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Abstract

This thesis concerns planar curvature lines of zero mean curvature surfaces in various space-

forms. Using an analytic approach, we give the classification of maximal surfaces and timelike

minimal surfaces with planar curvature lines, which this thesis refers to as zero mean cur-

vature surfaces of Bonnet-type. In addition, we establish the existence of deformations

consisting exactly of all surfaces in each class, while the singularities appearing on these

surfaces are recognized. In the timelike minimal case, we give a further characterization

of Bonnet-type surfaces using the generating null curves. Then in the discrete setting, we

establish a relationship between plane symmetry and line symmetry appearing on a discrete

minimal surface, and give numerical examples of discrete minimal surfaces with non-trivial

topology. Finally, we provide an elementary introduction to Lorentz-Möbius geometry.
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Chapter 1

Introduction

Minimal surfaces with planar curvature lines in the Euclidean 3-space were first considered

by Bonnet in [20], where he found the family of surfaces defined by⎛⎜⎜⎝ cos(im)x+ sin(im) sin(ix) cos(y)

i sin(im)x+ cos(im) cos(ix) sin(y)

cos(ix) cos(y)

⎞⎟⎟⎠ (1.1)

for a some constant m ∈ R, now commonly referred to as Bonnet’s minimal surfaces. (Note

that one obtains a catenoid when m = 0.) However, he did not note the Enneper surface

defined in [41] also has planar curvature lines (cf. [88, p. 164]).

On the other hand, the study of minimal surfaces was greatly aided by the Weierstrass

representation formula for minimal surfaces [114], which we recall below.

Fact 1.1. Any minimal surface f : Σ ⊂ C→ R3 can be locally represented as

f = Re

∫︂ (︂
1− h2, i(1 + h2), 2h

)︂
η dz

over a simply-connected domain Σ on which h is meromorphic, while η and h2η are holo-

morphic.

Using the Weierstrass data (h, η dz) and the representation, one can give a classification of

minimal surfaces with planar curvature lines, which this thesis refers to as minimal surfaces

of Bonnet-type, as follows:

Fact 1.2 ([20, 41]). A minimal surface of Bonnet-type in Euclidean space R3 must be a

piece of one, and only one, of

• plane (0, 1 dz),

• catenoid (ez, e−z dz),

• Enneper surface (z, 1 dz), or

• one of the Bonnet’s minimal surfaces {(ez + t, e−z dz), t > 0},
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up to isometries and homotheties of R3.

Remark 1.3. The Weierstrass representation gives a parametrization of a minimal surface;

therefore, Weierstrass data for a surface is not unique. Hence, the Weierstrass data for

Bonnet’s minimal surfaces given in Fact 1.2 do not give the parametrization found by

Bonnet (1.1). To get the parametrization of Bonnet’s minimal surface given in (1.1), one

needs to use the Weierstrass data (−e−t coth(z/2),−2et sinh2(z/2) dz).
Classically, minimal surfaces of Bonnet-type were studied by looking at their Gauss maps.

A planar curvature line on a minimal surface is mapped to a planar curve on the sphere

under the Gauss map, i.e. the image is contained in a circle. Hence, if a surface admits one

family of planar curvature lines, then these curvature lines are mapped onto circles on the

sphere under the Gauss map. However, Gauss map is a conformal transformation, implying

that the image of the curvature lines in the other family under the Gauss map must meet

the circles orthogonally. Using this fact, one can show that then the curvature lines in the

other family are also mapped to circles under the Gauss map, telling us that one family of

curvatures is planar if and only if the other family of curvature lines is planar. Therefore,

to classify all the minimal surfaces of Bonnet-type, one needs to look at all the orthogonal

system of circles on the sphere. (For more information, see [88, Section 2.6].) The fact that

planar curvature lines on a minimal surface corresponds to an orthogonal system of circles on

the sphere via the Gauss map gives us two interesting characterizations of minimal surfaces

of Bonnet-type.

1.1 Thomsen surfaces

Thomsen studied minimal surfaces that are also affine minimal, a class of surfaces now

often referred to as Thomsen surfaces. In his work [109], he mentioned that the asymptotic

coordinate lines on Thomsen surfaces are mapped to an orthogonal system of circles on

the sphere via the Gauss map. Given a minimal surface parametrized by curvature lines

with Weierstrass data (h, η dz), an isometric (i.e. sharing the same first fundamental form)

conjugate minimal surface parametrized by asymptotic coordinate lines can be obtained from

the Weierstrass data (h, iη dz). Therefore, from Thomsen’s observation, one can deduce the

following fact mentioned by Blaschke:

Fact 1.4 ([12, p. 190]). Minimal surfaces of Bonnet-type are exactly the conjugate minimal

surface of Thomsen surfaces.

In fact, it was the work on Thomsen surfaces in [9, 104] that showed the following:

Fact 1.5. There exists a deformation consisting exactly of all Thomsen surfaces (see Figure

1.1).

By considering the conjugate minimal surfaces of Thomsen surfaces, one can also obtain

a deformation consisting exactly of all minimal surfaces of Bonnet type (see Figure 1.2).
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Figure 1.1: Deformation consisting exactly of Thomsen surfaces.

Figure 1.2: Deformation consisting exactly of minimal surfaces of Bonnet-type.
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1.2 Goursat transformations

One consequence of the Weierstrass representation is that a minimal surface is the real part

of a holomorphic null curve in C3. Therefore, given a minimal surface and its corresponding

holomorphic null curve, one can consider applying an orthogonal transformation of C3 to

the holomorphic null curve to get another holomorphic null curve. Taking the real part

of the new holomorphic null curve results in a new minimal surface, called the Goursat

transformation of the given minimal surface [50, 51].

On the other hand, minimal surfaces are isothermic surfaces, i.e. they admit conformal

curvature line coordinates; hence, one can consider their Christoffel transformations, first

defined in [30].

Fact 1.6 ([30]). f : Σ → R3 is an isothermic surface if and only if there is a surface

f∗ : Σ→ R3 such that f and f∗

(1) have parallel tangent planes,

(2) have the same conformal structure on Σ, and

(3) induce opposite orientations on Σ.

We call f∗ a Christoffel transform of f .

The symmetricity of the above conditions implies that f∗ is also an isothermic surface,

and that Christoffel transformations are involutive, i.e. (f∗)∗ = f up to homotheties and

isometries of R3. Minimal surfaces can be characterized via Christoffel transformations as

isothermic surfaces whose Christoffel transformations are their corresponding Gauss maps.

Therefore, one way of understanding Weierstrass representations is to consider the following

recipe:

(1) Take a holomorphic function h : Σ→ C.

(2) For a stereographic projection St : S2 → C, the holomorphicity of h implies the

isothermicity of St−1 ◦ h : Σ→ S2.

(3) Then f : Σ→ R3 defined as

f := (St−1 ◦ h)∗ =

∫︂
(1− h2, i(1 + h2), 2h)

1

hz
dz

becomes a minimal surface with isothermic coordinates z = u+ iv.

In fact, it is known through works such as [93, Lemma 2.18] that the Goursat transfor-

mation of a minimal surface is equivalent to keeping the Hopf differential the same while

applying a Möbius transformation to the Gauss map. Generalizing this to isothermic sur-

faces, a Goursat transformation of isothermic surfaces was defined by Hertrich-Jeromin as

follows:

Definition 1.7 ([53, 54]). Let f : Σ → R3 be an isothermic surface and µ : R3 ∪ {∞} →
R3 ∪ {∞} be a Möbius transformation. Then a new isothermic surface f̃ defined by

f̃ := (µ ◦ f∗)∗
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Figure 1.3: Goursat transformation of a catenoid

is called a Goursat transform of f .

Möbius transformations map spheres to spheres, circles to circles, and keep orthogonality

intact. Therefore, given an orthogonal system of circles on a sphere, one can apply a

Möbius transformation to get a different orthogonal system of circles. As a result, a Goursat

transform of a minimal surface of Bonnet-type is again a minimal surface of Bonnet-type,

a fact also mentioned in [93, Satz 2.23] (see also Figure 1.3). In fact, one can characterize

minimal surfaces of Bonnet-type as Goursat transformations of the catenoid.

1.3 Summary

This thesis treats the different aspects of planar curvature lines on zero mean curvature

surfaces in various spaceforms. Chapters 2 and 3 consider zero mean curvature surfaces of

Bonnet-type in Minkowski 3-space. The techniques used in these chapters are based heavily

on work by Abresch, Walter, and Wente, used to study cmc tori admitting one system of

planar curvature lines [1, 112, 116, 117]. These techniques were also applied to study minimal

surfaces of Bonnet-type in [29].

Chapter 2 considers spacelike zero mean curvature surfaces, also known as maximal

surfaces, with planar curvature lines, called maximal surfaces of Bonnet-type in this thesis.

The classification of such surfaces was given in [76, 82]; this thesis introduces a different

method to obtain the classification, modeled after the works of [1, 112, 116, 117]. In fact,

this thesis shows that the method introduced easily gives the existence of a deformation

consisting exactly of all maximal surfaces of Bonnet-type. Furthermore, maximal surfaces

can be extended to the idea of maxfaces, which are maximal surfaces admitting certain

non-degenerate singularities, defined in [110]. Considering maximal surfaces of Bonnet-type

as maxfaces, the singularities appearing on these surfaces are completely recognized; in

addition, an example of a maxface having cuspidal butterflies and cuspidal S−
1 singularities

is given (see [7, 8] for more information on these singularities). Finally, through a known
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relationship between maximal surfaces of Bonnet-type and maximal Thomsen surfaces (those

maximal surfaces that are also affine minimal) [82], similar to the relationship between their

Euclidean counterparts, we obtain a result on the existence of a deformation and recognition

of singularities of maximal Thomsen surfaces. The content in Chapter 2 is based on joint

work with Yuta Ogata, and is published in [28].

Chapter 3 shifts its attention to timelike zero mean curvature surfaces, also called timelike

minimal surfaces having planar curvature lines, which this thesis refers to as timelike minimal

surfaces of Bonnet-type. Timelike minimal surfaces distinguish themselves from minimal

surfaces in Euclidean 3-space and maximal surfaces in Minkowski 3-space in that they admit

a different type of coordinates, called the null coordinates [115]. In addition to the results

on the classification, deformation, and singularities, this thesis considers a characterization

of timelike minimal surfaces of Bonnet-type via the null coordinates. By doing so, the

relationship between timelike minimal surfaces of Bonnet-type and timelike Thomsen surfaces,

timelike minimal surfaces that are also affine minimal defined in [81], is explored. The content

in Chapter 3 is based on joint work with Shintaro Akamine and Yuta Ogata, and is published

in [4, 5].

In Chapter 4, the attention shifts to discrete minimal surfaces with symmetries. In the

smooth case, the Schwarz reflection principle states that if a minimal surface has a planar

curvature line along which the normal lines are also contained in the same plane, then the

minimal surface is symmetric with respect to the plane. Furthermore, a given minimal sur-

face has a planar symmetry along a curvature line if and only if the corresponding conjugate

minimal surface has a line symmetry along the corresponding asymptotic coordinate line.

On the other hand, discrete isothermic minimal surfaces were defined via discrete isothermic

surface theory, as discrete Christoffel transformations of discrete isothermic surfaces whose

images are contained in a sphere [17]. Also, using a concept of parallel transformation for

circular nets, mean curvature was defined via the discrete Steiner’s formula (see [95, 105],

for example), and it was shown that the discrete isothermic minimal surface defined via

Christoffel duality indeed has zero mean curvature. Recently, a concept of edge-constraint

nets was defined in [59], and as an application, the associated family of discrete isother-

mic minimal surfaces was developed, where discrete asymptotic minimal surfaces arise as

conjugate surface of discrete isothermic minimal surface. This chapter considers discrete

isothermic minimal surfaces having planar symmetry and explores its relationship with the

conjugate discrete asymptotic minimal surface. Using the symmetry properties, new exam-

ples of discrete isothermic minimal surfaces having high degrees of symmetry are numerically

created. The content in Chapter 4 is based on the joint work with Wayne Rossman and

Seong-Deog Yang.

Finally, Chapter 5 deals with preparatory materials to unify the arguments found in

Chapters 2 and 3 for maximal surfaces and timelike minimal surfaces. The similarity of the

arguments and the results suggest that maximal surfaces and timelike minimal surfaces of

Bonnet-type can be treated uniformly, and the Lorentz-Möbius geometry of R3,2 is explored

as a candidate for such unification. Spacelike and timelike isothermic surfaces were explored

in the context of Lorentz-Möbius geometry in works such as [37, 38, 107, 113]; however,

the work [24] suggests that the metric induced on the surface does not play a role in the

6



theory of isothermic surfaces. After showing that Minkowski 3-space, de Sitter 3-space,

and anti-de Sitter 3-space can be unified under the lightcone model of Lorentz-Möbius

geometry, analogous to the lightcone model of Möbius geometry developed first by Darboux

[33, Chapitre VI], we explore how the different types of spheres are represented in this model.

As an application, we see how the induced metric of a given surface can be identified via the

causality of the vector representing the tangent plane congruence.

7



Chapter 2

Maximal surfaces of

Bonnet-type

The classification of maximal surfaces of Bonnet-type in Minkowski 3-space R2,1 has not

been given until recently [76]. Leite developed an approach using orthogonal systems of

circles on the hyperbolic 2-space H2, and used the fact that families of planar curvature lines

transform into orthogonal families of circles on H2 under its analogue of the Gauss map.

Then she obtained the data for the following Weierstrass-type representation for maximal

surfaces as first stated in [70], later refined to include singularities in [110].

Fact 2.1 (Weierstrass-type representation theorem for maximal surfaces). Any conformal

maximal surface f : Σ ⊂ C→ R2,1 can be locally represented as

f = Re

∫︂
(1 + h2, i(1− h2),−2h)η dz

over a simply-connected domain Σ on which h is meromorphic, while η and h2η are holo-

morphic.

Note here that for a conformal maximal surface with Weierstrass data (h, η dz), one

obtains the associated family of maximal surfaces via Weierstrass data (h, λ−2η dz) for

λ ∈ S1 = {λ ∈ C : |λ|2 = 1}. Using the above representation, Leite produced the following

classification and their respective Weierstrass data (h, η dz).

Fact 2.2 ([76]). A maximal surface in Minkowski 3-space R2,1 with planar curvature lines

must be a piece of one, and only one of

• plane, with Weierstrass data (0, 1 dz),

• Enneper surface of first kind, with Weierstrass data (z, 1 dz),

• Enneper surface of second kind, with Weierstrass data
(︂

1−z
1+z ,−

(1+z)2

2 dz
)︂
, or one

member of its associated family,

• catenoid of first kind, with Weierstrass data (ez, e−z dz),

8



• catenoid of second kind, with Weierstrass data
(︂

1−ez
1+ez ,−1− cosh z dz

)︂
, or

• one surface in the Bonnet family, with Weierstrass data {(ez + t, e−z dz), t > 0}

up to isometries and homotheties of R2,1.

To study maximal surfaces of Bonnet-type, we start by proposing an alternative method

to using Leite’s method. In Section 2.1, we closely follow the method used in [29], which

was modeled after techniques used in [1], [9], [112], and [116]. First, we obtain and solve a

system of partial differential equations for the metric function using the zero mean curvature

condition and the planar curvature line condition. Then, from the metric function, we find

the normal vector to the surface by using the notion of axial directions. From the normal

vector, we recover the Weierstrass data and the parametrizations of maximal surfaces of

Bonnet-type, allowing us to obtain a complete classification (see Theorem 2.16).

In fact, the axial directions play a crucial role in this chapter, as they allow us not

only to further classify maximal Bonnet-type surfaces into three types, but also to attain

deformations consisting of the surfaces under consideration. In Section 2.2, we investigate

those deformations, and show that there exists a single continuous deformation consisting

exactly of the maximal surfaces of Bonnet-type (see Theorem 2.17, Fig. 2.4, and Fig. 2.5).

On the other hand, the notion of maxfaces as maximal surfaces in R2,1 with singularities

was introduced in [110], and various types of singularities appearing on maximal surfaces

have been studied in various works [43, 47, 69, 71, 91, 110]. Since the singularities of

maximal catenoids and the maximal Enneper-type surface were investigated in [47, 71, 110],

in Section 2.3, we recognize the types of singularities for maximal Bonnet-type surfaces using

the criteria introduced in [110], [47], and [91], and specify the types of singularities appearing

in maximal surfaces of Bonnet-type (see Theorem 2.20, Fig. 2.6, and Fig. 2.7).

Finally in Section 2.4, we apply the results in Section 2.2 and Section 2.3 to maximal

surfaces that are also affine minimal surfaces. Thomsen studied minimal surfaces in R3 that

are also affine minimal surfaces, and mentioned that such surfaces are conjugate surfaces of

minimal surfaces of Bonnet-type [109]. Manhart has shown that the analogous result holds

true for the maximal case in R2,1 [82], and we use that result to consider the deformations

and singularities of maximal surfaces that are also affine minimal surfaces (see Corollary

2.23, Corollary 2.24, Fig. 2.8, and Fig. 2.9).

2.1 Classification of maximal surfaces of Bonnet-type

In this section, we would like to obtain a complete classification of maximal surfaces of

Bonnet-type by using the Weierstrass-type representation. We use an alternative method to

orthogonal systems of cycles to recover the Weierstrass data as follows: First, from the zero

mean curvature condition and planar curvature line condition, we obtain and solve a system

of partial differential equations for the metric function. Then using the explicit solutions for

the metric function, we recover the Weierstrass data and the parametrization by calculating

the unit normal vector.
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2.1.1 Maximal surface theory

Let R2,1 be Minkowski 3-space with Lorentzian metric

⟨(x1, x2, x0), (y1, y2, y0)⟩ := x1y1 + x2y2 − x0y0.

In addition, let Σ be a simply-connected domain with coordinates (u, v) ∈ Σ ⊂ R2. Through-

out the paper, we identify R2 with the set of complex numbers C via (u, v) ↔ z := u+ iv

where i =
√
−1. Let X : Σ → R2,1 be a conformally immersed spacelike surface. Since

X(u, v) is conformal, the induced metric ds2 is represented as

ds2 = ρ2 (du2 + dv2)

for some function ρ : Σ→ R+, where R+ is the set of positive real numbers.

We choose the timelike unit normal vector field N : Σ → H2 of X, where H2 is the

two-sheeted hyperboloid in R2,1 (cf. [110, (1.2)]), i.e.

H2 = H2
+ ∪H2

−

for

H2
+ := {x ∈ R2,1 : ⟨x, x⟩ = −1, x0 > 0} and H2

− := {x ∈ R2,1 : ⟨x, x⟩ = −1, x0 < 0}.

Now, let X(u, v) be a non-planar umbilic-free maximal surface on the domain Σ. By [16,

Lemma 2.3.2] (see also [13, 14]), we may then further assume that (u, v) are conformal

curvature line (or isothermic) coordinates, and that the Hopf differential factor

Q := ⟨Xzz, N⟩ = −
1

2

without loss of generality. Hence, the Gauss-Weingarten equations for the maximal case are

the following: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xuu = ρu
ρ Xu − ρv

ρ Xv +N,

Xvv = −ρuρ Xu +
ρv
ρ Xv −N,

Xuv =
ρv
ρ Xu +

ρu
ρ Xv,

Nu = 1
ρ2Xu,

Nv = − 1
ρ2Xv,

(2.1)

while the integrability condition, or the Gauss equation, becomes

ρ ·∆ρ− (ρ2u + ρ2v) + 1 = 0

where ∆ = ∂2u + ∂2v . Finally, changing Q ↦→ λ−2Q for λ ∈ S1 ⊂ C, we obtain the associated

family of X(u, v). In particular, if λ−2 = ±i then the new surface is called the conjugate of

the original surface.
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2.1.2 Planar curvature line condition and analytic classification

Now, we impose the planar curvature line condition on a maximal surface. First, we consider

the relationship between the planar curvature line condition and the metric function.

Lemma 2.3. For a non-planar umbilic-free maximal surface X(u, v), the following state-

ments are equivalent:

(1) u-curvature lines are planar.

(2) v-curvature lines are planar.

(3) ρuv = 0.

Proof. Since (u, v) are conformal curvature line coordinates, u-curvature lines are planar if

and only if

det(Xu, Xuu, Xuuu) = 0.

The Gauss-Weingarten equation (2.1) tells us that

Xuuu =
ρuuρ− ρ2v + 1

ρ2
Xu −

ρuρv + ρuvρ

ρ2
Xv +

ρu
ρ
N.

Therefore, we have that

det(Xu, Xuu, Xuuu) = ρuvρ.

Since ρ : Σ→ R+, we have that u-curvature lines are planar if and only if ρuv = 0. Similarly,

one can calculate that v-curvature lines are planar if and only if ρuv = 0.

Therefore, finding all non-planar umbilic-free maximal surfaces of Bonnet-type is equiva-

lent to finding solutions to the following system of partial differential equations:{︄
ρ ·∆ρ− (ρ2u + ρ2v) + 1 = 0 (Gauss equation for maximal surfaces), (2.2a)

ρuv = 0 (planar curvature line condition). (2.2b)

To solve the above system, we note that (2.2a) and (2.2b) can be reduced to a system of

ordinary differential equations as follows.

Lemma 2.4. For a solution ρ : Σ → R+ to (2.2a) and (2.2b), there exist real-valued

functions f(u) and g(v) such that {︄
ρu = f(u), (2.3a)

ρv = g(v). (2.3b)

Furthermore, ρ(u, v) can be explicitly written in terms of f(u) and g(v) as follows:

Case (1): If ∆ρ is nowhere zero on Σ,

ρ(u, v) =
f(u)2 + g(v)2 − 1

fu(u) + gv(v)
, (2.4)

11



where f(u) and g(v) satisfy the following system of ordinary differential equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(fu(u))
2 = (d− c)f(u)2 + c (2.5a)

fuu(u) = (d− c)f(u) (2.5b)

(gv(v))
2 = (c− d)g(v)2 + d (2.5c)

gvv(v) = (c− d)g(v) (2.5d)

for real constants c and d such that c2 + d2 ̸= 0.

Case (2): If ∆ρ ≡ 0 on Σ, i.e. ∆ρ is identically zero on Σ,

ρ(u, v) = (cosϕ) · u+ (sinϕ) · v. (2.6)

where f(u) = sinϕ and g(v) = cosϕ for some constant ϕ ∈ [0, 2π).

Proof. By integrating Equation (2.2b) with respect to v, we obtain

ρu = C1(u)

for some integral constant C1(u). Similarly, we get ρv = C2(v) for some integral constant

C2(v) by integrating (2.2b) with respect to u. Define f(u) := C1(u) and g(v) := C2(v) to

get (2.3). Inputing (2.3) to (2.2a), we get

ρ · (fu(u) + gv(v))− (f(u)2 + g(v)2) + 1 = 0.

To prove the first case, first assume that ∆ρ is not identically equal to zero. Then we can

choose a point (u0, v0) such that ρ(u0, v0) ̸= 0, implying that we can choose a neighborhood

Σ ⊂ R2 of (u0, v0) such that ∆ρ is nowhere zero on Σ. Since ∆ρ = fu + gv ̸≡ 0,

ρ(u, v) =
f(u)2 + g(v)2 − 1

fu(u) + gv(v)
,

i.e. we have (2.4). Then from (2.3a), we have

f = ρu =
2ffu(fu + gv)− (f2 + g2 − 1)fuu

(fu + gv)2

or

0 = f(fu + gv)
2 − 2ffu(fu + gv) + (f2 + g2 − 1)fuu

= ff2u + 2ffugv + fg2v − 2ff2u − 2ffugv + (f2 + g2 − 1)fuu

= f(g2v − f2u) + (f2 + g2 − 1)fuu. (2.7)

After multiplying both sides by 2fu
(f2+g2−1)2 , we have that

0 =
2fufuu(f

2 + g2 − 1)− (f2u − g2v) · 2ffu
(f2 + g2 − 1)2

=

(︄
f2u − g2v

f2 + g2 − 1

)︄
u

.

