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ORBITAL EXPONENTIAL SUMS FOR SOME QUADRATIC AND CUBIC
PREHOMOGENEOUS VECTOR SPACES

KAZUKI ISHIMOTO

ABSTRACT. Let (G,V) be a prehomogeneous vector space over a finite field of odd characteristic.
Taniguchi and Thorne [5] developed a method to calculate explicit formulas of the Fourier transforms of
any G-invariant functions over V. By means of their method, we calculate the Fourier transform of any
G-invariant function for several “quadratic” and “cubic” prehomogeneous vector spaces, parametrizing
quadratic and cubic fields.

1. INTRODUCTION

Let K be a field and K be its algebraic closure. Let V be a finite dimensional representation of a
reductive algebraic group G defined over K. When there exists a Zariski open G(K )-orbit in V (K), we
refer to the pair (G, V) as a prehomogeneous vector space. Let us consider a prehomogeneous vector
space (G, V) defined over a finite field. Let p be an odd prime, and let F, be a finite field of order ¢ = p™.
Let V* be the dual space of V. For a function ¢ : V(F,) — C, its Fourier transform b V*(F,) — Cis
defined as follows:

1) o) = IVENT T ¢<x>exp(

zeV (Fq)

2miTrr, /v, ([, y])
p ) ‘

Here, [z,y] = y(z) € F, is the canonical pairing of V(F,) and V*(F,), and Trg_/p, : F; — F, is the
trace map.

The purpose of this paper is to determine an explicit formula for the Fourier transform of any G(F,)-
invariant function ¢ for certain prehomogeneous vector spaces. Taniguchi and Thorne [5] developed a
general method to compute this type of Fourier transform and applied it to obtain explicit formulas for
the following prehomogeneous vector spaces (G, V') over Fy:

V = Sym?®(2), the space of binary cubic forms; G = GLa,

V = Sym?(2), the space of binary quadratic forms; G = GL; x GLg,

V = Sym? (3), the space of ternary quadratic forms; G = GL; x GLs,

V=2® Sym2(2), the space of pairs of binary quadratic forms; G = GLs x GLo,
V=2® Sym2(3), the space of pairs of ternary quadratic forms; G = GLy x GLs.

There are many prehomogeneous vector spaces for which the Fourier transform is not yet calculated.
In this paper, we study the following nine more prehomogeneous vector spaces over [F:
o V' =2®2® 2, the space of pairs of 2-by-2matrices; G = GLy x GL2 x GLo,
V =2®2® 3, the space of triplets of 2-by-2matrices; G = GLy x GL2 x GL3,
V =2®2® 4, the space of quadruples of 2-by-2matrices; G = GLy X GLo x GLy4,
V =2® Hy(F,2), the space of pairs of Hermitian matrices of order 2; G = GLy x GLy(Fg2),
V = 2® A?(4), the space of pairs of alternating matrices of order 4; G = GLy x GLy,
V' is the space of binary tri-Hermitian forms over Fys; G = GL; x GLa(Fs),
V =2® 3 ® 3, the space of pairs of 3-by-3matrices; G = GLs x GL3 x GL3,
V =2 ® H3(F,2), the space of pairs of Hermitian matrices of order 3; G = GLy x GL3(F,2),
V =2® A?(6), the space of pairs of alternating matrices of order 6; G = GLy x GLg.

QOur main theorem is as follows:

Theorem 1.1. Let (G,V) be the prehomogeneous vector space in the above. We have an explicit
formula for the Fourier transform €; of any indicator function e; of G(Fy)-orbit O; in V(F,).

For the concrete formulas, we refer to Theorems E3] 531631 3] m 03 003, 013 and O3.3]

respectively. As a consequence, we have the Fourier transform formula ¥ of the indicator function ¥ of
4
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the singular set of each space (see Corollaries[4.4] (.4 [6.4], [7.4] [R.4] T4 and[@34]). As observed

in [5], we obtain better than the square root cancellation for ¥ in each space.

For the prehomogeneous vector spaces 2 ® 2 ® 2, 2 ® Ho(F,2), 2 ® A?(4) and the space of binary
tri-Hermitian forms over Fgs, the set of nonsingular orbits naturally correspond to the set of the iso-
morphism classes of the separable algebras over F; of degree 2. In this sense we say that these are
quadratic cases. For the prehomogeneous vector spaces 2® 3 ® 3, 2® H3(F,2) and 2® A2(6), the set of
nonsingular orbits naturally correspond to the set of the isomorphism classes of the separable algebras
over [Fy of degree 3. In this sense we say that these are cubic cases. A classification of reduced irre-
ducible prehomogeneous vector spaces over C was given by Sato and Kimura [3]. The prehomogeneous
vector spaces we study in this paper may be defined over an arbitrary field and in particular over C.
If we consider them over C, 2 ® 2 ® 3 is a castling transform of a trivial prehomogeneous vector space
2® 2, and 2 ®2 ®4 is another trivial prehomogeneous vector space. 2® 2 ® 3 and 2 ® 2 ® 4 are neither
quadratic nor cubic case, but we can calculate the Fourier transforms for them by means of the results
of2®2®2.

These explicit formulas of the Fourier transforms, or upper bounds, have applications in counting
problems for prehomogeneous vector spaces. See [1], [4], [7] for example. Furtehrmore, these concrete
results may be used to study other prehomogenous vector spaces of higher degree. We hope our results
in this paper have applications in these and other directions.

The composition of this paper is as follows. In Section B we recall Taniguchi-Thorne’s method of
calculating the Fourier transform and see a simple example of the calculation with the prehomogeneous
vector space (GLa, M2 (F,)). In Section Bl we see some results for the preparation for the calculation
of Fourier transform. In Section [3] we recall the orbit decomposition of the prehomogeneous vector
spaces (GL; x GL,,,Sym?(n)) for n = 2,3,4 over F,. In Section [32] we recall the orbit decomposition
of the prehomogeneous vector spaces (GL2,Fq ® Sym®(2)). In Section B3, we recall the number of
matrices of each rank and the order of the general linear group and the special linear group. In
Section [3.4] we prove a proposition about a relationship of orbits of the prehomogeneous vector spaces
(GL2 x GLg x GL,,,2®2®mn) for n € Z>1 and consider the cardinality of the intersection of their orbits
and certain subspaces.

In ChaptersIland 2] we look into the orbit decomposition and calculate the Fourier transforms for the
prehomogeneous vector spaces above by turns. Each section but Section [I2] consists of three subsections:
In the first subsection, we look into the orbit decomposition of each space. In the second subsection, we
choose appropriate subspaces and count the cardinality of the intersection of each subspace and each
orbit. In the third subsection, we obtain the explicit formula of the Fourier transforms. In Section 12,
we look into the orbit decomposition of (GLg x GLs,2 ® A%(5)) for preparetion for some calculations in
Section I3

In Section [[4] we see a method of verification of the calculation for the Fourier transform and some
remarks which we observe from the result of the calculation.

We use the following notation throughout this paper:

e pis an odd prime and FF, is a finite field of order ¢ with characteristic p, and F¢» be the n-th
extension field of Fy.

For a matrix A, we write its transpose as AT.

For a field K, let M(7, j)(K) be the set of all i-by-j matrices over K.

For a field K, let M,,(K) be the set of all n-by-n matrices over K.

Let O; ; be the i-by-j zero matrix.

Let I,, be the identity matrix of order n.

For a € F,2, let @ be the conjugate of a over F,, and for a matrix A = (a;;) over Fg let
A= (@).

2. CALCULATION METHOD OF FOURIER TRANSFORM

Let V be a finite dimensional vector space over [, with a finite group G linearly acting on V. Suppose
the pair (G, V) satisfies the following condition.

Assumption 2.1. There exist an automorphism v : G 3 g — ¢g* € G of order 2 and a bilinear form
B:V xV —=TF,; such that

Blgz,g'y) = B(x,y) (x,y € V,g € G).
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Then we can identify the dual space V* with V by the linear isomorphism V' 3 z — f(x,-) € V* (see
[5] for detail). We reformulate the definition of Fourier transform only in terms of V. For ¢ : V — C,

we define its Fourier transform QAS : V' — C as follows:

@) oy) = [VI™ D" gla)exp <2”TrFq/Fp(ﬁ(x, y))) |

zeV p

Here Trg, /g, : Fq — F, is the trace map. Let ]—"g be the set of all G-invariant maps from V to C, i.e.,

Fo={¢:V = C|olgx) = ¢(z) (9€G,zeV)}.
Note that }"‘C,: is a finite dimensional vector space over C. We easily see that if ¢ is a G-invariant function,
(E is also G-invariant. In fact, the Fourier transform map F& > ¢ — ¢7 € FG is a linear isomorphism.
Let O;(1 < i < r) be the all distinct G-orbits in V', and for each ¢ let e; be the indicator function of
0;. The functions eq, ..., e, form a basis of }"$ . Thus we only have to calculate the Fourier transform
of e1,...,e. to calculate that of all ¢ € ]-"9 . We use the following proposition for our calculation.

Proposition 2.2. [5, Proposition 6] Let W be a subspace of V, and let Wt = {y € V | Vx €
W, B(z,y) = 0}. Then
|O; mW|A |W| |O; le
Z o IVIZ o "
In this paper, we call W+ orthogonal complement of W. By Proposition 2, when we choose one
subspace of V, we obtain one equation of linear combinations of €; and e;. Therefore if we choose
r different subspaces and the corresponding equations are linearly independent, we obtain an explicit

formula of the form (€3, ...,€,) = (e, ..., e,)M with a r-by-r matrix M. In each section from Section
[0 we calculate the matrix M.

Example 2.3. Now we will look at a simple example for demonstration. Let G = GLy x GLgy and
V =M;y(F,). G acts on V by

GxV>((g91,92),z) — glzvgg cV.

We define an automorphism ¢ on G by

G 3 (g1,92) = (o7 )7 (02 )T) € G
and a bilinear form 8 on V by
B:V XV 3 (2,y) = Tr(ey’) € F,.
We can easily confirm that these ¢ and /8 satisfy Assumption 211

Elements z,y € V are G-invariant if and only if x and y move each other by elementary operation.
Therefore the orbit decomposition is given as follows:

Orbit name Representative Cardinality
0, - 1
0, Dol @Dy
O3 (1) (1) (¢—1)%q(g+1)

a b

Choose three subspaces {0}, W, = {{0 0

andWOJ‘{B 0} eV

Viabe Fq} and V. We have {0}+ =V, VL = {0}

b
exists, we have [Wg- N O;| = [gWo N O;| = [gWo N gO;i| = |[g(Wo N O;)| = [WoNO;| for i = 1,2,3. Thus
when we count the cardinalities of the intersections of the orbits and the subspaces, we can identify W
and Wg-. In this sense we write W5- = Wy.

a,be Fq}. Wo and Wy are different but since g € G such that g- Wy = W5t
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The cardinalities of the intersections are given as follows:

| {0} W 1%
0, 1 1 1
Oy 0 (¢g—1(g+1) (¢—1)(g+1)
Os| 0 0 (¢—1)%q(q+1)

By Proposition 2.2, we obtain the following 3 equations.

o~

1
(61 —+ () =+ 63)7

€1 = 7

e+ 1 1 + 1

e €y = —€ ——€

1 q+12 q2 1 q2(q+1) 2

€] +éx+e3=ey.

So we obtain

el 1 1 1 1 eq
e =a (a—1)(g+1)? ¢—q—1 —q—1] |e2
e; (¢—1)%q(¢+1) —(¢—1)g ¢ es

Remark 2.4. In what follows, when two subspaces W and W' of a prehomogeneous vector space (G, V')
satisfy the condition that there exists g € G such that gW = W', we identify the two and write W = W'.
3. PRELIMINARIES

In this section, we review and summarize some basic results which we use in later sections.
3.1. The space of quadratic forms. Let Sym? (Fy) be the vector space of n variable quadratic forms
over F,. We write an element of Sym? (Fy) as x(u1, ..., u,) where uy, ..., u, are the variables. The group
GL;(F,) x GL,(F,) acts on Sym? (Fy) by

(GL1(Fy) x GL,(Fy)) x Symz(FZ) S ((g1,92), (U1, oy i) = g1 - 2((Un, oy i )ga ) € Symz(IE"Z).

We recall the orbit decomposition with respect to this action. In this paper we use the cases n = 2, 3, 4.
The orbit decomposition of (GL1(Fy) x GL, (F,), Sym2(IE‘f;)) is given as follows:

oen=2
Orbit name Representative rank
O oy 0 0
Oy ut 1
Ofar) U1tz 2
0«21» U% + piuiu + /J/(]U% 2
en=3
Orbit name Representative rank
O oy 0 0
Oy ut 1
O ary U1tz 2
O (2iy u? + prugug + prou’ 2
Ogs) uf +uf + uj 3
en=4
Orbit name Representative rank
O oy 0 0
Oy ut 1
(2r) U Ug 2
O (2iy u? + prugug + prou’ 2
O<<3>> u% + u% + ug 3
O<<4T>> u? + u% + u% - ui 4
0«41'» u% + u% + u% — /\ui 4
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Here, the word “rank” means the rank of the symmetric matrix corresponding to the quadratic form and
u? + prugug + prous € Sym? (Fg) is an arbitrary irreducible polynomial and A is an arbitrary quadratic
non-residue in .

3.2. Orbit decomposition of (GLy, Sym®(2)). Let V := Sym® (F2) be the vector space of 2 variable

cubic polynomials over F,. We write an element of Sym?® (F2) as 2(u,v) where u,v are the variables.
The group GL2(F,) acts on V' by

GLo(F,) x Sym?’(Fg) > (g, 2(u,v)) = z((u,v)g") € Sym3(]F3).

The orbit decomposition of this action is as follows:

Orbit name Representative
Oqoy 0
Oy u
Oy wt
Oy uv(u — v)
O(12) w(u® + pyuw + pev?)
O3y ud + voulv + viuv? 4+ vyvd

Here, u? + pryuv + pov® € Sym? (]Fg) and u® + vouv + viuv? + 1v® € Sym? (IF?I) are arbitrary irreducible
polynomials in degrees 2 and 3, respectively.

3.3. The cardinality of certain sets of matrices. We introduce the following notation.
-1 i -1 j
[Ti% (@' = DI, (6™ — &)
[Tizi(d" = 1) ’

|(n1,n2), m| := [{M € M(ny,n2)(F,)[rank(M) = m}| =

T - 1)(g" — )

In,m| = [(n,n), m| = H

)

bl gmt — 1
gly =1,

n—1
gl, = |GL,(Fy)| = [ (¢" — "),

=0

sly, := |SLn(Fq)| = |GLn(Fq)|/(q - 1).

3.4. Orbit correspondence and their cardinalities. We identify V,, = ]Fg ® ]Fg @ [y as the vector
space of n-tuples of square matrices of order 2. For z = (X1, ..., X,,) € V,,, let 71(z) be the dimension
of the subspace of My(F,) generated by Xq, ..., X,,. Let G,, = GLs x GLg x GL,,. G,, acts on V,, by
G % Vi 2 ((91592,93), (X1, s Xp)) = (91X 92 5, 91X092 )93 € V.
For n < k, we consider the embeddings
v sz (0,..,0,2) €V
~——
k—n
and
k kan 0
h: G 5 (91,92, 98) = (91,02, g7 ) € G
where Ij,_,, is the identity matrix of order k — n. For all m < n < k, we have
fo=Tnolnm
and

k _ 1k n
hy, = hy 0 by,

In addition, for all x € V,, and g € G,

frg) = hi(9) [ ()
holds. By these embeddings, we regard V,, as a subspace of V; and regard G, as a subgroup of Gj.
Then we have the following proposition.
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Proposition 3.1. Let z,y € V;, C Vi. = and y are Gp-equivalent if and only if x and y are G-
equivalent.

[Proof]
If x and y are G,-equivalent, we easily see x and y are Gg-equivalent. We consider its conversion.
Assume x and y are Gg-equivalent. When r1(z) = m < n, we can let z = (0,...,0, X1, ..., X,,) such
that X1, ..., X,, are linearly independent, by the action of G,,. Since 71 (y) is also m, we also may assume

gia 0 g1k
y=(0,...,0,Y7,...,Y,,) such that Y7, ..., Y}, are linearly independent. Let (g1, g2, D x =
Jk,1 0 Gkk
y. Then we have
k k
0 D 90X kem)gs o g1( D Gk Xikim)gs) = (0,.,0,Y1, .0, Vi),
j=k—m+1 j=k—m+1
ie.,
3 1 ijik—mX;)ga =0 where 1 <i <k —m,
9 9i,j+ 3192
j=1
(4) 91(2 9i7j+kmej)92T =Y; where k—m+1<i<k.
j=1

Since X1, ..., X, are linearly independent, we obtain g; ; = 0 where 1 <i <k—mandk—m+1 <5<k
by @). It follows that g5 := (gij)k—m+1<i<k,k—m+1<j<k € GLm. By @), we obtain

( I O
91, 92, 0

gé)) -(0,...,0, X1, ..., X)) = (0,...,0, Y7, ..., Yy).

O

Next we consider particular subspaces in V,, and Vi. Let U; be an arbitrary subspace of V;, and
we let Uy, := Uy @ Fy C V,,. For n < k, we regard U,, as a subspace of Uy by the embedding E We
consider a relation between |(Gx) N Uy,| and |(Grx) N Ug|.

Proposition 3.2. For x € V,,, let r1(z) = m < n. Then we have

H?il(qk -q")

|(Grx) NUk| = 17, (¢" — ¢)

|(Gpz) N T,

[Proof]

Since the case m = 0 is obvious, we assume m > 1. Let € U, and r1(z) = m, we have © ~
(0,...,0, X4, ..., X;n) € U, such that Xy, ..., X,,, are linearly independent, by the action of G,,. Therefore
we assume x = (0,...,0, Xy, ..., X,,). Let Stab,(x) :={g € G,, | gz = 2} and G,,(z,U,) := {g € G, |
gz € U, }. Then Stab,(z) is a subgroup of G and we have

[(Gnz) NU,| = |Gn(x,U,)|/|Stab, (z)].

By
G (2, Un)| = gl,, - [{(91,92) € GLy x GLa | 1 Xig5 € Ur(1 <i <m)}
1
= :Tm |G, Un)|
and
[Stab, (z)| = qm("_m)glnfm - [Staby, ()],
we have
gl
() VUl = ot |(Gpt) U
_Meald” = 9) gy,

gl,
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Therefore we obtain

‘(le‘) N Uk| =

—4q

)

: |(Gmx) N Uml
) I[%(¢" — ¢

gl

: |(Gm33) N Um‘



CHAPTER 1

Quadratic cases

4.2@2®2

Let V =F, @ F2 @ F2 and G = G1 x G2 x Gz = GLy x GLy x GLy. We write z € V as z = (4, B)
where A and B are 2-by-2 matrices, and write g € G as g = (g1, g2, g3) where g1, g2, 93 € GLy. G acts
on V by

g7 = (91493 ,51Bg3 )93 -
Define a bilinear form 8 of V as
6((141731)7 (AQ,BQ)) = TI‘(AlAg —|— BlBg)

In addition, define an automorphism ¢ of G as

(91,92,93)" = ((91) " (93) 7", (93) 7).

By an easy computation, we see that these 8 and ¢ satisfy Assumption 211

bll b12

by bﬂ]) €V, we define

4.1. Orbit decomposition. For z = (4, B) = ([ZU 212} , [
21 22

L [ ailp a2 a1 a22
@) i=rank(l GG by b })’
[ ail a2 bll b12 :|)

rg(m) = rank( az1  G22 ba1 bao

ra(@) = rank( a1z azx bia b

[a11 a1 b b ])

ri(x), ra(x), r3(x) are invariants of the orbits. We also define

det, (u,v) := det(uA + vB) € Sym? (IF‘?I) where u, v are variables,
T(x) := () if and only if det, (u,v) € Oyqy in Sme(FZ).

Note that we introduced the representation (GLl(Fq) x GLo (Fq)7 Sym2 (]Fﬁ)) in Section BTl For z € V
and g = (g1, 92,93) € G, we have

det gz (u, v) = det(g1g2)dety ((u, v)g3).
Therefore T(z) is also an invariant of the orbits.

11
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Proposition 4.1. V consists of 8 G-orbits in all.
Orbit name Representative ri(z) ra(x) r3(x) T(x) Cardinality

o do ol-loab 00 0 (o 1

s (-8 88 Do 0w oy
04 AE T S T S U B AR
0, (° 88 Do 2w ey
o (-8 (1)8 2-) 2 2 1 () 212
s PO e e ey g
o- (-(1) 88 (1)-) 2> 2 2 () 12,33
oo (b e ) o2 o2 2 e ey

Here [a,b,c] = (g —1)%¢*(q + 1)¢ and p1, po are elements of F, such that X2 + i1 X + po € Fy[X] is
irreducible.

[Proof]

The invariants 71 (z), r2(z), r3(z) and T(z) for the 8 elements in the “Representative” column of the
table are easily calculated. Since they do not coincide, these 8 elements belong to different orbits. Let
O; be the orbit of each element.

First we prove V = U§:1 O;. Let x € V. Let (ri(x),r2(x),r3(x)) # (2,2,2). When r(z) = 0,
since x = 0 we have x € O;. When ri(xz) > 1, we have ro(z) > 1. When (r1(z),r2(x)) = (1,1),

we have z ~ (0, B)~( {8 8] , {8 ﬂ) by the action of G and thus x € Oy. When (ri(x),r2(z)) =

(1,2), mN(O,B)N([g 8] , B ﬂ) When (r(2),r5(z)) = (2,1), @ ~ (Lgl b‘;] , [bgl bSJ) ~

[ B o wemrnimion =m0

1 0 [ 0 b2
0 ag]’ |bar b2
have det,,(u, v) ~ a22u?+ baguv —b1abav?. If det, (u, v) = 0, we have agzg = bag = by2ba; = 0, which con-
tradicts to (r1(z), ro(x),r3(x)) = (2,2,2). It follows that T(x) = (1), (2r) or {2i). When T(z) = (1),
there exists a root of det, (u,v) which belongs to P'(F,). Thus we can let rank(A4) = 1 by the action of

G5. Therefore z ~ ({(1) 8] , {bo 212]) and dety,(u, v) ~ baguv — byabaiv?. Since T(x) = (1), we have
21 b2
1 0

bas = 0 and b1aby; # 0. Thus we have x ~ ({0 0
1 0 {0 b12 )

In the case (r1(z),r2(x),r3(x)) = (2,2,2), we have z ~ ({ ]) by the action of G. We

} [O 1}) by the action of G. When T(z) = (2r),

we have x ~ ( in the same way as in the case of T(z) = (1). Since bg2 # 0 in this

0 0|’ |ba1 boo
1 0] |10 O 1 0 0 0 .
case, we have x ~ ({O O} , {O bﬂ}) ~ ([0 O] , {0 1] ). When T(z) = (2i), dety(u,v) € Sym*(F?)

is irreducible. By the fact stated in Section Bl irreducible polynomials in Sme(Fg) belong to the
same GL; x GLg-orbit. This fact and the surjectivity of the map G > (g1, g2, 93) — (det(g192),97) €
GL; x GL2 means that we can move det,(u,v) to an arbitrary irreducible polynomial by the action of
G. Therefore we assume det, (u,v) = u? + pyuv + pov? = (u — yv)(u —Jv) where v € F2 \ F,. We can
a11 012} [bu b12
az1  ag2|’ |bar b2
pair (r,s) € F2\ {0} such that

(5) a117 + b11s =0.

move T to y := ([ ]) with a1 # 0 by the action of G; and G5. Thus there exists a
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Besides, for such r and s, there exist a pair (p,q) € Fg \ {0} such that

(6) —r+sy=py—q),

since {v,7?} is a basis of F,2 as a vector space over F,. The equation (@) is equivalent to

r— 8y
7 _ =
™) p—qy

If (p,q)//(r,s), we have v € F,, which contradicts to the assumption. Therefore <f z> € GLy. Let

s
second matrix of gy is 0. In addition, by (@), dety,(u,v) = ((p—gqy)u+ (r—sy)v)((p — ¢7)u+ (r — s7)v)

is a nonzero scalar multiple of u? 4+ pjuv + pov?. Since the rank of the matrix uA + vB is 2 for

all (u,v) € PY(F,), we have z ~ y/ = (E) ﬂ ) [69 ;1]) by the action of G; and Gg. Therefore
21 a2
det, (u,v) = ¢'(u? + pruv + pev?) for certain ¢’ € GL1. On the other hand, det, (u,v) = u? + byyuv +
bh,v%. Therefore we have g’ = 1 and bhy = 1, by, = po.
Next we count the cardinality of each orbit. |Oi],|Os|, and |O3| can be calculated by means of
the cardinality of each orbit in Example and Proposition |O4] can be calculated in the same

a1 au] , {am QQQ]). For the count of |Os|, we

g:= (1,1, (f q) ). By (@), the (1, 1)-entry of the first matrix of gy is nonzero and the (1, 1)-entry of the

way as |Osz| by regarding z € V as the pair ({b b b b
11 bi2 21 bao

regard z € V as ({au am} , {au 422

) and calculate it in the same way as |Os| and |O4]. Next we

bir bar|’ |bi2 b2
0 0 0 1
count |Og|. Let zg = ({O 1] , [1 O})’ and Stab(zg) := {g € G | g6 = 26}. Let g = (91,92,93) =
P11 Q1 P2 Q2 P3 g3 0 g3| 7 0 s3| r
) ) € Stab . Th h , _
(< o S1 > < re S2 ) ( r3 83 )) & (366) en e have (91 [% P3] 92,91 [53 7"3} 92)

([8 (1)] , {(1) (1)] ). By comparing the rank of the first entry, we have g3 = 0, and pss3 # 0. It follows

that p3 hd2 Dd2) _ 00 , and therefore ¢ = g2 = 0, and s189p3 # 0. Thus we have
§142 S152 0 1

0 s3| 7 0 P15283 0 1
g1 |:83 7“3} 92 = {31]7253 S$18973 +81T283+7‘18283:| - [1 O} ’
and
savtea ={I( 7 5O L) (MR L pee] e ) g
=~ (GLy)® x F2.
Therefore |Stab(zg)] = (¢ — 1)3¢® and we obtain |Og| = |G|/|Stab(ze)| = (gly)%/(¢ — 1)3¢* = (¢ —

1)2q(q+1)3. Next we count |O7|. Let x7 := (Ll) 8} , 8 ﬂ) and Stab(z7) :={g € G | gz7 = x7}. Let
_ _ 1 @1 P2 Q2 pb3s g3
9—(91&2»93)—(( st ),( Ty Sy >7< s ss >)€Stab(x7). We have

(91[%3 (2]95»91[%3 S(HQQT):(B 8}7[3 (1)])

By comparing the rank of each entry, we obtain the following propositions:
(8) If p3 # 0, then g3 = r3 = 0 and s3 # 0.
(9) If p3 = 0, then ¢33 # 0 and s3 = 0.

First we assume the case (8). Then we have

pip2 P12 qi92 qis2|y |1 0] |0 O
(s [7"1172 7’17"2]783 |:51q2 5152])_([0 0}’[0 1)7
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and therefore

(10) g =q=r1=r2=0,p3 = (Plpz)_la and s3 = (8182)_1-

Next we assume the case ([@). Then we have
4192 4152 pip2 pire|y _ |1 0] |0 O
(Q3 [81612 8182:| » T3 {7‘1112 ,},.1,],,2:|) - (|:0 0:| ) |:0 1:| )7
(11) pr=p2=51=38=0,q3=(q1q2)"", and r3 = (r172)"".
By ([0) and (II), we obtain
B 0 1 0 1 0 1 p1 O D2 0 (p1p2)—1 0
suner) = (3 )+ (7 o) (T o { (5 o) (B &) (W7 o)
=~ 7./27 w (GL1)%.
It follows that |O7| = |G|/|Stab(z7)| = (gly)3/2(¢ — 1)* = (¢ — 1)%¢3(¢ + 1)3/2. In the end, |Og| =
¢ = X101 = (4= 1)'e*(a +1)/2 =

4.2. The intersection between the orbits and the subspaces. The subspaces we choose to cal-
culate the Fourier transform are as follows:

[ R A

and therefore

wo= (o 2o pwe= o U pove= L v

Here, the notations mean, for example,

0 0 * ok o 0 0 b11 b12
o o] fp=Ado o] b wepe
Orthogonal complements of them are as follows (See Remark 24l for the convention for some of these

equalities):

Wit = Wy, Wa- = Wy, Wi- = Wa, Wi = Wy, Wit = W5, Wit = W, Wi+ = Wy and Wt = W7,

b11,b12,b21,b22 € Fq} .

Proposition 4.2. The cardinalities |O; NW;| for the orbit O; and the subspace W; are given as follows:

Wi Wh Ws W, Ws We Wo Ws
O, ] 1 1 1 1 1 1 1 1
Oz | 0 [1,0,1] [1,0,2] [1,0,2] [1,0,2] [1,0,0](3¢+1) [1,0,1](2¢+1) [1,0,3]
O3] 0 0 [2,1,1] 0 0 [2,1,0] [2,1,1] 2,1,2]
O4] 0 0 0 2,1,1] 0 [2,1,0] [2,1,1] 2,1,2]
Os1] 0 0 0 0 2,1,1] 2,1,0] [2,1,1] 2,1,2]
Og | 0 0 0 0 0 (3,1,0] (3,1,1] 3,1,3]
0,10 0 0 0 0 0 [2,3,1] 112,3,3]
Os| 0 0 0 0 0 0 0 %[4,3, 1]

Here [a,b,c] = (¢ — 1)%¢"(q¢ + 1)¢ and

[Proof]
For Wy, Wy, W3, W4 and W5 we can calculate by means of Example and Proposition Let
x € Ws be
([8 aO } , {bo 212] ). When agab1abe; # 0, we have 2 € Og. The number of such z is (¢—1)3q. When
22 21 022
ags = 0 and b12bs; # 0, we have z € O3. When b12 = 0 and aggbg; # 0, we have z € O4. When bg; =0
and agebia # 0, we have © € Os. For each of these cases, there are (¢ — 1)2¢ of such z. The remaining
0 an 0 b2
oy GQJ ; {bﬂ b22])- When (a12, b12) ) (a1, ba1),
we have 2 € O7. The number of such x is ¢°gly,. When (a12,b12) # 0, (a21,ba1) # 0, (a12, b12)//(az1, ba1)
and (a12,b12)¥ (age, bas), we have z € Og. The number of such z is (¢ — 1)gl,. When (aj2,b12) # 0,
(a217b21) 7é O, (alg,blg)//(agl,bgl) and (alg,blg)//(agg,bgg), we have x € 03. The number of such =

elements all belong to O; or Os. Let x € Wy be ([
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is(¢> — 1)(¢ — 1)g. When (aj2,b12) = 0 and (az1, ba1) ¥ (@22, baz), we have € O4. The number of such
x is gly. When (ag1,b21) = 0 and (ai2,b12) ¥ (az2, be2), we have € Os. The number of such z is gl,.
The remaining elements all belong to O or Os. ]

4.3. Fourier transform. By applying these results to Proposition 2.2} we obtain an explicit formula
for the Fourier transform.

Theorem 4.3. The representation matriz M of the Fourier transform on ]-"9 with respect to the basis
€1, ...,eg is given as follows:

1 [1,0,3]  [2,1,2] [2,1,2] @ [2,1,2] [3,1,3] 112,3,3]  1[4,3,1] ]
1 c1 [1,1,0061 [1,1,0b; [1,1,0]b1 —[2,1,0]a; %[1,3,0]b2 —3[3,3,0]
1 [0,0,1]b, qco -,1,1 —[,1,1 1,11 =i1,3,1  1i[2,3,0]
11 0,010 —[L1L1] g —[LL1  [LL1]  —Li[L31] 112,30
? 1 [0,0,1]b1 _[1’171] _[17171] qc2 [17171] _%[17371] %[2?370]
1 —ay q q q cs —3[1,3,0] —1[1,3,0]
1 by —[1,1,0] —[1,1,0] —[1,1,0] —[2,1,0] @ 0
| 1 —[0,0,2] [0,1,1] [0,1,1]  [0,1,1]  —[0,1,2] 0 ¢ |

Here [a,b,c] = (¢ —1)¢"(q+ 1), a1 =2¢+ 1, by =¢* —q—1, b =¢* —2¢—1, c; =2¢° —2¢ — 1,
o=@ - +1andecs=¢>—¢*>— 1.

