
Kobe University Repository : Kernel

PDF issue: 2025-06-07

Essays on Decision under Uncertainty

(Degree)
博士（経営学）

(Date of Degree)
2020-03-25

(Date of Publication)
2021-03-01

(Resource Type)
doctoral thesis

(Report Number)
甲第7686号

(URL)
https://hdl.handle.net/20.500.14094/D1007686

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

Aoyama, Tomohito



 

 

 

博⼠論⽂ 

 
Essays on Decision under Uncertainty 

 
 
 
 
 
 
 
 
 

 

2020 年 1 ⽉ 17 ⽇ 

神⼾⼤学経営学研究科 

宮原泰之研究室 

経営学専攻 

学籍番号 152B001B 

⽒名 ⻘⼭知仁 



Essays on Decision under Uncertainty

Tomohito Aoyama

January 17, 2020



Abstract

This essay consists of three papers, which study decision under uncertainty. The

first paper uses reponse time and choice as the data. It first elicit subjective

filtration that describes a rought sketch of human coginitive process. Then, im-

posing intuitive axioms, I identify the rest of parameters: subjective probability,

expected utility, and cost function. This result implies that using response time

somewhat helps us understand cognition.

The second paper is on rational inattention, which studies bounded rationality.

This generalizes an existing study by allowing infinite state space. It serves as a

pre-analysis for the first paper.

The third paper is on ambiguity, or a type of uncertainty that can not be

described with single probability. Building on a variant of smooth ambiguity

model, we define unambiguous events in terms of model. Then, I characterize

a model of decision under ambiguity under which exogenously given events are

unambiguous in this sense.
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Chapter 1

Introduction

This essay contains three papers on axiomatic decision theory, a method in eco-

nomics to analyze what we can learn from observable data, concering with choices

that individual makes. In this chapter, I review the decision theoretic literature

and highlight my contribution in this field.

1.1 Literature review

Modeling of belief under uncertainty and providing its foundation is a central

goal of decision theory. The standard model of belief is subjective probability. So-

called subjective expected utility (SEU) model is a class of utility function that

calculates expected utility of each alternative using a subjective probability. Since

the analytical method and fundamental concept of decision theory were prepared

through the studies of subjective probability, I first review its history.

While subjective probability theory is normatively appealing, it is criticized

from various viewpoints. An important one is that observed behavior of economic

agents deviates from a prediction of subjective probability when the assessment of

the probability of events is difficult. Such a class of uncertainty is called ambiguity.

Chapter 4 of this thesis studies a model of ambiguity. Thus I review ambiguity

literature.

Studies of subjective probability and ambiguity consider rational agents, while

it is said that economic agents in the real world are only boundedly rational. That

is, they do not follow the usual principle of expected utility maximization. Ac-

knowledging the limits of prediction power of conventional models, decision the-

oretic analysis of bounded rationality emerged. Chapter 3 in this thesis conducts

an axiomatic study of bounded rationality. So here, I review this literature.
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Behavioral economics is becoming closer to psychology, both methodologically

and conceptually. In this trend, economic researchers are accepting non-choice

data such as response time, fMRI data, and gaze data. Chapter 2 studies how we

can use response time data, together with choice data, to understand the decision

process. So here, I review existing decision theoretic literature on non-choice data.

1.1.1 Subjective probability

Modern decision theory starts from De Finetti (1931), which is the first formal

treatment of subjective probability. Probability theory in mathematics treats

state space, of which subsets are interpreted as events, and measures on it are

interpreted as a probability. But it is unclear whether uncertainty should be

modeled as a probability. de Finetti asked the appropriateness of this formal-

ization. To answer this problem, he analyzed binary relation over events, which

is called qualitative probabilty. Qualitative probability represents judgments on

which event is more probable given two events. de Finetti imposed several axioms

on binary relation and showed they are equivalent to the existence of a probability

measure that is consistent with the qualitative probability: more probable events

have higher probabilities. His axioms can be interpreted normatively. In a nut-

shell, de Finetti showed that modeling uncertainty is appropriate if you want to

abide by his axioms. Moreover, he initiated axiomatic decision theory by giving

its methodology.

Meanwhile, Ramsey (1926) gave another methodological foundation of deci-

sion theory: identification of mental concept. In modern language, he axiomatized

subjective expected utility model in terms of preference relation, while his anal-

ysis is rough. His motivation is to criticize Keynes, who considered probabilistic

logical relation: if P holds, then Q with some probability. Keynes says there

are probabilistic logical relations and claims it is objective; that is, the probabil-

ities are the same for everyone, which was what Ramsey criticized. He assumed

that analyst can observe preferences for objective lotteries with two outcomes,

where each outcome obtain with the probability of one half. Assuming expected

utility representation, an analyst can calibrate expected utility function. Next,

he considers choice for contingent bets in the following form: you get x yen if a

proposition is true, while you get y yen otherwise. Given the calibrated expected

utility function, the analyst can calibrate the subjective probability. In this way,

Ramsey showed that one can elicit subjective probability from choice behavior.

This is the first work that connected subjective probability as a mental concept

2



to observable choice behavior.

von Neumann and Morgenstern (1947) is the book that initiated game theory

and expected utility (EU) theory as its foundation. In the economic literature

before vNM, utility function was an ordinal concept. In contrast to Ramsey,

expected utility theory utilizes general objective probability as alternatives. The

expected utility theory vNM invented was a key to refine the concept of subjective

expected utility theory.

Savage (1954) is the work that completed the concept of subjective proba-

bility by integrating the theories of de Finetti, Ramsey, and von Neumann and

Morgenstein. He assumes there is an objective state space, and an alternative is

a bet on which state will realize, which is called an act. Assuming preferences

for acts are observable, he axiomatically characterized subjective expected utility

representation of the preference relation. The elicitation method is as follows.

The first step is constructing qualitative probability from the observed choice.

Suppose some outcome is better than another. Then, using these, the analyst can

reveal which event decision-maker (DM) believes more probable. Next, imposing

some regularity assumptions on observed preferences, he guarantees the revealed

qualitative probability satisfies the axioms of de Finetti. Then, using the elicited

subjective probability, he transforms each act into objective probability over the

outcomes. Finally, he applies the representation theorem of vNM and completes

the identification. In this way, Savage answered the question: what is subjective

uncertainty? If DM follows Savage’s axioms, then his choice behavior is consistent

with subjective expected utility representation, and we call the elicited probability

as subjective probability, whether or not DM actually believes this probability is

the correct law. This is the standard concept of subjective probability.

Now, there are many extensions and variants of Savage’s theory. Here I cite

two important studies. One is Machina and Schmeidler (1992) (MS). After the

work of vNM, experimental studies showed that subjects do not exactly follow the

expected utility theory. For example, Allais (1953) directly falsified independence

axiom. The falsification of EU was followed by many works that aim to replace EU

with more general choice behavior. See Machina for this literature. Stimulated by

non-expected utility theories, MS pointed out that even when DM has a subjective

probability, alternatives need not be evaluated by calculating expected values of

utility. The model MS consider incorporates a subjective probability. DM first

translates a Savagean act into a probability over outcomes with it. Then, he

values the probability in possibly non-EU way.

The second is Anscombe and Aumann (1963) (AA). Their contribution is
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rather technical. The elicitation of Savage was difficult because he assumed no

structural assumption, topological or algebraic, on state space and outcome space.

AA added linear structure to the space of alternatives. Specifically, they changed

what each alternative give in each state from abstract outcomes into lotteries. As

vNM did, we can mix lotteries. Extending this mixture operation to Anscombe-

Aumann acts makes it possible to elicit subjective probability more easily. Since

the domain includes constant act, or objective lotteries, applying EU theorem,

one can identify an expected utility u. Then, transform each AA-act f into

the utility act u ◦ f . The mixture operation of acts naturally translates into

the usual definition of convex mixture. Upper countor sets of preference in this

domain are half-space, and the linear function corresponding to the half-space is

the subjective probability. By this geometric argument, it is relatively easy to

identify the subjective probability in this domain. Decision theory of uncertainty

after AA would usually adopt the AA framework except when the use of Savage’s

domain is inevitable for conceptual reasons.

1.1.2 Ambiguity

Up to now, I explained the history of how the concept of subjective probability has

grown. Meanwhile, it is pointed out that uncertainty need not to be represented by

probability. This point is made by Knight (2012) and Ellsberg (1961). Especially,

Ellsberg constructs a thought experiment that sharply shows one’s choice behavior

violates Savage’s sure-thing principle. Suppose there is an urn that contains ninety

balls, which are colored red, black, and yellow. You know there are thirty red balls

in the urn, but you do not know the number of black or yellow. In this setting,

Ellsberg constructs four Savagean acts that give money if the picked ball is some

specific color. This type of uncertainty, which can not be described with additive

probability, is called ambiguity.

This insight stimulated decision theoretic literature, though it took long to

model ambiguity. Schmeidler (1989) is the first to model ambiguity. His idea is

that even if the choice is inconsistent with additive probability, it can be consistent

with non-additive probability. Non-additive probability, or capacity was invented

by Choquet, who defined integration with such an object. This type of integra-

tion is called Choquet integral. Schmeidler first characterized Choquet integral

in terms of property as a functional (Schmeidler (1986)). Then, he weakened

independence axiom of Anscomb-Aumann model and represented the preference

relation with a utility function of Choquet expected utility (CEU) form.
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Similarly, weakening the axioms of Anscombe and Aumann, Gilboa and Schmei-

dler (1989) characterized maximin expected utility model (MEU). MEU is a gen-

eralized form of SEU, which incorporates ambiguity aversion by modeling DM’s

belief as a set of probability, called multiple prior. DM evaluates an act by cal-

culating SEU with each probability in multiple prior and then take the minimum

value as the value of the act. MEU is a special case of CEU in which capacity

is convex. This maxmin expected utility model is the standard ambiguity model.

It was applied in many economic fields, and many extensions and generalizations

were studied in decision theoretic literature. For example, variational preference of

Maccheroni et al. (2006) is a generalization of MEU. While variational preference

includes many important classes of preference, for example, multiplier preference

of Strzalecki (2011), their technical contribution is also large. The variational

technique they brought to decision theory is repeatedly used since then.

There is another direction of modeling ambiguity, called smooth ambiguity

model (SAM), which describes possible differentiable indifference curves, in con-

trast, variational preference whose indifference curves are kinked. SAM describes

ambiguity with second-order belief, that is, probability over probabilities. For

example, if second-order belief assigns a probability of 1/2 to probabilities π and

π′, then we interpret that as believing π and π′ are the true law of uncertainty

with equal confidence. SAM evaluates act with a two-step procedure. First, it

calculates SEU of each act; second, average the utilities after transforming with a

function that represents ambiguity attitude. SAM has two axiomatizations up to

now. Klibanoff et al. (2005) is the first to axiomatize SAM. But their primitive

is not preferences observable from the view of analyst. They assume preferences

for second-order acts are also a part of data. See Epstein (2010) for more on this

point. Seo (2009) is another study that axiomatizes SAM. He utilized the original

primitive of Anscombe-Aumann that has objective randomization before the res-

olution of subjective uncertainty, which we call here random act. This makes the

space of primitive convex, which makes the analysis tractable. Using this domain,

he could use only preferences for random acts. In a nutshell, Seo’s contribution is

the treatment of SAM as a positive theory.

Various ambiguity model are different conceptualization of ambiguity. But

what is ambiguity at all? Epstein and Zhang (2001) tackled this problem and

answered by providing the concept of unambiguous events. An unambiguous event

is an event that DM is assigning probability in terms of models. They defined

ambiguity in terms of behavior and axiomatized SEU representation restricted

on ambiguous events. Under their axioms, the behavior is consistent with SEU
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when comparing acts measurable with respect to unambiguous events, but the

model says nothing on other comparisons. Asking what unambiguous events are

corresponds to asking what are events not the sources of ambiguity.

1.1.3 Bounded rationality

While rational choice models were developed, psychology literature acutely criti-

cized these theories. I noted the experiments by Allais and Ellsberg that strongly

deny the validity of EU and SEU. Not only are these experiments the challenge

to rational decision theory. The most influential and stark criticism was made

by Kahneman and Tversky (1979). They, through laboratory experiments, pro-

vided many pieces of evidence that contradict EU. Moreover, they build a model

that captures deviations from EU, even if the modification is somewhat ad hoc.

The behavioral economics literature, which follows them, aims to provide better

models of boundedly rational choice theory (Camerer et al. (2004)).

Here, I cite Eliaz and Ok (2006) for an illustration of behavioral decision the-

ory. First, one problem of rational choice theory is the assumption that anything

can be comparable. Intuitively, sometimes one can not say which alternative is

better in shopping centers. This line is persued by Eliaz and Ok (2006). They

considered a choice correspondence and elicited two new binary relations to cap-

ture the concept of comparability. While both relations are what we usually call

indifference relation, one represents same value, while another represents incom-

parability. Thus behaviorally, these relations are distinguishable. Like this study,

decision theoretic analysis enables us to understand abstract ideas of bounded

rationality.

Recently, a natural formalization of bounded rationality was suggested: ratio-

nal inattention (RIA), which captures the idea that DM does not always think

with full force since it is mentally costly. Rational inattention was incorporated

by Sims (2003) as a new assumption on a macroeconomic model. Because this is

the model with fundamental importance for behavioral economics, many decision

theoretic analyses were conducted. This line is first done by Caplin and Dean

(2015), who gave revealed preference theory of RIA, which is applicable to finite

data. An elegant menu choice foundation is given by de Oliveira et al. (2017).

The most important study of RIA for this thesis is Ellis (2018).
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1.1.4 Use of non-choice data

As I have written, decision theory asks what we can learn from choice behavior.

But now, the decision theoretic community seems to be asking the necessity to

restrict our attention to choices. Some researchers already pointed out that the

use of non-choice data, including response time, gaze data, and fMRI, possibly

facilitate behavioral science (Caplin and Schotter (2008)).

An early study that adopted fMRI data is Caplin and Schotter (2008). They

used both fMRI data and choice behavior and conducted revealed preference anal-

ysis of the reward prediction error hypothesis. Moreover, they used an fMRI

experiment to test it using their theory, resulting in an affirmative answer on

whether the theory is valid or not.

More recently, many decision theoretic works study response time (RT), that

is, time consumed to choose an alternative. Recent trend of RT studies starts

from Fudenberg et al. (2018). They constructed a variant of drift-diffusion model

(DDM), in which DM does not know how much the values of two choices differ and

estimated it. After they point on how non-choice data works to predict laboratory

behavior, axiomatic studies also started. For example, Fudenberg et al. (2019),

using joint distributions of choice and RT, axiomatized DDM, and provided a

theory of its estimation and hypothetical testing. See Chapter 2 for more literature

review.

1.2 Summary of later chapters

Here I summarize the contents in later chapters.

1.2.1 Response time and revealed information structure

My study in chapter 2 aims to ask whether RT serves to understand the human

cognitive process. In the paper, I use a domain that extends that of Ellis, by

adding state-conditional response time. From this primitive, I elicit subjective

filtration, subjective probability, expected utility, and waiting cost. Especially,

subjective filtration is important. The human cognitive process can be understood

from the view of information processing, which is believed in today’s computa-

tional neuroscience community. A simple and tractable representation is filtration

over state space. I partially identify subjective filtration using data of RT and

choice.
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1.2.2 Axiomatization of optimal inattention model with

infinite state space

Ellis (2018) used state-conditional choice correspondence and rationalized it with

RIA model. He assumed finite state space, while infinite state space is potentially

important. For example, describing uncertainty in infinite horizon, normal dis-

tribution, and infinite economy requires infinite state space. In order to give an

axiomatic foundation of RIA in such an environment, I generalized Ellis’s work

in Chapter 3. While my work is not conceptually new, more abstraction was re-

quired to complete the proof because of a measurability issue. And this served as

a pre-analysis for the study in Chapter 2.

1.2.3 Second-order beliefs and unambiguous events

The theory of Epstein and Zhang (2001) is silent on the choices of non-measurable

acts. While this makes the theory general analysis of ambiguity, sometimes it is

useful to model unambiguous events in terms of model, since models are intuitive

sketches of mental concept. With this motivation, in Chapter 4, I characterized

a special case of SOSEU model, which is the name of SAM model of Seo (2009),

that it assigns some fixed probability to exogenously given events. This result

makes what the seemingly intuitive modeling of unambiguous events means clear

and let us examine its behavioral implication. A problem yet to be solved is an

endogenous elicitation of unambiguous events. The domain of Seo does not span

the full space of utility acts. This makes it impossible to uniquely identify the

belief and the problem difficult.
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Chapter 2

Response time and revealed

information structure

2.1 Introduction

In many economic environments, choice timing is not exogenously fixed, but rather

itself is a choice variable of the decision-maker (DM). The amount of time con-

sumed to choose, or response time (RT), reflects the decision process of DM. This

is why behavioral scientists, including recent experimental economists, measure

and analyze response time. In this chapter, we theoretically show that response

time data, together with choice data, help us understand the decision process.

Assuming the available behavioral data are choice and response time con-

ditional on the state of the world, we axiomatically characterize a model that

incorporates endogenously determined learning process. The model we consider

describes a DM who decides when and what to choose according to his private

learning process. The learning process is described by an information filtration

that is a collection of information partitions that evolves over time. We call this

as subjective filtration. Subjective filtration is not directly observable from the

analyst’s view while it is fixed from the point of DM. Nevertheless, our axioms

enable us identify the DM’s subjective filtration. And then, we also elicit utility,

subjective probability, and waiting cost.

Our approach to identifying subjective filtration is as follows. If DM would

learn a realization of some event at a point in time, he uses this information if

that is profitable. Thus any information he has would be reflected in choices.

Therefore we define subjective filtration as the smallest one that is necessary to

describe his behavior.
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The model this chapter considers is a dynamic extension of optimal inattention

representation studied by Ellis (2018) (henceforth, Ellis), to whom we owe many

proof techniques. Ellis axiomatically characterizes a model of rational inattention,

assuming the observable data are choices conditional on the states. In his model,

DM chooses an alternative after one-shot information acquisition. In contrast to

ours, the learning process is described by an information partition that is selected

by the DM given a choice situation. On the other hand, in our model, DM selects

stopping time given a choice situation, holding the information filtration fixed.