12



Integrating both sides with respect to u, we obtain that

f2u − g2v
f2 + g2 − 1

= k1(v) (2.8)

for some k1(v). Substituting k1(v) for (2.7), we have that

0 = −fk1(v)(f2 + g2 − 1) + fuu(f
2 + g2 − 1) = (f2 + g2 − 1)(fuu − fk1(v)).

Since f2 + g2− 1 ̸= 0, we have that fuu = k1(v)f , implying that k1(v) = c̃ ∈ R is a constant,

i.e.

fuu = c̃f. (2.9)

Multiplying both sides of (2.9) with 2fu and integrating with respect to u gives us that

f2u = c̃f2 + c

for some constant c.

On the other hand, from (2.3b), we have

g = ρv =
2ggv(fu + gv)− (f2 + g2 − 1)gvv

(fu + gv)2

or

0 = g(fu + gv)
2 − 2ggv(fu + gv) + (f2 + g2 − 1)gvv

= gf2u + 2gfugv + gg2v − 2gfugv − 2gg2v + (f2 + g2 − 1)gvv

= g(f2u − g2v) + (f2 + g2 − 1)gvv. (2.10)

Substituting (2.8) with k1(v) = c̃ into (2.10), we get that

0 = c̃g(f2 + g2 − 1) + (f2 + g2 − 1)gvv = (f2 + g2 − 1)(gvv + c̃g).

Again. since f2 + g2 − 1 ̸= 0, we have that

gvv = −c̃g. (2.11)

Multiplying both sides of (2.11) with 2gv and integrating with respect to v gives us that

g2v = −c̃g2 + d

for some constant d. Now, from (2.8),

c̃(f2 + g2 − 1) = f2u − g2v = c̃f2 + c+ c̃g2 − d = c̃(f2 + g2 − 1) + c̃+ c− d,

implying that c̃ = d − c, giving us (2.5). Lastly, c = d = 0 implies f(u) and g(v) are both

constants by (2.5), a contradiction since we assumed that ∆ρ ̸≡ 0.
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Now assume that ∆ρ is identically equal to zero on some simply-connected domain

Σ ⊂ R2. Since ∆ρ = fu(u) + gv(v) ≡ 0, f(u)2 + g(v)2 = 1 for all u and v. This implies that

both f(u) and g(v) are constant, and we can set f := cosϕ and g := sinϕ for some constant

ϕ ∈ [0, 2π). Solving (2.3a) and (2.3b), we obtain (2.6).

We would now like to solve for f(u) and g(v) satisfying (2.5a)–(2.5d) in Case (1). First,

assume that c = d. Then (2.5a) and (2.5c) imply that c = d > 0 and that

f(u) = ±√c u+ C̃1 and g(v) = ±
√
d v + C̃2 (2.12)

for some real constants of integration C̃1 and C̃2. Now assuming that c ≠ d, we can explicitly

solve for f(u) and g(v) to find that

f(u) = C1e
√
d−c u + C2e

−
√
d−c u, 4(c− d)C1C2 = c,

g(v) = C3e
√
c−d v + C4e

−
√
c−d v, 4(d− c)C3C4 = d,

(2.13)

where C1, . . . , C4 ∈ C are constants of integration. Furthermore since f(u) and g(v) are

real-valued functions, C1, . . . , C4 must satisfy⎧⎨⎩C1, C2 ∈ R and C3 = C4, if d > c,

C1 = C2 and C3, C4 ∈ R, if c > d,

where ·̄ denotes the complex conjugation.

To explicitly solve for f(u) and g(v) and hence ρ(u, v), we first need to consider the initial

conditions of f(u) and g(v). We identify the exact conditions for f(u) and g(v) having a

zero, and derive the appropriate initial conditions in the following series of lemmas.

Lemma 2.5. f(u) (resp. g(v)) satisfying (2.5a)–(2.5d) has a zero if and only if either c > 0

or f(u) ≡ 0 (resp. d > 0 or g(v) ≡ 0).

Proof. If c = d, then the statement is trivial by (2.12); hence, we may assume c ̸= d. To

prove the necessary condition, since f ≡ 0 case is trivial, assume that c > 0, and we show

that there is some real u0 such that f(u+ 0) = 0. If d > c, then it is easy to check that for

u0 :=
log c− log(4(d− c)C2

1 )

2
√
d− c

we get f(u0) = 0 by (2.13).

Now assume c > d. Then since

C1 =
c

4(c− d)C2
=

c

4(c− d)C1

,

we may write C1 =
√︂

c
4(c−de

iθ and C2 =
√︂

c
4(c−de

−iθ for some constant θ ∈ R. By letting

u0 :=
π
2 − θ√
c− d

,
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we have f(u0) = 0 again by (2.13).

To show the sufficient condition, suppose there is some u0 such that f(u0) = 0. By (2.5a),

(fu(u0))
2 = c ≥ 0. If c = 0, then, (2.13) gives us

f(u) = C1e
√
du + C2e

−
√
du

for some complex constants C1 and C2 where d · C1C2 = 0. Since d ̸= 0, without loss of

generality, let C2 = 0. From f(u0) = 0, we get C1e
√
du0 = 0. Therefore, C1 = 0, and we

have f(u) ≡ 0.

The statement regarding g(v) is proven analogously.

Lemma 2.6. f(u) (resp. g(v)) has no zero if and only if either c < 0 or f(u) = ±e
√
du

where d > 0 (resp. d < 0 or g(v) = ±e
√
cu where c > 0).

Proof. Note that by the previous lemma and the fact that c < 0 implies f(u) ̸≡ 0, we only

need to show that f(u) ̸≡ 0 and c = 0 if and only if f(u) = C1e
√
du for C1 = ±1 and d > 0.

First, suppose that f(u) ̸≡ 0 and c = 0. Then, similar to the proof of the previous lemma,

f(u) = C1e
√
du

for some complex constant C1. Since f(u) ̸≡ 0, C1 ̸= 0. In addition, since f(u) is real, C1 is

real, and d > 0. Finally, by shifting parameters, we may assume that C1 = ±1.
Now assume that f(u) = ±e

√
du for d > 0. Then f(u) ̸≡ 0 trivially. Furthermore, (2.5b)

implies that c · (±e
√
du) = 0 for all u. Hence, c = 0.

Lemma 2.7. At least one of f(u) or g(v) must have a zero.

Proof. Without loss of generality, suppose that f(u) does not have a zero. Hence, by the

previous lemma, c < 0 or f(u) = ±e
√
du where d > 0. If f(u) = ±e

√
du with d > 0, g(v)

must have a zero by Lemma 2.5.

Now suppose c < 0. Then, by (2.5a), d− c > 0. If d < 0, then (2.5c) implies c− d > 0,

a contradiction; hence, d ≥ 0. If d = 0, direct calculation shows that either g(v) ≡ 0 or

g(v) = C2e
√
cu where C2 ̸= 0 and c > 0. However, since we assumed c < 0, it must follow

that g(v) ≡ 0 or d > 0. Hence, g(v) must have a zero.

Exchanging the roles of u and v, if necessary, we may assume without loss of generality

that g has a zero, and we may further assume that g(0) = 0 by shifting parameters. By

considering the fact that we may switch the roles of f(u) and g(v), we only need to consider

the following five cases:

c > 0, d > 0 c > 0, g(v) ≡ 0 f(u) = ±e
√
du, d > 0 c < 0, d > 0 c < 0, g(v) ≡ 0

(2.14)

It should be noted that in the cases considered (2.14), d ≥ 0, and that d = 0 if and only

if g(v) ≡ 0. For the third case, since c = 0, g(v) = sin (
√
dv). By letting v ↦→ −v, we

see that the plus or minus condition on f(u) may be dropped, allowing us to assume that

f(u) = e
√
du. Finally, we prove the following statement regarding the initial condition of

f(u).
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Lemma 2.8. For the cases (2.14), there is some u0 such that f(u0) = 1.

Proof. It is easy to check that the statement holds if c = d via (2.12); hence, assume c ̸= d.

From (2.13), since c ̸= 0 implies C1 and C2 are non-zero, we let

C2 =
c− d+

√︁
d(d− c)

2(c− d) .

If d− c > 0, then since d ≥ 0, f(u) is real-valued such that f(0) = 1. Since c < 0 implies

that d − c > 0, assume c > 0 and d − c < 0. Then direct calculation shows that C1 is the

complex conjugate of C2 implying that f(u) is equal to its own conjugate. Therefore, f(u)

is real-valued such that f(0) = 1.

Therefore, through shifting parameters, we may assume that f(0) = 1 and g(0) = 0.

Using these initial conditions, we arrive at the following explicit solutions for f(u) and g(v).

Proposition 2.9. For a non-planar maxface X(u, v) with planar curvature lines, the real-

analytic solution ρ : R2 → R of (2.2a) and (2.2b) is precisely given as follows:

Case (1) If ∆ρ ̸≡ 0, i.e. ∆ρ is not identically equal to zero, then

ρ(u, v) =
f(u)2 + g(v)2 − 1

fu(u) + gv(v)
,

with

f(u) =

⎧⎪⎪⎨⎪⎪⎩
cosh (

√
d− c u) +

√
d√

d− c
sinh (

√
d− c u), if c ̸= d

√
du+ 1, if c = d

g(v) =

⎧⎪⎪⎨⎪⎪⎩
√
d√

d− c
sin (
√
d− c v), if c ̸= d

√
dv, if c = d

(2.15)

where c2 + d2 ̸= 0 and d ≥ 0.

Case (2) If ∆ρ ≡ 0, then for some constant ϕ such that ϕ ∈ [0, 2π),

ρ(u, v) = (cosϕ) · u+ (sinϕ) · v.

Proof. Solving (2.5a)–(2.5d) for f(u) and g(v) with initial conditions f(0) = 1 and g(0) = 0,

and considering the change in parameter u ↦→ −u or v ↦→ −v, if necessary, gives the explicit

solutions in (2.15).

Now we wish to see that the domain of ρ(u, v) can be extended to R2 globally. If c = d,

then this is a direct result of applying the solution in (2.15). Therefore, assume c ̸= d. Then

by (2.5a) and (2.5c), we have

f2u − g2v = (d− c)(f2 + g2 − 1).
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implying that

ρ(u, v) =
f(u)2 + g(v)2 − 1

fu(u) + gv(v)
=
fu(u)− gv(v)

d− c .

Therefore, the real-analyticity of f(u) and g(v) implies that the domain of ρ(u, v) can be

extended to R2 globally.

Remark 2.10. We make a few important remarks about Proposition 2.9:

• In the statement of Proposition 2.9, we now allow ρ to map into R as opposed to R+,

i.e. ρ may have zeroes, or even be negative. By doing so, we now consider X(u, v) as

maxfaces, defined in [110] as a class of maximal surfaces with singularities (see also

[47]).

• In (2.15), we allow d− c < 0. However, even in such case, by using the identities

cosh(
√
d− c u) = cos(

√
c− d u) and sinh(

√
d− c u) = i sin(

√
c− d u)

we see that f(u) and g(v) are real-valued analytic functions.

• For case (2) in Proposition 2.9, we may use an associated family’s parameter λ ∈ S1 ⊂ C
instead of ϕ through appropriate coordinate change shown below:⎧⎨⎩ũ := cosϕ · u+ sinϕ · v, ṽ := − sinϕ · u+ cosϕ · v

λ := e−iϕ, Q̃ := − 1
2λ

−2 = λ−2Q.

However, it should be noted that while the coordinate change (u, v) ↦→ (ũ, ṽ) and

parameter change ϕ ↦→ λ preserve the conformal structure, it does not hold the

curvature line coordinates such that Q ↦→ Q̃.

Note that for all cases, the metric function ρ(u, v) is always bounded for all (u, v) ∈ R2,

and we now have the following theorem. Note that u↔ v, used as a subscript in Figure 2.1,

means the role of u and v are switched, up to shift of parameters.

Theorem 2.11. Let X(u, v) be a non-planar maxface in R2,1 with isothermic coordinates

(u, v) such that the induced metric ds2 = ρ2 · (du2+dv2). Then X has planar curvature lines

if and only if ρ(u, v) satisfies Proposition 2.9. Furthermore, for different values of (c, d) or

λ as in Remark 2.10, the surface X(u, v) has the following properties based on Fig. 2.1:

Case (1) If ∆ρ ̸≡ 0, when (c, d) lies on

• 1⃝: X is not periodic in the u-direction, but constant in the v-direction,

• 2⃝, 3⃝, or 4⃝: X is not periodic in the u-direction, but periodic in the v-direction,

• 5⃝: X is not periodic in both the u-direction and the v-direction,

• 6⃝: X is periodic in the u-direction, but constant in the v-direction.

Case (2) If ∆ρ ≡ 0, when λ lies on

• 7⃝: X is a surface of revolution,

• 8⃝: X is a surface in the associated family of 7⃝.
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Figure 2.1: The classification diagrams of non-planar maxfaces of Bonnet-type.

2.1.3 Axial directions and normal vector

To find the parametrizations of the surfaces considered, we would like to recover the Weier-

strass data from the metric function as follows: We first show the existence of a unique

constant direction for surfaces under consideration called the axial direction, and use it to cal-

culate the unit normal vector. Then from the unit normal vector, we recover the Weierstrass

data. First, we show the existence of the axial direction in the following proposition.

Proposition 2.12. If there exists u0 (resp. v0) such that f(u0) ̸= 0 (resp. g(v0) ̸= 0) in

Proposition 2.9, then there exists a unique non-zero constant vector v⃗1 (resp. v⃗2) such that

⟨m(u, v), v⃗1⟩ = ⟨mv(u, v), v⃗1⟩ = 0 (resp. ⟨n(u, v), v⃗2⟩ = ⟨nu(u, v), v⃗2⟩ = 0),

where m = ρ−2(Xu ×Xuu) (resp. n = ρ−2(Xv ×Xvv)) and

v⃗1 :=
(ρu)

2 − ρ · ρuu
ρ2

Xu −
ρuρv
ρ2

Xv +
ρu
ρ
N (2.16)

(resp. v⃗2 := −ρuρv
ρ2

Xu +
(ρv)

2 − ρ · ρvv
ρ2

Xv −
ρv
ρ
N).

If v⃗1 and v⃗2 both exist, then they are orthogonal to each other. We call v⃗1 and v⃗2 the axial

directions of X(u, v).

Proof. From (2.1),

m =
1

ρ2
Xv −

ρv
ρ
N. (2.17)

However, it is easy to show that

mu = −ρu
ρ
m

using (2.2). Therefore, m and mu are parallel.

On the other hand, direct calculation shows that

mv = −
ρu
ρ3
Xu +

ρuuρ− ρ2u
ρ2

N (2.18)
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Figure 2.2: Choice of parameter and axial directions for cases (1a) and (1b).

and

mvv =
2ρuρv
ρ4

Xu −
ρuuρ

ρ4
Xv +

2ρ2uρv − ρρuuρv
ρ3

N,

implying that

det(m,mv,mvv) = 0.

Since f(u) is not identically equal to zero, let u0 be a constant such that f(u0) ̸= 0.

Then, for all v, m(u0, v) and mv(u0, v) are linearly independent. Therefore, v⃗1 such that

⟨m(u0, v), v⃗1⟩ = ⟨mv(u0, v), v⃗1⟩ = 0

is unique up to scaling. However, the direction of m is independent of u; therefore, such v⃗1

is unique for all u and v. The analogous statement for v⃗2 is shown similarly.

Since v⃗1 and v⃗2 are constant, we use (2.2a), (2.2b), (2.4), and (2.5a)–(2.5d) to calculate

that

⟨v⃗1, v⃗1⟩ = c, ⟨v⃗2, v⃗2⟩ = d, (2.19)

implying that the axial directions of the surface has the following causalities: if d > 0,

• both v⃗1 and v⃗2 are spacelike if c > 0,

• v⃗1 is lightlike, but v⃗2 is spacelike if c = 0, or

• v⃗1 is timelike, but v⃗2 is spacelike if c < 0.

Note that if d = 0, then g(v) ≡ 0, implying that v⃗2 does not exist. By aligning the axial

directions with coordinate axes of the ambient space, we now calculate the unit normal

vector.

First, assume ∆ρ ̸≡ 0. Since the definition of f(u) and g(v) depend on the signature of

c− d, we consider each case separately.

Case (1a)

Assume first that d − c ≤ 0 (see left side of Fig. 2.2). Then v⃗1 and v⃗2 are both spacelike,

and we align the axial directions so that v⃗1 and v⃗2 are parallel to e1 and e2, respectively,
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where ei are the unit vectors in the xi-direction for i = 1, 2, 0. Then, we may calculate the

unit normal vector as follows.

Lemma 2.13. Let N(u, v) = (N1, N2, N0) be the unit normal vector to the surface X(u, v)

satisfying case (1) of Proposition 2.9. If c− d ≥ 0, then, the unit normal vector is given by

N(u, v) =

⎛⎝− 1√
c

ρu
ρ
,− 1√

d

ρv
ρ
,

√︄
1

c

(ρu)2

ρ2
+

1

d

(ρv)2

ρ2
+ 1

⎞⎠ .

Proof. Since ⟨m, v⃗1⟩ = 0, (2.1) and (2.17) implies that

N1 = D̃1(u)
1

ρ

for some function D̃1(u). Furthermore, from ⟨mv, v⃗1⟩ = 0, using (2.1) and (2.18), we may

show that

N1 = D̃2(v)
ρu
ρ

for some function D̃2(v). Therefore, D̃1(u) = D̃2(v)ρu = D1ρu for some constant D1.

Now c > d ≥ 0 implies that there is some u0 such that f(u0) = 0. Then, ⟨m,Xu⟩ =
⟨mv, Xu⟩ on (u0, v), and it follows that Xu(u0, v) ∈ span{e1}. Therefore,

ρ2 = ∥Xu(u0, v)∥2 = ((X1(u0, v))u)
2 = ρ2(D1)

2c.

Similarly, by letting v⃗2 = e2, we understand that

N2 =
1√
d

ρv
ρ
.

Finally, use the fact that N is a unit normal vector to get the desired conclusion.

Now, let d = r cos θ and c = r sin θ for θ ∈
[︁
π
4 ,

π
2

]︁
(see left side of Fig. 2.2). Since r

is a homothety factor of domain (u, v)-plane by (2.15), we may assume r = 1. Using the

above lemma, we may find the normal vector Nθ(u, v) dependent on θ. On the other hand,

since the meromorphic function h(u, v) of the Weierstrass data is equal to the normal vector

function under stereographic projection, and since Q = − 1
2 (hu − ihv)η = − 1

2 ,

h(u, v) =
1

1−N0(u, v)
(N1(u, v) + iN2(u, v)), η(u, v) =

1

hu − ihv
.
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Therefore, using Nθ(u, v), we calculate that for θ ∈
[︁
π
4 ,

π
2

]︁
,

hθ(z) =

⎧⎪⎪⎨⎪⎪⎩
A2 tan

(︁
1
2 (A1z +A3)

)︁
A1

, if θ ̸= π
4

2−1/4z + 1, if θ = π
4

ηθ(z) =

⎧⎪⎪⎨⎪⎪⎩
cos2

(︁
1
2 (A1z +A3)

)︁
A2

, if θ ̸= π
4

2−3/4, if θ = π
4

(2.20)

where A1(θ) =
√
sin θ − cos θ, A2(θ) =

√
cos θ +

√
sin θ, and A3(θ) = tan−1

(︂√
tan θ − 1

)︂
.

Case (1b)

Now assume that d − c > 0 (see right side of Fig. 2.2). Then, since the causality of v⃗1

changes while that of v⃗2 is always spacelike, we let

v⃗1 = a1e1 + a0e0 (2.21)

for some real constants a0 and a1, while we let v⃗2 be parallel to e2. To calculate the unit

normal vector N for this case, we first need the following lemma.

Lemma 2.14. Let N(u, v) = (N1, N2, N0) be the unit normal vector to the surface X(u, v)

satisfying case (1) of Proposition 2.9. If d− c > 0, then

a1N1 − a0N0 = −
√︁
a21 − a20√
c

ρu
ρ
, N2 = − 1√

d

ρv
ρ

(2.22)

where a1 and a0 are as in (2.21).

Proof. Employing similar techniques to those used in the proof of Lemma 2.13 implies that

a1N1 − a0N0 = D2 ·
ρu
ρ
. (2.23)

for some constant D2. To find D2 in (2.23), consider the following system of equations,⎧⎪⎪⎪⎨⎪⎪⎪⎩
c = ∥((ρu)2 − ρ · ρuu)Nu + ρuρvNv +

ρu
ρ N∥2

a1N1 − a0N0 = D2 · ρuρ
N2

1 + 1
d
ρ2v
ρ2 −N2

0 = −1

where the first equation comes from (2.1), (2.16), and (2.19). Since D2 is constant, we may

solve for D2 at the point
(︂
0, π

2
√
d−c

)︂
to get (2.22).

Since N is unit length, (2.22) lets us calculate the normal of the surface for any given a0,

a1, c, and d. Similar to the previous case, let d = cos θ and c = sin θ for θ ∈
[︁
−π2 , π4

)︁
, and

further let

a0 =
√
cos θ − sin θ, a1 =

√
cos θ.
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Now, we calculate the normal vector, and find that for θ ∈
[︁
−π2 , π4

)︁
,

hθ(z) =
B2e

B1z − 1

B2 − 1
, ηθ(z) =

(B2 − 1)e−B1z

2B1B2
(2.24)

where B1(θ) =
√
cos θ − sin θ and B2(θ) = 1 +

√
1− tan θ.

Case (2)

Finally, we consider the case when ∆ρ ≡ 0. By Remark 2.10, we only need to consider

ρ(u, v) = u, and then utilize the parameter λ ∈ S1 ⊂ C for the associated family for η(u, v).

First we assume that the lightlike axis v⃗1 = e1 + e0. Then similar to the previous cases,

N1 −N0 = D3 ·
ρu
ρ

= D3 ·
1

u

for some real constant D3. By applying the scaling of u, without loss of generality, we can

assume D3 = −1. Now since ρ(u, v) = u is independent of v, we notice that N(u, v) has the

form of N(u, v) =
(︁
N1(u), 0, N0(u)

)︁
· T (v) for a specific isometry transform T (v) ∈ SO2,1

keeping the lightlike axis e1 + e0. Thus we get the following:

Lemma 2.15. For case (2) in Proposition 2.9, the unit normal vector N of X̃ is given by

N(u, v) =

(︄
u2 − 1

2u
, 0,

u2 + 1

2u

)︄
·

⎛⎜⎜⎝1− v2

2 v −v22
−v 1 −v
v2

2 −v 1 + v2

2

⎞⎟⎟⎠
=

(︄
u2 + v2 − 1

2u
, − v

u
,
u2 + v2 + 1

2u

)︄
.

Using the above proposition, we obtain the following Weierstrass data, up to the homo-

thety of domain:

h̃(z) = − 1 + z

−1 + z
, η̃(z) =

1

4
(−1 + z)

2
. (2.25)

By changing data (h̃, η̃) ↦→ (h̃, λ−2η̃), we get all maxfaces in case (2) with parameter λ ∈ S1.
Since the data obtained all satisfy the meromorphicity and holomorphicity conditions, we

may use the Weierstrass-type representation for maxfaces to obtain the following parametriza-

tions.