We used PARI/GP [§] to calculate the matrix from Proposition

By Theorem 3] we can calculate the Fourier transform of the indicator function ¥ of the singular
6 6

set S = {z € V | Disc(dety(u,v)) =0} = U O, le, ¥ = Zei.

i=1 =1

Corollary 4.4. The Fourier transform of ¥ is given as follows:

~ T gt =g =0,
U(z)=q ¢ —q7° x # 0, Disc(det, (u, v)) = 0,
—q° Disc(det, (u,v)) # 0.

In particular, we have the following Li-norm bound of U

> ()] = 0(q?).

zeV

5.202®3

Let V =F2@F2®@F} and G = Gy x G2 x G3 = GLy x GLy x GL3. We write # € V as 2 = (4, B,C)
where A, B and C are 2-by-2 matrices, and write ¢ € G as ¢ = (g1, g2, g3) where g1,92 € GLo and
g3 € GL3. We define the action of G on V' by

gz = (91493 ,91Bg3 , 5:1C93 )93 -
Define a bilinear form 8 of V as
B((A1, By, C1), (As, B, Cs)) = Tr(A1 AL + B1B] + C1C7).
In addition, define an automorphism ¢ of G as
(91:92:93)" = ((g1) 7" (92) 7" (95) 7))

These 8 and ¢ satisfy Assumption 2.1
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5.1. Orbit decomposition. For z = (A, B,C) = ( i i , b biz , c 12 ) € V, we define
as1 bar  baa| ' |co1 c22

[a11 a1z az; ax

ri(z) :=rank(| b11 b1z bar ba |),

C11 Ci2 C21 C22

air a2 bir bz ci1 cr2 )
b

| a21 a2 b1 baa o1 c22
air a1 b by e e; )
| a12 aze bz b2 ci2 ca2 |7

ro(x) := rank(

r3(x) := rank(

dety (u1,ug, uz) := det(u; A + uas B + usC) € Symz(]Fg) where w1, us, ug are variables,
T(x) := () if and only if det, (u1,uz,u3) € Oy in Symz(IFg).
Note that we introduced the representation (GL;(F,) x GL3(F,), Sym? (F2)) in Section Bl For 2 € V
and g = (¢1,92,93) € G, we have
det gy (U1, ua, ug) = det(g1g2)det, ((ur, ug, us)gs).
Proposition 5.1. V consists of 10 G-orbits in all.

Orbit name Representative ri(z) ro(x) r3(z) T(x) Cardinality
o (ool loofoo) 0 0 0 @ 1
©: (-8 88 88 (1)-> 1 1 1 (o) [1,0,2,1]
©s (B O I P B ( R R R
P S B O R I S B B RS
Os (-8 88 (1)8 (1)-) 2 2 1 (0) [21,21]
oo ool il 2o 2w
o (ool 22 e esay
Os <{8 8“3 ?H,?O ;ﬂ> 222 (2) 331
Oo ((1) 87-8 (1)-,-8 (1)-) 3 2 2 (2) [3.33.1]
o <8 (1)(1) 8(1) (1)-> 3.2 2 (3 [4421]

d and p1, po are elements of F, such that X%+ X +po €

—_ T
~—

Here [a,b,c,d] = (q— )aqb(Q+ )¢ (q2+CI+
F,[X] is irreducible.

[Proof]

The invariants r1(z), ro(x), r3(x) and T(x) for the 10 elements in the “Representative” column of
the table are easily calculated. Since they do not coincide, these 10 elements belong to different orbits.
Let O; be the orbit of each element.

First we prove that Ugl O, =V. Let z € V. When r(z) < 2, we have z ~ (0,B,C)(B,C €
Mz (F,)). Therefore by Propositions Bl and ] we see that

8
{zxeViri(z) <2} = U O;.

When rl(x) = 3 we have xr\/( |:(1) a(2)2:| , |:b(2)1 Z;i] , |:C(2)1 z;z]) If by = c12 = 0, then we have

xw([(l) 8]’{8 (1)]’[(1) 8}) Ifb127é0,wehavex~([1 0]7{0 1}7[00 O}) If 120 # 0, we

0 ag|’ |ba1 b2 21 C22
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have z~( 10 , 0 0 , 0 1 ). In any case, the orbit of x contains an element (A, B,C) €
0 agz|’ |bar b2z’ |co1 c22

V where at least one of A, B,C is of rank 1. Therefore we have xz~( L0 , 0 bi , 0 e ).
10 0] [ba1 baz|  [co1 cCa2

Thus det, (w1, u2, ug) ~ w1 (bootta +coouz) — (brous +c12usz) (barus +co1ug). If dety (w1, ug, us) is reducible,

we see that (bag, cag)//(ba1, ca1) or (baz, caa) //(b12, c12).

1 0] [o 1] [0 O
e When (bQQ,CQQ) = 07 by (b227022)>«(b21,621) we have l"\/( |:O ol |:0 ol |:1 O:|) c Og.

e When (baa, ca2) # 0, we can assume (bay, c21) = t(baa, c22) where t € F, without loss of gener-
ality.

It follows that z ~ ([é 8} , [8 ﬂ , {(1) 8]) € Oy.

If dety(u1,us,us) is irreducible, then we have (bag, co2)¥/ (ba1, co1) and (beg, ca) ¥ (b12,c12). It follows

1 0 0 0 0 1
thatxw([o O]’[O 1],[1 O})eom.

Next we count the number of the orbits. |Oy], ...,|Og| can be calculated by Propositions B2l and 11

For the count of |Og|, we calculate the order of the stabilizer subgroup of zg := ( {(1) 8} , [8 (1)} , [8 (1)] )

P1 @1 P2 Q2 Ju g1z 913
and Stab(zg) := {g € G | g9 = x9. Let g = (91, 92,93) = (( ) ; ( ) 921 922 923 |) €
T S1 T2 S2
g31 G932 g33
Stab(xg). We have

(1,1,g5) - (|1P2 @ar2| P12 P1s2| \d1d2 q182):(0 of 10 1} |0 0)
0 93 S1pP2  S1T2 ’ 192 182 ’ 5142 S152 1 0/’|0 0’0 1|7

By comparing the (1, 1)-entry of each matrix, we obtain [qlpg P1qe qlqg} gs = [O 0 O], and there-
fore g1 = g2 = 0. Thus

0 0 0 P1S2 0 0
(1a 1)93) ' (|:81p2 817"2:| ) |:0 7"182:| ) |:0 8182:|)

_ 0 P1529g12 0 D152922
S1P2g11  S1T2g11 + 182912 + 5152913 T [S1P2g21  S17T2g21 + T1S2g22 + S152923 ]

0 P152932
S$1P29g31  S17T2931 + 7152932 + S152933

ol o oo

Therefore we obtain s1p2g11 = p152922 = 1 and g12 = g21 = g31 = g32 = 0. It follows that

( 0 0 0 P1S2922 0 0 )_(0 0 0 1 0 0)
512911 S172g11 + 5152013 | |0 T1S2g02 4 S152023| ' |0 5152933 1 0]7|0 0”0 1]”

Thus we obtain g1 = (s1p2)™", g22 = (P152)™%, g3z = (s152) 7%, g13 = —28L and go3 =

Therefore ’

__Tr2gi11
S2 :

T S1 r9 So s1P282

0 0 (8182)71
>~ ((GL1)* x Fy) x ((GLy)? x ).

0 oy ()0
Stab(zg) = (<p1 ) ) <p2 ) , 0 (p1s2)~! 2 )G

Thus we obtain [Stab(z)| = (¢—1)¢?, and |Og| = |G|/|Stab(x)| = (¢—1)3¢*(¢+1)3(¢* +¢+1). Lastly,
we obtain [O10] = ¢'2 — 30, 10i = (¢ — 1)*¢* (g + 1)%(¢* + ¢ + 1). O

5.2. The intersection between the orbits and the subspaces. The subspaces we choose to cal-
culate the Fourier transform are as follows:
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T R N N O NG N
R R
R e N e

Orthogonal complements of them are as follows:

Wow,WzLW97W§W8,WfW4,W5LW5,Wé([O OHO HO *]x

0 = * %

W?L = W7a W8l = W37 W9L = W2 and WILO = Wl'

*

Proposition 5.2. The cardinalities |O;NWj| for the orbit O; and the subspace W; are given as follows:

W W, Wi W, Wi W

0, | 1 1 1 1 1 1

O, | 0 [1,0,0,1] [1,0,2,0] [1,0,1,1] [1,0,1,1] [1,0,0,0]by
O3 | 0 0 [2,1,1,0] 0 0 [2,1,0,0]
O4 | 0 0 0 [2,1,1,1] 0 2,1,1,0]
Os | 0 0 0 0 2,1,1,1] [2,1,1,0]
Os | 0 0 0 0 0 [3,1,1,0]
O; ] 0 0 0 0 0 0

Os | 0 0 0 0 0 0

Oy | 0 0 0 0 0 0

O | 0 0 0 0 0 0

Wo Ws Wo Wio Wi

0, 1 1 1 1 1

Oy |2[1,0,0,1] [1,0,3,0] [1,0,0,1]a; [1,0,2,1] [1,0,0,0]bs
O3 | [2,0,0,1] [2,1,2,0] [2,1,0,1]  [2,1,1,1]  [2,1,1,0]
Oy 0 2,1,2,0]  [2,1,1,1] [2,1,2,1]  [2,1,2,0]
Os 0 2,1,2,0]  [2,1,1,1]  [2,1,2,1] [2,1,2,0]
Og 0 [3,1,3,0)  [3,1,1,1]  [3,1,3,1]  [3,1,2,0]
O; | 2,1,1,1] 1[2,3,3,00 [2,3,1,1] 1[2,3,3,1] [2,3,1,0]
Og 0 %[4,3, 1,0] 0 §[4,3, 1,1] 0

Oy 0 0 [3,3,1,1]  [3,3,3,1]  [3,3,1,0]
O 0 0 0 [4,4,2,1] 0

Here [a,b,c,d] = (¢ — 1)%¢"(¢+ 1)(> +q+1)% a1 =2¢+1, by = ¢> + 3¢+ 1 and by = 3¢> + 3¢ + 1.

[Proof]
We can calculate for all subspaces but Wg and W~ by means of Propositions 3.2} Bl and Let

z € Wg be
[0 0} {0 0} [0 012} B . ..
( , , ). For the case age = 0, we calculated in the proof of Proposition
0 aze|’ |0 baa|’|cor c22
We only count the case ags # 0 and add up the two result. When ci2c97 # 0, we have x € Og. The
number of such elements is (¢ — 1)3q2. When ¢15 = 0 and co1 # 0, we have x € O4. When ¢3; = 0 and
c12 # 0, we have x € Os. For both cases, there are (¢ — 1)%2¢? of such z. The remaining elements all
belong to Oy. Next, let z € Wg- be ({8 0 } , [ 0 b12] , { 0 612] ). Again, we only count the case
azz| ' |ba1 boa| ' |co1 coo
ass # 0. When (b1, c12) )/ (ba1, c21), we have & € Og. The number of such elements is (¢q—1)g?gl,. When
(b12,¢12) # 0 and (bay, c21) # 0 and (byg, c12)//(ba1, c21), we have x € Og. The number of such elements
is (¢ — 1)%2¢%(¢> — 1). When (b1, c12) = 0 and (bay,c21) # 0, we have 2 € O4. When (by2, c12) # 0 and
(b21,¢21) = 0, we have = € Os. For both cases, there are (¢ — 1)(q¢ — 1)¢® of such . The remaining
elements all belong to Os. O

i
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5.3. Fourier transform.

Theorem 5.3. The representation matriz M of the Fourier transform on .7-"(,; with respect to the basis
e1,...,e10 18 given as follows:

1 [1,0,2,1]  [2,1,1,1] 2,1,2,1] 2,1,2,1] (3,1,3,1]
1 di [1,1,0,0]c;  [1,1,1,0]e;  [1,1,1,0]c;  [2,1,1,0]co
1 [0,0,1,0]c; qds —[1,1,2,0] —[1,1,2,0]  [1,1,2,0]c4
1 [0707]-30]61 7[1717130] gey 7[131a270] 7[1717130]171
1 |1 [0,01,0c; —[1,1,1,0] [1,1,2,0] ge1 —[1,1,1,0]b;
g2 | 1 c2 qcy —qb1 —gby qe2
1 3 [1,1,0,0b; —[1,1,0,0]a; —[1,1,0,0]a; —[2,1,0,0]bs
1 —[0,0,2,0] [0,1,1,0]b2  [0,1,1,0] [0,1,1,0]  —[0,1,2,0]by
1 C2 7[171,1,0] 7qb1 7qb1 [1,17070}0,1
L 1 _[0a072’0] q [0,1,1,0] [071)]‘?0] —[0,1,1,0]
1[2,3,3,1] 114,3,1,1] [3,3,3,1] [4,4,2,1]
%[1,3,1,0]@, —113,3,1,0]  [2,3,1,0]c2 —[3,4,2,0]
111,3,2,00b1  3[2,3,1,00b,  —[2,3,3,0]  [2,4,1,0]
—101,3,1,0]a;  1[2,3,0,0]  —[1,3,1,0]b; [2,4,1,0]
s 0a 123,000 —[L3.1,0b  [2.4.1,0]
A3,0,0ps L1300, [1,3.0,00a; —[1,4,0,0]
3¢%cs —1[3,3,0,0]  —[1,3,0,0]b4 [2,4,0,0]
—3[1,3,2,0] 1% [1,3,2,0]  —[1,4,1,0]
—1¢%b, 112,3,0,0] @b —[1,4,0,0]
110,3,1,0] —1[1,3,0,0)  —[0,3,1,0] g |
Here [a,b,c,d] = (¢ — 1)aqb(q +1)(q®> +q+ 1)d and
ap =2q+1, a=¢—-q-1, di =2¢"+¢*—¢* —2¢—1,
h=¢—-q-1, c=¢-¢F¢-2¢-1, d=¢—-¢+1,
bo=¢—q+1, =2¢"-¢-2¢—-1, es=¢—¢—¢+q+1,

a=q¢—¢+1, e2=¢" —¢*—¢®+2¢>—q— 1
cs =q° —3¢> +3q+1,

6=¢+q¢*—q+1,
We used PARI/GP [§] to calculate the matrix from Proposition

9

Corollary 5.4. The indicator function of singular set of V is ¥ = Zei. Its Fourier transform T is
i=1

bs = ¢* + 3¢ + 1,
by =¢q* —2q—1,

given as follows:

T 20— =2 =+ 2 T = €O,
=gt =22+ ¢ T =8 z € O,
R —¢ P+ q g T —q® z € 03,04,05,
U(r)=<¢ —¢%+2¢7"—q"® z € O,
q¢%—q8 z € Os,
¢ "—q" x € Og, Oy,
—q~ z € Oqp.

In particular, we have the following Li-norm bound of U
> [¥(@)] = O(g")
zeV

6. 202®4

Let V = Fg@F?I@FfIL and G = G1 X G2 xG3 = GLy x GLo x GLy. We writex € V asa = (A, B,C, D)
where A, B,C and D are 2-by-2 matrices, and write g € G as g = (g1, 92, 93) where g1, g2 € GLy and

g3 € GL4. The action of G on V is defined by
9z = (91493 . 91Bg3 , 1C93 , 1 Dg3 ) g3 -
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Define a bilinear form S of V' as
B((A1, B1,C1, D1), (Az, By, Ca, D2)) = Tr(A1 A7 + B1B; + C1Cy + D1D3).
In addition, define an automorphism ¢ of G as

(g91,92,93)" = ((91 )" (93) " (g3) 7).

These 8 and ¢ satisfy Assumption 211

. . ajr az| |bin biz| |enn ci2| [din o dio
6.1. Orbit d tion. Forz = (4, B,C, D) = , , , €
rbit decomposition. For z = ( ) (Lzl CL22:| {521 522] {021 022] {dm d22])
V', we define

aix a2 a1 G22
bir b1z bar bao )
€11 Ci2 C21  C22 ’
| din diz da1 da

r1(z) := rank(

L k air a2 bin bz cii ci2 din dig
ra(w) i=rank() bt b dn o |
21 @22 21 22 C21 (22 21 22

_ [ a1 a1 bin bay ci1 cor din da
r3(z) := rank( b b d d ),
ai2 a2 12 22 Ci2 C22 12 22

det, (u1, ug, us, uq) := det(u1 A + us B + u3C' + uy D) € Sme(]Fs) where w1, us, u3, us are variables,
T(z) := (a) if and only if det,(u,v) € Oyqy in Sym2(F3).

Note that we introduced the representation (GLj(F,) x GL4(F,), Sym? (Fg)) in Section B.1l For x € V
and g = (g1, 92,93) € G, we have

det g, (u1, ug, u3, ug) = det(g1g2)dety ((ur, ug, us, us)gs).

Proposition 6.1. V consists of 11 G-orbits in all.

Orbit name Representative ri(xz) ro(x) r3(z) T(x) Cardinality
o o ol lo oo o oo © 0 0 @ 1
Oy ( 8 88 88 88 (1]-) 1 1 1 (0) [1,0,3,0,1]
O3 (-8 88 88 8(1) (1)-) 1 2 2 (1) [2,1,2,0,1]
O4 (-8 88 8(1) 88 (1)-> 2 1 2 (0)  [2,1,2,1,1]
0; oL oLl e s g ez
Os (-8 88 88 (1)(1) (1)-) 2 2 2 (1) [3,1,3,1,1]
oo ol 2 2 2 e tesawy
Os (B 8};{8_ 8}[(1) ﬂ[ﬁo /:11]) 2 22 () 14,3111
Oy (_8 82 88 38 (1)_) 3 2 2 (2r)  [3,3,4,1,1]
O1o ( 8 88 (1)(1) 8(1) (1)-) 3 2 2 (3)  [4,4,3,1,1]
on (OO e 2 2w meziy

Here [a,b,c,d,e] = (g — 1)%q"(q + 1)°(¢®> + ¢ + 1)%(¢® + 1)¢, and p1, po are elements of F, such that
X2 4+ X + po € Fy[X] is irreducible.
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[Proof]
First we consider the orbit decomposition. When 71 (z) < 3, we have « ~ (0, B, C, D) where B,C, D €
Mz (F,). Therefore by Propositions Bl and 5.1 we have

10
{z € Viri(z) <3} = U O;.

i=1

When r(z) = 4, it is easy to show that x ~ ([(1) 8} , [? 8] , {8 (1)] , {(1) 8}) by the action of GLy4.

Therefore the number of orbits is 11.

|O1], -+ ,|O10] can be calculated by means of PropositionsB.2land 51l By subtracting these numbers
from |V| = ¢'6, we obtain |Oy1]. Alternatively, we may say that |Oy1| coincides with gl,. O

6.2. The intersection between the orbits and the subspaces. The subspaces we choose to cal-
culate the Fourier transform are as follows:

evme QOB B B RSB AE D

0
e R A e B
W6:(8 *’8 2’8 * ’* )’W7_((>§ * ’(>§ *’8 *’; *)’
e b B e 8
vumf L YL L vy

Orthogonal complements of them are as follows:

0 0 |0 =] [0 x| [0 =
WﬁzWu,W;:Wlo,WgL:Wg,szw%W;=W5,Wé:([ H H *H ])

0 = * ok

Wit = Wy, Wg- = We, Wy = Wa, Wik = Wy and Wi = W),

Proposition 6.2. The cardinalities |O;NW;| for the orbit O; and the subspace W; are given as follows:

Wy W, W W, W W W
O, | 1 1 1 1 1 1 1
O, | 0 [1,0,1,0,1] [1,0,2,0,0] [1,0,2,0,1] [1,0,2,0,1] (¢—1)ex 2[1,0,1,0,1]
Os | 0 0 [2,1,1,0,0] 0 0 2,1,0,0,0] [2,0,1,0,1]
Os] 0 0 0 2,1,1,1,1] 0 2,1,0,1,0] 0
Os | 0 0 0 0 2,1,1,1,1] [2,1,0,1,0] 0
Os | 0 0 0 0 0 3,1,0,1,0] 0
O] 0 0 0 0 0 0 2,1,1,1,1]
Os | 0 0 0 0 0 0 0
Oy | 0 0 0 0 0 0 0
O | 0 0 0 0 0 0 0
On | 0 0 0 0 0 0 0
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Here [a,b,c,d,e] = (¢ — 1)°¢°(q + 1)°(¢* + ¢+ 1)4(¢* + 1)° and

bh=¢*—q—1, a=q¢—-q-1, e1=2¢"+¢* —¢* —2¢—1,

by =2¢> +2q+1, co=q¢—q+1, er =q° — ¢ +1,

bs =¢*—q+1, cs=¢"—q¢*+1, es =2¢° — ¢* —4¢° +2¢* + 2¢ + 1,
di=q¢*—q—1, ca=¢+4¢> +3q+1, es=2¢°" —¢* +2¢*> —2¢+ 1,
do=2¢"—¢-2¢—1, es=¢—-¢-2¢-1, g=q¢ —¢—F+q+1,
ds=q¢*—¢*+1, c6=20"—¢—-2¢-1, g2=q¢"—¢"—2¢" +2¢*+¢* —q— 1.

cr =2¢> —2q 1,
We used PARI/GP [§] to calculate the matrix from Proposition
10

Corollary 6.4. The indicator function of singular set of V is ¥ = Z e;. Its Fourier transform T s
i=1
given as follows:

g g2 =205+ +q % —q¢ % ri(z)=0,
R T =g =g+ = r(x) =1,
W(r)=q —q¢ " +q®+qg?—q " ri(z) =2,
g ?—q " ri(z) = 3,
—q~ 10 ri(z) =4

In particular, we have the following Ly-norm bound of U:

> ()] = 0(¢°).

zeV
7. 2@ Hy (qu)

For a € F 2, let @ be the conjugate of a over ;. Let Ha(F,2) be the set of Hermitian matrices of
order 2, i.e.,

az1
Let V = F2 @ Hy(Fy2) and G = Gy x Gy = GLy(Fy) X GLa(Fg2). We write z € V as = = (A, B) where
A, B € Hy(F,2), and write g € G as g = (g1, g2) where g € GLy(IF;) and g2 € GLa(F,2). The action of
G on V is defined by

Hy(F,2) := {A = {an Z;z] € My(Fp2) | a1r,a22 € Fg a1 = C112}~

gz = (92493, 92B93 )91 -
Here, for a matrix h, h is the matrix whose (7, j)-entry is the conjugate over I, of the (i, j)-entry of h.
Define a bilinear form 8 of V as

B((A1, B1), (As, B2)) = Te(A1 A + B1B3).
In addition, define an automorphism ¢ of G as
(91,92)" = ((91) " (92) 7).
These 8 and ¢ satisfy Assumption 211

7.1. Orbit decomposition. For © = (A4, B) = ([ZH 212} , [ZH 212]) €V , we define
12 G2 12 b2

L aip a2 Gz G2
ri(e) "rank([bu by bis bm])’

L ail ai2 bll b12
ro(z) .—mnk({a12 P bﬂ}),

det, (u,v) := det(uA + vB) € Sym? (IF‘?I) where u, v are variables,
T(x) := () if and only if det,(u,v) € Oyqy in Sme(Fg).
For x € V and g = (g1, g2) € G, we have
det g, (u, v) = Na(det(g2))det, ((u,v)g1),

where Ny : Fp2 3 2 +— 2Z € F;; is the norm map.
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Proposition 7.1. V consists of 6 G-orbits in all.
Orbit name Representative ri(xz) ro(x) T(z) Cardinality

or (o ollo o) © 0 @ 1

s @O 1 e mony
Oy @O 2y miwy
0, (-8 ‘1)(1) (1)-) 2 2 () 21,21
0s OO0 e e ey iz
O Ll) ﬂ[ Z‘j) 2 2 (2i) 3[2,3,1,1]

Here [a,b,c,d) = (g—1)%¢°(¢+1)¢(¢*> + 1)%, and p1 € Fy, po € Fp2 are elements such that X* + 1 X —
Na(po) € Fy[X] is irreducible.

Note that there exist such pu1 and pg of the lowest row of the table because of the surjectivity of the
norm map No.
[Proof]

The invariants 71 (z), r2(x) and T(z) for the 6 elements in the “Representative” column of the table
are easily calculated. Since they do not coincide, these 6 elements belong to different orbits. Let O; be
the orbit of each element.

First we consider the orbit decomposition. When ri(x) = 0, we easily see that + € O;. When
ri(xz) = 1, we have x~(0, B). If rank(B) = 1 we have x € Oy, and if rank(B) = 2 we have z € O3. When

ri(x) = 2, we have T(z) = (1), (2r) or {2i). If T(z) = (1) or {2r), we have z ~ ([(1) 8} ) [b(l)g Z;j ).

Since det, (u,v) ~ v(bagu — Na(b12)v), we have & € Oy if bos = 0 and x € O if bas # 0. If T(z) = (24,
we have det, (u, v) ~ u? + pyuv — Na(po)v? = (u—~v)(u—7v) where v € F 2 \ F, by Section B3I and the
surjectivity of the map G > (g1, 92) — (Na(det(g2)),97) € GL1(F,) x GL2(F,). Therefore we assume

det, (u,v) = u? + pyuv — Na(pg)v?. We can move z to y = ( o mz) b bz ) with a11 # 0 by
aiz2 Qa2 biz  bao

the action of G3. As we saw in the proof of Proposition {I], there exists (f q) € GLy(F,) such that

p,q,r, s satisfy the equation (@) and (7). Let g := ((f z) ,1) € G. Then the (1,1)-entry of the first
matrix of gy is nonzero and the (1,1)-entry of the second matrix of gy is zero. Thus we can move z to

/
Yy = (Ll) ﬂ , [1)9 ,12]) such that dety (u,v) = ¢'(u® + pruv — Na(ug)v?) for certain g’ € GL;(F,).
12 D22

On the other hand, dety (u,v) = u? + byyuv — No(b)5)v?. Therefore we have ¢ = 1 and bhy, = pq,

Na(b}5) = Na(po). Since No(£2) = 1 we obtain (1 ’% 0 )y = ( L0110 s ).
12 bis N0 1 0 1] [mo m

Next we consider the cardinality of the each orbit. We use the following facts for the calculation:
[{M € Hy(Fy) | rank(M) = 1} = (¢ — 1)(¢* + 1),
[{M € Hy(F,) | rank(M) = 2}| = (¢ — 1)a(® +1).
It is clear that |O;| = 1. In addition, we easily see that |Oz] = (¢ + 1) - [{M € Ha(Fy) | rank(M) = 1}]

and |Os] = (¢ + 1) - [{M € Hy(F,) | rank(M) = 2}|. Next we count |O4]. Let a4 = ({8 (1)] , E) (1)})

and Stab(xs) := {g € G | gxa = x4}. Let g = (g1,92) = ((p1 Q1) , <p2 q2>) € Stab(z4). We

S T2  S2

have (g2 L?l Zj E, g2 [0 81} E) = ({8 (1)] , [(1) (1)} ). By comparing the rank of the first entry,

St T
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Na(g2) q} _ {o 0

we have g1 = 0, and p1s; # 0. It follows that p; [ ], and therefore g5 = 0

s2q2  Na(s2) 0 1
and p1Na(s2) = 1. Thus we have g 0 s gl = 0 51P252 _ o1 and
11v2(52 . 2 S1 T 2 S$189PD2 T1N2(52)+81T1"2(82@) 1 0’
therefore
fof M)t 0 (st 0 _siTo(sr)
Stab(xy) = {(( r s ) o 5 YeEG|m = No(s2)

= (GLl(Fq) X GLl(]FqQ)) X Fq2.

Thus we obtain [Stab(z4)| = (¢—1)2¢?(¢+1), and |O4| = |G|/(¢—1)%¢*(q+1) = (¢—1)?q(q+1)?*(¢*>+1).

Next we count |Os|. Let x5 := ( (1) 8 ) 8 ﬂ) and Stab(zs) = {g € G | gx5 = x5}. Let g =
(91,92,93) = (( proq ) ) ( P2 42 )) € Stab(zs). We have
T S Ty S2

o el Jo-G B Y

By comparing the rank of each entry, we obtain the following propositions:

(12) If p1 # 0, then ¢ =71 =0 and s; # 0.
(13) If py = 0, then ¢171 # 0 and s; = 0.

First we assume the case (I2)). Then we have
O e e [T P
roPa  Na(r2) 522 Na(s2) 0 070 1
and therefore
(14) g2 =712 =0, p; = Na(p2)~1, and s; = Na(s2)7 L.
Next we assume the case (I3)). Then we have
R Y e I T
s2gz  Na(s2) roPa  Na(r2) 0 0/’|0 1
and therefore
(15) p2 =52 =0, q1 = Na(g2) ™", and 71 = Ny(rg)~".
By (4) and (IH)), we obtain
s = (1) (1 o) (M ) (5 ) e
>~ 7./2Z x GL1(F2)>.

Thus we obtain [Stab(z5)| = 2(¢—1)%(¢+1)?, and |O5| = |G|/2(¢—1)?(¢+1)? = (¢—1)2¢>(q+1)(¢*+1) /2.
|Og| can be calculated by subtracting |O1],--- , |Os| from |V| = ¢5. O

7.2. The intersection between the orbits and the subspaces. The subspaces we choose to cal-
culate the Fourier transform are as follows:

wimow= (g 3 [o Do =g o) 2 2pwe= g T[22

Ws—([g g][; 2])andW6—V.

Orthogonal complements of them are as follows:

0 0 0 0
W%zWG,erz([ *]{ :])7W§:W3,W5:W4,W5l:({ *}L *})andwﬁi:m,

* k|7 |* * 0 0
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Proposition 7.2. The cardinalities |O; NW;| for the orbit O; and the subspace W; are given as follows:

W1 WQ W3 W4 W5 WG VV2L VV{")L
O, 1 1 1 1 1 1 1 1
O,| 0 [1,0,1,0] [1,0,0,1] [1,0,1,0] 2[1,0,1,0] [1,0,1,1] [1,0,1,0] 0
05| 0 0 [1,1,0,1] [1,1,1,0] [2,0,1,0] [1,1,1,1] [1,1,2,0] [1,0,2,0]
Os4] O 0 0 [2,1,1,0] 0 2,1,2,1] [2,1,2,0] 0
Os] 0 0 0 0 [2,1,1,0] %[2,3,1,1] 0 0
Os| O 0 0 0 0 512,3,1,1] [2,3,1,0] [2,1,1,0]
Here [a,b,c,d] = (¢ — 1)%¢°(q + 1)%(¢® + 1)%.
[Proof]
We only consider the cases of Wi~ and Wb, since the rest cases are easy. We write z € Wi as
x=(A,B) = ( i a2 , 0 b ). We consider the case (ai2,b12) # 0. We have det,(u,v) =
a2 Q22 biz  ba2

Ng(alg)u2 + (algﬂ—FTmblg)u’U + N2 (612)1)2 and the discriminant Disc(detx (u, U)) is (algﬂ — @612)2.
Thus we have

(16) a12 and by are parallel over F, if and only if a12b12 = @12b12,

(17) a1z and byo are not parallel over F, if and only if ajab12 — @rabiz & Fy.