The models of Ellis and me can not be distinguished solely in terms of choice.

Note, however, Ellis’s model does not predict response time.

Literature

This study lies at the intersection of some study areas, which we overview here.

First, I review the non-axiomatic literature of RT and indicate how today’s be-

havioral scientists exploit RT data. Second, I turn to decision theoretic literature

on RT, and I highlight differences between existing studies and this one. Third,

I review decision theoretic literature on dynamic information acquisition. The

main contribution of this chapter is the revelation of subjective filtration. Some

existing decision theoretic studies also considered elicitation of subjective filtra-

tion. I review them to highlight what is added by the use of RT. Fourth, I review

rational inattention literature. This study is a dynamic extension of Ellis, one of

rational inattention studies. So I compare Ellis and others to explain why I use

his primitive.

Response time

Choice has been the most important data economic researchers collect and use.

Based on the revealed preference approach, they have studied many mental con-

cepts by providing their operational definition. However, recently they are rapidly

acknowledging RT, being affected by cognitive psychology literature.

In this literature, the most influential paradigm of joint analyses of RT and

choice is drift-diffusion model (DDM). It assumes that DM sequentially acquires

information on which choice is better, and he maximizes expected utility given the

benefit and cost of waiting for information. Its standard form is given by Edwards

(1965) and Ratcliff (1978). Their model was extended into various directions.

Among them, Fudenberg et al. (2018) consider a new and natural assumption

that DM does not know how much the values of alternatives differ, characterize
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the optimal policy, and estimate it. Estimation and hypothetical testing of DDM

are inevitable to analyze laboratory data. Fudenberg et al. (2019) is a study of

this direction. See Spiliopoulos and Ortmann (2018) for more information on RT

literature.

Response time study is done with a consensus that “[response time]’s useful-

ness lies primarily in revealing additional information about a decision maker’s

underlying cognitive processes or preferences [...] and the effects of deliberation

costs on behavior ” (Spiliopoulos and Ortmann (2018), p.2). The purpose of this

chapter is to theoretically ask how much this research program is possible.

Decision theoretic approaches to RT

As the importance of RT study grows, some recent decision-theoretic papers study

what we can learn about the cognitive process using RT. Among others, Duraj

and Lin (2019) is the closest to this study.1 Their data is joint distributions of

chosen alternative and RT given various menus in discrete time horizon. They

behaviorally characterize DM who solves optimal stopping problem with constant

waiting cost or geometric discounting, given a filtration over state space. That is,

they and I adopted different formalizations of waiting cost.2 While the idea re-

sembles this study, there are differences in the parameter to be identified. While

I partially identify subjective filtration, they assume that filtration is objective,

or analyst can directly observe DM’s filtration. Even in laboratories, it is difficult

to directly observe filtration, which is interpreted as cognitive process.3 This dif-

ference is caused by the richness of the primitives. While they assume analysts

can not observe true state, I assume she can. In a nutshell, their and my studies

are not nested, and are complementary.

1I briefly review other decision theoretic studies. Echenique and Saito (2017) characterized

a reduced-form model in which response time is determined by the difference of choice values.

Koida (2017) studies a sequence of incomplete preference relations that become more comparable

over time, which is caused by the contraction of Bewley type beliefs. In his model, RT is

determined by when two alternatives become comparable. Baldassi et al. (2018) characterize

DDM and its multi-alternative extension, and present an algorithm that describes the formation

of the consideration set.
2Conceptually, their constant waiting cost model is a special case of the discrete-time version

of my model. Meanwhile, their discounting model differs not only conceptually, but also in

terms of behavior, as they show.
3One may think fMRI technology lets us observe the cognitive process. However, the analyses

of fMRI data are based on experimental design, observed behavior, and a priori assumption on

the data generating process. Thus we can not take fMRI as direct observation of the cognitive

process.
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Decision theoretic approach to dynamic information acquisition

The aim of this chapter is to reveal how DM’s uncertainty resolves over time.

Several existing studies analyzed this problem.

Takeoka (2007) adopted menu of menu of acts as alternative and character-

ized a model with two-stage uncertainty resolution. Because the data he uses

is a preference relation over menus, the revealed filtration is interpreted as DM’s

expectation on how he learns after his facing menus before they are given.4 In con-

trast, my primitive is behavior after facing menu, and thus my revealed filtration

is interpreted as DM’s expectation after his facing menus. Moreover, the length

of information acquisition is an endogenous variable in my model. Note that,

however, his primitive can describe decision on whether or not to stop learning by

using an alternative that contains a singleton menu, while there are menus not of

this type.

de Oliveira and Lamba (2019) ask a problem on judging whether DM’s action

sequence can be rationalized by some information flow. Their and my study are

similar, while the length of action sequences is exogenously fixed in their model,

and thus their model does not predict choice timing.

Dillenberger et al. (2018) study an infinite horizon decision model in which the

state evolves following a Markov process, and DM acquires information by choos-

ing an information partition. In their model, choices of information partition

are constrained, where constraint evolves depending on history. Their informa-

tion constraint is so general that it unifies many such objects considered in the

literature. They show an identification result and representation theorem.

Note that all of the three studies above assume discrete time horizon, whereas

my model assumes continuous time horizon.

Rational Inattention

Economic agents often feels information acquisition is costly, perhaps for limita-

tion of cognitive ability, and so he may avoid acquiring all information even if

that is materially costless. This insight is called rational inattention, which is

introduced to economics by Sims (2003). The model I propose here is a model of

dynamic information acquisition, and it is strongly related to rational inattention

literature.

Rational inattention, which is a tractable formalization of bounded rationality,

is now studied through the lens of decision theory. While such studies use differ-

4Menu choice studies share implicit assumptions of this type.
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ent primitives, the intuition of models are almost the same: DM chooses costly

information, updates his belief, and chooses an alternative. Most studies assume

DM has an additive information cost function, and some assume that information

acquisition discounts the gain.

Caplin and Dean (2015) use choice probability conditional on the state as

data. Their study differs from other ones in that it is applicable to finite data

and so, to experimental data, in principle. Chambers et al. (2020) studies a

generalization and a discount counterpart of Caplin and Dean (2015). de Oliveira

et al. (2017) use preference relation over menus of acts. They applied variational

technique to elicit parameters. Their study is one of the earliest axiomatic studies

of inattention.

I already explained the model of Ellis (2018). Seemingly, his primitive resem-

bles Caplin and Dean (2015) and proof technique is similar to de Oliveira et al.

(2017). However, his contribution is large. He invents a new concept named plan,

which describes what he chooses in each state. As explained, his primitive itself

is a state-conditional choice correspondence. He constructs preference relation

over plans from the primitive and applied variational technique to preferences for

plans. Potentially, this proof method can be used for future research, as revealed

preference analysis of standard choice correspondence bore plentiful field.

In section 2.2, I introduce the analytical framework and optimal stopping repre-

sentation. In section 2.3.4, I present the representation theorem and comment on

its interpretation and future research.

2.2 Framework and model

2.2.1 Framework

This subsection introduces the framework. Each metric space S introduced below

is endowed with its Borel σ-algebra B(S). Let Ω be a finite set, which is interpreted

as the set of states that describe uncertainty. Let X be a convex subset of a

metrizable topological vector space and let d be its compatible metric. Let A
be the set of functions from Ω to X. Each element of A, interpreted as an

alternative, is called an act. With a natural isomorphism, we regard X is the

set of constant acts. The set A is endowed with the uniform metric d∞(f, g) =

maxω∈Ω d(f(ω), g(ω)). Let K be the set of all non-empty compact sets of A that

is endowed with the Hausdorff metric dh. Each element of K is interpreted as a
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set of alternatives. For typical elements of the sets above, we write x, y, z ∈ X,

f, g, h ∈ A, and A,B,C ∈ K. For any σ-algebra F over Ω and ω ∈ Ω, F(ω)

denotes for the smallest element of F that contains ω.

Our data set is a conditional choice correspondence and a conditional response

time. Conditional choice correspondence is a function c : K×Ω → K that satisfies

c(B,ω) ⊂ B for any (B,ω) ∈ K × Ω. Conditional response time is a function

τ : K × Ω → R+. For each B ∈ K, define cB : Ω → K and τB by

cB(ω) = c(B,ω) and τB(ω) = τ(B,ω).

2.2.2 Model

Here we explain the model we analyze. Given a menu, DM first chooses response

time τ . Stopping at time τ(ω), DM learns a realization of an event. Then, he

updates his prior belief following Bayes rule and chooses an alternative f ∈ B.

Finally, an outcome f(ω) is given, and the waiting cost realizes. We introduce

notation and a term to formalize the ideas above. For a stopping time τ̃ : Ω → R+

and t ∈ R+, let {τ̃ ≤ t} = {ω ∈ Ω|τ̃(ω) ≤ t}. This is the event that he stops before
t according to τ . We say a stopping time τ̃ is adapted to a filtration F = {Ft}t∈R+

if {τ̃ ≤ t} ∈ Ft for all t ∈ R+. In this case, we say τ is F-adapted. When this

is the case, DM who follows τ can decide whether to stop using the information

represented by {Ft}. Stopping times are ordered in point-wise manner: τ ≥ σ if

τ(ω) ≥ σ(ω) for all ω. Now we introduce the model.

Definition 1. We say a quadruple (u, π,F, γ) is an optimal stopping representa-

tion of (c, τ) if these parameters satisfy the following conditions:

τB ∈ argmax
τ∈T

E[max
f∈B

E[u(f)|Fτ ]]− γ(τ)

cB(ω) = argmax
f∈B

E[u(f)|FτB ](ω) for all ω ∈ Ω.

Here,

• u : X → R is an affine function with u(X) = R,

• π is a full-support probability over Ω with which expectations are taken,

• F = {Ft}t∈R is a filtration over Ω,

• T is the set of F-adapted stopping times,
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• Fτ = {∆ ∈ 2Ω| ∀t ∈ R+ ∆ ∩ {τ ≤ t} ∈ Ft},

• γ : T → R is a cost function such that γ(τ) ≤ γ(σ) whenever τ ≤ σ.

The first line of the representation requires that given a menu B, the observed

response time τB maximizes DM’s ex-ante expected net utility assuming his ex-

post choices are optimal. The second line requires that he chooses alternatives

that maximize conditional expected utility.

2.3 Main result

The axioms we impose to (c, τ) can be classified into three groups. The first

group consists of axioms of optimal inattention. These axioms first appeared in

Ellis (2018). They guarantee the existence of fundamental preference relation

behind the choice correspondence and impose structural assumption on it. The

second group consists of axioms of optimal stopping. They are new axioms that

describe consistent relationships between choice and response time. The third

group consists of technical axioms. In all axioms, variables with no quantifier are

understood as bounded by a universal quantifier.

2.3.1 Axioms of optimal inattention

The first axiom Independence of Nonrerevant Alternative is a variant of the Weak

Axiom of Revealed Preference that is adapted to the conditional choice correspon-

dence.

Axiom 1 (INRA: Independence of Never Relevant Acts). If A ⊂ B and A ∩
c(B,ω) ̸= ∅ for any ω ∈ Ω, then c(A,ω) = A ∩ c(B,ω) for all ω ∈ Ω.

For f, g ∈ A and α ∈ [0, 1], let αf + (1− α)g be an act such that [αf + (1−
α)g](ω) = αf(ω) + (1 − α)g(ω). For f ∈ A and B ∈ K, let αf + (1 − α)B =

{αf + (1− α)g|g ∈ B}.
Attention Constrained Independence is a weaker version of indepedence axiom,

which is an implication of additive information cost.

Axiom 2 (ACI: Attention Constraiend Independence). If αg+(1−α)f ∈ c(αg+

(1− α)B,ω), then αh+ (1− α)f ∈ c(αh+ (1− α)B,ω)
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We define a preference relation over outcomes. For x, y ∈ X, define

x ⪰R y ⇔ there exists an ω ∈ Ω such that x ∈ c({x, y}, ω).

Let ≻R and ∼R be the asymmetric part and symmetric part of ⪰R, respectively.

Monotonicity states that if an act chosen from a menu at some state and it is

state-wise dominated by another act, then the latter one must also be chosen at

the state.

Axiom 3 (M: Monotonicity). For f, g ∈ B, if

f(ω) ⪰R g(ω) for all ω ∈ Ω,

then

g ∈ c(B,ω) ⇒ f ∈ c(B,ω).

2.3.2 Axiom of optimal stopping

From the data (c, τ), we elicit the filtration {Ft}t∈R+ . Introduce a symbol ⋄, which
is not an element of K. Then, endow K ∪ {⋄} with the σ-algebra B(K) ∪ {{⋄}},
which contains all the Borel sets of K and set {⋄}. Next, for each menu B and

t ∈ R+, define a function ctB : Ω → K ∪ {⋄} by

ctB(ω) =

{
c(B,ω) if τ(B,ω) ≤ t

⋄ otherwise.
(2.1)

This function captures the information necessary to implement the choices cB.

Now we dfine subjective filtration over Ω.

Definition 2. Subjective filtration is the indexed collection F = {Ft}t∈R+ of σ-

algebras over Ω given by

Ft = σ(ctB;B ∈ K). (2.2)

That is, Ft the smallest σ-algebra that makes all of the functions {ctB}B∈K mea-

surable. So Ft is the minimal information to explain the choice behavior by time

point t. It is easily shown that τB is F-adapted for any B ∈ K.

The next axiom Dynamic Subjective Consequentialism requires that DM re-

spects the revealed filtration.
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Axiom 4 (DSC: Dynamic Subjective Consequentialism). For f, g ∈ B, ω ∈ Ω,

and ∆ ∈ FτB such that ω ∈ ∆, if

f(ω′) = g(ω′) for all ω′ ∈ ∆,

then

f ∈ c(B,ω) ⇔ g ∈ c(B,ω).

Given B, DM acquires information FτB using τB and thus he knows the real-

ization of ∆ ∈ FτB that containes the true state ω. If f, g ∈ B agrees on ∆, he

treats them as if they are the same act.

The next axiom, Information Monotinicity, states that lenghs of response

times are consistent with the fineness of choices.

Axiom 5 (IM: Information Monotonicity). If

c(A,ω) ̸= c(A,ω′) ⇒ c(B,ω) ̸= c(B,ω′) for any ω, ω′ ∈ Ω,

then,

τA ≤ τB.

We interpret the inequality c(A,ω) ̸= c(A,ω′) as an implication of acquiring

inoformation enough to distinguish ω and ω′ when facing A. Thus the relationship

between the choice behavior when facing different menus assumed in this axiom

means that DM acquires more information when facing B. The axiom requires

that DM waits for more when facing B than when facing A. In most realistic

situations, waiting more gives better information and costs more. Thus more

complex choice behavior is only possible by waiting more.

The next axiom, Time Invariance, states that response times given a mixture

of an act and a menu is the same even if the mixed act is changed, if the mixing

weight and the menu is left the same.

Axiom 6 (TI: Time Invariance).

ταf+(1−α)B = ταg+(1−α)B.
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2.3.3 Technical axioms

Define a relation ⪰D over menus by

A ⪰D B ⇔ For all ω ∈ Ω, A ∩ c(B,ω) ̸= ∅.

The relation A ⪰D B means that, given A, DM can emulate the optimal policy

he uses if B is given. Thus if he can choose one from A or B, he prefers A. In this

sense, this is a directly revealed preference ranking for menus. Let ⪰I denotes the

transitive closure of ⪰D. That is,

A ⪰I B ⇔ There exists n ∈ N and B1, . . . Bn such that A ⪰D B1 ⪰D · · · ⪰D Bn ⪰D B.

To interpret the relation, remind that we interpret ⪰D as the preference ranking

for menus. Assuming he is rational in the sense of having transitive raking, we can

extend the ranking. The relation ⪰I is the indirectly revealed ranking obtained

in this way.

The next is axiom Continuity. For x, y ∈ X and ω ∈ Ω, let xωy denote the

act that gives x in ω and y in other states. We write g ⪰I f if {g} ⪰I {f} for

simplicity.

Axiom 7 (C: Continuity).

1. For any ω ∈ Ω, {Bn}∞n=1 and {fn}∞n=1 such that Bn → B and fn → f with

fn ∈ c(Bn, ω), if

τBn = τB for any n ∈ N,

then

f ∈ c(B,ω).

2. For any x, y ∈ X such that x ≻R y, ω ∈ Ω, and sequences fn → xωy and

gn → y, there exists n ∈ N such that gn ̸⪰I fn.

The first part is a weak form of upper hemicontinuity of c. The second part

states is an implication of the assumption that there is no null state. Suppose

a state ω can be the true state. Then, xωy is strictly preferred over y since it

gives a better outcome at ω. Thus, if fn and gn are sufficiently close to xωy and y

respectively, gn is not prefered over fn. Together with other axioms, it guarantees

the existence of a full-support subjective probability.5

5The axioms of Ellis admit a conditional choice correspondence that generates the trivial

⪰I relation. His argument on eliciting subjective probability has a gap since it requires the

non-triviality of ⪰I , which is not guaranteed.
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The next axiom is Unboundedness. This is necessary to calibrate the cost

function.

Axiom 8 (U: Unboundedness). There exist x, y ∈ X such that x ≻R y and, for

any β ∈ (0, 1), there exist z∗, z∗ ∈ X such that

βz∗ + (1− β)y ≻R x, y ≻R βz∗ + (1− β)y.

2.3.4 Representation theorem

We present our representation result.

Theorem 1. If c and τ satisfies INRA, ACI, M, DSC, IM, TI, C, and U, then

there exist u, π, and γ such that (u, π,F, γ) is an optimal stopping representation

of (c, τ).

This theorem shows the intuitive axioms we considered above are sufficient for the

data to be explained by optimal stopping model. I asked what we can learn using

both RT and choice. To answer this question, I analyzed a model that jointly

predict RT and choice. It incorporates dynamic information flow, represented as

subjective filtration. Subjective filtration is a rough representation of the cognitive

process that describes how uncertainty resolves from the view of DM. I showed

that RT and choice together partially identify subjective filtration. This result

implies that using RT somewhat helps us understand the human cognitive process.