Theorem 2.16. If X(u, v) is a non-planar maxface of Bonnet-type in R2,1, then the surface
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is given by the following parametrization on its domain for some θ ∈
[︁
−π2 , π2

]︁
:

Xθ(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(A2
1+A

2
2)A1u+(A2

1−A2
2) sin (A1u+A3) cosh (A1v)+(A2

2−A2
1) sinA3

2A3
1A2

(A2
2−A2

1)A1v−(A2
1+A

2
2) cos (A1u+A3) sinh (A1v)

2A3
1A2

cos (A1u+A3) cosh (A1v)−cosA3

A2
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

t

,

if θ ∈
(︁
π
4 ,

π
2

]︁
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−B1u
{︁(︁
B2(B2(e

2B1−1)+2)−2
)︁
cos(B1v)−2eB1u

(︁
B1B2u+B2−1

)︁}︁
2(B1)2B2(B2−1)

e−B1u
{︁
(B2e

2B1u−B2+2) sin (B1v)−2B1ve
B1u
}︁

2(B1)2(B2−1)

−B1B2u+e
−B1u cos (B1v)−1
(B1)2B2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

t

,

if θ ∈
[︁
−π2 , π4

)︁
1√
2

(︂
û− ûv̂2 + 1

3 û
3 − 4

3 , −v̂ + û2v̂ − 1
3 v̂

3, −û2 + v̂2 + 1
)︂
,

if θ = π
4

(2.26)

where (û, v̂) is given by u = 21/4(û− 1) and v = 21/4v̂, and⎧⎪⎨⎪⎩A1(θ) =
√
sin θ − cos θ,A2(θ) =

√
cos θ +

√
sin θ,A3(θ) = tan−1

(︂√
tan θ − 1

)︂
B1(θ) =

√
cos θ − sin θ,B2(θ) = 1 +

√
1− tan θ;

or for some λ−2 ∈ S1,

X̃
λ
(u, v) =

Re(λ−2)

2

⎛⎜⎜⎝ u− uv2 + 1
3u

3

2uv

−u− uv2 + 1
3u

3

⎞⎟⎟⎠
t

− Im(λ−2)

2

⎛⎜⎜⎝ v + u2v − 1
3v

3

−u2 + v2

−v + u2v − 1
3v

3

⎞⎟⎟⎠
t

(2.27)

up to isometries and homotheties of R2,1. In fact, it must be a piece of one, and only one,

of the following:

• maximal Enneper-type surface (E) with Weierstrass data (2−1/4z + 1, 2−3/4 dz), (θ =
π
4 ),

• maximal catenoid with lightlike axis (CL) with Weierstrass data(︃
− 1 + z

−1 + z
,
1

4
(−1 + z)

2
dz

)︃
,

or a member of its associated family (λ ∈ S1),

• maximal catenoid with spacelike axis (CS) with Weierstrass data
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(︂
tan

(︁
1
4 (π + 2z)

)︁
, 12 (1− sin z) dz

)︂
, (θ = π

2 ),

• maximal catenoid with timelike axis (CT) with Weierstrass data
(︁
ez, 12e

−z dz
)︁
, (θ =

−π2 ),

• maximal Bonnet-type surface with lightlike axial direction (BL) with Weierstrass data(︁
2ez − 1, 14e

−z dz
)︁
, (θ = 0),

• maximal Bonnet-type surface with spacelike axial direction (BS) with Weierstrass data⎧⎨⎩
⎛⎝A2 tan

(︃
1
2 (A1z+A3)

)︃
A1

,
cos2

(︃
1
2 (A1z+A3)

)︃
A2

dz

⎞⎠ : θ ∈
(︁
π
4 ,

π
2

)︁⎫⎬⎭ , or

{︃(︂
B2e

B1z−1
B2−1 , (B2−1)e−B1z

2B1B2
dz
)︂
: θ ∈

(︁
0, π4

)︁}︃
,

• or maximal Bonnet-type surface with timelike axial direction (BT) with Weierstrass

data {︃(︂
B2e

B1z−1
B2−1 , (B2−1)e−B1z

2B1B2
dz
)︂
: θ ∈

(︁
−π2 , 0

)︁}︃
.

Moreover, Xθ(u, v) is continuous at every point (u, v) with respect to the parameter θ.

Note that by (2.19), we see that the different classes of maximal Bonnet-type surfaces

mentioned in [76] have a geometric meaning; namely, the causal character of the axial

directions are different. Finally, it should be noted that a catenoid with timelike axis is

indeed a limiting case of maximal Bonnet-type surfaces with timelike axial direction, while a

catenoid with spacelike axis is a limiting case of maximal Bonnet-type surfaces with spacelike

axial direction.

2.2 Deformation of maximal surfaces of Bonnet-type

Now, we show that all maxfaces of Bonnet-type can be conjoined by a single continu-

ous deformation. However, as seen in the previous section, the Weierstrass data and the

parametrizations of such surfaces depended on two separate parameters θ and λ. Therefore,

we need to show that there exists a deformation consisting of maxfaces of Bonnet-type that

connects the surfaces in each parameter family. In addition, it must be verified that the

plane can also be attained as a limit of such surfaces.

Therefore, in this section, we explain how all the maxfaces of Bonnet-type can be joined

by a series of continuous deformations. We consider a deformation to be “continuous” with

respect to a parameter, if the deformation dependent on the parameter converges uniformally

over compact subdomains component-wise. In fact, it will be enough to show that each

component function in the parametrization is continuous for the parameter at any point

(u, v) in the domain.
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v1 e1

v2 e2

θ

v1 = a1e1 + a0e0

v2 e2

δ

v1 e1 + e0

v2 e2

c

d

Figure 2.3: Choice of parameter and axial directions for deformation to the catenoid with
lightlike axis.

2.2.1 Deformation to the maximal catenoid with lightlike axis

First, we will show that there exists a deformation between a maximal Bonnet-type surface

with lightlike axial direction and a maximal catenoid with lightlike axis. Assume c = 0 and

d > 0 (see Fig. 2.3). Then by (2.19), v⃗1 is a lightlike axial direction while v⃗2 is a spacelike

axial direction. Therefore, align the vectors as v⃗1 ∥ e1 + e0 and v⃗2 ∥ e2.
Then by Lemma 2.14, N1 −N0 = −ρuρ , and N2 = − 1

δ
ρv
ρ where δ =

√
d. Again using the

unit normal vector, we calculate the following Weierstrass data:

hδCL
(z) =

(δ + 1)eδz − 1

(δ − 1)eδz + 1
, ηδCL

(z) =

(︁
1 + (δ − 1)eδz

)︁2
4δ2eδz

.

Note that

hδCL
(z)
⃓⃓⃓
δ=1

= hθ(z)
⃓⃓⃓
θ=0

, ηδCL
(z)
⃓⃓⃓
δ=1

= ηθ(z)
⃓⃓⃓
θ=0

,

lim
δ↘0

hδCL
(z) = h̃(z), lim

δ↘0
ηδCL

(z) = η̃(z).

In addition, by using the Weierstrass-type representation theorem,

Xδ
CL

(u, v) =

⎛⎜⎜⎜⎜⎜⎝
e−δu

{︁
((δ2+1)e2δu−1) cos(δv)−δ(2u+δ)eδu

}︁
2δ3

eδu sin(δv)−δv
δ2

e−δu
{︁
−((δ2−1)e2δu+1) cos(δv)−δ(2u−δ)eδu

}︁
2δ3

⎞⎟⎟⎟⎟⎟⎠
t

for δ > 0. Since

Xδ
CL

(u, v)
⃓⃓⃓
δ=1

= Xθ(u, v)
⃓⃓⃓
θ=0

, lim
δ↘0

Xδ
CL

(u, v) = X̃
λ
(u, v)

⃓⃓⃓⃓
λ=1

,

Xδ
CL

(u, v) is a continuous deformation from maximal Bonnet-type surface with lightlike axial

direction (BL) to the maximal catenoid with lightlike axis (CL) (or maximal Enneper-type

surface of second kind).
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2.2.2 Deformation to the plane

Now, we show that there exists a deformation connecting maximal catenoid with spacelike

axis to the plane. Up to this point, to solve the system of ordinary differential equations

(2.5a)–(2.5d), we assumed that ρu(0, v) = f(0) = 1, and ρv(u, 0) = g(0) = 0. However, since

ρ(u, v) ≡ 1 for the plane, we must consider different initial conditions for f(u) and g(v).

Therefore, we use the result from Lemma 2.5 and consider the surfaces corresponding to

case (1a), to assume that f(0) = 0 and g(0) = 0. Solving (2.5a)–(2.5d) similarly, we get

fP(u) =

√
c√

c− d
sin
(︂√

c− d u
)︂
, gP(v) =

√
d√

c− d
sinh

(︂√
c− d v

)︂
where c2 + d2 ̸= 0.

Since we assumed each of f(u) and g(v) has a zero, both axial directions are spacelike,

and we may use Lemma 2.13 to calculate the unit normal vector. After letting
√
c = cosψ

and
√
d = sinψ, we calculate the Weierstrass data as

hψP(z) =

√
cos 2ψ

cosψ − sinψ
tan

(︄√
cos 2ψ

2
(z + Sψ)

)︄

ηψP(z) =
1

cosψ + sinψ
cos2

(︄√
cos 2ψ

2
(z + Sψ)

)︄

for ψ ∈
(︁
−π4 , 0

]︁
, where the factor for shifting parameter Sψ = 2ψ + π

2 was chosen so that

hψP(z)
⃓⃓⃓
ψ=0

= hθ(z)
⃓⃓⃓
θ=π

2

, η0P(z)
⃓⃓⃓
ψ=0

= ηθ(z)
⃓⃓⃓
θ=π

2

.

Using the Weierstrass-type representation theorem, and multiplying by a homothety factor

cos 2ψ, we find that

Xψ
P (u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝

u cosψ
√
cos 2ψ−sinψ sin((u+Sψ)

√
cos 2ψ) cosh(v

√
cos 2ψ)√

cos 2ψ

v sinψ
√
cos 2ψ−cosψ cos((u+Sψ)

√
cos 2ψ) sinh(v

√
cos 2ψ)√

cos 2ψ

cos
(︁
(u+ Sψ)

√
cos 2ψ

)︁
cosh

(︁
v
√
cos 2ψ

)︁

⎞⎟⎟⎟⎟⎟⎟⎠

t

, if ψ ̸= −π4

(︂√
2u,−

√
2v, 1

)︂
, if ψ = −π4

for ψ ∈
[︁
−π4 , 0

]︁
, where Xψ

P (u, v)
⃓⃓⃓
ψ=−π

4

= limψ↘−π
4
Xψ

P (u, v). Since

Xψ
P (u, v)

⃓⃓⃓
ψ=0

= Xθ(u, v)
⃓⃓⃓
θ=π

2

,

Xψ
P (u, v) defines a continuous deformation from the maximal catenoid with spacelike axis

(CS) to the plane (P). In summary, we get the following theorem.

Theorem 2.17. There exists a continuous deformation consisting precisely of the maxfaces

of Bonnet-type (see Fig. 2.4 and Fig. 2.5).
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Figure 2.4: Diagram of deformations connecting maxfaces of Bonnet-type.

2.3 Singularities of maximal Bonnet-type surfaces

As mentioned in Remark 2.10, maxfaces was introduced as a class of maximal surfaces with

singularities in [110]. In this section, we investigate the types of singularities appearing on

maxfaces of Bonnet-type. Since the types of singularities of maximal catenoids and maximal

Enneper-type surfaces have been investigated [47, 71, 110], we focus on recognizing the types

of singularities on maximal Bonnet-type surfaces.

Let S(X) := {(u, v) ∈ R2 : ρ(u, v) = 0} be the singular set. Then using the explicit

solution of the metric function in Proposition 2.9, we understand that the singular set

becomes 1-dimensional. To recognize the types of singularities of maximal Bonnet-type

surfaces, we refer to the following results from [47, 91, 110].

Fact 2.18. Let X(u, v) : Σ → R2,1 be a maxface with Weierstrass data (h, η dz). Then, a

point p ∈ Σ is a singular point if and only if |h(p)| = 1. Furthermore, for

φ :=
hz
h2η

, ϕ :=
h

hz
φz, Φ :=

h

hz
ϕz,

the image of X around a singular point p is locally diffeomorphic to

• a cuspidal edge if and only if Reφ ̸= 0 and Imφ ̸= 0 at p,

• a swallowtail if and only if φ ∈ R \ {0} and Reϕ ̸= 0 at p,

• a cuspidal cross cap if and only if φ ∈ iR \ {0} and Imϕ ̸= 0 at p, or

• a cuspidal S−
1 singularity if and only if φ ∈ iR \ {0}, ϕ ∈ R \ {0}, and ImΦ ̸= 0 at p.

To make the calculations simpler, from Lemma 2.14, assume that c = t2−1 and d = t2 for

t > 0. If we further assume that a1 = t and a0 = 1, then we obtain the following Weierstrass

data:

ht(z) = ez − t, ηt(z) =
e−z

2
(2.28)

after a shift of paramter u ↦→ u + log(t + 1). Note that this Weierstrass data represents

exactly the Bonnet family described in [76], and that all maximal Bonnet-type surfaces are

included in this family by Theorem 2.11. Then, for the family,

• If t > 1, the surface is a maximal Bonnet-type surface with spacelike axial direction.
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Figure 2.5: Maxfaces of Bonnet-type and their deformations.
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• If t = 1, the surface is a maximal Bonnet-type surface with lightlike axial direction.

• If t < 1, the surface is a maximal Bonnet-type surface with timelike axial direction.

By directly calculating φ, ϕ, and Φ, and using Fact 2.18, we arrive at the following result.

Proposition 2.19. Let Xt(u, v) be a maximal Bonnet-type surface with the Weierstrass data

given in (2.28). The image of X around a singular point p = (u, v) is locally diffeomorphic

to the following:

• a swallowtail (SW) only at

0 < t < 1 (BT):
(︁
log(± t+ 1), cos−1(± 1)

)︁
t = 1 (BL): (log 2, cos−1 1)

t > 1 (BS): (log(t± 1), cos−1 1),
(︂
log
√
t2 − 1, cos−1

√
1− t−2

)︂
• a cuspidal cross cap (CCR) only at

0 < t ≤ 1√
2

(BT): None

1√
2
< t < 1 (BT):

(︄
log

(︃
±
√︂
t2 − 1

2 +
√︂

1
2

)︃
, cos−1

(︃
± 1

t

√︂
t2 − 1

2

)︃)︄
t = 1 (BL):

(︂
log
√
2, cos−1 1√

2

)︂
t > 1 (BS):

(︄
log

(︃√︂
t2 − 1

2 ±
√︂

1
2

)︃
, cos−1

(︃
1
t

√︂
t2 − 1

2

)︃)︄

• or a cuspidal S−
1 singularity (CS) only at

t = 1/
√
2 (BT):

(︂
− log(

√
2), cos−1 0

)︂
where ± corresponds to each other.

Hence, from the singularity theory point of view, we understand that maximal Bonnet-

type surfaces with timelike axial directions can further be classified into the following three

types: type 1 (BT1), type 2 (BT2), or type 3 (BT3).

Since maximal Bonnet-type surfaces are periodic in the v-direction, let a single portion

of X(u, v) refer to the part of the surface mapped over a single period of v in the domain.

Then, in summary, we understand the following theorem concerning the types of singularities

on maximal Bonnet-type surfaces.

Theorem 2.20. Let Xt(u, v) be a maximal Bonnet-type surface with the Weierstrass data

given in (2.28). The images of a single portion of X around singular points are locally
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Figure 2.6: Types of singularities for maximal Bonnet-type surfaces with timelike axial
directions (BT1, BT2, BT3) where the cuspidal edges are highlighted by a red line, swallowtails
by orange points, cuspidal cross caps by blue points, and cuspidal S−

1 singularities by green
points.

diffeomorphic to cuspidal edges except at the following number of points.

type of surface # of SW # of CCR # of CS

0 < t < 1/
√
2 BT1 2 0 0

t = 1/
√
2 BT2 2 0 2

1/
√
2 < t < 1 BT3 2 4 0

t = 1 BL 1 2 0

1 < t BS 4 4 0

Combined with the result in [71], [110], and [47], we obtain the following corollary.

Corollary 2.21. Let X(u, v) be a maxface of Bonnet-type. If p is a singular point of X(u, v),

then the image of X around the singular point p must be locally diffeomorphic to one of the

following: conelike singularity, fold singularity, cuspidal edge, swallowtail, cuspidal cross cap,

or cuspidal S−
1 singularity.

2.4 Maximal surfaces that are also affine minimal sur-

faces

In the Euclidean case, Thomsen studied minimal surfaces in R3 that are also affine minimal

surfaces, those surfaces with zero affine mean curvature surfaces and with indefinite affine

metric with respect to the equiaffine structure, called Thomsen surfaces, in [109], and

commented on the fact that such surfaces are conjugates of minimal surfaces of Bonnet-type.

30



Figure 2.7: Types of singularities for maximal Bonnet-type surfaces with lightlike and space
axial directions (BL, BS) where the cuspidal edges are highlighted by a red line, swallowtails
by orange points, and cuspidal cross caps by blue points.

The analogous statement holds true for maximal surfaces in R2,1 as shown through the

following result in [82].

Fact 2.22. An umbilic-free maximal surface in R2,1 has planar curvature lines if and only

if the conjugate surface is an affine minimal surface.

Therefore, by considering the conjugate surfaces of maximal surfaces of Bonnet-type, we

get the following result from Theorem 2.17.

Corollary 2.23 (Corollary to Theorem 2.17). There exists a continuous deformation con-

sisting precisely of the maximal surfaces that are also affine minimal surfaces.

Furthermore, by the duality of singularities between conjugate surfaces explored in [110],

[69], [47], and [91], we obtain the following classification of singularities on maximal Thomsen-

type surfaces.

Corollary 2.24 (Corollary to Theorem 2.20). Let Y t(u, v) be a maximal Thomsen-type

surface where Y t(u, v) is the conjugate surface of Xt(u, v) as defined in Theorem 2.20. The

images of a single portion of Y around singular points are locally diffeomorphic to cuspidal

edges except at the following number of points.

# of CCR # of SW # of CB

0 < t < 1/
√
2 2 0 0

t = 1/
√
2 2 0 2

1/
√
2 < t < 1 2 4 0

t = 1 1 2 0

1 < t 4 4 0
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Figure 2.8: Maximal surfaces that are also affine minimal and their deformations.

where CB stands for cuspidal butterfly.

Moreover, if Y (u, v) is a maximal surface that is also an affine minimal surface, then

the image of Y around the singular point p must be locally diffeomorphic to one of the

following: conelike singularity, fold singularity, cuspidal edge, swallowtail, cuspidal cross cap,

or cuspidal butterfly.

Figure 2.9: Types of singularities for maximal Thomsen-type surfaces where the cuspidal
edges are highlighted by a red line, swallowtails by orange points, cuspidal cross caps by
blue points, and cuspidal butterflies by cyan points.
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Chapter 3

Timelike minimal surfaces of

Bonnet-type

In this chapter, we consider the timelike minimal analogue of minimal surfaces of Bonnet-

type and Thomsen surfaces in Minkowski 3-space, and clarify their relationship. We first

focus on the class of timelike minimal surfaces of Bonnet-type, and consider its classification.

To achieve this, we use the following method: First, as in Chapter 2 (see also [1, 116]), using

the Lorentz conformal coordinates, we express the timelike minimality condition and the

planar curvature line condition via a system of partial differential equations in terms of the

Lorentz conformal factor. Then as in Chapter 2 (see also [112, 117]), from the solutions of the

system of partial differential equations, we show and utilize the existence of axial directions

to recover the Weierstrass data [114] for the Weierstrass-type representation for timelike

minimal surfaces given by Konderak [73] (see Fact 3.2). With the Weierstrass data, we give

a complete classification of all timelike minimal surfaces of Bonnet-type (see Theorem 3.21).

Then we switch our attention to the class of timelike Thomsen surfaces, defined by Magid

in [81] as timelike minimal surfaces that are also affine minimal. In his work, Magid considered

the null coordinates representation of timelike minimal surfaces found by McNertney in [84]

(see Fact 3.3), where a timelike minimal surface is obtained via two generating null curves.

Using this representation, he applied the result given by Manhart in [83] on affine minimal

surfaces of particular form, and obtained an explicit parametrization for the generating null

curves of timelike Thomsen surfaces.

Therefore, to investigate the relationship between the two classes of timelike minimal

surfaces, we now shift the focus to null coordinates. We first characterize timelike minimal

surfaces of Bonnet-type in terms of geometric invariants of their generating null curves, called

lightlike curvatures (see Theorem 3.25). As an application, we obtain deformations of null

curves preserving the pseudo-arclength parametrization and the constantness of lightlike

curvatures. Then, interpreting Magid’s result on timelike Thomsen surfaces in terms of

lightlike curvatures, we reveal a surprising relationship between the two classes of timelike

minimal surfaces (see Theorem 3.31), surprising since the relationship differs from that of

the minimal case in R3 and the maximal case in R2,1.
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Lastly, similar to Chapter 2, we use the axial directions to show that there exists a

deformation consisting exactly of all timelike Thomsen surfaces (see Theorem 3.36 and

Corollary 3.37). On the other hand, it is possible to consider the singularities appearing on

timelike minimal surfaces by viewing the surfaces as generalized timelike minimal surfaces

as defined in [68, Definition 2.4]. Furthermore, in [108], minfaces were defined as a class

of timelike minimal surfaces admitting certain types of singularities, a timelike minimal

analogue of maxfaces defined by Umehara and Yamada in [110, Definition 2.2] for maximal

surfaces. It is known that every minface is a generalized timelike minimal surface; however,

there exist generalized timelike minimal surfaces that are not minfaces on their domains (see,

for example, [68, Example 2.7]). By showing that timelike Thomsen surfaces are minfaces, we

recognize the types of singularities appearing on these surfaces, using the criterion introduced

in [108] (see Theorem 3.39 and Corollary 3.40).

3.1 Timelike minimal surfaces of Bonnet-type

In this section, we aim to completely classify timelike minimal surfaces of Bonnet-type.

To achieve this, we propose the following method: First, we derive a system of partial

differential equations for the Lorentz conformal factor from the integrability condition for

timelike minimal surfaces and the planar curvature line condition. Then, using the explicit

solutions of the Lorentz conformal factor, we calculate the unit normal vector, and then

recover the Weierstrass data using the notion of axial directions. In doing so, we show the

existence of axial directions for these surfaces; by normalizing these axial directions, we

eliminate the freedom of isometry in the ambient space, and complete the classification.

3.1.1 Paracomplex analysis

First, we briefly introduce the set of paracomplex numbers C′, and the theory of paracomplex

analysis. For a more detailed introduction, we refer the readers to works such as [3, 62, 73,

120].

We consider the set of paracomplex numbers C′

C′ := {z = x+ jy : x, y ∈ R}

where j is the imaginary unit such that j2 = 1. Let z = x + jy denote any paracomplex

number. We call Re z := x and Re z := y the real and imaginary parts of z, respectively;

furthermore, analogous to the set of complex numbers, we use z̄ := x − jy to denote the

paracomplex conjugate of z. In this paper, we denote the squared norm of z as |z|2 = zz̄ =

x2 − y2, which may not necessarily be positive.

We also have the paracomplex Wirtinger derivatives ∂z := 1
2

(︁
∂x + j∂y

)︁
and ∂z̄ :=

1
2

(︁
∂x − j∂y

)︁
. Given a paracomplex function (typeset using typewriter font throughout the

paper) f : C′ → C′, we call f paraholomorphic if f satisfies the Cauchy-Riemann type

conditions,

fz̄ = ∂z̄f = 0. (3.1)
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We define a few elementary paracomplex analytic functions that are used in this paper

here via analytically extending the real counterparts. The exponential function ez is defined

by

ez :=

∞∑︂
n=0

zn

n!

while the circular and hyperbolic functions are defined by

cosh z :=

∞∑︂
n=0

z2n

(2n)!
, sinh z :=

∞∑︂
n=0

z2n+1

(2n+ 1)!
,

cos z :=

∞∑︂
n=0

(−1)n z2n

(2n)!
, sin z :=

∞∑︂
n=0

(−1)n z2n+1

(2n+ 1)!

(3.2)

suggesting that we have the paracomplex version of Euler’s formula

ejz = cosh z + j sinh z

for any z. We also define the hyperbolic tangent and tangent functions by

tanh z :=
sinh z

cosh z
, tan z :=

sin z

cos z
.

Since these functions are the analytic continuations of the corresponding real hyperbolic

tangent and tangent functions, tanh z is defined on C′ but tan z is defined on {z ∈ C′ |
|Re z ± Re z| < π

2 }.
Remark 3.1. We note here that the definition of circular functions sin z and cos z are

different from those in [73]. In [73], these functions were defined via the paracomplex

exponential function and the paracomplex Euler’s formula; in (3.2), these functions are

defined via analytic continuation from the real counterparts.