When ai2 and b1z are not parallel over Fy, we have £ € Og. The number of such elements is q2g12.
When a2 and byo are parallel over F, and (a2, b12) ¥ (a22, b22), we have x € O4. The number of such
elements is q(¢? — 1)(¢*> — ¢). When (a2z2,b22) # 0 and A//B over F,, We have € O3. The number
of such elements is (¢ — 1)q(¢ + 1). Remaining elements belong to Oy or Oy. We write x € Wi as
b
T = (LLO aéz} , [bO (1)2} ). We only consider the case (a2, b12) # 0. By ([[1), we find that when a2
12 12
and by2 are not parallel over F,, we have z € Og. The number of such elements is gl,. By (If), when
a12 and by are parallel over F,, we have z € O3. The number of such elements is (¢> —1)(¢+1). O

7.3. Fourier transform.

Theorem 7.3. The representation matriz M of the Fourier transform on .7-‘9 with respect to the basis
e1,...,e¢ is given as follows:

1 [t0,1,1] [1,1,1,1] [2,1,2,1]  1[2,3,1,1] %[2,3,1,1]

1 -1 [1,1,0,0]b; —[1,1,1,0] —3[1,3,0,1] £[2,3,1,0]
111 [1,0,0,0]by qci —[1,1,1,0]  £[2,3,0,0] —%[1,3,1,0]
@1 -1 —q qca —%[1,3,0,0] —5[1,3,0,0]

1 -[0,0,0,1] [1,1,0,0] —[1,1,1,0] ¢ 0

1 [1,0,1,0] —[0,1,1,0] —[1,1,1,0] 0 @

Here [a,b,c,d] = (¢ — 1)%¢"(¢+ )P+ D)L bi=¢*+q+ 1L, ci=¢*—¢*—1and co =¢> — ¢* + 1.

We used PARI/GP [§] to calculate the matrix from Proposition

4
Corollary 7.4. The indicator function of singular set of V is ¥ = Zei' Its Fourier transform T is
i=1
given as follows:
_ ¢ gt =gt z=0,
U(z)=q ¢ '=q7° a # 0, Disc(det, (u, v)) = 0,
—q° Disc(det, (u,v)) # 0.

In particular, we have the following Ly-norm bound of U:

> 1¥(@)] = 0(d).

zeV
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8. 2® A?(4)
Let A?(Fj) be the set of all alternating matrices of order 4 over F,. We write A € A*(F;) as
0 a2 a1z a4

—a 0 a a
A= 12 23 24

where a;; € F,.
—a13 —as3 0 asz J 1

—a14 —aqa —azs O
The Pfaffian of A is defined by
Pfaff(A) = ai2a34 — a13a24 + a14a23.

Let V = Fg ® /\2(15‘;1) and G = G1 X G2 = GLy x GLy. We write z € V as ©z = (A, B) where
A, Be /\2(15‘3), and write g € G as g = (g1, 92) where g1 € GLy and g2 € GLy4. The action of G on V' is
defined by

gz = (92493 , 92893 )91 -
Define a bilinear form § of V as
B((A1, By), (A2, B2)) = Tr(A1AY + B, BY).
In addition, define an automorphism ¢ of G as
(91,92)" = ((91)"s(93) 7).

These 8 and ¢ satisfy Assumption 2.1

0 a2 G13 Q14 0 by b1z bus

8.1. Orbit decomposition. For xz = (A4, B) = ( _212 2 GS?’ 224 , _212 2 bS?’ 224 )
—a13 —az3 34 —biz  —ba3 34
—a14 —ags —azg O —bia —byy —bzs O

V', we define

r1(z) == dim({A4, B)y, ), i.e., the dimension of the subspace of A?(F;) generated by A and B,

0 a2 a3 a0 bio b1z bus

. —ai2 0 azs  aa —big 0 baz  boy
ra(@) = rank( —ai3 —azz 0 azs —biz —baz 0 b3 )

—a14 —Qo4 —azs 0  —big —bay —bzy O

Pf,(u,v) := Pfaff(uA + vB) € Sym?(F?) where u, v are variables,
q
T(x) := (a) if and only if Pf,(u,v) € Oyqy in Sym2(]F§).

For x € V and g = (g1, g2) € G, we have

Py (u,v) = det(g2) Pl ((u, v)g1).

0 a1z a1z a4
Since alternating matrix is determined by its upper triangular part, we write ( a2 0 423 @24
—aiz —azz 0 asy
—a1q4 —agqe —azg O
0 b1 bz bus
—b12 0 bas  bay a12 A13 G14 Q23 A24 (34
—b1z —baz 0 b3y bi2 b1z bia bz bag b34|

—bia —bas —b3s O
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Proposition 8.1. V consists of 7 G-orbits in all.

Orbit name Representative ri(z) ro(x) T(xz) Cardinality
%  lbooooo O O @ 1
0, Ch e o oY e @ moL
Os SR S SR VN S N )
0, O S IS S () BN R IR Y
os {8 o (ﬂ 24 (1) 32211
Og (1) 8 8 8 8 (1) 2 4 (2r) 1[2,5,1,1,1]
Oy Ll) 8 (1) 50 8 ull] 2 4 (20) 4[4,5,1,1,0]

Here [a,b,c,d,e] = (g —1)%¢°(q + 1)°(¢® + ¢ + 1)%(q® + 1)°, and p1, po are elements of € F, such that
X2+ 11 X + po € Fy[X] is irreducible.

[Proof]

The invariants r1(x), r2(x) and T(z) for the 7 elements in the “Representative” column of the table
are easily calculated. Since they do not coincide, these 7 elements belong to different orbits. Let O; be
the orbit of each element.

First we prove that V = UZ:1 O;. Let x € V. When r(z) = 0 we easily see that z € O;.

When (r1(z),r2(xz)) = (1,2), we have z~(0, B)~ [O 0000 O} by the action of G. Tt fol-

0 00 0 01
lows that ¢ € Os. When (ri(x),r2(z)) = (1,4), we have x~(0, B)~ {(1) 8 8 8 8 (1) . It fol-

lows that © € Os. When r(z) = 2, we have ra(z) > 3. If (ri(x),r2(z)) = (2,3), we have x ~

000&23&24@34 00 0 0 1 0 o
[0 0 0 by bo b34] ~ {O 00 0 0 1}. It follows that z € O4. When (ri(x),r2(z)) =

1 0 0 0 0 asz4
(2,4),wehave:z:~[0 bis bia baz b bas

b13 b14

2
v,
b23 b24

} . Thus we have Pf,(u, v) ~ azqu®+bzguv—

If T(z) = (0), we have azq = b3y = 213 214 = 0, which contradicts to the assumption r3(z) = 4.
23 boy

It follows that T(z) = (1), {2r) or {2i). If T(x) = (1), we can let rank(A) = 2 and therefore

x ~ {1 00 0 0 0 . Thus we have Pf;(u,v) ~ bgquv — biz b v2. Since T(x) = (1)),

0 b1z bia baz baa bas baz  b2s
_ bz bia 100 0 0O B
we have b3y = 0 and bos  byy # 0. It follows that = [0 01 -1 0 O} If T(x) = (2r),

1 0 0 0 O

0 b1z bia bog boa bss
100 000
0 0 00 01
(v —yv)(u — yv) where v € Fg2 \ F, by Section B.Il and the surjectivity of the map G' > (g1,92) —
(det(g2),gT) € GL1(F,) x GL2(F,). Therefore we assume Pf, (u,v) = u? + puv + pov?. We can move

we have x ~ { } as in the case of T(z) = (1). Since in this case we have

bss # 0, we have x ~ ] If T(z) = (2i), we have Pf,(u,v) ~ u? + pruv + pov? =

a12 aiz ai4 G23 dA24 Aa34
bio b1z bis baz bas b3
P q
TS

T toy = } with a15 # 0 by the action of Gy. As we saw in the proof of

Proposition [4.]], there exists ) € GLs such that p, q,r, s satisfy the equation (7)) and

(18) a127 + b1os = 0.
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Let g := ((2; Z) ,1) € G. Then the (1,2)-entry of the first matrix of gy is nonzero and the (1,2)-

1 0 0 0 0 1
0 big by bhy oy by
such that Pfy (u,v) = ¢'(u® + pruv + pev?) for certain ¢’ € GL;. On the other hand, Pf, (u,v) =

entry of the second matrix of gy is zero. Thus we can move x to 3y’ := [

/ / / /
b13 14 b13 14
/ /

M1y |qy /
23 24 b23 b24

b / 0 1 h 0 100 0 0 1
h € SL h that b |, /2 | = . Th btain (1, = .
2 such tha { b by 4o 0 us we obtain ( 0 L )y 001 p 0 i

u? + bl uv — v2. Therefore we have ¢’ = 1 and by, = = —po. Thus there exists

Next we calculate the cardinality of each orbit. We use the following facts:

1Spa(Fg)| = (¢ — D)glg + 1),

Spa(Fy)l = (¢ — 1)°¢* (¢ + 1)*(¢* + 1),
{M € A*(Fy) | rankM = 2}| = (¢ — 1)(¢° + ¢+ 1)(¢* + 1),
[{M € N2(Fy) | rankM = 4}| = (¢ — 1)’¢*(¢° + ¢+ 1).

It is obvious that [O1] = 1. We easily see that |Os] = (¢ + 1){M € A*(F;) | rankM = 2}| and
03| = (¢ + 1){M € N*(F;) | rankM = 4}|. To count |Oy|, we calculate the order of the stabilizer

subgroup Stab(z4) of z4 := (A, B) = {8 8 8 8 (1) (1) .
-1

911 g12 G913 g4

1 p T 921 922 G923 9G24
_ 7 _ 7 € @ such that
9= (91,95 ) (< qg s ) 931 932 933 g34 )

941 Gga2  G43 Qa4

In other words, we count the number of

(19) (pA+qB,rA+ sB) = (92Ag; ,92Bg3 ).

By (@), we have

913 914} _ 4 (918 G14| _  |918 G14| _ (y |928 924| _ ( |912 Ju4| _ 4 |912 J14| _ 4 (G12 J1a| _
923 g24 1933 934 1943 Gaa 1933 934 "l922 924 932 934 942 Gaa
922 924\ _ (923 924) _ |933 934) _ 1922 G241 _ .4 (932 934) _

932 934 1943 Gaa 943 Gaa |42 Gaa g42  g44

If ¢ # 0, we have 923 924 # 0. Since 913 914) _ ( apq |98 91| = 0, we obtain g13 = g14 = O.
943  G44 923  g24 943  Ga4

If ¢ = 0, we have 933 934 # 0. Since 913 914 _ g apq 913 94| _ 0, we also obtain g13 = g14 =
943  g44 g33 934 943 G44

0. Furthermore, we similarly obtain g12 = g14 = 0 by gz g _ , grz gl _ , g1z ual

g22  g24 932  g34 942  g44
, 22 924 and [932 934 — . Thus we have 912 = g13 = g14 = 0. If (ga4, g34) # 0, then we
942  G44 942  Ga4
have (ga2, 923, g24) // (932, 933, g34) by 923 924\ _ 1922 924) _ 0, which contradicts to go € GLy4. It also
933  g34 932 g34
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follows that go4 = g34 = 0. Hence we have gyqq [922 923] = {8 q} . Therefore we obtain
932 933 rp

-1

gin O 0 0
923 922 go1 922 ges O
Stab(zy4) = cq
(@) (924 <933 933) "l 931 932 g3z O )
941 G42  G43  G44

gn 0 0 O
-1
~1 (923 922 921 g22 ges O
) eqG
(924 (933 g33> 931 932 g3 O )
ga1  Ga2  Ga3  Gaa

= ((GL1)* x GLg) x Fy,
and [Stab(z4)] = (¢ — 1)%¢°gly. By this result, we can calculate |O4]. Next we count |Os|. Let J =
0 1andO—O 0 Let x '—(O o} 1o J)andStab(x)'—{ €G|grs =w5}. Letg=
-1 0 ~ 1o ol 5-_OJ7J07 5) =119 grs = Ts5. 9=

G G O qJ 0]
(91,92) = ( ;;) g ) G; G;z)) € Stab(xs), where G;; € Ma(F,;). We have (g2 [qJ ZJ} 93,92 LJ
O O] |0 J .
( o 7117 o ). By comparing the rank of the first entry, we have ¢ = 0, and ps # 0. It follows

|Ga|J  G12JGH] [0 O
thatp{GQQJGg GoolJ | O 7

O qJ T 0 SGllegQ . o J
92 qJ pJ 92 = SGQQJG,{l SGQQJG;I +3G21JG§2+T|G22|J —|J ol

}, and therefore G2 = O and |Ga2| = p~!. Thus we have

and therefore

_ |Ga|™t 0 s1Gyp O
Stab(zs) = {(( . s)' UGy G )eG
= (GLl X GLQ) X MQ(F(I)

SGQQJG%} + SGQlJGgQ + 7”|G22|J = O}

Thus we obtain |Stab(xs)| = (¢ — 1)¢*gl,, and we can calculate |Os|. Next we count |Og|. Let z¢ :=

J O] [0 O G, G
([O O] , {O J})’ and Stab(zg) := {g € G | gx6 = x6}. Let g = (¢1,92) = ((fz g) ) (G; G;; ) €
Stab(zs), where G;; € Ma(F,). We have

o ol =5 96 9

By comparing the rank of each entry, we obtain the following propositions:
(20) If p#£0, then g =7 =0 and s # 0.

(21) If p =0, then ¢r # 0 and s = 0.

First we assume the case (20). Then we have

o[ 161l GuJGE] [ [Gials G12JG2Tz):(J o] [o o),
PlaonJGT, |G| | 7% |GaadGE,  |GaslJ o o|'lo J|"

and therefore
(22) Gi2 =Go1 =0, p=|G1|™', and s = |Gao| L.
Next we assume the case (2I)). Then we have

o] 1621 Gi12JGE] [ 1GulT GHJGQTl)_(J o] [o o),
U GoodGT,  |Gosld | |G JGT,  |Gan|J o o|l'lo J|”

and therefore

(23) Gi11 =Ga2 =0, ¢ =|Gr2|™*, and r = |Gay| 1.
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By [22) and (23), we obtain
e =3 ). (4 ) Lee)
=~ 7./27 % (GLg)?.

Thus we obtain |Stab(zg)| = 2gl5 and we can calculate |Og|. Lastly we obtain |O7| by subtracting the
sum of |04, ..., |Og| from |V| = ¢'%. O

8.2. The intersection between the orbits and the subspaces. The subspaces we choose to cal-
culate the Fourier transform are as follows:

* 0 0 0 0 =« 0 0 0 x* % 0 x
W1=O,W2=[>|< 00 0 0 *],WBZ[* " J’W‘*:[* * 0 = 0 0]’

Wsz[o 00 00 *]’WGZ[O 0} and Wy — V.

* % *
0 * x *x * 0 = x x *x 0

o
(en]
(en]
(an]

*
* O
*

*

Orthogonal complements of them are as follows:

0 0 % 0
0 0 % 0

*

Wit = Wy, Wik = We, Wik = W3, Wit = [ :] Wi = Ws, Wi = Wy and Wit = Wy,

Proposition 8.2. The cardinalities |O; NW;| for the orbit O; and the subspace W; are given as follows:

2% Wa W3 Wi Ws We W Wi
O] 1 1 1 1 1 1 1 1
O, | 0 2[1,0,1,0,0] [1,0,0,1,1] [1,0,1,1,0] [1,0,1,1,0] [1,0,3,0,0] [1,0,1,1,1] [1,0,1,1,0]
Os| 0 [2,0,1,0,0] [2,2,0,1] 0 [2,2,1,0,0] [2,1,2,0,0] [2,2,1,1,0] 0
O4] 0 0 0 [2,1,1,1,0] [2,1,2,0,0] 2[2,1,2,0,0] [2,1,2,1,1] [2,1,1,1,0]
Os] 0 0 0 0 (3,2,1,0,0] [3,1,3,0,0] [3,2,2,1,1] 0
Os| 0 [2,1,1,0,0] 0 0 0 112,3,3,0,0] 1[2,5,1,1,1] 0
071 0 0 0 0 0 %[4,3,1,0,0} %[4,5,1,1,0] 0
Here [a,b,¢,d,e] = (¢ — 1)°¢"(¢ + 1)°(¢° + ¢ + 1)*(¢* + 1)°.
[Proof]

We only consider the cases of W,, W5 and W, since the rest cases are easy. First we calculate

for Wy. Restrict the representation of G on V' to the subgroup H := {(gl, <gO2 (1))) € Glgs € GLg}.

100000 .
00000 oMY=

Then H acts on Wy. We can choose three elements 0, z = (A4,0) = {

100 00
010000
of these orbits. For x, we calculate the order of the stabilizer subgroup Stab(z) of z in H. We have

snte) = L) = (2 1) (B G2) | Gt ]

(92493 ,0) = (pA,r4)
We see 7 = 0, Go1 = O and |G11| = p by calculation. Therefore Stab(z) = ((GL1)? x GLg) x F3,
and its order is (¢ — 1)2¢3gl, and the cardinality is |H|/(¢ — 1)%¢%gl, = (¢ — 1)(g + 1)(¢* + ¢ + 1).
It follows that |[Hy| = ¢ — |Hz| — 1 = (¢ — 1)%¢(¢ + 1)(¢®> + ¢+ 1). In view of 0 € Oy, z € Oy
and y € Oy, we obtain [Wy N Oy = |Hz| and [Wy N O4] = |Hy|. Next we consider W5. We write

00 0 0 0 a34} When azs = 0 and [b13 b14] =0 and b34 # 0, we have

] as complete representatives of W with this action of H. We count the cardinalities

€eWsasx=
v 5 AT [0 bis bia b2z bas bsy bos  b2a

x € Oz. The number of such elements is ¢ — 1. When ags = 0 and rank( {215 214]) = 1, we have
23 b2y

x € Oy. The number of such elements is ¢|2,1|. When a3qs = 0 and rank( [213 214}) = 2, we have
23 D24

2 € Oz. The number of such elements is ggl,. When agq # 0 and {213 214] =0, we have x € Oy. The
23 024
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number of such elements is (¢ — 1)g. When az4 # 0 and rank( {213 ZM}) =1, we have x € O4. The
23 024

number of such elements is (¢ — 1)¢|2,1|. When az4 # 0 and rank( {213 ZM}) = 2, we have z € Os.
23 boy

The number of such elements is (¢ — 1)ggl,. Lastly we consider Wgs. Restrict the representation of

G on V to the subgroup H = {(gl, (%2 }?)) € G|gs, hso € GLQ}. Then H acts on Wy. Identify
2

0 a3 aia a3 aza 0O : : ai3 aia| |biz bus
( 0 bis bis bys by O ) € Ws as the pair of the 2-by-2 matrices (L% Q2J ) [bzg bos ). The

action of H on Wy is identical to the action of GLy X GLoy X GLo on 2 ® 2 ® 2 which we considered in
Section [l By this identification, 2 ® 2 ® 2 can be embedded in V. Let o be this embedding. We easily
see that 0(01) C Oy, 0(O2) C O3, 0(03) C O3, 6(O4) C Oy, 0(O5) C Oy, (Og) C Os, a(Or7) C Og
and 0(Og) C Oy. The cardinalities can be calculated by these results. O

8.3. Fourier transform.

Theorem 8.3. The representation matriz M of the Fourier transform on .7:‘9 with respect to the basis
e1,...,e7 is given as follows:

1 [1,0,1,1,1]  [2,2,1,1,0] [2,1,2,1,1]  [3,2,2,1,1]  3[2,5,1,1,1]  3[4,5,1,1,0]
1 el [1,2,0,0,0]cr [1,1,2,0,0]c2 —[2,2,1,1,0] 171,5,0,0,0c5 —3[3,5,1,0,0]
Ll 1 10,0,0,0,1]e ¢2dy ~[1,1,2,0,1] [1,2,1,0,1] —§[1,5,o,0, 1] %[2,5,1,0,0}
| 1 0,0,1,0,00c —[1,2,1,0,0] qes [1,2,1,0,0] —?[1,5,1,0,0] 1[2,5,0,0,0]
711 —0,0,0,1,0] ¢ [0,1,1,0,0] ¢*ds ~101,5,0,0,0) —1[1,5,0,0,0]
1 c3 ~[1,2,0,0,0] —[1,1,2,0,0] —[2,2,1,0,0] 7 0
|1 -[0,0,1,0,1] [0,2,1,0,0]  [0,1,1,0,1] —[0,2,1,0,1] 0 ¢ |

Here [a,b,c,d,e] = (¢ —1)"¢"(¢ + D +q+ DU P+ 1% a1o = @ —q—1, 0 = ¢ —¢* — 1,
a=¢C-¢F-qg-1l,d=¢-¢F+lL,ei=+¢*—*—qg—-1landes=¢"—¢* - +q+1.

We used PARI/GP [§] to calculate the matrix from Proposition

5
Corollary 8.4. The indicator function of singular set of V is ¥ = Z e;. Its Fourier transform U s
i=1
giwven as follows:
~ ¢ g —qT z=0,
U(z)=1{ ¢ °=q7" x # 0, Disc(Pf, (u,v)) = 0,
—q 7 Disc(Pf, (u,v)) # 0.

In particular, we have the following Ly-norm bound of U:

> ¥(z)] = 0(g").
zeV
9. THE SPACE OF BINARY TRI-HERMITIAN FORMS

Fix a non-identity element o in Gal(Fys/F,). For z € Fys, we write o(z) and 0?(z) as 2’ and 2",
respectively. Define the trace map and the norm map as follows:

Trs:Fps 2z 242 +2" €y,
N3 :Fps 3z 222" € Fy.
Both maps are surjective. Trz is a Fy- linear map. Ng|px : IE‘qX;; — IFqX is a surjective group homomor-
(13

phism.
Let
1 /
V:: {{L’:(A7B):(|:le C1/2:| 7|:a//2/ ai:|)

ai,aq € Fy and ag,a3 € Fqg} .
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V is an 8 dimensional vector space over F,. Let G = G| x G2 = GL(F,) x GLa(Fy3). We write g € G
as g = (g1, 92) where g, € GL(F,) and g2 € GLy(Fys). For a matrix h = (h;;) € GL2(Fy3), we define
h" = (h};) and A" = (h{}). Then the action of G on V is defined by
gt = g1(92A(93 )" 92B(93)) (g2 )"
Define a bilinear form 5 of V as
B((Ar, Br), (As, B)) = Te(A1 A7 + B1BY).
In addition, define an automorphism ¢ of G as
(91,92)" = ((91) 7", (92) 7).
These 8 and ¢ satisfy Assumption 2]

9.1. Orbit decomposition. By substituting Fgs for F, in Section B}, we obtain the following orbit
decomposition of (GL;(Fgs) X GLa(Fgs), Symg(Fig)):

Orbit name  Representative  rank

O oy 02 0

00«1 u ;
(2r) uv

O (2iy u? 4w + pov® 2

Here, u? 4+ puv + piov? € Sym? (ng) is an arbitrary irreducible polynomial. For z = (A, B) € V, we
define

ri(x) := dim(({A, B) ,), i.e., the dimension of the subspace of My (IF43) generated by A and B,
dety(u,v) := det(uA + UB) € Sym? ( s) where u, v are variables,
T(z) := (a) if and only if det,(u,v) € Oyqy in Sym? (]F(ng)
For x € V and g = (g1, 92) € G, we have
detgs(u,v) = gidet(gagh)dets((u, v)g5).
Proposition 9.1. V consists of 5 G-orbits in all.

Orbit name Representative ri(z) T(x) Cardinality
o o ol 1o ob 0 () !
0, (o 1o o 1 (o) [1,0,1,0,1]
s (8 NENE 2 (1) L1111
04 <(1) 3,8 o 2 (2r) 231,01

Here [a,b,c,d,e] = (¢ — 1)%¢"(¢ + 1)°(¢* + ¢ + 1)¥(¢® — ¢+ 1), and p1, o € F, are elements such that
X2+ X + po € Fy[X] is irreducible.

[Proof]
The invariants r1(z) and T(x) for the 5 elements in the “Representative” column of the table are
easily calculated. Since they do not coincide, these 5 elements belong to different orbits. Let

B T o A

2 H1 H1 M% — 240
Tr — , : , and O; = Gx;.
° (|:,u1 i - 2#0} L«Lf “ 20— 3puapio))

For z € V, let Stab(z) = {g € G | gz = x}.
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In Section [@ we substitute Fys for Fy in the notation of Section 3.3} i.e.,
1 . 1 .
[T (@9 = DT (@™ = ¢¥)
[Tz (¢® = 1) ’

|(n1,n2), m[ := {M € M(n, ng)(Fys ) [rank(M) = m}| =

m_l n—i .
(@9 —1)(¢’ — ¢*)

[n,m| == [(n,n),m| = H

3(m—i) _ ’
u gAm—i) — 1
n—1 )
gl, = [GLa(Fs)l = [T (6™ — ™),
1=0

sl := [SLy, (Fys)| = gl,,/(¢* — 1).
We count |O;]. Clearly |O;] = 1. To calculate |Oz|, we count the order of Stab(zz). Let g = (g1,92) =
(91 <p2 QQ)) € Stab(zz). Then
r9 So
( N3(q2) q205s5| |a24255  qashsy )= ( 0 0/ (0 O )
qhah s qhsash|’ |ghsash Ns(sa) 0 0/"|0 g¢g;*
holds. Thus we have g¢o = 0 and N3(s2) = g; . By the surjectivity of N3, we obtain Stab(zy) =

(GL1(F3))? x Fys, and [Stab(z2)| = ¢3(¢> — 1)2. Therefore |O5] = |G|/|Stab(z2)| = (¢ — 1)gly/¢3(¢* —
1)2=(qg—1)(g+1)(¢> — g+ 1). Next we count |Os]. If g € Stab(x3),

0 g, [0 s8], (0 0] [0 g
(92 |:q/2/ ol 92,92 syl 95) = ( 0 gl_l ) gfl 0 )
holds. By comparing the rank of the first entry, we have gz = 0. Therefore we have plysysh = g+ and
Trs(rashsy) = 0. It follows that

/I —1

Stab(z3) = {(91, <(91827,82) SO)) € G | Tra(rashsy) = 0} = (GL1(Fq) x GL1(Fgs)) x Ker(Trs),
2 2

and |Stab(z3)| = ¢?(¢ — 1)(¢® — 1). Therefore we obtain |O3] = q(¢® — 1). Next we calculate |O4| and

|Os|. Kable and Yukie [2, Proposition (3,9), (3.12), Theorem (3.13)] proved the following facts:

(24) Stab(z4) = Z/2Z x {(g1,92) € GL1(Fg2) x GL1(Fy3)[N3(g1) = N3(g2)},

(25) Stab(zs) & Z/27Z x {g € GL1(Fys)|96%(9)6* (9) € Fy'}.

Here ¢ is an element of Gal(IFy/F,) such that (§) = Gal(F/F,). In [2], Kable and Yukie assume

that V' is defined over infinite field, but the method to determine the structures for Stab(z4) and

Stab(z5) holds for the F,. By applying 4) and (25), we obtain |Stab(z4)| = 2(q¢ — 1)(¢*> + q + 1)?

and [Stab(zs)| = 2(¢*> — 1)(¢*> — ¢ + 1). Thus we have [O4] = 1¢*(¢ — 1)%(¢ + 1)(¢> — ¢ + 1) and

05| = £¢3(q — 1)%(g + 1)(¢® + ¢ + 1). Lastly, since >20_, |0;| = ¢ = [V], we have U)_, 0; =V. O

9.2. The intersection between the orbits and the subspaces. The subspaces we choose to cal-

culate the Fourier transform are as follows:

o N [ R O

* * * %

Orthogonal complements of them are as follows:
Wit = Ws, Wit = ({2 :] , {I I]),W; — Wy, Wit = Wy and W = W7

Proposition 9.2. The cardinalities |O; NW;| for the orbit O; and the subspace W; are given as follows:

1%} Wo W W, Ws Wit
O, 1 1 1 1 1 1
Oy | 0 [1,0,0,0,0] [1,0,0,0,0] [1,0,0,0,0] [1,0,1,0,1]  [1,0,0,0,0]
05| 0 0 [1,1,0,1,0] [1,0,0,1,0] [1,1,1,1,1] [1,1,0,1,0]b,
O4] 0 0 0 112,0,0,1,0] 21[2,3,1,0,1] 1[2,3,0,1,0]
05 | 0 0 0 12,0,0,1,00 123110 1[2.3.0 1,0
Here [a,b,c,d,e] = (¢ —1)%¢°(g+1)¢(¢* + ¢+ 1)%¢®> —q+1)° and by = ¢*> + 1
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[Proof]

We only consider the case of W', since the rest cases are easy. We easily see that |01 N W5-| =1
and |02 NW3s|=(¢g—1). For 1<i<5and W C V, let G(i,W) = {g € G | gr; € W}. Then we have
|O; NW| = |G(i, W)|/|Stab(z;)|. Let g = (g1, (170? 22)) and assume g € G(3, W3). Then we have

2 82

0 /! /
P2 g2 [qg zﬂ [Zi] = Tr3(p2gsq3) = 0.

Therefore
IGB, W5 )| = {g € GB, W) | g2 = 0} + [{g € G(3,W5") | g2 # 0}
=q’(¢—Dgli +* (¢~ (¢° — ¢*)ghy
= (- 1@ +a+ 1%+ 1),
and we obtain |03 N Wit| = q(¢ — 1)(¢*> + ¢ + 1)(¢> + 1). Next, assume g € G(4,Ws"). Then we
have N3(p2) + N3(g2) = 0. If po = 0, we have ¢ = 0, which contradicts to (fz §Z> € GLy(Fys).

Thus we have py # 0, and G (4, Ws") = (¢ — 1)gl2(¢® — ¢*)/(q — 1). Therefore we obtain |Oy N Ws| =
30°(@—1)°(¢* + ¢+ 1). Lastly, |05 W3] = ¢7 = X0, [0: W3 = §¢°(a = D*(¢* +q+1). D

9.3. Fourier transform.

Theorem 9.3. The representation matriz M of the Fourier transform on .7:‘9 with respect to the basis
e1,...,es is given as follows:

1 [1,0,1,0,1] [1,1,1,1,1]  %[2,3,1,0,1]  3[2,3,1,1,0]
L -1 [1,1,0,1,0]  1[1,3,0,0,0]b, —%[1,3,071,0]
— |1 [1,0,0,0,0] qca —3[1,3,0,0,0] —3[1,3,0,0,0]
11 by —[0,1,0,1,0] ¢ 0

1 —[0,0,0,0,1] —[0,1,0,0,1] 0 7

Here [a,b,c,d,e] = (¢ —1)°¢"(q+ 1)(® +q+ DU * —q+ 1) b1 =@ +q—1, c1=¢>—q+1 and
3 2
c2=¢q>—q — 1.

We used PARI/GP []] to calculate the matrix from Proposition

3
Corollary 9.4. The indicator function of singular set of V is ¥ = Zei' Its Fourier transform U is
i=1
given as follows:
- ¢ gt g a=0,
U(z)=q ¢ '=q7° x # 0, Disc(det, (u, v)) = 0,
—q° Disc(det, (u,v)) # 0.

In particular, we have the following Li-norm bound of U:

Y 1¥(@)] = 0(d).

zeV



CHAPTER 2

Cubic cases

2 3 3
10. F2@F @ F?

Let V = F2@F3®F3 and G = G1 x G2 x G3 = GLy x GLy x GL3. We write z € V as x = (A, B) where
A and B are 3-by-3 matrices, and write g € G as g = (g1, 92,93) where g1 € GLy and g9, 93 € GL3. G
acts on V by

gz = (g2 Aga, 92Bg3 ) g7 .

Define a bilinear form 8 of V as
ﬁ((Al,Bl), (A2,B2)) = TI‘(AlAg + BlBg)
In addition, define an automorphism ¢ of G as

(91,92,93)" = ((91) " (93) 71, (93) 7).

