaches

To implement these three steps, there are technological challenges that should be
addressed. In the following, we explain each challenge and the approach used to

address them.

Al: How is the life rhythm characterized?

According to Section 4.2.1, the life rhythm is a cycle based on activities and
sleep, and the cycle varies among individuals. Nevertheless, the life rhythm is
constructed by a huge number of factors. Hence, it is difficult to establish a uni-
versal definition. It is thus challenging to represent the life rhythm based on
specific features. Promising features include the bedtime, the period (duration) of
sleep, and mealtimes. It is also challenging to collect such data for daily activities.

To address this challenge, a daily activity recognition system was used [61],
which was previously developed in my second projects (see Chapter 3). Exploit-
ing SensorBox [42] and indoor positioning beacons, the system is able to recog-
nize seven kinds of daily activities (cooking, eating, cleaning, bathing, sleeping,
going out, PC working). Table 4.1 shows log data for the daily activities recorded
in an actual apartment.

This log data is exploited to represent life rhythm. According to [4], there are
three relevant factors with respect to life rhythm: sleep, breakfast, and hormone
levels. By managing these three factors, everyone can effectively adjust their life
rhythm. However, based on the current technology, it is impossible to measure
the hormone levels of a resident. Hence, it was decided that the log data related
to sleeping and eating would be used. To represent life rhythm, the log data
was aggregated in a certain period of days, and obtain relevant statistics. The
statistics include the average waking time for a week and the number of days with
breakfast skipping. In the proposed method, these statistics are called features of
life rhythm.

A2: How is the life rhythm assessed?
The quality of the life thythm is related to the QoL of the user. However, the
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sense of value of QoL varies among individuals. Therefore, it is considered that
the assessment model should be built based on the user’s subjective scale of QoL.
To determine the user’s subjective scale, the proposed method requires each user
to conduct a self-assessment of QoL and to record the result.

For the self-assessment, the fulfillment of daily living was used. The aspect
of fulfillment is determined by individual users, considering one’s lifestyle and
personal opinion on the meaning of life. A user may be happy if he accomplished
many tasks. Another user may be satisfied if she is able to concentrate on her
studies. The degree of fulfillment must be quantified by a numerical value, which
can be either discrete or continuous. In the proposed method, the value of the

self-assessment is refrred to as the value of QoL.

A3: How is the assessment model established?

Life rhythm varies among individuals, and the assessment scale of QoL is also
different from one user to another. Therefore, it is unrealistic to define a common
assessment model that fits all users. Therefore, the main idea, in this case, is to
build a personalized model that can explain the personal value of QoL based on
the personal features of life rhythm. To build the personalized model, correlation
analysis is initially applied to identify strong features correlated to the QoL. Then,
using these features, regression analysis was performed to derive equations that

maps the life rhythm features onto the QoL value.

4.4 Proposed Method

4.4.1 Overview

Figure 4.1 shows an overview of the proposed system. As mentioned in Section
4.3.1, this method includes three steps. Step 1 represents the life rhythm using
statistical values for the log data associated with sleeping and eating. Step 2
involves the collection of values of QoL by self-assessment, asking the user ques-
tions based on the fulfillment of daily living. Step 3 creates labeled life rhythm
data by joining the life rhythm data and the QoL data and then derives a regression
model that maps features of life rhythm onto the value of QoL.
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Fig. 4.1. Overview of Propose Method

4.4.2 Stepl: Representing Life Rhythm

In this step, it is assumed that our previous system [61] continuously collects
and records the daily activities of the user. The system is able to recognize seven
types of activities including(sleeping, rising, watching, eating, bathing, going out,
returning). For each activity recognized, the system records the activity in log
data, as shown in Table 4.1. Each row represents a recognized daily activity,
specified by username, date of occurrence, start time, end time, and the type of
activity.