3.1.2 Timelike minimal surface theory

Let R2,1 be the Minkowski 3-space endowed with Lorentzian metric

⟨(ξ1, ξ2, ξ0), (ζ1, ζ2, ζ0)⟩ := ξ1ζ1 + ξ2ζ2 − ξ0ζ0,

and let R1,1 denote the Minkowski 2-plane endowed with Lorentzian metric

⟨(ξ1, ξ0), (ζ1, ζ0)⟩ := ξ1ζ1 − ξ0ζ0.

We identify the set of paracomplex numbers C′ with Minkowski 2-plane R1,1 via x+ jy ↔
(x, y), and we let Σ denote a simply-connected domain with coordinates (x, y) in R1,1.

Let F : Σ→ R2,1 be a timelike immersion. As proved in [115, p.13], there always exist

null coordinates (u, v) at each point on Σ. Hence, Lorentz conformal coordinates (x, y) also

exist, by the relation

(x, y) =

(︃
u+ v

2
,
u− v
2

)︃
,
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so that the induced metric ds2 is represented as

ds2 = ρ2(dx2 − dy2) = ρ2 dz dz̄ = ρ2 dudv (3.3)

for some function ρ : Σ→ R+, where R+ is the set of positive real numbers. We choose the

spacelike unit normal vector field N : Σ→ S1,1, where

S1,1 := {ξ ∈ R2,1 : ⟨ξ, ξ⟩ = 1}.

Timelike minimal surfaces inherit Lorentzian metric from the ambient space; hence, by

using paracomplex analysis over the set of paracomplex numbers C′, Konderak has shown

that timelike minimal surfaces also admit a Weierstrass-type representation [73] (see also

[108, 120]):

Fact 3.2. Any timelike minimal surface F : Σ ⊂ C′ → R2,1 can be locally represented as

F (x, y) = Re

∫︂
(2h, 1− h2,−j(1 + h2))η dz

over a simply-connected domain Σ on which h is parameromorphic, while η and h2η are

paraholomorphic. Furthermore, the induced metric of the surface becomes

ds2 = (1 + |h|2)2|η|2(dx2 − dy2). (3.4)

We call (h, η dz) the Weierstrass data of the timelike minimal surface F .

On the other hand, timelike minimal surfaces admit another representation based on null

coordinates, found by McNertney [84]:

Fact 3.3. Any timelike minimal surface F can be locally written as the sum of two null

curves α and β:

F (u, v) =
α(u) + β(v)

2
. (3.5)

We call such α and β the generating null curves of F .

Remark 3.4. Similar to the minimal surfaces and maximal surfaces cases, timelike minimal

surfaces also admit associated families and conjugate timelike minimal surfaces:

• Given a Lorentz conformally parametrized timelike minimal surface F with Weierstrass

data (h, η dz), we define Fφ to be a member of the associated family of F if Fφ is

given by the Weierstrass data (h, ejφη dz) for some φ ∈ R (note that ejφ ∈ H, where

H := {z ∈ C′ : |z|2 = 1}). However, unlike the minimal surfaces and maximal surfaces

cases, the conjugate timelike minimal surface of a given timelike minimal surface is

not in the associated family: the conjugate timelike minimal surface F ∗ of F is given

by the Weierstrass data (h, jη dz).

• Given a timelike minimal surface F generated by null curves α(u) and β(v), Fµ is a

member of the associated family of F if Fµ is generated by null curves µα(u) and 1
µβ(v)

for a fixed µ > 0, while the conjugate timelike minimal surface of F if F ∗ is generated
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by null curves α(u) and −β(v). We note that the parameters of the associated family

φ and µ are related by eφ = µ.

Following [60] (see also [48, 62]), we define the Hopf pair of F as

Qdu2 := ⟨Fuu, N⟩du2, R dv2 := ⟨Fvv, N⟩dv2

using the null coordinates (u, v). In terms of the Lorentz conformal coordinates, the Hopf

differential q dz2 of F can be defined from the Hopf pair of F via

qdz2 = Qdu2 +R dv2

for some paracomplex-valued function q where q = Q+R
2 + jQ−R

2 . We call a point (x, y) ∈ Σ

an umbilic point of F if q = 0 on (x, y), and a quasi-umbilic point of F if q ̸= 0 but QR = 0

on (x, y) (see also [62, Remark 4.3] or [31, Definition 1.1]). Since the Gaussian curvature at

umbilic and quasi-umbilic points vanishes, we call them flat points.

Following [48, Definition 3.1] (see also [49]), we say that (x, y) are isothermic (or conformal

curvature line) coordinates of F if q is real on Σ; we say that (x, y) are anti-isothermic (or

conformal asymptotic line) coordinates if q is pure imaginary on Σ. For a non-planar timelike

minimal surface without flat points on Σ, it is known that there exist either isothermic or

anti-isothermic coordinates (x, y) [48].

Remark 3.5. One can also characterize the existence of isothermic or anti-isothermic coordi-

nates on any timelike minimal surface by examining the sign of the Gaussian curvature (see

[80, p.629] or [3, Theorem 3.4]).

Since we are interested in timelike minimal surfaces of Bonnet-type, we assume that the

mean curvature H ≡ 0 on the domain. Furthermore we require that F is without flat points

and has negative Gaussian curvature on its domain, so that F admits isothermic coordinates.

Note that by doing this, we exclude the case when F is a timelike plane as well. Then an

analogous result to [16, Lemma 1.1] for isothermic timelike surfaces implies that we may

assume q = − 1
2 . Calculating the Gauss-Weingarten equations then gives us⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fxx = Fyy = −N + ρx
ρ Fx +

ρy
ρ Fy,

Fxy =
ρy
ρ Fx +

ρx
ρ Fy,

Nx = 1
ρ2Fx,

Ny = − 1
ρ2Fy,

(3.6)

while the Gauss equation (or the integrability condition) becomes

ρ ·□ρ− (ρx
2 − ρy2)− 1 = 0,

where □ := ∂2x − ∂2y is the d’Alembert operator.
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3.1.3 Planar curvature line condition and the analytic classification

We now calculate the condition the Lorentz conformal factor ρ must satisfy for a timelike

minimal surface F to have planar curvature lines.

Lemma 3.6. For a timelike minimal surface with no flat points, the following statements

are equivalent:

(1) x-curvature lines are planar.

(2) y-curvature lines are planar.

(3) ρxy = 0.

Proof. Since (x, y) are conformal curvature line coordinates, x-curvature lines are planar if

and only if

det(Fx, Fxx, Fxxx) = 0.

The Gauss-Weingarten equation (2.1) tells us that

Fxxx = −ρx
ρ
N +AFx +

ρxyρ+ ρuρv
ρ2

Fy

for some function A. Therefore, we have that

det(Fx, Fxx, Fxxx) = ρxyρ.

Since ρ : Σ→ R+, we have that x-curvature lines are planar if and only if ρxy = 0. Similarly,

one can calculate that y-curvature lines are planar if and only if ρxy = 0.

Therefore, by finding solutions to the following system of partial differential equations,

we may find all timelike minimal surfaces of Bonnet-type:{︄
ρ ·□ρ− (ρx

2 − ρy2)− 1 = 0 (timelike minimality condition), (3.7a)

ρxy = 0 (planar curvature line condition). (3.7b)

To solve the above system, we first reduce (3.7) to a system of ordinary differential equations

as in [1, Theorem 2.1].

Lemma 3.7. For a solution ρ : Σ→ R+ to (3.7), there exist real-valued functions f(x) and

g(y) such that {︄
ρx = f(x), (3.8a)

ρy = g(y). (3.8b)

Then, ρ can be written in terms of f(x) and g(y) as follows:

Case (1) If □ρ is nowhere zero on Σ, then

ρ(x, y) =
f(x)2 − g(y)2 + 1

fx(x)− gy(y)
, (3.9)
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where f(x) and g(y) satisfy the following system of ordinary differential equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(fx(x))
2 = (c− d)f(x)2 + c (3.10a)

fxx(x) = (c− d)f(x) (3.10b)

(gy(y))
2 = (c− d)g(y)2 + d (3.10c)

gyy(y) = (c− d)g(y) (3.10d)

for real constants c and d such that c2 + d2 ̸= 0.

Case (2) If □ρ ≡ 0 on Σ, i.e. □ρ is identically zero on Σ, then

ρ(x, y) = (sinhϕ) · x− (coshϕ) · y (3.11)

where f(x) = sinhϕ and g(y) = − coshϕ for some constant ϕ ∈ R.

Proof. By integrating Equation (3.7b) with respect to v, we obtain

ρx = C1(x)

for some integral constant C1(x). Similarly, we get ρy = C2(y) for some integral constant

C2(y) by integrating (3.7b) with respect to u. Define f(x) := C1(x) and g(y) := C2(y) to

get (3.8). Inputing (3.8) to (3.7a), we get

ρ(fx − gy)− (f2 − g2)− 1 = 0.

To prove the first case, first assume that □ρ is not identically equal to zero. Then we can

choose a point (u0, v0) such that □(u0, v0) ̸= 0, implying that we can choose a neighborhood

Σ ⊂ R1,1 of (u0, v0) such that □ρ is nowhere zero on Σ. Since □ρ = fu − gv ̸≡ 0,

ρ(x, y) =
f(x)2 − g(y)2 + 1

fx(x)− gy(y)
,

i.e. we have (3.9). Then from (3.8a), we have

f = ρx =
2ffx(fx − gy)− (f2 − g2 + 1)fxx

(fx − gy)2

or

0 = f(fx − gy)2 − 2ffx(fx − gy) + (f2 − g2 + 1)fxx

= ff2x − 2ffxgy + fg2y − 2ff2x + 2ffxgy + (f2 − g2 + 1)fxx

= f(g2y − f2x) + (f2 − g2 + 1)fxx. (3.12)

After multiplying both sides by 2fx
(f2−g2+1)2 , we have that

0 =
2fxfxx(f

2 − g2 + 1)− (f2x − g2y) · 2ffx
(f2 − g2 + 1)2

=

(︄
f2x − g2y

f2 − g2 + 1

)︄
x

.
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Integrating both sides with respect to x, we obtain that

f2x − g2y
f2 − g2 + 1

= k3(y) (3.13)

for some k3(y). Substituting k3(y) for (3.12), we have that

0 = −fk3(y)(f2 − g2 + 1) + fxx(f
2 − g2 + 1) = (f2 − g2 + 1)(fxx − fk3(y)).

Since f2− g2 +1 ̸= 0, we have that fxx = k3(y)f , implying that k3(y) = ĉ ∈ R is a constant,

i.e.

fxx = ĉf. (3.14)

Multiplying both sides of (3.14) with 2fx and integrating with respect to x gives us that

f2x = ĉf2 + c

for some constant c.

On the other hand, from (3.8b), we have

g = ρy =
−2ggy(fx − gy) + (f2 − g2 + 1)gyy

(fx − gy)2

or

0 = g(fx − gy)2 + 2ggy(fx − gy)− (f2 − g2 + 1)gyy

= gf2x − 2gfxgy + gg2y + 2gfxgy − 2gg2y − (f2 − g2 + 1)gyy

= g(f2x − g2y)− (f2 − g2 + 1)gvv. (3.15)

Substituting (3.13) with k3(y) = ĉ into (3.15), we get that

0 = ĉg(f2 − g2 + 1)− (f2 − g2 + 1)gyy = (f2 + g2 − 1)(−gyy + ĉg).

Again. since f2 − g2 + 1 ̸= 0, we have that

gyy = ĉg. (3.16)

Multiplying both sides of (3.16) with 2gy and integrating with respect to y gives us that

g2y = ĉg2 + d

for some constant d. Now, from (3.13),

ĉ(f2 − g2 + 1) = f2x − g2y = ĉf2 + c− ĉg2 − d = ĉ(f2 − g2 + 1)− ĉ+ c− d,

implying that ĉ = c− d, giving us (3.10). Lastly, c = d = 0 implies f(x) and g(y) are both

constants by (3.10), a contradiction since we assumed that □ρ ̸≡ 0.
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Now assume that □ρ is identically equal to zero on some simply-connected domain

Σ ⊂ R2. Since □ρ = fx(x) − gy(y) ≡ 0, g(y)2 − f(x)2 = 1 for all x and y. This implies

that both f(x) and g(y) are constant, and we can set f := sinhϕ and g := coshϕ for some

constant ϕ ∈ R. Solving (3.8), we obtain (3.11).

We now solve (3.10) by first obtaining a general solution, and then finding an appropriate

initial condition to get an explicit solution for f(x) and g(y). First, if c = d, then (3.10a)

and (3.10c) imply that c = d > 0, and using (3.10b) and (3.10d), we may obtain the explicit

solutions:

f(x) = ±√c x+ C̃1 and g(y) = ±
√
d y + C̃2 (3.17)

for some real constants of integration C̃1 and C̃2.

Now, assuming that c ̸= d, we can explicitly solve for f(x) and g(y) to find that

f(x) = C1e
√
c−d x + C2e

−
√
c−d x, 4(d− c)C1C2 = c,

g(y) = C3e
√
c−d y + C4e

−
√
c−d y, 4(d− c)C3C4 = d,

(3.18)

where C1, . . . , C4 ∈ C are constants of integration. Furthermore, since f(x) and g(y) are

real-valued functions, C1, . . . , C4 must satisfy⎧⎨⎩C1, C2, C3, C4 ∈ R, if c > d,

C1 = C2 and C3 = C4, if d > c,
(3.19)

where ·̄ denotes the usual complex conjugation.

In the following series of lemmata, we identify the correct initial conditions based on the

values of c and d.

Lemma 3.8 (cf. Lemma 2.3 of [28]). f(x) (resp. g(y)) satisfying (3.10) has a zero if and

only if either c > 0 or f(x) ≡ 0 (resp. d > 0 or g(y) ≡ 0).

Lemma 3.9 (cf. Lemma 2.4 of [28]). f(x) (resp. g(y)) satisfying (3.10) has no zero if and

only if either c < 0 or f(x) = ±e
√
−dx, where d < 0 (resp. d < 0 or g(y) = ±e

√
cy where

c > 0).

Therefore, we can conclude the following about the nature of f(x) and g(y) depending

on the values of c and d:

c > 0 : f has a zero

c = 0 :

⎧⎨⎩f ≡ 0 (c = 00)

f = ±e
√
−d x, d < 0 (c = 0e)

c < 0 : f has no zero

d > 0 : g has a zero

d = 0 :

⎧⎨⎩g ≡ 0 (d = 00)

g = ±e
√
c y, c > 0 (d = 0e)

d < 0 : g has no zero.

(3.20)

For the cases where f or g have no zero, we use the following lemmata to identify a possible

initial condition.

Lemma 3.10. Suppose that g(y) ̸≡ 0, i.e. g(y) is not identically equal to 0. Then there is

some y0 such that g(y0)
2 = 1 if and only if c ≥ 0.
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Initial condition Applicable values of (c, d)

Sheet 1 f(0) = 0, g(0) = 0 (+,+), (+, 00), (00,+)
Sheet 2 f(0) = 0, g(0) = ±1 (+, 0e), (+,−), (00,−)
Sheet 3 f(0) = ±1, g(0) = ±1 (0e,−)
Sheet 4 fx(0) = 0, gy(0) = 0 (−,−)

Table 3.1: Choice of initial conditions and the corresponding applicable cases.

Proof. If c = d, then the statement is a direct result of (3.17); therefore, assume that c ̸= d.

To show one direction, assume that there is some y0 such that g(y0)
2 = 1. Then (3.10c)

implies that c ≥ 0.

Now assume that c ≥ 0. If c > d, then for

y0 :=
log
(︂ √

c−d+√
c

2|C3|
√
c−d

)︂
√
c− d

.

we have that g(y0)
2 = 1 via (3.18).

If c < d, then from (3.19), we have that C3C3 = d
4(d−c) , implying that we may write

C3 =
√︂

d
4(d−c)e

iΘ and C4 =
√︂

d
4(d−c)e

−iΘ for some Θ ∈ R. Therefore, by (3.18), we have

that

g(y) =
√︂

d
d−c cos

(︂√
d− c y +Θ

)︂
.

Since we have d > c ≥ 0, we have that
√︂

d
d−c > 1; therefore, there is some y0 such that

g(y0)
2 = 1.

Lemma 3.11. Suppose that f(x) ̸≡ 0. Then there is some x0 such that f(x0)
2 = 1 if and

only if 2c ≥ d.

Proof. The proof is similar to that of Lemma 3.10.

Lemma 3.12. If c < 0 and d < 0, then there is some x0 (resp. y0) such that fx(x0) = 0

(resp. gy(y0) = 0).

Proof. From (3.10a) and c < 0, we deduce that c− d > 0. Therefore, if

x0 :=
log
(︂

−c
4(c−d)C2

1

)︂
2
√
c− d

,

then fx(x0) = 0 by (3.18). The statement for g(y) is proven similarly.

Therefore, of the possible 16 cases coming from (3.20), we only need to consider the 8

cases specified in Table 3.1 with their respective initial conditions. Note that we shift the

parameters x and y to assume without loss of generality that x0 = y0 = 0.

By using these initial conditions to solve (3.10), we obtain the following set of explicit

solutions for f and g.

Proposition 3.13. For a non-planar generalized timelike minimal surface of Bonnet-type

F (x, y), the real-analytic solution ρ : R2 → R of (3.7) is precisely given as follows:
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Case (1) Let □ρ ̸≡ 0, i.e. □ρ is not identically equal to zero. Then,

ρ(x, y) =
f(x)2 − g(y)2 + 1

fx(x)− gy(y)
,

where f(x) and g(y) are given as follows (see Table 3.1):

Sheet 1: For c ≥ 0 and d ≥ 0 such that c2 + d2 ̸= 0,

f(x) =

⎧⎪⎨⎪⎩
√︂

c
c−d sinh (

√
c− d x), if c ̸= d,

√
c x, if c = d,

g(y) =

⎧⎪⎨⎪⎩−
√︂

d
c−d sinh (

√
c− d y), if c ̸= d,

−
√
d y, if c = d.

Sheet 2: For c ≥ 0 and d ∈ R such that c2 + d2 ̸= 0,

f(x) =
√︂

c
c−d sinh (

√
c− d x),

g(y) = − cosh (
√
c− d y)−

√︂
c
c−d sinh (

√
c− d y).

Sheet 3: For c ≥ 0 and d < 2c,

f(x) = cosh (
√
c− d y) +

√︂
2c−d
c−d sinh (

√
c− d y),

g(y) = − cosh (
√
c− d y)−

√︂
c
c−d sinh (

√
c− d y).

Sheet 4: For d < c < 0,

f(x) =
√︂

c
d−c cosh (

√
c− d x),

g(y) = −
√︂

d
d−c cosh (

√
c− d y).

Case (2) If □ρ ≡ 0, then for some constant ϕ such that ϕ ∈ [0, 2π),

ρ(x, y) = (sinhϕ) · x− (coshϕ) · y.

Proof. The proof is essentially the same as that of [28, Proposition 2.1].

Remark 3.14. We make a few essential remarks about Proposition 3.13.

• We have now extended the domain globally under our setting. Therefore, we may

deduce that non-planar timelike minimal surfaces of Bonnet-type do not have any flat

points globally, and we may drop this condition from now. (In fact, we may also infer

that these surfaces admit isothermic coordinates globally.)

• We now allow ρ to map into R as opposed to R+. By doing so, we now treat timelike

minimal surfaces of Bonnet-type as generalized timelike minimal surfaces. (We can
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show that these surfaces are actually minfaces, see Section 3.5.)

• In case (1), Sheet 1 through Sheet 3, we allow c − d < 0. Even in such case, we see

that f(x) and g(y) are real-valued analytic functions via the identities

cosh (
√
c− d x) = cos (

√
d− c x), sinh (

√
c− d x) =

√
−1 sin (

√
d− c x).

Furthermore, Sheet 2 and Sheet 3 also include the case when c = d. However, since

the resulting solution is the same solution as that in case (1) up to shift of parameters

x and y, we do not write these cases explicitly.

• For case (2), we note that this is a Lorentzian analogue of the Bonnet-Lie transformation

(see, for example, [11, §394]), giving an associated family of the surface with solution

ρ(x, y) = −y up to coordinate change. To see this explicitly, we introduce a parameter

λ and consider the following change of coordinates:⎧⎨⎩x̃ := coshϕ · x− sinhϕ · y, ỹ := sinhϕ · x− coshϕ · y,
λ := e−jϕ, q̃ := − 1

2λ
−2 = λ−2q.

Summarizing, we obtain the following complete classification of non-planar timelike

minimal surfaces of Bonnet-type.

Theorem 3.15. Let F (x, y) be a non-planar generalized timelike minimal surface in R2,1

with isothermic coordinates (x, y) such that the induced metric is ds2 = ρ2(dx2−dy2). Then

F has planar curvature lines if and only if ρ(x, y) satisfies Proposition 3.13. Furthermore,

for different values of (c, d) or λ as in Remark 3.14, the Lorentz conformal factor ρ(x, y) or

the surface F (x, y) has the following properties, based on Figure 3.1:

Case (1): If □ρ ̸≡ 0, when (c, d) are on the region marked by

• 1 : ρ is constant in the x-direction, but periodic in the y-direction,

• 2 : ρ is periodic in both the x-direction and the y-direction,

• 3 , 4 , 6 , 7 , 9 , or 10 : ρ is not periodic in both the x-direction and the y-

direction,

• 5 : ρ is not periodic in the x-direction, but constant in the y-direction,

• 8 : ρ is constant in the x-direction, but not periodic in the y-direction.

Case (2): If □ρ ≡ 0, when λ is on the region marked by

• 11 : F is a surface of revolution,

• 12 : F is a surface in the associated family of 11 .
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Figure 3.1: Bifurcation diagrams per choice of initial conditions as in Table 3.1.

3.1.4 Axial directions and the Weierstrass data

From the explicit solutions of the Lorentz conformal factor ρ, we now aim to recover the

Weierstrass data. The Weierstrass data is not unique for a given timelike minimal surface; for

example, applying any rigid motion to the surface will change its Weierstrass data. Therefore,

to decide how the surface is aligned in the ambient space R2,1, we use the existence of axial

directions as defined in [29, Proposition 2.2] (see also [112, Proposition 3.A]). After aligning

axial directions according to its causality, we recover the unit normal vector, allowing us to

calculate the Weierstrass data. First, we show the existence of axial directions.

Proposition 3.16. If there exists x1 (resp. y1) such that f(x1) ̸= 0 (resp. g(y1) ̸= 0) in

Proposition 3.13, then there exists a unique non-zero constant vector v⃗1 (resp. v⃗2) such that

⟨m(x, y), v⃗1⟩ = ⟨my(x, y), v⃗1⟩ = 0 (resp. ⟨n(x, y), v⃗2⟩ = ⟨nx(x, y), v⃗2⟩ = 0),

where m := ρ−2(Fx × Fxx) (resp. n := ρ−2(Fy × Fyy)) and

v⃗1 := −ρx
ρ
N − ρxxρ− ρx2

ρ2
Fx +

ρxρy
ρ2

Fy (resp. v⃗2 :=
ρy
ρ
N − ρxρy

ρ2
Fx +

ρyyρ− ρy2
ρ2

Fy).

(3.21)

Furthermore, if v⃗1 and v⃗2 both exist, then they are orthogonal to each other. We call v⃗1 and

v⃗2 the axial directions of F (x, y).

Proof. Similar to the proof of Proposition 2.12, using (3.6) and (3.7), we may calculate that
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all the required property holds.

We use (3.6), (3.7), (3.9), (3.10), and (3.21) to calculate that the causality of v1⃗ and v2⃗

depends on c and d, respectively; explicitly,

⟨v⃗1, v⃗1⟩ = c and ⟨v⃗2, v⃗2⟩ = −d.

Hence, we remark that, by Table 3.1, at least one of v⃗1 or v⃗2 is always spacelike when they

both exist. By aligning the axial directions in the ambient space R2,1 correctly, we now

calculate the unit normal vector using the following lemma. Note that we define e⃗j as the

unit vectors in the ξj direction for j = 1, 2, 0.