By an easy computation, we see that these 8 and ¢ satisfy Assumption 2.1

a1 a2 Qi3 b1 b1z bi3
10.1. Orbit decomposition. For x = (4, B) = (|a21 a2z a23|, |ba1 baa bos|), we define

as1 Gz G33 b3 b3y b33

ri(z) := dim({A4, B)y ), i.e., the dimension of the subspace of Ms(F,) generated by A and B,
[ an ain aig b1 bz bis 1
ro(x) :=rank(| a1 azs a3 bar by bag |),
az1 asz2 azz bsr bz2 bss
ain a2 az bin ba ba
r3(z) :=rank(| a1z az azx bz baa bz |),
| a13 a2z asz biz beg b33 |
mi(x) := min{rank(rA4 + sB)|(r, s) € Fg\{((), 0)}},

ma(z) := max{rank(rA + sB)|(r,s) € F2\{(0,0)}}.

ri(x), ra(z), r3(x), mi(z) and ma(x) are invariants of the orbits. We also define

dety (u,v) := det(uA + vB) € Sym® (Fg) where u, v are variables,
T(z) := () if and only if det,(u,v) € Oyqy in Sym3(F3).

Note that we introduced the representation (GL;(F,) x GLy(F,), Sym® (F?)) in Section Forz eV
and g = (g1, 92,93) € G, we have

detgy (u,v) = det(gags)dety ((u,v)g1).

Therefore T(x) is also an invariant of the orbits.

36



Cardinality

ro(x) r3(x) T(xr) mi(zr) ma(x)

ri(x)

[4312]
3332]
[4422]

1
2

2

3332

2

o~
coo

O0.0

Representative

(|t 0 o|,]0 0 of)

(lo o 1/,]0 1 o])
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Orbit name

Proposition 10.1. V' consists of 21 G-orbits in all.

N N = ) N =N &
— & N — — & =
an} — ™ — — — ]
= & lach & & lach —
— |
— ™ ) — — ™ ™
o o o — —
= = Zx = =
o o o, = o
< = = = =
— ™ ™ ™ ™~
— [a\] o — [N}
— — — [N} [a\]
— — — — — — —
o c~co oo ~0co oo o o
o coo~HocoH0o000O00OO coo
o cCoococo-oco0o0o0OoO coeo
o cococoococococ oo oo~ — oo
o cCoococococococooHOO o - o
o cCooocococoCoC0OOO coe
S~— S— S— S~— S— S~— S—
S) S) S S S SY S)

— o'o
oo~

O0.0

O1o
011

012

[4422]
[4422]

2
2

(lo o 1/,]0 0 o])

O13
O14
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Orbit name Representative ri(z) ro(x) r3(z) T(zr) mi(z) ma(x) Cardinality
00 0] [0 01
O15 ({0 0 of,|0 1 0]) 2 3 3 (1%) 1 3 [4332]
00 1] [1 0 0
0 0 0] [o 0 1]
Os6 (fo 0 1|,[0 1 0]) 2 3 30 (1) 2 3 [5432]
01 0/ [1 00
1 0 0] [0 0 0]
Oz (fo 1 0|,[0 0 0}) 2 3 30 {121y 1 3 3622]
00 0] |00 1
1 0 0] [0 0 0]
O1s (fo 1 0,0 0 1}) 2 3 30 (1*1) 2 3 [4632]
00 0 [010
1 0 0] [o 0 0]
O19 (fo 1 0|,[0 1 0}) 2 3 3 (1) 2 3 1[4732]
0 0 0] |0 0 1]
1 0o0] [0 0 0
O (10 1 0,0 0 -—1|) 2 3 3 (12) 2 3 55722]
00 1] |0 po m
1 0 0] [ru 0 -1
O (lo 1 o|l,|-1 0 0 2 3 3 (3) 3 3 £16731]
0 0 1 14} 140 0

Here, we put [abed] = (¢ —1)%¢°(q+1)°(¢*> + ¢+ 1) and p1, po, v2, v1, vo € Fy are elements such that
X2+ X + po, X3+ 15 X2+ 11 X + vg € Fo[X] are irreducible.

[Proof] We count the cardinalities of the orbits of the 21 elements in the “Representative” column
of the table. We refer to these elements as x1,...,z21 in order from the top, and let O; be the orbit
of z;. First, we count the cardinalities for the cases of ro(z) < 2, by using the result of (G1,V;) =
(GL2 x GL2 x GL3,2®2®3) (see Proposition 5.1]). We regard « € V; as a pair (A, B) of 2-by-3 matrices
A and B. We identify V; as the subspace of V' by the embedding

Vla(A,B)H({

O13
A

'

and identify G as the subgroup of G by the embedding

1
G1 3 (91,92,93) — (g1, (

O13
B

g

})eV,

> 793) €aG.
2

We consider the induced map Gy \ V3 — G \ V. This map is injective. For z € Vi, we have

G| =

1Glely_r, ()

q@|G1lgly_ ()

|G1CE|

Therefore we obtain |O;] for 1 < ¢ < 11, i # 4. Next we count the cardinalities for the cases of
(ri(x),ra(x),r3(x)) = (2,3,2). We identify V; as the subspace of V' by the embedding

and identify G as the subgroup of G by the embedding

1
Gl > (glag2793) — (glag2a ( g3>) €G.

We consider the induced injective map G; \ Vi — G\ V. For x € V;, we have

|G
7?|G1lgly

G| =

|G1(E|

Vi> (A,B) — ([0371 AT] s [0371 BT]) ev,

Therefore we obtain |O;| for ¢ = 12,13. Next we calculate the rest cardinalities. Let Stab(z;) be the

group of stabilizers of z;;

Stab(x;) :={g € G| gx; = x;} (1 <i<21).
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Since |O;| = |G|/|Stab(z;)|, it is enough to count |Stab(z;)|. The structure and the order of Stab(z;)
for i = 4,14 < i < 21 is summarized as follows:

Z; Stab(z;) & |Stab(z;)]

4 ((GL1)? x GL3) x F, q(q—1)% - gly
T4 ((GLg) x (GLy)?) x F2 ¢*(g—1)%- gl
15 (GL1)4 X Fg q4(q — 1)4

T16 (GL1)3 X Fg q3(q — 1)3

T17 (GLl)S X GL2 (q — 1)3 . g12

T1s (GLy)* x F, q(g—1)*

T19 63 X ((GL1)4) 6((] — 1)4

T2 | Z/2Z x ((GL1)? x GL1(F,2)) 2(q—1)3(qg+1)
To1 | Z/3Zx (GLy x GL1(F)) | 3(q—1)%(¢*> +g+1)

First we consider Stab(z4). Let g = ((g1i5)1<i,j<2, 92, 93) € Stab(z4). We have g112 = 0, and g122929§ =
I3. Therefore Stab(xy) = {(<g111 0 ) .92, (g12293)71) € G} >~ ((GL1)* x GL3) x F,. Next we

gi21 G122
consider Stab(xi14). Let g = (g1,92,93) = ((914i5)1<i,j<2, (92i5)1<s.5<3, (93i5)1<i,j<3) € Stab(x14). We
have go13 = g223 = g313 = g323 = 0, g333 gL 9212 9233 gsiL 912 (¢7)~! and go319333 +
9221 g222 g321 G322

§2339331 = 92329333 + 92339332 = 0. Therefore Stab(z14) = ((GLg) x (GL;)?) x Fﬁ. Next we consider
Stab(z15). Let g = (97", 92,93) = ((9165)1<4 j<2» (92i1)1<i.5<3, (93ij)1<i j<3) € Stab(w15). We have

g112 = go12 = G213 = G223 = g312 = 313 = g323 = 0,
g233h333 = g111 # 0,

92119333 = 92229322 = §2339311 = g122 75 0,

92219333 + 92229332 = g2329322 + g2339321 = 0,
92319333 + 92320332 + §2339331 = J121-

Therefore Stab(z15) = (GL;)*xF,. Next we consider Stab(x16). Let ((914j)1<i,j<2, (92i)1<i,j<3, (93i5)1<i,j<3) €
Stab(z16). We have

g112 = go12 = g213 = G223 = 9312 = g313 = g323 = 0,
g222h333 = 92339322 = 9111 # 0,

92329333 + 92339332 = 0,

92119333 = G2229322 = 92339311 = g122 7# 0,

92219333 + 92229332 = g2329322 + §2339321 = G121,
92319333 + 92329332 + 92339331 = 0.

Therefore Stab(z16) = (GL1)? x F3. Next we consider Stab(z17). Let (g1, g2,93) € Stab(z17). By com-
paring the rank of two entries, we see that g; must be diagonal. Now it is easy to see that Stab(xzy7) =
(GL1)®xGLs. Next we consider Stab(z1s). Let g = (g1, 92, 93) = ((91ij)1<ij<2, (92ij)1<i,j<3, (931)1<i,5<3) €
Stab(z1g). By comparing the rank of two entries, we see that g; is diagonal or anti-diagonal. If ¢y is

anti-diagonal, then gj2; = 0. It contradicts to the assumption. Thus we see that g; is diagonal.
Furthermore, we have go12 = g213 = g221 = g231 = ¢332 = g312 = G313 = g321 = ¢g331 = G332 = 0,
02119311 = 02229322 = G111, 92229333 = G2339322 = G122 and goo3g322 + go22g323 = 0. Therefore

Stab(z1s) = (GL1)* x F,. For i = 19,20,21, the structure of Stab(z;) is determined by Wright and
Yukie [9, Proposition 3.2, 3.7]. (It is assumed that V' is defined over an infinite field in [9], but the
method to determine the structures of Stab(x1g), Stab(xag), and Stab(xs1) holds for the Fy.)

Lastly, since Z?il |0;| = ¢*® = |V, we have Uil 0, =V. O

10.2. The intersection between the orbits and the subspaces. The subspaces we choose to
calculate the Fourier transform are as follows:

0 0 0 0 0 0 0 00 0 00 0 0
Wi=(|0 0 0],|0 O 0]),Wa=({0 0 0[,|0 O 0Of),Ws=(|0 0
0 0 0 0 0 0 0 00 * ok ok 0 0

* *x O
* * O

0
of,
0
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0 0 O * 0 0 O 0 0 O 0 0 = 0 0
Wy=(|0 0 0}, ), Ws=(|0 0 0],]|0 0 0]|),We=([0 0 %[,]|0 0 =x|),
_O 0 O_ B R I LR 0 0 * | _() 0 * |
[0 0 0 [0 0 «] [0 0 0] 0 0 0] 0 0 0] [o 0 O]
Wr=([0 0 0[,[0 0 =|),Weg=(|x * x[,[0 0 0]),Wo=(|0 % x|,[0 % x[),
_0 0 L L _O 0 0_ B _() k| _() k|
[0 0 0] [o 0 O] [0 0 0] [o 0 O] [0 0 x| [0 !
WIOZ( 0 0 0 , | * kK >7WIl:< ook kR ko ok )7W12_( 0 0 = ) 0 * = )a
R I R R I R _0 0 * | _O * |
(0 * | [0 % = 0 0 %] [0 O x| [0 0 0] [o 0 «]
W13:( 0 * = 5 0 * = >7W14:( 0 0 = 5 0 0 = )aW15:( 0 0 = s | R kK )a
_O * ok _O * k] koK x| koK x| _0 0 L I
(0 0 0] [o 0 «] 0 0 0] [+ = =] [+ % | [x % O]
W16:( 0 0 = 5 0 * = )7W17:( 0 0 0 s | * k K )aW18:( ook, 1k 3k 0 )a
_0 L I | kook x| [ | i 0_ _0 0 O_
[0 0 O] x ok K] 0 0 0] [*x % x| EER ERERE
Wig=(|* * *|,[0 0 0f),Wa=(|% % =|,|* * =*|),Wor=_([x % %[, |% x x|).
R B Lk x ok | [x o ox %] xx x| [x o ox %]
Here, the notations mean, for example,
0 0 O 0 0 =x 00 O 0 0 b3
( 0 0 0],]0 0 = ) = ( 0 0 01,10 0 bos ) eV 033,b13,b237631,b32,b33 S Fq
0 0 = * ok ok 0 0 ass b31 b32 b33

The orthogonal complements of these subspaces are as follows:
Wit = Way, Wit = Wag, Wik = Wip, Wit = Wy, Wit = Why, W = Wiz, Wit = Wis, Wt = Wiy,
x k% x % 0
VVQL = W14, WlLO = W107 Wle = ng, Wl%) = ( * *x 0 y 0 0 O ), WILG = W]G. (See RemarkIZZI
x *x 0 0 0 O
for the convention for some of these equalities).

Proposition 10.2. The cardinalities |O; N W;| for the orbit O; and the subspace W; are given as
follows:

Wy Wy W3 Wy Ws We W We W Wio Wiy Wia
O, 1 1 1 1 1 1 1 1 1 1 1 1
O, | 0 [1001] [1011] [1002] [1011] [1011] [1010)a; 2[1001] [1030] [1001)a; [1021] [1001]ay
Os | 0 0 [2111] [2112] 0 0 [2120] 0 [2120] [2111] [2121]  [2111]
Oy 0 0 0 [3311] 0 0 0 0 0 0 0 0
Os| 0 0 0 0 [2111] 0 [2110] 0 [2120] [2111] [2121]  [2101]
Os| 0 0 0 0 0 [2111] [2110] [2001] [2120] [2101] [2111]  [2111]
o. ] 0 0 0 0 0 0 [3120] 0 [3130] [3111] [3131]  [3111]
Os| 0 0 0 0 0 0 0 [2111] L[2330] [2311] 1[2331] [2311]
Q| 0 0 0 0 0 0 0 o Iz o lusup o
On| 0 0 0 0 0 0 0 0 0 3311  [3331] 0
On| 0 0 0 0 0 0 0 0 0 0 [4421] 0
On| 0 0 0 0 0 0 0 0 0 0 0 [3311]
O3] 0 0 0 0 0 0 0 0 0 0 0 0
Ois| O 0 0 0 0 0 0 0 0 0 0 0
O15 0 0 0 0 0 0 0 0 0 0 0 0
O] 0 0 0 0 0 0 0 0 0 0 0 0
O] 0 0 0 0 0 0 0 0 0 0 0 0
O] 0O 0 0 0 0 0 0 0 0 0 0 0
Oi9| 0 0 0 0 0 0 0 0 0 0 0 0
Oy | 0 0 0 0 0 0 0 0 0 0 0 0
Oy 0 0 0 0 0 0 0 0 0 0 0 0
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Wis Wiy Wis Wie Wiz Wis Wig Wao Way Wis
1 1 1 1 1 1 1 1 1 1
[1021] [1010]b; [1000]c;  [1000]bp [1021] [1010]bs  [1001]ap  [1001]b;  [1012]  [1000]c;
[2121]  [2130] [2110)b; [2110]ap [2112]  [2140]  2[2111]  [2131] [2122] [2110)b,

0 0 (3310] [3300]  [3311]  [3320] 0 [3311] [3321]  [3310]
[2111])  [2111]  [2120]  [2100)bs [2111]  [2130) [2111] [2121] [2112]  [2120]
[2121]  [2111]  [2120]  [2100]bs [2111]  [2130]  [2101]az  [2121] [2112]  [2120]
[3131]  [3130]  [3130]  [3110Jay [3121] [3120)b3  2[3111] [3121)a;  [3132]  [3130]

1[2331]  [2330]  [2320] 3[2300]bs [2321] 3[2320]as 3[2311] 3[2321]ap 3[2332]  [2320]
; [4311] 0 0 114300] 0 1[4310] 0 114311]  $[4312] 0

0 [3330]  [3320]  [3300]ay [3321] [3320]az  2[3311] [3321]a;  [3332]  [3320]

0 0 0 [4400] 0 [4420] 0 [4421) [4422) 0
[3331]  [3330]  [3320] [3300]as [3321] [3320]as [3211]ax [3321]a;  [3332]  [3320]
[4421] 0 0 [4400] 0 [4420] [4311] [4421) [4422) 0

0 [4420] 0 [4400] 0 [4420] [4311] [4421) [4422) 0

0 0 [4320]  [4300]a; [4321] [4320]a; 0 [4331] [4332]  [4320]

0 0 0 [5400] 0 [5420] 0 [5421] [5432] 0

0 0 0 0 [3611]  [3620]  2[3411] [3611]az  [3622] 0

0 0 0 0 0 [4620]  2[4411]  2[4621]  [4632] 0

0 0 0 0 0 0 [4511] L4721 L[4732] 0

0 0 0 0 0 0 0 2 [5711] % [5722] 0

0 0 0 0 0 0 0 0 316731] 0

Here, we put [abed] = (g — 1)%¢"(q +1)(¢> + ¢ + 1)? and

a1 =2g+1 b =2¢2+2¢+1 a=¢+4¢>+3¢+1
as=3g+1 by=5¢>+3¢+1

az3=q+2 b3=¢*>+3¢+1

a4:4q+1 b4:b7=q2+8q+1

a5 =5q+1 b5:3q2+2q+1

[Proof]

We obviously have |O; N W;| =1 for all j. We obtain the cardinalities |O; N W;| for 1 < j < 13,
j # 4,7and 1 < ¢ < 21 from Proposition For j = 4, we easily obtain the cardinalities. For
j = 21, we already calculated the cardinalities. We calculate the rest cardinalities. For 1 < 4,5 < 21,
let G(i,5) ={g € G| gz, € W;}. We have

|0i N W;| = |G, 7)I/IStab(z:)| = |G, )] - [Oil /]G]

Thus when it is difficult to count |O; N W] directly, we count |G(3, j)|.
0 0 O 0 0 b3
We consider W7. We write an element z € Wy as . = (|0 0 0|, 0 0 b3|) Let
0 0 as3 b3 b3y ba3
W9 = {xE W | b3t ZO} and W71 = {Z‘ e Wy | b31 #0} Then |OZQW7| = |OlﬂW$‘+|OZﬁW71| We
already counted the cardinalities |O; N W2| in the proof of Proposition Thus we count |O; N W3.
If asz = b13 = b23 = 0, then z € 02. If asz = 0 and (b137b23) 7é (0,0), then x € 03. If ass 7é 0 and
biz = beg = 0, then = € Os. If agz # 0 and (b13, baz) # (0,0), then x € O7. Thus we obtain |0 NW}| =
¢*(q = 1), |03 N W7 | =¢*(¢* = 1)(g — 1), |Os N W7| = ¢*(q¢ — 1)* and |O7 N W7 | = ¢*(¢* — 1)(¢ — 1).
0 0 a3 0 0 blg
Next we consider Wy4. We write an element 2z € Wiy as . = (| 0 0 ao3|,|0 0  bos|).
asy Gz2 033 b31 b3z b33
Note that W5, W6 C W14. Let W104 = W5 n WG and W114 = W14 \ (W5 U Wﬁ) Then |(’)Z n W14| = ‘Ol N
W]+ |0:iNWs|+]0;NWe| —|O: N, |. We easily see that |OaNWE,| = g2 —1. Thus we count |O; NW|.
If (@13, a23, a3z, as1, asz)// (b13, bz, bas, ba1, bsz), we have x € Os. If (a3, a3, as1, asz)// (b1, bas, b31, bs2)

aiz bis azy b3y
azs  bos ) = 1, rank( ass b32})

a3 biz asr ba|, a1z biz|, azr bai|,
1 and rank( 35 bos sy b ) =2, then x € Os. If rank( [a% b23]) = 1 and rank( [a32 bas ) =2,

and (a13, azs, ass, asi, asz) )y (b1, bas, b3z, b1, bsz), we have x € Or. If rank({
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then = € Oyp. If rank( iz biy ) = 2 and rank( @31 by ) =1, then © € O12. If rank( a3 b13
azz  bas asz bz a23 bz3
2 and rank( B?’l 231 ) = 2, then * € O14. Thus we obtain |03 N W| = q(¢* — 1)%*(¢ + 1),
32 b3
07 N W[ = (¢* = 1)*(q + 1)(¢* = @), [Os N W]y| = ¢*(q+1)* - gly, [Or0 N W] = ¢* - [2,1] - gl

012 N Wiy = ¢ [2,1] - gly, and [O1a N Wy| = ¢° - gl3.
Next we consider Wi5 and Wis. For X C V, let X7 = {(AT,BT) € V | (A4,B) € X}. We
see Wit = WiL. We easily see that OF = O, for i # 5,6,10,11,12,13, OF = O, 0%, = O3 and

OF, = Oy3. Furthermore, we have ((’)lT) (W) = (0; N W15) . Thus we only calculate for Wi5. We
0 0 O 0 0 b3

write z € Wis asx = (A,B)= (|0 0 ags|,|ba1 baz baz|). Let
0 0 ass bs1 bza b33

baz |

r15(2) = bas |

(rank( [b13] ), rank( 231

r15(x) and some additional conditions determine the orbits to which z belongs:

additional condition

ri5(x) | | z is in
(0,0,0) (b3, b3z) # (0,0) (@
azz  bas|,
(0,0,1) rank( a3 bas )=1 Oy
a3 baz|,
rank( a5 bas )=2 Og
bar  baz baz|,
(0,1,0) rank(ly by b)) T ©:
bar  baa boz||
rank( bsi bss bas )=2 O3
az3 ba1 bay  bo3 _
(0,1,1) rank( azz bz b3z b33 )=1 Os
rank( bar  ba2 a3 ) -1
_ bs1 b3z as3 ) ’ 1)
rank( | 923 bar  baz  bas ) =2 !
azs bz bza b33
ba1  ba2  ass3 _
(0,1,1) rank( bsr bus s ) =2 Osg
(07 2a 0) B 03
(0,2,1) - O19
(07 3a 0) B 04
(1,0,0) - Oy
(17 Oa 1) B 06
(1,1,0) - 05
ba1  ba2  as3 _
R e O O L
ba1 bao @3],
rank( bsr bus s ) =2 O1o
(1,2,1) - O15

Thus we obtain the cardinalities |O; N Wi5|.
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Next we calculate for Wig. Let

0 0 0 0 0 0
Wi =(]10 0 *|,[0 *x x|),
0 * = 0 * =
(0 0 0] [0 0 b3
Wi =< (|0 0 ag|,|0 by baz|)€V |biz#05,
10 ase2 asz]| [0 bsz bss
(0 0 0] Jo 0 0]
WE=<X(]0 0 as|,| 0 by by|)EV | by #0p,
|0 asz2 asz| |[bs1 b3z b33
( 0 0 0] [0 0 by
W136 = ( 0 0 az|,| 0 b2 b3 ) € V| bigbs1 #0
10 as2 asz]| |bs1 b3z bas]

We have |0;NWig| = |O;nWE|+|O:NWi|+|O;NWE | +|0;nW|. Furthermore, we see W2, = (W)T.
Thus we only calculate for Wi, Wi; and W3. To calculate |O; NW|, we use the Fourier transform for
2®2®2. We refer to Oy, W;, Wi and M in Section H as 07?2, W22, I/VjJ-222 and M?22, respectively.

0 = *

LetW:(* ool

|0; NW%| = |cO22NW| for i = 1,2,3 and |O; N W] = 0?22 NnW| for 5 < i < 9. By Proposition 2.2
we have

j) € 2®2® 2. The orthogonal complement of W is W+ = W222. We have

-1

oW o2 0 o2 0 17 [l nwg)
. _ Vi . 222 . :
: - |W2222\ . M . :
oz W) 0 o2 0 o] o nwgz)
The matrix M??? is explicitly determined in TheoremE3l We have [|OF22 N W322| ... |0F2 N W32|] T=

[1 (¢g—1) 0 0 0 0 O O]T. Thus we obtain the cardinalities |Q; N W|; [O2 N W] = (¢ —
1)(3¢%+3q+1), |OsnW| = q(g—1)2(2g+1), |OsnWs| = q(q—1)%(2¢+1), |OsnW | = q(q—1)*(2¢+1),
|07 N Wig| = alg —1)(¢° +3q +1), [Os N Wig| = ¢° (¢ — 1)*(¢* +4g+ 1), [Og N Wig| = ¢*(q — 1)*. Next
we calculate |O; N W|. Let

00 0170 0 by

W146 = ( 0 0 ags|,|0 by b3 ) eV bis#0,,
10 0 ass| [0 b3z bs3
[0 0 0 0 0 b3

Wi=<(]0 0 ax|,|0 by ba|)€V |azgbiz#0
10 asz2 ass 0 b3z b33

We have |O; N Wis| = |O; N Wik| +|0; N Wis|. We count |O; N Wik|. We write x € Wik as 2 =
00 O 0 0 b3
( 0 0 aos|, |0 bay bog ) If as3 = asz = bas = b3o = 0, we have x € O,. If rank({

az3 bzz})l
0 0 ass 0 b32 b33

azz b3z

a b
( 23 22 )

=1 and byy = b3s = 0, we have z € Og. If
asz  bsa

and ass = azz3 = 0, we have x € O3. If rank

asz b3z 33 b32

we have z € O12. Thus we obtain |02 N Wig| = ¢®(¢ — 1), |Os N Wi = ¢®(¢ —1)(¢®> — 1), |Os N W] =

¢*(q—1)(¢*~1), |OrNWig| = ¢*(¢—1)*(a+1), |O12NWig| = ¢°(¢—1)gl,. Next we count |O;NWis|. We
0 0 0 0 0 b3

writexEWfG asxz= (|0 0 asg|,|0 bag bog|). If agz = bao = 0, we have x € Og. If asz # 0
0 a3z assz 0 b3z b33

and bos = 0, we have x € O15. If as3 = 0 and by # 0, we have x € O15. If aszboy # 0, we have x € O13.

Thus we obtain |OsNWis| = q*(g—1)%, |O12NW5s| = 2¢*(g—1)3, |O13NW| = ¢*(g—1)*. Next we count

rank( [a23 bQQ}) =1, (az2s3,a33) # 0 and (baz, b32) # 0, then we have x € Or. If rank( [323 b22]) =2,
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0 0 0] [0 0 b3
|(9z n W136| We write z € W136 as r = ( 0 0 ass | 0 b22 b23 ) If b22 = 923 — Q32 — A33 — O,
0 asz2 ass| |[bs1 b3z b33

we have x € Os. If bogg = as3 = aszz = 0 and azs # 0, we have z € O7. If bys = as3 = 0 and
azz # 0, we have x € O19. If by = azz = 0 and ag3 # 0, we have z € Op. If by = 0 and

230392 # 0, we have x € Oq4. If bos §é 0 and rank( aO Z2B:|> =0, we have x € Oy4. If by # 0 and
@32 a33
rank([ 0 azs}) =1, wehave x € Oy5. If byo # 0 and rank([ 0 an}) =2, we have x € O14. Thus we
azz ass azz ass3
i

obtain |O3NWiy| = ¢*(¢—1)%, |O:NWig| = ¢*(¢—1)%, |010NWig| = ¢*(¢—1)?, [012NWig| = ¢*(¢—1)?,
|01uNWis| = ¢*(g=1)*, |0snWik| = ¢*(g—1)°, [O1sNWis| = ¢*(¢—1)*(2¢+1), |O1sNWi| = ¢*(¢—1)°.
Next we consider Wy7. We write z € Wiy as . = (A4,B) = (| 0 0 0 |, |ba1 baa bos|),
as; azz ass b31 b3a b33
and let v = [agl asz9 1133]7 Vg = [bll b12 b13]7 V3 = [bgl b22 bgg} and Vg = [bgl b32 bgg] . Let
W = {x € Wiy | v1 # 0}. We have |O; " Wiq| = |O; N Wy| + |0; N WE|. Let x € W Let

r?7 = (rank([vg UP,T])Jank([vlT vd vﬂ),rank([vf ol 113T vﬂ))

Y- (x) determines the orbits to which = belongs:

0. () ‘ 2 is in

(O, 1, 1) Oy

(07 ]-7 2) 05

(1, 1, 1) O

(17 ]-7 2) 07

(17 2, 2) Og

(17 27 3) 010

(27 2, 2) 012

(2,2,3) | Os5

(2,3,3) 017

Thus we obtain the cardinalities |O; N W% |.
air a2 a13 bir b2 O
Next we consider Wig. We write x € Wigas @ = (A, B) = (|a21 a2z aas|, |bar baa 0]). First

az1 agz 0 0 0 0

we count |O;NWiyg| for i = 2,3,4. Let W = {z € Wig | B =0} and Wiy = {z € Wis | B # 0}. We see
ailr a2 a13

|OiOW18| = |010W{)8| + \OiﬂWfS\. Let Mg?’(]Fq) = A= a21 Q22 as3| € Mg(Fq) ass — 0. We
asip az2 as3

have [OxNWix| = [{A € M?(Fy) | rank(A) = 1}| = [(2,3), 1| +(¢* = 1)¢%, [Os NWig| = [{A € M (F,) |

rank(A) = 2}| = [(2,3),2|+q-gly+¢*gly and [OsNWis| = [{A € MPF,) | rank(A) = 3} = (¢°~1)(¢*—

9)(¢®>—¢?). On the other hand, we see |OaNWi| = ¢-]2,1]. |O3NWik| = ¢-gly, and |O4NW| = 0. Next

we count |G(i,18)| for 5 < i < 18. Let g = (g1, 92,93) = ((g1ij)1<i5<2, (92i)1<i,j<3, (93ij)1<i,j<3) € G

and we consider when g € G(i,18). The action of g; gives a linear change of A and B. The action of

g2 means the same elementary row operation of A and B. The action of g3 means the same elementary

column operation of A and B. Since there actions are all invertible, g - (4, B) € Wig holds if and only
if

[9231 9232 9233] A [9331 9332 g333]§ _ {0}
[9231 9232 9233] B [9331 9332 9333] 0]
(91214 + g122B) [g331 332 9333]T = [0 0 0] Tv

[9331 9332 g333] (91214 + g1223) = [0 0 0].
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Let us count |G(5,18)]. Let g = (91,92, 93) = ((91i5)1<i,j<2 (92ij)1<4,j<3, (93i5)1<i,j<3) € G(5,18). We
have

(92339332 92339333] = [0 o],
[0 0 gi219332 + g1229333] = [0 0 OJ ,
[0 91219233 91229233] = |0 0 0.

It follows that go33 = 0 and g1219332 + 91229333 = 0. Thus we obtain |G(5,18)| = gly - (¢*> — 1)(¢* —
0)(®—q*) - (¢> = 1)(¢® — q)(¢® — ¢*). The counts of the cardinalities |G(i, 18)| for 6 < i < 18 are carried
out in the same way, and we omit the detail.

Next we consider Wig. We write x € Wig as ¢ = (|a21 a2 ass|,| 0 0 0 |). Let W119 =

az1 asz azz| |bs1 bs2 b3z

{l’ S W19 | U1 7& 0,1}3 7é 0} We have ‘Oz N W19| = 2|Ol n W10| — |Ol n W5‘ + |Ol n Wllgl. We
count |Ol N Wllg‘. Let z € Wllg, v = [agl a2 agg], Vg = [a31 aso a33], V3 = [bll b12 blg],
Vg4 = [b31 b32 bgg}. Let

rig(x) = (rank([vP)T U{]),rank([vg vl vZ]),rank([vlT vg]),rank([vg vl UQT]))

rig9(x) and some additional conditions determine the orbits to which = belongs:

ro(x) | x is in
(Oa Oa 17 1) 02
(0,1,1,1) O,
(Oa 1a2’2) 03
(1,1,0,0) O,
(1a 1; 0’ 1) 02
(1,1,1,1) O¢
(1,1,2,2) 012
(1,2,1,2) Os
(1,2,2,2) O12
(1,2,2,3) 017
(2,2,0,1) O3
(2,2,1,1) 012
(2,2,1,2) 012
(2, 2, 2, 2) 012 or 013 or 014
(2,2,2,3) 018
(2,3,1,2) O17
(2,3,2,2) 018
(2a3ﬂ273) 019

Consider the case rig9(z) = (2,2,2,2). When vy //vs and rank([o{ v] vf]) = 2, we have z € Oya.
When vy /v and rank([vf v3 v]]) = 3, then we have z € O14. When v1)vs, we have z € Oy3.
Thus we obtain the cardinalities |O; N Wi|.
Lastly, we consider Wyg. First, we easily see that
|02 N Waol = ql(2,3), 1] + [3,1],
‘Od N W20| = q|(273)72| + ‘312|7
‘04 N W20| =gl;.