2.4 Concluding remarks

Point identification of filtration is a problem yet to be solved.6 It is difficult to

identify filtration using the current primitive because of the incompleteness of ⪰I .

Using a triplet (⪰, c, τ) of preference relation over menus, conditional correspon-

dence, and conditional response time may serve to point identification.

The followings are my current conjecture. Using the menu preference, one

can calibrate any menu with constant acts. Moreover, this may serve to add

structural assumptions on γ. The cost function of this study is too general to

identify filtration. An important special case of cost function is expectated cost

form:

γ(τ) =

∫
Ω

γ̃(τ(ω)) dπ,

6As far as I know, there is no such identification result with the assumption of endogenous

choice timing.
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where γ̃(·) is state-independenct waiting cost, and π is a subjective probability.

Assuming this cost function form may let us identify the filtration uniquely.

2.5 Proof

2.5.1 Roadmap

Here I give a roadmap of the proof of Theorem 1. First, from Lemma 6 to

Lemma 5, I replace the acts with utility acts to simplify the rest of the proof.

Lemma 6 shows that choice from a menu is invariant under its translation in the

new domain. Lemma 7 shows that the chosen stopping time given any menu is

sufficient to implement the choice behavioir then.

Next, we construct a preference relation for plan is derived. Here, a plan

is DM’s action plan that describes when he stops and what he chooses in each

state. This is done via a preference relation over menus. A menu corresponds to

a plan if given the menu, DM implements the plan. Lemma 9, which is proved

using Lemma 8, states that, for each pair of choice plan and stopping time, there

is a menu given which both of them are implemented. This lemma guarantees

that preferences for plans is well-defined. Then, to elicit the parameters, we show

regularities the preferences for menus and that for plans. Lemma 6 shows that the

relation ⪰I is translation invariant. Lemma 11 shows that if a plan is implemented

given a menu, then it is the best one that DM can choose.

Then, we turn to the elicitation of parameters. Lemma 14 and Lemma 15

elicits a subjective probability and cost function, respectively. Lemma 18 and

Lemma 19 completes the proof.

2.5.2 Basic properties of choice correspondence

In this subsection, we investigate the basic properties of the choice correspondence.

First, we construct an expected utility function. Let K(X) be the set of all non-

empty compact subsets of X.

Lemma 1. There exists a continuous affine function u : X → R such that, for

any B ∈ K(X),

x ∈ c(B,ω) ⇔ u(x) ≥ u(y) ∀y ∈ B.

and u(X) = R.
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Proof. We first show that ⪰R is continuous, that is,

{y ∈ X|y ⪰R x} and {y ∈ X|x ⪰R y},

are closed. First, note that Axiom M implies that, for any x, y ∈ X and ω, ω′ ∈ Ω,

c({x, y}, ω) = c({x, y}, ω′). Suppose yn → y, yn ⪰R x and take any ω ∈ Ω. Since

c({y, x}, ·) and each c({yn, x}, ·) is constant, IM implies τ{yn,x} = τ{y,x} for all n.

In addition, {yn, x} → {y, x} in K. Then, Axiom C implies y ∈ c({y, x}, ω), or
y ⪰R x.

Next we show that ⪰R is transitive. Suppose x ⪰R y and y ⪰R z, and take

any ω ∈ Ω. Note that c({x, y, z}, ω) is nonempty. If z ∈ c({x, y, z}, ω), then
y ⪰R z and axiom M imply y ∈ c({x, y, z}, ω). Likewise, if y ∈ c({x, y, z}, ω),
then x ∈ c({x, y, z}, ω). In conclusion, x ∈ c({x, y, z}, ω) holds for any ω. Then,

by INRA, x ∈ c({x, z}, ω) holds for any ω. Thus, x ⪰R z.

Note that, since⪰R is complete, transitive, and continuous relation, max⪰R B =

{x ∈ B| x ⪰R y for all y ∈ B} is nonempty. We show that max⪰R B = c(B,ω)

holds for any ω. First, suppose y ∈ max⪰R B and take x ∈ c(B,ω). Then,

y ⪰R x and axiom M imply y ∈ c(B,ω). Thus max⪰R B ⊂ c(B,ω) Next, suppose

y /∈ max⪰R B and take x ∈ max⪰R B. Then, x ≻R y and x ∈ max⪰R B by the

first inclusion. By INRA, c({x, y}, ω) = {x, y} ∩ c(B,ω) holds for all ω. Then, if
y ∈ c(B,ω), then y ∈ c({x, y}, ω) and so y ⪰R x. But this contradicts the way x

and y are taken. Thus y /∈ c(B,ω). We showed c(B,ω) ⊂ max⪰R B.

As Ellis showed in the proof of his Lemma 1, ACI implies Independence of

⪰R. Then, applying expexted utility theorem, construct a utility representation

u of ⪰R that is affine and continuous. By axiom U, u is unbonded.

The next lemma states that choice behavior follows two regularities: First,

adding acts that are dominated by existing ones does not change what to be

chosen; secondly, the choice behavior respects the acquired information. For B ∈
K and ω ∈ Ω, let P(B)(ω) = {ω′ ∈ K| c(B,ω′) = c(B,ω)}, the partition generated

by cB. Equivalently, we can see P(B) as the σ-algebra {c−1
B (V )|V ∈ O(K)} over

Ω generated by c(B, ·). For f ∈ A and u, let u ◦ f denote for their composite

function.

Lemma 2.

1. Assume that, for any g ∈ B, there exists f ∈ A such that u ◦ f ≥ u ◦ g.
Then

c(A,ω) = A ∩ c(A ∪B,ω).
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2. For f, g ∈ B, ω ∈ Ω, and ∆ ∈ FτB with ω ∈ ∆, if f ∈ c(B,ω) and

u(g(ω′)) = u(f(ω′)) for all ω′ ∈ ∆, then g ∈ c(B,ω).

Proof. Suppose that g ∈ B∩c(A∪B,ω). By the assumption, there is some f ∈ A

such that u ◦ f ≥ u ◦ g. This and Axiom M implies f ∈ c(A ∪ B,ω). We have

shown A ∩ c(A ∪ B,ω) ̸= ∅ for any ω ∈ Ω. Applying INRA completes the first

part. The second part is proved as Lemma 2 in Ellis using DSC.

2.5.3 Transforming acts into utility acts

We collect preliminary results to work on real-valued functions, instead of acts.

Let Bb = RΩ which is endowed with the uniform norm ∥ · ∥. Let K(Bb) be the set

of compact sets of Bb.

First, we construct a set Y ⊂ X such that u(Y ) = R and the restriction of u

to Y is a homeomorphism. For each n ∈ Z, take xn ∈ X such that u(xn) = n.

Let Yn = {(1 − α)xn + αxn+1|α ∈ [0, 1]} and Y =
∪

n∈Z Yn. Let v be the inverse

function of u|Y , which exists because of the definition of Y . For each n ∈ Z, let
vn : [n, n+ 1] → Yn be the inverse function of u|Yn .

Lemma 3.

1. For each n ∈ Z, the function vn is uniformly continuous.

2. The function u|Y is a homeomorphism.

Proof. Define a function vn : R → X by

vn(β) = (1− (β − n))xn + (β − n)xn+1.

For β ∈ [n, n+1], vn(β) ∈ Yn holds, and besides the affinity of u implies u(vn(β)) =

β. So the restriction of vn to [n, n+ 1] is vn. Because the addition and the scalar

multiplication is continuous in any topological vector space, so is vn. Since it is

affine, it is uniformly continuous, and so is vn. The first part is completed.

Turn to the second part. It is sufficient to show that v is continuous. To this

end, take a sequence {x̂k}∞k=1 ⊂ R and suppose x̂k → x̂ in R. If x̂ ∈ (n, n + 1)

for some n ∈ Z, for sufficently large k, x̂k ∈ (n, n + 1). The first part implies

v(x̂k) = vn(x̂k) → vn(x̂) = v(x̂) as k → ∞. Turn to the case that x̂ = n for some

n. Then, for sufficiently large k, x̂k ∈ (n − 1, n + 1). Take any ϵ > 0. From the

coninuity of vn−1 and vn, there exist some δ > 0 such that if x̂k ∈ [n − 1, n] and

|x̂k− x̂| < δ, then d(vn−1(x̂k), vn−1(xk)) < ϵ; and if x̂k ∈ [n, n+1] and |x̂k− x̂| < δ,

then d(vn(x̂k), vn(x̂)) < ϵ. So v(x̂k) → v(x̂) in Y .
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Let AY = {f ∈ A| ∀ω ∈ Ω f(ω) ∈ Y }. In the next lemma, we denote u ◦ f
for the composite function of u and f . Define Φ∗ : A → Bb, Φ : AY → Bb, and

Ψ : A → AY by

Φ∗(f) = u ◦ f, Φ(f) = u ◦ f, and Ψ = Φ−1 ◦ Φ∗.

Lemma 4.

1. Φ∗ is continuous.

2. Φ is a homeomorphism.

3. Ψ continuous and u ◦Ψ(f) = u ◦ f for any f ∈ A.

Proof. Consider the first part. Let fk → f in A. Because u is a continuous

affine function, it is uniformly continuous. So, for any ϵ > 0, there is some

δ > 0 such that d(x, y) < δ implies |u(x) − u(y)| < ϵ. Note that, for sufficiently

large k, d∞(fk, f) < δ. So, for all ω ∈ Ω, |u(fk(ω)) − u(f(ω))| < ϵ. That is,

∥u ◦ fk − u ◦ f∥ → 0. The first part is complete.

Consider the second part. The continuity of Φ follows from that of Φ∗. We

shall prove that Φ is a bijection. For f̂ ∈ Bb, Φ(v ◦ f̂) = u ◦ v ◦ f̂ = f̂ . So it is

onto. Take f, g ∈ AY such that u ◦ f = u ◦ g. Then, f = v ◦ u ◦ f = v ◦ u ◦ g = g.

So it is one-to-one.

Finally, we show that the inverse function Φ−1 : Bb → AY is continuous. Note

that Φ−1(f̂) = v ◦ f̂ . Take a sequence {f̂k}∞k=1 ∈ Bb such that f̂k → f̂ in Bb. Take

n ∈ N such that −n < f̂ < n. Fix any ϵ > 0. The uniform continuity of vj implies

that for each j = −n − 1, . . . , n, there exist δj > 0 such that, if x, y ∈ [j, j + 1]

and |x − y| < δj, then d(vj(x), vj(y)) < ϵ. Let δ = minj δj. Fix a sufficently

large k so that ∥f̂k − f̂∥ < min{δ, 1}. Then, for any ω ∈ Ω, there exists j such

that f̂k(ω), f̂(ω) ∈ [j, j + 1]. Hence, for all ω ∈ Ω, d(v(f̂k(ω)), v(f̂(ω))) < ϵ. So

d∞(Φ−1(f̂k),Φ
−1(f̂)) ≤ ϵ.

Next, we show that the choice behavior depends only on the state-dependent

utilities of the acts in the choice sets. For a moment, we denote u ◦ f as fu and

let Au = {fu|f ∈ A} for A ∈ K.

Lemma 5. If Au = Bu, then [c(A,ω)]u = [c(B,ω)]u for each ω ∈ Ω.

Proof. Note that Lemma 2 (1) implies

c(A,ω) = A ∩ c(A ∪ B,ω), c(B,ω) = B ∩ c(A ∪ B,ω)

for each ω ∈ Ω. Thus for f ∈ c(A,ω), we have f ∈ c(A ∪ B,ω). Take g ∈ B such

that fu = gu. Axiom M implies g ∈ c(A ∪ B,ω). Then g ∈ c(B,ω).
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The next lemma states that the choice correspondence is translation invariant.

For f ∈ A and α ∈ R, define αf ∈ A by (αf)(ω) = αf(ω). For each B ∈ K and

α ∈ R, let αB = {αf |f ∈ B}.

Lemma 6. The equation [c(B + g, ω)]u = [c(B,ω)]u + gu holds.

Proof. Suppose Au = 2Bu, fu = 2gu, and xu = 0. Then, Bu = (1
2
A + 1

2
x)u and

Bu + gu = (1
2
A+ 1

2
f)u. Then, Lemma 5 implies

[c(B + g, ω)]u =

[
c

(
1

2
A+

1

2
f, ω

)]u
. (2.3)

On the other hand, ACI implies

1

2
g +

1

2
f ∈ c

(
1

2
A+

1

2
f, ω

)
⇔ 1

2
g +

1

2
x ∈ c

(
1

2
A+

1

2
x, ω

)
.

Thus[
c

(
1

2
A+

1

2
f, ω

)]u
=

[
c

(
1

2
A+

1

2
x, ω

)]u
+

1

2
fu

=

[
c

(
1

2
A+

1

2
x, ω

)]u
+ gu = [c(B,ω)]u + gu (2.4)

Combining (2.3) and (2.4) completes the proof.

Now we define a choice correspondence c̃ : K(Bb)×Ω → K(Bb) and τ̃ : K(Bb)×
Ω → R+ by

c̃(B,ω) = Φ[c(Φ−1(B), ω)] and τ̃(B,ω) = τ(Φ−1(B), ω).

Then, c̃ and τ̃ inherit all the properties of c and τ . Besides, c̃ is translation

invariant:

c̃(B + f, ω) = c̃(B,ω) + f

by the virtue of Lemma 6. Note

c(B,ω) = Φ−1(c̃(Φ(B), ω)) and τ(B,ω) = τ̃(Φ(B), ω).

for B ∈ K(AY ). Once we found a representation of c̃ and τ̃ , the obtained param-

eters work for c and τ . From now on, we write Bb as A, c̃ as c, and τ̃ as τ for

simplicity.
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2.5.4 Preliminary

Any choice behavior is done with enough information to do so. The next lemma

states this fact.

Lemma 7. For any B ∈ K, P(B) ⊂ FτB .

Proof. For any V ∈ O(K) and t ≥ 0, we have

c−1
B (V ) ∩ {τB ≤ t} = {ω|ctB(ω) ∈ V } ∈ Ft.

Thus, by definition of FτB , c
−1
B (V ) ∈ FτB . Remind that P(B) is the partition

generated by cB and thus P (B) = {c−1
B (V )|V ∈ O(K)}. Therefore, P(B) ⊂

FτB .

A plan is a pair (F, τ) of function F : Ω → A and a {Ft}t∈R+-adapted stopping

time τ , where F is Fτ -mesurable. Let H denote the set of all plans. Let T ∗ =

{τB|B ∈ K} be the set of stopping times DM sometimes uses. Finally, let H∗ =

{(F, τ) ∈ H|τ ∈ T ∗}. The set H∗ consists of plans that is implemented via a

response time that is actually used when DM faces some menu. We especially pay

attention H∗ because this property facilitates the calibration of γ. For B ∈ K, let

ĉ(B) be the set of functions F : Ω → B that satisfy F (ω) ∈ c(B,ω). Henceforth,

for any f ∈ A, the notation {fω}ω∈Ω sometimes denotes for the function ω 7→ fω
and sometimes for the set {fω |ω ∈ Ω}. Let O(S) be the set of all open sets in S.

In the next section, we will construct a preference relation over plans from

preference over menus. So, for each plan (F, τ) ∈ H∗, we need a menu given

which DM implements it. But in general, there may not be a menu B with

F ∈ ĉ(B). So, as a substitute, we construct a menu with which the specified

response time is implemented, and the same utility level is given at each state.

Lemma 8 and 9 serves this purpose. Lemma 8 says that for any τ ∈ T ∗, we

can construct a menu so that τ is used and utilities obtained at any state is zero.

Lemma 8. For any τ ∈ T ∗, there exists Bτ ∈ K and {fω}ω∈Ω that satisfy the

followings

1. τ(Bτ , ·) = τ

2. fω(ω) = 0, fω ∈ c(Bτ , ω).

3. For any g ∈ A, fω + g ∈ c(Bτ + g, ω).
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Proof. Take any B ∈ K such that τB = τ . Take a selector {gω}ω∈Ω of the

correspondence c(B, ·). Define a function h as h(ω) = gω(ω). Define a menu

Bτ = B − h. Note that c(Bτ , ω) = c(B,ω) − h and τBτ = τB = τ . Define a plan

{fω}ω∈Ω by fω = gω − h, and then the following hold: fω ∈ Bτ , fω(ω) = 0, and

fω ∈ c(Bτ , ω).

Next, for F ∈ H∗, let F ∗ ∈ A be an act defined by F ∗(ω) = F (ω)(ω). For any

(F, τ) ∈ H∗, if there exists some menu B ∈ K and F : Ω → A such that

F ∈ ĉ(B), (F )∗(ω) = F ∗(ω), and τ(B, ·) = τ,

then write such a menu B as BF
τ .

Lemma 9. For any (F, τ) ∈ H∗, BF
τ ∈ K is well-defined.

Proof. Define BF
τ := Bτ +F

∗, where Bτ is the menu constructed applying Lemma

8 to τ . There is a plan {fω}ω∈Ω ∈ ĉ(Bτ ) such that fω(ω) = 0. Then, let F̄ (ω) =

fω + F ∗ and observe F (ω)(ω) = F (ω)(ω) and F ∈ ĉ(BF
τ ).

For F ∈ H∗, there may well be multiple plans F with the properties above.

We denote F for one of them. The non-uniqueness does not cause a problem.

2.5.5 Preference relation between plans

We shall construct a preference relation between plans in H∗. We start with

constructing preference relations between menus. Recall that

A ⪰D B ⇔ For all ω ∈ Ω, A ∩ c(B,ω) ̸= ∅,
A ⪰I B ⇔ There exists n ∈ N and B1, . . . Bn such that A ⪰D B1 ⪰D · · · ⪰D Bn ⪰D B.

The next lemma states that the translation invariance of c inherits to the

relations ⪰D, ⪰I . For A ∈ K and f ∈ A, let A+f = {g+f | g ∈ A}. For F ∈ AΩ

and f ∈ A, let F + f ∈ AΩ as (F + f)(ω) = F (ω) + f .