In AT of Section 2.2.3, we saw that sleep and breakfast are relevant factors for
the life rhythm. Hence, sleeping and eating activities are extracted from the log
data, and the records are aggregated by week. The reason for the data aggrega-

tion by week is that this time period is a reasonable unit in which to observe the
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variation of life rhythm.
For the sleeping activities, the following statistics were calculated as relevant

features of the life rhythm:

e s start mean (Average of start time of Sleep): Characterizes the time the
user went to bed during the week.

e s start std (Standard deviation of start time of Sleep): Characterizes how
regularly the user went to bed during the week.

¢ s_end _mean (Average of end time of Sleep): Characterizes the time the user
got up during the week.

e s end std (Standard deviation of end time of Sleep): Characterizes how
regularly the user got up during the week.

e s length mean (Average of length of Sleep): Characterizes the lenght of
time the user slept every day during the week.

e s length std (Standard deviation of length of Sleep): Characterizes the reg-

ularity with which the user secured sleeping time.

For the eating activities, there was a focus on only the first occurrence of the

day to capture breakfast activities. Then, the following statistics were calculated:

e e_start_ mean (Average of start time of Eating Breakfast): Characterizes the
time the user started eating breakfast during the week.

o e _start std (Standard deviation of start time of Eating Breakfast): Char-
acterizes how regularly the user started eating breakfast during the week.
during the week.

e e_end mean (Average of end time of Eating Breakfast): Characterizes the
time the user finished eating breakfast during the week.

e e_end std (Standard deviation of end time of Eating Breakfast): Character-
izes how regularly the user finished eating breakfast during the week.

e e_skip_count (Number of days with breakfast skipping): Characterizes the
number of days that the user skipped breakfast during the week.

Table 4.2 shows instances of [s_start_mean, s_start_std, e_start_mean] of an ac-
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Table 4.2. A Part of the Features of Life Rhythm

WeekID (Period)

e_start_mean

Week26 (2018/5/8-14)
Week27 (2018/5/17-23)
Week28 (2018/5/28-6/3)
Week29 (2018/6/5-11)

s_start_mean  s_start_std
27  5.318
25.285 1.666
25.714 2312
24.857 1.457

7
9.5
8
8.5

Table 4.3. Evaluation Scales of Fulfillment

Value Description
1 not fulfilled at all
2 little fulfilled
3 fulfilled
4 very fulfilled
5 perfectly fulfilled

Table 4.4. A Part of the Results for QoL Assessment

WeekID (Period)

General Research PT-Job  Private

Week26 (2018/05/08-14)
Week27 (2018/05/17-23)
Week28 (2018/05/28-6/3
Week29 (2018/06/05-11)

2 2
3 2
)| 4 4
4 5

4

4
3
2

4

4
3
5

tual user calculated over four weeks, where each value is specified by an hour.

For example, in Week27 (from May 17th to 23rd, 2018), the user went to bed

at approximately 1:17 a.m. (=25.285) with a standard deviation of 1 h 40 min

(=1.666). The user ate breakfast at approximately 9:30 am. Thus, it is possible to

observe the life rhythm of the user from a certain perspective. It should be noted

in Table 4.2 that the date between each week is not consecutive, since the user

was out of home and data was missing for several days.
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Table 4.5. Correlation Coefficient for All Features

Features of Life Rhythm Generd Research PT - Job Private

s _end_mean -0.256741794 0.160209484 -0.270695775 -0.041061413
s end_std -0.046970989 -0.107007606 0.032590173 -0.033097385

S _start_mean -0.102617434 -0.255107666 -0.014314429 -0.126324597
s start std -0.40827074 -0.28103621 0.143160929 -0.220093272
s _length_mean -0.311529873 0.089419633 -0.28006759 -0.187254745
s_Iength_std -0.083191003 -0.058528694 -0.253880433 -0.062953223
e end _mean -0.422832323 -0.237803351 -0.420376469 -0.488726311
e end_std -0.038780787 -0.015032395 -0.190315633 -0.175506563

e _start_mean -0.410194664 -0.242140335 -0.438639084 -0.460622496
e start_std -0.024196275 -0.06495214 -0.214491294 -0.147718547
e skip_count 0.088386956 -0.173127965 -0.121837521 0.105884029

4.4.3 Step2: Measuring Quality of Life (QoL)

In this step, the proposed method requested that the user performed a self-
assessment of QoL every week. The value of assessment requires that a
numerical value is specified, which can be either discrete or continuous.