Next we count |G(i,20)| for 5 < i < 20. Let g = (91,92, 93) = ((9135)1<i.i<2, (92ij)1<i,j<3, (93i5)1<ij<3) €
G and we consider when g € G(4,20). g- (A, B) € W holds if and only if

(9211 9212 9213] (G111A +g112B) = [0 0 0].

Let us count |G(5,20)[. Let g = (g1,92,93) = ((91ij)1<i,j<2 (92i5)1<i.i<3, (93i5)1<ij<3) € G(5,20). We
have
0 0

0
(9211 g212 g213] [0 O 0 |gs=[0 0 0],
0 g1 G112
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if and only if go13 = 0. Thus we obtain |G(5,20)| = gl, - gls - (¢> — 1)(¢® — q)(¢® — ¢*). The counts of

the cardinalities |G(4,20)| for 6 < i < 20 are carried out in the same way, and we omit the detail.

10.3. Fourier transform.

O

Theorem 10.3. The representation matriz M of the Fourier transform on FS with respect to the basis

€1, ...,e21 is given as follows:
1 [1012] [2122] [3321] [2112] [2112] [3132] 112332 %[4312] [3332] [4422)
1 el (1120]d;  [2310]c;  [1110)d;  [1110]d;  [2120]d>  3[1320)dz  1[3310jcz  [2320]d>  [3420]c,
1 [0010]dy a0 [1300]e;  [1110]c;  [1110]c;  [1110]es §[1310}d4 %[2300}(;1 [1310]ez  —[2410]¢y
1 [0001]c;  [0101]es @ —[1111]  —[1111]  —[1111)b;  —3[1311)a;  $[2301]  —[1311]b;  [2411]
1 [0010]d;  [1120]cz  —[2320] qfa [1110]c;  [1120]eq [1320} L [2310]d6 [1320]e,  [2420]dg
1 (10000, (1120, —[2320]  [110)es  qfs  [120jes  1[1320d,  1[23100dy —[2320bs - [2410]c,
1 d2 qes —[1300][)1 qes qes qg2 *[1300]d7 —%[1300](18 [1300]65 —[1400]([9
1 ds [1100]d;  —[2300]a;  [1100]ds  [1100]ds  [2100]d; LiPes —13320]  [1300]e;  —[2400]c3
1 [0010]c; —[0110]c;  [1310] [0110]ds  [0110]ds  —[0120]ds %[1340} 1qes [1330] —[1410]
1 dQ qes —[1300][)1 qeq —[1100]1)2 [1100]65 *q er %[2310] q3f3 —[1400](19
¢ | 1 [0010]c; —[0110]c;  [1310] [0110]ds —qc —[0110]dy —7[0310]@, —2[1300]  —[0310]dy q'ds

1 do qes —[1300]b;  —[1100]by qeq [1100]e5 %q367 1[2310]  —[1310]cy  [2420]
1 [0010jcg —[0110]c;  [1310] —qc [0110)dg ~ —[0110]dy —2[0310]c;  —2[1300] [1330] —[1410]
1 [0010jcg —[0110]c;  [1310] —qc —qc [1110)dip  30310]d1y %[2310}173 —[0310]dy  —[1410]
1 [0010]ce qeg —q3cs —qcy —qcy qfa —1[0310]c3 ——[1300] c3 —[1410]
1 —by [0120] —¢° [0110] [0110] qbics —3[0310]1;4 1130013  —¢®as ¢!

1 ds gbicy —[2310]  —[1120]  —[1120] —[1110]e; —3[0310]b5 1 [2300]  —[1310]b,  [2410]
1 Ccg 7[0110]1)1 [1300] 7(]1)1 7qb1 qelo 7%q369 %[1300]176 q3b7 7[1400}
1 C10 7[1110](11 q3a2 7[1100]&1 7[1100]&1 7[2110](13 %q3011 7*[3300] 7[1300]1)8 [2400}
1 by [0120] —¢* [0110] [0110]  —[0110]c1o 7%[0310]174 gq%lg [0310]b;  —[1410]
1 —[oo11]  [0111] —[0310] [0101] [0101] —[o111] 110311] —1[1301]  —[0311] [0401]

[3332] [4422] (4422 [4332] (5432 (3622 (4632 +[4732] %[5722] 116731] ]
(2320]d>  [3420]c;  [3420]c  [3330]cz  —[4420]b  [2610]d5  [3620]cs  &[3720]cio 7[4710}1)2 —£[5730]
(1310]e3  —[2410]c; —[2410]c;  [2310]eg (3430] [1600]bic;  —[2620]b;  —3[3720]ay [3720] §[4720]
—[1311])b;  [2411] [2411]  —[1311]cs  —[2411] —[2611] [2611] 11711]as —7[2701] [3720]
—[2320]by  —[2410]c; —[2410]c;  —[2320]c; (3430] —[2630]  —[2620]b; —1[3720]ay l[3720} [4720}
(1320]eq  [2420]ds  —[2410]c;  —[2320]c; (3430] —[2630]  —[2620]b; —§[3720]a1 %[3720} §[4720}
[1300]es  —[1400]dg [2400)d1io  [1300]f;  [2400]bics  —[1600]c;  [1600)erg  —i[3710]az —2[2700]c;o  —1[3710]
[1300]e;  —[2400]c;  [2400]dy;  —[2310]cs  —[3410]bs  —[1600]bs  —[2600]cg %[2700]@1 —3[3700]b4 [4710}

[1330] —[1410]  [2420)bs  —[1320]  —[2420]bs [1610]  —[1620]bs —7[3720} 1[1710]c13 §[3720}
—[1310]c;  [2420]  —[1400]dy  [1300]c; ~ —[2400]a;  —[1600]by  [1600]b7 l[2700]bs 3 [2700}171 3[3710]

[1330] —[1410)  —[1410] —[1320] [1410] [1610] —[1610] 1 [2710] —1if2r10] [2710}

@ fa —[1400)dg —[1400]dy  [1300]cz ~ —[2400]a;  —[1600]by  [1600]b;  —1[2700]bs %[2700}171 —1[3710]
—[0310]dy q*ds —[1410] —[1320] [1410] [1610] —[1610] =[2710] —1[2710] [2710]
_[0310)dy  —[1410]  q'ds  —[1320]  [1410] 1610)  —[(610]  Lprig]  —Lj2710) %[2710]

c3 —[1410]  —[1410] @fs —[1400]b1b3  —[1600]by —[1600]c12  £[1700]aias %[1700] 112710]
—¢ay q* q —q>b1bs qlen [1600] —[1600]b3 %[1700]112 2[1700]  —1[1710]
—[1310]by  [2410] [2410]  —[2310)b [3410] ¢5bg [1610]ay %[1710} —1[2700] 0

¢*br —[1400]  —[1400] —[1300]c;s  —[2400]bs ¢®ay ¢%b1o —3[1700] 111700] 0
—[1300]bs  [2400] [2400]  [1300]ajag  [2400]as —3¢° —3[1600] q 0 0
[0310]b;  —[1410]  —[1410] [0310] [1410] —q° [0610] 0 —q" 0
—[0311] [0401] [0401] [0311] —[0411)] 0 0 0 0 |
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Here, we put [abed] = (¢ — 1)%¢°(q + 1)¢(¢® + ¢ + 1)? and

ar =2q+1

as =2q—1
a3:3q+1
ag=q—2
bi=¢"—q—1
by =2¢° +2q+1
b3=q2+1

bi=¢*>—2¢—1

by =2¢° —2¢—1
bs =q*—3q¢—1
bgiq272

a=¢ -q-1
co=q¢ -¢—q-1
c3=2¢>—2¢—1
c1=2¢—¢>—-2¢—1
5 =¢"—¢+1
ce=q¢ +q+1
cr=¢+q¢>—-2¢-1
cs=¢>—2¢>—2¢—1
co=¢>—4qg—1

c0=2¢>—2¢> —2¢—1

ecn=¢—¢+5¢+1
CIQZQ?_QQ‘FQ‘FI
cs=¢+¢ —q+1

61:2q5+2q4—2q2—2q—1
e2=¢ ¢ —¢+q+1
es=¢q>—2¢* —2¢> + > +2¢+1
ea=q"—2¢+q+1

es=q° —2¢" — ¢+ 3¢ + 3¢+ 1
e =5¢° —Tq* —4¢® +4¢> + 3¢ + 1
er=2¢° —4¢* =3¢ +3¢> + 3¢+ 1
es=¢ +q*—q+1
eo=0¢"—-¢" -+ +2q+1
eto=q"—2¢" +¢®+2¢> —2¢— 1
en=¢—-¢d+¢-¢-1

fi= - -+ -1
fo=d"+¢ —q* -2 +q+1

fs=q"=3¢" +4¢> —2¢ -1

dy =2¢* —2¢> —2¢ -1 fi=q¢"—q°+2¢° —2¢—1

ds =3¢* —2¢*> —2¢ — 1 = =2 +¢" - +q+1
di=2¢"—¢*—4¢* -3¢—1 g1=q¢"+¢" =3¢ —2¢° + > +2¢+1
ds=q*+¢*—2¢*-2¢—1 go=q¢" -4 +¢* +4¢* —2¢— 1
de =q¢*—¢®>+1

d7 = 4—4q3—7q2—4q—1

ds=q¢*—¢*+1

dy=q¢"—¢ - +q+1

dio=q"+¢*+2¢+1

diin=q* —2¢° +2q+1

bo=q¢>-2¢+2 di=¢"+¢-¢*—q-1

By Theorem [I0.3], we can calculate the Fourier transform of the indicator function ¥ of the singular

18 18
set S={r eV |D(zx)=0}= UO“ ie., \P:Zei.
i=1 i=1

Corollary 10.4. The Fourier transform of ¥ is given as follows:

¢ 20— =27 — g+ 20+ = 2Oy,
g4 —2¢%4+2¢ " —q8 z € Oy,
0 z € 03,05, 0, 019, 011, 012, 013, 014, O16, O1s,
*qgs ; q’79+ . T € 84, O1s,
3 q - —2q9 q x € Ur,
V(z) = _q—7 + Qq—s _ q—9 z € O,
—q¢ T+q7? z € Oy,
g —q x € Oy,
—q 1! x € O19, 0o,
qill xT € 020.

In particular we have the following Li-norm bound of T

> 1¥(@)] = 0(d).

zeV

11. F2 @ H3(F,)

Define the trace map and the norm map as follows:

Try :Fpe 32— 2+7z €l

Ny :Fp2 220 2Z €Fy.
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Both maps are surjective. Try is a F4- linear map. N2|IFX2 : F;z — FJ is a surjective group homomor-
phism. Let H,(F,2) be the set of Hermitian matrices of order n. We consider H3(F,2), ie.,

ailr G2 ai3

Hg(]Fq2) =< A= |a3 ax asg| € M3(Fq2) a; €Fy a5 € Fq2(1 <i<j< 3)

a1z G23 as33
Let V = F2 @ H3(Fy2) and G = Gy x Gy = GLy(Fy) x GL3(F,2). We write z € V as = = (A, B) where
A, B € H3(F,2), and write g € G as g = (g1, g2) where g € GLy(IF;) and g2 € GL3(F,2). The action of
G on V is defined by

gz = (92493, 92B93 )91 -
Here, for a matrix h, h is the matrix whose (4, j)-entry is the conjugate over F, of the (4, j)-entry of h.
Define a bilinear form 3 of V as

B((Ar, B1), (A2, B2)) = Te(A1 A + B1B3).
In addition, define an automorphism ¢ of G as
(91,92)" = ((91) " (92) 7).
These 8 and ¢ satisfy Assumption 2.1

air aiz arz| [bun bz big
11.1. Orbit decomposition. For x = (A, B) = (|a1z a2z as3| , b1z baa bo ), we define
a3 a3 433 b1z b2z b33

ri(x) := dim(({A, B>]Fq)7 i.e., the F -dimension of the subspace of H3(F,2) generated by A and B,

a11 a2 a13 bﬁ bi2 b3
r2(z) :=rank(| @12 as2 asz biz by bz |),

a1z Gz3 aszz b1z bag b33
mi(x) := min{rank(rA4 + sB)|(r,s) € Fg\{((), 0)}},

ma(z) := max{rank(rA + sB)|(r,s) € F;\{(0,0)}}.

ri(x), ro(z), mi(x) and ma(z) are invariants of the orbits. We also define
dety (u,v) := det(uA + vB) € Sym® (IFE) where u, v are variables,
T(x) := () if and only if det,(u,v) € Oyqy in Sym3(F3).
For x € V and g = (g1, 92, 93) € G, we have
detgy (u,v) = Na(det(g2))dety ((u, v)g1).

Therefore T(z) is also an invariant of the orbits.
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Proposition 11.1. V consists of 15 G-orbits in all.

Orbit name Representative ri(xz) ro(x) T(x) mi(x) ma(z) Cardinality
00 0] Jo 00
O, (lo o of,l0 0 0]) 0 0 (0y 0 0 1
00 0/ [000
(0 0 0] [0 0 0]
O (lo o of,l0 0 0]) 1 1 (0y 0 1 [101101]
00 0/ [0 01
0 0 0] [0 0 0]
O (lo o of,l0 1 0]) 1 2 0y 0 2 [111111]
00 0/ [00 1
0 0 0] [1 0 0]
Oy (fo 0 0f,[0 1 0]) 1 3. () o 3 [231110]
00 0/ [00 1
(0 0 0] [0 0 0]
Os ({0 0 1,0 0 0}) 2 2 (13) 1 2 [212111]
01 0/ [0 01
0 0 0] [0 0 0]
Op (jo 1 0,0 0 0f) 2 2 (o) 1 2 3[231111]
0 0 0/ [00 1
00 0] [0 0o 0
O (1o 1 0], 0 0 wol|) 2 2 (0) 2 2 1[231111]
00 1| [0 m m
(0 0 11 [o 0 0]
Os (fo o of,l0 0 1|) 2 3 (0 2 2 [242111]
1 0 0l |01 0
0 0 0] [o 0 1]
Oy (fo 0 0f,[0 1 0]) 2 30 () 1 3 [332111]
00 1] [1 0 0
0 0 0] [0 0 1]
O10 (lo o 1,0 1 0]) 2 30 {13y 2 3 [343111]
01 0/ [1 0O
1 0 0] [0 0 0]
On (fo 1 0[,[0 0 0f) 2 30 (1) 1 3 [261111]
00 0/ [0 01
1 0 0] [0 0 O]
O12 (fo 1 0f,l0 0 1|) 2 30 {121y 2 3 [362111]
00 0/ [01 0
1 0 0] [0 0 0]
O13 (jo 1 0|,|0 1 0]) 2 3 (1) 2 3 $1471111]
000/ [00 1
1 00 [0 0 0
O14 (lo 1 0,0 0 wl|) 2 3 (12) 2 3 $[372111]
00 1| [0 m m
1 0 0 0 vy 1
O3 (o0 1 0|, 0 0f) 2 3 (3) 3 3 1[473011]
00 1| [mm 0

Here [abedef] == (¢ — 1)%¢°(q + 1)°(¢* — ¢ + )4 (¢* + 1)(¢* + ¢ + 1)) and p1, vo € Fy and po, 11,
vg € F 2 are elements such that X+ X — N (o), X? + 12 X2 — (N (1) + N(11)) X + 12N (vg) € Fy[X]
are irreducible. Since Ny is surjective, there exist such p, po, Ve, V1, V-

[Proof]

We count the cardinalities of the orbits of the 15 elements in the “Representative” column of the
table. We refer to these elements as x1,...,x15 in order from the top, and let O; be the orbit of
x;. First, we count the cardinalities for the cases of ro(x) < 2, by using the result of (G1,V;) =
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(GL2(Fy) x GLa(Fy2),2 ® Ha(Fy2)), the space of pairs of binary Hermitian matrices (see Proposition
[C1). We identify V; as the subspace of V by the embedding

0 01,2 0 01,2
s o % o, e

and identify G as the subgroup of G by the embedding

1
G1 9(.91792793)'_)(917( 92>7g3)EG'

We consider the induced injective map G1 \ Vi — G\ V. For = € V;, we have
|G|g12—r2(m)
qrz(z)|G1|g1377’2(m)
Therefore we obtain |O;] for 1 < i < 7,2 # 4. Next we calculate the rest cardinalities. Let Stab(z;)
be the group of stabilizers of xl Since |O;| = |G|/|Stab(z;)], it is enough to count |Stab(z;)|. Let
Un(Fp2) = {9 € GLn(Fp2) | 99" = I} and GU,(Fp2) = {g € GL,(Fy2) | 3t € F¥, 95" = tI,}. We use

the following fact for the calculation:

U (Fe) = ¢" 7 [[(a — (~1)"),

i=1

GUL(Fge)| = (g - D[Ua(Fpe) = (a— D" 7 [[(¢" — (~1)).
=1

|Gz| = |G|

Let H(n,m) := {z € H,(F,2) | rank(z) = m}. We have
gln(]qu)
q2m(n—m) : |Um(qu)| : gln—m(Fq2) '

The structure and the order of Stab(z;) for i = 4,8 <4 < 15 is summarized as follows:

[H(n, m)| :=

X5 Stab(x;) = |Stab(x;)]

74 (GL1(F,) x GUs(F,2)) x F, x F, a(q—1) - [GU3(F )|
s (GLa(Fy) x GLy(Fg2)) x F2 *(* —1)-gly

9 (GL1(Fg2))* x F2, g*(¢* —1)°

T10 (GLy(Fy) x GL1(Fg2)) x F3 Plg—1)(¢* - 1)
11 GUQ(qu) X GL1 (qu) (q2 — 1) . |GU2(Fq2)|
T12 (GL1(Fq) x GL1(Fg2) x Ker(Nag ,\{0})) X Fq q(g =g+ 1(¢* - 1)
r13 | 63 % ({(g1,92,93) € (GL1(Fg2))® | No(g1) = Na(g2) = Na(g3)}) | 6(¢*> —1)*/(¢ —1)°
T14 7)27 x ((GLl(qu))2) 2(¢? —1)?

T15 Z[3Z % ({g € GL1(Fgs) | Noy3(g) € GL1(Fg2)}) 3¢°-1)/(¢®+q+1)

First we consider Stab(z4). Let g = (91,92) = ((¢i5)1<i,j<2, (hij)1<i,j<3) € Stab(x4). Comparing the
rank of two entries, we see that gio = 0. Therefore we have ¢22¢2G2° = I3. Thus we obtain Stab(xzy) =
(GL1(Fq) x GU3(Fg2)) X F,. Next we consider Stab(xg). Let g = (g1, 92) = ((gij)fgli’jg, (hij)i<ij<3) €

Stab(.’tg) We have h13 = hgg = 0 h33 [Zi; Z;;:| = |:g;1 g;z:| and TI‘Q(h33h731) = Trg(h33h732) = 0.

Thus we obtain Stab(zg) = (GLy(F,) x GL;(F42)) x F2. Next we consider Stab(zg). Let g = (g1, g2)
((gij);%i7j§27 (hij)i<ij<3) € Stab(zg). We have gi2 = hia = hiz = hag = 0, Na(hs3) = g11, N2(ha2)
h33h11 = @22, h32h22 + hgng = 0 and Trg(hglhigg) + Ng(hgg) = g21. Thus we obtain Stab(:cg)
(GL1(F2))? x ]F32- Next we consider Stab(zig). Let ¢ = (g91,92) = ((gij);§¢7j§27(hij)lgi,jgls)
Stab(z10). We have g1o = hia = hiz = hog = 0, hazhas = g11, Na(hao) = hashii = goo2, hashos +
h33h21 = g21 and ng(hglhgg) + Ng(h32) = 0. Thus we obtain Stab(xlo) (GLl( ) X GLl( )) X FS
Next we consider Stab(z11). Let g = (91,92) = ((¢ij)1<ij<2, (hij)i<ij<3) € Stab(z11). We have

h h h
g12 = go1 = hiz = hog = h31 = haa = 0, g1 [h; h;ﬂ E a = Iy and g29Na(hs3) =

Thus we obtain Stab(z11) = GUz(F,2) x GL1(F,2). Next we consider Stab(x12). Let g = (g1,92) =
((gij)l_gli,jgg,(hij)lgz',jgzs) € Stab(z12). We have g12 = go1 = hia = h1z3 = ho1 = hz1 = hgs = 0,

m 1R
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NQ(hll) = N2(h22) = J11, h33h22 = (22 and Tr2(h22h23) = 0. Thus we obtain Stab(:clg) = (GLl(Fq) X
GL1(Fg2) x Ker(N2|Fq2\{0})) x Fy. For ¢ = 13,14, 15, the structure of Stab,(x;) is determined by Kable
and Yukie [2, Proposition (4.3), (4.8)]. Here, Ng/3 : Fgs — Fgs is the norm map. (It is assumed that V' is
defined over an infinite field in [2], but the method to determine the structures of Stab(x13), Stab(z14),
and Stab(z15) holds for the [F..)

Lastly, since leil |0;| = ¢'® = |V|, we have Ullil O, =V. O

11.2. The intersection between the orbits and the subspaces. The subspaces we choose to
calculate the Fourier transform are as follows:

0 0 O 0 0 O 0 0 0] [0 0 O] [0 0 0] [0 0 =]
Wi=(|{0 0 0[,|0 0 0]),Wa=({0 0 0|,|0 0 Of),Ws=(|0 0 0],[0 O =x|),
0 0 0] [0 0 O] 0 0 x| [0 0 x| 0 0 0] [* * x|
(0 0 0] [+ = «] [0 0 0] [o 0 «] [0 0 0] [0 0 O]
Wy=(]10 0 0|, |*x *x x[),Ws=(|0 0 0],]|0 0 =|),We=([0 % *[,]|0 x =x|),
_0 0 O_ B _O 0 | [k = | _() k| _() k|
[0 0 0] [0 0 O] [0 0 %] [0 0 «] [0 0 0] [0 0O =]
Wr=(10 0 *|,[0 0 %[),Wg=(|0 0 x|,]|0 0 =|),Wo=({0 0 0f,]|0 = =x|),
10 % x| [0 * B B 10 0 *] [x *
0 0 O 0 0 = 0 0 O 0 * 0 0 O 0 * =*
Wig= (|0 0 |, [0 * x|),Wi=(|0 0 0f, [« #1), Wiz = ([0 0 =|,|* * x*|),
0 * = * k% 0 0 =x * * 0 * = * k%
0 0 O * ok % 0 0 = 0 0 =
Wis=(|0 * *|,[x x x[)Wi,y=(|0 % =|,|0 % =|)and Wi5=W.
0 *x = * k% * k% * k%
The orthogonal complements of these subspaces are as follows:
0 * = 0 * = 0 0 O 0 *
WlJ_ = W157 WQJ_ = ( ook ok ko kK )7 W3J_ - WlSv W4L = W4a WE;J_ = ( 0 * = y | ¥ * )a
* % % * % % 0 * = * *

I/V7L = W14, VVGL = VVg7 I/VgL = ng, WILO = W10 and Wﬁ = Wn.
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Proposition 11.2. The cardinalities |O; N W;| for the orbit O; and the subspace W; are given as

follows:
Wy Wh W W, W W Wy Wy W
O, |1 1 1 1 1 1 1 1 1
O, | 0 [101000] [100000] [100101] [101000] [101010] [101000] [101000]  [100001]
O3 | 0 0 [111010] [110111] [111010] [111010] [112000] [112010] [110000]c;
O, ] 0 0 0 [230011] 0 0 0 0 [231000)
Os | 0 0 0 0 [211010]  [212010] [212000] [212010]  [211010]
Os | 0 0 0 0 0 11231010] 0 0 [230000)
O; | 0 0 0 0 0 %[231010] [231000] [231010] 0
Os | 0 0 0 0 0 0 0 [242010] 0
Oy | 0 0 0 0 0 0 0 0 [331000]
Ow| 0 0 0 0 0 0 0 0 0
Ol 0 0 0 0 0 0 0 0 0
Op| 0 0 0 0 0 0 0 0 0
O3] 0 0 0 0 0 0 0 0 0
Oul| 0 0 0 0 0 0 0 0 0
Oi5| 0 0 0 0 0 0 0 0 0
Wl 0 Wl 1 Wl 2 Wl 3 Wl 4 Wl 5 WQJ_ WE,L
1 1 1 1 1 1 1 1
[100001]  [100001] [10001]  [100000]d;  [101010]  [101101]  [101010]  [101010]
[110000]co  [110010]cz  [110000]f;  [110010)dy  [111000]c;  [111111]  [111010]cs  [111020]
[231000]  [231010]  [231010] [230011] [232000]  [231011]  [232010]  [231010]
[211000)b,  [211010]  [211000)b, ~ [211011]  [212000]b3  [212111]  [212020]  [211011]
%[230010] [230000] %[230010] 1[230010]b;  $[231010]  1[231111]  1[231010]  £[231010]
£1232000] 0 £[232000]  $[231010]  1[231000]b4 %[231111] 11231010]b5 %[231010]
[242000] 0 [243000] [242010] (242010]  [242111]  [242010]b3  [242010]
[331000]  [331000]  [331000] [331020] [332000]  [332111]  [332010]  [331010]
[342000] 0 [343000] [342010] [343000]  [343111]  [343020]  [342010]
0 [261000]  [261000]  [260010]b;  [262000]  [261111]  [262010]  [261010]
0 0 [362000]  2[361010] [362000]  [362111]  [362011]  [361010]
0 0 0 11470010) 0 Liarii11)  L[473010] 0
0 0 0 2[371010] [372000] %[372111] %[372020} 0
0 0 0 0 0 1[473011]  1[473010] 0

3 3

Here, we put [abedef] = (¢ — 1)%¢%(q¢ + 1)%(¢® — ¢ + 1)%(¢*> + 1)*(¢*> + ¢ + 1) and

by =¢q*+2 a=q¢+2¢+1 =4+ +q+1

by =2 +q+1 co=¢+3¢+q+1 do=¢*+¢*+q+1

by =2¢* +1 cs=q¢+¢+1 =+ +3+3+q+1
by =3¢>+1

[Proof]

We obviously have |0y N W;| =1 for all j. For j = 1,2,6,7, we obtain the cardinalities |O; N Wj|
for 1 < ¢ < 15 from Proposition For j = 3,4, we easily obtain the cardinalities. For j = 15,
we already calculated the cardinalities in Proposition [T.Il We calculate the rest cardinalities. For
1 <i,j <15, let G(i,j) = {g € G| gz; € W;} and G(i,j*) = {g € G | gz; € WjJ-} as the proof of
Proposition Here, for vectors v and w over Fp2, v //qu means that v and w are parallel over [,
and v)ﬁqw means that v and w are not parallel over ;. To calculate cardinalities for some sets, we

use the result in Section [l We refer to O;, W, W]»J- and M in Section [T as 0?12 WJ2H2, WJJ—ZHQ and
M?H2 respectively.
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0 0 O 0 0 b3
We consider W5. We write an element z € Wsasx = (|0 0 0 |,| 0 0 boz|). Let wo =
0 0 ass b13 b23 b33

0 0
( 0 * )and W51 = {x e Wsy I b13 # 0} We have |OiﬁW5| = |(’)ZﬁW5?|+|(’)mW51| We
0

o O O
* O O

0 0
,10 0
0 = =
already counted the cardinalities |O; N W2| in the proof of Proposition [[.2 |02 N W2H2| = |0; "W
for 1 < i < 3 and |O2H2 N W2H2| = |0; 11 N WY| for 4 < i < 6. Thus we count |0; N Wi|. If
ass = 0, we have € O3. If agz # 0, we have € Os. Thus we obtain |03 N Wi| = ¢3(¢*> — 1) and
05 "Wyl =¢*(¢> = 1)(g - 1).

0 0 ais [ 0 0 b13
Next we consider Wg. We write an element © € Wg as . = (| 0 0 axaf,[0 O bas|). If
ars G23 asz| |biz baz b33

aiz  G23| _ [ass a3 G23| _ aiz G623 G33|\ _
[513 b%} =0 and b33] # 0, we have z € Oy. If {bm b23} = 1 and rank( |:b13 bos bBJ) =1,

a3 a3| _ a1z a3 a33|\ _ ai3 [b13
we have z € Os. If _{513 b23} = 1, rank( [b13 bos 633]) = 2 and LQJ /¥, b

}7 then we have

x €O If |13 92| = rank( 13 23 053 ) =2 and 13 Xr bi , then we have x € O7. If
b1z bos | big b2z b33 agz| "7 |bes

[213 223} = 2, we have € Og. Thus we obtain [0y N Wg| = ¢® — 1, |05 N Ws| = q(¢* — 1)(q + 1),
13 023
|05 NWs| = (¢* = 1)(¢+1)(¢* — q), [Or N Ws| = ¢*(¢* — 1)(¢* — q) and [Os N Ws| = ¢*(¢* — 1)(¢* — ¢?).
0 0 O 0 0 b3
Next we consider Wy. We write an element z € Wy asxz = (|0 0 0 |, i bﬂ bas|). Let
0 0 ass b13 b23 b33

W = {x € Wy | baa # 0}. We have |0; N Wy| = |0; N W5| + |O; N Wi|. Thus we count |O; N W¢|.

Let z € Wy. If ags = by = 0 and rank( [222 223 ) =1, we have x € Oy. If azgz = b3 = 0 and
23 b33

ank( [222 223}) =2, we have x € O3. If agz3 = 0 and b3; # 0, we have z € Oy4. If ag3 # 0 and b3; = 0,
23 b33

we have x € Og. If azzbs; # 0, we have z € Oy. Thus we obtain |02 N W¢| = ¢*(¢ — 1), |03 N Wy | =

¢*(q—1)%, [0sN W] = ¢*(q —1)(¢*> — 1), [Os "Wy | = ¢*(q — 1)* and [Og N Wy | = ¢*(¢° — 1)(¢ — 1)*.

0 O 0 0 0 b3
Next we consider Wyo. We write an element x € Wig asz = (|0 0 aa3|,| 0 bay bag|).
0 @23 as3z] |biz bz bas
0 0 O 0 0 O
Let Wi, = (|0 0 x|,|0 x x|)and Wiy = {z € Wig | b1z # 0}. We have |O; N Wyo| =
0 *= = 0 * =
|0; N W] + |0; N Wiy|. To calculate |O; N W1y|, we use the Fourier transform for 2 ® Hy(F,2). Let
W = ( 2 : , I ﬂ) € 2® Hy(F,2). The orthogonal complement of W is W+ = WZ#2. We have

|0; "W = |cOH2NW| for i = 1,2,3 and |O; N W| = |O2H2 N W] for i = 5,6,7. By Proposition
221 we have

-1
01w o o o0 17 fiomEawg
: _ v . A2H2 .
2H2: W32 ; 2H2 ) 2H2 2H2 : 2H2
|07 =N W] 0 [ 0 [l |07 N W52
The matrix M2 is explicitly determined in Theorem[Z3 We have [|O#2 N W3H2| ... |OzH2 0 W3H2|] =

1 (¢g—1) 0 0 0 O}T. Thus we obtain the cardinalities |O; N W |; |02 N W = ¢¢ — 1,

03N W] = 2¢* —¢° =4, [0sNWip| = ¢° —¢* —¢* +4, [OsNWip| = 54" —¢°+¢° —q* +5¢%, |O:NWy| =
0 O 0 0 0 b3

1¢%(¢*—1)%. Next we calculate |O;N\W{;|. Wewritex € Wijasz = ({0 0 as|,| 0 baa bas]).
0 @23 asz] [biz bas s
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If b22 = Q23 = Q33 = 0, we have x € 03. If b22 = a3 = 0 and ass 7& 0, we have z € 05. If b22 =0
and ags # 0, we have x € Og. If by # 0 and a3 = aszs = 0, we have © € Q4. If bosass # 0 and
azs = 0, we have x € Og. If bygass # 0, we have x € Q9. Thus we obtain |03 N Wi| = ¢3(¢* — 1),
|05 N Wio| = ¢*(q—1)(¢* — 1), |[Os N Wiy| = ¢*(¢* = 1)%, |04 N Wiy| = ¢°(¢ — 1)(¢* — 1), [Og N Wi| =
¢*(¢ = 1)*(¢° = 1), |O10 N Wip| = ¢*(¢ = 1)(¢* = 1)*.