Lemma 10.

1. If A ⪰D B, then (A+ f) ⪰D (B + f).

2. If A ⪰I B, then (A+ f) ⪰I (B + f).
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Proof. Suppose A ⪰D B and take F ∈ ĉ(B) such that ImF ⊂ A. Because

ĉ(B + f) = ĉ(B) + f , F + f ∈ ĉ(B + f) holds. In addition, Im (F + f) =

(ImF ) + f ⊂ A+ f . Completed the first part.

Suppose A ⪰D C1 ⪰D · · · ⪰D Cn ⪰D B. Then, using the first part, (A+f) ⪰D

(C1 + f) ⪰D · · · ⪰D (Cn + f) ⪰D (B + f). Completed the second part.

If an implementation of a plan (F, τ) is observed when facing B, it should be

the best plan DM can choose. The second part of the next lemma states this fact.

For f, g ∈ A, let f ∧ g ∈ A be the act defined by (f ∧ g)(ω) = min{f(ω), g(ω)}.
We denote the closure of any set S ⊂ A as clS.

Lemma 11.

1. Consider menus A,B ∈ K and plans F,G ∈ AΩ such that ImF ⊂ A,

G ∈ ĉ(B), F ∗ ≥ G∗, and F is FτB -measurable. Then, A ⪰I B holds.

2. Suppose F ∈ ĉ(B), ImG ⊂ B, and (G, σ) ∈ H∗. Then, BF
τB

⪰I BG
σ holds.

Proof. The set C = {fω ∧ gω}ω∈Ω is compact since it is a bounded closed set of

RΩ and thus it is a menu. Write hω = F (ω) ∧G(ω). For any h ∈ C, there exists

g ∈ B such that g ≥ h, and so INRA implies

∀ω ∈ Ω B ∩ c(B ∪ C, ω) = c(B,ω).

Next, we show that DM acquires more information when B ∪ C is given than

when B is given.

Claim. P(B) ⊂ P(B ∪ C).

⊢ The function φ : Ω → K defined by φ(ω) = c(B ∪ C, ω) is (P(B ∪ C),B(K))-

measurable. And ψ : K → K, ψ(D) = B∩D is continuous. Then, the composition

ψ ◦ φ is (P(B ∪ C),B(K))-measurable. For any V ∈ O(K),

{ω|c(B,ω) ∈ V } = {ω|B ∩ c(B ∪ C, ω) ∈ V } = (ψ ◦ φ)−1(V ) ∈ P(B ∪ C).

This means P(B) ⊂ P(B ∪ C). ⊣

The claim above and IM imply τB ≤ τB∪C and thus FτB ⊂ FτB∪C
. Let

∆ω = {ω′ ∈ Ω|F (ω′) = F (ω) and G(ω′) = G(ω)}.
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Then, because F and G are FτB -measurable and FτB ⊂ FτB∪C
, ∆ω ∈ FτB∪C

holds.

Note that for any ω′ ∈ ∆ω,

hω(ω
′) = F (ω)(ω′) ∧G(ω)(ω′) = F (ω′)(ω′) ∧G(ω′)(ω′) = F (ω′)(ω′) = F (ω)(ω′).

Thus, because ∆ω ∈ FτB∪C
, IM and Lemma 2 (2), hω ∈ c(B ∪ C, ω). Conclude

C ⪰D B∪C ⪰D B. On the other hand, it is straightforward to show that A ⪰I C.

Combining these and complete the first part.

Applying the first part to the menus BF
τB
, B, and BF

σ shows the second part.

We will need continuity of preference relation when eliciting subjective prob-

ability. For this reason, we use the topological closure ⪰∗ of ⪰I :

A ⪰∗ B ⇔ There exist sequences An → A and Bn → B such that An ⪰I Bn.

Naturally, ⪰∗ is also translation invariant and transitive.

Lemma 12.

1. If A ⪰∗ B, then A+ f ⪰∗ B + f .

2. If A ⪰∗ B and B ⪰∗ C, then A ⪰∗ C.

Proof. Assume A ⪰∗ B and take sequences An → A, Bn → B with An ⪰I B.

Then, by Lemma 6, we have An + f ⪰I Bn + f . Take n → ∞ and complete the

first part.

Assume A ⪰∗ B ⪰∗ C and take sequences An → A, Bn → B, B′
n → B, and

Cn → C such that An ⪰I Bn and B′
n ⪰I Cn. Wlog assume dh(Bn, B), dh(B

′
n, B) <

n−1. Then, An+n
−1 ⪰I Bn+n

−1 and B′
n−n−1 ⪰I Cn−n−1. From the transitivity

of ⪰I , An + n−1 ⪰I Cn − n−1 follows. Take n → ∞ and complete the second

part.

Finally, we define the preference relation over plans. For F,G ∈ H∗, let

(F, τ) ⪰ (G, σ) ⇔ BF
τ ⪰∗ BG

σ .

And this relation is translation invariance in the following sense:

Lemma 13. For (F, τ), (G, σ) ∈ H∗ and f ∈ A,

(F, τ) ⪰ (G, σ) ⇒ (F + f, τ) ⪰ (G+ f, τ).

Proof. First note that BF
τ +f ∼I BF+f

τ follows from Lemma 11 (1). By definition,

(F, τ) ⪰ (G, σ) means BF
τ ⪰∗ BG

σ . This and the linearity of ⪰∗ imply BF
τ + f ⪰∗

BG
σ + f . Combine this with BF+f

τ ⪰I BF
τ + f and BG

σ + f ⪰I BG+f
σ .
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2.5.6 Representation

Now we turn to the elicitation of subjective probability and cost function. The

first is that of subjective probability. For f, g ∈ A, write f ⪰∗ g if {f} ⪰∗ {g} for

notational simplicity.

Lemma 14. There is a full-support probability π over Ω such that, for any f, g ∈
A,

f ⪰∗ g implies

∫
fdπ ≥

∫
gdπ.

Proof. By C (2) and the definition of ⪰∗, 1ω0 ≻∗ 0 holds for any ω and thus

⪰∗ is non-degenerate. The relation ⪰∗ is reflexive, transitive, monotonic, linear,

continuous, and non-degenerate. Follow the argument in Lemma 9 of Ellis and

obtain a probability π such that f ⪰∗ (≻∗)g implies
∫
fdπ ≥ (>)

∫
gdπ. Note

that, for any ω, 1ω0 ≻∗ 0 and thus π(ω) > 0. That is, π is full-support.

Next, we construct cost function on T ∗ and one-way utility representation

on H∗. The constructed cost function respects the point-wise order of response

times. The idea of calibration is as follows. If (F, τ) ⪰ (G, σ) and τ is more costly

than σ, the benefit from F compared to G is large enough to compensate the cost

increase. But benefit from each choice is calculated using the elicited probability

and so we can evaluate the difference of cost. For a moment, denote fτ for a plan

(F, τ) ∈ H∗ where F ∈ ĉ(BF
τ ) and F

∗ = f . In the proof of the next lemma, for

any act f , I sometimes denote π(f) for the integration
∫
fdπ.

Lemma 15.

1. There exists γ∗ : T ∗ → R and V ∗ : H∗ → R such that

(F, τ) ⪰ (G, σ) ⇒ V ∗(F, τ) ≥ V ∗(G, σ),

where

V ∗(F, τ) =

∫
F ∗dπ − γ∗(τ).

2. For τ, σ ∈ T ∗, if τ ≤ σ, then γ∗(τ) ≤ γ∗(σ).
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Proof. By IM, given any singleton menu {f}, response time is always the same:

τ = τ{f} for some τ . Let Mτ,σ = {f ∈ A|fτ ⪰ 0σ} and let

γ∗(τ) = inf
f∈Mτ,τ

∫
fdπ,

V ∗(F, τ) =

∫
F ∗dπ − γ∗(τ).

Claim. inff∈Mτ,σ

∫
fdπ ≥ γ∗(τ)− γ∗(σ)

⊢ Take gn ∈Mσ,τ with π(gn) → γ∗(σ) and hn ∈Mτ,σ with π(hn) → infh∈Mτ,σ

∫
hdπ.

Since [gn]σ ⪰ 0τ , 0σ ⪰ [−gn]τ . Combining with [hn]τ ⪰ 0σ, we have [hn]τ ⪰
[−gn]τ or [gn + hn]τ ⪰ 0τ . Thus,

γ∗(τ) = inf
f∈Mτ,τ

∫
fdπ ≤

∫
gn + hndπ → γ∗(σ) + inf

h∈Mτ,τ

∫
hdπ.

That is, infh∈Mτ,σ

∫
hdπ ≥ γ∗(τ)− γ∗(σ). ⊣

If (F, τ) ⪰ (G, σ), then [F ∗]τ ⪰ [G∗]σ or [F ∗ −G∗]τ ⪰ 0σ. Then, by the claim

above, ∫
(F ∗ −G∗)dπ ≥ γ∗(τ)− γ∗(σ),

or V (F, τ) ≥ V (G, σ). This shows the first part.

Consider τ, σ ∈ T such that τ ≤ σ. Then, take F ∈ ĉ(Bτ ) and G ∈ ĉ(Bσ)

such that F ∗ = G∗ = 0. Applying Lemma 11 (1), we obtain (F, τ) ⪰ (G, σ), or

−γ∗(τ) ≥ −γ∗(σ) in terms of the representation. This shows the second part.

Next, we extend the domain of V ∗ to H and show that the extension V is

maximized by implemented plans.

Lemma 16. If F ∈ ĉ(B), (G, σ) ∈ H, and ImG ⊂ B, then V (F, τB) ≥ V (G, σ),

where V : H → R and γ : T → R is defined by

V (F, τ) =

∫
F ∗dπ − γ(τ),

γ(τ) = inf
τ̃∈T ∗(τ)

γ∗(τ̃),

where T ∗(τ) = {τ̃ ∈ T ∗|τ̃ ≥ τ}. Moreover, γ is increasing, that is, γ(τ) ≥ γ(σ)

whenever τ ≥ σ.
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Proof. Take F and (G, σ) as the hypothesis of the statement. Then, by Lemma

11 (2), (F, τB) ⪰ (G, σ̃) holds for any σ̃ ∈ T ∗(σ). Since γ(τB) = γ∗(τB), this

implies ∫
F ∗dπ − γ(τB) ≥

∫
G∗ − γ∗(σ̃).

Taking the supremum of the right hand side complete the proof.

The next lemma states that benefit from any implementable choice is bounded

by an optimal choice. In the proof of the next lemma, let Nϵ(f) = {g ∈ A| |f−g| <
ϵ} for any f ∈ A.

Lemma 17. If ImF ⊂ B and σ(F ) ⊂ F for some σ-algebra F over Ω, then

E[F ∗] ≤ E

[
sup
f∈B

E[f |F ]

]
.

Proof. It is sufficient to show that, for any ∆ ∈ F ,∫
∆

F ∗dπ ≤
∫
∆

sup
f∈B

E[f |F ]dπ.

Take any ∆ ∈ F and choose ϵ > 0. Then, by compactness of B, there exist

f1, . . . , fn ∈ cl(ImF ) such that cl(ImF ) ⊂
∪n

i=1Nϵ(fi). Define ∆1, . . . ,∆n by

∆1 = {ω ∈ ∆|F (ω) ∈ Nϵ(f1)},

∆k+1 = {ω ∈ ∆|F (ω) ∈ Nϵ(fk+1)}\
k∪

i=1

∆i.

Then, ∆ =
∑n

i=1 ∆i and ∆i ∈ F .∫
∆

F ∗dπ =
n∑

i=1

∫
∆i

F ∗dπ ≤
n∑

i=1

∫
∆i

E[fi + ϵ|F ]dπ

≤ ϵ+
n∑

i=1

∫
∆i

sup
f∈B

E[f |F ]dπ = ϵ+

∫
∆

sup
f∈B

E[f |F ]dπ.

Because ϵ is arbitrary,
∫
∆
F ∗dπ ≤

∫
∆
supf∈B E[f |F ]dπ.

Now, we show the optimality of implemented response times.

Lemma 18. For any B ∈ K,

τB ∈ argmax
τ∈T

E[sup
f∈B

E[f |Fτ ]]− γ(τ).
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Proof. Fix any σ ∈ T . Take any B ∈ K and approximate it with finite nested

menus: Bn → B and Bn ⊂ Bn+1. For each Bn = {fn
1 , . . . f

n
N(n)}, define

∆n
1 = {ω|E[fn

1 |Fσ](ω) ≥ E[fn
j |Fσ](ω) ∀j ̸= 1},

∆n
i+1 = {ω|E[fn

i+1|Fσ](ω) ≥ E[fn
j |Fσ](ω) ∀j ̸= i+ 1}\

i∪
j=1

∆n
j .

Then define a plan Gn by Gn(ω) = fn
i if ω ∈ ∆n

i , which is Fσ-measurable. The

constructed plan Gn may depend on the way the conditional expectations are

taken, but it is well-defined once we fix conditional expectations.

The plan Gn is an element of BΩ, which is compact in product topology. Thus

it is wlog to assume {Gn} converges to some G ∈ BΩ, which is also Fσ-measurable.

Since

E[G∗
n|Fσ](ω) = sup

f∈Bn

E[f |Fσ](ω) a.s.

holds for each n,

E[G∗|Fσ](ω) = sup
f∈B

E[f |Fσ](ω) a.s..

Let F ∈ ĉ(B) and τ = τB. Then, by Lemma 16 and Lemma 17,

E[sup
f∈B

E[f |Fτ ]]− γ(τ) ≥ E[F ∗]− γ(τ) ≥ E[G∗]− γ(σ) = E[sup
f∈B

E[f |Fσ]]− γ(σ).

This completes the proof.

Finally, we show the optimality of the implemented choices.

Lemma 19. c(B,ω) = argmaxf∈B E[f |FτB ](ω) for all ω

Proof. First, we show c(B,ω) ⊂ argmaxf∈B E[f |FτB ](ω) for all ω ∈ Ω. Take

f ∈ c(B,ω) and any ω. En route to a contradiction, suppose there exists g ∈ B

with E[g|FτB ](ω) > E[f |FτB ](ω). Take any selctor F of c(B, ·) that satisfies

F (ω) = f and define a plan G by

G(ω′) =

{
g if ω′ ∈ FτB(ω)

F (ω′) otherwise.

Since (G, τB) ∈ H, Lemma 16 implies V (F, τB) ≥ V (G, τB), or E[F ∗] ≥ E[G∗],

which is a contradiction. Thus c(B,ω) ⊂ argmaxf∈B E[f |FτB ](ω).
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Next, we consider the converse inclusion. Fix any ω∗ and take f ∈ argmaxh∈B E[h|FτB ](ω
∗).

Let P(B) = {∆0, . . . ,∆I} where ∆0 = P(B)(ω∗). Take F ∈ ĉ(B) and set g0 = f ,

gi = F (ω) for ω ∈ ∆i. Define new acts gni = gi − n−11l∆c
i
for each i and consider

a menu

Bn = (B − n−1) ∪ {gni }Ii=0.

Let Gn be a plan defined by Gn(ω) = gni for ω ∈ ∆i. We show that ĉ(Bn) =

{Gn}. To this end, take any (H, σ) ∈ H with ImH ⊂ Bn and H(ω) ̸= G(ω) for

some ω. Note that, by the construction of Bn, there is a plan (H̃, σ) with the

following properties: ImH̃ ⊂ B, H̃∗ ≥ H∗, and H̃∗(ω) > H∗(ω) with positive

probability. Then, by the latter two properties V (H̃, σ) > V (H, σ) holds. In

addition, by Lemma 16, V (F, τB) ≥ V (H̃, σ). Combining these inequalities shows

V (F, τB) > V (H, σ). On the otherhand, (Gn, τB) ∈ H and V (Gn, τB) = V (F, τB).

Then, Lemma 16 implies ĉ(Bn) = {Gn} and we conclude P(Bn) = P(B). This

and IM imply τBn = τB. Note that Bn → B and gn0 → f , and gn0 ∈ c(Bn, ω∗).

Apply C (1) and conclude f ∈ c(B,ω∗).

Lemma 18 and 19 completes the proof of Theorem 1.
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Chapter 3

Axiomatization of optimal

inattention model with infinite

state space

3.1 Introduction

In typical economic environments, agents may not be fully attentive to all avail-

able information, possibly because paying attention requires cognitive stress. This

phenomenon is called rational inattention. Building on this intuition, Sims (2003)

modeled a decision-maker (DM) with limited information-processing capacity. In-

spired by his works, many alternative models were provided. Recent experiments

confirmed limited attention to information in laboratories.

In decision theoretic literature, de Oliveira et al. (2017) and Ellis (2018) (hence-

forth, Ellis) axiomatizd diffrerent models of rational inattention. Their models

share a story of rational inattention: DM first acquires costly information, and

then chooses an alternative according to it. But they used different primitives.

While de Oliveira et al. (2017) adopted a menu choice framework, Ellis introduced

a new primitive, state-conditional choice correspondence.

This chapter generalizes the analysis of Ellis and axiomatizes a model in which

information is modeled as a σ-algebra over a possibly infinite state-space. Since

various economic environments are described with infinite state spaces, this gener-

alization is important to extend the applicability. For example, infinite state space

is often required to introduce continuous probability distribution, such as normal

distribution. The generalization I conduct is important to provide an axiomatic

foundation to optimal inattention model in such cases.
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The identification of parameters is roughly the same as that of Ellis. From the

choice correspondence, I construct an incomplete preference relation over menus.

From this relation, preferences for plans, functions that describe what DM chooses

in each state, are defined. I apply the variational technique to elicit the parameters

from this relation. There are four differences in the identification processes in this

paper and Ellis’. First, I transform each act into a utility act to simplify the

analysis. Second, I first construct a utility representation only for plans that

generates σ-algebras actually chosen given some menu, and then extend it to all

the plans. Ellis do not follow this step and my argument fills this gap. Third, I

posit a new axiom Cyclical Consistency that guaranees that the preference relation

for plans is not degenerate. In the proof of Ellis, which do not assume this axiom,

this relation may well be degenerate and so the elicitation of subjective probability

is not justified. Fourth, since the state-space is infinite and the representation

includes integration, some care on the measurability issue is taken.