Lemma 3.17. For the different alignments of v⃗1 or v⃗2, we can deduce the following regarding

the unit normal vector N(x, y) = (N1(x, y), N2(x, y), N0(x, y)):

Alignment of axial direction Property of the unit normal vector

v⃗1 ∥ e⃗2 N2 = ± 1√
c
ρx
ρ

v⃗1 ∥ e⃗1 + e⃗0 N1 −N0 = ±ρxρ
v⃗1 ∥ e⃗0 N0 = ± 1√−c

ρx
ρ

v⃗2 ∥ a1e⃗1 + a0e⃗0 a1N1 − a0N0 = ±
√︂

a20−a21
d

ρy
ρ

v⃗2 ∥ a1e⃗1 + a2e⃗2 a1N1 + a2N2 = ±
√︂

a21+a
2
2

−d
ρy
ρ

Here, a1, a2 and a0 are any real constants.

Proof. We only prove the claim for assuming v⃗2 = a1e⃗1 + a0e⃗0, since all the other cases can

be proven similarly. We know that from Proposition 3.16,

0 = ⟨n, v⃗2⟩ = ⟨ρ−2(Fy × Fyy), a1e⃗1 + a0e⃗0⟩
= ⟨−ρ−1ρxN − ρ−2Fx, a1e⃗1 + a0e⃗0⟩
= −ρ−1ρx(a1N1 − a0N0)− ρ−2(a1(F1)x − a0(F0)x)

= −ρ−1ρx(a1N1 − a0N0)− (a1(N1)x − a0(N0)x)

using the Rodrigues equations, implying that

(a1F1 − a0F0)x
a1N1 − a0N0

= −ρx
ρ
.

Integrating both sides with respect to x gives us that

a1N1 − a0N0 = k4(y)
1

ρ
(3.22)

for some function k4(y).
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Now we also know that

0 = ⟨nx, v⃗2⟩
= ⟨−ρ−2(ρyyρ− ρ2y)N − ρ−3ρyFy, a1e⃗1 + a0e⃗0⟩
= −ρ−2(ρyyρ− ρ2y)(a1N1 − a0N0)− ρ−3ρy(a1(F1)y − a0(F0)y)

= −ρ−2(ρyyρ− ρ2y)(a1N1 − a0N0)− ρ−1ρy(a1(N1)y − a0(N0)y),

telling us that

(a1X1 − a0X0)y
a1N1 − a0N0

=

(︃
ρy
ρ

)︃
y

(︃
ρy
ρ

)︃−1

.

Integrating both sides with respect to y and comparing with (3.22) tells us that

k4(y)
1

ρ
= a1N1 − a0N0 = k5(x)

ρy
ρ

for some function k5(x); hence,

a1N1 − a0N0 = B1
ρy
ρ

for some constant B1.

Finally, using the fact that ⟨v2, v2⟩ = −d gives us the desired conclusion.

Using the fact that the meromorphic function h of the Weierstrass data is the unit normal

vector function under the stereographic projection, and that q = −hzη = − 1
2 , we recover

the Weierstrass data via

h(z) = h(x, y) =
1

1−N1
(N2 + jN0) and η(z) =

1

2hz
,

where the signs of N1, N2, and N0 are decided so that h satisfies the Cauchy-Riemann type

conditions (3.1).

Sheet 1

Assume that c > 0 and d > 0. We have that v⃗1 is spacelike, while v⃗2 is timelike; therefore,

we align the axial directions so that v⃗1 ∥ e⃗2 and v⃗2 ∥ e⃗0. Then by Lemma 3.17, we have that

N =

⎛⎝±
√︄
1− 1

c

ρ2x
ρ2

+
1

d

ρ2y
ρ2
, ± 1√

c

ρx
ρ
, ± 1√

d

ρy
ρ

⎞⎠ .

Since we know that a homothety in the (c, d)-plane amounts to a homothety in the (x, y)-

plane, by Proposition 3.13, we can let c = 4 cos2 c1 and d = 4 sin2 c1 for c1 ∈
(︁
0, π2

)︁
without

47



c1

~v1 ‖ ~e2

~v2 ‖ ~e04

40

d

c

(a) Sheet 1

c2

~v1 ‖ ~e2

~v2 ‖ a1~e1 + a0~e0

−1

10

d

c

(b) Sheet 2

c4

~v1 ‖ ~e0
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Figure 3.2: (c, d)-paths for different sheets.

loss of generality (see Figure 3.2(a)). Using the unit normal vector, we find that

hc11 (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
cos (2c1)

cos c1−sin c1
tanh

(︂√︁
cos (2c1) z

)︂
, if c1 ∈ (0, π4 ),√

2z, if c1 = π
4 ,

−
√

− cos (2c1)

cos c1−sin c1
tan

(︂√︁
− cos (2c1) z

)︂
, if c1 ∈ (π4 ,

π
2 ),

ηc11 (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2(cos c1+sin c1)
cosh2

(︂√︁
cos (2c1) z

)︂
, if c1 ∈ (0, π4 ),

1
2
√
2
, if c1 = π

4 ,

1
2(cos c1+sin c1)

cos2
(︂√︁
− cos (2c1) z

)︂
, if c1 ∈ (π4 ,

π
2 ).

(3.23)

Note that hc11 (z) and ηc11 (z) is also well-defined when c1 = 0, π2 by considering the directional

limits.

Remark 3.18. The Weierstrass data given in (3.23) show that surfaces in Sheet 1 form a

one-parameter family of surfaces. However, by considering these surfaces separately, one can

get different, and perhaps simpler, Weierstrass data.

• For surfaces 1 and 2 , by using c = 4 sinh2(log c̃1) and d = 4 cosh2(log c̃1) for c̃1 ≥ 1,

we obtain

hc̃11 (z) = c̃1 tan z, ηc̃11 (z) =
1

2c̃1
cos2 z.

• For the surface 5 , by letting v⃗1 ∥ e⃗1 and v⃗2 ∥ e⃗0, we obtain that

h̃
c1
1 (z)

⃓⃓
c1=

π
2

= ez, η̃c11 (z)
⃓⃓
c1=

π
2

=
1

2
e−z.

Sheet 2

Assume that c ≥ 0 but d ∈ R, implying that now v⃗2 changes its causal character. Therefore,

we align the axial directions so that v⃗1 ∥ e⃗2 and v⃗2 ∥ a1e⃗1 + a0e⃗0. Since we only need to find

the unit normal vector of surfaces 6 , 7 , and 8 , we let c = c22 and d = c22 − 1 for c2 ≥ 0,

and further assume that a1 = 1 and a0 = c2 (see Figure 3.2(b)). Then we have that the unit
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normal vector is

N =

(︃
c2N0 ±

ρy
ρ
, ± 1

c2

ρx
ρ
, N0

)︃
,

where N0 can be found from the fact that ⟨N,N⟩ = 1. From the unit normal vector, after

applying a shift of parameter y ↦→ y − log(1 + c2), we calculate that

hc22 (z) = jejz − jc2, ηc22 (z) =
1

2
e−jz. (3.24)

Similar to the preceding case, note that hc22 (z) and ηc22 (z) is also well-defined when c2 = 0

by considering the directional limits.

Remark 3.19. Note that if c2 > 1, then (3.24) describes Weierstrass data for the surface 4 ,

aligned differently in the ambient space R2,1 to the one given by (3.23) for c1 ∈
(︁
π
4 ,

π
2

)︁
.

Sheet 3

We only need to find the data for the surface 9 here, so assume that c = 0 and d = −1.
We align the axial directions so that v⃗1 ∥ e⃗1 + e⃗0 and v⃗2 ∥ e⃗2, implying that the unit normal

vector is

N =

(︃
N0 ±

ρx
ρ
, ± 1√

−d
ρy
ρ
, N0

)︃
,

where N0 can be found from the fact that N has unit length. After making the parameter

shift x ↦→ x− log 2, we calculate the Weierstrass data as

h3(z) = ez + j, η3 =
1

2
e−z. (3.25)

Sheet 4

Here, we have that d < c ≤ 0. Align the axial directions so that v⃗1 ∥ e⃗0 and v⃗2 ∥ a1e⃗1 + a2e⃗2.
In this case, we let c = −c24 and d = −c24 − 1 for c4 ≥ 0, and let a1 = 1 and a2 = c4 (see

Figure 3.2(c)). Then, the unit normal vector is

N =

(︃
−c4N2 ±

ρy
ρ
,N2, ±

1

c4

ρx
ρ

)︃
.

Using this, after a shift of parameter y ↦→ y − log(
√︁
1 + c24), we obtain that

hc44 (z) = jejz + c4, ηc44 =
1

2
e−jz. (3.26)

Case 2

Finally, we assume that □ρ ≡ 0, and by Remark 3.14, we only consider the case ρ(x, y) = −y.
We assume that the axial direction is v⃗2 = e⃗1 + e⃗0. Then similar to Lemma 3.17, we can

calculate that

N1 −N0 =
ρy
ρ
.

Since ρx ≡ 0, we have that N(x, y) has the form N(x, y) = (N1(y), 0, N0(y)) · T (x) for

an isometry transform T (x) ∈ SO(2, 1) keeping the lightlike axis v⃗2. Hence, we obtain the
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following lemma.

Lemma 3.20. If ρ(x, y) = y, then the unit normal vector N is given by

N(x, y) =

(︄
y2 + 1

2y
, 0,

y2 − 1

2y

)︄
·

⎛⎜⎜⎝1− x2

2 x −x2

2

−x 1 −x
x2

2 −x 1 + x2

2

⎞⎟⎟⎠
=

(︄
1− x2 + y2

2y
,
x

y
, −1 + x2 − y2

2y

)︄
.

Therefore, we recover the Weierstrass data as follows:

h5(z) =
z + j

1− jz , η5(z) =
1

4
(jz − 1)2. (3.27)

Finally, by considering (h5, η5 dz) ↦→ (h5, λ
−2η5 dz) for λ as in Remark 3.14, we obtain the

Weierstrass data for surfaces 11 and 12 .

In summary, we obtain the following complete classification of timelike minimal surfaces

of Bonnet-type.

Theorem 3.21. A generalized timelike minimal surface of Bonnet-type in Minkowski 3-space

must be a piece of one, and only one, of

• plane (P) (0,dz),

1 timelike catenoid with timelike axis (CT)
(︁
tan z, 12 cos

2 z dz
)︁
,

2 doubly periodic timelike minimal Bonnet-type surface (with timelike axial direction)

(BTper) {︃(︂
c̃1 tan z,

1
2c̃1

cos2 z dz
)︂
: c̃1 > 1

}︃
,

3 timelike Enneper-type surface (E)
(︂√

2z, 1
2
√
2
dz
)︂
,

4 timelike minimal Bonnet-type surface with timelike axial direction of first kind (BT1),{︃(︂
jejz − jc2, 12e−jz dz

)︂
: c2 > 1

}︃
,

5 immersed timelike catenoid with spacelike axis (CS1)
(︁
ez, 12e

−z dz
)︁
,

6 timelike minimal Bonnet-type surface with lightlike axial direction of first kind (BL1)(︂
jejz − j, 12e−jz dz

)︂
,

7 timelike minimal Bonnet-type surface with spacelike axial direction (BS),{︃(︂
jejz − jc2, 12e−jz dz

)︂
: 0 < c2 < 1

}︃
,
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(a) BT1 (b) BL1 (c) BS

(d) BTper (e) BT2 (f) BL2

Figure 3.3: Timelike minimal Bonnet-type surfaces. As in Remark 3.14, we treat these
as generalized timelike minimal surfaces, admitting singularities, and we highlighted the
singularities on these surfaces.

8 non-immersed timelike catenoid with spacelike axis (CS2)
(︁
jejz, 12e

−jz dz
)︁
,

9 timelike minimal Bonnet-type surface with lightlike axial direction of second kind (BL2)

(ez + j, 12e
−z dz),

10 timelike minimal Bonnet-type surface with timelike axial direction of second kind (BT2){︃(︂
jejz + c4,

1
2e

−jz dz
)︂
: c4 > 0

}︃
,

11 timelike catenoid with lightlike axis (CL)
(︂
z+j
1−jz ,

1
4 (jz − 1)2 dz

)︂
, or one member of its

associated family 12 ,

given with their respective Weierstrass data.

3.2 Null curves of timelike minimal surfaces of Bonnet-

type

In this section, we consider timelike minimal surfaces of Bonnet-type in terms of their

generating null curves (see Fact 3.3). First, we introduce the theory of null curves in R2,1.

For an in-depth discussion of the theory of null curves, we refer the readers to works such as

[21, 44, 61, 79, 92, 111].
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3.2.1 Frenet-Serre type formula for non-degenerate null curves

A regular curve γ = γ(t) : I → R2,1 is called a null curve if

⟨γ′, γ′⟩ = 0,

and γ is said to be non-degenerate if γ′ and γ′′ are linearly independent at each point on I.

(Here, ′ denotes d
dt .) For a non-degenerate null curve γ(t), we can normalize (see [92, Section

2], for example) the parameter so that

⟨γ̈(s), γ̈(s)⟩ = 1, (3.28)

where ̇ denotes d
ds . A parameter s satisfying (3.28) is called a pseudo-arclength parameter,

introduced in [21]. From now on, let s denote a pseudo-arclength parameter. If we take the

vector fields

σ(s) := γ̇(s), e(s) := γ̈(s),

and then there is a unique null vector field n such that

⟨n,σ⟩ = −2, ⟨n, e⟩ = 0.

If we set the lightlike curvature (see [61, p.47]) of γ to be

κγ(s) := −
⟨︁
ṅ(s), e(s)

⟩︁
, (3.29)

we get

−ṅ = κγe, ė = −κγ
2
σ +

1

2
n.

Therefore, we obtain the following Frenet-Serre type formula for non-degenerate null curves.

Proposition 3.22 (cf. [61, 79]). For a non-degenerate null curve γ parametrized by pseudo-

arclength parameter, the null frame F := {σ, e,n} satisfies

F ′ = F

⎛⎜⎜⎝0 −κγ/2 0

1 0 −κγ
0 1/2 0

⎞⎟⎟⎠ .

Moreover, the lightlike curvature κγ of γ is written as

κγ = ⟨...γ , ...γ ⟩. (3.30)

Example 3.23. A non-degenerate null curve parametrized by pseudo-arclength with constant

lightlike curvature κγ is called a null helix in [44, 61], and such curves have been studied by
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many authors. Any null helix γ is congruent to one of the following:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γ(s) = 1

κγ

(︁
cos (cs), sin (cs), cs

)︁
, when κγ = c2 > 0,

γ(s) =
(︂
s2

2 ,− s
3

6 + s
2 ,

s3

6 + s
2

)︂
, when κγ = 0,

γ(s) = 1
κγ

(︁
cs, cosh (cs), sinh (cs)

)︁
, when κγ = −c2 < 0.

3.2.2 Characterization of timelike minimal surfaces of Bonnet-type

Using the theory of null curves, we now characterize timelike minimal surfaces of Bonnet-

type in terms of its generating null curves. We first remark on the relationship between the

generating null curves and the normalization of the Hopf differential factor.

Lemma 3.24 (cf. p. 347 of [62]). The normalization of the Hopf differential factor q = − 1
2

of a timelike minimal surface F implies that the generating null curves are parametrized by

pseudo-arclength.

Proof. Let F be represented via two generating null curves α(u) and β(v) as in (3.5). By

the Gauss-Weingarten equations, we have

αuu(= 2Fuu) = 2
ρu
ρ
αu −N, βvv(= 2Fvv) = 2

ρv
ρ
βv −N,

where ρ is the Lorentz conformal factor of the first fundamental form and N is the unit

normal of F . Therefore, we can check that

⟨αuu, αuu⟩ = ⟨βvv, βvv⟩ = ⟨N,N⟩ = 1,

i.e. u and v are pseudo-arclength parameters of α(u) and β(v), respectively.

Now we state and prove the theorem relating the lightlike curvatures of the generating

null curves and the planar curvature line condition (3.7b).

Theorem 3.25. Away from flat points and singular points, a timelike minimal surface F has

planar curvature lines if and only if it has negative Gaussian curvature, and its generating

null curves have the same constant lightlike curvature.

Proof. We consider a timelike minimal surface F written as in (3.5), with its first fundamental

form as in (3.3). For z = x+ jy = (u+ v)/2+ j(u− v)/2, the planar curvature line condition
(3.7b) can be expressed as

ρuu − ρvv = 0. (3.31)

Let us take the null frames Fα := {σα, eα,nα} for α and Fβ := {σβ , eβ ,nβ} for β as in

Section 3.2.1. By using the frame of the surface F , we can check that nα and nβ are written

as

nα =

(︃
2ρu
ρ

)︃2

αu −
1

ρ2
βv − 4

ρu
ρ
N, nβ = − 1

ρ2
αu +

(︃
2ρv
ρ

)︃2

βv − 4
ρv
ρ
N. (3.32)
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Since we normalized the Hopf differential factor as q = − 1
2 , we have that u and v are

pseudo-arclength parameters of α and β by Lemma 3.24; hence, we can take

eα = αuu and eβ = βvv.

By the Gauss-Weingarten equations, (eα)u and (eβ)v can be expressed as

(eα)u = 2
ρuuρ+ ρu

2

ρ2
αu −

1

2ρ2
βv − 2

ρu
ρ
N

(eβ)v = −
1

2ρ2
αu + 2

ρvvρ+ ρv
2

ρ2
βv − 2

ρv
ρ
N.

(3.33)

By (3.29), (3.32) and (3.33), the lightlike curvatures κα and κβ of the generating null curves

α and β can be calculated as

κα = ⟨nα, (eα)u⟩ = −4
ρuu
ρ
, κβ = ⟨nβ , (eβ)v⟩ = −4

ρvv
ρ
, (3.34)

and hence

κα(u)− κβ(v) = −4
ρuu − ρvv

ρ
.

Therefore, we conclude that κα are κβ are the same constant if and only if the Lorentz

conformal factor ρ satisfies the planar curvature line condition (3.31).

3.2.3 Deformations of null curves with constant lightlike curvature

We now consider continuous deformations of null curves preserving their pseudo-arclength

parametrization and constantness of lightlike curvatures. As in [28, 29], we consider a

deformation to be “continuous” with respect to a parameter if the deformation dependent

on the parameter converges uniformly over compact subdomains component-wise. First, we

introduce how the lightlike curvatures of generating null curves are determined for a timelike

minimal surface of Bonnet-type.

Proposition 3.26. The lightlike curvatures κα and κβ of the generating null curves of a

timelike minimal surface of Bonnet-type is given by the constants c and d in (3.10) via

κα = κβ = d− c. (3.35)

Proof. By (3.34), we have

κα = κβ = −2ρuu + ρvv
ρ

= −ρxx + ρyy
ρ

.

Using (3.10a) and (3.10c), we prove the desired relation.

A deformation of a timelike minimal surface of Bonnet-type corresponds to a deformation

of its generating null curves, which have constant lightlike curvatures. Therefore, by using

the relation (3.35), we can deform null curves with constant curvature preserving the pseudo-

arclength parametrization and the constantness of lightlike curvature (each of null curves

54



ĉ1

~v1 ‖ ~e2

~v2 ‖ ~e0

21/4

21/40

δ

γ

Figure 3.4: Modified version of a path in Sheet 1 to include the timelike plane in the
deformation.

may have different constant lightlike curvature).

As an example, we give a deformation of null curves coming from the surfaces in Sheet

1. To do this, we first consider a slightly modified method of the one we used to obtain the

Weierstrass data (3.23) in Section 3.1.4. Since c ≥ 0 and d ≥ 0, we define γ and δ so that

γ2 = c and δ2 = d. Let γ = 21/4 cos ĉ1 and δ = 21/4 sin ĉ1 for ĉ1 ∈
(︁
−π4 , 3π4

)︁
(see Figure 3.4).

Then we can calculate similarly as before to obtain that

hĉ1P (z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
cos (2ĉ1)

cos ĉ1−sin ĉ1
tanh

(︃√
cos (2ĉ1)

23/4
z

)︃
, if ĉ1 ∈ (−π4 , π4 ),

1
21/4

z, if ĉ1 = π
4 ,

−
√

− cos (2ĉ1)

cos ĉ1−sin ĉ1
tan

(︃√
− cos (2ĉ1)

23/4
z

)︃
, if ĉ1 ∈ (π4 ,

3π
4 ),

ηĉ1P (z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

21/4(cos ĉ1+sin ĉ1)
cosh2

(︃√
cos (2ĉ1)

23/4
z

)︃
, if ĉ1 ∈ (−π4 , π4 ),

1
23/4

, if ĉ1 = π
4 ,

1
21/4(cos ĉ1+sin ĉ1)

cos2
(︃√

− cos (2ĉ1)

23/4
z

)︃
, if ĉ1 ∈ (π4 ,

3π
4 ).

(3.36)

Remark 3.27. By noticing that γ2 = 2−3/2(4 cos2 ĉ1) and δ
2 = 2−3/2(4 sin2 ĉ1), and the fact

that a homothety in the (c, d)-plane amounts to a homothety in the (x, y)-plane, one can also

get the parameromorphic data hĉ1P (z) of (3.36) from that of (3.23) by applying a homothety

change in the domain z ↦→ 2−3/4z.

Now to get the parametrization, let F ĉ1P (x, y) be defined from (hĉ1P , η
ĉ1
P dz) via the

Weierstrass-type representation in Fact 3.2. We define

F̂
ĉ1
P (x, y) = Rĉ1

(︂
F ĉ1P (x, y)− F ĉ1P (0, 0)

)︂
, (3.37)

where

Rĉ1 =
(︂
1− sin

(︁
ĉ1 +

π
4

)︁)︂
|cos 2ĉ1|+ sin

(︁
ĉ1 +

π
4

)︁
. (3.38)
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Figure 3.5: Deformation of null curves with constant lightlike curvature, with their respective
surfaces.

A straightforward calculation then shows that

lim
ĉ1→π

4

F̂
ĉ1
P (21/4x, 21/4y) = 1√

2

(︂
x2 + y2, x− xy2 − 1

3x
3, −y − x2y − 1

3y
3
)︂
,

lim
ĉ1↘−π4

F̂
ĉ1
P (x, y) =

(︂
0, 3

23/4
x,− 3

23/4
y
)︂
= lim
ĉ1↗ 3π

4

F̂
ĉ1
P (x, y),

implying that F̂
ĉ1
P (x, y) for ĉ1 ∈

[︁
−π4 , 3π4

]︁
gives a continuous deformation consisting of every

surface in Sheet 1, including the timelike minimal Enneper-type surface and the timelike

plane.

To obtain a deformation of null curves from the surface, let us now take A1 =
√
cos 2ĉ1.

After applying a suitable homothety to the domain, the generating null curves of the surfaces

in the Sheet 1 discussed in (3.37) are written as

αĉ1(s) =
(︂

sinh2 (A1s)
2A2

1
, 2 cos ĉ1A1s−sin ĉ1 sinh (2A1s)

4A3
1

, 2 sin ĉ1A1s−cos ĉ1 sinh (2A1s)
4A3

1

)︂
,

βĉ1(s) = αĉ1(s) ·
(︂

1 0 0
0 1 0
0 0 −1

)︂
,

i.e.
1
2 (α

ĉ1(u) + βĉ1(v)) = 1
23/2Rĉ1

F̂
ĉ1
P

(︂
23/4

2 (u+ v), 2
3/4

2 (u− v)
)︂
.