0 0 O 0 bia bis
Next we consider Wy;. We write an element € Wi asz = (A,B) = ({0 0 0 |, |bia by bos|).
0 0 ass b1z b2z b33
0 0 0] [0 % = 0 00 0 0 =
Let WY =(|0 0 0|, |+« x x|),Wh=({0 0 0[,|0 % x|)and W} = {x € Wi | assbia #
0 0 O B 0 0 O * % %

0}. We have |O; N W11| = IO AW, |+ |0; N Wy| — |O; N W |+ |O; N W |. First, we count |Q; N WY|.
For2<i<4 lett;_ 1= i Oi-14-i

. Let
1Oa—iic1 Os—ia—i
0 x =
WP ={g€GL3(F,2) | gti-ig” € | * *| CH3(Fp)
* k k

For 2 <i <4, we have
0; nWE| = {A = [agli<ij<s € H3(Fg2) | ar1 = 0,rank(A) =i — 1}
W |
{g € GL3(Fg2) | gti-1g" = ti1}]
(@® =) —q") - Hv=[9n 912 i3] € ]F32 | v #0,vt; 10" = 0}|
gD gly [ (Fgz) - |Ui—1(Fg2)|

For j € Z>1, let

Then we have ‘
(q ~ )@ =) (@ Xia - 1)
(DA - gly [ (Fe2) - [Uina(Fg2))

0N Wi | =

Thus we calculate X;. Let

Vi=|{v=1[a1 - 2z]¢€ ]F(JZ‘2 | No(21) 4+ -+ + Na(z;) # 0}].
X; and Y satisfy the following recurrence relations:
X =1,
Y1 = q2 -1,

Xk+1 = Xk + (q + 1)Yk7
Vipr = (¢ = DX+ (¢* —q¢— 1)Ya.

By solving these equations, we obtain

{X]} _ { ¢t = (—q) g 1) ]

Vi l@=1¢¥ 4+ (=g Mg - 1)

Theref tain 02N W =@ - +q—1,|10sNW| =q¢" +¢* —2¢° +¢* —q, |0, WD | =
+ ¢ Next we count |O; N Wi|. We write an element z € Wi as # = (A, B) =

- q

0 0 0 0 bis A

00 0 0 b22 bas|). If by = 0 and rank( |22 23}) =1, then € Oy. If by3 = 0 and
baz  bss

0 0 O b15 b23 b33

rank( [Z” 223 =2, then z € O3. If bys # 0 and byy = 0, then z € Os. If bygbas # 0, then z € O4.
23 33

Thus we obtain [0y MW, | = [H(2, 1)], [Osn W, | = [H(2,2)|+¢*(¢* — 1), [0s0 W], | = ¢*(g = 1)(¢* - 1).
Lastly, we easily see that if 2 € W3, then x € O1;. Thus we obtain |O1; N WE | = ¢%(q — 1)(¢* — 1).
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0 0 0 0 b2 b
Next we consider Wio. We write an element x € Wisasx = (|0 0  ao3]|, bﬁ 19272 bas | ). For
0 @23 ass b1z baz b33

2 < i <4, we have
00 0
|0; N Wia| =10, "W+ {z=1|0 0 a| €Hz(F,)|rank(z) =i —1
0 a@ b

Thus we easily see that [OoNWia| = ¢3 —¢*>+2¢—2, |OsNWia| = ¢" +¢* — ¢ +¢> —2q, |O4NWia| = ¢ —
q" — q* + ¢*. Next we count |G(i,12)| for 5 < i < 12. Let g = (g1, 92) = ((9ij)1<i.j<2, (hij)i<ij<3) € G
and we consider when g € G(i,12). g - (A4, B) € W13 holds if and only if

(P11 hig has] ARy has @T] — H

(b1 iz hus) Blhn iz has) 0
[hi1 Pz Pas) (911 A + g12B) . [0 0 o],
[ha1 haz  hos] (g11A+ g12B) [hor  hao  has]” = 0.

Let us count ‘0(5, 12)| Let g = (gl,gg) = ((gij)lgi,jg% (hij)lgi,jSS) S G’(57 12). We have

[Tra(highis) Na(has)] = [0 0],
[0 guthizs guhiz +g12hiz] = [0 0 0],
g11Tra(haghas) + g12Na(has) 0.

It follows that hiz = gi1hoshi2 = gi1hashoz = 0, g11Tra(haohos)+g12Na(hes) = 0. If g1 = 0, then hog =
0. Therefore [{((gij)1<ij<2, (hij)i<ij<3) € G(5,12) | g11 = 0} = q(g — 1)* - (¢* — 1)(¢° — ¢*)(¢® — ¢*).
If g1 7& 0 and h23 = 0, then hlg =0 and h35 7& 0. Therefore |{((gij)1§i,j§27 (hij)lgi’jgfj) S G(5, 12) |

gi1 7£ O,h23 = O}| = q2(q — 1)2 . (q2 — 1)3(]6. If gllhgg # 0, then h12 =0 and gi2 = —911%.

Therefore [{((gij)1<ij<2, (hijhi<ij<s) € G(5,12) | gi1has # 0} = (¢* — 1)%¢*(¢° — ¢*) - ¢(¢ — 1)*. Thus
we obtain |G(5,12)| = ¢"(¢ — 1)°(¢ + 1)3(2¢> + ¢ + 1). The counts of the cardinalities |G(i,12)| for
6 <1 < 12 are carried out in the same way, and we omit the detail.

Next we consider Wi3. We easily see that |02 N Wis| = ¢ - [H(2,1)| + |H(3,1)], |O3 N Wi3| =
q - |H(2,2)| + |H(3,2)|, and |04 N W13 = |H(3,3)|. Next we count |G(i,13)| for 5 < i < 13. Let
9= 1(91,92) = ((9ij)1<i,j<2; (hij)1<i,j<3) € G and we consider when g € G(i,13). g- (A4, B) € Wi3 holds
if and only if

[hi1 hiz has) (guA+g12B)=[0 0 0].
Let us count |G(5,13)]. Let g = (91,92) = ((9ij)1<ii<2, (hij)i<ij<3) € G(5,13). Then we have
[0 911h13 911h12 +912h13] = [0 0 0] ‘When gi1 = 07 we have h13 = 0. Therefore we obtain
{((9i)1<i,5<2 (hij)i<ij<s) € G(5,13) | g1 = 0} = q(g—1)*- (¢* = 1)(¢° — ¢*)(¢° — ¢*). When g11 #0,
we have h12 = hlg = 0. Therefore ‘{((gij)lgi,jg% (hij>1§i,j§3) € G(5, 13) | g11 75 0}| = qg(q_ 1)2 . <q2 —
1)(¢° = ¢°)(¢° — ¢*). Thus we obtain |G(5,13)] = q(q — 1)*- (¢ + 1 + ¢)(¢° — 1)(¢* — ¢*)(¢® — ¢*) =
¢ (q—1)%(g+1)3(¢> +1)(¢*> + ¢+ 1). The counts of the cardinalities |G(i, 13)| for 6 < i < 14 are carried
out in the same way, and we omit the detail.
0 0 a3 0 0 b13
Next we consider Wi4. We write an element x € Wigasx = (A, B) = (| 0  aga ass|,| 0 baa bas|).

a1z a3 ass| |biz baz b33
Let WP, = {# € Wiy | a13 = 0,a22b13 # 0} and W}y, = {z € Wiy | a13 # 0}. Then we have
|O0; N Wiy = |0; 0N Ws| + |0; N Wi| + [0; n W]+ |0; N W] for 1 < i < 15. Furthermore, let
Wi, = {2z € Wiy | big//r,a13} and WP, = {& € W}, | bis}/r,a13}. We have the map

Wi 3 (A, B)— (B - ZﬁA,A) € Wiy UWPy = {z € Wig | a3 = 0,b13 # 0}.
13
We easily see that this map is surjective. The inverse image of (4, B) € Wi, U W}, is {(B, A + aB) |
a € Fq}. Therefore we obtain |Oz n W14| = |Oz N WG‘ + (q—|— 1) . (‘Oz n W110| + |Oz N W104|> + |OIL n W134|
Thus we count |O; N WP,| and |O; N W3,|. First we count |O; N WY|. Since a3 # 0, we have
1 <rank(z) < 2. If rank(A) = 1, we have z € Oy;. If rank(A) = 2, we have z € O12. Thus we obtain
011 N W = ¢5%(q —1)(¢? = 1) and |O12 N W] = ¢°(¢ — 1)%(¢* — 1). Next we count |O; N W3, |. If
929 — b22 =0and [043 blg] // [agg 623], we have x € OG- If a9 — b22 =0 and [alg blg] y [agg bgg],
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we have x € Os. If [azs  bao] # [0 0], we have z € O14. Thus we have |Os NWE,| = ¢*(¢* —1)(¢*> —q),
[0s NWEY = ¢*(¢> = 1)(¢* = 9)(¢* — ¢*), and |[O1a N WPy | = ¢°(¢* — 1)(¢* — 1)(¢® — ).

Next we consider Ws-. We easily see that |O; N Wi-| = (¢ + 1) - |O; N WY, | for 2 < i < 4. Next
we count |G(i,2J‘)| for 5 < < 13,14 7'é 7. Let g = (gl,gg) = ((gij)lgi,j§2; (hij)lgi,jgi‘a) € G and we
consider when g € G(i,24). g- (A, B) € W5 holds if and only if

[hin hiz haz] Ahay hag h13]T1 _ [O}

[hiv P1s hus) Blh hoa Bis) | 0]

Let us count |G(572L)‘. Let g = (gl,gg) = ((gij)lgi,jg%(h/ij>1§i,j§3) S G(572L). Then we have
[Tro(hi2h13) Na(hiz)] = [0 0], and therefore hy3 = 0. Thus we obtain |G(5,24)| = gly - (¢* —1)(¢® —
) (q® — q*) = ¢"(qg — 1)°(qg + 1)*(¢®> + 1)%. The counts of the cardinalities |G(i,2%)| for 6 < i < 13,
i # 7 are carried out in the same way, and we omit the detail. Next we count |O7 N W3-|. We write an

0 a2 ai13 i b12 b13
element v € O; NW3 as = (A, B) = (|a1z az a|, bia  bap o3| ). Since ri(x) = 2, we have
a3 a3 ass| |biz baz  bss

rank( [am al?’}) < 1. If rank( [au a13]) =0, z € Ws. Let

b12 blg b12 b13
a2 ai13|y _ 4 |az| _ |0
a2 5p =[] = [o]

a2 a3l _ , |a13 0
] e IR P R )2
Clearly |07 N W5t = |07 N W] + |07 N W50 + |07 N Wi, We easily see that |07 N W50 =

|O7NW14|—|O7NW|. Next we calculate |O7NW3-t|. Since rank( {212 213]) =1, we write [a12 b12] =
12 bis

Wi = {er;

and

Wit = {er;

Qg [b13 blg} for a € Fy2. We have the map

‘O7QW2J_1|9$|—>QQ$€|O7QW2J_O‘

1 0 0
where g9 = (I3, |0 —a; 1]). We easily see that this map is surjective. The inverse image
0 1 0
1 0 0
of ¥ € O7 N W50 is {(Ig7 0 0 1])z|a€F,.p. Thus we obtain |O7 N Wil| = ¢* - |07 N
0 1 @

Wik, and |07 N W3t = (¢% + 1)|O7 N Wil — ¢*|O7 0 Ws|). Next we count |G(14,21)]. We have
[Na(h11) + Na(hi2) + No(hig)  poTra(hishiz) + piNa(his)] = [0 0]. Let
X5 ={(a,b) € F2 | Ny(a) + Na(b) = puoTra(ab) + 11 N2 (b) = 0}.
Then we have
{o € G(14,27) [ hu =0} = gly - (¢° = ¢*)(¢° — ¢") - (1X5| — 1),
{o € G(14,2%) [ hur # 0} = gly - (¢° — ¢*)(¢° — ") - (¢ + D)(@® +¢* — a — | X5]).
Thus we count |X5-|. We use the result of G(7,21). We proved |G(7,21)| = ¢*(¢ — 1)%(¢ + 1)(¢® +
1)(2¢>+1). Moreover, we have |G(7,21)| = gly-(¢°—4?)(¢°—¢*)-(¢*| X5 | —1). Therefore | X5 | = 2¢>—1.
Hence we obtain
[{z € G(14,2) | huy = 0} = 2gl, - (¢ — 1)(¢° — ¢*)(¢° — "),
{z € G(14,27) | hax # 0} = gly - (¢ = D* (¢ + 1)*(¢° = ¢*)(¢° — ¢"),
and thus |G(14,24)] = ¢7(q — 1)%(q + 1)*(¢* + 1)2. Lastly, |O15 N Wg-| = ¢'6 — 12 |0; N W5
Next we consider Wz-. For 2 < i < 4, we easily see that |O; N\W:-| = ¢|H(2,i—1)|+|O; N W, |. Next
we count |G(i,5%)| for 5 <4 < 12. Let g = (g1,92) = ((9ij)1<i,j<2s (hij)i<ij<s) € G and we consider
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when g € G(i,5%). g- (A, B) € W& holds if and only if

[hii his his) A[B Pa @Tl _ m

— — T
[hi1 hiz has) B[hir his hag) 0
(b1 hiz has] (g11A + g12B) = [0 0 0].
Let us count ‘G(5,5l)| Let g = (gl,gg> = ((gij)lgi,jg% (hij)lgi,j§3> S G<5,5l). We have
{ [Tro(highis) Na(his)] = [0 0],
[0 gi1his giihiz +g12has] = [0 0 0].

and therefore hiz = 0 and gi1h1z = 0. When g11 = 0, we have [h11  hia] # [0 0]. Hence [{g €
G(5,5%) | g11 = 0} = q(g — 1)* - (¢* — 1)(¢® — ¢*)(¢° — ¢*). When g1 # 0, we have hi = 0. Hence
{g € G(5,57) | gu = 0} = ¢*(¢ — 1)* - (¢* — 1)(¢° — ¢*)(¢° — ¢"). Thus we obtain |G(5,5")| =
¢ (q—1)°(g+1)3(¢>+1)(¢* +q+1). The counts of the cardinalities |G (i, 5)| for 6 < i < 12 are carried
out in the same way, and we omit the detail. (|

11.3. Fourier transform.

Theorem 11.3. The representation matriz M of the Fourier transform on .7-"6; with respect to the basis
e1,...,e15 18 given as follows:

[ 1 [101101] [111111] [231011] [212111] 1[231111] 1[231111]  [242111]
1 ~1 [110010]d;  [130010]c; ~ —[111010] f [130010]ds %[231020] [242020]
1 [100000]d; a9 [130000]e;  [111000]ez  $[230000]ds  1[131000]co  [142000]cs
1 [000100]c;  [010100]ey A f —[111101] —£[130100]b; —$[131100] —[142100]
1 ~1 qes —[130001] q92 —1130101]  3[130000]ds [141000]d4
1 —dy [110000]d3  —[130000]b;  —[111101] —1g%es 1[231010]  [242010]
1 [101010] [0110000]cz ~ —[131000]  [111000]d4 11231010] 1gtey [141000]ds
¢ | 1 [101010]  [011000]c; ~ —[131000]  [111000]d4 %[231010] %[130000]d5 —qtdy
1 —dsy qges —q¢?cs —qfs *1q3ds —1[130000] —[141000]
1 —1 —[010010] @ qes —3[130010] i[130010] q*
1 —dy qer —[130010] ~ [111000]c;  —1[130000]b, %[131000] —[142000]
1 [100001] qcy —[130000] qes —%[130100] ?[130001] [041000]
1 cs qcs —day —[011000]¢7 3¢%cs —5[132000]  [042000]
1 —1 —[010010] @ —[111010]  —3[130010] 3¢%co —[141000]
[130100] [040100]

| 1 —[001100] —[011100]  [031000] (011100] 1fo21100]  —1
]

[332111] [343111] (261111 [362111] 11471111] 1[372111]  £[473011]
—[231010]d,  —[242010] —[160010]d;  [361011] %[370010]05 —% [271010] —% [373010]
[231000]es  —[242010]  [160000]e;  [261000]cy o] [370000]cs  —3[271010] —3[373000]

—[131100]cs ~ [142100]  —[160110]  —[261100] q[270100]a1 11171100 %[273000]
—[130000]f> [141000]eg ~ [160000]cs  [160000]es  —=[270000]cy f% [271010) 5 [272000)
[131000)ds  —[242010] —[160000]by  —[261100] %[270000]«:8 —3[271010]  1[273000]
—[231000]  —[242010]  —[161000] ~ —[261001]  —2[372000]  3[171000]co —%[372000]
—[231000]  [141000]  —[161000] [161000] 1[2710001 —1[271000]  1[271000]
@ fs [142100]  —[160100] [361000] § [170000]a?  L1[170000] —1[172000]
[131100] qeg —[160000]  —[261000]  %[170000]a, i[170000] %[171000]
—[231100]  —[242000] q%b3 —[161000]az  $[270000] i[171000] 0
[331000]  —[242000] —q¢Casy q%b4 —2[170000] %[170000] 0
—[031000]a?  [042000]a; 3q¢° —3[061000] q 0 0
[130000] [141000] ¢t [160000] 0 —q" 0

—[031100]  —[041100] 0 0 0 0 q
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Here, we put [a,b,c,d, e, f] = (¢ — 1)%¢"(¢+ 1)°(¢*> — ¢+ 1)%(¢* + 1)°(¢* + ¢ + 1)7 and

ap=2¢—1 =+ +¢+q+1 L= -+ —2¢>+¢+1
as =q—2 do=q*+1 fo=q¢"—¢"—1

by =2¢> +q+1 ds =2¢* + ¢ +2¢> +q+1 f3—q6—2q5+q4—q2+q—1
by =2¢ —q+1 di=q¢"—¢*—1 91—q7—q +2¢° —¢* —¢* -1
by =q* —2q +2 ds =q* —2¢* — 1 g=q —q¢ +1

by=q¢*>—2 de =2¢" —2¢°> +2¢°> —q+1

a=¢-q-1 dr=¢*—¢*+1

=¢-2¢"+q-1 e=¢+¢F-¢—-q-1

cs=¢"—q*—1 e2=q¢"—¢*—1

c=¢—-2¢" -1 es=¢" —3¢"+2¢° —2¢° +q—1

s =2¢>—1 64—3q5—q —2q +2q2—q+1

6 =2¢°—3¢* -1 =0 -+ ¢ -1

=3 -¢@F+q-1 e=q¢"—¢*+1

—_ 3 2 _ .5 _ 4 3 _ 2 _

cs =q° + 3q 3g+1 er=q q+2q 2q 1

o=@+ —qg+1 es=¢"—2¢"—¢*+1
e=q¢"—q¢"—¢+¢ -1

Corollary 11.4. The Fourier transform of ¥ is given as follows:

¢ gt =g T+ g8 z €Oy,
=207 +2¢7% =27+ ¢® 1z €O,

— 477" +2¢78 z € O3,

277 4+3¢ 8 —¢° z € Oy,

g6 —2¢"4¢8 z € Os,

\/I}(ZE) _ _q77 + 2(]78 - qu HANS 067
—q¢ "+q7° x € Or,

x € Og, 019, 012,
¢®—q? z € Oy,
R z € O11,

—q 1 x € 013,015,
q_l1 S 014.

In particular we have the following Li-norm bound of T

> 1¥(@)] = 0(d).

zeV

12. ORBIT DECOMPOSITION OF F2 @ A%(F5)

Let A?(F}) be the set of all alternating matrices of order n over F,. We write A € A*(F3) as

0 a2 a3z a4 ais
—a12 0 a23  G24 Q25
A= |—a13 —as3 0 ass  ags | where aij € Fq.

—a14 —Q24 —a34 0 a45
—ai5 —ags —ass —ags 0

Let V' =F2 ® A*(F)) and G’ = GLy x GL5. We write 2 € V' as x = (A, B) where A, B € A*(F;), and
write g € G' as g = (g1, 92) where g1 € GLa and g2 € GL5. The action of G’ on V' is defined by

gz = (92Ag3 , 92Bg3 )97 .
Define a bilinear form 3 of V' as
B((A1, B1), (A2, By)) = Tr(A1 A7 + B1BJ).

In addition, define an automorphism ¢ of G’ as

(91.92)" = ((91) " (g3) 7).
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These 8 and ¢ satisfy Assumption 2]

Let wmn(1 <1< 2,1 <n < m <5) be the element of V' that the (n, m)-entry and (m,n)-entry of
Ith matrix is 1 and —1 respectively and the rest are all 0. For example,

01000 00000
-1.00 0 0l |00 00O
w=(0 0 0 0 0/,{0 0 0 0 0])
0 00 0O [000O0O
0 0000/ [0000O0O0

The set {uymn | 1 <1<2,1<n<m <5} is aFyg-basis of V7.
For z = (A, B) = Zl§i<j§5 a;juiij + Zl§i<j§5 bijuz;; € V', define

r1(z) := dim((A, B)Fq), i.e., the dimension of the subspace of A?(F)) generated by A and B,

0 a2 a3 ayy a0 b2 bz by bis
—ai2 0 a3 ags azs —biz 0 bas  bas  b2s
ro(x) :=rank(| —aiz —az3 0 asq4 aszs —biz —baz 0 bas  b3s |),
—a14 —azs —azs 0 ass —biy —bay —bzy 0 bys
—a1s —azs —azs —ags 0 —bis —bas —b3zs —bys O

mi(z) := min{rank(rA 4+ sB)|(r,s) € Fg\{(O, 0)}},
ma(z) := max{rank(rA + sB)|(r,s) € F2\{(0,0)}}.
ri(x), ro(z), mi(x) and ma(z) are invariants of the orbits.

Proposition 12.1. V' consists of 9 G'-orbits in all.

Orbit name Representative ri(z) ro(z) mi(z) ma(x) Cardinality

O 0 0 0 0 0 1

O- U112 1 2 0 2 [1,0,1,0,1,1]
O3 U112 + U134 1 4 0 4 2,2,1,1,0,1]
(on u112 + U213 2 3 2 2 2,1,1,1,1,1]
Os U112 + U214 — U223 2 4 2 4 [372,2,1,171]
Os Ui12 + U234 2 4 2 4 1(2,5,1,1,1,1]

Quite + puiia — pauazs + (U3 — 200)u13a
(@ +pruziz + (U3 — 2p0)u214 2 4 4 4 1[4,5,1,1,0,1]
—(p3 — 2p0)u223 + (17 — 2100234

Os U112 + U215 — U234 2 5 2 4 [3,5,2,1,1,1]
Oy U112 + U134 + U215 + U223 2 5 4 4 [4,6,2,1,1,1]

Here, we put [a,b,c,d,e, f] = (¢ —1)°¢"(¢ + D(¢* + ¢+ DU® + D(¢* + ¢* + > + ¢+ 1) and p1,
po € Fy are elements such that X2 + 1 X + po € Fy[X] is irreducible.

[Proof]

We count the cardinalities of the orbits of the 9 elements in the “Representative” column of the
table. We refer to these elements as x1,...,z9 in order from the top, and let O; be the orbit of the
element z; For the calculation for the cases of ro(z) < 4, we use the result for V"' := F2 @ A*(F}). Let
G" = GLy x GL4. The action of G” on V" is defined by

G' x V"3 ((91,92), (A, B)) = (92Ags , 92Bg3 )gi € V".

By the embeddings V" > (A, B) — ([A O] , {B O]) eV’ and G" 3 (¢1,92) — (g1, <92 1)) e G,

we regard V" as the subspace of V' and G” as the subgroup of G’. We consider the induced injective
map G1 \ Vi = G\ V. For x € V" we have

|Gl‘gl47r2(w)
q @) |G” ‘g15—7‘2 (x)

Therefore we obtain |O;] for 1 < ¢ < 7. We calculate the cardinalities for the cases ro(x) = 5. Let
Stab(z;) be the group of stabilizers of x;. Since |O;| = |G’|/|Stab(z;)|, it is enough to count |Stab(x;)].

|G x| = |G x|
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For = (A, B) € V', let ro(x) = 5. Considering the rank of [A B] € M(5, 10)(F,), we have r (z) = 2
and mi(z) > 2. Let mi(x) = 2. We have

x ~ U2 + biaugiz + brausig + bisuzis + bazuoes + basoos + bastoss + b3atozs + basuass + basuoss

b1z by bis

baz  bas a3 0 b3s  b3s
where rank(| 0 bss  bss|) = 3,rank( | —bss 0 bys | ) =2

—bzs 0 by —bss —bsys O

—bzs —bss O

~ U112 + U213 + U245

~ Ig.
Let mi(z) = 4. We have

T~ Ur12 + U134 + U215 + bagUnaz + baguzag + b3stozs

0 bas  bog
where | —bas 0 bsa|)#0
—bys —bzs O

~ U112 + U134 + U215 + U223
~ T9.

Therefore we have V' = L]?:l O;. Next we count |Og|. Let g = (g7, g2) = ((gij)l_gli7j§2, (hij)i<ij<s) €

Stab(zg) = {g € G'|gzg = x9}. We have (g1,1) -2 = (1, 92) - . By comparing the rank of first entry, we
hll h12 h31 h41 h51

= d
hot has| TV by by b

have g12 = 0, = 0. Furthermore, by comparing the second entry,

hss  hsa| [hgs h34} { hia } _ [h35]
has has| = 9 |has haa| |[~has| = has
and hy1hos = go1. Therefore we obtain [Stab(zg)| = ¢°gligly, and |Og| = |G’|/|Stab(zg)).

Lastly, we have |Og| = ¢*° — Zle |O;]. O

we have hgy = hoz = hoy = hs3 = hsy = 0, h11hss =

2 o A2(T6
13. F; @ A*(Fy)
We write A € A*(FJ) as

0 a2 a3 a4 a5 Q16
—aj2 0 a3 Q24 Q25  A26
—ay —a 0 34 a a
A= 3 2 S 35 3| where a;; € F,.
—a14 —Q24 —a34 0 a45 Q46
—ais —azs —azs —ags 0 ase

—aig —aze —asze —a46 —ase 0
The Pfaffian of A is defined by
Pfaff(A) =a12a34a56 — a13024a56 + 14023056 — A14G25036 + Q14026035 + A15024036 — 15026034 — 16024035
+ a16a25a34 + 13025046 — A13A26045 — Q15023046 + 16023045 — A12035046- + A12036045-
Let V = Fg ® /\2(IF2) and G = G1 X G2 = GLy x GLg. We write z € V as ¢ = (A, B) where

A Be /\2(15‘2)7 and write g € G as g = (g1, 92) where g1 € GLy and g2 € GLg. The action of G on V' is
defined by

gz = (92493 , 92893 )91 -
Define a bilinear form 8 of V as
B((A1, By), (Aa, Bo)) = Tr(A1 AY + B BY).
In addition, define an automorphism ¢ of G as
(91,92)" = ((91) 7" (92) 7).
These 8 and ¢ satisfy Assumption 2.1
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13.1. Orbit decomposition. Let up,,(1 <1 < 2,1 <n < m < 6) be the element of V that the
(n,m)-entry and (m,n)-entry of /th matrix is 1 and —1 respectively and the rest are all 0. For example,

0 100 0 0
1000 0 0
o 00000
=0l ¢ o 0 0 0
0 0000 0

0 0000 0

o

OO O OO

0

o O o oo

The set {uymn | 1 <1<2,1<n<m <6} is aFg-basis of V.
For x = (A,B) = Zl§i<j§6 a;jui; + Zl§i<j§6 bijugi; € V, define

ri(z) := dim((4, B)y ), i.e., the dimension of the subspace of A\?(IFg) generated by A and B,

0

o o o oo

0

OO O OO

0

OO O OO

[esil el en I en B e i @n)
S~—"

0 aiz a3 as a1y ag O b1z b1z buu bz bis
—a;2 0 azs a4 azs  azs —biz 0 bas  baa bas  bag
—a13 —azz 0 asa  azgs  aze —biz —beg O bsa  b3s  bse
ro(x) := rank 7
2(@) ( —a14 —azqg —azqs O ags  age —bia —bay —bzy 0 bys s )
—a15 —agzs —ass; —ass 0 ase —bis —bas —bsys —bss 0 bse
—a16 —azs —aze —ass —ase 0 —bie —bxg —bzg —bss —bsg O
mi(x) := min{rank(rA + sB)|(r,s) € ]F?\{(O, 0)}},
ma(z) := max{rank(rA + sB)|(r,s) € F:\{(0,0)}}.
ri(x), r2(z), mi(x) and ma(z) are invariants of the orbits. We also define
Pfaff, (u,v) := Pfaff(uA + vB) € Sym® (F2) where u,v are variables,
T(z) := (a) if and only if Pfaff, (u,v) € Oyay in Sym®(F2).
For z € V and g = (g1, 92) € G, we have
Pfaff .o (u, v) = det(g2)Pfaff, ((u,v)g1).
Therefore T(z) is also an invariant of the orbits.
Proposition 13.1. V consists of 18 G-orbits in all.
Orbit name Representative ri(z) reo(xr) T(xr) mi(z) ma(zx) Cardinality
o} 0 0 0 () 0 0 1
(@ U212 1 2 (o) 0 2 [1,0,1,1,0,1,1]
Os U212 + U234 1 4 (o) 0 4 (2,2,1,2,0,1,1]
Oy U212 + U234 + U256 1 6 <<13>> 0 6 [3,6,1,1,0,1,0]
Os U112 + U213 2 3 {o) 2 2 2,1,2,1,1,1,1]
Os U112 + U214 — U223 2 4 (o) 2 4 [3,2,2,2,1,1,1]
O~ U112 + U234 2 4 {0) 2 4 12,5,1,2,1,1,1]
U112 + pitia — piuizs + (pf — 2p0)uisa
Os +p1uziz + (Ui - 2p0) U214 2 4 (o) 4 4 %[4, 5,1,2,0,1,1]
—(1F = 2p0)uazs + (1} — 2p1p0)uzsa
(@ U112 + U215 — U234 2 5 (o} 2 4 [3,5,3,2,1,1,1]
O10 U112 + U134 + U215 + U223 2 5 {0y 4 4 [4,6,3,2,1,1,1]
O U116 — U125 + U236 — U245 2 6 (o) 4 4 [4,8,2,2,1,1,1]
O12 u112 + U216 — U225 + U234 2 6 <<13>> 2 6 [4,6,2,2,1,1,1]
U114 — U123 3
o 2 6 1 4 6 5,8,3,2,1,1,1
13 +u216 — U225 + U234 @ [5,8,3:2,1,1,1]
Ous w112 + U234 + U2s6 2 6 (1) 2 6 [3,11,1,2,0,1,1]
O1s U112 + U134 + U236 — U245 2 6 (1°1) 4 6 [4,11,2,2,1,1,1]
O16 U112 + U134 + U234 + U256 2 6 {111) 4 6 1[4,13,1,2,1,1,1]
2ui12 + pitiia — piuizs + (5 — 2u0)uisa
O17 +pruziz + (i - 2/10) U214 2 6 {12) 4 6 1[5,13,2,2,0,1,1]
— (1 — 2p0)u223 + (17 — 2p1p0)u23s
O1s U112 + U134 + U1s6 + V2U212 9 6 (3) 6 6 %[6, 13,3,1,1,1,0]

+u216 + U223 + V1U225 + VoU245
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Here, we put [a,b,¢,d,e, f,g] = (g—1)¢"(q+ 1)*(® + ¢+ 1) (> + 1) (¢* + ¢ + >+ ¢+ 1) (> —q+1)*
and 1, po, V2, V1, vy € Fy are elements such that X? + 1 X +u07X3 + X2+ X+ € Fq[X] are
irreducible.

[Proof]

We count the cardinalities of the orbits of the 18 elements in the “Representative” column of the table.
We refer to these elements as x1, ..., x1g in order from the top, and let O; be the orbit of the element x;.
For the calculation for the cases of 75 () < 5, we use the result for (G’, V') = (GLy x GLs, F2 @ A*(F})).