As mentioned in A2 of Section 2.2.3, the QoL is assessed by the fulfillment of
daily living based on the user’s perspective. In this preliminary study, the user

was asked every week to answer the following four questions:

1. How was your last week in general?
2. How was your research work last week?
3. How was your part-time job last week?

4. How was your private time last week?

For each question, the user is instructed to indicate the degree of fulfillment
based on a 5-level scale, as shown in Table 4.3.

Table 4.4 shows examples of the self-assessment of QoL. The columns General,
Research, PT-Job and Private represent the answers to the aforementioned four
questions (1)-(4), respectively. Each assessment was performed on the last day
of each week. For instance, the user relayed that Week 27 (from May 17th to

23rd, 2018) was marginally fulfilled in general, little for research work, and very
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fulfilled for the part-time job and the private time.

4.4.4 Step3: Deriving Life-Rhythm Assessment Model

In this step, the proposed method combines the features of life rhythm and the
value of the QoL Assessment, and then establishes an assessment model based on

data mining. The data mining process is divided into two sub-steps.

Step3-1: Extraction of relevant features of life rhythm

In this sub-step, the features associated with life rhythms that are relevant to the
QoL value of the user were identified. For this purpose, we applied correlation
analysis to the combined data, and obtained a correlation coefficient for a pair of
feature and QoL value.

Let X be a series of any feature of the life rhythm defined in Step 1 (See Section
4.4.2), and let Y be a series of any QoL value defined in Step 2 (See Section 4.4.3).
Then, a correlation coefficient p(X, Y) is defined by:

_ E[(X-E[X])(Y - E[YD]

(E[(X - EIXD?]E[(Y - E[Y])*])!/?

where E represents the mean operation.

p(X,Y) 4.1)

When the absolute value of p(X,Y) is large, this means that the feature X con-
tributes to predicting the QoL Y. Therefore, using this correlation analysis, only
features where [p(X, Y)| is larger than a certain threshold 7. are considered.

The preceding correlation analysis is performed for pairs of feature X and the
QoL values Y. However, the correlation analysis was also applied among the fea-
tures. When two features X and X, are highly correlated, choosing both features
results in a decrease in the performance of the model. For instance, e_start_mean
and e_end_mean are highly correlated, since the time of ending breakfast strongly
depends on the time of starting breakfast. In such a case, either X; or X» is
dropped from the feature selection, even if [p(X1, Y)| and |o(X3, Y)| are large.

Based on the aforementioned analysis, only relevant features of the life rhythm
are selected, that have a relatively stronger correlation with the QoL value of the

USCr.

Step 3-2: Derive assessment model
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In this sub-step, a personalized model for the life rhythm assessment is estab-
lished, which explains (predicts) the user’s QoL value from given features of life
rhythm. Let X; (i = 1,2,...,n) be a series of i-th relevant features, and let Y be a

series of target QoL values. Then, the model is defined by a function f such that
Y = f(XlaXZ,---axn)

where f maps n-tuples of feature values xi, x7, ..., x,, onto a QoL value y.

In this preliminary study, the linear regression model was adopted to derive f.

Y = f(XlaXZ, ---’Xn)

=PBo+B1X1+B2X2+ ... + B Xy 4.2)

Regression analysis is a set of statistical processes that estimate values of 5;’s
for a given n relevant features. In Section 4.5, I will explain how to build the

assessment model using regression analysis tools.