Note that although A1 is zero at ĉ1 = π
4 and may have complex values, αĉ1 are well-defined

non-degenerate null curves for all ĉ1 ∈
(︁
−π4 , 3π4

)︁
. By Lemma 3.24, s is a pseudo-arclength

parameter for each αĉ1 , and the curves have constant curvature −4 cos (2ĉ1). Moreover, if

we apply the scaling factor of the ambient space Rĉ1 , then we can deform αĉ1 to a lightlike

line by considering the directional limit as ĉ1 tends to −π4 or 3π
4 , see Figure 3.5.
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3.3 Characterization of timelike Thomsen surfaces via

null curves

Thomsen showed in [109] that the two classes minimal surfaces, those with planar curvature

lines, and those that are also affine minimal, called Thomsen surfaces, have a striking

relationship; namely, they are conjugate minimal surfaces of each other. Manhart showed

in [82] that the analogous result holds for maximal surfaces in R2,1. In this section, we

investigate the relationship between the two classes of timelike minimal surfaces, those with

planar curvature lines and those that are also affine minimal.

3.3.1 The affine minimal condition – revisited

A timelike minimal surface which is also affine minimal is called a timelike Thomsen surface,

defined by Magid in [81], who proved the following by applying a result by Manhart [83].

Fact 3.28 ([81], cf. [83]). Away from flat points, a timelike minimal surface F is affine

minimal if and only if on the null coordinates (u, v), there exist functions θ = θ(u) and

ϑ = ϑ(v) such that

Fu = (cos θ, sin θ, 1), Fv = (cosϑ, sinϑ, 1),

and dθ/du, dϑ/dv are both solutions to the equation

2ω4 + 2ωω′′ − 7

2
ω′2 − kω3 = 0 for some fixed k ∈ R, (3.39)

where ′ now denotes d
du or d

dv .

Magid also solved the above equation explicitly.

Remark 3.29. Milnor [85] called the “angle” functions θ and ϑ the Weierstrass functions,

and determined the sign of the Gaussian curvature of timelike minimal surfaces using the

functions.

In this subsection, we give a geometric interpretation of Fact 3.28 by using the notion of

lightlike curvature of non-degenerate null curves. Let α(u) and β(v) be the generating null

curves of a timelike minimal surface F where

α(u) =

∫︂ u

u0

(︁
cos θ(τ), sin θ(τ), 1

)︁
dτ + α(u0), β(v) =

∫︂ v

v0

(︁
cosϑ(τ), sinϑ(τ), 1

)︁
dτ + β(v0)

for some real constants u0 and v0. Here, we remark that the parameters u and v are not

pseudo-arclength parameters.

In the next proposition, we show that the constant k in the affine minimal equation (3.39)

represents the lightlike curvature of generating null curves, giving a geometric characterization

of timelike Thomsen surfaces.

Proposition 3.30. A timelike minimal surface F satisfies the affine minimal equation

(3.39) if and only if the generating null curves α and β of F have the same constant lightlike

curvature.
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Proof. We show that the generating null curves α and β must have lightlike curvature k. By

the similarity of the argument, it is enough to consider the claim for α(u).

Since ⟨α′, α′⟩ = θ′2, we may assume that θ′ > 0, and we can take the pseudo-arclength

s =

∫︂ u

u0

(︁
θ′(τ)

)︁1/4
dτ.

By (3.30), we obtain

κα(s) = u̇6
⟨︁
α′′′, α′′′⟩︁+ 9u̇2ü2⟨α′′, α′′⟩+ 6u̇4ü⟨α′′′, α′′⟩+ 2u̇3

...
u ⟨α′′′, α′⟩. (3.40)

After straightforward calculations, we get

⟨α′′, α′′⟩ = θ′2, ⟨α′′′, α′′⟩ = θ′θ′′, ⟨α′′′, α′⟩ = −θ′2, ⟨α′′′, α′′′⟩ = θ′′2 + θ′4,

u̇ =
(︁
θ′
)︁−1/2

, ü = − θ′′

2θ′2
,

...
u =

2θ′′2 − θ′θ′′′
2θ′7/2

.

Substituting these to (3.40), we obtain

2θ′3κα = 2θ′4 − 7

2
θ′′2 + 2θ′θ′′′.

Hence, the lightlike curvature κα is constant if and only if ω = θ′ satisfies the affine minimal

equation (3.39).

In conjunction with the non-degenerate null curves with constant lightlike curvature in

Example 3.23, Proposition 3.30 gives another proof of the classification result of timelike

Thomsen surface given in [81]. Furthermore, Theorem 3.25 and Proposition 3.30 give us the

next theorem relating the two classes of timelike minimal surfaces, a result different from

the cases of minimal surfaces in R3 and maximal surfaces in R2,1.

Theorem 3.31. Let T denote the set of timelike Thomsen surfaces, B the set of timelike

minimal surfaces of Bonnet-type, and B∗ the conjugates of surfaces in B. Then,

T = B ∪B∗, B ∩B∗ = {timelike planes}. (3.41)

Remark 3.32. Note that for the minimal surface case, the relation between minimal surfaces

of Bonnet-type and Thomsen surfaces can be expressed using analogous notations T̃ , B̃ and

B̃
∗
, denoting the set of Thomsen surfaces, the set of minimal surfaces of Bonnet-type, and

the conjugates of surfaces in B̃, respectively, as:

T̃ = B̃
∗
, B̃ ∩ B̃∗

= {planes, Enneper surface}.

Similarly, by letting T̂ , B̂ and B̂
∗
denote the analogous sets for maximal surfaces, respectively,

we have that

T̂ = B̂
∗
, B̂ ∩ B̂∗

=

⎧⎨⎩ spacelike planes, maximal Enneper-type surface,

associated family of spacelike catenoid with lightlike axis

⎫⎬⎭ .

58



3.3.2 Characterization of the associated family of timelike Thomsen

surfaces

Finally, as a corollary of Theorem 3.25 and Proposition 3.30, we can also characterize timelike

minimal surfaces whose generating null curves have different constant lightlike curvature

with the same sign.

Corollary 3.33. Away from flat points, a timelike minimal surface F̃ whose generating null

curves α and β have constant lightlike curvatures κα and κβ with the same sign is contained

in the associated family of a timelike Thomsen surface F . In particular, F is either

• a timelike minimal surface of Bonnet-type if K < 0, or

• the conjugate of a timelike minimal surface of Bonnet-type if K > 0.

Moreover, such a timelike Thomsen surface F is unique if neither lightlike curvatures of null

curves is zero.

Proof. As in Remark 3.4, the generating null curves of Fµ are

αµ = µα, βµ = β/µ.

They have the lightlike curvatures κµα = κα/µ and κβ/µ = µκβ , respectively. Hence, we can

take the unique solution µ =
√︁
κα/κβ to the equation

κµα = κβ/µ, µ > 0,

for which Fµ is a timelike Thomsen surface. The surface Fµ is either in B or B∗ depending

on the sign of the Gaussian curvature K.

Remark 3.34. Similarly, one can consider the geometric characterization of timelike minimal

surfaces whose generating null curves have constant curvatures with different signs. By

(3.34), such a surface can be constructed via the equation

κα + κβ = −4ρuu + ρvv
ρ

= 0.

We do know that such surface is not in the set T as in (3.41). However, the geometric

qualities of such surfaces are unknown.

3.4 Deformation of timelike Thomsen surfaces

In this section, we show that there exists a continuous deformation consisting exactly of

all timelike Thomsen surfaces. We do this by first showing that there exists a continuous

deformation consisting exactly of all timelike minimal surfaces of Bonnet-type, and then

applying the result that relates these surfaces to timelike Thomsen surfaces.

We have already shown in Section 3.2.3 that every surface in Sheet 1, including the

timelike minimal Enneper-type surface, and the timelike plane are conjoined by a continuous

deformation given by F̂
ĉ1
P (x, y) in (3.37).
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ĉ2

~v1 ‖ ~e2

~v2 ‖ a1~e1 + a0~e0

−1

10

d

c

(a) Sheet 2 to Sheet 1

ĉ3

~v1 ‖ ~e2

~v2 = ~e1 + ~e0

0

d

c

(b) Sheet 2 to CL

Figure 3.6: (c, d)-paths for deformations.

3.4.1 Deformation to Sheet 2

We now show that there is a continuous deformation of all the surfaces in Sheet 2, and hence,

all the surfaces in Sheet 1 and Sheet 2 are connected via the timelike minimal Enneper-type

surface. We first normalize the axial directions as in Section 3.1.4, and let c = cos ĉ2 and

d = sin ĉ2, while a1 =
√
cos ĉ2 − sin ĉ2 and a0 =

√
cos ĉ2 for ĉ2 ∈

[︁
−π2 , π4

]︁
(see Figure 3.6(a)).

After calculating the normal vector, we find that

hĉ2S2(z) =

⎧⎪⎨⎪⎩j
(︃(︂

a0
a1

+ 1
)︂
ea1jz − a0

a1

)︃
, if ĉ2 ̸= π

4 ,

1
21/4

z + j, if ĉ2 = π
4 ,

ηĉ2S2(z) =

⎧⎨⎩ 1
2(a1+a0)

e−a1jz, if ĉ2 ̸= π
4 ,

1
23/4

, if ĉ2 ̸= π
4 .

(3.42)

Remark 3.35. Note that the Weierstrass data

{︃(︂
hĉ2S2, η

ĉ2
S2 dz

)︂
: ĉ2 ∈

[︁
−π2 , π4

)︁}︃
describes the

same set of surfaces as
{︂(︁
hc22 , η

c2
2 dz

)︁
: c2 ∈ [0,∞)

}︂
as in (3.24), up to homothety and trans-

lation in the domain, the (x, y)-plane. Explicitly,

hĉ2S2

(︄
1
a1

(︃
z − j log

(︂
1 + a0

a1

)︂)︃)︄
= jejz − j a0a1 = hc22 (z)

⃓⃓⃓
c2=

a0
a1

.

To get the parametrization, let F ĉ2S2(x, y) be defined from the Weierstrass data(︂
hĉ2S2, η

ĉ2
S2 dz

)︂
via the Weierstrass-type representation in Fact 3.2, and consider

F̂
ĉ2
S2(x, y) = F ĉ2S2(x, y)− F ĉ2S2(0, 0).
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Then we have that

lim
ĉ2↗π

4

F̂
ĉ2
S2

(︂
x, y − 21/4

)︂
+
(︂

1√
2
, 0, − 2

√
2

3

)︂
= lim
ĉ1→π

4

F̂
ĉ1
P (x, y),

implying that there is a deformation joining surfaces in Sheet 1 and Sheet 2.

3.4.2 Deformation to the timelike catenoid with lightlike axis

Now we show that there exists a deformation to the timelike catenoid with lightlike axis.

Consider Sheet 2, where c = ĉ3
2 and d = 0 for ĉ3

2 ∈ (0,∞), and normalize the axial

directions so that v⃗1 ∥ e⃗2 and v⃗2 = e⃗1 + e⃗0 (see Figure 3.6(b)). Calculating the Weierstrass

data gives

hĉ3CL
(z) =

j
(︁
(ĉ3 + 1)ejĉ3z − 1

)︁
(ĉ3 − 1)ejĉ3z + 1

, ηĉ3CL
(z) = 1

4ĉ32 e
−jĉ3z

(︂
(ĉ3 − 1)ejĉ3z + 1

)︂2
. (3.43)

Then note that

hĉ3CL
(z)
⃓⃓⃓
ĉ3=1

= 2jejz − j = hĉ2S2(x, y)
⃓⃓⃓
ĉ2=0

, lim
ĉ3↘0

hĉ3CL
(z) =

z + j

1− jz = h5(z).

Therefore, by calculating F ĉ3CL
(x, y) from (hĉ3CL

(z), hĉ3CL
(z) dz) via Fact 3.2 and defining

F̂
ĉ3
CL

(x, y) = F ĉ3CL
(x, y)− F ĉ3CL

(0, 0),

we see that

F̂
ĉ3
CL

(x, y)
⃓⃓⃓
ĉ3=1

= F̂
ĉ2
S2(x, y)

⃓⃓⃓
ĉ2=0

,

lim
ĉ3↘0

F̂
ĉ3
CL

(x, y) = 1
2

(︂
y − x2y − 1

3y
3, −2xy, −y − x2y − 1

3y
3
)︂
,

implying that F̂
ĉ3
CL

(x, y) gives a deformation between timelike minimal Bonnet-type surface

with lightlike axis of first kind and timelike catenoid with lightlike axis.

3.4.3 Deformation to Sheet 4

Since we have that

hc44 (z)
⃓⃓⃓
c4=0

= jejz = hĉ2S2(z)
⃓⃓⃓
ĉ2=−π

2

where hc44 is as in (3.26), we define F c4S4 using the Weierstrass data (hc44 , η
c4
4 dz). Then for

F̂
c4
S4(x, y) = F c4S4(x, y)− F c4S4(0, 0),

we can directly check that

F̂
c4
S4(x, y)

⃓⃓⃓
c4=0

= F̂
ĉ2
S2(x, y)

⃓⃓⃓
ĉ2=−π

2

,
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implying that there is a deformation joining surfaces in Sheet 2 and Sheet 4.

3.4.4 Deformation to the timelike minimal Bonnet-type surface

with lightlike axial direction of second kind

Finally, we show that the timelike minimal Bonnet-type surface with lightlike axial direction

of second kind is also connected via a deformation to the immersed timelike catenoid with

spacelike axis. To do this, instead of recalculating the Weierstrass data from the normal

vector function, we take advantage of their respective Weierstrass data in Theorem 3.21, and

consider

hĉ5BL2
(z) = e2

1/4z + jĉ5, ηĉ5BL2
(z) = 1

25/4
e−21/4z (3.44)

for ĉ5 ∈ [0, 1]. Then it is easy to see that letting ĉ5 = 0 gives the Weierstrass data for

immersed timelike catenoid with spacelike axis, while letting ĉ5 = 1 gives the Weierstrass

data for timelike minimal Bonnet-type surface with lightlike axial direction of second kind.

Now we would like to see that the surfaces defined by ĉ5 ∈ (0, 1) are also timelike

minimal surfaces of Bonnet-type. To do this, recall that the choice of the paraholomorphic

1-form from the parameromorphic function decides the Hopf differential; therefore, a timelike

minimal surface is uniquely determined by its Lorentz conformal factor up to isometries of

the ambient space. Hence, by calculating the Lorentz conformal factor from
(︂
hĉ5BL2

, ηĉ5BL2
dz
)︂

via (3.4), we find that the surfaces obtained for ĉ5 ∈ (0, 1) are timelike minimal Bonnet-type

surfaces with spacelike axial direction.

Using Remark 3.18 (or by directly calculating), for F ĉ5BL2
(x, y) coming from Fact 3.2 using

the Weierstrass data
(︂
hĉ5BL2

(z), ηĉ5BL2
(z) dz

)︂
, if we define

F̂
ĉ5
BL2

(x, y) = F ĉ5BL2
(x, y).

⎛⎜⎜⎝ 0 1 0

−1 0 0

0 0 1

⎞⎟⎟⎠− (︃ 1√
2
, 0, 0

)︃
,

then we have

F̂
ĉ5
BL2

(x, y)
⃓⃓⃓
ĉ5=0

= F̂
ĉ1
P (x, y)

⃓⃓⃓
ĉ1=0

.

Summarizing, we arrive at the following result:

Theorem 3.36. There exists a continuous deformation consisting exactly of all timelike

minimal surfaces of Bonnet-type (see Figure 3.7 and 3.8).

Corollary 3.37 (Corollary to Theorem 3.31 and Theorem 3.36). There exists a continuous

deformation consisting exactly of all timelike Thomsen surfaces.

3.5 Singularities of timelike Thomsen surfaces

By Remark 3.14, we understand that timelike minimal surfaces of Bonnet-type admit singu-

larities, belonging to a class of surfaces called generalized timelike minimal surfaces. However,

since we have obtained the paraholomorphic 1-form η dz for all generalized timelike minimal

62



BL2 CS1 P CT E BL1 CS2 BT2.

CL

BS BT1 BTper BTper BT1 BS

F̂
ĉ5
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Figure 3.7: Diagram of deformations connecting timelike minimal surfaces of Bonnet-type.

c

c

d

d

ĉ3
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Figure 3.8: Continuous deformation of timelike minimal surfaces of Bonnet-type.
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surfaces of Bonnet-type in Theorem 3.21, we can calculate that these surfaces are actually

minfaces, using [108, Proposition 2.7] (see also [3, Fact A.7]).

We now aim to investigate the types of singularities appearing on these surfaces. Since

the types of singularities of timelike catenoids and timelike Enneper-type surfaces have been

investigated in [68, Lemma 2.12] and [108] (see also [3, Example 4.5]), we focus on recognizing

the types of singularities on timelike minimal Bonnet-type surfaces.

Let S(F ) := {(x, y) ∈ R2 : ρ(x, y) = 0} = {(x, y) ∈ R2 : |h(x, y)|2 = −1} be the singular

set. Then using the explicit solution of the metric function in Proposition 3.13 or the

explicit form of the function h of the Weierstrass data in Theorem 3.21, we understand that

the singular set becomes 1-dimensional. To recognize the types of singularities of timelike

minimal Bonnet-type surfaces, we refer to the following results from [108] (see also [120,

Theorem 3] and [3, Fact 4.1]), analogous results of [110] and [47].

Fact 3.38. Let F (x, y) : Σ → R2,1 be a minface with Weierstrass data (h, η dz). Then, a

point p ∈ Σ is a singular point if and only if |h(p)|2 = −1. Furthermore, for

ψ :=
hz
h2η

, Ψ :=
h

hz
ψz,

the image of F around a singular point p is locally diffeomorphic to

• a cuspidal edge if and only if Reψ ̸= 0 and ℑψ ̸= 0 at p, or

• a swallowtail if and only if ψ ∈ R \ {0} and ReΨ ̸= 0 at p.

Using the Weierstrass data (h, η dz) of timelike minimal Bonnet-type surfaces from The-

orem 3.21, we directly calculate ψ and Ψ. Then using Fact 3.38, we arrive at the following

result.

Theorem 3.39. Let F (x, y) be a timelike minimal Bonnet-type surface with the Weierstrass

data given in Theorem 3.21. Then, the image of F around a singular point p = (x, y) is

locally diffeomorphic to swallowtails (SW) only at the following points.

Surface Points of SW

BTper

(︄
cos−1 (±1) , cos−1

(︃
± c̃1√

c̃21+1

)︃)︄
,

(︄
cos−1 (0) , cos−1

(︃
± 1√

c̃21+1

)︃)︄
BT1

(︁
0, log (c2 + 1)

)︁
BL1 (0, log 2)

BS

(︁
0, log (c2 ± 1)

)︁
BT2 None

BL2 None

Moreover, the images of F around singular points are locally diffeomorphic to cuspidal edges

everywhere else (see Figure 3.3).

Combined with the result in [3, 68, 108], we obtain the following corollary.
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Corollary 3.40. Let F (x, y) be a minface of Bonnet-type. If p is a singular point of F (x, y),

then the image of F around the singular point p must be locally diffeomorphic to one of the

following: cuspidal edge, swallowtail or conelike (or shrinking) singularity.

Using the duality for singularities on timelike minimal surfaces and their conjugate

surfaces, proved in [68] and [108] (cf. [3, Fact A.12]), we finally obtain the following result:

Corollary 3.41 (Corollary to Theorem 3.31 and Corollary 3.40). Any singular point on

a timelike Thomsen surface is locally diffeomorphic to one of the following: cuspidal edge,

swallowtail, cuspidal cross cap, conelike (or shrinking) singularity or fold singularity.

Remark 3.42. Note that in Figure 3.3(f), the surface BL2 defined over the domain C′ is

drawn; in fact, this surface can be extended to a lightlike line (drawn as a yellow line in

Figure 3.3(f)) as in the cases of catenoids with spacelike and lightlike axes ([45, 46]).

To see this explicitly, first note that the surface 9 in Theorem 3.21 is parametrized as

F (x, y) =
(︂
x+ e−x sinh y,−y − ex

2 cosh y,−x− (e−x + ex

2 ) sinh y
)︂
.

Putting ϱ(x) = −x− ỹ for ỹ ∈ R, we note that

lim
x→−∞

F (x, sinh−1 (exϱ(x))) = (−ỹ, 0, ỹ).
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Chapter 4

Discrete minimal surfaces with

symmetries

In the case of smooth minimal surfaces in Euclidean 3-space R3, the Schwarz reflection

principle has been used to good effect to extend minimal surfaces and study their global

behavior. The Schwarz reflection principle for minimal surfaces comes in two forms. One

states that if the minimal surface lies to one side of a plane and has a curvature-line boundary

lying in that plane and meeting it perpendicularly, then the surface extends smoothly by

reflection to the other side of the plane. The other states that if the minimal surface contains

a boundary line segment, then it can be smoothly extended across the line by including the

180 degree rotation of the surface about that line. When one of these two situations holds

on a minimal surface, the other one holds on the conjugate minimal surface.

By the nature of the Schwarz reflection principle, we expect that the surfaces constructed

will have relatively high degrees of symmetry. Such symmetry has been seen in numerous

works, see, for example, [32, 55, 56, 65–67, 97, 98, 106].

Such symmetry has also been exploited in the discrete case as well: for discrete S-

isothermic minimal nets, see, for example, [15, 22, 23]; for discrete isothermic constant mean

curvature nets, see, for example, [57].

In this chapter, we investigate how a similar reflection principle will work in the case of

discrete isothermic minimal nets and discrete asymptotic minimal nets. The benefit of this

is that it provides us a further tool for extending discrete minimal surfaces described locally

(which has been well investigated) to surfaces considered at a more global level (which has

not received as much attention yet). For example, we will construct the central part of a

discrete minimal trinoid, which can then be regarded as existing on a global level, since it is

not a simply connected surface, as it is topologically equivalent to the sphere minus three

disks. Like in the smooth case, we expect to see relatively high degrees of symmetry in the

surfaces we construct in this way.
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4.1 Preliminaries

Let our domain be a Z2 lattice with (m,n) ∈ Z2, and let (ijkl) denote the vertices of an

elementary quadrilateral ((m,n), (m + 1, n), (m + 1, n + 1), (m,n + 1)). For simplicity, we

have chosen our domain to be Z2; however, the theory will hold true for subdomains of Z2.

If F is a discrete net F : Z2 → R3, then we write F (m,n) = Fm,n = Fi over any elementary

quadrilateral, and let

dFij := Fj − Fi.

A discrete net F is called a circular net if Fi, Fj , Fk, and Fl are concircular, representing a

discrete notion of curvature line coordinates [90].

4.1.1 Discrete isothermic nets

First we recall from [17, Definition 4] how the cross ratio of four points in R3 are defined.

Definition 4.1. Let x1, . . . , x4 ∈ R3, and let R3 be identified with the set of quaternions

H under the usual identification R3 ∋ xi ∼ Xi ∈ H. The pair of eigenvalues {q, q̄} of the
quaternion

(X1 −X2)(X2 −X3)
−1(X3 −X4)(X4 −X1)

−1

is called the cross ratio of x1, . . . , x4. In the case where x1, . . . , x4 are concircular, q = q̄ ∈ R,
and we write

cr(x1, x2, x3, x4) = q.

Remark 4.2. It was further proved in [17, Lemma 1] that this cross ratio is invariant under

Möbius transformations.

Using this definition of cross ratios, discrete isothermic nets are defined as follows in [17,

Definition 6]:

Definition 4.3. A circular net F is called a discrete isothermic net if on every elementary

quadrilateral (ijkl),

cr(Fi, Fj , Fk, Fl) =
aij
ail
∈ R<0,

where aij (resp. ail) are edge-labeling scalar functions defined on unoriented edges; that is,

aij = alk and ail = ajk (4.1)

on every elementary quadrilateral (ijkl). We call aij and ail the cross ratio factorizing

functions.

It is shown in [17, Theorem 6] that, for any discrete net F , the discrete isothermicity of

F is equivalent to the existence of another discrete net F ∗ such that

dF ∗
ij =

aij
∥ dFij∥2

dFij , dF ∗
il =

ail
∥dFil∥2

dFil.