By the embeddings V' 3 (A, B) — ([A O] , {B O]) € Vand G’ 3 (91,92) — (g1, (92 )) € G, we

1
regard V' as the subspace of V and G’ as the subgroup of G. We consider the induced injective map
G1\ Vi — G\ V. This map is injective. For x € V', we have

|G‘g157r2(m)

Gz| =
‘ ‘ qrz($)|G/|g16fr2(:L’)

|G’ x|

Therefore we obtain |O;| for 1 < 4 < 10, i # 4. We calculate the rest cardinalities. Let Stab(z;)
be the group of stabilizers of x;. Since |O;| = |G|/|Stab(x;)|, it is enough to count |Stab(z;)|. Let
Jo

0 1
Jo = {_1 0} and Jo, = € My, (Fy). Let Spy,(Fy) = {9 € GL3, | 9JongT = Jon}. We
Jo

use the following fact for the calculation:

ISP (Fg)| = ¢ [[(¢% — 1)

i=1

Let GSp,,(F,) = {9 € GLa, | 3h € GL1,gJong” = hJa,}. We have Sp,,(F,) < GSp,, (F,). For
g € GSp,,,(Fp), let A2, (g) be the element of GL; such that gJong” = Aan(g)Jan. We define a map Aoy,
as follows:

Aon GSp(]Fq) S g /\2n(g) e GL;.

This Ao, is an surjective group homomorphism. In addition, Ag,, induces a group isomorphism
bn 2 GSp(F,)/Sp(Fy) > [g] — A2n(g) € GLy.

Therefore we obtain

n

|GSpan (Fo)| = (¢ — 1) T (a* — 1).

i=1

The structure and the order of Stab(z;) for i = 4,11 <4 < 18 is summarized as follows:

T; Stab(x;) & |Stab(z;)]

4 (GL1 x GSpg(Fy)) x Fy (¢ —1)q - |GSpg(Fq)|

T11 ((GL2) x (GL1)?) x F2 ¢® - gl3

1 (GLy)? x F ¢ - gl

Z13 (GL1 x (GLp)?) x FI q(qg—1)- gl

T14 GL2 X GSp4(IFq) g12 . |GSp4(]Fq)|

15 (GL1)2 X (SL2)2 X Fg qg(q — 1)gl2 . Slg

T1g S3 % ({(91,92,93) € (GL2)? | det(g1) = det(ga) = det(gs)}) 6gl, - (2)*

217 | Z/2Z % ({(g1,92) € GLa x GLg(Fy2) | det(g1) = det(ga) € GL1}) | 2gly - (¢* — 1)(¢* — ¢%)/(¢> — 1)
T1s Z/3Z % ({g € GL2(Fys) | det(g) € GL1}) 3(¢° -1)(¢® —¢*) /(g —1)

First we consider Stab(x4). Assume g = ((gi;)1<i,j<2,92) € Stab(z4). Since the rank of the first entry
of z4 is 0, we have g1a # 0, and g2Jsg2 = g11.J6. Thus we obtain Stab(z4) 2 (GL; x GSpg(F,)) x F,.
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Next we consider Stab(x1;). Assume g = ((gi;)<

IFIOX] >

-

go1l2
goolo

gi1la

[hijli<i<ai<j<a- L}ufz

1<i,j<2)

(hij)i<ij<e) € Stab(z11). We have

O

Jolhij)<; j<6 T3 X
Jolhijlici j<e s ']’

0o

[hijls<i<ea<j<z - J2 - [hijla<i j<g € Sym®*(F2),

10,037

Thus we obtain Stab(z11) 2 (GL2)?xFS. Next we consider Stab(z12). Assume g = ((gij)l_gli,j§27 (hij)i<ij<e) €

. h31  hs3a hs1  hso hss  hsa] hir hio
Stab . We obt =0, = = = 0, = 411,
ab(ria). We obtain gy = 0, ot ] = [l el < [l o] <o, o e < g
hsz  hasz . hss hSG] T {hu hor| _ A h3s3 h34] o {hw h23]+{h35 hSG} Ty {hu ho1
haz  haa " |hes  hes hi2  haa " |haz hag hia  hoa|  [has  has hiz  ha
hit hi2 his  has his  hie hi1 ho hiz hia hiz  has
0 and J J J. = Jo. It fol-
an [hm th 2 [hw th i [hgs h%] 2 [hu h22] N Lm th 2 | hyy hQJ 92152 T 10
lows that Stab(x12) 2 (GLy)?xF3. Next we consider Stab(x3). Assume g = ((gij)l_gli,jgza (hij)i<ij<e) €
. h3s  haq [h31 h32} [hm h52} (hss  hsa
Stab . We obt =0, = , = = = 0,
ab(®13) ¢ oDt g1z hys  hag 922> \hyy b he1  he2 |hes o4
h3z  haa hit ha hss  hss hir  ho1 hi1 hi2 hiz  has
J. = Ja, J = Ja, J. —
[h43 h44j ? [hlz haa gz {hee h66] 2 {hlz haa 9222 | pyy h22:| ) 2 [h14 _h2J
hiz  hia T hit har| _ g [P haz T his  has| [his  hae T hi1 ha n hiz  hia T his
has  hog hia  ha " |har  hoa hie hos| |hie has hiz  haa|  |has  ho| hia
haz  has hiz  hos| , |hss ha3e hii hoi| ~
0 and [h43 h44] Jo [hm h24] + [h45 h46:| Jo [hm hQJ = g21J2. It follows that Stab(x13) = (GL; x

(GL2)?)xF7. Next we consider Stab(z14). Assume

g = (97", g2) € Stab(x14). By comparing the rank of

the two entries, we see that g1 must be diagonal. Now it is easy to see that Stab(z14) = GLa x GSp,(F,).

Next we consider Stab(r1s). Assume g = ((gi;)12

1<i,j<20

(hij)i<ij<6) € Stab(z15). We have gi1o = go1 =

0 hiz hia| _ |his hie| _ [hs1 hs2| _ |hsy hsa| _ |hsz hss _0 hii hiz| _ |\hs3  hsa| _
" |has  hos has  hag har  hao he1r  he2 hes  hea " |hor  hoa has  hag
h3z  has hss  hes hss  hae hsz  has hsz  has h3s  has
, J — go9Jy and J + J —0.
T | by h4J ? [hse h66:| J2272 Al Lus h46:| 2 [h34 h44] [h43 h44] ? [h% h46:|

It follows that Stab(z1s5) = (GL1)? x (SLg)? x F3.
mined by Wright and Yukie [9], Proposition 4.2, 4

For i = 16,17, 18, the structure of Stab(x;) is deter-
7). (It is assumed that V' is defined over an infinite

field in [9], but the method to determine the structures of Stab(z16), Stab(z17), and Stab(z1s) holds

for the F,.)
Lastly, these cardinalities |O1], ..., |O1g| are all
we obtain V = | [I*, 0.

distinct and their sum total is ¢° = |V|. Therefore
(]

hos
hoa

]:
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13.2. The intersection between the orbits and the subspaces. The subspaces we choose to
calculate the Fourier transform are as follows:

Wy ={0},

Wa =(u112, U113, U114, U115, U116)F, »

W3 :<U123,U124,U125,u126,u134,U135,U136,U145,U146,U156>Fq7

Wy :<U112,U113,u114,u1157U1167U1237U1247U1257U126,U134,U135,U1367U145, U146, u156>]Fq7

Wy =<U1127 U113,U114,U115,u116,U2127U2137u2147u2157u216>wq,

We =<U112, U113,u114,u115,u116,u1237U1247U1257U126,U212>Fq,

Wr :<U112,U113’U114,U1157U116,U212,U223,U224,U2257U226>Fq7

Wy :<U134, U135, U136, U145, U146, U156, U234, U235, U236, U245, U246, u256>]1<‘q >

Wy =<U1127 U113, U114, U115, U116, U212, U213, U214, U215, U216, U223, U224, U225, U226>]qu

Wio =<U123, U124, U125, U126, U134, U135, U136, U145, U146, U156, U223, U224, U225, U226, U234, U235, U236, U245, U246, u256>]an
Wi :<U112,U113,U114’U1157U116,U123,U124,U1257U126,U212,U213,U214, U215, U216, U223,U224,U225,U226>Fq,

Wia :<U114,U115,U1167U1247U1257U126,U1347U1357U136,U145,U146,U156,U245, U246, u256>]Fq7

Wis =<U1127U1137U114,U123,U124,U2127U2137u2147u2157U216,U223,U224,U225, U226, U234>1Fq7

Wiy =<U112, U113, U114, U115, U116, U212, U213, U214, U215, U216, U223, U224, U225, U226, U234, U235, U236, U245, U246, u256>]Fq7
Wis :<U134, U135, U136, U145, U146, U156, U213, U214, U215, U216, U223, U224, U225, U226, U234, U235, U236, U245, U246, u256>]an
Wie =(u123, U124, U125, U126, U134, U135, U136, U145, U146, U156, U213, U214, U215, U216, U234, U235, U236, U245, U246, U256>]an
Wiz =<U1237 U124, U125, U126, U134, U135, U136, U145, U146, U156, U212, U213, U214, U215, U216, U223

y U224, U225, U226, U234, U235, U236, U245, U246, u256>]an
V.

s
I

The orthogonal complements of these subspaces are as follows:
Wit = Wig, Wit = Wi, Wik = Wiy, Wit = Wy, Wit = Wiy, W5t = Wis, Wik = Wie, Wik = Wiy,
WlJQ = W12, ng = W13 and

i
Wy = (u123, U124, U125, U126, U134, U135, U1365 U145, U146, U156, U234, U235, U236, U245, U246, U256) F, -

Proposition 13.2. The cardinalities |O; N W;| for the orbit O; and the subspace W; are given as
follows:

Wy Wy W3 Wy Ws We Wo

O, 1 1 1 1 1 1 1

O, | 0 [1,0,0,0,0,1,0] [1,0,0,0,1,1,0] [1,0,0,1,0,1,1] [1,0,1,0,0,1,0] [1,0,1,0,0,1,0] [1,0,1,0,0,0,0]c,
05| 0 0 [2,2,0,1,0,1,0] [2,2,0,2,0,1,1] 0 2,2,1,1,1,0,0] 0

0,1 0 0 0 [3,6,0,1,0,1,0 0 0 0

0s | 0 0 0 0 2,1,1,0,1,1,0] [2,1,2,0,1,0,0] [2,1,1,0,1,0,0]a,
O | 0 0 0 0 0 3,2,1,1,1,0,0 0

o | o 0 0 0 0 0 [2,3,1,1,1,0,0]
Og 0 0 0 0 0 0 0

Oy 0 0 0 0 0 0 0

Ol 0 0 0 0 0 0 0

O] 0 0 0 0 0 0 0

O] 0 0 0 0 0 0 0

O3] 0 0 0 0 0 0 0

O14] O 0 0 0 0 0 0

O | O 0 0 0 0 0 0

Oz 0 0 0 0 0 0 0

O] O 0 0 0 0 0 0
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WS W() Wl 0 Wl 1 Wl 2 Wl 3
1 1 1 1 1 1
[1,0,1,1,1,0,0] [1,0,1,0,0,0,0]d; [1,1,0,0,1,1,0] [1,0,1,1,0,0,0]c2 [1,0,0,1,0,1,0]  [1,0,0,0,0,0,0]e;
[2,2,1,1,0,0,0]  [2,2,1,1,1,0,0]  [2,2,1,1,0,1,0]  [2,2,2,1,1,0,0] [2,2,0,2,0,0,0]ca [2,2,0,0,0,0,0]es
0 0 0 0 [3,6,1,1,0,0,0] [3,6,1,0,0,0,0]
(2,1,2,1,1,0,0] [2,1,1,0,1,0,0]d> [2,1,1,1,1,1,0]  [2,1,2,1,2,0,0]  [2,1,2,1,1,0,0]  [2,1,2,0,0,0,0]ds
[3,2,2,1,1,0,0]  [3,2,2,1,1,0,0]  [3,2,2,1,1,1,0]  [3,2,2,2,1,0,0]  [3,2,1,2,1,0,0]  [3,2,1,0,0,0,0]e3
112,5,1,1,1,0,0] [2,5,1,1,1,0,0] £[2,5,1,1,1,1,0] 1[2,5,3,1,1,0,0] [2,5,0,2,0,0,0] 1[2,5,0,0,0,0,0]d,
%[4,571,1,070,0] 0 %[4,5,1,1,0,1,0] %[4,571,1,170,0] 0 114,5,2,0,0,0,0]
0 [3,5,2,1,1,0,0]  [3,5,2,1,1,1,0]  [3,5,4,1,1,0,0]  [3,5,2,2,0,0,0]  [3,5,2,0,0,0,0]cs
0 0 [4,6,2,1,1,1,0]  [4,6,3,1,1,0,0] 0 [4,6,4,0,0,0,0]
0 0 0 [4,8,2,1,1,0,0] 0 [4,8,2,0,0,0,0]
0 0 0 0 [4,6,1,2,0,0,0]  [4,6,1,0,0,0,0]cs
0 0 0 0 0 [5,8,2,0,0,0,0]
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Wig Wis Wie Wiz Wig W
1 1 1 1 1 1
[1707070707170]d5 [1707170717170] [1707170717070]65 [1707070707270] [1707171707171] [1707270727070]
[2,2,0,2,0,1,1]  [2,2,1,1,0,0,1]d>  [2,2,1,1,0,0,0l¢;  [2,2,0,0,1,1,0]ds  [2,2,1,2,0,1,1]  [2,2,1,1,0,0,0]cg
[3,6,0,1,0,1,0] [3,6,1,1,1,0,0] 0 3,6,0,1,0,1,0] [3,6,1,1,0,1,0] 0
[2,1,2,0,1,1,0] 2,1,2,1,2,0,0] [2,1,1,0,1,0,0]eq 2,1,2,0,2,1,0] 2,1,2,1,1,1,1] [2,1,1,2,1,0,0]
(3,2,1,1,1,1,0]  [3,2,1,1,1,0,0]ds  [3,2,2,1,1,0,0]a2  [3,2,1,2,1,1,0] (3,2,2,2,1,1,1] [3,2,3,1,1,0,0]
2,5,0,1,1,1,0]  §[2,5,1,1,1,0,0b1  5[2,5,1,1,1,0,00bo  $[2,5,0,1,1,1,0[b5  $[2,5,1,2,1,1,1]  §[2,5,1,1,1,0,0]as
0 $4,5,1,1,0,0,0]  3[4,5,1,1,0,0,0]  1[4,5,1,1,0,1,0] %[475.,1,2,0,1.,1] $04,5,1,1,0,0,0]
3,5,2,1,1,1,0] 3,5,3,2,1,0,0] [3,5,2,1,1,0,0]b3 3,5,2,2,1,1,0] 3,5,3,2,1,1,1] [3,5,3,1,1,0,0]
0 [4,6,3,1,1,0,0] [4,6,2,1,1,0,0]a [4,6,3,1,1,1,0] [4,6,3,2,1,1,1] [4,6,2,1,1,0,0]
0 [4,8,2,1,1,0,0] [4,7,3,1,1,0,0] [4,8,2,1,1,1,0] [4,8,2,2,1,1,1] 0
[4,6,1,1,1,1,0]  [4,6,1,1,1,0,0]cq 0 [4,6,1,1,2,1,0] [4,6,2,2,1,1,1] 0
0 [5,8,2,1,1,0,0] 0 5,8,2,1,1,1,0] [5,8,3,2,1,1,1] 0
[3,11,0,1,0,1,0]  [3,11,1,1,1,0,0]  2[3,9,1,1,1,0,0]  [3,11,0,1,0,1,0]b5 [3,11,1,2,0,1,1] 0
0 [4,11,1,1,1,0,0]  2[4,9,2,1,1,0,0]  2[4,11,1,1,1,1,0]  [4,11,2,2,1,1,1] 0
0 0 [4,11,1,1,1,0,0]  1[4,13,0,1,1,1,0] 1[4,13,1,2,1,1,1] 0
0 0 0 2[5, 13,1,1,0,1,0] %[5,13,2,2 0,1,1] 0
0 0 0 0 516,13,3,1,1,1,0 0

Here, we put [a,b,¢,d,e, f,g] = (¢—1)*¢"(q+ 1) (> + ¢+ D) P+ 1)(¢* + ¢* + @ +q+ 1) (¢ —q+1)¢
and
a; =q+2, c1=2¢> +2q+1, di =2¢* +¢*+2¢° +q+1,
az =2q +1, c=¢+¢+1, dy=q* + ¢ +2¢> + 2¢ + 1,
b1 =2¢> +2¢+1, c3=2¢>+5¢>+3¢q+1, dz=q¢*+2¢*+3¢>+q+1,
bo =22 +4g+1, ca=¢>+2¢>+q+1, dy = 3¢* +8¢> +10¢> + 4q + 1,
b3 =2¢>+3¢+2, c5s=2¢+¢+q+1, ds=q¢*+¢+q+1,
bi=2>+q+1, c=¢+q+1, e1=¢° +4¢* +4¢° + 3¢ + 2q + 1,
b5:q2—|—2, 62:2q5+4q4+4q3—|—5q2+3q+1,
es = q° + 5q* + 6¢° + 6¢% + 3¢ + 1,
es=q° +2¢" +3¢° +4¢> +2¢ + 1.

[Proof]

We obviously have |O; NW;| =1 for all j. For j = 1,8, 10, we obtain the cardinalities |O; N W;| form
Proposition and Proposition 2.1l For j = 2,3,4, we easily obtain the cardinalities. For j = 18,
we already calculated the cardinalities in Proposition [3.Jl We calculate the rest cardinalities. For
1<id,j <18, let G(i,j) = {g € G| gzi € W;} and G(i,j*) = {g € G | gx; € Wi} as the proof of
Proposition Let Alt(n,2m) = {z € A*(F}) | rank(z) = 2m}. Then we have

|GL,|
> [Spy,, (Fg)[|GLi—2m|

|Alt(n, 2m)| =
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To calculate cardinalities for some sets, we use the result in Sections [l and 8 We refer to O;, W;, le
and M in Section [6 as 0224, Wj224, W and M 224 respectively. We refer to O;, W, le and M in

J
Section § as 0?44 W]-2A47 WjJ-zA4 and M?24%, respectively.

First we consider W5. Assume x = (A,B) € W5. If x 20 and AJ/B, x € Os. If AJ/B, x € Os. Thus
we obtain |0y N Ws| = (¢+1)(¢° — 1) and |05 N Ws| = (¢° — 1)(¢° — q).

Next we consider Wﬁ. Let z = (A, B) = a12U112 + b12U212 + Zl§i§27i<_j§6 bijUQij € W@. If a19 = 0
and rank(B) = 2, we have x € Oy. If a;o = 0 and rank(B) = 4, we have z € Os. If a1 # 0
and I‘ank([bij]lgiglggjgﬁ) = 0, we have x € OQ. If ai12 75 0 and I‘ank([bij]lgiglggjgﬁ) = 1, we have
x € 05. If a1z # 0 and I‘ank([bij]lgiglggjgfs) = 2, we have x € 06- Thus we obtain |02 N W6| =
q4(q —1)+(2,4),1 +q(g—1), [Os N Ws| = q4(q - 1)((]4 —1)+(2,4),2], |0Os " Ws| = q(q —1)|(2,4),1],
and [Og N We| = q(q — 1)|(2,4),2|.

Next we consider W7. Let x = (A, B) = Z2§j§6 a1jul; + biousoio + ZSS]’SG b2ju22j € Wy, and

ro(x) = (rank([a1;]3<;j<6), rank([ba;]3<j<6))-
r7(z) and some additional conditions determine the orbits to which = belongs:

r7(x) | additional condition | z is in

(0,0) lai2,b12] # 0 O,
b12 =0 (92

1,0
(1,0) b 20 o
a2 = 0 02

0,1
1) aip #0 Os
(1,1) Hausls<i<o/bails<i<o | Os
7 argla<i<ef[b2jla<i<e | Or

Thus we obtain the cardinalities |O; N W7|.

Next we consider Wy. Let W = Wy \ W5, and z = (A, B) = Z2§j§6 auily + Z2§j56 bijug1; +
> 3<j<p b2ju2n; € WQ. Then we have |0; N Wy| = |0; N W| 4+ |O; N W5|. We count |O; N WJ|. Some
conditions determine the orbits to which x belongs:

[a1,]3<j<6 | additional condition | 2 is in
a2 =0,

[b1;]3<j<6//[b2j]3<<6 ©:
=014 a1z = 0, o.
[b1]3<j<6 ) [b2j]3<j<6 °
a2 7£ 0, Or
[b1;]3<;j<6//[b2j]3<j<6 ’
aja # 0, o
[b1]3<j<6 ) [b2j]3<j<6 ¢
# O1 4, [b15]3<j<6// [b2j]3<j<6 Os
//Ib25]3<<6 [b1;]3<j<6 ) [b2j]3<j<6 Os
# 014, [b1jls<j<s € (larjls<j<e, [b2jls<j<e)p, | O7
Wlb2jls<ice [ Toujla<jzs & ([ar]a<i<e, D2ila<j<e)p, | Oo

Thus we obtain the cardinalities |O; N W]
Next we consider Wi;. Let x = (A, B) = 21§i§2,i<j§6 aijuii; + Zl§i§2,i<j§6 bijuzi; € Wip. We
define the map

. b1z a3 bia ay bis ais bis a1e 2 2 4
Fll : Wll 2T ([bgg ao3 ’ b24 a24 ’ b25 azs ’ b26 a26 ) < Fq ®Fq ®]Fq
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Fy1(x) and some additional conditions determine the orbits to which = belongs:

Fii(z) is in | additional condition | 2 is in
(’)324 - Os
o : 0;
(’)324 - Os
(9324 - O
(’)324 - Osg
(9324 - Og
[ - O1o

224
o1 - On
aiz ai4 ais aie| _ O 4
_b_13 bia  bis 516_ ’ O,
a12  A23 (24 QA25 G26(\ _
0224 Akl bas bos bas bag|)
2 12 23 24 25 26
a1z G4 Q15 Ql6| _ Os4
bizs bis bis b - o)
“r - 7 5
12 a2z Q24 Q25 A26|\ _
rank( b b b b b )=2
12 23 24 25 26
a13 ai4 a15 aie 7& 1)
2.4
1013 b D15 big] o O,
a2 a3 @14 @15 Q16|\ _
rank( b b b b b )=1
12 13 14 15 16
a3 ai4 a15 0Aie 7& 0
2,4
_b_13 bia  bis b16_ ’ ’ Os
@12 a3 a4 ais aie|y __
rank( b b b b b ) =2
12 13 14 15 16
a12 A1z G4 Q15 G116\ _
e e P N R O 7 L B
5 12 13 14 15 16
a2 Q13 @14 Q15 Q16|y _
rank( b b b b b )=2 O¢
012 13 14 15 16 |

Thus we obtain the cardinalities |O; N Why|.

Next we consider Wio. We write an element € Wi as x = (A, B) = (

o C] and let r12(x) = (rank(F"), rank(A)).

03,3 C 0373 03,3)
—CT D|’|0s5 E |

where C' € M3(F,) and D, E € A*(F2). For this z, let F' = ot gl

If E = 0 and rank(A) = 2, we have x € Oz. If E = 0 and rank(A) = 4, we have x € O3. If E =0
and rank(A) = 6, we have z € Q4. If E # 0, rank(C) = 0 and D//E, then we have z € Oy. If
E # 0, rank(C) = 0 and DY FE, then we have x € Os. If E # 0, rank(C) = 1 and r12(z) = (2,2),
then we have x € Os. If E # 0, rank(C) = 1 and r2(z) = (2,4), then we have z € Q. If

E # 0, rank(C) = 1 and rank(F) = 4, then we have » € O7. Let G’ = {(GH 03’3> € GLG}

G211 Gao
and V' = {{_Oé‘;’p g} EAQ(FS)}. G' acts on V' by G' x V' 3> (g,x) — gxg’ € V'. When
Onr O 00 0
rank(C) = 2, there is an element g € G such that gF = [ é,‘ST E’] where C’ = |0 0 1|. FE'
o 0 1 0
0 €1 €9
is uniquely determined. Let E/ = [—e; 0 e3|. If E # 0, rank(C) = 2 and e; = e3 = 0,

—€z2 —€3 0
then we have x € Og. If E # 0, rank(C) = 2 and (ej,e2) # 0, then we have x € Oy. If E #£ 0
and rank(C) = 3, then we have x € Q5. Thus we obtain |02 N Wia| = q(¢® — 1) + (¢* — 1) + ¢%|3, 1],
03N Wia| = (¢° —¢°)13, 1| +¢°|3, 2, |[OsNWia| = ¢*-GLs, |OsNWha| = (¢° —1)(¢° —q) +¢*(¢° —1)|3,1],
|06 N Wia| = (¢ = D(¢® — ¢*)|3, 1] + ¢°(¢ = 1)[3,2], [O7 N1 Wha| = ¢°(¢* — ¢°)[3,1], [Og N Wra| =
q*(¢* — 1)]3,2|, and |O12 N Wia| = ¢*(¢> — 1)GLs.
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Next we consider Wi3. Let

0
Wiy = (ui12, U113, U114, U123, U124, U212, U213, U214, U215, U216, U223, U224, U225, U226)F, -
and Wiy = Wiz \ Wi. Then we have |O; N Wis| = |O; N W] + |0; "W, First we count |O; N Wy).
— — s Ao 0
Let @ = (A, B) = Y1 cicoicjca GijUiij T D1 <i<icj<q bij2ij € Wis. We define the map

b a b a bis O b 0
. 1170 13 @13 14 Q14 15 16 2 2 4
Flg.wlgaw([b% m] , [bﬂ } , [b% 0] , [b% 0}) R OF QF.

Fi3(x) and some additional conditions determine the orbits to which z belongs:

Fi3(z) is in ‘ additional condition ‘ 7 is in
0324 _ 05
0224 _ 05
0324 _ OG
O$24 _ 07
O§24 _ OS
0324 _ 09
ot - O1o
oft - On

a3 aa 0 O
=0 ,
|01z bia D15 big) 2_’4 O,
a2 a3 azg 0 0
k =1
03 rank( bio bagz bas bos  bog )
aiz ais O 0] _ Osa
b1z bia b5 big) " O-
rank( a2 a3 azs O 0 ) =2 °
bia baz bas bos  bog
ais 14 0 0
Oz 4,
b1z bia b1 big) 7 24 O,
rank( a2 a3 a4 0 0 ) =1
bia biz by bis bis
a3 ais 0 0
O2,4,
_b_13 bia b5 big| 7 2_’4 Os
a2 a3 aa 0 0|,
rank( b12 b13 b14 b15 b16 ) =2
a2 a3 aa 0 0|,
02 rank( bia b1z bia bis big )=1 Os
a2 a3 aa 0 0|,
k() by b bis b))~ 2 |

Let
9 * % * % * 0 * 0 9 9 4
Wl?’::(* <ol w0 ol s O)CIFq@IFq@IFq.

Since Im(F13) = Wi, we have |0y N Wi| = q|OFA N WE|, |03 N W] = q|O2H N WE]|, |05 N W] =
(¢® — |03 N W] + |03 N Wiy| + |0 N W], |05 N Wis| = (¢° — )|OF* N Wis| + 03> N W]
and |O; NW| = qlO?2 N WE| for 7 < i < 11. To calculate |02 N W3, we use the Fourier transform

for 202 ® 4. We see W123J‘ = ({8 8} , [8 8} , [8 :] , {8 I] ). By Proposition 221 we have

-1

1
0P N Wiy |07 0 0 0 O N W™
. M224 . .

0 (et 0 (e 034 N WE|

: T2 L
oinwg] B
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T
The matrix M??* is explicitly determined in Theorem[B.3} Since |04 N W123l| o240 W123L|} =
1 21 0 0 g, 0 --- 0], we have
_ ) -
(¢—D(g+1)*¢*+q+1)
q(q*> — 1)

q(® —1)*(¢*+q+1)
qlg—1)%(q+ 1)(¢* + ¢* +2¢> + 29 + 1)
[lcOP* N W] = q(q—1)*(g+1)*
5¢°(q—1)*(¢+1)*(2¢+ 1)
1P q—1)* (q+ 1)

(g —1)%(q+
q*(q—1)*(q+ )3
¢®g—1)*(g+1)?

Thus we obtain the cardinalities |O; N W]
Next we count |Ol N W113|. Let x = (A, B) = ZlgigZ,i<]§4 ;U155 + ZlSiSQ,i<j§6 bijUQij + b3qtozq €

Wi Let Wi = <o Wiy | det( bis i )=0p, Wi = Sz e Wl | det( b5 bus )=1¢, and
b25 626 b25 b26

det({lg;z z;g]) =23. Then we have |0; N Wi| = |0; N W] + |0; N W] +
bis  bie

|O; N WPs|. First we count |O; N W5, Let Wi = {:1: € Wiz | det( {b b }) = O}, and Wi, =
25 bag

{x € W | det( [215 216}) = 0}. Then we have |O; N W] = |0; N W] — |0; N WT;|. We define the
25 D26
map
/. 1176 _ o o a2 a13 a4 a3 az4 O o0 o,4
F13 . W13 9 Tr = Z aijulzj + Z b’L]UQIJ —> |:b12 b13 b14 b23 b24 b34:| 6 Fl]@/\ (]Fq).

1<i<2,i<j<4 1<i<j<4
Then we have
Fl, 02 c 0,1 <i < 3),
Fly (O C 03 (4<i <7).

0

Wo count (034 1 Fy(WE)| — |07 0 Fy (V). Since FL(WE) = |9

1

000 0 %7° 1
0000 o

Fl, (W) = 8 8 8 8 8 : . By Proposition 22] we have
-1
O34 N F3(Wiy)| — |04 0 Fiy (W) 03] 0 03] 0
: — - M2A4 ..
0341 A Fy (W)~ 103 N F W)l [ o 034) 0 0344
% % L
Aty 0T N Fly (W) | = s 0744 0 Fy (W) |
x :
|4 L \% €L
Fweye | 0P N Flg (W) | = iy |03 0 Fy (W) |
The matrix M?44 is explicitly determined in Theorem Since
T
L i T
10344 A Fy(We) | - |0 A FWe)Y| =1 a=1 0 0 0 0 0]

and

T
1 1 T
[0 N (Wi | - joR )t =t =1 0 0 0 0 0
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we obtain
|03 N Fl; (W) — 034 0 Fl, (W)

|04 N i (Wiy)| — |04 0 Fi5 (W)

11 _ 10
—1
|07 0 0244 0 —q'" + "
=|V| . Ny2A4 . 0
0 |07 0 |OF :
0
_ 0 -
q*(¢—1)
g -1)

= q'(¢—1)* (g +1)?
-1 g+ 1)(¢* +q+1)
®(¢- 1 +*+a-1)
30°(a—D*g+1)
Next we count |0; N Wik|. We consider the subgroup of G

Hyy Hyp His
Gi3:=1( (I2,| O22 Ha Hys|) € G| H;; € My(Fy)
O22 Oz2 Hss

=R

G13 acts on W4. Let
Y1 = Us1s + uozs € O3 N Wi,
Yo = U113 + U114 + Ua1s + Uszs € Or0 N Wiy,
Y3 = U113 + Un1s + uzza € O N Wi,
Ya = Ur1a + Unis + uzza € Og N Wi,
Ys = U112 + U113 + Un1s + Unza € Og N Wi,
Yo = U123 + U215 + Uzs € Og N Wi,
We easily see that Gizy; = {(A, B) € Wi; | A =0} and Gi3y2 = {(A, B) € Wi, | det(A) = 4}. Thus

we obtain |G13y1| = ¢°(¢—1)|2, 1] and G13y2 = ¢°(¢—1)|2, 1| - ggl,. Next we count |G13y;| for i = 3,4, 5.
The structures of the stabilizer subgroups for ys, y4, 5, Y6 are easy to determine. We have

{9 € Gis | gys = y3} = (GL1)® x F}°,

{9 € Gz | gya = ya} = ((GL1)? x SLy) x Fy,

{9 €G3 | gys = ys} = (GL1)* x F°,

{9 € Gis | gys = y6} = (GL1)® x Fs.
Therefore we have |G1sys| = ¢°(¢—1)*(¢+1)%, |Gizya| = ¢°(q—1)%(g+1)%, |Gisys| = ¢°(¢—1)*(¢+1)?,
and |G13ys| = ¢"(q—1)3(¢+1)3. Since the cardinalities |G13y;| are all distinct and Z?:l |G13yi| = (¢—
1)q'°|2, 1| = [Wi5|, we have U?:1 Gy; = Wi, and therefore |O3 NWik| = |G13y1], |OsNWE| = |G132],
|03NWE| = |Gisys|, and [OsNWE| = 329, |G1syi|. Next we count |O;NWD|. Let z = (A, B) € W,
If det(A) = 0, we have x € Q4. If det(A) = 1, we have z € O12. If det(A) = 2, we have x € O13. Thus we
obtain [O4NWi5| = ¢°(q—1)gly, |OaNWis] = ¢°(g—1)gly-((—1)+4|2, 1), |OsNWPs| = ¢°(g—1)gly-gel,.