4.5 Case Study
4.5.1 Experiment

A preliminary experiment was conducted to establish an assessment model of an
actual user living in an OPH. The subject is a Ph.D. student in a university who
lives alone in an apartment. He usually studies at the university, however, he also
works part-time to make a living. Our previous system was already installed in
his apartment.

In Step 1, his daily activity log was collected from May 1st, 2016 until June 31,
2018, and valid data for 32 weeks was retrieved from the period. In Step 2, the
QoL self-assessment log data was collected for the same 32-weeks period. Given
that the details of Step 1 and Step 2 are already outlined in Sections 4.4.2 and
4.4.3, respectively, I will review the details of Step 3.

Firstly, relevant features of the life rhythms were identified based on the cor-
relation analysis. Table 4.5 shows the result of the analysis between the features

and the four kinds of QoL values *!. As we focus General (the degree of QoL in

*I The data used for the experiment is available at http://ws.cs.kobe-u.ac. jp/~longniu/data/iiwas2018/
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Table 4.6. Detailed Results of Regression Analysis

Coefficients Standard Error  t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 6.383265769 0.825 7.735 1.993E-08 4.693 8.073 4.693 8.073
s_start_std -0.334647885 0.095 -3.524 0.001 -0.529 -0.14 -0.529 -0.14
s_length_mean | -8.1073E-05 2.6E-05 -3.095 0.004 -0.0001 -2.7E-05 -0.0001 -2.7E-05
e_end_mean -0.062287619 0.032 -1914 0.066 -0.129 0.0043 -0.128 0.004

Table 4.7. Regression Statistics

Multiple R 0.676199
R Square 0.457245
Adjusted R Square | 0.399093
Standard Error 0.626037
Observation 32

general), it can be seen that the correlations coefficient of s_start_std (standard de-
viation of the time to go to bed), s_length_mean (average of sleeping time length)
e_end_mean (average of the time of ending breakfast), e_start mean (average of
the time of beginning breakfast) are significant, which means that these features
significantly contribute to the degree of General.

Because it was determined that e_end_mean and e_start_mean are strongly cor-
related with each other (i.e,. p(e_end_mean, e_start_mean) = 0.983), e_start_mean
was droped from the feature selection. As a result, three features of s_start std,
s_length_mean, and e_end_mean were identified for the regression model of Gen-
eral.

Then, an assessment model was established using a regression analysis based
on the three features, for predicting the value of QoL (General). Table 4.6 shows
the detailed results of the regression analysis. The coeflicients correspond to 3;(i =
0,1,2,3) for the equation (2). From the analyzed result, it is possible to derive a

function of the assessment model of life rhythm:

Y =Bo+pB1X1 +B2X2 +53X3 4.3)

where
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Fig. 4.2. Comparison of Actual and Predicted Values of QoL(General)

e Y: general fulfillment in daily living

e Xj: s_start_std, the standard deviation of the time to go to bed
e X5: s_length_mean, the average of the sleeping time length

e X3: e_end_mean, the average of the time to end breakfast

e [p: 6.3832657 which is the constant called Y-Intercept

e (31: -0.33464785 which is coefficient of s_start_std

e (3,: -0.000081073 which is coeflicient of s_length_mean

e (33: -0.06228761 which is coefficient of e_end_mean

Table 4.7 shows the overall statistics of the regression analysis of General with
s_start_std, s_length_mean, e end_mean. R Square is the coefficient of determi-
nation, which 1s a statistical measure of the closeness of the data to the fitted
regression line. The result of R Square 1s approximately 0.457, which means the

statistic measure is relatively close to the fitted regression line.