The rest of the chapter is organized as follows. Section 2 describes the setup

and the model. Section 3 introduces the axioms and states the representation

theorem. Section 4 provides the proofs.

3.2 Model

3.2.1 Setup

This subsection introduces the setup. Each metric space S introduced below is

endowed with its Borel σ-algebra B(S)1. Let (Ω,Σ) be a measurable space, where

the set Σ is a σ-algebra. The set Ω is possibly infinite and interpreted as the set

of states that describes uncertainty. Let P be the set of all sub σ-algebra of Σ.

Let X be a convex subset of a metrizable topological vector space and let d be

its compatible metric. Let A be a set of (Σ,B(X))-measurable functions from Ω

to X. With a natural isomorphism, we regard X as the set of constant function

and assume X ⊂ A. Each element of A, interpreted as a choice, is called an act.

A concrete definition of A will be provided in the next paragraph. The set A is

endowed with the uniform metric d∞(f, g) = supω∈Ω d(f(ω), g(ω)). Let K be the

set of all non-empty compact sets of A that is endowed with the Hausdorff metric

dh. Each element of K is interpreted as a choice sets consisting of acts. For typical

elements of the sets above, we write F ,G,H ∈ P, x, y, z ∈ X, f, g, h ∈ A, and

A,B,C ∈ K.

1Since I admit infinite state-space, the introduction of σ-algebra is necessary.
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Our choice data is a conditional choice correspondence c : K × Ω → K such

that c(B,ω) ⊂ B for any (B,ω) ∈ K×Ω. We assume c(B, ·) : Ω → K, interpreted

as a function of ω, is (Σ,B(K))-measurable. For each B ∈ K, let P (B) be the

σ-algebra over Ω generated by c(B, ·).
We can elicit the preference relation over outcomes from c. For x, y ∈ X,

define

x ⪰R y ⇔ there exists an ω ∈ Ω such that x ∈ c({x, y}, ω).

For technical reason, we focus on acts that is bounded in terms of ⪰R. That is,

f ∈ A ⇔ there exist x, y ∈ X such that, for all ω ∈ Ω, x ⪰R f(ω) ⪰R y.

3.2.2 Model

We provide an axiomatic foundation of the following model, called the Optimal

Inattention Model (OIM).

P (B) ∈ argmax
F∈P

E[max
f∈B

E[u(f)|F ]]− γ(F),

c(B,ω) = argmax
f∈B

E[u(f)|P (B)](ω) π-a.s.

In the above expression, u : X → R denotes an expected utility function, which

is affine and unbouned above and below. Let R̄ = R ∪ {∞,−∞}. The function

γ : P → R is a cost function, which is monotone for inclusion relation of σ

algebras. Finally, the expectation is taken using some subjective probability π,

which is countably additive.

This model is a snapshot of a rationally inattentive decision-maker. Before

choosing an act, DM decides how much information he acquires. This information

amount is coded as the σ-algebra F , with which he updates the prior belief. The

above model requires that the information is optimally chosen in consideration of

the benefit of using it and the cost of its acquisition.

3.3 Main result

In this section, we introduce the axioms to characterize OIM. Most of them are

the same as those adopted in Ellis. Thus, we follow Ellis to label each of the

axioms. For a technical reason, the continuity axiom is strengthened, and a new

axiom Cyclical Consistency is added.
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The first axiom Independence of Nonrerevant Alternative is a variant of the

Weak Axiom of Revealed Preference that is adapted to the conditional choice

correspondence.

Axiom 1 (INRA). If A ⊂ B and A ∩ c(B,ω) ̸= ∅ for any ω ∈ Ω, then c(A,ω) =

A ∩ c(B,ω).

For f, g ∈ A and α ∈ [0, 1], let αf + (1− α)g be an act such that [αf + (1−
α)g](ω) = αf(ω) + (1 − α)g(ω). For f ∈ A and B ∈ K, let αf + (1 − α)B =

{αf + (1− α)g|g ∈ B}.
Attention constrained Independence is a variant of indepedence axiom that

holds even with information cost.

Axiom 2 (ACI). If αg + (1− α)f ∈ c(αg + (1− α)B,ω), then αh+ (1− α)f ∈
c(αh+ (1− α)B,ω)

Monotonicity states that if an act that is dominated by another one in all the

state and the dominated one is chosen, then DM must also choose the dominated

one.

Axiom 3 (M). For f, g ∈ B, if f(ω) ⪰R g(ω) for all ω ∈ Ω, then

g ∈ c(B,ω) ⇒ f ∈ c(B,ω).

The next assumption Subjective Consequentialism requires that DM respects

the obtained information P (B).

Axiom 4 (SC). For f, g ∈ B and ω ∈ Ω, if

f(ω′) = g(ω′) for all ω′ ∈ P (B)(ω),

then

f ∈ c(B,ω) ⇔ g ∈ c(B,ω).

Define a relation ⪰D by

A ⪰D B ⇔ For all ω ∈ Ω, A ∩ c(B,ω) ̸= ∅.

The relation A ⪰D B means that, facing A, DM can emurate the optimal policy

he uses if B is given. And thus, A is directly selected over B. Let ⪰I denotes the

transitive closure of ⪰D. That is,

A ⪰I B ⇔ There exists n ∈ N and B1, . . . Bn such that A ⪰D B1 ⪰D · · · ⪰D Bn ⪰D B.
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The relation A ⪰I B means that A is indirectly selected over B. For a sequnce of

events {En}∞n=1 ⊂ Σ, write En ↓ ∅ if E1 ⊃ E2 ⊃ . . . and
∩∞

n=1En = ∅. The next

axiom Cyclical Consistency, CC for short, is a new technical axiom.

Axiom 5 (CC). For x, y ∈ X, if x ⪰I y and y ⪰I x, then x ∼R y.

The next is Continuity. Its first part requires countable additivity of the

subjective probability. Without this axiom, elicited subjective probability may be

only finitely additive. In that case, conditional expectations with the subjective

probability, which is necessary for OIM, may not exist. On contrast, conditional

expectations for countably additive probabilities are always well-defined. The

second part is a weak form of upper hemicontinuity and is the same as in Ellis.

For x, z ∈ X and an event E, let

xEy(ω) =

{
x if ω ∈ E

z otherwise.

Let ≻R be the asymmetric part of ⪰R.

Axiom 6 (C).

1. For x, y, z ∈ X and {En}∞n=1, if

x ≻R y ≻R z and En ↓ ∅,

then, there exists some n ∈ N such that

y ⪰I xEnz.

2. For any ω ∈ Ω and sequences {Bn}∞n=1 and {fn}∞n=1 such that Bn → B and

fn → f , and fn ∈ c(Bn, ω), if

P (Bn)(ω) = P (B)(ω) for any n ∈ N,

then

f ∈ c(B,ω).

The last axiom is Unboundedness, which is necessary to calibrate the cost

function. It states that no matter how an outcome is preferred to another one, a

mixture of sufficiently better or worse one to an appropriate outcome reverses the

preference.
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Axiom 7 (U). There exist x, y ∈ X such that x ≻R y and, for any β ∈ (0, 1),

there exist z∗, z∗ ∈ X such that

βz∗ + (1− β)y ≻R x, y ≻R βz∗ + (1− β)y.

Now I present the suffuciency result.

Theorem 1. If c satisfies INRA, ACI, M, SC, C, U, and CC, then there exists

(u, π, γ) such that

P (B) ∈ argmax
F∈P

E[max
f∈B

E[u(f)|F ]]− γ(F)

c(B,ω) ⊂ argmax
f∈B

E[u(f)|P (B)](ω) π-a.s.

The theorem states that the axioms I posited above is a sufficient condition for

the choice correpondence to have an OIM. While Ellis assumed finite state-space,

his result is generalized to the infinite-state case. Note that, in the representation,

the chosen acts are not all of the utility-maximizing ones. This subtlety comes

because a single state may have zero probability in infinite state-space.

3.4 Proof

3.4.1 Roadmap

Here I provide a roadmap of the proof of Theorem 1. We construct an expected

utility function in Lemma 1 and show, in Lemma 2, that choice behavior only

depends on utilities given in each state by acts in menus. Through Lemma 3

to Lemma 6, I translate the set of menus K to the set of compact subsets of

measurable real functions f̃ : Ω → R.
Then, I introduce a notion plan. A plan F is a function F : Ω → A that

describes what DM would choose in each state. Later, I will construct a preference

relation for plans to calibrate parameters from it. But I first define preferences for

menus from the primitive, and then define those for plans from this. In Lemma

7 and Lemma 8, I show that, for any plan, there exists a menu given which

DM implements the plan. This is done to show that preferences for plans are

well-defined later.

The preference relation for menus is the topological closure of ⪰I . Through

Lemma 10 to Lemma 13, I show structural properties of the preference relation

⪰ for plans. Its two important properties are translation invariance and that it is
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consistent with the choice correspondence: if a plan is implemented, that is the

best one DM can choose.

Then, I elicit a subjective probability in Lemma 14 and a cost function in

Lemma 15, which define a utility representation over a restricted domain of plans.

Lemma 16 shows the monotonicity of the cost function with respect to the in-

clusion relation of σ-algebras. Through Lemma 17 to Lemma 19, I extend the

representation to all of the plans. Lemma 20, 21, and 22 completes the proof of

the sufficiency result.

3.4.2 Basic properties of choice correspondence

In this subsection, we investigate the basic properties of the choice correspondence.

First, we construct an expected utility function. Let K(X) be the set of all

non-empty compact subsets of X.

Lemma 1. There exists an continuous affine function u : X → R such that, for

any B ∈ K(X),

x ∈ c(B,ω) ⇔ u(x) ≥ u(y) ∀y ∈ B.

and u(X) = R.

Proof. Apply Lemma 1 in Ellis and obtain a function u with the properties we

want except continuity. We show that the sets

{y ∈ X|y ⪰R x} and {y ∈ X|x ⪰R y},

are closed. First, note that M implies that, for any x, y ∈ X and ω, ω′ ∈ Ω,

c({x, y}, ω) = c({x, y}, ω′). Suppose yn → y, yn ⪰R x and take any ω ∈ Ω. Then,

it follows that {yn, x} → {y, x} in K and Axiom C implies y ∈ c({y, x}, ω), or
y ⪰R x.

So for all x, y ∈ X such that x ≻R y, the set {z|x ≻R z ≻R y} is open. Because

u is an affine function bounded on an open set, it is continuous.

The next lemma states that choice behavior follows two regularities: first,

adding acts that are dominated by existing ones do not change what to be chosen;

secondly, the choice behavior respects the acquired information. For B ∈ K and

ω ∈ Ω, let P (B)(ω) = {ω′ ∈ K| c(B,ω′) = c(B,ω)}. Because K is a metric space,

its singleton is a closed set. Since P (B)(ω) is an inverse image of such a set, it is

a measurable set.
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Lemma 2.

1. Assume that, for any g ∈ B, there exists f ∈ A such that u ◦ f ≥ u ◦ g. Then

c(A,ω) = A ∩ c(A ∪ B,ω).

2. For f, g ∈ B, if f ∈ c(B,ω) and u(g(ω′)) = u(f(ω′)) for all ω′ ∈ P (B)(ω),

then g ∈ c(B,ω).

Proof. Suppose that g ∈ B∩c(A∪B,ω). By the assumption, there is some f ∈ A

such that u ◦ f ≥ u ◦ g. This and M implies f ∈ c(A ∪ B,ω). We have shown

A∩ c(A∪B,ω) ̸= ∅ for any ω ∈ Ω. Apply INRA, and the first part is completed.

The second part is proved as Lemma 2 in Ellis.

3.4.3 Transforming acts into utility acts

We collect preliminary results to work on a real function space instead of acts.

While this preparation is not done in Ellis, it is useful to consider infinite state

space cases.

Let Bb be the set of all (Σ,B(R))-measurable bounded functions f : Ω → R,
which is endowed with the uniform norm ∥ · ∥. In this section, we translate each

act f ∈ A into its utility act u ◦ f ∈ Bb to work on Bb from the next section.

First, we construct a set Y ⊂ X such that u(Y ) = R and the restriction of u

to Y is a homeomorphism. For each n ∈ Z, take xn ∈ X such that u(xn) = n.

Let Yn = {(1 − α)xn + αxn+1|α ∈ [0, 1]} and Y =
∪

n∈Z Yn. Let v be the inverse

function of u|Y , which exists because of the definition of Y . For each n ∈ Z, let
vn : [n, n+ 1] → Yn be the inverse function of u|Yn .

Lemma 3.

1. For each n ∈ Z, the function vn is uniformly continuous.

2. The function u is a homeomorphism.

Proof. Define a function vn : R → X by

vn(β) = (1− (β − n))xn + (β − n)xn+1.

For β ∈ [n, n + 1], vn(β) ∈ Yn, and besides the affinity of u implies u(vn(β)) = β

. So the restriction of vn to [n, n + 1] is vn. Because the addition and the scalar

multiplication is continuous in any topological vector space, vn is continuous.

Since it is affine, it is uniformly continuous, and so is vn. The first part is complete.

Turn to the second part. It is sufficient to show that v is continuous. To this

end, take an sequence {x̂k}∞k=1 ∈ R and suppose x̂k → x̂ in R. If x̂ ∈ (n, n + 1)
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for some n ∈ Z, for sufficently large k, x̂k ∈ (n, n + 1). The first part implies

v(x̂k) = vn(x̂k) → vn(x̂) = v(x̂). Turn to the case that x̂ = n for some n. Then,

for sufficiently large k, x̂k ∈ (n− 1, n+1). Take any ϵ > 0. From the coninuity of

vn−1 and vn, there exist some δ > 0 such that if x̂k ∈ [n− 1, n] and |x̂k − x̂| < δ,

then d(vn−1(x̂k), vn−1(xk)) < ϵ; and if x̂k ∈ [n, n + 1] and |x̂k − x̂| < δ, then

d(vn(x̂k), vn(x̂)) < ϵ. So v(x̂k) → v(x̂) in Y .

Let AY = {f ∈ A| ∀ω ∈ Ω f(ω) ∈ Y }. In the next lemma, we denote u ◦ f for

the composite function of u and f . Define functions Φ∗ : A → Bb, Φ : AY → Bb,

Ψ : A → AY by

Φ∗(f) = u ◦ f, Φ(f) = u ◦ f, and Ψ = Φ−1 ◦ Φ∗.

Lemma 4.

1. The function Φ∗ : A is continuous.

2. The function Φ : AY is a homeomorphism.

3. The function Ψ is continuous and u ◦Ψ(f) = u ◦ f for any f ∈ A.

Proof. Consider the first part. Let fk → f in A. Because u is a continuous

affine function, it is uniformly continuous. So, for any ϵ > 0, there is some

δ > 0 such that d(x, y) < δ implies |u(x) − u(y)| < ϵ. Note that, for sufficiently

large k, d∞(fk, f) < δ. So, for all ω ∈ Ω, |u(fk(ω)) − u(f(ω))| < ϵ. That is,

∥u ◦ fk − u ◦ f∥ → 0. The first part is complete.

Consider the second part. The continuity of Φ follows from that of Φ∗. We

shall prove that Φ is a bijection. For f̂ ∈ Bb, Φ(v ◦ f̂) = u ◦ v ◦ f̂ = f̂ . So it is

onto. Take f, g ∈ AY such that u ◦ f = u ◦ g. Then, f = v ◦ u ◦ f = v ◦ u ◦ g = g.

So it is one-to-one.

Finally, we show that the inverse function Φ−1 : Bb → AY is continuous. Note

that Φ−1(f̂) = v ◦ f̂ . Take a sequence {f̂k}∞k=1 ∈ Bb such that f̂k → f̂ in Bb. Take

n ∈ N such that −n < f̂ < n. Fix any ϵ > 0. The uniform continuity of vj implies

that for each j = −n − 1, . . . , n, there exist δj > 0 such that, if x, y ∈ [j, j + 1]

and |x − y| < δj, then d(vj(x), vj(y)) < ϵ. Let δ = minj δj. Fix a sufficently

large k so that ∥f̂k − f̂∥ < min{δ, 1}. Then, for any ω ∈ Ω, there exists j such

that f̂k(ω), f̂(ω) ∈ [j, j + 1]. Hence, for all ω ∈ Ω, d(v(f̂k(ω)), v(f̂(ω))) < ϵ. So

d∞(Φ−1(f̂k),Φ
−1(f̂)) ≤ ϵ.

Next, we show that the choice behavior depends only on the state-dependent

utilities of the acts in the choice sets. For a moment, we denote u ◦ f as fu and

let Au = {fu|f ∈ A} for the sets of acts.
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Lemma 5. If Au = Bu, then [c(A,ω)]u = [c(B,ω)]u for any ω ∈ Ω.

Proof. Note that Lemma 2 (1) imply

c(A,ω) = A ∩ c(A ∪B,ω), c(B,ω) = B ∩ c(A ∪ B,ω).

for any ω ∈ Ω. Take any f ∈ c(A,ω). Then f ∈ c(A ∪ B,ω) follows from the

above-mentioned remark. Take g ∈ B such that fu = gu. Lemma 2 (2) implies

g ∈ c(A ∪ B,ω). Then g ∈ c(B,ω).

The next lemma states that the choice correspondence is translation invariant

in terms of utility. For each B̃ ∈ K(Bb) and α ∈ R, Let αf̃ is defined by (αf̃)(ω) =

αf̃(ω) for α ∈ R and f̃ ∈ Bb and let αB̃ = {αf̃ |f̃ ∈ B̃}

Lemma 6. The equation [c(B + g, ω)]u = [c(B,ω)]u + gu holds.

Proof. Suppose Au = 2Bu, fu = 2gu, and xu = 0. Then, Bu = (1
2
A + 1

2
x)u and

Bu + gu = (1
2
A+ 1

2
f)u. Then, Lemma 5 implies

[c(B + g, ω)]u =

[
c

(
1

2
A+

1

2
f, ω

)]u
. (3.1)

On the other hand, ACI implies

1

2
g +

1

2
f ∈ c

(
1

2
A+

1

2
f, ω

)
⇔ 1

2
g +

1

2
x ∈ c

(
1

2
A+

1

2
x, ω

)
.