Next we consider Wyy4. Let z = (A, B) = Z2§j§6 arjuilj + Zl§i<j§6 bijugi; € Wig. Let yi* = o,
Yt = ugez € Oo, Yyt = 3, yit = x4, Y2t = w5, y¢* = w112 + Ougaz € Os. Define the subgroup G4 of G:
Gia = {(9ij)1<ij<2, (hij)i<ij<6 € G| g12 =0,hi1 =02 <1 <6)}.

G114 acts on Wy, by

Gia X Wis 3 ((91, 92), (A, B)) = (92493 , 2By )gi € Wha.
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We easily see that [Gray}?| = ¢(¢°—1), |G1ay5"| = |GLe|/¢*|GLa||Spo(Fy)|, |Gray3*| = |GLs|/q®|GLa||Spy(F
|G14vy3*| = |GLg|/|Spg(F ¢)|- Next we count \G14y%4| |G14yé4|. We have
{9€ G| gyi = ?/54} = ((GLl)B x GL3) x F;Q;
{g € Gua | gyi* = 6"} = ((GL1)® x GL3) x F} .
Thus we obtain [G1ays?| = |G14l/q"®(¢—1)%(¢+1)(¢*+q+1) and |Gray*| = |G14l/q"*(¢—1)%(¢+1)(¢*+
g+1). Next we count |G(%,14)| for i = 6,9, 12, 14. Write an element of G as ¢ := ((¢i5)1<s,j<2, (hij)1<i,j<6)-
hit har hai har hst
hia has hzz hazs hso
G(i,14)] = q(g = 1)* - (¢° = D(g+ 1)(¢* = 0)(¢° = ¢*)(¢® — ¢*)(¢° — ¢*)(¢° — ¢°) for i = 6,9,12,14. Next
we count |G(7,14)|. Let
G(7,14)° = {((9i)1<i.j<2, (hij)1<ij<6) € G(7,14) | 12 = 0},
G(7,14)" = {((9ij)1<i <2, (hij)1<ij<6) € G(7,14) | g1z # 0}

hll h21 h31 h41 h51 -1
h12 h22 h32 h42 h52 '

Assume gx; € Wiy4. Then we have g1 = 0 and rank({ ) = 1. Thus we obtain

If g = ((gij)1§i7j§2a(hij)1§i7j§6) S G(7, 14)0, then we have rank([

Moreover, we easily see that

G(7,14)' = (L,

00 1
010 0
Lo o )- G(7,14)°.

I3

Thus we obtain |G(7,14)| = 2¢(¢ — 1)* - (¢® = 1)(¢ + 1)(¢* — 0)(¢° — ¢*)(¢° — ¢*)(¢® — ¢*)(¢° — ¢°).

Next we consider Wi5. For 2 < i < j < 6, let v;; be the element of A*(FS) whose (i, j)-entry and
(j,4)-entry is 1 and —1 respectively and the rest are all zero. Let Wi = {D1<icj<s @isvij € N2 (FS) |
aij € Fg,a12 = 0}. We easily see that |O; N\ Wi5| = g|Alt(4,2i — 2)| + [{x € WPy | rank(z) = 2i — 2}| for
i = 2,3,4. We calculate the cardinalities of X!° := {z € W | rank(z) = 2i} for i = 1,2,3. To count
| X}?], we calculate the Fourier transform for (GLg, A*(FS)). GLg acts on A*(FS) by (g, 2) — gzg”. The
orbits of this action are characterized by the rank of matrices. Let

O ={z e /\2(]F6) | rank(z) = 0},
04° = {x € N*(FY) | rank(z) = 1},
04° = {z € A*(FY) | rank(z) = 2},
O ={ze /\2(]172) | rank(z) = 3}.

We choose the subspace of A?(FS) as follows:
(0= {0}
= > aijvij | aijFq},

1<i<6,max(i,4)<j<6

A6 ._ prrA6L § :
W3 = W2 = { aijvij | aij]Fq}
1<i<j<4

Wi .= A2(FS)

By counting |O;*¢ N W, we obtain the Fourier transform for A(FS):

ej\ﬁ 1 [1,0,0,1,0,1,1] (2,2,0,2,0,1,1] [3,6,0,1,0,1,0] | [e®
el _ 151 g1 [1,2,0,1,0,0,0le; —[2,6,0,1,0,0,0]| |e4®
e6 q 1 e —[0,2,0,0,0,0,0]e2  [1,6,0,0,0,0,0] | |e4®
6/4;6 1 -[0,0,0,1,0,0,1]  [0,2,0,1,0,0,1]  —[0,6,0,0,0,0,0]| |e®

Here, €10 : A?(F8) — {0,1} is the indicator function of 0% e1 =" —¢*—¢*>—1,ea = "~ ¢*+¢*—¢*—1,
and g1 = ¢" +¢° — ¢* — ¢ — 1. Moreover, we easily see that [|W105J‘ N WJAGH =[1,¢—1,0,0]T. Therefore

o)l
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we obtain
|Xo°| WPy N W) 1
X[ [ (Wi n W5 (- D)(@+D)(@+2¢* +@P+ ¢ +q+1)
X201 | IWENWL T 2 (e — D% + g+ 1)(¢° + ¢ +2¢° +3¢* +2¢° +2¢° + ¢ + 1)
| X3 (Wi 0 W0 ®(g—1)3(g+1)(¢* +q+1)

Next we count |G(¢,15)| for 5 < i < 15. Let g = (g1,92) = ((9i5)1<i,j<2, (hij)1<ij<6) € G and we
consider when g € G(,15). g- (A, B) € Wi5 holds if and only if

[hijhi<i<aa<i<e - A~ [hijllcicoicjcs = O22,

[hijh<icoi<j<o - B+ [hijll<iconcjcs = Oaa,

i7]1<i<2,1<5<6 - (g11 g12 = 2,6+
[hij] j<6 - (g11A + g12B) O

h h
Let us count |G(5,15)]. Let g = (g1,92) = ((gij)1<ij<2, (hij)i<ij<6) € G(5,15). We have |, '+ 12

ha1  hao
hii his —g11hi2 — gi2h13  gi1hir  gi2hn
= 0 and = (Oq3. It foll that hiy = hi12 = 0
ha1  hos a —911h22 —912h23 911h21 g12h21 %3 oHows & 1 12
and [gn 912] hia - has = O1,2. Since [gn 912] # 01,2, we have rank( hia s ) < 1. When
haa  hos hao  has
hiz  hig|, hia his hae|y hiz hiz|,
rank( [h22 s ) = 0, then we have rank( hos hos  hag ) = 2. When rank( hoy o ) =1 and
hia his has|, hi2 hiz his his hog|, hia  hig||
rank( [h24 hos T ) = 1, we have rank( hos hos hos hoy s ) = 2. When rank( hos B )=

his his  hae
1 and rank( {h% hos  hag
D(@® = a) + (@ = D((¢* = a)(¢® + g+ 1)+ (¢° = D(¢* — 0))(d° = ¢*)(¢° — ¢*)(¢° — ¢*)(¢° — ¢°) =
'6(q — 1)8(q¢+ 1)*(¢*> + ¢ + 1)%(¢®> + 1)%. The counts of the cardinalities |G (i,15)| for 6 < i < 15 are
carried out in the same way, and we omit the detail.
Next we consider Wiyg. First we count |Oy N Wig| and |03 N Wiyg|. Let

Wloﬁ = {93 = Z QU145 + bijugij € Wig ‘ Qg # Oablj = 0(3 <j< 6)}’
1<i<j<6
W116 = {x = Z QU155 + biju%j € Wie ‘ agj = Oublj + 0(3 <j< 6)}
1<i<j<6
For i = 2,3, We have |0; N Wig| = |0; N W| + |O: N W] + |0; " Wy|. Since |O; N W] = |0; N Wi,
we obtain |O; N Wyg| = 2|0; N W] + |O; N Ws| for i = 2,3. Moreover, we easily see that |O; N W] =
|Alt(5, 2i—2)|—|Alt(4, 2i—2)| for i = 2, 3. Therefore |O;NWig| = 2|Alt(5, 2i —2)| —2|Alt(4, 2 —2)|4+]O;N
Wy for i = 2,3. Next we count |G(4,16)| for 5 <4 < 16. Let g = (91, 92) = ((9i5)1<i,j<2, (hij)i<ij<6) €
G and we consider when g € G(i,16). g- (A, B) € Wig holds if and only if
[hijli<j<e - (9114 + g12B) = Oug,
[hajli<i<e - (9124 + g22B) = Oa.
Let us count |G(5,16)|. Let g = (g1,92) = ((gij)1<ij<2, (hij)1<ij<6) € G(5,16). We have hyy = hgy = 0

i hl?’]) = 0, we have rank( [}“4 hus hw} )=

}) = 2, we have no other condition. Thus we obtain |G(5,15)| = gl, - ((¢* —

and g11h12+912R13 = g21hootg22ha3 = 0. When rank(

h22 h23 h24 h25 h26
2. When rank( [212 213}) = 1, then we have hyjp = hiz = 0 or hgy = hpz = 0. It follows that
22 23
max {rank( {Z; Z;]) ;’zi’,i’,(} } = 2. When rank( [Z;z Z;j) = 2, we have gi1h12 + g12h13 =

go1hao + goohos = 0, [hlg hlg] # 0, and [hgg h23] # 0, . Thus we obtain |G(5,16)| = gl, - ((¢* —
D(¢® =) +2(g = 1)(¢® — 0)(¢° — ¢*) + ¢®8ly)(¢® — ¢*)(¢® — ¢*)(¢® — ¢")(¢® — ¢°). The counts of the
cardinalities |G(3, 16)| for 6 < ¢ < 16 are carried out in the same way, and we omit the detail.

Next we consider Wy7. We easily see that |O; " Wi7| = Alt(6,2i — 2) + ¢ - Alt(5,2i — 2) for i = 2,3, 4.
Next we count |G(i,17)| for 5 < i < 17. Let g = (91,92) = ((9ij)1<i,j<2, (hij)1<ij<¢) € G and we
consider when g € G(i,17). g- (A, B) € Wi holds if and only if

[hjli<ji<e - (9114 + g12B) = Oy 6.
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Let us count |G(5,17)|. Let g = (g1, 92) = ((9i5)1<i,j<2, (hij)1<ij<6) € G(5,17). We have h1; = 0 and
githi2+ giahiz = 0. Thus we obtain |G(5,17) = gly- (¢°(¢— 1) + (¢ — 1))(¢° — 0)(¢° — ¢*)(¢° — ¢*)(¢° —
q*)(q® — ¢°). The counts of the cardinalities |G(i, 17)| for 6 < i < 17 are carried out in the same way,
and we omit the detail.

Next we consider Wg-. We easily see that |O; N Wg-| = Alt(5,2i —2) + ¢ - Alt(4,2i — 2) for i = 2,3, 4.
Next we count |G(i,9J‘)| for 5 < i <9 Letg= (gl,gg) = ((gij)lgl',jgz,(hl’j)lgi,jgﬁ) € G and we
consider when g € G(i,91). g- (A, B) € W4 holds if and only if

[hajli<j<6 - (9114 + g12B) = O,
[hijli<i<21<j<6 - (9214 + g22B) = Oap.

Let us count |G(5,9%)]. Let g = (g1, 92) = ((9ij)1<i,j<2, (hij)1<ij<6) € G(5,91). We have hyy = hiy =
hiz = g21 = 0 and gi1haz — gi2has = 0. Thus we obtain |G(5,9")| = gly - (¢°(¢—1)(¢° — 1) +3,2[)(¢° —
*)(¢® — ¢®)(¢° — ¢*)(¢® — ¢°). The counts of the cardinalities |G(i,9%)| for 6 < i < 9 are carried out in
the same way, and we omit the detail. (Il
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13.3. Fourier transform.

KAZUKI ISHIMOTO

Theorem 13.3. The representation matrix M of the Fourier transform on .7-"‘(,; with respect to the basis
e1,...,e1g 1S given as follows:
(1 [1,0,1,1,0,1,1] 2,2,1,2,0,1,1] 3,6,1,1,0,1,0] 2,1,2,1,1,1,1] 3,2,2,2,1,1,1] 112,5,1,2,1,1,1]
1 [0,0,0,0,0,0,0)i; [1,2,0,1,0,0,0lix  [2,6,0,1,0,0,0le;  [1,1,2,0,1,0,0g1  [2,2,1,2,1,0,0]go %[1 5,0,1,1,0,0]go
1 [0,0,0,0,0,0,0i  [0,2,0,0,0,0,0l;  [1,6,0,0,0,0,0]h;  [1,1,2,0,1,0,0]e5  [1,2,1,0,1,0,0/ha  1[1,5,0,0,1,0,0]gs
1 [0,0,0,1,0,0,1]e;  [0,2,0,1,0,0,1Jh;  [0,6,0,0,0,0,01i5  —[1,1,2,1,1,0,1] —[1,2,1,1,1,0,1]e; —21[1,5,0,1,1,0,1]b,
1 [0707170*,07070]91 [1727171705070163 7[2%6717170707 0] [0717070705070]k1 [1’271715070 O} %[175717270’ 070168
1 [070’ 071707070162 [072%070707070]}7’2 7[176707070’ 070161 [07171 070’0 0]Z4 [072707070>0 O]ZZ ?[1757050707070]97
1 [0,0,0,0,0,0,0G> [1,2,0,0,0,0,0]g5 —[2,6,0,0,0,0,0[b1 [1,1,2,1,0,0,0]es0  [2,2,1,0,0,0,0]gr  3[0,5,0,0,0,0,0)i
1 [0,0,1,0,0,0,0]63 7[072717070’ 070]‘36 [17671’0707010] [07171’07170?0]96 7[0725170717070198 7%[175a171725070]
—18 1 [070’ 071707070162 [072%070705070]}7’2 7[176707070’ 0,0]61 [0$1707070’ 070125 [1%271705070’ 0]h4 %[075507070>070]h7
1 1 [0,0,1,0,0,0,0]63 7[072717070’ 070]‘36 [15671’07070’ O] [0*,1707070’ 070126 7[0725170707070199 7%[0,5,1,0,0,0,0]611
1 [0,0,1,0,0,0,0]63 7[072717070’ 070]‘36 [1:671’07070’ O] 7[071717()’07070]68 [1¢2~,1707070’ 0]910 %[0%571705070’ 0]f3
1 [0,0,0,0,0,0,0]gs [0,2,0,1,0,0,0]f; —[0,6,0,0,0,0,0lds —[0,1,1,0,0,0,0]f, [0,2,0,0,0,0,0[j; —%[0,5,0,0,0,0,0]gs;
1 7[070707070¢170] [07 2a 07070¢0$0]d1 7[0¢ ,0,0,0,0, 0] [071a17071¢0~,0] [0727070:070’ 0]h5 7%[0’57070 170 0}02
1 [07070,0707070194 [0727070707070]h3 7[2¢6~,071:O70’0] 7[171’27 ) a070] 7[172:170’17070}69 75[0’57070717070}03
1 [0,0,0,0,0,0,0]64 7[0,2,0,0,0,0,0]67 [1~ 70a0707 ,O] 7[0*,171:070’070](14 [07270707070’0]h6 7%[075¢0707070701612
1 [070a070707070165 7[172’07070ﬂ070]d2 [0’67070707070}(741 7[1ﬂ17270707070}b2 7[2’27170a07070}d5 %[075707 ’07070}613
1 7[070707070’170] [07 2a 0,0,0,0,0]dl 7[0¢6~,0709070a 0] [071ﬁ1707170$0] 7[0a27170’17070}d3 7%[0’57070717070}02
L 1 7[070717170’07 1] [072¢1~,170907 1] 7[0¢6~,1709070’0] [0,1,1,1,0,0, 1] 7[0a27171¢0707 1} 5[075717170’07 1]
104,5,1,2,0,1,1 3,5,3,2,1,1,1 4,6,3,2,1,1,1 4,8,2,2,1,1,1 4,6,2,2,1,1,1 5,8,3,2,1,1,1
2,7777 39y 30,9,4, L, 4, 10y 4y 4, Ly, 20y 4,4, L, 4,
113,5,1,1,0,0,0]e3 2,5,2,2,1,0,0]e2 3,6,3,1,1,0,0]es 3,8,2,1,1,0,0]es 3,6,1,1,1,0,0]g3 —[4,8,2 1,0
3099, 4L, L,U, U, s 4y 4y U,y 20,9, 4L, LU, ’ »0,1, 1, 1, U, U]g: 1,1,
7%[2,57170, 0,0,0les  [1,5,2,0,1,0,0]h2 -[2,6,3,0,1,0,0les —[2,8,2,0,1,0,0le¢  [2,6,1,1,1,0,0]f1 [378,270,1,070](11
512,5,1,1,0,0,1 -[1,5,2,1,1,0,1]c; 2,6,3,1,1,0,1 2,8,2,1,1,0,1 -[1,6,1,1,1,0,1]ds  —[2,8,2,1,1,0,1
2
%[2757 717 ’ 70]!]6 1757171707070]15 [2767171707070]i6 7[2‘8 1 1 O 0, 0]68 7[2767171707070]]“2 [3787271717070]
—3[1,5,0,0,0,0,0]gs  [1,5,2,0,0,0,0lhs  —[1,6,2,0,0,0,0lg9  [2,8,1,0,0, 0.0lgi0  [1,6,0,0,0,0,0),  [2,8,1,0,0,0,0]hs
7%[ ,5,1,1,1,0,0] [1,5,2,0,0,0,0lhy —[2,6,3,0,0,0,0]e1; [2,8,2,0,0,0,0]f3 —[2,6,1,0,0,0,0]g11 —[3,8,2,0,1,0,0]c2
110,5,0,0,0,0,0)is [175,2,171 0,0] -[1,6,2,0,1,0,0]ds [2,8,1,0,1,0,0]e14 —-[1,6,1,0,1,0,0] —(2,8,2,0,1,0,0]ds
2
1%[2757071,0707 0] [0,5,0,0,0,0,0l2  —[1,6,1,0,0,0,0]g12 —[1,8,1,0,0,0,0]fs [1,6,0,0,0,0,0]fs  —[2,8,1,1,0,0,0]
-51[1,5,0,0,0,0,0]ds -[0,5,1,0,0,0,0]g12 [0,6,0,0,0,0,0]g13 -[1,8,0,1,0,0,0 -[1,6,1,0,1,0,0 1,8,1,0,0,0,0
2
112,5.0,0,0,0,0le1s  —[0,5,2,0,0,0,01fs  —[1,6,1,1,0,0,0]  [0,8,0,0,0,0,0lers  —[1,6,1,0,1,0,0 1,8,1,0,0,0,0
2
C101,5,0,0,0,0,00  [0.5.1,0,0,0,01f5  —[1.6,2,0,1,0,0]  —[1,81,0,1,0,0]  [0,6,0,0,0,0,0liy  —[L,8,2,0,0,0, jes
~111,5,0,0,0,0,0/ds  —[0,5,1,1,0,0,0 0,6,1,0,0,0,0 0,8,0,0,0,0,0]  —[0,6,1,0,0,0,1]es [0,8,0,0,0,0,0]g14
i
119.5,1,0,0,0,0]  —[1,5,2,0,1,0,0]c 2,6,3,0,1,0,0 2,8,2,0,1,0,00  —[2,6,1,0,1,0,0]cs  [3,8,2,0,1,0,0
?
—1[1,5,0,0,0,0,0]d;  [0,5,1,0,0,0,0]ds  —[1,6,2,0,0,0,0]  —[1,8,1,0,0,0,0] —[1,6,1,0,0,0,0]dy  —[2,8,2,0,0,0,1]
2
~1135,2,0,0,0,00  —[1,5,2,0,0,0,0]cy 2,6,3,0,0,0,0 2,8,2,0,0,0,0 1,6,1,0,0,0,0lcs  [2,8,2,0,0,0,0]a,
2
110,5,0,0,0,0, Oers  [0,5,1,0,1,0,00e;  —[1,6,2,0,1,0,0]  —[1,8,1,0,1,0,0] [0,6,0,0,1,0,0] [1,8,1,0,1,0,0]
%[1 5,0,1,0,0,1]  —[0,5,2,1,0,0,1] 0,6,1,1,0,0,1] 0,8,0,1,0,0,1] 0,6,1,1,0,0,1] ~[0,8,1,1,0,0,1]
3,11,1,2,0,1,1] [4,11,2,2,1,1,1] 114,13,1,2,1,1,1] 115,13,2,2,0,1,1] 5[6 13,3,1,1,1,0]
2,11,0,1,0,0,0gs  [3,11,1,1,1,0,0es  1[3,13,0,1,1,0, Oes  —1[4,13,1,1,0,1,0] 77[5 13,3,1,1,0,0]
[1,11,0,0,0,0,00h5  —[2,11,1,0,1,0,0er  —2%[3,13,0,0,1,0,0]  1[3,13,1,0,0,0,0]d; 3[4 13,3,0, 1,0, 0]
—-[2,11,0,2,0,0,1] [2,11,1,1,1,0,1] 11,13,0,1,1,0,1]a;  —1%[2,13,1,1,0,0,1] 113,13,3,0,1,0,0]
—-[2,11,1,1,1,0,0]  —[2,11,1,1,0,0,0])d4 %[371371,1 0,0,0]by %[3713 1,1,0,0 0] §[4 13,2,1,0, 0 ,0]
~[1,11,0,0,0,0,0)ey  [1,11,0,0,0,0,0/h5  ~¢[3,13,0,0,0,0,0]d5  —[2,13,1,0,0,0,0]ds §[ 13,2,0,0,0,0]
~[1,11,0,0,0,0,0]c5 —[2,11,1,0,0,0,0)e12  1[2,13,0,0,0,0,0]er5 —1[3,13,1,0,0,0,0lc»  [4,13,3,0,0,0,0]
[1,11,1,0,0,0,0]  —[1,11,1,0,1,0,0]dr %[3 13,2,0,1,0,0] %[1,13,1 0,0,0, 0]e1s %[3 13,2,0,1,0,0]
~[1,11,0,0,0,0,0)c;  [1,11,0,0,0,0,0)ds  —£[2,13,0,0,0,0,0]  1[2,13,0,0,0,0,0]c; —1[3,13,2,0,0,0,0]
[1,11,1,0,0,0,0] —[1,11,1,0,0,0,0] %[2,13,1,0 0,0,0] ,%[2 13,1,0,0,0,0] %[2 13,1,0,0,0,0]
[1,11,1,0,0,0,0] ~[1,11,1,0,0,0,0] 112,13,1,0,0,0,0] 3[2,13,1,0,0,0,0]  5[2,13,1,0,0,0,0]
~[1,11,0,0,0,0,0lcs —[1,11,1,0,0,0,0]ds %[1,13 0,0,0,0,0]cg %[1, 3,0,0,0,0,0]  1[2,13,2,0,0,0,0]
[1,11,0,0,0,0,0] [1,11,1,0,0,0,1]  1[1,13,0,0,0,0,0]a;  1[1,13,0,0,0,0,0]  —1[1,13,1,0,0,0,0]
[0,11,0,0,0,0,0]c;  [1,11,1,0,1,0,0]ay 7%[1,13, 0,0,1,0,0]  —1[2,13,1,0,0,0,0] 0
[0,11,0,0,0,0,0la2  [0,11,0,0,0,0,0cs  —1[1,13,0,0,0,0,0]  1[1,13,0,0,0,0,0] 0
~3[0,11,0,0,0,0,0]  —3[1,11,1,0,0,0,0] (0,13,0,0,0,0,0] 0 0
~[0,11,0,0,0,0,0] [0,11,0,0,1,0,0] 0 —[0,13,0,0,0,0,0] 0
0 0 0 0 [0,13,0,0,0,0, 0]
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Here, we put [a,b,c,d, e, f] = (¢—1)°¢"(q+1)°(®* + ¢+ 1)U+ 1)(¢* + @+ +q+1) (¢* +q+1)¢
and
fi=q¢"—2¢+¢"+1,
fo=¢°—¢*—1,
6

ay=2q—1, fa=a" =20 +¢* —* +2¢* + 1,

ag =q—2, fa=d"—@ -+ +1,

by =2¢* 4+ 2¢ + 1, i=C+¢ - —q—1,

by =2¢% +1, =0+ —¢"—¢ -1,

a=q¢—-q-1, 92=20+¢ - - - —q—1,
o=¢-¢—q-1, g3=q —¢" - —¢F—q—1,

cs =2¢° —2¢> —q—1, =0+ - - - —q-1,
ca=q>—2¢>—q—1, 95 =2q¢" —¢° = 3¢* = 3¢> =3¢ —2¢ — 1,
s=q>—q¢*—1, g6=q —¢"+1,

ce =4¢> — 2¢* +2¢ — 1, g7 =q" —2¢° —4¢° — 6¢* —5¢° — 4¢® — 2¢ — 1,
a=¢-¢+q-2, gs=q —¢+1,

a=¢C - —q+2h =+ +q+1, g=0-F - +¢F+1,

do=2¢* + ¢* +3¢> + 2¢ + 1, go=4+¢*++2¢* +q+1,

ds =q* —¢* + 1, g1 =2q¢" +2¢° —2¢* —2¢* —q— 1,

di=q*—¢* -1, g2=4 "¢ -+ +q+1,

ds = 3¢* + 3¢ +4¢® + 2q + 1, gi3=¢ —¢* — ¢ +q+1,

de = q* +1, gu=q¢ - +q¢* —¢ -1,

dr=¢* —¢*+1, hM=¢-¢—-¢+q+1,
ds=q¢*+¢*—¢>—q—1, he=¢*—q" —¢* =+ +q+1,
dy=¢q*—2¢° +2¢> —q+1, hs=q®—q" =2 +¢* -+ +q+1,
e1=¢"—q—1, b= —q - P+ +F+2¢3+q+1,
e2=0q"— ¢ —1, hs =q®—q" —¢* —q—1,

es=q¢"—¢* —¢* -1, he=q®—2¢"+¢" +¢* +¢* —¢* —q—1,

e=¢ - —¢ - —q-1, hr=2¢°—2¢" —2¢° = 2¢° + ¢* + ¢ +2¢° + ¢ + 1,
e5=2¢"—¢"— ¢ — ¢ —q—1, W=+ 4+ +¢ - - - —q-1,
=0 —¢+¢—¢ -1, =+ +¢" - - —-¢F—q—-1,

er=¢ - +¢ - —q-1, is=¢ - —"+¢ —¢*+ ¢ -1,

es =q° —¢* — 1, is=q¢" —¢® ="+ +1,
eo=¢+¢-¢—q-1, i5=¢"—-q¢ -2 -+ ++q+1,
clo=¢—q¢"+¢*—-2¢+q—1, ic=¢ - -+ +F+q+1,

en1 =2¢° — ¢t + ¢* —2¢° — 1, i7 =2¢° +3¢® —5¢" —2¢° = 3¢° +2¢* + * + 24> + ¢ + 1,
eo=q¢"—q¢*+¢* -3¢ —q—1, is=2¢" —®*+q¢ —°+2¢* — ¢ —q+1,
es=¢ +q¢* —2¢* +4¢* +q + 1, io=¢" =20 +¢ — "+ — P+ @ +1,
eu=¢ +¢*+¢@+q+1, ==+ +¢ - —q-1,
e1rs=¢"+¢"' —q+1, J2=q"—2¢° =3¢ +¢" +4¢° +3¢° + ¢* —¢* —2¢° —2¢ — 1,
et6 =q° —¢> +1, F1=¢"+¢"4+¢ - -2¢ -2¢° — "+ @+ +q+1,

h=¢2+¢"-"+¢*-2¢ -~ +¢* +q+1,
lo=¢"2%—2¢° —2¢®* +2¢° + 2¢° + ¢* — ¢* — ¢ — 1.
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Corollary 13.4. The Fourier transform of ¥ is given as follows:

0

—14 _

g +q?

—15

_ q74 _ q77 4 q79 4 q710 _ qfll
q—ﬁ _ 2q—7 + q—8 _ q—9 + 2q—10 _ q—ll
_q—9 + 3q—10 _ 3q—11 + q—12

q—l() _ 2q—11 4 q—12 _ q—13 4 q—14

g~10 — 911 4 12
gy 912 g3
g g
B g

In particular we have the following Li-norm bound of U

> 1¥(@)] = 0(g").

zeV

xz e Oy,

z € Oy,

z € O3,

x € Oy,

z € 05,09, 019, 011, 013, 015,
z € Og,

z € O,

z € Osg,

x € Oq2,

x € Oqa,

x € 014,018
r € Oy



14. CONCLUDING REMARKS

Here, we state some notices of the paper and what are observed from the results of the calculations.

14.1. Verification for the calculation. For a general linear representation (G, V) over F,, the matrix
M stated after Proposition satisfies the following properties:

Lemma 14.1. [5 Lemma 7] 1. Let S = diag(|O;|). Then SM is symmetric.
2. Suppose that x and —x lie in the same G-orbit for each x € V.. Then M? = |V|11,.

These properties are not needed to calculate the explicit formula, but it is effective to verify our
calculations for the explicit formulas. We confirmed that for the prehomogeneous vector spaces in this
paper, the matrices M satisfy this lemma.

14.2. Eigenvalue of M. Let dimV be the dimension over F, of V. By 2 of Lemma [IZ1] the possible
. . dimV imV T .

eigenvalues of M are either ¢~ 2 or —g~ 2 . Let m4 and m_ be the multiplicity of the eigenvalues
_ dimV dimV

g~ 2 and —q~ 2z , respectively. We easily see that

my+m_=r

and
dimV

my —m_ =gq 2 Tr(M).
Therefore we have m and m_ for each prehomogeneous vector space V in this paper.

Corollary 14.2. The multiplicities my and m_ for each V' are given as follows:

v m4 | m—

20202 6 2

2023 7 3

202®4 8 3

2@ Hy(Fg2) 4 2

2® A%(4) 5 | 2

binary tri-Hermitian forms over Fgs | 3 2
2®3®3 13 | 8

2® A%(6) 1m| 7

It may be interesting if a way to calculate the m, and m_ systematically is found.

14.3. Similarity of 202®2, 2®H,(F,2) and the space of binary tri-Hermitian forms. 2@H(F )
and the space of binary tri-Hermitian forms over Fgs are the non-split IF;-forms of 2 ® 2 ® 2. In all of
the three cases, we have

[{z € V| Disc(dety (u,v)) # 0} = ¢°(¢ — 1)*(¢ + 1)(¢° + 1)

and
- gt qgt—q® =0,
V()=9{ ¢'=q° 2 # 0, Disc(det, (u, v)) = 0,
—q° Disc(det, (u, v)) # 0.

By these coincidences, we find that the L;-norms of U for these three spaces also coincide:
> IU(@) =2" —2¢" +1-2¢" +2¢7".
zeV

The reason for these coincidences are not yet found.
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