If such an F ∗ exists, F ∗ is called a Christoffel transformation of F , and (F ∗)∗ = F up to

scaling and translation in R3.
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4.1.2 Discrete Gaussian and mean curvatures

For any two parallel circular nets F and G, i.e. F and G are both circular nets with parallel

corresponding edges, the mixed area of F and G is defined on every elementary quadrilateral

as

A(F,G)ijkl :=
1

4
(δFik ∧ δGjl + δGik ∧ δFjl)

where δFik := Fk − Fi and the exterior algebra ∧2R3(∋ u ∧ v) is identified with the Lie

algebra o(3), i.e. for any u, v, w ∈ R3,

(u ∧ v)w = (u · w)v − (v · w)u

for the usual inner product of x, y ∈ R3 expressed as x · y. Note that A(F )ijkl := A(F, F )ijkl

gives the area of the quadrilateral spanned by the image of F over an elementary quadrilateral

(ijkl).

It is known through [74] that any circular net F has a parallel circular net N : Z2 →
S2 ⊂ R3 taking values in the unit sphere. Such an N is called a discrete Gauss map of F .

Remark 4.4. If a discrete line bundle L : Z2 → {lines in R3} is the normal bundle of F , i.e.

Fi, Fi +Ni ∈ Li, then L constitutes a discrete line congruence in the sense of [36, Definition

2.1], as any two neighboring lines intersect. One can see that after a choice of one normal

direction at one vertex of F (an initial condition), the line congruence condition and the

parallel mesh condition uniquely determine the normal bundle L over all vertices in the

domain, since any two neighboring normal lines must intersect at equal distance from the

vertices on the surface.

Furthermore, it is not difficult to see that the parallel net F t defined as F t := F + tN

for some constant t is also a circular net parallel to F . This allows us to consider the mixed

area of F and F t, and recover the discrete version of the Steiner’s formula based on mixed

areas (see [95, 105]):

A(F t)ijkl = A(F )ijkl + 2tA(F,N)ijkl + t2A(N)ijkl

= (1− 2tHijkl + t2Kijkl)A(F )ijkl

where Hijkl and Kijkl are defined on each elementary quadrilateral as:

Definition 4.5. We call

Hijkl = −
A(F,N)ijkl
A(F )ijkl

, Kijkl =
A(N)ijkl
A(F )ijkl

the mean and Gaussian curvatures of a circular net F with Gauss map N .

With the notion of mean curvature on any elementary quadrilateral (ijkl) available,

discrete isothermic minimal nets and discrete isothermic constant mean curvature (cmc) nets

can be defined as:

Definition 4.6. A circular net F is called a discrete isothermic minimal (resp. cmc) net if

H ≡ 0 (resp. H ≡ c ̸= 0 for some non-zero constant c) on every elementary quadrilateral.
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4.1.3 Planar reflection principle for discrete isothermic minimal

and cmc nets

Since circular nets are a discrete analogue of curvature line coordinates, the following notion

is natural.

Definition 4.7. Let F : Z2 → R3 be a circular net. A discrete space curve Fm,n0
(resp.

Fm0,n) depending on m (resp. n) for each n0 ∈ Z (resp. m0 ∈ Z) is called a discrete

curvature line.

Without loss of generality, let n0 ∈ Z, and let F be a discrete isothermic minimal or cmc

net, defined on the domain D := {(m,n) ∈ Z2 : n ≤ n0} with corresponding Gauss map

N . Suppose that the discrete curvature line Fm,n0 is contained in a plane P, and further

suppose that the unit normal at each vertex (m,n0) is contained in the plane containing the

discrete curvature line, i.e. Fm,n0 +Nm,n0 ∈ P.
If we extend F to the domain D̃ := {(m,n) ∈ Z2 : n > n0} by reflecting the vertices

across the plane P, then as mentioned in Remark 4.4, the unit normal N also gets uniquely

determined on the extended domain. The uniqueness of the unit normal and the symmetry

of the discrete net then forces the unit normal to be symmetric with respect to P as well,

giving us the following reflective property of minimal and cmc nets:

Proposition 4.8. Let F : D → R3 be a discrete isothermic minimal (resp. cmc) net with

corresponding Gauss map N . Suppose that the discrete curvature line Fm,n0 and the normal

line congruence Lm,n0 along this discrete curve lie in a plane P. Extending F to Z2 = D∪ D̃
so that the extension is symmetric with respect to P results in a discrete minimal (resp. cmc)

net on Z2.

4.2 Reflection properties of discrete minimal nets

In this section, we take a closer look at the reflection properties of discrete minimal nets.

4.2.1 Discrete isothermic minimal nets

Exploiting the relationship between holomorphic functions on the complex plane and con-

formality, a definition of discrete holomorphic functions was given in [17, Definition 8] as:

Definition 4.9. A map g : Z2 → R2 ∼= C is called a discrete holomorphic function if

cr(gi, gj , gk, gl) =
aij
ail
∈ R<0

for some edge-labeling scalar functions aij and ail, i.e. satisfying the condition (4.1).

Using the facts that

• cross ratios are invariant under Möbius transformations,

• a discrete isothermic net on the unit sphere corresponds to a discrete holomorphic

function on the complex plane via stereographic projection,
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• the Christoffel transform of a discrete minimal net is its own Gauss map, and

• the Christoffel transformation is involutive,

a Weierstrass representation for a discrete minimal net was given in [17, Theorem 9] as

follows:

Fact 4.10. For a discrete holomorphic function g with cross ratio factorizing functions aij

and ail, a discrete isothermic net F defined via⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dFij = aij Re

(︄
(1− gigj ,

√
−1(1 + gigj), gi + gj)

1

dgij

)︄

dFil = ailRe

(︃
(1− gigl,

√
−1(1 + gigl), gi + gl)

1

dgil

)︃
becomes a discrete isothermic minimal net. Furthermore, any discrete isothermic minimal

net can be obtained via some discrete holomorphic function g.

4.2.2 Discrete asympotic minimal nets

In this section, we make use of shift notations:

F = Fm,n, F1 = Fm+1,n, F1̄ = Fm−1,n, F2 = Fm,n+1, F2̄ = Fm,n−1.

Discrete asymptotic nets were defined as follows in several different contexts (see, for example

[19, 102, 103, 118]):

Definition 4.11. A discrete net F̃ : Z2 → R3 is a discrete asymptotic net if each vertex

and its neighboring four vertices are coplanar, i.e. F̃ , F̃ 1, F̃ 1̄, F̃ 2, F̃ 2̄ ∈ Pm,n for some plane

Pm,n for each (m,n).

Following [19], we assume that the discrete asymptotic nets here are non-degenerate, i.e.

F̃ i, F̃ j , F̃ k, F̃ l are non-planar.

For a discrete asymptotic net F̃ , the Gauss map N is defined as the unit normal to the

tangent plane Pm,n. Similar to discrete curvature lines, discrete asymptotic lines can be

defined as follows:

Definition 4.12. Let F̃ : Z2 → R3 be a discrete asymptotic net. A discrete space curve

F̃m,n0 (resp. F̃m0,n) depending on m (resp. n) for each n0 ∈ Z (resp. m0 ∈ Z) is called a

discrete asymptotic line.

Recently, a representation of discrete asymptotic minimal net, where the minimality

comes via the edge-constraint condition, was given in [59, Definition 3.1, Theorem 3.14,

Lemma 3.17]:

Fact 4.13. For a discrete holomorphic function g with cross ratio factorizing functions aij
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and ail, a discrete asymptotic net F̃ defined via⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dF̃ ij = aij Re

(︄
(1− gigj ,

√
−1(1 + gigj), gi + gj)

√
−1

dgij

)︄

dF̃ il = ailRe

(︄
(1− gigl,

√
−1(1 + gigl), gi + gl)

√
−1

dgil

)︄

becomes a discrete asymptotic minimal net, in the sense of the discrete minimal edge-

constraint nets.

Remark 4.14. It was further shown in [59, Lemma 3.17] that F̃ defined from a discrete

holomorphic function g via Fact 4.13 shares the same unit normal as the discrete isothermic

minimal net F defined from the same g via Fact 4.10. In such case, F̃ is called the conjugate

discrete minimal net of F .

4.2.3 Reflection properties of discrete minimal nets

To consider planar discrete space curves, it will be advantageous to use the following notation

to denote three consecutive edges:

dF := Fm+1,n − Fm,n, dF1 := Fm+2,n − Fm+1,n, dF1̄ := Fm,n − Fm−1,n.

We first focus on circular nets: let F be a circular net. Then we have the following lemma,

characterizing planar discrete curvature lines in terms of the Gauss map.

Lemma 4.15. A discrete curvature line on a circular net F is planar if and only if the

image of the Gauss map N along the curvature line is contained in a circle.

Proof. Without loss of generality, the planarity of a discrete curvature line is equivalent to

the condition

det(dF1̄,dF,dF1) = 0

on any three consecutive edges. However, since F and N are parallel meshes, the above

condition is equivalent to

det(dN1̄,dN, dN1) = 0.

Therefore, a discrete curvature line is planar if and only if the image of the Gauss map along

the curvature line is planar, i.e. contained in a circle.

Hence, by further requiring that the normal line congruence, i.e. the linear span of unit

normals placed on the vertices, along the planar curvature line is also included in the same

plane, we obtain the following corollary, also mentioned briefly in [22].

Corollary 4.16. The normal line congruence along a planar discrete curvature line is

contained in the same plane if and only if the image of the Gauss map along the curvature

line is contained in a great circle.
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Figure 4.1: A discrete asymptotic net containing a straight line and its Gauss map.

Switching our focus to discrete asymptotic nets, now let F̃ be a discrete asymptotic net.

Then we can prove the following lemma characterizing a discrete asymptotic line that is a

straight line (see also [22]).

Lemma 4.17. A discrete asymptotic line on a discrete asymptotic net F̃ is a straight line

if and only if the image of the Gauss map N along the discrete asymptotic line is contained

in a great circle.

Proof. To show one direction, suppose that a discrete asymptotic line F̃m,n0 is a straight

line. Then the tangent planes Pm,n0
at each vertex along F̃m,n0

must include this straight

line. Therefore, Nm,n0
must be contained in the plane perpendicular to the straight line, i.e.

the image of the Gauss map along the discrete asymptotic line is contained in a great circle.

To show the other direction, now suppose that Nm,n0
is contained in a great circle, and let

Q denote the plane containing the great circle with a normal vector v⃗. Then all the tangent

planes Pm,n0
must be perpendicular to Q. Hence, from the non-degeneracy condition, any

two consecutive tangent planes P and P1 must intersect along a line parallel to the normal

vector v⃗. However, P and P1 intersect along the edge dF̃ , i.e. dF̃ ∥ v⃗, and it follows that

F̃m,n0
must be a straight line in the direction of v⃗. (See Figure 4.1.)

The fact that a discrete isothermic minimal net F and its conjugate discrete asymptotic

minimal net F̃ share the same Gauss map N , as mentioned in Remark 4.14, immediately

yields the following corollary.

Corollary 4.18. The normal line congruence along a planar discrete curvature line on

a discrete isothermic minimal net F is contained in the same plane if and only if the

corresponding discrete asymptotic line on the conjugate discrete asymptotic minimal net F̃

is a straight line.

Now we prove a reflection principle for discrete asymptotic minimal nets. Recall that for

some n0 ∈ Z2, D and D̃ were defined as D := {(m,n) ∈ Z2 : n ≤ n0} and D̃ := {(m,n) ∈
Z2 : n > n0}, respectively.

Theorem 4.19. Let n0 ∈ Z2, and F̃ : D ⊂ Z2 → R3 be a discrete asymptotic minimal

net with corresponding Gauss map N . Suppose that the discrete asymptotic line F̃m,n0
is a

straight line ℓ. Extending F̃ to the domain Z2 = D ∪ D̃ so that the extension is symmetric

with respect to the line ℓ, the extension is a discrete asymptotic minimal net on Z2.
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Proof. Let F : D → R3 be the conjugate discrete isothermic minimal net. Then by Corollary

4.18, we have that the discrete curvature line Fm,n0
and the normal line congruence along the

curvature line are contained in the same plane Q1. Therefore, we may invoke Proposition 4.8

to reflect F across Q1 so that F and N are now defined on Z2. Now, let F̃ be the conjugate

discrete asymptotic minimal net of the extended discrete isothermic minimal net F , where

F̃
⃓⃓⃓
D

agrees with the original F̃ . We now show that F̃ is symmetric with respect to ℓ.

LetQ2 be the plane such thatNm,n0
∈ Q2 for anym ∈ Z; it follows that ℓ is perpendicular

to Q2. By construction, N is symmetric with respect to the plane Q2.

Now, let T ∈ SO(3) be a rotation around ℓ by 180 degrees, and consider F̂ := T F̃ . By

the definition of Gauss maps of discrete asymptotic nets, it must follow that one choice of

the Gauss map N̂ of F̂ be N̂ = −TN . The fact that ℓ is perpendicular to Q2 implies that

N̂m,n is symmetric to Nm,n with respect to the plane Q2. However, because N is symmetric

with respect to Q2, it follows that Nm,n0+k = N̂m,n0−k. Since, F̃ and F̂ share the same

initial condition along ℓ, we have F̃m,n0+k = F̂m,n0−k by Fact 4.13.

4.3 Examples of discrete minimal nets with symmetry

Let F : Z2 → R3 be a discrete isothermic minimal surface with Gauss map N , and choose a

point (m0, n0) ∈ Z2. Suppose that the discrete curves Fm,n0 and Fm0,n, and also the normal

line congruences along these curves, are contained in the planes P1 and P2, respectively.

Denote the quadrilateral (m0, n0), (m0 + 1, n0), (m0 + 1, n0 + 1), (m0, n0 + 1) by (ijkl), and

the image of this quadrilateral under F by Fijkl.

Lemma 4.20. The angle between Fij and Fil and the angle between Nij and Nil are sup-

plementary angles.

Proof. Let Q1 and Q2 be the planes cutting S2 containing the discrete curves Nm,n0 and

Nm0,n, respectively. Since F and N are parallel meshes, the angle between P1 and P2

equals that between Q1 and Q2. However, since by Christoffel duality, or the Weierstrass

representation, the orientations of F and N are opposite, giving us the desired conclusion.

Remark 4.21. Since stereographic projection is a Möbius transformation, it preserves angles.

Therefore, to determine the angle between Nij and Nil, one only needs to look at the angle

between the circles containing gm,n0
and gm0,n.

Before looking at the examples, we comment on how to change the Weierstrass data of

a given smooth minimal surface so that it is parametrized with isothermic coordinates (see,

for example, [16, Section 2.3]). Let a (smooth) minimal surface X : Σ ⊂ R2 ∼= C → R3 be

represented by

X(z) = Re

∫︂
(1− g(z)2,

√
−1(1 + g(z)2), 2g(z))f(z) dz

over a simply-connected domain Σ on which g is meromorphic, while f and fg2 are holo-
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Figure 4.2: A discrete higher order Enneper surface from a discrete power function and its
conjugate. The left-hand side is a discrete isothermic minimal net having planar symmetry;
the right-hand side is a discrete asymptotic minimal net having line symmetry. This figure
was drawn with k = 3. (See also [99].)

morphic. Then the coordinate w satisfying

(wz)
2 = fgz (resp. (wz)

2 = −
√
−1fgz), (4.2)

for wz =
∂w
∂z , becomes an isothermic (resp. conformal asymptotic) coordinate of X, and X

can be represented as

X(w) = Re

∫︂
(1− g(w)2,

√
−1(1 + g(w)2), 2g(w))

1

gw(w)
dw

(resp. X(w) = Re

∫︂
(1− g(w)2,

√
−1(1 + g(w)2), 2g(w))

√
−1

gw(w)
dw).

Example 4.22. Recall that the well-known Enneper surface and higher order Enneper surfaces

can be represented via the Weierstrass data g(z) = zk and f(z) = 1 for k ∈ N. Taking the

coordinate change as in (4.2) (and applying a suitable homothety on the domain depending

on k), we obtain new Weierstrass data g(w) = w
2k
k+1 .

Therefore, from the discrete power function zγ defined in [2] (see also [6, 58]), let g

be the discrete power function with γ = 2k
k+1 . Then, gm,0 ∈ R≥0 while g0,n is on the line

z = re
√−1 kπ

k+1 for r ∈ R≥0. Hence, Fm,0 and F0,n are on planes meeting at an angle π
k+1 .

Reflecting the surface iteratively with respect to these planes give us the discrete isothermic

analogue of higher order Enneper surfaces, and by considering its conjugate via Fact 4.13,

we obtain a discrete asymptotic net with line symmetries (see Figure 4.2).

Example 4.23. Planar Enneper surfaces (see, for example [64]) are examples of minimal

surfaces with planar ends. In particular, the planar Enneper surface with 2-fold symmetry

is given by the Weierstrass data g(z) = z3 and f(z) = 1
gz(z)

; hence, z is an isothermic

coordinate.

The discrete power function z3 following [2, 6, 58] becomes immersed on the domain

D := {(m,n) ∈ Z2 : m ≥ 0, n ≥ 0} \ {(0, 0)}, and gm,0 ∈ R while g0,n is on the line

z = −r
√
−1 for r ∈ R>0. Therefore, Fm,0 and F0,n are on planes meeting at an angle π

2 , and

the resulting surface has 2-fold symmetry, and by considering its conjugate via Fact 4.13, we

74



Figure 4.3: Discrete planar Enneper surface with 2-fold symmetry from discrete power
function z3 and its conjugate. The left-hand side is a discrete isothermic minimal net having
planar symmetry; the right-hand side is a discrete asymptotic minimal net having line
symmetry.

Figure 4.4: Images of smooth g(w) giving fundamental pieces of the minimal k-noids, drawn
for k = 3, 4, 5.

obtain an example of a discrete asymptotic net with line symmetries (see Figure 4.3).

Example 4.24. The minimal k-noids (for k ∈ N, k ≥ 3) of Jorge-Meeks in [63] are minimal

surfaces that are topologically equivalent to the sphere minus k disks with k catenoidal ends,

given by the Weierstrass data g(z) = zk−1 and f(z) = 1
(zk−1)2

. Changing coordinates as in

(4.2) (and applying a suitable homothety on the domain depending on k), we obtain new

Weierstrass data g(w) = (tanhw)
2k−2
k with isothermic coordinate w. Under such settings, a

fundamental piece of the minimal k-noid can be drawn over the region w ∈ [0,∞]×
[︁
0, π4

]︁
⊂

R2 ∼= C over which g(w) has values

g(w) ∈ Dk :=
{︂
z = re

√−1θ : 0 ≤ r ≤ 1, 0 ≤ θ ≤ (k−1)π
k

}︂
\ {1}.

In fact, as also demonstrated in Figure 4.4,

g(w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r(w), if w ∈ [0,∞]× {0}
r(w)e

√−1
(k−1)π
k , if w ∈ {0} ×

[︁
0, π4

]︁
e
√−1θ(w), if w ∈ [0,∞]× {π4 }.

To discretize g (numerically) over the domain {(m,n) ∈ Z2 : m ≥ 0, 0 ≤ n ≤ nmax}, we
require that

• g0,0 = 0 and g0,nmax
= e

√−1
(k−1)π
k ,

• gm,0 ∈ [0, 1) is a strictly increasing sequence,
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Figure 4.5: Numerical solution of discrete trinoid (k = 3) given with its discrete holomorphic
function satisfying the boundary conditions (with nmax = 3).

Figure 4.6: Numerical solutions of discrete 4-noid and 5-noid given with their discrete
holomorphic functions satisfying the boundary conditions (with nmax = 3).

• g0,n = rne
√−1

(k−1)π
k where rn ∈ [0, 1] is a strictly increasing finite sequence,

• gm,nmax
= e

√−1θm where θm ∈
(︂
0, (k−1)π

k

]︂
is a strictly decreasing sequence,

• the cross ratio of g over any elementary quadrilateral is equal to −1, and

• gm,n ∈ Dk for all (m,n) in the domain.

By the definition of g, we know that

• the planes containing Fm,0 and F0,n meet at an angle π
k , and

• the planes containing Fn,0 and Fm,nmax
meet at an angle π

2 ,

giving us a discrete analogue of minimal k-noids of Jorge-Meeks (see Figures 4.5 and 4.6).

Example 4.25. By expanding on the idea of using the symmetry of k-noids as boundary

conditions for the holomorphic data, we can create other discrete minimal nets with symme-

tries. In this example, we create discrete minimal nets with symmetry groups of the Platonic
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Figure 4.7: Numerical solutions of discrete minimal nets with tetrahedral symmetry on the
left, and octahedral symmetry on the right.

solids [119]. As in the k-noids examples, we can ascertain the boundary conditions from the

symmetries of the discrete minimal net by calculating the angles at which the great circles

meet (see, for example, [10]). Then, by finding discrete holomorphic functions satisfying the

given boundary conditions, we can obtain discrete minimal nets with symmetry groups of

the Platonic solids. Here, we show two numerical examples of discrete minimal nets with

such symmetries in Figure 4.7.

Remark 4.26. One may notice that while most of the vertices on the examples have degree

4, i.e. 4 edges meet at the vertex, there are vertices with degree higher than 4. While

this may indicate the existence of a branch point on the Gauss map, we have avoided this

issue by assigning these vertices to be one of the “corner” points of the fundamental piece,

and treating the Gauss map as coming from a holomorphic function on a simply-connected

domain in the complex plane. In fact, on these vertices, the definition of discrete minimality

as in [17, Definition 7] might not be directly applicable; however, the definition via Steiner’s

formula (as in Definition 4.5 and Definition 4.6) allows us to consider mean curvatures on

the faces around such points, and determine minimality at these points as well.
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Chapter 5

Spheres in Lorentz-Möbius

geometry

In this chapter, we introduce the basics of Lorentz-Möbius geometry, analogous to Möbius

geometry for 3-dimensional Riemannian spaceforms. The specific theory of Lorentz-Möbius

geometry has been explored in [37, 38, 107, 113], where the spacelike surface and timelike

surface cases have been discussed separately. However, the work [24] suggests that one

can view isothermic surface theory in Lorentz-Möbius geometry uniformly regardless of the

signature of the metric induced on a surface. Lorentz-Möbius geometry is an especially

good candidate for this, not only because it is an example of a symmetric R-space, but also

because one can treat both spacelike surfaces and timelike surfaces in this setting. This

chapter gives the preparatory materials to achieve this, and shows how both spacelike surfaces

and timelike surfaces can be treated as maps into the projective lightcone of 5-dimensional

pseudo-Riemannian space with signature (−+++−). Most of the content in this chapter

is a Lorentzian analogue of the work done in excellent works such as [26, 52, 100], and the

arguments are modeled after [27, 96].

5.1 Pentaspherical coordinates for Lorentzian spaceforms

In this chapter, let R3,2 denote the 5-dimensional pseudo-Riemannian space with signature

(−+++−) and inner product ⟪·, ·⟫, i.e. for X,Y ∈ R3,2,

(X,Y ) = ⟪(x0, x1, x2, x3, x4)t, (y0, y1, y2, y3, y4)t⟫ = −x0y0 + x1y1 + x2y2 + x3y3 − x4y4,

and let L denote the lightcone of R3,2, i.e.

L = {X ∈ R3,2 : ⟪x, x⟫ = 0}.

For some qκ ∈ L, such that ⟪qκ, qκ⟫ = −κ, define

Mκ = {X ∈ L : ⟪x, qκ⟫ = −1}.
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Applying a suitable transformation A ∈ SO(3, 2), we may assume without loss of generality

that

qκ =

(︃
0, 0, 0,

1

2
(κ− 1),

1

2
(κ+ 1)

)︃t
. (5.1)

Denoting R = R2,1 ∪ {∞}, and for x, y ∈ R2,1, setting

x · y = (x0, x1, x2) · (y0, y1, y2) = −x0y0 + x1y1 + x2y2,

we have the following lemma.

Lemma 5.1. The map ψ : R →Mκ defined by

ψ(x) =
1

1 + κ(x · x)

⎛⎜⎜⎝ 2xt

1− x · x
1 + x · x

⎞⎟⎟⎠
is a bijection for any choice of κ.