Thus [
c

(
1

2
A+

1

2
f, ω

)]u
=

[
c

(
1

2
A+

1

2
x, ω

)]u
+

1

2
fu

=

[
c

(
1

2
A+

1

2
x, ω

)]u
+ gu

= [c(B,ω)]u + gu (3.2)

Combining (3.1) and (3.2) completes the proof.

Now we define a choice correspondence c̃ : K(Bb)× Ω → K(Bb) by

c̃(B,ω) = Φ[c(Φ−1(B), ω)].

Then, c̃ inherits all the properties of c. Besides, c̃ is translation invariant:

c̃(B + f, ω) = c̃(B,ω) + f
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by the virtue of Lemma 6. Note

c(B,ω) = Φ−1(c̃(Φ(B), ω)),

for B ∈ K(AY ). Once we found an OIM of c̃, the obtained subjective probability

and cost function work for c. From now on, we write Bb as A, and c̃ as c for

simplicity.

3.4.4 Some auxiliary results

When DM chooses information, he preplans what he will choose conditional on

future signals. Here, we shall elicit a preference relation between such plans.

Using it, we can calibrate the information cost γ. Formally, we call a (Σ,B(A))-

measurable bounded function F : Ω → A a plan. Let H denote the set of all

plans.

Let σ(F ) be the σ-algebra over Ω generated by F . This is the minimal infor-

mation that enables DM to implement F . Let

H∗ = {F ∈ H | there is some B ∈ K such that σ(F ) = P (B)}.

The set H∗ consists of plans that can be implemented by fully using some infor-

mation DM aquires given some menu. We especially pay attention to plans in H∗

because this property facilitates the calibration of γ.

For B ∈ K, let ĉ(B) be the set of (Σ,B(B))-measurable functions F : Ω → B

that satisfy F (ω) ∈ c(B,ω). The set ĉ(B) is nonempty by the virtue of Aliprantis

and Border (2006) (AB, henceforth) Theorem 18.13.

Let P∗ = {P (B) |B ∈ K}. This is the set of information DM uses. Henceforth,

the notation {fω}ω∈Ω sometimes denotes for the plan ω 7→ fω and sometimes for

the set {fω |ω ∈ Ω}. Let O(S) be the set of all open sets in S.

Lemma 7. For any F ∈ P∗, there exists some BF ∈ K and a plan F = {fω}ω∈Ω,
and satisfy the following.

1. P (BF) = F ,

2. fω(ω) = 0, fω ∈ c(BF , ω),

3. For any g ∈ A, fω + g ∈ c(BF + g, ω).

Proof. Take B ∈ K such that P (B) = F . Apply AB Theorem 18.13 and take a

measurable selector {gω}ω∈Ω of the correspondence c(B, ·).
Next, I construct a new act h as h(ω) = gω(ω). Its measurability is not trivial

and this is what I show next.

44



Claim. The function h : Ω → R, defined by h(ω) = gω(ω) is in A.

⊢ What we show is the boundedness and the (Σ,B(R))-measurability of h. The

boundedness follows from the compactness of B.

Turn to the measurability. Define functions φ : Ω → Ω × B, φ(ω) = (ω, gω),

and ψ : Ω×B → R, ψ(ω, g) = g(ω). Note h = ψ◦φ and turn to the measurability

of φ and ψ.

First, φ is a vector of two measurable functions and so is (Σ,Σ ⊗ B(B))-

measurable. To prove the measurability of ψ, we check that it satisfies the as-

sumptions of AB p.153 Lem 4.51. Since B is a compact space of metrizable

space, it is separable. Fix g ∈ B and let ψg(ω) = ψ(ω, g). Then, for any

V ∈ O(R), (ψg)−1(V ) = g−1(V ) ∈ Σ. Thus, the function ψg is measurable.

Fix ω ∈ Ω and let ψω : B → R, ψω(g) = ψ(ω, g). For any V ∈ O(R),
(ψω)

−1(V ) = {g ∈ B | g(ω) ∈ V } and this is relative open set in B, and so

ψω is continuous. Apply the lemma mentioned above and conclude that ψ is

(Σ⊗ B(B),B(B))-measurable. ⊣

Define a menu BF = B − h. Note that c(BF , ω) = c(B,ω) − h and thus

P (BF) = F . Define a plan {fω}ω∈Ω by fω = gω − h, and then the following hold:

fω ∈ BF , fω(ω) = 0, and fω ∈ c(BF , ω).

For F ∈ H∗, let F ∗ ∈ A be an act defined by F ∗(ω) = F (ω)(ω). Recall that

σ(F ) is the σ-algebra of Ω generated by F .

Lemma 8. For any F ∈ H∗, there exists BF ∈ K and a plan F such that

F ∈ ĉ(BF ), F (ω)(ω) = F (ω)(ω), and P (BF ) = σ(F ).

Proof. Define BF := Bσ(F ) + F ∗, where Bσ(F ) is the menu constructed applying

Lemma 7 to σ(F ). There is a plan {fω}ω∈Ω ∈ ĉ(BF ) such that fω(ω) = 0. Then,

F (ω)(ω) = F (ω)(ω) and F ∈ ĉ(BF ).

For F ∈ H∗, there may well be multiple plans F with the properties above.

We denote F for one of them. The non-uniqueness does not cause any problem.

For f, g ∈ A, let f ∧g ∈ A be the act defined by (f ∧g)(ω) = min{f(ω), g(ω)}.
We denote the closure of any set S ⊂ A as clS.

Lemma 9. For A,B ∈ K, fω ∈ c(A,ω), and gω ∈ c(B,ω), the set

C = cl{fω ∧ gω}ω∈Ω

is compact.
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Proof. Take a sequence {hn}∞n=1 of C. Then, there exist fn ∈ {fω}ω∈Ω, gn ∈
{gω}ω∈Ω, and h′n ∈ A such that ∥h′n∥ < n−1 and hn = (fn ∧ gn) + h′n.

Note the compactness of A and B and, passing to a subsequence, wlog assume

fn → f ∈ cl{fω}ω∈Ω and gn → g ∈ cl{gω}ω∈Ω.

Note that the function ∧ is jointly continuous. Thus f ∧ g ∈ C and hn →
f ∧ g.

3.4.5 Preference relation between plans

Let us reveal the preference relation between plans in H∗. We start with con-

structing preference relations between menus. Recall that

A ⪰D B ⇔ For all ω ∈ Ω, A ∩ c(B,ω) ̸= ∅.

and

A ⪰I B ⇔ There exists n ∈ N and B1, . . . Bn such that A ⪰D B1 ⪰D · · · ⪰D Bn ⪰D B.

The next lemma states that the translation invariance of c inherits to the relations

⪰D, ⪰I . For A ∈ K, f ∈ A, let A+ f = {g + f | g ∈ A}. For F ∈ H∗ and f ∈ A,

define a plan F + f by (F + f)(ω) = F (ω) + f .

Lemma 10.

1. If A ⪰D B, then (A+ f) ⪰D (B + f).

2. If A ⪰I B, then (A+ f) ⪰I (B + f).

Proof. Suppose A ⪰D B and take F ∈ ĉ(B) such that ImF ⊂ A. Because

ĉ(B+ f) = ĉ(B) + f , F + f ∈ ĉ(B+ f). Then, Im (F + f) = (ImF ) + f ⊂ A+ f .

Completed the first part.

Suppose A ⪰D C1 ⪰D · · · ⪰D Cn ⪰D B. Then, using the first part, (A+f) ⪰D

(C1 + f) ⪰D · · · ⪰D (Cn + f) ⪰D (B + f). Completed the second part.

Lemma 11. Consider A,B ∈ K and plans {fω}ω∈Ω ∈ ĉ(A), {gω}ω∈Ω ∈ ĉ(B). If

fω(ω) = gω(ω) for all ω ∈ Ω and P (A) = P (B), then A ⪰I B ⪰I A.

Proof. The set C = cl{fω ∧ gω}ω∈Ω is compact by Lemma 9. Write hω = fω ∧ gω.
For any h ∈ C, there exists f ∈ A such that f ≥ h, and so INRA implies

∀ω ∈ Ω, A ∩ c(A ∪ C, ω) = c(A,ω).
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Claim. P (A) ⊂ P (A ∪ C).

⊢ The function φ : Ω → K, φ(ω) = c(A ∪ C, ω) is (P (A ∪ C),B(K))-measurable.

And ψ : K → K, ψ(D) = A ∩ D is continuous. Then, the composition ψ ◦ φ is

(P (A ∪ C),B(K))-measurable. For any V ∈ O(K),

{ω|c(A,ω) ∈ V } = {ω|A ∩ c(A ∪ C, ω) ∈ V } = (ψ ◦ φ)−1(V ) ∈ P (A ∪ C).

This means P (A) ⊂ P (A ∪ C). ⊣

The inclusion P (A) ⊂ P (A ∪ C) implies P (A ∪ C)(ω) ⊂ P (A)(ω) for any ω.

Fix some ω ∈ Ω. Then, ∀ω′ ∈ P (A ∪C)(ω), fω(ω′) = fω′(ω′) = hω′(ω′) = hω(ω
′).

This implies hω ∈ c(A ∪ C, ω) and {hω}ω∈Ω ∈ ĉ(A ∪ C). This and INRA implies

{hω}ω∈Ω ∈ ĉ(C). As a result

C ⪰D (A ∪ C) ⪰D A ⪰D (A ∪ C) ⪰D C

, that is, A ⪰I C ⪰I A.

Apply the same argument to B and C and obtain C ⪰I B ⪰I C. Hence

A ⪰I B ⪰I A.

Lemma 12. For F,G ∈ H∗ and B ∈ K, if F ∈ ĉ(B) and ImG ⊂ B, then

BF ⪰I BG.

Proof. First, we shall show that, cl(ImG) ⪰I BG. Take G ∈ ĉ(BG) such that

G(ω)(ω) = G(ω)(ω). Let C = cl{G(ω) ∧ G(ω)}ω∈Ω. Then, G(ω), G(ω) ∧ G(ω) ∈
c(BG ∪ C, ω). Hence,

C ⪰D (BG ∪ C) ⪰D BG.

On the other hand, cl(ImG) ⪰D cl(ImG) ∪ C ⪰D C. Combine these and obtain

cl(ImG) ⪰I BG.

Next, we show BF ⪰I B. Note P (BF ) = σ(F ) ⊂ P (B). Take F ∈ ĉ(BF ) that

F (ω)(ω) = F (ω)(ω). Let C = cl{F (ω) ∧ F (ω)}ω∈Ω and note

BF ⪰D (BF ∪ C) ⪰D C ⪰D (B ∪ C) ⪰D B,

or BF ⪰I B.

The assumption ImG ⊂ B implies B ⪰D cl(ImG). Since

BF ⪰I B ⪰D cl(ImG) ⪰I BG,

BF ⪰I BG holds.
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For F,G ∈ H∗, define

F ⪰ G⇔ BF ⪰I BG.

Lemma 13. For F,G ∈ H∗ and f ∈ A,

F ⪰ G implies F + f ⪰ G+ f .

Proof. First, we show B(F+f) ⪰I (BF +f). To this end, take F ∈ ĉ(BF ) such that

F (ω)(ω) = F (ω)(ω). Let H ∈ ĉ(BF+f ) such that H(ω)(ω) = (F + f)(ω)(ω) =

F (ω)(ω) + f(ω).

Note that the translation invariance c(BF + f, ω) = c(BF , ω) + f implies

P (BF + f) = P (BF ) = σ(F ). But on the other hand P (B(F+f)) = σ(F + f) =

σ(F ).

Then, F + f ∈ ĉ(BF + f), H ∈ ĉ(B(F+f)), (F + f)(ω)(ω) = H(ω)(ω), and

P (BF + f) = P (B(F+f)). Apply Lemma 11 and obtain

B(F+f) ⪰I (BF + f) ⪰I B(F+f).

In the same way obtain

B(G+f) ⪰I (BG + f) ⪰I B(G+f).

From the assumption F ⪰ G, BF ⪰I BG holds. The translation invariance of

⪰I implies (BF + f) ⪰I (BG + f). Combining this with the conclusion of the last

paragraph completes the proof.

3.4.6 Representation

For f, g ∈ A, write f ⪰ g if {f} ⪰ {g}. For a function f : Ω → R and π ∈ ∆Ω,

π(f) denotes for the integration
∫
Ω
f dπ if it exists.

Lemma 14. There is a countably additive probability π defined on Σ such that,

for any f, g ∈ A,

f ⪰ g implies

∫
fdπ ≥

∫
gdπ.

Proof. Let K = co {f ∈ A|f ⪰ 0}. The set K is a convex set with a non-empty

interior. Besides, 0 /∈ intK holds. If not, for any f ∈ A, there exists n ∈ N so that
1
n
f ∈ K and so 1

n
f ⪰ 0. Then, the translation invariance and the transitivity of
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⪰ implies 2
n
f ⪰ 0. Repeat this operation and obtain f ⪰ 0. In the same manner,

−f ⪰ 0 or 0 ⪰ f , and thus f ∼ 0. Hence the relation ⪰ is degenerate. By virtue

of Axiom U , there exists x, y ∈ X such that x ≻R y. Axiom CC implies that

x ≻ y and obtain a contradiction.

Apply the Separation Theorem and take a continuous linear functional π de-

fined on A such that ∀f ∈ K∗ π(f) ≥ 0 and ∀f ∈ intK∗ π(f) > 0. Note that the

topological dual of Bb(Σ) is the space of finitely additive charge, i.e., π(f) is the

integration
∫
fdπ of f by some finitely additive charge π.

Because f ∈ K for any f ≥ 0, the functional π is positive. Normalize it as

π(1) = 1, then π is a probability.

Suppose 1 > ϵ > 0 and En ↓ ∅. Then, Axiom C (1) implies that there exists

n ∈ N such that ϵ ⪰ 1En0, or ϵ ≥ π(En). So π(En) → 0. That is, π is countably

additive.

Let fF denotes for the plan {fω}ω∈Ω such that fω ∈ c(Bf
F , ω) and fω(ω) = f(ω).

Lemma 15. There exists a function γ∗ : P∗ → R such that, for any F,G ∈ H∗,

F ⪰ G⇒ V ∗(F ) ≥ V ∗(G),

where V ∗ : H∗ → R is defined by

V ∗(F ) =

∫
F ∗dπ − γ∗(σ(F )).

Proof. Let Σ0 = {∅,Ω} be the trivial σ-algebra. For F ,G ∈ P∗, let

MF ,G = {f ∈ A|fF ⪰ 0G},

and define γ∗ : P → R and V ∗ : H∗ → R by

γ∗(F) = inf
f∈MF,Σ0

∫
fdπ,

V ∗(F ) =

∫
F ∗dπ − γ∗(σ(F )).

Claim. inff∈MF,G

∫
fdπ ≥ γ∗(F)− γ∗(G).

⊢ Let gn ∈ MG,Σ0 such that π(gn) → γ(G) and hn ∈ MF ,G such that π(hn) →
infh∈MF,G π(h). Because [gn]G ⪰ 0Σ0 , 0G ⪰ [−gn]Σ0 . Combining with [hn]F ⪰ 0G,

and because of invariance of ⪰, [gn + hn]F ⪰ 0Σ0 . Then,

γ∗(F) = inf
f∈MF,G

∫
fdπ ≤

∫
gn + hndπ → γ(G) + inf

h∈MF,G

∫
hdπ.
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Then, infh∈MF,G

∫
hdπ ≥ γ∗(F)− γ∗(G). ⊣

Let F,G ∈ H∗ F ⪰ G,F = σ(F), G = σ(G). Then,

[F ∗]F ∼ F ⪰ G ∼ [G∗]G.

Substracting G∗ from both hands, obtain [F ∗−G∗]F ⪰ 0G. From F ∗−G∗ ∈MF ,G

and the claim, ∫
F ∗ −G∗dπ ≥ γ∗(F)− γ∗(G).

That is, V ∗(F ) ≥ V ∗(G).

Lemma 16. For F ,G ∈ P∗, if F ⊂ G, then γ∗(F) ≤ γ∗(G).

Proof. Consider BF and BG and take F ∈ ĉ(BF) and G ∈ ĉ(BG), such that

F (ω)(ω) = G(ω)(ω) = 0. Let C = cl{F (ω) ∧ G(ω)}ω∈Ω. Then, F ∈ ĉ(BF ∪ C)

and so BF ⪰I C. On the other hand, G ∈ ĉ(BG ∪ C).
For the use in the proof of a claim, let B(A) ⊗ B(A) = σ({B × B′ | B,B′ ∈

B(A)}).
Claim. The plan H(ω) = F (ω) ∧G(ω) is G-measurable.

⊢ Let φ : Ω → A×A, φ(ω) = (F (ω), G(ω)). This is (G,B(A)⊗B(A))-measurable

because of measurability of F and G. Next let ψ : A×A → A, ψ(f, g) = f ∧ g.
Because ψ is continuous, it is (B(A)⊗B(A),B(A))-measurable. Note H = ψ ◦ φ
and complete the proof. ⊣

Note that

c(BG ∪ C, ω) ∩ BG = c(BG, ω)

implies P (BG ∪ C) ⊃ P (BG). Then, because

P (BG ∪ C)(ω) ⊂ G(ω) ⊂ F(ω),

for any ω′ ∈ P (BG ∪ C)(ω),

F (ω)(ω′) ∧G(ω)(ω′) = F (ω′)(ω′) ∧G(ω′)(ω′) = 0.

Then, F (ω) ∧ G(ω) ∈ c(BG ∪ C, ω), that is, C ⪰D BG ∪ C. Combining this

with BF ⪰I C, conclude BF ⪰I BG. This implies F ⪰ G and, in terms of the

representation, −γ∗(F) ≥ −γ∗(G).

50



Next, we extend the representation V ∗ toH. To this end, we need a preliminary

lemma. For F ∈ P, let P∗(F) = {G ∈ P∗| F ⊂ G ⊂ Σ}. For A and F ∈ P∗, define

Bf
F = BF + f .