4.5.2 Interpreting Assessment Model

An attempt 1s made to interpret the derived assessment model. By assigning the

obtained values in the model (4.3), the following formula is obtained:

QoL(General) = 6.38 —0.33 - s_start_std — 8.1 X 107
(4.4)
s_length_mean —0.062 - e_end _mean

Firstly, the aim is to visualize how the model (4.4) is able to predict the ac-

tual values of QoL. Figure 4.2 depicts the actual QoL values (General) recorded
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during the self-assessment of the subject, and the predicted QoL values produced
by the model (4.4). In the figure, the horizontal axis represents weeks, whereas
the vertical axis represents the degree of general fulfillment. The solid blue line
represents the actual value, and the shaded orange line shows the predicted value.
Based on the results, it can be seen that the model is able to predict the actual
values to a certain extent.

Next, the semantics of the model (4.4) are interpreted. The units of s_start_std,
s_length_mean, and e_end _mean are hours, seconds, and hours, respectively. With
respect to the life rhythm of the subject, the model (4.4) establishes the following

facts:

e If the deviation of the time to go to bed increases by 1 hour, the QoL value
of the subject decreases by 0.33 points.

o If the sleeping time increases by 1 hour (=3,600 seconds), the QoL value of
the subject decreases by 0.29 points.

o If the time of breakfast is delayed for 1 hour, the QoL value decreases by
0.062 points.

Therefore, for this subject, maintaining a regular bedtime in addition to avoid-
ing oversleeping, and late breakfasts are good habits for maintaining good QoL

values.

4.5.3 Finding Personal Advice for Maintaining Healthy Life

5 5 5
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Fig. 4.3. Finding Correlations Between Each Feature and QoL

The derived model indicates that the statistical correlation between the relevant

features of the life rhythm and QoL values. However, the user of the proposed
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method would like to know more details personal Advice on the daily activities.
To identify such personal advice, regression analysis is applied to each of the
relevant features.

More specifically, for each s_start std, s_length_mean, and e end mean, a
regression model is constructed for QoL(General). Figure 4.3 shows three scat-
tered plots between QoL(General) and s_start_std, s_length_mean, or e_end _mean,
respectively. In each sub-figure, the vertical axis represents the value of
QoL(General), the horizontal axis represents the corresponding feature. The
dotted line shows the regression line that fits the samples.

Suppose now that the subject wants personal advice for maintaining QoL values
more than or equal to 3.0 (marginally fulfilled). Using Figure 4.3, three specific
advice can be provided.

Firstly, from Figure 4.3(a), it is evident that the regression of QoL by s_start_std
(depicted by a dotted line) is defined by:

Qol(General) = 3.44 —-0.26 - s_start_std 4.5)

From the line, it is known that the value of s_start_std should be smaller than
1.7 to achieve a value of QoL higher than 3.0. Based on this assessment, if the
subject can control s_start_std to be less than 1.7, then the QoL will likely to be
more than 3.0. Thus, we identify the personal advice that “the subject should
keep the deviation of the time to go to bed within 1 hour 35 minutes, in order to
be marginally or more fulfilled”.

Secondly, from Figure 4.3(b), it is evident that the regression of QoL by
s_length_mean (depicted by a dotted line) is defined by:

QoL(General) =4.33 -6 X 107 s_length_mean (4.6)

From the line, we know that the value of s_length_.mean should be between
185,000 and 22,000 to achieve the value of the QoL higher than 3.0. Thus, the
second personal advice is identified, i.e., “the subject should control the sleeping
time to be between 5 hours 10 minutes and 6 hours 10 minutes, in order to be

marginally or more fulfilled”.
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Finally, from Figure 4.3(c), it is evident that the regression of QoL by
e_end_mean (depicted by a dotted line) is defined by:

QoL(General) =4.6—0.17 - e_end _mean 4.7)

From the line, it is known that the value of s_length_mean should be less than 9.41
to achieve the value of QoL higher than 3.0. Thus, the third personal advice is
identified, i.e., “the subject should control finish the breakfast before 9:25 every
day, in order to be marginally or more fulfilled”.

If the subject is able to adhere to the aforementioned three pieces of advice, it

is highly probable that he will maintain fulfilled daily living.