Proof. To see that ψ(x) ∈Mκ, we note that for x ∈ R2,1,

⟪ψ(x), ψ(x)⟫ =
(︃

1

1 + κ(x · x)

)︃2 (︂
4x · x+ (1− x · x)2 − (1 + x · x)2

)︂
=

(︃
1

1 + κ(x · x)

)︃2 (︂
4x · x+ 1− 2x · x+ x · x2 − 1− 2x · x− x · x2

)︂
= 0,

while

⟪ψ(x), qκ⟫ = 1

2
(κ− 1)(1− x · x)− 1

2
(κ+ 1)(1 + x · x)

=
1

2(1 + κ(x · x)) (κ− κ(x · x)− 1 + x · x− κ− κ(x · x)− 1− x · x)

=
1

1 + κ(x · x) (−κ(x · x)− 1)

= −1.

Note that for x =∞, we can take the appropriate limit to see that

ψ(∞) =

⎛⎜⎜⎝ 0

− 1
κ

1
κ

⎞⎟⎟⎠ ,

and hence ψ(∞) ∈Mκ.

To see that ψ is a bijection, we define ϕ :Mκ → R by

ϕ(X) = ϕ((yt, y3, y4)
t) =

y

y4 + y3
,
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where y = (y0, y1, y2). Since ⟪X,X⟫ = 0, we have

y · y = y24 − y23 ,

while since ⟪X, qκ⟫ = −1,
y3 + y4 + κ(y4 − y3) = 2.

Using these relations, we calculate that

ψ ◦ ϕ(X) = ψ

(︃
y

y4 + y3

)︃

=
1

1 + κ
(︂

y
y4+y3

· y
y4+y3

)︂
⎛⎜⎜⎜⎝

2 yt

y4+y3

1−
(︂

y
y4+y3

· y
y4+y3

)︂
1 +

(︂
y

y4+y3
· y
y4+y3

)︂
⎞⎟⎟⎟⎠

=
(y4 + y3)

2

(y4 + y3)2 + κ(y · y)

⎛⎜⎜⎝
2 yt

y4+y3
(y4+y3)

2−y·y
(y4+y3)2

(y4+y3)
2+y·y

(y4+y3)2

⎞⎟⎟⎠

=
1

(y4 + y3)2 + κ(y · y)

⎛⎜⎜⎝ 2(y4 + y3)y
t

(y4 + y3)
2 − y · y

(y4 + y3)
2 + y · y

⎞⎟⎟⎠

=
1

(y4 + y3)(y4 + y3 + κ(y4 − y3))

⎛⎜⎜⎝ 2(y4 + y3)y
t

(y4 + y3)(y4 + y3 − (y4 − y3))
(y4 + y3)(y4 + y3 + (y4 − y3))

⎞⎟⎟⎠

=
1

2

⎛⎜⎜⎝2yt

2y3

2y4

⎞⎟⎟⎠ =

⎛⎜⎜⎝y
t

y3

y4

⎞⎟⎟⎠ = X.

On the other hand,

ϕ ◦ ψ(x) = ϕ

⎛⎜⎜⎜⎝ 1

1 + κ(x · x)

⎛⎜⎜⎝ 2xt

1− x · x
1 + x · x

⎞⎟⎟⎠
⎞⎟⎟⎟⎠

=

2x
1+κ(x·x)

1−x·x
1+κ(x·x) +

1+x·x
1+κ(x·x)

=
2x

2
= x.

Hence, ψ−1 = ϕ.

This model of Mκ gives us two observations, which we explore in the following sections.
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5.1.1 3-dimensional Lorentzian spaceforms

Let S2,1 denote the de Sitter 3-space (with constant sectional curvature 1), i.e. for the

Minkowski 4-space R3,1 with signature (−+++) and inner product ⟪, ⟫3,1,

S2,1 = {x ∈ R3,1 : ⟪x, x⟫3,1 = 1}.

Writing x = (x0, x1, x2, x3) ∈ R3,1, we have that x ∈ S2,1 if and only if

−x20 + x21 + x22 + x23 = 1.

Therefore, we have that for X = (x0, x1, x2, x3, 1)
t ∈ R3,2,

⟪X,X⟫ = −x20 + x21 + x22 + x23 − 1 = 0,

and

⟪X, q1⟫ = ⟪(x0, x1, x2, x3, 1)t, (0, 0, 0, 0, 1)t⟫ = −1,

implying that X ∈M1. Therefore, there is a natural bijection between S2,1 and M1.

On the other hand, letH2,1 be the anti-de Sitter 3-space (with constant sectional curvature

−1), i.e. for a 4-dimensional pseudo-Euclidean space R2,2 with signature (−++−) and inner

product ⟪, ⟫2,2,
S2,1 = {x ∈ R2,2 : ⟪x, x⟫2,2 = −1}.

Again, writing x = (x0, x1, x2, x3) ∈ R2,2, we have that x ∈ H2,1 if and only if

−x20 + x21 + x22 − x23 = −1.

Hence, for X = (x0, x1, x2, 1, x3) ∈ R3,2,

⟪X,X⟫ = −x20 + x21 + x22 + 1− x23 = 0,

while

⟪X, q−1⟫ = ⟪(x0, x1, x2, 1, x3)t, (0, 0, 0,−1, 0)t⟫ = −1.

Therefore, we now have that X ∈M−1, and similarly, we have a natural bijection between

H2,1 and M−1.

For the Minkowski 3-space R2,1 (with constant sectional curvature 0), choosing

o = (0, 0, 0, 1, 1)t,

then we have a bijection between R2,1 and M0 via

ψ0(x) = 2x+ o+
1

2
(2x · 2x)q0

and

ϕ0(X) = ψ−1
0 (X) =

1

2
(X − o+ ⟪X, o⟫ q0) .
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5.1.2 Stereographic projection

Recall that for the de Sitter 3-space S2,1, one can define the following inverse stereographic

projection σ1 from R via

σ1 : R → S2,1 ⊂ R3,1,

where

σ1(x) =
1

1 + x · x (2x, 1− x · x).

Similarly, for the anti-de Sitter 3-space H2,1, we have the inverse stereographic projection

σ−1 : R → H2,1 ⊂ R2,2

defined by

σ−1(x) =
1

1− x · x (2x, 1 + x · x).

Define ϕ1 : R3,1 → R3,2 by

ϕ1((x0, x1, x2, x3)) = (x0, x1, x2, x3, 1)
t,

and ϕ−1 : R2,2 → R3,2 by

ϕ−1((x0, x1, x2, x3)) = (x0, x1, x2, 1, x3)
t.

Then we have ϕ1 ◦ σ1 : R3 → R3,2 where

ϕ1 ◦ σ1(x) =
1

1 + x · x

⎛⎜⎜⎝ 2xt

1− x · x
1 + x · x

⎞⎟⎟⎠ ,

while

ϕ−1 ◦ σ−1(x) =
1

1− x · x

⎛⎜⎜⎝ 2xt

1− x · x
1 + x · x

⎞⎟⎟⎠ .

Now, to calculate the metric induced on Mκ, we let X(t) : (−ϵ, ϵ)→Mκ such that

X(t) = ψ(x(t)) =
1

1 + κ(x(t) · x(t))

⎛⎜⎜⎝ 2x(t)t

1− x(t) · x(t)
1 + x(t) · x(t)

⎞⎟⎟⎠ .

Then we can calculate that

d

dt
X(t) = Ẋ =

1

(1 + κ(x · x))2

⎛⎜⎜⎝ẋ
t + κ(x · x)ẋt − 2κ(x · ẋ)xt

−(κ+ 1)(x · ẋ)
−(κ− 1)(x · ẋ)

⎞⎟⎟⎠ .
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Therefore, the tangent space of Mκ at X has the form

TXMκ =

⎧⎪⎪⎨⎪⎪⎩Ta =

⎛⎜⎜⎝a
t + κ(x · x)at − 2κ(x · a)xt

−(κ+ 1)(x · a)
−(κ− 1)(x · a)

⎞⎟⎟⎠ : a ∈ R

⎫⎪⎪⎬⎪⎪⎭ ,

and we can calculate that

⟪Ta, Tb⟫ = 4

1 + κ(x · x) a · b. (5.2)

Therefore, the Mκ are the stereographic projections of Lorentzian 3-spaceforms with

non-zero sectional curvature, allowing us to see the following proposition.

Proposition 5.2 (cf. [96, Lemma 2.5]). Mκ has constant sectional curvature κ.

Furthermore, all the variants of Mκ obtained for different values of κ are all conformally

equivalent. Therefore, instead of viewing R2,1, S2,1, and H2,1 separately, we can projectivize

the lightcone and view the Lorentzian 3-spaceforms with constant sectional curvatures

uniformly.

Remark 5.3. Note that (5.2) says that when κ = 0, then the metric on Mκ is four times

the usual metric in R2,1. The different metric is a result of our choice of normalization for

qκ. This does not pose a problem, as the sectional curvature of R2,1 does not change under

similarity transformations.

However, to remedy this, from now on, we assume without loss of generality that q0 =

(0, 0, 0,−1, 1). Then

M0 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝ x

1
2 (1− x · x)
1
2 (1 + x · x)

⎞⎟⎟⎠ : x ∈ R2,1

⎫⎪⎪⎬⎪⎪⎭ .

Then for o = 1
2 (0, 0, 0, 1, 1),

ψ0(x) = x+ o+
1

2
(x · x)q

defines a bijection between R2,1 ⊂ R3,2 with inverse

ϕ0(X) = X − o+ ⟪X, o⟫ q.

Note that such a particular choice of o and q0 allows one to see the bijection more clearly,

as follows: We have that

⟨o, q0⟩ = {X ∈ R3,2 : X = (0, 0, 0, a, b) for some a, b ∈ R},

and hence

⟨o, q0⟩⊥ = {X ∈ R3,2 : X = (a, b, c, 0, 0) for some a, b, c ∈ R}.

Therefore, it is easy to see that ψ0 : ⟨o, q0⟩⊥ ∼= R2,1 →M0.

However, one does not need to choose o and q0 as given: Choosing any o, q0 ∈ L such

that ⟪o, q0⟫ = −1, we note that

⟨o, q0⟩ ∼= R1,1,
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implying that

⟨o, q0⟩⊥ ∼= R2,1.

Then the ψ0 defined as above gives a bijection between ⟨o, q⟩⊥ ∼= R2,1 and M0.

Now, for ⟨q0⟩ ∈ P(L), there is no α ∈ R such that αq0 ∈M0
∼= R2,1, since q0 ∈ L. (Recall

that X ∈M0 if and only if X ∈ L and ⟪X, q0⟫ = −1.) This can also be seen from the fact

that for κ = 0,

ψ(∞) = (0, 0, 0,−1, 1)t = q0.

Hence, the choice of q0 determines which point in the projective light cone P(L) corresponds
to the point at infinity for R2,1. Similarly, for κ = 0, we see that

ψ((0, 0, 0)) =
1

2
(0, 0, 0, 1, 1) = o,

implying that the choice of o determines the point of origin for R2,1.

5.2 Spheres in Lorentzian spaceforms

So far, we have seen that the points in Lorentzian spaceforms correspond to P(L). In this

section, we see how the spheres in Lorentzian spaceforms are represented in R3,2.

5.2.1 Set of spheres

Let

S = (z, z3, z4)
t ∈ R3,2 \ {0}

for some z ∈ R2,1, and consider

S̃ := {Y ∈Mκ : ⟪S, Y ⟫ = 0}. (5.3)

Let Y ∈ S̃, and for now, assume that κ = 0, i.e. there is some y ∈ R2,1 such that

Y =
1

2
(2y, 1− y · y, 1 + y · y)t.

Then we have that

0 = 2 ⟪S, Y ⟫ = ⟪(z, z3, z4)t, (2y, 1− y · y, 1 + y · y)t⟫
= 2y · z + z3(1− y · y)− z4(1 + y · y)
= 2y · z − y · y(z3 + z4) + z3 − z4.

Dividing both sides by z3 + z4 and rearranging the terms gives

y · y − 2y · z
z3 + z4

+
z · z

(z3 + z4)2
=
z · z + z23 − z24
(z3 + z4)2

,
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or (︃
y − z

z3 + z4

)︃
·
(︃
y − z

z3 + z4

)︃
=
⟪S,S⟫

(z3 + z4)2
.

Therefore, S̃ is the set of points on the sphere in R2,1 with center c and radius r, where

c =
z

z3 + z4
and r =

√︁⟪S,S⟫
z3 + z4

∈ R ∪ iR. (5.4)

Since we have seen that the different Mκ are all conformally equivalent, which preserves

spheres, we see that the S̃ are the spheres in 3-dimensional Lorentzian spaceforms.

Now note that

1

2
(1− c · c+ r2) =

1

2

(︄
1− z · z

(z3 + z4)2
+
z · z + z23 − z24
(z3 + z4)2

)︄
=

z3
z3 + z4

,

while
1

2
(1 + c · c− r2) = 1

2

(︄
1 +

z · z
(z3 + z4)2

− z · z + z23 − z24
(z3 + z4)2

)︄
=

z4
z3 + z4

.

Since S has a scaling freedom, we may write

S =

⎛⎜⎜⎝z
t

z3

z4

⎞⎟⎟⎠ =

⎛⎜⎜⎝ ct

1
2 (1− c · c+ r2)
1
2 (1 + c · c− r2)

⎞⎟⎟⎠ , (5.5)

and identify the set of such S as the set of spheres.

5.2.2 Types of spheres

Note that in (5.4), the radius is r ∈ R ∪ iR. When r ∈ R (resp. r ∈ iR), then for a point y

on the sphere, we have

(y − c) · (y − c) = α2 (resp. (y − c) · (y − c) = −α2)

for some c ∈ R2,1 and α ∈ R. However, since

r2 =
⟪S,S⟫

(z3 + z4)2
,

one can deduce that the causality of S determines the type of spheres we obtain, as follows:

• if S is timelike (⟪S,S⟫ < 0), then S̃ is a spacelike sphere,

• if S is spacelike (⟪S,S⟫ > 0), then S̃ is a timelike sphere, and

• if S is lightlike (⟪S,S⟫ = 0), then S̃ is a lightlike sphere.

To see this more precisely, consider the curve Y (t) on the sphere defined by S, i.e.

Y (t) : (−ϵ, ϵ)→ S̃.
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Since we have ⟪Y, Y ⟫ = 0, we have that ⟪Ẏ , Y ⟫ = 0, and hence

Ẏ /Y ∈ ⟨Y ⟩⊥/⟨Y ⟩ ∼= R2,1.

However, from the fact that Y ∈ S̃, we also have that ⟪Y,S⟫ = 0, implying that ⟪Ẏ ,S⟫ = 0.

Therefore,

Ẏ /Y ∈ ⟨Y,S⟩⊥/⟨Y ⟩.

Finally, ⟪Y, S⟫ = 0 implies that

• if S is timelike, then Ẏ /Y ∈ ⟨Y,S⟩⊥/⟨Y ⟩ ∼= R2,

• if S is spacelike, then Ẏ /Y ∈ ⟨Y,S⟩⊥/⟨Y ⟩ ∼= R1,1, and

• if S is lightike, then Ẏ /Y ∈ ⟨Y,S⟩⊥/⟨Y ⟩ ∼= R1,0.

In summary, we have the following proposition:

Proposition 5.4. Let S ∈ R3,2 be a non-zero vector, and let S̃ be the sphere determined by

S via (5.3). Then the causality of S determines the type of metric induced on the sphere S̃.
Precisely,

• if S is timelike, then S̃ is a spacelike sphere,

• if S is spacelike, then S̃ is a timelike sphere, and

• if S is lightlike, then S̃ is a lightlike sphere.

5.2.3 Planes in Minkowski 3-space in Lorentz-Möbius geometry

One way of viewing planes is to consider them as spheres of infinite radius. To do this, let

S ∈ R3,2 determine a sphere with center c = p+ ρn and non-zero radius r, where ρ ∈ R such

that r2 = σρ2 for an appropriate choice of σ ∈ {±1}. Therefore, the point p ∈ R2,1 is on the

sphere, and n is the vector (of squared norm ±1) pointing from p towards the center c, i.e.

n is perpendicular to the tangent plane of the sphere at p. Under this setting, Proposition

5.4 tells us that n · n = σ. Remembering that S can have a freedom of scaling factor, we

write S as

S =
1

2ρ

⎛⎜⎜⎝ 2(p+ ρn)t

1− (p+ ρn) · (p+ ρn) + σρ2

1 + (p+ ρn) · (p+ ρn)− σρ2

⎞⎟⎟⎠ .
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Then,

lim
ρ→∞

S = lim
ρ→∞

1

2ρ

⎛⎜⎜⎝ 2(p+ ρn)t

1− p · p− 2ρp · n− ρ2n · n+ σρ2

1 + p · p+ 2ρp · n+ ρ2n · n− σρ2

⎞⎟⎟⎠

= lim
ρ→∞

1

2ρ

⎛⎜⎜⎝ 2(p+ ρn)t

1− p · p− 2ρp · n
1 + p · p+ 2ρp · n

⎞⎟⎟⎠

=

⎛⎜⎜⎝ nt

−p · n
p · n

⎞⎟⎟⎠ := Pp,n.

Therefore, Pp,n determines a plane through the point p with normal n in Minkowski 3-space.

Another way to consider planes comes from the observation that planes are a notion

that is unique to 3-dimensional Lorentzian spaceform with vanishing sectional curvature.

Therefore, by choosing a point at infinity q0 ofM0, one can view planes as spheres containing

the point at infinity. Let S determine a sphere S̃ for which q0 ∈ S̃, telling us that

0 = ⟪S, q0⟫ = ⟪(n, n3, n4)t,
(︁
0, 0, 0,− 1

2 ,
1
2

)︁⟫ = − 1
2n3 − 1

2n4,

so we have n3 = n4. Then Y ∈ S̃ if and only if

0 = ⟪S, Y ⟫ = ⟪(n, n3, n4)t, (p, 12 (1− p · p), 12 (1 + p · p))t⟫ = n · p− n3.

Hence, S̃ is a plane through the point p with normal n, and we can write

S = (n,−n · p, n · p)t = Pp,n.

Finally, since

⟪Pp,n,Pp,n⟫ = n · n,

we see that Proposition 5.4 still applies to planes; that is, the causality of Pp,n determines

the type of metric induced on the plane.

Since the type of metric induced on the tangent plane of a surface x depends on the

causality of the Gauss map n, it is natural to consider the causality of Px,n at each point.

Let x(u, v) be a surface in some 3-dimensional Lorentzian spaceform with constant sectional

curvature κ. Then one can lift x(u, v) into X(u, v) ∈Mκ, i.e.

X = ψ(x) =
1

1 + κ(x · x)

⎛⎜⎜⎝ 2xt

1− x · x
1 + x · x

⎞⎟⎟⎠ .
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Then (5.2) implies that

⟪dX,dX⟫ = ⟪Tdx, Tdx⟫ = 4

1 + κ(x · x) dx · dx,

telling us that the metric induced on X is conformally equivalent to the metric induced on

x in the spaceform.
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und anschaulich. German. Resultate Math. 3(2): 129–154, 1980. doi: 10.1007/BF03

323354.

[10] J. Berglund and W. Rossman. Minimal surfaces with catenoid ends. Pacific J. Math.

171(2): 353–371, 1995. doi: 10.2140/pjm.1995.171.353.

[11] L. Bianchi. Lezioni di Geometria Differenziale, Volume II. Italian. Seconda edizione.

Pisa: Enrico Spoerri, 1903.

[12] W. Blaschke. Vorlesungen über Differentialgeometrie und geometrische Grundlagen

von Einsteins Relativitätstheorie II: Affine Differentialgeometrie. German. Berlin:

Springer, 1923.

[13] A. I. Bobenko. Integrable surfaces. Funktsional. Anal. i Prilozhen. 24(3): 68–69, 1990.

doi: 10.1007/BF01077966.

89

https://doi.org/10.1515/crll.1987.374.169
https://doi.org/10.1155/S1073792800000118
https://arxiv.org/abs/1701.00238
https://doi.org/10.1007/s12220-019-00166-7
https://arxiv.org/abs/1808.09641
https://doi.org/10.1619/fesi.57.1
https://doi.org/10.1007/978-94-011-3330-2
https://doi.org/10.1007/978-1-4612-5154-5
https://doi.org/10.1007/BF03323354
https://doi.org/10.1007/BF03323354
https://doi.org/10.2140/pjm.1995.171.353
https://doi.org/10.1007/BF01077966


[14] A. I. Bobenko. Surfaces of constant mean curvature and integrable equations. Russian

Math. Surveys 46(4): 1–45, 1991. doi: 10.1070/RM1991v046n04ABEH002826.

[15] A. I. Bobenko, U. Bücking, and S. Sechelmann. Discrete minimal surfaces of Koebe

type. In: Modern approaches to discrete curvature. L. Najman and P. Romon (Eds.).

Vol. 2184. Lecture Notes in Math. Cham: Springer, 2017, 259–291. doi: 10.1007/97

8-3-319-58002-9_8.

[16] A. I. Bobenko and U. Eitner. Painlevé equations in the differential geometry of
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G. M. Ziegler (Eds.). Vol. 38. Oberwolfach Semin. Basel: Birkhäuser, 2008, 37–56.
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du calcul infinitéstimal, Première partie. Paris: Gauthier-Villars, 1887.
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Westf. Wilhelms-Univ., 1908.

[76] M. L. Leite. Surfaces with planar lines of curvature and orthogonal systems of cycles.

J. Math. Anal. Appl. 421(2): 1254–1273, 2015. doi: 10.1016/j.jmaa.2014.07.047.

93

https://doi.org/10.1023/B:ACAP.0000039015.45368.f6
https://doi.org/10.1016/0040-9383(83)90032-0
https://doi.org/10.1016/0040-9383(83)90032-0
https://doi.org/10.1007/BF01258269
https://doi.org/10.1007/BF01165824
https://doi.org/10.1007/BF01165824
https://doi.org/10.1098/rsta.1996.0093
https://doi.org/10.1098/rsta.1996.0093
https://doi.org/10.4134/JKMS.2011.48.5.1083
https://doi.org/10.1016/j.geomphys.2007.04.006
https://doi.org/10.3836/tjm/1270213872
https://doi.org/10.2969/jmsj/03640609
https://doi.org/10.1524/zkri.1988.183.14.129
https://doi.org/10.1080/02781070500032895
https://doi.org/10.1098/rspa.1998.0292
https://doi.org/10.1016/j.jmaa.2014.07.047


[77] K. Leschke and K. Moriya. Simple factor dressing and the López–Ros deformation
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tsuite [Timelike minimal surfaces with singularities in three-dimensional spacetime].

Japanese. Master thesis. Osaka University, 2012.

95

https://doi.org/10.1145/1276377.1276458
https://arxiv.org/abs/math/0602570
https://doi.org/10.2748/tmj/1178225634
https://doi.org/10.2748/tmj/1178225055
https://doi.org/10.2969/aspm/07810383
https://doi.org/10.1007/BF01455828
https://doi.org/10.1007/BF02230715
https://doi.org/10.1007/BF01228217
https://doi.org/10.1007/BF01228217
https://doi.org/10.1098/rspa.2002.1008
https://doi.org/10.1007/s00025-016-0607-y
https://doi.org/10.1007/s00025-016-0607-y


[109] G. Thomsen. Uber affine Geometrie XXXIX. German. Abh. Math. Sem. Univ.

Hamburg 2(1): 71–73, 1923. doi: 10.1007/BF02951850.

[110] M. Umehara and K. Yamada. Maximal surfaces with singularities in Minkowski space.

Hokkaido Math. J. 35(1): 13–40, 2006. doi: 10.14492/hokmj/1285766302.

[111] E. Vessiot. Sur les courbes minima. French. C. R. Acad. Sci. Paris 140: 1381–1384,

1905.

[112] R. Walter. Explicit examples to the H-problem of Heinz Hopf. Geom. Dedicata 23(2):

187–213, 1987. doi: 10.1007/BF00181275.

[113] P. Wang. Blaschke’s problem for timelike surfaces in pseudo-Riemannian space forms.

Int. J. Geom. Methods Mod. Phys. 7(7): 1147–1158, 2010. doi: 10.1142/S02198878

10004774.

[114] K. T. Weierstrass. Untersuchungen über die Flächen, deren mittlere Krümmung
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