Lemma 17. For any F,G ∈ H such that ImG ⊂ B, if F ∈ ĉ(B) for some B ∈ K

and P (B) = F , then

BF ∗

F ⪰I BG∗

G for any G ∈ P∗(σ(G)).

Proof. Take any F̃ , G̃ ∈ H∗

F̃ (ω)(ω) = F (ω)(ω), σ(F̃ ) = F ,
G̃(ω)(ω) = G(ω)(ω), σ(G̃) = G.

We show BF̃ ⪰I BG̃.

It is easy to see BF̃ ⪰I B. To prove B ⪰I BG̃, let gω = G(ω) ∧ G̃(ω) and

C = cl{gω}ω∈Ω. Because of the definition of G̃, {gω}ω∈Ω is a measurable plan. For

any ω′ ∈ G(ω).

gω(ω
′) = G(ω)(ω′) ∧ G̃(ω)(ω′) = G(ω′)(ω′) ∧ G̃(ω′)(ω′) = G̃(ω′)(ω′). (3.3)

So C ⪰D (BG̃ ∪ C) ⪰D BG̃.

On the otherhand, G̃ ∈ ĉ(BG̃), INRA, and (3.3) implies gω ∈ c(C, ω). Hence

B ⪰D (B ∪ C) ⪰D C. Combining everything, complete the proof.

Lemma 18. If F ∈ ĉ(B) and ImG ⊂ B, V (F ) ≥ V (G), where V : H → R is

defined by

V (F ) =

∫
F ∗dπ − γ(σ(F )),

γ(σ(F )) = inf
F̃∈P∗(σ(F ))

γ∗(F̃).

Proof. Let F = P (B) and take any G ∈ P∗(σ(G)). Then, BF ∗
F ⪰I BG∗

G .

Let F̃ ∈ ĉ(BF ∗
F ), F̃ ∗ = F ∗, σ(F̃ ) = F , and G̃ ∈ ĉ(BG∗

G ), G̃∗ = G∗, σ(G̃) = G.
Then, V (F ) ≥ V ∗(F̃ ) ≥ V ∗(G̃). Take the supremum of the most right-hand side,

conclude V (F ) ≥ V (G).

Lemma 19. If F ∈ ĉ(B), then γ(σ(F )) = γ(P (B)).
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Proof. Because σ(F ) ⊂ P (B), it is sufficient to show γ(σ(F )) ≥ γ(P (B)). To

this end, take any G ∈ P∗(σ(F )) and consider BF ∗
G . Write F = P (B). Take

G ∈ ĉ(BF ∗
G ) such that G∗(ω) = F ∗(ω), and let C = cl{F (ω) ∧G(ω)}ω∈Ω.

Then, G ∈ ĉ(BF ∗
G ∪C). LetH(ω) = F (ω)∧G(ω) and note thatH ∈ ĉ(BF ∗

G ∪C).
That is, C ⪰I BF ∗

G . Because BF ∗
F ⪰D B ⪰D B ∪ C ⪰D C ⪰D BF ∗

G , BF ∗
F ⪰I BF ∗

G ,

or [F ∗]F ⪰ [F ∗]G. Then

E[F ∗]− γ(F) = V ([F ∗]F) ≥ V ([F ∗]G) = E[F ∗]− γ(G),

that is, γ(F) ≤ γ(G). Remind that σ-algebra G ∈ P∗(σ(F )) was taken arbitrary

and conclude γ(F) ≤ γ(σ(F )).

Because π is countably additive, the conditional expectation of any act is

well-defined.

Lemma 20. If ImF ⊂ B and σ(F ) ⊂ F , then

E[F ∗] ≤ E

[
max
f∈B

E[f |F ]

]
.

Proof. It is sufficient to show that, for any ∆ ∈ F ,∫
∆

F ∗dπ ≤
∫
∆

max
f∈B

E[f |F ]dπ.

Take any ∆ ∈ F and choose ϵ > 0. Then, by virtue of the compactness of

B, there exist f1, . . . , fn ∈ cl(ImF ) such that cl(ImF ) ⊂
∪n

i=1Bϵ(fi). Define

∆1, . . . ,∆n by

∆1 = {ω|F (ω) ∈ Bϵ(f1)},

∆k+1 = {ω|F (ω) ∈ Bϵ(fk+1)}\
k∪

i=1

∆i.

Then, ∆ =
∑n

i=1 ∆i and ∆i ∈ F .∫
∆

F ∗dπ =
n∑

i=1

∫
∆i

F ∗dπ ≤
n∑

i=1

∫
∆i

E[fi + ϵ|F ]dπ

= ϵ+
n∑

i=1

∫
∆i

max
f∈B

E[f |F ]dπ = ϵ+

∫
∆

max
f∈B

E[f |F ]dπ.

Because ϵ is arbitrary,
∫
∆
F ∗dπ ≤

∫
∆
maxf∈B E[f |F ]dπ.
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Lemma 21. P (B) ∈ argmaxF∈PE[maxf∈B E[f |F ]]− γ(F).

Proof. Take any G ∈ P. Define a function ν : Ω×B → R by ν(ω, f) = E[f |G](ω).
This is a (G ⊗ B(B),B(R))-measurable Caratheodory function. Then, Apply AB

p.605 Theorem 18.19 (3) and take a G-measurable plan G such that

E[G∗] = E [E[G∗|G]] = E

[
max
f∈B

E[f |G]
]
.

Apply Lemma 18 and obtain

V (G) = E[G∗]− γ(σ(G)) ≥ E

[
max
f∈B

E[f |G]
]
− γ(G).

Take any F ∈ ĉ(B). Then, Lemma 20 and Lemma 19 imply

E

[
max
f∈B

E[f |P (B)]

]
− γ(P (B)) ≥ V (F ).

Then, combining with two equalities above, Lemma 18 implies

E

[
max
f∈B

E[f |P (B)]

]
− γ(P (B)) ≥ V (F ) ≥ V (G) ≥ E

[
max
f∈B

E[f |G]
]
− γ(G).

Lemma 22. c(B,ω) ⊂ argmaxf∈B E[f |P (B)](ω) π-a.s.

Proof. En route to a contradiction, suppose there exists an event S0 ∈ Σ such

that π(S0) > 0 and for any ω ∈ S0,

c(B,ω) ̸⊂ argmax
f∈B

E[f |P (B)](ω).

Write c∗(ω) = argmaxf∈B E[f |P (B)](ω).

We shall show that there is an ϵ > 0 and S ∈ Σ such that π(S) > 0 and

c(ω)\(c∗(ω) +Nϵ(0)) ̸= ∅

for any ω ∈ S. If not, for any n ∈ N,

c(ω) ⊂ c∗(ω) +N 1
n
(0) π-a.s. (3.4)

By the assumption, there are ω ∈ S0 and f ∈ B such that f ∈ c(ω)\c∗(ω).
Because c∗ is compact valued, for sufficiently large n, f /∈ c∗(ω) +N 1

n
(0). This is

a contradiction to (3.4).
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Take an ϵ > 0 and S ∈ Σ such that π(S) > 0 and

c(ω)\(c∗(ω) +Nϵ(0)) ̸= ∅.

Let φ′(ω) = c(ω)\(c∗(ω) +Nϵ(0)). For V ∈ O(K),

c∗(ω) +Nϵ(0) ∈ V ⇔ c∗(ω) ∈ V −Nϵ(0) =
∪

f∈Nϵ(0)

(V − f)

and note the last set is open. Thus c∗(ω) + Nϵ(0) is an open valued measurable

correspondence. So φ′ is also measurable by virtue of AB Lemma 18.4 (3). Next,

let

φ(ω) =

{
φ′(ω) ω ∈ S

c(ω) ω /∈ S.

For any V ∈ O(K),

φ−1(V ) = (S ∩ (φ′)−1(V )) ∪ (Sc ∩ c−1(V )) ∈ Σ

and so φ is measurable.

Take a measurable selector F of φ. Note that F ∈ ĉ(B). On the otherhand,

there exists a plan G such that ImG ⊂ B and

V (G) ≥ E[max
f∈B

E[f |P (B)]]− γ(P (B)).

By the construction of F ,

V (F ) = E[F ∗]− γ(P (B)) < E[max
f∈B

E[f |P (B)]]− γ(P (B)) ≤ V (G).

This contradicts Lemma 18.

The proof of the main result is completed.
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Chapter 4

Second-order beliefs and

unambiguous events

4.1 Introduction

Since Ellsberg (1961) found a class of uncertainty, named ambiguity, it has been

one of the central subjects of decision theory. One of Ellsberg’s thought experi-

ments is as follows: There is an urn containing 90 balls, each of which is colored

red, green, or blue. Thirty balls are known to be red, but there is no information

about the ratio of green and blue balls. One ball will be taken out from the urn.

A decision-maker (henceforth DM) is confronted with four bets on its color. Bet

1 gives her 100 dollars if the ball is red and nothing otherwise. Bet 2 gives 100

dollars if the ball is green. Bet 3 gives 100 dollars if the ball is red or blue. Bet 4

gives 100 dollars if the ball is green or blue. DM is asked to choose between bet

1 and 2, and then between 3 and 4. It is well known that typical subjects prefer

to bet 1 over 2 and bet 4 over 3. This behavior contradicts any models based

on a probabilistic belief. The class of uncertainty that cannot be represented by

probabilities is called ambiguity.

An approach to analyzing ambiguity is to provide models that capture the

above-mentioned Ellsberg type behavior. Since the pioneering works of Schmei-

dler (1989) and Gilboa and Schmeidler (1989), many alternative models have

been provided. Another stream is to define ambiguity by distinguishing events

to which DM assigns probabilistic likelihood. Early works in this line are Zhang

(2002) and Epstein and Zhang (2001). The present chapter contributes to the

latter literature by providing a set of axioms that characterize a special case of

second-order subjective expected utility (SOSEU) model of Seo (2009). Under
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the obtained model, exogenously given events can be interpreted as unambiguous

events. A similar result holds for a more general model, second-order maxmin

expected utility (SOMEU) of Nascimento and Riella (2013).

SOSEU consists of three parameters: an expected utility function u, a strictly

increasing real function v, and a probability measure on the set of probability

measures on the state space S, m ∈ ∆(∆S). Second-order probability m repre-

sents the ignorance of DM about probabilistic law. Write an ambiguous act that

represents a bet on subjective uncertainty as f : S → ∆X, where ∆X is the set

of lotteries over outcomes. A utility function of SOSEU is written as

V (f) =

∫
∆S

v

(∫
S

u(f(s))dµ(s)

)
dm(µ),

and it captures the Ellsberg type behavior. The idea of SOSEU appears in Savage

(1954) and the model is axiomatized by Klibanoff et al. (2005) and Seo (2009) in

different settings.

Under SOSEU, it seems natural to define unambiguous events as events such

that the distributions of the probability assigned to them, induced by second-order

belief, degenerate.1 In this chapter, I assume that we know which events are such

unambiguous events. That is, unambiguous events are exogenously given. The

main theorem in this chapter shows that the axioms I introduce later character-

ize the preference relations that are represented by SOSEU representation under

which exogenous events are unambiguous in terms of the model.

Many authors have written on probabilistic beliefs on endogenous and ex-

ogenous events. Zhang (2002) and Epstein and Zhang (2001) provide different

definitions of unambiguous events based on the intuition of the Sure-Thing Prin-

ciple of Savage (1954) and P4* of Machina and Schmeidler (1992), respectively.

Kopylov (2007) refines their arguments. Sarin and Wakker (1992) axiomatizes

Choquet expected utility whose capacity is additive on exogenously given events.

Qu (2013) axiomatizes maximin expected utility (MEU) whose multiple priors

degenerate on exogenously given events and defines unambiguous events under

MEU. The papers most related to the present one are Klibanoff et al. (2005) and

1This is a model-based definition and some authors argue that the concept of ambiguity

should be formalized without referring to any particular model (Epstein and Zhang (2001)).

However, it should not be dismissed immediately. Some economists believe that intuitive stories

of models make us more comfortable to rely on predictions of them, and they enhance the

modeler’s reasoning process (Dekel and Lipman (2010)). In this point of view, it is worthwhile

to first provide a definition of unambiguous events based on well-established models such as

SOSEU and then investigate its behavioral implications.
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Klibanoff et al. (2011). Klibanoff et al. (2005) provided an alternative foundation

of SOSEU (smooth ambiguity model in their terminology) and proposed a def-

inition of unambiguous events, which works under their model. Klibanoff et al.

(2011) compares their definition with earlier ones.

In section 2, the setup is presented, and the main results are described. In

section 3, I compare the Theorem 1 in this chapter with the characterization of

unambiguous events in Klibanoff et al. (2005), and discuss the possibility of future

research. All proofs are collected in the appendix.

4.2 Model and results

4.2.1 Setup

I adopt the original framework of Anscombe and Aumann (1963) as in Seo (2009).

Let X denote the set of prizes and assume it is a separable metric space. For any

topological space Y , denote ∆Y the set of all Borel probability measures on Y .

Any set of probability measures is endowed with the weak topology. Let S denote

the set of states and assume it is finite. A subset of S is called an event. A function

from S to ∆X is called an act. Let F denote the set of acts. F is endowed with

product topology. The choice set of DM is the set of probability measures on F ,

∆F . Prizes are denoted by x, y, z. Elements of ∆X are denoted by p, q, r. Acts

are denoted by f, g, h. Elements of ∆F are denoted by P,Q,R.

The sets X and F can be seen as subsets of ∆X and ∆F respectively in an

obvious manner. An element of ∆X can be identified with a constant act. So

X ⊂ ∆X ⊂ F ⊂ ∆F . For any family of events A, let FA denote the set of acts

that are measurable with respect to A.

DM’s choice behavior is modeled as a binary relation ⪰ on ∆F . The relations

≻ and ∼ denote the asymmetric and symmetric part of ⪰.

Let U = {U|U ⊂ 2S, S ∈ U , A ∈ U ⇒ Ac ∈ U}. As shown below, under

suitable axioms, U ∈ U can be interpreted as a set of unambiguous events. For

example, in Ellsberg’s experiment above, DM knows that the probability a red

ball is taken out is one third. So R, the event that a red ball is taken out, is an

unambiguous event. One can take U = {S, ∅, R,Rc} as the set of her unambiguous

events.
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4.2.2 Unambiguous events under SOSEU

I list the axioms of Seo (2009) that characterize SOSEU representations. The first

two are common in the literature.

Axiom 8 (Order). ⪰ is complete, transitive.

Axiom 9 (Continuity). ⪰ is continuous.

A mixing operation on F is defined as (αf⊕(1−α)g)(s) = αf(s)+(1−α)g(s)
for any f, g ∈ F , s ∈ S. Then, F is a mixture space under this operation. The

next axiom requires preferences to satisfy independence on the set of one-stage

lotteries.

Axiom 10 (Second-Stage Independence). For any α ∈ (0, 1] and one stage lot-

teries p, q, r ∈ ∆X, αp⊕ (1− α)r ⪰ αq ⊕ (1− α)r ⇔ p ⪰ q.

For P,Q ∈ ∆F and α ∈ [0, 1], αP + (1 − α)Q ∈ ∆F is a lottery such that

(αP + (1−α)Q)(B) = αP (B) + (1−α)Q(B) for any Borel set B ⊂ F . The next

axiom requires preferences to satisfy independence on the set of lotteries of acts.

Axiom 11 (First-Stage Independence). For any α ∈ (0, 1] and probabilities

P,Q,R ∈ ∆F , αP (1− α)R ⪰ αQ+ (1− α)R ⇔ P ⪰ Q.

For f ∈ F and µ ∈ ∆S, define Ψ(f, µ) = µ(s1)f(s1)⊕· · ·⊕µ(s|S|)f(s|S|) ∈ ∆X.

If DM has a probabilistic belief µ, she identifies an act f with the one-stage lottery

Ψ(f, µ). For P ∈ ∆F and µ ∈ ∆S, define Ψ(P, µ) ∈ ∆(∆X) by Ψ(P, µ)(B) =

P ({f ∈ F|Ψ(f, µ) ∈ B}). This two-stage lottery gives some first-stage lottery

p with the probability that the original lottery P assigns to the acts that are

identified with p under µ. The next axiom requires that if a second-order lottery

P is preferred to Q no matter which first-order subjective probability µ ∈ ∆S is

true, then P is indeed preferred to Q.

Axiom 12 (Dominance). For any P,Q ∈ ∆F , if Ψ(P, µ) ⪰ Ψ(Q,µ) for all

µ ∈ ∆S, then P ⪰ Q.

Seo (2009) shows that these behavioral regularities characterize the following

utility representation.

Definition 1. A tuple (u, v,m) is a second-order subjective expected utility (SOSEU)

representation of ⪰ if u : ∆X → R is bounded continuous and mixture linear,
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v : u(∆X) → R is bounded continuous and strictly increasing, m ∈ ∆(∆S) and

V represents ⪰, where

V (P ) =

∫
F
U(f)dP (f),

U(f) =

∫
∆S

v

(∫
S

u(f)dµ

)
dm(µ).

An SOSEU representation (u, v,m) is nondegenerate if u is not constant.

Under SOSEU, it is natural to define unambiguous events as those which the

distributions of probability DM assigns to them degenerate. The formal definition

is as follows.

Definition 2. An event is unambiguous under m ∈ ∆(∆S) if there exists α ∈
[0, 1] such that µ(E) = α m-a.s.. A family U ∈ U is unambiguous under m if

each E ∈ U is unambiguous under m.

To guarantee the unambguousness of U , I introduce a new axiom. For this

purpose, define ∆U = {µ ∈ ∆S|∀f ∈ FU f ∼ Ψ(f, µ)}. This is the set of first-

order probabilities such that DM is indifferent between any acts measurable with

respect to U and the corresponding one-stage lottery constructed with it.

Axiom 13 (U -Dominance). For P,Q ∈ ∆F , if Ψ(P, µ) ⪰ Ψ(Q,µ) for all µ ∈ ∆U

then P ⪰ Q.

U -dominance is stronger than Dominance in that only first-order probabilities

in ∆U , a set smaller than ∆S, are relevant to DM. This can be interpreted as

having stronger confidence in probabilistic law.