4.6 Summary

In this chapter, a method that constructs a personalized assessment model of life
rhythm was proposed. In the proposed method, the individual’s life thythms was
characterized based on features related to sleeping and eating, which were ex-
tracted from the daily activity log. Data of the user’s QoL was also collected
based on the self-assessment survey. Using this data, the proposed method de-
rives the assessment model by using regression analysis. A preliminary study was
performed with an actual subject. Using the proposed method, it was possible to
derive his personal assessment model based on bedtime, duration of sleeping, and
the time to finish breakfast. Using the model, it was also possible to establish per-

sonal advice to maintain the subject’s life rhythm as marginally or more fulfilled.
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Chapter 5

Conclusion

In this chapter, the main conclusions of this dissertation are presented. In addition,

a broad perspective on future work is considered.

5.1 Collection of Living Data of Individuals in OPHs

In this investigation, I presented a common data model for indoor location, called
DM4InL, which prescribes a data schema to represent indoor location informa-
tion without depending on any specific IPS or InL-App. By composing three
data models (i.e., the location model, the building model and the object model),
DM4InL represents location information of various objects inside a building in a
standard format.

Next, I have proposed a Web-based integration framework called WIF4InL,
in order to achieve data and operation integration for heterogeneous IPS. To
achieve data integration, WIF4InL implements InL.-Adapter, which provides dif-
ferent adaptation patterns for different system topology of IPS. InL-Query was
also implemented, which provides fundamental API and composite API based
on DM4InL. WIF4InL contributes to loose coupling of IPS and InL-App, which
will significantly improve the efficiency and re-usability in InL-App development.
The proposed framework was applied to integrate two existing IPS: RedPin and
BluePin. In addition, I evaluated WIF4InL by investigating the sufficiency of the
five capabilities for location-dependent queries.

With respect to the future work, we plan to conduct further evaluation of
WIF4InL, with respect to performance and security for practical use cases. We

are also interested in addressing more pragmatic issues that include uncertainty
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of location caused by unreliable devices, as well as feature interactions when

integrating data and operations.

5.2 Recognition of Daily Activity

In this project, a system was proposed to improve the accuracy of daily activity
recognition by the addition of a BluePin to an original system and integrating
BLE-based location data with sensor data in the processing of feature engineering.
To evaluate this system, I performed three experiments to compare the precision
of activity recognition and averaged all daily activities.

Based on the results, It is evident that the Micro&Macro-average precisions
and accuracy of some daily activity recognition improved significantly. However,
for daily activities where overlap occur with other activities or the activity space
crosses multi-zones, the accuracy recognition of the proposed system was not
improved.

I then evaluated the activity recognition performance of 3 popular algorithms.
Based on the results it was determined that the multi-classification decision forest
1s most suitable for the proposed system.

In addition, it was observed that there was a change of system performance
for activity recognition with a change of the length of the training period. Based
on the detailed comparisons, it was determined that the proposed system requires
less time for training than the system only use Sensorbox.

In the future, the proposed system will be evaluated in several houses to deter-
mine how the learning process varies from one OPH to another. Moreover, we
will validate whether the proposed seven types of daily activities are sufficient to

capture the life rhythms in OPH.

5.3 Derivation of Personalized Assessment Model for Life
Rhythm

In this project, a method was proposed that constructs a personalized assessment
model for life rhythm. In the proposed approach, an individual life rhythm was

characterized based on features related to sleeping and eating, which were ex-
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tracted from daily activity logs. Data on the user’s QoL were also collected using
a self-assessment survey. Based on these data, the proposed method derives an as-
sessment model by utilizing the regression analysis. A case study was conducted
with an actual subject. The proposed method was able to derive his personal as-
sessment model based on bedtime, the duration of sleeping, and the time to finish
breakfast. Using the model, personal advise was also determined to maintain the
subject life rhythm as marginally or more fulfilled.

In future works, the proposed method will be evaluated based on experiments
with more subjects. It may also be interesting to investigate other algorithms apart

from linear regression.
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