Finally, we put an auxiliary axiom to elicit probabilities.

Axiom 14 (Nondegenerate). P ≻ Q for some P,Q ∈ ∆F .

This axiom states that DM is not indifferent between all alternatives.

Now the main result can be stated.

Theorem 2. The followings are equivalent. The axioms above except Axiom 5

characterize preference relations that have SOSEU representation under which U
is unambiguous in terms of the model.

1. ⪰ satisfies Axioms 8–11, 13, and 14.

2. ⪰ has a nondegenerate SOSEU representation (u, v,m) under which U is un-

ambiguous.
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This theorem demonstrates that a preference satisfies the required axioms if

and only if it has an SOSEU representation, and each event in U is unambiguous

under the second-order belief. Hence DM behaves as if she is an SEU maximizer

when choosing among unambiguous acts. If one imposes U -dominance for larger

U , the model becomes closer to SEU. Hence the theorem reveals what lies between

SEU and SOSEU.

The model includes nondegenerate SOSEU as a special case.

Corollary 1. Suppose U = {∅, S}. Followings are equivalent.

1. ⪰ satisfies Order, Continuity, First-stage independence, Second-stage indepen-

dence, U-dominance, Nondegenerate.

2. ⪰ has a nondegenerate SOSEU representation.

So far, we have treated the set of unambiguous events as exogenous ones. The

next goal is to obtain the largest set of unambiguous events endogenously. We give

a definition that describes a behavioral characterization of unambiguous events

under SOSEU.

Definition 3. An event E is said to be unambiguous if ⪰ satisfies {E,Ec, S, ∅}-
Dominance.

Then, the natural question to be investigated is to consider whether U⪰ is the

maximum set of unambiguous events in the sense that (1) there is an SOSEU under

which any event in U⪰ is unambiguous and (2) U⪰ is the set of all the events such

that there is an SOSEU representation under which the event is unambiguous.

But this is still an open question.

4.2.3 Unambiguous events under SOMEU

In this subsection, I show a result similar to Theorem 2 for a more general model

that appears Nascimento and Riella (2013), called second-order maxmin expected

utility .

Definition 4. A tuple (u, v,M) is a second-order maxim expected utility (SOMEU)

representation of ⪰ if u : ∆X → R is bounded continuous and mixture linear,

v : u(∆X) → R is bounded continuous and strictly increasing, M ⊂ ∆(∆S) is a

nonempty, closed, and convex set, and V represents ⪰, where

V (P ) = min
m∈M

∫
∆S

[∫
F
v

(∫
S

u(f)dµ

)
dP (f)

]
dm(µ).

An SOMEU representation (u, v,M) is nondegenerate if u is not constant.
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I list axioms that characterize SOMEU preferences. I adopt axioms different

from Nascimento and Riella (2013) for simplicity. The following two axioms are

counterparts of Uncertainty Aversion and Certainty Independence proposed in

Gilboa and Schmeidler (1989), respectively. Because both are weaker than First-

stage independence, SOMEU is a generalization of SOSEU.

Axiom 15 (Convexity). For all P,Q ∈ ∆F , and λ ∈ (0, 1), if P ∼ Q then

λP + (1− λ)Q ⪰ Q.

Axiom 16 (First-Stage Certainty Independence). For any P,Q ∈ ∆F , P ∈
∆(∆X), and α ∈ (0, 1], αP + (1− α)P ⪰ αQ+ (1− α)P ⇔ P ⪰ Q.

The model-based definition of unambiguous events is extended to the case in

which a belief is modeled as a set M of second-order probabilities. An event is

unambiguous under a second-order belief M if all the probabilities it assign a

common degenerate probability to the event.

Definition 5. An event E is unambiguous under M ⊂ ∆(∆S) if there exists an

α ∈ [0, 1] such that µ(E) = α m-a.s. for all m ∈M .

The following theorem is the counterpart of Theorem 1 adapted for SOMEU.

Theorem 3. For any U ∈ U, followings are equivalent.

1. ⪰ satisfies Axioms 8–10 and 13–16.

2. ⪰ has a nondegenerate SOMEU representation (u, v,m) under which U is un-

ambiguous.

This theorem demonstrates that the same definition of unambiguous events

works as well under SOMEU.

4.2.4 Unambiguous events under second-order Bewley rep-

resentation

In the decision-theoretic literature, preferences under ambiguity are sometimes

described as an incomplete preference relation. Bewley representation is a util-

ity representation for such incomplete relation for acts. Under the model, DM

prefers an act to another one if the former is better than the latter in terms of

all probability he considers. Its second-order counterpart, Nascimento and Riella

(2013) consider is second-order Bewley representation, which incorporates a set of

second-order probabilities as a representation of belief. Here, I consider a special

case of their model under which some events are unambiguous.
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Definition 6. A tuple (u, v,M) is a second-order Bewley representation of ⪰
if u : ∆X → R is bounded continuous and mixture linear, v : u(∆X) → R is

bounded continuous and strictly increasing, M ⊂ ∆(∆S) and P ⪰ Q if and only

if∫
∆S

[∫
F
v

(∫
S

u(f)dµ

)
dP (f)

]
dm(µ) ≥

∫
∆S

[∫
F
v

(∫
S

u(f)dµ

)
dQ(f)

]
dm(µ)

for all m ∈ M . A second-order Bewley representation (u, v,M) is nondegenerate

if u is not constant.

Nascimento and Riella (2013) axiomatized second-order Bewley representation

postulating the following axioms.

Axiom 17 (Preference Relation). The binary relation ⪰ is reflexive and transi-

tive.

Let ⪰•=⪰ |∆(∆X) be a binary relation over ∆(∆X).

Axiom 18 (Partial Completeness). The binary relation ⪰• is complete.

This axiom states that DM can always decide which one of two second-order

probabilities is better.

The definition of unambiguous events for second-order Bewley representation

is the same as Definition 5. Now I characterize second-order Bewley representation

under which U is unambiguous.

Theorem 4. For any U ∈ U, followings are equivalent.

1. ⪰ satisfies Axioms 9–12, 14,17, and 18.

2. ⪰ has a nondegenerate second-order Bewley representation (u, v,M) under

which U is unambiguous.

4.3 Proof

4.3.1 Preliminaries

First, we characterize the set ∆U .

Lemma 23. Suppose ⪰ satisfies Preference Relation, Partial Completeness, Con-

tinuity, Second-Stage Independence, U-dominance, Nondegenerate. Then, there

exists an additive set function µ∗ : U → [0, 1] such that ∆U = {µ ∈ ∆S|∀E ∈
U , µ(E) = µ∗(E)}.
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Proof. If ∆U = ∅, then ∀P,Q ∈ ∆F , P ∼ Q by U-dominance and this contradicts

Nondegenerate. Hence ∆U is nonempty.

Take any expected utility function u : ∆X → R that represents ⪰ |∆X . For

any µ ∈ ∆U , partiton π ⊂ U , and f ∈ Fπ, define V
µ
π (f) =

∑
E∈π u(f(E))µ(E).

Because f ∼ Ψ(f, µ), V µ
π (·) = u ◦Ψ(·, µ) represents ⪰ |Fπ .

In light of uniqueness result of SEU representation, all µ ∈ ∆U agree on U .
Therefore one can define µ∗ : U → [0, 1] by µ∗(E) = µ0(E) for all E ∈ U using

any fixed µ0. From the definition of ∆U , ∆U ⊂ {µ ∈ ∆S|for allE ∈ U , µ(E) =
µ∗(E)}.

In order to prove converse inclusion, take any µ ∈ ∆S such that for all E ∈
U , µ(E) = µ∗(E). Take any f ∈ FU . Then f ∈ Fπ for some partition π ⊂ U and

V µ0
π (f) =

∑
E∈π

u(f(E))µ0(E) =
∑
E∈π

u(f(E))µ(E) = u(Ψ(f, µ)) = V µ0
π (Ψ(f, µ)).

Because V µ0
π represents ⪰ |Fπ , f ∼ Ψ(f, µ). This means µ ∈ ∆U .

4.3.2 Proof of Theorem 1

Now we turn to the proof of Theorem 1. We only prove the sufficiency of ax-

ioms. Assume Axioms 8–11. Because U -Dominance implies Dominance, The-

orem 4.2 in Seo (2009) can be applied, and there is an SOSEU representa-

tion (u, v,m). Under this representation, the utility function of ⪰ is written

as V (P ) =
∫
F

[∫
∆S
v
(∫

S
u(f)dµ

)
dm(µ)

]
dP (f).

For each P ∈ ∆F , define ξP : ∆S → R by ξP (µ) = V (Ψ(P, µ)) =
∫
F v(

∫
S
u(f)dµ)dP

and set Φ = {ξP |P ∈ ∆F}. Define I : Φ → R as I0(ξ) =
∫
∆S
ξdm, then

I(ξP ) =

∫
∆S

[∫
F
v

(∫
S

u(f)dµ

)
dP (f)

]
dm(µ)

=

∫
F

[∫
∆S

v

(∫
S

u(f)dµ

)
dm(µ)

]
dP (f)

= V (P ).

Note that I is normalized and linear, that is, I(α) = α and I(βξ+ζ) = βI(ξ)+I(ζ)

when α, βξ + ζ, ξ, ζ ∈ Φ.

Take any ξP , ξQ ∈ Φ such that ξP (µ) ≥ ξQ(µ) for any µ ∈ ∆U . This is

equivalent to V (Ψ(P, µ)) ≥ V (Ψ(Q,µ)) for any µ ∈ ∆U . Because V represents ⪰
and ⪰ satisfies U -Dominance, V (P ) ≥ V (Q), that is, I(ξP ) ≥ I(ξQ). Hence, for

any ξ, ζ ∈ Φ, ξ|∆U = ζ|∆U implies I(ξ) = I(ζ).
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Set Φ̂ = {ξ|∆U |ξ ∈ Φ} and define Î : Φ̂ → R by Î(ξ̂) = I(ξ) (ξ̂ = ξ|∆U ).

The functional Î inherits normalizedness and linearity from I. Using linearity, I

can be extended to span(Φ̂). Then it can be extended to C(∆U), using Ok(2007)

p.594 Proposition 12. We write the obtained functional also as Î. Apply the Riesz

Representation Theorem and take m̂ ∈ ∆(∆U) such that Î(ξ) =
∫
∆U

ξdm̂. Set

m(B) = m̂(B ∩∆U) for each Borel set B ⊂ ∆S. The tuple (u, v,m) is an SOSEU

representation of ⪰. Lemma 1 completes the proof of Theorem 1.

4.3.3 Proof of Theorem 2

Assume that ⪰ satisfies Axioms 8–10 and 14–16. These axioms imply the axioms

imposed Theorem 2 in Nascimento and Riella (2013). Hence ⪰ has a SOMEU

representation. Repeat the same argument as the proof of Theorem 1 and obtain

a SOMEU representation (u, v,M) under which U is unambiguous.

4.3.4 Proof of Theorem 3

Assume ⪰ satisfies Axioms 9–12, 14, 17, and 18. These axioms imply the axioms

imposed Theorem 5 in Nascimento and Riella (2013). Hence ⪰ has a Second-

Order Bewley representation. Repeat the same argument as the proof of Theorem

1 and obtain a Second-Order Bewley representation (u, v,M) under which U is

unambiguous.

64



Bibliography

Aliprantis, C. D. and K. C. Border (2006): Infinite Dimensional Analysis:

A Hitchhiker’s Guide.

Allais, M. (1953): “Le Comportement de l’Homme Rationnel Devant Le Risque:

Critique Des Postulats et Axiomes de l’Ecole Americaine,” Econometrica, 21,

503–546.

Anscombe, F. J. and R. J. Aumann (1963): “A Definition of Subjective

Probability,” The Annals of Mathematical Statistics, 34, 199–205.

Baldassi, C., S. Cerreia-Vioglio, F. Maccheroni, and M. Marinacci

(2018): “A Behavioral Characterization of the Drift Diffusion Model,” Working

paper.

Camerer, C. F., G. Loewenstein, and M. Rabin, eds. (2004): Advances in

Behavioral Economics, Princeton University Press.

Caplin, A. and M. Dean (2015): “Revealed Preference, Rational Inattention,

and Costly Information Acquisition,” American Economic Review, 105, 2183–

2203.

Caplin, A. and A. Schotter (2008): The Foundations of Positive and Nor-

mative Economics: A Handbook, Oxford University Press.

Chambers, C. P., C. Liu, and J. Rehbeck (2020): “Costly Information

Acquisition,” Journal of Economic Theory, 186, 104979.

De Finetti, B. (1931): “Sul Significato Soggettivo Della Probabilita,” Funda-

menta mathematicae, 17, 298–329.

de Oliveira, H., T. Denti, M. Mihm, and K. Ozbek (2017): “Rationally

Inattentive Preferences and Hidden Information Costs: Rationally Inattentive

Preferences,” Theoretical Economics, 12, 621–654.

65



de Oliveira, H. and R. Lamba (2019): “Rationalizing Dynamic Choices,”

Working Paper.

Dekel, E. and B. L. Lipman (2010): “How (Not) to Do Decision Theory,”

Annual Review of Economics, 2, 257–282.

Dillenberger, D., V. R. Krishna, and P. Sadowski (2018): “Subjective

Information Choice Processes,” Working Paper.

Duraj, J. and Y.-H. Lin (2019): “Identification and Welfare Analysis in Se-

quential Sampling Models,” Working paper.

Echenique, F. and K. Saito (2017): “Response Time and Utility,” Journal

of Economic Behavior & Organization, 139, 49–59.

Edwards, W. (1965): “Optimal Strategies for Seeking Information: Models

for Statistics, Choice Reaction Times, and Human Information Processing,”

Journal of Mathematical Psychology, 2, 312–329.

Eliaz, K. and E. A. Ok (2006): “Indifference or Indecisiveness? Choice-

Theoretic Foundations of Incomplete Preferences,” Games and economic be-

havior, 56, 61–86.

Ellis, A. (2018): “Foundations for Optimal Inattention,” Journal of Economic

Theory, 173, 56–94.

Ellsberg, D. (1961): “Risk, Ambiguity, and the Savage Axioms,” Quarterly

Journal of Economics, 643–669.

Epstein, L. G. (2010): “A Paradox for the ”Smooth Ambiguity” Model of

Preference,” Econometrica, 78, 2085–2099.

Epstein, L. G. and J. Zhang (2001): “Subjective Probabilities on Subjectively

Unambiguous Events,” Econometrica, 69, 265–306.

Fudenberg, D., W. K. Newey, P. Strack, and T. Strzalecki (2019):

“Testing the Drift-Diffusion Model,” Working Paper.

Fudenberg, D., P. Strack, and T. Strzalecki (2018): “Speed, Accuracy,

and the Optimal Timing of Choices,” American Economic Review, 108, 3651–

3684.

66



Gilboa, I. and D. Schmeidler (1989): “Maxmin Expected Utility with Non-

Unique Prior,” Journal of Mathematical Economics, 18, 141–151.

Kahneman, D. and A. Tversky (1979): “Prospect Theory: An Analysis of

Decision under Risk,” Econometrica, 47, 263–292.

Klibanoff, P., M. Marinacci, and S. Mukerji (2005): “A Smooth Model

of Decision Making under Ambiguity,” Econometrica, 73, 1849–1892.

——— (2011): “Definitions of Ambiguous Events and the Smooth Ambiguity

Model,” Economic Theory, 48, 399–424.

Knight, F. H. (2012): Risk, Uncertainty and Profit, Courier Corporation.

Koida, N. (2017): “A Multiattribute Decision Time Theory,” Theory and Deci-

sion, 83, 407–430.

Kopylov, I. (2007): “Subjective Probabilities on “Small” Domains,” Journal of

Economic Theory, 133, 236–265.

Maccheroni, F., M. Marinacci, and A. Rustichini (2006): “Ambigu-

ity Aversion, Robustness, and the Variational Representation of Preferences,”

Econometrica, 74, 1447–1498.

Machina, M. J. and D. Schmeidler (1992): “A More Robust Definition of

Subjective Probability,” Econometrica, 60, 745–780.

Nascimento, L. and G. Riella (2013): “Second-Order Ambiguous Beliefs,”

Economic Theory, 52, 1005–1037.

Qu, X. (2013): “Maxmin Expected Utility with Additivity on Unambiguous

Events,” Journal of Mathematical Economics, 49, 245–249.

Ramsey, F. P. (1926): “Truth and Probability,” in Philosophy of Probability:

Contemporary Readings, ed. by A. Eagle, Routledge.

Ratcliff, R. (1978): “A Theory of Memory Retrieval,” Psychological Review,

85, 59–108.

Sarin, R. and P. Wakker (1992): “A Simple Axiomatization of Nonadditive

Expected Utility,” Econometrica, 60, 1255–1272.

67



Savage, L. (1954): The Foundations of Statistics, New York: John Wiley and

Sons.

Schmeidler, D. (1986): “Integral Representation without Additivity,” Proceed-

ings of the American mathematical society, 97, 255–261.

——— (1989): “Subjective Probability and Expected Utility without Additivity,”

Econometrica, 57, 571–587.

Seo, K. (2009): “Ambiguity and Second-Order Belief,” Econometrica, 77, 1575–

1605.

Sims, C. A. (2003): “Implications of Rational Inattention,” Journal of Monetary

Economics, 50, 665–690.

Spiliopoulos, L. and A. Ortmann (2018): “The BCD of Response Time

Analysis in Experimental Economics,” Experimental Economics, 21, 383–433.

Strzalecki, T. (2011): “Axiomatic Foundations of Multiplier Preferences,”

Econometrica, 79, 47–73.

Takeoka, N. (2007): “Subjective Probability over a Subjective Decision Tree,”

Journal of Economic Theory, 136, 536–571.

von Neumann, J. and O. Morgenstern (1947): Theory of Games and Eco-

nomic Behavior, 2nd Rev., Princeton university press.

Zhang, J. (2002): “Subjective Ambiguity, Expected Utility and Choquet Ex-

pected Utility,” Economic Theory, 20, 159–181.

68


